

PARTMENT OF THE INTERIOR

STATE OF WYOMING

WYOMING WATER DEVELOPMENT COMMISSION
CHEYENNE, WYOMING

DATE DUE

WESTSIDE IRRIGATION PROJECT

Pick-Sloan Missouri Basin Program Big Horn Basin Division Wyoming

ENVIRONMENTAL APPENDIX

TO

THE PLANNING REPORT/DRAFT ENVIRONMENTAL STATEMENT

Prepared By:

Bureau of Reclamation
Missouri Basin Region
Billings, Montana

Page

Section l: Environmental Quality Analysis 1
Section 2: Methods 7
Section 3: Wildlife Maps and Species List. 14
Section 4: Threatened/Endangered Species Analysis 43
Section 5: Water Quality and Quantity Analysis. 46
Section 6: Vegetation Maps 85
Section 7: Environmental Scoping Session Summary. 95
Section 8: Map of Mitigation Features in Project Area. 98

SECTION 1

ENVIRONMENTAL QUALITY ANALYSIS

1. m nlax

Surface Water Quantity and Quality. --Big Horn River flows are sufficient in many years to meet the annual needs of the Preferred Plan (see the EQ Table). In years where this would not be the case, releases would be made from Boysen Reservoir. These releases would be to replace Westside diversions whenever flows in the river were $380 \mathrm{ft} 3 / \mathrm{s}$ or less at Worland, resulting in no water quantity impacts attributable to the Westside Project.

Water quality constituents (TDS, trace constituents/metallic elements, and pesticides) in the Big Horn River were determined to increase slightly with the project but would pose no threat to human or aquatic species, based on published standards. Sediment reaching the Big Horn River from the project area is estimated to increase by 16 tons/year (9 percent higher than present). This increase is judged to be insignificant on turbidity and aquatic species in comparison to the present condition (see EQ Table).

Ground Water Quantity and Quality.--Ground water in the project area is of limited quantity (up to 15 gpm) and poor quality (up to $1,590 \mathrm{ppm} \mathrm{TDS}$). The Preferred Plan would add approximately 3, 600 acre-feet of ground water inflow until project drains were installed, after which time the quantity per year would be approximately 1,500 acre-feet (see EQ Table). This quantity increase would have no significant effect on the area as ground water is not widely used due to low yields.

The only anticipated significant project effect on ground water quality is an increase in iron levels (mean concentration of $1,492 \mathrm{ppb}$) which presently exceeds the Federal Primary or Secondary Drinking Water Standards of 300 ppb (see EQ Table). At these projected concentrations, water would be unappealing and unpalatable. As little use is presently made of ground water due to poor quality no significant effects are anticipated and no mitigation planned.

Fisheries.--Based on the surface water quantity analyses, there would be no effects on the Big Horn River fishery. Water quality changes would be insignificant and therefore would not affect the fishery.

Why

 ing

 -

- Bhine is mol3 inu rica

ENIROMENTAL FACTS	PRESEIT CNTOITİ:	FUTRE W/O PROUECT (NO -ACTIO: ALTERNATVE)	PREFERPRD PLAN I/ SIGI	SIGIFIGNET $3 /$
$\frac{\text { Surface Hate: Quantity: }}{\left(B_{\text {if }}\right. \text { Hom Ruver) }}$	Unapproprisced flows avsilable through early ommer in average pears.	Seme preient.	Unappropristed flow used to meet project nemg, unen susilable $(15,400$ ocrefeet). When flaws ore $580 \mathrm{ft}^{3 / 3}$ or less st the Bighom Canal headgate relesses would be mado from Boysen Reservoir to replace Hestside diversions.	0
Surface Water auslity:				
(Bis Horn hiver)				
T0S	649 pm	549 mm	553 mm	$?$
Arsenic	8.550 pmh	8.550 pob	8.551 ppb	0
Catrius	0.24000 pro	0.24000 pmoh	0.24 Mas ppo	0
1 tom	22.49 pob	72.49 PDC	72.65 prb	-
Selenius	2.2000000 ppt	2.2000000 pó	2.2000152 ppb	n
Pesticides:				
Carbaryl	Not knom	Not Ream	$0.0 \times 15 \mathrm{pm}$	0
Dicauba	Ne: known	Not knom	0.002 pm	0
Aldicarb	No: Known	not known	0.025 pm	0
Sediment Load	156 tona/yeas	156 tans/year	172 tons/yesr	0
Plosphores	Net Rown	Not Known	0.65 pm	0
Nitrates/Nitrites	Hot known	Not knom	2.535 pmm	0
Ground Wate: Quantity:	Existing vello douns lope of project area have limited capecity (Lu to 15 g m)	Sase as present.	No change except ecepege and deep percolstion will add to ground water supolies.	0
Ground kater Quality:	Generslly of poor quality (up to 1.590 ppra Tixs)	Sase es present.	Projected levels for iron (mean volve of $1,492 \mathrm{ppb}$) would exceed Federal Primary or Secondary Drinking Water Standard of 300 ppb , causing water to be unappealing and unpalatable.	ing
Fisheries:	Being mantained by present flows and/or. reservair elevations/ storage.	Seme es present.	Ho change. Weataide diversions will be replaced by releases from Boysen Reservoir, Hien necessary.	0
Wildife:				
Crucial Winter Range - Acres	Approximately 94,100 cres of encial vinter range oceur within the range of the Fiftermile Antelope Herd unit.	Same as present.	Developnent of Preferred Plan would result in loss of 4,302 acres of antelope encial vinter range.	-
Crucial Winter Range - Sagebruan bicmass	An eatimeted $1,088,300$ pounds of forage exist on lands that would be irrigated.	Same as present.	The forage (sagebrush) on lands to be irrigated would be lost. but would be replaced through changes in grazing allouments.	0
Depredation	N / A - Public remelend	Same empresent.	Depredation claims would be paid fran a fund establisined by irrigators.	0
Soil Erosion:	Estimated loases are 0.38 tons per acre.	same es present.	Soil losses are estimated to increase to an average of 4.0 tons per ecre, ranging from 01 tom per ecre for slfalfa to 9.7 tons per acre for augar beets.	,
Land Use:				
Acreage	4,693 cres of 4.950 -cres in project boundaries are public rangeland. Over 2,000,000 ecres of pablic land oceur in twocounty ares.	Save as preaent.	4.693 acres of public rangeland would be corverted to privacely aned irrigated eropland.	0
Public Accest	Unlimited ccess to public land.	Sorre es present.	OX's to mitigate for lose of recreation.	0
Livestock Grazins:	Predorinant use of public land in the ares is grazirg of cattle and gheep.	Same as present.	Project development would eliminate four grazing allotments for 2,300 Aums. Additional allotments would be modified to provide antelope crucial vinter range mitigation.	-
Qultural Resources:	23. archeological sites in project boundaries with 800 acres yet co be surveyed.	Sitee would continue to exist with ane degredstion due to natural forces.	At least 20 sites would be disturbed by project construction but would be mitigated by excavation and/or data recording.	.

Tokal EqEffect 1/ O
Raw: Order of Plan $\quad 1$

```
1/ Campared to tive future condition.
\overline{2}
    -- Mawerate avverse + + Highly beneficisl
    - - Highliy atverse + + Maderately beneficial
```

 - Slightly beneficial

Wildife.--The lands proposed for irrigation development presently support stands of sagebrush, classified as crucial antelope winter range by the WGFD. Crucial winter range is highly valued for its high productivity, the fact that it stays snow-free and the excellent cover it provides for fawning. A mitigation plan to compensate for losses of 4,302 acres of crucial winter range for antelope has been developed. The basic concept of the winter range mitigation plan is to increase forage production on non-project areas through the adjustment or modification of existing grazing leases. With the project the total amount of forage available would be the same as at present, albeit on a smaller total acreage. For these reasons, mitigation will be in place before construction.

The Wyoming Game and Fish Department has expressed concern over potential game animal depredation claims which, by law, they are responsible for. A fund would be established and funded by the irrigators to pay any claims on project land.

Soil Erosion.--Soil losses due to wind and water are expected to be slight (0.38 tons per acre) without the project. Construction of the project would significantly increase losses to an average of 4 tons per acre, based on the assumed crop rotation of malt barley, sugar beets, alfalfa and irrigated pasture.

Land Use. --The Westside Project would change land ownership of 4,693 acres of public rangeland; 4,068 of these acres would be converted to irrigated cropland. The land is presently used for grazing, wildiffe, recreation, and petroleum exploration. Also, permitted grazing uses would be modified on other allotments (the number and acreages as yet undetermined) to provide the necessary improvements in forage (sagebrush) production to achieve mitigation for antelope crucial winter range.

To compensate for lost recreation and small and nongame habitat in the project area, 406 acres would be retained in public ownership to be managed as CMA's.

Livestock Grazing. --The project includes parts of four grazing allotments leased by BLM, with a total of 2,309 AUMs (animal unit months, i.e., the forage necessary to support 1 mature cow, with or without calf, for 1 month).

The Preferred Plan would cause the loss of grazing on 4,693 acres of public rangeland, which could lead to the cancellation of grazing over an entire allotment, even though only a part of the allotment were affected. Range improvements and cattle watering access points would be lost along with the cancellation of an allotment.

Further reductions in grazing would occur on non-project allotments to achieve mitigation for antelope crucial winter range. Grazing allotments would be changed to provide 4,115 AUM's.

The four allotments that would be affected by project development are operated by landowners who would receive irrigation. Allotments affected as a result of antelope winter range mitigation, and associated negotiations, would be the responsibility of the irrigation district.

Cultural Resources.--There are 234 archeological sites in the project area which could be eligible for the National Register of Historic Places. At least 20 sites would be affected by the project. About 800 acres remain to be surveyed.

Final surveys, testing, and any required mitigation, would be completed before construction under 36 CFR 800 , the National Historic Preservation Act of 1966 (as amended), and Reclamation Instructions 376.11.

Other factors that were evaluated, but were determined to not be significantly affected, were mineral resources, air quality, prime or unique farmlands, and energy.

$\sin +\frac{2}{2}+\frac{2}{2}$

 0

 $2+1+2$

 -2
huly

[^0]SECTION 2

METHODS

The U.S. Fish and Wildife Service's Mitigation Policy (Federal Register Volume 46, Number 15, Pages 7644-7663; January 23, 1981), which established Resource Categories, Designation Criteria and Mitigation Planning Goals for habitat values which may be impacted by project development, was used to rate the value of the habitats on the Westsid Project area. The evaluation categories:

Resource	Designation Category	Criteria
1	High value for evaluation species and is unique and irreplaceable on a national basis or in the ecoregion section.	No loss of existing

2 High value for evaluation species and scarce or becoming scarce.

3 High to medium value for evaluation species and abundant.

4 Medium to low value for evaluation species.

No net loss of in-kind habitat value.

No net loss of habitat value while minimizing loss of in-kind habitat value.

Terrestrial

Terrestrial wildife resources in the Westside Project have been monitored by WGFD and Bureau of Land Management (BLM) personnel for a number of years. Data from the big surveys for antelope in Hunt Area 77 and mule deer in Hunt Area 125 recorded on the WGFD computer-based Wildlife Observation system were sued to summarize population numbers and

\qquad

\qquad
 Whithe misage ramizulacte

\qquad

inuthely

 4.

YवAGETI

atneg - yont

distribution on the Westside Project area. Sage grouse leks and wintering areas were pinpointed using WGFD and BLM overlays. Waterfowl numbers and concentration areas on the Bighorn River were derived from WGFD surveys. Nongame birds and mammal species lists and the locations of prairie dog towns were compiled from BLM and WGFD survey information.

Habitat type mapping presented in this analysis was complete utilizing BLM 1:24, 000 scale Site Write-up Area (SWA) maps which delineate range sites. Vegetative composition on the range sites was derived from the Soil Vegetation Inventory Method (SVIM) inventory of the Grass Creek Resource Area. The WGFD inventory 1984 report entitled "Westside Irrigation Project - Reconnaissance Level Terrestrial Wildiffe Impact Report" (Luce 1984) detailed the relative value of the habitats which will be impacted by the project.

The Wyoming Game and Fish Department has prepared vegetation overlays of the project area so the distribution and acreage of habitat types important to wildlife can be compared to the proposed irrigated land development plan.

Information on bald eagle winter roosting and concentration areas along the Bighorn River; and data on the Basin bald eagle nest were derived from the USFWS publication, "Bald Eagle Essential Habitat on or near Bureau of Land Management Lands in Wyoming" (Jenkins 1980), and WGFD publications including: the draft Bald Eagle Recovery Plan (Oakleaf in press); "Inventories of Nesting Bald Eagles and Osprey in Wyoming" (Squires and Oakleaf 1979), and "Raptor Habitat Study on State and Private Lands" (Oakleaf 1979). Data assimilated by WGFD and BLM during mid-winter bald eagle surveys are also summarized.

Fisheries

Fishery data used for determining potential impacts were obtained from existing records maintained by WGFD. Potential impacts to the river fishery between Boysen and the Bighorn Canal diversion were based on a WGFD study by Annear and Conder (1981). In this study, a physical habitat

 axitis.

