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Networks are invaluable tools to study real biological, social and
technological complex systems in which connected elements
form a purposeful phenomenon. A higher resolution image of
these systems shows that the connection types do not confine
to one but to a variety of types. Multiplex networks encode
this complexity with a set of nodes which are connected in
different layers via different types of links. A large body of
research on link prediction problem is devoted to finding
missing links in single-layer (simplex) networks. In recent
years, the problem of link prediction in multiplex networks has
gained the attention of researchers from different scientific
communities. Although most of these studies suggest that
prediction performance can be enhanced by using the
information contained in different layers of the network, the
exact source of this enhancement remains obscure. Here, it is
shown that similarity w.r.t. structural features (eigenvectors) is
a major source of enhancements for link prediction task in
multiplex networks using the proposed layer reconstruction
method and experiments on real-world multiplex networks
from different disciplines. Moreover, we characterize how low
values of similarity w.r.t. structural features result in cases
where improving prediction performance is substantially hard.
1. Introduction
Real-world systems are made of elements with complex
interconnections in between. Real-world networks like
biochemical, human and air transportation networks are
examples of biological, social and technological systems,
respectively. Scientists have studied these systems extensively
under the title of complex networks or network science [1,2].
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The core concept of these researches is that the collective behaviour of the whole system is not just a

simple superposition of individual behaviour of elements of the system [3]. These complex
interactions lead to non-trivial behaviour of the whole system. More specifically, neurons, human
beings and airports as the elements of aforementioned systems are linked by inter-cellular
connections, acquaintances and flights, respectively, to shape the specific purposes of the systems [4–6].

Recently, a higher resolution image of these systems shows that the connection type between
elements of a system does not confine to one type, but to a variety of connection types [7–9].
Biological studies show that inter-cellular connections can be further divided into electrical and
chemical connections [10]. In a similar way, people are connected to each other as they are members
of a family, friends or co-workers [5]. Also, a closer look into air transportation system reveals that
flights are not operated by a single airline, but dozens of airlines form the whole system [11]. So, this
new dimension of complexity may affect the behaviour of complex networks, and it deserves to be
studied with scrutiny.

The first step in this study is to find an appropriate mathematical representation for these systems.
Multiplex networks are a suitable way of encoding this new dimension of complexity with a set of
nodes which are connected in different layers via different types of links. Each layer consists of a
replica of nodes and one type of link. In the multiplex (duplex) network, a one-to-one mapping is
assumed between the nodes of the two layers; in other words, both layers have the exact same set of
nodes, whereas inside each layer, the wiring of the edges may differ. The process of forming this
mapping is also known as layer coupling.

Real multiplex networks are not simple stacks of network layers [9]. Although there are many
possibilities for coupling of layers in these networks, they are coupled in a way which is far from
random coupling. This fact, known as correlated multiplexity [12], leads to empirically significant
interlayer degree correlation and link overlap in real multiplex networks [9]. Functionality of a
network is also affected by multiplexity as the function of one layer may affect the function of other
layers, which is not additive or linear in general [9].

Network scientists have devoted a significant effort to uncover the underlying organization of real
single-layer (simplex) networks [13]. Some mechanisms have already been accepted as primary
driving forces in network organization, including homophily [14,15], triadic closure [16], preferential
attachment [17,18] and social balance [19]. However, these mechanisms cannot provide a complete
explanation of the aforementioned organization, i.e. link formation in real-world networks is usually
driven by both regular and irregular factors, and only the former can be explained using mechanistic
models [20]. This fact sheds light on the link prediction problem in which the set of observed links in
a network is used to estimate the likelihood that a non-observed link exists [21]. The regularities of
networks can be explained by models, and models provide clues about new link prediction
algorithms and vice versa [22]. The extent to which the network formation is explicable coincides with
our capacity to predict missing links [20].

A large portion of link prediction algorithms can be classified as similarity-based algorithms which
are based on definition of structural similarity measures [21] between unconnected node pairs. A
mechanism like triadic closure is the basis for success of common-neighbour-based methods in which
structural similarity is defined as weighted sum of number of common neighbours [23,24]. Structural
similarity measures can be very simple or very complicated, and they may work for some networks
while fail for the others [21]. This means that to choose an appropriate structural similarity measure
for link prediction in a specific network, prior knowledge is needed about network organization.

The challenge of link prediction in real multiplex networks is twofold. In these networks,
organization of network is different but related from one layer to another. Therefore, a similarity
measure is needed to determine the degree of organizational relatedness of different layers in a
multiplex network. On the other hand, when it comes to multiplex networks, it is hard to extend the
notion of structural similarity [25]. In the target layer with missing links, the conventional structural
similarity measures reflect how much disconnected node pairs are similar from the perspective of the
target layer, but it is also needed to know how much these node pairs are similar from other layers’
point of view.

The main contributions of this paper are to address aforementioned challenges. Regarding the first
challenge, for each layer of a multiplex network, eigenvectors are considered as the structural features
[26]. Here, also a new notion of structural similarity of layers is introduced based on the assumption
that two layers are similar if they share similar structural features, i.e. eigenvectors. Observation of
cosine similarity of eigenvectors in real duplex networks indicates that this assumption holds and is a
major source of information redundancy in real multiplex networks.
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Using eigenvectors as the structural features helps in defining structural similarity measure

which is free of prior knowledge of network organization. Otherwise, the appropriate structural
similarity measure may differ from one layer to another and this makes reaching a unified
framework more difficult. Recently, structural similarity measure based on eigenvectors of networks
has been introduced [20]. This line of work, known as structural perturbation method (SPM), assumes
that the missing links in a network are predictable if the removal or addition of randomly selected
links of the network does not significantly change the structural features of network. In other words,
in a highly predictable network, addition of missing links makes almost no change in eigenvectors as
the structural features of the network and just modifies the eigenvalues. Although network
organization differs across different layers of real multiplex networks, eigenvectors are good bases for
definition of structural similarity in each layer. Also, extensive experiments show that SPM
outperforms state-of-the-art link prediction methods in both accuracy and robustness [20], and this
makes it a suitable baseline for link prediction in different layers of multiplex networks which are of
different nature.

The second challenge is about extension of similarity notion to multiplex networks. Considering a
target layer with missing links, a new notion of similarity is needed to reflect the similarity of
unconnected node pairs in this layer from the perspective of other layers. In real-world multiplex
networks, the similarity of layers w.r.t. structural features bring to mind how well one layer can be
reconstructed by structural features of other layers. Formulation of this idea as an optimization
problem leads to a convex optimization problem, and the globally optimum answer reveals
the best possible reconstruction. The similarity of unconnected node pairs in one layer from the
perspective of another layer can be reflected through the best reconstruction of the former with
structural features of the latter. This method, which is referred to as layer reconstruction method
(LRM), leverages this concept for link prediction task. LRM considers the unconnected node pairs in
the target layer as similar if they are not only similar from the perspective of the target layer but also
from the perspective of other layers. Experiments on real multiplex networks from different
disciplines show that LRM benefits from information redundancy in different layers of real-world
multiplex networks. The information redundancy helps the results to stay robust even under a high
fraction of missing links.

