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Themost extensively usedmathematicalmodels in epidemiology
are the susceptible-exposed-infectious-recovered (SEIR) type
models with constant coefficients. For the first wave of the
COVID-19 epidemic, such models predict that at large times
equilibrium is reached exponentially. However, epidemiological
data from Europe suggest that this approach is algebraic.
Indeed, accurate long-term predictions have been obtained via
a forecasting model only if it uses an algebraic as opposed to
the standard exponential formula. In this work, by allowing
those parameters of the SEIR model that reflect behavioural
aspects (e.g. spatial distancing) to vary nonlinearly with the
extent of the epidemic, we construct a model which exhibits
asymptoticly algebraic behaviour. Interestingly, the emerging
power law is consistent with the typical dynamics observed
in various social settings. In addition, using reliable
epidemiological data, we solve in a numerically robust way
the inverse problem of determining all model parameters
characterizing our novel model. Finally, using deep learning,
we demonstrate that the algebraic forecasting model used
earlier is optimal.
1. Introduction
In the framework of Holmdahl & Buckee [1], epidemiological
models are broadly divided into two categories: forecasting and
mechanistic. The former fit early-time data with a specific
empirical formula, which is then used to predict the time
evolution. The limitation of the forecasting models is that they
usually remain valid for only a specific, short, period of time,
during which the epidemiological situation is unchanged. For
example, if a forecasting model is valid during part of a lockdown
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Figure 1. Actual data for the number of reported COVID-19 deaths for Italy (in blue and red) throughout the ‘first wave’ and
predicted results using data until 1 May 2020. The birational formula (in green) is the only one among the three forecasting
models (logistic, rational and birational) that matches well the actual data.
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period, this model is not expected to make accurate predictions after the lockdown is lifted. As noted in
Zhou et al. [2], forecasting models are ‘not well suited for long-term predictions’. Mechanistic models
based on differential equations circumvent this limitation and can be used to make predictions even
when the relevant circumstances change. Their limitation is that it is difficult to solve the associated
inverse problem, namely, to determine the relatively large number of parameters involved in these models
from the knowledge of epidemiological data.

The first period of the COVID-19 pandemic, known as ‘the first wave’, was characterized by the fact
that a single viral strain dominated the pandemic. This setting provides an ideal situation for the
retrospective study of the various mathematical formulations (both forecasting and mechanistic) used
in viral epidemics models. Based on this first wave, we previously introduced [3,4] a novel class of
forecasting models, which provided accurate long-term predictions for the number of deaths in several
European countries caused by the epidemic (figure 1). This was accomplished by using a simple
algebraic formula as opposed to the standard exponential formula (logistic model). It is important to
emphasize that the logistic formula, as well as similar formulae (see for example [5]) provide accurate
fitting for the data of a fixed period. In particular, all these formulae can be used to model the data up
to 1 May 2020. However, after fixing the parameters of these formulae using the data of a fixed
period, these models failed to provide accurate predictions. On the other hand, after ‘training’ the
algebraic formula of for the same period (i.e. after fixing the relevant parameters using data until 1
May 2020), this formula did provide accurate predictions for a period extending longer than 3.5
months, namely until 1 September 2020.

We show typical comparisons in figure 1, where we plot data for deaths during the first wave in Italy,
as well as the predictions associated with three models, the logistic and the two novel models of [3,4]. The
model routinely used in epidemiology is the logistic defined in (1.1) below; the rational and the birational
formulae are given, respectively, by equations (1.2) and (1.3) below:

D(t) ¼ DF

1þ be�gt , ð1:1Þ

D(t) ¼ DF

1þ b(1þ dt)�g ð1:2Þ

D(t) ¼
c

1þ b(1þ dt)�k , t � T

c

1þ b(1þ dX)�k �
c1

1þ b1(1þ d1X)
�k1

þ c1
1þ b1(1þ d1t)

�k1
, t . T

8>><
>>: , ð1:3Þ

where X is a fixed parameter X usually taken to be T.
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Here, D(t) denotes the cumulative number of deaths at time t, with the constant parameters DF, β, γ

and δ determined by ‘training’ (fitting) the model with the data. Similar considerations are valid for the
parameters defining the birational formula (1.3), where the time T corresponds to the inflection point of
D(t) (details are given in [3,4]). Equation (1.1) shows that, for large t, the expression D(t) approaches its
final value DF exponentially. In the case of the rational and birational models, the approach is algebraic.
In this sense, it is better to refer to the rational formula as algebraic [3,4]. All three expressions in (1.1–1.3)
are particular solutions of a specific differential equation (ODE) of the Riccati type, uniquely specified by
the constant DF and by a function a(t). The formulae in (1.2) and (1.3) correspond to the case where a(t) is
a rational function of t, whereas the logistic model corresponds to the case that a(t) is a constant. The
logistic, rational and birational curves are shown along with real data in figure 1 above.

As shown in figure 1, the birational formula closelymatches the actual data throughout the time interval
considered, in contrast with the other two curves (rational and logistic). It is interesting that even though
‘training’ occurred during the lockdown period, its predictions remained accurate after the easing of the
lockdown conditions. Possible explanations for this unexpected agreement are discussed in [6].