 Laty

simulation model (IFG-4) developed by the U.S. Fish and Wildife Service (USFWS) (Bovee and Milhous 1978) was used to quantify habitat for juvenile rainbow trout over a range of flows. The effect of various late summer flows on adult trout habitat quality (and standing crop) was determined using the Habitat Quality Index (HQI) (Binns and Eiserman 1979). Results from this model are expressed in habitat units (HU) which are defined as the amount of habitat quality necessary to produce a one-unit change in trout standing crop. In well-established fisheries where trout are able to complete all phases of their life cycle the measured population density normally approximates the number of HU's in the stream. The model is used to estimate potential changes in HU's with changes in flow by measuring various habitat attributes at three or more different flows. The HQI was measured at 350 cubic feet per second ($\mathrm{ft}^{3} / \mathrm{s}$), $1,100 \mathrm{ft}^{3} / \mathrm{s}$, and $1,400 \mathrm{ft}^{3} / \mathrm{s}$. Estimates of $H U$ dynamics outside this range of flows are not possible.

Maintenance flow (MF) recommendations for segment BHI were determined by computer analysis of hydraulic characteristics of critical riffles. The Tennant Method (Tennant 1976) was used to identify the MF recommendations for BH2 and BH3. The maintenance flow is defined as a continuous instream flow that is needed to maintain fish populations at their existing levels at any time during the year. Different (higher) flows may be needed at other times of year in order for certain species to complete their life cycle (e.g., spawning flows, rearing flows, etc.).

A preferred minimum fisheries pool recommendation for protecting the reservoir fishery was determined by analysis of reservoir storage contents and fishery reproduction and growth data for the life of the reservoir.

The term dewatering, as used in this report, refers to any additional removal of water from the Bighorn River and should not be interpreted to mean the removal of all flowing water from the river. Analyses are provided for average and worst case conditions. Average conditions refer to years when water supply is equal to or greater than flows in average water years. Worst case conditions refer to lower decile and/or below average water years.

2

Vegetation occurring on the project area was classified into four habitat types and catergorized under the USFWS Mitigation Policy. Due to the importance of riverine and reservoir habitats to terrestrial wildlife, it was also described and categorized.

1. Saltbrush - Nuttalls's saltbrush (Atriplex nuttallii) and shadscale saltbrush (Atriplex confertitolia). Occur on shale and saline upland range sites over most of the project lands. It seldom occurs in pure stands, usually being associated with big sagebrush. Many saltbrush stands are very sparse and contain more surface area of rock and rock outcrop than vegetative cover.

The dominant understory species associated with saltbrush are squirreltail (Sitanion hystrix) and birdfoot sage (Artemeasia Pedatifida).

Nuttall's saltbush is the most common habitat in Washikie and Bighorn Counties, and although browsed by mule deer and antelope at all seasons of the year, it is not considered an important component of critical antelope winter range nor mule deer winter range because of its low growth form. Use by nongame species is light. Golden and bald eagles forage in this habitat, and both white-tailed prairie dog towns in the project area are located in saltbush. This habitat type was classified as Resource Category 4 under USFWS Mitigation Policy.
2. Saltbrush - This habitat, which is found mostly on sandy and loamy soils, although rare in the counties, is the most common habitat type on the project area. A randomly selected sample plot showed the composition of the sagebrush stand to be approximatley 85 percent big sagebrush (Artemisia tridentrata) and 15 percent silver sagebrush (Artesmeasia cana). Other shrubs occurring in sagebrush stands include Nuttall's saltbrush and shadscale saltbrush. Underst \qquad grasses consisted of downy brome (Bromeus tectorum), needle-and-thread grass (Stipa comata), Indian ricegrass (Oryzopsis hymenoides), blue grama (Bouteloua gracilis) and bluebunch wheatgrass (Agropyron spicatum). Saltbrush habitat is of high value of antelope, mule deer, and several nongame species including the golden eagle. Sagebrush, which is rare in this part of Washakie and Bighorn Counties, is restricted ...

4.

 *ath

is restricted to narrow band located primarily in the project area. All sagebrush in the project area is considered crucial antelope winter range. Due to its importance and rarity, this habitat type was classified as Resource Category 2 under the USFWS Mitigation Policy.
3. Grassland - Grassland habitat occurs mainly along the Bighorn Canal and in Fivemile Creek bottom. Wheatgrasses including western wheatgrass (Agropyron smithii), thickspike wheatgrass (Agropyron dasystachyum), and streambank wheatgrass (agropyron reparium)dominate near the canal and along Fivemile Creek while bottlebrush squirretail is found in the Fivemile Creek floodplain. Mule deer and antelope use this habitat primarily in sp : ing when succulent forbs are abundant. Forgaging bald and golden eagles and few nongame species utilize the habitat yearlong. This habitat type was classified as Resource Category 4 under the USFWS Mitigation Policy.
4. Riparian - This habitat occurs along the Bighorn River, stock water reservoirs and some segments of tributary creeks. On Five and Tenmile Creeks, plains cottonwood (Populus deltoides) is present in sccattered, decadent stands. Livestock grazing was prevented regeneration in recent years, and most existing trees are at least partially dead. Creek bottoms below the Bighorn Canal and the reparian zone along the Bighorn River vegetated with plains cottonwood. Russian olive (Elaeagnus angustifolia), willow (Salix spp.) and Tamarisk (Tamarix spp.). Understory species include wild licorice (Glycyrrhiza spp.), yellow sweetclover (Melilotus officinalis), bluegrasses (Poa spp.) downy brome (Bromus tectorum) and annual and perennial thistles. Wetlands adjacent to the river support sedges (Carex spp.), cattail (Typha latifolia), bulrushers (Scirpus spp.) and wide variety of marsh plants. Approximately 30 miles of river bottom between the Bighorn Canal diversion and the mouth of Dobie Creek are included in this category.

Riparian habitat along the Bighorn River supports the widest variety of wildlife of any habitat in the project area. The river bottom and adjacent uplands along the river are mule deer crucial winter and yearlong range. Numerous species of nongame birds and mammals, including the endangered bald eagle, utilize the riparian zone yealong. The reparian zone along Tenmile and Fivemile creeks, consisting of scattered cottonwoods above the

Bighorn Canal, has a species diversity similar to that described for the Bighorn River in areas below the canal where seep from the canal provides moisture during the growing season. This important habitat for wildife was classified as Resource Category 2 under the USFWS Mitigation Policy.
5. Riverine habitat - The Bighorn River is a large lotic habitat providing habitat for fish, aquatic furbearers, shorebirds and water fowl. Maintenance flows in the river is important for retention of aquatic habitat values and the adjacent riparian zone. This habitat type was classified as Resource Category 2 under the USFWS Mitigation Policy.
6. Reservoir habitat - Boysen Reservoir provides yearlong habitat for ducks Canada geese, and is an important Canada goose productiohn area. The most important habitat on the reservoir consists of nesting islands in Cottonwood Bay and along the west shoreline. This habitat type was classified as Resource Category 3 under the USFWS Mitigation Policy.

Table 3. Antelope counted on the Westside Project between Tenmile Creek and Elk Creek during the winters of 1978-1984 ${ }^{1}$.

Year	Number of Antelope Observed	Winter Conditions
$1975-79$	357	
$1079-90$	356	Very severe
$1980-51$	233	Normal
$1981-82$	234	Mild
$1982-83$	298	Mild
$1983-84$	341	Mild
$1984-85$	374	
		Very severe
Average	313	Normal

Thompson 1984.
Spring through fall antelope use of the project area is much lower than du. ξ the winter. Antelope browse over most of the project area. However, sagebrush stands are of major importance during the fawning period to provide hiding cover. Table 4 shows the number of antelope observed on counts made on the project area in August 1979-1984. The 6 year average is 89 animals. Figure 3 shows the summer antelope distribution on the project area for years 1978-1984.

Table 4. Antelope counted on the Westside Project between Tenmile Creek and Elk Creek during August 1979-1984 ${ }^{1}$.

Year	Number of Antelope Observed
1979	61
1981	52
1982	81
1983	147
1984	106
Average	89

[^1]Mule Deer
All of the project area is yearlong mule deer range. An estimated 150-200 mule deer winter on the lands which will be converted from native habitat to cropland. The summer population is slightly higher at 225-275 animals (U.S. Department of Interior 1982). Sagebrush stands and creek bottoms are the most important habitat components. The riparian zone and slopes adjacent to the Bighorn River are important summer range and classified as crucial winter range.

$\ln 91320012 \mathrm{~L}$ コ：
 \qquad
里

2

里

जमता
20

2

 \qquad

2

0

Figure 3. Antelope distribution on the liestiside irrigation project area during the summers of 1978-1984.

White-tailed Deer

The white-tailed deer population is confined to riparian zones along Fiverile Creek and Tenmile Creek below the Bighorn Canal and along the Bighorn River.

Gutue Birds

Sage grouse occur in small numbers on the project area. No active leks have been located on or near project lands. Wintering grouse concentrated near che northern end of the project area and along Fivemile Creek bottom in 1984-1985. The largest group of grouse observed was 23. Grouse did not use any particular location extensively and appeared to range over a large area. Most of the big sagebrush stands which provide sage grouse habitat in the immediate locale occur on the lands which may be converted from native habitat to cropland; however, the impact to the small sage grouse population will be minimal.
..ungarian partridge, turkey, mourning dove and pheasant inhabit the riparian zone along the Bighorn River and adjacent croplands where food and the appropriate habitat are available. Chukar partridge inhabit steep slopes and bottoms throughout the project area, but especially near Fivemile and Tenmile Creeks.

Waterfowl

Boysen Reservoir and the Bighorn River between Worland and Yellowtail Reservoir are important for Canada geese and ducks yearlong.

Canada goose breeding pair surveys conducted over the last 10 years show a steady increase in nesting on islands in bays along the west shoreline of Boysen Reservoir. The population has increased almost annually since 1974 , and reached a high of 54 breeding pairs in 1984 (Table 5).

Table 5. Breeding pairs of Canada geese observed on Boysen Reservoir, 1974-1984.

Year	Number of Breeding Pairs of Canada Geese
1974	13
1975	23
1976	12
1977	24
1978	30
1979	13
1980	33
1981	33
1982	21
1983	42
1984	54

[^2]

 * 배․

 by

Bunthsman

2

ene
 $2+812=71$

?
 \qquad

里

Canada goose breeding ground surveys along the Westside Project Area between Worland and Manderson from 1977 through 1982 recorded a high of 28 breeding f...s on the river in 1982. Twenty-one breeding pairs were counted between Manderson and Basin in 1982 and a similar density exists all the way to Yellowtail Reservoir. The trend in this area since 1965 has been a $6-12 \%$ annual increase in breeding pair density, and this trend is expected to continue. Most of these geese are island nesters. However, the 20 artificial nest structures between Thermopolis and Yellowtail Reservoir have attracted nesting geese, and there is a potential for installation of more nest structures. Brood-rearirg takes place along the entire Westside project area, but favored areas are near grazed pastures, hayland and shallow, marshy areas adjacent to the river. Approximately 400 geese winter on the river between Worland and Basin, mainly around Manderson.

Duck breeding pair density along the Bighorn River between Worland and Manderson is $3.66 /$ square mile - the highest density observed in the Bighorn Basin (Table 6). Approximately 300 to 500 ducks winter in the project area, mainly around Manderson.

Table 6. Waterfowl species which have been observed on the Westside Irrigation Project Areal.

Species	Breeding Status ${ }^{\text {2 }}$	Seasonal Status ${ }^{3}$
Canada Goose	*	R
Snow Goose	0	M
Mallard	*	R
Cadwall	B	R
Pintail	*	R
Green-winged Teal	B	R
Blue-winged Teal	*	S
Cinnamon Teal	B	S
American Wigeon	B	R
Northern Shoveler	B	S
Wood Duck	*	S
Redhead	B	S
Ring-necked Duck		S
Canvasback		S
Lesser Scaup	b	S
Common Goldeneye		R
Barrow's Goldeneye	b	R
Bufflehead		R
Harlequin Duck	0	S
Ruddy Duck	B	S
Hooded Merganser	0	R
Common Merganser	*	R
Sandhill Crane	*	S
Virginia Rail		S
Sora	B	S
Amedican Coot	*	S
Common Snipe	*	S

[^3]Fitton and Howe 1979
Oakleaf et al. 1982

```
2*-Confirmed breeding on the Westside Project Area (nest or dependent young
    abserved.
    s-Confirmed breeding in the latilong.
    b-Circumstantial evidence of breeding in the latilong.
    O-Observed in the latilong.
```

3_{R}-Yearlong Resident
S-Summer Resident
M-Migrates through Wyoming

Small Game and Furbearers

Cottontail rabbits are abundant on both upland and riparian habitat thr ghout the project area. Beaver, muskrat and mink are found along the riv=:. Badger and bobcat inhabit upland areas.

