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PREFACE.

THE flattering manner in which the Glasgow Edition of Newton s Prin-

cipia has been received, a second impression being already on the verge

of publication, has induced the projectors and editor of that work, to

render, as they humbly conceive, their labours still more acceptable, by

presenting these additional volumes to the public. From amongst the

several testimonies of the esteem in which their former endeavours have

been held, it may suffice, to avoid the charge of self-eulogy, to select the

following, which, coming from the high authority of French mathematical

criticism, roust be considered at once as the more decisive and impartial.

It has been said by one of the first geometers of France, that &quot; L edition

de Glasgow fait honneur aux presses de cette ville industrieuse. On peut

affirmer que jamais 1 art typographique ne rendit un plus bel hommage

a la memoire de Newton. Le merite de 1 impression, quoique tres-remar-

quable, n est pas ce que les editeurs ont recherche avec le plus de soin,

pour tant le materiel de leur travail, ils pouvaient s en rapporter a 1 habi-

Lite de leur artistes : mais le choix des meilleures editions, la revision la

plus scrupuleuse du texte et des epreuves, la recherche attentive des fautes

qui pourraient echapper rneme au lecteur studieux, et passer inapercues

ce travail consciencieux de 1 intelligence et du savoir, voila ce qui eleve

cette edition au-dessus de toutes celles qui 1 ont precedee.
&quot; Les editeurs de Glasgow ne s etaient charges que d un travail de re

vision. S ils avaient concu le projet cTamcliorer et complcter I ccuvre des
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vl PREFACE.

commentators, Us auraient sans Joule employe, comme eux$ les travaux des

successeurs de Newton sur les questions traitees dans le livre des Principes.

&quot; Les descendans de Newton sont nombreux, et leur genealogie est

prouvee par des titres incontestibles; ceux qui vivent aujourd hui verraient

sans doute avec satisfaction que Ton format un tableau de leur famille, en

reunissant les productions les plus remarquables dont Pouvrage de Newton

a fourni le germe : que ce livre immortel soit entoure de tout ce Ton peut

regarder comme ses developpemens : voila son meilleur commentaire.

L?edition de Glasgow pourrait done etre continuee, et prodigieusement

enrichie&quot;

The same philosopher takes occasion again to remark, that &quot; Le plus

beau monument que Von puisse clever a la glcire de Newton, c est une

bonne edition de ses ouvrages : et il est etonnant que les Anglais en aient

laisse ce soin aux nations etrangeres. Les presses de Glasgow viennent

de reparer, en partie, le tort de la nation Anglaise : la nouvelle edition

des Principes est effectivement la plus belle, la plus correcte et la plus com

mode qui ait parujusqu tci. La collation des anciennes editions, la revi

sion des calculs, &c. ont ete confiees a un habile mathematicien et rien

n a ete neglige pour eviter toutes les erreurs et toutes les omissions.

&quot; II faut esperer que les editeurs continueront leur belle entreprise, et

qu ih y seront assez encourages pour nous donner, non seulement tous les

ouvrages de Newton, mais ceux des savans qui ont complete ses travaux.&quot;

The encouragement here anticipated has not been withheld, nor has

the idea of improving and completing the cpmments of &quot; The Jesuits&quot;,

contained in the Glasgow Newton, escaped us, inasmuch as long before

these hints were promulgated, had the following work, which is composed

principally as a succedaneum to the former, been planned, and partly writ

ten. It is at least, however, a pleasing confirmation of the justness of our

own conceptions, to have encountered even at any time with these after-

suggestions. The plan of the work is, nevertheless, in several respects,

a deviation from that here so forcibly recommended.

The object of the first volume is, to make the text of the Principia, by



PREFACE. VII

supplying numerous steps in the very concise demonstrations of the pro

positions, and illustrating them by every conceivable device, as easy as

can be desired by students even of but moderate capacities. It is univer

sally known, that Newton composed this wonderful work in a very hasty

manner, merely selecting from a huge mass of papers such discoveries as

would succeed each other as the connecting links of one vast chain, but

without giving himself the trouble of explaining to the world the mode of

fabricating those links. His comprehensive mind could, by the feeblest

exertion of its powers, condense into one view many syllogisms of a pro

position even heretofore uncontemplated. What difficulties, then, ta him

would seem his own discoveries? Surely none; and the modesty for

which he is proverbially remarkable, gave him in his own estimation so

little the advantage of the rest of created beings, that he deemed these

difficulties as easy to others as to himself: the lamentable consequence of

which humility has been, that he himself is scarcely comprehended at this

day a century from the birth of the Principia.

We have had, in the first place, the Lectures of Whiston, who des

cants not even respectably in his lectures delivered at Cambridge, upon
the discoveries of his master. Then there follow even lower and less

competent interpreters of this great prophet of science for such Newton

must have been held in those dark days of knowledge whom it would be

time mis-spent to dwell upon. But the first, it would seem, who properly

estimated the Principia, was Clairaut. After a lapse of nearly half a cen

tury, this distinguished geometer not only acknowledged the truths of the

Principia, but even extended the domain of Newton and of Mathematical

Science. But even Clairaut did not condescend to explain his views and

perceptions to the rest of mankind, farther than by publishing his own
discoveries. For these we owe a vast debt of gratitude, but should have

been still more highly benefited, had he bestowed upon us a sort of run

ning Commentary on the Principia. It is genemlly supposed, indeed,

that the greater portion of the Commentary called Madame Chastellet s,

was due to Clairaut. The best things, however, of that work are alto-
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gether unworthy of so great a master
;
at the most, showing the perform

ance was not one of his own seeking. At any rate, this work does not

deserve the name of a Commentary on the Principia. The same may

safely be affirmed of many other productions intended to facilitate New

ton. Pemberton s View, although a bulky tome, is little more than

a eulogy. Maclaurin s speculations also do but little, elucidate the

dark passages of the Principia, although written more immediately for

that purpose. This is also a heavy unreadable performance, and not

worthy a place on the same shelf with the other works of that great

geometer. Another great mathematician, scarcely inferior to Maclaurin,

has also laboured unprofitably in the same field. Emerson s Comments

is a book as small in value as it is in bulk, affording no helps worth the

perusal to the student. Thorpe s notes to the First Book of the Princi

pia, however, are of a higher character, and in many instances do really

facilitate the reading of Newton. Jebb s notes upon certain sections deserve

the same commendation
; and praise ought not to be withheld from several

other commentators, who have more or less succeeded in making small

portions of the Principia more accessible to the student such as the Rev.

Mr. Newton s work, Mr. Carr s, Mr. Wilkinson s, Mr. Lardner s, &c.

It must be confessed, however, that all these fall far short in value of the

very learned labours, contained in the Glasgow Newton, of the Jesuits

Le Seur and Jacquier, and their great coadjutor. Much remained, how

ever, to be added even to this erudite production, and subsequently to its

first appearance much has been excogitated, principally by the mathema

ticians of Cambridge, that focus of science, and native land of the Princi

pia, of which, in the composition of the following pages, the author has

liberally availed himself. The most valuable matter thus afforded are the

Tutorial MSS. in circulation at Cambridge. Of these, which are used in

explaining Newton to the students by the Private Tutors there, the author

confesses to have had abundance, and also to have used them so far as seem

ed auxiliary to his own resources. But at the same time it must be remark

ed, that little has been the assistance hence derived, or, indeed, from all
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other known sources, which from the first have been constantly at com

mand.

The plan of the work being to make those parts of Newton easy which

are required to be read at Cambridge and Dublin, that portion of the

Principia which is better read in the elementary works on Mechanics,

viz. the preliminary Definitions, Laws of Motion, and their Corollaries,

has been disregarded. For like reasons the fourth and fifth sections have

been but little dwelt upon. The eleventh section and third book have

not met with the attention their importance and intricacy would seem to

demand, partly from the circumstance of an excellent Treatise on Physics,

by Mr. Airey, having superseded the necessity of such labours; and

partly because in the second volume the reader will find the same subjects

treated after the easier and more comprehensive methods of Laplace.

The first section of the first book has been explained at great length,

and it is presumed that, for the first time, the true principles of what has

been so long a subject of contention in the scientific world, have there

been fully established. It is humbly thought (for in these intricate specu

lations it is folly to be proudly confident), that what has been considered

in so many lights and so variously denominated Fluxions, Ultimate Ratios,

Differential Calculus, Calculus of Derivations, &c. &c. is here laid down

on a basis too firm to be shaken by future controversy. It is also hoped

that the text of this section, hitherto held almost impenetrably obscure, is

now laid open to the view of most students. The same merit it is with some

confidence anticipated will be awarded to the illustrations of the 2nd, 3rd,

6th, 7th, 8th, and 9th sections, which, although not so recondite, require

much explanation, and many of the steps to be supplied in the demon

stration of almost every proposition. Many of the things in the first

volume are new to the author, but very probably not original in reality

so vast and various are the results of science already accumulated. Suffice

it to observe, that if they prove useful in unlocking the treasures of the

Principia, the author will rest satisfied with the meed of approbation,

which he will to that extent have earned from a discriminating and im

partial public.
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The second volume is designed to form a sort of Appendix or Supple

ment to the Principia. It gives the principal discoveries of Laplace, and,

indeed, will be found of great service, as an introduction to the entire

perusal of the immortal work of that author the Mecanique Celeste.

This volume is prefaced by much useful matter relative to the Integra

tion of Partial Differences and other difficult branches of Abstract Ma

thematics, those powerful auxiliaries in the higher departments of Physical

Astronomy, and which appear in almost every page of the Mecanique

Celeste. These and other preparations, designed to facilitate the com

prehension of the Newton of these days, will, it is presumed, be found

fully acceptable to the more advanced readers, who may be prosecuting

researches even in the remotest and most hidden receptacles of science ;

and, indeed, the author trusts he is by no means unreasonably exorbitant

in his expectations, when he predicates of himself that throughout the

undertaking he has proved himself a labourer not unworthy of reward.

THE AUTHOE.







A COMMENTARY

NEWTON S PRINCIPIA.

SECTION I. BOOK I.

1. THIS section is introductory to the succeeding part of the work. It

comprehends the substance of the method of Exhaustions of the Ancients,

and also of the Modern Theories, variously denominated Fluxions, Dif

ferential Calculus, Calculus of Derivations, Functions, &c. &c. Like

them it treats of the relations which Indefinite quantities bear to one ano

ther, and conducts in general by a nearer route to precisely the same

results.

2. In what precedes this section, Jinite quantities only are considered,

such as the spaces described by bodies moving uniformly in Jinite times

with Jinite velocities ; or at most, those described by bodies whose mo
tions are uniformly accelerated. But what follows relates to the motions

of bodies accelerated according to various hypotheses, and requires the

consideration of quantities indefinitely small or great, or of such whose

Ratios, by their decrease or increase, continually approximate to certain

Limiting Values, but which they cannot reach be the quantities ever so

much diminished or augmented. These Limiting Ratios are called by

Newton,
&quot; Prime and Ultimate Ratios,&quot; Prime Ratio meaning the Limit

from which the Ratio of two quantities diverges, and Ultimate Ratio that

towards which the Ratio converges. To prevent ambiguity, the term Li

miting Ratio will subsequently be used throughout this Commentary.
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LEMMA I.

3. QUANTITIES AND THE RATIOS OF QUANTITIES.] Hereby Newton

would infer the truth of the Lemma not only for quantities mensurable

by Integers, but also for such as may be denoted by Vulgar Fractions.

The necessity or use of the distinction is none ; there being just as much

reason for specifying all other sorts of quantities. The truth of the LEMMA
does not depend upon the species of quantities, but upon their confor

mity with the following conditions, viz.

4. That they tend continually to equality, and approach nearer to each

other than by any given difference. They must tend continually to equa

lity, that is, every Ratio of their successive corresponding values must be

nearer and nearer a Ratio of Equality, the number of these convergen-

cies being without end. By given difference is merely meant any that can

be assigned or proposed.

5. FINITE TIME.] Newton obviously introduces the idea of time in this

enunciation, to show illustratively that he supposes the quantities to con

verge continually to equality, without ever actually reaching or passing that

state ; and since to fix such an idea, he says,
&quot; before the end of that

time,&quot; it was moreover necessary to consider the time Finite. Hence

our author would avoid the charge of &quot; Fallacia Suppositionis&quot; or of

&quot;

shifting the hypothesis&quot; For it is contended that if you frame certain

relations between actual quantities, and afterwards deduce conclusions

from such relations on the supposition of the quantities having vanished,

such conclusions are illogically deduced, and ought no more to subsist

than the quantities themselves.

In the Scholium at the end of this Section he is more explicit. He

says, The ultimate Ratios, in which quantities vanish, are not in reality the

Ratios of Ultimate quantities ; but the Limits to which the Ratios of quan

tities continually decreasing always approach ; which they never can pass

beyond or arrive at, unless the quantities are continually and indejinitely

diminished. After all, however, neither our Author himself nor any of

his Commentators, though much has been advanced upon the subject, has

obviated this objection. Bishop Berkeley s ingenious criticisms in the

Analyst remain to this day unanswered. He therein facetiously denomi

nates the results, obtained from the supposition that the quantities, before
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considered finite and real, have vanished, the &quot; Ghosts of Departed

Quantities / and it must be admitted there is reason as well as wit in the

appellation. The fact is, Newton himself, if we may judge from his own
words in the above cited Scholium, where he says,

&quot; If two quantities,

whose DIFFERENCE is GIVEN are augmented continually, their Ultimate

Ratio will be a Ratio of
Equality,&quot; had no knowledge of the true nature

of his Method of Prime and Ultimate Ratios. If there be meanino- inO
words, he plainly supposes in this passage, a mere Approximation to be

the same with an Ultimate Ratio. He loses sight of the condition ex

pressed in Lemma I. namely, that the quantities tend to equality nearer

than by any assignable difference, by supposing the difference of the quan
tities continually augmented to be given, or always the same. In this

sense the whole Earth, compared with the whole Earth minus a grain of

sand, would constitute an Ultimate Ratio of equality ; whereas so long as

any, the minutest difference exists between two quantities, they cannot be
said to be more than nearly equal. But it is now to be shown, that

6. If two quantities tend continually to equality, and approach to one

another nearer than by any assignable difference, their Ratio is ULTIMATE
LY a Ratio of ABSOLUTE equality. This may be demonstrated as fol

lows, even without supposing the quantities ultimately evanescent.

It is acknowledged by all writers on Algebra, and indeed self-evident, that

if in any equation put = 0, there be quantities absolutely different in kind,
the aggregate of each species is separately equal to 0. For example, if

since A + a is rational, (B + b) V~2 surd and C V 1 imaginary,

they cannot in any way destroy one another by the opposition of signs,
and therefore

A + a = 0, B + b = 0, C = 0.

In the same manner, if logarithms, exponentials, or any other quantities

differing essentially from one another constitute an equation like the above,

they must separately be equal to 0. This being premised, let L, L de

note the Limits, whatever they are, towards which the quantities L + I,

L7 + 1 continually converge, and suppose their difference, in any state of

the convergence, to be D. Then

L + 1 L V = D,
or L L + 1 1 D = 0,

and since L, L are fixed and definite, and 1, 1&quot;,
D always variable, the

former are independent of the latter, and we have

A2
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L
L L = 0, or

j-&amp;gt;

= 1, accurately. Q. e. d.

This way of considering the question, it is presumed, will be deemed

free from every objection. The principle upon which it rests depending

upon the nature of the variable quantities, and not upon their evanescence,

(as it is equally true even for constant quantities provided they be of dif

ferent natures), it is hoped we have at length hit upon the true and lo

gical method of expounding the doctrine of Prime and Ultimate Ratios,

or of Fluxions, or of the Differential Calculus, &c.

It may be here remarked, in passing, that the Method of Indeterminate

Coefficients, which is at bottom the same as that of Prime and Ultimate

Ratios, is treated illogically in most books of Algebra. Instead of

&quot;

shifting the
hypothesis,&quot;

as is done in Wood, Bonnycastle and others,

by making x = 0, in the equation
a + bx + cx 2 +dx 3 + = 0,

it is sufficient to know that each term x being indefinitely variable, is he

terogeneous compared with the rest, and consequently that each term

must equal 0.

7. Having established the truth of LEMMA I. on incontestable princi

ples, we proceed to make such applications as may produce results useful

to our subsequent comments. As these applications relate to the Limits

of the Ratios of the Differences of Quantities, we shall term, after Leib

nitz, the Method of Prime and Ultimate Ratios,

THE DIFFERENTIAL CALCULUS.

8. According to the established notation, let a, b, c, &c ., denote con

stant quantities, and z, y, x, &c., variable ones. Also let A z, A y, A x,

&c., represent the difference between any two values of z, y, x, &c., re

spectively.

9. Required the Limiting or Ultimate Ratio of A (a x) and A x, i. e.

the Limit of the Difference of a Rectangle having one side (a) constant, and

the other (x) variable, and of the Difference of the variable side.

Let L be the Limit sought, and L + 1 any value whatever of the va

rying Ratio. Then
A (a x) a (x + A x) ax TL + = } -AIT- = -

-ir- ;

= a - b* No- 7

L = a.
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In this instance the Ratio is the same for all values of x. But if in the

Limit we change the characteristic A into d, we have

d(ax)* A ; A

ax) = a d x^
or

d (ax)
d (a x), d x being called the Differentials of a x and x respectively.

A (x
2
)

10. Required the Limit of .

Let L be the Limit required, and L + 1 the value of the Ratio gene

rally. Then
A (x

2
) (x + A x)

2 x 2

L + * = AX = AX
2 X A X + A X 2

&quot;AIT&quot;

- = 2 x + A x.

. . L 2 X + 1 A X =r

and since L 2 x and 1 Ax are heterogeneous
L 2 x = 0,

or

L = x2
and .-.

or

d (x ~) = 2 x d x (c)

A (x
n
)

1 1. Generally, required the Limit of A x .

Let L and L + 1 be the Limit of the Ratio and the Ratio itself re

spectively. Then

T
A

(
X ) (X + AX) X n

L + 1 = -^~ = -
AX

n. (n 1)= n x n - + -j -. x n ~ 2 A x + &c.

and L n x n l

being essentially different from the other terms of

the series and from 1, we have

d (x
n
)

d x = L = n x n ~ l or d (x &quot;)

= n x - l d x
(d)

or in words,
A s
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The Differential of any potsoer or root of a variable quantity is equal to

the product of the Differential of the quantity itself^ the same power or

root MINUS one of the quantity, and the index of the power or root.

We have here supposed the Binomial Theorem as fully established by

Algebra. It may, however, easily be demonstrated by the general prin

ciple explained in (7).

12. From 9 and 1 1 we get

d(ax
n)=nax n ~ 1 dx ...... (e)

A(a+x n + cx m + exP + &c.)
13. Required the Limit of

-

A x

Let L be the Limit sought, and L + 1 the variable Ratio of the finite

differences; then

A(a + bx D + cx m + &c.)

*+!=,. AX
+ &c. a bxn cxm &c._

A X
= nbx n ~ 1 + mcx m ~ l + &c. + P AX + Q(A x)

2
-f- &c.

P, Q, &c. being the coefficients of A x, A x 2 + &c. And equating the

homogeneous determinate quantities, we have

d(a + bx n+ cxm+ &c.)- - -

A(a + bx n + cx m + &c.)
r

14. Required the Limit of
-

~~A~X~~

By 1 1 we have

d. (a + bx n + cx m + &c.)
r

-d(a + bx + &c.) -=r(a + bxn + C x- + &c.)
-

and by 13

d(a+bx n + cx m + &c.) = (nbx 11 &quot; 1
-f mcx 1*- 1 + &c.) dx

r

= r(nbx
n-1+mcx1&quot;- 1 + &c.)(a+ bxn+ &c.)

r- !
.. (g)

the Limiting Ratio of the Finite Differences A(a + bx n
-f-cx

m + &c.),

A x, that is the Ratio of the Differentials ofa + bx n + cx m + &c.,

and x.

A + Bx u -f-Cx m + &c.
15. Required the Ratio of the Differentials gf a .i.b x 4.Cx^-J-&c

and x, or the Limiting Ratio of their Finite Differences.

Let L be the Limit required, and L + 1 the varying Ratio. Then

__
A + B (x + A x)?

1 + C (x + A x)
m + &c. A + B x n + &c.

L + a + b(x + AX) + c(x + Ax)^+ &c.
~

a + bx- + &c.~
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which being expanded by the Binomial Theorem, and properly reduced

gives

L X
(
a + b x + &c.)

2 + L X P. AX + Q (A x)
2 +&c. + 1 X {a+bx + &c.

+ P. A x + Q (A x)
2 + &c.} =(a+bx + cx^+ &c.) X

(nBx&quot;&quot;

1

+ mCx- 1 + &c.) (A+Bx n +Cx m + &c.) X (^bx--
1

+ ft c x /- l + &c.) + P . A x + Q (A x)
2 + &c.

P, Q, P , Q &c. being coefficients of A x, (A x)
2 &c. and independent of

them.

Now equating those homogeneous terms which are independent of the

powers of A x, we get

(A + Bx n + Cx m + &c.) (vbx
- l + /

ucx^- + &c.)

A+Bx n + Cx m + &c.
and putting u =

a^b^TVx^^&cT we have finally

du du
- = L, and therefore

- =

(a + b x + c x &amp;lt;&quot; + &c.)
*

the Ratio required.

16. Hence and from 1 1 we have the Ratio of the Differentials of

(A + Bx+Cx + &c.)
*

(a + b x + cx^ + &c.)
i and x and ln S rt

ready been delivered it is easy to obtain the Ratio of the Differentials of

any Algebraic Function whatever of one variable and of that variable.

N. B. By Function of a variable is meant a quantity anyhow involving

that variable. The term was first used to denote the Powers of a quan

tity, as x 2
, x

3
, &c. But it is now used in the general sense.

The quantities next to Algebraical ones, in point of simplicity, are Ex

ponential Functions; and we therefore proceed to the investigation of

their Differentials.

17. Required the Ratio of the Differentials of a x and x
; or the Limit

ing Ratio of their Differences.

Let L be the required Limit and L + 1 the varying Ratio ; then

A(a
x
) a * + Ai a x

L + l =

= a x X

AX AX
a **

1

A X
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But since

ay = (1 + a l)y

2.3 -(a l)
3 + &c.,

it is easily seen that the coefficient of y in the expansion is

(a I)
2

(a I)
3

-g-- + v__-- __
&c&amp;lt;

Hence

a* (a I)
2

(a_ I)
3

L + ] =
Z1Z Ha 1

2 + V-
3
~

&c.) A x + P (AX)
2 + &c.J

and equating homogeneous quantities, we have

d - (a *) (a I)
2

(a I)
3

~d^~= L = fc 1
--

g
-- + L_J__ &c&amp;gt; j a*

= A a* ........ (h)

or the Ratio of the Differentials of any Exponential and its exponent is

equal to the product of the Exponential and a constant Quantity.
Hence and from the preceding articles, the Eatio of the Differentials of

any Algebraic Function of Exponentials having the same -variable index,

may be found. The Student may find abundance of practice in the Col
lection of Examples of the Differential and Integral Calculus, by Messrs.

Peacock, Herschel and Babbage.
Before we proceed farther in Differentiation of quantities, let us inves

tigate the nature of the constant A which enters the equation (h).
For that purpose, let (the two first terms have been already found)

a x = l+Ax+Px 2 +Qx
Then, by 13,

d (a
x

)

3

But by equation (h)

d (a*)~
also = A

and equating homogeneous quantities, we get
2 P = A 2

,
3 Q = A P, 4 R = A Q, &c. = &c.
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whence

P _A_! o-^- il n AQ A4
2 y -

3
-

2. 3
K =

4
=

2. 3.4 &amp;lt;

Therefore,

A_
2 A 3 A 4

Again, put A x = 1, then

A 1 l -
a = 1+1 + 2+ + 27374 + &c.

= 2.718281828459 as is easily calculated

= e
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We are now prepared to differentiate any Algebraicj or Exponential
Functions of Logarithmic Functions, provided there be involved but

one variable.

Before we differentiate circular functions, viz. the sines, cosines, tan

gents, &c., of circular arcs, we shall proceed with our comments on the

text as far as LEMMA VIII.
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LEMMA II.

18. In No. 6, calling L and L Limits of the circumscribed and inscribed

rectilinear figures, and L + 1, L + 1 any other values of them, whose

variable difference is D, the absolute equality of L and L is clearly de

monstrated, without the supposition of the bases A B, B C, C D, D E,

being infinitely diminished in number and augmented in magnitude. In

the view there taken of the subject, it is necessary merely to suppose them

variable.

LEMMA III.

19. This LEMMA is also demonstrable by the same process in No. 6,

as LEMMA II.

Cor. 1. The rectilinear figures cannot possibly coincide with the curvi

linear figure, because the rectilinear boundaries albmcndoE,
aKbLcMdDE cut the curve a b E in the points a, b, c, d, E in

finite angles. The learned Jesuits, Jacquier and Le Setir, in endeavour

ing to remove this difficulty, suppose the four points a, 1, b, K to coincide,

and thus to form a small element of the curve. But this is the language
of Indivisibles, and quite inadmissible. It is plain that no straight line,

or combination of straight lines, can form a curve line, so long as we un

derstand by a straight line &quot; that which lies evenly between its extreme

points,&quot;
and by a curve line,

&quot; that which does not lie evenly between its

extreme points ;&quot;
for otherwise it would be possible for a line to be

straight and not straight at the same time. The truth is manifestly this.

The Limiting Ratio of the inscribed and circumscribed figures is that of

equality, because they continually tend to a fixed area, viz, that of the

given intermediate curve. But although this intermediate curvilinear

area, is the Limit towards which the rectilinear areas continually tend and

approach nearer than by any difference ; yet it does not fallow that the

rectilinear boundaries also tend to the curvilinear one as a limit. The

rectilinear boundaries are, in fact, entirely heterogeneous with the interme

diate one, and consequently cannot be equal to it, nor coincide therewith.

We will now clear up the above, and at the same time introduce a strik

ing illustration of the necessity there exists, of taking into consideration

the nature of quantities, rather than their evanescence or infinitesimality.
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B D E

Take the simplest example of LEMMA II., in the case of the right-

angled triangle a E A, having its two legs A a, A E equal.

The figure being constructed as in the text of LEMMA II, it fol

lows from that Lemma, that the Ultimate Ratio of the inscribed and cir

cumscribed figures is a ratio of equality ; and moreover it would also

follow from Cor. 1. that either of these

coincided ultimately with the triangle
a 1

a E A. Hence then the exterior boundary
albmcndoE coincides exactly with _,

a E ultimately, and they are consequently

equal in the Limit. As we have only

straight lines to deal with in this example,
let us try to ascertain the exact ratio of

a E to the exterior boundary.
If n be the indefinite number of equal

bases A B, B C, &c., it is evident, since

A a ~ A E, that the whole length of

a * b &quot;i c n d o E = 2 n X A B. Also since a b = b c = &c.

= V~alr~+ b 1
* = V 2. A B, we have a E = n V 2. A B.

Consequently,
albmcndoE:aE::2: V 2 : : V~2 : 1.

Hence it is plain the exterior boundary cannot possibly coincide with

a E. Other examples might be adduced, but it must now be sufficiently

clear, that Newton confounded the ultimate equality of the inscribed and

circumscribed figin es, to the intermediate one, with their actual coinci

dence, merely from deducing their Ratios on principles of approximation
or rather of Exhaustion, instead of those, as explained in No. 6 ; which

relate to the homogeneity of the quantities. In the above example the

boundaries being heterogeneous inasmuch as they are incommensurable,

cannot be compared as to magnitude, and unless lines are absolutely equal,

it is not easy to believe in their coincidence.

Profound as our veneration is, and ought to be, for the Great Father

of Mathematical Science, we must occasionally perhaps find fault with

his obscurities. But it shall be done with great caution, and only with

the view of removing them, in order to render accessible to students in

general, the comprehension of &quot; This greatest monument of human ge
nius.&quot;

20. Cor. 2. 3. and 4. will be explained under LEMMA VII, which re

lates to the Limits of the Ratios of the chord, tangent and the arc.
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LEMMA IV.

21. Let the areas of the parallelograms inscribed in the two figures be
denoted by

P, Q, R, &c.

p, q, r, &c.

respectively ; and let them be such that

P : p : : Q : q : : R : r, &c. : : m : n.

Then by compounding these equal ratios, we get

P+Q+R + : p + q + r + ; ; m:n
But P + Q + R . . . . and p + q + r + . . . . have with the curvili

near areas an ultimate ratio of equality. Consequently these curvilinear

areas are in the given ratio of m : n.

Hence may be found the areas of certain curves, by comparing their

incremental rectangles with those of a known area.

Ex. 1. Required the area of the common Apollonian parabola comprised
between its vertex and a given ordinate.

Let a c E be the parabola,

whose vertex is E, axis E A and

Latus-Rectum = a. Then A A
being its circumscribing rectan

gle, let any number of rectan

gles vertically opposite to one

another be inscribed in the areas

a E A, a E A , viz. A b, b A ;

B c, c B , &c.

And since

A b = A K. A B

A b = A 1. A B = ^-. A Ba
from the equation to the parabola.

A b a. A B

Also

A b
~ A K. A B

or

(A a)
2 Bb 2 = axAE a

(A a + B b) X A B = a X A B
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= Aa -f BbA B
A b Aa + B b 2 Bb + K a Ka.

AMb
= ~ETb~~ B b + B b

A b
Hence, since in the Limit -Trr becomes fixed or of the same nature with

the first term, we have

A b

A b
= 2

ultimately.

And the same may be shown of all other corresponding pairs of rec

tangles ; consequently by LEMMA IV.

a E A : a E A : : 2 : 1

.. a E A : rectangle A A : : 2 : 3.

or the area of a parabola is equal to two thirds of its circumscribing rec

tangle.

Ex. 2. To compare the area of a, semiellipse with that of a semicircle

described on the same diameter.

J&amp;gt;

Taking any two corresponding inscribed rectangles P N, P N ;
we

have

P N : F N : : P M : P M : : a : b

a and b being the semiaxes major and minor of the ellipse ;
and all other

corresponding pairs of inscribed rectangles have the same constant ratio
;

consequently by LEMMA IV, the semicircle has to the semiellipse the ratio

of the major to the minor axis.

As another example, the student may compare the area of a cycloid

with that of its circumscribing rectangle, in a manner very similar to

Ex. 1.

This method of squaring curves is very limited in its application. In

the progress of our remarks upon this section, we shall have to exhibit a

general way of attaining that object.



14 A COMMENTARY ON [SECT. I.

LEMMA V.

22. For the definition of similar rectilinear figures, and the truth of this

LEMMA as it applies to them, see Euclid s Elements B. VI, Prop. 4, 19

and 20.

The farther consideration of this LEMMA must be deferred to the ex

planation of LEMMA VII.

LEMMA VI.

23. In the demonstration of this LEMMA, &quot; Continued Curvature&quot; at

any point, is tacitly defined to be such, that the arc does not make with the

tangent at that point, an angle equal to ajinite rectilinear angle.

In a Commentary on this LEMMA if the demonstration be admitted,

any other definition than this is plainly inadmissible, and yet several of

the Annotators have stretched their ingenuity to substitute notions of

continued curvature, wholly inconsistent with the above. The fact is,

this LEMMA is so exceedingly obscure, that it is difficult to make any

thing of it. In the enunciation, Newton speaks of the angle between the

chord and tangent ultimately vanishing, and in the demonstration, it is

the angle between the arc and tangent that must vanish ultimately. So

that in the Limit, it would seem, the arc and chord actually coincide.

This has not yet been established. In LEMMA III, Cor. 2, the coinci

dence ultimately of a chord and its arc is implied ; but this conclusion by

no means follows from the LEMMA itself, as may easily be gathered from

No. 19. The very thing to be proved by aid of this LEMMA is, that the

Ultimate Ratio of the chord to the arc is a ratio of equality, it being

merely subsidiary to LEMMA VII. But if it be already considered that

they coincide, of course they are equal, and LEMMA VII becomes nothing

less than &quot;

argumentum in circulo&quot;

Newton introduces the idea of curves of &quot; continued curvature&quot; or

such as make no angle with the tangent, to intimate that this LEMMA does

not apply to curves of non-continued curvature, or to such as do make a

Jinite angle with the tangent. At least this is the plain meaning of his

words. But it may be asked, are there any curves whose tangents are

inclined to them ? The question can only be resolved, by again admitting
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the arc to be ultimately coincident with the chord ;
and by then showing,

that curves may be imagined whose chord and tangent ultimately shall be

inclined at a finite angle. The Ellipse, for instance, whose minor axis

is indefinitely less than its major axis, is a curve of that kind ; for taking

the tangent at the vertex, and putting a, b, for the semiaxes, and y, x, for

the ordinate and abscissa, we have

b 2

, X (2ax-x 2
)

and

y
2 =

2 a
X 1 = ,= V 2 a x

.-. since b is indefinitely smaller than a V x, x is indefinitely greater than

y, and supposing y to be the tangent cut off by the secant x parallel to

the axis, x and y are sides of a right angled A, whose hypothenuse is the

chord. Hence it is plain the z_ opposite x is ultimately indefinitely

greater than the L. opposite to y. But they are together equal to a right

angle. Consequently the angle opposite x, or that between the chord and

tangent, is ultimately finite. Other cases might be adduced, but enough
has been said upon what it appears impossible to explain and establish as

logical and direct demonstration. We confess our inability to do this,

an(J feel pretty confident the critics will not accomplish it.

24. Having exposed the fallacy of Newton s reasoning in the proof of

this LEMMA, we shall now attempt something by way of substitute.

Let A D be the tangent to the curve at the

point A, and A B its chord. Then if B be

supposed to move indefinitely near to A, the

angle BAD shall indejinitely decrease,, pro

vided the curvature be not indefinitely great.

Draw R D passing through B at right an

gles to AB, and meeting the tangent AD and

normal A R in the pointsD and R respective

ly.
Then since the angle BAD equals the

angle A R B, if A R B decrease indefinitely

when B approaches A ; that is, if A R be

come indefinitely greater than A B ; or

which is the same thing, if the curvature at A, be not indefinitely great ;

the angle BAD also decreases indefinitely. Q. e. d.

We have already explained, by an example in the last article, what is
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meant by curvature indefinitely great. It is the same with Newton s ex

pression
&quot; continued curvature.&quot; The subject will be discussed at length

under LEMMA XI.

As vanishing quantities are objectionable on account of their nothing

ness as it has already been hinted, and it being sufficient to consider va

riable quantities, to get their limiting ratios, as capable of indefinite diminu

tion, the above enunciation has been somewhat modified to suit those

views.

LEMMA VII.

25. This LEMMA, supposing the two preceding ones to have beenfully esta

blished, would have been a masterpiece of ingenuity and elegance. By
the aid of the proportionality of the homologous sides of similar curves,

our author has exhibited quantities evanescent by others of any finite

magnitude whatever, apparently a most ingenious device, and calculated

to obviate all objections. But in the course of our remarks, it will be

shown that LEMMA V cannot be demonstrated without the aid of this

LEMMA.

First, by supposing A d, A b always finite, the angles at d and b and

therefore those at D and B which are equal to the former are virtually

considered finite, or R D cuts the chord and tangent at finite angles.

Hence the elaborate note upon this subject of Le Seur and Jacquier is

rendered valueless as a direct comment.

Secondly. In the construction of the figure in this LEMMA, the de

scription of a figure similar to any given one, is taken for granted. But

the student would perhaps like to know how this can be effected.

LEMMA V, which is only enunciated, from being supposed to be a mere

corollary to LEMMA III and LEMMA IV, would afford the means immedi

ately, were it thence legitimately deduced. But we have clearly shown

(Art. 19.) that rectilinear boundaries, consisting of lines cutting the inter

mediate curve ultimately atjinite angles, cannot be equal ultimately to the

curvilinear one, and thence we show that the boundaries formed by the

chords or tangents, as stated in LEMMA III, Cor. 2 and 3, are not ulti

mately equal, by consequence of that LEMMA, to the curvilinear one.

Newton in Cor. 1, LEMMA III, asserts the ultimate coincidence, and

therefore equality of the rectilinear boundary whose component lines cut

the curve at finite angles, and thence would establish the succeeding cor-
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ollaries a fortiori.
But the truth is that the curvilinear boundary is the

limit, as to magnitude, or length, of the tangential and chordal bounda

ries ; although in the other case, it is a limit merely in respect of area.

Yet, we repeat it, that LEMMA V cannot be made to follow from the

LEMMAS preceding it. According to Newton s implied definition of simi

lar curves, as explained in the note of Le Seur and Jacquier, they are the

curvilinear limits of similar rectilinear Jigures. So they might be consi

dered, if it were already demonstrated that the limiting ratio of the chord

and arc is a ratio of equality ; but this belongs to LEMMA VII. Newton

himself and all the commentators whom we have perused, have thus

committed a solecism. Even the best Cambridge MSS. and we have

seen many belonging to the most celebrated private as well as college tu

tors in that learned university, have the same error. Nay most of them

are still more inconsistent. They give definitions of similar curves wholly

different from Newton s notion of them, and yet endeavour to prove

LEMMA V, by aid of LEMMA VII. For the verification of these asser

tions, which may else appear presumptuously gratuitous, let the Cantabs

peruse their MSS. The origin of all this may be traced to the falsely

deduced ultimate coincidence of the curvilinear and rectilinear boundaries,

in the corollaries of LEMMA III. See Art. 19.

We now give a demonstration of the LEMMA without the assistance of

similar curves, and yet independently of quantities actually evanescent.

By hypothesis the secant R D cuts the chord and tangent at finite an

gles. Hence, since

A + B + D = 180

.-. B + D - 180 A

orL + l-fL +l = 180 A

L and L being the limits of B and D and 1, V their variable parts as in

Art. 6
;
and since by LEMMA VI, or rather by Art. 24, A is indefinitely

diminutive, we have, by collecting homogeneous quantities

L + L = 180

But A B, A D being ultimately not indefinitely great, it might easily

be shown from Euclid that L = -L ,
and .-. A B = A D ultimately, (see

Art. 6
)
and the intermediate arc is equal to either of them.
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OTHERWISE,

If we refer the curve to its axis,

A a, B b being ordinates, &c. as

in the annexed diagram. Then,

by Euclid, we have

$ ... AD; I
, + B

+

D .

Bt&amp;gt;t

. Bd
2Bd

Now, since by Art. 24 or LEMMA VI, the L. B A D is
indefinitely less

than either of the angles B or D, .-. B D is indefinite compared with A B
A D

or A D. Hence L being the limit of .
- and 1 its variable part, if we

extract the root of both sides of the equation and compare homogeneous

terms, we get,

L = 1 or &c. &c.

26. Having thus demonstrated that the limiting Ratio of the chord, arc

and tangent, is a ratio of equality, when the secant cuts the chord and tangent
at FINITE angles, we must again digress from the main object of this work,
to take up the subject of Article 17. By thus deriving the limits of the rati

os of the finite differences of functions and their variables, directly from the

LEMMAS of this Section, and giving to such limits a convenient algorithm
or notation, we shall not only clear up the doctrine of limits by nume
rous examples, but also prepare the way for understanding the abstruser

parts of the Principia. This has been before observed.

Required to find the Limit of the Finite Differences of the sine of a cir

cular arc and of the arc itself, or the Ratio of their Differentials.
Let x be the arc, and A x its finite variable increment. Then L being

the limit required and L + 1 the variable ratio, we have

L + 1 = A s *&quot; x _ sm - (x + A x) sin, x
A X A~X

_ sin, x. cos. (A x) + cos, x. sin. (A x) sin, x

A X

sin. (A x) sin.x. cos. AX sin. x
COS. X.

A :c AX AX
Now by LEMMA VII, as demonstrated in the preceding Article, the li-

, cos. (A x) sin. x
,

l, and -- 5- -
t
--

7-^7- have no definite limits.

. ,. sm. A x .

nut or is
A X A X A X
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Consequently putting
sin. (A x)

cos. x. 3 = cos. x + 1 ,A X
we have

L + 1 = cos. x + 1 + -

AX AX
and equating homogeneous terms

L = cos. x

or adopting the differential symbols

d. sin. x
~d~

or

d sin.

27. Hence and from the rules for the differentiation of algebraic, expo
nential, &c. functions, we can differentiate all other circular functions of

one variable, viz. cosines, tangents, cotangents, secants, &c.

Thus,

d sin. (
- x^
\8 / f^ \ -= cos. ( x

)
= sin. x

-(i-*)
or

d. cos. x

sin. x ~\
.. -_^_. pnQ v M

lx f

&amp;gt;in. x = d x. cos. x J

dx
or

d. cos. x

= sin. x

or

d

1. COS. X . ^V

j = sin. x J
d x

. cos. x = d x. sin. x J

(b)

Again, since for radius 1, which is generally used as being the most simple,

1 + tan.
2 x = sec.

2 x =
COS. X

1 2 cos. x. d. cos. x
.*. 2 tan. x. d. tan. x = d. = 1

cos. 2 x cos. x

See 12 (d). Hence and from (b) immediately above, we have

d x. sin. x
tan. x. d. tan. x =

cos.
3 x

. . d. tan. x = d x. -
(c)

cos.
- x

Again,

cot. x =
tan. x

B 2
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Therefore,

, 1 d. tan. x
cot x = d

ta,,. X
-
-5S?nr-

tan. 2
x. cos.

2 x sin.
2 x

Again,

1

(d)

sec. x =

.-. d. sec. x = d.

COS. X

d
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denoting by A
2 the second difference.

Hence,

~A~x~2
= 3 - 2 - x + 3 A x

and if the limiting ratio of A 2

(x
3

)
and Ax 2

, or the ratio of the second

differential of x 3
,
and the square of the differential of its variable x, be

required, we should have

L + 1 = 3. 2. x + 3 A x

and equating homogeneous terms

d 2

(x
3

)

j ,
= L = 3. 2. x

d x 2

In a word, without considering the difference, we may obtain the se

cond, third, &c. differentials d 2
u, d 3

u, &c. of any function u of x im

mediately, if we observe that -r is always a function itself of x, and
(I X

make d x constant. For example, let

u = ax n + bx m + &c.

Then, from Art. 13. we have

-j
= nax n-I + m b x m ~ + &c.

CL X

, /d u\

VcTx/ d (d u) d 2 u
j = ~r 9- = j o (by notation)d x d x 2 d x 2 v J

= n. (n l)ax
n - 2 + m(m 1) b x m ~ 2 + &c.

Similarly,

d 3 u

-j
5
= n. (n 1). (n 2) a x &quot;

- 3 + &c.

&c. = &c.

Having thus explained the method of ascertaining the limits of the ra

tios of all orders of finite differences of a function, and the corresponding

powers of the invariable first difference of the variable, or the ratios of the

differentials of all orders of a function, and of the corresponding power
of the first differential of its variable, we proceed to explain the use of

these limiting ratios, or ratios of differentials, by the following

B3
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APPLICATIONS

29. Let it be required to draw a tangent to a given curve at any given

point of it.

Let P be the given point, and A M
being the axis of the curve, let P M
= y, A M = x be the ordinate and

abscissa. Also let P be any other

point; draw P N meeting the ordi

nate P M in N, and join P P . Now
let T P R meeting M P and M A in

R and T be the tangent required.

Then since by similar triangles

P N : P N : : P M : M T
.-. M T = M T + T T = y.

A X

Now y being supposed, as it always is in curves, a function of x, we have

seen that whether that function be algebraic, exponential, &c.

- in the limit, or -^- is always a definite function of x. Hence putting
J *

AX-
Ay

d x
j
dy

we have

M T + T T = y (~ +
l)

and equating homogeneous terms,

which being found from the equation to the curve, the point T will be

known, and therefore the position of the tangent P T. M T is called

the subtangent.

Ex. 1. In the common parabola,

y
2 = a x
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Therefore,

d x 2 y
d y

~~
a

and
2 v 2

MT = -^- = 2x

or the subtangent M T is equal to twice the abscissa.

Ex. 2. In the ellipse,

b 2

y
2 = ^(a

2 -x*)
and it will be found by differentiating, &o. that

/A 2 v Z\

MT =
~

X
*

Ex. 3. In the logarithmic curve,

y = a*

dy
*

cfx
- * a x y (

see 17 -)

MT = ra &quot;v^C^, ^ r, ^&quot;^i &quot;,i

which is therefore the same for all points.

The above method of deducing the expression for the subtangent is

strictly logical, and obviates at once the objections of Bishop Berkeley
relative to the compensation of errors in the denominator. The fact is,

these supposed errors being different in their very essence or nature from
the other quantities with which they are connected, must in their aggre

gate be equal to nothing, as it has been shown in Art. G! This ingenious
critic calls F R = z ; then, says he, (see fig. above)

y. d xM T =
d y + z accurately ;

whereas it ought to have been

y A x yMT = A y -f z Ay
AX A X

-the finite differences being here considered. Now in the limit,
- becomes aA X

dy
definite function of x represented by g-^r Consequently if 1 be put for

A y
the variable part of ~ -, we have
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_ __
dx + * + A X

and it is evident from LEMMA VII and Art. 25, that z is indefinite com-

z d y
pared with A x. .-.

^-^
is indefinite compared with M T, -5 , and y ;

and 1 is also so
;
hence

&quot;

..

M T. | + (l + ^j) M T = y

gives

y. d x zM T =
^y, and 1 + =

which proves generally for all curves, what Berkeley established in the

case of the common parabola ; and at the same time demonstrates, as had

been already done by using T T instead of P R, incontestably the ac

curacy of the equation for the subtangent.

30. If it were required to draw a tangent to any point of a curve, re

ferred to a center by a radius-vector and the L. 6 which describes by

revolving round the fixed point, instead of the rectangular coordinates

x, y ;
then the mode of getting the subtangent will be somewhat different.

Supposing x to originate in this center, it is plain that

x g cos. 6 1

y =
g sin. 6 )

and substituting for x, y, d x, d y, hence derived in the expression (29.

e.) we have

d P cos. 6 P d 6 sin. 6MT =
g sin.Jx d ; 8in., + ; d , cog., ..... (f)

Ex. In the parabola

2a
&quot;&quot;

1 cos. 6

where a is the distance between the focus and vertex, or the value of g at

the vertex. Then substituting we get, after proper reductions

and the distance from the focus to the extremity of the subtangent is

cos. 6 cos. 6- cos . 6 = 2 a
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2 a
=

1 cos. a
~

Si

as is well known.

30. a. The expression (f) being too complicated in practice, the following

one may be substituted for it.

Let P T be a tangent to the

curve, refei red to the center S,

at the point P, meeting S T
drawn at right angles to S P,

ill T ; and let P be any other

point. Join P P and produce
it to T ,

and let T P be pro

duced to meet S P produced in

R, &c. Then drawing P N parallel to S T, we have

PN
x SF

But

P N =
g tan. A 6, S P =

f + A g

and

Therefore, substituting and equating homogeneous terms, after having

applied LEMMA VII to ascertain their limits, we get

Ex. 1. In the spiral of Archimedes we have

S
= ad;

.-. S T = S
-

Ex. 2. In the hyperbolic spiral

a

g = y;
.-. S T = a

31. It is sometimes useful to know the angle between the tangent and

axis.

P M dy
Tan. T = 5rT =

d ^ (h)

See fig.
to Art 29.
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Again, in
fig. Art. 30 a.

SP dg
Tan. T =^ =

^ d , (k)

32. It is frequently of great use, in the theory of curves and in many
other collateral subjects, to be able to expand or develope any given func
tion of a variable into an infinite series, proceeding according to the

powers of that variable. We have already seen one use of such develop
ments in Art. 17. This may be effected in a general manner by aid of

successive differentiations, as follows.

If u = f (x) where f (x) means any function of x, or any expression

involving x and constants ; then, as it has been seen,

d u = u d x

(u being a new function of x)

Similarly
d u = u&quot; d x

d u&quot;
- u &quot; d x

&c. = &c.
But

. /d u\ d 2 u X d x d 2 x X d u
d u = d (tt = ~

d^~ (
6 k

)

. &c. = &c.

denoting d. (d u), d. (d x) by d ~
u, d 2

x, and (d x)
2

by d x 2
,

according to the received notation ;

Or, (to abridge these expressions) supposing dx constant, and .-. d 2 x= 0,

(a;

which give the various orders of fluxions required.
Ex. 1. Let u = x n

Then
du
-5 n ~x a i

d X ~

d*u
3--,

= n. (n l)x&quot;-
z
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d 3 u

j^-3
= n. (n 1). (n 2)x n ~

&c. = &c.

d n u

J-^TE
= n. (n 1). (n 2) ..... 3. 2. 1.

Ex. 2. Let u = A + B x + C x 2 + D x 3 + E x 4 + &c.

Then,

du^ = B + 2Cx + 3Dx 2 + 4Ex 3 + &c.

d 2 u

j^, = 2C + 2. 3Dx + 3. 4 E x 2 + &c.

d 3 u

d^~3 = 2. 3 D + 2, 3. 4 E x + &c.

&c. = &c.

Hence, if u be known, and the coefficients A, B, C, D, &c. be un

known, the latter may be found ; for if U, U , U&quot;, U&quot; , &c. denote the

d u d 2 u d 3 u

when x = 0, then

A = U, B = 17, C =
jg-

U&quot;,
D =~ U

&quot;,
E = ~-

U&quot;&quot;,

&c. = &c.

and by substitution,

u = U + U x + U&quot; |l + U &quot;^ + &c. . ^ ^ ;
. . (b)

This method of discovering the coefficients is named (after its inventor),

MACLAURIN S THEOREM.

The uses of this Theorem in the expansion of functions into series are

many and obvious.

For instance, let it be required to develope sin. x, or cos. x, or tan. x,
or 1. (1 -f x

) into series according to the powers of x. Here
u = sin. x, or = cos. x, or = tan. x, or = 1. (1 + x ),

. d-x = cos. x, or = - sin. x, or = ~g or =
f j x

llH 2 sin. x 1

dx2 - - sin. x, or = _ cos. x, or = ,--, or = - --
,
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d 3 u 2 + 4 sin.
2 x 2

H 3 = COSt x or = sm * x O1 = 4 ~&amp;gt; or = /V&quot; i x\s

&c. = &c.

.-. U =0, or = 1, or = 0, or =
U = 1, or = 0, or = 1, or = 1

U&quot; =0, or = 1, or = 0, or = 1

U&quot; = 1, or = 0, or = 2, or = 2

&c. = &c.

Hence

x 3 x 5

sin. x = x 273 + 2 . 3. 4. 5
~ &c-

x 2 x 4

cos. x = 1
-g-

+ 2 3 4,
&c -

x 3 2x 5 17x 7

tan. x = x +
-g-
+ g-y + 3 z57 + &c.

X 2 X 3

1. (1 + X) = X
-g-
+ -g

&C.

Hence may also be derived

TAYLOR S THEOREM.

For let

f (x) = A + Bx + Cx 2 + Dx 3 + Ex 4 + &c.

Then

f (x + h) = A + B. (x + h) + C. (x + h)
2 + D . (x + h)

3 + &c.

+ (B + 2Cx + 3Dx 2

)h
+ (C + 3Dx + 6Ex 2

)h
2

+ (D + 4 Ex + 10 Fx 2
)
h 3

+ &c.

d. f (x) d^XW !l!

d 3
f(x) h 3

the theorem in question, which is also of use in the expansion of series.

For the extension of these theorems to functions of two or more varia

bles, and for the still more effective theorems of Lagrange and Laplace,

the reader is referred to the elaborate work of Lacroix. 4to.

Having shown the method of finding the differentials of any quanti-
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ties, and moreover, entered in a small degree upon the practical applica

tion of such differentials, we shall continue for a short space to explain

their farther utility.

33. To find the MAXIMA and MINIMA of quantities.

If a quantity increase to a certain magnitude and then decrease, the

state between its increase and decrease is its maximum. If it decrease

to a certain limit, and then increase, the intermediate state is its mi

nimum. Now it is evident that in the change from increasing to decreas

ing, or vice versa, which the quantity undergoes, its differential must have

changed signs from positive to negative, or vice versa, and therefore (since

moreover this change is continued) have passed through zero. Hence

When a quantity is a MAXIMUM or MINIMUM, its differential
= 0. . . (a)

Since a quantity may have several different maxima and minima, (as for

instance the ordinate of an undulating kind of curve) it is useful to have

some means of distinguishing between them.

34. To distinguish between MAXIMA and MINIMA.
LEMMA. To show that in Taylor s Theorem (32. c.) any one term can

be rendered greater than the sum of the succeeding ones, supposing the

coefficients of the powers of h to be finite.

Let Q h n - l be any term of the theorem, and P the greatest coefficient

of the succeeding terms. Then, supposing h less than unity,

P h n
(1 + h + h 2 + . . . . in infin.) = P h n X

*

is greater than the sum
( S) of the succeeding terms. But supposing h to

decrease in infin.

1

P n&amp;gt;

&quot;

l h
= P h n

ultimately. Hence ultimately

P h
&amp;gt;

8
Now

Q h &quot;
- .

; p h n
; : Q : p h,

and since Q and P are finite, and h infinitely small
; therefore Q is

&amp;gt;
P h,

Hence Q h n ~ l
is

&amp;gt;
P h n

,
and a fortiori

&amp;gt;
S.

Having established this point, let

u = f(x)
be the function whose maxima and minima are to be determined ; also

when u = max. or min. let x = a. Then by Taylor s Theorem

fl du. du h 2 d 3 u h 3

f.-b = f._ - h . -. &c.
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and

and since by the LEMMA, the sign of each term is the sign of the sum of

that and the subsequent terms,

.-. f (a h) = f (a) ^-?. Md a

f(a + h) = f(a) + ^-?. N
d a

Now since f (a) = max. or min. f (a) is
&amp;gt;

or
&amp;lt;

than both f (a h)

and f (a + h), which cannot be unless

d-u -o
da

-

Hence

d 2 u
f(a-h) =f(a)

f(a + h) = f(a) da 2

and f (a) is max. or min. or neither, according as f (a) is
&amp;gt;, &amp;lt;

or = to

both f (a h) and f (a + h), or according as

d 2 u .

-T
- is negative, positive, or zero

If it be zero as well as -, , we have
d a

f(a + h) =f(a) +
O. i I

and f (a) cannot = max. or min. unless

d 3 u

d^~
:

which being the case we have

d 4 u
f(a h) = fa + M&quot; )da f

f(a + h)=fa + ^l?. N-)d a

and as before,



BOOK I.] NEWTON S PRINCIPIA. 31

d T&quot;

&quot; *&quot;&quot; &quot;&quot;&quot; *-
1 4

f (a) is max . or min. or neither, according as -,

&quot;

is negative, positive, or

zero, and so on continually.

Hence the following criterion.

If in u f (x), = 0, the resulting value of x shall give u MAX.

or MIN. or NEITHER, according as
-j

2
w negative, positive, or aero.

r-d u d 2 u d^ u
J ~dx

=
dTx~2

~
dlT3

= tlien the TesultinS value of u

shall be a MAX., MIN. or NEITHER according as -
&quot;

is NEGATIVE, PO-
11 X.

SITIVE, or ZERO ; and so on
continually.

Ex. 1. To find the MAX. and MIN. of the ordinate of a common para
bola.

y = V a x

d y _ J^ V~SL

d x 2 y~^
which cannot = 0, unless x = oc .

Hence the parabola has no maxima or minima ordinates.

Ex. 2. To Jind the MAXIMA and MINIMA of y in the equation

y
2 2axy + x 2 = b 2

.

Here

d y /d y
d_y _ ay x d 2

y __

*

^jJ^dx y_ax dx 2
~

y_ ax
d V

and putting
^- = 0, we get

- _____ _
V (l_a 2

)

&quot;

V (1 a 2

) dx 2
~

b~Vjl a 8
)

which indicate and determine both a maximum and a minimum.
Ex. 3. 7b rfiw/Wc a in such a manner that the product of the mlh

power
of the one part, and the power of the other shall be a maximum.

Let x be one part, then a x = the other, and by the question
u = x m

. (a
_ x )n

- max .

du _*

a^
~ ~

(
a x

)

&quot;
~ X (m a x. m + n)
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and

d x
_ x m - 2

(
a _ x )

n - 2 x
(
m + n 1. m + n. x 2

&c.)

Put -r- =
; then

d x
m a

x 0, or x = a, or x
in + n

the two former of which when m and n are even numbers give minima,

and the last the required maximum.
j]

Ex. 4. Let u = x x
.

Here

d u 1 1.x 7 7 u
j = u. i = 0, . . 1. x = 1, and x e the hyperbolic base
Cl A. A.

= 2.71828, &c.

Innumerable other examples occur in researches in the doctrine of

curves, optics, astronomy, and in short, every branch of both abstract and

applied mathematics. Enough has been said, however, fully to demon

strate the general principle, when applied to functions of one independent

variable only.

For the MAXIMA and MINIMA of functions of two or more variables, see

Lacroix, 4to.

35. If in the expression (30 a. g) S T should be finite when s is infinite,

then the corresponding tangent is called an Asymptote to the curve, and

since g and this Asymptote are both infinite they are parallel. Hence

To Jind the Asymptotes to a curve,

d 6

In S T =
f

2

-j , make g
= oc , then eachfinite value of S T gives an

Asymptote ;
which may be drawn, by finding from the equation to the

curve the values of 6 for g
= a, (which will determine the positions of g),

then by drawing through S at right angles to g, S T, S T , S T&quot;, &c. the

several values of the subtangent of the asymptotes, and finally through

T, T , 1&quot;,
&c. perpendiculars to S T, S T , S T&quot;,

&c. These perpen

diculars will be the asymptotes required.

Ex. In the hyperbola

___ _
^

~~
a (1 e cos. 6)

1

Here g
= a , gives 1 e cos. 6 = 0, .. cos. 6 =

/. + 6 = L. whose cos. is --
e
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b 2 b 2

\T~A T^o -7 = b
&amp;gt;

whence it will be seen that
a e sin. 6 a V e z

1

the asymptotes are equally inclined (viz. by L. 6) to the axis, and pass

through the center.

The expression (29. e) will also lead to the discovery and construction

of asymptotes.

Since the tangent is the nearest straight line that can be drawn to the

curve at the point of contact, it affords the means of ascertaining the in

clination of the curve to any line given in position ; also whether at any

point the curve be inflected, or from concave become convex and vice ver

sa ; also whether at any point two or more branches of the curve meet,

i. e. whether that point be double, triple, &c.

36. To Jind the inclination of a curve at any point of it to a given line ,

Jmd that of the tangent at that given point, which will be the inclination

required.

Hence if the inclination of the tangent to the axis of a curve be zero,

the ordinate will then be a maximum or minimum ; for then

tan. T = =
dx (31. h)

37. To Jind the points of Inflexion of a curve.

A B A B

Let y = f (x) be the equation to the curve a b ; then A a, B b being

any two ordinates, and ana tangent at the point a, if we put A a = y,

and A B = h, we get

A a = f x

dx

i&amp;gt;

r

h 4. lly

But B n = mn =
y. -f. .

dy
d

dT* 172 + &c &2 c]

Consequently B b is
&amp;lt;

or
&amp;gt;
B n

d 2

y.
according as -r is negative or positive, i. e. the curve is concave or con-



34 A COMMENTARY ON [SECT. I.

d 2
y .

vex towards its axis according as
-^

-
z

is negative or positive.

Hence also, since a quantity in passing from positive to negative, and

vice vwsa, must become zero or infinity, at a point of inflexion

d 2
yi or a

d x 2

Ex. In the Conchoid of Nicomedes

x y = (a + y )
V (b

2

y
2
)

which gives, by making d y constant,

d 2 x _ 2 b 4 a b 2

y
3 3 b 2 a y

*

and putting this = 0, and reducing, there results

which will give y and then x.

These points of inflexion are those which the Theory of (34) indicates

as belonging to neither maxima nor minima , and pursuing this subject

still farther, it will be found, in like manner, that in some curves

d 4 v d 6 v
^ 4 = or a , -, 4 = or a , &c. = &c.
d x 4 d x 6

also determine Points of Inflexion.

38. Tojind DOUBLE, TRIPLE, Sfc. points of a curve.

If the branches of the curve cut one another, there will evidently be as

many tangents as branches, and consequently either of the expressions,

Tan. T = ^ (31. h)
d x

M T =
2-j-i (29. e)

as derived from the equation of the curve, will have as many values as

there are branches, and thus the nature and position of the point will be

ascertained.

If the branches of the curve touch, then the tangents coincide, and the

method of discovering such multiple points becomes too intricate to be in

troduced in a brief sketch like the present. For the entire Theory of

Curves the reader is referred to Cramer s express treatise on that subject,

or to Lacroix s Different, and Integ. Calculus, 4to. edit.

39. We once more return to the text, and resume our comments. We
pass by LEMMA VIII as containing no difficulty which has not been al

ready explained.

As similar figures and their properties are required for the demonstra-
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tion of LEMMA IX, we shall now use LEMMA VII in
establishing LEMMA

V, and shall thence proceed to show what figures are similar and how to
construct them.

According to Newton s notion of similar curvilinear figures, we may
define two curvilinear figures to be similar when any rectilinear polygon
being inscribed in one ofthem, a rectilinear polygon similar to the former,
may always be inscribed in the other.

Hence, increasing the number of the sides of the polygons, and dimi
nishing their lengths indefinitely, the lengths and areas of the curvilinear

figures will be the limits by LEMMAS VII and III, of those of the recti
linear polygons, and we shall, therefore, have by Euclid these lengthsand areas in direct and duplicate proportions of the homologous sides

respectively.

40. To construct curves similar to given ones.

If y, x be the ordinate and abscissa, and x the
corresponding abscissa

of the required curve, we have

x:y: :x :Z x x = y \ .* . . .
&amp;lt;

aj ^
the ordinate of the required curve, which gives that point in it which
corresponds to the point in the given curve whose coordinates are x, y;
and in the same manner may as many other points as we please be de
termined.

In such curves, however, as admit a practical or mechanical construc
tion, it will frequently be sufficient to determine but one or two values of y .

Ex. 1. In the circle let x, measured along the diameter from its extre

mity, be r (the radius) ; then y r, and we have

y = 2- x x = x
X

where x may be of any magnitude whatever. Hence, all semicircles, and
therefore circles, are similarJfgures.

Ex. 2. In a circular arc (2 a) let x be measured along the chord (2 b),
and suppose x = r sin. a

; then y = r . vers. a

, vers. a
y = HI x x

sin. a

which gives the greatest ordinate to any semichord as an abscissa, of the

required arc, and thence since

y = r V r
2 x *

it will be easy to find the radius r and centre, and to describe the arc

required.
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But since

y r vers. a! vers. vers. a

x r sin. a! sin. a sin. a

therefore

a a
2 sin.

* ,2 sin.
~

1 cos. a 21 cos. a

sin. a a . a sin. a a . a
2 cos. sin. 2 cos. sin.

& 22
or

a a
tan. - = tan. ^

and

. .a = a

which accords with Euclid, and shows that similar arcs of circles subtend

equal angles.

Ex. 3. Given an arc of a parabola, &quot;whose latus-rectiim is p, to Jind a

similar one, whose latus-rectum shall be p .

In the first place, since the arc is given, the coordinates at its extremi

ties are ; whence may be determined its axis and vertex ; and by the usual

mode of describing the parabola it may be completed to the vertex.

Now, since

y
2 = p x

x, x being measured along the axis, and when

v P
/. v = . x = . x = 2 x

x y

which shows that all semi-parabolas, and therefore parabolas, are similar

figures. Hence, having described upon the axis of the given parabola,

any other having the same vertex, the arc of this latter intercepted be

tween the points whose coordinates correspond to those of the extremi

ties of the given arc will be the arc required.

Ex. 4. In the ellipse whose semi-diameters are a, b, if x be measured

along the axis, when x = a, y = b. Hence

b
y = -_. x

and x or the semi-axis major being assumed any whatever, this value of

y will give the semi-axis minor, whence the ellipse may be described.

This being accomplished, let (a, (3) (a ,
8

}
be the coordinates at the
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extremities of any given arc of the given ellipse, then the similar one of

the ellipse described will be that intercepted between the points whose

coordinates, (x , y ) (x&quot;, y&quot;)
are given by

y = V (2 a x x 2

)

: |3 : : x : y l
J a

a : /3 : : x :
y&quot;J

an
b&quot;

, /2 ,

y z V (2 a x x 2
)

B

In like manner it may be found, that

All cycloids are similar.

Epicycloids are so, when the radii of their wheels a radii of the spheres.

Catenaries are similar when the bases &amp;lt;x tensions, Sfc. Sfc.

40. If it were required to describe the curve A c b (fig.
to LEMMA

VII) not only similar to A C B, but also such that its chord should be of

the given length (c) ; then having found, as in the last example, the co

ordinates (x , y ) (x&quot;, y&quot;)
in terms of the assumed value of the abscissa

(as a in Ex. 4), and (, /3), (a , /3 )
the coordinates at the extremities of

the given arc, we have

a function of a : whence a may be found.

Ex. In the case of a parabola whose equation is y
2 = a x, it will be

found that (y
2 = a x being the equation of the required parabola)

whence (a )
is known, or the latus-rectum of the required parabola is so

determined, that the arc similar to the given one shall have a chord = c.

41. It is also assumed in the construction both to LEMMA VII and

LEMMA IX, that, If in similar Jigures, originating in the same point., the

chords or axes coincide, the tangents at that origin will coincide also.

Since the chords A B, A b
(fig. to LEMMA VII), the parallel secants

B D, b d, and the tangents A D, A d are corresponding sides, each to

each, to the similar figures, we have (by LEMMA V)

A B : B D : : A b : b d

and L B = L. b. Consequently, by Euclid the L. B A D = L b A d,

or the tangents coincide.
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To make this still clearer. Let
M B, M B be two similar curves,

andA B,A B similar parts ofthem.

Let fall from A, B, A , B , the or-

dinates A a, B b, A a
, B b cut

ting off the corresponding abscissas

M a, M b, M a
, M b , and draw

the chords A B, A B ; also draw
A C, A C at right angles to B b, B C .

Then, since (by LEMMA V)

M
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A D
similar to A B C. Take A d = A e X -r ^ and erect the ordinate d bA &

meeting A b c in b. Then, since A d, A e are the abscissae corre-O *

spending to A D, A E, the ordinates d b, e c also correspond to the

ordinates D B, E C, and by LEMMA V we have

d b : D B : : e c : E C : : A e : A E
: : A d : A C (by construction)

and the /- D = L. d. Hence

b is in the straight line A B produced, &c. &c.

43. This LEMMA may be proved, without the aid of similar curves, as

follows :

A B D =
^-^

. (D F + F B)

-AD 2
tan&amp;gt; &quot;

-i
A D B F

~
2 2

and

where a = /L D A F.

A BD _ AD 2
, tan, a + A D . B F

&quot; A C E
&quot;

A E 2
. tan. a + A E . C G

Now by LEMMA VII, since L. B A F is indefinite compared with F or B ;

therefore B F, C G are indefinite compared with A D or A E. Hence

if L be the limit of . ., ,
and L + 1 its varying value, we have

A C Jti

AD 2
, tan, a + A D . B F

=
A E 8

. tan. a + A E . C G
and multiplying by the denominator and equating homogeneous terms

we get

L . A E 2
. tan. a = AD&quot;, tan.

- f A BD _ AD 2

)! AlTE
~

A~E~2

44. LEMMA X. &quot;

Continually increased or diminished.&quot; The word
&quot;

continually&quot;
is here introduced for the same reason as continued

curvature&quot; in LEMMA VI.

If the force, moreover, be not
&quot;Jinite&quot;

neither will its effects be ; or

the velocity, space described, and time will not admit of comparison.
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45. Let the time A D be divided into several portions, such as D d,

A b B being the locus of the extremities of the ordinates which D repre

sent, the velocities acquired D B, d b, B
&c. Then upon these lines D d, &c.

\Bas bases, there being inscribed rect-

angles in the figure A D B, and when
their number is increased and bases

diminished indefinitely, their ultimate

sum shall = the curvilinear area D d D A
A B D (LEMMA III.) But each of these rectangles represents the space
described in the time denoted by its base ; for during an instant the ve

locity may be considered constant, and by mechanics we have for constant

velocities S = T X V. Hence the area A B D represents the whole

space described in the time A D.

In the same manner, ACE (see fig. LEMMA X) represents the tune

A E. But by LEMMA IX these areas are &quot;

ipso motus
initio,&quot; as A D *

and A E 2

Hence, in the very beginning of the motion, the spaces de

scribed are also in the duplicate ratio of the times.

46. Hence may be derived the differential expressions for the space

described^ velocity acquired, &c.

Let the velocity B D acquired in the time t (A D) be denoted by v,

and the space described, by s.

Then, ultimately&amp;gt;,

we have

Dd = dt,Bn = dv,
and

Dnbd = ds = Ddxdb = dtXv.
Hence

d s . d s
v = ,ds = vdt, d t = (a)

Again, if D d =r d D ,
the spaces described in these successive instants,

are D b, D m, and therefore ultimately the fluxion of the space repre

sented by the ultimate state of D m is b n r m or 2 b m B . Hence

d (d s) = 2 X b m B ultimately,

and supposing B to move up to A, since in the limit at A, B coincides

with A, arid B m with A D, and therefore b m B or d (d s) represents

the space described &quot; in the very beginning of the motion.&quot;

Hence by the LEMMA,
d (ds) a 2 d t

2 a d t
2

or with the same accelerating force

d 2
s a d t

2

(b)
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With different accelerating forces d 2
s must be proportionably increased

or diminished, and .*. (see Wood s Mechanics)
d 2

s a Fdt 2

Hence we have, after properly adjusting the units of force, &c.

d 2
s = Fdt 2.

and . . I

d 2
s

f
-

.*v-tfv.-. f -

(
c)

F:= dT2 3

Hence also and by means of (a) considering d t constant,

F =
,
v d v = F d s (d)

all of which expressions will be of the utmost use in our subsequent
comments.

47. LEMMA X. COR. I. To make this corollary intelligible it will be

useful to prove the general principle, that

If a body, moving in a curve, be acted upon by any new accelerating

force, the distance between the points at which it would arrive WITHOUT
and WITH the newforce in the same time, or &quot;

error,&quot; is equal to the space

that the new force, acting solely, would cause it to describe in that same

time.

Let a body move in the curve ABC, and when at B, let an additional

force act upon.it in the direction B b. Also let B D, D E, E C ;

B F, F G, G b be spaces that would be described in equal times by the

body moving in the curve, and when moved by the sole action of the new
force. Then draw tangents at the points B, D, E meeting D d, E e, C c,

each parallel to B b, in P, Q, R. Also draw F M, G R, b d parallel to

B P; M S, R N, d e parallel to D Qj and S V, N T, e c parallel to

ER.
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Now since the body at B is acted upon by forces which separately

would cause it to move through B D, B F, or, when the number of

the spaces is increased and their magnitude diminished in infinitum,

through B P, B F in same time, therefore by LAW III, Cor. 1, when

these forces act together, the body will move in that time through the

diagonal up to M. In the same manner it may be shown to move from

M to N, and from N to C in the succeeding times. Hence, if the num
ber of the times be increased and their duration indefinitely diminished,

the body will have moved through an indefinite number of points M, N,
&c. up to C, describing a curve B C. Also since b d, d e, e c are each

parallel to the tangents at B, D, E, or ultimately to the curve B D E C ;

.. b d e c ultimately assimilates itself to a curve equal and parallel to

B D E C
;
moreover C c is parallel to B b. Hence C c is also equal

to Bb.

Hence, then, The Error caused by any disturbing force acting upon a

body moving in a curve, is equal to the space that would be described by

means of the sole action of that force, and moreover it is parallel to the

direction of thatforce. Wherefore, if the disturbing force be constant, it is

easily inferred from LEMMAS X and IX, and indeed is shown in all books

on Mechanics, that the errors are as the squares of the times in which they

are generated. Also, if the disturbing forces be nearly constant, then the

errors areas the squares of the times quamproxime. But these conclusions,

the same as those which Note 118 of the Jesuits, Le Seur and Jacquier,

(see Glasgow edit. 1822.) leads to, do not prove the assertion of Newton

in the corollary under consideration, inasmuch as they are general for all

curves, and apply not to similar curves in particular.

48. Now let a curve similar to the above be constructed, and completing

the figure, let the points corresponding to A, B, &c. be denoted by
A , B , &c. and let the times in which the similar parts of these curves,

viz. B D, B D ; D E, D E
; E C, E C are described, be in the ratio

t : t . Then the times in which, by the same disturbingforce, the spaces

B F, B F ; F G, F G ; G b, G b are described, are in the ratio of

t : t . Hence,
&quot; in ipso motus initio&quot; (by LEMMA X) we have

B F : B F : : t
2

: t
2

F G : FG : : t
2

: t
2

&c. &c.

and therefore,

B F + F G + &c. : B F + F7 G + &c. : : t
2

: t
2
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But, (by 15,)

B F + F G + &c. = the error C c,

and

B F + F G + &c. = the error C c ,

and the times in which B C, B7 C are described, are in the ratio t : t .