The rest of the paper is organized as follows: §2 reviews the related works in the literature. In Results,
§3, we elaborate on the observations, the experiments and the findings of this study. Then, we discuss the
outcomes of the research in §4. Section 5 explains data, link prediction problem, evaluation metrics and
structural perturbation method.
2. Related works
Recently, link prediction in multiplex networks has attracted the attention of researchers [27]. The
geometric embedding has been used to reveal the hidden correlations in real multiplex networks [28].
These correlations have been further used for trans-layer link prediction. Trans-layer link prediction is
about finding missing links in one layer using a similarity measure on another layer, and its
effectiveness has been evaluated in contrast to binary link predictor which is based on edge overlap.
Also, it is shown that geometric correlations are not enough to explain the high edge overlap in real
multiplex networks and a link persistence factor can both improve the reproduction of edge overlap
and improve performance of trans-layer link prediction [29].

Some researchers have approached the problem using feature engineering and applied machine
learning. A study of a multiplex online social network demonstrates the importance of multiplex
links (link overlap) in significantly higher interaction of users based on available side information
[27]. The authors consider Jaccard similarity of extended neighbourhood of nodes in multiplex
network as a feature for training a classifier for link prediction task. They have shown that using
multiplex feature enhances the link prediction performance. A similar work on the same dataset
benefits from node-based and meta-path-based features [30]. A specialized type of these meta-paths
are tailored to be originated from and ending at communities. The effectiveness of the features has
been examined by a binary classification for link predication task. Recently, other interlayer
similarity features based on degree, betweenness, clustering coefficient and similarity of neighbours
have been used [31].

Furthermore, the issue of link prediction has been investigated in a scientific collaboration on
multiplex networks [32]. The authors have proposed a supervised rank aggregation paradigm to
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benefit from the node pairs ranking information which is available in other layers of the network.

Another study uses rank aggregation method on a time-varying multiplex network [33]. The effect of
other layers on the target layer of link prediction has been measured using global link overlap. A
recent work combines feature engineering and rank aggregation [34]. Two features based on
hyperbolic distance are being used and link overlap is considered for relevance of layers.

The issue of layer relevance and its effect on link prediction is studied in [35]. The authors use
global link overlap and Pearson correlation coefficient of node features as measures of layer relevance,
and later they use it to combine the basic similarity measures of each layer. The results support that
the more layers are relevant, the better performance of link prediction is attained. Moreover, layer
relevance (or in other words, layer interdependence) has been investigated based on the underlying
community structure of the multiplex networks [36]. The authors have identified the difference in
layer interdependence of social and genetic multiplex networks and how this issue affects the
performance of link prediction in these networks.

Other research communities have also tackled the link prediction problem in multiplex networks
but with their own terminology. In the machine learning community, this problem is known as multi-
relational learning [37]. Most of the works in this area are based on heuristic loss. Also, the
factorization of network has been used for link prediction task [38]. This direction of work formulates
the problem as a supervised learning.

Our work is distinct from the existing literature as it introduces a new relevance measure for layers of
multiplex networks which is in agreement with our intuitions and uses eigenvectors as structural
features. Moreover, the provided insight about the cases in which it is hard to improve the
performance of link prediction is complementary to existing literature. As our main contribution, we
propose a novel link prediction method which incorporates structural features from auxiliary layers to
predict links in an arbitrary target layer that outperforms state-of-the-art methods.
3. Results
3.1. Similarity of structural features
Here, we study the similarity of layers in multiplex networks with each layer being a simple graph. One
way to represent a simple graph is via the adjacency matrix that contains all information of the
corresponding layer. The structure of each layer is made of some substructures of local (e.g. triads)
and global (e.g. hubs) importance. Here, we state that a good layer similarity measure should
compare layers based on all substructures, from local to global ones. Eigenvectors of adjacency matrix
are known to be associated with substructures of networks [26,39–41]. The proposed layer similarity
measure is different from the existing literature [42] as it takes various substructures into account at
the same time.

Now, we introduce our method for measuring the similarity across layers of multiplex networks.
Consider a multiplex network G of N nodes and M undirected and unweighted layers. We can

associate with each layer α, a ¼ 1, . . . , M, an adjacency matrix A[a] ¼ {a[a]
ij }, where a[a]

ij ¼ 1 if node i
and node j are connected through a link on layer α and a[a]

ij ¼ 0 otherwise. Since all layers are real
and symmetric, they can be diagonalized as

A[a] ¼
XN
k¼1

l[a]k x[a]k x[a]
T

k , (3:1)

where l[a]k and x[a]k are the eigenvalue and corresponding orthogonal and normalized eigenvector for
A[α], respectively. The eigenvectors of each layer reflect the structural features of that layer [26]. So, the
similarity matrix of structural features of two layers α and β can be defined as O[a,b] ¼ {o[a,b]kl }, where
o[a,b]kl ¼ jx[a]Tk x[b]i j, xk is the eigenvector of kth largest eigenvalue of A[α], and xl is the eigenvector of lth
largest eigenvalue of A[β]. This is the absolute pairwise cosine similarity of eigenvectors of two layers
and the elements of O[α,β] will be bounded in the interval [0, 1]. It is also noticeable that O[α,α] = I, the
identity matrix, which is the case of ideal similarity of structural features. In real-world multiplex
networks, the similar eigenvectors of two layers are not necessarily ordered accordingly. For example,
the fifth eigenvector of layer α (corresponding to fifth largest eigenvalue) may be similar to the tenth
eigenvector of layer β (corresponding to tenth largest eigenvalue). Therefore, the permutation matrix
of rows, Pr, and the permutation matrix of columns, Pc, can be defined in a way that maximizes the
trace of PrO

[α,β]Pc. A good approximate solution is to find the largest element of O and then deleting
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the corresponding row and column from the matrix and repeating this process for N times. Therefore, a

simple measure for similarity of structural features can be defined as

q[a,b] ¼ tr(PrO[a,b]Pc)
N

, (3:2)

which will be always lower than or equal to 1. If two layers have identical structural features, q[α,α] will be
1. The more similar the structural features of the layers are, the higher value of q[α,β] will be.

In addition, a mechanism is needed to determine the significance of values of q[α,β]. This can
be achieved by comparing the values of q[α,β] with similarity of structural features in the null
models in which one of layers α or β or both of them has been replaced by a random network.
Using hypothesis testing framework, the null hypothesis H0 can be considered as ‘the observed value
of similarity of structural features in the real network is due to randomness’. The alternative
hypothesis HA will be ‘the observed value of similarity of structural features in the real network is
due to regularities’. The null hypothesis can be rejected, i.e. the observation is significant, if it is
unlikely to see q[α,β] or extremer values of similarity of structural features in different realizations of
the null model.

Let gα and gβ be two Erdos–Renyi graphs [43] with average link density of layers α and β, respectively,
such that

ga ¼ ER N,
jEaj

N(N � 1)=2

� �
(3:3)

and

gb ¼ ER N,
jEbj

N(N � 1)=2

� �
, (3:4)

where g = ER(n, p) is an Erdos–Renyi graph with n vertices and Pr[g(i, j ) = 1] = p. The random variables
which represent the similarity of structural features for different realizations of the null models are
denoted by QLR, QRL and QRR, corresponding to the events q[a,gb] , q[ga ,b] and q[ga ,gb], respectively.
Also, p-values can be calculated as

pvalue ¼ Pr[QLR � qa,b], (3:5)

pvalue ¼ Pr[QRR � qa,b] (3:6)

and pvalue ¼ Pr[QRR � qa,b]: (3:7)

Considering the significance level of 0.05, the significance of observed q[α,β] will be determined.
3.2. Measurement of layer similarity in real-world networks
Figure 1 demonstrates the similarity of structural features in Physicians advice/discuss network which is
derived according to following steps: (i) Calculate the eigenvectors of the adjacency matrices of advice
and discuss networks. (ii) Form the similarity matrix of structural features O[advice, discuss]. (iii) Find the
permutation matrices Pr and Pc. (iv) Select the top (here 10%) most similar row–column pairs of
PrO

[advice,discuss]Pc. The heatmap of selected submatrix is shown in figure 1a. Using the same steps for
the randomized advice (gadvice) and discuss (gdiscuss) networks, figure 1b is generated. By visual
inspection, it is clear that the value of similarity matrix trace changes significantly before and after
randomization. This indicates that advice layer and discuss layers are similar w.r.t. structural features.
In other words, the organization of the layers of these networks are correlated, and not totally
independent from each other. For example, if triadic closure plays an important role in formation of
links in advice layer, a similar criteria holds for discuss layer, too.

Beyond the visual inspection, it should be determined whether the value of similarity of structural
features in advice/discuss network (q[advice/discuss] = 0.383 as shown in table 1) is statistically
significant or not. There are many ways of randomizing a real network, so the value of q[advice/discuss]

differs from one realization to another, as already denoted by random variable QRR. Assuming that
QRR has a normal distribution, the mean and standard deviation are calculated by 50 samples. The
mean value in this case is 0.186 and pvalue = Pr[QRR≥ 0.383] = 0. So, it can be inferred that it is very
unlikely for the null model to produce such level of similarity of structural features and the observed
q[advice/discuss] is statistically significant. All the values in table 1 are calculated accordingly.
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Figure 1. Similarity of structural features between Physicians advice/discuss layers. The heatmap of absolute cosine similarity
between topmost similar eigenvectors of the two layers: (a) before randomization. (b) After randomization.

Table 1. The calculated values of similarity of structural features for all layer pairs (real–real) of multiplex networks under study.
Also, the mean values of similarity of structural features for the null models (real–random, random–real and random–random)
and the respective p-value which indicates the likelihood of observation of real–real value under the assumptions of the null-
model is mentioned.

multiplex name layer pair

real–

real

real–

random p-value

random–

real p-value

random–

random p-value

Physicians advice/discuss 0.383 0.191 0 0.192 0 0.186 0

advice/friend 0.340 0.194 0 0.191 0 0.185 0

CS-Aarhus lunch/FB 0.365 0.316 1.59 × 10−12 0.315 0 0.318 8.12 × 10−14

lunch/co-author 0.410 0.369 7.77 × 10−3 0.312 0 0.312 0

lunch/leisure 0.376 0.320 3.00 × 10−15 0.316 0 0.315 0

lunch/work 0.378 0.316 0 0.317 0 0.319 0

FB/co-author 0.513 0.456 0.026 0.328 0 0.329 0

FB/leisure 0.450 0.334 0 0.322 0 0.317 0

FB/work 0.364 0.314 1.11 × 10−15 0.323 9.49 × 10−9 0.318 2.58 × 10−11

co-author/

leisure

0.509 0.343 0 0.423 8.18 × 10−4 0.337 0

co-author/work 0.401 0.312 0 0.356 5.57 × 10−4 0.311 0

leisure/work 0.365 0.314 3.26 × 10−14 0.322 8.37 × 10−9 0.317 1.33 × 10−13

Brain structure/

function

0.312 0.275 1.44 × 10−15 0.272 0 0.274 1.33 × 10−15

C. elegans electric/

chem-mono

0.197 0.175 0 0.177 0 0.175 0

electric/

chem-poly

0.194 0.174 0 0.176 0 0.175 0

chem-mono/

chem-poly

0.233 0.175 0 0.175 0 0.176 0

Drosophila suppress/

additive

0.137 0.115 0 0.117 0 0.112 0

Air/Train Air/Train 0.338 0.301 3.77 × 10−15 0.303 1.38 × 10−10 0.305 1.77 × 10−11

LondonTransport tube/

overground

0.230 0.238 0.636 0.201 5.85 × 10−7 0.228 0.463

tube/DLR 0.239 0.293 0.993 0.216 0.002 0.277 0.924

overground/DLR 0.338 0.372 0.950 0.344 0.552 0.453 0.893
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Table 2. Basic statistics of multiplex networks under study. A node is active in each layer if it has at least one link in that layer.
Node multiplexity denotes the ratio of nodes which are active in more than one layer.

multiplex name
no. of
layers

no. of
nodes

node
multiplexity layer name

no. of
active nodes no. of links

Physicians 3 246 0.93 advice 215 449

discuss 231 498

friend 228 423

CS-Aarhus 5 61 0.96 lunch 60 193

FB 32 124

co-author 25 21

leisure 47 88

work 60 194

Brain 2 90 0.85 structure 85 230

function 80 219

C. elegans 3 280 0.98 electric 253 515

chem-mono 260 888

chem-poly 278 1703

Drosophila 2 839 0.89 suppress 838 1858

additive 755 1424

Air/Train 2 69 1 air 69 180

train 69 322

LondonTransport 3 368 0.13 tube 271 312

overground 83 83

DLR 45 46

royalsocietypublishing.org/journal/rsos
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The results in table 1 indicate that all layer pairs of multiplex networks under study are similar w.r.t.
structural features with the exception of LondonTransport network. This means that these networks
show properties that are unlikely to be seen from their randomized counterparts. The node
multiplexity [9] measure sheds light on the exceptional case of LondonTransport network. Node
multiplexity indicates the percentage of nodes in a multiplex network which are active (have an edge)
in more than one layer. Table 2 shows the value of node multiplexity for multiplex networks under
study. Clearly, the value of node multiplexity for LondonTransport is much lower than other
networks. The zero node multiplexity means no node is shared among networks on different layers of
a multiplex network and the structural features of different layers will be in disjoint subspaces. This
condition leads to even less similarity w.r.t. structural features when compared with randomized
networks in which the eigenvectors are distributed isotropically at random and span the whole space.
So, the special case of LondonTransport network is justifiable and a remedy for this situation is to
exclude many nodes which are only active in Tube layer.

Also for multiplex networks with more than two layers a relative comparison is possible. According
to table 1, in C. elegans network two layers with chemical nature (chem-mono and chem-poly) are more
similar to each other w.r.t. structural features rather than the other layer which is of electrical nature. In
Physicians network, it can be inferred that the organization of discuss and friend layers are more similar
to each other compared with advice layer. It has been discussed that Facebook (FB) layer is the less
coverable layer in CS-Aarhus network, i.e. combining all links in the other layers only covers 0.64 of
links in Facebook layer and thus this layer brings new information that is not provided in other layers
[44]. Here, it can be added that the organization of Facebook layer is more similar to co-author layer
and less similar to work and lunch layers. Maybe, the root cause of this observation is that work and
lunch activities are bound to specific geographical locations while this is not the case for co-
authorship relations in which people may cooperate with each other remotely. This gives a better
understanding of the nature of Facebook relationships.
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3.3. Layer reconstruction method

Consider two layers α and β of a multiplex network with similar structural features and their adjacency
matrices A[α] and A[β], respectively. The similarity of structural features of these two layers indicates
that they share some similar eigenvectors. So, the eigenvectors of A[β] can contribute in reconstruction
of A[α] as

~A
[a,b] ¼

XN
k¼1

mkx
[b]
k x[b]

T

k , (3:8)

where ~A
[a,b]

is the reconstruction of layer α by structural features of layer β, and μk determines the extent
of contribution of each structural feature. This reconstruction should be as close as possible to A[α], so the
aforementioned contribution comes from solving the following optimization problem:

min
mk

kA[a] � ~A
[a,b]k2F, (3:9)

where k:k2F denotes Frobenius norm. Omitting the layer superscript for the sake of notational simplicity,
the objective function Z:RN ! R can be expanded as

Z(m1, . . . , mN) ¼ kA� ~Ak2F ¼ kAk2F þ k � ~Ak2F þ 2 , A, � ~A .F , (3:10)

where 〈.,.〉F is Frobenius inner product. Since kAk2F is constant w.r.t. μk, the objective function in equation
(3.10) is reducible to

Z(m1, . . . , mN) ¼ k~Ak2F � 2 , A, ~A .F : (3:11)

The adjacency matrices are real-valued and symmetric; thus, equation (3.11) can be written as

Z(m1, . . . , mN) ¼ tr(~A
T ~A)� 2tr(AT ~A), (3:12)

where tr(.) is the trace of matrix. Substituting ~A with equation (3.8), equation (3.12) can be expanded as

Z(m1, . . . , mN) ¼ tr
n
(m1x1x

T
1 þ � � � þ mNxNx

T
N)

T(m1x1x
T
1 þ � � � þ mNxNx

T
N)
o

� 2tr(AT(m1x1x
T
1 þ � � � þ mNxNx

T
N ))

¼ tr
XN
k¼1

m2
kxkx

T
k xkx

T
k þ

XN
k¼1

XN
l¼1,l=k

mkmkxkx
T
k xlx

T
l

 !

� 2tr(AT(m1x1x
T
1 þ � � � þ mNxNx

T
N)):

(3:13)

Knowing eigenvectors are normal and orthogonal, xTk xK ¼ 1 and xTk xl ¼ 0, k = l. Subsequently, equation
(3.13) can be simplified as

Z(m1, . . . , mN) ¼ tr
XN
k¼1

[m2
kxkx

T
k � 2mkA

TxkxTk ]

 !

¼
XN
k¼1

tr(m2
kxkx

T
k � 2mkA

TxkxTk )

¼ Z(m),

(3:14)

where μ = (μ1,…, μN). To solve the optimization problem, the first derivatives of objective function should
be set to zero, ∂Z(μ)/∂μ = 0. So for μk, the equation will be

@Z(m)
@mk

¼
XN
k¼1

@

@mk
tr(m2

kxkx
T
k � 2mkA

TxkxTk )

¼ @

@mk
tr(m2

kxkx
T
k � 2mkA

TxkxTk )

¼ 2mktr(xkx
T
k )� 2tr(ATxkxTk ) ¼ 0,

(3:15)
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and the final solution is

mk ¼
tr(ATxkxTk )
tr(xkxTk )

¼ tr(xkxTk A)
xTk xk

¼ tr(xkxTk A): (3:16)

It is worth noting that A is the adjacency matrix of layer α(A[α]), while xk is the eigenvector of adjacency
matrix of layer β(A[β]). To verify that the final solution is a minimum, the Hessian matrix should be
positive definitive. Calculating the second derivative

@2Z(m)
@m2 ¼ @2Z(m)

@mk@ml

� �
kl
, (3:17)

then the elements of Hessian matrix in equation (3.17) can be written as

@2Z(m)
@mk@ml

¼ @

@ml

@Z(m)
@mk

� �
¼ @

@ml
(2mktr(xlx

T
k )� 2tr(ATxkxTk ))

¼ 0, k = l
2tr(xkxTk ), k ¼ l

�
¼ 0, k = l

2, k ¼ l:

� (3:18)

So the Hessian matrix equals 2l and the solution is global minimum.
i.7:191928
3.3.1. Link prediction in multiplex networks

Consider a multiplex network G(V, E[1], . . . , E[M] :E[b] # V � V, 8b [ {1, . . . , M}) in which layer α∈ {1,…,
M} (referred to as the target layer) has somemissing links.All the other layers are referred to as auxiliary layers.
The linkpredictionproblem inmultiplexnetworks canbedefinedas estimationof theexistence likelihoodof all
non-observed links in the target layer based on the known multiplex network topology which comprises the
observed links of target layer and the topologyof auxiliary layers. Denote byU, the universal set containing all
|V|(|V|− 1)/2 possible links in the target layer, where |V| denotes the number of elements in set V. It is
assumed that the missing links in target layer exist in the set U−E[α] and the task of link prediction is to
locate them.