Endangered Species

Black-Footed Ferret - Three white-tailed prairie dog towns of approximately 300 acres ($15-20$ holes/A), 300 acres ($5-10$ holes/A) and 1,000 acres ($0-5$ holes/A) respectively, occur in the project area, so potential habitat for the endangered black-footed ferret is present. Winter searches conducted on two of the towns in 1984-1985 did not indicate current use of either town by blackEooted ferrets, but if searches in nearby towns on or off of the project area indicate ferret presence, the prairie dog towns on the project area could be considered part of a larger complex and have significant value.

Bald Eagle - Bald eagles winter and nest along the Bighorn River between Wind River Canyon and Yellowtail Reservoir. Nesting territories active in 1983 included one on WGFD's Yellowtail Habitat Unit adjacent to Yellowtail Reservoir and one along the Bighorn River approximately 4 miles down river from the Town of Basin. The Yellowtail nest was active in 1984. The Basin nest territory was occupied in 1984, but nesting did not take place. Nesting pairs along the Bighorn River probably winter on or near nesting territories, but defend their nest territory only during the April-July period.

The Bighorn River system is an important bald eagle wintering area. The annual January censuses conducted by BLM personnel show an average of 30 bald eagles wintering between Wind River Canyon and Basin during the years 1979-1984. An average of 14 bald eagles wintered along the Westside Project Area during those same years (Table 7).

 (

H.

 6.

 4

Table 7. Bald eagles wintering along the Bighorn River between Wind River Canyon and Basin, Wyoming during the years 1979-1984.

Year	Wind River Canyon to Neiber	Westside Project Area	\% of Total	$\begin{aligned} & \text { Manderson } \\ & \text { to Basin } \\ & \hline \end{aligned}$	Total
1979	8	22	71	1	31
1900	18	15	45	0	33
1981	9	7	41	1	17
1982	0	19	100	0	19
1983	8	13	26	29	50
1984	14	9	32	5	28
Mean	10	14	47	6	30

Census work conducted by the USFWS indicates the season of use by wintering bald eagles is November-March (Jenkins 1980). Table 8 shows the results of monthly censuses along the Bighorn River between Wind River Canyon and Basin, Wyoming in 1980.

Table 8. Bald eagles wintering along the Bighorn River between Wind River Canyon and Sasin, Wyoming during November-March 1980.

Year	River Canyon to Neiber	Westside Project Area	$\%$ of Total	Manderson to Basin	Total
November	3	1	14	3	7
December	6	7	47	2	15
Ianuary	17	13	41	2	32
February	10	32	73	2	44
March	0	2	25	6	8

These data indicate that peak bald eagle numbers may not be present until February, and therefore, the January census data presented in Table 9 may not show the maximum winter populations.

Based on bald eagle distribution data, heavy winter use areas occur about 1 mile downriver from the mouth of Tenmile Creek and approximately 1 to 2 miles downriver from the Rairden Bridge where a commal roost has been reported (Jenkins 1980).

Nongame Birds and Mammals

Table 9 lists the nongame bird species which have been observed on the Westside Project Area and those which could frequent the project area based on their documented occurrence nearby. One hundred forty-nine species are found on the project area seasonally, and of these, 82 species are known to nest in habitats which may be impacted by the project. Sixty-two species listed in Table 9 have nat been observed on the project area but their occurrence is probable since they are found nearby. Of these, 38 species are known to nest in the area. A few birds winter on or in the vicinity of the project area but summer and nest at higher elevations.

 2

BJacsak list abcild anaghin

Table 9. Nongame bird species observed on the Westside Project Areal.

Soecies E	$\begin{aligned} & \text { Ereeding } \\ & \text { Status } \end{aligned}$	Seasonal Status	Species \quad B	$\begin{aligned} & \text { Eeeding } \\ & \text { Status } \end{aligned}$	$\begin{aligned} & \text { Seasor } \\ & \text { S:ac: } \end{aligned}$
Common Loon	0	R	Sabine's Gull	0	M
$\therefore=: こ こ$ Loon		Y	Forster's Tern	0	S
Horned Grebe	0	4	Common Tern	0	S
Eared Grebe	*	S	Black Tern		S
Western Grebe	B	S	Band-tailed Pigeon	n	M
?ied-billed Grebe		S	Rock Dove	B	R
Whise Pelican	0	S	Yellow-billed		
Double-crested	B	S	Cuckoo		S
Cormorant			Black-billed Cuckoo	00*	S
Great Slue Heron	B	S	Screech Owl	*	R
Black-Crowned Night	0	S	Great Horned Owl	*	R
Heron			Snowy Owl	0	W
Whis . ing Swan	0	M	Hawk Owl	0	A
Turkey Vulture	B	S	Burrowing Owl	B	S
Sharp-shinned Hawk	B	S	Long-eared Owl	0	R
Cooper's Hawk	*	S	Short-eared Owl		R
Red-tailed Hawk	*	R	Saw-whet Owl	0	R
Swainson's Hawk	B	S	Poor-will	B	S
Rough-legged Hawk		W	Common Nighthawk	*	S
Ferruginous Hawk	*	R	White-throated	*	S
Golden Eagle	*	R	Swift		
Bald Eagle	*	R	Broad-tailed	b	S
Northern harrier	*	S	Hummingbird		
Osprey	0	S	Rufous Hummingbird	d	S
Gyreaicon	0	W	Calliope	b	S
Prairie Falcon	*	R	Hummingbird		
Peregrine Falcon	b	R	Belted Kingfisher	*	R
Merlin	*	R	Common Flicker	*	R
American Kestrel	*	S	Red-headed	*	S
American Avocet	*	S	Woodpecker		
Semipalmated Plover	0	M	Lewis' Woodpecker	B	S
Killdeer	*	S	Yellow-bellied	*	S
Mountain Plover	*	S	Sapsucker		
Black-bellied Plover	r 0	M	Williamson's	B	S
Marbled Godwit	0	M	Sapsucker		
Long-billed Curlew	B	S	Hairy Woodpecker	*	R
Upland Sandpiper	B	S	Downy Woodpecker	*	R
Greater Yellowlegs		M	Eastern Kingbird	*	S
Lesse: Yellowlegs		M	Western Kingbird	*	S
Solitary Sandpiper		M	Say's Phoebe	*	S
Willet	0	S	Willow Flycatcher	*	S
Spotted Sandpiper	+	S	Least Flycatcher	*	S
Wilson's Phalarope	B	S	Hammond's Flycatch	che:	S
Northern Phalarope	0	M	Dusky Flycatcher	B	S
Long-billed Dowitche		M	Western Flycatcher	r B	S
Sancerling ${ }^{\text {- }}$	0	M	Western Wood Pewee	e	S
Semipalmated Sandpip	per	M	Olive-sided	B	S
Western Sandpiper		M	Flycatcher		
Least Sandpiper		M	Horned Lark	*	R
Baird's Sandpiper		M	Violet-green	*	S
Pectoral Sandpiper		M	Swallow		

Table 9 (continued)

Species B	$\begin{aligned} & \text { Breeding } \\ & \text { Status } \end{aligned}$	$\begin{aligned} & \text { Seasonal }^{3} \\ & \text { Status } \end{aligned}$	Species B:	$3=\operatorname{ecdin} 5^{2}$ Status	$\begin{gathered} \text { Seasonat } \\ \text { Status } \\ \hline \end{gathered}$
Stilt Sandpiper	0	M	Tree Swallow	B	S
CaliEcenia Gull		S	Bank Swallow	*	S
ミ:..j-jilleá Gull		S	CliEE Swallow	*	S
Eranklin's Gull		S	Gray Jay	b	R
Clark's Nutcracker	B	R	Blue Jay		R
Black-capped	*	R	Blackbilled Magpie	e	R
Chickadee			Common Raven	*	R
Mountain Chickadee	*	R	Common Crow	B	R
White-breasted	*	R	Pinon Jay	b	R
Nuthatch			American Redstart	B	S
Red-breasted	*	*	House Sparrow	*	R
Suthatch			Bobolink	B	S
Brown Creeper	B	R	Western Meadowlark	k B	S
Dipper	B	R	Yellow-headed	*	S
House Wren	*	S	Blackbird		
Long-billed Marsh	*	S	Red-winged	*	s
Canon Wren	*	S	Northern Oriole	*	S
Rock Wren	*	S	Rusty Blackbird	0	M
Mockingbird		S	Common Grackle	*	S
Gray Catbird	*	S	Brown-headed	*	S
Brown Thrasher	*	S	Cowbird		
Sage Thrasher	*	S	Western Tanager	B	S
Are=	*	R	Rose-breasted	0	M
Hermit Thrush	*	S	Grosbeak		
Swainson's Thrush	b	S	Black-headed	*	s
Veery	B	S	Grosbeak		
Eastern Bluebird	0	S	Indigo Bunting	b	S
Hestern Bluebird	0	S	Lazuli Bunting	*	S
Mountain Bluebird	*	S	Dickcissel	0	S
Townsend's Solitaire	e B	R	Evening Grosbeck		R
Ruby-crowned Kinglet	t B	S	Cassin's Finch	B	R
Water Pipit	B	S	House Finch		R
Sprague's Pipit	0	M	Pine Grosbeak	b	R
Bohemian Waxwing	0	W	Gray-crowned Rosy	B	R
Cedar Waxwing	*	R	Finch		
Northern Shrike		W	Black Rosy Finch	b	R
Loggerhead Shrike	*	S	Hoary Redpoll	0	W
Starling	*	R	Common Redpoll	0	W
Solitary Vireo	B	S	Pine Siskin	B	R
Red-eyed Vireo	B	S	American Goldfinch	h *	R
Philadephia Vireo	0	M	Lesser Goldfinch	0	M
Warbling Vireo	*	S	Red Crossbill	B	R
Tennessee Warbler		M	Green-tailed	b	S
Orange-crowned Warble	ler	S	Towhee		
Nashville Warbler	0	M	White-Winged	0	W
Yellow Warbler	*	S	Crossbill		
Magnolia Warbler	0	M	Rufous-sided	*	S
Yellow-rumped Warble	er*	S	Towhee		
Blackburnian Warbler		M	Lark Bunting	B	S

为

Table 9 (continued)

Species	E-eeding Status	Seasonal Status	Species	$\begin{aligned} & \text { Eeeding } \\ & \text { status } \end{aligned}$	$\begin{aligned} & \text { Seasorij } \\ & \text { Status } \end{aligned}$
Chestnut-sided	0	M	Savannah Sparrow	b	S
warbler			Grasshopper	b	S
Oveno:rd	B	S	Sparrow		
Northern Waterthrush		M	Lark Sparrow	*	S
MacGillivray's	*	S	Sage Sparrow	*	S
Warbler			Dark-eyed Junco	*	S
Comon Yellowthroat	*	S	Gray-headed Junco	0	R
Yellow-breasted Chat	at *	S	Tree Sparrow		W
Wilson's Warbler	B	S	Chipping Sparrow	D	S
Swamp Sparrow		M	Clay-colored	B	S
Song Sparrow	*	R	Sparrow		
Brewer's Sparrow	*	S	Harris' Sparrow	*	W
Whitr erowned Spa=row		S	White-throated Lincoln's Sparrow	*	M S
Fox Sparrow	*	R	Snow Bunting		W
Chestnut-collared		S			
Longspur					
Luce 1984 Fitton and Howe 1979 Oakleaf et al. 1982					
2 * - Confirmed breeding on the Westside Project Area (nest or dependent young					
B - Confirmed breeding in the latilong					
b - Circumstantial evidence of breeding in the latilong					
O-Observed in the latilong					
3 R - Yearlong resident					
S - Summer resident					
M - Migrates through Wyoming					
A - Accidental sighting					
W - Winter resident					

2
$2 \pi 81-\pi$

 (2504ted?

Table 11. Estimated hunter days use/year and annual harvest on the Westside Project Areal.

Huncer Days	Estimared Game Species		Use/Year

Thompson 1984

* Based on the average harvest/hunter day by management area (Wyoming Game and Fish Department 1984a).
**Based on the average harvest/hunter day (Wyoming Game and Fish Department 1984b).

Trapping: An estimated 50 man-days are annually spent trapping beaver, muskrat, mink, coyote, red fox and bobcat along the Bighorn River in the project area. Bobcat, coyote, badger and red fox trapping in habitats upslope of the Bighorn Canal amounts to an estimated 100 man days/year.

Since almost all of the project lands upslope of the Bighorn Canal are in the public domain, access for hunting and trapping is unlimited. Access on private land in the area for these activities is closely controlled by landowners and in many cases, public use of the wildlife resource is quite limited.

Fisheries

Boysen Reservoir

End-of-month storage records from the USGS gage on Boysen Reservoir show that the reservoir has been relatively stable since 1963. Considerable fluctuation did occur during the first 12 years after the dam was closed (1952-1962) in response to several low water years. The analyses in this report reference storage information from 1953 to the present (Table 12).

(20

lic^{2}

$$
\begin{aligned}
& \text { 4hemitut8. }
\end{aligned}
$$

[^4]Table 12. Sumary of end-of-month storage information (acre-feet) for Boysen Reservoir between 1953 and 1981.