Hence then

C c : a c : : t
2

: t

or The ERRORS arising from equalforces, applied at corresponding points,

disturbing the motions of bodies in similar curves, which describe similar

parts of those curves in proportional times, are as the squares of the times

in which they are generated EXACTLY, and not &quot;

quam proxime&quot;

Hence Newton appears to have neglected to investigate this corollary.
The corollary indeed did not merit any great attention, being limited by
several restrictions to very particular cases.

It would seem from this and the last No. that Newton s meaning in

the forces being
&quot;

similarly applied,&quot;
is merely that they are to be applied

at corresponding points, and do not necessarily act in directions similarly
situated with respect to the curves.

For explanation with regard to the other corollaries, see 46.

49. LEMMA XI. &quot; Finite Curvature&quot; Before we can form any precise
notion as to the curvature at any point of a curve s being Finite, Infinite or

Infinitesimal, some method of measuring curvature in general must be de
vised. This measure evidently depends on the ultimate angle contained by
the chord and tangent (

A B, AD) or on the angle ofcontact. Now, although
this angle can have no finite value when singly considered, yet when two
such angles are compared, their ratio may be finite, and if any known
curvature be assumed of a standard magnitude, we shall have, by the

equality between the ratios of the angles of contact and the curvatures, the

curvature at any point in any curve whatever. In practice, however, it

is more commodious to compare the subtenses of the angles of contact

(which may be considered circular arcs, see LEM.MA VII, having; radii in
^

a ratio of
equality, and therefore are accurate measures of them), than the

angles themselves.

50. Ex. 1. Let the circumference of a circle be divided into any num
ber of equal parts and the points of division being joined, let there be ?

tangent drawn at every such point meeting a perpendicular let fall from
the next point ; then it may easily be shown that these perpendiculars or

subtenses are all equal, and if the number of parts be increased, and their
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magnitude diminished, in infinitum, they will have a ratio of equality.

Hence, the CIRCLE has the same curvature at every point, or it is a curve

of uniform curvature.

51. Ex. 2. Let two circles touch one

another in the point A, having the

common tangent A D. Also let B D
be perpendicular to A D and cut the

circle A D in B . Join A B, A B .

Then since A
&quot;B,

A B are ultimately

equal to A D (LEMMA VII) they are

equal to one another, and consequently

the limiting ratio of B D and B D, is

that of the curvatures of the respective

circles A C, A D (by 17.)

But, by the nature of the circle,

A D 2 = 2 R X D B D B 2 = 2 r X

R and r being the radii of the circles.

Therefore

D B 2 R D B
L+ DB ~2r -DB

and equating homogeneous terms we have

D B D B

i. e. The curvatures of circles are inversely as their radii.

52. Hence, if the curvature of the circle whose radius is 1, (inch, foot,

or any other measure,) be denoted by C, that of any other circle whose

radius is r, is

r

53. Hence, if the radius r of a circle compared with 1, definite, its

curvature compared with C, isfinite ; if r be infinite the curvature is

infinitesimal ,-
if r be infinitesimal

the curvature is infinite,
and so 011 through

all the higher orders of infinites and infinitesimals. By infinites and in

finitesimals are understood quantities indefinitely great or small.

The above sufficiently explains why curvature, compared with a given

standard (as C), can be said to definite or indefinite. We are yet to show

the reason of the restriction to curves offinite curvature, in the enuncia

tion of the LEMMA.

54. The circles which pass through A, B, G ; a, b, g, (fig.
LEMMA XI)
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have the same tangent A D with the curve and the same subtenses. Hence

(49. and 52.) these circles ultimately have the same curvature as the curve,

i. e. A I is the diameter of that circle which has the same curvature as the

curve at A. Hence, according as A I is finite or indefinite, the curvature

at A is so likewise, compared with that of circles of finite radius.

Now A G ultimately, or

AB&quot;~

:

^~D

whether A I be finite or not. If finite, B D a A B 2
,

as we also learn

from the text.

A B -

55. If the curvature be infinitesimal or A I infinite ;
then since

-g-jj

is infinite, B D must be infinitely less than A B ~, or, A B being

always considered in its ultimate state an infinitesimal of the first order,

B D is that of the third order, i. e. B D oc A B 3
. The converse is

also true.

Ex. In the cubical parabola, the abscissa tx as the cube of the or-

dinate ;
hence at its vertex the curvature is infinitely small. At other

points, however, of this curve, as we shall see hereafter, the curvature is

finite.

To show at once the different proportions between the subtenses of the

angles of contact and the conterminous arcs, corresponding to the differ

ent orders of infinitesimal or infinite curvatures, and to make intelligible

this intricate subject, let A B ultimately considered be indefinitely small

A B 2

compared with 1 ; then since
-^-^-

= A B, A B 2
is infinitesimal com-

A B n

pared with A B
;
and generally . p n-I = A B, shows that A B n

is

infinitely small compared with A B n - * so that the different orders of in-

Jinitesimals may be correctly denoted by

AB, AB 2
, AB 3

,
A B*, &c.

Also since 1 is infinite compared with the infinitesimal A B, and A B

compared with A B \ &c. the different
orders of infinites may be repre

sented by

1 * 1 1
&c

A~B A~B~2 AB 3 AB 4

56. Hence if the curvature at any point of a curve be infinitesimal in

the second degree
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A B 2
1

v&amp;gt; TV Qt .
,
and B D oc A B 4

,
and conversely.

-D L) A 15

And generally, if the curvature be infinitesimal in the nth
degree,

A B 2
1

JVfT
a

A R n?
an(^ ^^ a A B n + 2

, and conversely.

Again, if the curvature be infinite in the nth

degree,

A B 2

--^
cc A B n

, and B D oc A B 2 - n
, and conversely.

The parabolas of the different orders will afford examples to the above

conclusions.

57. The above is sufficient to explain the first case of the LEMMA.
Case 2. presents no difficulty ; for b d, B D being inclined at any equal

angles to A D, they will be parallel and form, with the perpendiculars let

fall from b, B upon A D, similar triangles, whose sides being propor

tional, the ratio between B D, b d will be the same as in Case 1.

Case 3. If B D converge, i. e. pass through when produced to a given

point, b d will also, and ultimately when d and D move up to A, the

difference between the angles A d b, A D B will be less than any
that can be assigned, i. e. B D and b d will be ultimately parallel;

which reduces this case to Case 2. (See Note 125. of PP. Le Seur and

Jacquier.)

Instead of passing through a given point, B D, b d may be supposed
to touch perpetually any given curve, as a circle for instance, and B D
will still a AD 2

; for the angles D, d are ultimately equal, inasmuch as

from the same point A there can evidently be but one line drawn touch

ing the circle or curve.

Many other laws determining B D might be devised, but the above

will be sufficient to illustrate Newton s expression,
&quot; or let B D be deter

mined by any other law whatever.&quot; It may, however, be farther observed

that this law must be definite or such as will^-r B D. For instance, the

LEMMA would not be true if this law were that B D should cut instead of

touch the given circle.

58. LEMMA XL Cou. II. It may be thus explained. Let P be

the given point towards which the sagittae S G, s g, bisecting the chords

A B, A b, converge. S G, s g shall ultimately be as the squares of

A B, A b, &c.
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For join P B, P b and produce

them, as also P G, P g, to meet the

tangent in D, d, T. t. Then if B
and b move up to A, the angles

T P D, t P d, or the differences be

tween the angles ATP and A D P,

and between A t P and.A d P, may
be diminished without limit; that is,

(LEMMA I), the angles at T, D and

at t, d are ultimately equal. Hence

the triangles ATS, A D B are

similar, as likewise are A t s, A d b.

Consequently

ST : D B

and

s t : d b

and

.-. S T : s t :

Also by LEMMA VII,

S T : st :

and by LEMMA XI, Case 3,

D B : d b

.-. S G : s s :

S G :

AB 2

AB 2

A S : A B

Ab

D B : db

S S

Ab 2

Ab 2

Q. e. d.

Moreover, it hence appears, that the sagittte which cut the chords, in

ANY GIVEN RATIO WHATEVER., and tend to a given point, have ultimately

the same ratio as the subtenses of the angles of contact, and are as the squares

of the corresponding arcs, chords, or tangents.

59. LEMMA XL COR. III. If the velocity of a body be constant or

&quot;given,&quot;
the space described is proportional to the time t. Hence

A B a t, and .-. S G a A B 2 a t
2
.

60. LEMMA XL COR. IV. Supposing B D, b d at right angles to

A D (and they have the same proportion when inclined at a given angle

to A D, and also when tending to a given point, &c.) we have
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AADB: AAdb::^-^-?- A d x db
2 2

:: ?T XAD: Ad

A D 2

r^-* AD: Ad

: : A D 3
: A d 3

.

Also

A d

: : (D B)
^

: (d b)
*

It may be observed here, that the tyro, on reverting to LEMMA IX,

usually infers from it that

A A D B a A D 2 and does not a. AD 3
,

but then he does not consider that A D, in LEMMA IX, cuts or makes a

Jinite angle with the curve, whereas in LEMMA XI it touches the curve.

61. LEMMA XI. COR. V. Since in the common parabola the ab

scissa a square of the ordinate, and likewise B D or A C a A D 2 or

C D 2
,

it is evident that the curve may ultimately be considered a

parabola.

This being admitted, we learn from Ex. 1, No. 4, that the curvilinear

area A C B =
-f
of the rectangle C D. Whence the curvilinear area

A B D = | of C D = f of the triangle A B D, or the area A B D a

triangle A B D a A D 3
, &c. (by Cor. 4.) So far B D, b d have been

considered at right angles to A D. Let them now be inclined to it at a

given angle, or let them tend to a given point, or &quot; be determined by any
other law;&quot; then (LEMMA, Case 3, and No. 25) B D, b d will ultimately

be parallel. Hence, B D , b d (fig. No. 26) being the corresponding

subtenses perpendicular to A D, it is plain enough that the ultimate dif

ferences between the curvilinear areas A B D, A B D and between

A b d, A b d are the similar triangles B D D ,
b d d , which

differences are therefore as B D 2
,
b d 2

, or as A B 4
, A b 4

, i. e.

BDD a A B 4
.

But we have shown that A B D a A B 3
.
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Consequently
ABD = ABD+BDD / = axAB 3 + bxAB 4=AB 3

(a + bxAB)
and b X A B being indefinite compared with a, (see Art. 6,)

ABD = axAB 3 a A B 3
.

Q. e. d.

SCHOLIUM TO SECTION I.

62. What Newton asserts in the Scholium, and his commentators Le
Seur and Jacquier endeavour (unsuccessfully) to elucidate, with regard to

the different orders of the angles of contact or curvatures, may be briefly

explained, thus.

Let D B ex A D m
. Then the diameter of curvature, which equals

A D 2

-jjg- (see No. 22 and 24), a AD 2 -&quot;1
. Similarly if D B ot AD&quot;, the

diameter of curvature &amp;lt;x A D 2 ~ n
. Hence D and D represents these

diameters, we have

D a X A D 2 ~ m a

D7 =
a X AD 2 - n

=
&quot;a

7 D m
(
a and a beinS finite

)

and if n = 2 or D definite, then D will bejinite, infinitesimal, or infinite,

according as m = 2, or is any number, (whole, fractional, or even transcen

dental) less than 2, or any number greater than 2. Again, if m = n
then D compared with D is finite, since D : D : : a : a . Ifm be less

than n in any finite degree, then n m is positive, and D is always in

finitely less than D . Ifm be greater than n, then

D a 1= -7 XD &quot;-

a AD
and m n being positive, D is always infinite compared with D .

Hence then, there is no limit to the orders of diameters of curvature,
with regard to infinite and infinitesimal, and consequently not to the

curvatures.

63. In this Scholium Newton says, that &quot; Those things which have
been demonstrated of curve lines and the surfaces which they comprehend
are easily applied to the curve surfaces and contents of solids.&quot; Let us

attempt this application, or rather to show,

1st, That if any number of parallelepipeds of equal bases be inscribed in

any solid, and the same number having the same bases be also circumscribed
VOL. I. D



50 A COMMENTARY ON [SECT. I.

about it ; then the number of these parallelepipeds being increased and their

magnitude diminished IN INFINITUM, the ultimate ratios which the aggre

gates of the inscribed and circumscribed parallelopipeds have to one another

and to the solid, are ratios of equality.

A

Let A S T U V Z Y X W A be any portion of a solid cut off by three

planes A A V, A A Z and Z A V, passing through the same point A ,

and perpendicular to one another. Also let the intersections of these

planes with one another be A A , A V, A Z, arid with the surface of the

solid be A U V, A Y Z and Z 1 V. Moreover let A V, A Z be each
divided into any number of equal parts in the points B , T , U ; D , X , Y ,

and through them let planes, parallel to A A&quot; Z and A A V respectively,
be supposed to pass, whose intersections with the planes A A V, A A Z
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shall be S B7

, T T, U U ;
W D 7

, X X , Y Y7

, and with the plane
A7 Z V, 1 W, m T7

,
n U ; t D7

, s X
, o Y , respectively. Again, let the

intersections of these planes with the curve surface be S P 1, T Q m,
U R n ; WPt, XQs, YRo respectively. Also suppose their several

mutual intersections to be P C7

, P E7

, P&quot; x, P &quot; G7

, Q F 7

, Q H7

, Q&quot; K7

,

&c. ; those of these planes taken in pairs and of the plane A Z V, being
the points C7

, E7

, x, G7

, F7

, H 7

, K , F, &c. and those of these pairs of

planes and of the curve surface, the points P, P , P&quot;,
P&quot; , Q, Q , Q&quot;, R, &c.

Now the planes, passing through B7

,
T7

, U7

, being all parallel to

A A Z, are parallel to one another and perpendicular to A A V. Also

because the planes passing through D 7

, X7

, Y are parallel to A A7

V,

they are parallel to one another, and perpendicular to A A? Z. Hence

(Euc. B. XL) S B , T T7

, U U7

, W D , X X7

, Y Y7

, as also P C7

, P7 E7

,

P77

x, P777 G7

, Q F7

, Q7 H7

, Q77 K7

, &c. &c. are parallel to A A7 and to

one another. It is also evident, for the same reasons, that B7

1, T7

m, U7

n,

are parallel to A7 Z and to one another, as also are D7

1, X7

s, Y7 o to

A 7 V and to one another. Hence also it follows that A7 B7 C7 D 7

,

B 7 C7 E7 T , &c. are rectangles, which rectangles, having their sides equal,
are themselves equal.

Again, from the points A, P, Q, R in the curve surface, draw A B,
A D; P E, P G; Q H, Q K; R L, R N parallel to A 7 B7

, A7 D7

;

C7 E7

, C7 G7

; F7 H7

, T7 K7

, I
7

o, I
7 n and meeting B7

S, D7 W; E7 P
,

G 7 P777

; H7 Q7

, K7 Q77

produced in the points B, D; E, G; H, K, re

spectively. Then complete the rectangles A C, P F, Q I which, being
equal and parallel to A7 C7

, C7 F7

, F7
I
7

, will evidently, when C7

P, F7

Q,
I

7 R are produced to C, F, I, complete the rectangular parallelepipeds
A C7

, P F7

, Q I
7
. Moreover, supposing F7

I
7
the last rectangle wholly

within the curve Z V produce K7
I

7

, H7
I

7 and make I
7 L7

, I
7 N 7

equal
K I

7

, H7
I

7

, and complete the rectangle I M 7
. Also complete the

parallelepiped R M7
.

Again, produce E P, G P, H Q, K Q; L R, N R to the points d, b
;

g, e; k, h, and complete the rectangles Pa, Q p, R q thereby dividing
the parallelepipeds A C7

, P F7

, Q I
7

,
each into two others, viz. A P,

aC7

; PQ, pF7

; Q R, q I .

Now the difference between the sum of the inscribed parallelepipeds
a C7

, p F
7

, q P, and that of the circumscribed ones A C 7

, P F7

, Q P, R M7
,

is evidently the sum of the parallelepipeds A P, P Q, Q R, R M7

; that

is, since their bases are equal and the altitudes P R 7

, R I, Q F, PC
are together equal to A A7

, this difference is equal to the parallelepiped
A C7

. In the same manner if a series of inscribed and circumscribed
D2
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rectangular parallelepipeds, having the bases B E , E H , H L , be

constructed, the difference between their aggregates will equal the paral

lelepiped whose base is B E and altitude S B , and so on with every
series that can be constructed on bases succeeding each other diagonally.

Hence then the difference between the sums of all the parallelepipeds
that can be inscribed in the curve surface A Z V and circumscribed about

it, is the sum of the parallelepipeds whose bases are each equal to A C
and altitudes are A A

, S B , T T;

, U U
,
W D

,
X X

, Y Y . Let
now the number of the parts A B , B T , T U , U V, and of the parts
A D , D X , X? Y , Y7 Z be increased, and their magnitude diminished

in infinitum, and it is evident the aforesaid sum of the parallelepipeds,
which are comprised between the planes A A Z, S B 1 and between the

planes A A! V, W D t, will also be diminished without limit ; that is, the

difference between the inscribed and circumscribed whole solid is ulti

mately less than any that can be assigned, and these solids are ultimately

equal, and a fortiori is the intermediate curve-surfaced solid equal to either

of them (see LEMMA I and Art. 6.) Q. e. d.

Hitherto only such portions of solids as are bounded by three planes

perpendicular to one another, and passing through the same point, have

been considered. But since a complete curve-surfaced solid will consist of

four such portions, it is evident that what has been demonstrated of any
one portion must hold with regard to the whole. Moreover, if the solid

should not be curve-surfaced throughout, but have one, two, or three plane

faces, there will be no difficulty in modifying the above to suit any parti

cular case.

2dly, If in two curve-surfaced solids there be inscribed two series ofparal

lelepipeds, each of the same number ,- and ultimately these parattelopipeds

have to each other a given ratio., the solids themselves have to one another

that same ratio.

This follows at once from the above and the composition of ratios.

3dly, All the corresponding edges or sides, rectilinear or curvilinear, of
similar solids are proportionals ; also the corresponding surfaces, plane or

curved, are in the duplicate ratio of the sides ; and the volumes or contents

are in the triplicate ratio of the sides.

When the solids have plane surfaces only, the above is shown to be

true by Euclid.

When, however, the solids are curve-surfaced, wholly or in part, we

must define them to be similar when any plane- surfaced solid whatever

being inscribed in any one of them, similar ones may also be inscribed in the
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others. Hence it is evident that the corresponding plane surfaces are

similar, and consequently, by LEMMA V, the corresponding edges are

proportional, and the corresponding plane surfaces are in the duplicate

ratio of these edges or sides. Moreover, if the same number of similar

parallelepipeds be inscribed in the solids, and that number be indefinitely

increased, it follows from 63. 1 and the composition of ratios, that the

curved surfaces are proportional to the corresponding plane surfaces, and

therefore in the duplicate ratio of the corresponding edges ; and also that

the contents are proportional to the corresponding inscribed parallelepi

peds, or (by Euclid) in the triplicate ratio of the edges.

These three cases will enable the student of himself to pursue the ana

logy as far as he may wish. We shall &quot; leave him to his own devices,&quot;

after cautioning him against supposing that a curved-surface, at any point

of it, has a certain fixed degree of curvature or deflection from the tangent-

plane, and therefore that there is a sphere, touching the tangent-plane at

that point, whose diameter shall be the limit of the diameters of all the

spheres that can be made to touch the tangent-plane or curved-surface

analogously to A I in LEMMA XI. Every curvilinear section of a curved-

surface, made by a plane passing through a given point, has at that point

a different curvature, the curved-surface being taken in the general sense;

and it is a problem of Maxima and Minima To determine those sections

which present the greatest and least degrees of curvature.

The other points of this Scholium require no particular remarks. If

the student be desirous of knowing in what consists the distinction be

tween the obsolete methods of Exhaustions, Indivisibles, &c. and that of

PRIME AND ULTIMATE RATIOS, let him go to the original sources to the

works of Archimedes, Cavalerius, &c.

64. Before we close our comments upon this very important part of the

Principia, we may be excused, perhaps, if we enter into the detail of the

Principle delivered in Art. 6, which has already afforded us so much

illustration of the text, and, as we shall see hereafter, so many valuable

results. We have thence obtained a number of the ordinary rules for

deducing indefinite forms from given definite functions of one variable ;

and it will be confessed, by competent and candid judges, that these ap

plications of the principle strongly confirm it. Enough has indeed been

already developed of the principle, to prove it clearly divested of all the

metaphysical obscurities and inconsistencies, which render the methods of

Fluxions, Differential Calculus, &c. &c. so objectionable as to their logic,

and which have given rise to so many theories, all tending to establish

n 3
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the same rules. It is incredible that the great men, who successively in

troduced their several theories, should have been satisfied with the

reasonings by which they attempted to establish them. So many con

flicting opinions, as to the principles of the science, go only to show that

all were founded in error. Although it is generally difficult, and often

impossible, for even the most sharp-sighted of men, to discern truth

through the clouds of error in which she is usually enveloped, yet, when
she does break through, it is with such distinct beauty and simplicity that

she is instantly recognized by all. In the murkiness around her there are

indeed false lights innumerable, and each passing meteor is in turn, by

many observers, mistaken for the real presence ; but these instantly vanish

when exposed to the refulgent brightness of truth herself. Thus we have

seen the various systems of the world, as devised by Ptolemy, Tycho
Brahe, and Descartes, give way, by the unanimous consent of philoso

phers, to the demonstrative one of Newton. It is true, the principle of

gravitation was received at first with caution, from its non-accordance

with astronomical observations ; but the moment the cause of this discre

pancy, viz. the erroneous admeasurement of an arc of the meridian, was

removed, it was hailed universally as truth, and will doubtless be coeval

with time itself. The Theories relative to quantities indefinitely variable,

present an argument from which may be drawn conclusions directly op

posite to the above. Newton himself, dissatisfied with his Fluxions, pro

duces PRIME AND ULTIMATE RATIOS, and again, dissatisfied with these, he

introduces the idea of Moments in the second volume of the Principia.

He is every where constrained to apologize for his obscurities, first in his

Fluxions for the use of time and velocities, and then again in the Scholium,

at the end of Sect. I of the Principia, (and in this instance we have shown

how little it avails him) for reasoning upon nothings. After Newton comes

Leibnitz, his great though dishonest rival, (we may so designate him, such

being evidently the sentiments of Newton himself), who, bent upon oblite

rating all traces of his spoil, melts it down into another form, but yet falls

into greater errors, as to the true nature of the thing, than the discoverer

himself. From his Infinitesimals, considered as absolute nothings of the dif

ferent orders, nothing can be logically deduced, unless by Him (we speak

with reverence) who made all things from nothing. Suchjiats we mortals

cannot issue with the same effect, nor do we therefore admit in science, finite

and tangible consequences deduced from the arithmetic of absolute no

things, be they ever so many. Then we have a number of theories pro

mulgated by D Alembert, Euler, Simpson, Marquise L Hopital, &c. &c.
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all more or less modifications of the others all struggling to establish

and illustrate what the great inventor, with all his almost supernatural

genius, failed to accomplish. All these diversities in the views of philo

sophers make, as it has been already observed, a strong argument that

truth had not then unveiled herself to any of them. Newton strove most

of any to have a full view, but he caught only a glimpse, as we may per

ceive by his remaining dissatisfied with it. Hence then it appears, to us

at least, that the true metaphysics of the doctrine of quantities indefinitely

variable, remain to this day undiscovered. But it may be asked, after

this sweeping conclusion, how comes it that the results and rules thence

obtained all agree in form, and in their application to physics produce

consequences exactly in conformity with experience and observation ?

The answer is easy. These forms and results are accurately true, al

though illogically deduced, from a mere compensation of errors. This has

been clearly shown in the general expression for the subtangent (Art. 29),

and all the methods, not even Lagrange s Calcul des Fonctions excepted,

are liable to the paralogism. Innumerable other instances might be

adduced, but this one we deem amply sufficient to warrant the above

assertion.

After these preliminary observations upon the state of darkness and

error, which prevails to this day over the scientific horizon, it may per

haps be expected of us to shine forth to dispel the fog. But we arrogate

to ourselves no such extraordinary powers. All we pretend to is self-

satisfaction as to the removal of the difficulties of the science. Having

engaged to write a Commentary upon the Principia, we naturally sought

to be satisfied as to the correctness of the method of Prime and Ultimate

Ratios. The more we endeavoured to remove objections, the more they

continually presented themselves ;
so that after spending many months in

the fruitless attempt, we had nearly abandoned the work altogether ;

when suddenly, in examining the method of Indeterminate Coefficients in

Dr. Wood s Algebra, it occurred that the aggregates of the coefficients of

the like powers of the indefinite variable, must be separately equal to zero,

not because the variable might be assumed equal to zero, (which it never

is, although it is capable of indefinite diminution,) but because of the

different powers being essentially different from, and forming no part of

one another.

From this a train of reflections followed, relative to the treatment of

homogeneous definite quantities in other branches of Algebra. It was

soon perceptible that any equation put = 0, consisting of an aggregate of

D 4
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different quantities incapable of amalgamation by the opposition of plus
and minus, must give each of these quantities equal to zero. Reverting to

indefinites, it then appeared that their whole theory might be developed
on the same principles, and making trial as in Art. 6, and the subsequent

parts of the preceding commentary, we have satisfied ourselves most fully

of having thus hit upon a method of clearing up all the difficulties of

what we shall henceforth, contrary to the intention expressed in Art. 7,

entitle

THE CALCULUS

INDEFINITE DIFFERENCES.

65. A constant quantity is such, that from its very nature it cannot be

made less or greater.

Constants, as such quantities may briefly be called, are denoted generally

by the first letters of the alphabet,

a, b, c, d, &c.

A definite quantity is a GIVEN VALUE ofa quantity essentially variable.

Definite quantities are denoted by the last letters of the alphabet, as

z, y, x, w, &c.

An INDEFINITE quantity is a quantity essentially variable through all

degrees of diminution or of augmentation short of absolute NOTHINGNESS or

INFINITUDE.

Thus the ordinate of a curve, considered generally, is an indefinite,

being capable of every degree of diminution. But if any particular value,

as that which to a given abscissa, for instance, be fixed upon, this value is

definite. All abstract numbers, as 1, 2, 3, &c. and quantities absolutely

fixed, are constants.

66. The difference between two definite values ofthe same quantity (y) is

a definite quantity, and may be represented by

adopting the notation of the Calculus of Finite (or definite} Differences.

In the same manner the difference between two definite values ofA y is

a definite quantity, and is denoted by

A (A y)
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or more simply by

and so on to

57

(b)

67. The difference between a Definite value and the Indefinite value of

any quantity y is Indefinite, and we call it the Indefinite Difference of y, and

denote it, agreeably to the received algorithm, by

dy (c)

In the same manner

d(dy)
or

the Indefinite Difference of the Indefinite Difference of y, or the second in

definite difference of y.

Proceeding thus we arrive at

d n
y (d)

which means the nth indefinite difference of y.

68. Definite and Indejinite Differences admit of being also represented

by lines, as follows :

t&quot;

Let P P = y be any fixed or definite ordinate of the curve A U, and

taking P Q = Q R = R S = &c. let ordinates be erected meeting
the curve in Q, R, S, T, &c. Join P Q, Q R, R S, &c. and produce
them to meet the ordinates produced in r, s, t, &c. Also draw r s

,
s t ,
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&c. parallel to R S, S T, &c. and draw s
t&quot;,

&c. parallel to s t , &c. ; and

finally draw P m, Q n, R o, &c. perpendicular to the ordinates.

Now supposing not only P P but also Q Q , R R , &c. fixed or defi

nite ; then

Q m = Q Q PP = APP = Ay
Rr = n r n R r: Q m R n = A Q m

= A(AP P) = A 2 PF = A 2

y
ss =Ss Ss/ = Ss Rr = A R r

= A 3

y
t t&quot; = t t t t&quot; = t t S S = A S S

= A(A
3

y) = A 4
y.

and so on to any extent.

But if the equal parts P Q , Q R
, &c. be arbitrary or indefinite, then

Q m, R r, s s , 1
1&quot;,

&c. become so, and they represent the several Inde-

Jinite Differences of y, viz.

dy, d 2

y, d 3

y, d 4
y, c.

69. The reader will henceforth know the distinction between Definite

and Indefinite Differences. We now proceed to establish, of Indefinite

Differences., the

FUNDAMENTAL PRINCIPLE.

It is evidently a truth perfectly axiomatic, that No aggregate ofINDEFI

NITE quantities can be a definite quantity, or aggregate of definite quanti

ties^ unless these aggregates are equal to zero.

It may be said that (a x) + (
a + x )

= 2 a, in which (x) is indefinite,

and (a) constant or definite, is an instance to the contrary ; but then the

reply is, a x and a + x are not indefinites in the sense of Art. 65.

70. Hence if in any equation

A + B x + C x 2 + D x 3 + &c. =

A, B, C, &c. be definite quantities and x an indefinite quantity ; then we

have

A = 0, B = 0, C = 0, &c.

For Bx+ Cx 2 + Dx 3 + &c. cannot equal A unless A = 0.

But by transposing A to the other side of the equation, it does = A.

Therefore A = and consequently

B x + C x 2 + D x 3 + &c. =
or

x(B + Cx + Dx 2 + &c.) =
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But x being indefinite cannot be equal to
; ..

B + Cx + Dx 2 + &c. =
Hence, as before, it may be shown that B =: 0, and therefore

x (C + D x + &c.) =
Hence C = 0, and so on throughout.

71. Again, if in the equation

A, B, B
, C, C , C&quot;, D, &c. be definite quantities, and x, y INDEFINITES ;

then

A = 0-\

B x + B y = \-ivhen y is afunction ofx.
C x 2 + C xy + C&quot;y

2 = Oj
&c. =

For, let y = z x, then substituting

A + x (B + B z) + x 2

(C + C z + C&quot; z 2

)

+ x 3

(D + D z + D&quot; z 2 + D &quot;

z 3
) + &c. =

Hence by 70,

A = 0, B + B z = 0, C + C z + C&quot; z 2 = 0, &c.

y
and substituting for z and reducing we get

X.

A = 0, B x + B y = 0, &c.

In the same manner, if we have an equation involving three or more

indefinites, it may be shown that the aggregates of the homogeneous terms

must each equal zero.

This general principle, which is that of Indeterminate Coefficients

legitimately established and generalized, (the ordinary proofs divide

B x + C x 2 + &c. = by x, which gives B + Cx+Dx 2 + &c. =
z

and not ; x is then put = 0, and thence truly results B =
,
which

instead of being 0, may be any quantity whatever, as we know from alge

bra
; whereas in 70, by considering the nature of x, and the absurdity of

making it = we avoid the paralogism) conducts us by a near route to

the Indefinite Differences offunctions of one or MORE variables.

72. Tofold the Indefinite Difference ofanyfunction ofx.

Let u = f x denote the function.

Then d u and d x being the indefinite differences of the function and

of x itself, v;e have

u + d u = f (x + d x)

Assume
f (x + d x) = A + B d x + C d x

&quot; + &c.
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A, 13, &c. being independent of d x or definite quantities involving x and

constants ; then

u + du=A + B d x + C d x 2
-j- &c.

and by 71, we have
u = A, d u = B . d x

Hence then this general rule,

The INDEFINITE DIFFERENCE ofanyfunction of x, f x, is the second

term in the devclopcmcnt off (x + d x) according to the increasing powers

Ex. Let u = x n
. Then it may easily be shown independently of the

Binomial Theorem that

(x + dx)
n = x n + n . x n - d x + Pdx 2

.-. d (x
n
)
= n . x &quot;- 1 d x

The student may deduce the results also of Art. 9, 1 0, &c. from this general

rule.

73. Tofind the indefinite difference of the product of two variables.

Let u = x y. Then

u + du=(x + dx).(y + cly) = xy+x dy + y dx + dx dy
.. d u = x dy+y dx + dx dy

and by 71, or directly from the homogeneity of the quantities, we have-

d u = x d y + y d x ........ (a)

Hence
d (x y z) = x d (y z) + y z d x

= xzdy + xydz + yzdx . . . (b)

and so on for any number of variables.

Again, required d . .

7

j

Let = u. Then
y

x = y u, and d x u dy + y d u

x d x u
. . d d u = --- d y

y y y

_y dx x dy
}

y
2 u

Hence, and from rules already delivered, may be found the Indefinite

Differences of any functions whatever of two or more variables. We
refer the student to Peacock s Examples of the Differential Calculus for

practice.

The result (a) may be deduced geometrically
from the fig.

in Art. 21.

The sum of the indefinite rectangles A b, b A makes the Indefinite

Difference.
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We might, in this place, investigate the second, third, &c. Indefinite

Differences, and give rules for the maxima and minima of functions of two

or more variables, and extend the Theorems of Maclaurin and Taylor to

such cases. Much might also be said upon various other applications,

but the complete discussion of the science we reserve for an express

Treatise on the subject. We shall hasten to deduce such results as we

shall obviously want in the course of our subsequent remarks
; beginning

with the research of a general expression for the radius of curvature of a

given curve, or for the radius of that circle whose deflection from the

tangent is the same as that of the curve at the point of contact.

74. Required the radius of curvaturefor any point ofa given curve.

Let A P Q R be the given

curve, referred to the axis A O
by the ordinate and abscissa

P M, A M or y and x. P M
being fixed let Q N, O R be

any other ordinates taken at

equal indefinite intervals M N,

N O. Join P Q and produce

it to meet O R in r
; and let

P t be the tangent at P drawn

by Art. 29, meeting Q N, O R
in q and t respectively. Again
draw a circle (as in construc

tion of LEMMA XI, or other

wise) passing through P and Q and touching the tangent P t, and there

fore touching the curve ; and let B D be its diameter parallel to A O.

Now
Q n = d y, P 11 = d x, P q = P Q (LEMMA VII) =
V (d x 2

-f- d y
2
)

or d s, if s = arc A P.

Moreover let

P M = y ;

then it readily appears (see Art. 27) that d s =
,
R being the ra-

dius of the circle.

Again

Pq 2 = Qq X (Qq + 2 Q N
)

= Q q (Q q + 2 d y + 2 /)
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or

But since

R t : Q q : : P r 2
: P Q 2

: : 4 : i (LEMMA XI)
and

Q q : t r : : 1 : 2

.-. R t = 2 t r, or R r = t r = 2 Q q

- Q q = ^ =^ (by Art. 68.)

Consequently

(d
2

y)
2

,
R dx d 2

y- ---
and equating Homogeneous Indefinites

R dx d 2

d s
z =

,d s

R -
ds3 _ (dx

2 + dy= dxd 2

y
=

dx d 2

y

dx 2

the general expression for the radius of curvatui e.

Ex. 1. In the parabola y
2 = a x.

d y a

die
~~

!2y

and since when the curve is concave to the axis d 2

y is negative,

d y a dy a
2

~
die 2

= ~
2~

2 oTx
= ~

4~
=

3.

Hence at the vertex R =
, and at the extremity of the latus rectum,

R = a = a V 2.
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Ex. 2. If p be the parameter or the double ordinate passing through
the focus and 2 a the axis-major of any conic section, its equation is

Hence

2 y d y = pdxHh-^xdx

and

2 d y
2 + 2yd 2

y = +. d x s

d_y _
&quot;

d X
&quot;

~2

and

d X s 4 y

.-. R =

which reduces to

R =
2p 2

Ex. 3. In the cycloid it is easy to show that

Aj_ _ j
2r y

dx *v y
r being the radius of the generating circle, and x, y referred to the base

or path of the circle.

d g

y _ _r_
*

cTx&quot;
2
= &quot;

y~*

. . R = 2v 2ry=2 the normal.

Hence it is an easy problem iojind the equation to the locus of the centres

of curvaturefor the several points of a given curve.

If y and x be the coordinates of the given curve, and Y and X those of

the required locus, all referred to the same origin and axis, then the stu

dent will easily prove that
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^d x
and

Y = v

dx 2

which will give the equation required, by substituting by means of the

equation to the given curve.

In the cycloid for instance

X = x + V (2 r y y *)

Y = --y
whence it easily appears that the locus required is the same cycloid, only

differing in position from the given one.

75. Required to express the radius of curvature in terms of the polar co

ordinates of a curve, viz. in terms of the radius vector g and traced-

angle 6.

x = g cos. 6 -\

and &amp;gt;

y = g sin. 6 J

.-. taking the indefinite differences, and substituting in equation (d) of Art.

74, we get

2 dr d_

which by means of the equation to the curve will give the radius of curva

ture required.

Ex. 1. In the logarithmic spiral

d
= la Xa

. R _ (g
2 + (la)

2
^) g

3

(^j! a) 2)---
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Ex. 2. In the spiral ofArchimedes

f
= a ^

and

Ex. 3. /w the hyperbolic spiral

a

Ex. 4. In the Lituus

. R _ _
4a 4

P
4

Ex. 5. / Me 1

Epicycloid

g
= (r + r

)

&quot;

2 r (r + r
) cos. d

r and r being the radius of the wheel and globe respectively.

Here

R -- (
r + r

) (3 r
2 2 r r r * + 2 g)*

2 (3 r 2 r r r 2
) -f 3 g

Having already given those results of the Calculus of Indefinite Differ

ences which are most useful, we proceed to the reverse of the calculus,

which consists in the investigation of the Indefinites themselves from their

indefinite differences. In the direct method we seek the Indefinite Differ

ence of a given function. In the inverse method we have given the Inde

finite Difference to find the function whose Indefinite Difference it is. This

inverse method we call

THE INTEGRAL CALCULUS

OF

INDEFINITE DIFFERENCES.

76. The integral of d x is evidently x + C, since the indefinite differ

ence of x + C is d x.

77. Required the integral of a. d x ?

By Art. 9, we have

d (a x) = a d x.

Vor. I. E
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Hence reversely the integral of a d x is a x. This is only one of the in-

numerable integrals which there are of a d x. We have not only d (a x)
= a d x but also

d(ax+C) = adx
in which C is any constant whatever.

.-. ax + C =/adx = a/d x . . . (a) (see 76)

generally,/being the characteristic of an integral.

78. Required the integral of
a x P d x.

By Art. 12

d(ax n -fC)= n a x &quot;
- * d x

..ax&quot; -f C =/n a x^ d x

= n X/ax n ~ 1 dx (77)

/(i ** X V
a x n ~ l d x = 1 .

n n
r*

But since C is any constant whatever may be written C.

. ./ax- 1 dx = + C
n

Hence it is plain that

ft Y P +

Or Tofind the integral of the product of a constant the p
th
power of the

variable and the Indefinite Difference of that variable, let the index of the

power be increased by \, suppress the Indefinite Difference, multiply by the

constant, divide by the increased index, and add an arbitrary constant.

79. Hence

/(a x P d x + b x * d x + &c.) =
a XP+ 1

bx&quot;-*-
1

F+T +
q-+-r

+ &c- + c

80. Hence also

/ax- n dx = - - + C.
(n 1) x n ~ l n

81. Required the integral of

ax m ~ 1 dx(b + ex m
)P.

Let
u = b + e x m

. . d u = mex m ~ l dx

. . a x m ~ d x = . d um e

../ax m ~ 1 dx(b+ ex m
)P = /* u^du

v / m ftm e
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=
/* T-TV u + + C (78)m e . (p + 1)

= ,

a
,

.. . (b X e x m
)
P+ 1 + C.m e (p + 1)

d x
82. Required the integral of .

By 80 it would seem that

f ci x i r~

and if when

x p /d x 110
^ ~J~T ~o~~&quot;o~

: :

But by Art. 17 a. we know that

d x
d . 1 x =

x

Therefore

J x

Here it may be convenient to make the arbitrary constant of the form 1 C
Therefore %

/* = 1 x + 1 C = 1 C x
x

Hence the integral ofafraction whose numerator is the Indefinite Differ

ence of the denominator, is the hyperbolic logarithm of the denominator PLUS
an arbitrary constant.

83. Hence

/ax m~ 1 dx a
/&quot;
mx m &quot;~ 1 dx

bx m + e bm
, xra

f

/

= JL.l.(x
m +

-

b m \ b

s- .i.v^iA -f- -r- I ,

b m ^
,

b/
and so on for more complicated forms.

84. Required the integral of&* d x.

By Art. 17

d.a x = la.a x dx

E 2
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85. If y, x, t, s denote the sine, cosine, tangent, and secant of an angle

6
; then we have, Art. 26, 27.

d y d x d t __
ds

: =: ~ &quot;

= tan.- t+C

/&quot;

ds
_. = + C = se^- s + C

J s V2s s
2

sin.
~~ l

y, cos.
~ l

x, &c. being symbols for the arc whose sine is y, cosine is

x, &c. respectively.

86. Hence, more generally,

du _ _i_ f
vTdu

-bu ).- Vb/ vfl_b u
V

&amp;lt;

a
&amp;gt;

or = TT X angle whose sine is u ^J to rad. 1 + C.

Also

/ du 1 / b /i\
l-m-r-^v = -TT cos.

- 1 u / + C . . (b)J V (a bu 2

) V b V a

Again

-^du, . f V d 11

/d u __ 1 / a

a + b u 2
&quot;

V ab J b

and

. da _ J_ f V^ u

/u V(bu 2
a)

&quot; V a /
&quot;

/b, //b .UX U - 1
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Moreover, if u be the versed sine of an angb 6, then the sine

= V (2 u u s
) and

d u = d (1 cos. 6) = d 6 . sin. 6 (Art. 27.)

= cU. V (2u u 2

)

. dtf-
du

&quot;

V(2u u 2
)

Hence

/_ du - 6 , r
./V(2u u 2

)&quot;

= vers.
~ J u + C

and generally

2b j
du T du

a \ a

2b

87. Required the integrals of
dx dx d x

a + bx a bx a bx 2

f
dx = 2. /d- (

a +
^a + bx b -/ a + bx

dx _ ___L /*d(a--bx)
x~ b- a bx

see Art. 17 a.

Hence,

A
/ a + bx^a bxj ~-/a s b 2 x

}_ a-f

E3

-c
(f)

and

bx

(S)
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Hence we easily get by analogy

/ d x 1 , V a + V b . x
J a bx 2

~
vTb V a b x1

^

1
i
^ a + ^ b . x

2Vr
aT&amp;gt;*

&quot; V a v b. x
88. Required the integral of

dx
ax 2 + bx + c&quot;

In the first place

ax2 , f b V (b
2 4 a c) \a

t
5 h 2a 2a ~J

X

f
, _b_ V (b

2 4 ac)\ f/
J)_x

2

_
b 2

4ac|
1 2a~ 2a )

&
\\**

+ 2a/ 2a }

Hence, putting

we have

^
i f\

~~ ^
2 a

d x = d u
and

d x d u

ax* + bx + c -a(u._
b

J=ii-&amp;lt;)

which presents the following cases.

Case 1. Let a be negative and c be positive ; then

d x d u
&quot;

f d x _ \7~2 / 2 a
p,*

^ ^x&quot;Tb^&quot;_ / 2
tan &quot;

b 2
4ac&quot;

f
+4ac) V b 2+4ac

(see Art. 86) = - / ^ tan.-Yx+ ^-) ^/ r^~+C . . . (i)V ab 2 4ac V 2a/A b* 4aca(b
2

+4ac)
Case 2. Let c fo negative and a positive ; then

r d x _ / d u

4 a c

du

2a(b
2

+4ac)

b 2 + 4 ac^ U

/
b 2

+4jic
b

~&quot;~

/

-x
2 a 2a

see Art. 87.
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Case 3. Let b 2 be
&amp;gt;

4 a c and a, c be both positive , then

d_x
r d u

ax 2 + bx + c~
~~

b 2 4 a

du
a / b 2 4 a c

/ T5 u

I x I
-

f

A* 2a(b
2

4ac) b2 4ac b
v

/ x
-V 2 a 2a

Case 4. Let b 2 be
&amp;lt;

4 a c and a, c be both positive ;

Then

d x 1 r d u

a/ 4ac b 2

2&quot;~

Case 5. 7^b
2

^&amp;gt;4ac a;rf a, c both negative ;

Then

/d x _ 1 /&quot; d u

ax2+bx c~^a / b2 4ac
8

Case 6. Ifb
2 be

&amp;lt;
4 a c awrf a awrf c both negative ;

Then

d x 1 f d u

-c a/ 4ac b2

2

/ 4ac b 2

h_

~

V 2a(4ac b2

)

1

, 4ac-^b^ IZ
+C &quot;&quot; ^

N
&quot;

2 a 2 a

89. Required the integral of any rational function whatever of one

variable, multiplied by.
the indefinite difference of that variable.

Every rational function of x is comprised under the general form

AY ro _ i TJ v ni l ^i C^ V* m ~~ 2 i ft*-/^ T^&quot; -v ^LA
&quot;y*

J_&amp;gt; A.
y

~ \_^ A p &amp;lt;Xi- IV A.
&quot;^

J_j

a x n + b x n ~ + c x n ~ 2 + &c. k x +1
E 1



a v m + 1 m
Cx m ~

72 A COMMENTARY ON [SECT. I

in which A, B, C, &c. a, b, c, &c. and m, n are any constants whatever.

If

n = 0,

then we have (Art. 77)

/(A x m + B x m -
-f c.)

^ f- &c.) f- constant.
/ a

Again, if m be
&amp;gt;

n the above can always be reduced by actual division

to the form

A x m ~ n + B x m - n
-f. &c. 4- =

-
*

a x &quot; + bx&quot;&quot;
1 + &c.

and if the whole be multiplied by d x its integral will consist of two parts,
one of which is found to be (by 77)

A B . x m ~ n

m n + 1
X m + ln~^n~+ &C&amp;gt;

and the other

r A&quot;x- 1 + B// x n ~ 2 + &c.
d X.9 a x n + b x &quot;

~ + c.

Hence then it is necessary to consider only functions of the general
form

x&quot;-
1 + A x p - 2 + Bx u ~ 3 + &c. U

x&quot;+ ax&quot;~
J + bx u ~ 2 + &c.

&quot;

V
in order to integrate an indefinite difference, whose definite part is any
rational function whatever.

Case 1. Let the denominator V consist ofn unequal real factors, x a,

x (S, c. according to the theory of algebraic equations. Assume
U

_ P Q R
V
~

X a
+ x /3

+ x
;

and reducing to a common denominator we shall have

&C&amp;gt;

U = P.x /3 . x 7 ... to (n 1) terms

+ Q.X a.x 7

+ R.X a.x f3

-
(P + Q + R 4. fcc^x&quot;-

1

P.(S a) + Q. (S |8) + &C.} X n -

+ P.(S a.S a) + Q.(S /3.S
1. S 3 1.2 1

&c.

where S, S &c. denote the sum of a, /3, y &c. the sum of the products of
1 1.2

every two of them and so on.
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But by the theory of equations

S= a

S= b
1.1

&c. = &c.

... u = (P + Q + R + &c.)x
n -

+ {a(P + Q + R + &c.) + P a +Q/3 + Ry + &c.} X x B ~ 2

+ {b (P + Q + R + &c.) + a(P a + Q|8 + &c.) +
(P

2 + Q/3 2 + Ry 2 + &c.)} x n - 3 + &c.

Hence equating like quantities (6)

P + Q 4. R + &c . = 1

a + Pa + Q/3+R 7 + &c. = A
b + a (A a) + P a 2 + Q /3

2 + R 7
2 + &c. = B

&c. = &c.

giving n independent equations to determine P, Q, R, &c.

F T U x 2 + 6 x + 3
1 -

Here

P+ Q + R =
1-j6+P+2Q+3R=6 Vwhence

11 + P + 4Q + 9R = 3J

P = 1, Q = 5andR = 3

Hence

U d x r d x r 5 dx / 3 d x/

-

= C 1. (x + 1) + 5 1. (x + 2) 3 1. (x + 3).

P, Q, R, &c. may be more easily found as follows :

Since

x&quot;-
1 + Ax n ~ 2 &c. = P (x /3). (x 7). &c.

+ Q (
X ). (x 7). &c.

+ R (x a), (x |8). &c.

+ &c.

let x = a, j8, 7, &c. successively ;
we shall then have

a n ~ 1 + Aa tt ~ 2 + &C. = P . (a /3) . (a 7) &C. -\

(8
n - l + A j8

n - 2 + &c. = Q .
( ) . (p 7) &c. V. . .

(A)

&c. = &c.

In the above example we have

a = 1, J3 = 2, 7 = 3 and n = 3

A = 6 and B = 3.
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6 + 3
*

1. 2.

O 4 6. 2 + 3
y = = r = 5

as before.

Hence then the factors of V being supposed all unequal, either of the

above methods will give the coefficients P, Q, R, &c. and therefore

enable us to analyze the general expression -^
into the partial fractions

as expressed by

&quot;- P
+ Q +&,V ~~

x a ^ x
and we then have

Udx = F . 1 (x

dx a 4- b / d x a + bydx
/iLp = P.l(x-a) + Ql. (x-/3) + 8cc. + C.

b / d x a + D
/_c

f~/ a^TlE 2 -/a
~ J x 2 ^ a x 2 J a+ x

+^l(a_x)_
a +-b l.(a + x) + C

= a 1 x (a + b) 1 V a 2 x 2 + C

by the nature of logarithms.

TT. /3x 5 /*dEx- 9 - dx = ~
= I . 1

(
X _ 4)

i 1. (x 2) + C.

Ex 4 f xdx
/*

pt1^- rQ dx

+ Q 1 . (x + j8) + C
where

and

p - _J*_ - 2 a + V (4 a 2 + b 2
)

j8 \/(4a 2 + b 2
) 2a

= P 1 (x + )

a j8 ~~2 V (4 a 2 + b 2

)

Case 2. irf a// #7^ factors of V be real and equal, or suppose a = (3

= y = &c.

Then
U ._ x n ~ + A_x_

- 2 + &Q.

V
= ~

X &quot;a&quot;
n
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and since

a /3 = 0, a 7 = &c.

the forms marked (A) will not give us P, Q, R, &c. In this case we

must assume

U P Q R
V

&quot;

(x a)
n &quot;*&quot;

(x a)
n - l +

(x a)
n ~ 2 &quot;*

to n 1 terms, and reducing to a common denominator, we get

U = P + Q . (x ) + R (x a)
2 + &c.

now let x = a, and we have

a n - 1 + A a n - 2 + &c. = P.

Also

^ = Q + 2 R . (x a) + 3 S . (x a)
~ + &c.

1 1 X.

d2J
=2R+3.2.S.(x a)+4.3.T(x )

2 +&c.
dx 2

d 3 U = 2 . 3 . S + 4 . 3 . 2 T (x a) + &c.
dx
&c. = &c.

and if in each of these x be put = a, we have by Maclaurin s theorem

the values of Q, R, S, &c.

TT 1 T ,
U X 2 3X+ 2

Ex.1. Let =
(x
_ 4)3

Then

U = x 8 3x + 2

-
dx
d*U

:

dx
.-. P = 6

Q = 8 3 = 5

R = i. 2 = 1

/U
d x * 6 d x / 5 d x /- d x

~V~ ~ J
(x 4)

3 + J
(x 4)

2 + y x^T

Let
U -

.Let -
(x
_ 3)6
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Here

U = x s + x 3

i5 = 5x+Sxdx

d x

.-. P = 3 5 + 3 3 = 27 X 10 = 270

Q = 27 X 16 = 432

R = 20 X 27 + 6 X 3 =
IB

9X_60 + 6

2X3
_ 360 _
-27374.-

W- 12
-1&quot;

2.3.4.5
~

Hence

-l8.(^-93.F!5p-|.^-igr8
- 1 5.

x
-i

5 + I.(x_3)

which admits of farther reduction.

x 2 + x U
Ex. 3. Let - _ yy

=
-y

.

Here

U = x 2 +x

idx
and

Ii5d5X 2
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(x I)
2

2(x I)
4

// appears from this example, and indeed is otherwise evident, that the

number of partial fractions into which it is necessary to split the function

exceeds the dimension of-x. in U, by unity.

This is the first time, unless we mistake, that Maclaurin s Theorem

has been used to analyze rational fractions into partial rational fractions.

It produces them with less labour than any other method that has fallen

under our notice.

Case 3. Let the factors of the denominator V be all imaginary and un

equal.

We know then if in V, which is real, there is an imaginary factor of

the form x + h + kV 1, then there is also another of the form

x + h k V ]. Hence V must be of an even number of dimensions,

and must consist of quadratic real factors of the form arising from

(x + h + k V 1) (
X + h k V 1)

or of the form

(x + h)
2 + k 2

.

Hence, assuming
U P + Qx P + Q x
V ir H 7^ or~l T &c -

and reducing to a common denominator, we have

U = (P + Qx) J(x + a
)

2 + I
8 8

} Hx + a// )

2 + I3
&quot; 2

}
x &c-

-}. (P _f- Q x
) (

x + a)
2 + (3

2

] {(x + a&quot;)

2 + 13&quot; *}
X &c.

+ (P&quot; + Q&quot; x) J(x + a)
2 + |8

2

} J(
x + &quot;

)

2 + ^
2

J
X &C

+ &C.

Now for x substitute successively

a + |3 V 1, + fy / ], a! + j3&quot;
V 1, &C.

then U will become for each partly real and partly imaginary, and we

have as many equations containing respectively P, Q ; P , Q ; P&quot;, Q&quot;, &c.

as there are pairs of these coefficients ; whence by equating homogeneous

quantities, viz. real and imaginary ones, we shall obtain P, Q ; P , Q , &c.
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Ex. 1 . Required the integral of
x 3 d x

x 4 + 3x 2 + 2

Here the quadratic factors of V are x 2 + 1&amp;gt;

x 2 + 2

.-. a = 0, = 0, /3 = 1, and /3
= V~2 .

Consequently
x = (P + Qx)(x

2 + 2)

+ (P + Q x)(x
2 + l)

Let x = \/^n. Then

V 1 = (P + Q V 1) .
(

1 + 2)

_.-.
P=0, Q = - 1

Again, let x = V 2. V 1, and we have
3_2? V 1 = (P + Q V 2. V l) (2+ 1)

= P Qf V~2 . V~^l
.-. P = 0, and Q = 2

Hence

* x s dx / x d x /*2 x d x

X y O X
&quot;y

f
*^ X ^^ A X

&quot;^
^

^ /&quot;&quot;i j I /. 2 i 1 \ | 1 /xr 2 t O\

Ex. 2. Required the integral of
dx

To find the quadratic factors of

1 +x 2n

we assume

x 2 n + 1 = 0,

and then we have

X 2n = 1 = cos. (2p+ 1) *r+ V 1 sin. (2 p + ])T
T being 180 of the circle whose diameter is 1, and p any integer what-

ever.

Hence by Demoivre s Theorem

2p+l .
--

. 2p+lx = cos. - it + v 1 . sin.
j

-w
2 n 2 n

But since imaginary roots of an equation enter it by pairs of the form

A. + V 1 . B, we have also

2 p + 1 --
. 2 p + 1

x = cos. -\. ff V 1 . sin. -*s- v
2 n 2 n
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and

2 n

which is the general quadratic factor of x 2 n + 1. Hence putting

p = 0, 1, 2 ...... n 1
successively,

x 2 +l =
(x

2 2xcos. ^ + l) .

(x
2 2xcos. ~ + 1

)
X

Hence to get the values of P and Q corresponding to the general factor,

assume

P+Qx N
M

2n
Then

_ 2xcos. -
But

TV/T l+X 2n

M =-?-
x 2 2 x cos. - TT -f 1

2 n

and becomes of the form when for x we put cos. P
it + V lx

2 p+ 1
sin. ^ ; its value however may thus be found

*w XI

T ,
2 p + 1 . 2 p + 1

Let cos. -2 ic + V 1 sin.
^ ^

ff = r
2 n 2 n

then

2 p + 1 . 2 p + 1 1
cos. T V 1 . sin. ^ r =

2 n 2 n r

and

M= 1+x &quot;

.

Again let x r = y ; then

M = l + y
2n + 2n y
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But

r
2 n = cos. 2 p + 1 . * + V 1 sin. 2p+l.w

M - y*
n ~ + 2n y

2n - 2 .r+ . . . . 2n r 2 &quot;&quot; 1

X
r

Hence when for x we put r, y = 0, and

and from the above equation we have

O n v 2 n 12

or

_ , . 2 p+ 1 -D 2 p + 1 . 2 n 1 .

2V 1 sin. -~r v= 2 n P . cos.
^

. it + 2 n P V IX
2 n 2 n

2p+1.2ii 1 _ ^ i 2n ,\
sin.

r -
&amp;lt;r 2 n Q (since r 2n =: 1)

ii

.. equating homogeneous quantities we get

. 2p+l
sin. *1 ff=n. sin.. .

2 n 2 n

and

2p+1.2n 1
P . cos. it Q.

fw n

But

2 n

Hence the above equations become

. 2 p + 1 r, 2 p +1
.. sin. ^r- T = n P sin.

T-
2n 2 n

2 p+ 1 ^-
1 iri 1 2p+ 1

.-. P = -, andQ= -- . cos. ^-n n 2 n

Hence the general partial integral of

dx
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. r (\ x cos. -- tt\ d x
1 / \ 2 n /V

.

n / x - 2 x cos.
~ v l

l
* + 1

n

cos. v. TT / 2 x d x 2 cos. ^~ it . d x
2 n / 2 n

2n (

/ v*-

2 n 4- 1

2 x cos. + 1

dx
2 p 4- 1

2 X COS. ^~ r + 1
2 n

2p+ 1
S&amp;gt; 2n ,/ , 2p+ 1 .

_ . 1 f x 2 g x cos&amp;lt;
_ri T + 1

)2 n V 2 n /

2p+ 1 ,
sin. ^ v / x cos.

2n

see Art 88. Case 4.

d x
Hence then the integral of y

- -
, which is the aggregate of the results

l -j- x
obtained from the above general form by substituting for p = 0, 1, 2 . . .

n 1, may readily be ascertained.

r d x
As a particular instance letJ ^

-

6
be required.

Here

n = 3

and the general term is

2p+ 1
cos. -

ft
* _

1 2 x cos.

. 2p + 1 2
sin.

r x cos./% * ^~ v-v/o. ff

.tan.- 1 - 6

sin ?JL_i
6

Letp= 0, 1, 2, collect the terms, and reduce them ; and it will appear that

dx _l|j^3 , x 2 +xV3 + l _,8x(l x

By proceeding according to the above method it will be found, that the

general partial fractions to be integrated in the integrals of
VOL. I. F
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dx , x r d x
~

r and -

are respectively

v &quot;A

cos. 2 p it
1* _ n ,

v _,JW - X

x 2 2 x cos.

Q -r\ fjf

.dx

and

2
cos

X
n

2pw 2 r p *
E x cos.

2 p it

x 2 2 cos. x + 1

dx.

and when these partial integrals are obtained, the entire ones will be

found by putting p = 0, 1 .... or according as p is even or

odd.

Ex. 3. Required the integral of
x r dx

x sn 2ax n + 1

&quot;where a is
&amp;lt;

1.

First let us find the quadratic factors ofx 211 2ax n + 1. For that

purpose put

x 2n 2ax n = 1

Then

= a + V 1. V 1 a 2

since a is
&amp;lt;1

1.

Novr put a = cos. d
, then

x n = cos. d + V 1 sin. 5

= cos. (2 p * + 5) + V^l sin. (2 p T + a)

2 p 9 + ^
, , ; . 2 p r + 3

. . x = cos. *- ^ + V 1 sin. :

and the general quadratic factor of

is

2 x cos.
2 p &amp;lt;r -f d

where p may be any number from 0, 1, &c. to n 1.

Hence to find the general partial integral of the given indefinite differ

ence, we assume

x P + Qx
u
N

x iTZ 2 a x &quot; +-1
- 2.+ -

M



BOOK I.] NEWTON S PRINCIPIA. 83

and proceeding as in the last example, we get
. (r 1 + 1) (2pcr + 3) 1Q = sin. ^-- v v -L

=

n n sin. 5

and

. (n r) . (2 p r -f 6) 1P = sin. --- v
&quot;

x _- _____

n n sin. 3

whence the remainder of the process is easy.
Case 4. Let thefactors of the denominator be all imaginary and equal in

pairs.

In this Case, we have the form

u__y
V&quot; {(x+)+0 fa

~

and assuming as in Case 2.

u P + Qx P + Q x
, &cu - 1 H

K + Lx K + L x

and reducing to a common denominator,

U = P + Qx + (F + Q x) (x~+~^
2 + /3

2

) + &c.

and substituting for x one of its imaginary values, and equating homoge
neous terms, in the result we get P and Q. Deriving from hence the

values of -: , -= -
, &c. and in each of these values substituting for x

d x d x 2

one of the quantities which makes x + a]
2 + /S

2 = 0, and equating ho

mogeneous terms we shall successively obtain

P
, Q ; P&quot;, Q&quot;, &c.

This method, however, not being very commodious in practice, for the

present case, we shall recommend either the actual developement of the

above expression according to the powers of x, and the comparison of the

coefficients of the like powers (by art. 6), or the following method.

Having determined P and Q as above, make

U - U -- (P + Q x)

x~+^r- + /3&amp;lt;

_ U - (F + Q! x)

2T+^p + /3*

_. U&quot;
-

(P&quot; + Q!
1

x)

&c. = &c.

Then since U , U&quot;, U&quot; , &c. have the same form as U, or have an

F2
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integer form, if we put for x that value which makes (x + a)
2

-f- /3
2 =

0, and afterwards in the several results, equate homogeneous quantities

we shall obtain the several coefficients.

P
, Q ; P&quot;, Q&quot;,&c.

Case 5. If the denominator V consist of one set of Factors simple and

unequal of theform
x ax a

, &c. ;

of several sets of equal simple Factors, as

(x e) P, (x e ) % &c.

and of equal and unequal sets of quadraticfactors of theforms
x 2 + a x + b, x s + a x + b , See.

(x
2 + 1 x + r) ^, (x

2 + I x + r
) , &c.

then the general assumption for obtaining the partial fractions must be

U M M
V ==

x^=~^ + xTZT H

I

E
A

F
i a
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have been found in terms of circular arcs. We now proceed to treat of

Irrationals generally ; and the most natural and obvious way of so doing
is to investigate such forms as admit of being rationalized.

90. Required the integral of
I 1 1 J. 1 7

dx X F Jx, x m, x n
, x*, x S &c. S

where F denotes any rationalfunction of the quantities between the brackets.

Let
x _ u m n p q

f &c&amp;gt;

Then
i

x m = u npqr ....
JL

X n =U mpqr ....
1

(

x p _ u mnq r&amp;gt; t m %

&C. = &C.
and

d x = mnpq . ... x u mnp&amp;lt;*
- 1 xdu

and substituting for these quantities in the above expression, it becomes

rational, and consequently integrable by the preceding article.

,-,

Ex.

b + cx*
Here

x = u 69

3 180

and

dx = 6u 59 du.

Hence the expression is transformed to

n &quot;9^
u l60 +2au 4 +l60 u 9 d u -1* 1Sb + c u 15

whose integral may be found by Art. 89, Case 3, Ex. 2.

91. Required the integral of

d x X F x, (a + b x) &quot;, (a + b x)
s

, &c.^
where F, as before, means any rational function.

Put a-j-bx = u ntnp then substitute, and we get

nmp . /u nm a \

-^
-

. u nmp ---- 1

duXF(--^
--

, u
m P--- ,u

n
r----,&c

.)

which is rational.
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Examples to this general result are

x 4 dx

[SECT. I.

,

and
c x 5 + (a + b x)

* x + c (a + b x)
^

which are easily resolved.

92. Required the integral of
f /a 4- b x\ - /a 4- b x\ 1dx F Sx,

( ) u&amp;gt;(-f )q, Sec. &amp;gt;-

Vf + gx/ vf + gx/
Assume

a + bx

and then by substituting, the expression becomes rational and integrable.
93. Required the integral of

d x F fx, V (a + b x + c x 2

)}

Case 1. When c is positive, let

a + b x + c x 2 = c (x + u)
2
.

Then

a cu&quot;

2cu b (2cu b)

cu

and
substituting, the expression becomes rational.

Case 2. When c is negative, if r, r be the roots of the equation
a + bx cx 2 =

Then assume

V c (x r) (r x) (x r) c u

and we have

cru 2 4-r , (r r )2cuduV ._ r\ -v v _~~
o T J u A

/ a i l \ Icu 2 + 1 (cu
2 + I)

2

and by substitution, the expression becomes rational.

94. Required the integral of

d x F Jx, (a + b x) S (a? + b x) *}

Make
a + b x =

(at + b x) u
&quot;

;

Then
a a u

b x =

(a b b a) 2u d u

,
- a b) _V(ab -a b)
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Hence, substituting, the above expression becomes of the form

duF fu, V(b u 2
b)J

F denoting a rational function different from that represented by F.

But this form may be rationalized by 93
;
whence the expression becomes

integrable.

95. Required the integral of
p

x m i

dx(a + b x n
)T~.

. . m m p .

This form may be rationalized when either , or --1-
is an integer.

Case 1. Leta+bx B =u q
; then(a+bx

n
)T = UP, x^^-&quot;-, x m=

u q

Hence the expression becomes

which is rational and integrable when is an integer.

Case 2. Let a + bx n = x n u q
; then substituting as before, we get the

transformed expression

u

whicli is rational and integrable when + is an integer.

Examples are

x g dx x 2m dx

(a
a + x 2

)^ (a
2 + x 2

)^
2m + * X 6 d X~~

96. Required the integral of

x ra - d x (a + b x n
) q X F (x

n
).

This expression becomes rational in the same cases, and by the same sub

stitutions, as that of 95. To this form belongs

x m+ n -i
dx(a + bx n

)?
and the more general one
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where

and

Q = A + B x n + C x 2n + &c.

97. Required the integral of

x m 1 dx X F{x m
, x n

, (a + bx n)^
Make a + bx n =u q

; then

x m - l d x = S . (

U
u

a
)&quot;

~ l
d u

n b V. b /

and in the cases where is an integer, the whole expression becomes ra

tional and inte^rable.

tegral of
Xdx

&quot;o

98. Required the integral of

X + X&quot; + V(a + bx + cx 2
)

where X, X , X&quot; denote any rationalfunctions 0/*x.

Multiply and divide by
X + X&quot; V(a + bx + x 2

)

and the result is, after reduction,

XX dx XX&quot;dx Va_ __X/2
X&quot;

2

(a + bx-f ex 2
) X/2 X//2

(a +bx + cx 2

)

consisting of a rational and an irrational part. The irrational part, in

many cases, may also be rationalized, and thus the whole made integrable.

99. Required the integral of
x m dxF x n

, V (a + bx n
-f ex 2

&quot;)}

Let x n = u
; then the expression may be transformed into

1 m+ 1
,

u n
&quot;

diiF u, V (a + bu + cu 2

)]n

which may be rationalized by Art. 93, when is an integer.

100. Required the integral of
x m dxFx n

, V (a + b 2 x 2
&quot;),

bx n + V (a + b 2 x 2n
)}.

Let

bx u + V (a + b 2 x 2n
)
= u;

then

and the whole expression evidently becomes rational when- is an

integer.

Many other general expressions may be rationalized, and much might
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be said further upon the subject ; but the foregoing cases will exhibit the

general method of such reductions. If the reader be not satisfied let him

consult a paper in the Philosophical Transactions for 1816, by E. Ffrench

Bromhead, Esq. which is decidedly the best production upon the Integrals

of Irrational Functions, which has ever appeared.

Perfect as is the theory of Rational Functions, yet the like has not been

attained with regard to Irrational Functions. The above and similar arti

fices will lead to the integration of a vast number of forms, and to that of

many which really occur in the resolution of philosophical and other

problems ;
but a method universally applicable has not yet been discover

ed, and probably never will be.

Hitherto the integrals of algebraic forms have been investigated. We
now proceed to Transcendental Functions.

101. Required the integral of
a x dx.

By Art. 17,
d.a x = l.a X a x dx

1 x

Hence

/a m x d x = i- a m x + C (b)

102. Required the integral of
Xa x dx

where X is an algebraic Junction of*.

By the form (see 73)
d (u v) = u d v + v d u

we have

fu d v = u v f\ d u.

Hence
11
^

/*l
^

-

-.7-

&quot;*

&quot;&quot;

1 a J 1 a

/dX a*dx _ dX a*
f-

a* d 2X
J dx la

=
dx (la)

2

-/(la)
2 dx

a x dx d X a* f a x d 3 X&amp;gt; ax_
dx 2 la 2

&quot;&quot;

(la)
2

&quot;&quot;

dx 2

(la)

&c. = &c.

the law of continuation being manifest.
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Hence, by substitution,

/v x i _ v a * dX * x d 2 X a x

*n~~dx (la)
2 + dx 2

(la)
3
~

which will terminate when X is of the form

A + Bx

Ex /*x 3 a x dx- aXx3 3aX * 2 3.2a x x 3.2a x

X
**

*
1 a

&quot;

(1 a)
2

(la)
3

&quot;(la)

4
&quot;

OTHERWISE

/a x Xdx = a x/Xdx /la.a
x dx/Xdx

= a x X/

la/a
x X/ dx

putting
X =/Xdx.

Hence

/a x X dx = a x
X&quot; la/a

x
X&quot;dx

&c. = &c.

and substituting, we get

/a x Xdx= a x X la.a x
X&quot; + (la)

2 a x X &quot;

&c.

X
, X&quot;, X &quot;,

&c. being equal to /X d x, /X d x, /X&quot; d x, &c. re

spectively.

T? r x dx vi ,
xla x 2

(la)
2 x 3

(la)
3

&/. - = a l* +_ + -L.2- .+
_A_L + 4,, + C.

which does not terminate.

By this last example we see how an Indefinite Difference may be in

tegrated in an infinite series. If in that example x be supposed less

than 1, the terms of the integral become less and less or the series is con

vergent. Hence then by taking a few of the first terms we get an ap

proximate value of the integral, which in the absence of an exact one, will

frequently suffice in practice.

The general formula for obtaining the integral in an infinite or finite

series, corresponding to that of Taylor in the Calculus of Indefinite

Differences, is the following one, ascribed to John Bernoulli, and usually
termed

JOHN BERNOULLI S THEOREM.

/Xdx = Xx /xdX
rdX _ dX x 2

rx
2 dx d 2 X

J dx ~-^ ~2~-J~^- dlF
x 3 dx d 3 X
2.3 dx 3

&c. = &c.

/d^X x g dx _ d 2 X x 3

f
J dx 2 2

-
&quot;31* !&quot;&quot;/
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Hence .

f-*r i -XT X - Cl A. X -~,

/Xdx = X*--^. -5
+^ .

g-j-Sc. + C

the theorem in question.

Ex.l.x m dx = x m + 1 x m + 1 + ^
n

!

1
x m + 1 &c. + C

But since

m

as in Art. 78.

1 02. Required the integral of

Xdx(lx)&quot;
where X is any Algebraic Function ofx, \ x the Hyperbolic logarithm of x,

and n a positive integer.

By the formula

f u d v = u v f v d u
we have

dx
x n /Yl x)

B-
/&quot;X

d x
x &quot;

=
(lx)&quot;X -n/(lx)- ^

X X

J x &quot; v x

&c. = &c.

where X , X&quot;, X &quot;,
&c. are put for/Xdx, /&quot;^- dx,/ d x, &c. re-

-/ X ^ X

spectively.

Hence

/Xdx(lx)&quot; =X (lx)&quot;

] 93. Required the integral of

inhere U w anyfunction of I x.

x
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Let u = 1 x.

Then

A dx
d u = -.

x
and substituting, the expression becomes algebraic, and therefore integra-
ble in many cases.

104. Required the integral of
Xdx (lx)

n

&quot;where n is negative.

Integrating by Parts, as it is termed, or by the formula

/u d v = u v f\ d u
we get, since

X d x d x .

/-Xdx __Xx 1 rdx_ dJXxj
^(lx)

n
(n 1) (lx)&quot;-

1+ n lV(l x)n-i- dx
and pursuing the method, and writing

y, _ d (X x)

dx

we have

X Xx

x// _ d (X x)

~dT~
&c. = &c.

(n 1) . . . 2/1(5)
or

Xx - x^ 1/ dx__ ___

-_ x __
(n 1 ) (1 x)

~ ~
J

(n 1) . (n 2) . . . . (n m) (Uj^^
according as n is or is not an integer, m being in the latter case the

greatest integer in n.

/-x&quot;dx__ x +
f 1 m+1XV

(1
X

)&quot;
n __ ! t(lx)&quot;-

1 +
(n SHrxp^ 4 C

(m + I)&quot;-
1 /*x m d x__(m + I)&quot;-
1

/*

n 1) n 2 ____ I/(n 1) (n 2) ____ I Ix
when m is an integer.

105. Required tlie integrals of
i A i * d I . d f

.

. d I
d . cos. 0, d d . sin. &amp;lt;L d 6 . tan. 0. d 6 . sec. 0,

--
, -= A ,
-

cos. I sin. ^ tan.

By Art. 26, &c.
d sin. 6 = d 6 . cos. 0, and d cos. 6 = d 6 sin. 6

/./d 6 cos. r= sin. 6 + &amp;gt;C ......... (a)
and

sin. = C cos. 6 ........ (b)
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Again let tan. 6 = t ; then

dt
d 6 =

1 + t
2

and

t d t
t

2

)

= C 1. cos. 6 . ;i (c)

since

1
1 + t

2 = sec.
2

6 =

d 6 sec. 6 =

cos.
z

6

Again
d 6 d 6 cos. 6

cos. 6
~

1 sin.
2

1

d (sin. 6}

&quot;1 sin.
2

6

l
d (sin. d) d sin.