Because the missing links are not known in real-world applications, the accuracy of link prediction
algorithms should be tested by randomly dividing the observed links in target layer into two sets,
(i) a training set E[a]

T which is exposed to link prediction algorithm and (ii) a probe set E[a]
p used for

testing and from which no information is allowed for use in prediction. Clearly, the training set and
probe set are disjoint and the union of them forms the set E[α]. In principle, the link prediction
algorithm in a multiplex network provides an ordered list of non-observed links in target layer (i.e.
U � E[a]

T ) or equivalently gives each of them, say (i, j) [ U � E[a]
T , a score S[a]ij to quantify its existence

likelihood. In this setting, the similarity score between nodes i and j in the target layer can be defined as

S[a]ij ¼
XM
b¼1

~A
[a,b]
ij , (3:19)

where ~A
[a,b]

is the reconstruction of layer α by structural features of layer β as defined in equation (3.8)
and ~A

[a,b]
ij reflects the similarity between nodes i and j in the target layer from the perspective of layer β.
3.3.2. The special case of self-reconstruction

It is also worth exploring the special case of self-reconstruction, ~A
[a,a]

. Keeping close to the notation of
SPM [20], ~A

[a,a]
can be approximated by ~A

[a,a0]
in which the auxiliary layer α0 is a copy of target layer

but a fraction pH of its links is randomly removed to constitute a perturbation set ΔE[α]. So, the set of
remainder links in the auxiliary layer is E[a]

T � DE[a]. Denote by ΔA[α] and A[a0], the adjacency matrix
related to perturbation set and the set of remainder links, respectively. Obviously, A[a0] þ DA[a] and
A[a0] are the adjacency matrices of target layer and auxiliary layer, respectively. Then, the self-
reconstruction problem can be expanded by equation (3.8) as

~A
[a,a0] ¼

XN
k¼1

mkx
[a0]
k x[a

0]T
k , (3:20)
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where x[a

0]
k is an eigenvector of A[a0]. Then, μk can be calculated by equation (3.16) as

mk ¼ tr(x[a
0]

k x[a
0]T

k A[a])

¼ tr(x[a
0]

k x[a
0]T

k (A[a0] þ DA[a])),
(3:21)

and substituting the diagonalized A[a0] as

A[a0] ¼
XN
k¼1

l[a
0]

k x[a
0]

k x[a
0]T

k , (3:22)

in equation (3.21) and considering the orthogonality and normality of eigenvectors leads to

mk ¼ tr((l[a
0]

k x[a
0]T

k x[a
0]

k )(x[a
0]

k x[a
0]T

k )þ x[a
0]

k x[a
0]T

k DA[a])

¼ lk þ tr(x[a
0]T

k DA[a]x[a
0]

k ),
(3:23)

which is the corrected eigenvalues as mentioned in SPM (refer to §5.5 for more details.). The statistical
fluctuations due to randomness of perturbation set can be cancelled by averaging on several
implementations of α0 layer which leads to , ~A

[a,a0]
ij . that reproduces the results of SPM. This means

that similarity measure introduced in equation (3.19) can be slightly modified as

S[a]ij ¼ h~A[a,a0]
ij i þ

XM
b¼1,b=a

~A
[a,b]
ij , (3:24)

to incorporate SPM as the special case of self-reconstruction. This similarity measure can be directly
applied to the problem of link prediction in multiplex networks and in the rest of paper is referred to
as LRM. Using LRM for a target layer in a multiplex network means that all other layers are
considered as auxiliary layers unless specified.

Also, two more modifications are applicable to LRM method. Using the perturbation idea of SPM, it
is not necessary to show the whole target layer to LRM method at once. Instead, in each iteration, we
randomly select 90% of train links in the target layer for calculation of LRM. Then, we report the
average of results for 10 iterations. We refer to this method as perturbed LRM. In other words,
perturbed LRM employs the eigenvectors of layer β for reconstruction of layer α0. Then, we have

S[a]ij ¼ h~A[a,a0]
ij i þ

XM
b¼1,b=a

h~A[a0 ,b]
ij i, (3:25)

as the formula for perturbed LRM.
Also, using the ideas of [35], it is possible to aggregate the information provided by different layers

more efficiently. They propose two measures of layer relevance, namely, global overlap rate (GOR) and
Pearson correlation coefficient (PCC). Here, we use GOR measure which is twice the ratio of the number
of shared links to the total number of links in the two layers. Applying this measure in equation (3.25),
the final scoring will be

S[a]ij ¼ h~A[a,a0]
ij i þ

XM
b¼1,b=a

mGOR
a,b h~A[a0 ,b]

ij i, (3:26)

in which mGOR
a,b is the relevance of respective layers based on GOR measure. We refer to this method as

perturbed LRM using GOR.
3.4. Performance evaluation
To characterize the behaviour of LRM, a comprehensive evaluation is done on Air/Train multiplex
network. Figure 2 consolidates the results of this evaluation. Both Air and Train layers are considered
as target layer in figure 2a,b, respectively. In addition, top rows of figures 2a,b show the results when
just the leading eigenvector (corresponding to algebraically largest eigenvalue) is used and the bottom
rows are considering all eigenvectors. The results of link prediction are evaluated by AUC, precision
and average precision (§5.4) in left, middle and right columns, respectively.

In each subfigure, the fraction of randomly removed links from target layer varies from 0.1 to 0.9 with
0.1 increase in each step. Each data point shows the average result and the error bar determines the range
of one standard deviation from the average. The results of the left column indicate that the removal of
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Figure 2. Evaluation of LRM, randomized LRM and SPM on Air/Train multiplex network. (a) Air layer is the target layer of link
prediction and Train layer is auxiliary. (b) Train layer is the target layer of link prediction and air layer is auxiliary. Horizontal
axes show the fraction of removed links from the target layer. Top rows in each subfigure show the results using only the
leading eigenvector while the bottom rows show it using all eigenvectors. Left, middle and right columns show evaluation
based on AUC (AUROC), precision and average precision measures, respectively.
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more links drops the accuracy of SPM link predictor in term of AUC, which means that missing links are
less likely to be scored higher than non-existent links. This result is expected as removal of more links
distorts the eigenvectors as the structural features of the network. Also, the comparison of SPM results
using all eigenvectors (k = all) or just the leading eigenvector (k = 1) does not translate to substantial
change in the results, which means that the leading eigenvector contains the most important
information regarding the linkage in air and train networks. Considering the fact that the leading
eigenvector is related to PageRank of nodes [26] gives more insight into Air/Train network. The scores
provided by PageRank in Air/Train network reflects the importance of cities from the perspective of air
and train networks, respectively, while the definition of importance is based on ‘the important cities are
connected to other important cities’. So using SPM with the leading eigenvector only multiplies the
importance of endpoint cities to assign the scores to non-observed links. In other words, it can be
inferred that the missing links are likely to be found between important cities and knowing the
importance of cities carries most of the information related to link prediction task in this dataset.



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:191928
12
It is also worth noting that the results of SPM tend to resist under low fraction of missing links,

specially when the leading eigenvector is used. This is due to the fact that the importance of cities is
not expected to change under removal of low fraction of random links. Although, this does not hold
under high fraction of removed links and this is where LRM comes to help. When the observed links
of Air network do not suffice to infer an accurate importance of cities, LRM uses the importance
inferred by Train network to mitigate the lack of information for link prediction. Actually, this works
because these two layers are similar w.r.t. structural features, i.e. their view of importance of cities
is very similar to each other. This fact can be verified again as the same holds when Train network is
the target layer.

The importance of similarity of layers w.r.t. structural features can be understood more by LRM-rand,
which applies LRM but uses the randomized auxiliary layer. The randomized auxiliary network is an
Erdos–Renyi network with the same number of nodes and link density of original auxiliary layer. The
results of the left column confirms that randomization of auxiliary layer drops the performance of LRM
while destroying the similarity of two layers w.r.t. structural features. Also, it is clear that the negative
effect of random auxiliary layer increases as all eigenvectors are being used. Therefore, here using the
leading eigenvector leads to stable and superior results of LRM, while makes it more robust against
random auxiliary network.

The middle column of figure 2 shows the results based on the precision measure. While AUC
evaluates the whole list of scored non-observed links, the precision metric evaluates the top entries of
the list. The number of top entries of the list which are used for evaluation is equal to the number of
elements in the probe set. Therefore, as the fraction of removed links grows, the number of top entries
of the list that are used for evaluation grows as well. Usually, in low fraction of missing links (say the
range of [0.1–0.3]) AUC does not change significantly. This leads to higher fraction of missing links in
the top entries of the list and increase of the precision metric until the AUC falls and that makes the
precision fall as well. Evaluation of LRM by the precision metric confirms that using the leading
eigenvector is a better option for Air/Train dataset as it gives higher performance and is more robust
against random auxiliary layer. Also, it can be inferred that it is more difficult to increase the
precision under low fraction of missing links. In addition, it is clear that LRM overall is able to
increase the precision of link prediction in this dataset and specially avoids the fall of the performance
under high fraction of removed links.

The right column of figure 2 shows the results based on average precision metric. The average
precision metric considers the entries of the list from the topmost to the last missing link, determines
the precision at the cut-off of each missing link and outputs the average of the precision values. So,
the higher values of average precision indicate the higher concentration of missing links towards the
top of the list of non-observed links. The results clearly support that LRM is able to concentrate the
missing links towards the top of the list, and it does it better as the fraction of removed links grows.
Once again, it can be confirmed that using the leading eigenvector is an appropriate choice and
makes the results robust against random auxiliary layer.

The effectiveness of LRM is also verifiable using a synthetic network in which a backup of target layer
comes to help. Figure 3 shows the results of SPM and LRM link prediction performance on a synthetic
multiplex network which is made of a duplication of air layer in Air/Train network. This network is
referred to as air/air-backup network. The air layer is the target layer. While a fraction of links is
removed from target layer for link prediction purpose, the air-backup layer remains untapped and
contains all the information about missing links. LRM is expected to benefit most out of the
information of auxiliary layer. When all eigenvectors are used, the results shown in figure 3a support
that LRM works perfectly (AUC = 1) as long as at least N edges are known. Once again, the result for
using the leading eigenvector figure 3b confirms that much of information about the linkage in Air
network is contained in the leading eigenvector and LRM is able to transfer it to the target layer in an
effective manner. A slight increase of performance at the high fraction of removed links is a special
case for this synthetic network. Large fraction of removed links leads to smaller magnitude of scores
provided by LRM(self ). As the information transferred from auxiliary layer is rich, the addition of
LRM(self ) degrades the performance. This degradation of performance is less for smaller magnitude
of LRM(self ) scores, so it seems that the overall performance is increasing.

The issue of choosing the right number of leading eigenvectors can be clarified more by using results
depicted in figure 4. Here, the dataset under study is brain network and the target layer of link prediction
is structure layer. The results of SPM and LRM are shown versus number of leading eigenvectors used.
Specifically, comparing the results reveals that just using the leading eigenvector is not enough, in
contrast to Air/Train network, and the performance degrades slightly when more than 15 leading
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eigenvectors are used. So, choosing the top 15 leading eigenvectors for both SPM and LRM seems to be a
reasonable choice, because keeping k as small as possible is favourable due to increase of robustness
against noise-like patterns in data and less computational complexity.

Sample results of evaluation of SPM and LRM on CS-Aarhus, C. elegans and Physicians multiplex
networks are shown in figure 5. In CS-Aarhus as depicted in figure 5a, the lunch layer is considered
as the target layer for link prediction. All other layers including FB, co-author, leisure and work are
considered as auxiliary layers one by one. Results indicate that using each of these layers has positive
impact on the performance of LRM but the work and leisure layers have the highest impact. This is
compatible with the intuition that co-workers and those who go together for leisure are more likely to
have lunch with each other. Also, this raises the idea of using both of these two layers in LRM, which
gives a superior performance, as can be seen in figure 5a.
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Figure 5. Evaluations of SPM and LRM on (a) CS-Aarhus, (b) C. elegans and (c) Physicians multiplex networks. The performance is
measured using AUC for different fraction of removed links from target layer. In CS-Aarhus network, the lunch layer is considered as
target layer and methods use 10 leading eigenvectors. All other layers are used as auxiliary layers. The work and leisure layers are
boosting the performance of LRM most and using them at the same time leads to an outstanding result. In C. elegans network, the
target layer is chem-poly. Using chem-mono layer of chemical nature enhances the performance more noticeably compared with
electric layer. In Physicians network, the target layer is advice. Both discuss and friend layers are good at improving the performance
of LRM but discuss layer shows a superior result.
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The results of LRM for C. elegans network are also notable, as shown in figure 5b. Here, the target
layer is chem-poly which is of chemical nature. Although using the electric layer as auxiliary layer
improves the performance of LRM, using chem-mono layer, which is of the same nature as the target
layer, has much more positive impact on the performance of link prediction. This result supports the
core idea that layers which have similar organizations are more helpful for link prediction process.

The performance of SPM and LRM on Physicians is shown in figure 5cwhen advice layer is the target
layer for link prediction. The results suggest that both discuss and friend layers are very helpful for
predicting missing links in advice layer. Furthermore, the result of LRM using discuss layer indicates
that when almost nothing is left from advice layer, information from discuss layer gives the ability to
discriminate between missing links and non-existent links in advice layer.

The performance of SPM on Tube layer of LondonTransport is shown in figure 6a. The poor
performance of SPM is an indicator of low link predictability of this network [20]. Also, the results of
LRM show that other layers do not help to overcome this problem. In addition, comparing the results
of LRM with LRM-rand, in which the auxiliary layer is randomized, supports that overground and
DLR layers seem like random layers to Tube layer. This is also consistent with the results seen in table
1, which do not consider the similarity of structural features of these layers as statistically significant.
Therefore, it can be concluded that LondonTransport network is a hard case for link prediction task,
both in simplex and multiplex settings.

The performance of SPM on suppress layer of Drosophila network is shown in figure 6b, and the result
is quite similar to other datasets excluding LondonTransport. What makes this dataset distinct from
others is that LRM does not improve the performance. The result for k = 30 is shown in figure 6b but
several tries with upper and lower values did not lead to remarkable change. Looking into table 1
reveals that, although the value of similarity of structural features between two layers of Drosophila
network is statistically significant, the value is lowest among all datasets. Therefore, it can be
concluded that statistical significance of similarity of structural features is a necessary condition for
LRM to work, but not the sufficient condition, and a practically significant similarity is needed
for LRM to work in practice.
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Figure 6. Evaluation of SPM and LRM on (a) LondonTransport and (b) Drosophila multiplex networks. These two networks are
examples of hard cases of link prediction task. The target layer in LondonTransport network is the Tube layer. Low
performance of SPM indicates the hardship of link prediction in this layer. As the LRM performance is low for both overground
and DLR as auxiliary layers, it can be inferred that the link prediction is hard in multiplex setting as well. In Drosophila
network, the suppress layer looks predictable but the results of LRM indicates that it is hard to extract information from
additive layer to help link prediction in suppress layer.
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3.5. Comparison with the state-of-the-art methods
In this section, we compare the results of our methods against the state-of-the-art methods. The fraction
of removed links from the target layer is set to 0.1 for all experiments. The application of SPM on target
layer, SPM(T), and simple addition of SPM scores for target and auxiliary layers, SPM(T+A), are
considered as a baseline methods. In [35], authors apply well-known single-layer similarity measures
like common neighbours (CN), resource allocation (RA) and local path index (LPI) to each layer of a
multiplex network as baseline measure and then combine the produced scores based on a tunable
parameter ϕ and a layer relevance measure. Two layer relevance measures namely, global overlap
rate (GOR) and Pearson correlation coefficient (PCC) are used. The authors declare that for a wide
range of datasets ϕ = 0.5 is an appropriate choice. We applied their method with different baseline
measures but we report the result of the best performing baseline measure for succinctness. The
results for both GOR and PCC considering ϕ = 0.5 are reported in table 3. In [34], authors have
proposed three single-layer baseline measures, namely, WCN, HP and Rank-CN-HP. WCN uses
embedded network in geometric space and calculates hyperbolic distance of nodes to weigh the
importance of common neighbours. HP considers the hyperbolic distance of nodes as a dissimilarity
measure. Rank-CN-HP uses the rank of nodes pairs instead of their score based on CN and HP.
Similar to [35], they combine the score or ranks of each layer using GOR and ϕ = 0.5. Our proposed
methods are LRM (equation (3.19)), perturbed LRM (equation (3.25)) and perturbed LRM with GOR
(equation (3.26)).

The link prediction methods in single-layer networks have been frequently compared with each other
based on their performance on real networks while much less is done for multiplex networks. The results
provided in table 3 are a step for alleviating this shortcoming. In almost all cases, the only single-layer
method, SPM(T ), is not able to compete with the multiplex methods. This confirms the known fact
that in real-world multiplex networks, layers are informative for link prediction tasks of each other.
Although among multiplex link prediction methods no-one is winner for all cases, our proposed
LRM PG outperforms others both in total number of best results (12/29 while the second best method
YaoPL achieves 5/29) and in pairwise comparison (LRM_PG: 18/29 cases versus the second
best method, YaoGL: 11/29 cases). This can be attributed to the special way of information transfer
from the auxiliary to the target layer in which both layers are involved and is unique to our proposed
methods.
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4. Discussion

Studies of multiplex networks are a major step towards understanding of real-world complexity. These
studies should clarify how different layers interact to shape the function of each layer and the function of
the system as a whole. This needs an in-depth understanding of multiplex network structure. The study
of link prediction is a key to unfold the structural features of multiplex networks.

Our study provides evidence about similarity of structural features of layers in real social, biological
and technological multiplex networks. Also, it has shown that similarity w.r.t. structural features is a
major source of information redundancy, and LRM is able to use it to enhance the performance of
link prediction in these networks. In addition, results of experiments support that using a sufficient
number of leading eigenvectors yields the desired performance and makes the method robust against
noise-like structural features.

It is notable that LRM considers the issue of correlated multiplexity. Rotation of one layer neither
changes the eigenvalues nor the corresponding eigenvectors. The value assigned to each node by each
eigenvector does not change. On the other hand, representing these values as a vector needs an order of
nodes and this is where rotation plays its role. Therefore, rotation of a layer permutes the elements of
the eigenvectors and destroys the similarity of layers w.r.t. structural features. Obviously, this leads to
loss of performance in LRM. Also, it can be inferred that if, in a real multiplex network, the multiplexity
of layers is unknown at first, then an initial phase of network alignment [45] is helpful for finding the
right one-to-one mapping of nodes. Then, LRM works if layers show enough similarity w.r.t. structural
features.

Finally, it is possible to sort the links (including observed and non-observed links) in target layer only
according to the part of LRM score which comes from the auxiliary layer. In this way, the links in target
layer which are more compatible with the structural features of auxiliary layer will be on the top of the
list. For example, in CS-Aarhus network the links in lunch layer can be sorted both according to
LRM(work) and LRM(leisure) and the top entries of the lists will be the links which are more
compatible with the structural features of work and leisure layers, respectively.

The link prediction problem has attracted increasing attention from both physical and computer
science communities because of its broad applications [21]. In biological networks such as protein–
protein interactions, the discovery of links is costly and the cost increases when multiple types of links
are involved. This study showed that if some types of interactions are better known in these
networks, the discovery of few links of less-known interactions facilitate the discovery of the rest of
missing links. In social networks, there are numerous contexts of relationship among human beings
that many of them are less investigated. The human network is not well-understood unless these
contexts of relations are taken into consideration. For example, human beings refer to each other for
different affairs like education, healthcare and business. Some of these relations are more disclosed
and some others are less disclosed, and the only way to acquire more information about the latter is
by leveraging the information contained in former. This is where methods like LRM come to help.
The value of similarity w.r.t. structural features indicates which known relations should come to help.
In technological networks like air transportation systems, a very tough competition exists among
different airlines. Here, it is always an advantage for an airline to know which new airways the rival
company will run in future. It can be said that the answer comes not only from the network of rival
company but also from the networks of airlines similar to that rival.
5. Methods
5.1. Data introduction
The real-world multiplex datasets which are under study in this work can be categorized as social
(Physicians, CS-Aarhus), biological (Brain, C. elegans, Drosophila) and technological (Air/Train,
LondonTransport). An overview of the datasets and related statistics can be found in table 2. A brief
explanation about datasets is given below

Physicians. This dataset is about three types of relations among US physicians in four towns [46].
Layers correspond to advice, discussion (abbreviated as discuss) and friendship (abbreviated as
friend) relations among the physicians, respectively.

CS-Aarhus. This multiplex social network consists of five types of online and offline relationships
between the employees of Computer Science department at Aarhus University, Aarhus, Denmark [44].
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Layers correspond to relationship via lunch, Facebook (abbreviated as FB), co-authorship (abbreviated as

co-author), leisure and work.
Brain. Two modes of connectivity between regions of human brain is covered in this dataset [47]. One

mode consists of structural (abbreviated as structure) network among brain regions and is obtained by
setting a threshold on connection probability between brain region pairs measured using diffusion
magnetic resonance imaging (dMRI) [28]. The other mode is the functional (abbreviated as function)
network of brain regions which is derived by setting a threshold on correlation of activities of brain
region pairs and is measured using blood oxygen level-dependent functional magnetic resonance
imaging (BOLD fMRI) [28].

Caenorhabditis elegans. Three types of synaptic connections among neurons of the nematode
Caenorhabditis elegans are characterized in this dataset [48]. These connections are electrical
(abbreviated as electric), chemical monadic (abbreviated as chem-mono) and chemical polyadic
(abbreviated as chem-poly).

Drosophila. The Drosophila melanogaster is a species of fly and is also known generally as common fruit
fly [49]. The dataset represents two types of genetic interaction among proteins of this insect. One layer
corresponds to suppressive genetic interaction (abbreviated as suppress), while the other corresponds to
additive genetic interaction (abbreviated as additive).

Air/Train. This dataset contains air and train transportation network of India [28,50]. Each node of the
network represents a supernode that contains an airport and train stations within 50 km from that airport.
Obviously, supernodes are connected through flights to and from the air network. In the train network, two
supernodes are connected if they share a train station or if they are directly connected to a train station.

LondonTransport: These data were collected in 2013 from the official website of Transport for London
[51]. Nodes are train stations in London including underground, overground and DLR stations. Layers
correspond to connectivity of stations via underground line (known as Tube), overground line or
DLR, respectively.

5.2. Data statistics
Table 2 shows the major statistics of multiplex networks under study. The number of nodes in each
multiplex network equals the number of nodes which are active in at least one layer while the node
multiplexity is the fraction of nodes which are active in more than one layer. The number of active
nodes in each layer equals the number of nodes which have at least one link in that specific layer and
may differ from the number of nodes in multiplex network.

5.3. Link prediction problem
The link prediction problem arises in the networks in which some of the links are missing or may be
added in future. The link prediction algorithms are supposed to estimate the existence likelihood of
all non-observed links based on the observed links of the network. Consider a simple network G(V, E)
in which V and E are sets of nodes and links. Denote by U the universal set of all possible
(|V| × |V− 1|)/2 links in the network, where |V| is the number of elements in set V. So, the set
U− E will be the set of non-observed links of the network that contains the missing links which link
prediction algorithms are supposed to locate them.

As the missing links are not known beforehand in real applications, to investigate the suitability of
link prediction algorithms, some of the links of network should be removed randomly to form the
probe set Ep and the remainder links are considered as training set ET. Obviously, ET < Ep ¼ E and
ET > Ep ¼ ;. The link prediction algorithms are allowed to use ET to locate Ep among all possible
choices in U− ET and if they do well, hopefully they can do the same for missing links in U− E for
which there is no ground truth. For this purpose, the link prediction algorithms assign an existence
likelihood score Sij to each non-observed link (i, j )∈U− ET.

5.4. Evaluation metrics
The link prediction algorithms provide an existence likelihood score for each non-observed link which
can be used for sorting them from more likely to less likely missing links. A perfect sorting put the
missing links at the top of the list and all other non-existent links underneath. To measure how far
the sorted list by a link prediction algorithm is from the perfect sorting, some evaluation metrics are
needed. Three standard evaluation metrics are area under the receiver operating characteristic curve
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(AUC or AUROC) [52], precision [53] and average precision. The first measure evaluates the whole list

and the other two evaluate the top of the list.
AUC. This measure shows the probability that a randomly chosen missing link has higher score than

a randomly chosen non-existent link. A good estimate of this measure can be achieved by sampling. A
random sample from each of missing links and non-existent links is picked at each time. Considering n
independent samples out of which n0 times, the missing link has higher score than the non-existent link
and n0 0 times they have the same score. Then, the AUC can be calculated as

AUC ¼ n0 þ 0:5� n00

n
: (5:1)

Random assignment of scores leads to the AUC value of approximately 0.5. As the sorting gets closer to
perfect sorting, the value of AUC approaches 1. In this way, the AUCmeasure evaluates the quality of the
whole list.

Precision. The sorted list of non-observed links is expected to put the missing links at the top of the
list. Considering L = |Ep| as the total number of missing links, the top L entries of the sorted list can be
examined to see whether they are missing links (denoted by Lr) or non-existent links. Precision value can
be calculated as

precision ¼ Lr
L
: (5:2)

Average precision. The precision@k is the value of precision for top k entries of the sorted list of non-
observed links. So it is possible to calculate the precision from the top entry of list to each missing link in
the list. So for each missing link, there will be a precision value and the average of these values is the
average precision.
5.5. Structural perturbation method
The SPM is based on a fundamental hypothesis that missing links are difficult to predict if their addition
causes huge structural changes and thus, a network is highly predictable if the removal or addition of a
set of randomly selected links does not significantly change the network’s structural features (i.e.
eigenvectors) [20]. So, the missing links of a network if added are supposed to just change the
eigenvalues but not the eigenvectors of the network. This adjustment to eigenvalues can be calculated
by removing a set of randomly selected links which are known as perturbation set. The fact that
independent perturbation sets lead to correlated adjustment values means that a generalization is
happening and gives SPM the capability to predict the missing links. Applying SPM for link
prediction and evaluation of results is done according to following steps:

1. Divide observed network A into training set ET and probe set Ep, obviously, A =AT +Ap.
2. Furthermore, randomly divide the set ET into remainder set ER and perturbation set ΔE and denote

their adjacency matrices as AR and ΔA, respectively.
3. Calculate the eigenvalues λk and their corresponding eigenvectors xk of AR.
4. Calculate Dlk ¼ xTk DAxk.
5. Calculate the perturbed matrix ~A ¼PN

k¼1 (lk þ Dlk)xkxTk .
6. Repeat steps 2 to 5 ten times and use the average of ten ~A, denoted by , ~A ., as the final score, where

h~Aiij is the score of link (i, j ).
7. Evaluate the scores of non-observed links (i.e. links in U− ET where U is universal set of all possible

links) by AUC or precision (as mentioned in evaluation metrics).
8. Repeat steps 1 to 8 n times (in this paper n = 30) and report the average of AUC or Precision.
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