	Mean Storage	Minimum Storage	Minimum Storage Si-ce	Maximum Storage
Očober				
November	640,021	310,700	497,000	781,900
December	613,357	334,800	519,170	745,700
January	576,335	342,900	537,500	729,700
Fejruary	539,372	276,300	534,200	708,000
March	512,822	211,100	506,700	656,100
April	487,890	200,500	431,300	600,100
May	461,327	197,500	365,200	590,600
June	517,638	281,900	428,400	683,200
July	699,645	325,900	550,800	904,300
August	700,893	280,400	525,400	819,800
Sept iber	673,349	234,600	496,900	799,700
	652,404	212,600	473,000	805,100
Mean				

The minimum storage during this time period was 197,500 acre-feet which occurred in April 1956. This volume of water represents 24.6% of the reservoir's storage capacity. The minimum mean monthly storage for this 29 year period is 461,327 acre-feet which also occurs in April and represents 57.5% of the reservoir's capacity. A legally recognized minimum pool does not exist for Boysen. During times when storage contents have fallen below 350,500 acre-feet, fishery losses in the form of reduced recruitment to and growth rates of game fish have occurred. Based on this information, a minimum fisheries pool for Boysen of 350,500 acre-feet would be necessary to protect the fishery. Storage contents have fallen to or below this level 6.3 percent of the time since the reservoir first filled and have not fallen below this level since 1961.

No trout have been stocked in the reservoir since 1976 as recent management efforts have focused on improving the warm/cool water fishery in the lake. Spottail shiners have been planted in both 1982 and 1983 in an attempt to improve the forage supply (and growth rate) of walleyes. The walleye and perch fisheries have been relatively stable in recent years except when the water level has been rapidly lowered in April in anticipation of spring runoff. These reductions tend to suppress perch reproductive success by exposing gravels and weed beds upon which perch have already deposited their eggs. Additional withdrawals during the preceding summer (such as may be required for Westside) may serve to reduce the need for these drawdowns. Fish species found in Boysen Reservoir and their relative abundance are listed in Table 13. Boysen Reservoir provides approximately 27,000 fisherman days of recreational use annually in addition to other water related recreational activities according to the results of WGFD analyses in 1980.

Boysen Reservoir was classified as Resource Category 3 under the USFWS Mitigation Policy.

Table 13. List of fish species and their relative abundance in each of the four fisheries which could be affected by the Westside Project.

	Buysen	Bil	3 H 2	Si3
Saうajow Trout	F	A	-	-
Srown Trout	F	C	-	-
Cutthroat Irout	F	R	-	-
Brook Trout	R	R	-	-
Mountain Whitefish	F	F	-	-
Halleye	A	F	F	C
Yellow Perch	F	F	-	-
Sauger	F	C	A	A
Channel Catfish	-	F	C	C
Bluegill	F	-	-	-
Largemouth Bass	F	R	-	-
Black Crappie	F	R	-	-
Stonecat	R	F	F	F
Bla \because Bullhead	F	-	-	-
Shovelnose Sturgeon	-	-	U	U
Burbot	C	C	F	F
Northern Redhorse	-	C	A	A
White Sucker	-	C	A	A
Longnose Sucker	-	C	C	C
Mountain Sucker	-	C	F	F
River Carpsucker	C	C	-	-
Carp	A	C	C	C
Golden Shiner	F	F	-	-
Creek Chub	F	F	-	-
Lake Chub	F	F	-	-
Flathead Chub	C	C	C	C
Sturgeon Chub	-	-	R	R
Longnose Dace	-	C	C	C
Sand Shiner	F	C	C	C
Spottail Shiner	F	R	-	-
Plains Minnow	-	F	F	F
Silvery Minnow	-	F	F	F
Fathead Minnow	-	C	C	C
Plains Killifish	F	R	-	

A - ADundant
C - Common
F - Few
R - Rare
U - Unknown

Boysen - Boysen Reservoir
BHl - Bighorn River from Boysen to Bighorn Canal
BH2 - Bighorn River from Bighorn Canal to Greybull River
BH3 - Bighorn River from Greybull River to Yellowtail Reservoir.

Bighorn River

'Average daily releases from the reservoir are approximately $1,400 \mathrm{cfs}$. Peak flows usually occur during June and July with average releases during the

$$
\begin{aligned}
& \text { |ell sayl }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ก9\%: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { क्रnturses-2 } \\
& \text { himes } 2 \text { - \% } \\
& \text { - } \\
& \text { mak - } 18 \\
& \text { meaned - }<0 \\
& 2 \rightarrow 2+20+2 \\
& \text { serne }
\end{aligned}
$$

Fi..ainder of the year being fairly constant at about $1,200 \mathrm{cfs}$ (Figure 4). Diversions at the Kirby Ditch, Bluff Diversion, Upper Hanover Canal and Lucerne Pu-: cause moderate reductions in these releases between Boysen and the Bighorn Cenai.

The sport Eishery in the Bighorn River between Boysen and Worland progresses from an excellent trout fishery at the reservoir and Thermopolis to a relatively foor trout.fishery at Worland. This transition is largely due to increased temperature and turbidity in the river as affected by irrigation returns. Decreased flow caused by significant diversions at the upper and lower Hanover diversions and the Bighorn Canal is also a major factor contributing to this fishery change.

Since 1982, WGFD has stocked approxifitel; 250,000 rainbow trout fingerlings between the Wedding of the Waters and Lucerne Bridge (upscream from the larger diversion structures) in an effort to incresse the density of trout and angling success here. Since this stocking program was begun, a correlation has been noted between discharge and fingerling survival. Summer flows during 1982 and 198." :ere abnormally high for at least parts of each summer and the survival of planted fish was relatively low. Runoff patterns (and release rates) in 1984 were more normal and fingerling survival was improved over the previous two years (Steve Yekel, WGFD personal communication).

The effect of discharge on juvenile rainbow trout is generally supported by results from the IFG-4 analysis done in 1981 (Figure 5). These data show that flows in excess of 2,000 cfs represent nearly an 80% reduction in juvenile habitat. The IFG-4 model was unable to simulate trout habitat at flows greater than $3,500 \mathrm{cfs}$; however, the observed poor survival of fingerling trout in 1982 and 1983 when flows peaked at $4,000 \mathrm{cfs}$ and $7,600 \mathrm{cfs}$ respectively, indicates that juvenile rainbow trout habitat probably does not increase above $3,500 \mathrm{cfs}$. In summary, prolonged flows in excess of 1,500 cfs are increasingly detrimental to rainbow trout recruitment in this portion of the Bighorn River.

This river segment has supported over 650 adult rainbow trout per mile according to results of recent studies. According to results from the $H Q I$, the river between Boysen and the Bighorn Canal diversion supports about 40 habitat units per surface acre under an average release schedule and with a later summer flow of about 1,300 cfs (Table 14). These data indicate that at flows considerably lower than the average later summer release, HU's are significantly

Table 14. Summary of potential Habitat Quality Index habitat units at several different late summer flow rates in the Bighorn River.

Discharge (cfs)	Habitat Units Per Surface Acre
	365
1,100	20.8
1,400	40.1
	37.8

[^5]Nongame mammals which have been documented on the Westside Project Area and those which could frequent the project area based on their documented occurrence inecroy are shown in Tabie 10 . Twenty-one species have been observed in habitars on the project area and an additional 23 species occur nearby and may be present.

Table 10. .Nongame mammal species observed on the Westside Project Areal.

Species	Species	Species
Masked Shrew*	Least Chipmunk*	Gapper's Red-backed
Dusky Shrew	Yellow-bellied Marmot	Vole
Vag Gnt Shrew*	Richardson's Ground	Meadow Vole
Dwarf Shrew	Squirrel*	Montane Vole*
Water Shrew*	Thirteen-lined Ground	Long-tailed Vole*
Merriam's Shrew	Squirrel	Water Vole*
Little Brown Myotis	White-tailed Prairie Dog	Prairie Vole*
Small-footed Myotis	Dog*	Norway Rat
Long-legged Myotis	Northern Pocket Gopher*	House Mouse
Long-eared Myotis	Olive-backed Pocket	Western Jumping Mouse*
Silver-haired Bat	Mouse*	Porcupine*
Hoary Bat	Ord's Kangaroo Rat*	Coyote*
Townsend's Big-eared	Western Harvest Mouse*	Red Fox*
Sat	Deer Mouse*	Raccoon*
Spotted Bat	Northern Grasshopper	Black-footed Ferret
Big Brown Bat	Mouse*	Spotted Skunk
White-tailed Jackrabbit* Bushy-tailed Wood Rat	Striped Skunk*	

Luce 1984
Madsen et al. 1980
Oakleaf et al. 1981
*Documented occurrence on Westside Project Area

Public Use Of Existing Resources

Hunting: Mule deer, white-tailed deer, antelope, Canada geese, ducks, cottontail rabbit, pheasant, sage grouse, chukar partridge, hungarian partridge and mourning dove are hunted on the Westside Project Area. The estimated hunter days spent per year in pursuit of each species and the estimated annual harvest are shown in Table 11.

为

4.0. n

Nountote ontrayl ta sov yide ig

 +1 - 20)

007
 8185

licewtardus

To, Ficle Superviso: Figi and bílelify Service, biclent, hontana ErCo: مhegionsl Director, lilllage, liontane

it. the project arcai the proposed project lice adjacent to the Bighorn River io Vistavie and tighorr Counties.

Fou: responge of fabruzty 27, 1ets, Ifsted the followieg specien
Digred Epecieq
Expected cromrtence
Ehat eacle (halifeetue
Ercedinf end winter rosident
leneoneplalus)
Perefrine fileon (feleo Higrant end possible swater feesetrus) resider:

Flack-Yoctod Ferret (tustela
Possible resifent on praitie for (erienf se.) tomt

Prapener Spectes
Nerie
In en hpril 9 , 1986, mezorandua ve requested verification of the list. Your responsc of ipril 14, logo, verifled the piecesing lified ppectes.

Mresinglen of P=opnes
The Westeide plan proposea to provice irrigetion service to sbout 4, G68 seres. This wonle requite an ansual divercion requireaent of about 16,680 ecte-feet of vater from the gighorn River. Approziactely one-third of the years voule requite supplemertel flows frot Soysen Reservoir. Hater will
 plpe systea.

2

 0

2

 $0.2+2+2$

Affected hres.

 and retaile crett on the fout.

She protect aree is zostly sagebrush and kuttail's Seltfuet., This halitet prorides criticel vinter senge for antelope ant a brcuse erea for mile der.

Abecespent Lesis

Eyh Ezele (Relipeetus leusocephelus)

Ke hiatoricel or currectir ective bald eagle neete are known te occur within t. project eres (Denton personel commication, 1ses). Therefore, it is highis urilikely thet this project would intefere witt the birc' a reproductive capabilitites.

The peak bald eeqle activity in the aree occure deriaf migratory and fintering peifote. The follouing discussion illuetrates this point (Diocusfion from VNTD Report, 15S6).

Eald eegles hidter and nest along the Eighorn Eiver between Eine kivar Canyon and Yellovetil Rebervoit. Lesting territozies active in $1 \leq 83$ included onc on burd's rellowtell Kabilst Duit acjacent to Icllowioil Reservoit and oce clong the Elghorn Eiver approxieftely 4 Eilleg downtiver fros the town of Eafin (approxinstely 30 miles fros the project area). The Yelloutail ficst wes active in 158L. The Farin nest teritory wes oceupied in 1984, but eeztirg did not take place. Kesting paire along the fighorn eiver probably vinter on or near nesting cerritories, but defend their rest territory ouly durieg the f.pril-July period.

The Eighorn River cysien is an inpertent bald eagle vinteriag erea. The zraual Jmnuery cersue condunted by BLI permonnel show en average of 30 bald caflee ointering betueez Wine Eiver Cemyon and Basin during the years 1979-1984. An everage of 14 bald cagler vintered along the Westaice Project Area ciaring those san years (Table 1).
zible 1. Hald eaglez vintering along the Eighori River between Wind giver Caryon end babin, Hyouiag, during the yezrs 1970-198́n.

Year	Wind River Canyon to Neiber	Hestside Project Area	$\begin{aligned} & \text { Kof } \\ & \text { Iotal } \end{aligned}$	Mandereon to Basin	Total
1575	8	22	71	1	31
1980	18	15	45		33
1381	9	7	41	1	17
1582	0	19	100	0	19
1983	\%	13	26	29	50
198.4	14	9	32	5	28
Mean	10	14	47	6	30

> that intinntsent

の17

 4.

These cote indicate ibet peak hali eagle ambero mey zot be pregent unt il
 oo: show the meximu sínter populetione.

 2 =lles dornelver frer tife heirden fridge ricere eommunel roast hag bece reported (Jestins 1585).

Secouse the onf active neft ie chous 30 fillo from the prajectarea, there Will be no protect-caufet effect on the bird' neftiag ceptilifties. Tine wiater concentrations ajco cccur off the project eren thersfore, there cill be no project-cavee vinter dizterbanceo. keduced flows on the Rishorn coult irpar the ki=d'b fédire elilities.