1 sin. 6
*

1 + sin.

/.yd 6 sec. 4 = l.(l-f-sin.0) % 1 (1 sin.0)-f-C

rrl.tan.
(45+^-) + C. . . (d)

which is the same as f--
.

* cos. 6

Again

C-.-- = fd d cosec. 6
J sin. 6

=/d * sec. (!-*)= -/d .

(
- tf sec. -

= 1.
(tan. I) + C . . . . ...... (e)

Again

f
~

= Icos.
0)
+ C(byc)

= 1 . sin. 6 + C . . . . ........ (f)
106. Required the integral of

sin. m cos. n
6 . d 0.

m and n fomg- positive or negative integers.
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Let sin. 6 = u ; then d 6 cos. d = d u and the above expression becomes

u m du(l u 2

)
^

which is integrable when either or J f-

n ~ = m
&quot;*&quot;-&quot;

2

is an integer (see 95.) If n be odd, the radical disappears ;
if n be even

and m even also, then ^ = an integer ; if n be even and m odd, then

m + I . ,. T_T,

^
is an integer. Whence

u m d u (1 u !

)

n
&quot;a

is integrable by 95.

OTHERWISE,

Integrating by Parts, we have
ClTl HI ~ 1 A

-vy-i

/d 6 sin.m 6 cos.n 6= cos.&quot;
+ 1 6+- */cos.

n + 2
6. sin.

m - 2
Q X d 6n + 1 m -j- 1

sin.&quot;
1 - 1 6 m 1 ,= cos. n + 1 ^ H / dx sin. m ~ 2

^ cos. &quot;tfm 4- n m + nj

and continuing the process m is diminished by 2 each time.

In the same way we find

and so on.

107. Required the integrals of
d u = d 6 sin, (a 6 + b) cos. (a 6 + b )

dv = d*sin.(af + b) sin. (a 6 + b )

and

dw = d 6 cos. (a 6 + b) cos. (a 6 + b
)

By the known forms of Trigonometry we have

du = d 6 [sin. (a + a . 0+b + bx

) + sin. (a a . + b b )}

i d v = dd {cos. (a~+T .0+b + b ) cos. (a a
.&amp;lt;J+b

b )}

d w = d d {cos. (a + a&quot;. 0+b + b ) + cos. (a^a
7

. 6+b b )}

Hence by 105 we have

r t / cos. (a^Fa
7

. ^ + b + bQ ,
cos, (a a7

. + b b ) \
~*t~ a + a a a ~J

sin. (a+ a . + b + b
)

sin. (a a7
&quot;.* + b b7

)- ~ &quot;

- p i
i/ sin - (a + a - + b + bQ .

sin, (a^^a
7

. tf + b I/)
rt

| a + a a a

These integrals are very useful.
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108. Required the integrals of
6
n d 6 sin. 0, and d

n d 6 cos. d.

Integrating by Parts we get

/ &amp;lt;)

n xd0sin. 0=C n cos. 0-f-n d&quot;-
1
sin. 0+n . (n 1)

n - 8 cos.0 &c.

and

/tJ&quot;xd0cos.d:=:C+ n
sin. 6 + nd ll~ l cos.d n. (n 1)

n - 2 sinJ +&c.
109. Required the integrals of

X d x sin. l x

X d x tan. l x

X d x sec.
~ x

&c.

Integrating by Parts we have

/Xdxsin.-&amp;gt;x = sin.-ix/Xdx-

/ V 1 i rv 1 / d X
/&quot;
X d X

J X d x tan.
- l x = tan.

- l x/X d x / r^-
j

. ~^x V(x
2

1)
/X d x sec.

- l x = sec.
- l xAX d x /* r5.^ x x 2

&c. = &c.

see Art. 86.

110. Required the integral of

d u - (
f + g cos,

tf)
d 6

(a + b cos. 6)
n

Integrating by Parts and reducing, we have

(ag bf)sin. 6 __
(n l)(a

2 b 2

)(a

/(n 1) (at* bg) + (n-^-2) (a g

(n I)(a
2

cos.^
(a + b cos. 6)

n ~

which repeated, will finally produce, when n is an integer, the integral

required.

^

(a b) tan.

Ex./-
d &quot; 2

r a + b cos. d V (a
z b 2

)

=r . tan. V (a
2 b 2

)

1 , b+acos. 6+ sin. 6 V (b
2 a

)
_

V(b z a 2

) a + b cos. 6

Notwithstanding the numerous forms which are integrable by the pre

ceding methods, there are innumerable others which have hitherto resisted

all the ingenuity that has been employed to resolve them. If any such

appear in the resolution of problems, they must be expanded into con-
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verging series, by some such method as that already delivered in Art. 101 j

or with greater certainty of attaining the requisite degree of convergency,

by the following

METHOD OF APPROXIMATION.

111. Required to integrate between x = b, x = a, any given Indefinite

Difference,, in a convergent series.

Let f (x) denote the exact integral off X d x; then by Taylor s

Theorem

and making
h = b a

f (x + b-a)-fx = X. (b-a) +
d

d|. 1^1!+ &c.

Again, make

x = a

then

dX d 2 X
dT &quot;d^

2 &C&amp;lt;

become constants

A, A , &c.

and we obtain

f(b)-f(a) = A(b-a) + . (b-a) +^ (b-a)
3

which, when b a is small compared with unity, is sufficiently conver

gent for all practical purposes.

If b a be not small, assume

b a = p./3

p being the number of equal parts |3, into which the interval b a is sup

posed to be divided, in order to make /3 small compared with unity. Then

taking the integral between the several limits

a, a + /3

a, a + 2 18

&c.

a, a + p /3
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we get

f.
(
a + /3) f(a )

= A/3+ ^-. 0* + ^. . 0s + &c.
A.O

f (a+ 2jg) f (a+flrrBjS+S . /3
2 + l/3

3 + &c.
/i

&amp;lt;c. o

&c. = &c.

f (a+ pj8) f (a+J=I./8) = P/3 + /3
2 +

A, A7

, &c. B, B , &c....... P, P
, &c .

being the values of

v dx
Xj dT &c &quot;

when for x we put

a, a + ft a + 2 ft &c.

Hence

f(b)-f(a) =(A + B + ..;..

+ (A + B + . . . . F)

+ (A&quot; + B&quot; + . . . . F ) 1^3
+ &c.

the integral required, the convergency of the series being of any degree
that may be demanded.

If j3 be taken very small, then

f (b) f (a) = (A + B + ---- P) nearly.

Ex. Required the approximate value of

/X^-^dx X (1 x n)f

between the limits of x = and x = 1, when neither 9
n r --f-

is an integer.

Here

X = x 1&quot;- 1 (l_x n)T
and

d X p JL n p
jY rr (m + n l)x n - 2

(] ^x) _
-^-x

n - 2
(l X

b^-a -
]

-
1.

Assume ] = 10 X ft and we have for limits

1 2

Tb ; To ; &c -

YOI-. I. G
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Hence m being &amp;gt; 1,

A =

&quot;

&c. = &c.

Hence, between the limits x = 1 and x =
1 f -P- -H-

/Xdx = - X
|(10

n
l)q + (10

n 2 n
)q

_j_ (10
&quot; 3 n

) &quot;? + &c. + (10
n 9 n

)&quot;!r | nearly.

WT
e shall meet with more particular instances in the course of our

comments upon the text.

Hitherto the use of the Integral Calculus of Indefinite Differences has

not been very apparent. We have contented ourselves so far with

making as rapid a sketch as possible of the leading principles on which

the Inverse Method depends ;
but we now come to its

APPLICATIONS.

112. Required to Jind the area of any curve, comprised between two

given values of its ordinate.

Let E c C (fig.
to LEMMA II of the text) be a given or definite area

comprised between and C c, or and y. Then C c being fixed or De

finite, let B b be considered Indefinite, or let L b = d y. Hence the

Indefinite Difference of the area E c C is the Indefinite area

B Ccb.

Hence if E C = x, and S denote the area E c C ; then

d S = B Ccb = CL + Lcb

y d x + L c b.

But L c b is heterogeneous (see Art. 60) compared with C L or y d x.

... d S = y d x
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Hence

S=/ydx,
the area required.

Ex. 1. Required the area of the common parabola.

Here

y
2 = a x.

2y dy
.-. d x = *- J

a

and

s _
&quot;

-
a -3a

and between the limits of y = r and y = r becomes

If m and m be the corresponding values of x, we have

2
S = (r m r m

)

2= of the
circumscribing rectangle.

Let r = 0, then

2
S = r m (see Art. 21.)

Ex. 2. Take the general Parabola whose equation is

y m __
&amp;lt;! x n

Here it will be found in like manner that

m
m + n*

&quot;

between the limits of n = y = 0, and x = a, y = /3.

Hence all PARABOLAS may be squared, as it is termed ; or a square may
befound whose area shall be equal to that ofany Parabola.

Ex. 3. Required the area of an HYPERBOLA comprised by its asymptote,
and one infinite branch.

If x, y be parallel to the asymptotes, and originate in the center

x y = a b
is the equation to the curve.

Hence

d x = abd y

y
8

G2
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and

Q f abdys =/ IT* = C a b 1
y.

Let at the vertex y = /3, and x ==
; then the area is and

C = a b . 1 8.

Hence

S = a b . 1 .
P-

.

y
1 13. If the curve be referred to afixed center by the radius-vector and

traced-angle 6; then

ds = l^-
&quot;{.

.

:
. !; . :

: ,,, ?;.
For d S the Indefinite Area contained by f, and f+ d = (g-fdg) ^52

d 6
. g d e d
+ s

| (Art. 26) and equating homogeneous quantities we

have

d S =

Ex. 1. In the Spiral of Archimedes

= a

n 2 _ 2

. Q f AZ A A 43 I p
. . 5 _ j e a. d -

. + \^.

Ex. 2. In the Trisectrix

S
= 2 cos. d + 1

.-. d S = i/(2cos. tf l)
2 d^

which may easily be integrated.

Hence then the area of every curve could be found, if all integrations

were possible. By such as are possible, and the general method of ap

proximation (Art. Ill) the quadrature of a curve may be effected either

exactly or to any required degree of accuracy. In Section VII and many
other parts of the Principia our author integrates Functions by means of

curves ; that is, he reduces them to areas, and takes it for granted that

such areas can be investigated.

114. Tofind the length of any curve comprised within given values of the

ordinate ; or To RECTIFY any curve.

Let s be the length required. Then d s = its Indefinite Chord, by
Art. 25 and LEMMA VII.

.. d s = V (d x 2 + d y
2

)

and

s =fV (dx* + dy 2

) (a)
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Ex. 1. In the general parabola

y
m = ax&quot;.

Hence

and

dx 2 =
2 2 m

.dy
n a n

n a

which is integrable by Art. 95 when either

1_ 1
1_O TV* O ryi

&quot;* O

that is, when either In
or
1m

101

2 m n 2 m n

is an integer ; that is -when either m or n is even.

The common parabola is Rectifiable, because then m = 2. In this case

ds= dy V(l + -y 2

)

Hence assuming according to Case 2 of Art. 95,

(r)

we get the Rational Form

ds =

Hence by Art. 89, Case 2,

- + V u

l 4- 8

Butu = +/ * zy
.

cessary reductions

Hence by substituting and making the ne

G3
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Let y = ; then s = and we get C =
and .-. between the Limits of y = and y = /3

+ a 1 .

In the Second Cubical Parabola

and
y

3 = ax 2

d s = d y

which gives at once (Art. 91)

Ex. 2. In the circle (Art. 26)

ds =

C.

-)4;

V(l-y^)
which admits of Integration in a series only. Expanding (1 v z

)~&quot;i

by the Binomial Theorem, we have

Hence,

and

and between the limits of y = and y = - or for an arc of 30 we have

s
- j___ _ 4. .

2
h

2. 3. 2 3 + 2.4.5.2
5 1

1 4. _L_ 4,
3

,
5 5. 7

2
+

3. 2 4 &quot;*&quot;

5. 2 8 +
7. 2 11 +

9. 2 16

f.5

! .0208333333

+ &c.

=
&amp;lt;!

.0023437500

I .0003487720

L.0000593390
Sec.

= .5235851943 nearly.
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Hence 180 of the circle whose radius is 1 or the whole circumference

it of the circle whose diameter is 1 is

cr = . 5235851943 ... X 6 nearly

= 3.1415111658

which is true to the fourth decimal place ; or the defect is less than .

By taking more terms any required approximation to the value of T may
be obtained.

Ex. 3. In the Ellipse

a 2 e 2 x 2

s =/dx. N
/

a2 _ x2

where x is the abscissa referred to the center, a the semi-axis major and

ae the eccentricity (see Solutions to Cambridge Problems, Vol. II. p. 144.)

115. If the curve be referred to polar coordinates, and 8; then

s =fV fe*d* +dg 2
) (b)

For

y = g sin. 6

x = m + cos. d

and if d x 2

, d y
2 be thence found and substituted in the expression

(114. a) the result will be as above.

Ex. 1. In the Spiral of Archimedes

P a $

. 8 a !
t+ * (s + O - c

2 a

see the value for s in the common parabola, Art. 1 14.

Ex. 2. In the logarithmic Spiral
e

S
- e

or

and we find

s = V~2fd g
=

g V 2 + C.

116. Required the Volume or solid Content of any solid formed by the

revolution of a curve round its axis.

Let V be the volume between the values and y of the ordinate of the

generating curve. Then d V = a cylinder whose base is T y
2 and alti

tude d x + a quantity Indefinite or heterogeneous compared with either

d V or the cylinder.
G4
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But the cylinder = v y
~ d x. Hence equating homogeneous terms, we

have

d V = cry
2 dx

and

V = cr/y*dx (c)

Ex. 1. In the sphere (rad. = r)

y
2 = r 2 x 2

.-. V = ff/r
2 d x w/x 2 d x

/ x 3

and between the limits x = and r

which gives the Hemisphere.
Hence for the whole sphere

Ex. 2. In the Paraboloid.

y
z = ax

.-. V = ,r/a x d x
&amp;lt;x a

2
:

~2~
: C;

and between the limits x = and a

Ex. 3. In the Ellipsoid.

,.V:
-^./(a

2 dx~x 2

dx)

V2

a^

and between the limits x = and a

..
Hence for the whole Ellipsoid

V = jUab 2
.

O

The formula (c) may be transformed to

y (d)



BOOK I.] NEWTON S PRINCIPIA. 105

where S =fy d x or the area of the generating curve, which is a singular

expression,f S d y being also an area.

In philosophical inquiries solids of revolution are the only ones almost

that we meet with. Thus the Sun, Planets and Secondaries are Ellip

soids of different eccentricities, or approximately such. Hence then in

preparation for such inquiry it would not be of great use to investigate

the Volumes of Bodies in general.

If x, y, z, denote the rectangular coordinates, or the perpendiculars let

fall from any point of a curved surface upon three planes passing through
a point given in position at right angles to one another, then it may easily

be shown by the principles upon which we have all along proceeded,

that

d V = d y/z d x&quot;l

or

= d z/y d x \
. ..... (e)

or

= dx/zdyj
according as we take the base of d V in the planes to which z, y, or x is

respectively perpendicular

For let the Volume V be cut off by a plane passing through the point

in the surface and parallel to any of the coordinate planes ; then the area

of the plane section thus made will be

/z d

or

or

fy d x

/ z d y

see Art. 112.

Then another section, parallel to^z d x, orfy d x, or J z d y and at

the Indefinite distance d y, or d z, or d x from the former being made,

ic Indefinite Difference of the Volume will be the portion comprised by
icse two sections ; and the only thing then to be proved is that this por

tion is = d yyz d x or d zy*y d x, or d x JT* d y. But this is easily to

proved by LEMMA VII.

This, which is an easier and more comprehensible method of deducing
V than the one usually given by means of Taylor s Theorem, we have

lerely sketched ; it being incompatible with our limits to enter into de-

1. To conclude we may remark that in Integrating both y z d x, and

d yy z d x must be taken within the prescribed limits, first considering

Definite and then .r.
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117. Tofind the curved surface of a Solid of Revolution.

Let the curved surface taken as far as the value y of the ordinate re

ferred to the axis of revolution be a, and s the length of the generating

curve to that point; then d a = the surface of a cylinder the radius of

whose base is y and circumference 2 &amp;lt;r y, and altitude d s, by LEMMA VII.

and like considerations. Hence

d * = 9 *r y d a

and

. =
2&amp;lt;r/yds . . . . -. .- . .: . . (a)

or

= 2vrys 2cr/sdy ...... (b)

which latter form may be used when s is known in terms of y ; this will

not often be the case however.

Ex. In the common Paraboloid.

y
2 = a x

and

Let y = and |S, then a between these limits is expressed by

If the surface of any solid whatever were required, by considerations

similar to those by which (116. e) is established, we shall have

d a = V (dy
2 + dz 2

)/ V (d x 2 + d z
2

) . . . . (c)

and substituting for dzin V d x 2 + dz 2
its value deduced from z = f .

(x, y) on the supposition that y is Definite ; and in V (d y
2 + d z 2

)
its

value supposing x Definite. Integrate first V (d x
2 + d z 2

) between the

prescribed limits supposing y Definite and then Integrate V (d y
2 + d z 2

)

f V (d x
2 + d z 2

)
between its limits making x Definite. This last result

will be the surface required.

We must now close our Introduction as it relates to the Integration of

Functions of one Independent variable.

It remains for us to give a brief notice of the artifices by which Func

tions of two Independent Variables may be Integrated.

118. Required the Integral of

Xdx + Ydy = 0,

where X is anyfunction o/ x, and Y afunction ofy the same or different.
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When each of the terms can be Integrated separately by the preceding-

methods for functions of one variable, the above form may be Integrated,

and we have

/Xdx+/Ydy = C.

This is so plain as to need no illustration from examples. We shah
1

,

nowever, give some to show how Integrals apparently Transcendental

may in particular cases, be rendered algebraic.

Ex. 1. + ^- = 0.

.-. 1 x + 1 y
- C - 1 . C

and

.-. x y - C or = C.

d x d y _
ii(X. . i TJ 3V ~f~ ~i&quot; i -, _. o\

&quot;

Here

sin.
- l x + sin.

~
y C = sin.

- C
.-. C = sin. sin.

- 1 x sin.
- 1

y}

=. sin. (sin.
~

x) . cos. (sin.
l

y ) + cos. (sin.
~ l

x) sin. (sin.
&quot;~ l

y)
- x . V (1 y

2
) + y V (1 x 2

)

which is algebraic.

Generally if the Integral be of the form

f- (x) + f.- (y)
= C

Then assume

C = f.- (C)

and take the inverse function off&quot;
1

(C) and we have

which when expanded will be algebraic.

119. Required the Integral of

Ydx + Xdy = 0.

Dividing by X Y we get

which is Integrable by art. 118.

120. Required the Integral of

inhere P and Q are each suchJunctions of\ and y that the sum of the expo

nents of-x. and y in every term of the equation is the same.
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Let x = u y. Then if m be the constant sum of the exponents, P and

Q will be of the forms

U X y
m U y

m

U and U being functions of w.

Hence, since dx = udy + ydu, we have

U.(udy + ydu) + U dy =
and

(Uu-fU )dy + Uydu =
d y ,

U d u -

y
y + tnr+U

= ..... ^
which is Integrable by art. 118.

Ex. 1. (a x + b y) d y + (f x 4- g y) d x = 0.

Here

P = f x + g y, Q = a x + b y

U= fu+ g, U = a u + b

.
(ll 4. (fu + g) du _
y

h fu 2 + (g + a)u + b
-

which being rational is Integrable by art. (88, 89)

Ex. 2. x d y y d x d x V (x
2 + y

2
)

Here
Q = x, P = y V (x

2 +y z
)

U = u, U = 1 V (1 + u 2
)

d_y
2

u V (1 + u 2
)

or

ll - 1^ 4.
du

y u
r U V (1 + U 2

)

&quot;

which is Integrable by art. (82, 85.)

These Forms are called Homogeneous.

121. To Integrate

(ax4-by4-c)dy + (mx+ny4-p)dx = 0.

By assuming

= vj
and

m x + n y + P
we get

m d u adv bdv ndu
d y = --1 , and d x - T----

J mb na mb ria

and therefore

(m u n v) d u + (b v a u) d u =

which being Homogeneous is Integrable by Art. 120.
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We now come to that class of Integrals which is of the greatest use in

Natural Philosophy to

LINEAR EQUATIONS.

122. Required to Integrate

dy + yXdx^X dx,
where X, X are functions of X.

Let

y = u v.

Then

udv+vdu+Xuvdx= X dx
Hence assuming

d v + v X d x = (a)

we have also

v d u = X d x (b)

Hence

.-. Iv +/Xdx = C
or

v = e c-/xdx

= e c X e~
= C X e- xdx

.

Substituting for v in (b) we therefore get

1 /Xdx
du = -p,.e X dx

\s

which may be Integrated in many cases by Art. 118.

Ex. dy + ydx = ax 3 dx.

Here

X = 1, X = a x 3

/X d x = x

and

/X d x e Xdx = a/x 3 e * d x

= a e x
(x

3 3 x 2 +
see Art. (102)

Hence

y = Ce~* + a (x
3 3x 2 + 6x 6)

6 x 6)
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122. Required to Integrate the LINEAR Equation of the second order

dx 2

.dap-T-

&quot;where X, X arefunctions o/*x.

Let y = e-/&quot;

11 ^; then -y-^ = ue /udx
d x

d x 2
~ MX /

and .*. by substitution,

d~x
&quot;*

which is an equation of the first order and in certain cases may be Integ-

rable by some one of the preceding methods. When for instance X and

X are constants and a, b roots of the equation

u 2 + Xu+ X =
then it will be found that

y = C e a x + C e b x
.

123. Required the Integral of

_
d x 2 d x

where X&quot; is a newfunction ofx.

Let y = t z ; then Differencing, and substituting, we may assume the

result

^+X^+X Z = .... ... . (a)

and

d z\ , X/x
,.

E) dx:=
ir (

b
&amp;gt;

Hence (by 122) deriving z from (a) and substituting in (b) we have a

Linear Equation of the first order in terms of
fjrrJJ

whence
(g

be found ; and we shall thus finally obtain

dx).

Here

X v ~\ ft

, ov
j , vv
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Equat. (a) becomes

d 2 z
dji

1 z

dx~2 + dx x
&quot;

x 2

whence

wherein z = e /udx
;
which becomes homogeneous when for u we put v~ \

Next the variables are separated by putting (see 120)

X = V S

and
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the Jesuits Le Seur and Jacquier, and Madame Chastellet (or rather

Clairaut), have availed themselves on all occasions of its powers. The
reader may anticipate, from the trouble we have given ourselves in establish

ing its rules and formulae, that we also shall not be very scrupulous in that

respect. Our design is, however, not perhaps exactly as he may suspect.

As far as the Geometrical Methods will suffice for the comments we may
have to offer, so far shall we use them. But if by the use of the Algo
rithmic Formulae any additional truths can be elicited, or any illustrations

given to the text, we shall adopt them without hesitation.

SECTION II. PROP. I.

124. This Proposition is a generalization ofthe Law discovered by Kepler
from the observations of Tycho Brahe upon the motions of the planets
and the satellites.

&quot; When the body has arrived at
B,&quot; says Newton,

&quot;

let a centripetal

force act at once with a strong impulse, #c.&quot;] But were the force acting

incessantly the body will arrive in the next instant at the same point C.

For supposing the centripetal force

incessant, the path of the body will

evidently be a curve such as A B C.

Again, if the body move in the chord

A B, and A B, B C be chords de

scribed in equal times, the deflection

from A B, produced by an impulsive

force acting only at B and communi- -^

eatingavelocitywhich wouldhavebeen

generated by the incessant force in the time through A B, is C c. But

if the force had been incessant instead of impulsive, the body would have

been moving in the tangent B T at B, and in this case the deflection at the

end of the time through B C would have been half the space describ

ed with the whole velocity generated through B C (Wood s Mech.)

But

C T = i C c

.. the body would still be at C.
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AN ANALYTICAL PROOF.

Let F denote the central force tending constantly to S (see Newton s

figure), which take as the origin of the rectangular coordinates (x, y)
which determine the place the body is in at the end of the time t. Also

let g be the distance of the body at that time from S, and 6 the angular
distance of g from the axis of x. Then F being resolved parallel to the

axis of x, y, its components are

F.- and F. 3L

S S

and (see Art. 46) we .. have

d 2 x _ F
x

^

d 2

y _ F JT

Hence

yd 2 x _ p,xy__xd
2

y
d t

2

~J~ ~dT2

&amp;lt;
y d 2 x x d g

y
d t

But

yd 2 x xd 2

y = dydx + yd 2 x dxdy xd 2
y

= d . (y d x x d y)

.. integrating

y d x x d v
j = constant = c.
d t

Again,
x =

g cos. d, y =
g sin

&amp;lt;?,

x 2 + y
2 =

g
2

. . d x =
g d 6 sin. + d g cos. 6

d y =
g d 6 cos. 6 + d g sin. S;

whence by substitution we get

ydx xdy =
f

2 d

But (see Art. 1 13)

g

2
= d . (Area of the curve) = d . A

.-. d t = s- r = . d A.
c c

Vor.. I. H
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Now since the time and area commence together in the integration
there is no constant to be added.

2
.-. t = X A oc A.

c

Q. e. d.

J25. COR. 1. PROP. II. By the comment upon LEMMA X, it appears

that generally

ds
v =

d-t

and here, since the times of describing A B, B C, &c. are the same by

hypothesis, d t is given. Consequently
v oc d s

that is the velocities at the points A, B, C, &c. ai*e as the elemental spaces

described A B, B C, C D, &c. respectively. But since the area of a A

generally = semi-base X perpendicular, we have, in symbols,

d . A = p X d s

d. A
. . V OC d S CC-

;

p
and since the A A B S, B C S, C D S, &c. are all equal, d A is constant,

and we finally get

1 c
v a or =

P P
the constant being determinable, as will be shown presently, from the

nature of the curve described and the absolute attracting force of S.

126. COR. 2. The parallelogram C A being constructed, C V is equal and

parallel to A B. But A B = B c by construction and they are in the

same line. Therefore C V is equal and parallel to B c. Hence B V is

parallel to C c. But S B is also parallel to C c by construction, and

B V, B S have one point in common, viz. B. They therefore coincide.

That is B V, when produced passes through S.

127. COR. 3. The body when at B is acted on by two forces ; one in

the direction B c, the momentum which is measured by the product of its

mass and velocity, and the other the attracting single impulse in the di

rection B S. These acting for an instant produce by composition the

momentum in the direction B C measurable by the actual velocity X mass.

Now these component and compound momentums being each propor
tional to the product of the mass and the initial velocity of the body in

the directions B c, B V, and B C respectively, will be also proportional

to their initial velocities simply, and therefore by (125) to B V, B c, B C.
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C

Hence B V measures the force which attracts the body towards S when
the body is at B and so on for every other position of the body.

128. COR. 1. PROP. II. In the annexed

figure B c = A B, C c is parallel to

S B, and C c is parallel to S B. Now
A S C B = S c B = S A B, and if the

body by an impulse of S have deflected

from its rectilinear course so as to be

in C, by the proposition the direction

in which the centripetal force acts is that

of C c or S B. But if, the body having
arrived at C , the ASBC be&amp;gt;SAB

(the times of description are equal by

hypothesis) and .-.
&amp;gt;

S B C, the vertex

C falls without the A S B C, and the

direction of the force along c C or B S ,

has clearly declined from the course

B S in consequentia.

The other case is readily understood

from this other diagi am.

129. To prove that a body cannot de

scribeareasproportional to the times round

two centers.

If possible let

AS AB = A S BC
and

S A B = S B C.

Then

A S B C
(
= S A B) = S B c

and C c is parallel to S B. But it is

also parallel to S B by construction.

Therefore S B and S B coincide, which
is contrary to hypothesis.

130. PROP. III. The demonstration of this proposition, although strictly

rigorous, is rather puzzling to those who read it for the first time. At least
so I have found it in instruction. It will perhaps be clearer when stated

symbolically thus :

Let the central body be called T and the revolving one L. Also lef

the whole force on L be F, its centripetal force be f, and the force ac-
H2
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celerating T be f . Then supposing a force equal to f to be applied to

L and T in a direction opposite to that of f
, by COR. 6. of the Laws,

the force f will cause the body L to revolve as before, and we have

remaining
f = F f

or

F = f + f .

Q. e. d.

ILLUSTRATION.

Suppose on the deck of a vessel in motion, you whirl a body round in a

vertical or other plane by means of a string, it is evident the centrifugal

force or tension of the string or the power of the hand which counteracts

that centrifugal force i. e. the centripetal force will not be altered by the

force which impels the vessel. Now the motion of the vessel gives an

equal one to the hand and body and in the same direction ; therefore the

force on the body = force on the hand + centripetal power of the hand.

131. PROP. IV. Since the motion of the body in a circle is uniform by

supposition, the arcs described are proportional to the times. Hence

., , arc X radius
t a arc described oc 5

oc area of the sector.

Consequently by PROP. II. the force tends to the center of the circle.

Again the motion being equable and the body always at the same dis

tance from the center of attraction, the centripetal force (F) will clearly

be every where the same in the same circle (see COR. 3. PROP. I.) But

the absolute value of the force is thus obtained.

Let the arc A B (fig.
in the Glasgow edit.) be described in the time T.

Then by the centripetal force F, (which supposing A B indefinitely small,

may be considered constant,), the sagitta D B (S) will be described in

that time, and (Wood s Mechanics) comparing this force with gravity as

the unit of force put = 1, we have

S =
fFT&amp;lt;

g being = 32 feet.

But by similar triangles A B D, A B G
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(LEMMA VII.)

If T be given

If T = arc second

NEWTON S PRINCIPIA.

2S (arc A B)~
jfT

2
=

g R T 2

117

Fa (arcA^

_ (arcAB)
r 7^

132. COR. 1. Since the motion is uniform, the velocity is

arc
:

F - oc* *
T-J

&quot;*

T&amp;gt;

g R R
133. COR. 2. The Periodic Time is

circumference 2 it Rp _
velocity

* 2 R
gRP 2 gP

134. COR. 3, 4, 5, 6, ^. Generally let

P = k x R n
,

k being a constant.

Then
2 T R 2 if

~P~~
=
k R-

and

* ^

P 2

ex

F = 4r

gk 2 R
oc

Conversely. If F a Rgn-1 ;
P will a R

For (133)

Pcc

135. COR. 8. A B, a b are similar

arcs, and A B, a h contemporaneous

ly described and indefinitely small. M
Now ultimately

an: am:: ah :ab*
and

a m : A M : : a b : A B

(LEMMA V)
.-. an : A M : : ah 2

: ab. A B
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or

f : F
ah*

e
A B

a b a s

A B 2

. ,% (LEMMA V)A Ib
v

a s

or

A B
V 2

A~S

_V
2

*
A S*

And if the whole similar curves A D, a d be divided into an equal
number of indefinitely small equal areas A B S, B C S, &c. ; a b s, b c s,

&c. these will be similar, and, by composition of ratios, (P and p being
the whole times)

P : p : : time through A B : time through a b

A B ab AS

Hence

v V
PCX A S

V

V 2

a s

v

A S

rp 2

AC

RB
; RB (131)

AB 2

136. COR. 9. Let A C be uniformly described,

and with the force considered constant, suppose

the body would fall to L in the same time in

which it would revolve to C. Then A B being

indefinitely small, the force down R B may be

considered constant, and we have (131)

A C 2
: A B 2

: : T 2
:

A B
. . TT 2 .

A L

: : AL
: . AL

Hence

AB 2 =ALxAD.
PROP. VI. Sagitta

ex F when time is given. Also sag. a (arc)
2
by

LEMMA XI, ex t
2 when F is given

.. when neither force nor time is given

sag.
ex F X t

2
;
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OTHERWISE.

By LEMMA X, COR. 4,

space ipso motus initio
* C a

7-g

sag.
&amp;lt;*=?.

To generalize this expression, let
-^

be the space described in I&quot; at

the surface of the Earth by Gravity. Also let the unit of force be Gravi

ty. Then

1 : :

1^&quot;

:

2X I
772

2_sag. _2_ ^ }

gt
2

g t
2

by hypothesis.

137. COR. 1. F oc 5J1 a Q ^
t

2

(area S P Q)
2

QR
S P 2 x Q T 2

To generalize this, let a be the area described in I . Then the area

described in t&quot; a X t = .

&

SP x QT
~2~a~

and substituting in (a) we get

8 a 2 _QR b)
~Y

&amp;lt; SP 2 x QT 2

Again, if the Trajectories turn into themselves, there must be

a : I&quot; : : A (whole Area) : T (Period. Time)

a = A

Hence by (b) we have

8A 2 QR ,^
r = _.- X

gT 2 S P 2 x QT 2

which, in practice, is the most convenient expression.

8 A 2 Q R
138. COR. 2. F =

g-^-
2
X
g-y^x Q P 2 ^

139. Cor. 3. F =
|A|

X SY x PV (e)
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Hence is got a differential expression for the force. Since

P v - ~P d *
A. T i

dp
__.8 A 2 i

.&quot;. -T lFf\H X
gT 2 2p 2 pdg

dp
- 1A! x dp m
-gT 2 Vdg

Another is the following in terms of the reciprocal of the Radius Vector

o and the traced-angle 6.

Because

1 .- dg
2 + g

2 d

p&quot;

2
=

g
4 d d

z

d 2
1

Let

Then

, du
d g

=
5-u 2

also

1 du
H

dp 2dud 2 u~^-
dp d 2 u

2 3

p^d~g
==

&quot;d^

L

and substituting in f we have

F - 1AI v ( u M- u-

^F2 \d ^
2

140. COR. 4. F a _- x V 2 X

* FV*
This is generalized thus. Since

v _ space __ P Q
Time

&quot;&quot;

t

and

F2
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aXt(=7~Xt) = area described

P Qx S Y

Hence

and by COR. 3.

.v PQ - 2A
*

t T

2

S~Y

S Y 4 A

v 2 V
I = - X (h)

g&quot;
PV

From this formula we get

V 2 =- X F X P V
n

- 2 F
4

But by Mechanics, if s denote the space moved through by a body

urged by a constant force F
V 2 = 2gF x s

P V
s =

-4-
that is, the space through which a body mustfall when acted on by the force

continued constant to acquire the velocity it has at any point of the Trajec

tory, is % of the chord ofcurvature at that point.
Also

dp dp
The next four propositions are merely examples to the preceding formulae.

141. PROP. VII.
R P 2

(= Q R x R L) : Q T 2
: : A V 2

: P V*

. QR * RL x PV 2

_, n T
A ir 9 V^ 1
A V

SPW |J

and multiplying both sides by ^-^ and putting P V for R L, we have

Also by (137 c.)

S P 2 x P V 3 _ SP* x QT S

AV 2 QR
A V 2

1
C

SP 2 x P V 3&amp;lt;X S P&quot;

2 x P V 3

_ 8 A 2

: x
A V 1

P V S P 2 X P V 3
*
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OTHERWISE.

From similar triangles we get

A V : P V : : S P : S Y
SP x PV

.-. SY = AV
S P 2 x P V 2

S Y - X P V =
A yf X P V

S P 2 x PV 3

^A V 2

Foe
1

SY* X PV SP 2 x PV
as before.

OTHERWISE.

r 2 a 2+ e
2

P ~- -2~
is the equation to the circle

;
whence

_dp _ j_

df
~&quot;

r

_ 4A 2

dp _ 4 A 8

=
gT~

2X
p
Tdl~gT 2

4?rr 8 r 3

3 2crr 4

OTHERWISE.

The polar equation to the circle is

2 a cos.
~

1 + cos.
2
6

cos.
. /_ U 1

\
p
/ 2 a cos.

d_u
1 / sin. ^

&quot;

d 6 2 a \cos.
2
^

I 2 a

sin.

1 sin.~ ~ X2a cos. 2

d u _ J_ /3 sin.
2

tf 2 sin
4

tf \

d 6
&quot;&quot;

2~a \ cos. 6 cos731/

= 0^ X^V^X(3-sin2 a cos.
3

6
v
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Hence

d 2 u sin.
z
6 .

2 _J cos. I

2 a cos.
3

&amp;lt;T

(A
~

6) +
2 a cos.^

*
~2~a~

1

2 a cos.
3
d

2 a cos.
3
6

1

X (3 sin
*
6 sin.

4
6 + cos. 2

6 + cos.
4

X (2 sin.
2

sin.
4 0+ 1 + 12 sin.

a cos. 3
6

which by (139) gives

4A 2 u

a cos.
d
6

4 A 2

( 1 + cos. 2
6)

z

v \ *

__

g T 2 4 a 3
cos.

5
^

cos.
5
6

142. COR. 1. F oc -

But in this case

.-. Foe

S P = P V.

1 _32gr 4

or ^ m XSP 5 gT 2
^ SP S

COR. 2. F: F:: RP 2 x PT 3
: SP 2 x PV S

: : S P x R P
SP 3 x PV

PT 3

:: S P x R P 2
: SG 3

,

by similar triangles.

This is true when the periodic times are the same. When they are

different we have

T
F: F::SPxRP 2 -4-xSG 3

,

S K 1
R

where the notation explains itself.

143. PROP. VIII.

C P 2
: PM 2

:: PR 2
: QT 2

and

PR 2 = QRx(RN + QN)=QR X 2PM
.-. C P 2

: P M 2
: : Q R x 2 P M : Q T*

Q T &quot;

_ 2PM 3

*

Q R
:

C P 2
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and

QT Z X SP 2 2PM 3 X SP 2

QR CP 2

CP 2

&quot;. 2PM 3 x SP 2 PM 3

Also by 137,

CP 2

g SP 2 x PM 3

But

_
S P X velocity __ S P X V

V 2 CP 2

.-. F = X
g PM 3

OTHERWISE.

By PROP. VII,

F oc SP 2 X P V 3

But S P is infinite and P V = 2 P M.
1

.-. F
P M 3

OTHERWISE.

The equation to the circle from any point without it is

c 2 - r 2
g

2

P ~ &quot;

2r

where c is the distance of the point from the center, and r the radius,

Moreover in this case

g
= c + PM = c + y

c 2 r
2 c 2 2cy y

8

.-. P = -

-jj-
c y
r

. dp _ c + y x
i&quot;

r c y
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Hence (139)

_ 4a*r 2 1
._ V 2 r

2 1
* &quot;^

~* &quot;

o ^&amp;gt; ~^ ^\ q
c 2

g y
3

g y
3

SCHOLIUM.

144. Generally we have

P R 2
: QT 2

: : P C 2
: P M*

PR 2 O TJ 1V ^ J
. . p p 2 . p TV/I

2
-

Q~R
J

But

PR 2

P V-
QR

and

P C : P M : : 2 R (R = rad. of curvature) : P V
QT 2 _ PM 2 _2RxPM
QR

: PC 2
:

P C
2 R X P M 3

PC 3

But

QT 2 _2AC 2

QR B C 4 *

and

From the expression (g. 139) we get

,-, 4a 2 d 2 u
F = X -j r X u 2

.

& U a

But
a dd dx

4a 2 V

a X t =
5-g-

= a X
-^

d d
2

&quot;

d x 2

Also

j UP
.. d u = ~

g
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and

A COMMENTARY ON

Hence

= r (
see 69 )

V 2
?
4 d 2

e 1
T| _ V/ VX

g ax^
This is moreover to be obtained at once from (see 48)

T-F = - x

For

d t =

.-. F =

g dt&quot;

a4
v
V 2

g d x :

145. PROP. IX. Another demonstration is the following:

[SECT. II.

gdx 2

V 2
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Hence

nut!

q r

NEWTON S PRINCIPIA.

q t
2

_ q_t_
8

q r qr

QT

,, . c p

a S P

QR
.-. F

S P

127

OTHERWISE.

The equation to the logarithmic spiral is

b
p = - X S

d_p _ b

d a a

and by (f. 139) we have

F =

g-b-
Using the polar equation, viz.

b

4 a
&quot;
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Q R PC p r
*QT 2 X CP 2BC 2 x C A 2

Also by expression (c. 137) we get

_ 8A 2 PC
r = Fi=n; X

gT 2 2B C 2 X C A 2

But

A= * X BC X C A

The additional figure represents an Hyberbola. The same reasoning

shows that the force, being in the center and repulsive, also in this curve,

a C P.

ALITER.

Take
Tu = TV

and

u V : v G : : D C 2
: P C*

Then since

Q v 2
: Pv x vG : : D C 2

: P C 2

.-. u V : v G : : Q v 2
: P v x v G

.-. Q v 2 = P v x u V

.-.Qv
2 + uPxPv= PvX (uV + uP)

= P v x V P.

But

Qv J = QT 2 + Tv 2 = QT 2 + Tu 2

= p Q 2 P T 2 + T u 2

= p Q2_ (PT- Tu 2
)

= PQ2_P U X Pv

(chord PQ)
2 = Pv x VP.

Now suppose a circle touching P R in P and passing through Q to

cut P G in some point V . Then if Q V be joined we have

z.PQv=z-QPR = ^-QV P

and in the AQ P v, Q V P the L. Q P V is common. They are there

fore similar, and we have

P v : P Q : : P Q : P V

.-. P Q 2 = P v x V P = PvxVP
.-. V P = V P

or the circle in question passes through V ;

.. P V is the chord of curvature passing through C.
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Again, since

DC 2

u V = v G x p
^

a
= C x v G

or

p V P u = C (P G P v)

and

P V, PG
being homogeneous

2 D^C
2 2CD*

PC 2 PC
.-. (Cor. 3, PHOP. VI.)

F PC
2 PF a x CD 2

But since by Conies the parallelogram described about an Ellipse is

equal to the rectangle under its principal axes, it is constant. .. P F x
CD is.

and

F p C.

OTHERWISE.

By (f. 139) we have

g T

But in the ellipse referred to its center

_-
a * + b 8~-

._ a 2 + b 2

and
differentiating, and dividing by 2, there results

dp _ g

p
s

dg a 2 b i!

which gives

4A 2
P 4^r 2

TT _ _ v _ - \( a.

~gT 2 a 2 b 2
~

g T*
In like manner may the force be found from the polar equation to die

ellipse, viz.

b
&quot;

1 _ e 2
cos.

2
6

by means of substituting in equat. (g. 131).
)
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147. COR. 1. For a geometrical proof of this converse, see the Jesuits

notes, or Thorpe s Commentary. An analytical one is the following.

Let the body at the distance R from the center be projected with the

velocity Vin a direction whose distance from the center of attraction is P.

Also let

F =
*&amp;lt;

IL being the force at the distance 1. Then (by f
)

4 A 2

^ dp=
^r**P*-*l

= ^
which gives by integration, and reduction

1 _^gT 2

p&quot;

2 -&quot;^^
h

R and P being corresponding values of g and p.

But in the ellipse referred to its center we have

_!_ _ a 2 +b 2
g
2

p
2
~

a 2 b 2 a 2 b 2

which shows that the orbit is also an ellipse with the force tending to its

center, and equating homogeneous quantities,
we get

J_
2

a 2 b 2 4 A 2 P

and

a 2 b 2 4 A 2

But

A = cr a b

... T = 2 *
(1)

Vug
which gives the value of the periodic time, and also shows it to be con

stant. (See Cor. 2 to this Proposition.)

Having discovered that the orbit is an ellipse with the force tending to

tne center, from the data, we can find the actual orbit by determining its

semiaxes a and b.

By 140, we have

v - LV T1 P

a 2 + b g

_ R 2

l_* ~~
a^b 2

&quot; -^g x V 2 P 2
&quot;*~P

2

and

1 _L
aTp-^S x V 2 P 2
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V 2

l 2 -i-h 2 R 2 _L
. . cl -]- U IV -}-

and

2 VP
2 a b = =-r

\

. . a + b = ^

and
g

v&amp;gt;g

which, by addition and subtraction, give a and b.

OTHERWISE.

By formula
(g. 139,) we have

...4. u_
d tf

2 ^ TT 2&quot;

x
u~3
~ (

and multiplying by 2 d u, integrating and putting
8 * T 2 _ ^

4&amp;lt; A
d u 2 M
dT* + u2 + ^2 + ^ =

To determine C, we have

d u 2

_ J_ dj
8

d0 2
~

f
*

dl&quot;
8

and in all curves it is easily found that

. I
1

,&quot;

2 _ e
2

p
8

_ _id^-
g p

s
=

p~&quot;

Hence, when ^ = R, and p = P,

which gives the constant C.

Again from (2) we get _ _- V
( M Cu u 4

)

which being integrated (see Hersch s Tables, p. ItiO.-^Englished edit

published by Baynes & Son, Paternoster Row) and the constants properly
determined will

finally give g in terms of *- whence from the equation to
the ellipse will be recognised the orbit and its dimensions.

I 2
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148. COR. 2. This Cor. has already been demonstrated see (1).

Newton s Proof may thus be rendered a little easier.

By Cor. 3 and 8 of Prop. IV, in similar ellipses

T is constant.

Again for Ellipses having the same axis-major, we have

/
(
V

cr a b b
oc a

But since the forces are the same at the principal vertexes, the sagittae

are equal, and ultimately the arcs, which measure the velocities, are equal
to the ordinates, and these are as the axes-minores. Hence, a (which

v X S Yx ,-
)

oc b.

.*. T oc -T- &amp;lt;x ] or is constant.

Again, generally if A and B be any two ellipses whatever, and C a third

one similar to A, and having the same axis-major as B ; then, by what

has just been shown,

T in B = T in C
and

T in C = T in A
.-. T in B = T in A.

149. SCHOL. See the Jesuits Notes. Also take this proof of,
&quot; If one

curve be related to another on the same axis by having its ordinates in a

given ratio, and inclined at a given angle, the forces by which bodies are

made to describe these curves in the same time about the same center in

the axis are, in corresponding points, as the distances from the center.&quot;

The construction being intelligible from the figure, we have

P N : Q N : : p O : q O
.-. P N : p O : : Q N q O

: : N T : O T ultimately.
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.-. Tangents meet in T,
the triangles C P T, C Q T are in the ratio of P N : Q h or of parallelo

grams PNOp, QNOq ultimately, i. e. in the given ratio, and

C p P : C P T : : p P : P T ultimately.

: : NO: NT
: : qQ:QT
: :CQq: CQT

.. C p P : C q Q in a given ratio.

. bodies describing equal areas in equal times, are in corresponding

points at the same times.

.-. P p, Q q are described in the same time, and m p and k q are as the

forces.

Draw C R, C S parallel to P T, Q T; then

p O : q O : : P N : Q N : : n O : 1 O
.-. n O : p O : : 1 O : q O

1 O : O S)

and
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.-.Lx QR: QT 2
: : A CxLx P C 2xCD 2

: PC xGvxCD 2xCB 2

and

QR A Cx PC A C x PC AC
QT2

~ G v x C B*
-&quot;

2 PC X C B 2 2 C B 2

T? QR (_ AC x 1
* * a

Q T 2 x S PA- 2 C B 2 x S P 2) SP 2

Q. e. d.

Hence, by expression (c) Art. 137, we have

8 A 2 AC
T? v
-- rr* o ^

gT 2 2 CB 2 x S P 2

&quot;

2 b 2 x e
2

X^ (a]

where the elements a and T are determinable by observation.

OTHERWISE.

A general expression for the force (g. 139) is

4 A 2
9 /d

2 u
,

x
F =

g-T
2 x u

(dT2 + u
)

But the equation to the Ellipse gives

_ 1 _ 1 -f e cos. 6

= - =
-^(T^^eY

where a is the semi-axis major and a e the eccentricity.

d u e sin. 6

dT
:

~a(l e 2
)

and

d 2 u e cos. 8

d 2 u

dT2 + u =

and

F = .

T 2 X
a(l e 2

)

But

A s = w 2 a 2 b 2 = * 2 a 2

(a
2 a 2 e 2

)

. F _ ill^
3

x u ,

gT 2

the same as before.
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OTHERWISE.

Another expression is (k. 140)

_ 4A 2 dpF = -77^ X -,-f- .

g 1 p a g

Another equation to the Ellipse is also

j. _ 2 a g _ 2 a J_

dp a

P
5^!

&quot;&quot; ^V
T? _

-

b 2
g

u a vX i o 5 - rfi ij ^N
&quot;

o *

b 2 P^ G -L
~

^ b O

151. PROP. XII. The same order of the proportions, which are also let

tered in the same manner, as in the case of the ellipse is preserved here.

Moreover the equations to the Hyperbola are

a (e
2

I)

1 + e cos. 6

and

P
2 = -^i-

which will give the same values of F as before excepting that it becomes

negative and thereby indicates the force to be repulsive.

152. PROP. XIII. By Conies

4SP.Pv = Qv 2 = Qx 2

ultimately.

But

.-. 4 SP. Q R : Qx 2
: : 1 : 1

and

Qx 2
: QT 2

: : SP 2
: S N 2

:: S P : S A
.-. 4SP.QR : QT 2 :: S P : S A

QR 1
. !_

&quot;

Q T 8
~

4 S A
&quot;

L
L being the latus rectum.

.-. F
Q~T 2 X S P 2 S P 2

or

F = ! X g^QHj T, (b.
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8a 2
1 2 P 2 V 2

1
X ] X~

g L S P 2 gL
a being the area described by the radius-vector in a second, or P the per
pendicular upon the tangent and V the corresponding velocity.

OTHERWISE.

In the parabola we have

and

which give

12 22
u = - =

-j- (1 + cos. 0) = -J- + T cos.

1^
4 1

P~
2
~
L X

J

d 2 u 2

d7^ + u = X
and

d p _2 _1

and these give, when substituted in

F - ?2 V2
u 2

(

g \p~}

or

P V a dp
o; p a d PO Jt 9

the same result, viz.

x
g

Newton observes that the two latter propositions may easily be deduced

from PROP. XL
In that we have found (Art. 150)

4 A 2 a
=
JTT

5
x

P 2 V 2

g r
Now when the section becomes an Hyperbola the force must be repul

sive the trajectory being convex towards the force, and the expression re

mains the same.
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Again by the property of the ellipse

b : : ax a: -g a -
4 4 \

which gives

a_ _2 _ JL
b 2

~
L ~~4 a

and if c be the eccentricity

b 2 = a 2 c 2 = (a + c) X (a c)
&quot;_a_ _ 2 1

(a + c) X (a c)

&quot;&quot;

L
~
4 a

Now when the ellipse becomes a parabola a and c are infinite, a c is

finite, and a + c is of the same order of infinites as a. Consequently r 9
nJ

\sjinite, and equating like quantities, we have

_a _J2
b~2 ~&quot;L

which being substituted above gives

2P 2 V 2
1

the same as before.

Again, let the Ellipse merge into a circle; then b = a and

v P 2 V 2 a
TV _ _ vA A K 2 2

5 D S

a V 2

^
g

X
?

2

V s

(c)
g X

153. PROP. XIII. COR. 1. For thefocus , point of contact, and position of
the tangent being given, a conic section can be described having at that point

a given curvature.]

For a geometrical construction see Jesuits note, No. 268.

The elements of the Conic Section may also be thus found.

The expression for R in Art. 75 may easily be transformed to

R =

p
2 d 6* * d &amp;lt;T-

for

p z
~dl~ ~7~ a **

-
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Now the general equation to conic sections being

b 2
1

s = x
a 1 + e cos. 6

the denominator of the value of R is easily found to be

which gives

R - *-

a p
3

Hence

b 2

p
3

- = - x R
a f

J

is known.

Again, by the equation to conic sections we have

b 2
g

P =
2 a ipe

which, by aid of the above, gives

a =
2g

2~p R
And

p
8 R

~
2 g

2

p R*

Whence the construction is easy.

154. The Curvature is givenfrom the Centripetal Force and Velocity being

given.~\

If the circle of curvature be described passing through P, Q, V, and O

(P V being the chord of curvature passing through the center of force,

and P O the diameter of curvature) ;
then from the similar triangles

P Q R, P V Q, we get

P Q 2

QR - .iv -
P V

Also from the triangles P Q T and P S Y (S Y being the perpendicu

lar upon the tangent) we have

SPx QT^^~ SY
and from P S Y, P V O,

^i**SY
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whence by substitution, &c.

Q R SP
QT 2 xSP*~2Rx SY 2

_ 2P 2 V 2 QR V 2 x SP
g

* QT 2 x SP 2
&quot; Rx SY

which gives

SP_ V 2

-
&amp;gt;
~-

Hence, S P, S Y and g being given quantities, R is also given if V and

F are.

155. Two orbits which touch one another and have the same centripetal

force and velocity cannot be described.]

This is clear from the &quot;

Principle of sufficient Reason.&quot; For it is a

truth axiomatic that any number of causes acting simultaneously under

given circumstances, viz. the absolute force, law of force, velocity, direc

tion, and distance, can produce but one effect. In the present case that

one effect is the motion of the body in some one of the Conic Sections.

OTHERWISE.

Let the given law of force be denoted generally by f
g, where f g means

any function; then (139)

F _ P 2 V 2 dp
g *p a

de
and since P and V are given

pv _ . ^ P
.

g p
3 d P

But if A be the value of F at the given distance (r) from the center to

the point of contact ; then

F : A : :fg :fr

and

F: A: :f :fr

and

~
f r

S



HO A COMMENTARY ON [SECT. III.

Hence

1Z! jL.p_ A r
3 d

~
fr

X

and

P

g P

P 2 V 2

dp Ar Via
/ Q i / r* ^. * C

s p 3 d / f r

and integrating, we have

P 2 V 2 f r

and

Po TT o n i i2 V 2 f r /!_ JL \ _ /- i e

Nowyd g f g and yd g f g are evidently the same functions of g and g t

which therefore assume

a P and P
5

and adding the constant by referring to the point of contact of the two

orbits, and putting

p? v*fr
2 g A = M,

we get

M X
(p-^ r,)

=
&amp;lt;p g &amp;lt;f&amp;gt;

r

MX (1 -L)=^ -?r.

. J_ - L _L
&quot;

p
=:

&quot;M

&quot;&quot;

P*~

p
7

&quot;

2
=:

31 + F2
~

in which equations the constants being the same, and those with which

g and f are also involved, the curves which are thence descriptible are

identical. Q. e. d.

These explanations are sufficient to clear up the converse proposition

contained in this corollary.

156. It may be demonstrated generally and at once as follows :

By the question
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then

and

/d g
^

and substituting in (d) we have

1 1 1 1

p
8
=

r M + P 2 H &quot;

M g

But the general equation to Conic Sections is

_L
2a _L

p
2
~

b 3

g
b 2

&quot;

Whence the orbit is a Conic Section whose axes are determinable from

2a. 1 2 g A r 2

b&quot;2- M =
pa V 2

and

- _L 1 1

+ b 2
~ ~

r M.
&quot;

P 2

1 2 g A r

^0^2
&quot;

p 2
&quot;y

2&quot;

and the section is an Ellipse, Parabola or Hyperbola according as

V 2
is

&amp;gt;,
or = or

&amp;lt;
2 g Ar.

Before this subject is quitted it may not be amiss by these forms also to

demonstrate the converse of PROP. X, or Cor. 1, PROP. X.

Here

ff = &amp;lt;

f r = r

VVhence

1 r
2

J_ g
2

p
2
~

2 M H &quot;

P 2 2 M
But in the Conic Sections referred to the center, we have

which shows the orbit to be an Ellipse or Hyperbola and its axes may be

found as before.
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In the case of the Ellipse take the following geometrical solution and

construction

C, the center of force and distance C P are given. The body is projected

at P with the given velocity V. Hence P V is given, (for V 2 =
-|.
F . P V.)

Also the position of the tangent is given, .-. position of D C is given, and

SCO 2

P V =
.p, n . Hence C D is given in magnitude. Draw P F per-P C

pendicular to C D. Produce and take P f = CD. Join C f and bisect

in g. Join P g, and take g C, g f, g p, g q, all equal. Draw C p, C q.

These are the positions of the major and minor axis. Also \ major axis

= P q, \ minor axis = P p.

For from g describe a circle through C, f, p, q, and since C F f is a

right Z-j it will pass through F.

.-.Pp.Pq= PF.Pf= PF.CD
Also

PC 2 +Pf 2 = Pg 2
-f g C

2 + Pg 2 +gf 2
, (since base of A bisected in g)

or

= Pq 2 2Pg.gq+Pp 2 + SPg.gp
= Pq 2 + Pp 2

... Pp. Pq PF.CD \ But a and b are determined by the same

Pp 2 + Pq 2 = PC 2 + CD 2 / equations. . . P q = a, P p = b.

Also since p and F are right angles, the circle on x y will pass through p

and F, and APpx = Cpq=CFq = xFp, because ^xFC = pFq.
.-. L. Pp x = /-in alternate segment. .-. P p is tangent.

Pp = PF.Px .-. P F. Px = b 2
.

But if in the Ellipse C x be the major axis, P F . P x = b 2
.
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.. C x is the major axis, and . . C q is the minor axis.

. . the Ellipse is constructed.

PROP. XIII, COR. 2. See Jesuits note. The case of the body s

descent in a straight line to the center is here omitted by Newton, be

cause it is possible in most laws of force, and is moreover reserved for a

full discussion in Section VII.

The value of the force is however easily obtained from 140.

O T 2 O T 2

157. PROP. XIV. L = ^jL ^5W tt

a Q T 2 X S P 2

by hypoth.

OTHERWISE.

By Art. 150,

F - 4 A a 8 A 2
\

-
g T*

X
bV &quot;

LgT 2
*
p

for the circle, ellipse, and hyperbola, and by 152.

O P 2 V2 1

F= r
xT ^

*&amp;gt;Lg e
2

for the parabola.

Now if /& be the value of F at distance 1, we have

Whence in the former case

8 A 2 2 P 2 x V 2

T T 2 P r

gL
and in the latter

2 P 2 x V 2

But

~-8
*

: 1
2

: A 2
: T 2

4

Aj; S P 2 x QT 2

P^x V 2

&quot; * T 2
~

4
~

&quot;4

~

158. PROP. XIV. COR. I. By the form (a) we have

A(= crab) = JtJl X V L X 1.

T V L.
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159. PROP. XV. From the preceding Art.

T= / X -.~ V AC, g V L

But in the ellipse

L =
a

T X a
2 ... (e)

V /*g

160. PROP. XVI. For explanations of the text see Jesuits notes.

OTHERWISE.

By Art. 157 we get

for the circle, ellipse, hyperbola, and parabola.

But in the circle, L = 2 P.

.-. V = V^X^p - A/Y^x ^ . . . (g)

r being its radius.

In the ellipse and hyperbola

L - 2b2

161. PROP. XVI, COR. I. By 157,

L = X P 2 X V 2
.

g/*

162. COR. 2. V = /
X -,

D being the max. or min. distance.

163. COR. 3. By Art. 160, and the preceding one,

* X :
X

: : V L : V 2 D.

164. COR. 4. By Art. 160,
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But

NEWTON S PRINCIPIA.

2 b 2

L =
, P = b, and r = a

145

.*. v : v : :

b V a Va*

165. COR. 6. By the equations to the parabola, ellipse, and hyper

bola, viz.

n *
. O

the Cor. is manifest.

166. COR. 7. By Art. 160 we have

/2 1 L 1
v 2 . y 2 . . .

2 P 2 r

which by aid of the above equations to the curves proves the Cor.

OTHERWISE.

By Art. 140 generally for all curves

pv -
JL. T -

i

dp

P V = 2 g (racl.
= e)

But generally

and in the circle

An analogy which will give the comparison between v and v;
for any

curve whose equation is given.

167. COR. 9. By Cor. 8,

and

.: ex equo

v : v : :
=- : p

sv::

VOL. ]. K
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1GB. PROP. XVII. The &quot; absolute quantity of the
force&quot;

must be

known, viz. the value of ^ or else the actual value of V in the assumed

orbit -will not be determinable ;
i. e.

L : L : : P 2 V 2
: P/2 V/2

will not give L .

It must be observed that it has already been shown (Cor. 1, Prop.

XIII) that the orbit is a conic section.

See Jesuits notes, and also Art. 153 of this Commentary.

169. PROP. XVII, COR. 3. The two motions being compounded, the

position of the tangent to the new orbit will thence be given and therefore

the perpendicular upon it from the center. Also the new velocity.

Whence, as in Prop. XVII, the new orbit may be constructed.

OTHERWISE.

Let the velocity be augmented by the impulse m times.

Now, if /* be the force at the distance 1, and P and V the perpendicu

lar and velocity at distance (R) of projection, by 156 the general equation

to the new orbit is such that its semi-axes are

R R
or =-

2 m 2
&quot;

rn 2 2

and

=
2 m 2

according as the orbit is an ellipse or hyperbola. Moreover it also

thence appears that when m 2 = 2, the orbit is a parabola, and that the

equations corresponding to these cases are

g

R
2 m

or

m 2 P

or

= P X
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DEDUCTIONS AND ADDITIONS

TO

SECTIONS II AND III.

170. In the parabola theforce acting in lines parallel to the axis, required F,

4SP.QR:QT 2 ::Qv 2 :QT 2 ::YE 2 :YA 2 ::SE:SA::SP:SA
Q R 1

&quot;

QT 2
~~

4 S A a ^ ^ *s constant * F ig constant.

S

Let u be the velocity icsolved parallel to P M then since the force acts

perpendicular to P M, u at any point must be same as at A. .. if P Q be

the velocity in the curve, Q T = u = constant quantity, and a = S/ P Q T

S P.u
2

. F _ 8a*.QR 2u 2

&quot;

gS P .QT*
~

g~L&quot;

^
S

which avoids the consideration of S P being infinite ; and

. . body must fall through
- to acquire the velocity at vertex, which agrees

with Mechanics.
(At any point V = u / .

^/ S A
171. In the cycloid required the force when acting parallel to the axis.
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RP 2
: QT 2

:: Z P 2
: ZT 2

:: VF 2
: E F* : : VB: BE

and since the chord of curvature (C. c) = 4 P M, R P 2 = 4 P M. R Q,

/. 4 P M. R Q : Q T 2
: : V B : (B E =) P M

&quot; QT 2
~~

4

p M

F =

S P constant )

* a = Yelocit
&amp;gt; parallel to A B -

/* / B V
(At any point v = u .

^/ p-^
172. In the cycloid the force is parallel to the base

R P 2
: QT 2

: : Z P e
: ZT 8

: : V E 2
: V M 2

: : VB: VM
and since C . c = 4 E M

R P 2 = 4 E M.RQ,
.-. 4EM.RQ:QT :: VB: V M,

QR V B 1

[f V M = y, F =
gy

4 E M. V M a E M. V M
u g r / VBx
2 r y v

&quot;

V -
2 &amp;gt;/

u = velocity parallel to V B.
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8a 2 QR 2u 2

.QJR __&quot;&quot;JL

V^__ \=
^TS P^Q T 2

=
g . Q T 2

~
2 g . E M . V M V

149

(At any point v = u
B V

)

173. Find F in a parabola tending to the vertex.

TAN
T P : P N : : T A : A E

or

V 4 x 2 + y
2

: y : : x :

1

V 4 x 2 + y

4 x 2 + ax 4 x + a

cl X

= p, (A E),

p ax
2 dp __ 4dx.ax

g 2axdx(4x
~

a 2 x 4

ax

dp _ 2 x + a

p
3 ax 3

2 a x ,
2 2x + a

,, v
. d x = . 5 d x,

a x 3

Also

= V x* + y
2
,

-
x d x + y d y

d x

V x

dp _ 2 x + a 2 V x 2 +
*

p *~d~p a x 3 2 x + a

A P
A N

y
2 V X 2 + tl X

^~x 2 V x a + ax
a x

K3



150 A COMMENTARY ON [SECT. III.

174. Geometrically. Let P Q O be the circle of curvature,

but

but

P v (C. c through the vertex of the parabola) =

PQ 2 PO.Az

PP. Az
AP

QR
PQ 2
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The body is projected in direction P 11 ; R Q is the deflection from the

Tangent due to repelling force H P, find the force.

L . S P
176. In any Conic Section the chord of curvature = ^-^r

for

pv QP 2 QT 2 .S P 2 L.SP 2

QR
&quot;

Q RS Y 2 v*
L.SP 3

S Y

177. Radius of curvature = ~ o~

for

P W = PV.SP L.SP
S&quot;V SY 3

o .. 2

178. Hence in any curve F =
s~Y*~p\r

_8ji*_ 4a a.SP

~g.SY .2RTSY~
SP

K 4

see Art.
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179. Hence in Conic Sections

8a 2 8a 2

F =
g.SY 2.PV~g.SY 2 .L.SP 2

S Y 2
&quot;

8 a 2
1

2(X
gTL.S P 2 SP~2

L S P 2

180. If the chord of curvature be proved = vs
-
independently of

f~\ T1

he proof that ~ = L, this general proof of the variation of force in

tonic sections might supersede Newton s; otherwise not.

181. A body attached to a string, whose length = b, is whirled round so as

to describe a circle whose center is the Jixed extremity of the string parallel

to the horizon in T&quot;
; required the ratio of the tension to the weight.

Gravity = 1, .*. v of the revolving body = V g F b, if b be the length of

the string ; t

V 2

.. F (= centripetal force = tension) = -T- (131)

arid

_ circumference 2 v b V b
i =?^ ===== __ 2 T . ,

4b
V g F b

-

gT 2

4 T 2 b
.. F : Gravity : :

^ ,,
: 1, or Tension : weight : : 4

O
If Tension = 3 weight; required T.

4* 2 b:gT 2
: :3: 1,

b : g T z
.

T 2 = - - -

IfT be given, and the tension= 3 weight, required the length of the string.

&quot;jp

2 __ _ ff

.-. b = - -
4 cr

1 82. If a body suspended by a stringfrom

any point describe a circle, the string describes

a cone , required the time of one revolution or

of one oscillation.

Let A C = 1, B C = b,

The body is kept at rest by 3 forces, gra

vity in the direction of A B, tension in the

direction C A, and the centripetal force in

the direction C B.
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As before, centripetal force =

NEWTON S PRINCIPIA.

z b

153

2 &amp;gt;

and centripetal force : gravity : b : V 1
s b 2

, (from A)

4 vr
2 V 1 - b 2

. rPZ _ ^

= 2 if = a constant quantity if V 1

2 n 2

c c n

2 n ;

be given.

.-. the time of oscillation is the same for all conical pendulums having a

common altitude.

183. v in the Ellipse at the perihelion : v in the circle e. d. : : n : 1, Jind

the major axis, eccentricity, and compare its T with that in the circle, and

Jind the limits ofn.

Let S A = c,

v in the Ellipse : that in the circle e. d. : : V H P : V A C

: : V H A : VAC in this case

: : n : 1 by supposition,

.-.2 AC AS = n 2 AC,

... A C = C

Excentricity =AC A S = 5-

s

T : T in the circle : : A C^ : A S *
: :

(2-n 2
)

Also n must be
&amp;lt;C
V 2,

for if n = V 2, the orbit is a parabola

if n
&amp;gt;
V 2, the orbit is an hyperbola.

184. Suppose of the quantity of

matter ofto be taken away. How
much would T of D be increased, and

what the eccentricity of her new orbit ?

the D s present orbit being considered

circular.

At any point A her direction is

perpendicular to S A,

.. if the forcer be altered at any

point A, her v in the new orbit will

c 2
: : 1 : (2 n s

)
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= her v in the circle, since v = y &amp;gt;

and S Y = S A, and a is the

same at A.

Let A S = c, P V at A = L, and F =
*

^ oc _.

in this case,

2 b z

/. 3:4::2c(=Lin the circle) :
(
= L in the ellipse)

3b 2

3(a
2 a c) 3(2ac c 2

)
_ 3c 2

. . 4 c ~~ - _N 7 * ft f
a a a

3c 2

.-. = 2c,

3c

And T in the circle : T7
in the ellipse : : -^-7 : (~~]V 4 v 2 /

V 3

V~3 f 3 \
^ 1 3

V4 V2/ V 2 2

: : V 2 : 3.

And the excentricity= a .

W

185. What quantity must be destroyed that D s T may be doubled, and

what the excentricity ofher new orbit ?

Let F of : f (new force) : : n : 1

.*. v = / s. F . P V, and v is given,

1

P V
2b 2

n a 2 a c 2ac c 2

.. n : 1 : : : 2 c : : : c : :
-

: c : : 2 a c : a
a a a

.*. n a =r 2 a c,

c

2 n
Also T in the circle : T in the ellipse : : 1 : 2

&amp;lt;-)

: : (2 n)
*

: n *

/. 1 : 4 : : (2 n)
3

: n .-. n =r 4 (2 n)
3
, whence n.
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And the excentricity

155

c = c c (2 c nc) __
c (n 1)

2 n~ 2 -n 2 n

186. What quantity must be destroyed that D s orbit may become a

parabola ?

L = 4 c,

.-. F : / : : 4 c : 2 c : : 2 : 1,

.. \ the force must be destroyed.

187. F a
=T-J,

a body is projected at\ given D, v = v in the circle,

L. with S B = 45,yrcc7 axis major, excentricity, and T.

Since v = v in the circle, .*. the body is projected from B,

and L. S B Y= 45
;

.-. L. S B C, or B S C = 45,
S B

.-. S C = S B. cos. 45 =
But

V 2

S B = D axis major~~
.. axis major and excentricity are found.

And T may be found from Art. 159.

Y
P

188. Prove that the angular v round H : that round S : : S P : H P.

This is called Seth Ward s Hypothesis.

In the ellipse. Let P m, p n, be perpendicular to S p, H P,

.-. p in = Increment of S P = Decrement of H P = P n

.-. triangles P m p, P n p, are equal,

.. P m = p n, and angular v -p
distance

189. Similarly in the hyperbola.

Angular v of S P : angular vofSY::PV:2SP:: $.* S P

C D 2

: : HP : A C.
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190. Compare the times offatting to the center of the logarithmic spiral

from different points.

The times are as the areas.

P

c s

, 2

d . area =
(
6
-

^_ C S P), ford, area = -
.

fit fit

f~\ rr* i A

Also
Tp^p

= --
, = tan. L. Y P T = tan. , (a being constant) = a

a p
.-. area = s-

g
2
, (for when P,

= 0, area = 0, /, Cor. = 0)

.*. if P, p, be points given,

T from P to center : t from p to center : : S P 2
: S p

2
.

191. Compare v in a logarithmic spiral with that in a circle, e. d.

2 V 2

F =

.-. if F be given, V oc

.-. v in spiral : v in the circle : : V P V in spiral : V 2 S P ::!:!.

192. Compare T in a logarithmic spiral with that in a circle., e. d.

rr .
! whole area a e

2 a P
2

J in spiral = -5 ?-
:

--
X7

-- _-
area in 1 4 . v . S Y 2 v . . sin. a

T in cirrlp - whole area - g g* _ 2 or
g

2

_ 2 cr

A ill Clinic -;
- _ - . __ - --

area in 1&quot; v . ib Y v . v

ap* 2^p a-^_- .-i . . -
: 2 T : : a : 4 * . sin. a.

v .
g . sin. a v 2 sin. a

: : tan. a : 4 T . sin. a : : 1 : 4T cos. .
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192. In the Ellipse compare the timefrom the mean distance to the Aphe-

lion, with the timefrom the mean distance to the Perihelion. Also given the

Excentricity, tojind the difference of the times, and conversely.

A D V is - - described on A V.
G

T of passing through Aphelion : t through Perihelion

: : S B V : S B A
: : S D V : S D A

Let Q = quadrant C D V,

. rp (-^
a . a e a.ae

^ &quot;

2
: ^ &quot;

2

.-. (T + t =) P : T t : : 2 Q : a . a e

P a.ae
.-. T t =

2 Q
whence T t, or, if T t be given, a e may be found.

193. If the perihelion distance of a comet in a parabola = 64, s mean

distance = 100, compare its velocity at the extremity of It with s velocity

at mean distance.

Since moves in an ellipse, v at the mean distance = that in the circle

e . d . and v in the parabola at the extremity of L
: v in the circle rad. 2 S A : : V 2 : 1

v in the circle rad. 2 S A
: v in the circle rad. AC

. v in the parabola at L
: v in the ellipse at B

V A C : V S A

V 2 . AC : V S~A.~ 2

: : 10 V 2 : 8 V 2

: : 5 : 4

194. What is the difference between L of a parabola and ellipse, having

the same
&amp;lt;

st distance = 1, and axis major of the ellipse = 300? Compare

the \ at the extremity ofL&amp;gt;
and

&amp;lt;&quot;
distances.

In the parabola L = 4 A S = 4.
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In the ellipse L = 2B C
A C 300

1

T50

(A C 2 A C SA&quot;)

(2 AC. AS AS 2
)
= 600 J

150

V 2 : 1

V AC: VH P

\/50 : V299
V 300 : V 299.

v in the parabola at A : v in the circle rad. S A
v in the circle rad. S A : v in the ellipse e. d.

: : V AC : V 2AC SA
/. v in the parabola at A : v in the ellipse e. d. :

Similarly compare vs
. at the extremity of Lat. R.