The fact that the correct asymptotic decay is algebraic rather than exponential suggests a social behaviour
origin. Indeed, whilemost, although not all, physical and biological phenomena exhibit exponential decay in
the distribution of key variables, or in the behaviour of correlation functions, this is not the case for social
phenomena, where one usually observes algebraic dependences and power laws, perhaps because of self-
similarity or fractal geometry notions [7]. Indeed, examples of power laws in social settings are
ubiquitous, from economics to the distribution of income or of the populations of cities. While such
behaviour may also be observed in natural phenomena, e.g. in long-range correlations, or near percolation
thresholds in phase transitions [8], the key point regarding epidemiological models is the following:
because epidemiological quantities are also affected by social behaviour, e.g. the relaxation of precautions
as the epidemic wanes, it is likely that the apparent success of the birational equation is due to such
phenomena. Using the mechanistic susceptible-exposed-infectious-recovered (SEIR) model and previously
reported results in [9], we will demonstrate this assertion quantitatively in the following section.

Themost extensively usedmechanisticmodels in epidemiology are variations of the classical SIRmodel.
This is based on the assumption of a constant total population, consisting of three subpopulations, namely,
susceptible, infected and recovered, and three implicit conditions, that the control volumewhere the epidemic
occurs is fixed, there is no influx of additional populations, and spatial gradients do not exist. Following
chemical reaction engineering process analogies, Ramaswamy et al. [10] generalized the SIR model to a
spatio-temporal model which relaxed all these restrictions; this led to a set of partial differential
equations in terms of population densities. This generalization predicted the onset of spatio-temporal
waves, as well as other characteristics inherently absent in the SIR model. In addition, it led to the
emergence of a single dimensionless number that characterizes the process, the so-called reproduction
number R0, quantitatively expressed as the ratio of the kinetics of infection to those of recovery [10].
Importantly, R0 incorporates a combination of physiological and biological parameters, and also reflects
measures of social dynamics (e.g. via facial coverings, spatial distancing, areal density, etc.).

If R0 is constant, SIR predicts that any infection wave wanes asymptotically following an exponential
behaviour. In previous work [9], we examined the question of what modifications of the model would
lead to an algebraic rather than an exponential asymptotic behaviour, as appears to be the actual case
in the first COVID-19 wave. Given that the only relevant parameter in SIR models is R0, we showed
that for an algebraic behaviour to be obtained, it is necessary that beyond a certain time, R0 must
become an increasing function of the infected fraction denoted by i (ratio of the number of infected
individuals to the total). The particular dependence was found in [9] to be

R0(i)/ (1þ a i1=n)�1, ð1:4Þ

where the parameter a is a positive constant, and the exponent n was found to satisfy n> 2. Under these
conditions, the asymptotic decay is algebraic and follows a power law in time with an exponent equal to − n/
(n− 1). Equation (1.4) shows that in such cases, as the infection wanes, the reproduction number R0 is not
constant, but rather increases in an algebraic manner with respect to i. The conclusion that the emergence of a
power law in time requires that R0 must increase as the infection wanes, is consistent with the social tendency
to relax restrictions (e.g. decrease spatial distancing, increase areal densities, etc.) as the epidemic wanes.

Motivated by the fact that the actual data are best matched using an algebraic dependence and that
Luhar et al. [9] provide a way to incorporate such behaviour in a simple SIR model, we will extend here
this methodology to a more elaborate SEIR-type model, that also includes hospitalized and deceased
patients data, neither of which are included in the simpler SIR model of [9].
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Figure 2. Flow diagram and transmission rates for the different populations in the SEIR model analysed in this work.
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The paper is organized as follows: in the Formulation and results section, we present a modification of
the SEIRmodel that accurately gives rise to an algebraic asymptotic behaviour.We then fit the experimental
results on the epidemiological data for the deceased of the first wave in Portugal to the algebraic and
birational formulae (1.2) and (1.3). These formulae together with the new model are then used to solve
the inverse problem and to determine the various parameters of our full mechanistic novel model. Note
that, in a certain sense, the mathematical expressions for our forecasting models are optimal, since an
elaborate deep-learning algorithm does not seem to yield better results. In solving the inverse problem,
all parameters of the new SEIR-type model are determined from the knowledge of the deceased and
hospitalized data. It is shown that the numerical solution matches well the analytical asymptotic results.
Furthermore, as elaborated in the Discussion section, this solution provides a confirmation of the
accuracy of the solution of the inverse problem.
0:230858
2. Materials and methods
2.1. Formulation and results
The SEIR model previously discussed in several publications [11,12] contains the following populations:
Σ(t), I(t), A(t), S(t), H(t), R(t) and D(t), which denote susceptible, infected, asymptomatic, sick,
hospitalized, recovered and deceased individuals, respectively. In this notation, I(t) refers to individuals
infected, but not yet infectious, since it is generally assumed that infectiousness requires the elapse of a
certain incubation period (typically 5 days) [12]. Then, that individual will either become sick or
asymptomatic, both of which are infectious. Importantly, this means that a susceptible individual joins
the population I(t) only because of encounters with individuals from populations A(t) or S(t) (but not
from I(t)). The various entities are interdependent, as indicated in figure 2: if the daily rates at which an
infected person becomes either sick or asymptomatic are s or a, respectively, then each day sI(t) or aI(t)
individuals leave population I(t) and enter S(t) and A(t), respectively. Likewise, if asymptomatic
individuals recover at a daily rate r1, each day r1A(t) individuals leave the asymptomatic population and
enter the recovered population, R(t). Sick individuals either recover at a rate r2 or they become
hospitalized at a rate h. The hospitalized patients also have two possible outcomes: either they recover at
a rate r3, or they are deceased at a rate d. Finally, susceptible individuals convert to infected, but not yet
infectious, populations, because of their encounter with either asymptomatic or sick individuals (we
assume that due to special precautions, hospitalized populations cannot infect) at corresponding rates
c1A and c2S, where c1 and c2 denote the respective transmission rates (per person in the respective
pools). It is important to note that from all these coefficients, it is only c1 and c2 that can be largely
affected by social dynamics, the other being largely independent.
2.2. The basic formulation
The previous description leads to the following seven ordinary differential equations:

A(1) ¼ aI � r1A, ð2:1Þ
S(1) ¼ sI � (hþ r2)S, ð2:2Þ
H(1) ¼ hS� ðr3 þ dÞH, ð2:3Þ
R(1) ¼ r1Aþ r2Sþ r3H, ð2:4Þ

D(1) ¼ dH, ð2:5Þ
S(1) ¼ �S(c1Aþ c2S) ð2:6Þ

and I(1) ¼ S(c1Aþ c2S)� (aþ s)I, ð2:7Þ
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where superscript (n) indicates nth time derivative. Total conservation of individuals leads to

I þ Sþ Aþ RþH þDþ S ¼ T, ð2:8Þ

where T is the sum of all individuals in the control volume prior to the pandemic.
Eliminating Σ from equations (2.6) and (2.7) leads to

I(1) ¼ [T � (I þ Sþ Aþ RþH þD)](c1Aþ c2S)� (Aþ s)I: ð2:9Þ

We will next proceed with the assumption that the coefficients a, r1, s, h, r2, r3 and d are constants.
Then, for arbitrary, and not necessarily constant, values of c1 and c2, equations (2.1–2.7) can be
reduced to a system of two ODEs. The final result reads as follows:

Populations H, S and I can be expressed in terms of D, via the following equations:

H ¼ D(1)

d
, ð2:10aÞ

S ¼ 1
dh

(D(2) þ R3D(1)) ð2:10bÞ

and I ¼ 1
dhs

[D(3) þ (R2 þ R3)D(2) þ R2R3D(1)]: ð2:10cÞ

Also, equations (2.1) and (2.2) can be written in the form

A ¼ a
r1
I � A(1)

r1

and S ¼ s
hþ r2

I � S(1)

hþ r2
:

9>>>=
>>>; ð2:11Þ

Proof of equations (2.10): Equation (2.5) is equation (2.10a). Solving equation (2.3) for S and then
replacing H via (2.10a) we find (2.10b). Solving (2.2) for I and then replacing S via (21.10b) we find
(2.10c). Adding (2.1) and (2.4) and then replacing S, H, I via (2.10) we find,

(Aþ R)(1) ¼ 1
dhs

[aD(3) þ [a(R2 þ R3)þ sr2]D(2)

þ [aR2R3 þ s(hr3 þ r2R3)]D(1)]:
ð2:12Þ

Integrating this equation and simplifying, we obtain

Aþ R ¼ aD(2)

dhs
þ [a(R2 þ R3)þ sr2]

D(1)

dhs
þ (FR2R3 � dhs)

D
dhs

þ j, ð2:13Þ

where ξ is an integration constant. Replacing in (2.1) the function I via (2.10c), we obtain (2.22).
Now, equation (2.9) is

I(1) þ (aþ s)I ¼ [T � (I þ Sþ Aþ RþH þD)](c1Aþ c2S): ð2:14Þ

QED
Replacing in (2.6) and (2.7) A and S via (2.11), we find

S
(1) ¼� SI

c1a
r1

þ c2s
hþ r2

� �
þ S

c1A(1)

r1
þ c2S(1)

hþ r2

� �

I(1) ¼� (aþ s)I 1� 1
aþ s

c1a
r1

þ c2s
hr2

� �
S

� �
� S

c1A(1)

r1
þ c2S(1)

hþ r2

� �
,

9>>>=
>>>; ð2:15Þ

where R2 and R3 are defined by

R2 ¼ r2 þ h, R3 ¼ r3 þ d: ð2:16Þ
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In order to make use of the results in Luhar et al. [9], we next consider the hypothetical case,

A(1) = S(1) = 0, in which case equations (2.15) become

I(1) ¼� (aþ s)I 1� 1
aþ s

c1a
r1

þ c2s
hþ r2

� �
S

� �

and S
(1) ¼� SI

c1a
r1

þ c2s
hþ r2

� �
:

9>>>=
>>>; ð2:17Þ

These are in a form comparable to the SIR model previously described [9], written here as

dI
dt

¼� I 1� Rs
1þ x1=n

� �
, x ¼ (l� 1)n

I
I1

and
dS
dt

¼� IS
R

1þ x1=n
:

9>>>=
>>>; ð2:18Þ

The two sets of equations (2.17, 2.18) become self-consistent if we take

t ¼ (aþ s)t,

and

1
aþ s

c1a
r1

þ c2s
hþ r2

� �
¼ R

1þ x1=n
: ð2:19Þ

Thus, consistency implies the following dependence for the variables C1 and C2:

C1(I) ;
ac1
dhs

¼ r1
1þ L1I1=n

and C2(I) ;
c2
dh

¼ r2
1þ L2I1=n

,
ð2:20Þ

where ρj, Λj, j = 1,2, are constants. The subsequent analysis will assume that most of the infection process
is via exposure to asymptotic individuals, hence we will take C1(I ) >>C2(I ).