Fth Furerv of Eeclabrtici bill relezse ueter from Eoysen Eegervoit during
 Kelesses from boyesn vill aesure thet inciderces of cewazcring at yorland wil not inctefse because of project needs.

 of devistering to met cccur teyonc ihe h!storicel levels. Eyoming Gace ene Fish (fugust $15 E G$ meeting) has agreed thet these supplemental Elows yould prevent negative impact upor site fiato:y. Siece the fishery voild thon be uneffected, there vould be mo impant upon feeding eagles. Ve, therefore, conciude that che projer: will buve no inpact on the baideagle.

Perenife Folcon (Faleo perexifmus)

Peregrine islcona re know, in the ereg, es zigrante aje posible autmer residenta. Eince there are no sites on project lande outable for restiag or nest construction, tbe preject will nct affect the peregrine falcon. (Caklesf personal comennica:10n, lSOC)

 0 20

 20

Quat Fonté Ifret (nurtelanigripss)


```
dit not frdi=cte curtent use of elther som by black-focicd fertets.
Sirce the virter gestchen (Lure lg{L-1ge5) proved negative, it ie ieprobalile
ths: ferretsex!st ir the project erea. The completed e:rreys co not, hovever,
preivir ferre! pregence. Rerlameilor, recegnizes that the wests的e do&
```



```
For this reegom, and in kecping witr. Species Encangered ewiceliner (lggt),
the buresu of Reclemsidon proposes to conduct another ferre: search. The
rrect eurvey woule be done within l year before profect constrnction.
```


Cenclustens

The apocser in question neither live on/nor depend or the profert arez for reprofuctior or 2ε f food source; we hafe concluded thet the hestotde Project will have ne effes: on any threateacd or endangered spectes.

Fsfcrences

VGLFD. 1386. Westaide Irrigetion Project, Combined Report on Potential dquatic End Terrestrial wildijfe impects. Prepared for: Vyonigg Heter Developsent cousseion and U.S. Bareau of Reclametion. Only the andment affecting plemning documents are preserited.

be: $\quad \mathrm{MB}-150,-770$
GLRalser:kin retyped 9.15/86

 Q हt"?

 (20)

 . $+2+2+2$

Martandat

From：Fieid Supervisor，Endangered Species．Helena，MT（SE－61130）
シルロ：ニこt：Wもstsid＝Irrigation Froject
Thank you for your Aprily， 1986 memorandum requesting verification of our February $2 \Omega, 1$ lig species list for the Westside Irrigation Project．That list included the bald eagle，peregrine falcon，and black－footed ferret；and remains current．

We appreciate your efforts to meet our joint responsibilities under the Endangered Spucies Act．Flease contact Carol Taylor of my staff at FTS 580－ 5225 or the above letterhead address when we can be of further assistance． or if you have ouestions regarding preparation of your biological assessment．

Ec：ES Cheyenne
FiO（FA／SE／00153）

Surname
G $4 / 14 l-!$
$w 4-14-9 c$
$L L 4 / 14$

E3TATRIMJTI保

 2) - 20 2

$$
\begin{aligned}
& \text { sni } \\
& \text { (5enf ece }, \frac{1}{2}, ?
\end{aligned}
$$

2cje3 witwin , c9al

Exathey 3 里,
iHSuch brad

 20

 $0-2$


```
On-750
```

$\hat{F}:$

Samotendua

Fo: Fitele cupervisor, Eist and Wildille Service, Kelena, fontane
E=0. fi Regimel Ditector, Sillinge, Eoniane
Euhjecti Verificetion of Endsngered Specief List - Heteide irrigetion Preject, Wsabetio and Blghorn Counties, Hyoning

He are requesting verificetion of your February 22, 1985, mesorerdue of listed, proposed, threstenec or encengered epectes which nay occur on cr net: the fiesteicie irtigation Project nest Horland, Hyezing.

Cus Februery 15, 19E5, mesorazdue conteined a project raspitzis map remeins vslía.

UNITED STATES DEPARTMENT OF THE INTERIOR

FISH AND WILDLIFE SERVICE
Endangered Species, Field Office

Federal Bldg., U.S. Courthouse

301 South Derl.
P.O. 80×10023

Helena, liontaria 59626

TO: Regional Director, Bureau of Reclamation, Billiñgs, MT.

SUBJECT: Westside Irrigation Project

This responds to your February 15,1985 memorandum regarding the proposed Westside Irrigation Project in Washakie and Big fom Counties, Wyoming.

In accordance with Section $7(c)$ of the Endangered Species Act as amended ESA, we have determined that the following listed and proposed threatened and endangered species may be present in the project area.

Listed Species
Bald eagle (Haliaeetus leucocephalus)

Peregrine Falcon (Falco peregrinus)

Black-Footed Ferret (Mustela nigripes)

Expected Occurence

Breeding and winter resident

Migrant and possible summer resident

Possible resident on prairie dog (Cynomys sp.) towns

Proposed Species

None
Section $7(c)$ of the Act requires that you conduct and submit to the Fish and Wildife Service (FWS) a biological assessment to determine the effects of the proposed project on listed and proposed species. If not initiated within 90 days, the list should be verified with the FWS prior to initiation of the assessment. The biological assessment should be completed within 180 days of initiation but can be extended by mutual agreement between your agency and the FWS. The assessment conducted pursuant to Section 7(c) may be undertaken as part of your agency's compliance with the requirements of Section 102 of NEPA and incorporated into the draft EIS. The biological assessment should include:

己吾raTz Garivu ITMA 3Ht 50 TM3MT

 - - - + + M

$\operatorname{seg}-7$

A+ $4+\operatorname{mox}=$

$42+8$
dengev
2

$\square \cdot-\frac{20}{2}+$

$4-3-37-54$

2adera B baygucts
3
2

 420

 20

1) a description of the project;
2) the current st=tus, habitat use, and behavior of Iy $\operatorname{species}$ in the project area;
3) discussion of the methods used to determine the information in item 2;
4) direct and indirect impacts of the project to T / E species;
5) Cumulative impacts from federal, state, or private projects in the area;
6) mitigation/coordination measures that will reduce/ eliminate adverse impacts to T / E species;
7) the expected status of T /E species in the future (short and long term) during and after project completion;
8) determination of "no affect/may affect" to listed species.
9) citation of literature and personal contacts used in assessment.

If you determine that the project will affect any of the above listed species, formal consultation should be initiated with us.

Section $7(d)$ of the ESA requires that during consultation on listed species, the Federal agency and permit or license applicant shall not make any irreversible or irretrievable commitment of resources which would preclude the formulation of reasonable and prudent alternatives.

Pursuant to Section $7(a)(4)$ of the ESA, if you determine that any proposed species may be jeopardized, you should contact us to discuss conservation measures for those species.

Please contact us by mail at the above letterhead address or by telephone at 405-449-5225 (ETS 585-5225) if we can be of further assistance.

$c c:$ Regional Director, FWS (FA/SE), Denver, CO. Ecological Services, Rillings, MT. Ecological Services, Cheyenne, WY.

I）
$129+3787$

Su（

 $+1+26+1960$

2

3020 2020
＊＊カッhy

127


```
2%-750
```

Herorancua

```
To: Tear jescer, Endsmeterd speciec of the Fisin ami Hilcilfe Service,
    Lelena, líOEtana
```

From: for getional Director, Eillines, Montana

Sutject: Encraterei Species
He are requesting lacntification of listec, proposed, threatened, or eatensered specias milch mey occir of of near the liestside Irrigition Truject nent horlend, Ypomirin.

The proposed project Llea arjacent to cire Slgiorn Piver in Hashatie sać Sif

Enclosura

be: UN-770

GLEsixer:kh 2-12-85

Qei al e37

4275\%
-2.85

Rare Fish

Two fish species occur in portions of the Bighorn River which, although they are not rare in other portions of their historic range, have a very limited distribution in Wyoming and are classified as rare by (WGFD 1977).

Shovelnose sturgeon once occurred in the North Platte and Powder River drainages in addition to the Bighorn River in Wyoming (Baxter and Simon 1970). The species no longer occurs in the North Platte drainage; however several specimens have been captured in the Powder River in 1983 and 1984. This species has unofficially been reported in the Bighorn and Greybull Rivers but no specimens have been captured by WGFD since closure of Bighorn Reservoir dam.

The sturgeon chub historically was found in the North Platte, Powder and Bighorn River systems in Wyoming, but today significant numbers of this species are only found in the Powder River in 1981 just upstream from Bighorn Reservoir by WGFD biologists. This species prefers riffle areas of large turbid streams and it is hypothesized that construction of dams on the North Platte River reduced turbidity enough to eliminate suitable habitat for sturgeon chubs. Populations of sturgeon chubs in the Bighorn River are apparently very low and any development activity on this river that would reduce turbidity could further reduce habitat suitability and survival of this species. Specific impacts on rare fish for either of the alternatives cannot presently be quantified.

Figure 4. Average monthly flows near winchester, fioming, 1952 to 1950.

at higher discharges were not done. The fisheries maintenance flow recommendazion for the river segment between Boysen and the Bighorn Canal is 380 cfs . -...s:ing avcrage low flows exceed this level and a:e more than adequate to sustain this fishery in this segment (Eigure 4). This instream flow fishery -n....sis applies only to the portion of the Bighorn River upstrean from the Sighorn Canal which supports trout. Fish habitat and species composition change siznificantly downstream Erom the Bighorn Canal and different fisheries in:s:=eam -. Ow recomendations apply for these areas.

This river segment was classified as Resource Category 2 under the USFins Mitigation Policy.

Very few trout are found in the river segment between the Bighorn Canal. diversion and the Greybull River; however, fairly good populations of chanal catfish, sauger, and walleye are found here - generally increasing in number in more downstream portions as flows increase. The river impediately downstream from the Lower hanover diversion to the mouth of Nowater Creek (about 1 mile) is tot- $2 y$ dewatered during portions of some years. From the Nowater to about Temile Creek, river flows are often negligible which seriously limits the fishery here. Irrigation return flows throughout the rest of this segment supplement flows in the river; however, water quality worsens concurrently. Based on existing information, it is unknown if late summer conditions are normally limiting to fish. No recent data have been gathered on the fishery in this segment which would enable a quantitative assessment of species composition or existing water quality impacts. Based on presently available information, we recomend that a flow of 550 cfs reach the mouth of the Greybull River at all times in order to maintain the existing fishery in this segment of the Bighorn River. The average August low flow at present is 609 cfs at Worland according Eo the June 30, 1985 PFWD.

This river segment is classified as a Resource Category 4 under the USFWS mitigation policy.

The river segment between the mouth of the Greybull River and Bighorn Reservoir supports a fishery that is generally the equivalent of the segment immediately upstream; however, based on recently collected fishery information, it appears that the fishery consists of relatively higher populations of channel catfish, sauger, and walleye than upstream river segments. A wide variety of nongame fish are also found here (Table 13). Based on presently available information, we recommend that a flow of at least 690 cfs reach the gaging station at Kane, Wyoming, at all times of year in order to maintain the existing fishery in this river segment. The present late summer average low flow at kane is 1,422 cfs.

This river segment is classified as a Resource Category 3 under the USFWS mitigation policy.

Several small drainages enter the Bighorn River through the proposed project area and may carry varying amounts of irrigation return flow into the river (Figure 1). Only Tenmile Creek supports fish populations year round but no game fish or important nongame fish reside there. All of the other small (downstream) drainages entering the Bighorn River from the west are intermittent and do not harbor any fish.

THREATENED/ENDANGERED SPECIES ANALYSIS

Sub: :t: Westside Irrigation Project

Thank you for your January 26,1987 letter regarding the Westside Irrigation project. Based upon the additional information provided in your letter:

1. $\therefore 11$ powerines constructed will be built in accordance with Raptor . Research Report No. 4; and
2. Water from Boyseu Reservoir will be released for hestside Project demands Whenever the flow passing beyond the Bighorn Canal is equal to or less thin 580 cubic feet per second;
we concur with your determination that the Westside Irrigation Project will act effect the bald eagle (Halizeetus leucocephalus).
he appreciate your efforts to meet our joint responsibilities under the Endangered Species Act.
$c c: ~ E S$, Cheyenne, WY
CTaylor:clh

 but is +22 دTMar" "Ertanas?

(
 $2=2$

02020


```
Enclosures
GLKaiser:dlw 1-15-87 Disk 19.1
```

TBen 523 at

 0

 4 whe

 0

 $-28-1020+20$

Water Quality

The water discharged from Boysen Reservoir is of generally high quality at all times of the year. The first major chemical change in water quality downstream is effected by contributions from the hot springs at Thermopolis. The general effect of these additions is to increase hardness, conductivity and dissolved solids. At this point in the river, water quality is still acceptable from most fish.

Downstream from Thermopolis, return flow from irrigated lands, natural runoff and industrial wastewater cause gradual increases in the concentration of minerals and chemicals. The return flows also carry silt and clay particles which increase turbidity in the river and cover the river bottoms as they settle out, reducing spawning habitat for some fish species. This material returns to suspension during high water events and may irritate the fish's gills and result in increased stress, disease, and fish mortality.