1 95. Suppose a body to oscillate in a

whole cycloidal arc, compare the tension

of the string at the lowest point with

the weight of the body.

The tension of the string arises

from two causes, the weight of the

body, and the centrifugal force. At

V we may consider the body revolving
in the circular arc rad. D V, . . the

centrifugal = centripetal force. Now
the velocity at V = that down C V by the force of grav.

= that with which the body revolves in the circle rad.

2 C V.

.. grav. : centrifugal force

.-. tension : grav.

196. Suppose the body to oscillate

through the quadrant A B, compare the

tension at B with the weight.

AtBthe string will be in the direction of

gravity; . . the whole weight will stretch

the string; /.the tension will= centrifugal \
force + weight. Now the centrifugal

force = centripetal force with which the

body would revolve in the circle e. d.

!:!,

2 : 1

And v in the circle = V 2 g . F .
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/. F =
gR-gCB

in this case,

also v at B from grav. = V 2 g . C B, grav. = 1 .

/. grav. = 1 =

.*. F : grav. : :

2g C B

v 2 v

2gCB g C B
since v = v .

/. tension : grav. : : 3 : 1.

197. A body vibrates in a circular arc

from the center C ; through what arc must

it vibrate so that at the lowest point the

tension of the string = 2 X weight?

v from grav. = v d . N V, (if P
be the point required) v of revo-

, CV
lution m the circle = v d . -^r .

2: 1,

C

/QV _
.-. centrifugal force : grav. : : v : v : : / : V N V

.. centrifugal force+ grav. (= tension) : grav.

_ _
1- V N V : V N V

2 : 1 by supposition.

C V

C V

.-. N V =

= V N V,

C V

198. There is a hollow vessel in form

of an inverted paraboloid down which

a body descends,, the pressure at lowest

point = n . weight, findfrom what point
it must descend.

At any point P, the body is in the

same situation as if suspended from G,
P G being normal, and revolving in the

circle whose rad. G P. Now P G =
V 4 A S . S P, .*. at A, P G =
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V 4 A S 2 = 2 A S. Also.,*
2 at A with which the body revolves =

.. centrifugal force =
2g A S

v
and grav.

= -p ,
if h = height fallen from.

o

But the whole pressure arises from grav.+ centrifugal force, and= n . grav.

. . centrifugal force + grav. : grav. : : n : 1

or

1 1 1

AS+ h
: ::n:1

1 1

A~S
:

h
::n ~ l : J

... h -- n 1 . A S.

199. Compare the time (T
;

)
in which a body de

scribes 90 of anomaly in a parabola with T in the

circle rad. = S A.

Time through A L : 1 : : area A S L : a in 1&quot;

| A S. SL 4 A S 2

a 3 a

T in the circle rad. S A : 1 : : whole circle : a in 1&quot;

w A Q 2
a A ij

A S a

.-. T =
ar

. T1 T
&quot;

and

a: a :: VL: V2AS:: V4AS: V2AS::
4

2:1

.-. T : T : : : r : : 2 V 2 : 3 r.

3 V 2

Compare the time of describing 90 in the parabola A L voith that hi the

parabola A 1, (fig. same.)

t : T in the circle rad. S A : : 4 : 3 V 2 . T

T in the circle S A : T in the circle rad. o A : : S A.% : a A*

(since T 2 R 3
)

T : t through 1 A : : 3 V 2 . v : 4

frj~ e .. ~~ z
.

k
% i. VUg.i v ;.*. . . ^ i* : &amp;lt;7 A ff

.

See Sect. VI. Prop. XXX.
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200. Draw the diameter P p such that the time through P V p : time

through p A P : : n : 1, force oc
g-p-^

Describe the circle on A V.

Let t = time through P V p, and T the periodic time

n _ PVpS _ QVq S circle + A Q q S

n + 1 ellipse

&quot;

circle
;i*circle

circle S R. 2 C Q
2 2

circle

j- a e . sm. u . a

_
, (u = excentric anomaly)

= + e . sin. u

.-. n it n + 1 . {= + e sin.
u)

sn. u

sin. u = n 1
r-

1

*
52 e

which determines u, &c.

201. The Moon revolves round the Earth in 30 days, the mean distance

from the Earth = 240,000 miles. Jupiter s Moon revolves in day, the

mean distancefrom Jupiter = 240,000 miles. Compare the absolute Jorces

of Jupiter and the Earth.

VOL. I. L
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if
T oc -

, A being the major axis of the ellipse,

. . If A be given, ^ ^ &amp;gt;

Mass of Jupiter _ T 2 of the Earth s Moon _ 30j _ 14,400
*

Mass of the Earth
~~ T7 2 of Jupiter s Moon 1 1

4 2

202. A Comet at perihelion is 400 times as near to the Sun as the Earth

at its mean distance. Compare their velocities at those points.

Velocity
2 ofthe Comet F . 4 A S F 4

_ _L
Velocity

2 of the Earth
&quot;

F. 2 B S
= F 2~.&quot; 400 F 200

400&quot;

2
1

1
2 200

= 800

V V 2 . 20 30 ,

=r nearly.
v

203. Compare the Masses of the Sun and Earth, having the mean distance

of the Earthfrom the Sun = 400, the distance of the Moonfrom the Earth,

and Earth s Pd
. = 13. the Moon s Pd

.

T 2 oc ,

ft

a
&quot;

i&quot;

1
a

-T^Z

Mass of the Sun 400 3

J^ _ 64,000,000 _ 40Q Q0
*

Mass of the Earth
=

I
3 13 2

&quot;

169

204. If the force
-

2 z , where x is the distance from the center

offorce, it will be centripetal whilst 2 &amp;gt;

~
,
or x

&amp;gt;
a ;

there will be
-\. A

a jKMTtf o/
7

contrary flexure in the orbit when - = ^ ,
or x = a, and

afterwards when x
&amp;lt; a, the force will be repulsive, and the curve change

its direction.
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205. The body revolving in an ellipse, at

B theforce becomes n times as great. Find

the new orbit, and under what values ofn it

will be a parabola, ellipse, or hyperbola.

S being one focus since the force

the other focus must lie
distance

in B H produced both ways, since

S B, H B, make equal angles with

the tangent. V 2 = - F.PV = -^F.2ACin the original ellipse, or
* &

= - n F . P V in the new orbit.

2AC = n.PV = n.
2 SB. h B
S B&quot;+&quot;h B*

2
.-. (S B + h B) A C = 2 n . S B . h B,

.-. A C 2 + h B . A C = 2 n A C . h B,

hB -f=r
If 2 n 1 = 0, or n = $, the orbit is a parabola ;

if n
&amp;gt; , the orbit

is an ellipse; if n
&amp;lt; , the orbit is an hyperbola.

Let S C in the original ellipse be given B C,
.-. S B H = right angle, and S B or A C = B h . cot. B S h

whence the direction of a a
, the new major axis ; also

Sh
a a = S B + B h, and S c = VBh 2 SB 2

2

If the orbit in the parabola a a be parallel to B h, and L . R = 2 S B,
since S B h = right angle.

206. Suppose a Comet in its or

bit to impel the Earth from a cir

cular orbit in a direction making
an acute angle with the Earth s

distance from the Sun, the velo

city after impact being to the velo

city before : : V~B : V~2. Find

the alteration in the length of the

year.

Since V 3 : V 2
&amp;lt;

ratio than V 2 : 1, .*. the new orbit will be an

ellipse.

L2
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A COMMENTARY ON

2 S P. H P HP
[SECT. III.

py
2 SP A C. 2 S P

&quot;

A C
C S P
A C

.-. 3AC=4AC 2SP

.-. 2 S P = A C

T in ellipse _ 2^ S P? 8

Trin circle
=

gp f
:

~3
l

207. A body revolves in an ellipse, at any given point the force becomes

diminished by ^
th
part. Find the new orbit.

\~ F. P V

in this case P V -=- ,

r

P V in ellipse 1 n n 1

pv innew orbit
~

I n

But

if

in conic section pv n 1 PV
- _* _ . _ _ of M

2 in circle e. d.
&quot;

2 S P
&quot;

2 S P
n HP

&quot;

n 1&quot; A C

. H P = AC, thenew orbit is a Circle

= 2 A C, Parabola
}&amp;gt;

n 1

&amp;lt;
2 A C,

&amp;gt;

2 A C,

Ellipse

HyperbolaJ

If -
^-
= 2, or n = 2, then when the orbit is a circle or an ellipse, P

11 J.

must be between a, B ; when the orbit is a parabola, P must be at B
;

when the orbit is an hyperbola, Pmust be between B, A.
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208. If the curvature and inclination of tlie tangent to the radius be the

same at two points in the curve, theforces at those points are inversely as the

radii z
.

8 a 2

__ 8 a 2 _ 8 a 2
1

g.SY 2 .PV~g.SY.S P.R~g.sin.0SP 2 .R SP 2

This applies to the extremities of major axis in an ellipse (or circle) in

the center offeree in the axis.

209. Required the angular velocity of %.

By 46, 6 being the traced-angle,

dd
W rr -r;

-
d t

But by Prop. I. or Art. 124,

d t : T : : d A : A

d 6 _ 2 A 1

dl
- T~ x ~

or

P x V
(a)

210. Required the Centrifugal Force
(&amp;lt;p)

in any orbit.

When the revolving body is at any distance g from the center of force,

the Centrifugal Force, which arises from its inertia or tendency to persevere

in the direction of the tangent (most authors erroneously attribute this force

to the angular motion, see Vince s Flux. p. 283) is clearly the same as it

would be were the body with the same Centripetal Force revolving in a

circle whose radius is
g. Moreover, since in a circle the body is always

at the same distance from the center, the Centrifugal Force must always

be equal to the Centripetal Force.

But in tlie circle

or

g e
3

P and V belonging to the orbit.

L3
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P 2 V 2
1

g

Hence also and by 209,

g

And 139,

F : &amp;lt;*

IE If

(b)

P S
3

211. Required the angular velocity of the perpendicular upon the

tangent.

If two consecutive points in the curve be taken
; tangents, perpendiculars

and the circle of curvature be described as in Art 74, it will readily ap

pear that the incremental angle (d -^} described by p = that described

by the radius of curvature. It will also be seen that

But from similar triangles

P V : 2 R : : p :
g.

.-. d 6 : d
4&amp;gt;

: : P V : 2 g

P V being the chord of curvature.

Hence

d ^\ d 6 2

or

or

Ex. 1. In the circle P V = 2 ; whence

PxV~
^

&quot;

Ex. 2. In the other Conic Sections, we have

2gw X
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which gives by taking the logarithms

2 lp = lb 2 + lg l(2a + g)

and (17 a.)

2 d p _ dj ,
d g _ 2 a d g

P &quot;T~2aqp^~ f (2a + g)

whence

aP X V
=

212. Required the Paracentric Velocity in an orbit.

It readily appears from the fig.
that

d s : d g : : g : V g
2

p
2
.

.. If u denote the velocity towards the center, we have

/ d g\ ds V e pu
(
=

i ! )
=

-3~i X -
\ d t/ d t g

x e-P
(125)

or

2 A //I IN ,.

~T~
X V \p~

2
~~

g
z) *

Also since

p
2

= PV

213. Tojind where in an orbit the Paracentric Velocity is a maximum.

From the equation to the curve substitute in the expression (212. g)

for p*, then put d u = 0, and the resulting value off will give the posi

tion required.

Thus in the ellipse

-
2a g

and

v-s
-

= ) = max.

2 a 1 1
_&quot;

b
=

L4
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8ad g ,
2 d g _&quot;&quot; ~~

and

b s Latus-Rectum
e
= T = -

-g-
or the point required is the extremity of the Latus-Rectum.

OTHERWISE.

Generally, It neither increases nor decreases when F = p. Hence

when u = max. (see 210)

d p _ d g

?
:: 7

which is also got from putting

d (u
2

)
=

in the expression 212. h.

214. Tojlnd where the angular velocity increasesfastest.

By Art. 209 and 125,----
,

&quot;l

- -
&amp;lt; JT V J\ -; 7\ o 1 .

-
4 &amp;lt;&quot; 1

f,
&amp;gt;

d t
3

f
2 d 6

f
4

g d

But from similar triangles
t / r&amp;gt; 9\ f~\ T1 ~D T* . - ^1 A . A

p: V (g
2

p }
: y 1 :

&quot;

l ::gae:ag
j ,. o pa V 2

...

&quot;I

=
l-^j

X V
( f

2 - p
2

)
= max.

,.!*-?*= I i^-max (b)

either of which equations, by aid of that to the curve, will give the point

required.

Ex. In the ellipse

_ - = TOax. = m

i d m _ .

and -, = gives

4 .

b
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which gives

P = a + V (49 a 2 48 b 2
)

6 6

for the maxima or minima positions.

If the equation

_ b_
8

1

a 1 + e cos. d

and the first form be used, we have

d e a e .

T-* = T-T * s sln -

d d b 2

and

sin. 6
-

3
- = max. = m.

Whence and from d m = 0, we get finally

215. Tofold where the Linear Velocity increasesfastest.

Here

d v
-p- = max.
d t

But (125)
P x V

P
and

g
2 d 6 p d g

: p^v~ P x v ):

v s
z

p
l

d v py V(g
8

p
8

) d_p_
Tt

=
~~i~

&amp;lt;

p^dl
V ^ 2 D 2

^-
g F X &quot;.

I

,

V (?* P
2
) v

d P

or ? max. = m.

(

and

d m =

will give the point required.
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Thus in the ellipse

p
2

1 b 2

= 4 H j = max.

which gives

d m _ _4_
10 a b 8

g
4 6 b 2

g
5

d s

&quot;

g
5

&quot;

(2 a g)V

whence the maxima and minima positions.

In the case of the parabola, a is indefinitely great and the equation
becomes

4 a 2

1 4 a b 2 =
IB

5 b 2 5
f
= o x T^ * Latus-Rectum.

o a ID

Many other problems respecting velocities, &c. might be here added.

But instead of dwelling longer upon such matters, which are rather

curious than useful, and at best only calculated to exercise the student,

I shall refer him to my Solutions of the Cambridge Problems, where -he

will find a great number of them as well as of problems of great and

essential importance.

SECTION IV.

216. PROP. XVIII. If the two points P, p, be given, then circles whose

centers are P, p, and radii AB+SP, AB+Sp, might be described

intersecting in H.

If the positions of two tangents T R, t r be given, then perpendiculars

S T, S t must be let fall and doubled, and from V and v with radii each

= A B, circles must be described intersecting in H.

Having thus in either of the three cases determined the other focus H,
the ellipse may be described mechanically, by taking a thread = A B in

length, fixing its ends in S and H, and running the pen all round so as to

stretch the string.
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This proposition may thus be demonstrated
analytically.

1st. Let the focus S, the tangent T R, and the point P be given in

position ; and the axis-major be given in length, viz. 2 a. Then the per

pendicular S T
(
= p), and the radius-vector S P

(
=

f) are known.
But the equation to Conic Sections is

whence b is found.

Also the distance (2 c) between the foci is got by making p = g, thence

finding and therefore c = a
Ijl

.

This gives the other focus
; and the two foci being known, and the axis-

major, the curve is easily constructed.

217. 2d. Let two tangents T R, t r, and the focus S be given in position.
Then making S the origin of coordinates, the equations to the trajectory

are

b 2

g b 2
1

P &quot; 3 :

a being the inclination of the axis-major to that of the abscissae.

Now calling the angles which the tangents make with the axis of the ab
scissae T and T , by 31 we have

tan * T = dV
But

x = cos. 6, y = g sin. 6

whence

tan. T = d g sm - 6 + g d 6 cos. 6

d cos. d 6 sin. 6

ed
-Vl tan. 6 + I

=^ - (b)

g d 6

Also from equations (a) we easily get

tan.

(0
V 2

COS. (d a) = g
(2)ae

g

sin. (d a) = ^X V (2ag g b) . . (3)

and

_ Sap*
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and putting

R = V (2ae e b 2
) ... (5)

we have

R , tan. 6 tan. a
{- = tan. (6 a) = . (6)b 2

ag 1 + tan. . tan. 6

which gives tan. 6 in terms of a, b, ,
and tan. a.

Hence by successive substitutions by means of these several expres
sions tan. T may be found in terms of a, b, p, tan. a, all ofwhich are given

except b and tan. . Let, therefore,

tan. T = f
(a, p, b, tan. a).

In like manner we also get

tan. T = f (a, p , b, tan. a)

p belonging to the tangent whose inclination to the axis is T.

From these two equations b and tan. a may be found, which give

c = V a 2 b 2 and a, or the distance between the foci and the position

of the axis-major; which being known the Trajectory is easily con

structed.

218. 3d. Let the focus and two points in the curve be given in posi

tion, &c.

Then the corresponding radii g, f , and traced angles 6, tf, in the

equations

+ a (1 e 2
)

1 + e cos. (6 a)

a(l-e)
1 + e cos. (& a)

are given ; and by the formula

cos. (d a) = cos. 6 . cos. a -f- sin. & sin. a

2 a e and a or the distance between the foci and the position of the axis-

major may hence be found.

This is much less concise than Newton s geometrical method. But it

may still be useful to students to know both of them.

219. PROP. XIX. To make this clearer we will state the three cases

separately.

Case 1. Let a point P and tangent T R be given.

Then the figure in the text being taken, we double the perpendicular

S T, describe the circle F G, and draw F I touching the circle in F and

passing through V. But this last step. is thus effected. Join V P, sup

pose it to cut the circle in M (not shown in the fig.), and take

V F 2 = V M x (V P + P M).

The rest is easy.
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Case- 2. Let two tangents be given. Then V and v being determined

the locus of them is the directrix. Whence the rest is plain.

Case 3. Let two points (P, p) be given. Describe from P and p the

circles F G, f g intersecting in the focus S. Then draw F f a common

tangent to them, &c.

But this is done by describing from P with a radius = S P S p, a

circle F G , by drawing from p the tangent p F as in the other case (or

by describing a semicircle upon P p, so as to intersect F G in F ) by

producing P F to F, and drawing F f parallel to F p.

See my Solutions of the Cambridge Problems, vol. I. Geometry, where

tangencies are fully treated.
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These three cases may easily be deduced analytically from the general
solution above ; or in the same way may more simply be done at once,
from the equations

L L 1

P
2 = T ft S

=
-Z X
2 1 + cos. (6 a)

220. PROP. XX. Case 1. Given in species] means the same as &quot; simi

lar&quot; in the 5th LEMMA.

Since the Trajectory is given in species, &c.] From p. 36 it seems that

the ratio of the axes 2 a, 2 b is given in similar ellipses, and thence the

same is easily shown of hyperbolas. Hence, since

c 2 = a

2 c being the distance between the foci, if = m, a given quantity, we
a

have

V a

which is also given.

With the centers B, C, &c.]

The common tangent L K is drawn as in 219.

Cases 2. 3. See Jesuits Notes.

OTHERWISE.

221. Case 1. Let the two points B, C and the focus S be given.

Then
+ a (1 e 2

)

1 + e cos. (6 a)

- a(l e 2
) f

S
I + e cos. (d

f

a))

a being the inclination of the axis of abscissas to the axis major.

But since the trajectory is given in species

e = is known,
a

and in equations (1), g, 6; g , tf, are given.

Hence, therefore, by the form

cos. (6 a) = cos. 6 . cos. a + sin. 6 sin. a,

a and ,
or the semi- axis-major and its position are found;

also c = a e is known ;

which gives the construction.
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Case 2. By proceeding as in 220, in which expressions (e) will be

known, both a, a e, and a may be found.

Case 3. In this case

will give a. Hence c a e is known and

+ a(l e 2

)

S
~

I + e cos. (0 a)

gives a.

Case 4. Since the trajectory to be described must be similar to a given
one whose a and c are given,

c c
G =

a
=

17

is known (217).

Also g and 6 belonging to the given point are known.

Hence we have

1 + e cos. (d a)

And by means of the condition of touching the given line, another

equation involving a, a may be found (see 217) which with the former

will give a and a.

222. SCHOLIUM TO PROP. XXI.
Given three points in the Trajectory and thefocus to construct it.

ANOTHER SOLUTION.

Let the coordinates to the three points be
g,

6
; g, Of ; g&quot;, 6&quot;,

and a the

angle between the major axis and that of the abscissae. Then

+ a.(l-e 2
)

&quot;I

1 + e cos. (d a)

4- a H P 2
^

/
~ H J.

I , i x

~
1 + e cos.

(&amp;lt;f
a)

/= + a (l e 2

)

1 + e cos.
(d&quot; ) ^

and eliminating + a (1 e 2

) we get

g g
= e . cos. (& a) e cos. (6 a)

g
= e . cos.

(d&quot; a) e cos. (6 ) J



176 A COMMENTARY ON [SECT. V.

from which eliminating e, there results__g-g __ g-g&quot;___ _
g . COS. (^ a) g COS. (0 a) g&quot;

COS.
(0&quot; a) COS.

(&amp;lt;J a)

Hence by the formula

cos. (P Q) = cos. P . cos. Q + sin. P . sin. Q
g-fV cos. J&quot;

(g
-

g&quot;) g cos. f+ s (f
-

g Qcos.d_

(S gO f&quot;
sin. &amp;lt;?&quot;

(g e&quot; ) /sin. +^ f&amp;lt;&quot;)sinJ

which gives a.

Hence by means of equations (B) e will be known
; and then by substi

tution in eq. (A), a is known.

SECTION V.

The preliminary LEMMAS of this section are rendered sufficiently intel

ligible by the Commentary of the Jesuits P.P. Le Seur, &c.

Moreover we shall be brief in our comments upon it (as we have been

upon the former section) for the reason that at Cambridge, the focus of

mathematical learning, the students scarcely even touch upon these sub

jects, but pass at once from the third to the sixth section.

223. PROP. XXII.
This proposition may be analytically resolved as follows :

The general equation to a conic section is that of two dimensions (see

Wood s Alg. Part IV.) viz.

y
2 + Axy+Bx 2 + Cy + Dx + E =

in which if A, B, C, D, E were given the curve could be constructed.

Now since five points are given by the question, let their coordinates be

a, j3 ; a, j3 ; a, j3 ; a, (3 ; a, /3 .

11 22 33 44
These being substituted for x, y, in the above equation will give us five

simple equations, involving the five unknown quantities A, B, C, D, E,

which may therefore be easily determined: and then the trajectory is

easily constructed by the ordinary rules (see Wood s Alg. Lacroix s Diff.

Cal. &c.)

224. PROP. XXIII. The analytical determination of the trajectory

from these conditions is also easy.

Let

a, /3 ; a, ; a, ; a, /311 22 33
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be the coordinates of the given point. Also let the tangent given in posi
tion be determinable from the equation

y = m x + n ......... (a)
in which m, n are given.

Then first substituting the above given values of the coordinates in

y
2 + Axy + Bx 2 + Cy+Dx+ E = . . . (b)

we get four simple equations involving the five unknown quantities
A, B, C, D, E ; and secondly since the inclination of the curve to the axis

of abscissas is the same at the point of contact as that of the tangent,

d y _ d y
cfx dx

y = y
x = x

. Ay+ 2Bx + D
2y+ Ax + C

and substituting in this and the general equation for y its value

y = m x + n

we have

A(mx + n)+2Bx +
2(mx + n) + Ax+C

and

from the former of which

, _ n A + m C + D
2(m

2

and from the latter

2(m
2 +nA+B)

and equating these and reducing the result we get
4,m 2 n 2 = (nA + mC + D+ 2 m n)

2

(n
2+ n C+ E) (m

2+m A+B)
and this again reduces to

+ 2mCD nBCmAE BE+ 3mn 2 A
+ 3nm 2 C + 4mnD n B m 2 E n a m 2 =

which is a fifth equation involving A, B, C, D, E.

From these five equations let the five unknown quantities be determined,
and then construct eq. (b) by the customary methods.

M
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225. PROP. XXIV.

OTHERWISE.

Let

,&amp;lt;3;
a

, /3 ; a&quot;, 0&quot;

be the coordinates of the three given points, and

y = m x + n

y&quot;=
m x&quot; + n

the equations to the two tangents. Then substituting in the general

equation for Conic Sections these pairs of values of x, y, we get three

simple equations involving the unknown coefficients A, B, C, D, E ; and

from the conditions of contact, viz.

dy _ dy _
dx

~~
dx

x = x

We also have two other equations (see 224) involving the same five un

knowns, whence by the usual methods they may be found, and then the

trajectory constructed.

226. PROP. XXV.

Proceeding as in the last two articles, we shall get two simple equations

and three quadratics involving A, B, C, D, E, from whence to find them

and construct the trajectory.

227. PROP. XXVI.
In this case we shall have one simple equation and four quadratics to

find A, B, C, D, E, with, and wherewith to describe the orbit.

228. PROP. XXVII.

In the last case of the five tangents we shall have five quadratics,

wherewith to determine the coefficients of the general equation, and to

construct.
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SECTION VI.

229. PROP. XXX.

OTHERWISE.

After a body has moved t&quot; from the vertex of the parabola, let it be re

quired tofind its position.

If A be the area described in that time by the radius vector, and P, V
the perpendicular or the tangent and velocity at any point, by 124 and
125 we have

c P VA =
~2

* * =
-3- X t

and by 157,

L being the latus-rectum.

* A = 1 vV x L

But

ASP = A OP SOP=f AOxPO SOxPO
= ixy_Mx __

r)y
where r = A S, &c. (see 21) and

y
2 = 4rx

. .y
3 + 12r z

y = 12 rt V g^r
by the resolution of which y may be found and therefore the position of P.

OTHERWISE.

230. By 46 and 125,

V
&quot;

C

Also

i ?d o
U S = r-2

M 9
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...dt=

which is an expression of general use in determining the time in terms of

the radius vector, &c.

In the parabola

P
2 = re,

whence

c V(g r)

and integrating by parts

2 V r . . 2 V r ,, .. .

t =
-rj* S V (S

~
r) fd g^ (g

2 V r

But

c= PV= VlT^r (229)

which gives

whence we have g and the point required.

liy the last Article the value of M in Newton s Assumption is easily

obtained, and is

1VA
~~

___ ~* /\ / _ *

4 r 4 -V 2r

231. COR. 1. This readily appears upon drawing S Q the semi-latus-

rectura and by drawing through its point of bisection a perpendicular to

GH.
232. COR. 2. This proportion can easily be obtained as in the note of

the Jesuits, by taking the ratio of the increments of G H and of the curve

at the vertex ; or the absolute value of the velocity of H is directly got

thus.

d.GH3dM * /

dt dt 4^ 2r

Also the velocity in the curve is given by (see 140)
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and at the vertex = r,

.-. v : v : : 3 : 8.

233. COR. 3. Either A P, or S P being bisected, &c. will determine
the point H and therefore

4 2 r
X GH.

234. LEMMA XXVIII. That an oval cannot be squared is differently

demonstrated by several authors. See Vince s Fluxions, p. 356; also

Waring.
235. PROP. XXXI. This is rendered somewhat easier by the follow

ing arrangement of the proportions :

If G is taken so that

OG:OA::OA:OS
or

and

GK: 2*OG:: t: T
or

n v 2^x OA 2
t

Then, &c. &c. For

ASP= ASQx-
a

= ~ X(OQA OQS)

=
27 (OQx AQ OQx SR)

=
^-(AQ SR).

But

S R : sin. A Q : : S O : O A
: : O A : O G : : A Q : F G

S R A Q sin. A Q
FG

and

M3
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= |x(FG-sin.AQ)

(FG_ sin&amp;lt;AQ)

(see the Jesuits note q.) which is identical with (a), since

_1 A S_^
T ~~

Ellipse

_ ASP
v ab

OTHERWISE.

236. By 230 we have

But in the ellipse

2a

r\ t. . U I
-

. . , j j%

and putting

g a zz u

it becomes

.
b . (a + u) d u

2 a e being the excentricity.

Hence

(b)

b a p du
_b / udu

T^ V(a
2 e 2 u 2

)

+
~IJ V(a

8 e 8 u

L? sin.- .-
U - V(a

2 e 2 u 2

) + C.
c a e c

Let t zz 0, when u zz a e ; then

and we get

_ba *
~ V X

2
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which is the known form of the equation to the Trochoid, t being the ab

scissa, &e.

Hence by approximation or by construction u and therefore may be

found, which will give the place of the body in the trajectory.

It need hardly be observed that (157)

OTHERWISE.

237. dt =
but in the ellipse

b 2
1= x

a 1 -j- e cos. 6

b
.-. d t = -- x

a 2 c
(
1 + e cos. 6}

2

and (see Hirsch s Tables, or art. 110)

a 2

(l e 2
) f 1 . e + cos. 6 e sin. d

t = x &amp;lt;
cos.

~
.

c I M* e
) l+ecos.0 1 + ecos.

which also indicates the Trochoid.

To simplify this expression let

. e 4- cos. d
V/VJ
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5

a 2

.*. t = ==- x (u e sin. u)V cr/jb

a* 1
Let = _ .

V g(* n
Then

nt=.u esin. u (1)

Again, 6 may be better expressed in terms of u, thus

2 _0
1 cos. 6 _ 1+e 1 cos. u _ 1 + e

2
u

2
~

1 + cos. 6
~
T^Ti X

1 + cos. u
~

T^&amp;gt;

tan&amp;gt;

&quot;2~

u

Moreover g is expressible in terms of u, for

g= I

a
i
1 ~ e2)

,
= a(l ecos.u) ..... (3)

1 + e cos. 6

In these three equations, n t is called the Mean Anomaly ,-
u the

Excentric Anomaly, (because it = the angle at the center of the ellipse

subtended by the orduiate of the circle described upon the axis-major

corresponding to that of the ellipse) ;
and 6 the True Anomaly.

238. SCHOLIUM.

Newton says that &quot; the approximation is founded on the Theorem that

The area APSocAQ SF, SF being the perpendicular letfallfrom
S upon O Q.&quot;]

First we have

APR=AQRx
S P R = S Q R x

a

.-.ASP = ASQx
a

But

ASQ=AOQ SOQ
zrJAQxAO |SFxOQ
= i AO x (AQ SF).

.-. A S P = ~ x (A Q S F)

= X (a u a e sin. u ) ..... (1)
J9

u being the L A O Q.
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(Hence is suggested this easy determination of eq. 1. 237.
4

.

For 5
(a - &amp;gt;

t = T x
A Sp 2 * flg

v- 2

Ellipse V ^ g

= X (u e sin. u). )V i

*
-

Again, supposing u an approximate value of u, let

u = u H
a

Then, by the Theorem, we have

2 A
b
Sp = A q S O X sin. A q

= AQ + Qq + SOx sin. (A Q + Q q)

to radius 1.

But A Q being an approximate value of A q, Q q is small compared
with A O, and we have

sin.
(
A Q + Q q) = sin. A Q cos. Q q + cos. A Q sin. Q q

= sin. A Q + Q q cos. A Q nearly.

J_
.*. Q q = ( ^

? A Q + SO sin. A
Q) x -=

nearly

^=r + cos. A Q

which points out the use of these assumptions

XT/
2 A Sp 2 t

,
,N =

1

^ = r-?f, X area of the Ellipse

and

D = S O. sin. A Q = B sin. A Q
I/ a -I-

so
Then

Q q = (N A Q + D ) X ,
,
_,

,
_ .

\J + cos. A Q
in which it is easily seen B , N x

, D , I/

are identical with B, N, D, L.

Hence

E = Qq= (N-AQ + D) T
_

L
_.

L + cos. A Q
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Having augmented or diminished the assumed arc A Q by E, then re

peat the process, and thus find successively

G, I, &c.

For a developement of the other mode of approximation in this

Scholium, see the Jesuits note 386. Also see Woodhouse s Plane Astro

nomy for other methods.

SECTION VII.

1 A
239. PROP. XXXII. F -^ 2 Determine the spaces which a

distance

body descending from A in a straight line towards the center of

force describes in a given time. P
If the body did not fall in a straight line to the center, it would

describe some conic section round the center of force, as focus

C ellipse ~\

(which would be &amp;lt; parabola &amp;gt; if the velocity at any point were to S
(_ hyperbola j

the velocity in the circle, the same distance and force, in R.-J = V

V 2 : 1.)

(I) Let the Conic Section be an Ellipse A R P B.

Describe a circle on Major Axis A B, draw

C P D through the place of the body perpendi

cular to A B.

The time of describing A P a area A S P a

area A S D, whatever may be the excentricity

of the ellipse.

Let the Axis Minor of the ellipse be diminish

ed sine limite and the ellipse becomes a straight

line ultimately, A B being constant, and since

A S . S B = (Minor Axis)
2 = 0, and A S finite

/.SB = 0, or B ultimately comes to S, and

time d . A C a area A D B. .. if A D B be taken proportional to time,

C is found by the ordinate D C.

(T . A C a area ADBaADO + ODBaarcAD + CD
/. take 6 + sin. & proportional to time, and D and C are determined.)

D
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18

T

N. B. The time in this case is the time

from the beginning of the fall, or the time

from A.

(II) Let the conic section be the hyperbola
B F P. Describe a rectangular hyperbola on

Major Axis A B.

T a area S B F P or area SEED.
Let the Minor Axis be diminished sine

limite, and the hyperbola becomes a straight

line, and T or area B D E.

N. The time in this case is the time from

the end of motion or time to S.

Let the conic section be the parabolaB F P.

Describe any fixed parabola BED.
T or area S B F P a area SEED.
Let L . R. of B F P be diminished sine

limite the parabola becomes a straight line,

and T a area B D E.

N. The time in this case is the time from

the end of motion, or time to S.

Objection to Newton s method. If a

straight line be considered as an evanescent

conic section, when the body comes to peri

helion i. e. to the center it ought to return to aphelion i. e. to the original

point, whereas it will go through the center to the distance below the

center r= the original point.

240. We shall find by Prop. XXXIX, that the distance from a center from

which the body must fall, acted on by a blc
force, to acquire the velocity such

as to make it describe an ellipse = A B (finite distance), for the hyperbola
= A B, for the parabola = a .

241. Case 1. v d v = g ^ d x, f = force distance 1,

x 2

v =

if a be the original point

a ~ x
\

ax/

dx Va
Ut =-- =

v V 2

Tdx . V ax x
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r(|_x)dx -fdx |
Vax x

. . t = / -^ .. /V 2g/z \

/
a

^
. / rt

Va. x x !

+ C, when t = 0, x = a,

V ax x 2+ /circumference

V 2~

vers

rad

rs.
~ l x

~)

11

vers.
~

x,

rad. = -

^ (C D + A D)

if the circle be described on B A = a,

/&quot;~a~
4 /CD.OB AD.ODx

&quot;~

-S 2fir/ct aA 2 2 ~/ .BAD.

Case 2. v 2 = 2 g ^ .

a x , if a be an original point,

/-__tf/V V
xdx
x + 2

for t in this case is the time to the center, not the time from the original

point,

,
. d x d x

.*. d t =
, or d t = .

v v
Now if with the Major Axis A B = a, we describe the rectangular

hyperbola,

D

we have

B

A

E
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d.BED=d.BEDC d.ABDC=ydx

189

Vax + x a x d x

i /

.*. t from B = / .BED, for they begin or end together at 15.

B

1),

T7I
Jli

Case 3. v 2 = 2 g p , if a be a ,

, . dx Vxdx
.*. a t = = _

v V 2 2 u

. . . T,
, t being time to B,

+ C, when t = 0, x = 0, .-. C = 0.
V&quot; 2 g /A

3

Describe a parabola on the line of fall, vertex B, L . R. = any fixed

distance a,

.

. -v/ x . x = 2 V 2 - 2 V 2
T&amp;gt; ^ T.a x . x = ===== .BED.

2 V 2
Hence in general, in Newton Prop. XXXII, t = _. . curvili-

V a g ft

near area, a being L . R. of the figure described.

T a, T -D 2 (Ax. Min.)
2

. f AIn the evanescent conic sections, L . R. = \ -^ , . . if Ax,

Min. be
indefinitely small, L. R. will be indefinitely small with respect to the

Ax. Min. The chord of curvature at the finite distance from A to B is ulti

mately finite, for P V =
LL*_^L?j but at A or B, P V = L, = in-

~2~
finitesimal of the second order. Hence S B is also ultimately ofthe second

order, for at B, S B = L. -4^
2 AS

PROP. XXXIII. Force a

Vat C

1

(distance)
*

VAC
-r =

i JT-T ?T7s = in the ellipse and hyperbola.v in the circle distance S C V SA
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HP VAC
~Ajr

&quot;&quot;

~T^TwhentheconiGsectlonbecomesa straight line
1

)

2 V 2

NEWTON S METHOD.

V 2 SY 2 L SP
v 2

~&quot;

2SP
&quot;

2 S Y 2

A C.CB AO 2 2 AO 2AO
C P 2 /Min. AX.N 8

-
2/Min.Ax.x *

~
L

V 2 / V 2 /

AO
.
L _ AO.CP
2

:

A C.C B

*

v 2
=

ATCTC~BTS Y 2

but

CO BO
B O &quot;&quot; TO
C O __ C B comp. in the ellipse

B O ~~
B T div. in the hyperbola,

.
A C _ C_T div. in the ellipse C P
B O &quot;

B T comp. in the hyperbola
~~

BQ
A C 2 _ C P 2

* AO 2
~
BQ1

. BQ 2 .A C _ AQ.CP 2

A O AC
V 2 _ BQ 2

. A C.S P
*v 2 ~AO.BC.SY 2

but ultimately

B/~k__C!\7 Q&quot;D T&amp;gt; C*
v^ o l,Oirr o *~/f

, . A , V 2 in a straight line A C
.-. ultimately ^-. r 5-^ = -T-TS;*

v 2 in the circle A O
ACY - /

v
~ V

COR, 1. It appeared in the proof that
A.

A O
AC C T
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AC CT
.-. ultimately -^-^

=
^-^

.

(This will be used to prove next Prop.)

COR. 2. Let C come to O, then A C = A O and V = v,

.. the velocity in the circle = the velocity acquired by falling externally

through distance = rad. towards the center of the force aILL 11 Ul3lt.ll.ld ~- 1 till* i,\J W til Ho Lilt/ V.,^11 lv&amp;gt;i W* H.1W J-WJ. WV&amp;gt; A- o
distance z

242. I Vwrf actual Velocity at C.

V 2 atC = AC
v 2 in the circle distance B C B A*

. vz _. ^ &quot; ^
T7 2 _ 2A C g /* R p

&quot;FA&quot;

1

&quot;BT Fc5

if At- = the force at distance 1,

. V2 AC~ g ^B A.B C
V a x

.-. V = V 2 g y, .

r &quot;

, if B A = a, B C = x.
V a x

Tr . 1,. V space described
If a is given, V a r

V space to be described

In descents from different points,

, T V space describedV a *
-.

V space to be described X initial height ;

In descents from different points to different centers,

V space described X absolute forceV or
.V space to be described X initial height

243. Otherwise. vdv = ^dx,
ft T X

.\v 2 = 2 g (A.
^-^-

&amp;gt;

wnen a is positive, as in the ellipse

o ^L Y
= 2 g ^ . when a is negative as in the hyperbola

= 2 g fi . , when a is a , as in parabola

(when x = 0, v is infinite)

V 2 in the circle radius x (in the ellipse and hyperbola)

v 2 2 a x . , a
. .

y-j
= in the ellipse, =
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v 2 2 a + x . , , a + x
^^ = in the hyperbola, =V a

(|)

f /* X
-

z
. =

iC

2 ff
fJ&amp;gt;V 2 in the circle radius = (in the parabola) =

m
V 2

1
.*. ^2

= in the parabola.

244. In the hyperbola not evanescent

Velocity at the infinite distance _ S A
velocity at A &quot;

S Y
finite R., but when the hyperbola van

ishes, S Y ultimately = Min. Ax. for

S Y S C
-r-r- =

-r-p 5 and ultimately S C =

A C, and b C = A C, .-. ultimately S Y = A b = C B, .-. ultimately
S Y _ infinitesimal of the first order

S A &quot;

of the 2d order

velocity at A
velocity at cc distance

AS

245. PROP. XXXIV. Velocity at C - _L f
velocity in the circle, distance S C

~~ T (

2

S P
what-

the parabola.

For the velocity in the parabola at P = velocity in the circle

ever be L . R . of the parabola.

246. PROP. XXXV. Force oc rr-^ .

(distance)
2

The same things being assumed, the area swept out by the indefinite

T T?
radius S D in fig. D E S = area of a circular sector (rad. =

of fig.) uniformly described about the center S in the same time.

Whilst the falling body describes C c indefinitely small, let K k be the

arc described by the body uniformly revolving in the circle.

Case ] . If D E S be an ellipse or rectangular hyperbola,
- = -^ ,

CTCc
Dd
CJD
S Y

DT
DT
T S
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.Cc.CD CT AC
D~~A c~v

~
Tf*~S ~r~r\ ultimately.ti.oY IS AO J

(Cor. Prop. XXXIII.)
But

velocity at C VAC
v in the circle rad. S C

&quot;&quot;

v^L^
v in the circle rad. S C S K

/A~O
v in the circle rad. S K ~~

** S C
=

+*&amp;gt; ~S~C

193

velocity at C x
__ Cc _ A^C _ A C

in the circle rad. S K/ ~&quot; K k
~ V ~S~C

~
(Tl)

.-. Cc.CD = Kk.AC

.
Kk. A C _ A C
D d . S Y r

A~O
.-. A O. Kk = Dd. S Y,

. . the area S K k = the area S D d,

.-. the nascent areas traced out by S D and S K are equal

.*. the sums of these areas are equal.

Case 2. If D E S be a parabola S K = L
;

R
.

iO

As above

Cc. CD _ CT 2-

D d . S Y ~
T~S

= T
also ^ p

Cc = _velocity at C _
^locity in the circle -^

Kk &quot;&quot;

velocity in the circle L . R ~~

velocity in the circle L . R_ 2
2&quot;

_ VS K SK_
v~$Tc CD

2 2

..Cc.CD=r2.Kk.SK

.-. K k . S K = D d . S Y.

247. PROP. XXXVI. Force a_L_
(distance)

To determine the times of descent of a body falling from the given (and
. .finite] altitude A S
On A S describe a circle and an equal circle round the center S.
From any point of descent C erect the ordinate C D, join S D. Make

the sector O S K = the area A D S (O K = A D + D C) the body
will fall from A to C in the time of describing O K about the center S

Vet. J. N
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uniformly, the force oc _ -. Also S K being given, the period

in the circle may be found, (P =^/
. r . S K *), and the time through

O

O K = P .
- ? . the time through O K is known. .-. the time
circumference

through A C is known.

248. Find the time in which a Planet would fall from any point in its

orbit to the Sun.

H

circle S P
Time of fall = time of describing ^

O K H, S O =
g-

,

5.

period in the circle O K H _ period in the circle rad. S O _ S O g

period in the ellipse

&quot;

period in the circle rad. AC A C ^

.-. the time of fall = i . P .

be considered a circle

, P= period of the planet. If the orbit

AC
and the time of fall

4 V 2
p

.

vs

= P. nearly.

= nearly.
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249. The time down A C a (arc
= A D + C D), a C L, if the cy
cloid be described on A S. Hence,

having given the place of a body at a

given time, we can determine the

place at another given time...
time d. A C

Draw the ordinate m 1
;

1 c will deter

mine c the place of the body.
250. PROP. XXXVII. To determine the times of ascent and descent ofa

body projected upwards or downwardsfrom a given point, F a .

distance
Let the body move off from the point G with a given velocity. Let

V 2
at G m 2

=-= TV i i = -7-, (V and v known, . . m known),v 2 m the circle e. d. 1
v

To determine the point A, take

G A m

2

G A
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The velocity at any point P

oc V F. P V

S P.

a CD.
COR. 1. T. from A to S = period in an evanescent ellipse.

= % period in the circle A D E.

= T. through A E.

COR. 2. T. from different altitudes to

S a time of describing different quadrants

about S as the center oc 1.

N. In the common cycloid A C S it is

proved in Mechanics that ifSca=SCA
and the circle be described on 2 . Sea,

and if a c = A C, the space fallen through,

then the time through A C a arc a d,

and V acquired a c d, which is analogous

to Newton s Prop.

Newton s Prop, might be proved in the

same way that the properties of the cycloid

are proved.

OTHERWISE.

252. vdv = g/AX.dx,
..v 2 = 2 g A* (a

2 x 2

),
if a = the height fallen from

.. v = V 2o-/i . V a 2 x 2 = -v/2gAt . C D.

d x d x 1

v V Spy* V a 2 x 2

.-. t = +
arc COS. =. = *N

.. = a/

.AD.
a V2g/j,

.: velocity oc sine of the arc whose versed sine = space, and the arc

a time, (rad. = original distance.)

253. The velocity is velocityfrom ajinite altitude.

If the velocity had been that from infinity, it would have been infinite
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cl x x
and constant. .. d t = ,

and t = ., ._ -j- C, when t = 0,v
.

a. V g p.

a, a = a .

1
x= a, .*. c is finite, . . t = C =

v g (i

Similarly if the velocity had been
&amp;gt; velocity from infinity, it would

have been infinite.

254. PROP. XXXIX. Force a (distance}*, or anyfunction of distance.

Assuming any oc n . of the centripetal force, and also that quadratures of

all curves can be determined
(i.

e. that all fluents can be taken) ; Re

quired the velocity of a body, when ascending or descending perpendicu

larly, at different points, and the time in which a body will arrive at any

point.

(The proof of the Prop, is inverse. Newton assumes the area A B F D
to oc V 2 and A D to oc space described, whence he shows that the force

D F the ordinate. Conversely, he concludes, if F oc D F, A B F D
a V 2

.)

v 2 a/v d v oc/F. ds.

Let D E be a small given increment of space, and I a corresponding
increment of velocity. By hypothesis

A BFD V_
2 _ V 2

AB G E
&quot;

v 2
=:
V 2 + 2V.I+ I

2

ABFD V 2 V 2

*

TPP~P~F =
9~V 1~ t&quot;

2
=

9~V T
u &quot;iniate y-

But

ABFDocV 2
.-. D F G E 2 V . I

.-. D E . D F ultimately, a 2 . V . I

2V. I I.V
.&quot;. JJ r a ex ^ .

But in motions where the forces are constant if I be the velocity gene

rated in T, F oc _
,

f F oc -= \ and if S be the space described with uni

form velocity V in T, ~- = -^ , (d t = ) . Also when the force is
fe JL v /

I V
a ble

, the same holds for nascent spaces. .-. F
,
and D E re-

o

presents S. . . D F represents F.

N 3
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Let D L a ,- =
, .-. D L M E ultimately = D L . D E

V A B F D v

D F
-=^-

&amp;lt;x time through D E ultimately.

.. Increment of the area A T VM E increment of the time down A D.

.-. A T V M E oc T.

/dt /d
s

V

(Since A B F D vanishes at A, .-. A T is an asymptote to the time

curve. And since E M becomes indefinitely small when A B F D is in

finite, .. A E is also an asymptote.)

255. COR. 1. Let a body fall from P, and be acted on by a constant

force given. If the velocity at D = the velocity of a body falling by the

action of a ble
force, then A, the point of fall, will be found by making

ABFD = PQRD.

For

ABFD
D FGE
D FGE

= ~
by Prop.

D R S E
&quot; D R ~

i

if i be the increment of the velocity generated through D E by a constant

force.

DRSE
PQTTD
ABFD

* PQRD

2i
V

256. COR. 2. If a body be projected up or down in a straight line

from the center of force with a given velocity, and the law of force given ;

Find the velocity at any other point E . Take E g
/
for the force at Er

.
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velocity at E = velocity at D. - -^^^^~ + if pr
&quot;

jected down, if projected up.

y P Q R U D F g E V A Bg j/x
( V P QRD&quot;

&quot;

V A B F D

257. COR. 3. Find the time through D E .__
Take E m inversely proportional to V P Q R D + D F g E (or

to the velocity at E ).

T.PD _ V&quot;P D _ _VTD__ =_Vir P*
(
D E small)

T77E~ VTHE~ V(PD+DE) .

2V PD
PD

T.PD _ 2 PD _ 2 P D . D L
T.DE &quot; DE DLME

also

T.D Eby ble force _ DJL^M E
T.DE by do7~

= D L m E/J

but T . D E by a constant force = T . D E by a ble force since the velo-

/ d s\
cities at D are equal ( d t = 1

T. PD _ 2 PD. D L
T.DEX

&quot; D L m Ex

d v

258. It is taken for granted in Prop. XXXIX, that F a ^ (46),

and that v = ^ ,
whence it follows that ifc.F=^,dv = c.F.dt,

d t

and vdv = cF.ds.
.-. v 2 = 2c/Fds

Newton represents/ F d s by the area A B F D, whose ordinate D I

always = F.

d ds

,.=/

v
&quot;

V2c./Fds
;

d s

s

N4
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Newton represents / .- by the area A B T U M E, whose or-J Vf d s

dinate D L always = -

. A BTF Dsg
In COR. 1. If F be a constant force V 2 = 2 g F . P D, by Mechanics

but

V 2 = 2c./Fds
And F7

. P D or P Q R D is proved =/F d s or A B F D,
.-. c = g

and

v* = 2g./Fds.

In COR 2
velocity at E/ _ V/Fd s when s = A E7

velocity at D &quot;&quot;

VfF d s when s = A D
V A B g E
V AB FD

In COR. 3. t= time through D EX

=/A? -f __
v V 2 gy F d s

T= time through P D = =VatD
= 2 P D. D L

P D . D L
t D L m E

259. The force a x n
.

.. v d v = g ^ x n d x, fjt, the force distance 1.

if a be the original height.

Let n be positive.

V from a finite distance to the center is finite 1

V from x to a finite distance is infinite. /

Let n be negative but less than 1.

V from a finite distance to the center is finite 1

V from co to a finite distance is infinite. J

Let n = 1 the above Integral fails, because x disappears, which

cannot be.
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dx
v d v = g p -

.-. V from a finite distance to the center is infinite 1

V from x to a finite distance is infinite. f

1 x
But the log. of an infinite quantity is x ly less than the quantity itself -- when

X

x is infinite = --
. Diff, and it becomes

* = = .

x x

Tx
Let n be negative and greater than 1.

V from a finite distance to the center is infinite &quot;)

V from oo to a finite distance is finite. /
260. If the force be constant, the velocity-curve is a straight line parallel

to the line of fall, as Q R in Prop. XXXIX.

DEDUCTIONS.

261. To find under what laws of force the velocity from x to a finite

distance will be infinite or finite, and from a finite distance to the center

will be finite or infinite.

If (1) F a x 2
,
V a V~^3 ~~^

(2)
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In the 4th case, the velocity from oo to a finite, and from a finite dis

tance to the center will be infinite.

In the following cases, when the force a as some inverse power of

distance, the velocity from CD to a finite distance will be finite, for

a&quot;-
1 x n ~ l

_ /_L_
V a n 1 x n 1 ^/ -^n 1

when a is infinite. And the velocity from a finite distance to the center

will be infinite, for

- a n - l x n-

when x = 0.

262. On the Velocity and Time-Curves.

B A B

n D

/

C

(4)

H

(
1

)
Let F a D, the area which represents V 2 becomes a A.

For D F a D C.

(2) Let F a V D, /. D F 2 a D C and V-curve is a parabola.

(3) Let F a D 2
,

. . D F a DC 2
, and V-curve is a parabola the

axis parallel to A B.

(4) Let F a
yr,

/. D F a
yx-fo

* V-curve is an hyperbola referred

to the asymptotes A C, C H.

(5) If F a D, and be repulsive, V 2 aDC.DFDC 2

j

/. V a D C, . . the ordinate of the time curve a
-^-

a T-\ n &amp;gt;

.. T-curve is an hyperbola between asymptotes.

(6) If a body fall from co distance, and F a
=p,

V a
-^-,

.-. the ordinate of the time-curve D, . . T-curve is a straight line.

(7) If a body fall from , and F &amp;lt;x jp ,
V a -

,

.-. the ordinate of T-curve V D C, . . T-curve is a parabola.

(8) If a body fall from x, and F a V a ,

.-. the ordinate of T-curve a D C 2
, .-. T-curve is a parabola as in case 3.
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EXTERNAL AND INTERNAL FALLS.

263. Find the externalfall in the ellipse, theforce in thefocus.

Let x P be the space required to acquire the velocity in the curve at P.

V 2 downPx Px
V 2 in the circle distance S P S x

2
V * in the circle distance S P A a

V 2 in the ellipse at P
&quot;

2. H P

,
V 2 down Px A a . P x

V 3 in the ellipse at P
~~

S x. H P

Sx
&quot;

A a

P x _ HP
S P

&quot;

S P
.-. P x = H P

.-. S x = SP-f-Px = Aa, and the locus of x is the circle on 2 A a,

the center S.

264. Find the internalfall in the ellipse, theforce in thefocus.

V z down P x
V * in the circle S x

V 8 in the circle S x

SP
2

_SP I

V 2
in the circle S P

~
S x

tOrCe a
distance 1
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V 2 in the circle S P A a

[SECT. VII.

V 2 in the ellipseatfP

V 2 down P x

V z in the ellipse at P

S x

Pc

2 H P

Px. Aa
S x . H P

HP
A a

H P
SP~Aa + HP

Describe a circle from H with the radius A a. Produce P H to the

circumference in F. Join F S. Draw H x parallel to F S.

265. Generally.

For external falls.

V 2 down P x Sg.areaAB FD Newton s fig.

V 2 in the circle distance S P
~

g F . S P F= force at distance S P

V 2 in the circle S P 2 S P
V 2 in the curve at P

V 2 down P x

P V
4. A B FD

* V 2 in the curve
&quot;

F. P V
.-. 4 . A B F D = F . P V

. , , . , fordinate = F I

K md the area in general &amp;lt; , &amp;gt;

t abscissa = space J

In the general expression make the distance from the center = S P,

and a the original height, S x will be found.

266. For internal falls.

V 2 down P x 2g. AB F D Newton s fig.

&quot;2 g F . ST F = force at P

2 SP
V 2 in the circle S P

V 2 in the circle S P
V 2 in the curve at P

V 2 down P x _

&quot;V
2 in the curve at P

~
F. P V

.. if the velocities are equal, 4 A B F D =
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267. Ex. For internal and external falls.

205

In the ellipse theforce tending to the center.

In this case, D F a D S. Take A B for the force at A. Join B S.

A D
.-. D F is the force at D, and the area A B F D = - (A B + D F)

= AS _ S D A B + D F. Let /^ equal the absolute force at the dis

tance 1. Let S A = a, S D = x, .-. A B = a p.

D F =

.-. A B F D = ft .

x. a -f x

and

cr

4ABFD = F.PV,

CD 2

x 2 = C P .
- in the ellipse,

or

a 2 x 2 = C D 2
.

For the external fall, make x= C P, then a= C x, and C x 2 C P 2= CD 2
,

or Cx 2 = C P 2 + CD 2

= A C 2 + B C 2

= AB 2

.-. C x = A B.

For the internal fall, make a = C P, then x = C x , and

C P 2 Cx/2 = CD 2
,

or

Cx 2 = CP 2 CD 2

,

.-. Cx = V C P 2 CD 2
.

268. Similarly, in all cases where the velocity in the curve is quadrable,

without the Integral Calculus we may find internal and external falls.

But generally the process must be by that method.
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Thus in the above Ex.

vdv = g/u-x.dx

gfi (a
2 x 2

)
.-. v

269. And in general,

n+1

, as above, &c.

(a
n + 1 x 1^ 1

), if the force a
^

Also

dp

-+ - x +) = ,-. P.

And to find the external fall, make x = , and from the equation find a,

the distance required.

And to find the internal fall make a = r, and from the equation find x,

the distance required.

270. Find the externalfall in the hyperbola, theforce oc from thefocus.

V 2 down O P : V in the circle rad. S P : : O P :

SO

V * in the circle S P : V 2 in the hyperbola at P : : A C : H P
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.-. V 2 down OP: V 2 in the hyperbola : A C. O P :

SQ
^

H P

.-. 2 A C. O P = SO. HP
.-. 2AC.SO 2AC.SP = SO. HP

-

To find what this denotes, find the actual velocity in the hyperbola.

Let the force = /3, at a distance = r, . . the force at the distance

Also

V 2 in the circle S P jS. r* x /3 x

2 g x 2 2 2 x

V 2 in the hyperbola _ (2 a + x) j3 r 2

2 g a . 2 x

- /3r
, $Ll

x &quot;2 a

V 2 B r z V -

But -^ when the body has been projected from oo = --1- -$
of

g x ^g
V s 8. r z V 2

projection from oo , .-.
- of projection from oo =

-^
= down 2 a,

O O
r

F being constant and = -
5 , or=V 2 from GO to O

,
when S O = 2 A C.

.*. V in the hyperbola is such as would be acquired by the body ascend

ing from the distance x to CD by the action of force considered as repul

sive, and then being projected from co back to O , S O being = 2 A C.

In the opposite hyperbola the velocity is found in the same way, the

c ,
. ,, 2 H C . S P

torce repulsive, p externally = \T\&amp;gt;A \^i- AT. L

271. Internalfall

V 2 down P O : V 2
in the circle rad. SO: : P O :

V 2 in the circle S O : V 2 in the circle S P : : S P : S O
V 2 in the circle S P : V 2 in the hyperbola at P : : A C : H P

.-. V down P O : V 2 in the hyperbola : : A C. PO :

S H P

.-. 2 AC. PO = S O. H P
or

2AC(SP SO) = SO.HP
2 A C. SP
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and

Hence make H E = 2 A C, join S E, and draw H O parallel to S E.

Hence the external and internal falls are found, by making V acquired

down a certain space p with a ble force equal that down i . P V by a

constant force, P V being known from the curve.

272. Find how far the body must fall externally to the cir

cumference to acquire V in the circle, F distance towards the

center of the circle.

Let OC = p,OB = x,QA=ta,C being the point re

quired from which a body falls.

Let the force at A = 1, .*. the force at B = x A
~*

&quot;I

v d v g.F.dx, (for the velocity increases as x decreases)

*
i= g . d x

fo a

and when v = 0, x = p,

v z =

and when x = a,

at A = (P
-

But

v 2 at A = 2g.
-g-

the force at A being constant, and

= ga
p a s = a p

2 = 2 a 2

, .-. p = V 2 . a.

273. Find howfar the body mustfall internallyfrom the circumference to

acquire V in the circle, F a distance towards the center of the circle.

Let P be the point to which the body must fall, O A = a, O P=p,

O Q = x, F at A = 1, .. the force at Q = .
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i X
.. v d V = ft . . d x

a

... v 2 = --| .x 2 + C,

and when v = 0, x = a,

a

.-. v 2 = (a
2 x 2

)a

and when x = p,

v 2 = (a
2

p
s
)from a ble force

a

and
v 2 = g . a, from the constant force 1 at A.

.-.a 2

p
2 = a 2

, .-. p = 0, .-. the body falls from the circumference
to the center.

274. Similarly, when F oc . .

distance

O C, or p externally = a V~~e, (e = base of hyp. log,)
and

OP, or p internally = -^
.

275. When F a .

distance 2

p externally = 2 a

2 a
p internally = -

.

o

276, When F oc -r.

J

distance 3

p externally = x .

p internally = ~-^-

277. When Fa 1

distance n + l

n

p externally = a ^J
-

n

p internally = a /
;V 2 + n

If the force be repulsive, the velocity increases as the distance increases,

. . v d v = g F . d x
Vor.. I. O
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278. Find how far a body must fall externally to any point P in the

parabola, to acquire v in the curve. F a =^2 towards the focus.

P V = 4 S P = c, S Q = p, S B = x, S P = a, force at P = 1,

a 2

but

FatB = \o

. yl _ s! 4. r
o v

when v = 0, x = p
, r _ g a2

= 2ga 2

(--- ) = 2ga 2

f ) at P,Vx p/ \ a p/

= 2g.~ = 2ga,

279. Similarly, internally, p =

280. In the ellipse, F a

xternally=

p internally=

towards a focus

p externally=PH+ P S.
(.

. describe a circle with the center S, rad. = 2A C)

PH. PS

(Hence V at P = V in the circle e. d.)

281. In the hyperbola, F a ^p towards focus

pexternally 2 A C (Hence V at P = V in the circle e. d.)

P H PS
p internally= p ^-^j . (Hence V at P=V in the circle e. d., p. 190)

&amp;lt;5 A \~/
&quot;}-

Jr Jrl

282. In the ellipse F cc D from the center

pexternally= V A C 2
-f- B C 2

, (= A B)} (Hence construction)

or (= V C D 2 + C P 2

)

(Hence also V at P = V in the circle radius C P, when C D = C P)

p internally= V G P 2 CD 2
.
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(Hence if C P = C Ds p = 0, and V at P = V in the circle e. d, as

was deduced before)

(If C P
&amp;lt;
C D, p impossible,. .-. the body cannot fall from any distance

to C and thus acquire the V in the curve)

283. In the ellipse, F a D from the center.

Externalfall.

The velocity-curve is a straight line, (since D F a C D, also

since F = 0, when C P = 0, this straight line comes to C, as

C d b, V a V TTO b a C O, O being the point fallen from, to acquire

Vat P.

.-. V from O to C : V from P to C : : O C : P C

Also since vdv = gF.dx, and if the force at the distance 1 = 1,

the force at x = x. .-. v d v = g x d x, and integrating and correct

ing, v 2 = g (p
* x 2

), where p = the distance fallen from.

.; v a V p
2 x 2

, and if a circle be described, with center C, rad. C O
a P N (the right sine of the arc whose versed P O is the space fallen

through).

.-. V from O to P : V from O to C : : P N : (C M =) O C

and

V from P to C : V in the circle rad. C P : : 1 : 1

(for if P v = i P C, v d = C d P) and

V in the circle C P : V in the ellipse : : C P : C D.

Compounding the 4 ratios,

V down O P : V in the ellipse : : P N : C D
.-. Take P N = C D, and

V down O P = V in the ellipse,

.-. C O = C N = V C P 2 + C D .

02
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Internal fall.

A COMMENTARY ON [SECT. II.

V in the ellipse : V in the circle rad. C P : : CD: C P
V in the circle : V down C P : : 1 : ]

V down C P : V down PO: : (CM=)CP: ON
.-. V in the ellipse : V down P O : : C D : O N

.-. Take O N = C D, and V in the curve = V down P O, and C O
= V C P * C D 2

.

284. Find the point in the ellipse.! theforce in the center, where V = the

velocity in the circle, e. d.

D

In this case C P = C D, whence the construction.

Join A B, describe
circle

on it, bisect the circumference in D , join

B D , A D . From C with A D cut the ellipse in P.

2AD/2 (=2PC 2

)
= AB 2=AC 2 + BC s (=CP e + CD 2

)

.-. 2 C P 2 = C P 2 + CD 2

... C P 2 = C D 2
. (C P will pass through E.)

A simpler construction is to bisect A B in E, B M in F, then C P is

the diameter to the ordinate A B, and from the triangles C E B, C F B,

C F is parallel to A B, .-. C D is a conjugate to C P and = C P.

p externally (to which body must

285. In the hyperbola,
force repulsive, a D, from the center

rise from P,)= V C D 2 + C P 2

p internally (to which body must

rise from the center)= VCP -CD*

(Hence if the hyperbola be rectangular p internally= 0, or the body must

rise through C P.)
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286. In any curve, F oc
--j-qri ,Jind p externally.

where a = S P, c = P V.

287. If the curve be a logarithmic spiral, c = 2 a,/a \ i
.. p = a I

n a

o F a
jp, ( .-.

.-. n = 2 j

p = a -- n = cc

288. In any curve, F a
-p. n + ][

tjind p internally.

f a \ I
. / 4a + 1

x

p = a /-- \ V. (p
* - ----

)n c v1 4 a + n c/
\ a + I

4&amp;gt; J
289. If the curve be a logarithmic spiral, c = 2 a, n = 2,

290. If the curve be a circle, F in the circumference, c = a, and n = 4,

/a \
.*. p externally = a

( )
* = x

* cl tl/

/ 1 \ *L

and p internally = a ( )
* = ~

.

\a + a/ *
f

291. In the ellipse, F a =^from focus. Externalfall.

V 2 down O P : V 2 in the circle radius S P : : O P : , Sect. VII.
iO

V ! in the circle S P : V 2 in the ellipse at P : : A C : II P,
03
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.-. V 2 down O P : V 2 in the ellipse : : A C . O P :

[SECT. VII.

SO.H P

.-. s o =

.-. 2 AC.O P = SO. HP
SAC. OP 2AC.SO 2AC.SP

H P H P

Internal fall.

2AC.SPU -
2 A C H P

- ^ A

V 2 down P O : V 2 in the circle radius S O : : P O :
- -

,

&amp;lt;w

V 2 in the circle S O : V 2 in the circle S P : : S P : S O
V * in the circle S P : V 2 in the ellipse at P : : A C : H P

.-. V 2 down P O : V 2 in the ellipse : : P O . A C :

.-. 2PO.AC = SO.HP
.-. 2SP.AC 2SO.AC = SO.HP

2 A C.S P

SO.H P

.-. S O =

F a

2 A C + H P

Hence, make.H E = 2 A C, join S E, and draw H O parallel to E S.

292. External fall in the parabola,

^ from focus.

EV 2 d . O P : V 2 in the circle radius S P
SO

:: OP: , Sect. VII.

V 2 in the circle S P : V 2 in the parabola

atP:: 1 : 2,
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.-. V 2 down O P : V &quot;

in the parabola : : O P : S O
.-. O P = S O, .-. S O = a

Internal fall.

Vdown OP : V 2 in the circle S O : : O P :
~-

fit

V 2 in the circle S O : V 2 in the circle S P : : S P : S O
V 2 in the circle S P : V 2 in the parabola at P: : 1 : 2

.-. V 2 down OP: V 2 in the parabola : : O P : S O,

.-. O P = S O,

.-. S O - ~
.

V = V down - =r V down S P = V . down E P = V of a body describ-
T*

ing the parabola by a constant vertical force = force at P. / x

293. Find the external fall so that the velocity* ac

quired = n . velocity in the curve, Fax&quot;.

v d v = g ,a . x n
. d x, (/

= force distance 1),

.-. v 2 = ~~ (a
n + l x tt + l

)
a = original height, /x

\TI .1 P d P g ., 2 p d P /V &quot; in the curve = a u, .
^ = ^ - u. . c, if c =

, =, /
dp 2 dp

*

2 ~~n + 1
^ ~&quot;

n+1*
&quot;

Make x = S P =
g, and from the equation we get a, which = S x.

For the internal fall, make a = S P =
g,
and from the equation we get

x, which = S x .

294. Find the external fall in a LEMNISCATA.

(x
2 + y

2
)

2 = a 2

(x
2

y
2

)

is a rectangular equation whence we must get a polar one

Let L. N S P =
6,

.*. y = g. sin. 6
t x = g. cos. &, g

2 = (x
2 + y

2
)

.. g
4 = a *&quot;

. (g
2

(cos.
8

d sin.
z

6}} = a 2

g
2

. cos. 2 0,

.. g
2 = a 2

. cos. 2 d

r e\
.: 2 6 = L. (cos. = a-;),V av

2gdg 2 g d g

a 2
: Va 4

g
4

/ 1 L!
v &quot;&quot;

O4
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but in general

.-.p =

r
d~

p*= in this case -

P 6

D 8 i-
&quot;

a 4

4

_ ?J_P - _ SL

.*. force to S a -

r

v d v = *f . d x,

Also

P V =
dp

* - g-^ ^l - 2 g^- JL-

^ 3 6

Make x in the formula above =
j,

. . ^ = 0, ,*. a is infinite.
rt D *
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295. Find the force and external fall in an EPICYCLOID

CY 2=CP 2 YP 2=CP 2 CA 2
.

Let

CY = p,

YB !

CB

=
g,
CB = c, CA=b,

C 2
p

2

.-. c 2

p
2 = b 2 c b 2

p

c 2 b 2

JL c 2 b 2

* *
2

&quot;~

&quot;&quot;^ /&quot;&quot;&quot; 2 V\ gV

2 dp _ c 2 b 2

(

p
3

&quot;&quot;

c 2

.. force
b 2

)

oc -i-.

(as in the Involute of the circle which is an Epicycloid, when the radius

of the rota becomes infinite.)

Having got &amp;lt;x

a of force, we can easily get the external (or internal) fall.

296. Find in what cases we can integratefor the Velocity and Time.

Case 1. Let force a x a
,

.-. v d v = g (i . x n d x,

1

... t
-

/*&quot;~

dx= /
n + 1

/*J v -&amp;gt; 2s //,
/ Vfa

dx

Now in general we can integrate x m
dx.(a + bx n1

) , when

m-f-1. , . m+lp ,,
is whole or \- whole.

n n q

. . in this case, we can integrate, when

Let

1

or

= p any whole number

=

p-

.. n = &quot;

, (p being positive), (a)
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-&amp;lt;0
.*. these formulas admit only and 1 for integer positive values of n, and

no positive fractional values. . . we can integrate when F a x, or F a 1.

297 oc -1297. Case 2. Let force oc -1
,

x&quot;

, d x
.*. v d v = g .

fo x n

2rv n /Q n 1 ^^ ,,. n i

... v* = ^ ^
(?

:
x

_&amp;gt;

/ dx /n l.a n-1 r dx.x
. . t = I = *J n / ;

;

,J V ** 2 g (Jj
J -V/a

n~

n 1

2

,n I

in which case we can integrate, when
-

^
, or

^
, whole.

i. e. if -
-\ or ^ , be whole.

2 n 1, n 1

Let r =: p, any whole positive No,,

1 _ 2 p 1

n 1 2

2

2p V

. . these formulae admit any values of n, in which the numerator ex

ceeds the denominator by 1, or in which the numerator and denominator

are any two successive odd numbers, the numerator being the greater.1111
.. we can integrate, when F 5, -7-= , ,

-
, &c.X X

g&quot; -^3&quot;
^ X

or

1 -1 J_ l *- ~ 5 5 &amp;lt;v 9 n 9 *^v 3 -v*? v 7 ~v yX A * A -^ A -7-
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298. Case 3. The formulas
( ) (ft ), in which p is positive, cannot be

come negative. But the formulas (a) and
(/3) may. From which we can

integrate, when F oc -___.____ &c .

299. When the force a x.
n
,Jind a n

. of times from different altitudes

to the center offorce. Find the same,force a s -
.

X
Fa x n

, .. v d v = g /
u.x n dx,

dx
v

d x n+ 1
a 7- , , , ; which is of ^ dimensions.

^/ &amp;lt;j

n + 1 X n ~^~ 2

. . t will be of dimensions.

and when x = 0, t will

o-n~x a _
2
-

dx

-+-.
a 2

n + 1 xn + i a
1

! *&quot; + ,1.3 x ! &quot;

+ lr rr+-au..-
+ a74- 8n + 3

when t = 0, x = a,

.-. C a I. + 1 . __ .U _?_ . &c I
I 2 n + 8+ 2. 4&quot; 8l , + 3 i

. . when x zr 0, t a - -&quot; a ^
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1
n + l

when n is negative t a _ n _ 1
a a 2

.

a _

COR. If n be positive and greater than 1, the greater the altitude, the

less the time to the center.

300. A body is projected up P A with the velocity Vfrom the given

po nt A, force in S K^jind the height to which the body will rise.

vdv = g ,& x n d x,

for the velocity decreases as x increases, A

.

when v = V, x = a,

8

. x - /v g .n + i

V

COR. Let n = 2, and V = the velocity down , force at A con-

slant, = velocity in the circle distance S A.

= 2 a.
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SECTION VIII.

301. PROP. XLI. Resolving the centripetal force I N or D E (F)
into the tangential one IT (F ) and the perpendicular one T N, we
have (46)

I N : I T : : F : F : : ^ :

d t d t

.-. d v : d v : : d t x I N : d t x I T.

But since (46)

v v

and by hypothesis

v v7

.-. d t : d t : : d s : d s : : I N : I K
.-. d v : d v : : I N 2

: I K x I T
: : 1 : 1

or

d v = d v ,

&c. &c.

OTHERWISE.

302. By 46, we have generally
vdv gFds

s being the direction of the force F. Hence if s be the straight line and
s the

trajectory, &c. we have

vdv =. gFds
v d v = g F d &

.-. v 2 V 2 - 2g/Fds
v&quot;_ V 1 = 2g/Fd s

V and V being the given values of v and v at given distances by which
the integrals are corrected.

Now since the central body is the same at the same distance the central

force must be the same in both curve and line. Therefore, resolving F
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when at the distance s into the tangential and perpendicular forces, we

have

_,= F x

_
IN -

I K
d s

d s

.-. F d s = F d s

and

v/a _ V/2 = 2 g/F d s = v 2 V 2

which shows that if the velocities be the same at any two equal distances,

they are equal at all equal distances i. e. if

V = V
then

v = v .

303. COR. 2. By Prop. XXXIX,
v 2 A B G E.

But in the curve

y a Fa A n - l

.-. y d x a A&quot;-
1 d A

Therefore (112)

ABGE =/ydxa ~ + C

P n A n

a
n

Hence
v 2 a P n

A&quot;.

304. Generally (46)

v

OTHERWISE.

d v = gFds
and if

F =
then

v.^ll^n

But when v = 0, let s = P ;
then

and
C = P&quot;.
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,2 _ jLfaJ
6

/pn _
n

in which s is any quantity whatever and may therefore be the radius vector

of the Trajectory A ; that is

v 2 = i^(pn_ A&quot;)
or = ?-g-^(D

n
e
n
)n n v

in more convenient notation.

N. B. From this formula may be found the spaces through which a

body must fall externally to acquire the velocity in the curve (286, &c.)

305. PROP. XLI. Given the centripetal Jbj-ce to construct the Trajec

tory, and tofind the time of describing any portion of it.

By Prop. XXXIX,

v = V~2~g. V A B F D =
^
(46) =^

But

T /-i yr v ,
Time T _, XT Time

d t = I C K X -T = I CxK NXA .m. vx ^s *** .L^ ^\ _. jArea 2 Area

= p TT~ (P being the perpendicular upon the

tangent when the velocity is V. See 125, &c.)

Moreover, if V be the velocity at V, by Prop. XXXIX,
V = V~2~~. V A B L V.

Whence

P VABLVV A B F D - xv -
KN

. . putting

A V 2 g
we have

ABFD : Z 2
: : I K 2

: KN 2

.-. A B FD Z 2
: Z 2

: : I K 2 K N 2
: K N 2

and

V A B F D Z&quot;

2
: Z = -

: : I N : K N
A.

. A x K N - Q X IN
V (AB FD Z 2

)

Also since similar triangles are to one another in the duplicate ratio 01

icir homologous sides

YXxXC = AxKNx ^-2
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_ Q x CX a x I N
= A 2 V (A B FD Z 2

)

and putting

y = ]&amp;gt;b =
2 V (A B FD Z )

and

/ - n Q x CX*
y ~

2 A 2 V (A B FD Z 2

)

Then
Area V C I =/ y d x = V D b a\

(^
AreaVC X = /y dx = V D caj

Now (124)

2 VCI _ 2
V_D&amp;gt;ji

P X V :

P X V
or

2 V D b a
&quot;

&amp;lt;v/2g.Px
VABLV

the time of describing V I.

Also, if^.VC 1=6, we have

_ _ XV X CV = &amp;lt;_x
CV*

_ 2VDca
P 2

which gives the Trajectory.

306. To express equations (5) and (6) in terms ofg and 6, (
= A).

First

V 2

ABLV =

and

Q 2 _P 2 xV 8

&quot; &quot;

v 2 P 2 X V*
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Hence
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P X Vg

and

P 3 x V
P 2 V 2

)

and

2 J V (e
2 v 2 P 2 V 2

)

P 3 v r de
x /

l = 7 v&amp;lt;**v
2 P 2 V 2

)

P 2 V 2
)

But by Prop. XL.

the integral being taken from v = 0, or from f =D, D being the same as

P in 304.

fs d e

V P 8 V r
)

,
or =/V 2 V 2_

/.

J
Px Vdg

P S V

. . (7)

ix (
8)

307. Tojtnd t awrf ^ m terms of % and p.

Since (125)

/
&quot;

-J P 2 V 2

p

and

(10)

But previous to using these forms we must find the equation to the tra

jectory, thus (139)

P 2 V 2 d D
X 4-- = F = f(j)

f denoting the law of force.

VOL. I.
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(U)

308. To these different methods the following are examples :

1st. Let F a s
= p s. Then (see 304)

and if P and V belong to an apse or when P =
g ;

V 2 = g ft (D
2 P 2

)

A/ , .. J P 2

(D
2 P 2

)}

?_
2

2
Let g

2 = u. Then we easily get

du
2 t V or u =

pa -1-7

2

and making t = at an apse or when g = P, we find

D 2

C = sin. . ^ps-r = sin.
~ l

1

2

2 V
sin.

1)2
)T r(D 2

&quot;&quot;

2 f
&quot;a&quot; 3

Also

/dt__ 1

J^~9 A/

du
&quot;

2 ^/(u+ W{(p
-^V-&quot;

!

}
and assuming

2

we get

PV &quot;

2

D
2V 5 2
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and making 6 = 0, when g
= P we find

C =_ sin.-l= 1..

Also

V= V gp. V (D
2 P 2

)

= sn.

- sin.
(

, + i

= cos. 20=2 cos. 2 1

which gives
P2 /T)2 _ p2\r ^ r

Now the equation to the ellipse, g and 6 being referred to its center, is

b 2

o nn? -

1 e 2 cos. 8
d

Therefore the trajectory is an ellipse the center of force being in its

center, and we have its semiaxes from

b 2 = D 2 P 2

c 2 a 2 b 2 2P Z D
C

a 2 a 2 P 2

viz.

b = V(D 2 P 2

)}
and V (3)

a = P J
which latter value was already assumed.

Tojind the Periodic time.

From (3) it appears that when

-,

and substituting in (1) we have

L=X
P2



228 A COMMENTARY QN [SECT. Vlll

But

sm.- l

( 1) = --.

4
&quot;

2 V gf*

and

T = 2ff
, . . (4)

V gi*

which has already been found otherwise (see 147).

To apply (9) and (10) of 307 to this example we must first integrate

(11) where f $ = /tig; that is since

~

2 * 2

we have
P2 YT2

P
2 =

V 8

But

V 2 = g^*(D
2 P 2

)

D 2 -
g
s

which also indicates an ellipse referred to its center, the equation being

generally

2 _ a 2 b 2

-
a 2 + b 2

g
2

Hence

g2 g2(D 2_g2)_p2(D2_ P 2)

p- P 2
(D

2 P 2
)

. t
_ i

the same as before.

With regard to 6
t the axes of the ellipse being known from (5) we have

the polar equation, viz.

,2 r
.

&quot;1 e 2 cos. 2 6

309. Ex. 2. Let F = -4- . Then (304)
ss

V 2_?J
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= 2ffA6 X ^~ S

V-2*-X^lI^ DP

229

P and V belonging to an apse.

\
g* DP + P 2

)

D 8

which, adding and subtracting , transforms to

t-
V D r

A i- D
and making g

= u

t = VD

(see 86).

Let t = 0, when = P. Then

D

D

Also

J_ . r dt -
PV-JT? - D

But assuming

tlie above becomes rationalized, and we readily find

P3
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VP.(D P)
X

&amp;lt;
tan.

~ l

D
and making 6 = 0, when g

= P, or when u = P - -
, we get

Hence, since moreover

Dx D

or

2 8= sm.

= sin.
(0 4.

*2~]
= cos 6

P 2

2 P . (D P)
D 2P&amp;gt;

!+(!_-) cos..

. (2)

But the equation to the ellipse referred to its focus is

b 2 1

S= T- x
a 1 + e cos.

b_ 2 P (D P)
a

&quot; D
and

e&quot; = D
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.b*_4P 4P*_4P
a&quot;

2
&quot; - TJ

&quot; &quot;

~D^ ET* -

b 2 2_
-~a~

X D

and (3)

b= VP x (D
To find the Periodic Time ;

let 6 = *. Then g = 2 a P = JD P,

and equation (1) gives

T

tf IL ^2 2 /

see 159,

OTHERWISE.

First find the Trajectory by fonnula (11. 307) ; then substitute for

in 9 and 10, &c.

310. Required the Time and Trajectory when F= ^

By 304,

V 2=_g ;u,x (D- 2 P- 2
)O \ 9 *

,
2

~D 2
X

f
2

.. if V and P belong to an apse we have

g tt D 2 P 2

=
JJ2

X p 2
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D
V L .

and taking t = at an apse or when g
=

P, C = 0,

V g/i
also

6 r dt D

X (C+ VP 8
%*)

=
0,

. . . . (1)

But

-
(P

2

f
2

)

~ +P
and

X

11 _ ,
^ (P

2 -g 2)+P
Tk 2 T&amp;gt;2\

*
IV (D

s P 2

)

and making ^ = at the apse or where g
= P,

C = -l. =

- V D
,

e\/(D
2

wliich gives

pa

311. Required the Trajectory and circumstances of motion when

or for any inverse law of the distance.

The readiest method is this ; By (11) 307, if r, and P be the values of

g and p for the given velocity V (P is no longer an apsidal distance)

p2Af2 O,, r n 1 __ p n 1v _, v 2 4-
^ v g n)

p
2 h

(n l)r
n - J

g&quot;-

1

the equation to the Trajectory.

Also since

vdv = gFdf
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Hence

and if we put

to

-(n l)r

in which m may be
&amp;gt;
= or

&amp;lt;
1 we easily get

D- /
m -- PeV~ V m 1

P
n

m= 1

/ ni
-J r XN m 1

n 1

2

P =

w (r=^n&quot;~ e

To Jind 6 on this hypothesis.

We have (307)

.
m&amp;lt; 1

n 1

which gives by substitution

n 5 ,

r P 2 d

n 3

(2)

m= 1

d = + m
^

X PX
n-_3

a d

l-m
the positive or negative sign being used according as the body ascends or

descends.

Ex. If n = 2, we get

. . . . m&amp;gt;
1
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P =

P =

m = 1

1 m P.

the equations to the ellipse, parabola and hyperbola respectively.
Also we have correspondingly

I m l

= +r P.

m
m

which are easily integrated.

Ex. 2. Let n = 3. Then we get

Vm _,

5T3n&amp;gt;&amp;lt;

p x . . m
&amp;gt;

1

P
P = T g . . m = 1

. m
&amp;lt;

1

cH = Pr

mP 2

-C V (r
2 P 2

)

+ /
m

v- V 1 m X mP

.
m&amp;gt;

1

m= 1

. m&amp;lt; 1

312. In the first of these values of 6, m P 8 may be
&amp;gt;
= or

&amp;lt;
r 2

.

(1). Let m P 2
&amp;gt;

r 2
. Then (see 86)

/ m / / m 1 / m 1 N
/ -i- n I / ^S \-f t* I c**r* &quot; I / Cfi/&quot;

&quot;~* * 1* / ,

^V mP rzXj \
se W nTP r

2
~ V mP rV

at an apse or when r = P

6 = + J m
, X P X sec.- 1

4 . . . (a)
&amp;gt;r m 1 i
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/ m 1 1 1
/

, Ol* ~~*

V m P 2 r 2 P
&quot;

r

(2) Let m P ~ r 2
. Then we have

r

V (m l)
f

P = -
/ r

* ( + HT^l

(b)

a= + V (m 1)

-dj
1

X J 2
~

j.= i

V m 1
X (&amp;gt;

X e r
- V m _ 1

which indicates the Reciprocal or Hyperbolic Spiral.

(3) LetmP 2 be
&amp;lt;

r 2
. Then

/_LV i

p = ni

+ r- m
*&quot;S

m i y

L-

m r

^mP Xl
V

at an apse r = P ; and then

6 = + .

+c

i^-i-r
2 mP) V(i

2 mP 2
)

^i-
2 P) V(r

z mP :
(e)

1.
V (r

8
g

8
) r

Thus the first of the values of 6 has been split into three, and integrat

ing the other two we also get

Pr
tf a = +

= +

V (r
s P 2

)

Pr
V(r e P !

s;

* (1
~ 1 )

x 1.-^
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m

^ 1X* mP g V(m.r 2

^
2
)

V (r
8 mP 2

)

and if rf is measured from an apse or r = P it reduces to

= + P /-SL-i.N 1 m
313. Hence recapitulating we have these pairs of equations, viz.

or

=*v _ x sec.- l.m 1 P
Jb construct the Trajectory,

put = 0, then

g
= P= SA;

let f
= CD, then

and

m
m 1

and taking A S B, A S B for these values of 0,

and S B, S B for those of p and drawing B Z,

B Z7
at right angles we have two asymptotes ; S C being found by put

ting 6 = it. Thus and by the rules in (35, 36, 37, 38.) the curve may
be traced in all its ramifications.

2. p = V (m 1) //
V \S

and

V (m 1)
X
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This equation becomes more simple when

we make 6 originate from = oo ; for then

it is

1

V (m
and following the above hinted method the

curve, viz. the Reciprocal Spiral, may easily be B
described as in the annexed diagram.

I
. p=p /-i- X

^V 1 m

and

&amp;gt;- = +rP /
*j f2

2

\/&quot;nT(F
2 P 2

)

and when 6 is measured from an apse or when P = r

-^Igg+rz mP) V(r
2 mP

V (r
2 mP 2

)~

Whence may easily be traced this figure.*

A
j

*

Z

From which may be described the Logarithmic Spiral.^
m

^-=+rP /- Vr2
--mP xl

(m.r
8 - 2

) V (r
2 m P -)
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i ^ / ,V 1 m g

when P = r.

Whence this spiral.

These several spirals are called Cotes Spirals,

because he was the first to construct them as

Trajectories.

314. If n = 4. Then the Trajectory, &c.

are had by the following equations, viz.

p=

d 6 = r P

315. Ifn = 5. Then

p = P V in

d6 = r P

m
I m
m 1

X
!(,* 5_V V m 1

V (m 1 .g
2 +r 4

)

m d

m
m 1 m

which as well as the former expression is not integrable by the usual

methods.

When
&quot;1 T* O O .

m 1

is a perfect square, or when

m 1

m 2 P
m _ 1

-
4 (m 1)

then we have

Therefore (87)

&quot;

2 (m 1)

/ m P *

m 1) , N2(m 1)
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V (2.m l.g
2 m P 2

)

V(mP 2 2.m l.
and these being constructed will be as subjoined.

316. COR. 1. OTHERWISE.

To find tlie apses of an orbit where F = -^ .

Let

Then
P =

f-

S

m
n 1

f n 3~

,P&amp;gt;!-&amp;gt;+
-

;m 1
= m

&amp;gt;
1

, m = 1

and

n-l +
. n ]

. . . m
&amp;lt;

1
1 ni l_m

which being resolved all the possible values off will be discovered in each

case, and thence by substituting in 6, we get the position as well as the
number of apses.

Ex. 1. Let n = 2. Then

,* + .-JL- mpt
-or m 1* m 1

L
PJ _ 4&quot;

r

J^
r 4

mP !

r
1



240 A COMMENTARY ON [SECT. VIII.

which give
r r 2 + 4m P g

.(m 1)

?- -g(m _ 1)-~ 4(m I)
2

^L
S = :

4

and
r /r

2 4 m P 2

.(l m)
K- 2 (1 m)- V 4.(1 m)

2

Whence in the ellipse and hyperbola there are two apses (force in the

focus) ;
in the former lying on different sides of the focus ;

in the latter

both lying on the same side of the focus, as is seen by substituting the

values of g in those of 6. Also there is but one in the parabola.

Ex. 2. Let n = 3. Then eq. (A) become

2 _ m P 2 + r 2

which indicate two apses in the same straight line, and on different sides

of the center, whose position will be given by hence finding 6
;

2

r o

(2) S = = &amp;lt;

pi
because r is

&amp;gt;
P,

whence there is no apse.
r 2 mP 2

(3) g = -

l __ m

which gives two apses, r 2

being &amp;gt;
m P 2 because m is

&amp;lt;
1 and P &amp;lt;

r
;

and their position is found from 6.

317. COR. 2. This is done also by the equation

P
p =

g. sin.
&amp;lt;p,

or sin.
&amp;lt;f&amp;gt;

= ~

&amp;lt;p being the L. required.

Ex. When n = 3, and m = 1, we have (4. 313)

P
p = T e

p
.. sin.

&amp;lt;p

=
-y

.-. v is constant, a known property of the logarithmic spiral.

318. To find when the body reaches the center offorce.

Put in the equations to the Trajectory involving p, g ;
or g,

6

Ex. 1. When n = 3, in all the five cases it is found that

p =
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and

6 =r x .

Ex. 2. When n = 5 in the particular case of 315, the former value of

6 becomes impossible, being the logarithm of a negative quantity, and the

latter is = co .

319. Tojind when the Trajectory has an asymptotic circle.

If at an apse for & = cc the velocity be the same as that in a circle at

the same distance (166), or if when

6 co

and

P = f

we also have

p dp

then it is clear there is an asymptotic circle.

Examples are in hypothesis of 315.

320. Tojind the number of revolutionsfrom an apse to = co .

Let & be the value of d a when g
= p or at an apse, and (/ when

f
= co . Then

6&quot; = the number of revolutions required.2 &amp;gt;,

Ex. By 313, we have

/

1
= P sec.

&amp;gt;r m
m ft

.*. v = - .m 1

321. COR. 3. First let V R S be an hyperbola whose equation, x being
measured from C, is

Then

VCR = y-^
X

But

/ydx = -^/dx V

a a J V (x
* a 2

)

VOL. I. Q,
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b ,/o ox b ,, , ,, ,x
b /* a 2 dx=-xWx2 a8

)
-/dxWx2 a2

) -/- r-^a a17 a*7 V(x
2 a2 )

.*. 2/y d x = -xV(x 2 a ^) abl.
X +V (

x2 ~ a *)

a a

and

VCR=^l.
X+ *( *&amp;gt; .... (1)

Again

g=CP=CT=x subtangent

= x

dy
x 2 a 2 _ a^

x
&quot;

x

and substituting for x in (1) we have

VCR = ~.l.
2 a

+ V^~ e} .... (2)

N being a constant quantity.

322. Hence conversely

and differentiating (17) we get

x ^2. _L\
N 2 V

u aVdd 2
~

a 2 b 2

and again differentiating (d 6 being constant)

dT2
=

a 2 b 2 N 8 X ]

Hence (139)
P*V 2

/ 4

g

322. By the text it would appear that the body must proceed from V

in a direction perpendicular to C V i. e. that V is an apse.

From (1) 322, we easily get
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and since generally

de 2

4

a b N - -

P
2 = - -- - .... (i)

which is another equation to the trajectory involving the perpendicular

upon the tangent.

Now at an apse

P = g

and substituting in equation (1) we get easily

g
= a

which shows V to be an apse.

*-._.,

OTHERWISE.

Put d g
= 0, for g is then = max. or min.

324. With a proper velocity. ~]

The velocity with which the body must be projected from V is found

from

vdvrr gFdf.
325. Descend to the center}. When

s = 0, p = (1. 323) and = oo
(2. 321).

326. Secondly, let V R S be an ellipse, whose equation referred to the

center C is

Then

and as above, integrating by parts,

x v (ti
z

-v ^ a z A v
/dxV(a-x)=i-*Jl J4-i &quot;

^ V (a
2 x 2

)

Q2
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x y
(
a a _x 2

) a]_
/ . , x r

o oA

Also

a 8 x ;

~~ X
&quot;*&quot; x

and

rr Sin.~*

a / w 2 \ 20
- =. sin ( r-xf] = cos. , XT

j \2 ablN/ abJN

and

2 tf ..... (2)

Conversely by the expression for F in 139, we have

Foe 1

327. Tojind when the body is at an apse, either proceed as in 323,

or put

d x . sin. x

By (27) d . sec. x =

sin. 6

cos.
2 6

or

=

6=

that is the point V is an apse.

328. The proper velocity of projection is easily found as indicated

in 324.

329. Will ascend perpetually
and go ojfto infinity.}

From (2) 327, we learn that when

2 6 *

a~FN
&quot;

2

g is
ce&amp;gt;;

also that g
can never = 0.
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330. When the force is changed from centripetal to centrifugal, the

sign of its expression (139) must be changed.

331. PROP. XLII. The preceding comments together with the Jesuits

notes will render this proposition easily intelligible.

The expression (139)

F _P
2 V* dp

-L XN q 1

g P d

or rather (307)

pz y 2

in which P and V are given, will lead to a more direct and convenient

resolution of the problem.

It must, however, be remarked, that the difference between the first

part of Prop. XLI. and this, is that the force itself is given in the former
and only the law offorce in the latter. That is, if for instance F = p n -

*,

in the former /^ is given, in the latter not. But since V is given in the

latter, we have //. from 304.

SECTION IX.

332. PROP. XLIII. To mafce a body move in an oibit revolving about

the center of force, in the same way as in the same orbit quiescenf]

that is, To adjust the angular velocity of the orbit, and centripetal force

so that the body may be at any time at the same point in the revolving
orbit as in the orbit at rest, and tend to the same center.

That it may tend to the same center (see Prop. II), the area of the new
orbit in a fixed plane (V C p) must a time a area in the given orbit

(V C P); and since these areas begin together their increments must also

be proportional, that is (see fig. next Prop.)

CPxKRocCpxkr
But

KR = CK x ^KCP
kr=Ckxz.kCp

and C P = C p, and C K = C k

.-. L K C P a k C p
and the angles V C P, V C p begin together

/.^.VCP a /LVCp.
Q3



A COMMENTARY ON [SECT. IX.

Hence in order that the centripetal force in the new orbit may tend to

C, it is necessary that

. V C p a ,L V C P.

Again, taking always

CP= Cp
and

VCp: VCP:: G: F
G : F being an invariable ratio, the equation to the locus of p or the orbit

in fixed space can be determined; and thence (by 137, 139, or by Cor.

1, 2, 3 of Prop. VI) may be found the centripetal force in that locus.

333. Tojind the orbit infixed space or the locus of p.

Let the equation to the given orbit V C P be

where = C P, and 6 = V C P, and f means any function; then that of

the locus is

which will give the orbit required.

OTHERWISE.

Let p be the perpendicular upon the tangent in the given orbit, and p
that in the locus ; then it is easily got by drawing the incremental figures

and similar triangles (see fig. Prop. XLIV) that

K R : k r : : F : G
k r : pr :: p : V (f

2

p
2
)

pr :PR:: 1 : 1

PR :KR:: V
(

z

p
2
) : p

whence

1 : 1 : : F . p V (^ p
2
) : G p V

(s
9

p
s

)

and

&quot;

F 2
g
2 + (G

2 F 2
)p

/2

334. Ex. 1. Lei the given Trajectory be the ellipse with the force in

its focus; then

K2 a M P 2
1

p&amp;gt;

2 = JLi-, and g
= *

^ ecos ,

and therefore

b 2 G 2
(2a-g)g

2

/
&quot;

b 2
(G

8 F 2
) -H F 2

(2ag g
2
)
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and

- a.(I-e 2
)

/ F
1 + e co

Hence since the force is
( 139)

and here we have

a(l e *) u r= 1 -J- e cos.

Z

2F 2 F 2

--

and again differentiating, &c. we have

d 2 u F 2 G 2 F 2

d~^ H =

Ga(l e*)
H ~G^~

But if 2 R = latus-rectum we have

/. the force in the new orbit is

p V 2
( F 2 R G R F 2

X 1 ~T2 T ~5gRG 2
^ s g j

335, Ex. 2. Generally let the equations to the given trajectory be

g
= f

(0 )~)
and

Then since

d e u F 2 d u

d fl
2 H = G 2 d^ J H

F 8

v /d 2 u . N F 2

=
G~2 X VdT2 + u

)
+ u ~

G^
u

and if the centripetal forces in the given trajectory and locus be named
X, X , by 139 we have

gX . FJ gX G 2 -F v 1

p? yi
- G t A p,j y/t 1 ^ x

yy
Qi
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_ p*y* , F 2 X G 2 F 2

_1/4 X

Also from (2. 333) we have

JL - Ls

_I_
G 8 F

_i

p
2 G 2 X

p
2

~

G 2 X
?

2

dp Fj- dp
/ G 2 F *

1

p
3 d f ~G 2X

p
3 d f

4 ~^ X
&quot;p&quot;

.-. by 139

gX .._F gX GF 1

p 2 y 2
~

p/ 2 y/ 2 &quot;t

(j 2
&quot;P

the same as before.

This second general example includes the first, as well as Prop. XLIV,
&c. of the text.

836. Another determination of the force tending to C and which shall

make the body describe the locus of p.

First, as before, we must show that in order to make the force X tend

to C, the ratio L. V C P : L. V C p must be constant or = F : G.

Next, since they begin together the corresponding angular velocities

u, uf

of C P, C p are in th^t same ratio
;

i. e.

: : : F : G.

Now in order to exactly counteract the centrifugal force which arises

from the angular motion of the orbit, we must add the same quantity to

the centripetal force. Hence if p, p denote the centrifugal forces in the

given orbit and the locus, we have

X = X +. p p

X being the force in the given orbit.

But (210)

P 2V 1

P =- x -3
g ?

and

a w 2

when o is given.

a/ ! G 2 P 2V G 2
1

&amp;lt;?/ 0; v _ ffi V - __ V V
a

2
~ * F1 ~

g
X
F f

j
8

p*Y 2 G 2 F 2
1

(Dv
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or

pz y 2

g
or

P 2 V 2
/ dp ,

G 2 F 2

X ._.= T~~ * V dl
+ FV ) (8)

O ib b

337. PROP. XLIV. Take u p, u k similar and equal to V P and V K ;

also

m r : k r : : . V C p : V C P.

Then since always C P = p c, we have

p r = P R.

Resolve the motions P K, p k into P R, R K and p r, r k. Then

and therefore when the centripetal forces PR, p r are equal, the body

would be at m. But if

P Cn:pCk::VCp:VCP
and

C n = C k

the body will really be in n.

Hence the difference of the forces is

m k X m s (m r k r) . (m r + k r)m n = = * * ~
.m t m t

But since the triangles p C k, p C n are given,

1K r a m r a
Cp

1 1
.. m n cc -= , X -

.

C p
2 m t

Again since

p C k : p C n : : P C K : p C n : : V C P : V C p
: : k r : m r by construction

: : p C k : p C m ultimately

. . p C n = p C m

and m n ultimately passes through the center. Consequently

m t = 2 C p ultimately

and

1
in n a -^ 3

Cp
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OTHERWISE.

338. By 336,

X X = / p

p 2 y 2 G 2 F 2
1v v

g F 2 3

ex - .

S
3

339. To trace the variations of sign qfmn. .

If the orbit move in consequentia, that is in the same direction as C P,

the new centrifugal force would throw the body farther from the center,

that is

Cmis&amp;gt;CnorCk

or m n is positive.

Again, when the orbit is projected in antecedentia with a velocity &amp;lt;

than twice that of C P, the velocity of C p is less than that of C P.

Therefore

C m is
&amp;lt;
C n

or m n is negative.

Again, when the orbit is projected in antecedentia with a velocity =
twice that of C P, the angular velocity of the orbit just counteracts the

velocity of C P, and

mn = 0.

And finally, when the orbit is projected in antecedentia with a velocity

&amp;gt;
2 vel. of C P, the velocity of C p is

&amp;gt;
vel. of C P or C m is

&amp;gt;

C n, or

m n is positive.

OTHERWISE.

By 338,

m n oc
&amp;lt;p p

oc u * 2

But

= 01 + W
W being the angular velocity of the orbit.

.-. m n oc + 2 uW+ W 2

+ 2 + W
j- or being used according as W is in consequentia or antecedentia.
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Hence m n is positive or negative according as W is positive, and nega
tive and

&amp;gt;
2 ;

or negative and
&amp;lt; 2 u. That is, &c. &c.

Also when W is negative and = 2
&amp;lt;w,

m = 0. Therefore, &c.

340. COR. 1. Let D be the difference of the forces in the orbit and in

the locus, and f the force in the circle K R, we have

D: f : : m n : z r

.ink X m s
.
r k 2

m t 2~k~c

(m r + r k) (m r r k) r k *

2 k c 2kc

::mr 2 rk 2 :rk 2

:: G 2 F 2
: F 2

.

341. COR. 2. In the ellipse with theforce in thefocus, we have

F 2 R G 2 R F 2

x/a
i-2 +

- -^ -

For (C V being put = T)
v 2 y 2

Force at V in Ellipse : Do. in circle : : -= j-wrr TV-TT/
chord P V

:
P V

1 1

Also F in Circle : m n at V

m n at V : m n at p :

.*. F at V in ellipse : m n at p ;

Hence

2 R 2 T
T: R
F 2

: G 2 F 2

J_ JL
T 3 A *

TF 2 RG 2 RF 2

we have

x- F2x -

F in ellipse at V = ~^

and

RG 2

m n =

and

X = X + m n

F 2 RG 2 RF

see 834.
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OTHERWISE.

342. By 336,
P 2 v 2 n 2

But

X -
2̂

and

P 2 V 2 L- = -^ ft = R p (157)
g 2

p r F 2 G 2 F 2 1
= F2

x
i 7^

+ ~p J

343. COR. 3. /w the ellipse with theforce in the center.

X FZ A
.
R G 2 R F 2

T 3 A 3

v 2

For here X a A and the force generally oc ^--^ (140)

/-Force in ellipse at V : Force in circle at V : : T : R
J F in circle : m n at V : : F 2

: G z F 2

(.m n at V : m n at p : : 7^r3 : -r-
3

1 A
T? I.- /W F 2 ^ RG 2 RF Z

.-. F in ellipse at V : m n at p : : 7^3 . T :7^3 .
-T-

1 A
F 2 A

assuming F in ellipse at P =
.3- , we have

and

F 2

F in ellipse at V = =r-3 x T

RG 2 R F 2

.-. m n = -
A3

.-. X7 a X + m n a , &c.

OTHERWISE.

. P 2 V 2 4 (Area of Ellipse)344. X = p P, and = T^ .
i-

g g( Period)
2

_ 4?r 8 a 2 b 2

_ 2 ,

g( Period)
2
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Therefore by 886

ft2 p 2 1

X ^ + ^a b X-^i- X-
^a 3

fF
2

g ,
b 2 x (G

2 F 2
))

F 2
\ a 3

ag
3

/
RG 2 --RF*1

S
*

Ja

845. COR. 4. Generally let X &? /Ac
&amp;gt;rce

&amp;lt;tf P, V~ at V, R the

radius of curvature in V, C V = T, &c.

V R ft 2 V R F 2

X a X 4 ASA 3

For

f F in orbit at V : F in circle at V : : T : R

jl*
: m n at V ::F 2 :G 2 F 2

Im n at V : m n : : A 3
: T 3

V TT 2 ft 2 TT *

.-. F in orbit at V : m n : :
8

: V R . !2-^l-
. . since by the assumption

F in orbit at V =
T 2

VR(G 2 F 8

)

A 3

and

OTHERWISE.

This may better be done after 336, where it must be observed V is not
the same as the indeterminate quantity V in this corollary.

346. COR. 5. The equation to the new orbit is (333)

2 _
1

G*p/2
g
2

&quot;&quot;

g
2 + (G&quot;

2
&quot;

F 2

)p
/8

p belonging to the given orbit.

Ex. 1. Let the given orbit be a common parabola.
Then

s _ G 2
rg

s

:

F 2

g + (G
2 F 8

)r
and the new force is obtained from 836.
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Ex. 2. Let the given orbit be any one of Cotes Spirals, whose general

equation is

D&quot;
- ---

2

Then the equation of 333 becomes

G 2

-b 2
?

2u

which being of the same form as the former shows the locus to be similar

in each case to the given spiral.

This is also evident from the law of force being in each case the same

(see 336) viz.

/ - U~~~~ ~
&quot;

~
/~*

f g

Ex. 3. If the given orbit be a circle, the new one is also.

Ex. 4. Let the given trajectory be a straight line.

Here p is constant. Therefore

2 _ G 2
p
/2 x g

g

P T? 2 n&amp;gt;2 __ T2

the equation to the elliptic spiral, &c. &c.

Ex. 5. Let the given orbit be a circle with theforce in its circumference.

Here
2/^2 2\

P (4 1 &quot; P )

P
2 = 47*-

and we have from 333

&quot;

4r 2 F 2 + (G
2 F 2

)g
2

Ex. 6. Let the given orbit be an ellipse withforce in thefocus.

Here

2a g

and this gives

P
8 =

F *

g (2 a ? ) + b s

(G
J Y
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347. To find the points of contrary Jlexure, in the locus put

dp = 0;

and this gives in the case of the ellipse

b 2 F 2 G*

OTHERWISE.

In passing from convex to concave towards the center, the force in the

locus must have changed signs. That is, at the point of contrary flexure,

the force equals nothing or in this same case

F 2 A + RG 2 RF 2 =

.-. A = S
s x (F

8 G 2

)

- k! F 2 G 3

:

T* F1

And generally by (336) we have in the case of a contrary flexure

which will give all the points of that nature in the locus.

348. To Jind the points where the locus and given Trajectory intersect

one another.

It is clear that at such points

g = g , and tf = 2 W + 6

W being any integer whatever. But

f = ~ 6 = m 6

2 W*
=

&quot;nT+T

This is independent of either the Trajectory or Locus.
349. Tojtnd the number of such intersections during an entire revolution

ofCP.
Since 6 cannot be

&amp;gt;
2 *

W is
&amp;lt;
m + 1 and also

&amp;lt;
m 1

.-. 2 W is
&amp;lt;

2 m.

Or the number required is the greatest integer in 2 m or - .

F
This is also independent of either Trajectory or Locus.
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350. Tojlnd the number and position of the double points of the Locus,

i. e. of those points where it cuts or touches itself.

Having obtained the equation to the Locus find its singular points

whether double, triple, &c. by the usual methods ; or more simply,

consider the double points which are owing to apses and pairs of equal

values of C P, one on one side of C V and the other on the other, thus :

The given Trajectory V W being V

symmetrical on either side of V W, let

W7 be the point in the locus correspond

ing to W. Join C W7 and produce

it indefinitely both ways. Then it is

clear that W is an apse; also that the

angle subtended by V v x7 W7
is

/-~i

= -r X it = \v r L. V C y , w being

f~\

the greatest whole number in -
Î.

supposes the motion to be in consequentia). Hence it appears that where-

ever the Locus cuts the line C W7 there is a double point or an apse, and

also that there are w + 1 such points.
s~*

Ex. 1. Let -T=T
= 2 ; i. e. let the orbit move in conse-

b

quentia with a velocity = the velocity of C P. Then L.

V C y
7 = 0, y

7 coincides with V, and the double points

are y
7

V, x7 and W7
.

The course of the Locus is indicated by the order of

the figures 1, 2, 3, 4.

Ex. 2. Let
-p

= 3.

Then the Locus resembles this figure, 1, 2, 3,

4, 5, 6. showing the course of the curve in which

V, x
7

, A,W7 are double points and also apses.
/-

Ex. 3. Let ^ = 4.

Then this figure sufficiently traces the Locus.

Its five double points, viz. V, x7

, A, B, W 7 are

also apses.

G
Higher integer values of

-p
will give the Locus
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still more complicated. If
-^

be not integer, the

figure will be as in the first of this article, the

double points, lying out of the line C V. More-
s-1

over if ^ be less than 1, or if the orbit move in
r

antecedentia this method must be somewhat

varied, but not greatly. These and other curio

sities hence deducible, we leave to the student.

351. To investigate the motion of (p) when the

ellipse, the force being in the focus, moves in ante

cedentia with a velocity = velocity of C P in

consequentia.

Since in this case

G =
.-. (333) also

p =
ov the Locus is the straiht line C V.

Also (342)

/F 2-^-
= it x e-R

Hence

i Y/ iv d v ex X d oc
Rd

. . V z
OC

R .

1 a
1 e 2

, , axis major , , , , .

(where -- ^ = 1 ;) and the body stops when

or when

g
-

1 e.

Hence then the body moves in a straight line C V, the force increasing

3
to of the latus-rectum from the center, when it = max. Then it

4

decreases until the distance = or R. Here the centrifugal force pre

vails, but the velocity being then = max. the body goes forward till the

VOL. I. R
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distance = the least distance when v = 0, and afterwards it is repelled

and so on in infinitum. .

352. Tojind &quot;when the velocity in the Locus = max. or min.

Since in either case %

d.v 2 = 2vdv =
and

v d v = X d f

.-. X =
.-. (336)

pz v 2 G 2 _ F 2 1X+^ x UpA x = o

Ex. In the ellipse with the force in the focus, we have (342)

v &amp;lt;&quot; f
FZ

j_
RG R F S

=

F^-p-
+ -p- -y

F 2 R G 2 R F 2

o

S

u

.-. = R x F
b 2 F 2 G 2

:

a
X ~

F 2

b 2 L
If G = 0, v = max. when g = ,

or when P is at the extre-
a &

mity of the latus-rectum.

If F = 2 G, v = max. when e = R . ~^ = R = - -

4- \j
~ 4 o

lat. rectum.

353. To find when the force X in the Locus = max, or min.

Put d X = 0, which gives (see 336)

3 p 2 v* G 2 F 2 1
d X = r

X
FZ

X p
Ex. In the ellipse

~
T2

and (157)
pa v 2r v

, . R
p&quot;

lit

g
2 F 2 d g 3 R G2 d g 3 RF 2

dg _

which gives

3 R F 2 G 2

Q , y __^ , .C r- /^ 1^ O
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Hence when

G =

X = max. when = ~
.

&

When g
= R, and G = 0. Then

Y F 2 RF 2

X = R 2
~
-RT =

When F = 2 G, or the ellipse moves in consequentia with the velo

city of C p ; then

X = max. when

3J^ 4G 2 G 2

j)
2 4, G 2

:

8

354. COR. 6. Since the given trajectory is a straight line and the center

offeree C not in it, this force cannot act at all upon the body, or (336)

X = 0.

Hence in this case

x/ _ P 2 V 2

v G 2 -F 2
1

~F^- 73

where P = C V and V the given uniform velocity along V P.

In this case the Locus is found as in 346.

355. If the given Trajectory is a circle, it is clear that the Locus of p
is likewise a circle, the radius-vector being in both cases invariable.

356. PHOP. XLV. The orbits (round the same center offorce) acquire
the sameform, if the centripetalforces by which they are described at equal
altitudes be rendered proportional.]

Let f and f be two forces, then if at all equal altitudes

f a f

the orbits are of the same form.

For (46)

dt 2 dt 2 S P 2 x QT
1 1

a

or

QT* SP 2 x
1

1

d 6
2 d V ~

and

d C a d V.

R 2
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But they begin together and therefore

6 a (f

and

p f/.

Hence it is clear the orbits have the same form, and hence is also sug

gested the necessity for making the angles 0, 6 proportional.
rf-i

Hence then X , and X being given, we can find -^ such as shall ren

der the Trajectory traced by p, very nearly a circle. This is done ap

proximately by considering the given fixed orbit nearly a circle, and

equating as in 336.

357. Ex. 1. To Jind the angle between the apsides when X is constant.

In this case (342)

X a 1 a -^ a jt j-^ .

Now making = T x, where x is indefinitely diminishable, and

equating, we have

(T x)
3 = F 2 T F 2 x + RG 2 RF 2

= T 3 3T 2 x + 3Tx 2 x 3

and equating homologous terms (6)

T 3 -F 2 T+RG 2 RF 2= F 2 x (T R) +RG 2

and

F 2 = 3T 2

G_
2 T 3 T R

*

F 2
~ R F 2 R

T 3

_J_ Jl=
3 R T 2 R
T T R _ 3 R 2T

~
3 R

~
R 3 R

= nearly
9

since R is = T nearly.

Hence when F = 180 = it

the angle between the apsides of the Locus in which the force is constant.

358. Ex. 2. Let X a g
n ~ 3

. Then as before

(T x)
n = F 2

(T x) + RG 2 RF 2

and expanding and equating homologous terms

T n = F 2 T + RG 2 RF 2



BOOK I.] NEWTON S PRINCIPIA.

and

But since T nearly = R
T n_l = G 2

.*-. !
*

F 2
~

n

and when F = &amp;lt;s

T
y (JT i .V n

Thus when n 3 = 1, we have

261

When n 3 = 1, n = 2, and y =^ = 127. 16 . 45&quot;.

When n 3 = ^ , n = ] , and 7 = 2 ?r = 360.
4 4

359. Let X oc

l-&amp;gt; n m _j_ f, n
Pg Cg

. Then

b.(T x)
m + c(T x)

n = F 2

.(T x)+ R.(G 2 F 2
)

and expanding and equating homologous terms we get

bT m + cT n = F 2

(T R) + RG 2

and
bm T 111 - 1 ^ en T 11 - 1 = F 2

.

But R being nearly = T, we have

bT m-i4. cT n-i _ G 2

G 2 bT m - 1 + cT n ~ 1 b T m + c T n

F2
&quot; bm T m - 1 + cnT n ~ 1

== mbT m + ncT n

which is more simply expressed by putting T = 1. Then we have

G* b+ c

F 2
~ mb + nc

and when F = it

b + c

360. COR. 1. Given the L. between the apsides to Jind theforce.

Let n : m : : 360 : 2 7

: : 180 -K \ y

m
.*. y = r

n

ButifX oc e
p-

y
*~~

113
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n 1

p = t

. . X7

gib&quot;

3

Ex. 1. If n : m : : 1 : 1,

X oc -L

as in the ellipse about the focus.

2. If n : m : : 363 : 360

3. Ifn : m : : 1 : 2

1X

And so on.

IL
4

Again if X __

-

and the body having reached one apse can never reach another.

IfX oc + q

.. the body never reaches another apse, and since the centrifugal force

-
,
if the body depart from an apse and centrifugal force be

&amp;gt;
centri

petal force, then centrifugal is always &amp;gt; centripetal force and the body
will continue to ascend in infinitum.

Again if at an apse the centrifugal be
&amp;lt;

the centripetal force, the centri

fugal is always &amp;lt; centripetal force and the body will descend to the center.

The same is true if X a and in all these cases, if

centrifugal = centripetal

the body describes a circle.

361. COR. 2. First let us compare the force -^
c A, belonging to

the moon s orbit, with

Fo T&amp;gt;
/&quot;I o

&quot;D TJ^ 2
rv \jf ri J;

A? + A 3

Since the moon s apse proceeds, (n m) is positive.
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.-. c A does not correspond to n m and . .

-^
does not correspond

F_*

Now
j^ A c A 4

a b A m c A p

A 2
~ C

&quot;A

3 A 3

l-*c Ft

.-. X oc A i- a A 02

1 _ 4 c _ F_
2

*

l 2
= G 2

F2 RG 2 RF 2 1 4c
,
3cR

+A 3 A 3

1 4 c , 1

and

3 c Rmn =
~A^~

Hence also

y =T / _ . . &C. &C. &C.
*V 1 4 c

362. To determine the angle between the apsides generally.

Let

f (A) meaning any function whatever of A. Then for Trajectories which

are nearly circular, put

f(A) F 2 A + R.(G
2 F 2

)

IT A 3

... f. A = F 2 A + R(G 8 F 2
)

or

f.(T x) = F 2

(T x) + R(G 2 F 2
)

But expanding f (T x) by Maclaurin s Theorem (32)

u = f (T x) =U U x +
U&quot;^

2

&c.

t J, U &c. being the values of u, -T , -T &c.
(1 X. Cl. X-

when x = 0, and therefore independent of x. Hence comparing

homologous terms (6) we have

U = F 2 T+R(G 2 F z

)

U = F 2

R4
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Also since R = T nearly
U = TG 2

1 U
F

~~
T . U 7

Hence when F =r v, the angle between the apsides is

or

N U
making T = 1.

Ex. 1. Let f (A) = b A m + c A n = u

Then
du
dx = mbA m - 1 +ncA n - 1

.

Hence since A = T when x =
U = fT = b T ra + c T n

U = mbT&quot;1 - 1 + n c T 11 - 1

G 2 b T m
-f- c T n

F 2
&quot;

mbT
or

G_
8 b+ c

F 2
- m b + n c

and

7 =
b + c

m b + n c

[SECT. IX.

as in 359.

Ex. 2. Let f . (A) = b A m + c A n + e A r + &c.

j^ = mbA m - 1 + ncA n - 1 + reA r - 1

.-. U = bT m cTeT r &c.
and

T X U = m b T m + n c T &quot; + r e T r + &c.

- b Tm + c T &quot; + e Tr + &c -

F 2 mbT
or

when T = 1.

Also

&c.

7 =
b + c + e

m b -f- n c -f r e + . .

(1)

&c.
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Ex. 3. Let -*4* = a A = u.
A.

Here (17)

du
j^ = A 2 a A x(3 + Ala)

Hence

U = Ta T x (3 -f Tla)
T X U = T 3 a T

(3 + Tla)
G 2

1

F1
=: T X (3 + T 1 a)

and when T = 1

G 2
1

265

F 2
~
3 +la

.*, &amp;lt;y sr r /_V3 + la
Hence if a = e the hyperbolic base, since 1 e = 1, we have

Ex. 4. Let f (A) = e A = u.

Then

du
j~ e
d x

.-. U = e T

and

T . U = T e T

.*. 7 = T.

Ex. 5. Let ti^i = sin. A.

u = f(A) = A 3
sin. A

.-. U = T 3
sln. T

and

^
= 3A 8

sin. A + A 3
cos. A

.-. T U = 3 T 3
sin. T + T 4

cos. T
. G_

2 __ sin. T
F 2 ~3sin.T+ t cos. T

sin. T
sin.T + Tcos.T*
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&quot;

4&quot;-

ry

363. To prove that

bA m +cA n
_ 1

mb + nc_ 3

~K~3 ~b~+~c

= b + c (mb + nc)x+ &c,

1 /, mb+nc=
f i I

1 C-T x + &c
b + c v b + c

1 mb+ n c

~b + c v

1 mb + nc
=

b + c*

364. To Jind the apsides when the eccentricity is infinitely great.

Make
2 q : V (n + 1) : *. velocity in the curve : velocity in the circle of the

same distance a.

Then (306) it easily appears that when F g
n

n + 3

!

g V (a
n + 1

f
n + 1

)g
2

q
2 a n + 1

(a
2

and

gives the equation to the apsides, viz.

(a
+ 1

g
n + l

)g
z

q a&quot;-*-
1

(a
2

?
2

)
=

whose roots are

a (and a when n is odd) and a positive and negative quantity (and when

n is odd another negative quantity).

Now when q =

two of whose roots are 0, 0, and the roots above-mentioned consequently

arise from q, which will be very small when q is.

Again since

when q and are both very small
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and

s
=

q-

.. the lower apsidal distance is a q.

A nearer approximation is

g= + . 1SL_.

Hence
n + 3

g v/(^_a 2

q
2 + /3) X Q

where /S contains q
4
&c. &c., and this must be integrated from g

= b to

g
= a (b = a q).

But since in the variation off from b to c, Q may be considered con

stant, we get

6 = sec.
-

. J- + C = sec.
-

. .

aq a q
and

if 3 it 5 it a , .

7 -
-Q -g-

&amp;gt;

-g-
&amp;gt;

&c- ultimately

the apsidal distances required.

Next let

Then again, make
v : v in a circle of the same distance : : q V 2 : V (n 1)

and we get (306)

and for the apsidal distances

which gives (n &amp;gt;
1 and

&amp;lt; 3)

2

fsaqfrr
Hence

*=/-=a tj f n3n
a q d

2 a 3 -
&quot; + /?) x Q

VQ J
^ */ t n 3 n r&quot;g~3^TiT
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and
3 n

g 3
7 3 n 3 ~&quot; 3 n 3 n

qa 2

Hence, the orbit being indefinitely excentric, when

F oc
g . ... we have . . . . *y = -^

for

1 T
Foe

any number
&amp;lt;

1 2

Foe- . . . 7 =

r oc y ^
g number between 1 and 2 2

FpWs ?&amp;gt;*

But by the principles of this 9th Section when the excentricity is inde

finitely small, and F a n

y = V (n + 3)

(see 358), and when

1

V (3 n)

Wherefore when n is
&amp;gt;

1

7 increases as the excentricity from

V (3 + n)
t0

2

When F oc
g

7 is the same for all excentricities.

When F a g
1

&quot;?

7 decreases as the excentricity increases from

tol-
n) 2

which is also true for F oc .

S
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decreases as the excentricity increases from

T
; tO

V(3 n) 3 n

When F oc -L

When F oc
2 &amp;lt;3

7 increases with the excentricity from

to
V(3_n) 3 n*

If the above concise view of the method of rinding the apsides in this

particular case, the opposite of the one in the text, should prove obscure ;

the student is referred to the original paper from which it is drawn, viz.

a very able one in the Cambridge Philosophical Transactions, Vol. I,

Part I, p. 179, by Mr. Whewell.

365. We shall terminate our remarks upon this Section by a brief dis

cussion of the general apsidal equations, or rather a recapitulation of re

sults the details being developed in Leybourne s Mathematical Repository,

by Mr. Dawson of Sedburgh.

It will have been seen that the equation of the apsides is of the form

x n Ax m B =
(1)

the equation of Limits to which is (see Wood s Algeb.)

nx n-i mAx m - 1 =
(2)

and gives

/&quot;

m A \ n
x =

( A)V n /

i

m

If n and m are even and A positive, * has two values, and the number
of real roots cannot exceed 4 in that case.

Multiply (1) by n and (2) by x and then we have

(m -^ n) A x m nB =
which gives

B -v &quot;in&quot;

and this will give two other limits if A, B be positive and m even ; and if

(1) have two real roots they must each = x.
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If m, n be even and B, A positive, there will be two pairs of equal roots.

Make them so and we get

n_ /nx
\ni/n n-m

which will give the number of real roots.

(1). If n be even and B positive there are two real roots.

(2). If n be even, m odd, and B negative and (M), the coefficient to

A n
, negative, there are two ; otherwise none.

(3). If n, m, be even, A, B, negative, there are no real roots.

(4). If m, n be even, B negative, and A positive, and (M) positive there

are four real roots ; otherwise none.

(5). If m, n be odd, and (M) positive there will be three or one real.

(6). Ifm be even, n odd, and A, B have the same sign, there will be

but one.

(7). Ifm be even, n odd, and A, B have different signs, and M s sign

differs from B s, there will be three or only one.

(8). If

x n
_j_ An m B =

then

is positive, and it must be
&amp;gt; B, and the whole must be positive.

If

x n Ax m + B =
the result is negative.

SECTION X.

366. PROP. XLVI. The shortest line that can be drawn to a plane

from a given point is the perpendicular let fall upon it. For since

Q C S = right L^ any line Q S which subtends it must be
&amp;gt;

than either

of the others in the same triangle, or S C is
&amp;lt;

than any other S C.

A familiar application of this proposition is this :

367. Let S Q be a sling with a body Q at the end of it, and by the hand

S let it be whirled so as to describe a right cone whose altitude is S C, and

base the circle whose radius is Q C; required the time ofa revolution.

Let S C = h, S Q = 1, Q C = r = VI 2 h 2
.
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Then if F denote the resolved part of the tension S Q in the direction

Q C, or that part which would cause the body to describe the circle P Q,

and gravity be denoted by 1, we have

F : 1 : : r : h

But by 134, or Prop. IV,

p x p _ ^^ * \ A. v p 2
J. /\ JL i S\ A

g
h

A**.7/i (1)
&amp;lt;\

or

the time required.

If the time of revolution (P) be observed, then h may be hence obtained.

If a body were to revolve round a circle in a paraboloidal surface, whose

axis is vertical, then the reaction of the surface in the direction of the

normal will correspond to the tension of the string, and the subnormal,

which is constant, will represent h. Consequently the times of all such

revolutions is constant for every such circle.

368. PROP. XLVII. When the excentricity of the ellipse is indefi

nitely diminished it becomes a straight line in the limit, &c. &c. &c.

369. SCHOLIUM. In these cases it is sufficient to consider the motion

in the generating curves.]

Since the surface is supposed perfectly smooth, whilst the body moves

through the generating curve, the surface, always in contact with the

body, may revolve about the axis of the curve with any velocity whatever,

without deranging in the least the motion of the body ; and thus by ad

justing the angular velocity of the surface, the body may be made to trace

any proposed path on the surface.

If the surface were not perfectly smooth the friction would give the

body a tangential velocity, and thence a centrifugal force, which would

cause a departure from both the curve and surface, unless opposed by
their material ; and even then in consequence of the resolved pressure a

rise or fall in the surface.

Hence it is clear that the time of describing any portion of a path in a

surface of revolution, is equal to the time of describing the corresponding

portion of the generating curve.

Thus when the force is in the center of a sphere, and whilst this force

causes the body to describe a fixed great-circle, the sphere itself revolves

with a uniform angular velocity, the path described by the body on the

surface of the sphere will be the Spiral of Pappus.
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370. PROP. XLVIII and XLIX. In the Epicycloid and Hypocycloid,
f

s : 2 vers. : : 2 (R + r) : R

where s is any arc of the curve, s the corresponding one of the wheel, and R
the radius of the globe and r that of the wheel, the + sign being used for
theformer and in the Hypocycloid. (See Jesuits notes.)

OTHERWISE.

If p be the perpendicular let fall from C upon the tangent V P, we

have from similar triangles in the Epicycloid and Hypocycloid
PY: CB:: VY: VC

or

p
2 n 2 R 2 . . /T&amp;gt; JL 9 ,N 2 n 2 . / U _i_ O -\2

J
JLv I L I 1 * 1

j Y* *
\ /

which gives

n 2_ / R J- O r \ 2 v S **
/ 1 \

JJ \i\,-^TA IJ * / r&amp;gt; J_ Q \ 2 T&amp;gt; 2 \
l l

Now from the incremental figure of a curve we have generally

d s

But
d] p

2
)

(2)

R
4-0 r \ 2_ .2?

,

,.ds = X

and integrating from

s = 0, wheng = R
we get _

V (R + 2r)
2

+ 2r
)

8 R 8 V(R2 r)
8

which is easily transformed to the proportion enunciated.

The subsequent propositions of this section shall now be headed by a

succinct view of the analytical method of treating the same subject.

371. Generally, A body being constrained to move along a given curve by

knownforces, required its velocity.

Let the body P move along the curve

P A, referred to the coordinates x, y

originating in A ; and let the forces be

resolved into others which shall act

parallel to x, y and call the respective

aggregates X, Y. Besides these we

have to consider the reaction (R) of the
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curve along the normal P K, which being resolved into the same direc

tions gives (d s, being the element of the curve)

n dx d y
It

-3 ,
and R -r* .

ds ds

Hence the whole forces along x and y are (see 46)

dlx
dt 2

=X +

LV

ds

Again, eliminating R, we get

2dxd 2 x + 2dyd 2

y
jji

* l = 2Xdx + 2Ydy
and

d x z+ dy 2

But

. . v*= 2/(Xdx+ Ydy) (])
Hence it appears that The velocity is independent of the reaction of the

curve.

372. If the force be constant and in parallel lines, such as gravity, and
x be vertical ; then

and

Y =
and we have

v 2 = 2/-gdx
= 2g(c x)

= 2g(h x)
h being the value of x, when v =

; and the height from which it begins to

fall.

373. To determine the motion in a common cycloid, when theforce is gravity.
The equation to the curve A P is

!2rK
x

r being the radius of the generating circle.

/2r
.-. ds = dx I-

V x
VOL. I.
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and
ds - /

r

-x
~ V

. A/(h-xj
~

g V (hx-x 2

)

t being = 0, when x = h.

Hence the whole time of descent to the lowest point is

T ,
r

-F^VTg
which also gives the time of an oscillation.

374. Required the time ofan oscillation in a small circular arc.

Here

y = V (2rx x 2

)

r being the radius of the circle, and

__rd x
S - V (2rx x 2

)

ds
*- dt - v 2g V (h x)

dx
x)(2rx x 2

)}

r dx
X V {(hx x z

)(2r x)}

to integrate which, put
x

dx
d 9 -

2 A/Oix x*j

and since

= 2r(l a
2
sin.

/
d * = V

Now since the circular arc is small, h is small ; and therefore 3 is so.

And by expanding the denominator we get

sn.
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and integrating by parts or by the formula

fd & . sin. m = cos. 6 sin.
m- J

6 A fdd sin. m -%Qm m J

and taking it from

d = to 6 =
-J-

we get
rr -I

f. d 6 sin. m 6 = ^ f,dd sin.
m~ 2

&m Jl

the accentedy denoting the Definite Integration from 6= 0, to 6= .

In like manner

f. d 6 sin. ra - 2 = ~-
/~ d sin. m - *

m 2 &amp;lt;//

and so on to

Hence

(m 1) (m 3) 1 r

7, d Sin. m = V
-T ^rr 1 X -5-m (m 2) 2 2

and

/.
d d f =

0&quot;)
I , , .. r? 5~; Irom I/ xV (1 5

2
sin.

2
6

& _ _* &amp;gt;-

is the same as

V (1 3
s
sin.

2
0) from

whence then

CJ* |

= oi

and taking the first term only as an approximate value

t =
~2&quot;tJ ~~^

fi

which equals the time down a cycloidal arc whose radius is -7-
TJ

If we take two terms we have

- I?-(14
2 V g V 4

S2
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375. To determine the velocity and time in a Hypocycloid, the force

tending to the center of the globe and
g.

By (370)

the equation to the Hypocycloid is

R 2
P
Z

by hypothesis.

Now calling the force tending to the center F, we have

X = F x - ,Y = F

...v
2 = C 2/Fd f

But by the supposition

Hence

ds_
Cl L ^

To integrate it, put
2 D = u 8

and

V R 2 D 2 d u
dt = -

;

V^a V (h
2 D 2 u 2

)

V (R
2 D 2

) /^ _ D 2

&amp;lt;

v : pcm 1 / =

RVp Vh 2 D 2

Hence making = D, we have

Oscill. cr /R 2 D
2

376. Since h does not enter the above expression the descents are

Isochronous.

We also have it in another form, viz.

I- /rJi J__A
2

&quot;

A/ VR^ RV/
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If R ^ = g or force of gravity and R be large compared with b,

T

277

the same as in the common cycloid.

377. Required to Jind the value of the reaction R, when a body is con

strained to move along a given curve.

As before (46)

d 2 x r. d y

_ Y R- i
dx

Hence

. Xdy Ydx
, dyd

2 x dxd 8

y
&quot;&amp;gt; j~I T j * 2 Jds

But if r be the radius of curvature, we have (74)

ds 3

~
dyd x dxd 2

y

Hence

dt 2 ds

B Ydx Xdy^ ds 2

rt i r ..j i2d s rdt !

Another expression is

Y d x X d y v^

or

Ydx Xdy

,

+ P

&amp;lt;p being the centrifugal force.

If the body be acted on by gravity only

ds + rdt !

or

or

(1)

(2)

(3)

ds

If the body be moved by a constant force in the origin of x, y, we have

xdy y d x
\ d x X d y = FJ

*

= F i d 6.

83
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for

xdy y d x = g
2 d

i? . ,

.-. R = ,
ds

d s r d t

or

or

_ FjjH
d s

378, To Jind the tension of the string in the oscillation of a common

cycloid.

Here

but

dy =

d s =

d s
^

r d t

;2 a x

2_a
x

and

d_y _ 2 a x
d s

~ V WIT

r - 2 V 2 a V (2 a x)

~~ = 2 g (h x)

^R = gJ*Z& V 2 a

= g

__ _
\/2a V(2 a x)

2 a + h 2x

When x =r h

When x =

2 ax)

R = .
_

a 2 2 a h) (2 a)

2 a + h
rrK rrJ.V .

2 a

When moreover h = 2 a, the pressure at A the lowest point is = 2 g.

379. To Jind the tension &quot;when the body oscillates in a circular arc by

gravity.
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Here

dv - (C
~ x) d X

y
A/(2cx x*)

c d x
d s = V (2 ex x 2

)

d y _ c x

d x c

r = c

= g

When x =

c c

c + 2 h 3 x

v c + 2 h
rv

e&amp;gt; c

r= 3 g or h = c.

If it fall through the whole semicircle from the highest point

h = 2c,

and

R = 5g
or the tension at the lowest point is five times the weight.

When this tension = 0,

c+2h 3x = 0, orx =^
A body moving along a curve whose plane is vertical will quit it when

R =
that is when

c + 2h
x -

3

and then proceed to describe a parabola.

380. To Jind the motion of a body upon a surface of revolution, when

acted on by forces in a plane passing through the axis.

Referring the surface to three rectangular axes x, y, z, one of which (z)

is the axis of revolution, another is also situated in the plane of forces, and

the third perpendicular to the other two.

Let the forces which act in the plane be resolved into two, one parallel

to the axis of revolution Z, and the other E, into the direction of the

radius-vector, projected upon the plane perpendicular to this axis. Then,
S4,
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calling this projected radius
g,

and resolving the reaction R (which also

takes place in the same plane as the forces) into the same directions, these

components are

dzR
ds

d s

supposing ds= V/ (dz
of

jf
is

F + R

and the whole force in the direction

d_z
ds

and resolving this again parallel to x and y, we have

d 2 x _~

ds
F j

~- &quot;

and

7= -

Hence we get

xd g
y y d 2 x _ _ d xdy y dx
dt 2

and

dxd2 x+ dy d2

y+dzd
2 z

Which, since

dt

x d x+ y dy

.

d s d s

xdx + y dy _ d
e

Again
dz 2 _dz 2

dg
2

dt 2
~&quot;

d * d t
2

(D

(2)

and from the nature of the section of the surface made by a plane passing

through the axis and body,
~ is known in terms of

g.
Let therefore

dz
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and we have

d_z_
2

2 dg
2

d t
2

~
dt 2

*

Also let the angle corresponding to g be 0, then

xdy ydx =
g

2 d

and

dx 2 + dy
2 = dg

2

-fg
2 d0 2

,

and substituting the equations (2) and (3) become

Integrating the first we have

P
2 d = h d t

h being the arbitrary constant.

or

The second can be integrated when

2 Fdg 2Zdz
is integrable. Now if for F, Z, z we substitute their values in terms of e,

the expression will become a function of and its integral will be also a

function of
g.

Let therefore

/(F d g + Z d z) = Q
and we get

dp 2
p
2 d 6

Z dp 2

2

which gives, putting for d t its value

~o~vv\ i i jj . (6)

Hence also

Ol L 7 f-. c\~~s~\\ o I o^ ( )V
\ (c 2 Q) g

2 h
*}

v

If the force be always parallel to the axis, we have

F =
and if also Z be a constant force, or if

we then have

Q = /Z d z = g z (8)
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Z being to be expressed in terms of g.

381. Tojind under what circumstances a body will describe a circle on a

surface of revolution.

For this purpose it must always move in a plane perpendicular to the

axis of revolution ; g,
z will be constant; also (Prop. IV)

cos. 6 = x

d 2 x _ g cos. 6 d 6
z

dT2
&quot; :

dt 2

Also

d*x
dt 2

Hence as in the last art.

. 2

If the force be gravity acting vertically along z, we have

yj _ d z

Hence may befound the time of revolution of a Conical Pendulum.

(See also 367.)

382. To determine the motion of a body moving so as not to describe a

circle, when acted on by gravity.

Here

Q = gz
and

C 2 Q = 2g. (k z)

k being an arbitrary quantity.

Also

g
2 = 2 r z z 2

z being measured from the surface.

.. cl g
= (r z) d z

and

_ * r ~

+ P - +
(r z)

z
~

(r z)
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Hence (380)
*

-

In order that

the denominator of the above must be put = ; i. e.

2 g (k z) (2 r z z 2

) h 2 =
or

h 2

z 3

(k + 2r)z 2 + 2krz - =
g

which has two possible roots
; because as the body moves, it will reach

one highest and one lowest point, and therefore two places when

Hence the equation has also a third root. Suppose these roots to be

&quot;, ft 7
where a is the greatest value of z, and j3 the least, which occur during the

body s motion.

Hence ___
(2g) V {(_ z).(z j8)(y z)

To integrate which let

Then
dz

d 6 =_cfrz
= 2V {( z) (z

-
Also

.-. z = 13 + (a jg) sin.
l

6

and

y z = 7 {|3 + ( /S) sin.
*

= (7 P) U a sin. ^,
if



284 A COMMENTARY ON [SECT. X.

.-. d t =
V2g. (y /3).

which is to be integrated from z =
/3, to z = a

; that is from

6 = to 6 = ~

this expanded in the same way as in 374 gives

t=
va

2r

_^:
which is the time of a whole oscillation from the least to the greatest

distance.

Also

h d t h d t=
2
~~ =

2 r z z 2

and & is hence known in terms of z.

383. A body acted on by gravity moves on a surface of revolution whose

axis is vertical : when its path is nearly circular, it is required to find the

angle between the apsides of the path projected in the plane o/ x, y.

In this case

and if at an apse
o = a, z = k

we have

(C 2gk)a
z h 2 :=

... C = ^ + 2 g k.

Hence (380)
\j

d 6 =
il=

V(l +p)~,&quot;*

Let = +
? a

(1+
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&amp;lt;i a 2g (k z) h
Q U

It is requisite to express the right-hand side of this equation in terms

of w

Now since at an apse we have

w = 0, z = k, and g
= a

we have generally
dz

,

d 2 z w 2

z = k +
d-.

w + dV2 -i72
+ &c -

the values of the differential coefficients being taken for

w = (see 32)

And
d z = p d f

z= p
2 d w

d 2 z = 2p^dgdw g d w d p

or, making
d p = q d g

d 2 z = (2p+qg)dgdw = (2 p + q g) f
3 d 2

.

And if p/ and q/ be the values which p and q assume when w = 0,

=r a, we have for that case,

^f,= (2p,+ q,a)a&amp;gt;

Z = k p7
a 2w + (2p + q,a) a 3

. ^ Sac.

Also

wV = + + w 2

/ &quot;a
2 a

Hence

1 _ /I , \
2

e
2

&quot;

v a ;

2g(k_z)-h 2

(-l_^)
becomes

2 g (p,
a 2

co _ (2 p, + q, a) a 3
. ^ + &c.)-

h
*(^ + **).

But when a body moves in a circle of radius = a, we have

h2 = Sf
s

P = ga p,

in this case. And when the body moves nearly in a circle, h 2 will have

nearly this value. If we put

h 2 = (1 + a)ga
3

P/

we shall finally have to put

5 =
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in order to get the ultimate angle when the orbit becomes
indefinitely near

a circle. Hence we may put

and

becomes

in which the higher powers of u may be neglected in comparison of u 2
;

.
d &quot;

2

_ _ ga
3

(3 P/ + q/ a)q.
2 _ (3 P/ + q/ a)^_

2

d^ 2
&quot;

h 2

(1 + p
2

) P/ (1 + P
2

)

_ (3 p,+ q/ a) a 2

P/(l +P/ 2

)

again omitting powers above u z
: for p = p/ + A u + &c.

Differentiate and divide by 2 d ca, and we have

suppose ; of which the integral is taken so that

6 = 0, when u =
is

u = C sin. 6 V N.

And 01 passes from to its greatest value, and consequently g passes

from the value a. to another maximum or minimum, while the arc 6 V N
passes from to &amp;lt;r. Hence, for the angle A between the apsides we have

A V N v or A = r^jV N
where

N - 3 P/ + q/ a
.

384. Let the surface be a sphere and let the path described be nearly a

circle : to Jind the horizontal angle between the apsides.

Supposing the origin to be at the lowest point of the surface, we have

z = r V (r
2

e
&quot;)

d z g

&quot; P -
V(r _ a-J
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4 r 2 3 a
/. N = =

Hence the angle between the apsides is

A -
-

V(4r 2 3 a 2
)

The motion of a point on a spherical surface is manifestly the same as

the motion of a simple pendulum or heavy body, suspended by an inex-

tensible string from a fixed point ; the body being considered as a point

and the string without weight. If the pendulum begin to move in a ver

tical plane, it will go on oscillating in the same plane in the manner al

ready considered. But if the pendulum have any lateral motion it will

go on revolving about the lowest point, and generally alternately ap

proaching to it, and receding from it. By a proper adjustment of the velocity

and direction it may describe a circle (134) ; and if the velocity when it

is moving parallel to the horizon be nearly equal to the velocity in a cir

cle, it will describe a curve little differing from a circle. In this case we
can find the angle between the greatest and least distances, by the for

mula just deduced.

Since

. _ *_r:

V (4 r a 3 a 8
)

if a = 0, A = 7- , the apsides are 90 from each other, which also ap-
fit

pears from observing that when the amplitude of the pendulum s revolu

tion is very small, the force is nearly as the distance
; and the body de

scribes ellipses nearly ; of which the lowest point is the center.

If a = r,

A = * = 180

this is when the pendulum string is horizontal ; and requires an infinite

velocity.

If a = -
; so that the string is inclined 30 to the vertical ;

A = J _ =99 50 .

V 13
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r*
If a 2 =

-jr- ; so that the string is inclined 45 to the vertical ;

A = *r J |
= J13. 56 .

3 r 2

If a 2 _ . so that the string is inclined 60 to the vertical ;

4

A = -^z
= 136 nearly.

385. Let the surface be an inverted cone, with its axis vertical : to find

the horizontal angle between the apsides when the orbit is nearly a circle.

Let r be the radius of the circle and 7 the angle which the slant side

makes with the horizon. Then

z = g tan. 7

p = tan. 7

__
tan. 7. sec.

*
7

and

A =
cos. 7 V 3

If 7 = 60

A =

386. Let the surface be an inverted paraboloid whose parameter is c.

= c z

d z

2

c

6_a
2a

2~a

If a = -
,
or the body revolve at the extremity of the focal ordinate,

m

N = 2

and
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387. When a body moves on a conical surface, acted on by a force tend

ing to the vertex ; its motion in the surface will be the same., as if the sur

face were unwrapped, and made plane, the force remaining at the vertex.

Measuring the radius-vector
(g) from the vertex, let the force be F,

and the angle which the slant side makes with the base = 7 : then

z = g tan. 7

p = tan. 7
1 + p

2 = sec. 2
7

also

Q=/(Fdg + Zdz) =/F dg .

Hence (380)

i A _ sec - 7 h d g=

or putting

h cos. 7 for h

d tf sec. 7 for d 6

and

g cos. 7 for g

we have

h dg

Now d (f is the differential of the angle described along the conical sur

face, and it appears that the relation between V and / will be the same as

in a plane, where a body is acted upon by a central force F. For in that

case we have

h 2 d t&amp;gt;

2 h 2 1a ? j. _ I 9 F d P4 d ^ 2 ^
?

2
J

&quot;

and integrating

h 2 d g
2 h 2

/ 4 J / 2 +7^ = ^

^which agrees with the equation just found.

388. When a body moves on a surface of revolution, to Jind the reac
tion R.

Take the three original equations (380) and multiply them by x d z,

y d 2, g d f ; and the two first become

x d 8 x d z ^ _
F x 2 d z _ R d z 2 x 2

dt 2 T~ &quot;

&quot;dT 7
y d*y dz F y

2 d z R dz 2

&quot;y

2

dt 2

?

l
ds -y

VOL. 1. T
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add these, observing that

and we have

&amp;lt;xd

2 x+yd 2

y)dz _ _ _ d z*

&quot;dT
2
&quot; WUF

Also the third is

Subtract this, observing that dz 2 + d g
2 = ds 2

, and we have

(xd
2 x + yd 2

y)dz gdgd 2 z

dt 2

s (Z d s F d z) R | d s.

But
x 2 + y

2 =
g

2

xdx+ydy = gdg
xd 2 x + yd 2

y + dx 2 + dy
2 = gd

2
g + dg

2
.

Hence

(dg
2 dx 2

dy
2
) dz gd z d 2

g gdgd
2 z

dt 2 dt 2

g (Z d g F d z) R g d s

and

dg
2 = ds 2 dz 2

.

Hence

R _ Z d g F d z dgd 2 z dzd 2
g

ds dt 2 ds

(dx
2 + dy 2 + dz 2 ds 2)dz

gdt 2 d s

Now if r be the radius of curvature, we have (74)

ds 3

:

dgd 2 z_dzd 2
g

and

d x 2 + dy 2 + d z 2 = d tf
2

a being the arc described.

Hence

Z d g F d z d s
2

ds h FdT1
dg 2 ds 2 dz

1

gdt 2 d~s

Here it is manifest that

d s 2
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is the square of the velocity resolved into the generating curve, and that

d 2 d s
2

dt 2

is the square of the velocity resolved perpendicular to
g.

The two last

terms which involve these quantities, form that part of the resistance

which is due to the centrifugal force ; the first term is that which arises

from the resolved part of the forces.

From this expression we know the value of R ; for we have, as before

Also

da 2 _ds 2

_ g*dd
~

__h*~

dt 2 TT2
&quot; =

r*
Hence

|j-=C--2/(F dH-Zdz)

h 2

389. To find the tension of a pendulum moving in a spherical surface.

C 2/(F dg + Zdz) = 2g(k-,z)
* - V (2rz z 2

)

d _ r z

&amp;lt;Tz

~~ V (2rz z 2

)

d s r

de r z

d s _ r r

d~z
~

V(2rz z 2

)

=
7

Hence

2g(k z)
--~

2

R = g( r- z
) + _:__:__ii

r r

_g(r+2k 3z)
r

and hence it is the same as that of the pendulum oscillating in a vertical

plane with the same velocity at the same distances.

390. To find the Velocity , Reaction, and Motion of a body upon any

surface whatever.

Let R be the reaction of the surface, which is in the direction of a nor

mal to it at eacli point. Also let i, s
,

t&quot; be the angles which this normal

T2

+ _ ____ + .
.

j
3

r
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makes with the axes of x, y, z respectively ;
we shall then have, consider

ing the resolved parts of R among the forces which act on the point

d 2 x-- =X + R cos.

d 2 z

dT2
= Z+R.cos./

Now the nature of the surface is expressed by an equation between

x, y, z: and if we
&quot;suppose

that we have deduced from this equation
dz =pdx + qdy

, dz , d z
where p = ~j and q = -. .

dx dy
p and q being taken on the supposition of y and x being constants respec

tively ; we have for the equations to the normal of the points whose co

ordinates are

x, y, z

x x + p (z z) =0
y-y + q(z

f -z) =
x , y , T! being coordinates to any point in the normal (see Lacroix,

No. 143.)

Hence it appears that if P K be the normal,

P G, P H its projections on planes parallel to

x z, y z respectively.

The equation of P G is

x x + p . (z z) = 0,

and hence

GN+pPN=
and

G N = p . P N.

Similarly the equation of P H is

y y + q(z z
)
=

whence

HN+ q.PN =
H N = q . P N.

And hence,

cos:. t = cos. K P h = JPh
PK
GN
NG e + HN*)
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P
V (\ +p + i*)

cos. t = cos. K P g = p-

HN
V(PN 2 + NG 2 + HN 2

)

q
V (1 + p

2 + q
2
)

Whence, since

cos. 2
-f cos. 2

E + cos. s
t&quot; = 1

COS. 2
?&quot; = V

(
1 COS. 2

e COS.
2

e
)

__ 1

Substituting these values; multiplying by d x, d y, d z
respectively, in

the three equations ; and observing that

dz pdx q d y =
we have

dxd 8 x + dyd g

y + d z d * z
,

-T-ri = Xdx + Ydy + Zdz
Cl I *

and
integrating

dx s + dy* + dz 2

grfi -2/(Xdx+ Ydy-f Zdz)L4. L * *

and if this can be integrated, we have the velocity.
If we take die three original equations, and multiply them

respectively
ty P, q, and 1, and then add, we obtain

- PX-
But

d z = p d x + q d y.

Hence

^ 5 = D
^ x

_L a ^J y 4. dp dx + d q d y
d t

2 P d t
&quot; q d t

2 &quot;*&quot;

&quot;dT
8
&quot;&quot;

Substituting this on the first side of the above equation, and takinr
the value of II, we find

R P^ + q Y Z
^1 p d x + d q d y

If in the three original equations we eliminate R, we find two second
differential equations, involving the known forces

X,Y, Z
T 3
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and p, q, which are also known when the surface is known, combining
with these the equation to the surface, by which z is known in terms of

x, y, we have equations from which we can find the relation between the
time and the three coordinates.

391. To find the path which a body mil describe upon a given surface,
when acted upon by noforce.

In this case we must make

X, Y, Z each = 0.

Then, if we multiply the three equations of the last art. respectively by

(qdz + dy), pdz + dx, qdx pdy
and add them, we find,

(qdz + dy)d
2 x + (pdz+dx) d 2 y+ (qdx pdy) d 2 z

/- (q d z + d y) cos. s ~\

= R d t
2

-|
+ (pdz + dx) cos. t t

v. + (qdx pdy) cos. t&quot;)

or putting for cos. e, cos. t
, cos. *&quot; their values

Rdt 2

Hence, for the curve described in this case, we have

(p d z+ d x) d 2

y= (p d y q d x) d 2 z+ (q d z+ d y) d 2 x.

This equation expresses a relation between x, y, z, without any regard
to the time. Hence, we may suppose x the independent variable, and

d 2 x = ;
whence we have

(pdz + dx) d 2

y = (pdy qd x)d
2
z.

t

This equation, combined with

dz=rpdx + qdy,

gives the curve described, where the body is left to itself, and moves along
the surface.

The curve thus described is the shortest line which can be drawn from

one of its points to another, upon the surface.

The velocity is constant as appears from the equation

v = 2/(Xdx + Ydy + Zdz).

By methods somewhat similar we might determine the motion of a point

upon a given curve of double curvature, or such as lies not in one plane

when acted upon by given forces.

392. Tofold the curve of equal pressure, or that on which a body descend

ing by theforce ofgravity, presses equally at all points.
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Let A M be the vertical abscissa = x, M P the hori

zontal ordinate = y ; the arc of the curve s, the time t,

and the radius of curvature at P = r, r being positive

when the curve is concave to the axis ; then R being the

reaction at P, we have by what has preceded.

R =
~dT + r~TF (1)

But if H M be the height due to the velocity at P,

A H = h, we have

ds&quot;

295

H

M

dt
= 2g(h-x).

Also, if we suppose d s constant, we have (74)

d s d x

and if the constant value of R be k, equation (
1

) becomes

k = S d y _ 2g(h--x)d 2

y
d s d s d x

k dx , , d 2 v dy d x

WThe right-hand side is obviously the differential of

V (h

hence, integrating

k d v

g
*

d s

d_y = k C
:

g
-

V (h x)

_

ds
If C = 0, the curve becomes a straight line inclined to the

which obviously answers the condition. The sine of inclination

In other cases the curve is found by equation (2), putting

V(dx 2 + dy
2

) for ds
and integrating.

If we differentiate equation (2), d s being constant, we have

d*y_ Cdx
d S n /!_

horizoij,

is -

And if C be positive, r is positive, and the curve is concave to the axis.

T4
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We have the curve parallel to the axis, as at C, when^ = 0, that is,u s

;
when

, k C
when = .,

g V (h x

x =

When x increases beyond this, the curve approaches the axis, and -r-^
U -V

is negative ; it can never become
&amp;lt;

1
; hence B the limit of x is

found by making

x)

or

x =h C

g)
2

If k be
&amp;lt; g, as the curve descends towards Z, it approximates perpe-

k
tually to the inclination, the sine of which is .

o
If k be

&amp;gt; g there will be a point at which the curve becomes horizontal.

C is known from (2), (3), if we knew the pressure or the radius of cur

vature at a given point.

If C be negative, the curve is convex to the axis. In this case the part

of the pressure arising from centrifugal force diminishes the part arising

from gravity, and k must be less than g.

393. Tofind the curve which cuts a given assemblage of curves, so as to

make them Synchronous, or descriptive by the force ofgravity in the same

time.

Let A P, A P , A P&quot;,
&c. be curves of the

same kind, referred to a common base A D,

and differing only in their parameters, (or the

constants in their equations, such as the radius

of a circle, the axes of an ellipse, &c.)

Let the vertical A M = x, M P (horizontal)

= y ; y and x being connected by an equation

involving a. The time down A P is

/dxV(2gx)
the integral being taken between

x = and x = A M ;

and this must be the same for all curves, whatever (a) may be.
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Hence, we may put

.

k being a constant quantity, and in differentiating, we must suppose (a)

variable as well as x and s.

Let
d s = pdx

p being a function of x, and a which will be of dimensions, because d x,

and d s are quantities of the same dimensions. Hence

f P dx _ kJ V (2gx)~
and differentiating

Now, since p is of dimensions in x, and a, it is easily seen that

r p
J V2

is a function whose dimensions in x and a are , because the dimensions

of an expression are increased by 1 in integrating. Hence by a known

property of homogeneous functions, we have

k p V x
q ~2a~a V (2g)

substituting this in equation (2) it becomes

pdx k d a p d a V x __ ..

V (2gx)
H &quot;

~2l a V (2 g)

~

in which, if we put for (a) its value in x and y, we have an equation to the

curve P P P&quot;.

If the given time (k) be that of falling down a vertical height (h), we

have

* =J,
and hence, equation (3) becomes

p(adx xda) + da V (h x) = . . . . (4)

Ex. Let the curves A P, A P , A P&quot; be all cycloids of which the bases

coincide with A D.

Let C D be the axis of any one of these cycloids and = 2 u, :t being
the radius of the generating circle. If C N = x , we shall have as before

2 a
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and since

x = 2 a x

/ 2 a

N 2a x

Hence

2a
P ~

and equation (4) becomes

v-(8a)(adx-xda)
V (2 a x)

Let = u
a

so that

adx xda= a 2 du
x = au;

and substituting

a 2 du V2
d v h

,

V(2 u)&quot;

1

du V 2 da Vh
V(2u-u 2

) a f

. V 2 X vers.
- l u 2 J C (6)

When a is infinite, the portion A P of the cycloid becomes a vertical

line, and

x = h, .-. u = 0, .-. C = 0.

Hence

x , 2 h ..= vers. . / [71
a &amp;gt;r a

From this equation (a) should be eliminated by the equation to the

cycloid, which is

y = a vers.
- V (2 a x x 2

)
. . . . (8)

and we should have the equation to the curve required.

Substituting in (8) from (7), we have

y = V (2 ah) V (2 ax x 2

)

_dav h xda + adx x d \

V (2a) V (2 ax x*)

and eliminating d a by (5)

dy _ 2 a x
/
2 a x

dx~
~
V (2ax x 2

)

~
&quot;~-**J x
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But differentiating (8) supposing (a) constant, we have in the cycloid

2 a

And hence (31) the curve P P P&quot; cuts the cycloids all at right angles,

the subnormal of the former coinciding with the subtangent of the latter,

each being
2 a

AGO

The curve P P P&quot; will meet A D in the point B, such that the given
time is that of describing the whole cycloid A B. It will meet the vertical

line in E, so that the body falls through A E in the given time.

394. If instead of supposing all the cycloids

to meet in the point A, we suppose them all to

pass through any point C, their bases still being
in the same line A D ; a curve P P drawn so

that the times down P C, P C, &c. are all

equal, will cut all the cycloids at right angles.

This may easily be demonstrated.

395. Tojind Tautochronous curves or those down which to a givenJixed

point a body descending all distances shall move in the same time.

(1) let the force be constant and act in parallel lines.

Let A the lowest point be the fixed point, D that

from which the body falls, A B vertical, B D, M P
horizontal. A M = x, A P = s, A B = h, and the

constant force = g.

Then the velocity at P is

v = V (2g.h x)

and

dt = = ds
V 2g V (h x)

and the whole time of descent will be found by integrating this from

x = h, to x = 0.

Now, since the time is to be the same, from whatever point D the body

falls, that is whatever be h, the integral just mentioned, taken between the

limits, must be independent of h. That is, if we take the integral so as

to vanish when

x =
and then put h for x, h will disappear altogether from the result. This

must manifestly arise from its being possible to put the result in a form
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v v 2

involving only -r- , as r^ ,
&c. ; that is from its being of dimensions in

x and h.

Let

d s = p dx
where p depends only on the curve, and does not involve h. Then, we
have

t
- fJ

1 / f p d x
t

1 pxd x 1.3 pxMx
Ws)J I *TT*T T* 271 ~vT

c

and from what has been said, it is evident, that each of the quantities

/*p d x /-pxdx /px n dx
y i y JT } y~~gir+T

h ^ h 2 h T-
must be of the form

CX 2

2 n + 1

that is

f p x &quot; d x must = c x 2~~
;

hence

.
,

2 n + 1 Hi^ 1
.

p x n d x =
-^

c x a d x
;

2n + 1 c
P =

or if

2 n + 1

and

which is a property of the cycloid.

Without expanding, the thing may thus be proved. If p be a function

of m dimensions in x, ,/ . is of m i dimensions : and as theV (h x)

dimensions of an expression are increased by 1 in integrating

f. P dx
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is of m -j- 1 dimensions in x, and when h is put for x, of m -{- ^ dimen

sions in h. But it ought to be independent of h or of dimensions

Hence

i = o

p = a^
as before.

396. (2) Let the force tend to a center and vary as anyfunction of the

distance. Required the Tautochronous Curve.

Let S be the center of force, A the point to

which the body must descend
; D the point from

which it descends. Let also

S A = e, S D = f, S P = ^ A P = s

P being any point whatever,

= C 2/Fdf

Now we have

or if

the velocity being when f.

Hence the time of describing D A is

t=/-:
ds

taken from g
= f, to g

= e. And since the time must be the same what

ever is D, the integral so taken must be independent of f.

Let

&amp;lt;pf &amp;lt;p

e = h

d s = p d z

p depending on the nature of the curve, and not involving f. Then

/p d z f
r-7-j r

, from z = h to z =V (h z)

= /* r~i r from z = to z = h.J V (h z)

And this must be independent of f, and therefore of
&amp;lt;p f, and of h

Hence, after taking the integral the result must be when z = 0, and

independent of h, when h is put for z. Therefore it must be of dimen

sions in z and h. But if p be of n dimensions in z, or if

p = cz n

V (h z)

will be of n \ dimensions,
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and

/-. TT
-r of n + s dimensions.V (h z)

Hence, n + \ = 0, n =
, and

Therefore

/ C C
d s =r d z / =

&amp;lt;f&amp;gt;

o d gJ-7 ;
&amp;gt;r z V p g &amp;lt;f&amp;gt;

e

whence the curve is known.

If 6 be the angle A S O, we have

and

g
2

whence may be found a polar equation to the curve.

397. Ex. 1. Let the force vary as the distance, and be attractive.

Then
F = Mg,
z

&amp;lt;p

p

dz = 2 # i

4,

d s
when = e, -r- is infinite or the curve is perpendicular to S A at A.

If S Y, perpendicular upon the tangent P Y, be called p, we have

p2_ ds 2
dg

2

8
&quot;

ds 2

j _ e 2

(1

4 C/(A

If e = 0, or the body descend to the center, this gives the logarithmic

spiral.

In other cases let
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the equation to the Hypocycloid (370)

If 4 c p = 1, the curve becomes a straight line, to which S A is per

pendicular at A.

If 4 c ^ be
&amp;gt;

1 the curve will be concave to the center and go off to

infinity.

398. Ex. 2. Let the force vary inversely as the square of the distance.

Then

r
and as before we shall find

g
5

(g e)

c e

399. A body being acted upon by a force in parallel lines, in its descent

from one point to another, tofind the Brachystochron, or the curve of quick
est descent between them.

Let A, B be the given points, and A O P Q B
the required curve. Since the time down
A O P Q B is less than down any other curve, if

we take another as A O p Q B, which coincides

with the former, except for the arc O P Q, we
shall have

Time down A O : T. O P Q + T. Q B, less than

Time down A O+T. O p Q + T. Q B

and if the times down Q B be the same on the two suppositions, we shall

have

T. O P Q less than the time down any other arc O p Q.

The times down Q B will be the same in the two cases if the velocity

at Q be the same. But we know that the velocity acquired at Q is the

same, whether the body descend down

A O P Q, or A O p Q.

Hence it appears that if the time down A O P Q B be a minimum, the

time down any portion O P Q is also a minimum.
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Let a vertical line of abscissas be taken in the direction of the force;

and perpendicular ordinates, O L, P M, Q N be drawn, it being sup

posed that

L M = M N.

Then, if L M, M N be taken indefinitely small, we may consider them

as representing the differential of x : On this supposition, O P, P Q, will

represent the differentials of the curve, and the velocity may be supposed
constant in O P, and in P Q. Let

AL = x, L O = y, OA = s,

and let d x, d y, d s be the differentials of the abscissa, ordinate, and

curve at Q, and v the velocity there ; and d x
,
d y , d s ,

v be the cor

responding quantities at P. Hence the time of describing O P Q will

be (46)

d s d s

v + V
which is a minimum ; and consequently its differential = 0. This dif

ferential is that which arises from supposing P to assume any position as

p out of the curve O P Q ; and as the differentials indicated by d arise

from supposing P to Vary its position along the curve O P Q, we shall

use d to indicate the differentiation, on hypothesis of passing from one

curve to another, or the variations of the quantities to which it is

prefixed.

We shall also suppose p to be in the line M P, so that d x is not sup

posed to vary. These considerations being introduced, we may pro

ceed thus,

d. d,, ........
And v, v are the same whether we take O P Q, or O p Q ;

for the

velocity at p = velocity at P. Hence
d v = o, a v = o

and

8 d s d d s _
&quot;

i~ 7
&quot;

v v

Now
ds 2 =dx 2 + dy 2

.-. d s a d s = d y d d y,

(for d d x = 0).

Similarly

d s 6 d s = d y d d y .
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Substituting the value of d d s, d d s which these equations give,
we have

dyddy d y _
vds ~v ds

And since the points O, Q, remain fixed during the variation of P s

position, we have

d y + d y = const.

d d y = d d y.

Substituting, and omitting 8 d y,

d y. jiy.
vds v

7 d s
-

Or, since the two terms belong to the successive points O, P, their

difference will be the differential indicated by d; hence,

d -~/- =vds

dy
.*. j = const....... . iv\vds v

Which is the property of the curve; and v being known in terms of x,
we may determine its nature.

Let the force be gravity ; then

v = V(2gx);
dy

&quot;

dy J_
d s V x V a

a being a constant.

d-? - /
ds

~ V a

which is a property of the cycloid, of which the axis is parallel to x,
and of which the base passes through the point from which the body
falls.

If the body fall from a given point to another given point, setting off
with the velocity acquired down a given height; the curve of quickest
descent is a cycloid, of which the base coincides with the horizontal line,
from which the body acquires its velocity.

400. If a body be acted on by gravity, the curve of its quickest descent

from a given point to a given curve, cuts the latter at right angles.
Let A be the given point, and B M the given curve; A B the curve of

quickest descent cuts B M at right angles.
VOL. I. u
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It is manifest the curve A B must be a cycloid, for

otherwise a cycloid might be drawn from A to B, in A

which the descent would be shorter. If possible, let

A Q be the cycloid of quickest descent, the angle
A Q B being acute. Draw another cycloid A P, and

let P P be the curve which cuts A P, A Q so as to

make the arcs A P, A P synchronous. Then (394) P P
is perpendicular to A Q, and therefore manifestly P is

between A and Q, and the time down A P is less than the time down
A Q ; therefore, this latter is not the curve of quickest descent. Hence,
if A Q be not perpendicular to B M, it is not the curve of quickest
descent.

The cycloid which is perpendicular to B
longest descent from A to B M.

M may be the cycloid of

401. If a body be acted on by gravity, and if A B be the

curve of quickest descentfrom the curve A L to the point B ;

A T, the tangent ofA L at A, is parallel to B V, a perpen
dicular to the curve A B at B.

If B V be not parallel to A T, draw B X parallel to

A T, and falling between B V and A. In the curve A L
take a point a near to A. Let a B be the cycloid of quick

est descent from the point a to the point B; and Bb being

taken equal and parallel to a A, let A b be a cycloid equal

and similar to a B. Since A B V is a right angle, the

curve B P, which cuts off A P synchronous to A B, has B V for a tan

gent. Also, ultimately A a coincides with A T, and therefore B b with

B X. Hence B is between A and P. Hence, the time down A b is less

than the time down A P, and therefore, than that down A B. And

hence the time down a B (which is the same as that down A b) is less

than that down A B. Hence, if B V be not parallel to A T, A B is not

the line of quickest descent from A L to B.

402. Supposing a body to be acted on by anyforces whatever, to determinf

the Brachystochron.

Making the same notations and suppositions as before, A L, L O. (see

a preceding figure) being any rectangular coordinates ; since, as before,

the time down O P Q is a minimum, we have
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4. IfLi __ d s 3 v d s 3 v _
v v v 2 v 2

&quot;~ *

Now as before we also have

* i d y 3 d yo Cl S =r 1_-
ds

supposing 6 d x = 0, and

_ dy .a.dy

307

d s d s

dv =
for v is the velocity at O and does not vary by altering the curve.

v = v + d v

dv = dv + ddv = ddv.
Hence

vds v d s v72
=

Also

v
~

v+&quot;d~v

~~
v v&quot;

2

for d v 2
, &c . must be omitted.

Substituting this in the second term of
the above equation, we have

j&amp;gt; __ dy ady d y d v a d y d s 8 d v
vds vds v 2

d~s
~

~~V 2
~

or

M! s d s) v
&quot;*&quot; d s . v 2

v72
&quot;

Tdy
=

Now as before

d y d y d y
d7 ~~d7- d

dY
And in the other terms we may, since O, P, are

indefinitely near, put
d s, d y, v for d s

,
d y , v :

if we do this, and multiply by v, we have

d dy dy.dvds adv

which will give the nature of the curve.

If the forces which act on the body at O, be equivalent to X in the
direction of x, and Y in the direction of y, we have (371)

vdv=Xdx+Ydy
d v = Xd *+ Ydy

v

* i Yddy
. . o d v = i.

v

U2
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because 5 v = 0, &amp;lt;5 d x =
; also X and Y are functions of A L, and L O,

and therefore not affected by d.

Substituting these values in the equation to the curve, we have

d dy dy Xdx+Ydy ds Y = Q
d s d s v 2 v v

or

, dy dx Xdy Ydx _ _
a . -= -j .

d s d s
- 2v~

which will give the nature of the curve.

If r be the radius of curvature, and d s constant, we have (from 74)

d s d x
r =:

d 2

y
r being positive when the curve is convex to A M ;

l
d y _ d x

d s r

and hence

v_
2 _ Xdy Ydx

r d s

v 2
.

The quantity is the centrifugal force (210), and therefore that part

,., . e . ,Xdy Ydx..
of the pressure which arises from it. And ^ - is the pressure

which arises from resolving the forces perpendicular to the axis. Hence,

it appears then in the Brachystochron for any given forces, the parts of

the pressure which arise from the given forces and from the centrifugal

force must be equal.

403. If we suppose the force to tend to a center S,

which may be assumed to be in the line A M, and F
to be the whole force

;
also if

then we have

C ^
~

= force in P S resolved parallel to

and

Y S = F x --
C

v 2 = C 2/g F d

2 g./ F d g _ F p
r

s

also

r

dp
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2dp_ 2Fdg
p

= C-
and integrating

whence the relation of p and is known.

If the body begin to descend from A
C-2g/Fdg =

when = a.

404. Ex. 1. Let the force vary directly as the distance.

Here

p=C&amp;gt;(a g
2
)

which agrees with the equation to the Hypocycloid (370).

405. Ex. 2. Let the force vary inversely as the square of the distance $

then

by supposition.

S 2 _ S
3 + C *f CE

C

p d g
ci a ~ . .

c V (a g) . d g~
f V (g

3 + c *g c*a)

__cdg

When g = a, d J =
; when

g
3 + c g c 2 a =

d 6 is infinite, and the curve is perpendicular to the radius as at B. Tills

equation has only one real root.

If we have c =
, S B = ~

2

B being an apse.

U3
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If c = ,.n 3 + n n 2

-f 1

406. When a body moves on a given surface, to determine the Brachy-
stochron. ,

Let x, y, z be rectangular coordinates, x being vertical ; and as before

let d s, d s be two successive elements of the curve ; and let

d x, d y, d z,

d x
, d y

7

, d z

be the corresponding elements of x, y, z ; then since the minimum pro

perty will be true of the indefinitely small portion of the curve, we have

as before, supposing v, v the velocities,

ds d s

j- = mm.
v

The variations indicated by a are those which arise, supposing d x, d x

to be equal and constant, and d y, d z, d y ,
d z to vary

Now
d s

2 = dx 2 + dy
2 + dz 2

.-. d s a d s = d y a d y + d z a d z.

Similarly
d s a d s = d y a d y + d z a d z.

Also, the extremities of the arc

d s + d s

being fixed, we have

d y + d y = const.

.-. ady + ady =
d z -f- d z const

.-. a d z + a d z = 0.

Hence

ads -
rt c &quot; ft c W

(2)

And the surface is defined by an equation between x, y, z, which we

may call

L = 0.
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Let this differentiated give ....... (3)

Hence, since d x, p, q are not affected by 8

3dz = q.3dy ......... (4)

For the sake of simplicity, we will suppose the body to be acted on

only by a force in the direction of x, so that v, v will depend on x alone,

and will not be affected by the variation of d y, d z. Hence, we have by (
1
)

6ds d d s _T-
which, by substituting from (2) becomes_--

;
-

d s v d s / \ v d s v d s

Therefore we shall have, as before

*
adz=0;. .

v d s v d s

and by equation (4), this becomes

d.-^L + qd.4^ = ....... (5)v d s v d s

whence the equation to the curve is known.

If we suppose the body not to be acted on by any force, v will be con

stant, and the path described will manifestly be the shortest line which

can be drawn on the given surface, and will be determined by

d.iZ+q.d.^ = .....
&quot;

. (6)d s d s
v

If we suppose d s to be constant, we have

d 2

y + qd
2 z=:0

which agrees with the equation there deduced for the path, when the

body is acted on by no forces.

Hence, it appears that when a body moves along a surface undisturbed,
it will describe the shortest line which can be drawn on that surface, be
tween any points of its path.

407. Let P and Q be two bodies, of which the Jirst hangs

from ajixedpoint and the second from the Jirst by means of
inextensible strings A P, P Q; it is required to determine the

small oscillations.

Let

A M = x, M P = y,

AN = x/,NQ = y
/

A P = a, P Q = a

mass of P = p, of Q = p
tension of A P =p,ofPQ=r p .

U4
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Then resolving the forces p, p , we have

y -.p g./ y_p_g
d t

2
p a ft

&amp;lt;*

2

y _ _P^g y -y

y_\
a t

(_
d t

2
(j! a

By combining these with the equations in x, x and with the two

x 2 +y = a 2
,

(x -x)*+(y _y) 2 :=a 2
;

we should, by eliminating p, p find the motion. But when the oscilla

tions are small, we may approximate in a more simple manner.

Let /3, j3 be the initial values of y, y . Then manifestly, p, p will de

pend on the initial position of the bodies, and on their position at the time

t : and hence we may suppose

p= M + P/3 + Q/3 + R-y + Sy + &c.

and similarly for p .

Now, in the equations of motion above, p, p are multiplied by y, y y

which, since the oscillations are very small are also very small quantities,

(viz. of the order /S). Hence their products with |3 will be of the order

B\ and may be neglected, and we may suppose p reduced to its first

term M.
M is the tension of A P, when /3, /3 &c. are all = 0. Hence it is the

tension when P, Q, hang at rest from A, and consequently
M = ^ + til.

Similarly, the first term of p , which may be put for it is m . Substi

tuting these values and dividing by g, equations (1) become

-\

9

(

v /

y

_

gdt 2
&quot;

a
&quot;

a

Multiply the second of these equations by X and add it to the first, and

we have

_ _/j m x / j^x
V a

&quot;

t* a af ) y \ a! /*a ) y_
g d I

8
,

V a t* a

and manifestly this can be solved if the second member can be put in

the form

k.(y + xy )

that is, if
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k x = -

a [A &

or

/i A6 a u, a
a k = 1 1

&amp;gt;
(8)

- = (a k 1)X
ft

Eliminating X we have

Hence

(a k)
2

^1 + )(l + -^
a k = - .... (4)

From this equation we obtain two values of k. Let these be de

noted by

k,
2k

and let the corresponding values of X, be

x,
2x .

Then, we have these equations.

and it is easily seen that the integrals of these equations are

y + x y = 1C cos. t V
(
k g) + D sin. t V

(

lk g)

y + 2

Xy = 2Ccos.t V
(

2

kg) + 2Dsin.t V
(

2

kg)
C,

1

D,
2

C,
2D being arbitrary constants. But we may suppose

1C = E cos. &amp;gt;e

D = E sin. &amp;gt;e

*C = 2E cos. 2e

D2 = 2E sin.
2e

By introducing these values we find

y + X y = E cos. {t V (
k g) + ej

y + 2X y = 2E cos. [i V (

2k g) + 2

c}

From these we easily find

The arbitrary quantities *, e, &c. depend on the initial position and
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velocity of the points. If the velocities of P, Q = 0, when t = 0, we
shall have

% 2
e, each =

as appears by taking the Differentials of y, y .

If either of the two J

E,
2E be = 0, we shall have (supposing the latter

case and omitting
l

e)

y = 8
-

j- cos. t V
(
k g)

y =

Hence it appears that the oscillations in this case are symmetrical : that

is, the bodies P, Q come to the vertical line at the same time, have similar

and equal motions on the two sides of it, and reach their greatest dis

tances from it at the same time. It is easy to see that in this case, the

motion has the same law of time and velocity as in a cycloidal pendulum ;

and the time of an oscillation, in this case, extends from when t = to

when t V
(

Jk g) = ir. Also if /3, /3 be the greatest horizontal deviation

of P, Q, we shall have

y = j3 . cos. t V
(

:k g)

y = /S .cos. t V
( kg).

In order to find the original relation of /3, |3 , (the oscillations will be

symmetrical if the forces which urge P, Q to the vertical be as P M, Q N,

as is easily seen. Hence the conditions for symmetrical oscillation might
be determined by finding the position of P, Q that this might originally

be the relation of the forces) that the oscillations may be of this kind, the

original velocities being 0, we must have by equation (5) since 2E = 0.

)8 + 2X /3
- 0.

Similarly, if we had

|8 + X /3 =
we should have *E = 0, and the oscillations would be symmetrical, and

would employ a time

When neither of these relations obtains, the oscillations may be consi

dered as compounded of two in the following manner : Suppose that we

put

y = Hcos. t V
( kg) + Kcos. t V

(

2

kg) ... (7)

omitting *e,
2
e, and altering the constants in equation (6) ; and suppose

that we take

M p = H . cos. t V
(

lk g) ;
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Then p will oscillate about M according to the law of a cycloidal pen
dulum (neglecting the vertical motion). Also

p P will - K . cos. t V
(

2k g).

Hence, P oscillates about p according to a similar law, while p oscil

lates about M. And in the same way, we may have a point q so moved,

that Q shall oscillate about q in a time

while q oscillates about N in a time

V( kg)
And hence, the motion of the pendulum A P Q is compounded of the

motion A p q oscillating symmetrically about a vertical line, and of A P Q
oscillating symmetrically about A p q, as if that were a fixed vertical line.

When a pendulum oscillates in this manner it will never return exactly
to its original position if V *k, V 2k are incommensurable.

If V l

k, V 2k are commensurable so that we have

m V :k = n V 2 k

m and ri being whole numbers, the pendulum will at certain intervals, re

turn to its original position. For let

t V
(
k g) = 2 n r

then

t V
(

2k g) = 2 m T

and by (7)

y = H cos. 2 n * -|- K . cos. 2 m T

= H + K,
which is the same as when

t = 0.

And similarly, after an interval such that

t V
(

lk g) = 4 n T, 6 n T, &c.

the pendulum will return to its original position, having described in the

intermediate times, similar cycles of oscillations.

408. Ex. Let (if = p,

a = a

to determine the oscillations.

Here equation (4) becomes

a 2 k 2 4 ak = 2

and

a k = 2 + V 2.
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Also, by equation (3)

[SECT. X

a k = 3 X

.-. x = 1 + V 2,
2X = 1 V 2.

Hence, in order that the oscillations may be symmetrical, we must

either have

/3 + (
I + V 2) j3 = 0, whence /3 = (

V 2 I)

or

f3 (
V 2 1) (S = 0, whence /3 = (

V 2 + 1) 0.

The two arrangements indicated by these equations are thus repre

sented.

Q N Q

The first corresponds to

/3 = (V 2 + l)./3

or

In this case, the pendulum will oscillate into the position A P Q , simi

larly situated on the other side of the line ; and the time of this complete
oscillation will be

In the other case, corresponding to

P = (V 2- l)/3

Q is on the other side of the vertical line, and

QN=(V2 1)PM.
The pendulum oscillates into the position A P Q , the point O remain

ing always in the vertical line ; and the time of an oscillation is

&amp;lt;jt /a
V (2 + V~2)+J g~

The lengths of simple pendulums which would oscillate respectively in

these times would be

2 _ V 2
and

2 + V 2
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or

1 .707 a and .293 a.

If neither of these arrangements exist originally, let |8, /3 be the origi

nal values of y, y when t is 0. Then making t = in equation (5), we

have

E = |8 + (
V 2 + 1) |S

and
2E = /3 (V 2 1) /3 .

And these being known, we have the motion by equation (6).

409. Any number of material points P1} P2 , P3 . . . Q,

^awg &/ means of a string without weight^ from a point
A ; it is required to determine their small oscillations in

a vertical plane.

Let A N be a vertical abscissa, and PJ M,, P2 M2 ,

&c. horizontal ordinates
; so that

A M! = x l5 A M2 = x2 , &c.

PI M! =.y,, P2 M2 = y2, &c.

A P! = a l5 P! P2 = a2, &c.

tension of A P! = p l9 of P1 P2= p2 , &c.

mass of P! = p lt of P2 = /42, &c.

Hence, we have three equations, by resolving the forces parallel to the

horizon.

d2 yi _ PI g yi .PS g ya 3

d t
2

&quot;

~LL ~FL~
*

T

d 2

y2 p2 g y2
; i r-j r&amp;gt;

d t *
~~ ~ ~ ~

&quot;

7T~\-i L fj^ tl^ fJ^2

&quot;

y? - Pag ys ya , p* g
2

&quot;~

Tt
y3

d t
2
^n _ Pn yn yn _

. . . (1)

And as in the last, it will appear that p,, p2, &c. may, for these small

oscillations, be considered constant, and the same as in the state of rest.

Hence if

then

P! = M, p2 = M A&I, p3 = M ^, -
/Kg, &c.

Also, dividing by g, and arranging, the above equations may be put in

this form :
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gdt
PI

;)y&amp;gt;

+ y*

^2 _ 2_yi __ / p2

(;

Pa

a2

y2 + PS y3

lL - P2_Z* __ / Ps , P4 \
,

i- 2
&quot;

/. Q \ &quot;T&quot; _ I J 3 ~i

r^3 3 r^i a*} f^ \ **4*

(1)

u v D v i n v&quot; jn ^ h n Jn I Pn Jn

gdt 2
/* an /in an

The first and last of these equations become symmetrical with the rest

if we observe that

y = o

and

Pn + i
= 0.

Now if we multiply these equations respectively by

1, X, X
, X&quot;,

&c.

and add them, we have

f\ 2 TT I % A 2 T T I \t A 2 ,, i 5irr

PI

a3 a3 a4

w-n - 1 an /z.n an

and this will be integrable, if the right-hand side of the equation be redu

cible to this form

k (y, + X y2 + X y3 + &c.).

That is, if

k _ _Pj_ , _

kx =

(n - 2) _ __
/ (n - 3) n &amp;gt;

/ (n - 2)_Pn

n an

(3)
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If we now eliminate

X, X , X&quot;, &c.

from these n equations, it is easily seen that we shall have an equation of

n dimensions in k.

Let

% 2
k,

3k ...... k

be the n values of k
; then for each of these there is a value of

X
, X&quot;,

X&quot;

easily deducible from equations (3), which we may represent by

X, X
, &amp;gt;X&quot;,

&c.
2X

,

2

X&quot;,

2X
&quot;,

&C.

Hence we have these equations by taking corresponding values X and k,

_
t

and so on, making n equations.

Integrating each of these equations we get, as in the last problem

yi + * y2 + * y3 + &c. = E cos. ft V
(&amp;gt;k g ) + e

$ 1 , r .

yi + 2
*- y2 + 2

&amp;gt;- J3 + &c. = 2E cos. {t V (

2k g) + 2

e] )
1

E,
2
E, &c. !

e,
2
e, &c. being arbitrary constants.

From these n simple equations, we can, without
difficulty, obtain the n

quantities y l5 yg, &c. And it is manifest that the results will be of this

form

yi=
IH 1 cos.{t V ( kg) + 1e}+ 2H 1 cos.{lV(

8

kg) + 2

e} + &c.-j
y^^cos.Jt V Ckg) + 1

e}+
2H2 cos.Jt\/(

2

kg) + 2
e] + &c. V . . . (6)

&c.= &c. )
where H^ Ha, &c. must be deduced from (Sj, /32 , &c. the original values

of yi, y2 , &c.

If the points have no initial velocities
(i.

e. when t = 0) we shall have
E = 0,

2E = 0, &c.

We may have symmetrical oscillations in the following manner. If,

of the quantities
1

E, *E,
3
E, &c. all vanish except one, for instance nE ; we

have

yi + ^ y8 + ^ y3 + &c. = o
^

yi + ^y2 + 2

^y3 + &c. = o

yi + 3

^ya + 3x y3 + &c. = o k - - (T)--.--_.__
yi+

n
^ya+ n

^y3+&c.- n
Ecos.tV(

n
kg)J

omitting
nE.



320 A COMMENTARY ON [SECT. X.

From the n 1 of these equations, it appears that y2 , y3 , &c. are in a

given ratio to y l ; and hence

n
&amp;gt;- y3 + &c.

is a given multiple of yt and = m yj suppose. Hence, we have

m y! s= nE cos. V
(

nk g) ;

or, omitting the index n, which is now unnecessary,

m y l
= E cos. t V (k g).

Also if y2 = e2 y lt

m y2 = E e2 cos. t V (k g)

and similarly for y3 &c.

Hence, it appears that in this case the oscillations are symmetrical. All

the points come into the vertical line at the same time, and move similar

ly, and contemporaneously on the two sides of it. The relation among
the original ordinates ft, /32 , /33 , &c. which must subsist in order that the

oscillations may be of this kind, is given by the n 1 equations (7),

ft + 1X& + X /33 +&c. =
ft + 2

*/32 + 2
&amp;gt;//33 + &c. =

ft + 3*& + 3
&amp;gt;//33 + &c. =

&c. = &c.

These give the proportion of ft /32 , &c; the arbitrary constant n
E, in

the remaining equation, gives the actual quantity of the original displace

ment.

Also, we may take any one of the quantities
L

E,
S
E,

3
E, &c. for that

which does not vanish
; and hence obtain, in a different way, such a sys

tem of n 1 equations as has just been described. Hence, there are n

different relations among ft ft, &c. or n different modes of arrangement,
in which the points may be placed, so as to oscillate symmetrically.

(
We might here also find these positions, which give symmetrical oscil

lations, by requiring the force in each of the ordinates Pj MI, P2 M2 to

be as the distance; in which case the points PM P2 , &c. would all come

to the vertical at the same time.

If the quantities V l

k, V 2k have one common measure, there will be

a time after which the pendulum will come into its original position. And
it will describe similar successive cycles of vibrations. If these quantities

be not commensurable, no portion of its motion will be similar to any

preceding portion.)

The time of oscillation in each of these arrangements is easily known ;

the equation

m yi = nE cos. t V
(

nk g)
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shows that an oscillation employs a time

And hence, if all the roots :

k,
2
k,

3
k, &c. be different, the time is dif

ferent for each different arrangement.

If the initial arrangement of the points be different from all those thus

obtained, the oscillations of the pendulum may always be considered as

compounded of n symmetrical oscillations. That is, if an imaginary pen
dulum oscillate symmetrically about the vertical line in a time

A/Ckg)
and a second imaginary pendulum oscillate about the place of the first,

considered as a fixed line, in the time

and a third about the second, in the same manner, in the thnc

x

and so on ; the nth
pendulum may always be made to coincide per

petually with the real pendulum, by properly adjusting the amplitudes of

the imaginary oscillations. This appears by considering the equations

(6), viz.

yi = Hj cos. t V
(
k g) + 2H! cos. t V

(

2k g) + &c.

&c. = &c.

This principle of the coexistence of vibrations is applicable in all cases

where the vibrations are indefinitely small. In all such cases each set of

symmetrical vibrations takes place, and affects the system as if that were

the only motion which it experienced.

A familiar instance of this principle is seen in the manner in which the

circular vibrations, produced by dropping stones into still water, spread
from their respective centers, and cross without disfiguring each other.

If the oscillations be not all made in one vertical plane, we may take a

horizontal ordinate z perpendicular to y. The oscillations in the direc

tion of y will be the same as before, and there will be similar results ob

tained with respect to the oscillations in the direction of z.

We have supposed that the motion in the direction of x, the vertical

axis, may be neglected, which is true when the oscillations arc very
small.

410. Ex. Let there be three bodies all equal (each = /a,), and also their

distances a 1} a.2 , a3 all equal (each = a).

VOL. I. X
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Here

p = 3 (*, p.2
= 2 ft, p3 = a

and equations (3) become

a k = 5 2 X

a k X = 2 + 3 X X

a k &amp;gt;/ = X + X .

Eliminating k, we have

5 X 2 X 2 = 2 + 3 X X
,

5 x 2 X X = X + X
,

or

X = 2X 2 2 X 2,

4 X 2 X X = X

v

.-. x =
2 X 4

... (2X
2 2X 2)(2X 4) = X

or

X 3_3X 2 + ^-X + 2 =0,
4

which may be solved by Trigonometrical Tables. We shall find three

values of X.

Hence, we have a value of X corresponding to each value of X
; and

then by equations (7)

ft -f- x ft + XX ft = \ ,

7
v

j3 + 2x ft + 2x ft = J

whence we find ft, ft in terms of ft.

We shall thus find

ft = 2. 295 &
or

ft = ]. 348 ft

or

ft = .643,3,

according as we take the different values of X.

And the times of oscillation in each case will be found by taking tiie

value of

a k = 5 2 X;

that value of X being taken which is not used in equation (7 ). For the

time of oscillation will be given by making
t V (k g) = cr.

If the values of ft, ft, ft have not this initial relation, the oscillations
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will be compounded in a manner similar to that described in the example
for two bodies only.

411. A flexible chain, of uniform thidcness, hangs from a Jixed point :

to find its initial form, that its small oscillations may be symmetrical.

Let A M, the vertical abscissa x ; M P the hori

zontal ordinate = y; A P = s, and the whole length

A C = a;

.-. A P = a s.

And as before, the tension at P, when the oscillations

are small, will be the weight of P C, and may be represent

ed by a s. This tension will act in the direction of a

tangent at P, and hence the part of it in the direction

P M will be C

tension X ds
or

(a
-

s) $* .

d s

Now, if we take any portion P Q = h, we shall find the horizontal

force at Q in the same manner. For the point Q, supposing d s constant

h d 3
&quot; ^ 2dy . dy ,

d 2

-* becomes 3-= + -=

ds d s d s

(see 32).

Also, the tension will be a s -f- h.

the direction N Q, is

y L ,

1
^ d s3 -IT2

&C -

Hence the horizontal force in

Subtracting from this the force in P M, we have the force on P Q
horizontally.

h &amp;lt;P h 2

+ Z + &c.)s d s
2

1 /

and the mass of P Q being represented by h, the accelerating force

(= --

-*j is found. But since the different points of P Q move
* rnuss /

with different velocities, this expression is only applicable when h is inde

finitely small. Hence, supposing Q to approach to and coincide with P,
we have, when h vanishes

12 1

accelerating force on P = (a s) , -\ ^ .

d s
2 d s

X2
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But since the oscillations are indefinitely small, x coincides with s and

we have

d 2 v d v
accelerating force on P = (a x) -j ^.dx 2 dx

Now, in order that the oscillations may be symmetrical, this force must

be in the direction P M, and proportional to P M, in which case all the

points of A C, will come to the vertical A B at once. Hence, we must

have

(a x) -, ^ ^~ = kdy (!)dx 2 d x

k being some constant quantity to be determined.

This equation cannot be integrated in finite terms. To obtain a

series let

y = A + B. (a x)+ C(a x)
2 + &c.

.-.i = B 2C(a x) 3D (a x)
2

...
&amp;lt;JlZ

= 1. 2. C + 2. 3 D (a x) + &c.
(I *v

Hence

~
v

&quot;

dx 2 dx *

gives
= 1. 2. C (a x) + 2. 3 D (a x)

2 + &c.

+ B + 2 C (a x) + 3 D (a x)
2 + &c.

+kA + kB(a x) + k C (a x)
2 + &c.

Equating coefficients ; we have

B = _ k A,

2 2 C= k B
3 2 D = k C
&c. = &c.

.-. B = k A
k 2 A

C =

D =

2 2

k 3 A
2 2.32

&c. = &c.

and

..(2)
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Here

A is B C, the value of y when x = a. When x = 0, y = ;

k 2 a 2 k 3 1 3

. 1 L. r, _L I . _i_ &T O f^\
- 1 K a -f-

g 2 ga 32 &quot;T

&quot;~ W
From this equation (k) may be found. The equation has an mfinite

number of dimensions, and hence k will have an infinite number of values,

which we may call

l ]f 2k n t l
2v, Iv, ... IV . . . J ,

and these give an infinite number of initial forms, for which the chain

may perform symmetrical oscillations.

The time of oscillation for each of these forms will be found thus. At

the distance y, the force is k g y : hence by what has preceded, the time

to the vertical is

T

sVTFg)
and the time of oscillation is

(The greatest value of k a is about 1.44 (Euler Com. Acad. Petrop.

torn. viii. p. 43). And the time of oscillation for this value is the same as

2
that of a simple pendulum, whose length is a nearly.)o

The points where the curve cuts the axis will be found by putting y = 0.

Hence taking the value nk of k, we have

n^a/o _ Y \ 2 n 1, 3 / _ x \ *

0= l-n k(a_ x)+ _ (*J=2 _ +
k^ 32

X) +&C.

which will manifestly be verified, if

n k (a x) = k a

or
n k

(
a _ x )

= 2k a

or

*k(a x) = 3ka
&c. = &c.

because lk a,
2k a, &c. are roots of equation (3).

That is if

x = a l - or = a J ~ or = &c -

Suppose k,
2
k,

3
k, &c. to be the roots in the order of their magnitude

k being the least.

Then if for n
k, we take k, all these values of x will be negative, and

the curve will never cut the vertical axis below A.

X3
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If for n
k, we take *k, all the values of x will be negative except the

first; therefore, the curve will cut A B In one point. If we take 3
k, all

the values will be negative except the two first, and the curve cuts A B
in two points ; and so on.

Hence, the forms for which the oscillations will be

symmetrical, are of the kind thus represented.

And there are an infinite number of them, each

cutting the axis in a different number of points.

If we represent equation (2) in this manner

y = A
&amp;lt;f&amp;gt; (k, x)

it is evident that

y = 1A? (&amp;gt;k, x)

y = 2A p (

2
k, x)

&c. = &c.

will each satisfy equation (1). Hence as before, if we put

y = A p ( k, x) + 2A p (

2
k, x) + &c.

and if A, *A, &c. can be so assumed that this shall represent a given
initial form of the chain, its oscillations shall be compounded of as many

coexisting symmetrical ones, as there are terms A,
2
A, &c.

We shall now terminate this long digression upon constrained mo
tion. The reader who wishes for more complete information may con

sult Whewell s Dynamics, one of the most useful and elegant treatises

ever written, the various speculations of Euler in the work above quoted,
or rather the comprehensive methods of Lagrange in his Mecanique

Analytique.

We now proceed to simplify the text of this Xth Section.

412. PROP. L. First, S II Q is formed by an entire revolution of the

generating circle or wheel, whose diameter is O R, upon the globe

SOQ.
413. Secondly, by taking

C A : C O : : C O : C R
we have

CA: CO:: CA CO: CO CR
: : A O : O R

and therefore if C S be joined and produced to meet the exterior globe

in D, we have also

AD : SO(:: C A: CO) :: AO: OR.
But

S O = the semi-cireumference of the wheel O R = -^-^ .
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. .AD = ^ = the circumference of the wheel whose diameter is
it

A O. That is S is the vertex of the Hypocycloid A S, and A S is per

pendicular in S to C S. But O S is also perpendicular to C S. There

fore A S touches O S in S, &c.

414. The similar jigures A S, S R.]

By 39 it readily appears that Hypocycloids are similar when

R : r : : R : r

R and r being the radii of the globe and wheel : that is when

C A : AO ::CO : O R
or when

CA:CO::CO:CR
.. A S, S R are similar

415. V B, V W are equal to O A, O R.]

If B be not in the circumference AD let C V meet it in B . Then
V P being a tangent at P, and since the element of the curve A P is the

same as would be generated by the revolution of B P around B as a

center, and .. B P is perpendicular both to the curve and its tangent
P V, therefore P B, P B and .-. B, B coincide. That is

V B = O A.

Also if the wheel O R describes O V whilst A O describes A B, the

angular velocity B P in each must be the same, although at first, viz. at

O and A, they are at right angles to each other. Hence when they shall

have arrived at V and B their distances from C B must be complements
of each other. But

.TVW = BVP=-5 PBV
m

/. T V is a chord in the wheel O R, and

.-. V W = O R.

See also the Jesuits note.

OTHERWISE.

416. Construct the curve S P, to which the radius of curvature to every

point of S R Q is a tangent ; or which is the same, find S A the Locus of

the Centers of Curvature to S R Q.
Hence is suggested the following generalization of the Problem, viz.

417. To make a body oscillate in any given curve.

Let S R Q (Newton s
fig.) the given curve be symmetrical on both sides

X4
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of R. Then if x, y be the rectangular coordinates referred to the vertex

R, and a, (3 those of the centers of curvature (P) we have

r 2 _ p T 2 _
(y /3)

2 + (
X a)

2
.

Hence, the contact being of the second order (74)

X- + (y -0)^ = (1)

and

d v 2 d 2 v

!+ HI +
&-$&amp;lt;- (a)

These two equations by means of that of the given curve, will give us

Q in terms of , or the equation to the Locus of the centers of curvature.

Let S A be the Locus corresponding to S R, and A Q the other half.

Then suspending a body from A attached to a string whose length is R A,

when this string shall be stretched into any position APT, it is evident

that P being the point where the string quits the locus is a tangent to it,

and that T is a point in S R Q.

Ex. 1. Let S R Q be the common parabola.

Here

y
2 = 2 a x

d y a

d x y

d 2

y ady a 2 a

dx 2
= &quot;

y* d~x
= ~

y&quot;

3
~ ~

2 x y

/. substituting we get

-/S).! =v

and

... x a + fl + ^-} .
^ = = 3x a-fa

V V. 2 x/ a

or

and

But

y
8 = 2 a x

8x ;
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8 (a a)
3 8 .._ vx V / _ __ /~ o I 3 /Ql

s\ ~nri
~

&quot;fjry

*
\

~~~
I \ )

Now when /3 = 0, a = a; which shows that A R the length of the

string must equal a. Also making A the origin of abscissas, that is, aug

menting a, by a, we have

- x

the equation to the semicubical parabola A S, A Q, which may be traced

by the ordinary rules (35, &c.); and thereby the body be made to oscillate

in the common parabola S Q R.

Ex. 2. Let S R Q be an ellipse.

Then, referring to its center, instead of the vertex,

or

b 2 x 2 = a 2 ba y

d y
d x

... a 2
y + b 2 x =
J

and

ii y -TJ
r- B j q -p - v.

J dx d x.
2

These give

d y b 2
-X.

dx.
~ ~

a 2
y

and

d^y b 4

dx 2
=

a 2

y
3

Hence

(a
2 b 2

)
x 3

a 3 -i

a 4

and

^=- (a
&quot;&quot;

b 4
)y3

-

Hence substituting the values of y and x in

a 2

y
we get

* M r\ i^ x *-&amp;lt; o v .*_

(a)
b \f / a a \

the equation to the Locus of the centers of curvature.
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In the annexed figure let

SC = b, CR = a

C M = x, T M = y.

Then
P N = ft C N = .

And to construct A S by points, first put
s

whence by equation (a)

j_
a 2 b *

C6 -^
&quot;~|

a

the value of A C. Let

a. =
then

S = + =-^

the value of S C or C Q .

Hence to make a body oscillate in the semi-ellipse S R Q we must

take a pendulum of the length A R, (part = A P S flexible, and part

= S S rigid ;
because S S is horizontal, and no string however stretched

can be horizontal see Whewell s Mechanics,) and suspend it at A.

Then A P being in contact with the Locus AS ,
P T will also touch

A S in P, &c. &c.

Ex. 3. Let S R Q be the common cycloid ,-

The equation to the cycloid is

1? - /
d x

~ V
- /f?-

r

V V

d*y
dx 2=

whence it is found that

y 1

Hence

and

d^ _ 2r y

dx
~

y

dv
dx

/.

2r y

y

. /^-.
3

do&quot; Ar y

which is also the equation of a cycloid, of which the generating circle is
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precisely the same as the former, the only difference consisting in a change
of sign of the ordinate, and of the origin of the abscissae.

The rest of this section is rendered sufficiently intelligible by the

Notes of P. P. Le Seur and Jacquier ;
and by the ample supplementary

matter we have inserted.

SECTION XL

417. PROP. LVII. Two bodies attracting one another, describe round

each other and round the center of gravity similar figures.

Q

Since the mutual actions will not affect the center of gravity, the bodies

will always lie in a straight line passing through C, and their distances

from C will always be in the same proportion.

.-. S C : T C : : P C : Q C
and

z-SCT = QCP.
.*. the figures described round each other are similar.

Also if T t be taken = S P, the figure which P seems to describe

round S will be t Q, and

Tt : TQ:: S P: TQ
: : C P : C Q

and

t- 1 T Q = P C Q.
.. the figures t Q, P Q, are similar ; and the figure which S seems to

describe round P is similar, and equal to the figure which P seems to

describe round S.

418. PROP. LVIII. If S remained at rest, a figure might be de

scribed by P round S, similar and equal to the figures which P and S

seem to describe round each other, and by an equal force.
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Q R

8

Curves are supposed similar and Q R, q r indefinitely small. Let P and

p be projected in directions P R, p r (making equal angles C P R, s p r)

with such velocities that

V V~S _ V CP _ V PQ
P v sp ^ pq

Then (sisince a t = ds
v

PQ
pq VPQ

Vp q VPQ _ V QR
V q rVpq

C
But in the beginning of the motion f =

F _ QR jr l_

f
: :

~qr Q R
=:

1

The same thing takes place if the center ofgravity and the whole system

move uniformly forward in a straight line in fixed space.

419. COB. 1. If F cc D, the bodies will describe round the common

center of gravity, and round each other, concentric ellipses, for such would

be described by P round S at rest with the same force.

Conversely, if the figures be ellipses concentric, F D.

420. COR. 2. If F &amp;lt;x
- the figures will be conic sections, the foci in

the centers of force, and the converse.

421. COR. 3. Equal areas are described round the center of gravity,

and round each other, in equal times.

V

422. COR. 3. Otherwise. Since the curves are similar, the areas, bounded

by similar parts of the curves, are similar or proportional.

.-. spq : C P Q : : sp
2

: C P 2
: : (S+ P)

2
: s

2 in a given ratio;
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and T. through s p q : T. through CPQ:: VS+ P: V S, in a given ratio

and .-. : : T. through spv: T.through CPV
.-. T. through C P Q : T. through CPV:: T. through spq : T. through spv

: : s p q : s p v (by Sect. II.)

::CPQ:CPV
.. the areas described round C are proportional to the times, and the

areas described round each other in the same times, which are similar to

the areas round C, are also proportional to the times.

423. PROP. LIX. The period in the figure described in4ast Prop.

: the period round C : : V S + P : V S ;
for the times through similar

arcs p q, P Q, are in that proportion.

424. PROP. LX. The major axis of an ellipse which P seems to de

scribe round S in motion (Force &amp;lt;x

jrzl major axis of an ellipse which

would be described by P in the same time round S at rest : : S + P :

of two mean proportionals between S + P and S.

Let A = major axis of an ellipse described (or seemed to be described)

round S in motion, and which is similar and equal to the ellipse de

scribed in Prop. LVIII.

Let x = major axis of an ellipse which would be described round S at

rest in the same time.

period in ellipse round S in motion V S /p T TV\
period in same ellipse round Sat rest

&quot;&quot;

^/~s^f^P
r ^

and by Sect. Ill,

period in ellipse round S at rest A *

period in required ellipse round S at rest
~

fA,

period in ellipse round S in motion A* V~S
period in required ellipse round S at rest

~~

I v~S~^TP
but these periods are to be equal,

.-. A 3 S = x 3 .S~+~p
3

.-. A:x:: V S + P: V S::S+ P: first of two mean proportionals

(for if a, a r, a r
2
, a r 3

, be proportionals, V~o. : V a r 3
: : a : a r.)

425. At what mean distance from the earth would the moon revolve
round the earth at rest, in the same time as she now revolves round the
earth in motion ? This is easily resolved.

426. PROP. LXI. The bodies will move as if acted upon by bodies at

the center of gravity with the same force, and the law of force with re-
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spect to the distances from the center of gravity will be the same as with

respect to the distances from each other.

For the force is always in the line of the center of gravity, and .-. the

bodies will be acted upon as if it came from the center of gravity.

And the distance from the center of gravity is in a given ratio to the

distance from each other, .-. the forces which are the same functions of

these distances will be proportional.

427. P$,OP. LXII. Problem oftwo bodies with no initial Velocities.

F oc _ . Two bodies are let fall towards each other. Determine the

motions.

The center of gravity will remain at rest, and the bodies will move as

if acted on by bodies placed at the center of gravity, (and exerting the

same force at any given distance that the real bodies exert),

.-. the motions may be determined by the 7th Sect.

428. PROP. LXIII. Problem of two bodies with given initial Velo

cities.

F ex
j

. Two bodies are projected in given directions, with given

velocities. Determine the motions.

The motion of the center of gravity is known from the velocities and

directions of projection. Subtract the velocity of the center of gravity

from each of the given velocities, and the remainders will be the velocities

with which the bodies will move in respect of each other, and of the cen

ter of gravity, as if the center of gravity were at rest. Hence since they
are acted upon as if by bodies at the center of gravity, (whose magnitudes
are determined by the equality of the forces), the motions may be deter

mined by Prop. XVII, Sect. Ill, (velocities being supposed to be acquired
down the finite distance), if the directions of projection do not tend to the

center, or by Prop. XXXVII, Sect. VII, if they tend to or directly from

the center. Thus the motions of the bodies with respect to the center of

gravity will be determined, and these motions compounded with the uni

form motion of the center of gravity will determine the motions of the

bodies in absolute space.

429. PIIOP. LXIV. F oc D, determine the motions of any number of

bodies attracting each other.
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T and L will describe concentric

ellipses round D.

Now add a third body S.

Attraction of S on T may be re

presented by the distance T S, and

on L by L S, (attraction at distance

being 1) resolve T S, L S, into

T D, D S ; L D, D S, whereof the

parts T D, L D, being in given
ratios to the whole, T L, L T, will

only increase the forces with which

L and T act on each other, and

the bodies L and T will continue to describe ellipses (as far as respect
these new forces) but with accelerated velocities, (for in similar parts of

similar figures V 2 F.R Prop. IV. Cor. 1 and 8.) The remaining
forces D S, and D S, being equal and parallel, will not alter the relative

motions of the bodies L and T, .-. they will continue to describe ellipses

round D, which will move towards the line I K, but will be impeded in

its approach by making the bodies S and D (D being T + L) describe

concentric ellipses round the center of gravity C, being projected with

proper velocities, in opposite and parallel directions. Now add a fourth

body V, and all the previous motions will continue the same, only accel

erated, and C and V will describe ellipses round B, being projected with

proper velocities.

And so on, for any number of bodies.

Also the periods in all the ellipses will be the same, for the accelerating

force onT = L.TL+ S . TD= (T+L) . TD+S. T D=(T+L +S).
T D, i. e. when a third body S is added, T is acted on as if by the sum

of the three bodies at the distance T D, and the accelerating force on D
towards C=S.SD = S.CS+S.DC = (T+L).DC+S.DC
-

(T + L + S). D C.

. . accelerating force on T towards D : do. on D towards C : : TD : D Co

. . the absolute accelerating forces on T and D are equal, or T and D
move as if they revolved round a common center, the absolute force the

same, and varying as the distance from the center, i. e. they describe el

lipses, in the same periods.

Similarly when a fourth body V is added, T, L, D, S, C, and V, move
as if the four bodies were placed at D, C, B, i. e. as if the absolute forces

were the same, and with forces proportional to their respective distances

from the centers of gravity, and .. in equal periods.
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And so on, for any number of bodies.

430. PROP. LXVI. S and P revolve round T, S in the exterior orbit,

P in the interior,

F oc
,
find when P will describe round T an orbit nearest to the

ellipse, and areas most nearly proportional to the times.

(1st.) Let S, P, revolve round the greatest body T in the same plane.

Take K S for the force of S on P at the mean distance S K,
and

L S = S K . = force at p
&amp;gt;

resolve L S into L M, M S,

L M is parallel to P T, and .-. tends to the center T, .-. P will con

tinue to describe areas round T proportional to the times, as when acted

on only by P T, but since L M does not oc
p~ff~z &amp;gt;

tne sum of L M and

P T will not TZ , .-. the form of the elliptic orbit P A B will be

disturbed by this force, L M, M S neither tends from P to the center

T, nor oc . from the force M S both the proportionality of areasP T 2

to times, and the elliptic form of the orbit, will be disturbed, and the

elliptic form on two accounts, because M S does not tend to C, and be

cause it does not
p~q^i

. . the areas will be most proportional to the times, when the force

M S is least, and the elliptic form will be most complete, when the forces

M S, L M, but particularly L M, are least.

Now let the force of S on T = N S, then this first part of the force

M S being common to P and T will not affect their mutual motions, .. the
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disturbing forces will be least when L M, M N, are least, or L M remain

ing, when M N is least, i. e. when the forces of S on P and T are nearly

equal, or S N nearly = S K.

(2dly) Let S and P revolve round T in different planes.

Then L M will act as before.

But M N acting parallel to T S, when S is not in the line of the Nodes,

(and M N does not pass through T), will cause a disturbance not only

in the longitude as before, but also in the latitude, by deflecting P from

the plane of its orbit. And this disturbance will be least, when M N is

least, or S N nearly = S K.

431. COR. 1. If more bodies revolve round the greatest body T, the

motion of the inmost body P will be least disturbed when T is attracted

by the others equally, according to the distances, as they are attracted by
each other.

432. COR. 2. In the system of T, if the attractions of any two on the

third be as
y^, , P will describe areas round T with greater velocity near

conjunction and opposition, than near the quadratures.
433. To prove this, the following investigation is necessary.

Take 1 S to represent the attraction of S on P,

n S T,

Then the disturbing forces are 1 m (parallel to P T) and m n.

Now -

SI--?-O I c, TJ

S.R
SP~ (R

2 2Rrcos.

S.R

V R 2 2Rrcos. A

JLC0^: 4. l\ /i
2 r cos. A r 2

R h RVV ~~KT r R-
VOL. I.
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S / 2r

S /. 3/2r r 2
x 3. 5 /2rcos. A rVo N= KA 1 + rw cos - A-

RI) + 274 ( R wl &c
-)

S /. 3r /3 3.5=
RTA

1 + Tr cos - A~
(-2
-
2^ cos&amp;lt;

S /. 3 r. cos. A\
= R 2 ^ ~R /

where R is indefinitely great with respect to r.

Also

-Q Q^ ^ /, 3 r cos. A\ S S.Srcos.-Sn= w(l+ _^__)_ R2=
__

ultimately

and Ira = SI. - =~ (R
2 2 R r cos. A + r 2

)

* (R
2 ~2 Rr cos. A + r 2

)-

2

&c.&quot;

R 3 R

=
-p^Y ultimately.

434. Call 1 m the addititious force

and m n the ablatitious force -

and m n = 1 m 3 cos. A.

Resolve m n into m q, q n.

The part of the ablatitious force which acts in the direction m q
= m n . cos. A

3 . S . r. cos. 2 A
R = central ablatitious force.

3 S r
The tangential part r= m n . sin. A = ~WT~ sm - -^ cos - -A-

o Q r
= -

. -j^ . sin. 2 A = tangential ablatitious force
& JLv

., i i r ., j- Tjrr, i S.r 3.S.r.cos.2A
%

. the whole force m the direction PT = lm mq = ~-, ^r^
it it

= ^ (l
_ 3 cos.

2
A) and theR 3 v

3 S.r
,
whole force in the direction of the Tangent = q n = . ~^-j . sin. 2 A.

til At

435. Hence COR. 2. is manifest, for of the four forces acting on P, the
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three first, namely, attraction of T, addititious force, and central ablatiti-

ous force, do not disturb the equable description of areas, but the fourth

or tangential ablatitious force does, and this is -f- from A to B, from B
to C, + from C to D, from D to A. /. the velocity is accelerated from A
to B, and retarded from B to C, /. it is greatest at B. Similarly it is a

maximum at D. And it is a minimum at A and C. This is Cor. 3.

436. To otherwise calculate the central and tangential ablititiousforces.

On account of the great distance of S, S M, P L may be considered

parallel, and

.-. P T = L M, and S P = S K = S T.

.-. the ablatitious force = 3 P T. sin. 6 = 3 P K.

Take P m = 3 P K, and resolve it into P n, n m.

P n =; P m . sin. 6 = 3 P T. sin.
2
6 = central ablatitious force

= 3 p T.
] cos - 2 *

n m = P m . cos, 6 3 P T. sin. 6 cos. 6 = ^ . P T. sin. 2 6 = tangential
SB

ablatitious force.

The same conclusions may be got in terms of 1 m from the
fig. in Art

433, which would be better.

437. Find the disturbingforce on P in the direction P T.

This = (addititious + central ablatitious) force = 1 m -f 3 1 m . sin.
2
6

&quot;I cos. 2i 01 /&quot;= lm_31m(

438. To Jind the mean disturbing force of S during a whole revolution
in the direction P T.

Let P T at the mean distance = m, then 1 m f

Y2

1 3 cos. 2
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1m m , !!= -^ since cos. 2 6 is destroyed during a whole revo-
- A

lution.

439. The disturbing forces on P are

(1) addititious = -=^- = A.

(2) ablatitious = 3 . A . sin. 6

3

~2
3 . A

which is (1) tangential ablatitious force
*

. cos. 2 &

I cos&amp;gt; 2
and (2) central ablatitious force = 3 A .

-
2

3 A 3 A
.*. whole disturbing force in the direction P T= A -j

-
. cos. 2 &

A
,

3 A=
Q- + . cos. 2 6.

But in a whole revolution cos. 2 6 will destroy itself, .-. the whole dis

turbing force in the direction P T in a complete revolution is ablatitious

and = addititious force.

The whole force in the direction P T =
-^-j- (1 3 sin. 2

6) (Art. 433)

multiply this by d.0, and the integral = -^-y (0
6 + . sin. 2 i\

= sum of the disturbing forces ; and this when 6= ir becomes
i

This must be divided by T, and it gives the mean disturbing force act-

CJ

ing on P in the direction of radius vector = & ~t&amp;gt; s

440. The 2d COR. will appear from Art. 433 and 434.

3
For the tangential ablatitious force = . sin 2 6 . X addititious force,

.. this force will accelerate the description of the areas from the quadra

tures to the syzygies and retard it from the syzygies to the quadratures,

since in the former case sin. 2 is +, and in the latter .

441. COR. 3 is contained in COR. 2. (Hence the Variation in as

tronomy.)
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442. P V is equivalent to P T, T V, and accelerates the motion
;

p V is equivalent to p T, T V, and retards the motion.

443. COR. 4. Cast, par., the curve is of greater curvature in the quadra
tures than in the syzygies.

For since the velocity is greatest in the syzygies, (and the central abla-

titious force being the greatest, the remaining force of Pto T is the least)

the body will be less deflected from a right line, and the orbit will be less

curved. The contrary takes place in the quadratures.

444. The whole force from S in the direction P T=~^ (1 3 sin.
2

6}

T
(see 433) and the force from T in the direction P T = -

rp O
. . the whole force in the direction P T = i- + ^ (1 3 sin.

2

6)

T S r
and at A this becomes -V + -

r 2

at B

at C

atD

r 2

_T
r 2

T
. 2

2 . S . r

R 3

S.r
R 3

2 S. r

r R 3

(for though sin. 270 is
, yet its syzygy is +).

Thus it appears that on two accounts the orbit is more curved in the

quadratures than in the syzygies, and assumes the form of an ellipse at
the major axis A C.

Y3
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.*. the body is at a greater distance from the center in the quadratures
than in the syzygies, which is Cor. 5.

445. COR. 5. Hence the body P, caet. par., will recede farther from

T in the quadratures than in the syzygies ; for since the orbit is less

curved in the syzygies than in the quadratures, it is evident that the body
must be farther from the center in the quadratures than in the syzygies.

446. Con. 6. The addititious central force is greater than the ablati-

tious from Q to P, and from P7
to Q, but less from P to P , and from

Q to Q , .&quot;. on the whole, the central attraction is diminished. But it

may be said, that the areas are accelerated towards B and D, and .*. the

time through P P may not exceed the time through P Q, or the time

through Q Q exceed that through Q P. But in all the corollories, since

the errors are very small, when we are seeking the quantity of an error,

and have ascertained it without taking into account some other error,

there will be an error in our error, but this error in the error will be an

error of the second order, and may .*. be neglected.

The attraction of P to T being diminished in the course of a revolution,

the absolute force towards T is diminished, (being diminished by the

S r r &
mean disturbing force i _s , 439,) .-. the period which . isR 3 V f

increased, supposing r constant.

But as T approaches S (which it will do from its higher apse to the

lower) R is diminished, the disturbing force fwhich involves y] will be

increased, and the gravity of P to T still more diminished, and .-. r will

be increased ; . . on both accounts (the diminution of f and increase of r)

the period will be increased.

(Thus the period of the moon round the earth is shorter in summer

than in winter. Hence the Annual equation in astronomy.)

When T recedes from S, R is increased, and the disturbing force di

minished and r diminished. . . the period will be diminished (not in com

parison with the period round T if there were no body S, but in compari
son with what the period was before, from the actual disturbance.)

T1 C
447. COR. 6. The whole force of P to T in the quadratures= ^-+-, 1

r 2 R s

T 2Sr--- the syzygies = --

. . on the whole the attraction of P to T is diminished in a revolution.

For the ablatitious force in the syzygies equals twice the addititious force

in the quadratures.
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At a certain point the ablatitious force zr the addititious; when

1 = 3 sin.
2

6

or

sill - = V3
and

A = 55, &c.

P
(the whole force being then = j.

Up to this point from the quadratures the addititious force is greater

than the ablatitious force, and from this point to one equally distant from

the syzygies on the other side, the ablatitious is greater than the addititious ;

.. in a whole revolution P s gravity to T is diminished.

Again since T alternately approaches to and recedes from S, the radius

I*
-

P T is increased when T approaches S, and the period cc _____ ___ __.

V absolute force

and since f is diminished, and .*. r increased, . . the periodic time is in

creased on both accounts, (for f is diminished by the increase of the dis

turbing forces which involve w.J If the distance of S be diminished, the

absolute force of S on P will be increased, . .thedisturbingforces which QCyr-^

from S are increased, and P s gravity to T diminished, and .*. the periodic

time is increased in a greater ratio than r 2
(because of the diminution of

r f
fin the expression -ry-yj

and when the distance of S is increased, the dis

turbing force will be diminished, (but still the attraction of P to T will be

diminished by the disturbance of S) and r will be decreased, .*. the
5

period will be diminished in a less ratio than r ^.

448. COR. 7. To find the effect of the disturbing force on the motion

of the apsides of P s orbit during one whole revolution.
FT! CJ

Whole force in the direction P T = -f TTT (1 ^ cos&amp;gt;

*

A)

= T
+T.c.r, (if T.c =

3 (l-3cos.A) = Tr +
3

- c - r4
&amp;gt;

I
i c

. . the L. between the apsides =180 - - by the IXth Sect, which
1 + 4 c

is less than 180 when c is positive, i. e. from Q to P and from P to P,
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(fig. (446,)) and greater than 180 when c is negative, i. e. from P to P
and from Q to Q ,

.. upon the whole the apsides are progressive, (regressive in the quadra
tures and progressive in the syzygies) ;

, T 3Sr
force = -75

--
TTT&quot;

force m conjunction

T 3 S i
1

-f~z
--^ = force in opposition

Now
R 3 T 3Sr 3

A R 3 T 3Sr/3

r R r 2 R 3

differ most from and -=-$
r 2 r/z

when r is least with respect to r ,

which is the case when the Apsides are in the syzygies.

But

R 3 T+ Sr 3 R 3 T+ Sr 3

r 8 R 8 ~?~rR T
~

differ least from
2
an(^ ~ when r is most nearly equal to r

,

449. COR. 7. Ex. Find the angle from the quadratures, when the apses

are stationary.

Draw P m parallel to T S, and = 3 P K, m n perpendicular to T P,

resolve. P m into P n, n m, whereof n m neither increases nor diminishes

the accelerating force of P to T, but P n lessens that force, .-. when P n

= P T, the accelerating force of P is neither increased nor diminished,

and the apses are quiescent,

by the triangles PT:PK::PM=3PK:Pn-PT
.*. in the required position 3 P K 2 = P T ~

or

P K = ~^= PT.sin. P,
v o
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.. ,

or

6 = 35 26 .

The addititious force P T P n is a maximum in quadratures.

^ P
F or P T : P K : : 3 P K : P n =

.-. P T P n = PT 3

pJP ,
which is a maximum when P K = 0,

or the body is in syzygy.

450. COR. 8. Since the progression or regression of the Apsides de

pends on the decrement of the force in a greater or less ratio than D 2
,
from

the lower apse to the upper, and on a similar increment from the upper
to the lower, (by the IXth Sect.), and is .. greatest when the proportion

of the force in the upper apse to that in the lower, recedes the most from the

inverse square of D, it is manifest that the Apsides progress the fastest from

the ablatitious force, when they are in the syzygies, (because the whole forces

in conjunction and opposition, i. e. at the upper and lower apses being
T 2 S r

I
--

rTT&quot; &amp;gt;

when the apsides are in the syzygies and when r is greatest

T
at the upper apse, being least, and the negative part of the expression

2 S r
,, 3 being greatest, the whole expression is .. least, and when r is least,

T
at the lower apse, ^ being greatest, and the negative part least, .. the

whole expression is greatest, and .*. the disproportion between the forces at

the upper and lower apse is greatest), and that they regress the slowest

T S r
in that case from the addititious force, (for + ^-^ , which is the whole

v
r

2 R 3

force in the quadratures, both before and after conjunction, r being the

semi minor axis in each case, differs least from the inverse square) ; there

fore, on the whole the progression in the course of a revolution is greatest

when the apsides are in the syzygies.

Similarly the regression is greatest when the apsides are in the quadra

tures, but still it is not equal to the progression in the course of the re-

Volution.

451. COR. 8. Let the apsides be in the syzygies, and let the force

at the upper apse : that at the lower, : : D E : A B, D A
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being the curve whose ordinate is inversely
as the distance 2 from C, . . these forces being

diminished, the force D E at the upper apse

2 r S
by the greatest quantity -oT~ &amp;gt;

anc^ tne f rce

A B at the lower apse by the least quantity
2^8
J5-J-

; the curve a d which is the new force

curve has its ordinates decreasing in a

greater ratio than ^^ .

Let the apsides be in the quadratures, then the force E D will be increased

by the greatest quantity ^ , and the force A B by the least quantity

S r

^-j-
, /. the curve a d which is the new force curve will have its

ordinates decreasing in a less ratio than =
2

.

451. COR. 9. Suppose the line of apsides to be in quadratures, then while the

body moves from a higher to a lower apse, it is acted on by a force which

1 R 3 T -f- S r 3

does not increase so fast as -^~9 (for the force = r-^-, , .. the
r^ R, 3

numerator decreases as the denominator increases), . . the orbit will be

exterior to the elliptic orbit and the excentricity will be decreased. Also as

the descent is caused by the force -rr-^ (1 3 cos. 2

A), the less this

T
force is with respect to -

, the less will the excentricity be diminished.

Now while the line of the apsides moves from the line of quadratures, the

force p 3 (
1 3 cos. 2

A) is diminished, and when it is inclined at z_ 35
JLX

16 the disturbing force = 0, and .. at those four points the excentricity

is unaltered. After this, it may be shown in the same manner that the

excentricity will be continually increased until the line of apsides coin

cides with the line of syzygies. Here it is a maximum, since the disturb

ing force is negative. Afterwards it will decrease as before it increased

until the line of apsides again coincides with the quadrature, and then the

excentricity = maximum.

(Hence Evection in Astron.)
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452. LEMMA. To calculate that part of the ablatitious force which is

employed in drawing P from the plane of its orbit.

Let A = angular distance from syzygy.

Q = angular distance of nodes from syzygy.

I = inclination of orbit to orbit of S and T.

3 S r
Then the force required = -jp-

. cos. A . sin. Q . sin. I. (not quite

accurately.)

When P is in quadratures, this force vanishes, since oos. A = 0.

When nodes are in syzygy, since sin. Q = 0,

quadratures, this force (cast, par.) = maxi

mum, since sin. Q = sin. 90 = rad.

453. COR. 12. The effects produced by the disturbing forces are all

greater when P is in conjunction than when in opposition.

For they involve -, .-. when R is least, they are greatest.

454. COR. 13. Let S be supposed so great that the system P and T re

volve round S fixed. Then the disturbing forces will be of the same kind

as before, when we supposed S to revolve round T at rest.

The only difference will be in the magnitude of these forces, which will

be increased in the same ratio as S is increased.

455. COR. 14. If we suppose the different systems in which S and S T
oc, but P T and P and T remain the same, and the period (p) of P round

T remains the same, all the errors
p~3

a
~^7 ,

if A = density of S,

and d its diameter,
a &amp;lt;3

3

,
if A given, and 3= apparent diam.

also

TTs a o~3 ^ P = period of T round S,

.. the errors oc .

These are the linear errors, and angular errors oc in the same ratio,

since P T is given.

456. COR. 15. If S and T be varied in the same ratio,

S T
Accelerating force of S : that of T : : rf-z : the same ratio as before.R 2 r-

. . the disturbances remain the same as before.

(The same will hold if R and r be also varied proportionally.)

.. the linear errors described in P s orbit oc P T, (since they involve r),

if P T oc, the rest remaining constant.
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i ,1 i r T&amp;gt; /&amp;gt; m linear errors P T
also the angular errors of P as seen from T oc a __ oc i }

and are . . the same in the two systems.

The similar linear errors a f . T 2
,

.-. P T a f . T \ and f

P T P T
-Fp-g-

, but f a
accelerating force of T on P oc

, (p = period of P

round T,)

.-.Tap and .-. oc P
c S P 3

\ o T1 Jr /

COR. 14. In the systems

S, T, P, Radii R, r Periods P, p
S , T, P R ,

r P , p.

Linear errors dato t. in 1st : do. in second : : p-2 : p^

.*. angular errors in the period of P : : :
-

:
-pj^

.

COR. 15. In the systems
S T P F? r P r

J
-1 J x

J &quot;&amp;gt;

-1
&quot; ~ * 9 P

S , T, P R
,
r F, p ,

s;

s

.%* =2..

, S T , R r
so that -^ = ;=- and ^o R r

P
Linear errors in a revolution of P in 1 st. : do. in second : : r : r

angular errors : ::!:!.
COR. 16. In the systems

S, T, P, R, r P, p
S, T , P, R, i

j
P, p .

Linear errors in a revolution of P in 1st. : do in second : : r p
2

: r p
/s

angular errors in a revolution of P : : : p
2

: p
2
.

To compare the systems

(1) S, T, P R, r P, p
/O\ O/ TV T)/ T&amp;gt;/ ,,/ ID/ y-/
I ^ I O j J j JL *&quot;

-- JLV I ~&quot;
&quot;

&quot; - -- &quot;~ A
,

Li

Assume the system
(Q\ C/ T1 p T} r p/ n
l I ^ J J. j JL ^^ At* 5

J. JL A U

.*. by (14) angular errors in P S revolution in (1) : in (3) . : -51 p7 Z

by (16) angular errors in (3) : in (2) : : p
2

: p
/2

~
p/2

therefore errors in (1) : in (2) : :

p-2
: ^-z
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Or assume the system (3) 2, T, P
g,

r n, p
2 T Q r

so that ~T-
= -, -,

=
,

i

/. the errors in (1) : errors in (3) :

(3) : (2}

I I S
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Sr S

PT
i

S T
force of S on T : mean force ofT on P: : r- :

^
{

*&quot;-

p

force oc

P
rad.

P.

p
.-. mean addititious force : mean force ofT on P: : p

2
: P 2

.*. ablatitious force : mean force ofT on P: : 3 cos. 6 . p

Similarly, the tangential and central ablatitious and all the forces may
be found in terms of the mean force of T on P.

459. PROP. LXVII. Things being as in Prop. LXVI, S describes

the areas more nearly proportional to the times, and the orbit more ellipti

cal round the center of gravity of P and T than round T.

P T
For the forces on S are PS and TS

.-. the direction of the compound force lies between S P, S T; and T
attracts S more than P.

.. it lies nearer T than P, and .. nearer C the center of gravity of T
and P.

. . the areas round C are more proportional to the times, than when

round T.

Also as S P increases or decreases, S C increases or decreases, but S T
remains the same ; .*. the compound force is more nearly proportional to

the inverse square of S C than of S T; . . also the orbit round C is move

nearly elliptic (having C in the focus) than the orbit round T.
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ON

SECTION XI.

460. To find the axis major of an ellipse,
whose periodic time round

S at rest would equal the periodic time of P round S in motion.

Let A equal the axis major of an ellipse described round P at rest

equal the axis major of P Q v.

Let x equal the axis major required,

P. T. of P round S in motion : p S at rest : : V S : V S + P
3 3

P. T. of p in the elliptic axis A : P. T. in the elliptic axis x : : A 2
: x *

.-. P. T. of P round S in motion : P.T. in the el.ax. x : : VA3!* : Vx 3

(S+P).

By hyp. the 1st term equals the 2d,

.-. A 3 S = x 3
. S + P

461. PROP. LXIII. Having given the velocity, places, and directions

of two bodies attracted to their common center of gravity, the forces vary

ing inversely as the distance 2
, to determine the actual motions of bodies in

fixed space.

Since the initial motions of the bodies are given, the motions ofthe center

of gravity are given. And the bodies describe the same moveable curve

round the center of gravity as if the center were at rest, while the center

moves uniformly in a right line.

* Take therefore the motion of the center proportional to the time,

i. e. proportional to the area described in moveable orbits-

* Since a body describes some curve in fixed space, it describes areas in proportion to the times

in this curve, and since the center moves uniformly forward, the space described by it is in pro

portion to the time, therefore, &c.
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462. Ex. 1. Let the body P describe a circle round C, while the center C
moves uniformly forward. Take C G : C P : : v of C : v of P, and with the

center C and rad. C G describe a circle G C N, and suppose it to move

round along G H, then P will describe the trochoid P L T, and when P
has described the semicircle P A B, P will be at the summit of the trochoid

.*. every point of the semicircumference G F N will have touched G H,

.. G H equals the semicircumference G F N,

.-. v of P : v of C : : P A B semicircumference : C 11=G F N semicircle

*
: : C P : C G Q. e. d.

463. Ex. 2. Let the moveable curve

be a parabola, and let the center ofgravity
move in the direction of its primitive

axis. When the body is at the vertex

A , let S be the position of the center

of gravity, and while S has described

uniformly S S, let A have described the

arc of the parabola A P.

Let A N = x, N P = y, be the ab-A S

scissa and ordinate of the curve A P in fixed space.

Let 4 p equal the parameter of the parabola A P.

.-. A N = f- , A S = S S = x _ =
4p 4p

SN = AN A S = A N p = -?
P

4p
4p

AreaASP=ANP SNP=|ANx N P } N S X NP
= s

. Xl __ i y
3 4 P y _ y

3 + I2p
g

y
3

4p
^ 4 p 24 p

By Prop. S S oo A S P ; therefore they are in some given ratio.

Let A S P : S S : : a : b : :

24 p 4 p

* If C P = C G the curve in fixed space becomes the common cycloid.

If C P
&amp;gt;

C G------ the oblongated trochoid.
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. . y
3

-f 12p
2
y = 4pax ay*

.-. y
3 + ay

2 + 12 p
8

y 4pax == 0.

Equation to the curve in fixed space.

464. Ex. 3. * Let B B be the orbit of the earth round the sun, M A

that of the moon round the earth, then the moon will, during a revolution,

trace out a contracted or protracted epicycloid according as A L has a

greater or less circumference than A M, and the orbit of the moon round

the sun will consist of twelve epicycloids, and it will be always concave to

the sun. For

R r
F of the earth to the sun : F of the moon to the earth : :

p-j
:

t

400 1

(365)
2

(27)
2

in a greater ratio than 2:1. But the force of the earth to the sun is

nearly equal to the force of the moon to the sun, . .the force of the moon

to the earth, .-. the deflection to the sun will always be within the tan

gential or the curve is always concave towards the sun.

465. PROP. LXVI. If three bodies attract each other with forces

-

varying inversely as the square of the distance, but the two leas: revolve

To determine the nature of the curve dwribed by the moon with respect to the sun.

VOL. I. Z
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about the greatest, the innermost of the two will more nearly describe the

areas proportional to the time, and a figure more nearly similar to an el

lipse, if the greatest body be attracted by the others, than if it were at rest,

or than if it were attracted much more or much less than the other bodies.

(L M : P T : : S L : S P,

PT
.-. L M oc

.-. L M =

SP 3 *

PTxSL SK 3 xPT
S P S P 3

.-. S K 2
: SP* : : SL : S P).

Let P and S revolve in the same plane about the greatest body T, and

P describe the orbit P A B, and S, E S E. Take S K the mean distance

of P from S, and let S K represent the attraction of P to S at that dis

tance. Take SL : SK :: SR 2
: SP 2

, and SL will represent the

attraction of S on P at the distance S P. Resolve it into two S M, and

L M parallel to P T, and P will be acted upon by three forces P T, L M,
S M. The first force P T tends to T , and varies inversely as the dis

tance 2
, .. P ought by this force to describe an ellipse, whose focus is T.

The second, L M, being parallel to P T may be made to coincide with it

in this direction, and .. the body P will still, being acted upon by a centri

petal force to T, describe areas proportional to the time. But since L M
does not vary inversely as P T, it will make P describe a curve different

from an ellipse, and .*. the longer L M is compared with P T, the more

will the curves differ from an ellipse. The third force S M, being neither

in the direction P T, nor varying in the inverse square of the distance, will

make the body no longer describe areas in proportion to the limes, and the

curve differ more from the form of an ellipse. The body P will .*. describe

areas most nearly proportional to the times, when this third force is a

minimum, and P A B will approach nearest to the form of an ellipse, when

both second and third forces are minima. Now let S N represent the

attraction of S on T towards S, and if S N and S M were equal, P and

T being equally attracted in parallel directions would have relatively the

same situation, and if S N be greater or less then S M, their difference

M N is the disturbing force, and the body P will approach most nearly

the equable description of areas, and P A B to the form of an ellipse,

when M N is either nothing or a minimum.

Case 2. If the bodies P and S revolve about T in different planes, L M
being parallel to P S will have the same effect as before, and will not
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tend to move P from its plane. But N M acting in a different plane,

will tend to draw P out of its plane, besides disturbing the equable des

cription of areas, &c. and as before this disturbing force is a minimum,

when M N is a, minimum, or when S N = nearly S K.

466. To estimate the magnitude of the disturbing forces on P, when P
moves in a circular orbit, and in the same plane with S and T.

Let the angle from the quadratures P C T = S,

S T = d, P T = r, F at the distance (a) = M,

F on P - Ma2
SP-

. . From P in the direction S P :

. . F in the direction P T = ^^] x

But S P 2 = d 2 + r 2 2 d r sin. 0,

.-. F in the direction P T =

P T : : S P : P T,

par

M a*r

(d
2 + r * 2 d r sin. 6} f

M a 2 r

Mar
2 d r sin. 6

d 3 r d
IM. u.

~ r=
3-3

= A nearly, since d being indefinitely great compared with r

in the expansion, all the terms may be neglected except two. First -i

vanishes when compared with -r-
3 , .-. the addititious force in the direction

T = A. By proportion as before, force in the direction S T
Ma 2 ST Mad f

: SP* SP &quot;

d 3

(1 + (r 2dr sin. 6

d*

Mji^ / 3 r 8 - 2 d r sin.

d* \
~
2 d &amp;gt;

_M a 2 3 M a 8 r 8 3 M a*r sin, t)

d* 2 d 4 + &quot;

d 3



356 A COMMENTARY ON [SECT. XL

.-. force in the direction S T = M 3 M a 2
r

sin. t nearly, since
it *-*

1 1 Ma 2

-, vanishes when compared with -,
, and the force of S on T = rr- ,

d * d 3 d *

Ma 2 3 M a r . Ma 2

.-. ablatitious F = TV; }- rz sin - d Tr~d- d* d*
= 3 A . sin. 0.

If P T equal the addititious force, then the ablatitious force equals 3 P K,

for P K: PT: : sin. 6 : (1 = r),

.-. 3 P K = 3 P T . sin. 6 = 3 A . sin. 6.

To resolve the ablatitious force. Take

P m : P n : : P T : T K : : 1 : cos. 6,

3 A
.-. P n = P in X cos. 6 = 3 A X sin. 6 cos. 6 = . sin. 2 6

m n = P m X PK = 3A. sin.
2

6 = 3 A .

* ~ C S&amp;gt; 2
*,

it

.. the disturbing forces of S on P are

M a 2 r
1. The addititious force= p = A.

2. The ablatitious force which is resolved into the tangential part
q A J 2 COS A

= -
. sin. 2 6, and that in the direction T P = 3 A . = -

,

*^ ^

.. whole disturbing force in the direction P T = A 3 A . ^ -

A 3 A 3 A ASA i-*iii= A j
. cos. 2 6 = H ~

. cos. 2 6, and in the whole22 22
revolution the positive cosine destroys the negative, therefore the whole

disturbing force in a complete revolution is ablatitious, and equal to one

half of the mean addititious force.

467. To compare N M and L M.

L M : P T : : (S
L = |^) : S P,

.-. L M = f p, X P T



BOOK I.]

MN =

NEWTON S PRINCIPIA.

3_SP 3

v S T_ S T_
SP 3 S P
SK 3-(SK-KP) 3

S P 3

S K 3 S K* + 3 S R 2 x K P
S P 3

3 S K* x P K

X ST

X ST nearly

S P
X S T nearly =

L.

=
-g-pr

X P T X sin. 6,

.-. M N : L M : : 1 : 3 sin. 6.

S P
X P K

357

468. Next let S and P revolve about T in different planes, and let

N P N be P s orbit, N N the line of the nodes. Take T K in T S =
3 A . sin. 6. Pass a plane through T K and turn it round till it is per

pendicular to P s orbit. Let T e be the intersection of it with P s orbit.

Produce T E and draw K F perpendicular to it, .-. K F is perpendicular

to the plane of P s orbit, and therefore perpendicular to every line meet

ing it in that orbit, T in the plane of S s orbit ; draw K H perpendicular

to N N produced ; join H F, then F H K equals the inclination of the

planes of the two orbits. For K H T, K F T, K F H being all right angles,
KT* = K H* + HT*

K F * + H = K F 2 + F H * + H T
,

*
.-. F T * = F H 2 + H T

,

.. F H is perpendicular to H T.

Since P T = A, T K = A x sin. 6

Let the angle K H T = T, II T K e=
&amp;lt;p

= angular distance of the line of the no&amp;lt;!c

from S y z.

7.3
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PT
TK
KH
PT

TK
KH
KF
KF

3 sin. t)

sin.
&amp;lt;p

sin. T,

3 sin. d . sin. sn. T,
/. ablatitious force perpendicular to P s orbit = K F

= 3 P T X sin. 6. sin. p x sin. T = 3 A X sin. 6. sin.
&amp;lt;p

X sin. T.

2d. Hence it appears that there are four forces acting on P.

C

1. Attraction of P to T a

2. Addititious F in the direction P T =

3. Ablatitious F in the direction P T =

M a*r
d 3

*

3 Ma 2 r
sin.

z
6.

4. Tangential part of the ablatitious force = f .

Ma !

sin. 2
6.

Of these the three first acting in the direction of the radius-vector do

not disturb the equable description of areas, the fourth acting in the di

rection of a tangent at P does interrupt it.

Since the tangential part of F is formed by the revolution of P M= 3 A X
sin. & at C, 6 = 0, therefore P m = 0, and consequently the tangential

F =
;
from C to A, P n is in consequentia, and therefore accelerates

the body P at A, it again equals 0, and from A to D is in antecedentia,

and therefore retards P ; from D to B it accelerates; from B to C it re

tards.

Therefore the velocity of P is greatest at A and B, because these are

the points at which the accelerations cease and retardations begin, and

the velocity is least at D and C. To find the velocity gained by the ac

tion of the tangential force.*

sin. 26d6

* F in the direction P T is a maximum at the quadrature, because die ablatitious F in tie

quadrature is 0, and at every other point it is something.
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sin. 2 6 X 20 =
(cos. 2 0) ,

v 2

. . Z = = Cor. | A. cos. 2 6.

5
But when 6 = 0, the tangential F = 0, and no velocity is produced,
.-. cos. 2 = R = ],

(1 cos. 2 6} = | A. 2 sin.
2

6,4

.-. v 2 = 3g A. sui.
2

0,

/. v = V 3 g A. sin. d,

. . v a (sin. 0) ,

. . whole f on the moon at the mean distance : f of S on T : :
-

2
: p^* r

and the force of S on T : add. f at the mean distance (m) : : :&quot;4*s

d d

.*. whole f at the mean distance : m : : P s
: p

2 and ~-
t
X whole f &c. = in.

f orNow f on the moon at any distance (r)
=

^-j-3
and at the mean

distance (1)
= f ^L-3 = f ,

_ p
2 f m p

1

.*. m =

12
JL ** A

2p 2 f

2 P 8 + p

and therefore nearly
= ~

^ p4 ,

( p
2 2 p

4
)

.\ in r (which equals the addititious force) = | rfl BT&quot; J

469. To compare the ablatitious and addititious forces upon the moon,
with the force of gravity upon the earth s surface. (Newton, Vol. III.

Prop. XXV.)
add. f : f of Son T :: PT : ST

S T P V P T
f of S on T : f of the earth on the moon : : -.Tj

-
: ^- = ,

.. add. f : f of the earth on the moon : : p
2

: P 2

f of the earth on the moon : force of gravity :: 1 ; 60 5

,

.% add. f : force of gravity :: p* : P 2
. GO 2

. . . (])

Also ablat. f : addititious force : : 3 P K : P T,

.-. ablat. f : addititious force : : 3 P K . p
*

: 60 2
. P T. P s

. (2)

470. Con. 2. In a system of three bodies S, P, T, force oc* -,- the

4



360 A COMMENTARY ON [SECT. XI.

body P will describe greater areas in a given time at the syzygies than at

the quadrature.

The tangent ablatitious f = f . P T . sin. 2 6 ; therefore this force will

accelerate the description of areas from quadratures to syzygies and retard

it from syzygies to quadratures, since in the former case sin. 2 6 is positive,

and in the latter negative.

COR. 3. is contained in Cor. 2.

The first quadrant d. sin. being positive the velocity increases,

in the second d. sin. negative the velocity decreases, &c. for the 1st Cor.

2d Cor. &c.

Also v is a maximum when sin. 8 is a maximum, i. e. at A and B.

471. COR. 4. The curvature of P s orbit is greater in quadratures than

in the syzygy.

Ma 2 Ma e
r 3Mar.. B -

The whole F on P =
-^7- -\

--
-p
---

~2~[3~ (
l ~~ cos&amp;gt;

) X

/3 M a 3 r . sin. 2 6\

\ 2 d 3 /

In quadratures sin. 20=0,

F M a 2 M a * r

~^~ ~d^~
And in syz. 29= 180,

.-. sin. 20 = 0, cos. 201
3Ma g r 3 M a g r

TTF&quot;&quot;*&quot; d 3

,
, v . M a J 2 M a * r

.*. the whole if on P in the svz. =-r- ---,

r 2 d

.. F is greater in the quadratures than in the syzygies; and the velocity

is greater in the syzygies than in the quadratures.
1 T*

But the curvature a
p-^r

cc v 2 , .. is greatest in the quadratures and

least in the syzygies.

472. COR. 5- Since the curvature of P s orbit is greatest in the quadra

ture and least in the syzygy, the circular orbit must assume the form of an

ellipse whose major axis is C D and minor A B-

.*. P recedes farther from T in the quadrature than in the syzygy.

473. COR. 6.

The whole F on P in the line PT=

.Ma 2

= in quad. 5
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M a * 2 M a 2 r
and in syz. = o

let the ablatitious force on P equal the addititious, and

M a 2 r 3 M a 2 r
. sin.

2
6

1
/. sin. Q = =- sin. 35 . 16.

V 3

Therefore up to this point from quadrature the ablatitious force is less

than the addititious, and from this to one equally distant from the other

point of quadrature, the ablatitious is greater than the addititious, therefore

in a whole revolution the gravity of P to T is diminutive from what it

R2
would be if the orbit were circular or if S did not act, and P a -

,

- ~
\ abl. r

and since the action of S is alternately increased or diminished, therefore

P ex from what it would be were P T constant, both on account of the

variation, and of the absolute force.

474. COR. 7. * Let P revolve round T in an elliptic orbit, the force on

Ma 2
,

Ma 2 r
,

b
P in the quad. = --,- H ^ + -

2 + c r.

.-. G + 180 and since the number is greater than the de-
b + 4 c

nomination G is less than 180. . . the apsides are regressive if the same
effect is produced as long as the addititious force is greater than the abla

titious, i. e. through 35. 16 .

The force on P in the syz. =
Ma 2Ma l r

* Since P a II
and in whiter the sun is nearer the earth than in summer,

V ablatitious force

R Js increased in winter, and A i diminished, therefore the lunar months are shorter in vrintor

than in summer.
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= 180 .

/,

~
I

C
&amp;gt;

180
V b 8 c

m c
.*. in the syz. the apsides are progressive, and since / : will be

an improper fraction as long as the ablatitious force is greater than the

addititious, and when the disturbing forces are equal, m c = n c, therefore

G = 180, i. e. the line of apsides is at rest (or it lies in V C produced

9th.) .*. since they are regressive through 141. 4 and progressive
218. 56 they are on the whole progressive.

To find the effect produced by the tangential ablatitious force, on the

velocity of P in its orbit. Assume u = velocity of a body at the mean

distance 1, then = velocity at any other distance r nearly, the orbit

being nearly circular.

Let v be the true velocity of P at any distance (r), vdv = gFdx

( f
= 16

12
For the tanSent ablatitious f = f . P T . 2 0, and x = r

= 3 P T . m r . sin. 26.tf,

.-. v 2 = 3 P T m r cos. 2 6 + C,

and

2

v 2 - - frrV n C\A -

f &quot;

Hence it appears that the velocity is greatest in syzygy and least in

quadrature, since in the former case, cos. 2 d is greatest and negative, and

in the latter, greatest and positive.

To find the increment of the moon s velocity by the tangential force

while she moves from quadrature to syzygy.

v 2 = 3 P T . m . r . cos. 2 6 + C,

but (v) the increment = 0, when 6 = 0,

.-. C = 3 P T . m . r,

.-. v 2 = 3 P T . m . r (1 cos. 2 6)= G P T. m. r. sin.
8
0,

and when d = 90, or the body is in syzygy v
&quot; = 6 P T rn . r.

475. COR. 6. Since the gravity of P to T is twice as much diminished

in syzygy as it is increased in quadrature, by the action of the disturbing

force S, the gravity of P to T during a whole revolution is diminished.

Now the disturbing forces depend on the proportion between P T and

T S, and therefore they become less or greater as T S becomes greater
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or less. If therefore T approach S, the gravity of P to T will be still

more diminished, and therefore P T will be the increment.

Now P. T cc -
; since, therefore, when S T is di-

V absolute force

minished, R is increased and the absolute force diminished (for the ab

solute force to T is diminished by the increase of the disturbing force) the

P . T is increased. In the same way when S T is increased the P . T is

diminished, therefore P. T is increased or diminished according as S T* O
is diminished or increased. Hence per. t of the moon is shorter in winter

than in summer.

OTHERWISE.

476. COR. 7. To find the effect of the disturbing force on the motion

of the apsides of P s orbit during a whole revolution.

f
Let f = gravity of P to T at the mean distance

(
1
), then = gravity

of P at any other distance r.

f fNow in quadrature the whole force of P to T = -
a -f- add. f =

2 + r

=
3

and with this force the distance of the apsides = 180 /^
which is less than 180, therefore the apsides are regressive when the

f
body is in quadrature. Now in syz. the whole force of P to T =

r 2

f r g r
4

2 r = -
y , therefore the distance between the apsides = 180

, f 2

fij f 8
which is greater than 180, therefore the apsides are progressive

when the body is in syzygy.

But as the force (2 r) which causes the progression in syzygy is double

the force (r) which causes the regression in quadrature, the progressive
motion in syzygy is greater than the regressive motion in the quadrature.
Hence, upon the whole, the motion of the apsides will be progressive

during a whole revolution.

At any other point, the motion of the apsides will be progressive or

P T S P T
retrograde, according as the whole central force + ^ . cos. 2 i)

t &
is negative or positive.
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477. COR. 8. To calculate the disturbing force when P s orbit is ex-

centric.

m
P T 3 P T

The whole central disturbing force = -f- cos. 26=.

-\ s . cos. 2 6 (m is the mean add. f). Now r = 1 e

= by div. 1 e 2 + e . cos. u + e 2
. cos. 2

u, &c. neglecting terms in-

e 2
e 2

volving e 3
, &c. = 1 + e . cos. u + . cos. 2 u

; therefore the

whole central disturbing force = in m e m . e . cos. u

me 8 cos. 2 u
,

3 3 in e - o
-,

- + -~- ni cos. 2 6 . cos. 2 6 + m e . cos. u . cos. 2 6
^r *w *

-f | m e &quot;. cos. 2 u . cos. 2 6.

478. COR. 8. It has been shown that the apsides are progressive in

syzygy in consequence of the ablatitious force, and that they are regres

sive in quadrature from the effect of the ablatitious force, and also, that

they are upon the whole progressive. It follows, therefore, that the

greater the excess of the ablatitious over the addititious force, the more will

the apsides be progressive in the course of a revolution. Now in any

position m M of the line of the apsides, the excess of the ablatitious in

conjunction 2 A T in opposition = T B, therefore the whole excess

= 2 A B. Again, the excess of the addititious above the ablatitious force

in quadrature = C D. Therefore the apsides in a whole revolution will

be retrograde if 2 A B be less than C D, and progressive if 2 A B be

greater than C D. Also their progression will be greater, the greater the

excess of 2 A B above C D
;
but the excess is the greatest when M m is

in syzygy, for then A B is greatest and C D the least. Also, when M in

is in syzygy the apsides being progressive are moving in the same direc

tion with S, and therefore will remain for some length of time in syzygy.

Again, when the apsides are in quadrature A B = P p, and C D = M m,

m
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but if the orbit be nearly circular, 2 A B is greater than C D ; therefore

the apsides are still in a whole revolution progressive, though not so

much as in the former case.

F
In orbits nearly circular it follows from G = = when F a AP- S

,V r

that if the force vary in a greater ratio than the inverse square, the

apsides are progressive. If therefore in the inverse square they are sta

tionary, if in a less ratio they are regressive. Now from quadrature to

35 a force which &amp;lt;x the distance is added to one varying inversely as

the square, therefore the compound varies in a less ratio than the inverse

square, therefore the apsides are regressive up to this point. At this point

F &amp;lt;x -T. ; , therefore they are stationary. From this to 35 from
distance 2

another Q a quantity varying as the distance is subtracted from one

varying inversely as the square, therefore the resulting quantity varies

in a greater ratio than the inverse square, therefore the apsides are

progressive through 218.

OTHERWISE.

479. COR. 8. It has been shown that the apsides are progressive in

syzygy in consequence of the ablatitious force, and that they are regressive
in the quadratures on account of the addititious force, and they are on the

whole progressive, because the ablatitious force is on the whole greater
than the addititious. . . the greater the excess of the ablatitious force

above the addititious the more will be the apsides progressive.

In any position of the line A B in conjunction the excess of the ablati

tious force above the addititious is 2 P T, in opposition 2 p t. .*. the whole

excess in the syzygies = 2 P p. In the quadratures at C the ablatitious

force vanishes. /. the excess of the addititious = additious = C T.

.*. the whole addititious in the quadratures = C D.

Now the apsides will, in the whole revolution, be progressive or regres

sive, according as 2 Pp is greater or less than C D, and then the progres
sion will be greatest in that position of the line of the apses when 2 P p
C D is the greatest, i. e. when A B is in the syzygy, for then 2 P p
2 A B, the greatest line in the ellipse, and C D = R r =r ordinate =
least through the focus. .*. 2 P p CD is a maximum. Also when

A B is in the syzygy, the line of apsides being progressive, will move the

same way as S. .. it will remain in the syzygy longer, and on this account

the apsides will be more progressive. But when the apsides are in the

quadratures S P = R r and C D = A B, and the orbit being nearly

circular, R r nearly equals A B. . . 2 P p C D is positive, and the
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apsides are progressive on the whole, though not so much as in the last

case ; and the apsides being regressive in the quadratures move in the op

posite direction to S, .*. are sooner out of the quadratures, .. the regres

sion in the quadrature is less than the progression in the syzygy.

480. COR. 9. LEMMA. If from a quantity which GC -r-^ any quantityA
be subtracted which a A the remainder will vary in a higher ratio than

the inverse square of A, but if to a quantity varying as ^-z another beA

added which a A, the sum will vary in a lower ratio than
-r-g

.

1 j c A 2

If be diminished C A = 7-= . If A increases 1 c A *

A 2 A z

decreases, and -r-j increases. . . the quantity decreases, 1 c A increases

1
and -r-j-

increases. .-. increases from both these accounts. . . the wholeA
i

quantity varies in a higher ratio than -^ .

1 4- c A 2

If C A be added
-r-g , as A is increased the numerator increases,

and
-j-g

decreases. . . the quantity does not decrease so fast as
-j-s , and

A. A

if A be diminished 1 + c A 2
is diminished, and -^ increased. . . the

quantity is not increased as fast as -r-
2

. .-. &c. Q. e. d.

OTHERWISE.

481. COR. 9. To find the effect of the disturbing force on the excen-

l

tricity of P s orbit. If P were acted on by a force a
-j-z

, the excentricity

of its orbit would not be altered. But since P is acted on by a force vary

ing partly as rz
and partly as the distance, the excentricity will continual

ly vary.

Suppose the line of the apsides to coincide with the quadrature, then

while the body moves from the higher to the lower apse, it is acted upon

by a force which does not increase so fast as
-p } for the force at the quad-

f
rature = + m r, and /. the body will describe an orbit exterior to the

elliptic which would be described by the force a -
. Hence the body
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will be farther from the focus at the lower apse than it would have been

had it moved in an elliptic orbit, or the excentricity is diminished. Also

as the decrease in excentricity is caused by the force (m r), the less this

f
force is with respect to

z , the less will be the diminution of excentricity.

Now while the line of apsides moves from the line of quadratures, the force

(m r) is diminished, and when it is inclined at an angle of 35 16 the

disturbing force is nothing, and .*. at those four points the excentricity

remains unaltered. After this it may be shown in the same manner that

the excentricity will be continually increased, until the line of apsides

coincides with the syzygies. Hence it is a maximum, since the disturbing

force in these is negative. Afterwards it will decrease as before it in

creased, until the line of apsides again coincides with the line of quadra

ture, and the excentricity is a minimum.

COR. 14. Let P T = r, S T = d, f = force of T on P at the distance

1, g = force of S on T at the distance, then the ablatitious force

= ~n J if &quot; the position of P be given, and d varies, the ablati

tious force cc -p . But when the position of P is given, the ablatitious

: addititious : : in a given ratio, . . addititious force cc -p ,
or the dis

turbing force cc ^ . Hence if the absolute force of S should x the dis-

i if
turbing force cc r^

-
. Let P = the periodical time of T about S,

.. p-- cc -j^

*

. Let A = density, 8 = diameter of the sun, then the

A .X 3 1

absolute force &amp;lt;x A d
3
, then the disturbing force a j cc

p-^
cc A (ap

parent diameter)
3 of the sun. Or since P T is constant, the linear as well

as the angular errors oc in the same ratio.

483. Con. 15. If the bodies S and T either remain unchanged, or their

absolute forces are changed in any given ratio, and the magnitude of the

orbits described by S and P be so changed that they remain similar to

what they were before, and their inclination be unaltered, since the accel-

c rr-rr. i A - r r o absolute force of T
crating force ot P to i : accelerating force of S : : p :

absolute force of S , , r . ,

rr z , and the numerators and denominators of the last
o JL

terms are changed in the same given ratio, the accelerating forces remain

in the same ratio as before, and the linear or angular errors cc as before,
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i. e. as the diameter of the orbits, and the times of those errors oc P T s

of the bodies.

COR. 16. Hence if the forms and inclinations of the orbits remain, and

the magnitude of the forces and the distances of the bodies be changed ; to

find the variation of the errors and the times of the errors. In Cor. 14.

it was shown, how that when P T remained constant, the errors oc ^ .

Now let P T also a
,
then since the addititious force in a given position

of P oc P T, and in a given position of P the addititious : ablatitious in

a given ratio.

COK. If a body in an ellipse be acted upon bv a force which varies

in a ratio greater than the inverse

square of the distance, it will in de

scending fromthe higher apse Bto the

lower apse A, be drawn nearer to the ^
center. .*. as S is fixed, the excen-

tricity is increased, and from A to B
the excentricity will be increased

also, because the force decreases the faster the distance 2
increases.

484. (CoR. 10.) Let the plane of P s orbit be inclined to the plane of T s

orbit remaining fixed. Then the addititious force being parallel to P T,

is in the same plane with it, and . . does not alter the inclination of the

plane. But the ablatitious force acting from P to S may be resolved into

two, one parallel, and one perpendicular to the plane of P s orbit. The
force perpendicular to P s orbit = 3 A X sin. 6 X sin. Q X sin. T
when d perpendicular distance of P from the quadratures, Q = angular

distance of the line of the nodes from the syzygy, T = first inclination of

the planes.

Hence when the line of the nodes is in the syzygy, 6 0,

.. no force acts perpendicular to the plane,

and the inclination is not changed. When
the line of the nodes is in the quadratures,

d = 90, /. sin. is a maximum, . . force per

pendicular produces the greatest change /

in the inclination, and sin. & being posi

tive from C to D, the force to change the

inclination continually acts from C to D
pulling the plane down from D to C. Sin. d

is negative, .*. force which before was posi-

sin. =

H
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tive pulling down to the plane of S s orbit (or to the plane of the paper)

now is negative, and . . pulls up to the plane of the paper. But P s orbit is

now below the plane of the paper, . . force still acts to change the inclina

tion. Now since the force from C to D continually draws P towards the

plane of S s orbit, P will arrive at that plane before it gets to D.

If the nodes be in the octants past the quadrature, that is between C
and A. Then from N to D, sin. 6 being positive, the inclination is di

minished, and from Dto N increased, .*. inclination is diminished through

270, and increased through 90, . . in this, as in the former case, it is

more diminished than increased. When the nodes are in the octants be

fore the quadratures, i. e. in G H, inclination is decreased from H to C,

diminished from C to N, (and at N the body having got to the highest

point) increased from N to D, diminished from D to N , and increased

from 2 N to H, . . inclination is increased through 270, and diminished

through 90, /. it is increased upon the whole. Now the inclination of

P s orbit is a maximum when the force perpendicular to it is a minimum,
i. e. when (by expression) the line of the nodes is in the syzygies. When
is the quadratures, and the body is in the syzygies, the least it is increased

when the apsides move from the syzygies to the quadratures ; it is dimin

ished and again increased as they return to the syzygies.

485. (CoR. 11.) While P moves from the quadrature in C, the nodes

being in the quadrature it is drawn towards S, and .*. comes to the plane
of S s orbit at a point nearer S than N or D, i. e. cuts the plane before it

arrives at the node. . . in this case the line of the nodes is regressive. In

the syzygies the nodes rest, and in the points between the syzygies and

quadratures, they are sometimes progressive and sometimes regressive,

but on the whole regressive; .. they are either retrograde or stationary.

486. (CoR. 12.) All the errors mentioned in the preceding corollaries are

greater in the syzygies than in any other points, because the disturbing

force is greater at the conjunction and opposition.

487. (CoR. 13.) And since in deducing the preceding corollaries, no re

gard was had to the magnitude of S, the principles are true if S be so

great that P and T revolve about it, and since S is increased, the disturbing
force is increased ; .-. irregularities will be greater than they were before.

Ma 2 r ^T VT ^ r 3 Ma r
488. (CoR. 14.) L M = ^j^- = N N M = &quot;

^ ,
sin. 6, .-. in

a given position of P, if P T remain unaltered, the forces N M and L M
VOL. T. A a
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cc -.-. X absolute force cc --^
- of T for (sect. 3 . P 2

oc
j 2

-.-. --^
-

. .

d j

(Per. T)
2 absolute f.

whether the absolute force vary or be constant. Let D = diameter of S,

&amp;lt;3
= density of S, and attractive force of S cc magnitude or quantity of

matter oc D 3
3,

D 3
&

/. forces L M and N M cc -TT-.
d 3

But r = apparent diameter of S,

.-. forces cc (apparent diameter)
3

3 another expression.

489. (CoR. 15.) Let another body as P revolve round T in an orbit

similar to the orbit of P round T, while T is carried round S in an orbit

similar to that of T round S, and let the orbit of P be equally inclined to

that of T&quot; with the orbit P to that of T. Let A, a, be the absolute forces

of S, T, A ,
a

,
of S , T ,

A a
accelerating force of P by S : that of P by T : : ~ p 2

: p ^ ,

and the orbits being similar

A a
accelerating force of P by S : that of P by T : : ~

p/ 2
: p}-^ ,

.. if A : a : : A : a, and the orbits being similar,

S P : P T *
: : S F : F T ,

accelerating force of P by S : that of P by T
: : force on P by S : force on P by T ,

and the errors due to the disturbing forces in the case of P are as

A A
cT&amp;gt;t

r3
x r in l^e case f -f&quot; and S are as Q , ^3 X R,o L o JL

.. linear errors in the first case : that in the second : : r : R.

sin. errors
Angular errors cc

XI

in the first cas

linear errors

angular errors in the first case : that in the second : : 1 : 1.

Now Cor. 2. Lem. X. T 2 a T C

angular errors

.\ T 2 x angular errors,

.-. angular errors : 360 : : T 2
: P 2

,

.-. T 2 a P 2 X angular errors,

.-. T oc P for = angular errors.
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490. (Con. 16.) Suppose the forces of S, P T, ST to vary in any man
ner, it is required to compare the angular errors that P describes in simi

lar, and similarly situated orbits. Suppose the force of S and T to be

constant, . . addititious force x P T, . . if two bodies describe in similar

orbits = evanescent arcs. Linear errors x p
2 X P T.

.-. angular errors x p
2

(p = per. time of P round T, P = that of T
round S). But by Cor. 14. if P T be given, the absolute force of A and
STx.

Angular errors x -yyy

.*. if P T, S T and the absolute force alternately vary,

angular errors x ~-
,

/P = per. time of P round T\ f
M a 2 r

Vp = per. time of T round S J ~dP~
, linear errors

angular errors x p .

radius

M a 2 r
.-. lin. errors x force T ! a

pr X P 2
by last Cor.

d 3

,
rP 2 P\

/. angular errors x x r ) .

d 3 X r p
2/

M a 2

Now the errors d t X p = whole angular errors x -L
,

.*. error d t x -,y-2
thence the mean motion of the apsides x mean motion

of the nodes, for each x J
,
for each error is formed by forces varying as

proof of the preceding corollaries, both the disturbing forces, and .-. the

errors produced by them in a given time will x P T. Let P describe an

indefinite small angle about T (in a given position of P), then the linear

errors generated in that time x force T P time 2
, but the time of describ

ing = angles about T x whole periodic time (p), . . linear errors x
P T p *, and as the same is true for every small portion, similar; the

linear errors during a whole revolution x P T p
2
. Angular errors

lincni* cr
x

-j

.-. oc p
*

. when S T, P T, and the absolute force vary, the

p
2 absolute p

*
p

*

angular errors a p~ a
g ^ 3

a
g*,_ , (when the absolute force is

A a2
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given.) Now the error in any given timex p varies the whole errors during

P 2 P
a revolution a ~-

z
. .*. the tfrrors in any given time oc p-2 . Hence the

mean motion of the apsides of P s orbit varies the mean motion of the

nodes, and each will a -~
3 the excentricities and inclination being small

and remaining the same.

491. (CoR. 17.) To compare the disturbing forces with the force of

PtoT.

FofSonT:FofPonT:
absoluteF a

a

ST 2 T P !

absolute F
.
A. ST

.
aTP

axis major
3 SS 3 T P s

. S.T .
TP

. ^L
* * P 2

&quot;

D *
&quot;

&quot; p 2

mean add. F : F of S on T : : ^^ : ^- : :

.-. mean add. F : F P on T : : p
2

: P .

492. To compare the densities of different planets.

Let P and P be the periodic times of A and B, r and r their distances

from the body round which they revolve.

F of A to S : F of B to S : :
~

:^
quantity of matter in A do. in B

m
D 3 ofAX density ^

D 3 ofBx density

distance 2 distance 2 distance 8 distance *
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M a*r
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fore parallel to the ecliptic. Take T F = 3 P K
; join P F and it will

represent the disturbing force of the sun. Draw P i a tangent to, and

F i perpendicular to the plane of the orbit. Complete the rectangle i m,
and P F may be resolved into P m, P i, of which P m is the effective force

to alter the inclination. Draw the plane F G i perpendicular to N N ;

then F G is perpendicular to N N . Also F i G is a right angle. As
sume P T tabular rad. Then

::R:3g-,.-.
: : R : s &amp;gt;-

.

: : R : i J
*

PT: Pm :: R 3
: 3g. s. i

_ PT.3g. s. iPm =
R

PT: TF::
T F : F G
FG: Pm

g = sin. 6 =r sin. L dist. from quad.
s = sin.

&amp;lt;p

= sin. /_ dist. of nodes from syz.

i =r sin. F T i = sin. F G i = sin. inclination of orbit to ecliptic.

Hence the force to draw P from its orbit = _,

R when P is in

the quadratures. Since g vanishes this force vanishes. When the nodes

are in the syzygies s vanishes, and when in the quadratures this force is a

maximum. Since s = rad. cotan. parte.

496. To calculate the quantity of the forces.

Let S T = d, P T = r, the mean distance from T = i. The force

of T on P at the mean distance = f; the force of S on P at the mean

distance = g.

Then the force S T = -
,
and the force S T : f. P T : : d : r,

IT r f? r 3 &quot; r
.-. force P T = ^r, hence the add. f =

&amp;gt;;
ablat. f = j?3 sin. 0, the

d 3 d 3 d 3

mean add. force at distance 1 = -K , the central ablat. = , ,- sin.
2

6, the
d* d 3

3 rr r
tangential ablat. f =

S&quot;jnT
* S &quot; T&amp;gt; ^ &quot;
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*~ f? i* 3 0* r
The whole disturbing force of S on P =

~o~T 3 ^ 9 1 3
cos&amp;gt; ^ ^

&amp;gt;

l^e

mean disturbing f =
^3

-
(since cos. 2 & vanishes)

= by supposi

tion.

Hence we have the whole gravitation of P to T = *3t + oiT *
r ci cl i& ci

x*

cos. 2 0, and the mean = n
_- (since cos. 2 vanishes).

r a 2 d* v

PROBLEM.
497. Required the whole effect, and also the mean effect of the sun to

diminish the lunar gravity; and show that if P and p be the periodic

times of the earth and moon, f the earth s attraction at the mean

distance of the moon, r the radius-vector of the moon s orbit ; the additi-

fp 2 P 4
1

tious force will be nearly represented by the formula \ \.~ ^n4 \
f r-

v X A *

P n= 3 P T. sin.
8

6, and P T 3 P T . sin.
8

d = 2 + JL p T X

cos. 26 = whole diminution of gravity of the moon, and the mean di-

P T g r,mmution = -f- ^ 3 by supposition.

Again,

P 1 a d 3

.ab. f ^_

498. To find the central and ablatitious tangential forces.

C

Take Pm = 3PK = 3PT. sin. 6 = ablatitious force.

Then P n = P m . sin. 6 = 3 P T . sin.
*

Q = central force

m n = P m . cos. 6 = 3 P T . sin. 6 . cos. 6

= | . P T sin. 2 6 = tangential ablatitious force.

To find what is the disturbing force of S on P.

A a 1
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The disturbing force = P T 3 P T . sin.
*

6 = (~
! + 3cos - 2 *\ x

P T&quot; ^
P T = A-i + - P T. cos. 2 6.

d ti

To find the mean disturbing force of S during a whole revolution.

P T 3
Let P T at the mean distance = m, then

1
. P T cos. 2 6

id ft

g
= H since cos. 2 6 is destroyed during a whole revolution.

499. To find the disturbing force in syzygy.

SAT A T = 2 A T = disturbing force in syzygy;

the force in quadrature is wholly effective and equal P T,

/. force in quadrature : f in syzygy : : P T : 2 P T : : 1 : 2.

To find that point in P s orbit when the force of P to T is neither

increased nor diminished by the force of S to T.

In this point Pn= P T or 3 P T sin.
2

6 = P T,

.*. sin. 6 = -==
V 3

and

6 = 35 W.&quot;

To find when the central ablatitious force is a maximum.
P n = 3 P T . sin.

2
& = maximum,

. . d . (sin.
2

6) or 2 sin. 6 . cos. & d 6 = 0,

. . sin. 6 . cos. 6 = 0,

or

sin. 6 . V 1 sin. 2
6 = 0,

and

sin. 0=1,
or the body is in opposition.

Then (Prop. LVIII, LIX,)
T 2

: t
2

: : S P : C P : : S + P : S

and

T 2
: t

2
: : A 3

: x 3

. A 3
: x 3

:: S+ P : S
and

A : x :: (S+ P)
^

: S*.

500. PROB. Hence to correct for the axis major of the moon s orbit.

Let S be the earth, P the moon, and let per. t of a body moving in a

secondary at the earth s surface be found, and also the periodic time of
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the moon. Then we may find the axis major of the moon s orbit round

the earth supposed at rest = x, by supposition. Then the corrected axis

or axis major round the earth in motion : x : : (S + P) : S s

(S +
. . axis major round the earth in motion = x . S = y.

Hence to compare the quantity of matter in the earth and moon,

y:x:: VS+P: V S

... y 3_ x 3
: X 3

:: p : s.

501. To define the addititious and ablatitious forces. Let S T repre

sent the attractive force of T to S. Take

SL: ST:: 1 1
-: : ST 8

: S P 1

S P 2 S T
and S L will represent the attractive force of P to S. Resolve this into

S M, and L M ; then L M, that part of the force in the direction P T
is called the addititious force, and S M S T = NMis the ablatitious

force.

502. To compare these forces.

Since SL:ST::ST 2 :SP 2
,

.-. SL = |i| = attractive force of

P to S in the direction S P, and S P : S T : : |- = attractive

force of P to S in the direction TS = ST 4 (ST PK)~ =ST
+ 3 P K = S M nearly,

.-. 3PK = TM = PL = ablatitious force = 3 P T . sin. 6.

c T 3 e T 3

Also S P P T - -
SP- ST&quot;

1

P T = attractive force of P to S in the direction L M = P T nearly.
Hence the addititious force : ablatitious force : : P T : 3 P T . sin. 6 : 1

. 3 sin. 6. Q. e. d.





BOOK III.

1. PROP. I. All secondaries are found to describe areas round the

primary proportional to the time, and these periodic times to be to each

other in the sesquiplicate ratio of their radii. Therefore the center of

force is in the primary, and the force cc =Y .

2. PROP. II. In the same way, it may be proved, that the sun is the

center of force to the primaries, and that the forces oc ,.- -
. Also the

Aphelion points are nearly at rest, which would not be the case if the

force varied in a greater or less ratio than the inverse square of the dis

tance, by principles of the 9th Section, Book 1st.

3. PROP. III. The foregoing applies to the moon. The motion of the

moon s apogee is very slow about 3 3 in a revolution, whence the force

will x
-vs-jTg ~Az It was proved in the 9th Section, that if the ablatitious

force of the sun were to the centripetal force of the earth : : 1 : 357.45,

that the motion of the moon s apogee would be ^ the real motion.

.*. the ablatitious force of the sun : centripetal force : : 2 : 357.45

: : 1 : 178 f.

This being very small may be neglected, the remainder x ^ .

4. COR. The mean force of the earth on the moon : force of attraction

; : 177 fI : 178 fg.

The centripetal force at the distance of the moon : centripetal force at

the earth:: 1 : D*.

5. PROP. IV. By the best observations, the distance of the moon from

the earth equals about 60 semidiameters of the earth in syzygies. If the

moon or any heavy body at the same distance were deprived of motion in

the space of one minute, it would fall through a space = 16 /^feet. For the
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deflexion from the tangent in the same time = 16 T
L feet. Therefore the

space fallen through at the surface of the earth in I&quot; = 16 TV feet.

For 60&quot; : t : : D : 1,

60

thence the moon is retained in its orbit by the force of the earth s gravity
like heavy bodies on the earth s surface.

6. PROP. XIX. By the figure of the earth, the force of gravity at

the pole : force of gravity at the equator : : 289 : 288. Suppose A B Q q
a spheroid revolving, the lesser diameter P Q, and A C Q q c a a canal

filled with water. Then the weight of the arm Q q c C : ditto of

A a c C : : 288 : 289. The centrifugal force at the equator, therefore 1

suppose 2^-g f tne weight.

Again, supposing the ratio of the diameters to be 100 : 101. By com

putation, the attraction to the earth at Q : attraction to a sphere whose

radius == Q C : : 126 : 125. And the attraction to a sphere whose ra

dius A C : attraction of a spheroid at A formed by the revolution of an

ellipse about its major axis : : 126 : 125.

The attraction to the earth at A is a mean proportional between the at

tractions to the sphere whose radius =r A C, and the oblong spheroid,

since the attraction varies as the quantity of matter, and the quantity of

matter in the oblate spheroid is a mean to the quantities of matter in the

oblong spheroid and the circumscribing sphere.

Hence the attraction to the sphere whose radius = A C : attraction to

the earth at A : : 126 : 125 $.

. . attraction to the earth at the pole : attraction to the earth at the equa
tor : : 501 : 500.

Now the weights in the canals cc whole weights a magnitudes X gra-
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vity, therefore the weight of the equatorial arm : weight of the polar
: : 500 X 101 : 501 X 100

: : 505 : 501.

4
Therefore the centrifugal force at the equator supports ^-^ to make an

equilibrium.

But the centrifugal force of the earth supports

41 11
*

505
:

289
: :

100
:

229
= the GXCeSS f the e&amp;lt;

l
uatorial over the Polar

radius.

Hence the equatorial radius : polar : : 1 + ^^r : 1

: : 230 : 229.

Again, since when the times of rotation and density are different the

yz
difference of the diameter oc -,- . and that the time of the earth s rota-

dens.

tion = 23h. 56 .

The time of Jupiter s rotation = 9h. 56 .

The ratio of the squares of the velocity are as 29 : 5, and the density
of the earth : density of Jupiter : : 400 : 94.5.

d the difference of Jupiter s diameter is as - X jrj-p X -rr-
,

5 94.5 229

.-. d : Jupiter s least diameter : :
- x ^j-r X ^5 : : 29 X 80 : 94.5 X 229

&amp;gt; .Jr..) -

: : 2320 : 21640

: : 232 : 2164

:: 1 : 9|
The polar diameter : equatorial diameter : : 9| : 10^

ON THE TIDES.

7. THE PHENOMENA OF THE TIDES.

1. The interval between two succeeding high waters is 12 hours 25

minutes. The diminution varies nearly as the squares of the times from

high water.

2. Twenty-four hours 50 minutes may be called the lunar day. The

interval between two complete tides, the tide day. The first may be call-
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ed the superior, the other inferior, and at the time of new moon, the

morning and evening,

3. The high water is when the moon is in S.W. to us. The highest tide

at Brest is a day and a half after full or change. The third full sea after

the high water at the full moon is the highest ; the third after quadrature
is the lowest or neap tide.

4. Also the highest spring tide is when the moon is in perigee, the next

spring tide is the lowest, since the moon is nearly in the apogee.
5. In winter the spring tides are greater than in summer, and from the

same reasoning the neap tides are lower.

6. In north latitude, when the moon s declination is north, that tide in

which the moon is above the horizon is greater than the other of the same

day in which the moon is below the horizon. The contrary will take

place if either the observer be in south latitude or the moon s declination

south.

7. PROP. I. Suppose P to be any

particle attracted towards a center E,

and let the gravity of E to S be repre

sented by E S. Draw B A perpendi
cular to E S, which will therefore re

present the diameter of the plane of il

lumination. Draw Q P N perpendicu
lar to B A, P M perpendicular to E C.

Then take E I = 3 P N, and join P I,

P I will represent the disturbing force

of P. PI may be resolved into the

two P E, P Q, of which P E is counter

balanced by an equal and opposite force,

P Q acts in the direction N P.

Hence if the whole body be supposed

to be fluid, the fluid in the canal N P
will lose its equilibrium, and therefore

cannot remain at rest. Now, the equi

librium may be restored by adding a

small portion P p to the canal, or by

supposing the water to subside round

the circle B A, and to be collected to

wards O and C, so that the earth may put on the form of a prolate sphe

roid, whose axis is in the line O C, and poles in O and C, which may be
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the case since the forces which are superadded a N P, or the distance

from B A, so that this mass may acquire such a protuberancy at O and C,

that the force at O shall be to the force at B : : E A : E C ;
and by the

above formula

_ 5JC __ E C E A
r
~

4 g
~

E A

8. PROP. II. Let W equal the terrestrial gravitation of C; G equal its

gravitation to the sun ; F the disturbing force of a particle acting at O and

C
; S and E the quantities of matter in the sun and earth.

3 S C
.-. F : W : :

CS* X CG C E 3

Since the gravitation to the sun oc
s

C S 2
: E S 2

: : ES: C G
/. CG X C S 2 = ES 3

.

. F . W . . ?A . _A
E S 3 C E 3

and

E : S : : 1 : 338343

E C:ES: : 1 : 23668

.
3 S

. _]?_. - 1 12773541 F W
&quot; * E s s cnr^

* iw**** . .
,

.

.-. 4 W : 5 F : : C E : E C E A.

4 d 3d
Attraction to the pole : attraction to the equator : : 1 : 1

O t)

Quantity of matter at the pole : do. at equator : : 1 : 1 d.

Weight of the polar arm : weight of the equatorial arm : : 1 : 1 -
O D

. Excess of the polar = attractive force : weight of the equator or

mean weight W : : : 1

5F

9. PROP. III. Let A E a Q be the spheroid, B E b Q the inscribed
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sphere, A G a g the circumscribed sphere, and D F d f the sphere equal

(in capacity) to the spheroid.

K

H

Then since spheres and spheroids are equal to f of their circumscribing

cylinder, and that the spheroid = sphere D F d f.

CF 2 xCD = CE 2 xCA
CE: C F 2

: : CD: C A,

and make

but

Also

CE:CF::CF:Cx
.-.C E 2

: C F 2
: : C E : Cx

/. CD:CA::CE:Cx
.-. CD:CE::CA:Cx

C D = C E nearly

.-. C A = C x.

E x = 2 E F nearly

.-. A D = 2 E F.*

Let C E = a, C F = a + x,

_ aM-2a*+x a_ a* + 2 *

~~T~ a

= a + 2 x nearly

.% E x = 2 x nearly.
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PROP. IV. By the triangles p I L, C I N,

A B : I L : : r 2
: (cos.)

z
L. T C A

.-. I L = A B x (cos.)
2
z_ I C A = S X (cos.)

? x

(if S = A B and x = angular distance from the sun s place.)

Again,
G E : K I : : r 2

: (sin.) L. T C A
.-. K I = S X (sin.)

2
. K.

COR. 1. The elevation of a spheroid above the level of the undisturbed
c _

ocean = 1 i 1 m = S X (cos.)
2 x \- = S X (cos.)

2 x
9

The depression of the same = S X (sin.)
z x S = S X (sin.)

2 x f.

COR. 2. The spheroid cuts the sphere equal in capacity to itself in a

S
point where S X (cos.)

2 x = = 0, or (cos.)
&quot;

x = .

o

. . cos. x = .57734, &c.

= cos. 54. 44 .

10. PROP. V. The unequal gravitation of the earth to the moon is

(4000)
3 times greater than towards the sun.

Let M equal the elevation above the inscribed sphere at the pole of

the spheroid, 7 equal the angular distance from the pole.

/. the elevation above the equally capacious sphere=M X (cos.)
z

/

the depression-------= M X (sin.)
*
7 |.

Hence the effect of the joint action of the sun and moon is equal to the

sum or difference of their separate actions.

.-. the elevation at any place= S X (cos.)
3 x -fM X (cos.)

2
7 S+ 5T

the depression--= S X (sin.)
&quot;

x +M X (sin.)
2

7 f S+ M.

1. Suppose the sun and moon in the same place in the heavens.

Then the elevation at the pole = S + M S + M = | S + M, and

the depression at the equator = S + M S + M =
f,
S + M,

. . the elevation above the inscribed sphere = S + M.
2. Suppose the moon to be in the quadratures.

The elevation at S = S i S + M = f S $ M.

the depression at M = S S + M = $ S M,
the elevation at S above the inscribed sphere = S M,

the elevation at M (by the same reasoning) = M S.

But (by observation) it is found that it is high water under the moon
when it is in the quadratures, also that tlie depression at S is below the

natural level of the ocean
; hence M is more than twice S, and although

VOL. I. B b
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the high water is never directly under the sun or moon, when the moon is

in the quadratures high water is always 6 hours after the high water at

full or change.

Suppose the moon to be in neither of the former positions.

Then the place of high water is where the elevation =r maximum,
or when S X cos. 2 x + M X cos. 2

y = maximum,
and since

cos. * x = + \ cos. 2 x,

and

cos. y = + \ cos. 2 y,

elevation = maximum, when S X cos. 2 x + M X cos. 2 y = max
imum.

Therefore, let A B S D be a great circle of the earth passing through
S and M, (those places on its surface which have the sun and moon in the

zenith). Join C M, cutting the circle described on C S in (m). Make
S d : d a : : force of the moon : force of the sun (which force is supposed
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known). Join ma, m d, and let H be any point on the surface of the

ocean. Join C H cutting the circle C m S in (h) ; draw the diameter
h d h , and draw m t, a x perpendicular to h h

, and a y parallel to it.

Then

M=Sd, S=ad
and

and

.-. d t = M X cos. 2 y, d x = S X cos. 2 x,

.. elevation = maximum when t x = a y = maximum,
or when a y = a m, i. e. when h h is parallel to a m, hence

CONSTRUCTION.

Make
S d : d a : : M : S,

and join m a, draw h h parallel to a m, and from C draw C h H cutting
the surface of the ocean in H, which is the point of hi^h water.

Again, through h7 draw L C h
, meeting the circle in L, L ; these are

the points of low water. For let

L C S = u, L C M = z .

cos. L a d x = cos. A S d h = cos. 2 u S C h&quot;!= cos. 2 u = d x
and

cos. 2 z = cos. 2 L C M = d t.

.-. S X cos. 2 u + M X cos. 2 z = max.
COR. If d f be drawn perpendicular to a m, a m represents the whole

difference between high and low water, a f equals the point effected by the

sun, m f that by the moon.

For

sin.
* u = cos.

2
x,

sin.
2

y = cos.
2
x.

.*. elevation + depression = S X : cos.
- x + M X : cos. i

y

+ S X cos. 2 x -^- $
+ M X : cos. y f = S X : 2 cos. x 1 + M X : 2cos. y 1

= S X cos. 2 x + M x cos. 2 y
and

d t = M X cos. 2 y
d x = S X cos. 2 x.
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12. Conclusions deduced from the above (supposing that both the sun

and moon are in the equator.)

H

1. At new and full moon, high water will be at noon and midnight.
For in this case C M, a m, C S, d h, C H, all coincide.

2. When the moon is in the quadrature at B, the place of high water is

also at B under the moon, when the moon is on the meridian, for C M is

perpendicular to C S, (m) coincides with C, (a m) with (a C), d h with

d C.

3. While the moon passes from the syzygy to the quadrature the place
of high water follows the moon s place, and is to the westward of it, over

takes the moon at the quadratures, and is again overtaken at the next

syzygy. Hence in the first and third quadrants high water is after noon

or midnight, but before the moon s southing, and in second and fourth vice

versa.

4. ZL M C H = max. when S C H = 45. S d h = 90. and m a

perpendicular to S C, and a m d = max., and a m d m d h = 2y .
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Hence in the octants, the motion of the high water = moon s easterly

motion ;
in syzygy it is slower ; in quadratures faster. Therefore the tide

day in the octants = 24h. 50 = the lunar day ;
in syzygy it is less = 24h.

35 ; in quadratures = 25h. 25 .

For take any point (u) near (m), draw u a, u d, and d i parallel to a u

and with the center (a) and radius a u, describe an arc (u v) which may
be considered as a straight line perpendicular to am; u m and i h are

respectively equal to the motions of M and H, and by triangles u m v,

dmf.
u m : i h : : m a : m f.

Therefore the synodic motion of the moon s place : synodic motion ot

high water : : m a : m f.

COR. 1. At new or full moon, m a coincides with S a, and m f with S d ;

at the quadratures, m a coincides with C a, and m f with C d ; therefore

the retardation of the tides at new or full moon : retardation at quadra
tures ::Sa:Ca::M + S:M S.

Con. 2. In the octants, m a is perpendicular to S a, therefore m a, m f

coincide. Therefore the synodic motion of high water equals the synodic
motion of the moon.

COR. 3. The variation of the tide during a lunation is represented by
(m a) ; at S, m a = S a, at C = C a.

Therefore the spring tide : neap tide : : M -f- S : M S.

COR. 4. The sun contributes to the elevation, till the high water is in

the octants, after which (a f
) is v e, therefore the sun diminishes the

elevation.

COR. 5. Let m u be a given arc of the moon s synodic motion, in v is

the difference between the tides m a, u a corresponding to it.

Therefore by the triangles m u v, m d f.

m u : m v : : m d : d f.

.*. m v &amp;lt;x d f
;

and since

m d : d f : : r : sin. dmf:: r : sin. m d h : : r : sin. 2 M C H
m v oc sin. 2 arc M H.

13. PROP. VI. In the triangle m d a, m d, d a and Z. m d a are known
when the proportion M : S is known and the moon s elongation.

Let the angle m d a = a,

and make

M + S : M S : : tan. a : tan. b

Bb3
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then

a b a + b
v

For

y = -g-,x:= 2

M+ S:M S::md + da:md da
mad+amd mad amd

: : tan.
^

: tan.

2 x + 2 y 2x 2y
: : tan. = ; : tan. ~

: : tan. x -f- y : tan. x y
: : tan. a : tan. b,

. . x + y : x y : : a : b,

.-. 2 x = a + b, 2 y = a b,

. x -

and

~ b

2
*

14. PROP. VII. To find the proportion between the accelerating forces

of the moon and sun. 1st. By comparing the tide day at new and full

moon with the tide day at quadratures.

35 : 85 : : M : S,

. . . . . . . . .

Also, at the time of the greatest separation of high water from the moon

in the triangle m d a, m d : d a : : r : sin. 2 y : : M : S,

.-.

jgj
= sin. 2 y,

at the octants y is found =12 SO ,

.. ^ = sin. 25,M
. . M : S : : 5 : 2} nearly.

Hence taking this as the mean proportion at the mean distances of the

moon and sun (if the earth =1) the moon = .

COR. 1. If the disturbing forces were equal there would be no high or

low water at quadratures, but there would be an elevation above the in

scribed spheroid all round the circle, passing through the sun and moon
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COR. The gravitation of the sun produces an elevation of 24 inches,

the gravitation of the moon produces an elevation of 58 inches.

.. the spring tide = 82 inches, and the neap tide = 33| inches.

15. COR. 3. Though M : S : : 5 : 2, this ratio varies nearly from (6:2)
to 4 : 2, for supposing the sun and moon s distance each = 1000.

In January, the distance of the sun = 983, perigee distance of the

moon = 945.

In July, the distance of the sun = 1017, apogee distance of the moon
= 1055.

1

Disturbing force oc ~-
3 ;

hence
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Let D be any point on the surface of the earth, D C L its parallel of

latitude, N D S its meridian ; and let B F b f be the elliptical spheroid
of the ocean, having its poles in O M, and its equator F O f.

F

As the point D is carried along its parallel of latitude, it will pass

through all the states of the tide, having high water at C and L, and low

water when it comes to (d) the intersection of its parallel of latitude with

the equator of the watery spheroid.

Draw the meridian N d G cutting the terrestrial equator in G. Then

the arc Q G (converted into lunar hours) will give the duration of the

ebb of the superior tide, G E in the same way the flood of the inferior.

N. B., the whole tide G Q C , consisting of the ebb Q G, and the flood

G Q is more than four times G O greater than the inferior tide.

COR. If the spheroid touch the sphere in F and f, C C is the height

at C, L I/ the height at L, hence if L q be a concentric circle C q will

be the difference of superior and inferior tides.

CONCLUSIONS DRAWN FROM PROP. VIII.

1. If the moon has no declination, the duration of the inferior and su

perior tides is equal for one day over all the earth.

2. If the moon has declination, the duration of the superior will be

longer or shorter than the duration of the inferior according as the

moon s declination and the latitude of the place are of the same or differ

ent denominations.

3. When the moon s declination equals the colatitude or exceeds it,
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there will only be a superior or inferior tide in the same day, (the paral

lel of latitude passing through f or between N and f.)

4. The sin. of arc G O = tan. of latitude X tan. declination.

For

rad. : cot. d O G : : tan. d G : sin. G O,

.-. sin. G O = cot. d O G X tan. G d

= tan. declination X tan. latitude.

17. PROP. IX. With the center C and radius C Q (representing
the

P

whole elevation of the lunar tide) describe a circle which may represent

the terrestrial meridian of any place, whose poles are P, p, and equator

E Q. Bisect P C in O, and round O describe a circle P B C D ; let M
be the place on the earth s surface which has the moon in its zenith, Z

the place of the observer. Draw M C m, cutting the small circle in A,

and Z C N cutting the small circle in B ; draw the diameter BOD and

A I parallel to E Q, draw A F, G H, IK perpendicular to B D, and

join I D, A B, A D, and through I draw C M cutting the meridian in

M . Then after a diurnal revolution the moon will come into the

situation M , and the angle M C N
(
= the nadir distance) = supplement

the angle ICB = ^IDB.
Also the .ADB = BCA = zenith distance of the moon.
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Hence D F, D K cc cos. * of the zenith and nadir distances to rad. D B.

oc elevation of the superior and inferior tides.

CONCLUSIONS FROM PROP. IX.

1. The greatest tides are when the moon is in the zenith or nadir of the

observer. For in this case (when M approaches to Z) A and I move to

wards D, B, and F coincides with B
; but in this case, the medium tide

which is represented by D H (an arithmetic mean to D K, D F) is di

minished.

If Z approach to M, D and I separate ; and hence, the superior and
inferior and the medium tides all increase.

2. If the moon be in the equator, the inferior and superior tides are

equal, and equal M X (cos)
2
latitude. For since A and I coincide with

C, and F and K with
(i) D i = D B X (cos.)

8 B D C = M X (cos.)
*

latitude.

3. If the observer be in the equator, the superior and inferior tides are

equal every where, and = M X (cos.)
2 of the declination of the moon.

For B coincides with C, and F and K with G ; P G = P C X cos.
2 of

the moon s declination = M x (cos.)
z of the moon s declination.

4. The superior tides are greater or less than the inferior, according as

the moon and place of the observer are on the same or different sides of

the equator.

5. If the colatitude of the place equal the moon s declination or is less

than it, there will be no superior or inferior tide, according as the latitude

and the declination have the same or different denominations. For when

P Z=M Q, D coincides with I, and if it be less than M Q, D falls between

I and C, so that Z will not pass through the equator of the watery spheroid.

6. At the pole there are no diurnal tides, but a rise and subsidence

of the water twice in the month, owing to the moon s declining to both

sides of the equator.

18. PROP. X. To find the value of the mean tide.

A G = sin. 2 declination (to rad. = O C.)
and

O G = cos. 2 declination (to the same radius).

M..OH = cos. 2 declination X cos. 2 lat. X -_- t
SB

.-. D H = O D + O H
M /

1 + cos. 2 lat. X cos. 2 declination
._ J.VI X x-,



BOOK III.] NEWTON S PRtNCIPIA. 395

Now as the moon s declination never exceeds 30, the cos. 2 declination

is always + v 2
, and never greater than ; if the latitude be less than 45,

the cos. 2 lat. is + v e, after which it becomes v e.

Hence

1. The mean tide is equally affected by north and south declination of

the moon.

2. If the latitude = 45, the mean tide M.
3. If the lat. be less than 45, the mean tide decreases as the declina

tion increases.

4. If the latitude be greater than 45, the mean tide decreases as the

declination diminishes.

. Tr.
, ,

. , ,, 1 + cos. 2 declination
5. If the latitude = 0, the mean tide = M X 5
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SECTION XII.

503. PROP. LXX. To find the attraction on a particle placed within

a spherical surface, force ce g . y-g
.

Let P be a particle, and through P draw H P K,

I P L making a very small angle, and let them

revolve and generate conical surfaces I P H,
L P K. Now since the angles at P are equal

and the angles at H and L are also equal (for

both are on the same segment of the circle),

therefore the triangles H I P, P L K, are similar.

.-. HI:KL::HP:PL
Now since the surface of a cone GC (slant side)

2
,

.. surface intercepted by revolution of I P H : that ofL P K : : P H : P L
:: HI 2

: KL
and attractions of each particle in I P H : that ofL P K P2 r&amp;gt; T

Jti J. Jr \~

1

but the whole attraction of P oc the number of particles X attraction of

each,

HI* K L*
.. the whole attraction on P from H I : from K L : : ^rm ir T .

rl 1
T Jv L,

*

:: J : 1;

and the same may be proved of any other part of the spherical surface ;

.*. P is at rest.

504. PROP. LXXL To find the attraction on a particle placed without

a spherical surface, force cc g. -p
-.

distance *
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Let A B, a b, be two equal spherical surfaces, and let P, p be two

particles at any distances P S, p s from their centers; draw P H K,

K

P I L very near each other, and S F D, S E perpendicular upon them, and

from (p) draw p h k, p i 1, so that h k, i 1 may equal H K, I L respective

ly, and s f d, s e, i r perpendiculars upon them may equal S F D, S E,

I R respectively ; then ultimately PE = PF = pe = pf, and D F
= d f. Draw I Q, i q perpendicular upon P S, p s.

Now
PI: PF:: IR :

DF&quot;)

V.-. PI pf:pi.PF::IR:ir::IH:ih
: : d f : i r I

and

pf:p i : :

Again
PI: PS:: IQ: SF

and

/ps:pi::sf:iq
.-. PP.pf. ps: (pi)

2 .PF. PS:: IQ.IH:iq.ih
: : circumfer. of circle rad. I Q X I H : circumfer. of circle rad i q X i h

: : annulus described by revolution of I Q : that by revolution of i q.

Now

-. . PI.ps:pi.PS::IQ:iq

attraction on 1st annulus : attraction on 2d

And
attraction on the annulus : attraction in the direction P S

P F
.. attraction in direction PS = p f. p s. ^-~

P ]

.-. whole attn . of p to S : whole attn . of (p) to s : : p f . p s .

p-;

1st annulus
^
2d annulus

distance 2 distance 2

PP.pf.ps (pi)*.PF. PS
PI 2

(pi)
2

:: pf. ps :PF.PS.

P I : P Q
P S : P F

: P F . P S . -

PS 2

ps 2
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and the same may be proved of all the annul! of which the surfaces are

-^--
-

composed, and therefore the attraction of P cc
p-qi cc

-^--
-

j from

the center.

COR. The attraction of the particles within the surface on P equals the

attraction of the particles without the surface.

For K L : I H : : P L : P I : : L N : I Q.

.*. annulus described by I H : annulus described by K L

:: IQ.IH: K L. L N : : P P : P L 2

.*. attraction on the annulus I H : attraction on the annulus K L

PI 2 PL 2

:

P I s
:

P L 8

and so on for every other annulus, and one set of annuli equals the part

within the surface, and the other set equals the part without.

506. PROP. LXXII. To find the attraction on a particle placed with

out a solid sphere, force oc g - -p
-r.

distance 2

Let the sphere be supposed to be made up of spherical surfaces, and

the attraction of these surfaces upon P will x -TT---r, and therefore
distance z

the whole attractions

number of surfaces content of sphere diameter 3

P~W~ PS 2 PS 2
&quot;

and if P S bear a given ratio to the diameter, then

the whole attraction on P oc -, -,&amp;lt;x diameter-
diameter

507. PROP. LXXIIL To find the attraction on the particle placed

within-

Let P be the particle ; with rad. S P describe

the interior sphere P Q ; then by Prop. LXX.

(considering the sphere to be made of spherical

surfaces,) the attraction of all the particles con-

tained between the circumferences of the two

circles on P will be nothing, inasmuch as they

are equal on each side of P, and the attraction

PS 3

of the other part by the last Prop, oc rr^i a P S.
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508. PROP. LXXIV. If the attractions of the particles of a sphere

&amp;lt;x T. : =. and two similar spheres attract each other, then the spheres
distance z

1
will attract with a force x g as

distance 3
of their centers.

For the attraction of each particle cc -~- = from the center of the
distance 2

attracting sphere (A), and therefore with respect to the attracted particle

the attracting sphere is the same as if all its particles were concentrated

in its center. Hence the attraction of each particle in (A) upon the

whole of (B) will a -^ of each particle in B from the center of P,
distance 2

and if all the particles in B were concentrated in the center, the attraction

would be the same; and hence the attractions of A and B upon each other

will be the same as if each of them were concentrated in its center, and

1
therefore cc

distance 2

509. PROP. LXXVI. Let the spheres attract each other, and let

them not be homogeneous, but let them be homogeneous at correspond

ing distances from the center, then they attract each other with forces

1
ac*.

distance

G

Suppose any number of spheres C D and E F, I K and L M, &c. to

be concentric with the spheres A B, G H, respectively; and let C D and

I K, E F and L M be homogeneous respectively ; then each of these

spheres will attract each other with forces cc g. T ; Now suppose
distance *

the original spheres to be made up by the addition and subtraction of

similar and homogeneous spheres, each of these spheres attracting each
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then the sum or differences will attract

510. PROP. LXXVII. Let the force cc distance, to find the attraction

of a sphere on a particle placed without or within it.

Let P be the particle, S the center, draw two planes E F, e f, equally

distant from S ; let H be a particle in the plane E F, then the attraction

of H on P oc HP, .and therefore the attraction in the direction S P a

P G, and the attraction of the sum of the particles in E F on P towards

S a circle E F . P G, and the attraction of the sum of the particles in

(e f) on P towards S cc circle e f . P g, therefore the whole attraction of

E F, e f, a circle EF(PG+Pg)cc circle E F . 2 P S, therefore the

whole attraction of the sphere cc sphere X P S.

When P is within the sphere, the attraction of the circle E F on P to

wards S x circle E F . P G, and the attraction of the circle (e f
) towards

S cc circle e f . P g, and the difference of these attractions on the whole

attraction to S cc circle E F (P g P G) cc circle E F . 2 P S. There

fore the whole attraction of the sphere on P cc sphere X P S.

511. LEMMA XXIX. If any arc be described with the center S, rad.

S B, and with the center P, two circles be described very near each other

Vot. I. C c
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cutting, first, the circle in E, e, and P S in F, f; and E D, e d, be drawn

perpendicular to P S, then ultimately,

Dd: Ff: : PE: PS.
For

Dd: Ee::
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D E*. P S
513. PROP. LXXX. Take D N proportional to X force

of each particle at the distance P E, or if^ represent that force, let D N
~T) &quot;p

2 p C
a

P E V
tnen tne area traced out by D N will be proportional to

the whole attraction of the sphere.

For the attraction of lamina EFfeaDE 2
. Ffx force of each parti-

ID E 2 P S
cle a (LEMMA XXIII) - - --

. D d x force of each particle, or

D E 2 PS
d &quot; a attraction of lamina E F f e, and thep E. V

sum of these areas or area A N B will represent the whole attraction of
the sphere on P.

514. PROP. LXXXI. To find the area A N B.

Draw the tangent P H and H I perpendicular on P S, and bisect P I

in L
; then

Cc3
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But

SE S = SH 2 = PS.SI,
.-. PE 2 = P S 2 + PS.SI + 2PS.SD

= PS{PS + SI + 2SD}
= P S J(P I + I S) + S I + 2 S DJ

DE*= SE 2 SD 2 = SE 2 (LD LS) 2

= SE 2 LD 2 LS 2 + 2LD.LS
-2LD.LS LD 2 (LS+SE)(LS SE)
= 2LD.LS-LD S LB.LA,
DE 2.PS 2LD.LS.PS

.*. D N oc PE.V V 2 SD.P S. V

LD 2.PS LB.LA. PS
V 2 L D . P S&quot;. V V2LD.PS.V

and hence if V be given, D N may be represented in terms of L D and

known quantities.

515. Ex. 1. Let the force a ^-.
-

; to find the area A N B.
distance

_
XT 2LS.LD.PS LD 2.PS AL.LB.PS

D H
2LD.PS&quot; ~2LD.PS 2LD.PS
,

LD A L . L B
~2~* 2LD

,

_ , L D . D d AL.LB. D d
.-. D N . D d, or d . area GC L b . D d--

^ 2 ^ ^
-

&amp;gt;

., area AND between the values of L A and L B

n TAX LB 2-LA 2 AL.LB .LB
= LS.(LB~LA)--j- -g- ILA-

Now
L B 2 L A 2 = (L B + L A) . (LB LA)

= (LS + AS + LS AS)AB = 2LS.AB,
A XT -r^ A B . AL.LB . L B

.-. area AND = LS.AB--
^
---

2
- 1 j^

L S . A B AL.LB . L B
~~2~ 2 L~A*
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516. To construct this area.

To the points L, A, B erect L 1, A a, B b,

perpendiculars, and let A a = L B, and B b
= L A, through the points (a), (b), de
scribe an hyperbola to which L 1, L B are

asymptotes. Then. by property of the hy
perbola, AL.Aa = LD.DF,

AL.Aa AL.LB
LD &quot;LTD

A L . L B . D d
L A

.-. D F =

.-. DF.Dd =

.-. area A a F D =/D F. D d = A L. L B/L D,
. . hyperbolic area Aaf b B= A L L B f^L^.J L A*

The area A a B b == B b A B 4-
A B&amp;gt; a n

2

.

+ L A

=^^AB
AB = LS.AB,

. . area a f b a = area A a B b -area A a f b B

517. Ex. 2. Let the force a

n TO

Let V =

, to find the

2 A S*

. .DN=
but

L.V PE.V

V.PE = JLJ^ := !P_SjiI^_

AL.LB. PS

A K9

. . DN =^i^J[ AL.LB. SI iLD 2 ~2T7IP = 2PS.
g
L.LD

,

N.x = SI.L S/LD ^JjiPj. AL.LB. SI
2 ~2TT)

. . area between the values of L A and L B
S /-^? !iiyLzi_LAJ_ /L^SJ AL.SI

AJ A 2 v^ o ~&quot;~
: S

Cc3
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To construct this area.

1 a

Take S I= S s, and describe a hyperbola passing through a, s, b, to which

L 1, L B are asymptotes; then as in the former case, the area A a n b B

.-. the area A N B = S I . L S SLAB.

518. PROF. LXXXII. Let I be a particle within the sphere, and P

the same particle without the sphere, and take

S P : S A : : S A : S I,

then will the attracting power of the sphere on I : attracting power of the

sphere on P __

: : V S I. V force on I : V S P. V forpe on P.

D N force on the point P : D N7
force on the point I

D E 2 P S D E 2 I S
:: ~FE7V~ : TE.V
: : P S . I E . V : I S . P E . V.

Let
V : V :: P E n

: I E&quot;,
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then

DN : D N :: PS.IE.IE n
:IS.PE.PE&quot;,

but

PS:SE::SE:SI,
and the angle at S is common,

.. triangles P S E, I S E are similar,

.-. P E : I E : : P S : S E : : S E : S I,

.-. D N : D N :: PS.SE.I E n
: PS. SI. P E

&quot;,

: : SE.I E n
: S I.P E n

407

: : A/S P.I E n
: VSI.PE&quot;

:: VSP : SI VSI.PS*.

519. PROP. LXXXIII. To find the attraction of a segment of a spheie

.upon a corpuscle placed within its centre.

Draw the circle F E G with the

center P, let R B S be the segment of

the sphere, and let the attraction of the

spherical lamina E F G upon P be

proportional to F N, then the area de

scribed by F N oc whole attraction of

the segment to P.

Now the surface of the segment
E F G a P F D F, and the content

of the lamina whose thickness is O a
PF D F O.

1

G

Let F oc
distance

- and the attraction on P of the particle in that

DE !

spherical lamina, cc (Prop. LXXIII.) -p -pr^-

f2 P F F D F D 2
) O

a

PF n

2FD O FD 2 O
P F &quot;

- ! P F n

.. if F N be taken proportional to p ,., n _,

out by F N will be the whole attraction on P.

F D *

--
, the area traced

520. PROP. LXXXIV. To find the attraction when the body is placed

in the axis of the segment, but not in the center of the sphere.
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Describe a circle with the radius P E, and the segment cut off by the
revolution of this circle E F K round P B, will have P in its center, and

FIB

the attraction on P of this part may be found by the preceding Proposi
tion, and of the other part by PROP. LXXXI. and the sum of these at-

tractions will be the whole attraction on P.

SECTION XIII.

521. PROP. LXXXV. If the attraction of a body on a particle placed
in contact with it, be much greater than if the particle were removed at

any the least distance from contact, the force of the attraction of the par

ticles a in a higher ratio than that of-p .

distance z

For if the force oc -rr
j , and the particle be placed at any distance

from the sphere, then the attraction oc -^ from the center of the
distance 2

sphere, .and .. is not sensibly increased by being placed in contact with

the sphere, and it is still less increased when the force a in a less ratio

,
and it is indifferent whether the sphere be homo-than that of -p

distance

geneous or not
;

if it be homogeneous at equal distances, or whether the

body be placed within or without the sphei e, the attraction still varying in

the same ratio, or whether any parts of this orbit remote from the point of

contact be taken away, and be supplied by other parts, whether attractive

or not, . . so far as attraction is concerned, the attracting power of this

sphere, and of any other body will not sensibly differ ;
. . if the pheno-
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mena stated in the Proposition be observed, the force must vary in a higher

ratio than that of -p .

distance 2

522. PROP. LXXXVI. If the attraction of the particles cc in a higher

ratio than T. , or oc -7: 5 . then the attraction of a body placed
distance 3 distance d

in contact with any body, is much greater than if they were separated

even by an evanescent distance.

For if the force of each particle of the sphere oc in a higher ratio than

that of
-j

=
, the attraction of the sphere on the particle is indefinitely

distance

increased by their being placed in contact, and the same is the case for

any meniscus of a sphere; and by the addition and subtraction of attrac

tive particles to a sphere, the body may assume any given figure, and

.*. the increase or decrease of the attraction of this body will not be sensi

bly different from the attraction of a sphere, if the body be placed in con

tact with it.

523. PROP. LXXXVII. Let two similar bodies, composed of particles

equally attractive, be placed at proportional distances from two particles

which are also proportional to the bodies themselves, then the accelerat

ing attractions of corpuscles to the attracting bodies will be proportional

to the whole bodies of which they are a part, and in which they are simi

larly situated.

For if the bodies be supposed to consist of particles which are propor

tional to the bodies themselves, then the attraction of each particle in one

body : the attraction of each particle in the other body, : : the attraction

of all the particles in the first body : the attraction of all the particles in

the second body, which is the Proposition.

COR. Let the attracting forces cc -p ,
then the attraction of a

distance n

particle in a body whose side is A : B
A 3 B 3

distance n from A distance
n from B

A 3

B^
A&quot;

:

B&quot;

1 1

A n - 3 B n ~ 3

if the distances oc as A and B.
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524. Paop. LXXXVIII. If the particles of any body attract with a

force a distance, then the whole body will be acted upon by a particle
without it, in the same manner as if all the particles of which the body is

composed, were concentrated in its center of gravity.
Let R S T V be the body, Z the par

ticle without it, let A and B be any
two particles of the body, G their cen

ter of gravity, then A A G = B B G,
and then the forces of Z of these parti

cles oc A A Z, B B Z, and these

forces may be resolved into A A G +
A G Z, B B G + B G Z, and A A G
being = B B G and acting in opposite

directions, they will destroy each other,

and . . force of Z upon A and B will be

proportional to A Z G + B Z G, or to (A + B) Z G, .-. particles A
and B will be equally acted upon by Z, whether they be at A and B, or

collected in their center of gravity. And if there be three bodies A, B,

C, the same may be proved of the center of gravity of A and B (G) and

C, and . . of A, B, and C, and so on for all the particles of which the

body is composed, or for the body itself.

525. PROP. LXXXIX. The same applies to any number of bodies

acting upon a particle, the force of each body being the same as if it

were collected in its center of gravity, and the force of the whole system

of bodies being the same as if the several centers of gravity were collected

in the common center of the whole.

526. PROP. XC. Let a body be placed in a perpendicular to the plane

of a given circle drawn from its center
;
to find the attraction of the circu

lar area upon the body.

With the center A, radius = A D, let

a circle be supposed to be described, to

whose plane A P is perpendicular. From

any point E in this circle draw P E, in

P A or it produced take P F = P E, and

draw F K perpendicular to P F, and let

F K oc attracting force at E on P. Let

J K L be the curve described by the point

K, and let I K L meet A D in L, take

P H = P D, and draw H I perpendicular
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to P H meeting this curve in I, then the attraction on P of the circle

a A P the area A H I L.

For take E e an evanescent part of A D, and join P e, draw e C per

pendicular upon P E, .-. E e : E C : : P E : A E, .-. E e . A E = E C x
P E cc annulus described by A E, and the attraction of that annul us in

P A
the direction P A oc E C . P E . ^-^ X force of each particle at E cc E C X

lr ilj

P A X force of each particle at E, but E C = F f, .-. F K . F f cc E C x
the force of each particle at E, . . attraction of the annulus in the direction

PA cc PA.Ff. FK, and .-.PA X sum of the areas F K . Ff or P A
the area A H I L is proportional to the attraction of the whole part de

scribed by the revolution of A E.

527. COR. 1. Let the force of each particle a T-3, at P F = x.
distance 2

let b = force at the distance a,

b a 2

. . F K the force at the distance x = r ,

F K Ff ka dx
. . r A., f i ,

.-. attraction = PA.FK.Ff=PA /&quot;--2J x

cc PA - x A
p-p ,

and between the values of P A and P H, the attraction

P A _L l ?-AL PA~~PH ~PH*

528. COR. 2. Letthe force cc ^^-.

, then T K =^ ,

distance n x n

^ /.b a n
, PA 1

. . attraction = P A / d x cc-r X -- r+ Cor.,/x n n 1 x &quot;

and between the values of P A and P H,
PA r i 1

.* *attraction = --

:

1 P A

529. COR. 3. Let the diameter of a circle become infinite, or P II

cc co, then the attraction cc . .

1 A
530. PROP. XCI. To find the attraction on a particle placed in the

axis produced of a regular solid.
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Let P be a body situated in the axis A B of the curve D E C G, by

the revolution of which the solid is generated. Let any circle 11 F S

perpendicular to the axis, cut the solid, and in the semidiameter F S of

the solid, take F K proportional to the attraction of the circle on P, then

F K . F f o: attraction of the solid whose base = circle R F S, and depth

= F f, let I K L be the curve traced out by F K, .. A L K F a at

traction of the solid.

COR. 1. Let the solid be a cylinder, the force varying as
j 2

*

D

Then the attraction of the circle R F S, or F K which is proportional

PF
to that attraction a 1 PR

Let P F = x, F R = b,

. . F K a 1 -

x x
. . FK. Ff ac dx

.. area cc x Vx 2 + b *
.
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Now if P A = x, attraction = 0,

.-. Cor. = PD P A,

.-. whole attraction = P B P E + PD PA
= AB PE + PD.

Let AB= oo = P E = P D,
. . atraction = A B.

531. COR. 3. Let the body P be placed
within a spheroid, let a spheroidical shell

be included between the two similar

spheroids DOG, K N I, and let the

spheroid be described round S which

will pass through P, and which is simi

lar to the original spheroid, draw D P E,

F P G, very near each other. Now P D
= BE, PF = CG, P H = B I, P K
= CL.

.-. F K = L G, and D H = I E,

and the parts of the spheroidical shell which are intercepted between these

lines, are of equal thickness, as also the conical frustums intercepted by
the revolution of these lines, and

.*. attraction on P by the part D K : . . . . G I

number of particles in D K
__

... G 2

G
E

PD
PD ?

PG 2

PG

: : 1 : 1,PD 2 PG !

arid the same may be proved of every other part of a spheroidical shell, and

,\ body is not at all attracted by it; and the same may be proved of all the

other spheroidical shells which are included between the spheroids, A O G,
and C P M, and . . P is not affected by the parts extei-nal to C P M, and

.-. (Prop. LXXIL),
attraction on P : attraction on A : : P S : A S.

532. PROP. XCIII. To find the attraction of a body placed without an

infinite solid, the force of each particle varying as T. , where n is
distance n

greater than 3.

Let C be the body, and let G L, H M, K O, &c. be the attractions

at the several infinite planes of which a solid is composed on the
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body C; then the area G L O K equals the whole attraction of a solid

onC.

L
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SECTION XIV.

534. PROP. XCIV. Let a body move through a similar medium, ter

minated by parallel plane surfaces, and let the body, in its passage through
this medium, be attracted by a force varying according to any law of its

distance from the plane of incidence. Then will the sine of inclination be

to the sine of refraction in a given ratio.

R a

Let A a, B b be the planes which terminate the medium, and G H be

the direction of the body s incidence, and I R that of its emergence.

Case 1. Let the force to the plane A a be constant, then the body will

describe a parabola, the force acting parallel to I R, which will be a diameter

of the parabola described. H M will be a tangent to the parabola, and if

K I be produced I L will also be a tangent to the parabola at I. Let K I

produced meet G M in L with the center L, and distance L I describe

a circle cutting I R in N, and draw L O perpendicular to I R. Now by a

property of the parabola M I =. I v,

.-. M L = H L, /. M O = O R, and .-. M N = I R.

The angle L M I= the angle of incidence, and the angle M I L = sup

plement ofM I K = supplemental angle of emergence.

Now
L . M I = M H 2 = 4 M L *
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but

MN.MI=MI.IR=MQ.MP=ML+LQ.ML LQ
__ 1V/T T 2 T {^\

. M j = ML 2

^-LQ
2

.-. L:IR::4ML 2 :ML 2 LQ 1

but L and I R are given

.-.4 ML 2 a ML 2 LQ 1

.-.ML 2 aLQ 2 a LI 2

.% M L a L I or sin. refraction : sin. inclination in a given ratio.

Case 2. Let the force vary according to TG/H / a

any law of distance from A a. g j/
~

b

Divide the medium by parallel planes A a, c K/ c

B b, C c, D d, &c. and let the planes be at ^_
evanescent distances from each other, and

let the force in passing from A a to B b,

from B b to C c, from C c to D d, &c. be

uniform.

. . sin. I at H : sin. R at H : : a : b

sin. R or I at I : sin. R at K : : c : d

sin. R or I at K : sin. R at R : : e : f, and so on.

. . sin. I at H : sin. RatR::a.c.e:b.d.f and in a constant pro

portion.

535. PROP. XCV. The velocity of a particle before incidence : velocity

after emergence : : sin. emergence : sin. incidence.

G

B

D

K

Take A H = I d, and draw A G, d K perpendicular upon A a, D d,

meeting the directions of incidence and emergence in G, K. Let the

motion of the body be resolved into the two G A, A H, Id, d k, the ve-
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locity perpendicular to A a cannot alter the motion in the direction A a ;

therefore the body will describe G H, I K in the same time as the spaces
A H, I d are described, that is, it will describe G H, I K in equal times

before the incidence and after the emergence.

Velocity before incidence : velocity after emergence : : G H : I K
A H Id

&quot;

sin/incidence sin. emergence

: : sin. emergence : sin. incidence.

536. PROP. XCVI. Let the velocity before incidence be greater than

the velocity after emergence, then, by inclining the direction of the inci

dent particle perpetually, the ray will be refracted back again in a similar

curve, and the angle of reflection will equal the angle of incidence.

ri 2
*&amp;gt;

A P hXa

B \P P/ b

C

D

E

Let the medium be separated by parallel planes A a, B b, C c, D d,

E e, &c. and since the velocity before incidence is greater than the

velocity after emergence. .*. sin. of emergence is greater than sin. of in

cidence. . . H P, P Q, Q R, &c. will continually make a less angle with

H a, P b, Q c, R d, &c. till at last it coincides with it as at R
;
and after

this it will be reflected back again and describe the curve R q p h g simi

lar to R Q P H G, and the angle of emergence at h will equal the angle
of incidence at H.

537. PROP. XCVII. Let sin. incidence : sin. refraction in a given ra

tio, and let the rays diverge from a given point ;
to find the surface of

medium so that they may be refracted to another given point.

C MM

Let A be the focus of incident, B of refracted rays, and let C D E
be the surface which it is required to determine. Take D E a small arc,

VOL. I. D d
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and draw E F, E G perpendiculars upon A D and D B; then D F, D G
are the sines of incidence and refraction ; or increment of A D : decrement

of B D : : sin. incidence : sin. refraction. Take .*. a point C in the axis

through which the curve ought to pass, and let C M : C N : : sin. inci

dence : sin. refraction, and points where the circles described with radii

A M, B N intersect each other will trace out the curve.

538. COR. 1. If A and B be either of them at an infinite distance or at

any assigned situation, all the curves, which are the loci ofD in different

situations of A and B with respect to C, will be traced out by this

process.

K

A C B

539. COR. 2. Describe circles with radii A C and C B, meeting A D,

B D in P and Q ;
then P D : D Q : : sin. incidence : sin. refraction, since

P D, D Q are the increments of B C and A C.
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SECTION I.

1. PROP. I. Suppose the resistance oc
velocity, and supposing the whole

time to be divided into equal portions, the motion lost will
velocity, and

oc space described. Therefore by composition, the whole decrement of the

velocity cc space described.

COR. Hence the whole velocity at the beginning of motion : that part
which is lost : : the whole space which the velocity can describe : space

already described.

2. PROP. II. Suppose the resistance oc
velocity.

Case 1. Suppose the whole time to be divided into equal portions, and

at the beginning of each portion, the force of resistance to make a single

impulse which will oc velocity, and the decrement of the velocity

cc resistance in a given time, oc velocity. Therefore the velocities

at the beginning of the respective portions of time will be in a con

tinued progression. Now suppose the portions of time to be diminished

sine limite, and then the number increased ad injinitum, then the force of

resistance will act constantly, and the velocity at the beginning of equal

successive portions of time will be in geometric progression.

Case 2. The spaces described will be as the decrements of the velocity

oc velocity.

3. COR. 1. Hence if the time be represented by any line and be divid

ed into equal portions, and ordinates be drawn perpendicular to this

line in geometric progression, the ordinates will represent the velocities,

and the area of the curve which is the logarithmic curve, will be as the

spaces described.

Dd 2
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Suppose L S T to be the logarithmic curve to the asymptote A Z.

A L, the velocity of the body at the beginning of the motion.

P Q

h H K Z

The space described in the time A H with the first velocity continued

uniform : space described in the resisting medium, in the same time : :

A H P L : area A L S H : : rect. A L X P L : rect. A L X PS*
: : P L : P S (if A L = subtan. of the curve).

Also since H S, K T representing the velocities in the times A H, A K ;

P S, Q T are the velocities lost, and therefore oc spaces described.

4. COR. 1. Suppose the resistance as well as the velocity at the begin

ning of the motion to be represented by the line C A, and after any time by
the line C D. The area A B G D will be as the time, and A D as the

space described.

For if A B G D increase in arithmetical progression the areas being

the hyperbolic logarithms of the abscissas, the abscissa will decrease in

geometrical progression, and therefore A D will increase in the same

proportion.

5. PROP. III. Let the force of gravity be represented by the rectangle

* Let the subtangent = M. Then the whole area of the curve = M X A L.

.-. the area ALSH = MXAL MXHS = MXPS=ALXPS.
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BACH, and the force of resistance at the beginning of the motion by
the rectangle B A D E on the other side of A B.

D

K

F
H

Describe the hyperbola G B K between the asymptotes A C and C H
cutting the perpendiculars D E, d e, in G and g.

Then if the body ascend in the time represented by the area D G g d,

the body will describe a space proportional to the area E G g e, and the

whole space through which it can ascend will be proportional to the area

E G B.

If the body descend in the time A B K I, the area described is B F K.

For&amp;gt;euppose the whole area of the parallelogram B A C H to be di-

A a K L M N I

vided into portions, which shall be as the increments of the velocity in

equal times, therefore A k, A 1, A m, A n, &c. will &amp;lt;x velocity, and there

fore cc resistances at the beginning of the respective times.

Let A C : A K : : force of gravity : resistance at the beginning of the

second portion of time, then the parallelograms B A C H, k K C H, &c.

will represent the absolute forces on the body, and will decrease in geome
trical progression. Hence if the lines K k, L 1, &c. be produced to meet

D d 3
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the curve in q, r, &c. these hyperbolic areas being all equal will repre
sent the times, and also the force of gravity which is constant. But the

area B A K q : area Bqk::Kq:4kq::AC:|AK:: force of

gravity : resistance in the middle of the first portion of time.

In the same way, the areas q K L r, r L M s, &c. are to the areas

q k 1 r, r 1 m s, &c. as the force of gravity to the force of resistance in the mid

dle of the second, third, &c. portions of time. And since the first term is

constant and proportional to the third, the second is proportional to the

fourth, similarly as to the velocities, and therefore to the spaces described.

. . by composition B k q, B r 1, B s m, &c. will be as the whole spaces

described, Q. e. d.

The same may be proved of the ascent of the body in the same way.

6. COR. 1. The greatest velocity which the body can acquire : the velo

city acquired in any given time : : force of gravity : force of resistance

at the end of the given time.

7. COR. 2. The times are logarithms of the velocities.

8. COR. 4. The space described by the body is the difference of the space

representing the time, and the area representing the velocity, which at the

beginning of the motion are mutually equal to each other.

Suppose the resistance to &amp;lt;x velocity.

r v ~

. . C E
: v 2

: : r :
j-
= retarding force corresponding with the velocity (v)c

.-. x = b X 1 v + C,

.-. t = b X + Cor.

= X cc- -,

.. the times being in geometiical progression, the velocities C, d, E, &c.

will be in the same inverse geometrical progression.

Also the spaces will be in arithmetical progression.
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9. PROP. IV. Let D P be the direction of the projectile, and let it

represent the initial velocity ; draw C P perpendicular to C D, and

N
E

let D A : A C : : resistance : gravity. Also DP: C P : : resistance :

gravity, .-. DAxDP:CPxCA::R:G. Between D C, C P de

scribe a hyperbola cutting D G and A B perpendicular to D C in G and B,

from R draw R V perpendicular cutting D P in V and the hyperbola in T,

complete the parallelogram G K C D and make N : Q B : : C D : C P.

Take

GTt GTE IV r = -
N or R r = ^ ,

for s*ince

R V =

N:QB::CD:CP::DR:RV,
D R X QB

fTT&quot;

and

GTEI D R X QB GTt _~~ ~&quot;

in the time represented by D R T G the body will be at (r), and the great
est altitude = a, and the velocity cc r L.

For the motion may be resolved into two, ascending and lateral. The
lateral motion is represented by D R, and the motion in ascent by 11 r,

which

a D R x QB GTt,
or

D R X A B D G . R T
N

Dd4
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or

D R X A B D R x AQ
~N~

D R : R r : : N : A B A Q, or Q B

: : C D : C P,

: : lateral motion . ascending motion at the beginning,

(r) will be the place of the body required.

SECTION II.

10. PROP. V. Suppose the resistance to vary as the velocity
2
.

Then as before, the decrement of velocity a resistance a velocity
!
.

AKI.M T D

Let the whole time A D be divided into a great number of equal por

tions, and draw the ordinates A B, K k, L 1, M m, &c. to the hyperbola
described between the two rectangular asymptotes, C H, CD; then by the

property of the hyperbola,

AB:Kk::CK:CA,
/. ABKk:Kk::AK:CA

::ABxAK:ABxCA.
.-. AB KkaABxKk.

In the same way
Kk LI a Kk 2

, &c.

or

A B 2
, K k

, L 1
2
, &c.

are proportional to their differences.

. . velocities will decrease in the same proportion. Also the spaces de

scribed are represented by the areas described by the ordinates ; hence in
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the time A M the space described may be represented by the whole area

A M mB.
Now suppose the lines C A, C K, &c. and similarly A K, K L, &c. in

geometrical progression, then the ordinates will decrease in the inverse

geometrical progression, and the spaces will be all equal to each other.

Q. e. d.

1 1. COR. 1. The space described in the resisting medium : the space de

scribed with the first velocity continued uniform for the time AD:: the

hyperbolic area A D G B : rectangle A B X AD.

12. COR. 3. The first resistance equals the centripetal force which would

generate the first velocity in the time A C, for if the tangent B T be drawn

to the hyperbola at B, since the hyperbola is rectangular AT = AC, and

with the first resistance continued uniform for the time A C the whole

velocity A B would be destroyed, which is the time in which the same ve

locity would be generated by a force equal the first resistance. For the

first decrement is A B K k, and in equal times there would be equal de

crements of velocity.

13. COR. 4. The first resistance : force of gravity : : velocity generated

by the force equal the first resistance in the time A C : velocity generated

by the force of gravity in the same time.

14. COR. 5. Vice versa, if this ratio is given, every thing else may be

found.

H IS

P L K I A

15. PROP. VIII. Let C A represent the force of gravity, A K the resis

tance, . . C K represents the absolute force at any time (if the body de

scend) ; A P, a mean proportional to A C and A K, represents the velo

city ; K L, P Q are contemporaneous increments of the resistance and

the velocity.

Then since

AP aAK, KLaSAPxPQxAPxKC,
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the increment of velocity cc force when the time is given,

.-. K L x K N a A P x K C x K N,

.. ultimately K L O N (equal the increment of the hyperbolic area)

GC A P cc velocity, cc space described, and the whole hyperbolic area =
the sum of all the K L O Ns which are proportional to the velocity, and

.*. space described. .*. If the whole hyperbolic area be divided into equal

portions the absolute force C A, C I, C K, &c. are in geometrical pro

gression. Q. e. d.

16. COR. 1. Hence if the space described be represented by a hyper
bolic area, the force of gravity, velocity, and resistance, may be repre

sented by lines which are in continued proportion.
17. COR. 2. The greatest velocity = A C.

18. COR. 3. If the resistance is known for a given velocity, the greatest

velocity : given velocity : : V force of gravity : V given resistance.

19. PROP. IX. Let A C represent the greatest velocity, and A D be per-

B

pendicular and equal to it. With the center D and radius A D describe

the quadrant A t E and the hyperbola A V Z. Draw the radii D P, D p.

Then

Case 1. If the body ascend ; draw D v q near to D p, .-. since the sector

and the triangle are small,

D v t : Dp q: : D t* : D p*

q p*v t oc D
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& A D X p q p q
* AD 2 + ADxAK a C K
cc increment of the time.

.-. bv composition, the whole sector a whole time till the whole

V = 0.

Case 2. If the body descend ;
as before

D VT: D P Q: : D T 2
: D P 2

: : DX 4
: D A*: : T X 2

: A P*

: : DX 2 TX 2
: DA 2 AP 1

: : A D 2
: A D 2 ADx AK

: : A D : C K.

By the property of the hyperbola,

T X 2 = D X 2 D A 2

.-. D A 2 = DX 2 TX 2

VT DPQ p Q
DVTcc AD X CK a CT

oc increment of the time.

.-. by composition, the whole time of descent till the body acquire its

greatest V = the whole hyperbolic sector DAT.
20. COR. 1. If A B = \ A C.

The space which the descending body describes in any time : space

which it would describe in a non-resisting medium to acquire the greatest

velocity : : area A B N K : A A T D, which represents the time. For

since AC:AP::AP:AK
KL:|PQ::AP:iAC

and
KN: AC ::AB:CK

.-. KLON:DTV::AP:AC
: : vol. of the body at any time : the greatest vel.

Hence the increments of the areas cc velocity cc spaces described.

.-. by composition the whole A B N K : sector A T D : : space described

to acquire any velocity : space described in a non-resisting medium for

the same time.

21. COR. 2. In the same way, if the body ascend, the space described

till the velocity = A p : space through which a body would move : :

A B n k : A D t.

22. COR. 3. Also, the velocity of a body falling for the time A T D :

velocity which a body would acquire in a non-resisting medium in the

same time : : A A D P : sector T D A
;
for since the force is constant,



428 A COMMENTARY ON [SECT. II.

the velocity in a non-resisting medium cc time, and the force in a resist

ing medium ocAPccAADP.

23. COR. 4. In the same way, the velocity in the ascent : velocity with which
a body should move, to lose its whole motion in the same time : : A A p D
: sector A t D : : A p : arc A t.

For let A Y be any other velocity acquired in a non -resisting medium
in the same time with A P.

.-. A P : A C : : A P D : this area

and

AP:AC::APD:ACD.
Therefore the area which represents the time of acquiring the greatest

velocity in a non-resisting medium = A C D.

In the same way, let Ay be velocity lost in a non-resisting medium in

the same time as A p in a resisting medium.

.*. Ap:Ay::AApD: area which represents the time of losing the

velocity A p.

.. time of losing the velocity A y = A A p D.

24. COR. 5. Hence the time in which a falling body would acquire the

velocity A P : time in which, in a non-resisting medium, it would acquire
the greatest velocity : : sector A D T : A C A D.

Also the time in which it would lose the velocity A p : time in which,
in a non-resisting medium, it would lose the same velocity : : arc A t :

tangent A p.

25. COR. 6. Hence the time being given, the space described in ascent

or descent may be known, for the greatest velocity which the body can

acquire is constant, therefore the time in which a body falling in a non-

resisting medium, would acquire that velocity is also known. Then the

sector ADTorADtrAADC:: given time : time just foundj there

fore the velocity A P is known or A p.

Then the area ABNKorABnk:ADTorADt:: space sought

for : space which the body would describe uniformly with its greatest

velocity.

26. COR. 7. Hence vice versa, if the space be given, the time will be

known.
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27. PROP. X. Let P F Q be the curve meeting the plane P Q. Let

T

B C D E Q

G, H, I, K be the points in the curve, draw the ordinates ; let B C = C D
= D E, &c.

Draw H N, G L tangents at H and G, meeting the ordinates produced
in L and N, complete the parallelogram C H M D. Then the times

cc V L H and V N I, and the velocities oc G H and H I, and the times

G H TT T
cc ; let T and t = times, and the velocities a ~j and -

, therefore

the decrement of the velocity arising from the retardation of resistance and

G H H T
the acceleration of gravity cc ~, , also the accelerating force of

gravity would cause a body to describe 2 I N in the same time, therefore

the increment of the velocity from G = 2NI
again the arc is increased

by the space = HI HN = RI = -=5-=
-

, therefore the de-

F ,u GHHISMIxNI
crement from the resistance alone = ~----

1
---- =-=

, ..

GHxt T
resistance : gravity : :

- -- H 1T
2 M I x N I v T

HI
- -

: 2 N L

Again, let

A B, C D, C E, &c. be o + o, 2o, 3o, &c.

C H = P
and

.-. D I = P
EK = P

Q o + &c.

2Qo 4Ro 2 &c.

Qo+&c.
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(BG CH) 2 + B C 2

(= G H 2

)
= o 2 + Q*o 2 + 3QRo 3

-f &c.

.-. G H 2 = 1 + Q 2 x o 2 + 3 Q R o 3
,

Q Ro 2

.-. G H = V 1 + Q 2 x o +
i + Q

and

Subtract from C H the sum G B and D I, and R o 2 and R o 2 +
3 S o 3

will be the remainder, equal to the sagittae of the arcs, and which

are proportional to L H and N I, and therefore, in the subtracted num
ber of the times,

. . ^ a /
R + 3 S o R + f So ^ j

3 S o

R
&quot; a

2 R
&quot; * +

2 R

Q&quot;

2 2 R
S o3

HI = o. V 1 + Q 4 + Q R o 2

M I x NI__ Ro 2

x_Qo_+ Ro 2
H- &c.

HI =
o. V l~+ Q* Q Ro 2

I ^ ;

l + Q 2

GHxt HT ,2MIxNI
.-. resistance : gravity : :

Fp
H 1 H rrr ^~

:

&quot; N I

: : 3 S V 1 + Q 2
: 4 R 2

.

The velocity is equal to that in the parabola whose diameter rr H C,

H N 2
1 + Q *

and the lat. rect. = , or n The resistance oc
density x V e

,

e , , resistance 3 S V 1 + Q 2
v R

therefore the density ^j-^
oc

o
^

directly oc _
V s * K &quot; ^14-Q S

c

directly
oc

R V 1 + Q 2

28. Ex. 1 . Let it be a circular arc, C H = e, A Q =r n, A C a,

CD = o,

.-. D I
2 = n 2

(a+o)
2 = n 2 a 2 2ao-o 8 =e 2 Sao o*,
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and therefore

NEWTON S PRINCIPIA.

2 3

_ e
a o n o_ - - --5-

a n o

r /&quot; t?P = c, Q = -, R = ^ S =
a n :

.-. density
oc oc

R V 1 + Q 2

&quot;

2e5

sin.

2 e 5

a n 2 2 e 3 e

^n

a a sin.
a a a oc tangent.

n e e cos.

3 a n
&quot; n n 4

The resistance : gravity : :

g Q .
X :

5
: : 3 a : 2 n.

29. Ex. 2. Of the hyperbola.

P I X b - P D 2
,

.-. put P C = a, C D = o, Q P = c,

.. a + o X c a o ac a 2 2ao + co o 2

a c a
.-. D I = 2 a + c o 2

rTT- .&quot;&quot;B
1

and since there is no fourth term,

S = 0,

.*. draw y = 0.

30. PROP. XIII. Suppose the resistance to V + V 2
.

A Q P

431

D F

Case 1. Suppose the body to ascend ;
with the center D and rad. D B,
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describe the quadrant B T F; draw B P an indefinite line perpendicular

to B D, and parallel to D F. Let A P represent the velocity ; join D P,

D A, and draw D Q near D P.

.. resistance AP 2 + 2BAxAP, suppose gravity
oc D A *,

. . decrement ofV oc gravity + resistance AD 2+AP 2+2BAxAP.
a D P 2

DPQ( PQ) :D T V::D P 2 :DT 2
,

.-. D T Va D T 2
&amp;lt;x

l,

therefore the whole sector E T D, is proportional to the time.

Case 2. Suppose the force of gravity proportional to a less quantity
than DA 2

, draw B D perpendicular to B P, and let the force of gravity

P Q

FG

oc A B 2 B D 2
. Draw D F parallel to P B and = D B and with the

center D axis-major = axis-minor = D B, describe a hyperbola
from the vertex F, cutting A D produced in E, and D P, D Q in T, V.

Now since the body is supposed to ascend.

2AB X AP + AB 2

B 2 + 2AB x BP).

Also, DTV:DPQ::DT 2 :DP 2

(by similar triangles)

::TG 2 :BD 2 (TG perpendicular to G)

: : D F 2
: PB 2 D B 2

.

Now D P Q cc decrement of velocity oc P B 2 D B 2
,

.. DTVocDF 2 al a increment of the time, since the time flows uni

formly.

The decrement of the velocity ccAP
B D 2

oc BP 2 BD 2 BP 2 = AP 2
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Case 3. If the body descend ; let gravity
oc B D J A B *.

With center D and vertex B, describe the rectangular hyperbola B T V,
cutting the lines D A, D P, D Q produced in E, T, V.

The increment of V B D 2 A B 2 2 A B x AP _ A P *

oc B D 2

(A B + AP) 2 oc B D 2 B P 1

DTV:DPQ(ocpQ)::DT 2 :DP 2

::GT S :BP*::GD 2 BD 2 :BP 2

:: GD 2
: BD 2 :: BD 2

: BD 2 EPS
.-. DT Voc BD oc i,

.. the whole sector E D T oc time.

31. COR. With the center C and distance D A describe an arc similar

to B T.

Then the velocity A P : the velocity which in the time E D t a body
would lose or acquire in a non-resisting medium : : A D A P sector
AD t.

For V in a non-resisting medium oc time.

32. In the case of the ascent,

Let the force of gravity I. Resistance oc 2 a v -f- v

. . d v oe 1 + 2 a v + v*

d v

. . by Demoivre s first formula,

f. or time =
when

f.

VOL. I.

= ~l X cir. arc. rad. = g and

tangent = v + a

Ee
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The whole time .*. when v = = -, X cir. arc rad. = a
8

and tangent z= a -f- C.

.*. corr
. time =

; X cir. arc rad. = g and tangent v -f a cir. arc rad.
O

= g and tangent a.

.-. the time of ascent = sector EDT g
s = 1 a*.

33. In the case of descent,

dv cc 1 2 a v v*

let

v + a = x

.*. d v = d x

.-. \ z
-f 2 a v -f a 2 = x s

.-. 1-r-a
2 x 2 = 1 2 a v v *

Time = 0, v = 0,

/. x = a,

.-. Cor 1
, time X ft- - ffi^- .

2g J g x J g a

34- PROP. XIV. Take A C proportional to gravity, and A K to the

esistance on contrary sides if the body ascend, and vice versa.

Between the asymptotes describe a hyperbola, &c. &c.

Draw A b perpendicular to C A, and

Ab:DB::l)B 2 :4BA X A C.

The area A b N K increases or decreases in arithmetic progression it

the forces be taken in geometric progression.

Now

A K a resistance a 2 B A P + A P 2
.

Let

. 2BAP + AP 2

A K. r= y

2BA X PQ+2APX PQ
.*. Jv JL T/ &amp;gt;
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I)

A KQ P

KL = 2 B P Q

NTow

Ab:LO::CK:CA
DB:Ab::4BAx CAtDB*

BD 3

.-. L O =
4 B A x C K

. K-T nv 2PB x PQ x BD 3

. . IV JL \J IS =: 7~rr~i &amp;gt;S- i=i .4B A x CK x Z

Case 1. Suppose the body to ascend,

gravity ex A B + B D 2 = A B + BD
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---
Z

.-.DP l = CKx Z.

.-. DT 2 :DP*::DB :CKxZ
and in the other two cases the same result will obtain.

Make
DTV = DBx ra.

.-.DBxm:iDBx PQ::DB*:CK X Z

.-. BD 3 xPQ = 2BDxmxCKxZ.

...AbNK-DTV=

it will represent the space.

A P.* velocity.

SECTION IV.

35. PROP. XV. LEMMA. The

. O P Q = a rectangle = L. O Q R
ami

L. S P Q = L. of the spiral = A. S Q R

.-. L. O P S = L- O Q S.

.-. the circle which passes through the points P, S, O, also passes

through Q. Also when Q coincides with P, this ^^- touches the spiral.

.-. L. P S O L. in a whose diameter = P O.
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Also

TQ : PQ :: PQ : 2 PS.

.r. PQ-- 2PS x TO
which also follows from the general property of every curve.

PQ 2 = P V x Q R.

OR - PQZQK -TW-
36. Hence the resistance density X square of the velocity.

37. Density oc -j-- centripetal force oc density
2

-p -.
J distance distance 2

Then produce S Q to V so that S V = S P, and let P Q be an arc

described in a small time, P R described in twice that time, .. the decre

ments of the arcs from what would be described in a non-resisting me
dium a T 2

.

.. decrement of the arc P Q = \ decrement of the arc P R

.-. decrement of the arc P Q = R r
(if Q S r = area P S Q).

For let P q, q v be arcs described (in the same time as P Q, Q R) in a

non-resisting medium,

PSq PSQ = QSq = qSv Q S r

-rSv QSq
.-. 2 Q S q = r S v

.-. if S T ultimately = S t be the perpendicular on the tangents

STxQq = Stxrv
.-. 2 Q q = r v

and

R v = 4 Q q.

. . 2 Q q = R r.

Hence

Resistance : centripetal force : : R r : T Q,
Also

T Q X S P 2 a time 2
, (Newt. Sect. II.)

.-.PQ 2 X S P a time 2

/. time a P Q x V fc&amp;gt; I

.-. V a

also

V at Q oc

V-SQEgC J
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::SQ:VSQxSP
PQ: Q r : : SQ: SP

since the areas are equal, and the angles at P and Q are equal.

.-. P Q : R r : : S Q : S P V S Q x S P
: : S Q : f V Q

For

SQ = SP VQ
.-. S Q x S P = S P 2 V Q x SP

.-. V SQx SP = SP J V Q_Z^_&c.
.-. V Q ultimately = S P V S P X S Q

T-,
. decrement of-V R r

Resistance oc =
5 cc

time 2 P Q 2 X S P

PQxSQxSP
JVQ: PQ::OS:PO

and
1 Q O

S Q = S P cc QJf x gp2
O S

.-. density X square of the velocity cc resistance cc Typ q-

OS
/. density a /Y15 o~

O S
and in the logarithmic spiral ^r-p

is constant

.*. density cc ^-g
. Q. e. d.

88. (&quot;OR. 1. V in spiral = V in the circle in a non -resisting medium at

he same distance.

39. COR 3. Resistance : centripetal force : :
- R r : T Q
jVQx PQ ^PQ 2

SQ S P

::VQ:PQ
: : I O S : O P.

. . the ratio of resistance to the centripetal force is known if the spiral be

given, and vice versa.

40. Con- 4. If the resistance exceed the centripetal force, the body

cannot move in this spiral. For if the resistance equal | the centripetal
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force, O S = O P, . .the body will descend to the center in a straight

line P S.

V of descent in a straight line : V in a non-resisting medium of de

scent in an evanescent parabola : : 1 : V 2 ; for V in the spiral = V in the

circle at the same distance, V in the parabola = V in the circle at

| distance.

Hence since time a v ,

time of descent in the 1st case : that in 2d : : V 2 : 1.

41. Con. 5. V in the spiral P Q R = V in the line P S at the same

distance. Also

P Q R : P S in a given ratio : : P S : P T : : O P : O S

.-. time of descending P Q R : that of &quot;P S : : O P : O S.*

Length of the spiral = T P = sector of the L. T P S.

a : b : : b : c : : c : d : : d : e

a + b + c + &c. : b + c + d + &c. : : a : b

.*. a -f- b + c -} &c. : a : : a : a b.

42. COR. 6. If with the center S and any two given radii, two

circles be described, the number of revolutions which the body makes

between the two circumferences in the different spirals &amp;lt;x tangent ot the

angle of the spiral cc

The time of describing the revolution : time down the difference of the

radii : : length of the revolution : that difference.

2d ex 4th,

/. time cc length of the revolution oc secant of the angle of the spiral

OP

p q : p t : : S p : S y

p (1 x
d w : : : x : p.

r. .- t
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43. Con. 7. Suppose a body to revolve as in the proposition, and to cut

the radius in the points A, B, C, D, the intersections by the nature of the

spiral arc in continued proportion.

Times of revolution a Perimetersdescribed

and velocity oc
1

^distance

aA W T} Q ST ^ G 2
i*. O J.) O V^ O

. . the whole time : time of one revolution : : A

: : A

44. PROP. XVI. Suppose the centripetal force x J n ,

time a P Q x S P
i

and velocity ex

&c. : A S

: A S B S *.

SP*

PQ:QR::SQ*:SP
Qr:PQ::SP :SQ

Qr : Q R

. . Q r : R r

For

S Q $ - l
: S Q *- &amp;gt; _ S P S ~

S Q : l^TfiT. V Q.

S P = S Q + V Q,
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*- 1 + 1. VQ x SQ*- 2 + &c.

... SQ2- _SP- = 1 x VQ x SQ?- 2
.

Then as before it may be proved, if the spiral be given, that the density

^rp.
Q. e. d.

45. COR. 1. _
Resistance : centripetal force : : 1 n . O S : O P,

fur the resistance : centripetal force : : | II r : T Q

X VQx PQ PQ !

Q
&quot;

TiT

x VQ:PQ

: : l - x O S: OP.
ii

46. COR. 2. If n + 1 = 3, 1 ~ = 0,
ii

.. resistance = 0.

COR. 3. If n + 1 be greater than 3, the resistance is propelling.

SECTION VI.

47. PROP. XXIV. The distances of any bodies centers, of oscillation from

the axis of motion being the same, the quantities of matter CD weight
X squares of the times of oscillation in vacua.

T, t i i -, force X time ,, ,.

1&amp;lt; or the velocity generated GC -,
-

. r orce on bodies at
quantities 01 matter

c(jual distances from the lowest points GO weights, times of describing

corresponding parts of the motion cc whole time of oscillation,

c force X time of oscil.
.-. quantities of matter cc -, .-,

velocities

co weights X squares of the times,

since the velocities generated cc -: for equal spaces.
times

48. COR. 1. Ilence the times being the same, the quantities of matter

co weights.

Cou. 2. If the weights be the same, the quantities of matter co time %

COR. 3. If the quantities of matter be the same, the weights cc -: -.
time *



442 A COMMENTARY ON [SECT. VI

49. Cou. 4. Generally the accelerating force cc-p.^ of matter
quantities

and L oo T T 2
,

T
WxT*

Q~~
W x T 2

.-. Q cc
L

.\ ifW and Q be given L co T 2
.

If T and Q be given L oo W.

CA ~ _ . ... c weightX time2 ofoscillation
50. COR. 5. generally the quantity or matter cc a

1

-= .

51 PROP. XXV. Let A B be the arc which a body would describe in a

non-resisting medium in any time. Then the accelerating force at any

point D oc C D ; let C D represent it, and since the resistance cc time,

it may be represented by the arc C o.

.*. the accelerating force in a resisting medium of any body d, = o d.

Take

od:CD::oB:CB.
Therefore at the beginning of motion, the accelerating force will be in

this ratio, .*. the initial velocities and spaces described will be in the some

ratio, .. the spaces to be described will also be in the same ratio, and

vanish together, . . the bodies will arrive at the same time at the points

C and o.

In the same way when the bodies ascend, it may be proved that they

will arrive at their highest points at the same time. .-. If A B : a B in

the ratio.C B : o B, the oscillations in a non-resisting and resisting me

dium will be isochronous. Q. e. d.
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Con. The greatest velocity in a resisting medium is at the point o.

The expression for the J- time of an oscillation in vacuo, or time of de

scent down to the lowest point a quadrant whose radius = 1. Now

suppose the body to move in a resisting medium when the resistance

: force of gravity : : r : 1.

Then vdv = gFdx + grdz = gd
2 x + grdz. Now by

a property of the cycloid, if - be the axis, d x : d z : : x : \ : : z : a,
&

z d z
. . d x =r

,

a

. . v d v = i - x z d z -f- grdz ~

= f X z 2 + grz,

. . v 2grz+C.
Now

r= d, V = o,

.-. v 2 = . xd 2
z 2 _2grxd z

= - xTr 4 a r d + 2 a J r z
z*,&quot;

2 2 a r d -f 2 a r z z s
,

a d z

Vd z 2 a r d + 2 a r z z *.

Assume
z a r = y,

... z - 2 a r z + a *
r

* = y\
.*. 2 a r z z * = a s v *

y
f
,

d 2 a r d -f 2 a r z z = (d a r)
2

y
! = (b

*

y
5
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and

d z =r d y

-dyi r u Y
.-. d t = / X --^- J

J g Vb 2

y
8

.-. t = f x circular arc, radius = 1,J %
and

z a r
cos. =

, -f C and C = o.
d a r

/. the whole time of descent to the lowest point = f - X circular arc

, a r . .

whose cos. = -;
,

.-. time in vacuo : tune in resisting medium
d a r

- _. - o

: : quadrant : arc whose cos. -:

d a

a r
,

r

Cou. 1. Time of descent to the point of greatest acceleration is constant,

for in that case z = a r,

t = f x quadrant, for d v = 0,
&

.-. v d v = 0,

/. g z d z + g a r i = 0,

/. z = a r,

.-. z : r : : a : 1.

COR. 2. To find the excess of arc in descent above that in ascent.

v d v -f- g T d x + g r d z,

z d z
. v d v = -- s r d z

a

v 2 m z 2

.-. v 2 = &-
(d- z 2

) (z d) x 2 a r

= - X (d
* 2 a r d) (2 a r z z

)

which when the body arrives to the highest point = 0,

d ~ 2 a r d 2 a r z z 2 = 0,

,1
&quot; 9 a i* rl -7 2 I O .1 T r,

.-. d 5 2ard = z*+2a r z,

.-. z + a r = d a r,

.-. z = d 2 a r,

.-. d z = 2 a r.
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52. PROP. XXVI. Since V oc arc, and resistance a V, resistance a arc.

.-. Accelerating force in the resisting medium GC arcs.

Also the increments or decrements of V a accelerating force.

.. the V will always &amp;lt;x arc.

But in the beginning of the motion, the forces which oo arcs will generate

velocities which are proportional to the arcs to be described. .-. the velo

cities will always co arcs to be described.

.*. the times of oscillation will be constant.

53. PROP- XXVIII. Let C B be the arc described in the descent, C a

in the ascent.

.-. A a = the difference (if A C = C B)

Force of gravity at D : resistance : : C D : C O.

C A = C B
Oa = O B

. . CA OaorAa eO = CB OB = CO
.-. C O = A a

. . Force of gravity at D : resistance : : C D : A a

. . At the beginning of the motion,

Force of gravity : resistance : : 2 C B : A a

: : 2 length of pendulum : A a.

54. PROB. To find the resistance on a thread of a sensible thickness.

Resistance CD V * X D * of suspended globe.

.*. resistance on the whole thread : resistance on the globe C : :
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::2a sV. (a b)
8

: a 3
r 2 c 2

r 2 c 2
. (a 2 b)

3

, c = a + r.

:: a 3 b 2
. (a b)

*
: 3a 2 r 2 c 2 b bab 2 r*c 2

-f-4b
3
r 2

c*,

:: a b . (a b)
2

: 3a z
r

2 c 2 ba b r
* c 2 + 4 b * r 2 c\

.. resistance on the thread : whole resistance

::a 3
b. (a b)

a
: r 2

c*.(3a
! bab+ 4b 3

).

COR. If the thickness (b) be small when compared with the length (a)

bab4 4b 2 =3a 2 bab + 3 b 2

(nearly) = 3. (a b) -.

and

3 a

. . Resistance on the whole thread : resistance on the globe
: : a 3 b : 3r a c

Resistance on the thread : whole resistance to the pendulum

Suppose, instead of a globe, a cylinder be suspended whose ax. = 2 r.

Now by differentials

the resistance on the circumference : resistance on the base : : 2 : 3.

By composition the resistance to the cylinder : resistance on the square

= 2 r : : 2 : 3.

Resistance a x 2 x ,

. . resistance ax 3

,

.. resistance to the whole thread ot x 3
.

Resistance on A E a (a 2 b)
3
if 2 b = E D.

. . Resistance on the thread : resistance of the globe

: : 16 . a 3 b 2
. (a b)

*
; 3 p . a 3

(a 2 b)
3 x r

s
. (a + i) *.

55. PROP. XXIX. B a is the whole arc of oscillation. In the line OQ
take four points S, P, Q, R, so that if O K, S T, P I, Q E be erected
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perpendiculars to O Q meeting a rectangular hyperbola between the

asymptotes O Q, O K in T, I, G, E, and through I, K F be drawn

O S P rRQ M

parallel to O Q, meeting Q E produced in F. The area P I E Q may
be : area P I S T : : C B : C a. Also I E F : I L T : : O R : O S.

Draw M N perpendicular to O Q meeting the hyperbola in N, so that

P L M N may be proportional to C Z, and P I G R to C D.

Then the resistance : gravity -QQ X TEF IGH:PINM.

Now since the force cc distance, the arcs and forces are as the hyper
bolic areas. .*. D d is proportional to R r G g.

Now by taking the differentials the increment of (Q-Q T E F I G H)
P ,. T TTT? T V V

= G H g h -

H G I E I

OQ
OR

: R rX G R : : H G
Q

: G R : : O R X

O P x
O R
OQ

(ORxHG = ORxHR
= PIHR=PIRG+IGH):-. PIRG+IGH

x IEF:OPx PI.

O R
NowifTs g-^XIEF

I GH, the increment Y a PIG R Y.

Let V = the whole from gravity. .*. V R = actual accelerating

force. . . Increment of the velocity a V R X increment of the time.

As the resistance cc V 2 the increment of resistance a V X increment of

, . , , . . increment of the space f
the velocity, and the velocity a - ?. t

. .-. Increment of
increment ot the time

resistance a V R if the space be given, co P I G R Z, if Z be the

area which represents the resistance R e.

Since the increment Y a PIGR Y, and the increment of Z
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ccPIGR Z. IfY and Z be equal at the beginning of the motion and

begin at the same time by the addition of equal increments, they will still

remain equal, and vanish at the same time.

Now both Z and Y begin and end when resistance = 0, i. e. when

O R
OQ . I E F I G H =

or

xOR IGH = 0.

O R x I E F
I G H = Z

.-. Resistance : gravity : :

g-|
. I E F I G H : P M N I.

SECTION VIII.

66. PROP. XLIV. The friction not being considered, suppose the mean

K M

E

altitude of the water in the two arms of the vessel to be A B, C D. Then

when the water in the arm K L has ascended to E F, the water in the arm

M N will descend to G H, and the moving force of the water equals the

excess of the water in one arm above the water in the other, equals twice

A E F B. Let V P be a pendulum, R S a cycloid = length of the

canal, and P Q = A E. The accelerating force of the water : whole

weight : : A E or P Q : P R.
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Also, the accelerating force of P through the arc P Q : whole weight

of P : : P Q : P R ; therefore the accelerating force of the water and P
cc the weights. Therefore if P equal the weight of the water in the canal,

the vibration of the water in the canal will be similar and cotemporaneous
with the oscillations of P in the cycloid.

COR. 1. Hence the vibrations of the water are isochronous.

Con. 2. If the length of the canal equal twice the length of the

pendulum which oscillates in seconds; the vibrations will also be performed
in seconds.

COR. 3. The time of a vibration will &amp;lt;* V L.

Let the length = L, A E = a,

then the accelerating force : whole weight : : 2 a : L,

.*. accelerating force = -y- ;

JU

2 A
.. when the surface is at 0, the accelerating force =

^

Put E = x,

A = a x,

, .. c 2 a 2 x
.. accelerating torce = = .

g . 2 a d x 2 x d x* _

X 2 a x x 2
,

x
adx

V 2 a x x s

*. t ss^J ^ 5 X cir. arc rad. =a, and vers. = x~ ^ g a

corn . and cor&quot;. =r 0,

v t = 0, x = 0,

.-. ifp = 3. 14159, &c.

= JV (x) = (a)} = /-L X -
P-

ga 2 V2gaX

. . time of one entire vibration = p X 7-5 = time of one entire vi-V 2 o-

bration of a pendulum whose length = .

8
\ oi. I, Ff
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57. COR. 1. Since the distance (a) above the quiescent surface docs
not enter into the expression. The time will be the same, whatever be
the value of A E.

58. COR. 2. The greatest velocity is at A = -^ x a, a a /
-

\ 1* L A V I

59. PROP. XLVIL Let E, F, G be three physical points in the lin

B C, which are equally distant; E e, F f,

G g the spaces through which they move

during the time of one vibration. Let e, &amp;lt;p, y
be their place at any time. Make P S =
E e, and bisect it in O, and with center O
and radius O P = O S, describe a circle.

Let the circumference of this circle repre-
H

sent the time of one vibration, so that in

the time P H or P H S h, if H L or h 1

be drawn perpendicular to P S and E be

taken =r P L or P 1, E s may be found in

E ; suppose this the nature of the medium.

Take in the circumference PH Sh, the arcs

H I, I K, h i, i k which may bear the

same ratio to the circumference of the circle as E F or F G to

B C. Draw I M, K N or i m, k n perpendicular to P S. Hence

PI, or P H S i will represent the motion of F . and P K or

P H S k that of G . E , Fp, G 7 = P L, P M, P N or P 1,

P m, P n respectively.

Hence s 7 or E G + G 7 E e = GE L N = expan
sion at s 7 ; or = E G + 1 n.

. . in going, expansion : mean expansion : : G E L N : E G
In returning, : : : E G + In : E G
Now join I O, and draw K r perpendicular to H L, UK r,

I O M are similar triangles, since the^KHr = ^KOk=^
I O i = L. I O P and ^ at r and M = 90,
.-. L N : K H : : I M : I O or O P, and by supposition K H :

EG:: circumference PSLP:BC::OP:V = radius of

the circle whose circumference = B C.

.. by composition L N : G E : : I M : V.

.% expansion : mean expansion : : V I M : V,

G
FJ
E

--B

J-A
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Let A C and E be the respective places of the object, eye, and reflector

at first, and B Q and F their places at any other time, or if K F = F Q
= C E, K may also be the place of the eye, and since K F always = C E,
and that B F is constant, K will trace out an ellipse by next problem.
Also by optics the angle K F H = H F Q, and from similar triangles,

K H : K F : : K D : K B,

EF:BF::KD:KB,
.-. KH + DH:KF + BF::KD:KB,

or

D Q : D K : : K F + B F : K B in a given ratio,

*. Q traces an
ellipse.

To determine the quantity of fluid issuing through an orifice of a

given form and magnitude, in the side of a cylindrical vessel, supposed to

be kept constantly full.

Let

S B = h, S A = h
,
A P = x,

P M = y,

.. velocity of the efflux in M N
= V g (h + x)

and the area of the lamina = 2 y x
and the time = t,

.*. the quantity of fluid through M N
in n = area of the section x vel. X t,

= 2 y x V g (h + x) X t,

. . the quantity effluent through the whole area A m S t A = sum of

all the portions effluent through M N = / 2 y x V g h ^f~xt 2t

^gy^h -f-x-fC connected between the values x = 0, and
x =r h - h .

S

_ f/y x

[y~x ~~+~C p mean height.
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.-. (ra b*)
8xdx s = 2 r a b dy b 4 d y *,

.-. r* a zdx*= 2 rab dy
8

if (b) be small compared to (aj,

r ad x*
d y - VKT

V r a X d x
/jr_ _adx

^ &quot; &quot;

V 2 a x x 2 /N/a
v V2ax x 2

.\ v = / x circular arc whose rad. = a, and vers. = x
\l a

C, and cor&quot;. = 0,

because when y = 0, x = 0,

.. arc = 0.

.-. C D = x quadrant B N E,

and therefore

cp/.V a
&quot; BN E

B N x k

BNE

60. PROP. XLIX. Put A = attraction of a homogeneous atmosphere

when the weight and density equal the weight and density of the medium

through which the physical line E G is supposed to vibrate. Then every

thing remaining as in Prop. XLVI I. the vibration of the line E G will

be performed in the same times as the vibrations in a cycloid, whose

length = P S, since in each case they would move according to the Fame

law, and through the same space. Also, if A be the length of a pendulum,

since T a V L
The time of a vibration : time of oscillation of a pendulum A

: : V~T~O : V ~A.

Also (PROP. XLVIL), the accelerating force of E G in medium : ac

celerating force in cycloid

::AxHK:VxEG;
since H K : G E : : P O : V.

: : PO X A : V 2
.

Ff 3
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Now

T x ji ~- when L is given.

.. the time of&quot; vibration : time of oscillation of the pendulum A
: : V : A
: : B C : circumference of a circle rad. = A.

Now B C = space described in the time of one vibration, therefore

the circumference of the circle of radius A = space described in the time

of the oscillation of a pendulum whose length = A.

Since the time of vibration : time of describing a space =r circum

ference of the circle whose rad. = A : : B C : that circumference.

COR. 1. The velocity equals that acquired down half the altitude of

A. For in the same time, with this velocity uniform, the body would de

scribe A ;
and since the time down half A : time of an oscillation : : r :

circumference. In the time of an oscillation the body would describe the

circumference.

Con. 2. Since the comparative force or weight cc density X attraction

of a homogeneous atmosphere, A GO -,
, and the velocity 00 V A.

V elastic force
ff ,

*JU ^-V density

SCHOLIUM.

61. PROP. XLIX. Sound is produced by the pulses of air, which

theory is confirmed, 1st, from the vibrations of solid bodies opposed to it.

2d. from the Coincidence of theory with experiment, with respect to the

velocity of sound.

The specific gravity of air : that of mercury : : 1 : 11890.

Now since the alt. oc -
, .-. 1 : 11890 : : 30 inches : 29725 feet =

sp. gr.

altitude of the homogeneous atmosphere. Hence a pendulum whose

length = 29725, will perform an oscillation in 190&quot;, in which time by

Prop. XLIX, sound will move over 186768 feet, therefore in I&quot; sound

will describe 979 feet. This computation does not take into considera

tion the solidity of the particles of air, through which sound is pro

pagated instantly. Now suppose the particles of air to have the same

density as the particles of water, then the diameter of each particle : dis-
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.-. elasticity : mean elasticity : : : . In the same way, for the

points E and G, the ratio will be ^7 ^-^ :
_ a \ . JL

V rlL, V V KN V
: : excess of elasticity of E : mean elasticity

H L K N 1

V 2 HLxV KNx V + HLx KN :T
: : H L K N : V.

Now
V a 1.

.-. the excess of E s elasticity cc H L K N, and since H L K N
= H r : H K : : O M : O P,

.-. H L K N a O M,
/. excess of E s elasticity cc O M.

Since E and G exert themselves in opposite directions by the arc s ten

dency to dilate, this excess is the accelerating force of e 7, .. accelerating
force co O M.*

ON THE HARMONIC CURVE.

Since the ordinates in the harmonic curve drawn perpendicular to the

axis are in a constant ratio, the subtenses of the angle of contact will be

in the same given ratio. Now the subtenses oc . , and when
rad. of curv.

the curve performs very small vibrations, the arcs are nearly equal.

Now the curv. cc ,- , .*. subtense cc curvature,
rad.

Hence the accelerating force on any point of the string cc curvature at

that point.

* Now bisect F f in n,

.-. O M =
n&amp;lt;p

For

O M = O T PM=nF F = n ?

i. e. the accelerating force cc distance from f) the middle point. Q. e. d.
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To find the equation to the harmonic curve.

C S E D

Let A C be the axis of the harmonic curve C B A, D the middle point,

draw B D perpendicular cutting the curve in B; draw P M perpendi
cular to B D cutting the curve in P, and cutting the quadrant described

with the center D and radius D B in N. Draw P S perpendicular to A C-

Put

BD = a, PM = y, B M = x,

.-. D M = a x = P S.

r = rad. of curv. at B, B P = z,

d z d x
. . rad. of curv. =

Now
BD: PS

or

Now

Put

d*y
(if d K be constant).

a : a x :

: curvature at B : curvature at P
: rad. of cur. at P : rad. at B

d z d x
d y

.*. r a d *

y + adzdx xdxdz = 0,

.\ rady + adzx = + C.

x = 0, d y = d x,

radz = + C = C,

rady + axdz dz = r a d z.

. . r a d y = r a b 2 d z,

.-.r a dy ir (ra b 2

)
2 X d x 2 + r a 8

dy 2r a b ! d y
! + b 4 d y %
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Also

L t

D d :
- - = rad. of curve : : the moving force of D d : P

.-. the moving force of D d = P x D
T
d X ap *

L w

. . accelerating force = P X Dd X a p* L
L* Dd X w

P X a p
*

Lw.
if D O = x, D C = a, O C =r a x,

.*. the accelerating force at O =
T&quot; .

_ g. Ppv A * - v i

-
i

. . v a s _
j-

x a d x x d x

P r&amp;gt;*

... v z = fe ^ X 2axL w

g pl
T /&amp;gt; V 2 ax x .L w

.-. C and 1 = 0,

d x
/

L w d x
. . d t = . / 75 rX -;v VgPp 1 V 2 a x -

L w
rs , X cir. arc rad. = 1

and
x

vers. sine = ,
a

when x = a,

t = 0.

^ r X -quadrant ss ./ ^ - X
g P p

9 V g P p
* 2

= * x
\J &quot;^F*

.&quot;. time of a vibration = / rr- I&quot;

/V g L

. . number of vibrations in 1
&quot; = ^ / -$ .V L w

COR. Time of vibration =r time of the oscillation of a pendulum whose

L w
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For this time = ./-

64. PROP. LI. Let A F be a cylinder moving in a fluid round a

fixed axis in S, and suppose the fluid divided into a great number of solid

orbs of the same thickness. Then the disturbing force cc translation of

parts X Surfaces. Now the disturbing forces are constant. . . Transla

tion of parts, from the defect of lubricity a T. . Now the differ-
distance

r-.i !
. translation 1 * ,

ence ot the angular motions cc p ex -:
-

. On A Q draw
distance d:stance*

A a, B b, C c, &c. : :

a hyperbolic area.

. . periodic time cc

distance -

1

then the sum of the differences

cc
1

cc distance.
angular motion hyperbolic area

In the same way, if they were globes or spheres, the periodic time

would vary as the distance *.

END OF THE FIRST VOLUME.
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tance between their centers : : 1 : 9, or 1 : 10 nearly. (For if there are

two cubes of air and water equal to each other, D the diameter of the par

ticles, S the interval between them, S + D = the side of the cube, and if

N = N. N S + N D = N. in the side of the cube, N. in the cube

jo N 3
. Also, ifM be the N. in the cube of water, M D the side of the

cube and the N. in the cube cc M 3
.

Put 1 : A : : N 3
: M 3

,

.-. M = A *
N,

By Proposition

.-. S = D X A a
1,

.-. S: D: : A 3
1 : 1,

.-. S + D : D : : A 3
: 1 : : 9 : 1 if A = 870

or 10: 1 if A = 1000).

Now the space described by sound : space which the air occupies : : 9 : 11,

979
.. space to be added = -^

= 108 or the velocity of sound is 1088

feet per 1&quot;.

Again, also the elasticity of air is increased by vapours. Hence since

the velocity oc
e

.

a
- ^

;
if the density remain the same the velocityV density

oc V elasticity. Hence if the air be supposed to consist of 11 feet, 10 of

air, and 1 of vapour, the elasticity will be increased in the ratio of 1 1 : 10,

therefore the velocity will be increased in the ratio of 11| : 10| or 21 : 20,

therefore the velocity of sound will altogether be 1 142 feet per 1&quot;,
which

is the same as found by experiment.

In summer the air being more elastic than in winter, sound will be

propagated with a greater velocity than in winter. The above calculation

relates to the mean elasticity of the air which is in spring and autumn.

Hence may be found the intervals of pulses of the air.

By experiment, a tube whose length is five Paris feet, was observed to

give the same sound as a chord which vibrated 100 times in
1&quot;,

and in

the same time sound moves through 1070 feet, therefore the interval of

the pulses of air = 10.7 or about twice the length of the pipe.
Ff 4
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62. On the vibrations of a harmonic string.
The force with which a string tends to the center of the curve : force

which stretches the string : : length : radius of curvature. Let P p be a

small portion of the string, O the center of the curve ; join O P, O p, and

draw P t, p t, tangents at P and p meeting in t, complete the parallelo

gram P t p r. Join t r, then P t, p t represent the stretching force of

the string, which may be resolved into P x, t x and p x, t x of which

P x, p x destroy each other, and 2 t x = force with which the string

tends to the center O. Now the /LtPr= z. P O p, . . z. t P x = .

P O p, .*. t r : P t : : P p : O P, i. e. the force with which any particle

moves towards the center of the curve : force which stretches it : : length

: radius.

63. To find the times of vibration of a harmonic string.

B

Let w = weight of the string. L = length.

D d : L : : weight D d : w

1* TTAJ D d X W
. . weight or D d = _
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