In order to proceed, we will make use of the following results. Let eA and Q be defined in terms of A
and D via

eA ¼ dhs
a

A ð2:21aÞ

and

Q ¼ D(3) þ (Fþ R2 þ R3)D(2) þ (FR2 þ FR3 þ R2R3)D(1) þ FR2R3D� a, ð2:21bÞ

Then, the functions eA and D satisfy the two ODEs,

eA(1) þ r1eA ¼ D(3) þ (R2 þ R3)D(2) þ R2R3D(1) ð2:22Þ

and

Q(1)

Q
þ C1eAþ C2(D(2) þ R3D(1)) ¼ 0, ð2:23Þ

where

F ¼ aþ s

a ¼ dhs(T � j), ð2:24Þ

with ξ a constant of integration.

Proof of equations (2.22) and (2.23): It is straightforward to verify that the l.h.s. of (2.14) equals Q(1)/dhs,
with Q defined in (2.21b). Furthermore, remarkably, equations (2.13) and (2.10) imply that the bracket of
the r.h.s. of (2.14) is −Q/dhs. Then, (2.14) becomes (2.23). QED
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2.3. Large time asymptotic analysis

With eA and D satisfying equations (2.22) and (2.23), C1 given by (2.20) and taking C2 < <C1, one can
show that D approaches asymptotically the constant value D∞, and the dependence of σ on t for large
t is not exponential

D ! D1(1þ s), t ! 1, s � 1 s( jþ1) � s(j), j ¼ 0,1,2, . . . : ð2:25Þ
The leading behaviour is given by the following equations:

s �� (n� 1)�1=ðn�1Þ

R2R3D1
meL1

� ��n=ðn�1Þ
t�1=ðn�1Þ, m ¼ r1

r1
,

I � (n� 1)�n=ðn�1Þ

dhs
meL1

� ��n=ðn�1Þ
t�n=ðn�1Þ

and eA � (n� 1)�n=ðn�1Þ

r1

meL1

� ��n=ðn�1Þ
t�n=ðn�1Þ, t ! 1:

9>>>>>>>>>>=
>>>>>>>>>>;

ð2:26Þ

Proof of equations (2.26): Substituting (2.25) in equation (2.22), in the definition of Q
(equation (2.21b)), and in equation (2.10c), we find the following equations:

eA(1) þ r1eA � es(1), ð2:27aÞ
with es ¼ R2R3D1s, ð2:27bÞ

Q � F(vþ es), v ¼ R2R3D1 � a

F
, ð2:28Þ

and I � es(1)

dhs
, t ! 1 ð2:29Þ

It turns out that equation (2.27a) implies

eA � es(1)

r1
, t ! 1: ð2:30Þ

Indeed, integrating (2.27a) we find

eAer1t ¼ constantþ
ðt
er1tes(1)(t)dt: ð2:31Þ

Integration by parts implies

ðt
er1tes(1)(t) dt ¼ er1tes(1)(t)

r1
þ const� 1

r1

ðt
er1tes(2)(t) dt:

Substituting this expression in (2.31) and then multiplying by e�r1t, we find (2.30).
Letting in equation (2.23) C2 = 0 and then using the expressions for Q, I, eA from (2.28), (2.29) and

(2.30), we find

s(1) 1þ vþ ~s

r1
C1

� �
� 0, t ! 1:

Using in this equation, the expression of C1 from (2.20) we obtain

1þ (vþ es)m
1þ eL1(s(1))1=n1

¼ 0, t ! 1

and

1þ vmþ eL1(es(1))1=n1 þ mes ¼ 0: ð2:32Þ

Hence, the requirement that σ decays implies

vmþ 1 ¼ 0, es(1)1=n1 ¼ � meL1
es: ð2:33Þ
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Integrating (2.33b), we find

es ¼ �(n1 � 1)
�

1
n1 � 1 meL1

� ��n1=ðn1�1Þ
t�1=ðn1�1Þ, t ! 1: ð2:34Þ

Then, (2.27b), (2.29) and (2.30) yield (2.26).
QED
In the subsequent section, we will fit the full equations to the experimental data with goal to

determine the various parameters.
We proceed with the assumption C2 = 0. First, we will consider fitting the data to the algebraic

birational formula in (1.3).

2.4. Bidirectional long short-term memory network
Bidirectional long short-term memory (BiLSTM) is a powerful generalization of recurrent neural
networks that can capture long-term dependencies while at the same time avoiding the problem of
vanishing/exploding gradients. The BiLSTM networks are well suited for time series prediction and
can potentially completely capture the contextual information of the time series. The BiLSTM network
employed in this work was introduced to predict the number of infected for different countries in [13].
0:230858
3. Results
3.1. An algebraic formula and deep learning
We used data for the cumulative number of deceased, D(t), and the total number of hospitalized patients,
Hc(t), from the first wave of COVID-19 in Portugal dating from March to September 2020. During this
period, Portugal experienced relatively low numbers of infected, although a larger number of deaths
compared with other countries with similar populations, such as Greece. The corresponding data were
fitted using the two formulae

D(t) ¼ DF

1þ b(1þ dt)�g , Hc(t) ¼ Hc
F

1þ ~b(1þ edt)�eg , ð3:1Þ

as well as the analogous formulae for the birational model.
It can be shown that the following useful formula is valid:

Hc ¼ H þDþ RH , ð3:2Þ
and RH denotes the number of people that recovered after they were hospitalized. We used Hc, as this was
the more accurate data reported. The respective parameters, shown in table 1, were determined using
data up to the middle of August and the simplex optimization algorithm.

We note that the above formulae provide an optimal fit, given that the use of the efficient deep
learning algorithm, BiLSTM network [14], provided similar results. Figure 3 shows the performance of
BiLSTM against the logistic and rational models for the number of diseased and hospitalized. Both
BiLSTM and the rational had a similar strong correlation to the measured data (R2 ~ 0.999), with the
logistic expression resulting into a smaller value R2 ~ 0.98.

3.2. The solution of the inverse problem
We solved the inverse problem by employing our new mechanistic model together with both the rational
and the birational formulae.

We used the fact that

R(1)
H ¼r3H,

H ¼D(1)

d
:

ð3:3Þ

Hence,

RH ¼ r3
d
Dþ g: ð3:4Þ
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Figure 3. Comparison of the BiLSTM, the logistic, the rational and the birational models for the number of deceased.

Table 1. Estimated parameters of equation (3.1) when fitted to the number of deceased, D(t), and the total number of
hospitalized patients, Hc(t), for the first wave in Portugal. The confidence intervals for each fitting parameter are also presented.

deceased hospitalized

logistic DF 1626.5 (1576.2,1669.93) 4.436 × 10+04 (4.297 × 104, 4.552 × 104)

β 5.429 (4.962, 5.867) 47.456 (45.106, 48.711)

γ 0.056 (0.05, 0.061) 0.045 (0.040, 0.049)

R2 0.9836 (0.976, 0.989) 0.978 (0.970, 0.986)

rational DF 1995.7 (1894.3,2077.3) 5.326 × 104 (5.145 × 104, 5.463 × 104)

β 41.42 (37.33,44.12) 1.969 × 104 (1.901 × 104, 1.198 × 104)

δ 0.298 (0.273,0.319) 0.339 (0.322, 0.353)

γ 1.52 (1.404, 1.614) 2.845 (2.713, 2.926)

R2 0.988 (0.983, 0.993) 0.987 (0.982, 0.992)

birational DF1 2973.9 (2824.8, 3095.6) 9.390 × 10 × 10+04 (9.076 × 104, 9.64 × 104)

β1 39.713 (37.105, 41.62) 760.037 (728.04, 781.36)

δ1 0.175 (0.156, 0.189) 0.029 (0.020, 0.038)

γ1 1.562 (1.476, 1.664) 4.554 (4.067, 4.890)

T 30 81

DF2 1912.5 (1815.5, 1990.1) 2.285 × 10+04 (2.201 × 104, 2.343 × 104)

β2 57.307 (54.4, 60.21) 1.559 × 10+04 (1.509 × 104, 1.611 × 104)

δ2 0.3796 (0.36, 0.41) 0.0150 (0.009, 0.020)

γ2 1.410 (1.33, 1.467) 9.286 (8.167, 9.971)

R2 0.999 (0.998, 1) 0.990 (0.986, 0.994)

BiLSTM R2 0.999 (0.998, 1) 0.998 (0.997, 0.999)
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Equation (3.2) became equation (3.5), where we used R3 = r3 + d.

Hc ¼ 1
d
(D(1) þ R3D)þ g, g constant: ð3:5Þ

We used equation (3.1) to match (3.5), and thus, we obtained with the aid of the simplex algorithm,
the values for parameters R3, d and g, as shown in table 2.

To determine the remaining parameters, we first introduce the notation

X ¼ D(2) þ (R2 þ R3)D(1) þ R2R3D: ð3:6Þ



Table 2. Determination of the constant parameters in equation (3.5) and their respective confidence intervals.

rational birational

R3 0.061 (0.055, 0.066) 0.0645 (0.0580, 0.0707)

d 9.232 × 10−04 (8.583 × 10−04, 1.106 × 10−03) 0.0010 (8.655 × 10−04, 1.158 × 10−03)

g −76172 (−72860, −79483) −77020 (−71932, 80785)

Table 3. Determination of the constant parameters in equation (3.7) and their respective confidence intervals.

rational birational

F 0.989 (0.955, 1.022) 0.992 (0.946, 1.036)

R2 0.116 (0.097, 0.134) 0.131 (0.108, 0.147)

a 5716.6 (5344.4, 6056) 5352.7 (4932.5, 5833.4)

r1 0.798 (0.701, 0.898) 0.861 (0.732, 0.977)

ρ1 1.404 (1.22 × 10−04, 1.57 × 10−04) 1.520–04 (1.370 × 10−04, 1.64 × 10−04)eL1 0.131 (0.123, 0.139) 0.133 (0.124, 0.144)

n 4.002 (3.768, 4.385) 4.026 (3.734, 4.436)
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Equations (2.22) and (2.23) read,

eA(1) þ r1eA ¼ X(1),

X(2) þ FX(1)

X(1) þ FX � a
¼ �C1eA

and

C1 ¼ r1

1þ eL1X1=n
: ð3:7Þ

Equations (3.7), with the aid of the simplex algorithm, yield the values of the remaining constant
parameters shown in table 3.

As expected, the value for n satisfies the constraint n > 2.

3.3. Numerical verification
Finally, we verified that the numerical solution of our mechanistic model matches, for large t, the rational
formula. Similar considerations are valid for the birational model. For this purpose, we used the values of
the various constants (tables 2 and 3), obtained from the experimental data. In this connection, it is
interesting to note that from the whole set of equations (2.1)–(2.7), we only need to solve the
following smaller set of four differential equations for the variables N, Q, eA, M:

N(1) ¼ Qþ a� FN, ð3:8aÞ
Q(1)

Q
¼ �C1eA� C2M, ð3:8bÞ

eA(1) ¼ �r1eAþQþ a� FN ð3:8cÞ
and M(1) ¼ Qþ a� FN � R2M, ð3:8dÞ
where

M(t) ¼ R3D(1)(t)þD(2)(t)

and

N(t) ¼ R2(R3D(t)þD(1)(t))þ R3D(1)(t)þD(2)(t): ð3:9Þ

We will take C2 = 0 and C1 ¼ r1=1þ eL1(Qþ a� FN)1=n.
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Proof of equations (3.8): The definitions of Q and N imply the identity

D(3) þ (R2 þ R3)D(2) þ R2R3D(1) ¼ Qþ a� FN, ð3:10Þ

which is equation (3.8a). Also, using the definition of M, equation (2.23) becomes (3.8b). Similarly, using
(3.10), equation (2.22) becomes (3.8c). Equation (3.8d ) follows from the fact that the l.h.s. of (3.10) can be
written in the form M(1) +R2M.

QED
Definition of equations (3.8) at some fixed t: The definition of N, Q, eA, M of equations (3.8) at some

fixed t, denoted by t0, imply the following formulae:

N(t0) ¼ R2(R3D(t0)þD(1)(t0))þ R3D(1)(t0)þD(2)(t0),

Q(t0) ¼ D(3)(t0)þ (R2 þ R3 þ F)D(2)(t0)þ (FR2 þ FR3 þ R2R3)D(1)(t0)þ FR2R3D(t0)� a

M(t0) ¼ R3D(1)(t0)þD(2)(t0): ð3:11Þ

Also,

eA(t0) ¼ � 1
C1(t0)

Q(1)(t0)
Q(t0)

, ð3:12Þ

where

C1(t0) ¼ r1

1þ eL1[D(3)(t0)þ (R2 þ R3)D(2)(t0)þ (R2R3)D(1)(t0)]
1=n1

: ð3:13Þ

Under the assumption that C2 = 0 and having defined N, Q, eA, M at some fixed t0, we solved
equations (3.8) numerically using the Runge–Kutta method and the following expression for D(t),

D(t) ¼ 1995:7

1þ 41:42(1þ 0:298t)�1:52 : ð3:14Þ

Results are shown in figure 4.
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The function σ can be determined via

D(1)(t)þ R3D(t) ¼ N(t)�M(t)
R2

, ð3:15Þ

which yields

D1(s(1)(t)þ R3s(t)) ¼ N(t)�M(t)
R2

� R3D1: ð3:16Þ

The solution of this equation with σ(t0) =D(t0)/D∞− 1 is depicted in blue in figure 5. By plotting in
the same figure, the equation depicted in red, we find

s � � constant
tm

, t ! 1: ð3:17Þ

It becomes clear that for large t, the function σ(t) approaches the r.h.s. of (3.17).
The first of equations (2.33) implies the constraint vμ + 1 = 0. Using in this equation the expressions for

v and μ given in (2.26) and (2.28) we find the equation

R2R3D1 � a

F

� � r1
r1

� �
þ 1 ¼ 0: ð3:18Þ

Employing the values obtained via the solution of the inverse problem, it can be verified that
equation (3.18) is indeed approximately satisfied: using for the constants appearing in the r.h.s. of
(3.18) and the numerical values of the constants obtained in tables 2 and 3, we find that the r.h.s. of
(3.18) is −0.014 (instead of zero).
4. Discussion
The forecasting models [2,3] suggest that the dynamics of the first wave of COVID-19 approach an
equilibrium state algebraically, as opposed to the exponential behaviour normally predicted by the
standard SEIR mechanistic models. Motivated by these results, we introduced a novel mechanistic
model which for large times does exhibit algebraic behaviour. This model takes into consideration an
additional nonlinear mechanism first understood in the context of SIR models in [9,10]. Specifically, in
comparison with the standard SEIR models, such as those previously analysed in [11,12], we allowed
for the values of the transmission constants to increase as the infection wanes, which is reflecting the
social behavioural tendency to be less cautious as the infection diminishes. The specific relationship
used fits well the actual data. As a result of this modification, the asymptotic analysis of the equations
defining the new model yields the algebraic behaviour predicted by equations (3.8).

It should be emphasized that several authors have previously published papers addressing the need
to incorporate sub-exponential/power law dynamics. Some of these papers are mentioned below. The
main novelty of our SEIR-type model, in comparison with the earlier very interesting papers, is
the introduction of an epidemiologically motivated mechanistic model which allows to determine the
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associated large t-dynamics. Indeed, as we hope will become clear in what follows, the previous models

concentrated on the early times behaviour. In particular, Chowell et al. [15], addressed early reactive
behaviour changes associated with the 2014–2015 Ebola epidemic in West Africa, which exhibited a
slower than exponential growth pattern. This was modelled by the equation

dc
dt

¼ rcp 0 � p � 1, ð4:1Þ

which can also be used to model the spread of a range of pathogens, including the epidemics of
influenza, Ebola, foot-and-mouth disease, HIV/AIDS, plague, measles and smallpox. Equation (4.1)
was also investigated by Viboud et al. [16].

An extended version of (4.1), namely, the equation

dc
dt

¼ rcp 1� C
k

a� �
0 � p � 1 ð4:2Þ

was investigated in [17].
Several modifications of the standard SIR epidemic model to support early sub-exponential growth

dynamics are discussed by Chowell et al. [15], including the following: (i) metapopulation models,
namely characterizing populations in terms of subpopulations (e.g. based on age, vulnerability, etc.),
(ii) incorporating reactive behaviour changes by modelling a time-dependent transmission rate, and
(iii) incorporating inhomogeneous mixing through a power law scaling parameter. These
considerations motivated the introduction of the SIR type model,

dS
dt

¼�b(t)SI
N

,

dI
dt

¼b(t)SI
N

� gI

and
dR
dt

¼gI:

9>>>>>>>=
>>>>>>>;

ð4:3Þ

This model can be simply interpreted as an SIR model with a time-varying reproduction number.
The models mentioned above were used in the paper by Chowell et al. [18] in order to fit the early

epidemiological data in a number of infections.
Another important contribution of our work is that it addresses a well-known difficulty associated

with mechanistic models, namely the determination of the values of the various parameters that enter
in the models. In this paper, we present a computationally efficient and robust approach for solving
this inverse problem. Moreover, we show that knowledge of the numbers of deceased and
hospitalized patients is sufficient to determine all the parameters of the model uniquely and accurately.

The numerical solution presented is useful for two reasons. First, the numerical results confirmed the
validity of the asymptotic analysis. Indeed, the numerical solution matched well the asymptotic formula,
σ∼ t−m. Second, they confirmed the validity of the solution of the inverse problem. Indeed, the
asymptotic analysis gives rise to the constraint νμ + 1 = 0. Since ν and μ can be expressed in terms of
the model parameters determined via the solution of the inverse problem, this equation provides a
check of the accuracy of the solution of the inverse problem.

Concluding, it is worth noting that in addition to SEIR models several other types of models have
been introduced in connection with COVID-19 [19–22]. It would be interesting to investigate whether
any of these models exhibit large t algebraic behaviour.
Ethics. This work did not require ethical approval from a human subject or animal welfare committee.
Data accessibility. Data and relevant code for this research work are stored in GitHub: https://github.com/dssg-pt/
covid19pt-data and have been archived within the Zenodo repository: https://zenodo.org/record/8131537.
Authors’ contributions. A.S.F.: conceptualization, formal analysis, funding acquisition, investigation, methodology,
project administration, supervision, writing—original draft and writing—review and editing; N.D.: data curation,
investigation, methodology, software, writing—original draft and writing—review and editing; Y.C.Y.: formal
analysis, investigation, methodology, supervision, writing—original draft and writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. We received no funding for this study.

Https://github.com/dssg-pt/covid19pt-data
Https://github.com/dssg-pt/covid19pt-data
https://zenodo.org/record/8131537


14
References

royalsocietypublishing.org/journal/rsos

R.Soc.Open
Sci.10:230858
1. Holmdahl I, Buckee C. 2020 Wrong but
useful—what COVID-19 epidemiologic
models can and cannot tell us. N. Engl. J.
Med. 383, 303–305. (doi:10.1056/
NEJMp2016822)

2. Zhou P et al. 2020 A pneumonia outbreak
associated with a new coronavirus of probable
bat origin. Nature 579, 270–273. (doi:10.1038/
s41586-020-2012-7)

3. Fokas AS, Dikaios N, Kastis GA. 2020
Mathematical models and deep learning
for predicting the number of individuals
reported to be infected with SARS-CoV-2.
J. R. Soc. Interface 17, 20200494. (doi:10.1098/
rsif.2020.0494)

4. Fokas AS, Dikaios N, Kastis GA. 2021 COVID-19:
predictive mathematical formulae for the
number of deaths during lockdown and possible
scenarios for the post-lockdown period.
Proc. R. Soc. A 477, 20200745. (doi:10.1098/
rspa.2020.0745)

5. Hogg RV, Klugman SA. 1984 Loss distributions,
pp. 217–232. Wiley Series in Probability
and Statistics. New York, NY: John Wiley &
Sons, Inc.

6. Fokas AS, Kastis GA. 2021 SARS-CoV-2: The
second wave in Europe. J. Med. Internet Res. 23,
e22431. (doi:10.2196/22431)

7. Mandelbrot BB. 1982 The fractal geometry
of nature. San Francisco, CA: W. H. Freeman
and Co.

8. Stauffer D, Aharony A. 1992 Introduction to
percolation theory. London, UK: Taylor & Francis.
9. Luhar M, Oberai AA, Fokas AS, Yortsos YC. 2022
Accounting for super-spreader events and
algebraic decay in SIR models. Comput. Methods
Appl. Mech. Eng. 401, 115286. (doi:10.1016/j.
cma.2022.115286)

10. Ramaswamy H, Oberai AA, Yortsos YC. 2021 A
comprehensive spatial-temporal infection
model. Chem. Eng. Sci. 233, 116347. (doi:10.
1016/j.ces.2020.116347)

11. Fokas AS, Cuevas-Maraver J, Kevrekidis PG. 2021
Easing COVID-19 lockdown measures while
protecting the older restricts the deaths to the
level of the full lockdown. Sci. Rep. 11, 5839.
(doi:10.1038/s41598-021-82932-8)

12. Fokas AS, Cuevas-Maraver J, Kevrekidis PG. 2020
A quantitative framework for exploring exit
strategies from the COVID-19 lockdown. Chaos
Solitons Fractals 140, 110244. (doi:10.1016/j.
chaos.2020.110244)

13. Fokas AS, Dikaios N, Tsiodras S, Kastis GA. 2022
Simple formulae, deep learning and elaborate
modelling for the COVID-19 pandemic.
Encyclopedia 2, 679–689. (doi:10.3390/
encyclopedia2020047)

14. Graves A, Schmidhuber J. 2005 Framewise
phoneme classification with bi-directional LSTM
and other neural network architectures. Neural
Netw. 18, 602–610. (doi:10.1016/j.neunet.2005.
06.042)

15. Chowell G, Sattenspiel L, Bansal S, Viboud C.
2016 Mathematical models to characterize early
epidemic growth: a review. Phys. Life Rev. 18,
66–97. (doi:10.1016/j.plrev.2016.07.005)
16. Viboud C, Simonsen L, Chowell G. 2016 A
generalized-growth model to characterize the
early ascending phase of infectious disease
outbreaks. Epidemics 15, 27–37. (doi:10.1016/j.
epidem.2016.01.002)

17. Shanafelt DW, Jones G, Lima M, Perrings C,
Chowell G. 2018 Forecasting the 2001 foot-
and-mouth disease epidemic in the UK.
EcoHealth 15, 338–347. (doi:10.1007/s10393-
017-1293-2)

18. Chowell G, Viboud C, Simonsen L, Moghadas
SM. 2016 Characterizing the reproduction
number of epidemics with early subexponential
growth dynamics. J. R. Soc. Interface 13,
20160659. (doi:10.1098/rsif.2016.0659)

19. Kaxiras E, Neofotistos G, Angelaki E. 2020 The
first 100 days: modeling the evolution of the
COVID-19 pandemic. Chaos Solitons Fractals
138, 110114. (doi:10.1016/j.chaos.2020.110114)

20. Kaxiras E, Neofotistos G. 2020 Multiple epidemic
wave model of the COVID-19 pandemic:
modeling study. J. Med. Internet Res. 22,
e20912. (doi:10.2196/20912)

21. Marmarelis VZ. 2020 Predictive modeling of
COVID-19 data in the US: adaptive phase-
space approach. IEEE Open J. Eng. Med.
Biol. 1, 207–213. (doi:10.1109/OJEMB.2020.
3008313)

22. Olabode D, Culp J, Fisher A, Tower A, Hull-Nye
D, Wang X. 2021 Deterministic and stochastic
models for the epidemic dynamics of COVID-19
in Wuhan, China. Math. Biosci. Eng. 18,
950–967. (doi:10.3934/mbe.2021050)

https://doi.org/10.1056/NEJMp2016822
https://doi.org/10.1056/NEJMp2016822
http://dx.doi.org/10.1038/s41586-020-2012-7
http://dx.doi.org/10.1038/s41586-020-2012-7
http://dx.doi.org/10.1098/rsif.2020.0494
http://dx.doi.org/10.1098/rsif.2020.0494
http://dx.doi.org/10.1098/rspa.2020.0745
http://dx.doi.org/10.1098/rspa.2020.0745
https://doi.org/10.2196/22431
http://dx.doi.org/10.1016/j.cma.2022.115286
http://dx.doi.org/10.1016/j.cma.2022.115286
http://dx.doi.org/10.1016/j.ces.2020.116347
http://dx.doi.org/10.1016/j.ces.2020.116347
http://dx.doi.org/10.1038/s41598-021-82932-8
http://dx.doi.org/10.1016/j.chaos.2020.110244
http://dx.doi.org/10.1016/j.chaos.2020.110244
http://dx.doi.org/10.3390/encyclopedia2020047
http://dx.doi.org/10.3390/encyclopedia2020047
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://dx.doi.org/10.1016/j.plrev.2016.07.005
http://dx.doi.org/10.1016/j.epidem.2016.01.002
http://dx.doi.org/10.1016/j.epidem.2016.01.002
http://dx.doi.org/10.1007/s10393-017-1293-2
http://dx.doi.org/10.1007/s10393-017-1293-2
http://dx.doi.org/10.1098/rsif.2016.0659
http://dx.doi.org/10.1016/j.chaos.2020.110114
http://dx.doi.org/10.2196/20912
http://dx.doi.org/10.1109/OJEMB.2020.3008313
http://dx.doi.org/10.1109/OJEMB.2020.3008313
http://dx.doi.org/10.3934/mbe.2021050

	An algebraic formula, deep learning and a novel SEIR-type model for the COVID-19 pandemic
	Introduction
	Materials and methods
	Formulation and results
	The basic formulation
	Large time asymptotic analysis
	Bidirectional long short-term memory network

	Results
	An algebraic formula and deep learning
	The solution of the inverse problem
	Numerical verification

	Discussion
	Ethics
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding
	References