During portions of the irrigation season in some years, the river is almost totally dewatered between the Lower Hanover diversion and the mouth of the Nowater Creek. Flow gradually increases beyond this point from irrigation, industrial, and municipal returns, but, water quality (temperature and chemistry) is often the poorest for fish between Worland and Manderson of any other point on the river.

Water quality in this segment is also affected by runoff from the various intermittent drainages west of the river (Figure 1). These drainages transport between 0.2 and 0.5 acre-feet of sediments per square mile annually to the river. Most of this erosion occurs during the warmer months of the year and is associated with thunderstorm activity (Agriculture 1974).

Water quality at Greybull is significantly poorer than the quality of water discharged by Boysen, but, is apparently still capable of supporting fish populations during most years based on the results of recent fishery studies.

 dide

 Alatyl onvigh minaky

Figure 1. Location of study area.


```
Westside - Pesticide Runoff Model
```


Carbaryl

```
Model Results 23.09 pounds Total from project area 4,056 acres
(median) July flow 52,867 acre-feet
Concentration in River at Basin ---------- 1.6 x 10-4 mg/l
```


Dicamba

```
Model Results 338.62 pounds Total from project area 4,056 acres
(median) July flow 52,867 acre-feet
-Concentration in River at Basin --------- 0.002 mg/1
```

Aldicarb
Model Results 3570.64 pounds Total from project area 4,056 acres
(median) July flow 52,867 acre-feet
Concentration in River at Basin -------- $0.025 \mathrm{mg} / 1$
Assumptions:

1. July is the month with the greatest probability of short duration, high intensity thunderstorms occurring.
2. No decay of compound between Dobie Creek return flow node in River and Basin.
```
Heavy Metals Westside Project
```

```
Resultant Concentrations at Basin with Project
```

Resultant Concentrations at Basin with Project
from Solid Phase/Dissolved Phase

```
    from Solid Phase/Dissolved Phase
```


Arsenic

```
Dissolved Phase ------------ 1.0 x 10-3 ug/1 (increase)
Solid Phase --------------- 8.55 ug/l (existing concentration and solid
                                    phase concentration)
Total 8.551 ug/l
```


Cadmium

```
Dissolved Phase ------------- 0.24 ug/l (increase)
Solid Phase -------------- 2.07 x 10-5 ug/l (existing concentration and
                                    solid phase concentration
Total 0.240 ug/l
```

Iron

```
Dissolved Phase ------------- 1.0 x 10-2 ug/1 (increase)
Solid Phase --------------- }72.48 ug/l (existing concentration and solid
                                    phase concentration
                            -------------------------
```

Total $72.49 \mathrm{ug} / \mathrm{l}$

Selenium

```
Dissolved Phase ------------ 1.04 x 10-5 ug/l (increase)
Solid Phase --------------- * (no data on existing concentration)
```

```
alyph trash
```


elesty
I Hutareili

$$
4-y=919 \text { and wicer }
$$

43x1
2
 forphimparize fily

$$
\operatorname{sen}-\log
$$

Elimin?

Water collected from two field drains in the project area showed abnormally high values of selenium. These two samples showed concentrations of 12.9 and 8.1 ppb ; the standard for human health is 10 ppb . Since project lands contain selenium and existing lands show leaching of selenium, there now appears to be a high potential for the proposed project to add selenium to the Big Horn River system. The potential for leaching selenium can also be observed by the concentrations emanating from Five and Ten Mile Creeks.

This data in itself does not mean that concentrations in the Big Horn River could approach levels set for human health. This data does, however, indicate potential for further bio-accumulation of selenium in the Big Horn F 'Ver. Bio-accumulation of selenium has been identified in fish tissue collected from the Yellowstone River, downstream of the Big Horn confluence.

Irrigation of project lands may add to the forementioned bio-accumulation but a determination of total project effects cannot be conceived as detrimental but only as a contributor to the present system.

 Lete

Selenium Concentrations for Big Horn River Samples by Hydride Atomic Absorption Analysis

Chem	Field		Se
Lab 非	Sample \#	Location	Concentration (ppb)
$F-3129$	I	Above Big Horn Diversion	2.2
F-3130	II	Five Mile	9.5
$\mathrm{F}-3131$	III	Ten Mile Creek	4.7
$\mathrm{F}-3132$	IV	Big Horn River	2.8
F-3133	V	Drain	12.9 Existing irrigation
F-3134	3	3 Drain	8.1 Existing irrigation

Flows Used for Water Quality Determinations

Shell Creek Near Shell, Wyaning (Water Year)
USGS Station 06278500

1952	3380	2740	2520	2390	2020	2040	5460	23020	23290	10020	5800
1953	2840	2380	2300	2350	2030	2220	2100	5700	41040	8650	5470
19590											
1954	2680	2520	2580	2350	1980	2070	2450	20200	16950	6360	4210
1955	2170	1880	2000	1800	1740	2020	2270	17720	34370	9620	4810
1956	2600	2430	2410	2270	2270	2370	2560	24250	22080	5660	3930
1957	2290	2180	2090	1870	1690	1910	2000	9950	31830	9500	5750
19960											
1958	560	455	394	263	194	184	149	17780	5910	2450	1330
1959	2760	2440	2350	2170	1760	1980	2250	7010	34020	7800	6010
19240											
1960	3230	2400	2350	1960	1850	1800	2520	11190	16610	4970	4710
1961	2870	2020	1980	1770	1490	1590	1720	18120	15520	4250	4160
1962	3250	2900	2480	2030	1860	2000	5410	19630	34660	10600	5460
1963	3380	3070	2660	2150	1950	2030	2360	16810	39870	7580	5210
1964	2880	2620	2310	2180	1940	2080	2020	14560	44950	17500	70470
1965	4130	2960	2880	2570	2070	2180	2600	8030	54500	15840	6940
1966	4220	2860	2620	2360	1990	2220	2190	17470	9700	4510	3550
19670											
1967	2370	21360	2130	1740	1560	1980	2050	13420	48180	17300	5760
1968	4950	3600	2980	2550	2200	2260	2230	7150	58910	13310	8280
1969	5760	4540	3710	2860	2320	2550	5440	26920	16150	12840	6220
1970	3820	3000	2720	2410	2120	2190	2190	13940	41260	10860	6180
197430											
1971	3060	2540	2530	2390	2040	2200	2410	17220	37970	8700	6900
14140											

WESTSIDE PROJECT
ALTERNATIVE 2 - 4,056 ACRES
DETERMINING SEDIMENT LOSS AND LOADING DUE TO OVERLAND FLOW
UNIVERSAL SOIL LOSS EQUATION (USLE)
$X(e)=E(k)(l s) C(P)$
SEDIMENT YIELD DUE TO SURFACE EROSION
$Y(s)=S(d) \quad[X(k)][A(k)]$
DESCRIPTION OF VARIABLES:
E = RAINFALL/RUNOFF EROSIVITY INDEX (10 FT-TONS-IN/AC-HR)
K = SOIL ERODIBILITY (TONS/ACRE PER UNIT OF E)
C $=$ COVER/MANAGEMENT FACTOR, DIMENSIONLESS RATIO
P = SUPPORTING PRACTICE FACTOR, DIMENSIONLESS RATIO
$-X(e)=$ SOIL LOSS (TONS/ACRE)
$\mathrm{X}(\mathrm{k})=\mathrm{EROSION}$ FROM SOURCE AREA k AS GIVEN BY X(e) (TONS/ACRE)
$\mathrm{A}(\mathrm{k})=$ AREA OF SOURCE AREA k (ACRE)
$\mathrm{S}(\mathrm{d})=$ WATERSHED SEDIMENT DELIVERY RATIO, DIMENSIONLESS RATIO

remarbitas ibs wasmoter

711
351
72
221
38
574

$$
{ }^{5}
$$

E
thibelals

results of soil loss due to eolian effects
SOIL LOSS PER ALFALFA ACRE (TON/ACRE/YEAR) INSIGNIFICANT SOIL LOSS PER MALT BARLEY ACRE (TON/ACRE/YEAR)
CHEPIL AND WOODRUFF
AVERAGE VALUES BASED ON 50% OF CROP AREA UFFENS SOIL GROUP AND REMAINING 50% RAIRDENT AND GRIFFY SOIL GROUPS. SOIL CONSERVATION SERVICE; SOIL

1/

perantsition oh arthyontice

WESTSIDE PROJECT
ALTERNATIVE 2 - 4,056 ACRES

CROP	\|AREA OF \mid SOURCE \mid (ACRE)	\|SOIL LOSS (WATER) (TONS/ACRE/YEAR)	SOIL LOSS (WIND) (TONS/ACRE/YEAR)	TOTAL LOSS (TONS/ACRE/YEAR)
ALFALFA	1924	0.1	INSIGNIFICANT	0.1
\|MALT BARLEY	9621	1.0	9.7	10.7
\| SUGAR BEETS	9621	0.7	5.4	6.1
\| PASTURE	208\|	0.1	INSIGNIFICANT	0.1

114
9,984
6,132
15
16,245
TOTAL SOIL LOSS PER ALFALFA ACREAGE (TONS/YEAR
TOTAL SOIL LOSS PER MALT BARLEY ACREAGE (TONS/YEAR).
TOTAL SOIL LOSS PER SUGAR BEET ACREAGE (TONS/YEAR)
TOTAL SOIL LOSS PER PASTURE ACREAGE (TONS/YEAR).
TOTAL SOIL LOSS PER ALL CROP AREAS (4056 ACRES) (TONS/YEAR) . .

WESTSIDE PROJECT
DETERMINING SEDIMENT LOSS AND LOADING DUE TO OVERLAND FLOW UNIVERSAL SOIL LOSS EQUATION (USLE $)$
$\mathrm{X}(\mathrm{e})=\mathrm{E}(\mathrm{k})(\mathrm{l} \mathrm{s}) \mathrm{C}(\mathrm{P})$
SEDIMENT YIELD DUE TO SURFACE EROSION
$\mathrm{Y}(\mathrm{s})=\mathrm{S}(\mathrm{d}) \quad[\mathrm{X}(\mathrm{k})][\mathrm{A}(\mathrm{k})]$
E = RAINFALL/RUNOFF ERQSIVITY INDEX (10 FT-TONS-IN/AC-HR)
K = SOIL ERODIBILITY (TONS/ACRE PER UNIT OF E)
Is = COLOGRAMC FACIOR, DIMENSIONLESS RAT RATIO
P = SUPPORTING PRACTICE FACTOR, DIMENSIONLESS RATIO
$X(e)=$ SOIL LOSS (TONS/ACRE)
$Y(s)=$ ANNUAL SEDIMENT YIELD (TONS/YEAR)
$\mathrm{X}(\mathrm{k})=$ EROSION FROM SOURCE AREA k AS GIVEN BY X(e) (TONS/ACRE)
$A(k)=$ AREA OF SOURCE AREA k (ACRE)
\mid VARIABLES FOR DETERMINING SEDIMENT LOSS $\quad \mid$ SEDIMENT YIELD VARIABLES \mid
-

| SAGE-GRASS | 20 | 1 | 0.30 | 1 | 0.492 | 0.130 | 1.0 | 1 | 0.4 | 0.10 | 4056 | \mid |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

RESULTS OF SEDIMENT LOSS AND SEDIMENT YIELD DUE TO OVERLAND FLOW
TOTAL SEDIMENT LOSS FROM SAGE-GRASS AREAS (4056 ACRES) (TONS/YEAR) . . . 1,557 TOTAL SEDIMENT YIELD DUE TO SURFACE EROSION (TONS/YEAR) • . .

WATER DISCHARGE, CFS

WESE FOET
 EnGTa CuTTH

BOYSEN RESERVOIR

REFERENCES AND COMMENTS:
RCA dated November 1965

$\therefore-111-$

 area in thousano acres Th-afea 19.500 acres

 7 7 laft -7 2

```
T:BLE: MINIMUM E.O.M. STORAGE - BOYSEN RESECVOIR
```


			Westside*	
	Storage	Storage	Requirement	Stage Change
Month	(Since 1953)	(Since 1963)	Preferred Plan	(Since 1963)
Oct	310,700	497,000	607	L.T. 0.1 FT
Nov	334, 800	519.170		
Dec	344,700	537.500		
Jan	338,300	534,200		
Feb	273,100	506,700		
Mar	262,500	431,300		
Apr	259.500	365,200	228	L.T. 0.1 FT
May	343,900	428,400	2,821	0.2 FT
Jun	387,900	550,800	4,355	0.3 FT
Jul	342,400	524,400	5,257	0.4 FT
Aug	296,600	496,900	3,737	0.3 FT
Sep	274,600	473,000	2,284	0.2 FT

Ave. - 267.433 Ave. - 488,714

* Based on Maximum Requirement (not occurring in same year)

TABLE V-A2
AVERACE, MAXIMM AND MDNLMM DIVERSION DAIA

	ADR	MAY	TNE	Jry	AIS	SEPT	∞	Trst	$\leq 1 / 4$
Mex ys. 1970 (CIR) in.	-	3.17	7.13	8.29	6.33	3.12	0.69	28.73	
CIR $\times 1 / 12 \times 4058$	-	1075	2417	2810	2146	1058	234		
Farm Del. (Line 1/0.62)	-	1733	3899	4533	3461	1706	377	15709	3.86
Seepage Factor 2	-	1.203	1.095	1.071	1.080	1.108	1.356		
Diversion Requirement	-	2085	4269	4855	3738	1890	511	17348	4.26
Seepage	-	352	370	322	277	184	134	1639	
Min y 1965 (CIR) in.	. 43	1.95	4.76	7.21	4.60	1.51	0.93	21.39	
CIR $\times 1 / 12 \times 4068$	145	661	1614	2445	1559	512	315		
Farm Del. (Line 2/0.62)	235	1066	2603	3942	2515	826	509	11696	2.88
Seepage Factor	1.401	1.203	1.095	1.071	1.080	1.108	1.356		
Diversion Requirement	329	1283	2850	4222	2716	915	690	13005	3.20
Seepage	94	217	247	280	201	89	181	1309	
Average vear (CIR) in.	0.14	2.60	5.62	7.86	5.18	3.43	0.64		
CIR $\times 1 / 12 \times 4068$	47	881	1905	2665	1756	1163	217		
Farm Del. (Line 2/0.62)	77	1422	3073	4298	2832	1875	350	13927	3.42
Seepage Factor	1.401	1.203	1.095	1.071	1.080	1.108	1.356		
Diversion Requirenent	107	1710	3365	4503	3059	2078	475	15397	3.78
Seepage	30	288	292	305	227	203	125	1470	

$\begin{array}{ll}n & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \infty \\ 6 & - \\ 7 & \circ\end{array}$
∞
∞
5
0
0
0

 m
\square
\vdots
\square 0%
0
$=5$
二
in

 460956

い。

 No
00
0
0

 00
00
$\underset{\sim}{\sim}$

$\underset{\sim}{\sim}$ | 0 |
| :---: |
| $\frac{0}{4}$ | | N |
| :--- |
| ∞ |
| |
| |
| |

 $\begin{array}{ll}1 & n \\ 0 & 1 \\ 0 & \\ 0\end{array}$ $\sigma 1$
$N 0$
108
100
$N 0$ 0
0
0
0
0

AUG

 \circ
N
N
N
－

 \sim
∞
\sim
\sim
\sim
\sim
0
\sim
\sim

 \begin{tabular}{l}
10

0

0

0

\hdashline

0

\multirow{2}{2}{}

0

\sim

0
\end{tabular}

 $-T$
$\dot{D} 0$
0
0
$=7$ $\bar{\sigma}$
0
0
∞
0
0
0
 \square
in
N
N 6
0
0
∞ 769444
775925
591350 -
∞
10
0
0
$7 n$
 $\dot{\sigma}$
N
N
N

MAY

苑 \circ
0
0
∞
0
0
is

8 $\stackrel{\rightharpoonup}{N}$

 4
0
\vdots

in | 8 |
| :---: |
| 0 |
| $\underset{\sim}{n}$ |
| |
| |
| 0 |
| 0 |
| 0 |
| 0 |

 n
N
N
\sim
N

0
0
0
0
0
0

 oj
$\stackrel{n}{n}$

n
n

508581

RESERVOIR RECORDS STORAGE SYSTEM
MONTHLY RESERVOIR OPERATION RECORD
BR2O－MIDNIGHT TOTAL RESERVOIR SIORAGE
JaN

N
N
in

0
0
0
0
0
5

$\dot{0}$
N
D
O

fous

\qquad $=6$
8
8
8
8

 $=$ 3 Thinating
 5

42

 $4+2$

 $2-2+2$

$\stackrel{4}{4}$
 53412.3
80618.1 80618.
28320. 9VIOC
OLEC8 50146.
53443. 33443.8
62605 45319
38317
 58578.
88868. 0
\vdots
\vdots
\vdots -0
$\underset{\sim}{\circ} \mathrm{O}$
in
 $\begin{array}{ll}\therefore \\ 0 & 0 \\ 0 & 0 \\ \text { in } & \\ \text { in }\end{array}$ 55867. $\therefore-$
\sim
\square
\square 118583
 16

 $\begin{array}{ll}n & \infty \\ \sim & 1 \\ \sigma & 0 \\ \forall & 1 \\ 0 & 0 \\ -\quad\end{array}$ ∞
∞
0
0
0
0 $\begin{array}{cc}0 & \infty \\ \sim & \infty \\ 0 & 1 \\ 0 & m \\ 0 & 0 \\ \sim & \\ & \end{array}$

 $\begin{array}{lll}0 & 1 & \sim \\ 20 & 0 & - \\ i & 0 & \square \\ n & 0 & \sigma \\ \infty & \infty & 0\end{array}$ ∞
0
$\underset{\sim}{i}$
0
0 AUS 52178
45854.
32149.
53726. 79148. 54322.
45915. 21369 30114.
55810 55810.

53813 | 41 | |
| :--- | :--- |
| ∞ | |
| ∞ | |
| | |
| | |
| n | |
| m | |

 48388.
38768.
78130 88687 61159
65996 65996

80393 | 0 |
| :--- |
| 0 |
| 0 |
| 10 |
| 1 |
| 6 | 28391.

81596. 81596.
1. 53355 56656.
2. 119973.
1. 12500. $1 \sim$ G• $\angle 6959$ N
0
0
0
0
0
\sim 0
N
n
0
0
 $\leftarrow 10$
0
0
0
\sim
0
-0
-2 10
0
0
0
in
10
10 $-\infty$
∞
∞
0
0
∞

∞ $\begin{array}{ll}0 & \infty \\ \nabla & 0 \\ & 0 \\ \infty & 0 \\ & 0\end{array}$ | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 | 0

∞
∞
n

n | 0 | 0 |
| :--- | :--- |
| 0 | |
| | 0 |
| - | | $\begin{array}{ll}1 & 1 \\ 0 & 1 \\ \infty & 0 \\ \sim & 1 \\ 0 & 1\end{array}$ $\begin{array}{ll}m & \infty \\ \uparrow & 0 \\ 0 & \nabla \\ 0 & 0 \\ 0 & \infty \\ - & -\end{array}$

 － $\stackrel{0}{\infty}$
$\stackrel{N}{N}$
J
APR ∇
∞
∞
∞
0 3555.0
 か
 NiN N N N㐫莈
 －品永

 ूㅜ | 0 |
| :--- |
| 0 |
| 0 |
| 0 | ジウ市市 on

 N N
 Ω
n
n
0
0
0
0
0 σ
 FEB
 $\begin{array}{ll}0 & 10 \\ 0 & 10 \\ 0 & 7 \\ 0 & n \\ m & \pi\end{array}$ un
\sim
\sim
\sim
\sim
\sim
 -4
\square
\sim
∞

 $\begin{array}{ll}\infty \\ : & \infty \\ 1 & \infty \\ 1 & \infty \\ 1 & \infty\end{array}$ JAN
 $\begin{array}{cc}-\infty \\ 10 \\ 10 \\ n & 0\end{array}$ ∞
0
∞
∞

∞ $\begin{array}{ll}\infty & \infty \\ \infty & \sim \\ i & 1 \\ \nabla & 0\end{array}$ | ∞ | 0 |
| :--- | :--- |
| | 1 |
| | 0 |
| 0 | n | $-N$

n
0
0
$-N$
 Nへ会 ${ }^{0}$ N N
웅
응 M ㄲ․
N
N

 둥

 $\stackrel{6}{N} \stackrel{0}{N}$ $\frac{0}{9}$ ล드N N～ $\stackrel{\square}{\circ}$ 읃
下二 Y
0
0
0
0
0
 DEC 0
0
0
0
0
0
0 NOV
 n
0
0
0
0
∇

－

CRCR
JUL 67303 S8096
 0
0
0
0
0
0
0 $=0$
0
0
0
0
0 70096
63634 \square
0
0
0
0

0 171862 128376 | | 0 |
| :---: | :---: |
| 0 | 0 |
| 0 | |
| $\underset{\sim}{\circ}$ | | 3

0
0
0
0
0
0
n n
0
0
0
0
0

$=$ N | 0 | 1 |
| :--- | :--- |
| n | |
| 0 | |
| 0 | 0 |
| ∞ | 0 |
| \sim | | 0

0
0
0
0
0
0 182824

259009 | ∞ |
| :--- |
| ∞ |
| 0 |
| 0 | 63269

277384

 \begin{tabular}{l}
n

\multirow{2}{2}{}

$\underset{\sim}{2}$

$\underset{\sim}{2}$

0

0

0

\multirow{2}{c}{}

\multirow{2}{c}{}
\end{tabular}

 ∞
1
0
0
0
0
-

| 10 |
| :--- | :--- |
| |
| |
| 7 | JUN 73864 91353

73902 n

n $\begin{array}{ll}0 & - \\ 9 & 0 \\ 0 \\ 0\end{array}$ 68680
67835 67835
61853 89815
220006

 $n 00$
M
N
N
N

 0
0
0
0
0 σ
σ
σ
σ
σ
σ

σ | \circ |
| :---: |
| |
| on |
| on |

 0
0
0
0
 π
$\frac{\pi}{5}$
0 I
-
-
\sum
 $\begin{array}{lc}n \\ 0 \\ 0 \\ 0 & \underset{0}{0} \\ 0 & 0\end{array}$
 10
$\underset{\sim}{n}$
$\underset{\sim}{n}$
N
に
 n
$\underset{\sim}{\sim}$
$\underset{\sim}{0}$
 20
$\frac{2}{6}$

6 | 0 |
| ---: |
| 8 |
| 0 |
| 0 | n

N
$\underset{\sim}{\circ}$
$\underset{y}{2}$
 -
0
0
\vdots
\vdots
 0
$\stackrel{0}{5}$
$\stackrel{5}{6}$
0
 N
$\stackrel{y}{2}$
i

0
0
0

APR 83708
6.3560 6.3560
93415 54113 64403

59304 46984 | 2 |
| :---: |
| 0 |
| |
| |

 M
0

हैN \begin{tabular}{l}
∞

\multirow{2}{*}{}

\multirow{2}{*}{}

0

0

0

0

 N

10

0

\multirow{2}{0}{}

0

$-=$
\end{tabular}

 \sim

$\underset{\sim}{\circ}$
$\underset{\sim}{\circ}$ -
ल
-
30206
119248

119000 | 0% |
| :--- |
| 8 |
| 0 |
| -1 |
| - | N

\sim
$\underset{\sim}{\sim} \underset{\sim}{\sim}$
$\underset{\sim}{*}$ 10
0
0
0
0
1
1
 0
0
0
0
MAR 84440 21959
75560 67569
 0
0
0
n
n 0
क
N
N
in 0
0
0
0
0
0
0
 の
0
0
∞
∞
∞ o
à
ô
on
on

\sim

 0
\vdots
0
0
0 96930
96121 n
0
0
0

$\hat{\sim}$ | $\stackrel{\rightharpoonup}{n}$ |
| :--- |
| $\stackrel{y}{*}$ |
| |

77681
19375 47923 0
0
0
0
0
0 56434
118191 47564 19749
51657 $\stackrel{\circ}{\stackrel{\circ}{\nabla}}$ 64729 59649
63927 96180 105669 95339 09162
60059 88082 97004 50705 $\stackrel{N}{N} \stackrel{0}{N}=$
$\stackrel{\oplus}{\sim}$ in
 ल
$\underset{\sim}{N}$
\sim 104172
64784
59490 0
∞
0
0
0
0
JAN 62741
54079 54079 103569 64266
131736 14847 54416
21858 56071
58713 0
0
0
0
0
0 74350
87177 49252
68906 $\begin{array}{ll}0 & 0 \\ 0 & \sigma \\ 0 & 1 \\ 0 & 0\end{array}$

 62102
71968 $\begin{array}{ll}\infty & 0 \\ 0 & \sigma \\ 0 & \sigma \\ - & \sigma \\ \sim & 0\end{array}$ 109499
98334

 60210
60420
113038 113038
65482
79979 74203 DEC
 87913
114351

 86866 64199
72331
 67087
90220 91765
100360 18450 79402
54809 91815 $=10$
$\bar{\sigma}$
$\underset{\sim}{-}$
$=0$ 06088 78815
 53760

66621 \begin{tabular}{c}
n

\hdashline

\hdashline

0

0

0

\cup

\multirow{2}{0}{}

0

0

0
\end{tabular} M

$=2$
-3
0 127347
52661 7
0
0
0
i
i
 0
0
0
0
0
0
0 57122
118766 $=0$
$\overline{5}$
\vdots
\vdots
 79821
54182
101038 101038 96117 60456
67741 73063 17958
95292 48347 0
0
0
6
0 108194 116313

108180 | - |
| :--- |
| |
| |

OC

 2

$\frac{2}{\omega}$	
$\underset{\substack{e}}{2}$	

ま

$\frac{2}{3}$

$\underset{\sum}{\grave{\Sigma}}$

 00
\sim
0
0
\sim
 $0-$
0
0
4
0
0
0
$=$

 o
O
N
∞
∞
\qquad 0
0
0
0 ∞
0
0
0

-2 | \circ |
| :--- |
| 0 |
| 0 | -0

0
0

0 $\begin{array}{ll}n & n \\ 0 & 0 \\ 0 & 0\end{array}$ | -10 | |
| :--- | :--- |
| 0 | 0 |
| 0 | 0 | 0

0
0
$\begin{array}{ll}n & 0 \\ 0 & 0 \\ 0 & 0 \\ -\end{array}$ $\begin{array}{ll}\infty & 0 \\ 0 & 0 \\ 0 & 0 \\ - & 0\end{array}$ $0-$
o
o
-1

 \square
\sim
\sim
\sim $0 \wedge$
on
on
 00
n
n
0
n $\begin{array}{ll}-\infty \\ \infty & \infty \\ 0 & 0 \\ - & \end{array}$

4 4

 Whamambaymentil

 $\stackrel{3}{2}$

 3

\qquad

FLOWS USED FOR FISHERY ANALYSIS
AND
ENDANGERED SPECIES ANALYSIS
Whardos

TABLE IV - AI
BIG HORN RIVER FLOWS ABOVE BIG EORN CANAL HEADGATE (CFS)

NOTE: Bighorn River above headgate $=$ Bighorn River @ Worland plus: April $=160(9 / 30 * 534)$;Hay-September $=534$;October $=172(10 / 31 * 534)$

$14-7 x=129$

$2+20-20$

$$
\text { imyisic } 100.5 a c 6 \text { ioceros }
$$

$4-2020$

$$
x+2 x
$$$\sin 610$2

$\square$$1+{ }^{-10}$
Ac8:

$$
1
$$

$$
E
$$

2
est

$$
\int_{0}+x=?
$$

$$
=
$$ 20

$$
10.279
$$

inematy

2 (2.2.2 2 0

102020
-
Fac

$$
100.22 t
$$ h 保

turelig iow.erze I Goves96
15in .itपरी?4-1
,-4
1
1$-$
 3F0\%

TABLE IV - 12
BIGHORN RIVER ABOVE EEADGATE
LESS EXISTING IRRIG. ON EIGHOEN CANAL (334 CFS MAX) FOR IRRIGATION SEASON APRIL-OCTOBER

	1113.00!						
1954	708.00!	1907.001	1247.00 !	$75.00!$	001	29.00	
	1306.00!					71	
	611.00 !	1335.001	908.001	453.00!	586.001	1449.001	204
57	393.001	1928.001	$3433.00!$	5816.001	1122.001	1075.00!	2139.00
195		1551.001	639.001	265.00!	239.001	1349.001	$2342.00!$
	686.00 !	200.001	34.001	269.00!	364.00!	603.001	786.00 !
	52		0	0			. 0
	199.00!	200.001	552.001	200.00!	242.001	487.001	$845.00!$
62	1227.00 !	758.001	1149.00!	602.001	875.001	1077.001	1530.00!
1963	41	38		2201.00	001	603.001	13
964	1385.00!	1822.001	1700.00!	1442.00!	700.001	345.001	980.00!
65	1343.00 !	762.001	3144.00 !	$6969.00!$	1596.001	855.001	2224.00!
	284.001	00!	460.001	436.00!	378.00!	00!	
967	981.001	70.001	6210.00!	$8820.00!$	1169.001	1089.001	122
68	1402.00 !	964.001	1263.00 !	$704.00!$	1056.001	1265.001	1414.001
			1072.00!	1144.00!	435.001	620.00	
970	116	1062.001	746	437.00!	272.001	517.00!	
971	1677.00!	2069.00!	4320.00!	4041.00!	1301.001	1331.00!	
1972	1651.00	1662.00!	4476.00!	1930.00!	1606.00 !	1372.00!	1664.001
崖3	906.00!	2013.001	1351.00!	885.00!	1157.001	2168.00!	2346.001
74	2005.00!	2505.001	3227.001	2298.00!	1691.00!	999.00!	
	10	2412.001	2236.00!	3833.001	1577.00!	1025.001	1380.00
976	1630.00 !	1617.001	1265.00!	512.001	826.001	860.001	$1310.00!$
977	152.001			201.00!	482.00!		
1978	1806.001						

NOTE: Existing uses on Bighorn Canal calculated as: April: $9 / 30 * 334=100$; Hay-September $=334$;October: $10 / 31 * 334=108$

[^6]TABLE IV - A3
INSTRELH FLON REOUIREMENT
1 FOOT BELOW BIG RORN CANAL EEADEATE (CFS)

NOTE: If value in Table IV - $A 2>=580, I F R=580$

contug 206shelat:
2
电

TABLE IV - A 4
WESTSIDE DIVERSION REQUIREMENT AT EEADGATE (CES)

TES	RRIL	HAY	JUNE	JULY	GUST.	SEPT	SER !
19:2	0.00 !	25.66!	67.641	71.611	$49.24!$	46.16!	$10.47!$
-0.3	0.001	21.151	64.521	$83.54!$	50.481	42.49!	$7.85!$
1:54	4.39!	30.04 !	58.161	84.53!	55.43!	45.02 !	$8.50!$
1-0.0		24.0.!	$45.1:$!	76.09!	53.76!	25.2.!	
1956	5.27!	31.36!	76.001	$69.96!$	44.17 !	44.52!	$8.45!$
1957	3.59!	17.58!	44.681	$77.87!$	51.381	35.87 !	$6.05!$
1958	1.19!	45.431	52.541	56.091	55.12!	42.24!	10.021
11959	0.001	24.401	58.161	$81.88!$	54.171	25.57!	5.15!
1960	$3.84!$	41.711	59.781	$79.05!$	49.711	32.71!	5.75 !
1961	2.071	21.951	73.191	$76.45!$	58.161	20.96!	2.981
1962	$0.24!$	14.46!	59.471	$65.71!$	45.601	40.22!	10.62!
1963	$0.00!$	35.08:	43.681	76.391	51.381	35.42!	8.901
1964	0.001	27.921	38.941	89.791	46.021	41.36 !	$9.64!$
1965	5.51!	20.88 !	47.931	68.661	44.171	15.401	11.211
1966	2.16!	45.881	56.471	$80.65!$	48.70 !	38.391	9.64 !
1967	0.001	$25.86!$	25.641	$78.11!$	56.561	24.56!	9.641
1968	$0.88!$	23.941	46.801	$77.51!$	25.711	$35.36!$	8.811
1969	0.001	38.06 !	32.011	78.631	59.711	46.66!	5.30 !
1970	0.001	33.891	71.761	78.931	60.781	31.761	8.301
1971	0.001	23.74!	70.451	$73.44!$	55.601	34.601	0.001
1972	1.04 !	$28.85!$	60.901	58.391	40.781	36.941	4.94!
1973	0.001	$39.25!$	57.651	$67.77!$	52.331	19.891	8.601
1974	$10.06!$	26.92!	76.191	$73.50!$	46.071	34.041	5.75 !
1975	$0.00!$	4.701	$51.54!$	$73.50!$	51.85!	38.891	2.92 !
1976	0.001	37.14!	51.861	85.49!	48.22!	31.94!	$7.62!$
1977	0.001	35.95!	72.701	$71.14!$	41.311	37.511	$9.87!$
1978	0.001	2.92!	63.401	$66.06!$	45.12!	27.591	9.421

2
$4-$
3

FLOW AVAILABLE FOR WEST SIDE (CFS)

$$
\begin{aligned}
& 04=9582 . d 5
\end{aligned}
$$

里

TABLE IV - A6
RELEASES REOUIRED FROM BOYSEN RESERVOIR FOR WESTSIDE PROJECT (CFS)

The negative number is the release from Boysen Reservoir.

1h6

TABLE IV - A7
RELEASES REOUTRED FROM BOYSEN RESERVOIR FOR NESTSIDE PROJECT (AF)

	L	MAY	JULVE	JULY	SI	SEPT	
			0.				
1953	0.001	0.001	0.001	5136.871	3104.02!	0.001	0.001
1954	0.001	0.001	0.001	0.001	3408.39!	0.001	0.001
1955	0.001	0.001	0.001	4678.77!	$3429.91!$	0.001	0.001
1956	0.001	0.001	0.001	4301.84!	$2347.07!$	0.001	0.001
1957	213.61!	0.001	$0.00!$	0.001	0.001	0.001	0.001
1958	0.001	0.001	0.001	3448.97 !	3389.331	0.00 !	0.001
1959	0.001	1500.36!	0.001	5034.80!	3330.911	$152.91!$	0.001
1960	228.48!	2564.75!	0.001	4860.781	3056.671	$1946.25!$	353.571
1061	$123.17!$	$1349.71!$	4354.801	4700.911	3576.26!	$1247.12!$	0.001
1962	$0.00!$	0.00 !	0.00 !	2687.73!	0.001	0.001	0.001
1963	0.001	2157.07!	0.001	0.001	$3159.36!$	738.991	0.001
1964	0.001	$0.00!$	0.001	0.001	0.001	0.001	0.001
1965	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1966	128.52 !	2821.16!	$3359.96!$	4959.17!	2994.56!	2284.201	0.001
1967	0.001	$0.00!$	$0.00!$	0.001	0.001	0.001	0.001
1968	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1969	0.001	$2340.31!$	0.001	0.001	3671.57 !	396.271	$0.00!$
1970	0.001	0.001	0.001	4853.41!	$3737.36!$	1889.721	0.001
1971	0.001	0.00 !	0.001	0.001	0.001	0.001	0.001
1972	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1973	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1974	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1975	0.001	0.001	0.001	0.001	0.001	$0.00!$	0.001
1976	0.001	0.001	0.001	5256.78!	0.001	0.001	0.001
1977	0.001	$2210.57!$	41.65!	4374.40!	$2540.15!$	2231.84!	606.911
1978	0.001	0.001	0.00 !	0.001	0.001	0.001	0.001

(10)

TABLE IV - A8
 INSTREAM FLOKS
 DIRECTLY BELOK BIGEORN CANAL (CFS)

Flows in Big Horn River after Westside is developed. Compare this table with Table IV-A2. The flows with the project (Table IV-A8) are always equal to or greater than flows without the project (Table IV-A3).

 VA

Figure 4. dverage monthly flows near linchester, Wjoming, 1952 to 1950.

LESEAO
\because
Grase (100x)

Rock $(80-100 x)$ / Nutalis Saltounh
Roct (40-79x)/ Murtal's saltouen
Rock (20-39x) / Nuttol's Soltbuen

Bic Sogobeysh ($60-79 \%$) / Nuital's Solibuth
Big Sagebruah (40-99\%) / Nuttal's Soltbuah

Bin Sogebruah (20-39\%) / Nuttal's Solibueh
Big Sogebruah ((20\%) / Nutial's Saltbush

Figure 5c. Westzide Irrigation Project With Vegetation Plotted.
vaportime

Figure 5d. Weatside Irrigation Project With Vegetation Plotiad.

- bas

SECTION 8

MAP OF MITIGATION FEATURES IN THE PROJECT AREA

SIGNIFICANT ENVIRONMENTAL ISSUES

Collowing issues were determined by USBR, through thg scoping process, to

fishery impacts; water quantity and quality impacts; loss of public lands; and, loss of soils through increased erosion.

These issues are not in any order of priority.

Purpose: To determine the scope of issues to be addressed in the environmental impact statement, and to identify the significance of the issues related to the proper action.

Background: Notice of the meeting was given in area newspapers and the Federal Register. Letters were mailed directly to agencies, groups, and indıviduals.

Bureau Personnel in Attendance:

Derwood Mercer	State Coordinator for Montana and Wyoming
Stan Gappa	Chief, Reports and Environment Branch
Jerry Kaiser	Environmental Planner

General: Derwood Mercer provided the opening comments and introduced the other parties. Derwood briefly described project facilities, project potentials such as: recreational facilities, municipal water, wildife compensation and/or enhancement, and possible alternatives to the project. He then turned the meeting over to Stan Gappa who, thereafter, chaired the meeting.

Individual comments were tape recorded. An informal question-and-answer period followed the closure of the meeting.

A 30 -day period was provided to receive additional comments.

All materials pertaining to, or resulting from, the scoping session and the 30-day follow-up period are on file in the Bureau's Missouri Basin Reginal Office in Billings, Montana.

ENVIRONMENTAL SCOPING SESSION SUMMARY

Figure 6d. Westside Irrigation Project With Gross Vegetation Types Plotted.

Figure 6c. Westside Irrigotion Project With Gross Vegetation Types Plotted.

SECTION 8:

MAP OF MITIGATION FEATURES

IN THE PROJECT AREA

BLM Library
Denver Federal Center Bldg. 50, OC-521
P.O. Box 25047

Denver, CO 80225

BLM Library

Denver Federal Center
Bldg. 50, OC-521
P.O. Box 25047

Denver, CO 80225

[^0]:

[^1]: Thompson 1984.

[^2]: 1 Serdiuk 1984.

[^3]: ILuce 1984

[^4]:

[^5]: ,
 reduced. - The impact of late summer releases greater than $1,400 \mathrm{cfs}$ on adult trout HU's (standing crop) cannot be determined from these data since analyses

[^6]:

