ENVIRONMENTAL ANALYSIS

1978 C-b Annual Report, Volume 2

April 20, 1979

Work Performed Under Contract No. FC-20-78LC 10036

Occidental Oil Shale, Inc.
Grand Junction, Colorado

U. S. DEPARTMENT OF ENERGY

DISCL.AIMER

"This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

This report has been printed directly from copy supplied by the originating organization. Although the copy supplied may not in part or whole meet the standards for acceptable reproducible copy, it has been used for reproduction to expedite distribution and availability of the information being reported.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Paper Copy $\$ 58.00$

Microfiche $\$ 3.50$

BLMLibrary

VOLUME 2
D-553A, Building 50 Denver Federal Center P. O. Box 25047

Denver, CO 80225-0047
ENVIRONMENTAL ANALYSIS

April 20, 1979

Submitted by:

C-b SHALE OIL PROJECT
OCCIDENTAL OIL SHALE, INC., LESSEE
751 Horizon Court Grand Junction, Colorado 81501
to:

Mr. Peter A. Rutledge Area Oil Shale Supervisor Conservation Division U.S. Geological Survey Grand Junction, Colorado 81501

FOREWORD

The 1978 C-b ANNUAL REPORT is submitted to fulfill the requirements of the 0il Shale Lease as stated in Section 16(b) of the Lease, Section 1.(C)(4) of the Lease Environmental Stipulations, and Condition of Approval (No. 3) of the Detailed Development Plan. This report consists of the following volumes:
Volume $1-\frac{\text { Summary of Development Activities, Costs and }}{\text { Environmental Monitoring }}$
Volume 2
Appendix 2A $-\frac{\text { Environmental Analysis }}{\text { Volume 2 Supporting Data }}$
Appendix 2B
Volume 2 Time Series Plots

APPENDIX G

1978 C-b Annual Report, Volume 2
Foreword
Table of Contents i
Tables v
Figures vii
1.0 Introduction and Summary 1
1.1 Scope 1
1.2 Purpose 1
1.3 Summary 2
1.3.1 Tract Photography 2
1.3.2 Indicator Variables 2
1.3.3 Hydrology 2
1.3.4 Aquatic Ecology 3
1.3.5 Air Quality 4
1.3.6 Meteorology 4
1.3.7 Noise 4
1.3.8 Wildlife Biology 5
1.3.9 Vegetation 5
1.3.10 Ecosystem Interrelationships 6
1.3.11 Items of Prehistoric and Historic Interest 6
1.3.12 Health and Safety 6
2.0 Tract Development Schedule and Maps 7
2.1 Development Schedule 7
2.2 Maps 7
3.0 Tract Photography 9
3.1 Scope and Rationale 9
3.2 Surface Program 9
3.2.1 Objectives 9
3.2.2 Experimental Design 9
3.2.3 Archiving Methods 9
3.2.4 Results and Conclusions 9
3.3 Aerial Program 11
3.3.1 Objectives 11
3.3.2 Experimental Program 11
3.3.3 Methods 11
3.3.4 Results and Conclusions 12
4.0 Indicator Variables 13
4.1 Role in Impact Assessment 13
4.2 Identification of Class 1 Indicator Variables 13
4.2.1 Tract Photography 13
4.2.2 Hydrology 14
4.2.3 Air Quality and Meteorology 14
4.2.4 Noise 14
4.2.5 Biology 14
5.0 Hydrology 23
5.1 Introduction and Scope 23
5.2 Surface Water Studies 25
5.2.1 U.S.G.S. Gauging Stations 25
5.2.2 Springs and Seeps 38
5.3 Ground Water Studies 41
5.3.1 Alluvial Wells 41
5.3.2 Upper Aquifer (UPC1, UPC 2) and Lower Aquifer (LPC_{3}, $L^{2} C_{4}$) 46
6.0 Air Quality and Meteorology 51
6.1 Introduction and Scope 51
6.2 Ambient Air Quality 51
6.2.1 Gaseous Constituents 51
6.2.2 Particulates 74
6.2.3 Visibility 80
6.3 Meteorology 90
6.3.1 Climatological Records 90
6.3.2 Wind Fields 100
7.0 Noise 115
7.1 Introduction ard Scope 115
7.2 Environmental Noise 115
7.2.1 Traffic Noise 115
7.2.2 Tract Noise 118
7.3 Overall Conclusions 120
8.0 Biology 121
8.1 Introduction and Scope 121
8.2 Big Game - Deer 121
8.2.1 Deer Day Use 121
8.2.2 Distribution and Migration 123
8.2.3 Roadkills 125
8.2.4 Mortality 127
8.2.5 Age Class 129
8.3 Medium-Sized Mammals 131
8.3.1 Coyote Abundance 131
8.3.2 Lagomorphs 134
8.4 Small Mammals 134
8.4.1 Species Composition and Abundance 134
8.5 Avifauna 136
8.5.1 Songbird Relative Abundance and Species Composition 136
8.5.2 Upland Gamebirds - Mourning Dove Relative Abundance 140
8.5.3 Raptor Activity 141
8.6 Aquatic Ecology 142
8.6.1 Benthos 142
8.6.2 Periphyton 147
8.6.3 Water Quality 152
8.7 Terrestrial Studies 152
8.7.1 Vegetation Community Structure and Composition 152
8.7.2 Herbaceous Productivity and Utilization 155
8.7.3 Shrub Production and Utilization 169
8.7.4 General Vegetation Condition Studies 172
8.7.5 Micro-Climatic Studies 172
8.8 Threatened and Endangered Species 174
8.9 Revegetation 174
8.9.1 Demonstration Plot 174
9.0 Items of Aesthetic, Historic, or Scientific Interest 175
9.1 Aesthetic Values 175
9.2 Historic and Scientific Values 175
10.0 Industrial Health and Safety 177
10.1 Scope and Rationale 177
10.2 Accident Frequency Analysis 177
10.3 Inspection Reports and Responses 178
11.0 Subsidence Monitoring 179
12.0 Ecosystem Interrelationships 181
12.1 Introduction 181
12.2 "Candidate" Interrelationships 181
12.3 Specific Near-term Interrelationships 183
12.3.1 Effects of Climatic Variations on Herbaceous Productivity 183
12.3.2 Effects of Traffic, Snow Depth and Deer Road- Count on Deer Road-Kill 187
12.3.3 Effects of Urbanization on Hydrologic Response Time 192
12.3.4 Effects of Herbivore Density on Shrub Utilization 195
12.3.5 Hunter and Trapping Pressure on Coyote-Rabbit Interrelationships 195
12.3.6 Deer Mortality versus Shrub Production and Utilization 196
13.0 Notes 197
13.1 Conversion Factors 197
13.2 Literature Cited 197
4.2.2-1 Hydrology Class I Indicator Variables 15
4.2.2-2 Hydrology Class I Indicator Variable Time Series Index . . . 16
4.2.3-1 Air Quality and Meteorology Class I Indicator Variables . . 17
$\begin{array}{ll}\text { 4.2.3-2 Air Quality and Meteorology Class I Indicator Variable } \\ & \text { Time Series Index } 18\end{array}$
4.2.4-1 Noise Class I Indicator Variables 19
4.2.4-2 Noise Class I Indicator Variable Time Series Index 19
4.2.5-1 Biology Class I Indicator Variables 20
4.2.5-2 Biology Class I Indicator Variable Time Series Index 21
5.2.1-1 Total and Mean Annual Stream Flow 27
5.2.1-2 Annual Maximum Flow Rate 30
5.2.1-3 Regional Flood Frequency Data 32
5.2.1-4 T-Test Procedure Summary for Between-Station Comparisons of Water Quality Parameters at USGS Stations 38

6.2.1-1 Ambient Air Quality and Meteorology Data Description 54
6.2.1-2 Ambient Air Quality and Meteorology Sampling and Reporting Frequencies 55
6.2.1-3 Gas Analyzer Lower Limits 60
6.2.1-4 0xidents (03) at Station AB23 (1975-1977) 62
6.2.1-5 Comparisons of Maximum Background Levels with Ambient Standards63
6.2.1-6 Summary of Results of Side-By-Side SO_{2} Analyzer Test ($\mu \mathrm{g} / \mathrm{m}^{3}$) 1977 67
6.2.1-7 Simple Cross-Correlation Matrix 69
6.2.1-8 Regression Equation Coefficients 72
6.2.3-1

Summary of Visual Range Correlation and Regression Analyses
from Environmental Baseline Report, Volume 3 83
6.2.3-2
6.3.1-1 92Comparison of Predicted and Actual Visual Range for 197888
6.3.1-2 Climatological Data Summary
6.3.1-3 Precipitation (cm) 98
6.3.2-1 Wind Field Parameters and Stations 100
6.3.2-2 Wind Rose Comparison and Observations 102
6.3.2-3 Monthly Mean Inversion Heights Observed Concurrently at Two Sites 104
6.3.2-4 Average Hourly Stability Classes (1976-1978) 107
6.3.2-6 Meteorological Summary: Stability Class Frequencies (\%). 109-
8.2.3-1 Mule Deer Roadkill Summary (Fall 1977 - Spring 1978)110
8.2.4-1 Deer Mortality Results 130
TABLE NO. PAGE
8.2.5-1 Age Class Composition of Mule Deer Wintering Near Tract C-b 132
8.3.1-1 Results of Coyote Scent Station Survey, 1978 133
8.3.2-1 Relative Abundance of Cottontail Rabbits, 1977-1978 135
8.4.1-1 Relative Abundance of Small Mammals, 1978 137
8.5.1-1 Avifauna Shannon-Wiener Diversity Indices 139
8.5.2-1 Mourning Dove Estimates at Tract C-b for Spring Sample Period 1978 141
8.5.3-1 Raptor Nesting Record 143
8.6.1-1 Numbers of Macroinvertebrates Collected from Tract C-b 1974-1976 145
8.7.2-1 Production Values from Range Cages and Open Plots for Fertilized Areas on the Ridge Above Cottonwood Gulch and Scandard Ridge, 1978 161
8.7.2-2 One-Way Analysis of Variance Results for Comparisons of Production Among Vegetation Types, 1977 and 1978 163
8.7.2-3 One-Way Analysis Results for Comparisons Evaluating Development Effects at Plots 1, 2, 5, and 6 and Potential Pollution Effects North of Piceance Creek 164
8.7.2-4 One-Way Analysis of Variance Results for Comparisons of Production Among Years 1975-1978 166-
8.7.2-5 One-Way Analysis of Variance Results for Comparison of Production in Open and Fenced Plots, 1977 and 1978 168
12.1-1 Major Ecosystem Interrelationships 182
12.3.1-1 "Ranking" of Independent Variables with Productivity 185
12.3.2-1 Summary of Correlation Analysis 189
12.3.2-2 Summary of Regression Analyses 190
12.3.2-3 Summary of Deer Road-Count and Road-Kill by Road Segment 190
12.3.2-4 Summary of Bus Statistics 191
12.3.3-1 Rainfãll and Precipitation Data 193
13.1-1 Table of Conversion Factors 198
13.1-2 Additional Conversion Factors 199
13.2-1 References and Literature Cited 200- 204
3.2.2-1 Surface Photography Network 10
5.1-1 Generalized Aquifer - Aquitard System on C-b Tract 24
5.2.1-1 U.S.G.S. Stream Gauging Station Monitoring Network 26
5.2.1-2 Annual Floods on Piceance Creek below Ryan Gulch 29
5.2.1-3 Variation of Mean Annual Flood with Drainage Area and Mean Altitude in Hydrologic Area 13 31
5.2.1-4 Composite Frequency Curves for Regions A-F 31
5.2.1-5 Regional Frequency Curves 33
5.2.1-6 Low Flow Frequency Curves 35
5.2.2-1 Springs and Seeps Around C-b Tract 39
5.3.1-1 Alluvial Aquifer Monitoring Network with Proposed New Alluvial Wells A-2A, A-3A, A-5A, A-6A, A-7A 44
5.3.2-1 Deep Well Monitoring Network C-b Tract 48
5.3.2-2 Potentiometric Surface Map - Upper Aquifer, November 1976 49
6.2.1-1 Ambient Air Quality Development Monitoring Network 53
6.2.1-2 Measurement Accuracy of Air Quality Parameters 59
6.2.1-3 One-Hour Ozone Concentrations as Functions of Wind Speed and Direction - Station AB23 (1976-1978) 65
6.2.1-4 August 1977 Time Series Observed Data 70
6.2.1-5 Ozone Study Levels and Associated Statistics 71
6.2.2-1 Daily Total Particulate Concentrations as Functions ofWind Speed and Direction75
6.2.2-2 Frequency Distribution of Particulate Measurements by Year 77
6.2.2-3 Composite Particulate Frequency Distribution 78
6.2.3-1 Piceance Creek Basin Visibility Study 81
6.2.3-2 Variation in Daily Mean Visual Range for Each View Piceance Creek Basin, Colorado 89
6.2.3-3 Monthly Composite Distribution of Visual Range Piceance Creek Basin, Colorado $\varepsilon 5$
6.2.3-4 Annual Composite Distribution of Visual Range Piceance Creek Basin, Colorado S6
6.2.3-5 Annual Distribution of Visual Range in Each View Piceance Creek Basin, Colorado E-
6.3.1-1 Climatological Network \because
6.3.1-2 Temperature at Trailer AB23 (10M Level) vs. Time Forecast Model AR(2) \because
6.3.1-3 Monthly Total Precipitation and Temperature Variations B
6.3.1-4 Precipitation for Stations AB20 and AB23 ミ
6.3.2-1 Temperature-Altitude Profile of an Elevated Inversion \because6.3.2-2 Isopleths of Tracer Gas Concentrations on September 14, 1978
7.1.1-1 Noise Environmental Monitoring Network \cdots
7.2.1-1 Tract C-b Peak Traffic Noise Readings (1978)
FIGURE NO. PAGE
7.2.2-1 Tract C-b Noise Standards Compliance 119
8.2.1-1 Trends in Pellet Group Densities 124
8.2.2-1 Summary of Deer Road Counts for 1977-1978 126
8.6.1-1 Aquatic Sampling Stations 146
8.6.2-1 Periphyton Ash-Free Dry Weight Productivity ($\mathrm{mg} / \mathrm{cm}^{2}$)
from Piceance Creek 153
8.7.2-1 Fertilization Map 160
8.7.3-1 Trends in Production and Utilization of Bitterbrush 171
9.2-1 Planned Powerline Route from Meeker to the C-b Tract 176
12.3.1-1 Herbaceous Productivity vs. Growing Season and Precipitation (1975-1978) 186
12.3.3-1 Hyetograph and Hydrograph 194
Jacket Map Development Monitoring Activities

1.0 INTRODUCTION AND SUMMARY

1.1 Scope

The Environmental Baseline Period for Oil Shale Tract C-b covered the period from November 1, 1974, to October 31, 1976. Results have been reported in nine Quarterly Data Reports, eight Quarterly Summary Reports, Annual Summary and Trends Report (1976), and a 5-volume Environmental Baseline Program, Final Report (1977), all submitted to the Area 0 il Shale Supervisor.

From November 1, 1976 through August 31, 1977, the C-b Tract was under a period of suspension of the Federal 0il Shale Lease. This period was known as the Interim Monitoring Phase. Environmental data for this time period were submitted to the Area Oil Shale Office (AOSO) on October 14, 1977 (Interim Monitoring Report \#1). The Interim Monitoring Period was later extended by the AOSO to cover the period from September 1, 1977 through March 31, 1978. Data for this time period were submitted to the AOSO on May 15, 1978 (Interim Monitoring Report \#2). The Development Monitoring Program was initiated in April 1978. Final approval of the Development Monitoring Plan by the AOSO is expected in the near future. Data for the time period from April 1978 through September 1978 were submitted on January 15, 1979 to the AOSO. Subsequent semi-annual data reports are scheduled for delivery every January 15 and July 15.

This is the first environmental analysis of data for $0 i l$ Shale Tract C-b since the final report of the Environmental Baseline Program was published in 1977.

This report, 1978 C-b Annual Report, Volume 2. Environmental Analysis, presents analyses in all of the broad environmental areas identified in the Development Monitoring Program for data collected since November 1976. Because there is always a data-lag and reduction problem, analyses for some studies are based on data only through September 1978. This report is not as detailed or comprehensive as the 5-volume Environmental Baseline Program, Final Report (1977). It need not be. The Interim Monitoring and Development Monitoring Programs have been reduced and changed from the Environmental Baseline Monitoring Program in many areas. Therefore, emphasis is now placed on key indicators of environmental quality and/or change which are evaluated in this report.

The report outline follows closely the outline of the Development Monitoring Program document for ease of cross reference.

1.2 Purpose

The purpose of this report is to fulfill the requirement of the lease to provide the Area Oil Shale Supervisor's Office with an annual report of environmental analyses. The Development Monitoring Plan states the following objectives with respect to environmental monitoring:

The purposes or objectives of environmental monitoring as defined in Section 1 (C) of the Stipulations are to provide: 1) a record of changes from conditions existing prior to development operations,
as established by the collection of baseline data; 2) a continuing check on compliance with the provisions of the Lease and Stipulations, and all applicable Federal, State and local environmentalprotection and pollution control requirements; 3) timely notice of detrimental effects and conditions requiring correction; and
4) factual basis for revision or amendment of the Stipulations.

This report documents the analyses and conclusions relative to assessment of potential environmental impacts and trends that may be indicated in the collected data. Since development activities were not started until 1978, much of the data and analyses may be considered as a continuation of environmental baseline and background definition.

1.3 Summary

Environmental monitoring and analyses are continuing on 0il Shale Tract C-b. Development activities commenced within the past year have resulted in increased activity on the Tract in the form of off-road vehicular use, facility construction, shaft sinking, and traffic into and out of the area. All activity has been conducted within strict adherence to environmental, permit, and lease regulations. Environmental impacts, where they exist, have been confined to the immediate area and within limits defined in the Detailed Development Plan.

The following paragraphs present brief highlights of the report sections. A foldout map showing all of the C-b Tract Development Monitoring sites is provided in a jacket in the back of this report.

1.3.1 Tract Photography

A tract surface and aerial photography program has been initiated to provide permanent records of change and surface disturbance. Sufficient time lapse has not occurred to identify other than purely qualitative effects of wet or dry years on vegetation from the aerial photographs.

1.3.2 Indicator Variables

The Development Monitoring Program has been brought into sharper focus with the identification of Class 1 indicator variables. These are key environmental variables collected at representative stations in at least a monthly sampling frequency. Time series plots, largely generated by the computer from the data base, are presented in Appendix B. These plots will be maintained and updated monthly (as a goal) to provide visual analyses of trends and interrelationships.

1.3.3 Hydrology

Regarding hydrology, analyses of USGS Gauging Stations surface water quality and quantity data reveal no adverse trends for indicator variables either over time or between station locations. Streamflow records on

Piceance Creek above and below the C-b Tract show no change in mean annual flows. One-day minimum flow averages may be less than one cubic foot per second (cfs). Maximum peak flows recorded since baseline were 520 cfs on July 19, 1977 upstream from the C-b Tract, and 492 cfs on September 3, 1977 downstream from the Tract.

A few isolated statistical trends in water quality parameters (sulfate, pH , and arsenic) were noted for some water quality data obtained from springs and seeps. However, suspected spurious values as well as paucity of data discount the significance of these at this time. Any trends at this point in time of very limited development activity would be an indication of a trend in the baseline data.

Water quality and level data for selected alluvial wells and indicator variables showed no overall trends with time from baseline. Comparison of parameter mean values between stations showed no significant differences for most comparisons. The notable exception is for specific conductance which showed differences in four of six comparisons. Water level in bedrock wells showed no trends over time.

1.3.4 Aquatic Ecology

It is useful to relate the previous hydrologic discussion to qualitative aquatic ecological considerations as they pertain to Piceance Creek. Piceance Creek as an ecosystem has been characterized as a "productive, disrupted system existing under marginal physical and chemical conditions," imparting the impression of "marginal, low quality aquatic environment" (Woodling and Kendall (1974)).

Biological production in Piceance Creek is presently restricted by a combination of natural and man-caused factors. Natural factors limiting biological production are the unstable nature of most of the streambed and irregular discharge. Loose sand, silt and mud comprise much of the substratum. These materials are easily shifted about by currents, particularly those associated with runoff of snowmelt and high intensity thunderstorms. In times of low flow, much of the streambed becomes dewatered, thus exposing biota to possible desiccation.

Land use practices along Piceance Creek intensify the adverse effects of some natural limiting factors. Cattle grazing has probably reduced the vegetative cover of the watershed and thereby contributed to the irregularities in stream flow. Cattle trample stream banks and willow growth along the streams and thus destroy cover for fishes. Irrigation diversions dewater sections of Piceance Creek so that they may be intermittently dry, and return water probably leaches salts from the fields and increases the load of dissolved solids. Ammonia and nitrogen may be leaching in significant amounts from manure emanating from winter feeding concentration of cattle along Piceance Creek.

The water of Piceance Creek is high in dissolved salts relative to the "average" North American stream; however, the load in Piceance Creek is not unusually great for streams in semi-arid western localities. Low quality-high salinity
groundwater from deep aquifers reaches Piceance Creek via springs discharging into it, especially in reaches downstream from Ryan Gulch. Although the salinity of lower Piceance Creek is greater than in upstream reaches, there is no unambiguous evidence that salinity is limiting total biological production.

1.3.5 Air Quality

With regard to air quality, gaseous constituents measured include sulfur dioxide, hydrogen sulfide, carbon monoxide, ozone, and oxides of nitrogen; total suspended particulates have also been measured. For the overwhelming majority of the time, $\mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{~S}$, and CO have indicated background levels below the lower level of significance of the instruments. Only for ozone and total suspended particulates have significant values been measured. Ozone-concentration shifts to high values show correlation with weatherrelated meteorological parameters. High particulate concentrations to date are judged to be due solely to fugitive dust. Time series plots do not identify any discernible trends in either gaseous constituents or particulates over time, except for some seasonal variations in particulates. Particulate concentrations are usually highest in spring and fall with minimums in winter. No specific dependence of concentrations on wind speed or direction has been noted.

Mean annual visual range in 1978 was 130 km (81 miles), with a seasonal Spring minimum of 126 km (78 miles) and Fall maximum of 138 km (86 miles). No significant change in the annual mean has been noted since the 1975-1976 measurements.

1.3.6 Meteorology

Climatological records indicate an annual mean temperature of 6-70 C over the past four years. Time series analyses of monthly means has demonstrated no trend in long-term mean values. Cold air drainage results in winter minima in Piceance Valley near -430 C. Although 1977 was the wettest of the four years $(35.7 \mathrm{~cm})$, its distribution was such that it came too late in the year to be a major influence on productivity. Lightest annual precipitation was 23.6 cm in 1976. Peak storm intensities reached 4.3 cm precipitation on September 3, 1977.

Predominate winds on Tract continue to be from the south-southwest with Spring and Summer showing higher wind speeds ($5-8 \mathrm{~m} / \mathrm{sec}$) than Fall and Winter ($1-3 \mathrm{~m} / \mathrm{sec}$) at the 10 -meter level above surface. Winds from the Tract direction generally become channeled by Piceance Valley walls toward the WNW downstream direction of Piceance Creek during late afternoon and night; directions reverse in daytime. Air is typically stable during night and early morning and unstable in late morning and afternoon.

1.3.7 Noise

The environmental noise program deals with both traffic and tract-generated noise levels. The discrete (weekly) traffic noise level
measurements indicated noise levels approximately nine dbA above baseline peaks. Continuous noise measurements (every sixth day) indicate no significant increases due to the tract activities in average noise levels for two 12 -hour periods (7 p.m. -7 a.m. and 7 a.m. -7 p.m.).

1.3.8 Wildlife Biology

Maximum weekly counts of deer observed along Piceance Creek since baseline have always occurred in spring and have varied from 1,512 in 1976 to 1,034 in 1978 with 1975 and 1977 values intermediate to these. Road kills in any week usually vary from less than 1% to 1.5% of those counted in any given week. A total of 125 deer were killed along the road from September 1977 to May 1978. Use of company buses has been the principal mitigative measure in reducing traffic on Piceance Creek road. Regarding natural deer mortality in lateral draws and gulches, fawns have comprised 80% of deer mortality each year. Age class composition for mule deer wintering near the tract are as follows: 79 fawns per 100 does, 26 bucks per 100 does, and 64 fawns per 100 adults.

Regarding medium-sized mammals, fewer coyotes and more cottontail rabbits were noted in 1978 than in 1977.

As with previous sampling periods, greater avian songbird diversity has been noted in pinyon-juniper woodlands as opposed to chained pinyon-juniper; similarly more mourning doves were found in the unchained habitats. Nesting raptors in the tract vicinity in 1978 consisted of red-tailed hawks and greathorned owls. Although bald eagles have been observed in the tract vicinity, none nested or remained in the area; they were merely flying through. No threatened or endangered species were found on or near the Tract.

1.3.9 Vegetation

Monitoring data suggest that over the past four years there have been no major changes in species composition or community structure in the chained rangelands. The general trend has been for a slight increase in total cover and also for an increase in the density of big sagebrush. These changes are closely related to the successional characteristic of the chained rangelands. The trend for increasing shrub cover and density is likely to continue until the tree saplings mature into tree-size individuals.

The production patterns within the vegetation types observed during the Development Monitoring period are the same as those observed during the baseline period. Utilization continues to be seasonal and by mid-growing season is nearly non-detectable because of livestock use patterns. Observed differences in productivity between intensive study plots appear to be more related to site differences than to any development-related activities. Herbaceous production is closely related to precipitation; significant differences in production between years are related to differences and fluctuating patterns of precipitation in this semi-arid region. Fertilization of upland chained areas appears to result in an increase in herbaceous production. Because of a limited sample
size and high data variability, the differences between fertilized areas and control areas were not significant. Shrub production and utilization (bitterbrush and mountain mahogany) for this past year differed markedly from those of 1976-1977 in that production was lower and utilization by mule deer was much higher. Precipitation distribution was more favorable to productivity in 1978 than in 1977.

Revegetation monitoring will be conducted on sites which have undergone surface disturbance and on future raw-shale disposal sites. Erosion control and rehabilitation are discussed in Volume 1 , including the reclamation activityschedule defining affected areas, disturbance timetable, reclamation time span, and disturbed acreage.

1.3.10 Ecosystem Interrelationships

Ecosystem interrelationship studies have been initiated as a means of assessing the potential impact of environmental perturbations resulting from development activity. Quantitative studies to date included: (1) effects of climatic variations on herbaceous productivity; (2) effects of traffic, climate, and size of mule-deer herd on deer road-kill; and (3) effects of urbanization on watershed hydrologic response time. Principal results established were as follows: (1) herbaceous productivity correlated best with precipitation in April-May-June and total precipitation of the previous year; (2) deer road-kill correlated best with deer road count; (3) a lag time of 5.5 hours was demonstrated to exist currently between a precipitation event and peak flow on Piceance Creek below the tract; future analyses will determine potential effects of urbanization on this lag or response time.

1.3.11 Items of Prehistoric and Historic Interest

Recent developments regarding items of prehistoric or historic interest have been primarily associated with a planned route for a powerline from Meeker to the Tract. One prehistoric site and five isolated "finds" were located near the proposed right-of-way; mitigation will be accomplished by avoiding these sites through minor rerouting.

1.3.12 Health and Safety

With regard to health and safety, accident frequency analyses and inspection reports (Mine Safety and Health Administration (MSHA) and Colorado Division of Mines (CDM)) are included in the Development Monitoring Plan and its reports. At C-b based on 442,218 man-hours worked during 1978, there were three lost-time accidents totaling seven lost-time days. The site injury incidence rate was 1.35 (incidents per 200,000 man-hours), and the severity measure was 3.16 . These compare favorably with the national averages for underground mines of 16.32 and 23.0 respectively.

2.1 Development Schedule

The proposed development schedule is presented as Figure 3-1 of Volume 1 of this report. A comparison of proposed vs. actual schedules for calendar 1978 is presented as Figure 3-2 of Volume 1.

2.2 Maps

A fold-out map depicting monitoring site locations for Development Monitoring is included in the jacket inside the back cover of this report. Four-digit computer codes are also shown on the map; comparisons of computer codes and "conventional" site locations are included in Appendix A2.2.

Related maps are included in each chapter as appropriate.

THIS PAGE WAS
INTENTIONALLY LEFT BLANK

3.0 TRACT PHOTOGRAPHY

3.1 Scope and Rationale

Section 1 (C) of the Environmental Lease Stipulations requires that the Lessee conduct monitoring programs to measure perceptible changes from baseline conditions. Toward this end both a surface and an aerial photography program have existed since baseline. For the surface program, color photos are obtained annually. For the aerial program, black and white and color/ infrared are obtained annually and color once every five years.

3.2 Surface Program

3.2.1 Objectives

The objectives of the surface program are to provide:

1) a record of changes from conditions existing prior to development operations;
2) visual evidence of successional changes in the ecosystem;
3) a visual record of surface disturbance;
4) an historic account of surface development; and
5) a visual basis for revision or amendment of the Stipulations.

3.2.2 Experimental Design

Thirty-one points have been selected for Development Monitoring from which a 3600 pan is photographed on a yearly basis. (Figure 3.2.2-1). A 35 mm camera with an $\mathrm{f} 1.8,55 \mathrm{~mm}$ lens using Ektachrome Professional Type R, ASA 200 film is used. Once each year in June between 10:00 a.m. and 2:00 p.m. on cloudless days, a 360° photo pan is taken from each of the thirty-one photo map stations.

3.2.3 Archiving Methods

A complete set of the 35 mm slides are numbered as to station, aspect and date. This set is stored in plastic envelopes and bound in a 3-ring binder, then filed in a unit designed to curtail dust and light as a part of the permanent record of the C-b Shale Oil Project. For Development Monitoring this record includes weather condition, camera and film data, height of camera above ground and direct or diffuse lighting identification.

3.2.4 Results and Conclusions

Photographic coverage of the C-b Tract in 1977 and 1978 consisted of from five to fifteen slides of thirty-five selected points on and around the Tract. The camera was set up over each point and oriented so the center of the first slide was true North. With each succeeding slide the camera was rotated twenty-five degrees clockwise.

The film chosen for both 1977 and 1978 was Kodak Ektachrome Professional with an ASA of 200. The high ASA number was chosen because it allows more detail

[^0]Figure 3.2.2-1
index map
to be visible in shaded areas and reduces the "blocking up" that occurs with a slower film. Since this film has a very high sensitivity to blues, an 81A filter was utilized to cut the blue cast and a polarizing filter was placed over this to give better haze penetration. The film was slightly under-exposed to give a more dense slide with an increased dye concentration; this technique extends the life of the slide when properly stored.

During 1977, photo points 4, 10, 13, 14 and 26 were not recorded due to snowfall (9 November - 16 November) or mechanical failure. During 1978, photo points 2, 4, and 13 were not recorded due to mechanical failure.

Sufficient time lapse has not occurred to identify other than a wet or dry year.

3.3 Aerial Program

3.3.1 Objectives

The objectives of aerial photographic coverage of the C-b Tract and a one-mile buffer utilizing vertical viewing are to provide:

1) a record of changes from conditions existing prior to development operations, as established by the collection of baseline data;
2) timely notice of certain detrimental effects and conditions requiring correction;
3) general vegetative conditions (correlated with Biology);
4) inventory of site physical conditions; and
5) subsidence details.

3.3.2 Experimental Design

For Development Monitoring, the scale is $1: 6000$. Film is black and white, color and color/infrared. Resolution is such that an object three feet across on the horizontal plane can be seen with the unaided eye. Flight lines are flown from West to East and photography taken from 10:00 a.m. to 2:00 p.m. on cloudless days. Side overlap of $40-50 \%$ and fore-and-aft overlap of 60% between photographs are to be specified. Aerial photographs will show visible ground control points as $3^{\prime} \times 12^{\prime}$ white crosses on established section corners within the C-b Tract.

Vertical aerial photography is obtained on or about the 15 th of June. Frequency is annually for black and white and color/infrared and once every five years for color.

3.3.3 Methods

Regarding archiving, one set of color prints is used for construction of a mosaic; and one set of black and white, color, and color/infrared is stored in a unit designed to curtail dust and light as a part of the permanent record of the C-b Shale 0il Venture. The annual record during Development Monitoring includes weather conditions, camera and film data, height of camera above ground and information on direct or diffuse lighting identification.

An uncontrolled color mosaic for the June 1974 flight is on display at Occidental's Grand Junction offices. The next color mosaic will be compared with June 1974 mosaic to identify major areas of change and a map indicating changes prepared.

Stereo pairs will be utilized to examine the most significant major changes in more detail. These results will be documented in future analysis reports.

3.3.4 Results and Conclusions

The results of the 1977 color aerial photography were such that an uncontrolled mosaic could not be assembled due to severe drift in flight lines. Prints have been archived in accordance with the above described archiving techniques. Vertical aerial photography was not obtained by C-b in 1978. Previous arrangements were made with the EPA to supply the C-b Shale 0il Project with aerial photography. A 1:34000 print was supplied in early 1979 as overflown in September 1978. This print will be archived in accordance with the Development Monitoring Program.

Indicator variables are selected monitored environmental parameters that can be expected to provide the earliest clues of potential change in the baseline environment. This section identifies the indicator variables selected for environmental disciplines of hydrology, air quality and meteorology, noise, and biology that will be observed most closely.

4.1 Role in Impact Assessment

Efficient monitoring of environmental quality requires close observation of a few key variables. This includes those variables that are: 1) most sensitive to change in quality; 2) indicators of natural or climatic change; and 3) subject to Federal and State standards because of concern for human health and public welfare. For these reasons the Development Monitoring Plan has identified and emphasized in the collection plan key indicator variables in each of the environmental disciplines.

Close observation of the identified key indicator variables requires early data reduction and analysis in order to flag changes or adverse time-trends in the observations. Visibility is provided by maintaining current time-series plots of the key variables. Impact of development activity is also assessed through statistical comparison of data collected near development and control sites. If trends and differences signal the probable occurrence of adverse environmental impact, additional and increased monitoring will be triggered. (Referred to as Systems Dependent Monitoring.) At present, no Systems Dependent Monitoring has been "triggered."

4.2 Identification of Class 1 Indicator Variables

Indicator variables have been identified in the Development Monitoring Plan as a subset of the monitored environmental parameters. However, the combinations of indicator variables with the number of collection stations exceed 1000. Therefore, Class 1 Indicator Variables have been identified in order to further reduce the number of parameter-site combinations to a realistic quantity (171) for the purpose of close observation. Class 1 Indicator Variables are key environmental variables collected at representative stations on at least monthly frequency. Time series plots will be maintained and updated monthly for these Class 1 Indicator Variables.

This section identifies only the Class 1 Indicator Variables. However, all monitored variables are included in the data reports and the following chapters of this Annual Report.

4.2.1 Tract Photography

Tract photography is to be carried out annually under a surface program and an aerial program as defined in the Development Monitoring Program. While the photographs provide permanent records of existing conditions, no photo interpretations have been made at this time.

Therefore, no Class 1 Indicator Variables associated with tract photography are identified.

4.2.2 Hydrology

Class 1 Indicator Variables for hydrology are identified in Table 4.2.2-1. The number of collection sites has been screened to four major USGS Gauging Stations, four springs and seeps, and four alluvial wells for this group. Parameters are collected either daily or monthly as indicated by the codes in the table. For cross-referencing ease, Table 4.2.2-2 presents the table numbers in Appendix B where these time-series data are presented under separate volume.

4.2.3 Air Quality and Meteorology

Class 1 Indicator Variables and stations for air quality and meteorology are identified in Table 4.2.3-1. Collection frequency for those parameters coded with D is continuous; hourly averages are reported in the data reports. Daily averages and peaks calculated from the hourly averages are used in the time-series plots for these variables. Daily totals will be plotted for those coded with T. Table 4.2.3-2 cross-references the time-series plots.

4.2.4 Noise

Noise is measured at two stations as decibel level. Class 1 Indicator Variables are peak measurements of background noise level for daytime (0700 through 1900 hours) and for nighttime (1900 through 0700 hours). These are shown in Tables 4.2.4-1 and 4.2.4-2.

4.2.5 Biology

Much of the biology data collection and analysis are on a seasonal or annual time frequency. These data and analyses are important indicators for possible oil shale development environmental impact. However, under the definition of Class 1 Indicator Variables as those with at least monthly collection, a much smaller set of biological environmental parameters are identified. These are shown in Tables 4.2.5-1 and 4.2.5-2. Microclimate data are collected twice monthly indicated by 2 M in the first table. Monthly and weekly observation frequency are shown with M and W respectively in the tables.
TABLE 4.2.2-1
HYDROLOGY CLASS 1 INDICATOR VARIABLES

NOTES: Frequency of data sampling is coded: D for daily average of
TABLE 4.2.2-2
HYDROLOGY CLASS 1 INDICATOR VARIABLE TIME-SERIES INDEX

VARIABLE	$\begin{aligned} & \text { MAJOR U.S.G.S. } \\ & \text { WU07 WU61 WU58 WU22 } \end{aligned}$				SPRINGS AND SEEPS				ALLUVIAL WELLS			
1. Ammonia	B5.2.1-1	-2	-3	-4								
2. Boron	-5	-6	-7	-8								
3. Fluoride	-9	-10	-11	-12								
4. Total Dissolved Solids	-13	-14	-15	-16								
5. Arsenic	-17	-18	-19	-20								
6. Sediment	-21*	-22*	-23 *	-24*								
7. Precipitation	-25^{*}	-26*	-27	-28								
8. pH	-29	-30	-31	-32	B5.2.2-1*	-2*	-3*	-4*	B5.3.1-1*	-2*	-3^{*}	$-4 x$
9. Temperature	-33	-34	-35	-36	-5*	-6*	-7*	-8*	-5 *	-6*	-7*	-8*
10. Flow	-37	-38	-39	-40								
11. Conductivity	-41	-42	-43	-44	-9*	-10*	-11*	-12*	-9*	-10*	-11*	-12*
12. Dissolved Oxygen	-45	-46	-47	-48	-13*	-14*	-15*	-16*				
13. Level									-13	-14	-15	-16

NOTES: * Plots not included (Insufficient Data)
table 4.2.3-1

VARIABLE	SAMPLING STATIONS						
	AB20	AA23	AB23	AC20	AD42	AD56	AREA
1. SO_{2}	D		D				
2. $\mathrm{H}_{2} \mathrm{~S}$	D		D				
3. 03	D		D				
4. NO_{x}	D		D				
5. NO_{2}	D		D				
6. CO	D		D				
7. Particulates (every 3rd day)	T		T		T	T	
8. WS - 10 m	D	D			D	D	
9. WD - 10 m	D	D			D	D	
10. WS - 30m		D					
11. WD - 30 m		D					
12. RH			D				
13. TEMP - 10 m	D		D		D	D	
14. PRESS			D				
15. SOLAR			T				
16. \triangle TEMP - ($60 \mathrm{~m}-10 \mathrm{~m}$)		D					
17. PRECIPITATION	T		T				
18. EVAPORATION			T				
19. INV HT				D			
20. MIX HT				D			
21. VISUAL RANGE (every 6th day)							VR

TABLE 4.2.3-2
AIR QUALITY AND METEOROLOGY CLASS 1 INDICATOR VARIABLE TIME-SERIES INDEX

VARIABLE	SAMPLING STATIONS						
	AB20	AA23	AB23	AC20	AD42	AD56	AREA
1. SO_{2}	B6.2.1-1		-2				
2. $\mathrm{H}_{2} \mathrm{~S}$	-3.2-1		-4				
3. 0_{3}	-5		-6				
4. NO_{x}	-7		-8				
5. NO_{2}	-9		-10				
6. CO	-11		-12				
7. Particulates (every 3rd day)	B6.2.2-1		-2		-3	-4	
8. WS - 10 m	B6.3.2-1	-2			-3	-4	
9. WD - 10 m	-5	-6			-7	-8	
10. WS - 30m		-9					
11. WD - 30m		-10					
12. RH			3.1-1				
13. TEMP - 10 m	-2		-3		-4	-5	
14. PRESS 15. SOLAR			-6				
16. \triangle TEMP - ($60 \mathrm{~m}-10 \mathrm{~m}$)			-7				
17. PRECIPITATION	-9						
18. EVAPORATION	-9		-11				
19. INV HT	B6.3.2-11						
21. VISUAL RANGE (every 6th day)	B6.2.3-1*						

[^1]TABLE 4.2.4-1
NOISE CLASS 1 INDICATOR VARIABLES

	SAMPLING STATIONS VARIABLE	
1. Daytime Noise $(0700-1900)$	P	P
2. Nighttime Noise $(1900-0700)$	P	P

TABLE 4.2.4-2
NOISE CLASS 1 Indicator variable time-SERIES Index

* Plots not included (Insufficient Data)
TABLE 4．2．5－1
BIOLOGY CLASS 1 INDICATOR VARIABLES

	3 3 3
	33
$\begin{aligned} & \dot{-} \\ & \dot{0} 3 \\ & \dot{3} \\ & \dot{\sim} \hat{3} \end{aligned}$	Σ Σ
	ミ \sum N 드N ミ $\sum_{N} \sum_{N}$ ミ \sum N ミ \sum 체 ㄷNN $\sum_{N} \sum_{N}$ $\sum_{N} \sum_{N} \sum_{N} \sum_{N}$ ㄷNN \sum_{N} $\sum_{N} \sum_{N} \sum_{N}$ NN $\sum_{N} \sum_{N}$
	こち～ z爫 z！ 象豆忩 믐ㅊㅗㅗㅁ우운

Periphyton bioproductivity collected monthly（M）；
and Deer and Traffic are counted weekly (W) ．
CB－Traffic Count between Piceance Creek Road and C－b Tract．
PCN－Piceance Creek Road north of C－b turnoff．
PCE－Piceance Creek Road east of C－b turnoff．

THIS PAGE HAS BEEN
 INTENTIONALLY LEFT BLANK

5.1 Introduction and Scope

A development monitoring program has been implemented to provide water quantity and quality data for the purpose of impact evaluation. Presently, streams, springs, seeps, and alluvial and bedrock aquifers are monitored. The program will be expanded to include monitoring of water associated with shafts, impoundments, and shale piles as development proceeds. Data obtained during baseline and interim-monitoring studies established reference levels for use in comparative studies during development. Bedrock quantity and quality data presented in this report, which were gathered prior to subsurface development, may still be considered as representative of "baseline" conditions.

The present hydrologic monitoring network is conceptually the same as during the baseline period. However, the bedrock aquifer system underlying C-b Tract has been redefined. Observation wells were completed in accordance with the concept that the Tract is underlain by two aquifers separated by the Mahogany Zone. Pump spinner tests conducted after the baseline period indicated that highly stratified aquifers and aquitards more accurately characterize the aquifer system. The more complex aquifer-aquitard system is illustrated in Figure 5.1-1. For purposes of identification, these new subdivisions of the previous upper and lower aquifer system are as follows:

1) $\mathrm{UPC}_{\boldsymbol{1}}$ - Upper Parachute Creek \#1: Approximate limits extend from the base of the Four Senators Zone to the base of the A-Groove;
2) $U_{P C}$ - Upper Parachute Creek \#2: Extends from the base of the Four Senators Zone to the base of the A-Groove;
3) LPC_{3} - Lower Parachute Creek \#3: Extends from 30 feet below the base of the A-Groove to the top of the R-5 Zone;
4) LPC_{4} - Lower Parachute Creek \#4: Extends from the middle of the R-5 Zone to the base of the L-4 Zone.

Bedrock observation wells are scheduled to be recompleted to reflect the new aquifer concept. All water level measurements and water quality data in this report are representative of the present two-aquifer completions.

This section presents the hydrologic analyses performed on the data collected on the C-b Tract to date with emphasis on data collected since November, 1976. An attempt has been made to convert to metric units. However, some of the data and analyses are reported in English units at the request of the Area Oil Shale Supervisor Office Hydrologic Group. Complete conversion to metric units will be made in subsequent Annual Environmental Reports.

5.2 Surface Water Studies

Water quantity and quality data are collected at U.S.G.S. Gauging Stations on Piceance Creek and its tributaries in the C-b Tract vicinity in connection with an ongoing hydrologic monitoring program. The initial two years of the program obtained data relative to baseline conditions. A twoyear study, although insufficient to identify trends in stream flow and water quality parameters, provided a preliminary basis for estimating their variability so that changes could be recognized and assessed.

Baseline studies indicated the mean flow for the reach of Piceance Creek adjacent to the Tract to be approximately fifteen cfs. These studies showed the water of Piceance Creek to be hard to very hard with CaCO_{3} concentrations greater than $300 \mathrm{mg} / 1$. The water was found to be a sodium-calcium-magnesium-bicarbonate-sulfate type.

Data gathered since the end of the baseline period have been used to analyze the mean annual flows, annual peak flows, and annual flow minimums of Piceance Creek. Water quality parameters were analyzed for time series trends and subjected to station-to-station comparisons.

5.2.1 U.S.G.S. Gauging Stations

5.2.1.1 Scope and Rationale

The surface water monitoring program is designed to detect unplanned point discharges, effluents from non-point discharges, and planned discharges from retention ponds. The major emphasis in surface water monitoring will involve non-point source pollution and direct discharges from storage reservoirs. Sources of these types include: (1) increased erosion rates and sediment loads due to construction activities, (2) runoff from process plant and paved areas, (3) runoff carrying solids resulting from air-borne particulate of gaseous emissions, (4) seepage or runoff from shale piles, and (5) infiltration into the groundwater system from reservoirs, ponds, or injection wells, and subsequent discharge at the ground surface.

5.2.1.2 Objectives

The monitoring program has been implemented to detect any changes in water quantity or quality that might be attributable to Tract development. Analysis will be undertaken periodically to identify any significant trends or changes between stations relative to discharge and water quality parameters.

5.2.1.3 Experimental Design

Thirteen surface water gauging stations (Figure 5.2.1-1)
were constructed on and in the vicinity of C-b Tract by the U. S. Geological Survey in cooperation with the Colorado River Water Conservation District. The gauging stations constitute the surface water monitoring network, which has been in operation since the beginning of the baseline period.

Nine of the stations are located on ephemeral streams. Stations 007, 061, 022, and 058, which are located on perennial drainages and considered major gauging stations, are given as follows:

U.S.GS. STREAM GAUGING STATION MONITORING NETWORK

FIG. 5.2.1-I

Piceance Creek below Rio Blanco

Piceance Creek at Hunter Creek

Stewart Gulch
Willow Creek

For purposes of analysis, data were drawn from an additional gauging station (not shown in Figure 5.2.1-1) which is approximately five miles downstream of station 061 on Piceance Creek below Ryan Gulch.

5.2.1.4 Results and Discussions

This section is divided into two main sub-sections: stream flow and water quality. Stream flow is further divided into studies of hydrographs, flood frequency analysis and minimal flow analysis. For each of these, methods of analysis and results and discussion are separately identified for clarity.

5.2.1.4.1 Stream Flow: Hydrographs

Methods of Analysis

Plots of daily streamflow are given for Stations WU07 and WU61 in Figures B5.2.1-37 and B5.2.1-38. The hydrographs show the seasonal influence of runoff, evapotranspiration, and irrigation diversions on the flow of Piceance Creek. Flow in Piceance Creek has two components: baseflow and seasonal flow. Baseflow consists of groundwater recharge from alluvial aquifers and perched aquifers in the bedrock. Seasonal flow is comprised of storm runoff and snowmelt. December and January records reflect baseflow conditions while major irrigation diversions occur during the period April through September. The months of February, March, October and November are characterized by variable flows as a function of runoff and off-season irrigation diversions.

Total and mean annual streamflows for Stations WU07 and WU61, as well as Stations WU22 and WU58 are given below (Table 5.2.1-1). Station WU22 monitors the tributary draining Stewart Gulch and Station WU58 gauges the flow of Willow Creek.

TABLE 5.2.1-1 TOTAL AND MEAN ANNUAL STREAM FLOW

Water Year	Sta. WU07		Sta. WU22		Sta. WU58		Sta. WU61	
	$\begin{aligned} & \text { Total } \\ & \left(\mathrm{ft}^{3}\right) \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (cfs) } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \left(\mathrm{ft}^{3}\right) \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Mean } \\ \text { (cfs) } \end{array} \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \left(\mathrm{ft}^{3}\right) \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & (\mathrm{cfs}) \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \left(\mathrm{ft}^{3}\right) \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (cfs) } \end{aligned}$
1975	4866	13.3	710	2.0	725	2.0	6624	18.1
1976	3653	10.0	674	1.8	865	2.4	6069	16.6
1977	1831	5.0	503	1.4	508	1.4	3604	9.9

Discharge totals and mean values recorded for the stations draining the two perennial tributaries of Piceance Creek in the Tract vicinity are strikingly similar. The similarity can be attributed to comparable drainage areas (D_{A} Willow Creek $=48.7 \mathrm{mi}^{2}$; D_{A} Stewart Gulch $=$ $43.4 \mathrm{mi}^{2}$), bedrock, and vegetation. A comparison of mean flows for Station WUO7 (upstream) and Station WU61 (downstream) indicates a five cfs gain in discharge between stations. Mean discharge values of the Stewart Gulch and Willow Creek tributaries suggest that 75\% of the flow increase between the Piceance Creek stations is due to surface water contributions. Presumably 25% of the gain may be attributed to groundwater inflow.

5.2.1.4.2 Stream Flow: Flood Frequency Analysis

Methods of Analysis

Prediction of the magnitudes of peak discharges for given frequencies at a gauging station or the recurrence intervals of floods of selected magnitudes is facilitated by flood frequency analysis. The analysis entails fitting a probability distribution to a sample of floods gauged at a station.

Piceance Creek is monitorea by one gauging station with records of adequate length to perform a flood frequency analysis. U.S.G.S. Station 09306200 on Piceance Creek below Ryan Gulch has been in operation since 1965. Where no flood records exist for a given site or where the brevity of record precludes analysis for station records, other stations in the area provide records which can be regionalized and applied to the prediction of floods. Regional flood frequency curves were derived for two stream gauging stations U.S.G.S. 09306007 and 09306061. Station WU07, on Piceance Creek below Rio Blanco, is upstream of tributaries which drain C-D Tract while Station WU61 is downstream, above the mouth of Hunter Creek.

After a minimum of ten years of record has been obtained for an individual station, flood frequency analysis may be performed and compared to the corresponding regional curve. Results obtained from the regional curve will be of the same order of magnitude as those derived from station data.

A flood frequency curve (Figure 5.2.1-2) was plotted using annual peak discharges for water years 1966-1977. The maximum instantaneous discharge of each year was ranked in order of decreasing discharge and the corresponding recurrence interval was determined. (Table 5.2.1-2.)
The recurrence interval equals $\frac{n+1}{m}$, where n is the number of years of record and m is the rank.

Errors are inherent in flood frequency analysis for single stations due to (1) the brevity of most records, (2) the characteristic variability of floods, and (3) the difficulty of fitting theoretical frequency distributions to the sample record. In Figure 5.2.1-2, confidence bands were determined by multiplying coefficients (Beard, 1962) for the 90% confidence level by the standard deviation of the sample $(\sigma=92.7)$. Products obtained were added or subtracted for various discharges of the curve to produce upper and lower confidence bands.

TABLE 5.2.1-2
ANNUAL MAXIMUM FLOW RATE

Year	Flowrate (cfs)	Rank Order (m)	Recurrence Interval (years)
1966	400	1	13.00
1971	211	2	6.50
1968	184	3	4.33
1969	141	4	3.25
1977	136	5	2.60
1972	121	6	2.17
1976	107	7	1.86
1970	104	8	1.63
1973	100	9	1.44
1967	75	10	1.30
1974	69	11	1.18
1975	60	12	1.08

The confidence bands define the zone within which there is a 90% chance that the true value for that recurrence interval will lie.

Regional flood frequency curves for Stations WU07 and WU61 were developed according to the method described by T. Dalrymple in USGS Water Supply Paper No. 1683, Magnitude and Frequency of Floods in the United States.

In order to apply the method, the Colorado River Basin is divided into flood frequency regions (A-F) and hydrologic areas (1-13). The two gauging stations were determined to be in flood frequency regions "C" and hydrologic area "13". The drainage area upstream from each gauge was obtained from USGS waterdischarge records. Topographic maps $(1: 250,000)$ of the Grand Junction, Vernal, and Leadville areas were used to determine the mean altitude of drainage areas by averaging more than thirty elevations obtained at intersections of a superimposed grid system. The mean altitude of the drainage area upstream from Station WUO7 was determined to be approximately 7590 feet. The drainage area upstream of Station WU61 has a mean altitude of approximately 7460 feet.

Given drainage area and mean altitude, the discharge of the mean annual flood (MAF) can be interpolated from the curves given in Figure 5.2.1-3. The MAF for Station WUO7 was found to be 330 cfs while the MAF for Station WU61 was determined to be 475 cfs. The MAF can also be derived from the equation

$$
Q_{2.33}=0.35 \mathrm{~A} .74 \mathrm{H} 1.5
$$

Where $Q_{2.33}$ is the MAF in cfs, A is the drainage area in square miles, and H is the mean altitude of the basin in thousands of feet above mean sea level.

Figure 5.2.1-3 - Variation of mean annual flood with drainage area and mean altitude in hydrologic area 13.

Figure 5.2.1-4 - Composite frequency curves for regions A-F.

The curve for flood frequency region "C" in Figure 5.2.1-4 yields the ratio of the selected recurrence interval corresponding to the MAF. The ratio $\frac{Q}{}$, is multiplied by the MAF to obtain the flood discharge of the desired MAF' frequency. (Table 5.2.1-3)

TABLE 5.2.1-3 REGIONAL FLOOD FREQUENCY DATA

Recurrence Interval, years	$\frac{Q}{M A F}$	$\begin{gathered} \text { Station } 007 \\ 0, \text { cfs } \end{gathered}$	$\begin{aligned} & \text { Station } 061 \\ & \text { Q, cfs } \end{aligned}$
1.5	0.5	165	238
2	0.8	264	380
5	1.9	627	902
10	2.3	759	1092
20	3.3	1089	1568
50	4.5	1485	2137

Discharges of various recurrence intervals were plotted to sketch the regional flood frequency curves in Figures 5.2.1-5.

Results and Discussion

Annual flood peaks at Station 200 for the period of record have generally been less than 200 cfs . The mean annual flood for the station, approximately 125 cfs , corresponds to a recurrence interval of 2.33 years. In any given year, the MAF has about a 46% chance of being equallea or exceeded.

In a flood frequency distribution, empirical evidence has shown that the discharge corresponding to a 1.5 year recurrence interval will overflow the banks of any given stream. The discharge ($\mathrm{D}_{1.5}$) is termed the "bankfull discharge" and corresponds to a flood peak of approximately 100 cfs for the station below Ryan Gulch.

The 400 cfs flood peak of 1966 falis out of the range defined by the 90% confidence bands and thus is assumed to have a recurrence interval greater than the period of record.

Regional flood frequency curves for Stations WU07 and WU61 were obtained in view of the short duration of streamflow records. Slopes of the curves are greater than the slope derived from station data below Ryan Gulch. Topography and precipitation characteristics are comparable at all three stations and the curves should be roughly parallel. The regional curves probably suggest higher discharges for given recurrence intervals than will be observed in future station records. The maximum peak flow recorded for Station WU07 since the gauge became operational in 1974 is 520 cfs (July 19, 1977). The maximum peak flow at Station WU61 occurred September 3, 1977 and measures 492 cfs.

5.2.1.4.3 Stream Flow: Minimum Flow Analysis

Methods of Analysis

Extreme low flow at a station for periods of various lengths may be averaged and subjected to frequency analysis in the same manner as flood peaks.

Periods of 1 day, 7 days, 14 days, 30 days, and 60 days were studied for each year of record for Station 200 to determine the lowest flow average over each respective period. The annual seven-day minimum flow averages were ranked and recurrence intervals were calculated. The plots of discharge versus recurrence interval were used to sketch the seven-day minimum flow curve as well as the other curves shown in Figure 5.2.1-6.

Results and Discussion

For eleven years of record, one-day mini-
mum flows ranged from less than 1 cfs to approximately 13 cfs . For any given year there is a 50% chance that the one-day minimum flow will be less than 2.5 cfs (R.I. equals two years). Similarly, the sixty-day minimum flow average for any given year has a 50% chance of being less than 8 cfs. As the period of record lengthens, the predictions of discharges will better correspond to their true recurrence intervals.

Survival of stream biota is predicated on maintenance of certain minimum stream discharges. Low flows of lengthy duration can also concentrate water quality parameters in a manner that may also endanger aquatic organisms. Any assessment of the impact of oil shale development on water quality must take into account natural tendencies which may also have adverse effects. Minimum flow analysis thus enables prediction of low flow events which may threaten the stream habitat while also providing instructive information for use in setting effluent standards for various parameters.

Irrigation is a major factor contributing to low flow. Piceance Creek water is diverted to irrigate hay meadows, primarily April through September, although in years of favorable temperatures irrigation may extend into November. In some instances, the entire flow of the Creek is diverted onto the fields, reducing visible streamflow to near zero or completely dewatering downstream reaches for varying lengths of time.

5.2.1.4.4 Water Quality

Methods of Analysis
Class 1 water-quality-related variables for stations WU07, WU22, WU58, and WU61 have been plotted as time series and are reported in Appendix B. Two groups of parameters were selected for time series trend analysis of monthly averages from these stations. The first group of data is comprised of monthly values of pH , boron, fluoride, and arsenic for the period October 1974 - May 1978. Trend analysis of flow, phenol, molybdenum, sulfate, and sodium concentrations are based on data obtained monthly during the period October 1974 - June 1978. In the event of missing data, linearlyinterpolated values are substituted because time series analyses require data values for each time period.

The Box-Jenkins process features an identification stage which allows the user to specify the number of autoregressive and moving average parameters from the plots of the autocorrelation function (ACF) and the partial autocorrelation
ANNUAL MINIMUM FLOW (cfs)

function (PACF). Parameter estimation, forecasting, and diagnostic checking constitute the second stage. If the model is over-specified, non-significant parameters are removed and the model respecified. Diagnostic checking involves determining that the mean of the residuals is within reasonable confidence limits of zero and that there are no significant terms in the ACF of the lagged residuals. The program provides a chi-square test in order to test the latter hypothesis. Appendix A5.2.1D presents a summary of the Box-Jenkins Time Series Analysis Techniques.

For station-to-station comparisons, mean values of the parameters, specific conductivity, total dissolved solids, pH , arsenic, boron, fluoride, molybdenum, phenol, sulfate, and sodium were analyzed using T-test to facilitate comparison of the equality of the population means between stations. The procedure computes T-statistics testing the above hypothesis assuming both equal and unequal variances. The probability associated with the T-statistics using unequal variances is used to determine acceptance or rejection of the null hypothesis (means not equal). A 90\% confidence limit was selected, such that the null hypothesis is accepted if the probability of the two means being equal (PROB>T) is 0.1000 or less. For each location and variable, the number of observations, mean standard deviation, standard error of the mean, and the range of values are provided. An F-statistic is also computed to test for equality of the two variances.

Results and Discussion

Appendix A5.2.1A contains the results of time series analyses performed on pH , boron, fluoride, and arsenic using BoxJenkins techniques. None of the time series analyses indicated the presence of a significant trend parameter. Forty-four data points appear to be insufficient to generate a seasonal (lag 12) moving-average parameter. In most cases, the seasonality parameter was forced in order to improve the forecasts. The seasonal parameters are expected to become significant as more data become available.

Flow, sulfate, and sodium concentration data were analyzed with the OXY BoxJenkins model. The results are presented in Tables A5.2.1A-1 to -3. Both a seasonal (lag 12) moving average and a trend parameter proved insignificant in all of the analyses. The available data exhibit no seasonality characteristics or trends over time; i.e. the series mean value best characterizes the data. A model with an autoregressive parameter at lag one fits the data satisfactorily as indicated by the insignificance of the residuals (Chi-square test). Two exceptions occur, the first being the sulfate concentrations at Station WU07 which has an autoregressive parameter at lag four and the second being the sodium concentrations at Station WU22 with autoregressive parameters at four and eight. No explanation for these time lags can be made except that the analysis identifies them as significant to the model.

The water quality parameters selected for analysis thus show no overall trends over time. Predictions based on the available data can best be approximated using the time series mean as shown by the low chi-square value of the original data. Seasonality is not evident in the available data and autoregressive models explain the observed series.

Station-to-station comparisons were made with USGS Stations WU07, WU22, WU58, and WU61. For each pairing of these stations, the acceptance of equal means was variable for the parameters examined. No clear-cut spatial relationship between these stations can be identified because of the inconsistency of the results. Significant change between stations for the various parameters is summarized in Table 5.2.1-4. In the table, an "A" indicates acceptance of the null hypothesis that the means are unequal. Fluoride (F) and sulfate (SO4) show unequal means between each pair of stations. The remaining parameters have some stations indicating differences in means.

5.2.1.5 Conclusions

Available streamflow data allow limited predictions of mean annual flow, peak flows, and minimum flows on Piceance Creek. During the period of record, mean flow was observed to be about 10 cfs at Station WU07 and about 15 cfs at Station WU61. Streamflow records of the station below Ryan Gulch indicate the mean of annual peak flows is approximately 125 cfs. Stations WU61 and WU07 might be expected to exhibit a smaller mean insofar as they are upstream and drain smaller areas. Minimum flow analysis suggests that Piceance Creek discharge averages less than 20 cfs for periods as long as 60 days in any given year. One-day minimum flow averages may be less than 1 cfs. Reed identifies irrigation as a major cause of low flow during growing season.

Time series trend analyses and station-to-station comparisons of water quality were hampered by the paucity of data; no trends have been found to date. As the data base is enhanced, statistical evaluation of trends is expected to become more meaningful.

5.2.2 Springs and Seeps

5.2.2.1 Scope and Rationale

Ten springs provide data for flow and water quality analysis on and in the vicinity of C-b Tract. The springs, shown in Figure 5.2.2-1, correspond to the following station codes: WS01, WSO2, WSO3, WSO4, WS06, WS07, WS08, WS09, and WS10. Discharge from springs in the Uinta Formation may be affected as shafts are developed and dewatered. The monitoring frequency was increased to weekly beginning February, 1979 to better gauge the impact of shaft dewatering. The same indicator variables used to analyze the USGS station data are examined.

5.2.2.2 Objectives

The primary analysis objective is to determine the effect of development and dewatering on spring water quantity and quality. Water level data are insufficient for analysis purposes at this time. Quality parameters are examined for possible time trends and for differences between stations over the development period.

5.2.2.3 Experimental Design

Under natural conditions, the quality of surface

FIG.5.2.2-1 SPRINGS \& SEEPS AROUND Cb TRACT
water in springs and seeps was changed slowly but perceptibly with time as was demonstrated by the baseline data. Rates of change are related to rates of flow, which are determined by hydro-geologic considerations. Some groundwater basins unaffected by man show annual fluctuations in quality produced by seasonal variations in precipitation, aquifer recharge, water table levels, and discharge rates. The influence of man and industrial development is often marked as an increase in the amplitude of annual variation in quality along with a progressive decrease in average quality. To observe this change, if it does occur, indicator variables are analyzed for time trends and differences between stations. Multiple correlations and linear regression between parameters are used to test the following hypothesis: 1) dewatering will not affect water quality and quantity of springs and seeps, and 2) construction has no affect on water quality.

5.2.2.4 Method of Analysis

A linear regression is performed on the periodic observations of the various water quality parameters.

The independent time variable, YRMO, includes year and month information with the value being incremented for each month of a particular year; e.g. 74.0 represents January 1974. In order to test the hypothesis that the slope of the linear regression line is zero, two parameters from the SAS General Linear Models (GLM) procedure are examined.

The first test is to compare the model's estimate of the slope with the corresponding standard error of the estimate. The T-statistic at a 95% confidence interval with the appropriate degrees of freedom is then obtained from T-statistic tables. A 95% probability exists such that the true value of the estimate lies in the range ($m \pm \sigma$) where M is the estimate of the slope and σ is the standard error of the estimate. The T-statistic varies for the number of degrees of freedom and is reflected in the range calculations.

The second parameter examined from the GLM procedure is the probability that the slope is not zero. The procedure calculates a T-value for H_{0} : Slope $=0$, from which the probability of the slope having a value significantly different from zero can be obtained.

5.2.2.5 Results and Discussion

Trends Over Time

Trend analysis Tables A5.2.2A-1 through A5.2.2A-7
summarize the results of the statistical analyses of trends. The units for the analyses are milligrams/liter. The small number of observations are the result of the springs being dry for several months of the year. Significant trends identified by station are:

Location HSOl - Both pH and SO_{4} values exhibited significant trends. Since the sulfate values are downward-trending, their significance is not of concern. An examination of the data shows that the upward trend in pH values is largely due to a value of 9.2 , (abnormally high) recorded in December 1977. Since the previous observation was taken in October

1976, it is difficult to conclude if the high value was a result of steadily increasing pH values or an isolated, perhaps spurious value.

Location WSO2 - All slopes were non-significant, except for sodium, Na, which shows a positive trend. However, again only five observations were taken and the last observation, which was substantially higher, precipitated the trend. Subsequent observations are therefore needed to find out if the higher values persist.

Location WSO3 - Values for boron, sodium and molybdenum show negative trends, which are not critical and probably are a reflection of some high measurements taken in October 1974.

Location WSO4 - Data were not analyzed because all parameters consisted of four or less observations.

Location WSO6 - No significant trends are detected.
Location WSO7 - No significant trends are detected.
Location WS08 - Data were not analyzed because all parameters consisted of four or less observations.

Location WS09 - Boron was the only parameter showing a negative trend responding to high values reported in Fall of 1974 and 1975.

Location WS10 - Substantially higher sulfate and arsenic readings in December 1977 and June 1978 display positive (upward) trends. Subsequent sulfate and arsenic analyses at this station will determine if this upward trend continues.

Trends Between Stations

Comparison of the Means-between-Stations, Table 5.2.2-1, summarizes the results of statistical hypothesis that mean values between stations are different.

5.2.2.6 Conclusions

The statistical analysis suggests water quality of springs has not significantly changed over the baseline and subsequent development period. A few isolated statistical trends can be satisfactorily explained by the paucity of data or by abnormally high or low values (which are probably spurious). As more data become available, the statistical reliability will improve with a resulting increase in confidence of the results.

5.3 Ground Water Studies

5.3.1 Alluvial Wells

5.3.1.1 Scope and Rationale

Data from alluvial wells corresponding to station
Note: Table entries indicate acceptance (A) or rejection (R) of null hypothesis

codes WAOl-WAl2 are analyzed to test for possible changes in water level and selected quality parameters. The indicator variables defined in Section 5.2.1 are selected for statistical analysis. Figure 5.3.1-1 shows the location of the alluvial wells, which monitor each drainage in the C-b Tract vicinity.

5.3.1.2 Objectives

Objectives of alluvial well data analysis are detections of (1) significant rise or fall in water levels in wells, which might be attributed to pond seepage or dewatering, and (2) water quality trends over time or changes between stations during development of the Tract.

5.3.1.3 Experimental Design and Data Analysis

In order to characterize changes in alluvial aquifers, monthly measurements of water level and semi-annual analyses of water quality are presently obtained. Possible effects of surface disturbance, construction, shale pile development, impoundments and dewatering will be evaluated through timetrend and correlation analyses of water quality and quantity parameters.

5.3.1.4 Method of Analysis

(a) Water levels

Monthly water level measurements for four selected alluvial wells (WA03, WA05, WA06, and WAO8) were analyzed for time trends and for differences between level measurements using standard statistical null hypothesis tests.

Time series plots of the water level data are also presented and qualitatively interpreted.
(b) Water quality

The statistical analysis of trends was accomplished by linear regression techniques which are described in Section 5.2.2.4. Parameter means between stations are compared by T-test for Class 1 indicator variables and stations only.

Frequency of data collection has varied from 0-3 observations per year. The irregularity and scarcity of data indicate that subjective evaluation of either abnormally high or low values should be made prior to drawing conclusions.

5.3.1.5 Results and Discussion

(a) Water levels

Time series plots of water level in four selected alluvial wells (WA03, WA05, WA06, and WA08) are presented in Appendix B as Figures B5.3.1-13, B5.3.1-14, B5.3.1-15, and B5.3.1-16. Qualitative interpretation of the figures indicates a possible trend toward lower water level in well WAO3. The data suggest an annual cycle with highest water levels occurring in July and lowest water levels occurring in April. WA05, however, remained relatively constant across all months. Year 1977 shows lowest annual average level possible reflecting the low precipitation occurring that year.

Linear regression analysis was used to calculate the regression of water
level with time. The hypothesis that the slope of the regression line is zero was tested for each of the same four wells. The hypothesis was accepted at the 5% level of significance for all wells indicating the samples statistically could have been taken from wells with no time trend. Results are shown in Appendix Table A5.3.1A-12.

Comparison of the mean water levels in the four wells resulted in rejecting hypotheses of equal water levels in paired comparisons except for wells WA05 and WAO6 which accepted the hypothesis. Tests were made at the 5% level of significance.

(b) Trend Analyses

The results of trend analyses are tabulated for each well in Appendix Tables A5.3.1A-1 - A5.3.1A-11. Units are milligrams per liter. A brief summary is presented below:

Station WAO1 - No significant trends were detected for any of the indicator variables except for sulfate $\left(\mathrm{SO}_{4}\right)$ concentration. However, the trend is not critical because it is negat fve and does not reflect higher concentrations with time. An examination of the data shows that the SO_{4} concentrations were relatively constant over the baseline period (1976), but dropped sharply in a March 1978 measurement. The low measurement, coupled with a relatively high value in October 1974, precipitated the statistical trend.

Station WA02 - No significant trends were detected. The small number of observations of each parameter results in very wide confidence intervals, but the observations are evenly spaced such that no bias exists in the system.

Station WAO3 - Both fluoride and sodium concentrations exhibit significant trends which slope downward, indicating no contamination of the ground water. An abrormally high value for sodium was obtained in October 1974 which was approximately twice the value observed in subsequent measurements made in 1976 and 1978. The same is true for fluorine, which had a value of 1.90 in October 1974 and values approximately 0.40 in subsequent analyses.

Station WA05 - The parameters showed no significant trends with time. A maximum of six observations were made.

Station WA06 - The following parameters had slopes significantly different from zero: B, $\mathrm{F}, \mathrm{SO}_{4}$, Na. They are all negative slopes; thus no increase in parameter concentration is indicated. High parameter values recorded in October 1974 caused the trends to appear.

Station WA07 - The analyses of B, F, and $N a$ indicate a trend in a negative direction.

Station WA08 - No significant trends are detected.
Station WA09 - No significant trends are detected.
Station WAlO - The SO_{4} concentrations show a negative trend. However, the molybdenum analyses show a positive trend. A very low value was recurded for molybdenum in October 1974 followed by more or less constant readings for the next four observations. The abnormally low value dictated the upward trend since there were only five observations. The data indicate that the resulting upward trend was not caused by consistently higher values with time. If the low value is considered spurious, then the remaining four observations do not constitute a trend.

Station WAll - No significant trends are detected.
Station WA12 - No significant trends are detected.
(c) Comparison of Station Means

Appendix Table A5.3.1A-12 summarizes the results of T-test comparisons of parameter means. The comparisons are limited to the four stations identified as Class 1 indicator variables in Section 4.2.1.

With few exceptions, the null hypothesis is rejected between alluvial well locations indicating no significant changes in mean values of water quality parameters. The means of all ten parameters are not significantly different between locations WAO3-WA05 and WA05-WA08. Specific conductance displayed significantly different means between the following location pairs: WA03-WA06, WA03-WA08, WA06-WA05, WA06-WA08.

5.3.1.6 Conclusions

The statistical analysis of available water quality data shows no overall trends over the period extending from the baseline period to the early part of 1978. Conclusions reached through this type of analysis are tentative due to the low frequency of data collection and consequent paucity of data.

Comparison of means between stations showed no significant differences for most comparisons. The notable exception is for specific conductance, which showed differences in four of the six comparisons.
5.3.2 Upper Aquifer $\left(U P C_{7}, U P C_{2}\right)$ and Lower Aquifer $\left(L P C_{3}, L P C_{4}\right)$

5.3.2.1 Scope and Rationale

Data from gross water-bearing intervals above and below the Mahogany Zone were reviewed to assess changes in water level as well as water quality at various depths over time.

5.3.2.2 Objectives

Water level characteristics of aquifers above and below the Mahogany Zone will be compared to levels obtained after the onset of dewatering operations initiated in early 1979. Water level contour maps for 1976-1978 thus provide baseline information.

Water quality at the various depths over time is assessed for statistical significance for the following parameters: specific conductance, boron, aluminum, potassium, total dissolved solids, calcium, sodium, ammonia, and magnesium. The data presented are indicative of baseline conditions since subsurface activities (i.e. shaft-sinking) were not initiated until early 1979.

5.3.2.3 Experimental Design

Water level contour maps were generated for the two intervals to observe changes in head of the respective aquifers during the period November 1976 - November 1978. Well locations are given in Figure 5.3.2-1.

Five succeeding deeper intervals in the UPC 2 and the LPC 3 zones were analyzed for changes in water quality during the period 1976-1977. In the UPC2 zone, analyses of water quality in succeedingly deeper open intervals in the well completions of SG-9-2, Cb-2, SG-11-3, AT-1C-3, and Cb-4 were used. Water quality parameters characteristic of AT-1C-1, which is open to the LPC3 zone, were also analyzed.

5.3.2.4 Method of Analysis

(a) Water levels

Water level contour maps were generated on a monthly basis for the water-bearing zones above and below the Mahogany Zone. Contours are drawn at 50-foot intervals on base maps showing the C-b Tract boundary and well locations with corresponding water levels. A representative map of the Upper Aquifer is given in Figure 5.3.2-2. Additional plots are compiled in Appendix A5.3.2B. Plots for certain months are not given due to missing data or insufficient data to generate meaningful contours. Contour maps of lower aquifer water levels will be generated at a later date.

(b) Water quality

Analysis of variance was used in a 5×4 factorial design to assess the significance of depth and time on the selected water quality parameters. Originally, the data were organized in a factorial design matrix of the form $2 \times 5 \times 4$ representing level classifications:
2. Aquifer depth levels (UPC2 and LPC 3).
5. Graduated depth levels within the aquifer
4. Time Periods (1974, 1975, 1976, 1977).

Figure 5.3.2-2 Potentiometric Surface Map - Upper Aquifer November 1976

Incomplete data precluded use of aquifer depth levels so that the data were analyzed for depth and time trend only. Groups of data which have missing data points have been omitted from analyses and are cross-hatched in tabulated results. The source of variation, sum of the squares, number of degrees of freedom, mean square, and F-statistics were also calculated. A significant $(\alpha=0.05)$ F-Statistic is followed by a double asterisk in these tables.

5.3.2.5 Results and Discussion

Water level contour maps will be used to gauge changes of head in the aquifers during shaft-sinking and mining dewatering operations.

Tables A5.3.2A-1 through A5.3.2A-9 summarize the analysis of variance for the groundwater quality parameters. All parameters, with the exception of boron, have non-significant F-values with respect to time such that no trend exists over time. Boron shows a reduction in concentration with time suggesting that no adverse changes are indicated.

The analysis shows that the specific conductance, potassium, total dissolved solids, calcium, sodium, and magnesium show trends with increasing depth. The wells completed in the UPC2 zone show higher concentrations than the well completed in the LPC3 zone.

5.3.2.6 Conclusions

Water levels exhibit small fluctuations over time such that changes due to dewatering will be readily detected.

Bedrock wells show no significant signs of diminishing water quality over time. The depth relationships, although ascertained with a small amount of data, seem to indicate a lack of communication between the aquifers above and below the Mahogany Zone. Station-to-station comparisons are achieved through ordering of the data according to depth.

6.0 AIR QUALITY AND METEOROLOGY

6.1 Introduction and Scope

The lease stipulated that, during Baseline, air quality be monitored over the entire lease year at four locations for sulfur dioxide, hydrogen sulfide, and suspended particulates using continuous recorders where applicable. The Lessee was also required to monitor hydrocarbons, oxides of nitrogen, and other pollutants. The Lessee was also required to establish a meteorological tower with multilevel instrumentation for measurements of wind speed and direction, relative humidity, and temperature. Subsequent conditions of approval imposed by the Area Oil Shale Supervisor required that upper air studies of temperatures and wind profiles, visibility studies and noise studies be conducted. Initial lease requirements, modified during baseline, required operational performance efficiency of 90 percent for air quality and 95 percent for meteorology.

To satisfy the conditions of the lease and provide additional data, five air quality trailers, a 200-foot meteorological tower, three mechanical weather stations, two acoustic radars, aircraft, free-flying and tethered balloons, special chemical analyses for trace metals, visibility by photometry and sound-level measurement techniques were utilized.

For Development Monitoring, hydrocarbons are no longer required to be monitored, the number of air quality trailers has been reduced from five to two, mechanical weather stations from three to two, acoustic radars from two to one ard trace metal studies were deleted.

Section 6.2 describes the current air quality program and 6.3 the supporting meteorological program.

6.2 Ambient Air Quality

6.2.1 Gaseous Constituents

6.2.1.1 Scope and Rationale

Continuous monitoring of gaseous components of ambient air on and near the C-b Tract has included:

Sulfur dioxide
Carbon monoxide
Ozone
Hydrogen sulfide
Oxides of nitrogen
Nitrogen dioxide
Nitric oxide
The monitoring of these is required by the Lease stipulations and under the State and Federal air quality regulations. Data collected since November 1, 1976 have been reduced and analyzed for trends and shifts from the baseline.

6.2.1.2 Objectives

The objectives of the analyses reported here are: a) to demonstrate compliance with applicable regulations; b) to examine potential long-term trends from baseline; c) to provide a general air quality status assessment; d) to identify potential sources of pollutants; e) to evaluate the significance of monitoring data.

6.2.1.3 Experimental Design

The air quality development monitoring network is shown in Figure 6.2.1-1. Environmental baseline data collection ended October 31, 1976. Starting with November 1, 1976 air quality and meteorological data have been collected continuously at the meteorological tower and air quality trailer site AB23 (formerly 023) located on the C-b Tract. Precipitation data have been taken continuously at Piceance Creek air quality trailer sites AB20 and AB23. Meteorological and air quality monitoring was resumed at this site (AB20) in February 1978. Also commencing in February 1978, two additional sites, AD42 and AD56, were activated to monitor particulates, wind speed, wind direction and ambient temperature. The data collected at each site, the frequency of collection and the start-up dates are shown in Tables 6.2.1-1 and 6.2.1-2.

A variety of factors can cause interruptions in continuous monitoring programs such as that undertaken at oil shale Tract C-b. In order to provide visibility to the usable data collected, data timelines are presented in Figures A6.2.1-1 through A6.2.1-4 showing by site, and parameter, the periods since November 1, 1976 for which usable data have been collected. Data collection has continued since September 1978; it is not yet reduced beyond that point.

Monitoring equipment in use has been subject to changes during the period of this report. During September 1978, having discontinued hydrocarbon monitoring, the Bendix gas chromatograph, which had been used for hydrocarbons and carbon monoxide, was retired. To continue monitoring of carbon monoxide, Beckman Model 866 non-dispersive infrared CO analyzers were installed in Stations AB20 and AB23. During March-July of 1977 an improved model of the sulfur gas analyzer previously used was installed in Station AB23 in parallel with the older unit. The new analyzer, a Meloy SA-185-2A has been in use since that time. In January 1978, Monitor Labs Model 8440 E NO/NOx monitors were installed in Stations AB20 and AB23, replacing the Meloy Model NA-520-2 analyzers previously in use. In each of the above changes, the new instrument is an EPA designated reference or equivalent method.

Specifications for all instruments are detailed in Table A6.2.1-1.

6.2.1.4 Results and Discussion

Results are grouped into separate studies and conclusions for each are drawn.

AMBIENT AIR QUALITY DEVELOPMENT MONITORING NETWORK
Note: () = Systems Dependent
FIGURE 6.2.1-1
TABLE 6.2.1-1

TABLE 6.2.1-2
ABMIENT AIR QUALITY AND METEOROLOGY SAMPLING AND REPORTING FREQUENCIES

Symbols appear on Table 6.2.1-1

Symbol	Sampling Frequency	Minimum Average Time	Minimum Report Frequency	Description
x	10-seconds	5-minutes	1-hour	AQ \& Low Alt. Meteorology
Y	5-minutes	5-minutes	1 -hour	AQ \& Low Ait. Meteorology
Z	Continuous	1 -hour	1-hour	Precipitation
0	Every 3rd day	24-hours	$\begin{aligned} & \text { 24-hours } \\ & \text { every 3rd day } \end{aligned}$	Particulates
2	20-seconds	5-minutes	1 -hour	Temp. difference from 10 -meter to 60 -meter on Met. Tower
W	Approx. 30-seconds	Approx. 30-seconds	Approx. 30-seconds	Double Theodolite Minisonde
U	14-seconds		1-hour	Inversion Height/Mixing Layer from Acoustic Sounder
V	7 times per day every 6th day for 20 days in Sprin and 20 days i Fail	Hourly	Daily (w/hourly max/min.)	Joint Visibility study with C-a from Hunter Creek Site
T	Continuous for approx. 2 days	1-hour	1-hour	SF6 Tracer Studies for Air Diffusion Mode? Validation
S	Weekly	Weekly	Weekly	Evaporation

6.2.1.4.1 Data Uncertainty

Scope and Rationale

Much of the gaseous constituent data, with the exception of ozone, represent levels of concentration at or near the measurement threshold of the instrumentation. Data in this range must be interpreted with care due to several factors:

- Constant sources of error such as electronic noise and concentration fluctuations due to pressure and flow fluctuations in the instrument can represent a large percentage of the total output for low concentrations.
- It is generally not possible to calibrate ambient monitors at low concentrations with available calibration equipment.
- Each instrument is subject to a minimum detection level, below which the output can only be interpreted as noise.

In attempting to use such low-level data in correlative or predictive analysis, one must first determine the level of significance of the data as this will have a pronounced effect on the validity of any such analyses. This approach is indicated for the data on sulfur dioxide, hydrogen sulfide, nitrogen oxides, and carbon monoxide.

With respect to ozone, the measured concentrations have typically been well above the measurement threshold of the instrument. Nonetheless, there will be a degree of uncertainty attached to the ozone data which should be known and considered in relation to any data analysis.

Objectives

- To establish bounds of expected error for all gaseous monitoring data.
- To determine criteria of suitability for analysis for each data set.

Method of Analysis

A thorough analysis of data error requires primary information in three discrete areas:

1. Validity of the measurement method (e.g., Flame photometric detection for sulfur gases).
2. Precision of succesive measurements at a constant concentration, expressed as the standard deviation.
3. Accuracy obtainable with the measuring system.

The criterion of method validity rests on the theoretical basis of the method． In the case of ambient air monitors，the methods in use（especially those which are EPA reference or equivalent methods）are generally recognized through experience to be valid for the constituent in question．

The validity of the method is determined by establishing the appropriateness of the chemistry and physics of the analytical method．For instance， SO_{2} analyzers using the flame photometric detector systems presume all SO_{2} atoms will release the same quantum of energy（E）as a result of excitation by a hydrogen oxygen flame．The assumption is established by the accepted law $E=h_{\eta}$ ，where $h=P$ Panck＇s constant and η is frequency of the radiation；hence the validity of the method is determined．The question of equipment response is a different matter，that is for each h_{n} emitted，the photomultiplier does not necessarily produce a detectable signal．Therefore，the equipment response can be less sensitive than actual physics of the detector．Also，each atom of SO_{2} may not reach an excited state thereby biasing the response on the low side Difficulties with amplifier circuits receiving the photomultiplier output，and attenuating circuits，incrementing the output all contributed to produce a very complex systematic error in measuring h_{n} 。

To establish data scatter，the calibration must be repeated numerous times in order to determine the precision of the analyzer．At least three values for each calibration point should be determined and their standard deviation cal－ culated．The standard deviation is the most reliable index of random error． It should be pointed out that the standard deviation of the mean，$\delta \mathrm{m}$ ，is reduced by successive measurements N ，according to the relationship $\delta x / \sqrt[N]{N}$ ．Therefore， it is not necessary to attempt to enhance the precision of each point by making a large number of determinations．If the standard deviation is large，then a review of the procedure would be more useful than making a large number of determinations．

The standard deviation of each series of measurements then represents the instrument＇s precision at that concentration．Part of the testing required for EPA certification involves this type of procedure．In the analysis presented in this report，manufacturers certified precision values were used due to a lack of information on actual measured precision．

Analyzer accuracy is determined by means of calibration．As applied to air monitors，this involves inputting calibration gas of a known accuracy and precision to the analyzer．The response of the analyzer is then compared to concentration of the standard gas．The resultant accuracy may be expressed as the percentage of the standard represented by the instrument output．The accuracy must be determined over the range of values encountered in ambient monitoring。

Once these basic areas have been analyzed，then the actual error analysis can proceed．

The objective of error analysis is to determine the degree of uncertainty of data from the measuring system，referenced to a specified degree of confidence。 For example，a gaseous monitor result might be expressed as $50 \pm$ PPB（ 90%
confidence), meaning that there is a probability of .9 that the result lies between 45 and 55 PPB. Since trends in, and corretations between air quality parameters are often complex functions of many variables, it is desirable to determine the uncertainty in each variable to the maximum practicable confidence level. For this analysis, a confidence level of 95% has been chosen.

Then the problem simplifies to finding the expected standard deviation of system measurements over an appropriate range of concentrations. Assuming that all significant errors are random, then the variability of measurements at a single concentration will follow a normal frequency distribution. For this it follows that 95% of all measurements will be within two standard deviations (2 2) of the mean.

The mathematics of obtaining an overall system standard deviation as a function of component deviations is described in the Appendix in Table A6.2.1-2.

Results and Discussion

The results of this analysis as applied to each type of gaseous constituent monitor are presented in Figure 6.2.1-2. These plots represent the range of instrument response which would be observed for 95% confidence at a given concentration. The position of the plot relative to the axes is arbitrary, representing an "ideal" calibration. In actual practice, shifts in the slope and intercept of the calibration line might be observed. However, the relative magnitude of error at a given actual concentration would remain as shown.

The plot is not extended below the point where the lower confidence limit intersects the lower detection limit of the instrument. Instrument response below that point cannot be reliably assumed to represent a non-zero concentration.

The variation of expected error with concentration shows a similiar pattern for ozone, carbon monoxide, and nitrogen oxides. In each case, random error due to analyzer precision is dominant over error due to calibration precision. Analyzer precision is given as a fixed percentage of full scale, so it results in a level of error independent of concentration. For the sulfur cases, the error limits are seen to increase with concentration. This is due to the higher level of concentration-dependent calibration error, relative to analyzer precision. Input parameters used in the analysis are listed for each instrument in Table A6.2.1-1.

The results presented must be qualified to the extent that most of the inputs are manufacturer's specifications of performance data, which are directly applicable to the average analyzer of that type and model number. Each individual analyzer would, of course, be subject to some variation from this average. An effort is currently under way to obtain primary calibration and precision data for each analyzer, after which this analysis will be repeated.

NO-NO. 95% CONFIDENCE LIMITS vS CONCENTRATION

$\mathrm{SO}_{2}-\mathrm{H}_{2} \mathrm{~S} \quad 95 \%$ CONFIDENCE LIMITS US CONCENTRATION

Conclusions

1. For each analyzer, there exists a response level below which indicated data are not significant at a given level of confidence. At the 95% confidence level the following limits apply:

Table 6.2.1-3 GAS ANALYZER LOWER LIMITS

Analyzer
SO_{2}
$\mathrm{H}_{2} \mathrm{~S}$
CO
O_{3}
NO,
NO

Lower Limit of Significance
$\left.\begin{array}{rlr}8 \mu \mathrm{~g} / \mathrm{m}^{3} & (\text { LDL } & 5 \mu \mathrm{~g}) \\ 9 \mu \mathrm{~g} / \mathrm{m}^{3} & (\text { LDL } & 7.0 \mu \mathrm{~g}) \\ 900 \mu \mathrm{~g} / \mathrm{m}^{3} & (\text { LDL } & 450 \mu \mathrm{~g}) \\ 21 \mu \mathrm{~g} / \mathrm{m}_{3}^{3} & (\text { LDL } & 1 \mu \mathrm{~g}) \\ 19 \mu \mathrm{~g} / \mathrm{m}^{3} & (\text { LDL } & 4 \mu \mathrm{~g})\end{array}\right)$ as NO_{2}

Note that for each analyzer this lower limit of significance is substantially higher than the Lower Detection Level (LDL).
2. Future analyses should be undertaken only when a suitable fraction of data are above the significance limit.

6.2.1.4.2 Concentrations As Time Histories
These discussions generally refer to the corresponding time-series plots, Figures B6.2.1-1 to B6.2.1-12.

Sulfur Dioxide
In March of 1977, an improved version of the existing SO_{2} analyzer was installed in Station AB 23 . This analyzer, the Meloy SA-185-2A carries a designation as an EPA equivalent method, and is distinguished from the older model largely on the basis of sensitivity. On the plot of SO_{2} concentration vs time, Figure B6.2.1-2, this change is indicated by a drop in the lower detection limit (LDL) on April $1,1977$. The lower LDL implies a lower noise level, which is evidenced in comparing the plot on either side of the change.

Overall, there has been no significant departure from SO_{2} measurements during the baseline period.

Hydrogen Sulfide

Although $\mathrm{H}_{2} \mathrm{~S}$ is not subject to a
National Ambient Air Quality Standard, and therefore does not have an EPA reference method, the analyzers used for SO_{2} may be readily used, after a simple conversion to remove SO_{2} from the sample gas. Instrument response should then be similiar to that observed as an 502 analyzer.

The levels measured during the period of this report contrast with the baseline levels in terms of lower apparent noise and lower peak values, both of which may be more indicative of improved instrumentation than any trend in background levels or source contributions.

Carbon Monoxide

During most of the period of this report, CO was monitored in conjunction with hydrocarbons using a gas chromatograph.

As a result of agency relief from the requirement to monitor hydrocarbons, the chromatograph was retired in August, 1978 and CO-specific instruments installed in Stations AB20 and AB23. The data during September was taken with the new instrument. Although the data reduced at this time are insufficient to provide conclusive evidence, it is likely that less erratic CO levels will be observed at Station AB23 with the new instrument. No data for Station AB20 are included in this report, as the instrument in that station was brought on-line in late September, 1978.

Oxides Of Nitrogen, Nitrogen Dioxide

The observed concentrations of $\mathrm{NO}_{x}-\mathrm{NO}_{2}$ at Stations AB20 and AB23 follow a pattern similiar to the baseline data. The majority of the time levels exist at or below the lower 3 detection limit of the instrument, with short-duration peaks up to $150 \mu \mathrm{~g} / \mathrm{m}$. This behavior correlates well with the expectations of a low regional background level influenced by intermittent contributions from various local combustionsources.

Ozone

The time plots of ozone are unique among the gaseous constituents in showing a distinct seasonal trend distinguishable from the data scatter. As expected, peak levels occur in midsummer, while lowest concentrations are observed in mid-winter, paralleling the variation in insolation. No significant trend is observable in the seasonal high levels over the entire monitoring history at Station AB23. Ozone concentration statistics are presented in Table 6.2.1-4.

The problem of causative factors related to high ozone levels in a rural area is a complex one, subject to the influence of many variables. This problem is treated in a separate Paragraph 6.2.1.4.6.

6.2.1.4.3 Comparisons of Maximum Concentrations With Ambient Air Standards

Table 6.2.1.-5 lists the maximum measured concentrations of gaseous constituents for averaging times corresponding to respective standards. In cases where values exceed the standard, all such values are listed. For the gaseous constituents, there have been no exceedances at the present standards, both State and Federal. A recent action of

TABLE 6.2.1-5

the EPA revised the ozone standard upward from 0.08 to 0.12 ppm . The two cases of hourly-average values in excess of the old standard are well below the current one.

6.2.1.4.4 Correlations With Wind Direction and Speed
 Sulfur gases, nitrogen oxides and carbon monoxide

Concentration roses, depicting variations in concentration with wind speed and direction are presented in Figures A6.2.1-5 thru -9. For the sulfur and nitrogen gases as well as carbon monoxide, there is no detectable dependence of concentration on either wind speed or direction. This result is easily understood in terms of the low levels of these constituents, which are more representative of regional background levels than of any specific source contributions.

Ozone
Plots of ozone concentrations vs. Wind speed and direction are presented in Figure 6.2.1-3. The data are presented in this form since the levels of concentration monitored are typically more significant than the other gaseous constituents. Over the period of time depicted on the plots, it is difficult to reach any conclusion regarding wind dependency. Again, this is characteristic of regional background levels, not influenced to any significant degree by specific sources.

6.2.1.4.5 Special Study: Side-By-Side S02 Measurements

Scope \& Rationale

During the entire history of air monitoring at the $\mathrm{C}-\mathrm{b}$ Tract, measured sulfur dioxide concentrations have averaged' in the vicinity of the measurement threshold of the monitoring instruments, as shown in Figure B6.2.1-2. In order to validate the accuracy of the instruments in this range, and consequently qualify the resultant data, tests of co-located instruments have been made. Two tests were made: one over the period January through March, 1976 at Station AB21, and the other during April through July, 1977 at Station AB23. The earlier test was fully described in the Environmental Baseline Report.

Objectives

- to obtain a measure of agreement between co-located SO_{2} analyzers
- to obtain an indication of the significance of air quality data for low concentrations of SO_{2}

Experimental Design
Two Meloy sulfur dioxide analyzers, one model SA-185-2 and one model SA-185-2A were operated at Station AB23. The two analyzers were connected to the same air intake manifold and the same hydrogen supply. The significant difference between the two analyzers is in the minimum detection limit: 5-PPB for the SA-185-2 and 2 PPB for the SA-185-2A.

Method of Analysis

The data sets for each analyzer were reduced to diurnal tables of hourly averages. These tables were then compared to produce diurnal tables of hourly average difference between analyzer outputs. Maximum and mean hourly difference, and the standard deviation of hourly average differences were computed for each month. Prior to and during the test period, both analyzers were calibrated in an identical manner.

Results and Discussion

Diurnal tables of hourly differences are presented in Tables A6.2.1-3a to d. The results of the above described analyses are presented in Table 6.2.1-6. For each month, the monthly average output of the SA-185-2A monitor never exceeded the minimum detection limit, while the SA-185-2 indicated outputs in excess of its detection limit an average of 10.6% of the four-month period. The average output for the $S A-185-2$ was $0.9 \mu \mathrm{~g} / \mathrm{m}^{3}$ (0.3 PPB). This discrepancy in output might seem contrary to the minimum detection limit specifications for the analyzers, which indicate that the SA-185-2A is the more sensitive instrument. However, the SA-185-2A was a new instrument at the time of the side-by-side tests, and also is made to qualify for EPA certification as a reference method. It is therefore reasonable to expect less drift and lower noise in the SA-185-2A. The combination of noise and drift between calibrations would account for the SA-185-2 indicating a low level of concentration when the new analyzer registered zero.

That most of the significant hourly differences between analyzers was random is demonstrated by the extremely low values for mean hourly difference. The maximum value of this mean, $1.0 \mu \mathrm{~g} / \mathrm{m}^{3}$ or 0.38 PPB , is well within the acceptable noise level for either analyzer. (Instrument specifications can be found in Table A.6.2.1-1。

Conclusions

1) During the four months of side-by-side tests no significant difference between analyzers was found.
2) The performance of the new SA-185-2A analyzer was established as a satisfactory replacement to the SA-185-2.
3) Between the two analyzers, outputs above threshold detection occurred only 10.6% of the time, with monthly average levels of no more than $1.6 \mu \mathrm{~g} / \mathrm{m}^{3}(0.6 \mathrm{PPB})$. The results for both analyzers demonstrate that the background level of SO_{2} is extremely low.
TABLE 6.2.1-6 SUMMARY OF RESULTS OF SIDE-BुY-SIDE SO_{2} ANALYZER TEST $\left(\mathrm{\mu g} / \mathrm{m}^{3}\right.$

4) The standard deviation of the hourly differences for each month exceeds the corresponding monthly average by at least a factor of three, indicating that the actual analyzer output values are of little significance when measuring extremely low concentrations.

6.2.1.4.6 Special Study: Interrelationships of Ozone with Ambient Meteorological Parameters

Scope and Rationale

This is a study of the interrelationships of ozone with ambient air quality parameters. It is based on hourly averages of continuous measurements of ozone, solar radiation, temperature, relative humidity, barometric pressure, wind speed, and wind direction for the month of August, 1977.

Objective

To evaluate the interrelationships of several meteorological parameters on ozone concentrations in search of a weather-related explanation of significant shifts in diurnal ozone concentration levels.

Experimental Design

August, 1977 diurnal tables of hourly averages of continuous observations of ozone, solar radiation, temperature, relative humidity, barometric pressure, wind speed, and wind direction form this data base. Statistical analyses utilizing correlation, partical correlation, multiple regression, univariate time series, and multiple time series transfer functions were performed and evaluated comparatively. Time series analysis was used to develop forecast models with confidence intervals of ozone concentration. Forecasts of ozone concentration are compared with actual observations through periods of ozone-level shift.

Time series consisting of hourly values were plotted for each of the parameters. Ozone series was examined to identify time periods representing normal, 10w, transition, and high levels of concentrations. These periods were examined for interrelationships between ozone and meteorological parameters utilizing computer programs for correlation and multiple linear regression. Outputs of the computer programs provide analyses for evaluating statistical significance of interrelationships and value of these for predicting shifts in levels of concentration for ozone. (Bullard and Fosdick, 1979)

Results and Discussion

The primary data used for the study are the hourly measurements of ozone, solar radiation, temperature, relative humidity, barametric pressure, wind speed, and wind direction for the month of August 1977. Since these data were analyzed as time series, they are
presented here as a composite of computer plots of the individual diurnal series in Figure 6.2.1-4 with ozone in the center of the figure. The parameters were plotted by hour; days of the month are indicated. Vorticity data derived for the 500 mb pressure level were also used in the analysis and plotted as an overlay on the ozone plot.

Of interest in this study were shifts in the ozone level from a "normal" to "low" and then to "high", as indicated on Figure 6.2.1-5.

Day 23 was designated as "transition" day since the ozone level appeared to shift from the "low" to "high" level on that day. The "normal" period is extended through day 17 in later time series analyses.

The shifts between the levels of ozone as measured by the means and standard deviations were significant. Daytime highs and nighttime lows also shifted indicating that the diurnal patterns themselves completely shifted levels.

TABE 6.2.1-7
SWMF CASS gmathim minlx

		OZONE	$\begin{aligned} & \text { SOUR } \\ & \text { RADIATION } \end{aligned}$	TEMP.	RH	Press	W
azowe	N	1.00					
	L	1.00					
	T	1.00					
	H	1.00					
SOLAR molation	M	. 52	1.00				
	L	. 49	1.00				
	T	. 37	1.00				
	H	. 18	1.00				
TEPERATURE.	\cdots	. 80	. 67	1.00			
	L	. 86	. 66	1.00			
	T	-. 36	. 66	1.00			
	H	. 55	. 69	1.00			
	N	-. 75	-. 36	-. 69	1.00		
MuIdity	L	-. 82	-. 58	-. 95	1.00		
	T	-. 55	-. 81	-. 48	1.00		
	H	-. 40	-. 49	- . 82	1.00		
M MOMETRIC	N	-. 29	. 13	-. 31	. 46	1.00	
PAESSURE	L				. 53	1.00	
	T	. 37	-. 07	-. 13	-. 96	1.00	
	\cdots	. 52	-. 22	-. 05	. 36	1.00	
MIMO	\%	. 45	. 37	. 6	-. 34	-. 28	1.00
SPEED	1	. 6	. 67	. 78	-. 68	-. 38	1.00
	T H	.i1	. 32	. 85	-. 70	-. 13	1.00 1.00

NOTE: Normal, Low, Transition, and High ozone periods are designated by $\mathrm{N}, \mathrm{L}, \mathrm{T}$, and H respectively. Correlation coefficients greater than .50 are significant at the .99 confidence level.

Coefficients of correlation were then examined to test the hypothesis that the interrelationships among the parameters remain unchanged for each of the ozone levels. Table 6.2.1-7 shows the matrix of the simple cross correlations without time lags. As might be expected, high correlation coefficients are indicated reflecting the significant diurnal effect on each of the parameters. Coefficients above 0.50 are signjficant at the 99 percent confidence level for the sample sizes.

Figure 6.2.1-5
OZONE STUDY LEVELS AND ASSOCIATED STATISTICS

Significant
Shift?
E
た
E

Ref. | ∞ | 0 | 0 |
| :--- | :--- | :--- |
| | 0 | 0 |
| | $>$ | 1 |

Daytime
High

 $130(\mathrm{ug} / \mathrm{m}$

408

F

408

Relative changes in coefficient levels and/or sign indicate the following with respect to interrelationships of ozone to other parameters:
between N and $L=$ little change in sign of values of coefficients between N and $H=$ significant change in sign of values of all coefficients
between L and $H=$ significant change in sign or values of all coefficients

Indications are that the "high" ozone level has different interrelationships with the meteorological parameters than exists for "normal" and "low" ozone levels.

Multiple linear regression analyses were performed in order to obtain the predictive relationship between ozone and a set of observations of meteorological parameters. The general form of the linear regression equation for estimating ozone $\left(\mathrm{O}_{3}\right)$ from a set of observations of the related parameters is:

$$
\hat{0}_{3}=B_{0}+C_{7} S R+C_{2} T+C_{3} R H+C_{4} P+C_{5} W S
$$

where

```
\mp@subsup{\hat{0}}{3}{}}\mathrm{ is ozone estimated value.
B
C},\mp@subsup{C}{2}{\prime},\ldots..\mp@subsup{C}{5}{}\mathrm{ are regression coefficients for the respective parameters
    in the observed set.
SR = solar radiation (langleys)
    T = temperature ( }\mp@subsup{}{}{\circ}\textrm{C}
RH = relative humidity (%)
    P = pressure (mb)
WS = wind speed (m/s)
```

Table 6.2.1-8 shows the regression coefficients for the selected ozone level periods:

TABLE 6.2.1-8
REGRESSION EQUATION COEFFICIENTS

Leve 1	Bo Intercept						Multiple Correlation Coefficient
		$\begin{aligned} & \mathrm{C}_{1} \\ & \mathrm{SR} \\ & \hline \end{aligned}$	C_{2}	$\begin{aligned} & \mathrm{C}_{3} \\ & \mathrm{RH} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}_{4} \\ & \mathrm{P} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}_{5} \\ & \text { WS } \end{aligned}$	
Normal	- 964.8	. 266	. 385	-. 587	-1.68	-. 777	. 97
Low	-1802	-. 101	1.09	-. 250	2.28	. 185	. 88
Transition	-13089	-1.02	. 383	-2.29	16.76	. 824	. 93
High	-3679	-. 091	. 120	-. 332	4.83	1.17	. 89
Norm Est	-491.3	-. 005	1.11	-. 36	. 66	-. 91	. 85

Note that B_{0}, the intercept, is highly dependent on C_{4}, the pressure coefficient. This is because pressure has a mean value of about 790 mb , order of magnitude higher than any other parameter. Pressure change is a precursor of weather fronts which may be associated with ozone shift. Temperature and relative humidity are highly negatively correlated and one could be dropped from the set of estimating parameters. However, the combined contribution of temperature and relative humidity are significant in the estimating equation.

Comparison of regression coefficients across the ozone levels show that, for the transition period, solar radiation, relative humidity, and pressure coefficients, exhibit the greatest change from their previous level. Pressure influenced ozone levels in the transition phase. The meteorological parameter interrelationships with ozone change during the transition period. This change appears to be storm front related.

The high multiple correlation coefficients indicate high predictive confidence in the regression equation over the time periods.

Conclusions

The analysis presented in this section demonstrates that significant correlations exist between shift in ozone levels and changes in measurable meteorological parameters. These correlations tend to indicate a natural mechanism for observed increases above background ozone levels. However, before details of such a mechanism may be elucidated, additional data possibly including parameters such as vorticity must be undertaken.

6.2.2.1 Scope and Rationale

Monitoring of ambient particulates is required by the $0 i l$ Shale Lease Stipulations and by Federal and State Air Quality Regulations. Measurements were made on a daily basis through August 1977 and on an everythird day schedule at Station AB23 from September 1977 through September 1978 and continue on that basis. Additional particulate monitoring was initiated in February 1978 at Stations AB20, AD42, and AD56 on the same three-day sampling schedule. During visibility measurement days, size-distributed samples have been taken at Station AB23.

6.2.2.2 Objectives

- to demonstrate compliance with applicable regulations
- to examine potential long-term trends
- to provide a general air quality status assessment
- to identify potential particulate sources

6.2.2.3 Experimental Design

The EPA reference method for particulate monitoring, the hi-volume sampler, is employed at all stations to measure particulates. The samplers are located such that the air intakes are approximately 4.6 meters above ground level. An Anderson particle-sizing head is used in place of the standard filter assembly for size-distributed samples. As yet, there is no EPA reference method for particle size sampling.

6.2.2.4 Method of Analysis

The data on ambient particulates were not subjected to any formal analysis that resulted in usable information. Multiple regression analysis utilizing a technique and set of correlative parameters similar to those used in the visibility analysis failed to produce any valid correlations.

Three dimensional and time-series plots of particulate data provide a means of interpreting the data in a qualitative way. These are discussed in the following subsections.

6.2.2.5 Results and Discussion

6.2.2.5.1 Correlation With Wind Direction and Speed

Plots of particulate concentration vs. wind speed and direction for Station AB23 are presented in Figure 6.2.2-1. In general, the data show a marked dependency on wind speed, as would be expected in a situation where particulate concentrations are primarily the result of fugitive sources. This factor is most evident during the spring and summer quarters. During the rest of a typical year, substantial periods of snow cover reduce the background level and change this relationship.

FIGURE 6.2.2-1
DAILY TOTAL PARTICULATE CONCENTRATIONS AS FUNCTIONS OF WIND SPEED AND DIRECTION

Particulates generated then on or near the Tract will show a much smaller dependence on wind speed, sometimes actually resulting in higher concentrations at lower wind speed. These source-specific contributions become less significant compared to background levels during the spring-summer period.

There is no definite wind direction dependence indicated. The virtual absence of particulate measurements in the wind sector centered around the northnortheast direction is indicative of the low incidence of winds from that sector. Since particulate measurements are discrete 24 -hour samples, the direction used for a particular sample is the average wind direction during that 24 -hour period.

6.2.2.5.2 Concentrations As Time Histories

The time series plot of particulate concentrations for Station AB23 (Figure B6.2.2-2) is used for this discussion, as it is the only continuous record covering the complete history of air monitoring at the C-b Tract.

The one dominant feature of the plot is the seasonal variation. Maximum levels typically occur in the spring and fall, minimum levels in the winter. Concentrations during the summer months are variable from year to year, but are lower than the spring and fall peaks in most cases.

Histograms depicting the frequency distributions of particulate concentrations (Figures 6.2.2-2 and -3) show the predominance of low concentrations. The composite histogram displays a skewed log-normal distribution, typical of particulate concentrations influenced mainly by random variation in meteorological parameters.

6.2.2.5.3 Maximum Concentrations Compared with Ambient Standards

Table 6.2.1-5 lists the maximum annual and 24-hour particulate concentrations. Comparing these to ambient standards is complicated by the number of standards currently existing.

The Federal Primary Standards have not been exceeded at any time. On a 24-hour basis, the maximum value is $178 \mu \mathrm{~g} / \mathrm{m}^{3}$ compared to the proposed standard of 260. A wider margin exists on an annual basis. The 24 -hour maximum, however, exceeds the Federal Secondary Standard, which is identical to the Colorado Standard, $150 \mu \mathrm{~g} / \mathrm{m}^{3}$. Neither the Federal Secondary Annual Standard of $60 \mu \mathrm{~g} / \mathrm{m}^{3}$ nor the State Annual Standard $45 \mu \mathrm{~g} / \mathrm{m}^{3}$ is approached.

Colorado has recently proposed a revision of their particulate standards to parallel the Federal Primary Standards. This action would bring all particulate data below all standards except the Federal Secondary 24-hour.

Attention is called to the fact that in the Environmental Baseline Summary Report peak particulate levels are attributed to fugitive dust for the time period exceedances were obtained.

FIGURE 6.2.2-2

FREQUENCY DISTRIBUTION OF PARTICULATE MEASUREMENTS

 BY YEAR

FIGURE 6.2.2-3 COMPOSITE PARTICULATE FREQUENCY DISTRIBUTION

6.2.2.6 Conclusions

1. Particulates in the area of the C-b Tract are primarily rural in origin, particularly those responsible for maximum concentrations.
2. Although firm correlations have yet to be drawn, seasonal trends in particulate concentrations suggest a general meteorological dependence.
3. No long-term trend over time is evident in the particulate data taken through September, 1978.

6.2.3 Visibility

6.2.3.1 Scope and Rationale

The visibility monitoring program has been cosponsored by the C-b and Rio Blanco Shale 0il Projects. Measurements were taken every sixth day for a total of ten days in the Spring quarter, 1978, and ten days in the Fall. There are no state or federal requirements for visibility monitoring, however, the program is required under the Federal Oil Shale Lease Environmental Stipulations.

6.2.3.2 Objectives

- to establish baseline visibility levels for the Piceance Basin
- to identify any trends in visibility
- to establish correlations between visibility and meteorological and/or air quality parameters.

6.2.3.3 Experimental Design

Visibility data were obtained by means of photographs taken from an observation site approximately eight miles southwest of Piceance Creek on a ridge between Hunter Creek and Dry Gulch. This site was chosen for its proximity to the C-a and C-b Tracts, as well as for its accessability and range of views.

Photographs were taken at hourly intervals throughout the measurement days in each of four views. (See Figure 6.2.3-1). The use of at least two objects in each view enabled the measurement of visual range under a variety of visibility conditions. The locations of the observation site and objects are shown on the Figure.

Visual range information is extracted from the photographs by means of optical density measurements on the portions of the photograph representing a given object and the horizon sky directly above it. These densities, together with the actual object-camera distance and the object albedo are used to calculate a visual range.

6.2.3.4 Methods of Analysis

In that there has been only one year of seasonal visibility measurements since the baseline visibility study of 1975-1976, there is no basis for analysis of long term trends in visibility. Visual range results have been compiled and averaged on a per-view and composite basis over monthly, seasonal, and annual periods to facilitate comparison with baseline data.

There has been analysis of a different kind applied to the 1978 visibility

data, utilizing the results of the correlation and regression analysis for visual range presented in the Enviromental Baseline Report. These results are presented in summary form in Table 6.2.3-1.

The multiple regression coefficients and intercept values from the table were used with meteorological data from visibility measurement days to compute an estimated visual range, according to the formula

$$
\begin{aligned}
& \text { Yest }=b_{o}+\varepsilon_{i}\left(b_{i} x_{i}\right) \\
& b_{0}= \text { intercept } \\
& b_{i}= \text { regression coefficient, ith variable } \\
& x= \text { value of ith primary variable } \\
& i=1 \text { to 8 primary variables }
\end{aligned}
$$

For the case presented, all eight primary variables were used.

6.2.3.5 Results and Discussion

The results of the 1978 visibility monitoring program, compared, where appropriate, with baseline results, are presented in Figures 6.2.3-2 through 6.2.3-5. The daily variation in mean visual range is depicted in Figure 6.2.3-2. These time plots indicate the sharp drops in mean visual which accompanied weather changes during early May and late November. Descriptions of general weather conditions are contained in the Site Log Sheets presented in Appendix A6.2.3.

The monthly composite visual range distributions, Figure 6.2.3-3, show shifts both up and down scale from the baseline data. Additional years of data will be required before any trend could be detected. The annual composite distributions shown in Figure 6.2.3-4 indicate a high degree of overall comparability between 1975-76 and 1978. The composites for each view appear to have a stronger central tendency for '78 than for '75-'76, which would be indicative of fewer extremes in meteorological parameters.

No explanation has been found for the low frequency of visual range in the $60-69$ mile range which was found in both data sets.

Results of the multiple regression analysis are presented in Table 6.2.3-2. In general the error of the estimated visual range was too large for this technique to be of value in predicting a daily mean visual range from a set of meteorological parameters. However, a comparison of the mean values shows a good approximation of the means of the measured values. Thus the computation method may prove to be useful in assessing the validity of future visibility monitoring, as the data base for rearession become laraer.
Table 6.2.3-1
SUMMARY OF VISUAL RANGE CORRELATION AND REGRESSION ANALYSES
FROM ENVIRONMENTAL BASELINE REPORT, VOLUME 3

FIGURE 6.2.3-2
VARIATION IN DAILY MEAN VISUAL RANGE FOR EACH VIEW PICEANCE CREEK BASIN, COLORADO SPRING and FALL, 1978

FIGURE 6.2.3-4
ANNUAL COMPOSITE DISTRIBUTION OF VISUAL RANGE PICEANCE CREEK BASIN, COLORADO SPRING and FALL, 1978

COMPARISON OF PREDICTED AND ACTUAL VISUAL RANGE FOR 1978

$\infty \varnothing \infty$
I
∞
∞
∞

$$
\begin{array}{r}
8 \\
6 \\
6 \\
4 \\
5 \\
6 \\
4 \\
6 \\
13 \\
9 \\
4 \\
5 \\
8 \\
3 \\
20 \\
4 \\
1 \\
14 \\
4
\end{array}
$$ 78

86
81

$$
\dot{x}_{2}^{\stackrel{x}{2}} \stackrel{n}{3}
$$

\qquad
录

rean Lenuuy ueaw Lenuuy

 -

$$
\begin{gathered}
\left.0_{3}{ }_{(\mu \mathrm{m}}{ }^{3}\right)
\end{gathered}
$$

Table 6.2.3-2

 888808889888888888
0000000000000000000 뚤워

*Based on less than 50% data recovery; not counted in means; corresponding predicted values also not counted.

[^2]1. No time trends in visual range are detectable based on presently available data.
2. The influence of meteorological parameters on visual range is not yet sufficiently well defined to allow estimation of daily visual ranges, although seasonal and annual means may be estimated with more confidence. Additional analysis should attempt to identify additional correlative parameters.

6.3 Meteorology

6.3.1 Climatological Records

6.3.1.1 Scope and Rationale

These climatological parameters include temperature, solar radiation, precipitation, evaporation, relative humidity, and barometric pressure.

The justification for climatological records is primarily to serve as a historical data base to assess climatological effects principally on the biotic portion of ecosystem so they may subsequently be sorted out from potential man-induced effects.

6.3.1.2 Objectives

Objectives are to establish this historical data base and to determine any cyclical or long-term trends that might exist as well as averages and extremes, as appropriate.

6.3.1.3 Experimental Design

Parameters measured, instrumentation used, sampling stations (Figure 6.3.1-1) and min。 reporting frequency are presented in Table 6.3.1-1.

6.3.1.4 Methods of Analysis

Table 6.3.1-2 presents a summary of data formats and analysis along with station identification. Data presentation and analysis techniques include Box-Jenkins time series for temperature, time series plots for all Class I indicator variables, histograms, plots and tables. In the cases of solar radiation and precipitation the methods include techniques for monthly and annual totals in presence of missing data.

6.3.1.5 Results and Discussion

6.3.1.5.1 Temperature

Annual mean temperatures at the Tract (Sta.AB23) have averaged between 6 and $7^{\circ} \mathrm{C}$ over the past four years. BoxJenkins analysis of the monthly means (Table A6.3.1-1) yielded a total (4 year) series mean of $6.05^{\circ} \mathrm{C}$ with no discernable trend; projections over the next year with 95% confidence using a seasonal autoregressive model are shown on Figure 6.3.1-2.

Between-station comparisons (Sta.AB20 vs. AB23) indicate minimum temperatures 18 to $21^{\circ} \mathrm{C}$ cooler in Piceance Valley than on Tract, due principally to cold air drainage associated with katabatic winds, with Valley temperatures reaching extremes of $-43^{\circ} \mathrm{C}$.

FIGURE 6.3.1-1
CLIMATOLOGICAL
NETWORK

\(\left.\begin{array}{llccc}PARAMETER \& INSTRUMENT \& STATION(S) \& COMPUTER

CODE\end{array}\right]\)| MINIMUM REPORTING |
| :---: |
| FREQUENCY |

TABLE 6.3.1-2
CLIMATOLOGICAL DATA SUMMARY

VARIABLE	ITEM	STA.	TYPE PRESENTATION/ ANALYSIS	FIGURE/ TABLE NO.
Air Temperature	Monthly Mean Daily Mean, Min, Max Monthly Values of Hrly Max, Mean, Min, Growing Season Degree Days	AB23 AB20,23 AD42,56 AB20,23 AB23 AB23	Box Jenkins Time Series Time Series Plots Tabular Plot Table - Start, End, Length Tabular	Fig. 6.3.1-2 Tab.A6.3.1-1 Fig. B6.3.1-2,3 Fig. B6.3.1-4,5 Tab. A6.3.1-2 Fig. 6.3.1-3 Tab. A6.3.1-3 Tab. A6.3.1-3
Direct Solar Radiation	Daily Total Daily Mean; Max \& Min for Month	$\begin{aligned} & \text { AB23 } \\ & \text { AB23 } \end{aligned}$	Time Series Plot Tabular - Values Corrected for missing data	$\begin{aligned} & \text { Fig. B6.3.1-7 } \\ & \text { Tab. A6.3.1-4 } \end{aligned}$
Relative Humidity	Daily Mean, Min, Max Monthly Values of Hrly Max, Mean \& Min	$\begin{aligned} & A B 23 \\ & \text { AB23 } \end{aligned}$	Time Series Plot Tabular	Fig. B6.3.1-1 Tab. A6.3.1-5
Precipitation	Daily Total Monthly Total Monthly Total 1-Hr Max 3 Mo. Sliding Total Between Sta Compar.	AB20,23 AB20,23 WU15,22 WU50,58 WU70 BCO1 to 09, 13 AB23 AB20,23 AB23 AB20,23	Time Series Plots Averages over all Sta \pm the micro-climate sta; äpprox. annual total Histogram (with Growing Season) Tabular Tabular Histograms	Fig. B6.3.1-9, Tab. A6.3.1-6a thru 6d Fig. 6.3.1-3 Tab. 6.3.1-3 Tab. 6.3.1-3 Fig. 6.3.1-4
Evaporation	Daily Mean Daily Mean	$\begin{aligned} & A B 23 \\ & A B 23 \end{aligned}$	Time Series Plot (Pan) Tabular - Pan \& Lake	Fig. B6.3.1-1 Tab. A6.3.1-7
Barometric Pressure	Daily Mean, Min, Max Monthly Values of Hrly Max, Mean \& Min	AB23 AB23	Time Series Plot Tabular	Fig. B6.3.1-6 Tab. A6.3.1-8

Growing season and degree-day data are presented on Table A6.3.1-3. Growing seasons over the past four years have varied from 111 days in 1976 to 144 days in 1977, yet the degree-days referenced to $18^{\circ} \mathrm{C}$ (Munn (1970)) were highest in 1978 ($223^{\circ} \mathrm{C}$-days) indicating the highest average temperatures and corresponding to a growing season of 124 days.

6.3.1.5.2 Solar Radiation

Direct solar radiation as measured by the pyranometer varies from a monthly average of 620 langleys per day in June near summer solstice to approximately 130 in December near winter solstice. This variation approximates the yearly cycle in the peaks of cosine of the sun's zenith angle. Values presented in Table A6.3.l-4 have been corrected for missing data by applying a correction factor. This correction factor is the ratio of average daylight hours per month to pyranometer channel "uptime" hours per month for cases where uptime exceeds 50% of the daylight hours per month. Values obtained for the Tract in June have been compared with values obtained for 400 N latitude (approx. Tract latitude) from Sellers, Physical Climatology (Figure 5):

TRACT
744
620

SELLERS
700 ly/day
592

Sellers "average" terms included:
Q, direct beam solar radiation incident on earth surface
$+q$, diffuse solar radiation incident on earth surface $389 \mathrm{ly} / \mathrm{day}$
Cr , backscattering by clouds 164
Ar, backscattering by air molecules, dust, water vapor 39
Total $592 \mathrm{ly} / \mathrm{day}$
Additional terms in Sellers peak (cloudless, dry day)
C_{a}, (no) absorption by clouds $\quad 25$
Total $700 \mathrm{ly} /$ day

6.3.1.5.3 Relative Humidity

Annual mean relative humidity at the Tract, (Sta. AB23) has averaged between 54 and 56% over the past 4 years, with winter hourly minimums to 10 and summer minimums to 9 (Table A6,3.1-5).

6.3.1.5.4 Precipitation

Precipitation data, as indicated on Figure 6.3.1-1 and Table 6.3.1-1 include measurements near two air quality stations, 4 USGS stream gaugung stations, 1 USGS station on the Roan Plateau, and 10 microclimate stations (under canopies). Monthly averages over all stations

are presented in Tables A6．3．1－6a through－6d．Month1y averages at the USGS stations are approximate only，inasmuch as sampling of these stations is somewhat randomized．Annual totals（ \pm the microclimate stations and excluding the Roan Plateau station for which precipitation is higher than the Tract locale）， 3 －month running totals and the 1 －hour peaks for the past four years are given on Table 6．3．1－3．Monthly histographs for each year are presented on Figure 6．3．1－3，along with growing season information．Although 1977 was the wettest of the four years，$(35.7 \mathrm{~cm})$ ，its distribution was such that it came too late in the year to be a major influence on productivity（see the late peak in May－July），a fact borne out in the ecosystem interrelationships section。 Lightest annual precipitation was 23.6 cm in 1976．Peak down－pours for a 1－hour duration have reached 4.3 cm on September 3，1977．Between－ station comparisons for $A B 20$ and $A B 23$ are portrayed on Figure 6．3．1－4 as histograms，showing the local nature of precipitation between Tract（AB23） and Valley（AB20）。 Differences in monthly totals of as much as 5.4 cm were observed in September 1977．

6．3．1．5．5 Evaporation

Evaporation during the growing season has been measured by an evaporation pan at Sta。AB23 in 1978。 Monthly totals （Table A6．3．1－7）ranged from 17.7 to 27.0 cm ，as＂pan＂values；assuming a 0.7 pan coefficient，lake values respectively range from 12.4 to 18.9 cm ．

6．3．1．5．6 Barometric Pressure

Annual mean barometric pressures at Tract Sta．AB23 have averaged approximately 790 mb over the past four years with hourly minimums as low as 753，and hourly maximums as high as 804 mb ， （Table A6．3．1－8）．
TABLE 6.3.1-3
PRECIPITATION (cm)

YEAR	ANNUAL TOTAL*		3-MONTH TOTAL* (Incl. Micro. Sta)			1-HOUR MAXIMUM		
	EXCLUSIVE OF MICROCLIMATE STATIONS	INCLUDING MICROCLIMATE STATIONS	$\begin{aligned} & \text { MAR- } \\ & \text { APR- } \\ & \text { MAY } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { APR- } \\ & \text { MAY - } \\ & \text { JUN } \end{aligned}$	$\begin{aligned} & \text { MAY- } \\ & \text { JUN- } \\ & \text { JULL } \end{aligned}$	AMOUNT	DATE	
1975	24.95	24.86	5.74	7.53	8.06	1.19	AUGUST	14
1976	23.64	21.46	8.10	5.91	5.66	0.51	MAY	6
1977	35.74	30.35	4.38	2.52	8.15	4.32	SEPTEMBER	3
1978	34.94	25.51	11.80	8.72	5.93	1.35	MAY	21

* Obtained from Monthly averages over all stations
in vicinity of Tract (Excluding the Roan Plateau Station)

6.3.2 Wind Fields

6.3.2.1 Scope and Rationale:

This section analyzes the wind field data collected at the meteorological tower, and stations AB20, AB23, AB24, AD42, and AD56. Data consist of wind speed, wind direction, vertical variations in horizontal wind speed and wind direction, stability class, and upper air characteristics as determined by double theodolite, temperature-instrumented pilot balloon, acoustic-radar, and tethersonde soundings. Wind flow patterns and stability class provide information for diffusion modeling and pollutant transport and concentration. A summary of tracer test conducted in September 1978 is included as a specific analysis of typical meterological conditions in support of diffusion modeling.

6.3.2.2 Objectives:

The objectives of this program are:
a) to refine the knowledge of the wind fields in the vicinity of the $\mathrm{C}-\mathrm{b}$ Tract.
b) to provide supporting information for air quality
data analysis.
c) to provide inputs for air diffusion modeling.

6.3.2.3 Experimental Design:

Sampling frequency for wind data is identical to that of the air quality parameters.

Parameters measured are shown in Table 6.3.2-1.
TABLE 6.3.2-1 WIND FIELD PARAMETERS AND STATIONS

Parameter

10-m horizontal wind speed
10 m -horizontal wind direction
$30-\mathrm{m}, 60-\mathrm{m}$ horizontal wind speed
30-m, 60-m " " direction
10,30 60-m horizontal wind dir. std. deviation*
Δ Temp. $(60 \mathrm{~m}$ to 10 m)
Mixing layer height
Winds aloft:
Speed and direction
Temperature

* Computed quantity

Instrument
Anemometer
Vane
Aneometer
Vane
Vane
ΔT Sensor
Acoustic Radar
Double theodolite, AB24
Temp. instrumented
minisonde or pibal AB24

Thus with the above measurements the near-surface (10 m) wind field is assessed at five stations.

The winds-aloft study was a joint C-b, EPA study conducted for a one-year period (October 1977-78)

Near-surface wind fields are determined from continuous monitoring of winds at the 10 meter height. The meteorological tower levels along with acoustic radar and pibal trajectories provide data for vertical wind structure and stability conditions important for determining plume rise and for diffusion modeling.

6.3.2.4 Method of Analysis:

Analysis in this section consists of comparisons of wind field data over time and between sites. Temporal comparisons are made by comparing quarterly wind roses over several years at a given site and elevation. Seasonal differences are noted. In addition, time series plots are presented for winds at mixing-layer and inversion heights on Figures B6.3.2-1 to -12. Spatial comparisons consist of comparisons of wind roses, inversion-height statistics, and pibal temperature - altitude profiles with identical or comparable data collected at different sites. A study of the translatability of acoustic sounder data taken in Piceance Creek to the C-b Tract area is reported.

6.3.2.5 Results and Discussion:

The Environmental Baseline Final Report Volume 3, presents some detailed analyses of wind field data. Data collected since that report have been less extensive. Analyses presented here are in the form of extensions of some of the studies previously reported. It is discussed in three parts: a) near-surface wind fields, b) upper-air wind structure, and c) summary of tracer test conducted on Sepember 14, 1978.

6.3.2.5.1 Near-Surface Wind Fields

Determination of predominant wind speed and wind directions can be made by examination of quarterly wind-roses over the seasons and from year to year. Figures A6.3.2A-1 through A6.3.2A-8 present the quarterly wind rose plots for two years for the various meteorological stations. A summary of the predominant wind direction and speeds is presented in Table 6.3.2-2. The predominant wind direction at the meteorological tower is SSW and there is virtually no change from year to year. Fall and winter quarters have lower wind speeds than spring and summer at the 10 meter level. However, at the 30 meter level the wind speed difference between the quarters is less. As expected, wind speeds at 30 meter level are higher than at the 10 meter level.

Stations located in or near Piceance Creek Valley (AB20, AD42, AD56) tend to show downstream (drainage) flow at night (E-ESE) and upstream flow (W-WNW) in daytime at all stations and for all seasons with drainage predominant.
TABLE 6.3.2-2 WIND ROSE COMPARISON AND OBSERVATIONS

Site	Quarter	Predominant Wind Direction and Speed				
		197	-1975	1975-1976	1976-1977	1977-1978
Tower (AA23) 10 meter	Fall				SSW (1-3)	SSW (<1)
	Winter				SSW (1-3)	SSW (1-3)
	Spring				SSW (5-8)	SSW (3-5)
	Summer				SSW (5-8)	SSW (5-8)
Tower (AA23) 30 meter	Fal1	S	($5-8 \mathrm{~m} / \mathrm{sec}$)	SSW (5-8)	SSW (5-8)	SSW (5-8)
	Winter		(5-8)	SSW (5-8)	SSW (8-11)	SSW (3-5)
	Spring		(5-8)	SSW (5-8)	SSW (8-11)	S (3-5)
	Summer		(5-8)	SSW (5-8)	SSW (5-8)	SSW (5-8)
$\begin{aligned} & \text { AB20 } \\ & 10 \text { meter } \end{aligned}$	Fall				E (1-3)	
	Winter					
	Spring					ESE (1-3)
	Summer					E (1-3)
AD42 10 meter	Fall					
	Winter					
	Spring					$\text { ESE }(1-3)$
	Summer					$E(1-3)$
$\begin{aligned} & \text { AD56 } \\ & 10 \text { meter } \end{aligned}$	Fall					
	Winter					
	Spring					SE (1-3)
	Summer					SE (1-3)

Three analyses are presented in this section: a) Acoustic radar inversion and mixing data and the representativeness of the data to the C-b Tract area; b) double-versus single-theodolite pibal profiles; and c) atmospheric stability.

a) Inversion and Mixing Heights

Temperature inversion heights are measured by means of an AeroVironment Model 300 Acoustic Radar. The instrument was reactivated at Piceance Creek station AB20 in November 1977. The output of the instrument is a continuous strip chart record of reflected sound signals associated with thermal turbulence signatures; such signatures vary in character depending on whether the atmosphere is stable or unstable. The chart provides a means for determining the height in meters of temperature inversions and mixing layers above ground level.

Figure A6.3.2A-9 shows average monthly inversion heights for months of December 1977 through August 1978. The months are grouped by quarters to show seasonal patterns. Plots have been limited to hours with expectation of occurrence greater than 0.5. Winter months show average inversion heights of about 175 meters above ground level. The average afternoon onset time is 1830 hours and breakup the next morning about 1100 for an average duration of 16-1/2 hours. Spring months show average inversion heights of 200 meters. Onset time is about 1 hour later at 1930 and breakup is about 0900 the next morning. Average duration is 13-1/2 hours. The plots show the greatest average height range for the summer months with June averaging 300 meters, July averaging 350 meters, and August with 400 meter average. Duration in summer is shorter with average onset time of 1930 and breakup next morning about 0830 for about 13 hours average duration.

Constant potential temperature and constant pressure lines on a cross section plot of elevation profiles from Piceance Creek to the C-b Tract are presented on Figures A6.3.2A-10 and -11 for two dates corresponding to tethersonde balloon flights. It is expected that inversion height profiles approximate lines of constant potential temperature as they exist on the same date. The accustic radar is located at station $A B 20$, the lowest point on the profile. Inversion heights in meters above this station can be translated to heights above the meteorological tower and compared with the constant potential temperature lines. The top of the 60 meter meteorological tower translates to 225 ± 25 meters above the acoustic radar at site AB2O.

To investigate the translatability of acoustic radar data observed in Piceance Creek to the C-b Tract, a comparison of inversion height measurements taken in 1975 and 1976 were made. Two acoustic radars were operational, one at the meteorological tower site and the other in Piceance Creek first at site AC21 and in June 1976 moved to site AC20. It has been possible to screen from the statistics inversions that were observed concurrently at both stations. Table 6.3.2-3 shows the monthly mean inversion duration and heights of the concurrent

TABLE 6.3.2-3 MONTHLY MEAN INVERSION HEIGHTS

Site	Year	Month	Mean(Hours) Duration	Mean Max. Height (m)	Mean Min. Height (m)	Mean Avg Height (m)
AB21	75	Nov.	18.09	278.11	65.36	198.29
AB23	75	Nov.	12.73	161.85	45.47	99.09
AB21	75	Dec.	15.50	260.91	65.84	167.34
AB23	75	Dec.	16.80	195.99	60.05	113.57
AB21	76	Jan.	11.38	399.48	143.18	292.76
AB23	76	Jan.	14.31	219.99	65.04	145.43
AB21	76	Feb.	17.38	369.38	98.03	268.15
AB23	76	Feb.	15.06	322.59	52.65	161.89
AB21	76	Mar.	12.82	322.62	57.14	218.24
AB23	76	Mar.	10.85	191.18	60.13	123.97
AB21	76	Apr.	14.38	307.39	44.81	212.67
AB23	76	Apr.	10.38	150.04	49.99	98.76
AB21	76	May	8.40	459.09	208.42	370.88
AB23	76	May	10.20	250.03	70.01	157.52
AB21	76	Jun.	7.00	569.98	249.94	480.52
AB20	76	Jun.	8.56	508.25	203.68	394.03
AB23	76	Jun.	9.00	262.04	81.96	159.68
AB20	76	0ct.	12.83	392.58	138.56	313.74
AB23	76	0ct.	11.67	250.04	88.32	164.26

observations at each site. Figure A6.3.2A-10 and A5.3.2A-11 also show June and October 1976 monthly max, mean, and min inversion heights plotted on the elevation profiles of constant potential temperature surfaces for specific dates. The constant potential temperature surfaces were determined by tethersonde flights on the dates.

Mixing heights are also obtained from the acoustic radar records. As the ground-based inversion begins to breakup in the morning, surface temperature may rise faster than the upper air temperature resulting in a condition described as an inversion aloft. The temperature-altitude profile is similar to that in Figure 6.3.2-1 with the mixing height increasing until it is equal to inversion height. Similar conditiors can occur with movements of warm and cold fronts. The air within the mixing height layer is described as neutral or unstable and provides for good mixing and diffusion of stack emissions.

Figure 6.3.2-1 Temperature-Altitude Profile of an Elevated Inversion

However, the air layer between the mixing height and the top of the temperature inversion (increasing temperature with altitude) is stable and very little diffusion of stack emissions occurs in this air layer. Stack emissions below the mixing height are constrained by the inversion "lid". Stack emissions above the inversion height will continue to rise and will not penetrate down through the inversion.

Mixing layer heights have been plotted as a time-series plot in Figure B6.3.2-12. Data are for the period of mid-November 1977 through September 1978. Mixing heights are reported for about 70% of the days with the great majority (about 90%) being at the minimum reporting height of 30 meters. Occasional short duration heights (2 hours) of 100 to 150 meters are reported with a maximum of 425 meters reported in September 1978.

During the period from November 1977 through October 1978, pilot balloons (pibal) were released twice daily every other day near trailer site AB24 in the early morning and afternoons. Upper air temperature, wind speed, and direction as a function of altitude were determined by tracking the ascent over several minutes and a rise through several thousand meters altitude by double theodolite. Upper-air temperature as a function of altitude was obtained through a temperature-sonde attached to the pibal. The signal transmitted from the temperature-sonde was monitored by radio receivers and used with the trajectory calculations to produce temperaturealtitude profiles.

An alternative temperature-altitude profile is obtained from a single theodolite by assuming constant rate of rise and using the temperature-time measurements.

Single and double theodolite techniques for measuring upper air temperatures from the pibal data have been compared for several representative morning and afternoon launches. Typical comparative profiles are shown in Figures A6.3.2A-12 and A6.3.2A-13 for the lower 800 meter portion of the trajectories. Stack plume rise can be expected to be well below this altitude under any meteorological condition. Single and double theodolite trajectories show similar profiles with respect to temperature-inversions and temperature lapse rates. Altitude for a given temperature was significantly different (approximately 100 meters) in 40 percent of the comparisons; good agreement is achieved in 60 percent of the comparisons. The presence of an inversion is identified and its altitude error is no greater than 100 meters. It is concluded from this comparison that either single or double theodolite determination of temperature-altitude profiles is adequate for air diffusion modeling inputs to be used for permit applications.

c) Stability Class Study

Monthly average stability classes have been derived from hourly stability class data. The hourly stability classes were based on delta temperature measurements between the 60 meter and 10 meter levels on the meteorological tower. Pasquill-Gifford stability classes were determined from the slope of the temperature altitude curve ($\mathrm{dt} / \mathrm{dz}$) and adjusted for wind speed by the method described in the Baseline Report, Volume 3. Monthly averages by hour from the period from November 1976 through September 1978 are shown in Table 6.3.2-4 for the months containing more than 50% of the data。 Unstable, neutral, and stable class are indicated by shading.

Comparison of these data with the baseline period (data shown in Table 6.3.2-5) shows similar patterns for the broad classifications of unstable, neutral, and stable classes. The period for November 1976 through May 1977 is very similar to the same months in the baseline years. However, 1978 data for January-March and July-September tended to reflect a shift in stability class toward the stable end of the scale (toward class F) by one Pasquill-Gifford stability class for most of the monthly averages by hour. No clear explanation can be identified for this.

TABLE 6．3．2－5 AVERAGE HOURLY STABILITY CLASSES（1974－1976）
SOURCE：Temperature differences between 60 meter and 10 meter on the Met Tower （Adjusted for Wind Speed）

Vionth	Hour																								Average
	1	2	3	4	5.	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
Dec．＊																									
Јал． 75	D	D	D	D	D	D	D	D	E	E	5	8	D	D	D	D	D	D	D	1	D	D	D	D	D
Feb．	L	E	E	E	早	E	E	E	E	D	D	C	D		c	D	D	F	ε	E	\％	0	岳	首	E
Mar．	D	D	D	D	D	D	D	D		15	0	c	C	－	D	D	C	0	D	D	D	D	D	D	D
Apr．	D	D	D	D	D	D	D		C	－	0	C			c	C	C	0	1	D	D	D	D	D	C
May	D	D	D	D	D	D	D		R			C				c	c	人	c	${ }^{\circ}$	D	D	D	D	C
June	E	E	H	L	J	E．	D	B．	1	－	8	6				－			c	C	D	D	E	E	D
July	－	－	－		SSI	16	DAT			－	－		B	C	B	8	8	Civ	－	－	－	－	－	－	B
Aug．	F：	F	F	Γ	F	E	I：	R						C	c	－		c	D	E	E	F	H	E	D
Sept．	F	E	E	F	F	T	5	E		V	B	B	R	c	3			B．	İ	5.	E	8	F	p	D
Oct．	H	E	E	E	E	E	E	E		B			1					9	D	D	T	5	L	E	D
Nov．	D	D	D	D	D	D	D	D		B	B				b	，	R	，	D	D	D	D	D	D	D
Dec．	D	D	D	D	D	D	D	D	4		B	B	B	k	B	1	8.	，	1	C	D	D	D	D	C
Jan． 76	D	D	D	D	D	D	D	D	D		（i）	1	R	B	1.	d	B	B	c	C	D	D	D	D	D
Feb．	D	D	D	D	D	D	D	D									B	R	5	D	D	D	D	D	C
Mar．	D	D	D	D	D	D	D								C	8	C				D	D	－	（K）	C
Apr．	D	D	D	D	D	D	D										c		0	D	D	D	D	D	C
May	B	E	E	E	E	E	D		8		－					d	B	B	c	D	D	［	I．	5	C
June	E	E	E	I	E	E	E		C								，	c	c	D	ε	E	E	I	D
July	E	r	E	İ	E	fic	E			4							R		3.	D	1	5	E	\％	D
Aug．	H	E	E	E	E	H	E												c）	E	Γ	5	E	！	C
Scpt．	E	4	E	E	E	E	E	D										1	D	D	D	${ }_{5}$	\＃	1	D
Oct．	3．	F	t	E	E	E	E．	R）		k	－	B	B				1	c	D	空	H	I	E	E	D

[^3]
D
 Unstable Class

Key：Neutral
\square Stable Class

Table 6.3.2-6 presents the percentage of hours in each stability class for each month. The baseline data are included for comparison. This table also reflects the shift to the more stable classes for 1978.

Typically the hours between 0900 and 1900 are unstable. Nighttime and early mornings for summer and fall are typically stable while winter and spring are neutral stability。

6.3.2.5.3 Summary of Tracer Test Conducted on September 14,1978

An experiment was conducted on the C-b Shale 0il Tract on September 14 and 15, 1978 with the objective of simulating the transport and dispersion of emissions from an elevated source in the vicinity of the proposed ancillary facility under meteorological conditions conducive to high ground level pollutant concentrations. Oil Shale Tract C-b Development Monitoring Report \#1 (1978) contains a complete report of the tests. The results of the meteorological measurements and related analyses for the September 14 test are summarized in Appendix A6.3.2B as relevant analyses of the wind field conditions and gas concentrations under conditions frequently existing on the Tract.

Figure 6.3.2-2 shows isopleths of SF_{6} for September 14 constructed from observed data.

In the first hour, high concentrations of SF_{6} were detected at the mouth of Cottonwood Gulch. SF_{6} was also detected along the Piceance Creek east of the mouth of Cottonwood Gulch. This is definitely due to the influence of the drainage wind system. Concentrations were higher on the southern bank of Piceance Creek than on the northern bank. Air flowing down the northern slope of the creek (drainage) kept the SF_{6} from building up on the northern bank.

A similar pattern was observed in the second hour (0700-0800 MDT). In the following hour the tongue flowing down Cottonwood Gulch into Piceance Creek was almost non-existent.

After 0900 MDT, the SF6 isopleths showed that high concentrations were observed only south of the point of release. Although fumigation of the plume definitely occurred during the hour beginning 0900 MDT, its duration must have been very short and thus did not result in any high concentrations when averaged over an hour. SF_{6} was still detected along the creek during the last two hours, not because the plume was over the creek, but because the flow reversal (from drainage to upslope) brought back SF_{6} that was earlier transported down the creek.

A number of observations can be deduced from the results of the experiment.
(1) On 14 September, when the synoptic pressure gradients were weak, local meteorology was responsible for the transport and diffusion of pollutants during nighttime and early morning hours. Under such a situation, the synoptic wind flow was not able to establish itself until after mid-day.

PasquillGifford Stability Class	```dT/dz Rangel for this Stability Class (0}\textrm{C}/100\textrm{m}```	$\text { Nov. }{ }^{\frac{1}{2}}$	$\text { Dec. }{ }^{?}$	Jan.	Feb.	Mar.	Apr.	May	75 June	July ${ }^{3}$	Aug.	Sept.	Oct.	Anrual Mean
A	<-1.9			8.3	1.0	1.1	12.0	7.4	8.6	0.0	2.4	5.8	8.1	6.14
B	-1.9 to -1.7			5.5	4.4	10.3	23.5	30.6	25.6	85.7	19.3	23.4	20.6	18.1
C	-1.7 to -1.5			4.1	2.4	16.3	6.9	9.3	6.9	14.3	6.1	5.0	5.7	7.0
D	-1.5 to -0.5			33.0	43.4	60.9	36.3	30.0	27.0	0.0	25.8	13.4	28.3	33.1
E	-0.5 to +1.5			33.3	36.8	11.4	18.1	12.1	18.0	0.0	17.3	24.4	18.6	21.1
F	>1.5			15.8	12.0	0.0	3.2	10.6	13.9	0.0	29.1	28.0	18.7	14.6
Total Percentage				100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

PasquillGifford Stability Class	```dT/dz Range }\mp@subsup{}{}{1 for this Stability Class (0}\textrm{C}/100\textrm{m}```	1975		Jan.	Feb.	Mar.	Apr.	1976		July	Aug.	Sept.	Oct.	Annual Mean
		Nov.	Dec.					May	June					
A	<-1.9	15.6	18.8	24.9	13.8	19.4	9.5	17.5	4.6	10.3	7.4	13.1	13.6	14.0
B	-1.9 to -1.7	19.7	20.7	21.3	22.1	27.0	21.7	26.3	17.4	30.5	18.4	25.5	20.6	22.6
C	-1.7 to -1.5	6.9	7.4	5.6	7.7	7.9	9.7	6.0	10.0	5.6	6.7	6.1	5.6	7.1
D	-1.5 to -0.5	23.7	21.5	16.6	35.7	28.7	35.2	21.0	32.7	14.1	27.6	17.5	17.9	24.4
E	-0.5 to +1.5	22.9	23.5	21.0	13.8	15.6	17.0	15.6	17.6	19.5	23.0	20.7	21.2	19.3
F	>1.5	11.2	8.1	10.6	6.9	1.4	6.9	13.6	17.6	20.0	16.9	17.1	21.1	12.6
Total Percentage		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

$\begin{aligned} & \text { Pasquill- } \\ & \text { Gifford } \\ & \text { Stability } \\ & \text { Class } \end{aligned}$	```di/dz Range for this Stability Class (}\mp@subsup{}{}{\circ}\textrm{C}/100\textrm{m}```	Nov. ${ }^{19}$	Dec.	Jan.	Feb.	Mar.	Apr.	Nmy^{197}	June ${ }^{5}$	July ${ }^{5}$	Aug. ${ }^{5}$	Sept ${ }^{5}$	Oct. ${ }^{5}$	Annual Mean
A	<-1.9	18.6	12.3	18.0	12.9	12.9	12.6	5.9						13.3
B	-1.9 to -1.7	19.8	20.7	18.5	27.7	21.6	29.6	13.3						21.6
C	-1.7 to -1.5	4.3	7.1	6.8	7.3	7.9	8.1	9.2						7.2
D	-1.5 to -0.5	12.5	16.2	20.9	12.1	30.1	19.0	46.6						22.5
E	-0.5 to +1.5	27.4	23.7	25.4	26.3	19.3	18.1	17.8						22.6
F	>1.5	17.4	20.0	10.4	13.7	8.2	12.6	7.2						12.8
Total Percentage		100.0	100.0	100.0	100.0	100.0	100.0	100.0						100.0

Table 6.3.2-6 (Cont inued)

PasquillGifford Stability Class	$\begin{gathered} \text { dT/dz Range } \\ \text { for this } \\ \text { Stability Class } \\ \left(\begin{array}{c} \text { C } / 100 \mathrm{~m}) \end{array}\right. \end{gathered}$	$\begin{gathered} 1977 \\ \text { Nov. } 5 \text { Dec. }{ }^{5} \\ \hline \end{gathered}$	Jan.	Feb. ${ }^{3}$	Mar. ${ }^{3}$	Apr. ${ }^{5}$	197 $M a y$	$\text { June }{ }^{5}$	July ${ }^{3}$	Aug. ${ }^{3}$	Sept. ${ }^{3}$	Oct	$\begin{aligned} & \text { Annuai } \\ & \text { 1ead } \end{aligned}$
A	<-1.9		0.7	0.3	0.3				0.0	0.2	0.0		
8	-1.9 to -1.7		0.3	2.1	0.5				2.3	6.1	2.6		
c	-1.7 to -1.5		4.4	2.9	1.9				5.9	5.7	2.6		
0	-1.5 to -0.5		52.0	48.0	47.4				43.2	35.6	40.1		
\underline{L}	-0.5 to +1.5		28.2	32.9	24.8				19.5	22.5	23.5		
F	21.5		14.4	13.8	25.1				29.1	29.9	31.2		
	1 Percentage		100.0	100.0	100.0				100.0	100.0	100.0		

1 Adjusted for wind speed
2 Data are suspect and, therefore, not included
Partial data
Averaged from January-October, excluding July
5 Missing data
6 Data for July and August not avallable for this report

$$
\begin{aligned}
& \text { Figure } 6.3 .2-2 \\
& \text { Isopleths of Tracer Gas Concen- } \\
& \text { trations - September } 14,1978
\end{aligned}
$$

(2) When the plume was released within a layer of very stable air in complex terrain, the plume followed constant potential temperature surfaces, which followed the contour of the ground. It did not just fan out and stay at the same elevation above sea level. In specific, the plume flowed into Piceance Creek and followed the creek downstream rather than traveling across the creek at the level of release and impinging on the surface of the southfacing slope north of Piceance Creek. Contrary to observations of a fanning plume on flat terrain, a fanning plume over tract C-b did get down to the ground surface due to turbulence associated with the shearing effect of the drainage wind.
(3) Fumigation of the plume did not result in high concentrations when measurements were averaged over a period of one-hour or more.
(4) When the surface-based inversion was shallow (as on 15 September), the plume lofted above the inversion and pollutant concentrations at the surface were miniscule.
(5) When the plume was released in a neutral-lapsed layer, the plume centerline followed the contour of ground surface as it traveled downwind.

6.3.2.6 Conclusions

Conclusions supported by the analysis of wind fields
data are:

1. Predominant wind direction at the meteorological tower site on Tract is SSW; this has not changed over time.
2. Predominant wind direction in and near Piceance Creek is downstream (from east and southeast) over most of the nightime and early morning. Daytime direction reverses to upstream flow.
3. Wind speed and direction have not changed significantly over the years from baseline through 1978. Spring and summer show higher wind speeds (5-8 meters $/ \mathrm{sec}$.) than fall and winter ($1-3 \mathrm{~meters} / \mathrm{sec}$.) at the 10 meter elevation level.
4. Temperature inversions typically in the Piceance Creek Basin occur in the nighttime with onset about an hour before sunset and breakup next morning several hours after sunrise. Summer inversion heights are the highest (about 400 meters) while winter inversion heights average 150 meters.
5. Temperature inversions occurring in Piceance Creek at elevations above 150 meters will generally extend over the C-b Tract. Typically subtraction of 150 meters from the local inversion heights and mixing heights observed at Piceance Creek Station AB2O is required to obtain heights above the C-b Tract. Very few mixing heights observed at Station AB2O exceed 150 meters.
6. Temperature-Altitude profiles obtained from pibal trajectories indicated inversion heights that were in agreement with acoustic radar inversion heights.
7. Temperature-altitude profiles obtained by either single or double theodolite are adequate for upper air temperature measurements over the C-b Tract.
8. The atmosphere is typically unstable between hours 0900 and 1900. Nighttime is typically stable in summer and fall and neutral in the winter and spring。
9. Tracer test meteorological data confirm the near-surface channelization of winds over the C-b Tract to flow downvalley during early morning under stable conditions.
10. Tracer tests show higher concentrations of pollutant gases can be expected to occur along Piceance Creek to the north and west of the C-b Tract under stable conditions.

THIS PAGE HAS BEEN
INTENTIONALLY LEFT BLANK

7.0. NOISE

7.1 Introduction and Scope

The environmental noise program conducted during baseline was not required under the lease but was requested by the Area 0il Shale Supervisor. General background noise levels were sought on the Tract and surrounding vicinity prior to Tract development. Monitoring of those levels was reinitiated in February 1978, at the three sites shown in Figure 7.1.1-1 to determine the effects of Tract development on noise levels.

7.2 Environmental Noise

It is to be noted that occupational noise exposure is treated in Chapter 10.0 of this report. Aspects of environmental noise treated here deal with traffic and Tract-generated noise levels.

7.2.1 Traffic Noise

7.2.1.1 Scope and Rationale

The traffic noise study was originated during baseline. Measurements were made one working day per month for approximately one hour at each of 14 locations over a 14 -month span starting in September 1975. Measured noise levels (A weightings) above background at two locations along Piceance Creek Road were always made in the presence of passing vehicles. The noise analysis contained in the final baseline report indicated an average level at a station on Piceance Creek Road near Hunter Creek to be 53dbA which was exceeded ten percent of the time.

On the basis of low noise levels existing during baseline as indicated in the final baseline report, it was felt that continued discrete measurements were warranted at only two of the original 14 locations. Stations NAO2 and NA09 are located to indicate traffic noise levels associated with development.

7.2.1.2 Objectives

To measure potential increases in traffic noise levels due to development.

7.2.1.3 Experimental Design

Discrete traffic noise measurements are made one day per week during the morning shift change in the presence of passing vehicles at Stations NA02 and NA09 (Figure 7.1.1-1) along Piceance Creek Road and on the access road at the Tract boundary, respectively. The General Radio 1565 Sound Level Meter (SLM) is used to measure peak noise levels at \underline{A} weightings. Background levels are obtained the same day at A, B, and C weightings.

NOISE ENVIRONMENTAL MONITORING NETWORK

- TRAFFIC NOISE STATION - SHIFT CHANGE - I DAY/ WEEK
- TRACT NOISE SURVEILLANCE-CONTINUOUS-EVERY 6th DAY

At each of the two stations, peak noise levels measured weekly are averaged once each month.

7.2.1.5 Results and Discussion

Figure 7.2.1-1 shows a time plot of peak traffic noise levels and background levels for the C-b Tract. The highest noise level of 91 dbA occurred on June 30, 1978 at Station NAO2 from a passing semi-trailer truck; the background at that time was 44 dbA . The peak noise level indicated in the final baseline report was 83 dbA from a road scraper in July 1976. Seventy-five percent of the 1978 monthly peaks exceeded this level; on the average, the 1978 monthly peaks are 9 db higher than those during baseline.

FIGURE 7.2.1-1
tract c-b peak traffic noise readings
(1978)

7.2.1.6 Conclusions

Monthly peak noise levels and background levels during 1978 exceed those of the baseline period by an average of 9 dbA . It is felt that this increase is probably development related.

7.2.2 Tract Noise

7.2.2.1 Scope and Rationale

During the ancillary phase of development nearly all activity occurs near the northern boundary of the Tract. Thus a noise monitoring site in the vicinity of operations is most appropriate for monitoring noise levels on Tract due to ancillary development.
7.2.2.2 Objectives

The objectives of the Tract noise study are 1) to evaluate increases in Tract noise due to Tract development, and 2) to demonstrate compliance with State noise regulations.

State noise standards for an industrial zone are as follows in terms of maximum allowable noise levels:

Steady:	$80 \mathrm{db}(\mathrm{A})$	7 am to next 7 pm
	$75 \mathrm{db}(\mathrm{A})$	7 pm to next 7 am
15 min. in any one hour	$90 \mathrm{db}(\mathrm{A})$	7 am to next 7 pm
Periodic, impulsive,	$75 \mathrm{db}(\mathrm{A})$	7 am to next 7 pm
shrill	$70 \mathrm{db}(\mathrm{A})$	7 pm to next 7 am

They apply within 25 feet of the property line (Tract boundary).

7.2.2.3 Experimental Design

Continuous noise measurements are made at Station NB15 (Figure 7.1.1-1) on the northern boundary of the Tract for 24 hours every sixth day. The sensor recording system consists of the following B\&K instruments:

Model 2203 Precision Sound Level (SLM) with 0.5" microphone
Model 4230 Portable Acoustic Calibrator
Model UA 0393
Microphone Rain Cover
Model UA 0381 Wind Screen with Spikes
Model UA 0308
Model 2306
0.5" Dehumidifier

Portable Graphic Level Recorder

In this model the SLM is coupled to the battery-operated linear recorder for 24-hours of unattended all-weather operations at an A-weighting.

The SLM is calibrated before each day's use with its portable acoustic calibrator to $\pm 0.25 \mathrm{db}$ accuracy at $93.6 \mathrm{db}, 1 \mathrm{kHz}$. The linear recorder for a range is calibrated before and after each day's use. Thus any drifts are reddily apparent. Time references are annotated before and after operation.

FIGURE 7.2.2-1
TRACT C-b NOISE STANOAROS COMPLIANCE SITE NB15-12 HOUR PEAK NOISE READINGS (db) FOR 1978

* On 2-13-78 for 0700 :0 1900 peak did not exceed 90 db for 15 minutes in any hour.

7.2.2.4 Method of Analysis

Twelve-hour peaks (7am-7pm and 7pm-7am) are reported along with averages and background levels for each day of observations. Figure 7.2.2-1 presents the peak 12-hour Tract noise levels.

7.2.2.5 Results and Discussion

The peak Tract noise level reading of 83 decibels occurred on the first day of monitoring in February 1978; that peak did not exceed 90 dbA for 15 minutes in any hour. All other readings through September 1978 at site NB15 were below 80 dbA from 0700 to 1900 and below 75 dbA from 1900 to 0700. The average decibel level from 0700 to 1900 was below 45 dbA while the average from 1900-0700 was below 42 dbA .

7.2.2.6 Conclusions

1. Noise levels in the Tract area due to development activities have, for the most part, been low. Average levels of neither 12 -hour period appear to have increased significantly during the study period.
2. Compliance with State noise standards for an industrial zone was achieved.

7.3 Overall Conclusions

1. Peak noise levels and background levels along the Tract boundary increased by an average of 9 dbA since the baseline period.
2. Average noise levels on Tract for the two 12-hour periods do not appear to have increased significantly due to development activities.
3. Compliance with State noise standards for an industrial zone was achieved.

8.0 BIOLOGY

8.1 Introduction and Scope

The goal of the biological monitoring program is to continue evaluation of biotic conditions and identify interactions with abiotic conditions in the Tract C-b ecological systems. The majority of monitoring parameters are those that provide information relative to early warning signals of change. The use of control and development sites permits the monitoring of long-term trends at affected and non-affected sites, and the analysis of any corresponding differences developing over time at these sites.

8.2 Big Game-Deer

Big game refers primarily to mule deer, since they are the only large mammals common to the C-b area. Intensive studies of mule deer are justified since deer are a major herbivore of ecological importance, and a game species of economic importance. In addition, they are vulnerable to impact from development activities, road kill, and increased hunting pressure. Study transects and sample sizes are based on adequate samples obtained during baseline.

Monitoring of mule deer attempts to show the significance of Tract $\mathrm{C}-\mathrm{b}$ to their survival. This is accomplished through the following variables: 1) deer-use days, 2) distribution and migration, 3) road kills, 4) mortality, and 5) age class.

8.2.1 Deer Day Use

8.2.1.1 Scope and Rationale

Pellet group counts were conducted on 27 permanent transects on or near Tract $\mathrm{C}-\mathrm{b}$ to evaluate the deer use in the area.

8.2.1.2 Objectives

The objectives were to use deer pellet group data to check to see if significant differences existed among the sizes and distributions of local deer concentrations at selected sites on a year-to-year basis.

8.2.1.3 Experimental Design

Two habitat types were sampled; pinyon-juniper woodland and chained pinyon-juniper. Fifteen transects were located in the chained habitat type and twelve transects were located in the woodland. These same transects were used for lagomorph and browse utilization and production transects. Each transect consisted of 20 plots, with plots being 15 meters apart. Locations of the transects were well within the boundaries of the habitat type (avoiding habitat edges), and were positioned such that comparisons
could be made of development vs. control areas, i.e., oil shale vs. non-oil shale effects. Some of these transects were placed to the north and west of the Tract to detect shifts in distribution due to development-related activities. There were 9 developmental and 18 control transects. Stations using the symbol BA are identified on the jacket map. Data concerning deer pelletgroup distributions and densities were obtained by counting pellet-groups along these twenty-seven transects. Pellets were swept from plots during the fall of 1977 and counts were made the following spring.

Fifteen new transects were added to the original twelve that were established during the interim-monitoring program: nine in the chained rangeland habitat. on Big Jimmy ridge; and six in the pinyon-juniper habitat north of Piceance Creek. Both of these locations are just outside Tract C-b boundaries.

The pellet-group data obtained from all twenty-seven transects are here considered to be baseline data. Construction operations, which began during the past year, are assumed to have caused no appreciable impacts to deer in those areas where transects are located. Transect BAl6, however, is near the main access road that was constructed during the spring of 1978. Construction activities along this right-of-way have influenced pellet count data on one or two of the 20 plots that make up the transect, but examination of these data do not suggest this to be the case.

Since future deer pellet counts are likely to be markedly influenced at certain transect locations due to development, the relative differences which exist among the twenty-seven transects at this final baseline stage are of considerable importance. This, and all previous baseline information on pellet-group distributions represent the final pattern, or array of data points, from which future departures of a significant nature will be looked upon as due to develop-ment-related impacts.

8.2.1.4 Method of Analysis

Results were evaluated using single factor analysis of variance (ANOVA) and Student-iNevman-Keuls (SNK) multiple range testing.

8.2.1.5 Pesults and Discussion

The results of pellet-group counts for the 1977-78
period (Tables A8.2.1-1a to 1d) are presented as individual estimates for density for each of the twenty-seven transects and as combined values for clusters of transects. With regard to the grouping of certain transects, it may be appropriate in future evaluations to combine different clusters because of development activities in locations not anticipated at this time. Some amount of combining will probably always be needed in order to achieve sampling adequacy.

The apparent differences in the three sets of combined values for the chained rangeland habitat (Tables A.8.2.1-1a and 1c) were evaluated using single factor analysis of variance (ANOVA) and Student-Newman-Keuls (SNK) multiple range testing. Significant differences (at the 95 percent level) were found to exist between the two combined values for the chained pinyon-juniper transects on the tract, namely, the mean density estimates of 288 vs .437 pellet-groups per acre (transects BA17, 18, 25 vs. transects BA20, 21, 25) (Table A8.2.1-1c); and between the combined value of 398 per acre obtained for Big Jimmy ridge (Table

A8．2．1－1c）and the 288 mean value for the tract（Table A8．2．1－1a）．The 437 and 398 values obtained for the tract and for Big Jimmy ridge respectively were not found to be significantly different．Differences in pellet－group densities among the four combined values for the pinyon－juniper habitat（Tables A8．2．1－1b and A8．2．1－1d）were also subjected to ANOVA and SNK testing．All combinations of three values（105，357，and 238 pellet－groups per acre）（transects BA10－12； BA13－15，and BA19，26，27）were found to be significantly different at the 95 percent level．Only the differences between the two combined values for the tract（238 and 198）（transects BAl6，22，24）were not found to be significant．

In terms of trend evaluations it is important to note that the highest pellet－ group density estimates obtained over the past two years occurred on transects BA20 and BA21，which are located near Sorghum Gulch．This consistency is de－ monstrated in Figure 8．2．1－1，which also shows a consistent pattern of relative densities for all transects when comparing the two years．This apparent correla－ tion is，in fact，statistically significant（ $\gamma=0.86, \mathrm{P}=0.001$ ）．

The decline in the density estimates during the second year，1977－78，represents a mean drop of 48 percent．This should not be taken as suggesting there were 48 percent fewer deer during the 1977－78 period，since an investigator bias is known to have existed during the 1976－77 period．This bias，however，is believed to have uniformly inflated the 1976－77 estimates，and not to have affected rela－ tive differences among transects．

Direct comparisons of pellet－group data over the past two years with data from the first two years of baseline study（C－b Final Environmental Baseline Report 1974－76）is not possible，since transect locations were changed for the develop－ ment monitoring program．

Data from pellet－group distribution and density studies on transect locations which have been operative over the past two years have indicated very similar patterns of habitat use．

8．2．2 Distribution and Migration
 8．2．2．1 Scope and Rationale

Deer road counts have proven useful for showing deer distributions along the Piceance Creek highway．The structured road count observations are repeatable，and provide a means of quantifying changes in relative abundance and distribution。

8．2．2．2 Objectives

The main objectives were to determine the seasonal and year－to－year movement patterns of deer．

8．2．2．3 Experimental Design

Weekly sampling was obtained beginning in mid－September and ending in May．The sample area was the 41 －mile stretch of Highway 64．Times of migration were based on the occurrence and disappearance of deer in the meadows． Counts were made from a vehicle driving approximately 30 m 。 $\mathrm{p}_{\circ} \mathrm{h}$ 。 The counts were started one hour ± 75 minutes before dusk and the direction of travel was altered

Fig. 8.2.1-1 Trends in pellet-group densities. Data shown are means ± 95 percent confidence intervals. Open circles are 1976-77 data; closed circles are 1977-78 data. Although pellet-group densities are lower the second year, the pattern of habitat use is significantly correlated ($Y=0.86 ; P=0.001$).
for consecutive (weekly) counts. The number of deer observed in each mile interval was recorded according to feeding locations on the slopes or in the meadows.

8.2.2.4 Method of Analysis

Histograms were prepared and compared to past years' data. The log-likelihood G test or other applicable nonparametric tests will be used if changes in observed distributions occur.

8.2.2.5 Results and Discussion

Twenty-nine road counts were conducted from September 1977 to May 1978 (Table A8.2.2-1). The length of road traveled during this period of investigation (41 miles) was expanded by six miles over the previous three years of study to include the section of road from Little Hills to the White River. A summary of the deer road counts is presented in Figure 8.2.2-1.

Due to seasonal differences in habitat use by deer and changes in vulnerability to road kill, Table A8.2.2-1 separates road count data into fall, winter, and spring periods. Locations along the road where fall road counts were particularly high include virtually the entire distance from mile 14 (01dland's ranch) to mile 31 (Burk's ranch). From December through January, deer were not nearly as abundant near the road, although mile 22 (near Hunter Creek) retained a high count. During late winter and early spring, road counts were generally high over the entire 41 mile length of road. Very high counts occurred immediately west of the tract, between mile 20 (the main entrance road to Tract C-b) and mile 25 (near Rock School).

Trends in the number of deer observed along the six miles of road which approximately borders Tract C-b on the north will provide one means of evaluating impacts to deer due to construction and operation of the oil facility. It seems likely that disturbances and habitat loss on tract will eventually result in fewer deer observed especially from mile 17 to mile 20. No indications of this were apparent this past year, however.

The 1977 fall influx of deer into the Tract C-b area occurred during mid-October. Apparently during mid April of 1978 deer began to move to higher summer range. This pattern is similar to what was observed over the past three years of baseline study. As in previous years (1974,'75,'76) the majority of deer observed during the October deer counts were concentrated in the meadows between mile markers \#15 to 20. In the spring, with the exception of high concentrations between mile 15-20, the deer have been fairly evenly distributed along the entire Piceance Creek highway. This was not the case in 1977. Large concentrations of deer were observed at the Rio Blanco Store end of the road. These slopes were free of snow before other south-facing slopes which may have attracted the deer. Deer distribution and migration will continue to be monitored and possible trends identified.

8.2.3 Roadkills

8.2.3.1 Scope and Rationale

Mule deer roadkill data were collected weekly to obtain

Fig.8.2.2-1 - Summary of deer road counts for 1977-78. Heights of bars are means; sample size (N) are the number of road counts for the period.
information on the number of deer killed each year along the Piceance Creek highway.

8.2.3.2 Objectives

Roadkill data were collected to obtain an accurate fatality estimate and identify problem areas so mitigative measures could be taken, if necessary.

8.2.3.3 Experimental Design

Weekly roadkill data were collected from September 1977 into May 1978 at the same stations used for the deer road-count study. Dead deer were aged, sexed, and tagged. In addition, one ear was removed to insure that double counting did not occur.

8.2.3.4 Method of Analysis

When several years of data has been collected, monthly time series tabulations and non-parametric tests such as the log-likelihood G Test (Sokal \& Rohlf 1967) will be used.

8.2.3.5 Results and Discussion

Roadkill data for 1977-1978 are presented in Table 8.2.3-1. The total roadkill along the Piceance Creek highway was 125 deer and one elk. This figure was derived by combining the information gathered by Division of Wildlife and Tract C-b personnel. At present, only general observations can be made. Most of the roadkills occurred in the fall and spring. This concurs with the deer movements; many deer are close to the highway during these times. Approximately 50% of the deer killed were fawns. Roadkill information will continue to be monitored closely to establish trends and possible mitigative measures. Cumulative roadkill approximates 1% of the total sited at these stations, noting that the same deer may be seen or recounted on subsequent weeks.

8.2.4 Mortality

8.2.4.1 Scope and Rationale

Baseline studies have shown winter kills to be largely restricted to two habitat types, lateral draws and bottomland sagebrush. Checking these areas each spring has helped in observing changes in the relative magnitude of deer mortality.

8.2.4.2 Objectives

The purpose of this study is to determine deer mortality in selected gulches.

8.2.4.3 Experimental Design

Sampling was done in the spring in 10 plots located in lateral draws and sagebrush gulches (Map in jacket). All dead deer were aged, sexed, and tagged with a metal tag stamped with the study year to date the deer carcasses. Either the skull or pelvic girdle was required to be with the

MULE DEER ROADKILL SUMMARY (FALL 1977 TO SPRING 1978)

NOTE: Total Kill was 125 Deer. One Elk killed. This Figure was derived from combining DO! data with C -b data.
carcass before it was counted, i.e. just a leg or other bones did not constitute a carcass.

8.2.4.4 Method of Analysis

Non-parametric tests such as the log-likelihood G Test (Sokal \& Rohlf 1967) will be used when several years of data have been collected on these mortality plots. Tabular presentations are used here.

8.2.4.5 Results and Conclusions

A comparison of deer mortality is presented in Table 8.2.4-1. Since several new draws have been added to the study, detailed analysis cannot be done. Possibly due to the mild winter, there were fewer dead deer per hectare than in previous years. Fawns comprised 80% of deer mortality found this year.

8.2.5 Age Class

8.2.5.1 Scope and Rationale

Estimating the composition of the deer herd in the fall facilitates evaluation of the magnitude of fawn mortality that has occurred during the spring and summer while deer were on summer range. Estimates taken in spring permit evaluation of fawn mortality that occurred while deer were on winter range in the $\mathrm{C}-\mathrm{b}$ area.

8.2.5.2 Objectives

The main objective of the age class study was to determine fawn-to-adult ratios in the fall and spring.

8.2.5.3 Experimental Design

Sampling occurred in the fall and the spring. Sampling locations were situated in meadows immediately north of the Tract and major drainages within the study area. Counts were restricted to within five miles either side of Tract C-b and were conducted in November and in May. The observations took place during times of potential heavy concentrations. Animals were recorded as adults, fawns, or bucks. No attempt was made to recognize yearlings, and bucks were counted only when antlers were visible (otherwise, they were recorded as adults). The number of points on an antlered buck were noted when easily and quickly counted.

8.2.5.4 Method of Analysis

When sufficient data become available for year-to-year proportions to be established the T-test for proportions will be used to test the null hypothesis at the 0.10 level of significance. Data from this program, combined with data from the other Tract deer studies, tagged deer from the Division of Wildlife, and the roadkill simulation model will be used to further understand the dynamics of the deer herd on and surrounding Tract C-b. Interrelationships with other ecosystem elements may be evaluated through use of multiple time series techniques.

TABLE 8.2.4-1 DEER MORTALITY RESULTS

8.2.5.5 Results and Conclusions

An estimate of the age-class composition of deer wintering near Tract $C-b$ is given in Table 8.2.5-1. Results differ markedly from the previous three years in that the ratio of fawns to adults was higher in the spring than in the previous fall. One would have expected proportionately fewer fawns in the spring due to higher winter fawn mortality.

8.3 Medium-Sized Mammals

The medium-sized mammals are restricted to several species which are important within the Tract C-b ecosystem, coyotes and lagomorphs (cottontails and jackrabbits). Monitoring these animal groups will show important trends which will contribute to the understanding of predator and prey-species in the Tract C-b ecosystem.

8.3.1 Coyote Abundance

8.3.1.1 Scope and Rationale

Coyotes are of ecological significance because they are a major predator on Tract C-b. They are of political and economic interest to the public with both strongly negative and positive supporters. Collection of scent post data is important in understanding the C-b ecosystem, particularly predator/prey relationships.

8.3.1.2 Objectives

The objective of conducting coyote scent post surveys was to determine relative abundance of coyotes on or near the tract.

8.3.1.3 Experimental Design

The coyote scent post survey is based on the Linhard and Knowlton Method (1975), which is currently being used by the U.S. Fish and Wildife Service. Sampling was done in September along 15 miles of road segments on or near the Tract. Scent stations along the transects were checked for the presence of tracks. Track surveys also yielded information on other species of mammals which may have inhabited or occasionally passed through the Tract. The stations were checked the morning following the setting of the traps.

8.3.1.4 Method of Analysis

A relative index of abundance was calculated as a visit frequency. Professional judgment also will be used to determine significant differences over time.

8.3.1.5 Results and Conclusions

Results of the September 1978 coyote scent stations survey (Table 8.3.1-1) are considerably lower than 1977 results. Indices of 50 and 130 were obtained for 1978 and 1977 respectively. Reasons for the apparent decline are unknown. The only removal of coyotes of which we
Table 8.2.5-1
Age class com

Fawns	Does	Bucks	Adults	Fawns/ 100 Does	Bucks/ 100 Does	Fawns/ 100 Adults	
15-23 Nov. 1977	85	107	28	135	79.4	26.2	63.0

Table 8.3.1-1
Results of coyote scent station survey, 1978.

Line	No. of stations	No. of visits	
1	Big Jimmy	25	2
2	SG-9	10	0
3	Scandard	10	0
4	SG-15	10	2
5	Stewart ridge	10	0
7	Stewart valley	10	0
8	Bailey ridge	10	0

Index of abundance $=\frac{\text { No. of visits }}{\text { No. of stations }} \times 1000=50$
are aware took place in October 1978 when 42 coyotes were trapped on the 01dland property north and east of Tract C-b.

No new species of medium-sized mammals were identified during the past year of field study.

8.3.2 Lagomorphs

8.3.2.1 Scope and Rationale

Cottontails and jackrabbits provide an important prey base for raptorial birds and coyotes. The cottontail is classified as a game species, but presently it is of little economic value in the vicinity of Tract C-b; however, at some future date its status could change. The lagomorph population estimates are based on relative abundance data collected from strip transects.

8.3.2.2 Objectives

The objectives were to determine the relative abundance of lagomorphs on or near Tract C-b.

8.3.2.3 Experimental Design

Relative abundance of cottontail rabbits was established along the twenty-seven transects used for mule deer pellet-group counts. The study was expanded to include Big Jimmy Ridge. The number of plots sampled were 20 plots/transect.

8.3.2.4 Method of Analysis

A relative index of abundance was calculated as a visit.
frequency.

8.3.2.5 Results and Conclusions

The results of this study are considered to be most valuable for comparing relative differences among years, rather than for comparisons of differences among transects. Trend evaluations are not feasible at this time, however, since data for the twenty-seven transects being used are only available for the 1977-78 period. (Table 8.3.2-1). General observations between this year's and previous year's data show that cottontail abundance was slightly higher in the pinyon-juniper woodlands compared to chained pinyonjuniper. Field observations this fall tended to show that the cottontail population was higher in fall 1978 than in fall 1977.

8.4 Small Manmals

8.4.1 Species Composition and Abundance
8.4.1.1 Scope and Rationale

Small mammals are important to monitor because they are both a prey base for predators and a major primary consumer. Monitoring

Table 8.3.2-1
Relative abundance of cottontail rabbits, 1977-78. Each transect consists of twenty 0.01 acre plots.

Transect		Habitat and location	Relative abundance:
Monitoring notation	Baseline notation		
BA 01	$\mathrm{CH}-\mathrm{C}-12$	Chained, Big Jimmy	55
BA 02	$\mathrm{CH}-\mathrm{C}-11$, "	15
BA 03	$\mathrm{CH}-\mathrm{C}-10$	11	30
BA 04	CH-C-9	"	45
BA 05	$\mathrm{CH}-\mathrm{C}-8$	"	90
BA 06	$\mathrm{CH}-\mathrm{C}-7$	11	55
BA 07	$\mathrm{CH}-\mathrm{C}-6$	"	80
BA 08	$\mathrm{CH}-\mathrm{C}-5$	"	65
BA 09	$\mathrm{CH}-\mathrm{C}-4$	"	80
BA 17	$\mathrm{CH}-\mathrm{C}-1$	Chained, Tract	35
BA 18	$\mathrm{CH}-\mathrm{C}-2$	11	45
BA 25	$\mathrm{CH}-\mathrm{C}-3$	11	60
BA 21	$\mathrm{CH}-\mathrm{T}-1$	"	70
BA 20	CH-T-2	11	35
BA 23	CH-T-3	"	42
BA 19	PJ-C-1	Pinyon-juniper, Tract	40
BA 26	PJ-C-2	-1	70
BA 27	PJ-C-3	11	90
BA 16	PJ-T-1	"	35
BA 22	PJ-T-2	"	58
BA 24	PJ-T-3	'	35
BA 13	PJ-C-4	P-J, north of Piceance Crk.	85
BA 14	PJ-C-5	"	60
BA 15	PJ-C-6	"	15
BA 10	PJ-T-4	"	75
BA 11	PJ-T-5	"	75
BA 12	PJ-T-6	"	75

* Relative abundance is calculated as a percent frequency ((No. of plots with fresh pellets present \div No. of plots sampled) $\times 100$.
changes in selected small mammal parameters will aid in assessing potential effects of pollutants before populations of larger animals are greatly affected.

8.4.1.2 Objectives

The objectives of monitoring small mammals on Tract C-b were to determine small mammal species composition, reproductive conditions, age classes and relative abundances and to see how the development of Tract C-b is affecting this population as manifested by these parameters.

8.4.1.3 Experimental Design

Small mammal live trapping was conducted in three habitat types: pinyon-juniper woodland, chained rangeland, and agricultural meadow. The agricultural meadow was divided into control and experimental (hereafter referred to as "development") plots. Linear transects consisting of 25 traps spaced at 10 m were placed as follows: four transects in each of the two meadow locations; two transects each in the pinyon-juniper and chained rangeland habitats. Trapping occurred for three consecutive nights (omitting rainy nights) during June and August. After each night all traps were repositioned using new transect locations.

8.4.1.4 Method of Analysis

Indices of relative abundance were calculated to allow comparisons between the data.

8.4.1.5 Results and Conclusions

Small mammal trapping results for the June and August periods (Table 8.4.1-1) are presented as indices of relative abundance in order that differences can be directly compared. Future trend evaluations will continue to use these indices to facilitate descriptions of yearly fluctuations and changes suggestive of impacts.

The small mammal results obtained this past year are in no way unusual compared to prior studies conducted during the first two years of baseline study. The deer mouse (Peromyscus maniculatus) was, as in previous years, the most abundant small mammal species in the habitat types trapped on Tract C-b. Of most interest in subsequent years will be changes in species diversity and relative abundance between control and development locations in the agricultural meadows.

8.5 Avifauna

A wide variety of birds exist on Tract $C-b$ and the surrounding area. Avifauna were monitored to determine potential effects on habitat disturbance.

8.5.1 Songbird Relative Abundance and Species Composition

8.5.1.1 Scope and Rationale

Songbirds were monitored during their breeding season to determine potential development effects. It is anticipated that habitat
Table 8.4.1-1
Relative abundance of small mammals, 1978.*

disturbance and increased human activity may affect population densities and relative abundance of the more prominent species. Certain species may be more affected by man-made impacts than others.

8.5.1.2 Objectives

The objectives were to monitor population densities, species abundance and diversity of the songbirds in the area and compare this information to past years data.

8.5.1.3 Experimental Design

Monitoring of avifauna for 1978 occurred between May 23, 1978 and June 28, 1978. Monitoring efforts were consistent with previous interim sample periods in that two transects in Pinyon-juniper woodland and two transects in chained Pinyon-juniper rangeland were censused. Each transect was sampled in quadruplicate; twice at the beginning of the breeding season, once in the middle and once at the end of the season. One transect in each habitat type (Transects 1 and 4) is located in an area which will not be disturbed by shale oil development. The remaining two transects (2, 3) are sample areas within each habitat where some disturbance from oil shale development is anticipated. All transects are 800 meters long and are permanently marked with steel rebar stakes and flagging. The method employed for censusing was the strip transect method as described by Emlen (1971) with slight modifications. This method provides data from which quantitative estimates of density of songbird and songbird-like species can be calculated.

8.5.1.4 Methods of Analysis

The population density estimates for species observed on strip transects were determined by one of the three methods described by Emlen (1971) which depended on the conspicuousness of the species to the observer. Since the validity of any of these methods varied for different species, professional judgment, based on experience with the conspicuousness of various species within different habitats during different seasons, was used in selecting the best density estimator. The Shannon-Weiner calculations (Pielou 1966) were used to compute indices of species diversity (H^{\prime}), maximum diversity (H^{\prime} max) and equitability (J) for each habitat sampled by strip transect procedures. Symbols are defined in Table 8.5.1-1. After three years of monitoring, statistical analysis of variance will be applied to replicated census data from each of the plots to estimate variations within, as well as between sampling plots.

8.5.1.5 Results and Conclusions

Table 8.5.1-1 presents diversity indices calculated for each transect. As with previous sample periods, the pinyon-juniper woodland exhibited greater avain diversity than the chained pinyon-juniper rangeland. Brewer's sparrows and green-tailed towhees were the most abundant species in chained pinyon-juniper rangeland, while the bustit, black-throated gray warbler were common in pinyon-juniper woodland.

Table A8.5.1-1 in the appendix lists bird species observed during the spring 1978 census. Included in Table A8.5.1-1 are species that were observed but were not included in the quantitative analysis because they were not observed within a strip census corridor or because specific habits of species, such as

IRANSECT	VEGETATION TYPE	YEAR	H^{\prime}	$E\left(H^{\prime}\right)$	$\operatorname{var}\left(\mathrm{H}^{\prime}\right)$	$H^{\prime}(\max)$	J
1	Chained Pinyon-Juniper Rangeland Control	1977	1.494	1.454	0.009	2.079	0.718
		1978	1.665	1.634	0.007	2.398	0.694
2	Pinyon-Juniper Woodland - Developmental	1977	2.469	2.432	0.003	2.890	0.854
		1978	2.398	2.350	0.004	2.708	0.886
3	Chained Pinyon-Juniper Woodland Developmental	1977	1.950	1.895	0.004	2.197	0.888
		1978	1.885	1.868	0.003	2.398	0.786
4	Pinyon-Juniper Hoodland - Control	1977	2.740	2.709	0.001	2.944	0.931
		1978	2.545	2.522	0.002	2.890	0.881

DEFINITIONS FOR SHANNON-WIENER CALCULATION VARIABLES

$H^{\prime}=$ Diversity. H^{\prime} is an estimate of the diversity of the total population of individuals in a species pool. $\overline{I t}$ is dependent on both the number of species in a collection and the relative abundance of each species (or evenness). Diversity can be thought of as measuring the uncertainty of predicting the species of an 'individual drawn at random from the entire population of individuals of several species. This uncertainty, or diversity, of a community can be increased either by increasing the number of species or by evening out the distribution of individuals among species. An H^{\prime} value of zero is obtained when all individuals belong to the same species. Maximum values are obtained when all individuals belong to different species.
$E\left(H^{\prime}\right)=$ The expected or unbiased estimate of H^{\prime}. An estimate of diversity (H^{\prime}) corrected for bias associated with sample size.
$\operatorname{Var}\left(H^{\prime}\right)=$ Variance of H^{\prime}. Variance is a measure of dispersion. It is defined to be the average of the square of the deviations of a set of measurements about their mean.
H^{\prime} (max) $=$ The maximum value of H^{\prime}. An estimate of maximum possible species diversity for a given number of species and individuals.
$J=$ Equitabliity or Evenness. The distribution of individuals among species is referred to as equitability. $\overline{A s}$ discussed under diversity, evenness is a component of diversity. Large values of J are indicative of a rather even distribution of densities amonq species, while low values suggest dominance by a few species. J is expressed as the ratio of H^{\prime} over $H^{\prime} \max \left(H^{\prime} / H^{\prime} \max \right)$.
red-tailed hawk and common raven, rendered them unsuitable for this type of quantitative analysis (Emlen 1971)。 Tables A8.5.1-2a through -2d summarized strip transect results and estimates of relative abundance and density for each transect。

8.5.2 Upland Gamebirds - Mourning Dove Relative Abundance

8.5.2.1 Scope and Rationale

Field observations during the baseline data accumulation program indicated that sage grouse and blue grouse populations are so sparse on and near the Tract that no reasonable monitoring program for them can be designed to determine changes over time; thus, a monitoring program for them is not warranted. The mourning dove is the only upland gamebird present in sufficient numbers to be monitored.

8.5.2.2 Objectives

The objective was to monitor the mourning dove populations to see if development of Tract C-b has affected their relative abundance.

8.5.2.3 Experimental Design

Methods used were identical to those used for songbirds. Throughout the year gamebirds observed were recorded on Wildlife Observation Reports.

8.5.2.4 Method of Analysis

The data were analyzed in the identical manner described for analyzing the relative abundance for the songbird-like population parameter.

8.5.2.5 Results and Conclusions

Table 8.5.2-1 shows mourning dove estimates on the four avifauna transects on Tract C-b. Mourning doves were not found on the developmental transects during the sampling periods. There are not enough data to make any conclusions at this time. However, the mourning dove transects will continue to be monitored closely next year to see if this was a one-year occurrence or if mourning doves have moved out of the developmental areas.

Table 8.5.2-1
Mourning Dove Estimates at Tract C-b for Spring Sample Period, 1978

Transect	Obs.	Coeff Det.	Basal Adj.	$\begin{gathered} \text { Density } \\ \text { /ha } \\ \hline \end{gathered}$	\% Relative Abundance
Chained Pinyon- Juniper (Control)	1	1.0	*	0.02	0.9
Pinyon-Juniper (Developmental)	0	-	-	-	-
Chained PinyonJuniper (Developmental)	0	-	-	-	-
Pinyon-Juniper (Control)	5	0.74	*	0.17	4.2

Other gamebirds seen on tract during 1978 included one sage grouse by the meteorological tower in October and one blue grouse in Sorghum Draw in December. Both birds were only observed one time. These birds were probably crossing Tract C-b to another location.

8.5.3 Raptor Activity

8.5.3.1 Scope and Rationale

Raptor activity was monitored on Tract C-b on a continuing basis because of the importance of raptors in the food chain, their apparent vulnerability to man's activities, their political value as threatened or endangered species, and their aesthetic appeal.

8.5.3.2 Objectives

The main objective was to detect changes in raptor utilization on or near Tract C-b.

8.5.3.3 Experimental Design

Trends in utilization of Tract C-b and immediately contiguous habitats by raptors were established for the breeding season by determining the percent of known nest sites which were occupied by nesting pairs and comparing this data with data obtained during the baseline period and following years. Nest occupancy checks were made annually during mid-March (great horned owls and ravens), late-April (red-tailed hawks, eagles), and early-June (accipiters, American kestrels, harriers). Throughout the year, any raptor sightings by the field biologists within the study boundary were recorded.

8.5.3.4 Methods of Analysis

Data analysis of nest occupancy was by professional

[^4]
8.5.3.5 Results and Conclusions

Raptor nesting records for 1978 and the two previous years are listed in Table 8.5.3-1. Six active nests were located during the April sampling period, comprising of four red-tailed hawks and two great horned owl nests. Only three of the nests were active during the June census. All the nests contained young.

In addition to the nesting raptors, other raptors observed during 1978 on or near Tract C-b included: bald eagle, golden eagle, prairie falcon, Cooper's hawk, sharp shinned hawk, American kestrel, turkey vulture, common raven and marsh hawk. Most of these raptors were observed in only small numbers.

8.6 Aquatic Ecology

The variables of the aquatic program to be sampled through the environmental monitoring program are benthos, periphyton, and water quality. Because aquatic ecosystems could be secondarily affected by mining and development on tract, aquatic monitoring is essential. Benthos and periphyton are "indicators" of a significant change in stream characteristics downstream from oil shale development. The specific changes should be apparent in water quality parameters. In addition to the quarterly water analysis, daily water samples will be collected and stored for a month after periphyton are sampled and analyzed. If significant differences are noted in the primary indicators (periphyton and benthos) these daily samples can be analyzed to determine if changes in aquatic biota are due to a change in water quality. The daily water sampling will reflect rapid changes in water quality that may be short lived but still have an effect on the aquatic biota. Statistical comparisons to baseline data would show alterations of baseline conditions and indicate, through correlation coefficients, the severity of the impact so that timely corrections of detrimental conditions could be made.

8.6.1 Benthos

8.6.1.1 Scope and Rationale

The benthic species are important as lower-level consumers in the stream community as well as providing food for carnivorous species. They can be significant indicators of changes in the aquatic habitat. There are a number of organisms indicative of good or poor water quality conditions and qualitative data will give indication of changes in water quality.

8.6.1.2 Objectives

To infer water quality from invertebrate species
present.

8.6.1.3 Experimental Design

The method used during the baseline and interim studies is continued during Development Monitoring. The surber sampler is used to make benthic collections at control and development stations on Piceance and Willow Creeks by the U.S.G.S. The following aquatic sampling stations established during the baseline period are used: WU07 (control) and WU61 and WU58

TABLE 8.5.3-1
RAPTOR NESTING RECORD
Nest No.
Species
\qquad
Unknown
Unknown
Unknown
Red-tailed Hawk Unknown
Common Raven
Red-tailed Hawk
Red-tailed Hawk
Red-tailed Hawk Common Raven

Status 1976	Status 1977 April June

1978

April June
April June
Red-tailed Hawk
Could not Locate
Red-tailed Hawk
Red-tailed Hawk
Unknown
Unknown
Great Horned $0 w 1$
Great Horned Owl
Red-tailed Hawk
Great Horned Owl
Not on Map
Not on Map
Not on Map
Not on Map
Unknown
Not on Map
Unknown
Not on Map
Red-tailed Hawk
Great Horned 0w1
Unknown
Unknown
Golden Eagle
Unknown
Red-tailed Hawk
Unknown
Great Horned Ow?
Unknown
Unknown
Unknown
Red-tailed Hawk
Unknown
Unknown
Golden Eagle
Unknown
Unknown
Unknown
Red-tailed Hawk
Great Horned Owl
Unknown
Red-tailed Hawk
Red-tailed Hawk

I
I
I
E or
I
E
I
4Y
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
$I Y$
I
I
I
$2 Y$
I
I
I
$\begin{array}{ll}\text { I } & \text { I } \\ \text { I } & \text { I } \\ \text { I } & \text { I } \\ \text { I } & \text { I } \\ \text { I } & \text { I } \\ \text { I or } Y \\ \text { I } & 2 Y \\ \text { I } & - \\ \text { I } & \text { I } \\ \text { I } & \text { I } \\ \text { I } & \text { I }\end{array}$
$\begin{array}{ll}\text { I } & \text { I } \\ \text { I } & \text { I } \\ \text { I } & \text { I } \\ \text { I } & \text { I } \\ \text { I } & \text { I } \\ \text { I } & \text { I } \\ \text { I } & \text { I } \\ \text { E } & \text { I } \\ \text { E } & \text { I } \\ \text { I } & \text { I } \\ \text { I } & \text { I }\end{array}$

I	I	E	IY
I	I	I	I
I	I	I	I
I	I	I	I
I	I	E	$2 Y$
I	I	I	I
I	I	I	I
I	I	I	I

I	I	I	I
I	I	I	I
I	I	I	I
I	I	I	I
I	I	I	I
I	I	I	I
I	I	I	I
I	I	I	I
I	I	I	I
IY	-	I	I
I	I	I	I
I	I	I	I
I	I	I	I
I	I	I	I
I	I	I	I
I	I	I	I
I	I	I	I
I	I	I	I
I	$2 Y$	I	I
I	I	I	I
I	I	I	I
		I	I
	E	I	

Code:
I = inactive nest
$E=$ adult bird observed in an incubating posture; presumed to be incubating eggs
(2) $Y=$ number of young observed in the nest
E or $Y=$ adult bird observed in an incubating posture; due to time of year, assumed to be either incubating eggs or brooding very young chicks.
(development stations). (See jacket map for locations) Information from U.S.G.S. data will be used for correlations with data collected during environmental monitoring. Sampling occurs monthly and is coordinated with surface water sampling. During winter months benthos studies are discontinued due to inaccessibility dependent on weather conditions as determined by the U.S.G.S.

8.6.1.4 Method of Analysis

The following hypotheses will be tested in this analysis after sufficient data become available:
H_{0} : No significant change exists in Benthos communities over time.
H_{0} : No significant difference exists in Benthos communities at control stations vs. developmental stations from baseline data, recognizing the differences during baseline.

Hypotheses will be tested utilizing Shannon-Weiner diversity indices and T-test for proportions at $\alpha=0.10$ level.

For each sampling period, the data will be summarized as follows: identify "ecologically important" taxa, determine percent relative abundance and diversity (\bar{d}) trends, compare these with previous sampling periods to ascertain seasonal trends, and compile a cumulative diversity (\bar{d}) table.

Each table will contain the following information:

1. Totals by order and/or family.
2. Totals by sample and station.
3. Percent relative abundance for (1) and (2).
4. Diversity (d) for (1) and (2).
5. Maximum diversity (d) for (1) and (2).
6. Equitability percent (e) for (1) and (2).
7. Number of taxa by sample, order, and/or family.

8.6.1.5 Results and Conclusions

C-b has not received benthic data from the Water Resources Division of U.S.G.S. for time period after May, 1978; therefore, limited results and conclusions are available at this time.

Table 8.6.1-1 summarizes the numbers of macroinvertebrates collected at six Piceance Creek stations during the two-year ecological baseline survey. (See Figure 8.6.1-1 for locations) The mean numbers of animals per square foot ranged from 25 at station PC-7 (Square-S Ranch site) to 79 at station PC-2 (just below Stewart Gulch site). Diptera, oligochaetes, and Ephemeroptera were, by far, the numerically dominant animals. Numerous studies of macroinvertebrates have shown that substratum and current velocity are important factors in determining the kinds and numbers present at particular sites.

The trend for numbers of kinds of invertebrates except aquatic worms to decrease at stations PC-6 (Hunter Gulch site) and PC-7 relative to upstream stations is probably more a reflection of increased amounts of silt and mud at these locations than to factors of temperature or water quality.

Table 8.6.1-1
Numbers of macroinvertebrates collected from Piceance Creek during 1974-1976

Taxon	P1	P2	P3	P5	P5a	P6	P7	Total
Ephemeroptera	319	240	402	303	190	116	36	1606
Odonata	0	0	0	0	0	0	4	4
Plecoptera	21	8	66	48	18	5	3	169
Trichoptera	12	5	12	23	2	1	0	55
Diptera	344	378	472	372	198	173	39	1976
01 igochaeta	240	515	118	114	209	275	245	1716
Other	68	42	68	63	28	17	2	288
Totals	1004	1188	1138	923	645	587	329	5814
Mean number/sample	67	79	76	62	54	42	25	

Everhart and May reported that the mean monthly numbers of benthic macroinvertebrates collected by them from four Piceance Creek stations in the period December 1968 through June, 1969 was 144 individuals $/ \mathrm{ft}^{2}$ and from July through December 1969 it was 67/ft ${ }^{2}$.

Numbers of macroinvertebrates in Piceance Creek samples were low; for example, eight samples from East Parachute Creek averaged 242 organisms/ft ${ }^{2}$ and ten samples from West Parachute Creek averaged 474 individuals/ft² (0il Shale Prototype Development Project, 1976). The same orders of insects that dominated Piceance Creek benthos were also dominant in Parachute Creek samples; however, oligochaetes were not an important part of the fauna there. Differences in type of substratum seem to be the chief casual factor in differences between Piceance Creek and Parachute Creek benthic faunas.

Not only were the numbers of macroinvertebrates in Piceance Creek small, but the individual organisms tend to be small. This is evident in the low fish food grade categories recorded during the two-year baseline survey. The volume of invertebrates (potential fish food) was usually in the poor grade (Lagler, 1956), i.e., less than $1 \mathrm{cc} / \mathrm{ft}^{2}$. The average volume of macroinvertebrates reported by Everhart and May (1973) was less than $0.5 \mathrm{cc} / \mathrm{ft}^{2}$.

Everhart and May's data are not strictly comparable to baseline because two of their invertebrate sampling stations were farther downstream than any of that program. However, their data are typical of results reported by other investigators, namely, a strong tendency for production of macroinvertebrates to be less downstream from Ryan Gulch than upstream from that point. The mean monthly biomass in Piceance Creek near its confluence with White River was from 1/12 to 1/40 that at their stations adjacent to Tract C-b.

8.6.2 Periphyton

8.6.2.1 Scope and Rationale

The periphyton communities are the major primary producers in the streams. They provide a major food source for benthic organisms and some fish species. They can respond very quickly to changes in water quality, and as such can be an important parameter for early detection of habitat degradation. Periphyton are stationary; therefore, they respond to changes in water quality at given locations. Locations are: Hunter Creek Gauging Station WU61, (PC-6 of Figure 8.6.1-1) and Stewart Gulch Gauging Station WU07 (PC-1).

8.6.2.2 Objective

The objective is to infer water quality and bioproductivity from species present.

8.6.2.3 Experimental Design

Collection of periphyton samples is accomplished monthly from two sites using artificial substrates (glass slides) which have been incubated in the water for at least 21 days. Sampling ran from May 1, 1978 to November 1, 1978, resulting in six collections. Six glass slides were incubated at each of the two locations. At the time of collection, three slides are collected at each location and placed in individual plastic containers
for biomass analysis (total of 6 slides). Also, three additional slides are collected in individual plastic containers and preserved with "M-3" preservative, a modified Lugol's solution, for taxonomic identification and enumeration (total of 6 slides).

The slides collected for biomass are oven dried at $105^{\circ} \mathrm{C}$ to constant weight. They are then weighed to the nearest milligram, ashed at $500^{\circ} \mathrm{C}$, rewetted with distilled water to replace the water of hydration, oven dried, and weighed again. Biomass is reported as mg ash-free dry weight per cm^{2}.

Slides collected for taxonomic identification and enumeration are scraped into an appropriate volume of water along with a sufficient amount of preservative to limit microbial growth and/or algal decomposition. The resulting solution is mixed thoroughly, and an aliquot withdrawn for quantitative analysis using aninverted microscope at a magnification of 560X.

8.6.2.4 Methods of Analysis

The following data are tabulated:

1. Species identification.
2. Total taxa by sample and station.
3. Density (units $/ \mathrm{cm}^{2}$).
4. Percent relatiye abundance.
5. Biomass ($\mathrm{mg} / \mathrm{cm}^{2}$) per sample.
6. Diversity (d).
7. Maximum diversity $\left(\log _{2}\right.$ number of species).
8. Equitability percent.

Diversity measurements will indicate, by the relative abundance of certain indicator species, the relative impact of oil shale development on the periphyton communities.

The following hypotheses will be tested in this analysis:
H_{0} : No significant change exists in periphyton communities over time.
H_{0} : No significant difference exists in periphyton communities at control stations vs. development stations from baseline data, recognizing the differences during baseline.

Statistical analyses will be a comparison of productivity (biomass) and species diversity during monitoring versus baseline conditions, and include analysis of variance, correlation analysis, as well as non-parametric tests. A significant difference is based on statistical analysis and professional judgment. If the null hypotheses are rejected at $\alpha=0.10$ level, daily water samples will be analyzed, periphyton sampling may be intensified in an effort to pinpoint the degradation, and as previously noted a systems dependent (fish shocking) study may be initiated.

8.6.2.5 Results and Conclusions

A total of 106 taxa were identified from Hunter and

Stewart Stations in Piceance Creek, Colorado from the monthly samples taken between May and October 1978 (Tables A8.6.2-1 through A8.6.2-6. These taxa were comprised of 84 diatom taxa (Bacillariophyta), 12 green algae taxa (Chlorophyta), six blue-green algae taxa (Cyanophyta), one cryptomonad taxon (Cryptophyta), and three yellow-brown algae taxa (Chrysophyta). Table A8,6.2-7 lists the taxa observed and their months and locations of occurrence and dominance during the study. Species diversity and biomass data for the six month study are summarized in Tables A8.6.2-8 and A8.2.6-9.

Variations in periphyton density occurred during the study period with minima recorded in May and maxima recorded the following month, June. Extreme station density differences occurred in August when the total density at Stewart Station was nearly five times less than at Hunter Station and in October when the total density at Hunter Station was over five times less than at Stewart Station.

In comparing the periphyton communities observed throughout the six month study period, a seasonal variation is apparent. In May and June the periphyton of both stations was predominately Navicula and Nitzschia species. In July, August, and September, both stations were predominated by Achnanthes species with Cocconeis species becoming codominant in August and September. October was the only month where significant differences were observed in the periphyton constituents of the two stations. Stewart Station continued to be dominated by Achnanthes and Cocconeis species while at Hunter Station the importance of Achnanthes species was diminished and Navicula and Cocconeis species occurred as dominants in the periphyton.

Annual variations also seem to be occurring in Piceance Creek based on comparisons of 1978 sampling to spring and fall periphyton analyses in 1977. In May 1977 Navicula viridula var. avenacea dominated while in 1978 other Navicula species and Nitzschia species dominated along with Cocconeis placentula at Hunter Station. The October 1978 samples at Hunter Station were similar to those observed in 1977. Stewart Station, however, was quite dissimilar with Achnanthes and Cocconeis species dominating.

The known ecological requirements and tolerances were similar for the diatom species found to dominate at some time in the study. They attain best development in a?kaline waters and are common in oligotrophic and mesothropic rivers of this region (Lowe 1974 and Patrick and Reimer 1966). The Nitzschia species that dominated in spring and summer, however, are generally more common in standing waters.

Species diversity values for the study are summarized in Table A8.6.2-8. Diversity values decreased steadily at both stations between May and July then increased again in August. In September and October at Stewart Station the diversity was extremely low. In October the differences between stations apparent from the dominant taxa was also visible when comparing diversity values with Hunter Station diversity being considerably higher.

Biomass data are summarized for the study in Table A8.6,2-9. At Stewart Station mean biomass steadily decreased from $0.52 \mathrm{mg} / \mathrm{cm}^{2}$ in May to $0.05 \mathrm{mg} / \mathrm{cm}^{2}$ in Auqust, increased to $0.35 \mathrm{mg} / \mathrm{cm}^{2}$ in September, then decreased again to 0.13 $\mathrm{mg} / \mathrm{cm}^{2}$ in Oçtober. At Hunter Station, biomass increased to a maximum in June ($1.66 \mathrm{mg} / \mathrm{cm}^{2}$) and steadily decreased to the minimum recorded in October ($0.22 \mathrm{mg} / \mathrm{cm}^{2}$). During the six month study, productivity as determined by the biomass was highest

In addition to the 1977 and 1978 periphyton data discussed in previous pages periphyton data were collected in 1974，1975，and 1976 from Piceance Creek， Colorado（C－b Shale Oil Venture et．al 1977）．

In comparing the 1974－1976 periphyton data to the 1977－1978 data，difficulties arise because sampling sites for the two studies were changed and in 1974－1976 there were gaps in the data collected due to destroyed samplers．For these reasons，meaningful comparisons can only be made between data collected from Stewart and Hunter Stations for 1977－1978 and data collected from similar sites at Stewart and Hunter Stations for 1974－1976．

Station PC－3 with periphyton community analysis data for 1974，1975，and

The periphyton community analysis data for 1974－1976 is qualitative only．No information is available for comparison on periphyton abundance and dominance．

Since the occurrence of a taxa in a sample could indicate the chance presence of a single individual unsuited to the present environmental conditions rather than a growth response of an organism to favorable conditions，dominant taxa （present at abundances greater than 5% of the total abundance）are often used to describe an algal community．In the case of the 1974－1976 data where dominance was not indicated，taxa dominating in 1977 and 1978 have been compared to those occurring in 1974－1976。

In the vicinity of Stewart Station there appears to be considerable annual variation in the periphyton community．

In spring 1978，Navicula tripunctata var．schizonenoides，Navicula secreta var。 apiculata，Nitzschia palea，Nitzschia spp．，and other pennate diatoms were the dominant taxa while in 1977 Navicula viridula var．avenacea was the only taxa present as a dominant．In 1976，when spring collection data is available， Navicula viridula and Nitzschia palea were the only taxa recorded that corres－ ponded to the 1977 and 1978 dominants．

In summer 1978，three Achnanthes species，two Cocconeis species and Navicula secreta var．apiculata were the dominant taxa．Two of these six taxa were recorded as having occurred in 1976，Achnanthes sp．and Cocconeis placentula， while in 1975 Cocconeis placentula was the only taxa of the 1978 dominants recorded as present．

In fall，major annual differences were apparent in the vicinity of Stewart Station．In 1978 Achnanthes minutissima and Cocconeis pediculus dominated the periphyton．Navicula secreta var．apiculata and Navicula viridula var． avenacea were the dominant taxa，in 1977．Of the taxa found $i n$ abundance in 1977 and 1978，Navicula viridula occurred in the fall periphyton collection
in 1975 and Cocconeis sp. and Navicula sp. occurred in 1974.
In the vicinity of Hunter Station some annual variation was apparent. In spring 1977, Navicula viridula var. avenacea dominated the periphyton community. In addition to this taxa, in 1978 Achnanthes minutissima, Navicula cryptocephala, N. secreta var. apiculata, N. viridula var. avenacea, N. tripunctata var. Schizonemoides, Nitzschia palea, Nitzschia spp., and other pennate diatoms occurred as dominants. Of these 1977 and 1978 dominant taxa, Navicula cryptocephala and N. viridula were recorded from the periphyton in the spring of 1975 and 1976.

In summer during 1978, three Achnanthes species and two Cocconeis species dominated the periphyton collection. Of these taxa Cocconeis placentula was recorded occurring in 1975 and 1976. In addition, Achnanthes lanceolata occurred in 1976.

In fall 1977 Navicula viridula var. avenacea and N. secreta var. apiculata were the dominant taxa. In 1978 the dominant taxa were these same two Navicula taxa, Achnanthes lanceolata var. dubia, and two Cocconeis species. Of these dominant taxa of 1977 and 1978, two occurred in the fall samples of 1975, Navicula viridula and Cocconeis placentula. In 1974 Achnanthes sp., Cocconeis placentula, and Navicula sp. were the taxa occurring in common with the 1977 and 1978 dominants.

Differences in sampling techniques and levels of taxonomic expertise may be responsible for some of the variation observed between the periphyton communities of 1974-1976 and 1977-1978. Although annual differences have apparently occurred, the reasons for these differences are not immediately apparent. Combinations of a number of environmental factors such as light (turbidity), temperature, flow rate, nutrients, and pH all effect the periphyton community. Any or all of these factors may vary on an annual basis irrespective of any man-made perturbations.

Although variability in the periphyton communities is apparent annually, seasonally, and between stations, most of the taxa observed over the five year study in the vicinity of Stewart and Hunter Stations were diatoms with similar environmental requirements. According to Lowe (1974) most of the diatom taxa observed attain best development in alkaline waters ($\mathrm{pH}>7$) of relatively high inorganic nutrient concentrations. They are common in small or large streams of ponds. Most of the taxa recorded as abundant are considered to be cold water forms.

The seasonal fluctuation apparent in ash-free dry weight biomass productivity was highest in summer and fall when light and temperature were optimum for growth. Spate and drought occurrences are probably the most important factors governing the time and degree of high productivity in the summer and fall. In 1975 productivity was high in late summer and fall while in 1976 the high values occurred in spring and early summer with a low value in mid-summer (July). A July 1976 high flow rate of approximately 40 cfs could have scoured the periphytic algae from the glass slides and reduced
the recordable biomass productivity. Simarily in August 1978 productivity was low. Increased flow rate was probably the reason for this also. On an annual basis the range of productivity values recorded were generally comparable over the five year study.

Productivity at the different stations was also variable. In 1975, 1976, and 1977 biomass productivity tended to be higher at Stewart Station than at Hunter Station while in 1978 the reverse was true. Continued study will be required to determine if this trend will continue. Figure 8.6.2-1 graphically presents the productivity results for 1975-1978.

8.6.3 Water Quality

Surface water quality is now consolidated in Section 5.2

8.7 Terrestrial Studies

The terrestrial studies portion of the Environmental Baseline Program was designed to describe the predevelopment, biological environment within the study area (the dotted lines of the jacket map) and to provide baseline data to be used in monitoring changes in the biota as a result of oil shale development. Baseline parameters were selected for their usefulness in describing the existing environment on Tract C-b. Development monitoring parameters were judged to be useful because of their measurability or observability or relative low natural variability, and/or sensitivity to expected environmental perturbations. Sample locations during Development Monitoring are shown on the jacket map.

8.7.1 Vegetation Community Structure and Composition

8.7.1.1 Scope and Rationale

The vegetation community structure and composition studies are conducted to evaluate major changes in the makeup of the major plant communities on the Tract. Other vegetation monitoring programs provide a better means for statistically evaluating changes. The structure and composition studies are better used for evaluating general vegetational trends. These studies are centered on the six intensive study sites which are sampled on a three year rotational basis. Chained pinyon-juniper rangeland Plots were sampled in 1978, pinyon-juniper woodland Plots will be sampled in 1979 and sagebrush Plots will be sampled in 1980.

8.7.1.2 Objectives

The objective of the community structure and composition studies is to obtain long-term data from permanently located sampling quadrats so as to evaluate differences in numerous species. The productivity studies, discussed later, focus on monitoring a process; the structure and composition studies focus on the performance of species within the major vegetation types.

8.7.1.3 Experimental Design

The community structure and composition studies are conducted at the six intensive study plots. Two are located in the pinyonjuniper woodland type, two in the chained rangeland type and one each in the bottomland sagebrush and upland sagebrush types. At each location a grid of $251.0 \mathrm{~m}^{2}$ quadrats has been established in a permanently fenced and an adjoining open area (a grid in each for a total of 50 quadrats for each site). Observations on herb layer species are made in the $1.0 \mathrm{~m}^{2}$ quadrats.

Shrubs are sampled along line-strip transects. The center posts marking the herb quadrats serve as end points of the transects, thus producing a total of 20 line-strips per grid. The herb quadrats are established on 10 meter centers. The line-strips are 10 meters long and 4 meters wide. In the woodland plots, trees are surveyed within the $10 \mathrm{~m} \times 4 \mathrm{~m}$ transects. The following parameters are being monitored: cover and frequency for herbs; cover, frequency, and density for shrubs; and diameter and canopy cover for trees.

8.7.1.4 Method of Analysis

Data from the community structure and composition studies have been evaluated mostly through the use of trend analysis. Total vegetation cover in the herb layer will be evaluated in a future report using a one-way analysis of variance test to examine yearly differences in total cover.

8.7.1.5 Results and Conclusions

Herb quadrat summaries for Plot 1-0 and Plot 1-F are presented in Tables A8.7.1-1 and A8.7.1-2. In order to provide more information about the vegetation at these sites, individual estimates of species cover were made during 1978. These data were not recorded during the baseline period.

Species composition at both Plots 1-0 and 1-F is essentially the same as it was during the baseline period. Annual species continue to be somewhat variable, and frequency values for these species tend to be more subject to changes than for perennial species. There was no significant difference in total cover between 1978 and 1975 and 1976 at either Plot 1-0 or Plot 1-F。

Herb quadrat summaries for Plot 2-0 and Plot 2-F are presented in Tables A8.7.1-3 and A8.7.1-4. No major differences were noted in species composition in either plot. At Plot 2-0, the differences in total cover observed in 1978 were not significant compared with the values obtained during the baseline years. At Plot 2-F, however, the differences between 1975 and 1978 and between 1976 and 1978 were significant with 1978 having less cover than in either of the other years.

Shrub species frequency, mean cover and relative cover have not changed substantially over the last 4 years at Plots 1-0, 1-F, 2-0, and 2-F (Tables A8.7.1-5 to -8) 。 Values were not tested statistically; however, the 1978 values appear to be comparable to those obtained during the baseline period.

During 1978, Juniperus scopulorum was not separated from Juniperus osteosperma. The fact that \underline{J}. scopolorum did not appear in the data was a result of misidentification. Density values for shrubs were also comparable to those obtained during the baseline period (Table A8.7.1-9). The variability in the data is somewhat higher, mainly because density is a more difficult parameter to measure than cover or presence. One general trend which can be seen is an increase in the number of sagebrush plants.

8.7.1.6 Conclusions

The monitoring data suggest that over the past four years there have been no major changes in species composition or community structure in the chained rangelands. The general trend has been for a slight increase in total cover and also for an increase in the density of big sagebrush. These changes are closely related to the successional characteristic of the chained rangelands. The trend for increasing shrub cover and density is likely to continue until the tree saplings mature into tree-size individuals.

8.7.2 Herbaceous Productivity and Utilization

8.7.2.1 Scope and Rationale

Productivity of vegetation is intrinsically important in the operation of ecosystems on Tract $C-b$. The amount of production and availability of food are both of consequence for animal species within the system. Any significant interruption in production may well be manifested in changes throughout the system. In terms of monitoring, herbaceous production is a more convenient parameter to measure and is a reflection of the total production in any of the communities on the Tract。 By monitoring the herbaceous production it is possible to evaluate yearly and site-to-site differences in productivity.

The scope of the herbaceous productivity and utilization studies includes sampling on Tract-wide basis, sampling at the intensive study sites established during the baseline studies period, sampling control and treatment sites north of Piceance Creek in an area which may possibly be impacted by industrial development, and also sampling in native communities fertilized in order to increase production.

8.7.2.2 Objectives

The objectives of the productivity and utilization studies are to provide a means for measuring trends of herbaceous production and utilization, to provide a way of evaluating changes in production related to development activities, and to evaluate any changes in utilization by grazing.

8.7.2.3 Experimental Design

Herbaceous production and utilization are being studied on a Tract-wide basis through the use of randomly located exclosures. These exclosures (range cages) are small in size and prevent grazing by large herbivores on more than one square meter of ground. Ten exclosures are placed throughout the Tract in each of the four major plant communities (pinyon-juniper woodlands, chained pinyon-juniper rangelands, upland sagebrush shrublands, and bottomland sagebrush shrublands). The range cages are clipped in late July and all of the current years growth is fractionated on the basis of species for western wheatgrass (Agropyron smithii), cheatgrass (Bromus tectorum), and Indian ricegrass (Oryzopsis hymenoides); and on the basis of life form for other perennial grasses, other annual grasses, perennial forbs, annual forbs, and half-shrubs. At the same time the cages are clipped, a randomly located quadrat of the same size is clipped in an area close to the range cage in order to obtain the necessary data for evaluating utilization. The clipped samples are returned to the lab, oven dried to a constant weight, and then weighed to the nearest milligram.

Production studies at the intensive study sites are being conducted using a double sampling approach. Fifty one-square meter quadrats are randomly located in seasonally fenced plots at the intensive study sites. (Fences are put up at the beginning of the growing season and removed after the studies have been completed at the end of the season). The weight in grams for each of the current years growth fractions is estimated in each of the fifty quadrats. Ten of the quadrats are clipped in addition to being estimated. Once the samples have been dried and weighed, regression equations are developed for each of the species or species groups. All of the fresh estimates are then corrected to an oven dry weight on the basis of the derived equations. Total production estimates are derived from an equation rather than by summing individual fractions for each quadrat. Data from these studies are compared with information derived during baseline periods and are also used to compare vegetation types and study sites within any given year.

The areas north of Piceance Creek have been identified as possible sulfur dioxide accumulation areas. In order to evaluate potential air pollution effects, herbaceous production estimates are to be obtained in the affected area as well as in a comparable control area. In 1978 both the affected and control sites were sampled using ten randomly located range cages in each area. Open areas near each of the cages were also clipped in order to evaluate utilization at each site. Samples were obtained and handled in the same manner as that used for other range cage studies. These data will serve as the baseline for evaluating changes in the affected area.

The effects of fertilization in native vegetation types are also being monitored. Two different fertilizer treatments (ammonium nitrate and ammonium nitrate plus phosphorus) are being employed at two sites in the chained rangeland community type. One range cage is randomly located within each treatment at each site。

Control data are obtained from sites adjacent to the fertilizer application areas. Open areas near the range cages are clipped in order to evaluate utilization in the fertilizer areas. The data are collected and handled in the same manner as in other range cage studies.

8.7.2.4 Methods of Analyses

Analysis of the herbaceous production data is focused on four areas of comparison. These include the evaluation of:

1. Differences among vegetation types during a given growing season.
2. Differences between study sites of the same vegetation type during a given growing season.
3. Differences between years within a given vegetation type。
4. Differences between fenced and open areas within a vegetation type during a given growing season.

Total production is used as the parameter for comparison. Evaluation of differences is accomplished using a one-way analysis of variance (F-test) to test whether or not the means in question are the same.

8.7.2.5 Results and Discussion

Tract-wide Range Cage Studies. The Tract-wide range cage studies were used to obtain a more broadly based estimate of production than that derived from the intensive study plots. Each of the four major vegetation types is discussed separately.

Data from each of range cages sampled in the pinyon-juniper woodland type are presented in Table A8.7,2-1. Total production in the pinyon-juniper woodlands averaged $21.4 \mathrm{~g} / \mathrm{m}^{2}(191 \mathrm{lbs} / \mathrm{ac})$ and only $9.8 \mathrm{~g} / \mathrm{m}^{2}(87 \mathrm{lbs} / \mathrm{ac})$ in open areas near the cages (Table A8.7.2-2). In both cases most of the production was attributable to perennial grasses. Annual forbs and half-shrubs occurred only sporadically.

Oven dry weight data from the chained rangeland range cages and open areas are presented in Table A8.7.2-3. Total production averaged $63.5 \mathrm{~g} / \mathrm{m}^{2}$ ($566 \mathrm{lbs} / \mathrm{ac}$) for the range cages and $53.2 \mathrm{~g} / \mathrm{m}^{2}(474 \mathrm{lbs} / \mathrm{ac})$ for the open areas. The greatest percentage of the production was attributable to Indian ricegrass, western wheatgrass and the other perennial grasses (Table A8.7.2-4)

Oven dry weight data for range cages and open areas in the upland sagebrush shrubland type are presented in Table A8.7.2-5 . Total production averaged $68.0 \mathrm{~g} / \mathrm{m}^{2}(606 \mathrm{lbs} / \mathrm{ac})$ in the range cages and $47.2 \mathrm{~g} / \mathrm{m}^{2}(420 \mathrm{lbs} / \mathrm{ac})$ in the open areas. Major producing species included western wheatgrass and other perennial grasses (Table A8.7.2-6). Forbs accounted for less than 10 percent of the total production. Half-shrubs were encountered occasionally; however when they occurred in the sample, they contributed substantially to the total production.

Data from the range cages and open areas in the bottomland sagebrush shrubland type are presented in Table A8．7．2－7．Total production averaged $32.9 \mathrm{~g} / \mathrm{m}^{2}$（293 1bs／ac）in the range cages and $16.6 \mathrm{~g} / \mathrm{m}^{2}$（ 148 lbs／ac）in the open areas．The dominant species was cheatgrass which accounted for 45 percent of the production in the range cages and 34 percent of the production in the open areas（Table A8．7．2－8）．

Intensive Study Plots－1977。 Field data and oven dry weights from May， June and July， 1977 for the six intensive study plots were presented in the 1977 Tract C－b interim monitoring data report．The results presented in this section are summaries based on regression equations derived from the May， June and July data（Tables A8．7．2－9 to－11）．

1977 was a very dry year on the Tract，and total production estimates were substantially lower than those reported for previous years．Not only were the production estimates lower，but the pattern of seasonal development was also different from previous years．In some cases the maximum standing crop was attained in May，whereas in more normal precipitation years maximum stand－ ing crop was not reached until July．

Production data for chained rangeland Plots 1－0 and T－F for May，June and July are presented in Tables A8．7．2－12 to－14．Maximum standing crop in the fenced plot was $11.1 \mathrm{~g} / \mathrm{m}^{2}$（ $99 \mathrm{lbs} / \mathrm{ac}$ ）and was measured in July．In the open plot maximum standing crop was $8.8 \mathrm{~g} / \mathrm{m}^{2}(78 \mathrm{lbs} / \mathrm{ac})$ and was also measured in July。 Most of the production in both the open and fenced plots was attributable to perennial grasses．In chained rangeland Plots 2－0 and 2－F（Tables A8．7－2－15 to－17）the maximum standing crop was $12.5 \mathrm{~g} / \mathrm{m}^{2}$（ $111 \mathrm{lbs} / \mathrm{ac}$ ）in May for the fenced plot and $9.5 \mathrm{~g} / \mathrm{m}^{2}(85 \mathrm{lbs} / \mathrm{ac})$ in May for the open plot．

Maximum standing crop in the upland sagebrush shrubland type（Plots 3－0 and $3-F$ ）was reached in May（Tables A8．7．2－18 to -20 ）．In Plot 3－F the maximum standing crop was $18.2 \mathrm{~g} / \mathrm{m}^{2}(162 \mathrm{lbs} / \mathrm{ac})$ and in Plot $3-0$ was $12.2 \mathrm{~g} / \mathrm{m}^{2}$（ 109 lbs／ac）．Most of the standing crop was attributable to western wheatgrass and other perennial grasses．

Production data for the bottomland sagebrush Plots 4－0 and 4－F（May，June and July）are presented in Tables A8．7．2－21 to－23．Maximum standing crop for both the open and fenced plots was measured in July．In the fenced plot total production was only $4.5 \mathrm{~g} / \mathrm{m}^{2} \quad(40 \mathrm{lbs} / \mathrm{ac})$ and in the open plot was only $4.6 \mathrm{~g} / \mathrm{m}^{2}$（ $41 \mathrm{lbs} / \mathrm{ac}$ ）。 Cheatgrass，which had been encountered as a major species in previous years，was nearly absent from the sample．Cheat－ grass is an annual species and under the very dry conditions of the 1977 growing season，grew hardly at all。

Production data for pinyon－juniper woodland Plots 5－0 and 5－F are presented in Tables A8．7．2－24 to－26．Maximum standing crop in Plot 5－F averaged $6.2 \mathrm{~g} / \mathrm{m}^{2}$（ $55 \mathrm{lbs} / \mathrm{ac}$ ）and occurred in May．In Plot 5－0 the maximum standing crop was only $5.1 \mathrm{~g} / \mathrm{m}^{2}$（ $45 \mathrm{lbs} / \mathrm{ac}$ ）also recorded in May．Most of the pro－ duction was provided by perennial grasses．Production at the other pinyon－ juniper study site（Plots 6－0 and 6－F）was somewhat higher than at Plot 5 （Tables A8．7．2－27 to－29）．Maximum standing crop averaged $6.4 \mathrm{~g} / \mathrm{m}^{2}$（ $57 \mathrm{lbs} / \mathrm{ac}$ ）
in Plot $6-\mathrm{F}$ in July and $9.9 \mathrm{~g} / \mathrm{m} 2$（ $88 \mathrm{lbs} / \mathrm{ac}$ ）in Plot $6-0$ in May．As in Plot 5，most of production was provided by perennial grass species．

Intensive Study Plots－1978．During 1978，clipping studies were conducted only in Plots $1-F, 2-F, 5-F$ and $6-F$ ，and sites were clipped only once during the growing season（late July）．At this date all of the material produced during the growing season was clipped．Fresh weight estimates for each of the plots are presented in Tables A8．7．2－30 to 33，and the oven dry weights for each of the clipped quadrats are presented in Tables A8．7．2－34 and 35．The dry weight estimates and corresponding oven dry weights were used to develop the regression equations in Table A8．7．2－36．

Based on data derjved from the regression equations the production at Plot 1－F averaged $29.5 \mathrm{~g} / \mathrm{m}^{2}(263 \mathrm{lbs} / \mathrm{ac})$（Table A8．7．2－37）．The major species were Indian ricegrass and other perennial grasses．At Plot 2－F herb production averaged $24.4 \mathrm{~g} / \mathrm{m}^{2}(217 \mathrm{lbs} / \mathrm{ac})$（Table A8．7．2－37）。 Major species at this site included western wheatgrass，Indian ricegrass and other perennial grasses．Cheatgrass was also quite abundant and averaged $4.0 \mathrm{~g} / \mathrm{m}^{2}(36 \mathrm{lbs} / \mathrm{ac})$ ．

Production at pinyon－juniper woodland Plot $5-\mathrm{F}$ was lower than that for the chained rangeland sites and averaged only $19.2 \mathrm{~g} / \mathrm{m}^{2}$（171 1bs／ac）（Table A8．7．2－38）．Major species included Indian ricegrass and other perennial grasses．Plot $6-F$ was more than twice as productive and averaged $50.3 \mathrm{~g} / \mathrm{m}^{2}$ （448 lbs／ac）（Table A8．7．2－38）．This same relationship between plots 5－F and $6-\mathrm{F}$ was observed during the baseline period and to a lesser extent during the suspension monitoring period．

Studies Conducted North of Piceance Creek．Oven dry weight data for range cages and open areas in the anticipated affected area and control area are presented in Tables A8．7．2－39 and 40，respectively．On the affected area site，production averaged $19.7 \mathrm{~g} / \mathrm{m}^{2}(175 \mathrm{lbs} / \mathrm{ac})$ in the range cages and 9.8 $\mathrm{g} / \mathrm{m}^{2}(87 \mathrm{lbs} / \mathrm{ac})$ in the open areas．In both instances most of the production was attributable to Indian ricegrass and other perennial grasses（Table A8．7．2－41）。

In the control area，production averaged $17.8 \mathrm{~g} / \mathrm{m}^{2}(150 \mathrm{lbs} / \mathrm{ac})$ in the range cages and $6.6 \mathrm{~g} / \mathrm{m}^{2}(59 \mathrm{lbs} / \mathrm{ac}$ ）in the open areas（Table A8．7．2－42）．Indian ricegrass and other perennial grasses were the most productive species。 The pinyon－juniper woodlands on these sites north of Piceance Creek occur on dry， south－facing slopes．In terms of slope and aspect，they are quite similar to intensive study Plot 5 on the Tract．It is interesting to note that the pro－ duction on the control and affected area sites was comparable to that measured at Plot 5－F。

Fertilization Studies．Fertilized areas are shown on Figure 8．7．2－1．Oven dry weights from range cages and open areas in the different fertilizer treatment locations are presented in Table 8．7．2－1．These data were grouped in various ways in order to evaluate the effects of fertilization，location effects，and grazing effects in the fertilizer plots．

N-P AMMONIUM NITRATE \& PHOSPHOROUS FERTILIZER APPLICATION
N AMMONIUM NITRATE

FERTILIZATION MAP
FIGURE 8.7.2-।

Table 8.7.2-1 . Production values (oven dry weights in grams $/ \mathrm{m}^{2}$) from range cages and open plots for fertilized and non-fertilized areas on the Ridge above Cottonwood Gulch and Scandard Ridge. 1978.

Ridge Above
Cottonwood Gulch Scandard Ridge
Fenced Plot Open Plot Fenced Plot Open Plot

Fertilized with Anmonium Nitrate
and Phosphorus
Agropyron smithii
Bromus tectorum
Oryzopsis hymenoides
Other perennial grasses
Perennial forbs
Annual forbs
Total biomass
81.159
58.215
45.251
46.747
28.119
30.727
9.189
33.980
26.872
6.874
0.206
1.179
8.092
5.039
0.005
4.639
0.157
0.088

Fertilized with Ammonium Nitrate

Agropyron smithii	10.152	15.163	0.205	
Bromus tectorum		6.055		
Oryzopsis hymenoides		0.923	0.236	
Other perennial grasses	73.040		25.243	27.770
Perennial forbs			0.801	1.480
Annual forbs		6.691		0.675
Total biomass	83.192	28.832	26.485	29.925

Not Fertilized

Agropyron smithii	11.314	5.466	7.854	
Bromus tectorum	0.158	0.670	0.092	0.707
Oryzopsis hymenoides				
Other perennial grasses	51.343	0.840	17.839	28.442
Perennial forbs	6.284	5.299	4.028	
Annual forbs	0.129	0.154		0.256
Half shrubs		0.128		
Total biomass	69.228	12.557	29.813	29.405

There was no significant difference between the production in the fertilized and non-fertilized areas (tested with an F-test at $\alpha=0.10$). The mean production on the fertilized area was greater ($56.2 \mathrm{~g} / \mathrm{m}^{2}$) compared with non-fertilized ($35.2 \mathrm{~g} / \mathrm{m}^{2}$), however the difference was not significant. Also, the differences in the type of fertilizer used were not significant ($42.1 \mathrm{~g} / \mathrm{m}^{2}$ with ammonium nitrate alone and $70.2 \mathrm{~g} / \mathrm{m}^{2}$ with ammonium nitrate plus phosphorus). There was no significant difference between the plots on Scandard Ridge and those on the ridge above Cottonwood Gulch. Considering all the range cages used in the fertilization study there were no significant differences between the range cage and the open quadrats, suggesting limited utilization of the two sites as whole. However, the difference between the open quadrats and range cages on the ridge above Cottonwood Gulch was significant。

At this time the results from the fertilization studies are inconclusive. Apparently the fertilization is causing an increase in production, but because of the variability of the data and the limited sample sizes these differences are statistically not significant.

Evaluation of Production Differences.

Differences Among Vegetation Types. Because of the increased sample size associated with the change in methods used for estimated production, it has been possible to more clearly evaluate differences among the four major types (Table 8.7.2-2). In 1977 the chained rangelands were significantly more productive than both the pinyon-juniper woodlands and bottomland sagebrush shrublands. The upland sagebrush shrublands were significantly more productive than any of the other vegetation types. The pinyon-juniper woodlands were significantly more productive than the bottomland sagebrush shrublands. In 1978 the chained rangelands and upland sagebrush shrublands were significantly more productive than the pinyon-juniper woodlands and bottomland sagebrush shrublands. The differences between the pinyon-juniper woodlands and bottomland sagebrush shrublands, and between the chained rangelands and upland sagebrush shrublands were not significant in 1978. The pattern of differences observed in both 1977 and 1978 is consistent with the data obtained during the baseline period. In terms of the herbaceous production the upland sagebrush shrublands tend to be the most productive, followed by the chained rangelands, pinyon- juniper woodlands and bottomland sagebrush shrublands.

Differences Related to Development Effects. In 1977 there were no significant differences between Plots 1-F and 2-F or 5-F and 6-F (Table 8.7.2-3). Production was very low at all of the intensive study sites. In the pinyonjuniper woodland plots, the production was greater at Plot 6-F than at Plot 5, but the difference was not significant. Throughout the baseline period Plot 6 was more productive than Plot 5 . This trend was also apparent in 1978 when the difference between Plots 5 and 6 was significant. It is highly doubtful that this difference is related to any development activities. It is most likely related to inherent site differences between Plots 5 and 6. Plot 5 occurs on dry east-facing slope and Plot 6 occurs on a ridgetop where soil and moisture conditions are apparently more favorable.

Table 8.7.2-2 . One-way analysis of variance results for comparisons of production among vegetation types, 1977 and 1978. Underlined plots are those with the significantly greater production.

	Calculated			

DIFFERENCES AMONG VEGETATION TYPES-1977
Chained Rangeland vs. Pinyon-Juniper

1-F July vs. 5-F May	20.774	1	98	2.764	SIG
$\frac{1-F \text { July }}{}$ vs. 6-F July	18.497	1	98	2.764	SIG
2-F May vs. 5-F May	22.619	1	98	2.764	SIG
2-F May vs. 6-F July	20.776	1	98	2.764	SIG

Upland Sagebrush vs. Pinyon Juniper

3-F May vs. 5-F May	223.214	1	98	2.764	SIG
3-F May vs. $6-F$ July	203.364	1	98	2.764	SIG

Bottomland Sagebrush vs. Pinyon-Juniper

4-F July vs. 5-F May	4.044	1	98	2.764	SIG
4-F July vs. 6-F July	4.729	1	98	2.764	SIG

Upland Sagebrush vs. Chained Rangeland

3-F May vs.	1-F July	40.586	1	98	2.764	SIG
3-F May vs.	$2-F$ May	17.279	1	98	2.764	SIG

Bottomland Sagebrush vs. Chained Rangeland
4-F July vs. $\frac{1-F}{}$ July
31.709
198
2.764
SIG
4-F July vs. 2-F May 32.487
198
2.764
SIG

Upland Sagebrush vs. Bottomland Sagebrush
3-F May vs. 4-F July
212.209
198
2.764
SIG

DIFFERENCES AMONG VEGETATION TYPES-1978
(Based on Range Cages)

Pinyon-Juniper vs. Chained Rangeland		7.464		16	3.05	SIG
Pinyon-Juniper vs. Upland Sagebrush	12.914	1	17	3.03	SIG	
Pinyon-Juniper vs. Bottomland Sagebrush	1.622	1	17	3.03	NS	
Chained Rangeland vs. Upland Sagebrush	0.067	1	17	3.03	NS	
Chained Rangeland vs. Bottomland Sagebrush 4.598	1	17	3.03	SIG		
Upland Sagebrush vs. Bottomland Sagebrush	8.154	1	18	3.01	SIG	

[^5]One－way analysis results for comparisons evaluating development effects at Plots $1,2,5$ ，and 6 and potential pollution effects north of Piceance Creek．Underlined plots are those with the significantly greater production．

	Calculated F	v_{1}	v_{2}	Critical Region $\begin{gathered} \alpha=0.10 \\ \quad F> \\ \hline \end{gathered}$	Signifi－ cance＊
DEVELOPMENT EFFECTS－ 1977					
1－F July vs。2－F May $5-\mathrm{F}$ May vs。6－F July	0.883 0.066	1	98 98	2.764 2.764	$\begin{aligned} & \text { NS } \\ & \text { NS } \end{aligned}$
DEVELOPMENT EFFECTS－ 1978					
$\begin{aligned} & 1-F \text { vs。 } 2-F \\ & 5-F \text { vs. } 6-F \end{aligned}$	2.725 59.302	1	98 98	2.764 2.764	$\begin{aligned} & \text { NS } \\ & \text { SIG } \end{aligned}$
POTENTIAL POLLUTION EFFECTS－ 1978					
Pinyon－Juniper north of Piceance Creek，Treatment vs．Control Fenced	0.124	1	18	3.01	NS
Pinyon－Juniper north of Piceance Creek，Treatment vs．Control Open	1.652	1	18	3.01	NS
$\begin{aligned} * N S & =\text { Not Significant } \\ \text { SIG } & =\text { Significant } \end{aligned}$					
v_{1} is the degree of freedo v_{2} is the degree of freedo	for numera for denomi	tor nator			

There was no significant difference between the affected area site and control site in the potential pollution study area north of Piceance Creek (Table 8.7.2-3) . This is to be expected inasmuch as no emissions yet exist. Tests were conducted on both the data from the range cages and data from the open areas. Neither were significantly different. It is fortunate that the control and affected area sites are so similar. Future comparisons will be more easy to conduct than if the sites were drastically different.

Differences Among Years. In the pinyon-juniper woodlands 1975 and 1976 were both significantly more productive than 1977 (Table 8.7.2-4), and 1978 was significantly more productive than 1975, 1976, and 1977 in all cases except for Plot 5 where the difference between 1975 and 1978 was not significant. The most dramatic differences occurred between the years 1977 and 1978. 1977 was a very dry year and 1978 was one of the most moist。

In the chained rangelands the differences among years were similar to those observed for the pinyon-juniper woodlands. 1975 and 1976 were significantly more productive than 1977, and 1978 was significantly more productive than 1976 and 1977, except at Plot 1 where the difference between 1976 and 1978 was not significant. Differences between 1975 and 1978 were not consistent. In some Plots, 1975 was significantly more productive and other cases 1978 was more productive.

In the upland sagebrush shrublands the same pattern was observed. 1975 and 1976 were significantly more productive than 1977, and 1978 was significantly more productive than 1976 and 1977. The difference between 1975 and 1978 was not significant.

For the bottomland sagebrush shrublands the yearly differences were the same as those observed in the upland sagebrush shrublands (Table 8.7.2-4).

The significant differences between years emphasize the importance of yearly changes in precipitation, and point to the responsiveness of the vegetation. The species are adapted to withstand dry years and grow only to a limited extent. In moist years these same species have the ability to produce more than five times the amount produced during a dry year.

Evaluation of Utilization. During the baseline period utilization was observed to be occurring early in the growing season and then again late in the season. For the middle part of the summer the livestock were grazing at elevations higher than the Tract. A similar pattern was observed during 1977 (Table 8.7.2-5). In May the differences between open and fenced plots were either not significant or the fenced plots were greater, except for Plot 6. In June half of the fenced plots were more productive and half were either more productive in the open plots or were not significantly different. By July the only significant difference was measured at Plot 1 where the fenced plot was more productive, suggesting that by the time of clipping in late July the open areas and fenced areas had mostly equalized in terms of herbaceous production.

Table 8.7.2-4 . One-way analysis of variance results for comparisons of production among years 1975-1978. Underlined years in each pair is the year with the significantly greater production.

DIFFERENCES AMONG YEARS

Pinyon-Juniper Woodland

1975 Plot 5 Combined Data vs. 1977 Plot 5 May	53.214	1	68	2.785	SIG
1976 Plot 5 Combined Data vs.					
1977 Plot 5 May	7.121	1	77	2.777	SIG
1977 Plot 5 May vs. 1978 Plot 5	29.365	1	98	2.764	SIG
1975 Plot 6 Combined Data vs.					
1977 Plot 6 July	31.082	1	68	2.785	SIG
1976 Plot 6 Combined Data vs.					
1977 Plot 6 July	28.721	1	77	2.777	SIG
1977 Plot 6 July Data vs.					
1978 Plot 6 Data	171.716	1	98	2.764	SIG
1975 Plot 5 Combined Data vs. 1978 Plot 5	1.153	1	68	2.785	NS
1976 Plot 5 Combined Data vs.					
1978 Plot 5	6.353	1	77	2.777	SIG
1975 Plot 6 Combined Data vs.					
1978 Plot 6	5.016	1	68	2.785	SIG
1976 Plot 6 Combined Data vs.					
1978 Plot 6	26.604	1	77	2.777	SIG

Chained Rangeland

1975 Plot 1 Combined Data vs.
1977 Plot 1 July
82.676
10.635

167
2.765

SIG
1976 Plot 1 Combined Data vs.
1977 Plot 1 July
1977 Plot 1 July Data vs.
1978 Plot 1
1975 Plot 2 Combined Data vs. 1977 Plot 2 May
46.198

177
2.777

SIG
198
2.764

SIG
13.951

168
2.785

SIG
1976 Plot 2 Combined Data vs. 1977 Plot 2 May
1977 Plot 2 May Data vs.
1978 Plot 2 Data
1975 Plot 1 Combined Data vs.
1978 Plot 1
1976 Plot 1 Combined Data vs.
1978 Plot 1
6.786

177
2.777

SIG
32.280

198
2.764 SIG
$12.088 \quad 1 \quad 67-2.785 \quad$ SIG

Plot 2 Combined Data vs.
1978 Plot 2
1976 Plot 2 Combined Data vs. 1978 Plot 2
1.659
$1 \quad 77$
2.777 NS
7.397

168
2.785 SIG
0.001

177
2.777 NS

Upland Sagebrush
1975 Plot 3 Combined Data vs. 1977 Plot 3 May

101.372	1	68	2.785	SIG
8.662	1	77	2.777	SIG
106.954	1	58	2.795	SIG
0.161	1	28	2.890	NS
27.369	1	37	2.852	SIG

Bottomland Sagebrush
1975 Combined Data Plot 4 vs. 1977 Plot 4 July
35.350

168
2.785

SIG
1976 Combined Data Plot 4 vs.
1977 Plot 4 July
1977 Plot 4 July vs.
1978 Range Cages
17.940
$1 \quad 77 \quad 2.777$
SIG

1975 Plot 4 Combined Data vs.
1978 Range Cages
0.254

158
2.795

SIG

1976 Plot 4 Combined Data vs. 1978 Range Cages
7.332

137
2.852

SIG

* NS = Not Significant

SIG $=$ Significant
$\gamma_{1}=$ degrees of freedom for numerator
$r_{2}=$ degrees of freedom for denominator

Table 8.7.2-5 . One-way analysis of variance results for comparison of production in open and fenced plots, 1977 and 1978. Underlined plots are those with the significantly greater production.

DIFFERENCES IN UTILIZATION

May 1977

$1-0$	vs. $1-F$	0.669	1	98	2.764
$2-0$ vs.	$2-F$	4.024	1	98	2.764
NS					
$3-0$ vs. $\overline{3-F}$	69.473	1	98	2.764	SIG
$4-0$ vs.	$4-F$	0.470	1	98	2.764
$5-0$ vs. $5-F$	1.018	1	98	2.764	NS
$6-0$ vs. $6-F$	22.204	1	98	2.764	SIG

June 1977

$1-0$	vs. $\frac{1-F}{2-F}$	3.657	1	98	2.764
$2-0$	vs.	SIG			
$\frac{3-0}{2-0}$	vs. $\frac{3-F}{4-F}$	5.826	1	98	2.764
$4-0$ vs.	SIG				
$5-0$ vs. $\frac{5-F}{6-F}$	0.210	1	98	2.764	SIG
$6-0$ vs.	10.671	1	98	2.764	NS

July 1977

$1-0$ vs. $\frac{1-F}{2-F}$	3.555	1	98	2.764	SIG
$2-0$ vs.	0.237	1	98	2.764	NS
$3-0$ vs. $3-F$	0.503	1	98	2.764	NS
$4-0$ vs. $4-F$	0.012	1	98	2.764	NS
$5-0$ vs. $5-F$	0.016	1	98	2.764	NS
$6-0$ vs. $6-F$	1.763	1	98	2.764	NS

1978 - Based on Range Cage Data
Pinyon-Juniper Fenced vs.
Pinyon-Juniper Open
Chained Rangeland Fenced vs.
Chained Rangeland Open

2.591	1	16	3.05	NS
0.414	1	16	3.05	NS

Upland Sagebrush Fenced vs.
Upland Sagebrush Open
$\begin{array}{lllll}2.413 & 18 & 18 & 3.01 & \text { NS }\end{array}$
Bottomland Sagebrush Fenced vs.
Bottomland Sagebrush Open
5.203

118
3.01

SIG
Pinyon-Juniper north of Piceance Creek, Treatment Site Open vs. Fenced
3.415

118
3.01

SIG
Pinyon-Juniper north of Piceance Creek, Control Site Open vs. Fenced
14.710

118
3.01

SIG

[^6]In 1978 the only significant differences noted between range cage data and data from open areas were in the bottomland sagebrush shrubland type and in the control and affected area sites north of Piceance Creek. Differences in the pinyon-juniper woodlands on the Tract were not significant.

8.7.2.6 Conclusions

Several conclusions can be reached from the preliminary monitoring data.

1. The production patterns within vegetation types observed during monitoring period are the same as those observed during the baseline period.
2. Utilization continues to be seasonal and by mid-growing season is nearly non-detectable because of livestock use patterns.
3. Observed differences between intensive study Plots 1-F and 2-F, and $5-F$ and $6-F$ appear to be more related to site differences than to any development related activities.
4. Herbaceous production is closely related to precipitation. Significant differences between years are related to differences and fluctuating patterns of precipitation in this semi-arid region.
5. Fertilization of upland chained areas appears to result in an increase in herbaceous production. Because of a limited sample size and high data variability the differences between fertilized areas and control areas were not significant.

8.7.3 Shrub Production and Utilization

8.7.3.1 Scope and Rationale

Shrub production and utilization is measured each year to determine growth and utilization.

8.7.3.2 Objective

The main objectives for measuring shrub production and utilization were to correlate browse available and consumed by herbivores. over time and between stations.

8.7.3.3 Experimental Design

Production and utilization of bitterbrush were estimated along twelve transects on Tract during 1977-78 period. These transects were the same as those used for deer pellet-group studies and, consequently, transect notations were the same for both studies. Browse studies were also conducted on Big Jimmy ridge west of the tract, and although the same transects were again used for both pellet count and
browse studies, browse evaluation methods differ on Big Jimmy ridge. On tract, the lengths of new shoots in fall and spring were measured to provide production and utilization estimates. On Big Jimmy ridge, utilization was found to be so severe that current shoot growth and the consumption of this growth by deer could not be evaluated by shoot measurements. In many instances, shrubs were browsed back into the growth of the previous year. The information obtained for Big Jimmy ridge, therefore, concerns shrub density, reproduction, and vigor evaluations rather than production and utilization. Also, on Big Jimmy mountain mahogany as well as bitterbrush was sampled. Utilization of sagebrush was measured on all 27 deer pellet-group transects. Ocular estimates were made using pace transects and recording age and degree of hedging for each plant. An angle gauge was used to estimate sagebrush density on each transect.

8.7.3.4 Method of Analysis

Analysis performed included 1) correlation with past deer data, and 2) professional judgment.

8.7.3.5 Results and Discussions

Production and utilization estimates of bitterbrush and mountain mahogany for this past year differed markedly from 1976-77 estimates in that production was lower and utilization was much higher. Yearly patterns of mule deer habitat use as revealed by these data are not as similar as patterns revealed by pellet-group data. The 1977 production estimates for the twelve transects on tract (Tables A8.7.3-1 to -4) vary considerably from one location to another. The percent utilization estimates, in contrast, are comparatively uniform。 For most transects, utilization was near the 90 percent level. This represents severe utilization, which appears to have been due mainly to a large deer herd and to low shrub production the previous year.

Trends in shrub production and utilization are shown on Figure 8.7.3-1. The low productivity and the high utilization which occurred during the 1977-78 period are clearly evident. A correlation coefficient was calculated to determine the intensity of association between the utilization estimates for the 1976-77 and 1977-78 periods. A low correlation was found to exist between the values obtained for the two years at the same transect locations ($r=0.4$; which is significant at the 80 percent level).

Only production data are available for the 1977-78 period (Table A8.7.3-5) since spring estimates of utilization have not yet been obtained. Bitterbrush and mountain mahogany evaluations for Big Jimmy ridge (Tables A8.7.3-6 and -7) represent the first year of browse data for this locality. As previously described, production and utilization estimates were not made because of severe utilization coupled with meager shrub production. A visual examination of production this past spring, however, indicates that shoot measurements will probably be feasible next year.

Fig. 8.7.3-1 Trends in production and utilization of bitterbush. Shaded areas and figures represent the percent of current shoot growth consumed by deer. Transect numbers are indicated below bars.

The 1978 sagebrush ocular estimate data are presented in Table A8.7.3-8. This is the first year ocular estimates were used, therefore, several years data are needed before any statistical analysis can be performed. Information will be compared to other sources, Division of Wildlife and Bureau of Land Management, when it becomes available. Data from transects located in chained pinyon-juniper show more mature plants, less heavy use, and greater density than the sagebrush in the pinyon-juniper. This is not surprising since one would expect heavier use on individual browse plants in areas with a low browse density than in areas with a high browse density.

Several different applications of fertilizer were applied during the spring of 1978 on six browse transects. Four new transects and two of the original monitoring transects were used for these experiments. Preliminary results (Table A8.7.3-9) were compared with production estimates elsewhere in chained rangeland habitat (Tables A8.7.3-1 and A8.7.1-3), indicate little if any enhancement in production after the first five months. Six pairs of control and experiment transects were evaluated. Five of these showed higher production values for the control transects. The one pair of transects with higher production in the experimental location (BA31 and BA21) was subjected to a onetailed t-test. The difference between these two transects was found to be significant ($P<0,05$) 。

8.7.4 General Vegetation Condition Studies

This study begins in 1979 and will be reported in the next Annual Report, April 1980.

8.7.5 Micro-Climatic Studies

8.7.5.1 Scope and Rationale

Studies on micro-climatic parameters on the C-b Tract provide data that are useful in assessing changes in vegetation production and structure, animal populations, or animal activity patterns, and may also be correlated with changes in functional components of the $C-b$ ecosystem that may occur as a result of shale oil development.

8.7.5.2 Objectives

In order to define changes in plant growth and wildlife populations the micro-climatic parameters which affect plant growth and wildlife populations are studied.

8.7.5.3 Experimental Design

Five micro-climatic stations are located in development sites and five in control sites. The locations of these ten sites (see Sta BCO1-09, 13 on the jacket map) are the same as baseline locations. Therefore, data from March 1975 through the present can be compared. Each station is monitored twice monthly for the following parameters:

Mc Station Locations
BCO1 Chained Pinyon-juniper Rangeland, Veg. Plot 1
BC02 Chained Pinyon-juniper Rangeland, Veg. Plot 2
BC03 Plateau Sagebrush, Veg. Plot 3
BCO4 Valley Bottom Sagebrush, Veg. Plot 4
BC05 Pinyon-junifer Woodland, Veg. Plot 5
BC06 Pinyon-juniper Woodland, Veg. Plot 6
BC07 Chained Pinyon-juniper Rangeland
(Animal Trapping Transect)
BC08 Bunchgrass Community, South-facing Slope
BC09 Valley Bottom Sagebrush, Mouth of Sorghum Gulch
BCO11 Mixed Mountain Shrubland, North-facing Slope

Parameters
Air Temp.: 1 m
Soil Temp.: Surface
Precipitation
Snow Depth and
Moisture Content

> All temperature readings consist of maximum and minimum readings for two-week periods. Precipitation is measured only during the growing season, March through October. Therefore, precipitation data from meteorology stations 020 and 023 are utilized for winter-month readings (November - February) for valley and pinyon-juniper microclimate stations. Snow measurements are obtained approximately from November - February.

8.7.5.4 Methods of Analysis

Methods of analysis include times series plots of precipitation and snow depth (Figures B8.7.5-1 thru -10), max. and min. temperature (Figures B8.7.5-11 thru -20), and correlations with plant and wildlife data. The reader should also consult Climatological Records, Section 6.3.1, for additional tables, time series plots, and histograms.

8.7.5.5 Results and Conclusions

Precipitation was notably higher in 1978 than previous years (See Table A6.3.1-6a thru -6d). Precipitation was slightly higher than other sites at Pinyon-juniper Woodland and Upland Sagebrush sites. Herbaceous productivity was also significantly higher in 1978 than previous jears. Also, the two sites which received slightly more precipitation were also the most productive.

Precipitation distribution was also more favorable during 1978 than 1977. (See Fig. 6.3.1-3, Table J.3.1-3 and Tables A6.3.1-6a thru -6d). January, February, March, and April are important for herbaceous productivity and in 1978 they were much more favorable than 1977. May and June are the most active growthperiods; consequently in 1978 the precipitation was heavy and the herbaceous productivity was also high. In 1977, the only heavy storm was in July when vegetative growth was nil due to the dry conditions.

Temperature dropped to near $0^{\circ} \mathrm{C}$ over the growing season, but did not seem to be a limiting factor as it was in 1976 when a killing frost in the middle of

June decreased total yearly vegetative productivity.

8.8 Threatened and Endangered Species

The bald eagle was observed several times in the tract vicinity. The raptors were not seen in any present or future development areas, or on Tract $C-b$. The eagles did not nest nor remain in the area; they were just flying through. Since the area is unsuitable bald eagle habitat and the eagles were just passing through, no further action will be taken except for continued monitoring for bald eagles.

No threatened or endangered plants were found on or near Tract C-b. A permanent herbarium has been established on tract and new plants will be continually added to it as they are found.

In conjunction with the numerous biological studies that will be conducted on and near Tract $\mathrm{C}-\mathrm{b}$ during all parts of the year, observations confirmed by staff field biologists of any threatened or endangered species will be reported to the AOSO. Appropriate studies to determine significance of a sighting will then be initiated as determined jointly by $\mathrm{C}-\mathrm{b}$ personnel and AOSO.

8.9 Revegetation

Revegetation monitoring will be conducted on sites which have undergone surface disturbance and on raw shale disposal sites. Revegetation monitoring will be conducted on areas larger than one acre which are seeded with the permanent seed mixture. This monitoring has been completed on sites which meet this criteria and will begin when permanent revegetation projects are completed.

8.9.1 Demonstration Plot

Because of delays in the development schedule the demonstration plot for 1979 will be built in 1980 with shaft oil shale.

9.0 ITEMS OF AESTHETIC, HISTORIC, OR SCIENTIFIC INTEREST

9.1 Aesthetic Values

The C-b Annual Summary \& Trends Report (Nov. ' 74 through Oct. '75) described a study which determined the type and quality of scenic resources in the Tract area. It was concluded that the Piceance Creek Basin has a low scenic value when compared to the other landscape types of the region. Or restated, on a regional basis the Piceance Creek Basin has an extremely low visual character. Nonetheless, actions occurring in the past year include: a) cut-and-fill slopes were laid back and seeded according to the approved monitoring plan; b) buildings have been painted to B.L.M. standards; c) onsite power-line poles are green in color; and d) the main access road was laid out in such a way as to reduce aesthetic impact.

9.2 Historic and Scientific Values

A detailed baseline study of the cultural resources of Tract C-b has been conducted to identify sites of past human activity. (See Volume 1 of the Final Report of the Environmental Baseline Program.) It was concluded that three historic sites do exist on the Tract, (5RB136, 5RB146, and 5RB147) and will be investigated further prior to any development which would disturb them. During the past year, an archaeological team investigated the route for a planned 138 kv powerline from Meeker to C-b Tract. See Figure 9.2-1 for the planned route. No historic sites or remains were located. However, one prehistoric site and five isolated finds were located on or near the powerline right-of-way. Mitigation will be accomplished by avoiding these sites through minor rerouting of the right-of-way.
(2)
Figure 9.2-1 Planned Powerline Route from Meeker to the C-b Tract

10.0 INDUSTRIAL HEALTH AND SAFETY

10.1 Scope and Rationale

Periodic reports on Health and Safety Activities have been requested by the Area 0 il Shale Supervisor. Such reports are those prepared by the C-b Project and all contractors for distribution to outside Federal and State agencies, i.e., Mine Safety and Health Administration (MSHA) and the Colorado Division of Mines and inspection reports made by these agencies and received by the Project and all contractors at the C-b site.

These reports relate to accident frequency analyses, inspection reports and responses, health and safety training, and variance reporting. As received, they are included in the semi-annual data reports.

The C-b project is regulated under the new code of Federal Regulations, Title 30, Part 57, Mine, Safety, Health Administration. We are also governed by the Colorado State Division of Mines laws.

All Contractors on the C-b Site are monitored by the Occidental Safety Department through Ralph M. Parsons Co., our Managing Contractor.

10.2 Accident Frequency Analysis

We have three mine I.D. Numbers on the C-b Site. They are as follows:

1. Occidental Oil Shale
05-03140
2. Ralph M. Parsons
05-03148
3. Gilbert Corp. of Delaware
05-03149

Each I. D. Number is responsible for their own Accident/Incident frequency and severity rate。

Using the MSHA formulas,
I.R. $=$ Injury Rate $=\frac{\text { Number of Accidents X 200,000 }}{\text { Hours of Employee Exposure }}$
S.M. - Severity Measure $=$ Days Lost Time X 200,000 Hours of Employee Exposure
the breakdown of accident and severity rate by I. D. Number is as follows:
I.D. \# 05-03140 - One lost time accident in 48,988 manhours, resulting in 5 lost time days. This accident resulted in an I.R. $=4.08$, for which S.M. $=20.41$.
I.D. \#05-03148 - This I.D. carries all contractors other than Occidental and Gilbert Corp. They accounted for 2 lost time accidents in 276,166 manhours for an I.R. of 1.44. The 2 accidents resulted in 2 lost time days, thus $S_{\text {. M. }}=1.44$.
I.D. \# 05-03149 - Gilbert Corp. has had no lost time accidents in 117.064 manhours.

The three I.D. Numbers logged 442,218 manhours in 1978 with 3 lost time accidents totaling 7 lost time days for a site I.R. of 1.35 and S.M. of 3.16. Compared to the 1978 national average for underground mines (I.R。- 16.32, S.M。 $=23$) we have an excellent safety record and plan to improve it in the coming year.

10.3 Inspection Reports \& Responses

We have had only 1 MSHA inspection in the past year. It resulted in two minor citations. Colorado Division of Mines inspected the property eight times during 1978. They wrote 18 citations; all citations were abated on the same day they were written.
11.0 SUBSIDENCE MONITORING

The overall objective of the subsidence monitoring program is to determine the effects of underground excavations on the ground surface and on in-situ mining levels。

The surface and underground subsidence caused by mining activities cannot start until significant underground development out from the shaft pillar areas occurs.

The inventory of physical features of the site is being carried out under the aerial photography program described in Section 3.3 of this report.

12.1 Introduction

Indicator variables for Development Monitoring are given in the Development Monitoring Plan. Also listed are perturbations that affect the magnitude of these variables and the environmental consequences (or impacts) of these perturbations. Examples of perturbations include mining, retorting, shale disposal, waste disposal, etc. Environmental consequences may affect other indicator variables; such relations of indicator variables with other indicator variables are to be analyzed and are called ecosystem interrelationships.

Ecosystem interrelationships are not monitored or measured directly. They are inferred from three principal techniques: 1) expert judgment resulting from baseline observations of two or more variables, 2) correlative statistics, and 3) predictive ecosystem modeling. Aspects of all three have been gleaned from the baseline studies and reported in Volume 5, System Interrelationships, Environmental Baseline Program Final Report and its Appendix F, User's Reference Diagrams (1977)。 In particular, baseline judgment has been utilized to obtain the comprehensive "effects matrix" (Figure A12.1-1).

With regard to the comprehensive "effects matrix." so-called effect generators (driving variables, perturbations, state variables) are listed across the top (matrix columns) and effect receptors (abiotic and biotic components and processes) are listed at the side as matrix rows. Entries in the matrix are the following interrelationships: direct effects, indirect effects, both direct and indirect, and effects of particular concern. Forty-five (45) updated effects of particular concern have been transposed to Table 12.1-1 of this report.

The matrix will be periodically updated to include additional relationships needed to assess impacts of development.

The interrelationships of Table 12.1-1 and others defined as new monitoring results will be analyzed in the future and subjected to correlative statistical techniques as a means of defining those interrelationships of major concern. Subsequent monitoring can then concentrate on these.

12.2 "Candidate" Interrelationships

The above considerations provided insights into specific interrelationship "candidates" for early study。 The screening consisted of three phases: (1) qualitative, (2) initial quantitative, and (3) refined quantitative.

The qualitative phase consisted in identifying the dependent variable(s) and all major independent variables, both natural and man-induced perturbations. Too many gaps in the data precluded quantitative analysis at this time. However, a purpose was still served in that it pointed the way for future increased sampling rigor and uniformity. Then, provided the data were deemed
TABLE 12.1-1 MAJOR ECOSYSTEM INTERRELATIONSHIPS

complete enough, quantitative analyses were attempted. Refined quantitative analyses will be undertaken in future years.

At this writing three candidates have "survived" the qualitative screen and initial quantitative analysis attempted. These are:
(1) Effects of climatic variations on herbaceous productivity. When the "land treatment" system is initiated its effects will be included.
(2) Effects of traffic on Piceance Creek road, snow depth, and deer population on deer road kill.
(3) Effects of "urbanization" (from unrevegetated or surfaced areas) on watershed hydrologic response time.

Other interrelationships subjected to qualitative study included:
(4) Effects of herbivore density on shrub utilization.
(5) Hunting and trapping pressure on coyote and rabbit interrelationship.
(6) Deer mortality vs. shrub production and utilization.

Increased sampling rigor and/or uniformity will be sought to enhance the possibility of quantitative results in the future.

These six "near-term" interrelationships are discussed in the following paragraphs:
12.3 Specific Near-term Interrelationships
12.3.1 Effects of Climatic Variations on Herbaceous Productivity 12.3.1.1 Qualitative Judgements

It is expected that herbaceous productivity increases with increasing precipitation and increased length of the growing season. Specific precipitation measures suggested are:
(1) total annual precipitation of the current
year.
(2) total annual precipitation of the previous year, especially late season precipitation
(3) precipitation temporal distribution over
(a) Mar - Apr - May or
(b) Apr - May - June or
(c) May - June - July or
(4) abnormal rates of precipitation

Growing season candidate variables include:
(1) length of the growing season
(2) total degree - days during the growing season
(3) degree - day temporal distribution over
(a) Apr - May - June
(b) May - June - July
(c) June - July - Aug
(d) July - Aug - Sept

12.3.1.2 Quantitative Analysis

It is instructive to point out that it is next to impossible to obtain a highly accurate total of annual precipitation in a harsh, remote area at any one site. Therefore, monthly average values in the Tract vicinity were obtained and summed over 12 months to obtain average annual totals in the Tract vicinity. Table 6.3.1-3 of Chapter 6 presents average annual total precipitation, with and without the microclimate stations (i.e. stations under canopies). Also presented on the same table are threemonth "sliding" precipitation distribution and peak precipitation events. Figure 6.3.1-3 of Chapter 6 presents monthly precipitation histograms in combination with related growing season spans. Table A6.3.l-3 presents total degree-days, three month sliding degree-days and growing season dates and spans.

The following herbaceous productivity sites were selected for analysis:

```
BJ02 - Chained Pinyon Juniper (Control)
BJ05 - Pinyon Juniper Woodland (Future Development)
```

A simple tabular approach was utilized whereby for each of the four years productivity was ranked from highest to lowest (1 to 4 respectively) as were each of the remaining independent variables. Those coming closest to the productivity rank order are presented in Table 12.3.1-1. Degree-days did not correlate positively and are not shown; as a matter of fact, the year with. the lowest productivity had the highest degree-days and the highest or second highest productivity year corresponded to the lowest degree-days.

Quantities which rank-correlated best with productivity and are plotted on Figure 12.3.1-1 are:

1) precipitation during April-May-June
2) precipitation of the previous year
3) length of the growing season
(with one anomaly - when it rained too late to be of use)
Statistical correlation and regression will be attempted at a future date.
TABLE 12.3.1-1 "RANKING" OF INDEPENDENT VARIABLES WITH PRODUCTIVITY

Site	Year	Productivity (kg/ha)	$\begin{aligned} & \text { April-May } \\ & \text {-June } \\ & \text { Ppt } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	Total Ppt. of Previous Year (cm)	Growing Season (Days)
Chained Pinyon Juniper (BJ02) (Control)	1975	514 (2)	7.53 (2)	-	118 (3)
	1976	189 (3)	5.91 (3)	24.86 (2)	111 (4)
	1977	116 (4)	2.52 (4)	21.46 (3)	144 (1)
	1978	623 (1)	8.72 (1)	30.35 (1)	124 (2)
Pinyon Juniper Woodland (BJ05) (Future Development - Present Control)	1975	233 (1)			
	1976	134 (3)	as	as	as
	1977	62 (4)	above	above	above
	1978	210 (2)			

12.3.2 Effects of Traffic, Snow Depth and Deer Road Count on Deer Road Kill

12.3.2.1 Qualitative Judgments

The dependent variable in this interrelationship is the number of deer killed by vehicles. The independent variables include: traffic along the Piceance Creek highway, deer population and movements, and the climate as characterized by snow depth and precipitation or snowing rates. A total of 125 deer were killed along the Piceance Creek highway from September 1977 to May 1978. Traffic estimates have been difficult to obtain due to the inclement weather causing equipment failure (snowplows cutting road-counter hoses, etc。)

Some general observations are: more deer are killed during the fall migration and during the spring green-up than during the winter months. Fewer deer are killed under poor weather conditions, probably because vehicles are moving slower and there is less deer movement. Deer are killed over the entire length of the Piceance Creek highway.

12.3.2.2 Quantitative Analyses

12.3.2.2.1 Scope and Rationale

The specific factors which must influence deer road-kill include traffic along various segments of Piceance Creek Road, snow depth, precipitation, work force, weekly deer count and weekly deer road-kill. Interrelationships determined among these will be used in the formulation of mitigative measures. Annual monitoring begins in mid-September and ends in April or May when deer have migrated to the highlands.

12.3.2.2.2 Objectives

The objectives of this study are:

1. To evaluate the interrelationships of traffic load, mitigative measures, time of year, deer movements, and climate on deer road-kill.
2. Review existing monitoring efforts and determine how they may be improved.
3. Use information gained from study and analysis to formulate other possible mitigative measures.

12.3.2.2.3 Experimental Design

Weekly samplings of deer road count and road-kill are obtained each year beginning in mid-September and continuing through May. Tabulations are for one-mile intervals along the 41-mile stretch of Piceance Creek Road between Rio Blanco and White River City (Highway 64)。

Traffic counters are placed across Piceance Creek Road near Rio Blanco and at White River City, at the access road entrances to C-b and C-a tracts, and across Piceance Creek Road between the access roads. A count of incoming vehicles (excluding buses) is kept at the C-b guard gate。

Precipitation measurements are recorded hourly at several stations on and near the tract. Snow depth measurements are taken bi-weekly starting on December 1. For this study precipitation measurements from station AB20 and snow depth measurements from stations BCO8 and BCO9 are used because these stations are near Piceance Creek Road.

Passenger buses run round trips for all work shifts between Rifle and the C-b tract and between Meeker and the C-b tract. Daily records are kept of the number of passengers and number of buses.

12.3.2.2.4 Method of Analysis

Data used in this study are
from records beginning September 21, 1978 and ending March 16, 1979.
Scatter plots were used to identify possible correlations between the deerkill as the response variable and deer road count, traffic, precipitation and snow depth as independent variables. All data were grouped and averaged to correspond with the weekly deer-kill records. These variables were further examined for potential interrelationships utilizing computer programs for partial correlations and multiple linear regression。 Outputs of the programs provide analyses for evaluating statistical significance of these interrelationships and some of the outliers in the scatter diagrams. Outliers are data observations with extreme values relative to the remaining observations.

12.3.2.2.5 Results and Discussion

(a) Correlation Analyses

Scatter diagrams depicting
the relationships between the study variables are shown in Figures A12.3.2-1, Al2.3.2-2, Al2.3.2-3, and Al2.3.2-4.

Using the correlation coefficient (r) and converting to t-score by the formula

$$
t_{1}=r /\left(\left(1-r^{2}\right) /(n-2)\right)^{\frac{1}{2}}
$$

the results summarized in Table 12.3.2-1 were noted.
The correlation coefficients are lower than might be expected. The only significant correlation is that between deer road count and road kill. Correlations between deer-kill and precipitation and snow depth, although not significantly different than zero, are negative indicating a very weak inverse relationship and lend weak support to the qualitative observation that road-kills are fewer with poor weather conditions.

1. deer kill vs. deer road count $r=0.4064$

$$
t_{1}=2.1331>t(23,0.95)=2.064^{*} \text { significant }
$$

2. deer kill vs. traffic $r=-0.2269$

$$
t_{1}=1.1173<t(23,0.95)=2.064^{*} \text { not significant }
$$

3. deer kill vs. precipitation $r=-0.2064$

$$
\mathrm{t}_{1}=1.0116<\mathrm{t}(23,0.95)=2.064^{\star} \quad \text { not significant }
$$

4. deer kill vs. snow depth not calculated because of low correlation

$$
r=0.0781
$$

not significant

* t obtained from standard statistical table with 23 degrees of freedom and 95 percent confidence interval. If t_{1} is greater than t, then the correlation between the two parameters is significant.

The correlations are influenced by a few outliers. In this case the outliers were high road-kill counts in March. These outliers are explained by the movement of the deer to the slopes when the snow starts to melt. The change in the weather also melts the ice off the road and results in increased traffic speed, a probable factor in the road-kill count.
(b) Regression Analyses

Multiple regression analyses were performed to obtain predictive relationships between the responsive variable, deer-kill, and the independent variables. These analyses were considered insignificant when relationships could not be clearly defined for snow depth, precipitation and traffic count. The correlation coefficient shows the relationship to deer count as the greatest. See Tables A12.3.2-1, Al2.3.2-2, and Al2.3.2-3. Using a backward elimination procedure with deer kill regressed on deer road count, traffic, and precipitation (as the independent variables), the results are shown in Table 12.3.2-2. This result is identical with results of the previous correlation analysis; i.e. deer kill correlated only with deer road count.

Table 12.3.2-2
SUMMARY OF REGRESSION ANALYSES

1. deer road count, traffic precipitation
$F_{1}=1.6492<3.07=F(3,21,0.95) *$ not significant
2. deer road count, traffic

$$
F_{1}=2.1803<3.44=F(2,22,0.95) * \text { not significant }
$$

3. deer road count

$$
F_{1}=4.5497>4.28=F(1,23,0.95) * \quad \text { significant }
$$

* F-statistic from standard statistical tables; if F_{1} is greater than F then the result is significant.

The non-significant F-scores can be attributed to the lack of good traffic data. The best data and those used were from the guard gate count. Traffic monitors on Piceance Creek Road were frequently cut by snow plows in inclement weather.
(c) Other Analyses

Using deer count by mile, a ratio
of deer kill to deer road-count was determined for three segments of Piceance Creek Road as shown in Table 12.3.2-3.

Table 12.3.2-3
SUMMARY OF DEER ROAD-COUNT AND ROAD-KILL BY ROAD SEGMENT

Road Segment
Rio Blanco to C-b
C-b to C-a Access Road
C-a Access Road to White River City
Rio Blanco to C-a Access Road
Other Oil Shale Employee Traffic Other Piceance Creek Traffic
Road

Kill \begin{tabular}{l}
Road

Count

 Ratio

Percent of

Traffic*
\end{tabular}

$69 \quad 4527 \quad 0.0152 \quad 54 \%$
$13 \quad 1397 \quad 0.0093$ incl.
$21 \quad 1146 \quad 0.0183 \quad 13 \%$
$82 \quad 5924 \quad 0.0138$ 27\%
incl. incl. -- 6\% incl. incl. -- ?

* Traffic based on combined C-a and C-b employee estimates of 446.
incl. - means included in other segments.

The low ratio of kill to road-count on the section of Piceance Creek Road between the $\mathrm{C}-\mathrm{a}$ and $\mathrm{C}-\mathrm{b}$ access roads can be explained by the terrain. The other two sections have gentler terrain on both sides of the road.

Bus passenger reports from September 1, 1978 to January 31, 1979 were summarized into round trips per week in Table 12.3.2-4.

Table 12.3.2-4
SUMMARY OF BUS STATISTICS

Total passengers for 21.86 weeks	23,340
Average passengers per week	1,068
Total bus trips for 21.86 weeks	524
Average bus trips per week	24

Although no prediction of deer saved is possible without adequate traffic data and passenger-per-vehicle data, it is apparent that a substantial number of passenger vehicle-round-trips per week are being saved through bus use. For example, the average number of passengers which ride the bus per week indicates a savings of 332 vehicle-round-trips per week, if there is an average of three passengers per vehicle. If there is one passenger per vehicle, a savings of 1044 vehicle-round-trips per week is the result of the bus service.

12.3.2.2.6 Conclusions and Recommendations

Based on the available data, the scatter diagrams, correlation, and regression analyses show the only variable influencing the number of deer killed was the deer road-count. Yet, it seems natural that deer road kill is related to traffic and hence the reduction of traffic by providing buses is a significant factor in reducing deer roadkill. Also, the climate, condition of deer killed, and location where deer are most likely to be on the road may be shown to be significant when better data are available. When any of these factors are found to be significant, additional mitigative measures may be formulated.

The following changes in the experimental design have been implemented or are recommended in order that the interrelationships with these variables and deer kill can be more accurately determined.

1. Starting in March 1979, the deer mortality reports will include a marrow condition. This may establish a relationship between deer condition and road kill.
2. Magnetic loop counters are being obtained to replace counter hoses as traffic monitors. These monitors will be placed at positions designed to relate traffic count to deer kill count by road segment.
3. Deer kill and traffic counts may be made daily for a short period of time to permit a more detailed study of the interrelationship. When traffic counts were averaged by week to correspond with weekly deer kill counts, daily variations in traffic count related to week-ends or holidays were lost.
4. An estimate of time of day deer are killed should be made when possible. Analysis of these data may indicate possible mitigative measures such as a change in hours at which shift changes occur.
5. From guard gate inquiries or employee surveys, an average number of passengers per vehicle should be obtained. This information could be used with employee route information determined from residence and bus service data to perform correlation studies of deer count and deer road kill with traffic.
6. Traffic speed controls should be considered during periods of high road kill and on road segments of high road kills.

It would appear that the implementation of the above additions to the experimental design will yield sufficient data to evaluate the interrelationships of traffic load, mitigative measures, time of year, deer movements, and climate, on deer road kill. With this knowledge additional mitigative measures might be formulated. If a quantitative relationship between increased traffic and road kill were determined, it would be possible to predict the number of deer which are saved by the bus service and any additional mitigative measures formulated.

12.3.3 Effects of Urbanization on Hydrologic Response Time

12.3.3.1 Scope and Rationale

Hydrologic response of a stream to a precipitation event or successive bursts of rainfall may be determined through comparison of the hyetograph and hydrograph produced by a given storm. A hyetograph is a plot of rainfall rate versus time. A plot of runoff rate versus time yields a hydrograph.

Precipitation which reaches the ground surface may infiltrate or flow over the land as runoff. Runoff contributed by various portions of the drainage basin will be incorporated into the hydrograph characteristic of a given point on the stream at different times. If the hyetograph and hydrograph are plotted on the same graph, the centroid lag, or lag time, can be determined. The lag time is the difference between times at which 50 percent of the total accumulation of both variables has occurred.

The lag time of a basin can be expected to decrease with increased urbanization. Paving, clearing and building could decrease infiltration and increase runoff and flood peaks.

12.3.3.2 Objectives

Although development of C-b Tract is anticipated to cause a minimum of surface disturbance, study of lag times throughout development may provide a measure of surface impact.

12.3.3.3 Experimental Design

Records of stream flow and precipitation for a storm on at least an hourly basis are necessary to determine lag times. Although gauging stations are equipped with continuous flow recorders, only daily-average flows are published. The USGS Water Resources Division in Meeker provides hourly values on request. Flow data for Stations WU61, WU58, WU42, WU39, WU36, and WU22 would be appropriate for studies of hydrologic response time. Station $A B 20$, operated by C-b Tract, measures precipitation on an hourly basis during storms. Records of the amount of disturbance of Tract acreage on an annual basis are necessary to relate urbanization to hydrologic response time.

12.3.3.4 Method of Analysis

A high-intensity storm of brief duration on September 3, 1977 produced a flood with a flow in excess of any other flood since 1939 (information provided by a local resident)。 The hyetograph and hydrograph of the storm are plotted for data gathered at C-b Station AB20 and USGS Stream Gauging Station WU61, Piceance Creek above Hunter Creek (Figure 12.3.3-1). Rate of rainfall and rate of runoff are given in inches per hour (Table 12.3.3-1). Stream gauging records in cubic-feet per second are converted to inches per hour according to the relationship "one inch per hour from one acre equals one cfs".

Table 12.3.3-1
RAINFALL AND PRECIPITATION DATA
SEPTEMBER 3, 1977

Time	Hours Since Storm Inception		Discharge cfs		Runoff in./hr.

12.3.3.5 Results and Discussion

An estimate of the lag time of the drainage area upstream of the gauging station ($309 \mathrm{sq}. \mathrm{mi。)} \mathrm{is} \mathrm{approximately} 5.5$ hours. Additional storms will be studied to refine lag time estimates and to estimate possible future effects of urbanization on this parameter.

12.3.3.6 Conclusions

Although the Piceance Creek gauging station above Hunter Creek was used as an example, stations in the C-b Tract drainages should be evaluated for lag time as stream flow records lengthen to more accurately gauge possible effects of Tract development.

12.3.4 Effects of Herbivore Density on Shrub Utilization

12.3.4.1 Qualitative Judgments

The dependent variables are (cattle and deer) herbivore densities. Independent variables include: climate data, road counts, age and sex counts, shrub production and utilization results and lagomorph abundance. This information is gathered from developmental and control transects, micro-climate stations and various deer counts.

Some general conclusions that can be made at this time are:

* Cattle use has not changed appreciatively in the last four years.
* Mule deer road count studies showed a spatial seasonal pattern almost identical to the past three years of study.
* Baseline-condition evaluations of mule deer pellet-group distribution and density studies are continuing at this point in time. Transect locations which have been operative over the past two years have indicated very similar patterns of habitat use.
* Production and utilization estimates of bitterbrush and mountain mahogany for this past year differed markedly from 1976-77 estimates in that production was lower and utilization was much higher. Yearly patterns of mule deer habitat use as revealed by these data are not as similar as patterns revealed by pellet-group data.
* When precipitation decreased, browse production tends to decrease, but utilization tends to increase.

12.3.5 Hunter and Trapping Pressure on Coyote-Rabbit Interrelationships

12.3.5.1 Qualitative Judgments

Hunting and trapping pressure is the dependent variable which could influence coyote-rabbit interrelationships include raptor, small mammal, deer, coyote, and rabbit populations, and climate.

Conclusions to date are:

* There is very little rabbit hunting on or near the Tract.
* Coyotes were trapped in October in West Stewart Guich.
* Raptor abundance has not changed significantly over the last four years.

Difficulties in quantifying hunting pressure exist. Intensified contacts to be pursued in this regard are Dept. of Wildlife and neighboring ranchers.
12.3.6 Deer Mortality versus Shrub Production and Utilization

12.3.6.1 Qualitative Judgments

Deer mortality is the dependent variable.
Variables influencing deer mortality include: deer population and movements, climate, and shrub production and utilization.

Deer mortality data is collected on ten permanent study plots. Some general conclusions that can be made at this time are: past sampling showed that sampling in selected sagebrush draws was just as informative as sampling random plots in all habitat types on or around Tract C-b.

Since several new draws were added to the study since baseline, detailed analysis could not be done. Some results found this year were: (1) Possibly due to the mild winter, there were fewer dead deer per hectare than in previous years; (2) Fawns comprised 80% of the deer carcasses found this year.

13.0 NOTES

13.1 Conversion Factors

An attempt has been made to report all studies and data in metric units. In most cases these data are collected and initially tabulated in English units and a few analyses were carried out with English units. Table 13.1-1 contains conversion factors for converting from English to metric units. Conversion from metric to English units can be made by dividing by the factor or by multiplying by its reciprocal.

Table 13.1-2 presents additional conversion factors useful with interpretation of data reported herein.
13.2 Literature Cited

Table 13.2-1 is a bibliography of literature cited in the text. Reference in the text is by author or title.

Table 13.1-2
ADDITIONAL CONVERSION FACTORS
MULTIPLES AND SUBMULTIPLES OF UNITS

Factor by Which Unit is Multiplied	Prefix	
10^{12}	tera	Symbol
10^{9}	giga	T
10^{6}	mega	G
10^{3}	kilo	m
10^{2}	hecto	k
10^{-1}	deka	h
10^{-1}	deci	da
10^{-2}	centi	d
10^{-3}	milli	c
10^{-6}	micro	m
10^{-9}	nano	u
10^{-12}	pico	n
10^{-15}	femto	p
		f

CONVERSION FACTORS FOR GASES

Molecular
Weight (MW)
46.01
30.01
46.01
64.06
34.08
16.01
28.01
48.00

$$
\begin{array}{r}
\text { To Convert } \mu \mathrm{g} / \mathrm{m}^{3} \text { at } 25^{\circ} \mathrm{C} \\
\text { and } 760 \mathrm{mmHg} \text { to } \mathrm{ppb} \\
\text { Multiply by Factor } \\
\hline
\end{array}
$$

Pollutant
NO_{x} as NO_{2}
.532
NO
.815
$\mathrm{NO}_{2}=\mathrm{NO}_{x}-\mathrm{NO}$
.532
SO_{2}. 382
$\mathrm{H}_{2} \mathrm{~S}^{\mathrm{S}}$
.718
THC
1.530
1.525
CH_{4}
. 873
CO
.510

Equation: $\quad \frac{22.414}{M W} \quad\left(\frac{298}{273}\right)=$ Factor

References and Literature Cited

Ahlstrom, E.H. 1973. Studies on the Variability in the Genus Dinobryon. Trans. of the American Microscopical Society 56 (2): 139-159.

American Ornithologists' Union. 1957. Checklist of North American Birds. Fifth Edition. Port City Press, Baltimore. 691 pp.

American Ornithologists' Union. 1973. Thirty-second Supplement to the American Ornithologists' Union Checklist of North American Birds. (5th Edition, 1957). Auk 90: 411-419.

American Ornithologists' Union. 1976. Thirty-third Supplement to the American Ornithologists' Union Checklist of North American Birds. (5th Edition, 1957). Auk 93: 875-879.

Beard, L.R. 1962. Statistical Method in Hydrology, U.S. Army Corps of Engineers, Sacramento, California.

Bourrelly, P. 1966-1972. Les Algues d'eve Douce. Tome I - III. Boubee and Cie, Paris. pp. 438, 505, 569.

Box, George E.P. and Gwilym M. Jenkins. 1976. Time Series Analysis: Forecasting and Control. 575 pp .

Bullard, Spencer A. and George E. Fosdick, Times Series Analysis of Ambient Air Quality Parameters for Federal $0 i 11$ Shale Tract C-b. Proceedings of a Speciality Conference on: Quality Assurance in Air Pollution Measurement, Louisiana Section, Air Pollution Control Association, March 1979.

C-b Shale Oil Project, Occidental Oil Shale, Inc., Operator, Development Monitoring Program for Oil Shale Tract C-b, February 1979.

C-b Shale Oil Venture, Ashland 0il, Inc.; Occidental, Inc., Operator. January 15, 1978. Oil Shale Tract C-b Development Monitoring Report \#1. (April 1978 - September 1978) Volumes 1 - 3.

Cleve-Euler, A. 1934 - 1955. Die Diatomeen von Schweder und Finnland. Jungl. S. Vetensk. Handlungen. Stockholm.

Dalrymple, T. 1966. Magnitude and Frequency of Floods in the United States. No. 1683, pp. 13 - 14.

Dixon, Wilfred J. and Frank J. Massey, Jr. 1969. Introduction to Statistical Analysis. 638 pp.

Drouet, F. 1968. Revision of the Classification of the Oscillatoriaceae. Monographs of the Academy of Natural Sciences of Philadelphia No. 15, 370 pp.

Drouet，F．and W．A．Daily．1956．Revision of the Coccoid Myxophyceae． Butler University Botanical Studies XII．Indianapolis． 222 pp．

Emlen，J．T．1971。 Population Densities of Birds Derived from Transect Count． Auk 88： 323 －342．

Everhart，Harry W．and Bruce E．May．Effects of Chemical Variations in Aquatic Environments．Volume I Biota and Chemistry of Piceance Creek．U．S．EPA Ecological Research Series EPA－R3－011a。 1973

Fott，B。1959．Algenkunde。 Gustav Fischer Verlag。Stuttgart 581 pp．
Fritsch，F．E．1956．The Structure and Reproduction of the Algae．Volumes I and II．Cambridge University Press．pp．791， 939.

Geitler，L．1932．Cyanophyceae．In：L．Rabenhorst（Ed．）Kryptogamen－Flora von Deutschland，Osterreich，und der Schweiz．Akademische Verlagsgesellschaft m．b．h．Leipzig。 1196 pp．

Hiatt，F．1978．Analysis of Periphyton Samples．Tract C－b．Piceance Creek， Colorado．Final Report Prepared by ERT／Ecology Consultants，Inc．Fort Collins，Colorado．

Hustedt，F．1930a．Bacillariophyta．Die Susswasserflora Mitteleuropas．Band 10．Reprinted 1975 Otto Loeltz．

Hustedt，F．1930b，Die Kieselalgen．In：L．Rabenhorst（Ed．）Kryptogamen－ Flora von Deutschland，Osterreich，und der Schweiz．Volume VII Part 1. Akademische Verlagsgesellschaft．m．b．h．Leipzig． 920 pp．

Hustedt，F．1959．Die Kieselalgen．In：L。Rabenhorst（Ed．）Kryptogame－Flora von Deutschland，Osterreich，und der Schweiz．Volume VII Part 2. Akademische Verlagsgesellschaft．m．b．h．Leipzig． 845 pp.

Hustedt，F．1961－1966．Die Kieselalgen．In：L．Rabenhorst（Ed．）Kryptogame－ Flora von Deutschland，Osterreich，und der Schweiz．Volume VII Part 3. Akademische Verlagsgesellschaft m．b．h．Leipzig． 816 pp．

Lagler，Karl F．Freshwater Fishery Biology．1956．2nd Edition．Brown， Dubuque，Iowa． 421 pp ．

Linhart，S．C．and F．F．Knowlton．1975．Determining the Relative Abundance of Coyotes by Scent Station Lines．Wildl．Soc．Bull．3：119－124．

Lowe，R．L．1974．Environmental Requirements and Pollution Tolerance of Freshwater Diatoms．U．S．Environmental Protection Agency．Environ－ mental Monitoring Series．EPA－670 4－74－005． 334 pp．

Margalef，Ramon．1974．Counting（phytoplankton）．In：R．Vollenweider． 1974．A Manual on Methods for Measuring Primary Production in Aquatic Environments．IBP Handbook Number 12．Second Edition．Blackwell Scientific Publications．London．Section 2．12。 pp． 7 － 13.

Meyer, R.Z. 1971. A Study of Phytoplankton Dynamics in Lake Fayetteville as a Means of Assessing Water Quality. Arkansas Water Resources Research Center Publication. University of Arkansas. 10-59 pp.

Munn, R.E., Biometeorological Methods, Academic Press, New York, N.Y., 1970.
Nelson, Charles R., Applied Time Series Analysis. Holden-Day, Inc., San Francisco, Calif. 1973. 231 pp.
$0 i 1$ Shale Prototype Development Project, Parachute Creek, Colorado. Environmental Baseline Program. 1974-1975. Bechtel Corp., San Francisco. 1976
$0 i 1$ Shale Tract C-b. 1977. Environmental Baseline Program November, 1974 October, 1976, Final Report. C-b Shale Oil Venture, Ashland Oil, Inc.; Occidental Oil Shale, Inc., Operator

Executive Summary. 57 pp . Volume 1 Regional and Temporal Setting. 221 pp. Volume 2 Hydrology. 329 pp. Volume 3 Meteorology, Air Quality, and Noise. 508 pp. Volume 4 Ecology. 475 pp . Volume 4 Ecology Appendices A \& B. 509 pp. Volume 5 System Interrelationships. 249 pp. Volume 5 System Interrelationships, Appendix F. User's Reference Diagrams. Unpaged.

Oil Shale Tract C-b. February 25, 1976. First Year Environmental Baseline Program. Annual Summary and Trends Report (November 1974-October 1975) C-b Shale Oil Project. Ashland Oil, Inc. Shell Oil Company, Operator. 546 pp.

Patrick, Ruth and Charles Reimer. 1966. Diatoms of the United States, Volume I. Monographs of the Academy of Natural Sciences of Philadelphia. Number 13. 688 pp.

Patrick, Ruth and Charles Reimer. 1975. Diatoms of the United States, Volume II Part I. Monographs of the Academy of Natural Sciences of Philadelphia Number 13. 213 pp .

Pielou, E.C. 1966. The Measurement of Diversity in Different Types of Biological Collections. Jour. Theoretical Biology. 13: 131-144.

Prescott, G.W. 1962. Algae of the Western Great Lakes Area. Wm. C. Brown Co., Dubuque, Iowa. 977 pp.

Prescott, G.K. 1970. How to Know the Freshwater Algae - 2nd Edition. Wm. C. Brown Co., Dubuque, Iowa. 348 pp .

Prescott, G.W., H.T. Croasdale, and W.C. Vinyard. 1972. Desmidiales, Part I. North American Flora, II 6: 1-84 Pls. I - VIII.

Prescott, G.W., H.T. Croasdale, and W.C. Vinyard. 1975. A Synopsis of North American Desmids. Part II. Section 1. University of Nebraska Press, Lincoln. 275 pp.

Randhawa, M.S. 1959. Zygnemaceae. Indian Council of Agricultural Research. New Delhi. 477 pp.

Reed, Edward B., Evaluation of the Biological Productivity of Piceance Creek, ERT/Ecology Consultants, Inc., January 1979.

Sellers, W.D. 1965. Physical Climatology. University of Chicago Press. 272 pp.
Shannon, C.E. 1948. A Mathematical Theory of Communication. Bell System Technical Journal. 27: 379-423, 623-656.

Smith, G.M. 1920. Photoplankton of the Inland Lakes of Wisconsin. Parts I and II, Wisconsin Geological and Natural History Survey Bulletin \#57. pp. 243, 227.

Smith, G.M. 1926. The Plankton Algae of the Okoboji Region. Trans. of the American Microscopical Society. 46: 156-233.

Smith, G.W. 1950. The Freshwater Algae of the United States. McGraw-Hill Book Co., New York. 719 pp.

Sokal, R.R. and F.J. Rohlf. 1969. Biometry. W.H. Freeman and Co. Publishers, San Francisco. 776 pp.

Taft, Clarence E. and Celeste W. Taft. 1971. The Algae of Western Lake Erie. Ohio Biological Survey. New Series 4(1): 1-139.

Tiffany, L.H. and M.E. Britton. 1952. The Algae of Illinois. Hafner Publishing Company, New York. (Reprint 1971). 407 pp.

United Computing Systems, Inc. FORTELL Box Jenkins Modeling Technique.
Utermoeh1, H. 1958. Zur Vervollkommnung der Quantitativen PhytoplanktonMethodik. Int. Verein. fur Theoret. u. Angewandte Limnologie Volume 9.

Vollenweider, R.A. 1919. A. Manual on Methods for Measuring Primary Production in Aquatic Environments. IBP Handbook Number 12, Second Edition. Blackwell Scientific Publications, London. 225 pp .

Weber, Cornelius I. 1971. A Guide to the Common Diatoms at Water Pollution Surveillance System Stations. USEPA-NERC. Analytical Quality Control Laboratory, Cincinnati, Ohio. 101 pp.

West, G.S. and F.E. Fritsch. 1927. A Treatise on the British Freshwater Algae. Sparks Press, Raleigh, North Carolina. 324 pp.

Whitford, L.A. and G.J. Schumacher. 1973. A Manual of Freshwater Algae. Sparks Press, Raleigh, North Carolina. 324 pp.

Wild Heerbrugg, Ltd. 1976. The Use of Tube Chambers and Plate Chambers with the Wild M-40 Microscope. Published by the Manufacturers, Wild Heerbrugg, Ltd. Heerbrugg, Switzerland. 7 pp.

Woodling, John and Christopher Kendall. Investigations of the Aquatic Ecosystems of Piceance and Yellow Creeks, Northwestern Colorado. September 1974. Water Quality Control Division, Colorado Department of Health. Mimeo. 13 pp. +5 figs., 5 tables. 1974.

Zar, Jerrold H. 1974. Biostatistical Analysis. Prentice-Hall, Inc. Englewood Cliffs, N.J. 1974, 620 pp.

8

¢ ac.own 0.0	development MONITORING activities

APPENDIX H

1978 C-b Annual Report, Volume 2A

1978 C-b ANNUAL REPORT

APPENDIX 2A

VOLUME 2 SUPPORTING DATA

April 20, 1979

Submitted by:

C-b SHALE OIL PROJECT
OCCIDENTAL OIL SHALE, INC., LESSEE
751 Horizon Court
Grand Junction, Colorado 81501
to :

Mr. Peter A. Rutledge
Area Oil Shale Supervisor Conservation Division U.S. Geological Survey Grand Junction, Colorado 81501

FOREWORD

The 1978 C-b ANNUAL REPORT is submitted to fulfill the requirements of the Oil Shale Lease as stated in Section 16(b) of the Lease, Section 1.(C)(4) of the Lease Environmental Stipulations, and Conditions of Approval (No. 3) of the Detailed Development Plan. This report consists of the following volumes:

Volume 1 - Summary of Development Activities, Costs and
Environmental Monitoring

- Environmental Analysis

Appendix 2A - Volume 2 Supporting Data
Appendix 2B - Volume 2 Time Series Plots
FIGURE NO. PAGE
A6.2.1-1 Channe1 Uptime Time-Lines, Site AB23 166
A6.2.1-2 Channel Uptime Time-Lines, Site AB20 167
A6.2.1-3 Channel Uptime Time-Lines, Site AD56 and Site AD42 168
A6.2.1-4 Channel Uptime Time-Lines, Minisonde and Acoustic Sounder 169
A6.2.1-5 Quarterly SO_{2} Concentration Roses, Station AB23 1976-1978 181
A6.2.1-6 Quarterly $\mathrm{H}_{2} \mathrm{~S}$ Concentration Roses, Station AB23 1976-1978 182
A6.2.1-7 Quarterly NO_{x} Concentration Roses, Station AB23 1976-1978 183
A6.2.1-8 Quarterly NO_{2} Concentration Roses, Station AB23 1976-1978 184
A6.2.1-9 Quarterly CO Concentration Roses, Station AB23 1976-1978 185
A6.3.2A-1 Meteorological Tower IOM Elevation, Quarterly Wind Roses 1976-1977 225
A6.3.2A-2 Meteorological Tower 10 M Elevation, Quarterly Wind Roses 1977-1978 226
A6.3.2A-3 Meteorological Tower 30M Elevation, Quarterly Wind Roses 1976-1977 227
A6.3.2A-4 Meteorological Tower 30M Elevation, Quarterly Wind Roses 1977-1978 228
A6.3.2A-5 Station AB20 Quarterly Wind Rose at 10M, 1976 229
A6.3.2A-6 Station AB20 Quarterly Wind Rose at 10M, 1978 230
A6.3.2A-7 Station AD42 Quarterly MRI Wind Roses at 10M, 1978 231
A6.3.2A-8 Station AD56 Quarterly MRI Wind Roses at 10M, 1978 232
A6.3.2A-9 C-b Average Hourly Inversion Height by Quarter for 1978, Station AB20 233
A6.3.2A-10 June 1976 Inversion Heights Plotted with Constant Potential Temperature Surfaces through Stations AB20 and AB23 on 24 June 1976, 0400-0600 MST 234
A6.3.2A-11 October 1976 Inversion Heights Plotted with Constant Potential Temperature Surfaces the Morning of 14 September 1978 235
A6.3.2A-12 Pibal Altitude - Temperature Profiles for Single and Double Theodolite Observations, (Early Morning) 236
A6.3.2A-13 Pibal Altitude - Temperature Profiles for Single and Double Theodolite Observations, (Afternoon) 237
A12.1-1 Effects Matrix 351
A12.3.2-1 Plot of Deer Kill and Deer Count 353
A12.3.2-2 Plot of Deer Kill and Incoming Cars at Guard Shack 354
A12.3.2-3 Plot of Deer Kill and Snow Depth 355
A12.3.2-4 Plot of Deer Kill and Precipitation 356
A5.2.1A-1 Univariate Time Series Analyses Mean Monthly Flow (cfs) Major USGS Stations 13
A5.2.1A-2 Univariate Time Series Analyses SO_{4} Concentration (mg/1) Major USGS Stations 14
A5.2.1A-3 Univariate Time Series Analyses NA Concentration (mg/l) Major USGS Stations 15
A5.2.2A-1 Linear Regression of Water Quality Parameters vs. Time Location WSO1 65
A5.2.2A-2 Linear Regression of Water Quality Parameters vs. Time Location WSO2 66
A5.2.2A-3 Linear Regression of Water Quality Parameters vs. Time Location WSO3 67
A5.2.2A-4 Linear Regression of Water Quality Parameters vs. Time Location WSO6 68
A5.2.2A-5 Linear Regression of Water Quality Parameters vs. Time Location WSO7 69
A5.2.2A-6 Linear Regression of Water Quality Parameters vs. Time Location WSO9 70
A5.2.2A-7 Linear Regression of Water Quality Parameters vs. Time Location WSIO 71
A5.3.1A-1 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WAOl 100
A5.3.1A-2 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WAO2 101
A5.3.1A-3 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WAO3 102
A5.3.1A-4 Alluvial 11 of Water Quality Parameters vs. Time Alluvial Well WA05 103A5.3.1A-5
Linear Regression of Water Quality Parameters vs. Time Alluvial Well WA06 104
A5.3.1A-6 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WA07 105
A5.3.1A-7 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WA08 106
A5.3.1A-8 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WA09 107
A5.3.1A-9 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WAlO 108
A5.3.1A-10 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WAll 109
A5.3.1A-11 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WAl2 110
A5.3.1A-12 T-Test Procedure Summary for Between-Station Comparisons of Alluvial Wells 111
A5.3.2A-1 Ground Water Quality Analysis of Variance - Specific Conductance 140
A5.3.2A-2 Ground Water Quality Analysis of Variance - Boron (B) 141
A5.3.2A-3 Ground Water Quality Analysis of Variance - Aluminum (A1) 142
A5.3.2A-4 Ground Water Quality Analysis of Variance - Potassium (K) 143
A5.3.2A-5 Ground Water Quality Analysis of Variance - Total Dissolved Solids (TDS) 144
A5.3.2A-6 Ground Water Quality Analysis of Variance - Calcium (Ca) 145
A5.3.2A-7 Ground Water Quality Analysis of Variance - Sodium (Na) 146
A5.3.2A-8 Ground Water Quality Analysis of Variance - Ammonia (NH_{3}) 147
A5.3.2A-9 Ground Water Quality Analysis of Variance - Magnesium (Mg) 148
A6.2.1-1 Instrument Specifications 170
A6.2.1-2 Error Analysis Derivation 173
A6.2.1-3a Diurnal Variation of SO_{2} Difference of Unit 2 - Unit 1 ($\mu \mathrm{g} / \mathrm{m}^{3}$) Station AB23 April 1977 177
A6.2.1-3b Diurnal Variation of SO_{2} Difference of Unit 2 - Unit 1 ($\mu \mathrm{g} / \mathrm{m}^{3}$) Station AB23 May 1977 178
A6.2.1-3C Diurnal Variation of SOz Difference of Unit 2 - Unit 1 ($\mu \mathrm{g} / \mathrm{m}^{3}$) Station AB23 June 1977 179
A6.2.1-3d Diurnal Variation of SO_{2} Difference of Unit 2 - Unit 1 ($\mu \mathrm{g} / \mathrm{m}^{3}$) Station AB23 July 1977 180
A6.2.1-4 Univariate Time Series Analysis for Ozone AB20 August 1975 186
A6.2.1-5 Univariate Time Series Analysis for Ozone AB23 August 1977 187
A6.2.1-6 Univariate Time Series Analysis for Ozone AB23 August 1975 188
A6.2.1-7 Univariate Time Series Analysis for Particulates AB23 189
A6.2.1-8 Univariate Time Series Analysis for Carbon Monoxide AB23 190
A6.3.1-1 Univariate Time Series Analysis for Temperature AB23 212
A6.3.1-2 Air Temperature, 10 M (O^{C}) 213
A6.3.1-3 Growing Season and Degree-Days by Year 214
A6.3.1-4 Direct Solar Radiation 215
A6.3.1-5 Relative Humidity (\%) 216
A6.3.1-6a Monthly Precipitation for 1975 217
A6.3.1-6b Monthly Precipitation for 1976 218
A6.3.1-6C Monthly Precipitation for 1977 219
A6.3.1-6d Monthly Precipitation for 1978 220
A6.3.1-7 Evaporation (cm) @ Station AB23 221
A6.3.1-8 Barometric Pressure, Millibars (Daily Extrema) 222
A8.2.1-1a Deer Pellet - Group Densities in the Chained Rangeland Habitat, 1977-78 247
A8.2.1-1b Deer Pellet - Group Densities in the Pinyon-Juniper Habitat, 1977-78 248
A8.2.1-1c Deer Pellet - Group Densities in the Chained Rangeland Habitat on Big Jimmy Ridge, 1977-78 249
A8.2.1-1d Deer Pellet - Group Densities in the Pinyon-Juniper Habitat North of Piceance Creek, 1977-78 250
TABLE NO. PAGE
A8.2.2-1 Mule Deer Road Counts Conducted From Fall 1977 to Spring 1978 251
A8.5.1- Bird Species Observed on Tract C-b During Spring 1977 Census 254
A8.5.1-2a Avifauna Estimates at Tract C-b for Spring Sample Period 1978. Transect 1, Chained Pinyon-Juniper Rangeland (Control) 257
A8.5.1-2b Avifauna Estimates at Tract C-b for Spring Sample Period 1978. Transect 2, Pinyon-Juniper Woodland (Disturbed) 258
A8.5.1-2c Avifauna Estimates at Tract C-b for Spring Sample Period 1978. Transect 3, Chained Pinyon-Juniper Rangeland (Disturbed) 259
A8.5.1-2d Avifauna Estimates at Tract C-b for Spring Sample Period 1978. Transect 4, Pinyon-Juniper Woodland (Control) 260
A8.6.2-1 Abundance, Percent Relative Abundance and Species Diversity of Periphyton from Artificial Substrates on Piceance Creek, Colorado at Stewart and Hunter Stations, May 18, 1978 261
A8.6.2-2 Abundance, Percent Relative Abundance and Species Diversity of Periphyton from Artificial Substrates on Piceance Creek, Colorado at Stewart and Hunter Stations, June 20, 1978 264A8.6.2-3A8.6.2-4
Abundance, Percent Relative Abundance and Species Diversity of Periphyton from Artificial Substrates on Piceance Creek, Colorado at Stewart and Hunter Stations, July 19, 1978 267
Abundance, Percent Relative Abundance and Species Diversity of Periphyton from Artificial Substrates on Piceance Creek, Colorado at Stewart and Hunter Stations, August 18, 1978 270
A8.6.2-5 Abundance, Percent Relative Abundance and Species Diversity of Periphyton from Artificial Substrates on Piceance Creek, Colorado at Stewart and Hunter Stations, September 20, 1978 273
A8.6.2-6 Abundance, Percent Relative Abundance and Species Diversity of Periphyton from Artificial Substrates on Piceance Creek, Colorado at Stewart and Hunter Stations, October 18, 1978. 275
A8.6.2-7 Summary Species List of Periphyton Collected at Stewart and Hunter Stations, Piceance Creek, Colorado, 1978 278
A8.6.2-8 Summary of Species Diversity of the Mean for Periphyton Collected at Stewart and Hunter Stations, Piceance Creek, Colorado, 1978 280
A8.6.2-9 Summary of Mean Biomass Expressed as Ash-Free Dry Weight for Periphyton Collected at Stewart and Hunter Stations, Piceance Creek, Colorado, 1978 281
A8.6.2-10 Station P-3 Taxa 282
A8.6.2-11 Station P-6 Taxa 284
A8.6.2-12 Periphyton Productivity Estimates for Piceance Basin Stations, May 1975 - July 1976 286
TABLE NO. PAGE
A8.7.1-1 Herb Quadrat Summaries for Plot 1-0, June 1978 287
A8.7.1-2 Herb Quadrat Summaries for Plot 1-F, June 1978 288
A8.7.1-3 Herb Quadrat Summaries for Plot 2-0, June 1978 290
A8.7.1-4 Herb Quadrat Summaries for Plot 2-F, June 1978 292
A8.7.1-5 Frequency, Mean Cover, and Relative Cover Values forShrub Species in Plot 1-0, 1974-1978293
A8.7.1-6 Frequency, Mean Cover, and Relative Cover Values for Shrub Species in Plot 1-F, 1974-1978 294
A8.7.1-7 Frequency, Mean Cover, and Relative Cover Values for Shrub Species in Plot 2-0, 1974-1978 295
A8.7.1-8 Frequency, Mean Cover, and Relative Cover Values for Shrub Species in Plot 2-F, 1974-1978 296
A8.7.1-9 Density Values for Shrub Species at Plots 1-0, 1-F, 2-0, 2-F; Chained Pinyon-Juniper Rangeland 297
A8.7.2-1 Oven Dry Weights for Range Cages and Adjacent Open Areas in the Pinyon-Juniper Woodland Community Type, 1978 299
A8.7.2-2 Mean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Clipped Plots in the Pinyon-Juniper Woodland Community, 1978 300
A8.7.2-3 Oven Dry Weights for Range Cages and Adjacent Open Areas in the Chained Pinyon-Juniper Rangeland Community Type, 1978 301
A8.7.2-4 Mean Production \pm the Standard Error of the Mean (S.E.),Frequency, and Range of Observed Values for ClippedPlots in the Chained Pinyon-Juniper Rangeland, 1978302
A8.7.2-5 Oven Dry Weights for Range Cages and Adjacent Open Areas in the Upland Sagebrush Community Types, 1978 303
A8.7.2-6 Mean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Clipped Plots in the Upland Sagebrush Community, 1978 304
A8.7.2-7 Oven Dry Weights for Range Cages and Adjacent Open Areas in the Bottomland Sagebrush Community Type, 1978 305A8.7.2-8 Mean Production \pm the Standard Error of the Mean (S.E.),Frequency, and Range of Observed Values for ClippedPlots in the Bottomland Sagebrush Community, 1978306
A8.7.2-9 Regression Equations Used for Converting Fresh WeightEstimates to Oven Dry Weights for the Intensive StudyPlots, May 1977307
A8.7.2-10 Regression Equations Used for Converting Fresh Weight Estimates to Oven Dry Weights for the Intensive Study Plots, June 1977 308
A8.7.2-11 Regression Equations Used for Converting Fresh Weight Estimates to Oven Dry Weights for the Intensive Study Plots, July 1977 309
A8.7.2-21

Mean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Quadrats in Plots 4-0 and 4-F, May 1977319
A8.7.2-22

Mean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Quadrats in Plots 4-0 and 4-F, June 1977320
A8.7.2-23 an Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Quadrats in Plots 4-0 and 4-F, July 1977 321A8.7.2-25A8.7.2-26

Mean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Quadrats in Plots 1-0 and 1-F, May 1977310 ean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Quadrats in Plots 1-0 and 7-F, June 1977311 Frequency, and Range of Observed Values for Quadrats in Plots 1-0 and 1-F, July 1977312
Mean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Quadrats in Plots 2-0 and 2-F, May 1977 313Frequency, and Range of Observed Values for Quadratsin Plots 2-0 and 2-F, June 1977314
A8.7.2-17Frequency, and Range of Observed Values for Quadratsin Plots 2-0 and 2-F, July 1977315Frequency, and Range of Observed Values for Quadratsin Plots 3-0 and 3-F, May 1977316
Mean Production \pm the Standard Error of the Mean (S.E.),Frequency, and Range of Observed Values for Quadratsin Plots $3-0$ and 3-F, June 1977317

Mean Production \pm the Standard Error of the Mean (S.E.),
Frequency, and Range of Observed Values for Quadrats
in Plots 3-0 and 3-F, July 1977 313
A8.7.2-20
A8.7.2-24
48.7.2-24 Mean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Quadrats in Plots 5-0 and 5-F, May 1977 322
Mean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Quadrats in Plots 5-0 and 5-F, June 1977 323
Mean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Quadrats in Plots 5-0 and 5-F, July 1977 324
A8.7.2-27 Mean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Quadrats in Plots 6-0 and 6-F, May 1977 325
A8.7.2-28 Mean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Quadrats in Plots 6-0 and 6-F, June 1977 326
A8.7.2-29 Mean Production \pm the Standard Error of the Mean (S.E.) Frequency, and Range of Observed Values for Quadrats in Plots 6-0 and 6-F, July 1977 327
A8.7.2-30 Fresh Weight Estimates for Intensive Study, Plot I-F, Chained Pinyon-Juniper Rangeland, July 1978 328
A8.7.2-31 Fresh Weight Estimates for Intensive Study, Plot 2-F, Chained Pinyon-Juniper Rangeland, July 1978 329
A8.7.2-32 Fresh Weight Estimates for Intensive Study, Plot 5-F, Pinyon-Juniper Woodland, July 1978 330
A8.7.2-33 Fresh Weight Estimates for Intensive Study, Plot 6-F, Pinyon-Juniper Woodland, July 1978 331
A8.7.2-34 Oven Dry Weights for Chained Pinyon-Juniper Rangeland Plots 1-F and 2-F, 1978 332
A8.7.2-35 Oven Dry Weights for Pinyon-Juniper Woodland Plots 5-F and 6-F, 1978 333
A8.7.2-36 Regression Equations Used for Converting Fresh Weight Estimates to Oven Dry Weights in Plots 1-F, 2-F, 5-F, and 6-F, 1978 334
A8.7.2-37 Mean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Quadrats at Chained Pinyon-Juniper Rangeland Plots 1-F and 2-F, 1978 335
A8.7.2-38 Mean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Quadrats at Pinyon-Juniper Woodland Plots 5-F and 6-F, 1978 336
A8.7.2-39 Oven Dry Weights for Range Cages and Adjacent Open Areas in the Pinyon-Juniper Woodland Treatment Site North of Piceance Creek, 1978 337
A8.7.2-40 Oven Dry Weights for Range Cages and Adjacent Open Areas in the Pinyon-Juniper Woodland Control Site North of Piceance Creek, 1978 338
A8. 7.2-41 Mean Production \pm the Standard Error of the Mean (S.E.),Frequency, and Range of Observed Values for ClippedPlots in the Pinyon-Juniper Woodland Development SiteNorth of Piceance Creek, 1978339
A8.7.2-42 Mean Production \pm the Standard Error of the Mean (S.E.), Frequency, and Range of Observed Values for Clipped Plots in the Pinyon-Juniper Woodland Control Site North of Piceance Creek, 1978 340
A8.7.3-1 Production and Utilization of Bitterbrush in the Chained Rangeland Habitat, 1977-78 341
A8.7.3-2 Production and Utilization of Bitterbrush in the Pinyon-Juniper Habitat, 1977-78 342
A8.7.3-3 Production and Utilization of Mountain Mahogany in the Chained Rangeland Habitat, 1977-78 343
A8.7.3-4 Production and Utilization of Mountain Mahogany in the Pinyon-Juniper Habitat, 1977-78 344
A8.7.3-5 Production of Bitterbrush, 1978 345
A8.7.3-6 Baseline Evaluation of Bitterbrush on the Big Jimmy Ridge 346
A8.7.3-7 Baseline Evaluation of Mountain Mahogany on the Big Jimmy Ridge 347
A8.7.3-8 Sagebrush Ocular Estimates - Fall 1978 348
A8.7.3-9 Production of Bitterbrush and Mountain Mahogany Treated with Fertilizer, 1978 349
Al2.3.2-1 Stepwise Regression Analysis Statistics - Step 1 357
Al2.3.2-2 Stepwise Regression Analysis Statistics - Step 357
Al2.3.2-3 Stepwise Regression Analysis Statistics - Step 357
APPENDIX NO. PAGE
A2. 2 Computer Station Codes and Cross Reference 2
A5.2.1A Summary Tables for Univariate Time Series Analyses 12
A5.2.1B Data for USGS Major Gauging Stations 16
A5.2.1C T-Test Procedure Results for USGS Gauging Stations 24
A5.2.1D Univariate Time Series Analysis, UCS FORTELL Box-Jenkins Package 43
A5.2.2A Summary Tables for Linear Regression Analyses 64
A5.2.2B Linear Regression Data for Springs and Seeps 72
A5.2.2C T-Test Procedure Results for Springs and Seeps 79
A5.3.1A Summary Tables for Regression and Comparative Analyses 99
A5.3.1B Linear Regression Data for Alluvial Wells 112
A5.3.1C T-Test Procedure Results for Alluvial Wells 119
A5.3.2A Summary Tables for Ground Water Quality Analyses of Variance 139
A5.3.2B Potentiometric Surface Maps - Upper Aquifer, (1976-1978) 149
A6.2.3 Site Log Sheets for 1978 Visibility Study 191
A6.3.2A Wind Fields Summaries 224
A6.3.2B Tracer Test Results 238

Appendix 2 A contains supporting data for the 1978 C-b Annual Report, Volume 2, Environmental Analysis. These data appear in the forms of figures and tables and within the context of documentation for special analyses performed during the period of this report.

Both a list of figures and a list of tables, which are referenced in Volume 2 as belonging in Appendix 2A, appear immediately following the cover page of this appendix. A list of smaller, supporting appendices can be found following the list of tables; figures and tables not specifically referenced in volume 2, but found in Appendix 2A, are listed on the title page of each supporting appendix.

Numbers assigned to supporting appendices, figures, and tables serve as a cross reference to section designations of Volume 2. The second- and third-level numbers correspond to the same second- and third-level section numbers in Volume 2 (e.g., Table A5.2.1A contains supporting data for section 5.2.1 of Volume 2, while Appendix A6.3.2B contains supporting data for section 6.3.2 of Volume 2). The header and trailer letter designations on all supporting appendices, figures, and tables refer to the physical location of the document in Appendix $2 A$ and to a special study type (within the third-level designation), respectively. All supporting appendices, figures, and tables appear in numerical order by section number.

A four-digit computer station code has been designed for identfying stations in the computer data base management system. It consists of two letters followed by two numbers:

AB23

$A=a i r$
$N=$ noise
$W=$ water
$B=$ biology
$P=$ photography
This code is presented on Table A2.2-1 for the environmental program. Associated station maps appearing in this report are:

	Figure	Page
WATER	$5.2 .1-1$	26
	$5.2 .2-1$	39
	$5.3 .1-1$	43
AIR	$5.3 .2-1$	48
	$6.2 .1-1$	53
NOISE	$6.3 .1-1$	91
BIOLOGY	$7.1 .1-1$	Back Cover

I Air Quality \& Meteorology

Met. Tower: a Sta 023
Met. Tower: d Sta 023
Trailers: Sta 020 $021 \quad A B 2$
022
023
024
Acoustic Radar

Sta 020 021
023
MRI and
Particulates Sta 031
032 AD
033
041
042
043
044
056 AB21 AB22 AB23 AB24

Computer Code

AA23

II Noise

Traffic Noise	Sta	II
	IX	NAO2
	XV	NAO9
		NB15

III Water
USGS Stream

Gauging Sta.	09306007	WU07
	36	WU36
	39	WU39
	42	W42
	61	WU61
	50	WU50
	52	WU52
	58	WU58
	33	WU33
	25	WU25
	15	WUO8
	08	WU22
	22	
Springs \&		WS01
Seeps	W-1	WSO2
	2	WS03
	3	WS06
	4	WS07
	6	WS08
	7	WS09
	8	WS10
	9	WS11
	10	WAO1
	S-A	WA02
		WA14
	A-1	WAO3
	A-2	WA15

Water Cont'd		
Alluviai Wells		
Cont'd	5	WAO5
	$5 A$	WA16
	6	WAO6
	$6 A$	WA17
	7	WAO7
	$7 A$	WA18
	8	WAO8
	9	WAO9
	10	WA10
	11	WA11
	12	WA12
	13	WA13

Deep Wells
UPPER AQUIFER

Deep Wells (cont'd)

LOWER AQUIFER

IV Biology

Program	General Location	Computer *Analysis Code Code
Deer Days Use	Between Hunter Cr. \& Jimmy Gulch	BAO1 - PJJ-CH-C
		BAO2 - PJ-CH-C
		BAO3 - PJ-CH-C
		BA04 - PJ-CH-C
		BA05 - PJ-CH-C
		BAO6 - PJ-CH-C
		BA07 - PJ-CH-C
		BA08 - PJ-CH-C
		BAO9 - PJ-CH-C
	North Side, Piceance Creek	BAIO - PJ -D
		BA11 - PJ -D
		BA12-PJ -D
		BAI3 - PJ -C
		BAI4 - PJ -C
		BAl5 - PJ -C
	South Side, Piceance Creek	BAl6 - PJ -D
	On Tract Bet. Willow \& Scandard	BAI7 - PJ-CH-C
		BAl8-PJ-CH-C
		BA19 - PJ -C
	On Tract bet. Cottonwood \& Sorghum	BA2O - PJ-CH-0
		BA21 - PJ-CH-D
		BA22 - PJ -D
	On Tract bet. Sorghum \& W. Fork	BA23 - PJ-CH-D
	Stewart	BA24 - PJ -D
		BA25 - PJ-CH-C
	On Tract bet. W. \& M. Fork Stewart	BA26-PJ -C
		BA27 - PJ -C
	On Tract bet. Willow \& Scandard North End	BA28 - PJ-CH-C
	On Tract bet. Willow \& Scandard S.E.	BA29 - PJ-CH-C
	On Tract bet. Cottonwood \& Sorghum	BA30 - PJ-CH-C
	On Tract bet. Cottonwood \& Sorghum South	BA31 - PJ-CH-C

*ANALYSIS CODES:

PJ-CH-C		Pinon Juniper,	1 Station	(12)
PJ -C	-	Pinon Juniper,	Control Station	6)
PJ-CH-D		Pinon Juniper,	Chained, Development Station	3)
PJ -0		Pinon Juniper,	Development Station	(6)

Biology Cont'd

Biology (Cont'd)

Programs: Deer Distribution \& Migration and Road Kills

Mile		Compu	Code
Marker	Location	North of Piceance Creek	South(Meadows) of Piceance Creek
41	White River City	BN41	BM41
40	Piceance Bridge	BN40	BM40
39	Lower Canyon	BN39	BM39
38	Piceance Canyon	BN38	BM38
37	Yellow Creek	BN37	BM37
36	Stinking Springs	BN36	BM36
35	Old Bridge	BN35	BM 35
34	Little Hills Turnoff	BN34	8M34
33	01d Corrals \& Buildings	BN33	BM33
32	Burk Ranch	8N32	BM32
$31 \rightleftharpoons$	Ranch	BN31	BM 31
30		BN30	BM30
29		BN29	BM29
28	Bureau of Mines	BN28	BM28
27	Ryan Gulch	BN27	3M27
26	Pump Station	BN26	BM26
25		BN25	BM25
24	Rock School	BN24	BM24
23	AQ 021	BN23	BM23
22	Pat Johnson's Ranch	BN22	BM22
21	Hunter Creek	3N21	BM21
20	PL Gate	BN2O	BM20
19	AQ 020	BN]9	BMI 9
18	Sorghum, Cottonwood	BN18	8M18
17	Stewart Gulch Rd.	BN17	BM17
16	A Q Trailer 022	8 N 16	BM1 6
15	01dland's Ranch	BN15	BM7 5
14	01dland's Ranch	BN14	BM14
13	Pond and Cabin	BN13	BMI 3
12	Spraque Gulch	BN12	BMI2
11	Cascade Gulch	BN11	BMII
10	13 Mile Gulch	BN10	BM10
9	14 Mile Gulch	BNO9	BMO9
8	Schutte Gulch	BNO8	BM08
7	Robinson's Ranch	BNO7	BM07
6		BN06	BM06
5	2 01d Cabins (35 MPH Curve)	BN05	BM05
4	McCarthy Gulch	$8 \mathrm{NO4}$	BMO4
3	Cow Creek	BNO3	BMO3
2	Mahogany Outcropping	BNO2	BMO2
1	Woodward Ranch	BNO1	BMOI
0	Rio Blanco Store	BNOO	BMOO

Biology (Cont'd)

Program	General Location	Computer Code
Micro Climate	MC Sta. 1	BCOI
	2	BCO2
	3	BCO3
	4	BCO4
	5	BCO5
	6	BCO6
	7	BCO7
	8	BCO8
	9	BCO9
	13	BC13

APPENDIX A5.2.1

This Appendix consists of four parts:

A5.2.1A - Summary Tables for Univariate Time Series Analyses

A5.2.1B - Data for USGS Major Gauging Stations
A5.2.1C - T-TEST Procedure Results for USGS Gauging Stations

A5.2.10 - Univariate Time Series Analysis UCS FORTELL Box-Jenkins Package

APPENDIX A5.2.1A

Summary Tables for Univariate Time Series Analyses

List of Tables Appearing in Appendix A5.2.1A
TABLE NO. PAGE
A5.2.1A-1 Univariate Time Series Analyses Mean Monthly Flow (cfs) Major USGS Stations 13
A5.2.1A-2 Univariate Time Series Analyses SO_{4} Concentration (mg/1) Major USGS Stations 14
A5.2.1A-3 Univariate Time Series Analyses NA Concentration (mg/l) Major USGS Stations 15
Table A5.2.1A-1
UNIVARIATE TIME SERIES ANALYSES

USGS Sta \#	MODEL PARAMETERS	SERIES MEAN	SERIES S. D.	MEAN OF RESIDUALS	S. D. OF RESIDUALS	CHI SQUARE TEST (95\%)	TREND
007	$\begin{aligned} & \mu=10.176 \\ & \phi_{1}=0.53076 \end{aligned}$	9.9997	8.0671	$0.36053 \mathrm{E}-03$	$0.68633 \mathrm{E}+01$	NOISE	N
022	$\begin{aligned} & \mu=1.632 \\ & \phi_{1}=0.62038 \end{aligned}$	1.6733	0.62628	-0.32148E-05	0.49960	NOISE	N
058	$\begin{aligned} & \mu=1.7194 \\ & \phi_{1}=0.65157 \end{aligned}$	1.7002	0.97969	-0.10046E-02	0.74408	NOISE	N
061	$\begin{aligned} & \mu=14.239 \\ & \phi_{1}=0.59035 \end{aligned}$	14.069	7.3146	-0.20778E-02	$0.58856 \mathrm{E}+01$	NOISE	N
General Form of Time Series Model for Mean Monthly Flow$\left(1-\phi_{1} B^{1}\right)\left(Z_{t}-\mu\right)=a_{t}$							

$\phi_{a}=$ Autoregressive parameter of order a
$\theta_{b}=$ Moving average parameter of order b
Table A5.2.1A-2
UNIVARIATE TIME SERIES ANALYSES
SO_{4} CONCENTRATION (mg/1)
MAJOR USGS STATIONS

$\begin{aligned} & \text { USGS } \\ & \text { Sta \# } \end{aligned}$	MODEL PARAMETERS	SERIES MEAN	SERIES S. D.	MEAN OF RESIDUALS	S. D. OF RESIDUALS	CHI SQUARE TEST (95\%)	TREND
007	$\begin{array}{lr} M=165.85 \\ \phi_{t_{4}}= & 0.25727 \end{array}$	165.40	16.436	0.19576E-03	$0.16648 \mathrm{E}+02$	NOISE	N
022	$\begin{aligned} & M=367.99 \\ & \phi_{1}=0.30307 \end{aligned}$	367.53	17.924	$-0.17136 \mathrm{E}+00$	$0.17138 \mathrm{E}+02$	NOISE	N
058	$\begin{array}{ll} M & =337.09 \\ \phi_{1} & =0.41802 \end{array}$	337.00	20.067	0.19789E-03	$0.18447 \mathrm{E}+02$	-	N
061	$\begin{aligned} & M=296.93 \\ & \phi_{1}=0.49512 \end{aligned}$	297.22	47.005	-0.89333E-03	$0.41248 \mathrm{E}+02$	NOISE	N
General Form of Time Series Model for SO_{4} Concentration$\begin{array}{ll} \text { Stations 022, 058, 061 } & \left(1-\phi_{1} B^{1}\right)\left(Z_{t}-\mu\right)=a_{t} \\ \text { Station } 007 & \left(1-\phi_{4} B^{4}\right)\left(Z_{t}-\mu\right)=a_{t} \end{array}$							

$\phi_{a}=$ Autoregressive parameter of order a
$\theta_{b}=$ Moving average parameter of order b
Table A 5.2.1A-3
univariate time series analyses

$\begin{aligned} & \text { USGS } \\ & \text { Sta \# } \end{aligned}$	MODEL PARAMETERS	SERIES MEAN	$\begin{gathered} \text { SERIES } \\ \text { S. D. } \end{gathered}$	MEAN OF RESIDUALS	S. D. $0 F$ RESIDUALS	$\begin{aligned} & \text { CHI SQUARE } \\ & \text { TEST }(95 \%) \\ & \hline \end{aligned}$	TREND
007	$\begin{aligned} & M=122.95 \\ & \phi_{1}=0.163 \end{aligned}$	123.22	19.633	-. $17912 \mathrm{E}-01$	$0.19441 \mathrm{E}+02$	NOISE	N
022	$\begin{array}{lr} M=123.42 \\ \phi_{7}= & .47099 \\ \phi_{8}= & 0.012231 \end{array}$	124.64	11.017	-. $38878 \mathrm{E}-04$	$0.47358 \mathrm{E}+01$	NOISE	N
058	$\begin{aligned} & M=118.93 \\ & \phi_{1}=\quad 0.58705 \end{aligned}$	119.44	8.4474	-. 19285E-03	$0.65648 \mathrm{E}+01$	-	N
061	$\begin{aligned} & M=146.92 \\ & \phi_{1}=\quad 0.46995 \end{aligned}$	147.33	22.937	-.14461E-03	$0.20202 \mathrm{E}+02$	NOISE	N
General Form of Time Series Model for Na Concentration Stations 007, 058, $061\left(1-\phi_{1} B^{1}\right)\left(Z_{t}-\mu\right)=a_{t}$ Station $022\left(1-\phi_{7} B^{7}\right)\left(1-\phi_{8} B^{8}\right)$							

[^7]
APPENDIX A5.2.1B

Data for USGS Major Gauging Stations

PH DATA 10/74-5/78																							
8.3	8.3	8.3	8.2	7.7	8.4	8	0	9.2	7.8	8.4		8.3	8.5	7.8		8.2	8.3	8.3	8.3	8	. 4		
8.3	8.3	8.3	8.2	8.1	8.3	8	. 1	8.3	8.1	8.2		8.3	8.2	8.0		8.1	8.4	8.2	8.3	8	. 1		
8.3	8.1	8.3	8.1	8.1	8.2	7	. 8	8.5															
B DATA 10/74-5/78																							
220	210	190	175	155	145		55	160	205	215		185	190	190		200	160	140	140	20	00		
390	770	230	240	MD	MD		80	190	180	160		150	150	150		180	200	190	220	20	00		
190	190	190	170	180	140	1	20	170															
FLUORIDE DATA 10/74-5/78																							
. 6	. 6	.6 . 7	. 6	. 8	. 6	. 5	. 7	. 7	. 7	. 7	5	. 8	. 7	. 6	. 6	. 6	. 6	. 7	. 7	. 8	MD	M	
. 6	. 7	.6 .7	. 7	. 8	. 8	. 9	. 8	. 7	. 7	. 7	7	. 7	. 7		. 7	. 6	. 5	. 7					
AS DATA 10/74-5/78																							
2	3	21	3	1	2	2	1	3	3	3	3	1	2	2	1	MD	D	1	4	4	,	MD	MD
	3	32	0	2	22	2	3	3	1	2	3	6	2	4	2	2	3	32					

N $5=5=5$ ○ニッ山しゅ山ル山 잉이 －oabe によNORス N．NH゚ 000000

00000 -00000 +7
7
7
7
7
7
30 20000： 203008 NNㅇㅇㅇㅇ 05000： $-0^{\circ 0} 0^{\circ}$ $-10-5$ 00000山かせt＋ い○○。 000000 －00200 へべペロm －ールーがか －300000 －NNTEN 20004 300
300
300
300
+300 00 OOO 05
18
68
50
87
58 －nnnn
 SNVFEN 000000 แயயயயи
 200000 onomen HETMNNM $00^{\circ} 00^{\circ}$ －NNFーN 009000 $t+\phi+t+$ 025000 900000 gnnoon wooma －0 0 －0NF－ 000000 $+++++$
 00000 000500 monnino －NールーM 00000 cnNos ＇órinmó －NM
－005－9 $++++{ }^{+}$
 030005 OOOSO Gcormo MONNOC － $6-6000$ 00900山ぃиいぃい 029000 008000 NCかNかO MnNunnm －－－ －60000
\qquad 0.5500015 $0.133000 E+01$ $0.670000 E+00 \quad 0.650000 E+00$ 10 웅 +01
+00 1
1
0
0 $0.730000 E+0$

 \begin{tabular}{l}
\circ

\hline

\hline

0

0

0

0

0

0

 $0.336000 E+010 \cdot 294000 E+01$

5

\vdots

0

0

0

\vdots

0

0

4

\vdots

0

0

0

\hline
\end{tabular} $0.156000 \mathrm{E}+01 \quad 0.710000 \mathrm{E}+00$ $0.380000 \mathrm{E}+00$

00000 000000
 OOSOO0 oonnom $00^{\circ} 0^{\circ}$ 000000 जゅ + ＋+ ＋ 205000 00.2030 000000 27
09
27
87
20
66 $.000^{\circ}$
－$-\boldsymbol{\circ}$ 001000 سぃய 000000 H00000 がN゙ーズー 00000

```
000000
```


－NM－

	TIME	SERIES ANALY	SIS OF MEAN M	MUNTHLY FLOW（	（STA•UらU）		00000160		
LISTING OF OBSERVEO SERIES									
1 －	8	$0.670000 E+00$	U．180900E＋ 01	$0.23500 U E+01$	$0.241007 E+01$	0．206ט00E＋01	$0.336000 E+01$	$0.294000 E+01$	0．730000E＊00
9－	16	$0.136000 E+01$	0．217JJOt＊01	0．209000E＋01	$0 \cdot 101000 E+01$	$0.324000 E+01$	$0.311000 E+01$	$0.317000 E+01$	0．272000E +01
$17-$	24	$0.435000 E+01$	$0.32600 U E+01$	$0 \cdot 314000 E+01$	$0 \cdot 1390005+01$	0．800009E 00	$0.530000 E+00$	0．110U00E＋J	$0.243000 E+01$
25－	32	$0.257000 E+01$	$0.184000 E+01$	$0.273000 E+01$	$0.167000 \mathrm{E}+01$	0．114000E＋01	0．156000E＋ 01	$0.710000 \mathrm{E}+00$	$0.500000 t+00$
33－	40	$0.800000 E+00$	O．109000E＋01	0.10200 UE＋ 01	$0.950000 E+00$	0．124000E＋ 01	$0.133000 \mathrm{E}+01$	$0 \cdot 145000 E+01$	$0.117000 E+01$
41 －	48	0.1580 OOE 01	0．1510JOE＋ 31	$0.136000 E+01$	$0.420000 E+00$	0．670000E＋00	$0.650000 E+00$	$0.380000 E+00$	$0.530000 E+00$
		SthltS AVAL	YSIS UF fitho	M0NJHLY PLUN	（SIA． 001 ）				
	LISTIAG OF OHSERVED SERIEJ								
$\begin{aligned} & 1- \\ & 9- \end{aligned}$	${ }_{1}^{5}$	O． $553000 E+J 1$				$0 \cdot 164000 E+02$			
17－	16	U． 250000 O O 2102	U．1340UUF＋02	O．108090E＋ 02	0．180000F＋02	$0.112300 E+02$	U． $\mathrm{CSOOOUE}+02$	0．2248U0E＋02	$0.367000 E+02$ $0.17290 ⿹ E * ~$
25.	32	0．S3 3 COOE＋U	－ $102300 c+02$	2 $\begin{aligned} & 0.28090 U E+02 \\ & 0.16420 E+02\end{aligned}$	$0.79300 J c+01$ $0.139700 E+02$	$0.506000 k+01$ $0.12930 J E+2$	O．71700UE＋ 01	O． $135700 F+0<$	O． 1970 OUE＋ 02
$33-$	49	U．SCCUOOE＋U	$0 \cdot 7100 J U E+01$	$10.862000 E+01$	$1-107700 E+02$ $0.10700+02$	$0.12930 J E+02$ $0.335000 E+01$	$0.126900 E+02$ $0.520000+01$	$0.407000 E+01$ $0.101000 E+V 2$	O． $614 \cup 0 J E+01$
41－	48	－． $106700 t+52$	$0.146300 E+02$	$20.257700 \mathrm{E}+02$	2．208100E＋02	U． $931000 \mathrm{E}+01$		$0.101000 E+U 2$ $0.645005+01$	$\begin{aligned} & 9.19 C 10 \cup E+02 \\ & 0.49700 \cup E+01 \end{aligned}$

$0 \rightarrow 0000$
$\rightarrow+\infty+\infty$以ルй つゆつつつつ 305325 ona゙にが คFEORI

NNVFNー 050020 00000 930200
7000 जuncta NNTーOK 00000シNーNNS
0.000°

2．00000
 000000 tnoonr $0.00 \cdot$

NOONNO ＋＋＋＋＋＋
LISTING OF OBSFRVEO SERIES

いNNVの
000°

APPENDIX A5.2.1C
T-TEST Procedure Results for
USGS Stations 6007, 6022, 6058, 6061

N

M
VARIANCES
UNEGUAL
EOUAL

$$
\text { 14:11 MONDAY. MARCH 5, } 1079
$$

$$
\begin{array}{rrr}
T & \text { DF } & \text { PROR }>1 \text { TI } \\
0.5940 & 43.3 & 0.5556 \\
0.5669 & 5 R .0 & 0.5730
\end{array}
$$

L ANALYSIS SYSTEM 14104 MO tTEST PROCEDURE											
VARIABLE: MOLY											
LOC	N	MEAN	STD. DEV	STD ERROR	MINIMUM	MAXIMUM	VARIANCES	1	DF	PROR	> 1T1
8887	13	8:222323222	5.01949679 6.6100159	1.67313559	$\begin{gathered} 4.00000000 \\ 2.00000000 \end{gathered}$	$\begin{aligned} & 20.000000000 \\ & 20.000000000 \end{aligned}$	$\begin{aligned} & \text { UNEQUAL } \\ & \text { EOUAL } \end{aligned}$	$\begin{aligned} & -0.6233 \\ & -0.5922 \end{aligned}$	$\begin{aligned} & 19.8 \\ & 20.0 \end{aligned}$		$\begin{aligned} & 0.5482 \\ & 0.5684 \end{aligned}$
FOR HO: VARIANCES ARE EQUAL, FiE 1.73 WITH I2 AND 8 DF PROB \quad Pim 0.4421											
VARIABLE 1 SU4											
LOC	N	MEAN	STO DEV	STD ERROR	MINIMUM	MAXIMUM	VARIANCES	1	DF	PROB	> ITI
6007	28 33	166.07142857 304.242424	$\begin{aligned} & 19 \cdot 50105139 \\ & 48 \cdot 73591483 \end{aligned}$	$\begin{aligned} & 3.68535231 \\ & 8.48383381 \end{aligned}$	$1 \begin{aligned} & 40.00000000 \\ & 90.00000000\end{aligned}$	$\begin{aligned} & 210.00000000 \\ & 390.00000000 \end{aligned}$	UNEQUAL EQUAL	$\begin{aligned} & =14.9379 \\ & -14.0629 \end{aligned}$	$\begin{aligned} & 43.4 \\ & 50.0 \end{aligned}$		$\begin{array}{lllll} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{array}$
FOR HO: VARIANCES ARE EOUAL, $F^{\prime}=66.25$ WITH 32 AND 27 OF PROH > Fim 0.0001											
VARIABLE: NA											
LOC	N	MEAN	STU DEV	STD ERROR	MINIMUM	MAXIMUM	VARIANCES	T	DF	PROA	
$\left.\begin{array}{l} 680 \\ 606 \end{array}\right]$	28 33	$\begin{aligned} & 121.78571429 \\ & 147.81818182 \end{aligned}$	$\begin{aligned} & 23.52989768 \\ & 24.70634350 \end{aligned}$	$\begin{array}{r} 4.44673269 \\ 4.30082236 \end{array}$	$\begin{aligned} & 47.00000000 \\ & 91.00000000 \end{aligned}$	$\begin{aligned} & 160.00000000 \\ & 190.00000000 \end{aligned}$	UNEOUAL EQUAL	$\begin{aligned} & -4.2081 \\ & -4.1910 \end{aligned}$	$\begin{aligned} & 58.2 \\ & 59.0 \end{aligned}$		$\begin{array}{lllll} 0 . & 0 & 0 & 0 \\ 0 . & 0 & 0 & 0 \end{array}$
FOH HO: VARIANCES ARE EQUAL, Fiz 1.10 WITH 32 AND 27 DF PROB > Fim 0 •8019											
VARIABLE: NH3											
LOC	N	MEAN	STU DEV	STD ERROR	MINIMUM	MAXIMUM	VARIANCES	1	DF	PROR	>111
$\begin{aligned} & 6007 \\ & 6061 \end{aligned}$	26 33	$\begin{aligned} & 0.04461538 \\ & 0.05030303 \end{aligned}$	$\begin{aligned} & 0.04393001 \\ & 0.05329663 \end{aligned}$	$\begin{aligned} & 0.00861538 \\ & 0.00927775 \end{aligned}$	0	$\begin{aligned} & 0.17000000 \\ & 0.22000000 \end{aligned}$	UNEQUAL EOUAL	$\begin{aligned} & =0.4492 \\ & -0.4390 \end{aligned}$	$\begin{aligned} & 56.9 \\ & 57.0 \end{aligned}$		$\begin{aligned} & 0.6550 \\ & 0.6623 \end{aligned}$
FOR HO: VARIANCFS ARE EQUAL, Fi											
VARIABLE: SPECCOND											
LOC	N	MEAN	STO DEV	STD ERHOR	MINIMUM	MAXIMUM	VARIANCES	r	DF	PROR	$>1 T 1$
$\begin{aligned} & 6007 \\ & 6061 \end{aligned}$	28 3 3	1047.32142857	02. 11179551	19.29731549 27.92203702	$\begin{aligned} & 825 \cdot 00000000 \\ & 875.00000000 \end{aligned}$	$\left\{\begin{array}{l} 250.00000000 \\ 550.00000000 \end{array}\right.$	UNEQUAL EUJAL	$\begin{aligned} & -7.5918 \\ & -7.3287 \end{aligned}$	$\begin{aligned} & 55.0 \\ & 59.0 \end{aligned}$		0.0081 0.0081

A30 01S

$$
\begin{aligned}
& \square G E Z I \angle S \div \cdot 9 \\
& 8 \angle 90 \div 6\{0 \cdot 5
\end{aligned}
$$

STO ERROR MINIMUM 4.00000000
2.00000000 PROB > FI $=0.4920$ 1.65 HITH 8 AND a DF !y 1.65 WITH 8 AND 8 DF 6058 FOR HOI VARIANCES ARE EQUAL, FI: 6007 Loc
VARIABLE: MOLY VARIABLE: 504
VARIABLE: SO4
STD ERROR
FOR HOZ VARI

VARIABLE: NA

$$
\begin{array}{ll}
19.50105139 & 3.68535231 \\
23.59438825 & 4.54034214
\end{array}
$$

$$
4.54014214
$$

NロJW NVJW $6007 \quad 38 \quad 166.07142857$ FOR HOS VARIANCES ARE EQUAL

UC N
$6007 \quad 28$
$6058 \quad 2$

VARIABLE: NH3
LOC N
$\begin{array}{lll}6007 & 26 & 0.04461538 \\ 6058 & 25 & 0.03160000\end{array}$
FUR HO: VARIANCES ARE EQUAL.

VAHIABLE: SPECCOND
LUC N

$$
=1.46 \text { WITH } 26 \text { AND } 27 \text { DF }
$$

$\begin{array}{lrrr}\text { LUC } & \text { N } & \text { MEAN } & \text { STO DEV } \\ 6007 & 28 & 1047.32142857 & 102.1179557\end{array}$
$102 \cdot 11179551$
78.36060627
FOH HO: VARIANCES ARE EJUAL. F ${ }^{\circ}=$

$$
\equiv \quad 00
$$Mitcrindit8.70000000$3.00(000000$

FKUn－ドー 0．5115
10
$\dot{0} \div$
UrdilnidCES

$$
\text { WiNETUML } 1.2601
$$

LiditL.LluJAL 11.7223
híditaivele

$$
\begin{aligned}
& 11.804 / \\
& 11.7223
\end{aligned}
$$

lit rliun
．

$$
\begin{aligned}
& 11 \\
& 0.21 .5 .5 \\
& 0.212 .3
\end{aligned}
$$

N

APPENDIX A5.2.1D

Time Series Analysis UCS FORTELL Box-Jenkins Package

> Univariate Time Series Analysis

a.) Background

Time series analysis based on the Box Jenkins Technique [Box and Jenkins (1976) and Nelson (1973)] is used to capture all the statistically significant information contained in a series for the purpose of forecasting future trends and values for the series. Techniques are developed and programmed in computer models for both single (univariate) and multiple time series (transfer function). The analyses in this report present only the univariate time series case.

The "Box-Jenkins Philosophy" is captured in their iterative model building process. A model is built up from the data and tested for "fit" in four stages. The model determination stage is called identification. It is followed by parameter estimation. The next step is diagnostic checking (residual analysis) to determine if the model provides an adequate description of the data and that the residuals have been reduced to "white noise." If the checking stage shows that the model is deficient in some way, one returns to the identification stage and repeats the process. When one is satisfied with a model resulting from this iterative process of model building, he may wish to continue to the forecasting of future observations.

The identification stage in time series analysis provides the user with a quantitative measure of the amount of statistical information contained within the data series. This is accomplished through the use of the autocorrelation and partial autocorrelation functions. These functions, as well as some other statistically relevant information, allow the user to choose the initial form of the time series model.

A time series must exhibit stationarity (i.e., the series can be represented by a constant mean) before any modeling can be attempted. A stationary time series can be obtained from the original time series by differencing. Once a stationary series has been obtained, the pattern of the lagged autocorrelations and partial autocorrelations of the stationary series will appear as either a decaying exponential or a series of isolated spikes. This model estimation process can be summarized in terms of the ACF (autocorrelation function) pattern.

ACF

a. decaying exponential
b. isolated spikes
c. Tumpy exponential

Specify
Autoregressive (AR) mode 1
Moving Average (MA) model
AR model first, then check residual
ACF for MA terms (mixed model)

If the ACF pattern indicates an AR model, "significant" spikes from the plotted Partial Autocorrelation Function (PACF) will define the model. If the ACF pattern indicates an MA model, significant spikes from the ACF will define the model.

The most general form of the Box-Jenkins model has the "autoregressive-integrated moving average" form (ARIMA)

$$
\left(1-\phi B-\phi_{2} B^{2}-\phi B^{3}-\ldots-\phi_{p} B^{P}\right)(1-B)^{d} z_{t}=\left(1-\theta B-\theta_{2} B^{2}-\theta_{3} B^{3}-\ldots-\theta_{q} B^{q}\right) a_{t}
$$

where $z_{t}=z_{t}$ if d, the number of differencing terms, >0, and $z_{t}=z_{t}-\mu$ if $d=0$, with μ representing the series mean. z_{t} is the value of series z at time t. The $\phi m, m=1,2,3, \ldots, p$ are autoregressive parameters and appear in the autoregressive factor in the model, white the $\theta_{m}, m=1,2,3, \ldots, q$ are moving average parameters and appear in the moving average factor in the model. This model is generally shortened to the form ARIMA (p, d, q), where p and q refer to the order of the autoregressive and moving average processes, respectively, and the d refers to the order of differencing necessary to achieve stationarity. Order refers to the highest time lag for backshift operator B used with p and q and to the highest time lag for differencing with d.

If an optimal.model has been specified, the residuals in the estimated model should have been reduced to "white noise" as recognized by two tests:

1. The mean of the residuals should be within reasonable confidence limits of zero. Failure of this test indicates the need for the inclusion of a trend term in the model.
2. There should be no significant terms in the ACF of the lagged residuals. Failure of this test indicates that an insufficient number of parameters have been specified.

b.) Computer Programs

Two different time series computer programs have been used by the C-b Shale $0 i 1$ Project in its environmental analysis. The United Computing Systems, Inc. FORTELL model was developed by Standard Oil of Ohio; the 00727 models were developed by Ohio State University personnel and are stored on the Occidental Computer System. Both methods are based on the Box-Jenkins technique of time series analysis with user enhancements and provide identical models and modeling results. The following explanation of forecasting is based on the FORTELL model.

FORTELL provides three kinds of forecasting: Variable Lead Time, Fixed Lead Time, and Backward. For each of these types of forecasts, three pieces of information are required:

1. Backward Origin - The backward origin refers to the number of points backward from the last point in the series to be used
as the forecast origin. A backward origin of 0 specifies that the forecast begins with the last point in the series.
2. Lead Time - The lead time of the forecast specifies the number of forecasted points to be calculated out from the origin.
3. Confidence Limits - The confidence limit on the forecast determines a range bounding the forecasted values. This bound indicates to the user that the probability of the actual value, when it occurs, of falling within this bound is equal to the percentage confidence limit chosen.

Variable Lead Time Forecast - a recursive calculation of the projected forecast values from the forecast origin to the end of the forecast. The forecast origin is the last point in the series, minus the background origin chosen, plus one. The end of the forecast is the forecast origin, plus the lead time, minus one.

Fixed Lead Time Forecast - primarily of use as a validation tool which can be used to check for bias in the simulation properties of the model. For this purpose, the lead time should be 1. A lead time greater than 1 results in a series of variable lead time forecasts separated by the lead time chosen, along the length of the portion of the series chosen. The point forecasts are uncorrelated and may be used to check for bias in the model. If the model is unbiased, then the cumulative sum should not steadily increase in either a positive or negative direction.

Backward Forecast - a variable lead time forecast which projects forecast points into the past rather than the future.

A summary page of each of the time series analyses completed for Air Quality and Particulates data from Tract $\mathrm{C}-\mathrm{b}$ is presented in Tables A6.2.1-4 through A6.2.1-8. These summaries contain basic statistical data for each series as well as a description of the forecasting model used and a summary of forecasting results.

USGS STATION WUOT

Parameter:	PH
Series Mean:	8.26364
Series Variance:	.022833
Trend:	0.0 at 95% confidence level
Series Minimum:	7.90000
Series Maximum:	8.70000
Chi-Sq. for Data:	19.6666 with 42 d.f.
Chi-Sq. at 95\% level:	58.09 with 42 d.f.
Model:	$\left(Z_{t}-8.26364\right)=\left(1+.25176 B^{2}-.32184 B^{3}+.56853 B^{4}\right)\left(1-.10349 B^{12}\right)$ at
Coef. of Det:	.225888
Residual Mean:	-.00117546
Residual Variance:	.0173289
Residual Minimum:	-.328833
Residual Maximum:	.374516
Residual Chi-Sq.:	11.2529 with 39 d.f.
Chi-Sq. at 95\% level:	54.56 with 39 d.f.

Discussion:

The PH model is of the moving average form of order four with a one year seasonal component. The seasonal component in this model was forced in order to achieve a more realistic forecast. This model is stationary and no trend is indicated. The original chi-square value of the data alone is relatively low compared to the 95% confidence level, so there is little evidence to believe that for any long term forecasting that there is a better predictor than the series mean.

USGS STATION WUOT

Parameter:	Boron (mg/l)
Series Mean:	205.250
Series Variance:	994.129
Trend:	0.0 at 95% confidence level
Series Minimum:	130.000
Series Maximum:	265.000
Chi-Sq. for Data:	47.1872 with 42 d.f.
Chi-Sq. at 95\% level:	58.09 with 42 d.f.
Model:	$(1-.60792 B)\left(1-.19592 B^{12}\right)\left(Z_{t}-205.250\right)=a_{t}$
Coef. of Det:	. 365103
Residual Mean:	1.95220
Residual Variance:	595.544
Residual Minimum:	-83.6508
Residual Maximum:	36.1297
Residual Chi-Sq.:	9.58047 with 28 d.f.
Chi-Sq. at 95\% level:	41.32 with 28 d.f.

Discussion:
The Boron series is an autoregressive model of order one, the seasonal component is at increments of one year and although in this series the seasonality had to be forced it is never the less considered to be a valid model parameter. There is little doubt that when more data is collected this seasonality will become more pronounced.

The present model is stationary and contains no indication of a deterministic trend, thus for long term forecasting the mean of the series is the best predictor.

UNIVARIATE TIME SERIES ANALYSIS

USGS STATION WUOT

Parameter:	Fluoride (mg/l)
Series Mean:	1.02614
Series Variance:	.0390103
Trend:	0.0 at 95% confidence level
Series Minimum:	.500000
Series Maximum:	1.30000
Chi-Sq. for Data:	52.1032 with 42 d.f.
Chi-Sq. at 95\% level:	58.09 with 42 d.f.
Model:	$\left(Z_{t}-1.02614\right)=\left(1+.60940 B^{1}+.62767 B^{2}+.27527 B^{3}\right)\left(1+.50633 B^{11}\right) a_{t}$
Coef. of Det:	.453538
Residual Mean:	-.00580097
Residual Variance:	.0194271
Residual Minimum:	-.468227
Residual Maximum:	.227841
Residual Chi-Sq.:	13.5053 with 39 d.f.
Chi-Sq. at 95\% level:	54.56 with 39 d.f.

Discussion:
The flouride series yields a model of the moving average form of order three and with a seasonal component of eleven. This model when expanded will contain a parameter at month twelve, so the season may be considered to be of one year as would be expected.

The present model is stationary and contains no deterministic trend parameter. Due to the stationarity of the series the best predictor for long term forecasting will be the series mean.

USGS STATION WUO7
Parameter:
Series Mean:
Series Variance: . 433403
Trend: $\quad 0.0$ at 95% confidence level
Series Minimum: 1.00000
Series Maximum: 4.00000
Chi-Sq. for Data: 43.4855 with 42 d.f.
Chi-Sq. at 95\% level: 58.09 with 42 d.f.

Model:
$\left(Z_{t}-2.40909\right)=\left(1+.51295 B^{1}-.27269 B^{6}\right)\left(1-.51076 B^{12}\right) a_{t}$
Coef. of Det: 370791

Residual Mean:
-. 00749787
Residual Variance: . 257510
Residual Minimum: -. 988554
Residual Maximum: 1.09799
Residual Chi-Sq.: $\quad 13.3345$ with 40 d.f.
Chi-Sq. at 95% level: 55.76 with 40 d.f.

Discussion:
The AS series produces a moving average model with two basic parameters at laus one and six, in addition, there is a seasonal parameter at lag twelve. This gives a season of one year as desired. The model is stationary and has no trend present.

Parameter: PH
Series Mean: 8.23295
Series Variance: . 0518539
Trend: $\quad 0.0$ at 95% confidence level
Series Minimum: 7.1
Series Maximum: $\quad 8.6$
Chi-Sq. for Data: $\quad 11.2228$ with 42 d.f.
Chi-Sq. at 95% level: 58.09 with 42 d.f.

Model:
Coef. of Det:
$\left.\left(Z_{t}-8.23295\right)\right)=\left(1+.28261 B^{1}\right) a_{t}$

Residual Mean:
.0498784

Residual Variance: . 0481467
Residual Minimum: $\quad-1.06294$
Residual Maximum: 367443
Residual Chi-Sq.: $\quad 9.00518$ with 42 d.f.
Chi-Sq. at 95% level: 58.09 with 42 d.f.

Discussion:
The model is of the moving average order one form, no seasonal parameter could be forced into this model. Due to the low spike in the autocorrelation function for the one parameter and the low initial chi-square statistic, this series will be best characterized by its mean, i.e. the series appears as a random series about its mean.

The model is stationary and contains no trend parameter.

UNIVARIATE TIME SERIES ANALYSIS

USGS STATION WU22

Parameter:	Boron (mg/l)
Series Mean:	106.205
Series Variance:	3511.93
Trend:	0.0 at 95% confidence level
Series Minimum:	70.00
Series Maximum:	325.00
Chi-Sq. for Data:	25.8120 with 42 d.f.
Chi-Sq. at 95\% level:	58.09 with 42 d.f.
Model:	$\left(1-.54672 B^{1}\right)\left(1+.15794 B^{12}\right)\left(Z_{t}-106.205\right)=a t$
Coef. of Det:	.310868
Residual Mean:	737312
Residual Variance:	1982.18
Residual Minimum:	-69.8989
Residual Maximum:	197.582
Residual Chi-Sq.:	6.14870 with 29 d.f.
Chi-Sq. at 95\% level:	$\underline{42.55 ~ w i t h ~ 29 ~ d . f . ~}$

Discussion:

The series model is an autoregressive form with parameters at one and twelve. The latter parameter is a forced seasonal parameter included to improve the forecast.

The model is stationary and trendless, and would be best represented in the long run using the mean.

UNIVARIATE TIME SERIES ANALYSIS

USGS STATION WUZ2

Parameter:	FLuoride (mg/l)
Series Mean:	.315909
Series Variance:	.0783747
Trend:	0.0 at 95% confidence level
Series Minimum:	.20
Series Maximum:	2.0
Chi-Sq. for Data:	5.19742 with 42 d.f.
Chi-Sq. at 95\% level:	58.09 with 42 d.f.
Model:	$\left(Z_{t}-.315909\right)=\left(1+.26045 B^{1}\right) a_{t}$
Coef. of Det:	.0394505
Residual Mean:	.000031821
Residual Variance:	.0738445
Residual Minimum:	-.125703
Residual Maximum:	1.71428
Residual Chi-Sq.:	2.10518 with 41 d.f.
Chi-Sq. at 95\% level:	56.93 with 41 d.f.

Discussion:
The developed model is a moving average of order one. The parameter of lag one was not indicated by the identification module but was forced to produce a forecastable model. A seasonal parameter could not be forced. The series is best represented as random noise about its mean value. This is indicated by the lack of information in the autocorrelation function as well as the small chi-squared statistic for the original data series.

No deterministictrend exists in the series.

UNIVARIATE TIME SERIES ANALYSIS

USGS STATION WU22

Parameter:	AS (mg/l)
Series Mean:	1.05682
Series Variance:	.283269
Trend:	0.0 at 95% confidence level
Series Minimum:	0.0000
Series Maximum:	2.0000
Chi-Sq. for Data:	49.0349 with 42 d.f.
Chi-Sq. at 95\% level:	58.09 with 42 d.f.
Model:	$\left(1-.53992 B^{1}\right)\left(Z_{t}-1.05682\right)=\left(1+.19146 B^{11}\right) a_{t}$
Coef. of Det:	.275071
Residual Mean:	.00457330
Residual Variance:	.200152
Residual Minimum:	-1.02614
Residual Maximum:	9.76543
Residual Chi-Sq.:	9.76543 with 21 d.f.
Chi-Sq. at 95\% level:	$\underline{32.66 ~ w i t h ~} 21$ d.f.

Discussion:
The AS series yields a mixed model with an autoregressive parameter at :"シ and a moving average parameter at eleven. The seasonal type parameter a^{2} : ${ }^{\text {a }}$ eleven was forced, i.e. it was not directly indicated by the model iden:...cation model.

The series is found to be both stationary and trendless, thus for lors: consideration the series mean is the best estimator.

USGS STATION WU58

Parameter:	PH
Series Mean:	8.37659
Series Variance:	.0428044
Trend:	0.0 at 95% confidence level
Series Minimum:	7.41000
Series Maximum:	8.9000
Chi-Sq. for Data:	11.3708 with 42 d.f.
Chi-Sq. at 95\% level:	58.09 with 42 d.f.
Model:	$\left(Z_{t}-8.37659\right)=\left(1-.35235 B^{13}\right) a_{t}$
Coef. of Det:	.0692568
Residual Mean:	.00562777
Residual Variance:	.0388937
Residual Minimum:	-.966591
Residual Maximum:	.333409
Residual Chi-Sq.:	10.4119 with 22 d.f.
Chi-Sq. at 95\% level:	33.92 with 22 d.f.

Discussion:

The developed model is of the moving average form with a seasonal type parameter at lag thirteen, i.e. approximately one year. The initial chisquare statistic indicated that there was very little modelable information in the series, thus it was to be expected that the above model would not yield significantly variable forecasts. The seasonal parameter was forced. Therefore, due to the series stationarity \& the low initial chi-square value the series is best characterized using the mean. The series is also without a significant deterministic mean.

USGS STATION WU58

Parameter:	Boron (mg/1)
Series Mean:	188.295
Series Variance:	174173
Trend:	0.0 at 95% confidence level
Series Minimum:	90.00
Series Maximum:	2800.00
Chi-Sq. for Data:	3.96482 with 23 d.f.
Chi-Sq. at 95\% level:	35.17 with 23 d.f.
Model:	$\left(Z_{t}-188.295\right)=\left(1+.25261 B^{1}\right) a_{t}$
Coef. of Det:	.0374869
Residual Mean:	-.325914
Residual Variance:	163907
Residual Minimum:	-.676 .577
Residual Maximum:	2447.61
Residual Chi-Sq.:	.756545 with 2.2 d.f.
Chi-Sq. at 95\% level:	33.92 with 22 d.f.

Discussion:

The model produced is a moving average of order one; this parameter was not indicated by the identification module, it was forced simply to produce a model to forecast from. The series is stationary and trendless. It is best estimated using the series mean and behaves as a random series with mean equal to data series mean. This is seen by examining the forced model and the chi-square statistic which is extremely small.

USGS STATION WU58

Parameter:	Fluoride (mg/l)
Series Mean:	. 397727
Series Variance:	. 0039482
Trend:	0.0 at 95% confidence level
Series Minimum:	. 3
Series Maximum:	. 6
Chi-Sq. for Data:	25.4411 with 23 d.f.
Chi-Sq. at 95\% level:	35.17 with 23 d.f.
Model:	$\left(1-.46986 B^{1}\right)\left(Z_{t}-.397727\right)=a_{t}$
Coef. of Det:	. 201765
Residual Mean:	-. 0000280199
Residual Variance:	. 00314971
Residual Minimum:	-. 0987951
Residual Maximum:	. 201205
Residual Chi-Sq.:	4.85830 with 14 d.f.
Chi-Sq. at 95\% level:	23.08 with 14 d.f.

Discussion:
The above model is an autoregressive of order one with no trend term. Additionally, the series is stationary and the best estimator for long term forecasting will be the mean of the series.

The series contains little modelable data as is indicated by the initial chi-square statistic and lack of seasonal terms.

USGS STATION WU58

Parameter:	AS (mg/1)
Series Mean:	1.93183
Series Variance:	6.11152
Trend:	0.0 at 95% confidence level
Series Minimum:	0.0
Series Maximum:	13.0
Chi-Sq. for Data:	31.7755 with 35 d.f.
Chi-Sq. at 95\% level:	43.77 with 35 d.f.
Model:	$\left(Z_{t}-1.93183\right)=\left(1+.5704 B^{1}-.14753 B^{6}\right) a_{t}$
Coef. of Det:	.324379
Residual Mean:	.000485539
Residual Variance:	3.95721
Residual Minimum:	-1.56266
Residual Maximum:	11.2899
Residual Chi-Sq.:	8.98607 with 21 d.f.
Chi-Sq. at 95\% level:	32.66 with 21 d.f.

Discussion:
The model is a stationary moving average with parameters at one and six. The parameter at lag six was forced in order to give the series forecasts a seasonal type appearance.

The series has no deterministic trend at the 95% confidence level and would in any long term forecasting be best represented by using the mean.

USGS STATION WU61

Parameter:
Series Mean: 8.22500

Series Variance: .0549419

Trend: $\quad 0.0$ at 95% confidence level
Series Minimum: $\quad 7.70000$
Series Maximum: 9.20000
Chi-Sq. for Data: $\quad 30.3508$ with 42 d.f.
Chi-Sq. at 95\% level: 58.09 with 42 d.f.

Model:
$\left(1+.41062 B^{1}+.27494 B^{3}\right)\left(Z_{t}-8.225\right)=\left(1-.18502 B^{6}\right) a_{t}$
Coef. of Det:
.219029
Residual Mean: -. 00626798
Residual Variance: . 0422993
Residual Minimum: $\quad \mathbf{-} 514645$
Residual Maximum: . 738267
Residual Chi-Sq.: $\quad 11.2263$ with 37 d.f.
Chi-Sq. at 95\% level: $\quad 52.16$ with 37 d.f.

Discussion:
The PH series is modeled by a mixed model with autoregressive parameters at lags of one and three and a seasonal type moving average parameter at lag six. This seasonal parameter may be interpreted as representing the negative of the actual seasonal parameter at lag twelve, i.e. one year. The model is stationary and without a deterministic trend.

The seasonal parameter was forced in order to develop a forecast which follows the data more closely.

UNIVARIATE TIME SERIES ANALYSIS

USGS STATION WU61

Parameter:	Boron (mg/1)
Series Mean:	200.795
Series Variance:	9398.77
Trend:	0.0 at 95% confidence level
Series Minimum:	120.000
Series Maximum:	770.000
Chi-Sq. for Data:	10.8657 with 42 d.f.
Chi-Sq. at 95\% 1evel:	58.09 with 42 d.f.
Model:	$\left(Z_{t}-200.795\right)=\left(1+.36876 B^{1}\right) a_{t}$
Coef. of Det:	.124810
Residual Mean:	-. 0535268
Residual Variance:	8042.95
Residual Minimum:	-155.740
Residual Maximum:	501.525
Residual Chi-Sq.:	2.81552 with 41 d.f.
Chi-Sq. at 95\% level:	56.93 with 41 d.f.

Discussion:
The Boron series model is a moving average of order one. An attempt was made to force a seasonal parameter into the model, but all such parameters were estimated to be extremely close to zero, thus the non-seasonal model was accepted. The model developed was stationary with no trend parameter.

Considering the initial and final chi-square statistics, the developed model is probably the best obtainable. Any forecasting beyond one time period is best done using the series mean.

UNIVARIATE TIME SERIES ANALYSIS

USGS STATION WUGI

Parameter:	Fluoride (mg/l)
Series Mean:	.677500
Series Variance:	.00744709
Trend:	0.0 at 95% confidence level
Series Minimum:	.50000
Series Maximum:	.90000
Chi-Sq. for Data:	18.806 .3 with 42 d.f.
Chi-Sq. at 95\% level:	58.07 with 42 d.f.
Model:	$\left(Z_{t}-.6775\right)=\left(1+.28493 B^{1}+.29495 B^{8}-.22299 B^{13}\right)$ a t
Coef. of Det:	.144357
Residual Mean:	.00106531
Residual Variance:	.0060601
Residual Minimum:	-.153992
Residual Maximum:	.192223
Residual Chi-Sq.:	10.4305 with 39 d.f.
Chi-Sq. at 95\% level:	54.56 with 39 d.f.

Discussion:
The developed model is of the moving average form with parameters at lass of one, eight and thirteen. The last parameter may be considered to be a seasonal type parameter, and the season may be taken to be on the order of one year. This seasonal parameter was forced and differs little from zero. The above model is stationary and trendless. Due to the chi-square statistic and the stationarity of the series, any long term forecasting would best be accomplished via the series mean.

USGS STATION WU61
Parameter: AS (mg/l)

Series Mean: 2.29773
Series Variance: 1.19883
Trend: $\quad 0.0$ at 95% confidence level
Series Minimum: $\quad 0.0000$
Series Maximum: $\quad 6.0000$
Chi-Sq. for Data: 22.4487 with 42 d.f.
Chi-Sq. at 95\% level: 58.07 with 42 d.f.

Model:
$\left(Z_{t}-2.29773\right)=\left(1-.30541 B^{7}+61491 B^{11}\right) a_{t}$
Coef. of Det: . 164915
Residual Mean: . 0190615
Residual Variance: . 956252
Residual Minimum: -1.47668
Residual Maximum: 3.06607
Residual Chi-Sq.: $\quad 17.7652$ with 40 d.f.
Chi-Sg. at 95\% level: 55.76 with 40 d.f.

Discussion:

The above model is a moving average with parameters at lags of seven and eleven, these may be considered as seasonal type parameters. When additional data is collected this seasonal aspect should become more distinct.

The series is trendless and stationary, and the mean should be taken as a good indicator for any long term prediction.

APPENDIX A5.2.2

This Appendix is in three parts:

A5.2.2A - Summary Tables for Linear Regression
Analyses
A5.2.2B - Linear Regression Data for Springs and Seeps

APPENDIX A5.2.2A

Summary Tables for Linear Regression Analyses
List of Tables Appearing in Appendix A5.2.2A

TABLE NO.

A5.2.2A-1 Linear Regression of Water Quality Parameters vs. Time Location WSO1 65
A5.2.2A-2 Linear Regression of Water Quality Parameters vs. Time Location WSO2 66
A5.2.2A-3 Linear Regression of Water Quality Parameters vs. Time Location WSO3 67
A5.2.2A-4 Linear Regression of Water Quality Parameters vs. Time Location WSO6 68
A5.2.2A-5 Linear Regression of Water Quality Parameters vs. Time Location WSO7 69
A5.2.2A-6 Linear Regression of Water Quality Parameters vs. Time Location WSO9 70
A5.2.2A-7 Linear Regression of Water Quality Parameters vs. Time Location WSIO 71
Table A5.2.2A-1

Location WSO1

RAMETERS	$\begin{gathered} \mathrm{HO} .0 \mathrm{~F} \\ 0 \mathrm{BS} . \end{gathered}$	ESTIMATE OF SLOPE	$\begin{gathered} L L^{\star} \\ \left(95^{\circ} \operatorname{Conf}\right) \\ \hline \end{gathered}$	$\begin{gathered} U L^{\star} \\ \left(95^{\prime \prime},\right. \\ \text { Conf }) \end{gathered}$	$\begin{aligned} & \text { T FOR } H_{i}: \\ & \text { SLOPE }=0 \end{aligned}$	SIGIIFICA:ITLY DIFFEREITT FROM ZERO? (95\% Conf
pH	5	0.390	0.158	0.622	4.33	Y
B	4	-0.447	-1.058	0.164	-2.33	N
F	5	-0.200	-0.489	0.089	-1.93	N
As	5	0.00538	-0.00227	0.0130	1.95	N
SO_{4}	5	-47.1	-85.5	-8.7	-3.40	Y
Na	5	-22.4	-54.1	9.26	-1.96	N
NH_{3}	3	0.0271	-0.276	0.330	0.38	N
Mo	3	0.00124	-0.0788	0.0812	0.07	N

t-statistic for the no. of degrees of freedom.
Table A5.2.2A-2
LINEAR REGRESSION OF WATER QUALITY PARAMETERS VS TIME
Location WSO2
IS SLOPE
SIGHIFICANTLY

$z z z z z=z$

0.227
0.181
0.114
0.00467
9.55
10.4
0.253
0.00219
$U L^{*}$
$(95 \%$ Conf) -

[^8]Table A5.2.2A-3

* Lower and Upper Limits of slope based on standard error of the estimate and the
t-statistic for the no. of degrees of freedom.
Table A5.2.2A-4

PARAMETERS	Location WS06					
	$\begin{aligned} & \text { NO. OF } \\ & \text { OBS. } \end{aligned}$	$\begin{aligned} & \text { EST IMATE } \\ & \text { OF SLOPE } \end{aligned}$	$\begin{gathered} L L^{\star} \\ (95 \% \text { Conf }) \\ \hline \end{gathered}$	$\begin{array}{r} \text { U L* } \\ \text { (95\% Conf) } \\ \hline \end{array}$	$\begin{aligned} & \text { T FOR } \mathrm{H}_{0}: \\ & \text { SLOPE } \end{aligned}$	IS SLOPE SIGNIFICANTLY DIFFERENT FROM ZER0? (95: Conf
pH	7	-0.0633	-0.379	0.253	-0.49	N
B	7	-0.316	-0.705	0.073	-2.00	N
F	7	-0.257	-0.671	0.157	-1.52	N
As	6	-0.00162	-0.0124	0.00918	-0.39	N
SO_{4}	7	-2.33	-19.5	14.9	-0.33	N
Na	7	-1.17	-9.69	7.35	-0.34	N
NH_{3}	4	-0.0484	-0.257	0.161	-0.74	N
Mo	7	-0.000460	-0.0138	0.0128	-0.08	N
* Lower and Upper Limits of slope based on standard error of the estimate and the t-statistic for the no. of degrees of freedom						

Table A5.2.2A-5
Linear regression of water quality parameters vs time

PARAMETERS	Location WS07					
	$\begin{aligned} & \mathrm{NO} . \mathrm{OF} \\ & \mathrm{OBS} . \end{aligned}$	ESTIMATE OF SLOPE	$\begin{gathered} L L^{*} \\ (95 \% \text { Conf }) \\ \hline \end{gathered}$	$\begin{gathered} \text { U } L^{\star} \\ \left(95^{\prime \prime}{ }^{\prime} \text { Conf }\right) \end{gathered}$	$\begin{aligned} & \text { T FOR } H_{0} \\ & \text { SLOPE }=0 \\ & \hline \end{aligned}$	IS SLOPE SIGNIFICANTLY DIFFERENT FROM ZERO? (95% Conf)
pH	7	-0.0852	-0.278	0.108	-1.08	N
B	7	-0.299	-0.61	0.012	-2.36	N
F	7	-0.169	-0.443	0.105	-1.51	N
As	7	-0.00316	-0.00078	0.0071	1.97	N
SO_{4}	7	-32.2	-83.8	19.4	-1.53	N
Na	7	-2.83	-8.27	2.61	-1.27	N
NH_{3}	5	. 195	-0.167	0.537	1.59	N
Mo	5	-0.000296	-0.00769	0.00709	-0.11	N

Table A5.2.2A-6
Linear regression of water quality parameters vs time

RAMETERS	$\begin{aligned} & \because 0.0 F \\ & 0 B S . \\ & \hline \end{aligned}$	$\begin{aligned} & \text { EST I:ATE } \\ & \text { OF SLOPE } \\ & \hline \end{aligned}$	$\begin{gathered} L^{L^{\star}} \\ (95 \% \text { Conf) } \\ \hline \end{gathered}$	$\begin{gathered} U L^{*} \\ \text { (95\% Conf) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { T FOR Ho: } \\ & \text { SLOPE }=0 \end{aligned}$	SIGNIFICANTLY DIFFERENT FROM ZERO? (95\% Con
pH	12	-0.0244	-0.172	0.124	-0.36	N
B	7	-0.0928	-0.176	-0.0096	-2.73	Y
F	12	-0.136	-0.396	0.124	-1.15	N
As	11	0.00245	-0.00915	0.0141	0.47	N
SO_{4}	12	-30.6	-71.9	10.7	-1.63	N
ila	12	-2.04	-16.3	12.3	-0.31	N
NH_{3}	10	-0.0187	-0.0952	0.0578	-0.55	N
Mo	6	-0.0425	-0.0903	0.0053	-2.28	N

t -statistic for the no. of degrees of freedom.
Table A5.2.2A-7

LINEAR REGRESSION OF WATER QUALITY PARAMETERS VS TIMELocation WS10						
PARAMETERS	$\begin{aligned} & \text { NO. OF } \\ & \text { OBS. } \\ & \hline \end{aligned}$	ESTIMATE OF SLOPE	$\begin{gathered} \text { L L* } \\ (95 \% \text { Conf) } \end{gathered}$	$\begin{gathered} U L^{*} \\ \text { (95\% Conf) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { T FOR } H_{0} \\ & \text { SLOPE }=0 \end{aligned}$	IS SLOPE SIGNIFICANTLY DIFFERENT FROM ZERO? (95% Conf)
pH	9	0.0747	-0.106	0.256	0.95	N
B	7	-0.0832	-0.213	0.0468	-1.56	N
F	9	-0.148	-0.386	0.09	-1.44	N
As	9	0.00405	0.00057	0.00753	2.68	Y
SO_{4}	9	17.3	9.29	25.4	4.97	Y
Na	9	1.55	-1.85	4.95	1.05	N
NH_{3}	7	-0.0320	-0.133	0.069	-0.78	N
Mo	4	-0.00262	-0.0258	0.0206	-0.36	N

* Lower and Upper Limits of slope based on
t-statistic for the no. of degrees of freedom.

APPENDIX A5.2.2B

Linear Regression Data for Springs and Seeps

 111

RES104

－xanno
RESID4
$0 \div 0032366$
$-0 \div 0052367$
$0: 0020023$ 60
$N 0$
Nu
$00 N$
00
00

 K945900 O $2 \angle 8 \angle 0^{\circ}$

5
8
6
6
6
［038

nmancur mincincos momn moinnom Quma 000 $\$ 000000$

 －nmonncon NNみーが $-\infty \times \infty \times \infty$ ONMONOO －winoor RMO
NMールーNO
manmmmm

RESID3 RESIO4 AE －0．00267
 c03yd PRED 3

aッNoconon
 oobn～awom
 omon
NOM
000000000
000000000
000000000 0
0
00
00
00 11
SNM In Innoo NNN゙心0MOOOO onmosnundo MNMNGNHNO OOOOOOOO anNomonono
PRED2

0000000°

PRED 1
$\cdots \infty \bullet \infty \bullet \infty \bullet \infty-\infty$
YRMO
OMNMNOONN
OMOMDOOO
UM OM OUN

NJFO-ONOO
$000000 N$
000000
0000000
0000000mo
4
∞
2
LOC=WS 11

$\div 0^{\circ}-000^{\circ}$
OOOO
0000000
OOMNMEN00
NN $+\infty \infty \infty+\infty$
$0 \div 010$
\vdots
$0 \vdots 007$
$0 \div 008$
.
\circ
-nmincono

Onamonono
ゴNいかooron
NANNNNNA
MOM-OOOーNM
へいいいいローが

APPENDIX A5.2.2C
T-TEST Procedure Results
for
Spring and Seeps WS01, WS03, WS06, WS07

TTEST PROCEDURE											
VARIABLE: moly											
LOC	N	MEAN	Sto dev	STD ERROR	MINIMUM	MAXIMIJM	VARIANCES	T	nf	PROR	>171
WS03	9	0.02500000 0.02000000	0.01603567 0.0163293	0.00566947 0.00617213	0.01000000 0.0000000	$\begin{aligned} & 0.05000000 \\ & 0.05000000 \end{aligned}$	UNEOUAL follal	0.5966 0.5974	17.7 17.0		0.5613 0.5605
VARIABLE: 504											
LOC	N	MEAN	STO DEV	STD ERROR	MINIMUM	maximum	VARIANCES	1	DF	PROR	- 111
WSO3	13	386.84615385 756.71428571	59.01108910	16.36672913 A.8A500754	218.00000000 32000000000	435.00000000 3A7.00007000	UNEQUAL EOUAL	1.0506	1R.A		$\begin{array}{ll} 0.1776 \\ 0 . ? 126 \end{array}$
FOR HO: VARIANCFS ARE EQUAL. Fiz 7.61 WITH 12 AND G DF PROA P Fix 0.0207											
VARIABLEI NA											
LOC	N	MEAN	STD DEV	STO ERROR	MINIMUM	maximum	VARIANCES	T	DF	PROR	> 111
$W 503$ $W S O K$	13	138.53846154 142.0000000	19.40195602 10.59874206	5.38113441 4.00594796	120.00000000 $128.0000000 ~$	200.00000000 $160.0000000 ~$	UNEOUILAL EOUAL	$=0.5160$ -0.6348	1A.0		$0.612 ? ~$ $0.6 K 89$
FOR HO: VARIANCFS ARE EQUAL, FOa 3.35 WITH 12 AND 6 DF PROB P Fim 0.1480											
VARIABLE: NH3											
LOC	N	MEAN	Sto dev	STO ERROR	MINIMIJM	MAXIMUM	VARIANCES	1	DF	PROR	> 111
WS03	12	0.15666667 0.15750000	0.14137849 0.16500000	0.04081246 0.08250000	0.01000000 0.03000000	0.40000000 0.40000000	IJNFGUAL EOIAL	-0.0091 -0.0098	14.0 ${ }_{\text {A }}$		$0.903 ?$
FOR HOI VARIANCES ARE ESUAL. FIE 1.36 WITH 3 ANO 11 DF (PROB $>$ FI= 0.6104											

$10: 18$ WEDNESDAY, FERRUARY 2A. 1976
STATISTICALANALYSIS SYSTEM
TTEST PROCEDURE
DF PAOA >1 IT

DF PROA > ITI

PROB $>F \in 0,34231$

13:3A WFDNESDAY. FFRRUARY 2A. $197{ }^{\frac{1}{6}}$

STATISTICAL ANALYSIS SYSTEM 9801 TUESDAY• FEBRUARY 27. 1979

$$
8: 39761292
$$

$$
6 \text { AND } 6 \text { DF }
$$

$$
\begin{aligned}
& 0.00478888 \\
& 0.00254884
\end{aligned}
$$

$\begin{array}{rr}\text { DF } & \text { PROR } \\ 3.6 & 8: 409 ?\end{array}$ $13: 6$

1 -0.8590
-0.8590 VARIANCES UNEOUAL
EQUAL MAXIMUM 8.40000000
3.40000000 PROR > FI= 0.3960

DF PROB >1 TI $1 \begin{array}{ll}1: 9 & 0.6574 \\ 2.0 & 0.6573\end{array}$ 12.0 8: $: 55 \%$ 0.5858
$0.5 月 58$

1
0.7110
0.741^{1} VARIANCES UNEQUAL MAXIMUM
0.03000000
0.02000000 PROB > Fi= 0.3954
DF PROB > $1 T 1$ $\begin{cases}0.7 & 8.5702 \\ 2.0 & 0.5889\end{cases}$

111 < G0yd 30 0.4981
0.4738

DF
7.7
11.0
0.02000000 EOHAL

PROA $\rightarrow F^{\prime}=0.8215$
MAXIMUM VARIANCES
UNEQUAL
EOUAL
VARIANCES
UNEQUAL
EQUAL

WOWIXVW $\begin{array}{ll}0.40000000 & 2.10000000 \\ 0.30000000 & 1.50000000\end{array}$
wnwINIW
MINIMUM
0.00100000
0.001000000
PROA , FI= 0.2102

FOR HO: VARIANCES ARE EQUAL, FI
घ0४षз 015130015

$$
109 \text { ONV } 9 \text { HIIM } 10^{\circ} \mathrm{C}
$$

$$
\text { но甘ष3 015 } 130 \text { 01s }
$$

$\begin{array}{lrrrr}\text { VARIABLE: B } & & \\ \text { LOC } & \text { M } & \text { MEAN } & \text { STD DEV } & \text { STO ERROR } \\ \text { WSO8 } & 7 & 8.43857143 & 0.63964648 & 0.24176364 \\ \text { WSO } & 7 & 0.29000000 & 0.58106225 & 0.21962089\end{array}$
FOR HO! VARIANCFS ARE EQUAL, Fix 1.21 WITH 6 AND 6 DF
VARIABLE: F,

VARIABLE: F
LOC N MEAN $\begin{array}{lll}\mathrm{WSO6} & 7 & 0.71428571 \\ \mathrm{WSOF} & 7 & 0.54857143\end{array}$
$8: 61492160 \quad 0.23241852$
FOR HO: VARIANCES ARE EQUAL, FIE 2.08 WITH 6 AND 6 DF
STO ERROR

5 AND 6 UF 0.01173030
0.00674360

HIME $0^{\circ} \varepsilon$
$10: 16$ WEDNESNAY. FERRIIARY 2A. 1976
W31SAS S1S^7VNV7Vア11511ロ15
TTEST PROCEDURE
PROB > FI 0.0531

$$
\begin{array}{rr}
\text { STO DEV } & \text { STD ERROR } \\
0: 01632993 & 0: 00617213 \\
0.0 \text { N547723 } & 0.00244949
\end{array}
$$

FOR HOI VARIANCFS ARE EOUAL: FI: B. 89 WITH 6 AND 4 DF
VARIABLE, mOLy
NV3W N 307
WSO6

PROB > FI= 0.0053
variablei na
LOC
WS06
PROR > FI $=0.5217$
$\begin{array}{lr}\text { VAPIANCES } \\ \text { UNEQUAL } & 1.5331\end{array}$
$1 \cdot 5331$

variances
UNEOIIAL
PROR > FI= 0.1190
$13: 36$ WEDNESOAY. FEARUARY 2A. 19 个¢
SIATISTICAL ANALYSIS SYSTEM

n
$10: 25$ WEDNESDAY. FERRUARY 2A, 1976
STATISTICAL ANALYSIS SY.STEM

13:35 MEDNESDAY, FERRUARY 28. 1974
SYSTEM
STATISTICALANALYSIS

					TTEST PROCEDURE					
VARIABLE, SPECCOND										
LOC	N	MEAN	Sto dev	STD ERROR	MINIMUM	maximum	VARIANCES	\boldsymbol{T}	DF	PROR ; ITI
WSOt	5	1724.20000000 1345.16666667	118.27943796 99009675407	$\begin{aligned} & 52.87381204 \\ & 40.45608044 \end{aligned}$	1200.00000000 125000000000	1521.00000000	UNEOUAL EQUAL	$\begin{aligned} & -0.3149 \\ & -0.3205 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 9.0 \end{aligned}$	0.7610 0.7559
VARIABLEI TOS										
LOC	N	MEAN	Sto dev	STD ERROR	MINIMUM	maximum	VARIANCES	1	DF	PROA > $\|T\|$
WSOt	4	946.25000000 980.75000000	111.76276959 82.27479350	55.88138480 41.11239675	839.00000000 921.00000000	1100.00000000 110000000000	UNEOUIAL EOUAL	-0.4973 -0.4973	5.5 6.0	$\begin{aligned} & 0.6783 \\ & 0.6767 \end{aligned}$
FOR HOS VARIANCFS ARE ESUAL. Fix 1.85 WITH 3 AND 3 DF PHOR $>$ Fi= 0.6267										

10128 WFDNESNAY. FERRUARY 2A, 1976

$$
\begin{array}{lll}
52.87381204 & 1200.00000000 & 1521.00000000 \\
31.60656178 & 1700.00000000 & 1559.00000000
\end{array}
$$

$$
\text { PROB > Fiz } 0.7550
$$

$$
\begin{aligned}
& \text { VARIANCES } \\
& \text { UINE NIIAI } \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { UNFOUAL } \\
& \text { EOIIAL }
\end{aligned}
$$

VÄRYANCES
EDIJAL.
13127 MEONESDAY. FERGRUAARY 2Ã. 1979

$\begin{array}{rr}\text { DF PROK } & \text { ITI } \\ 11.7 & 0.5635 \\ 1.0 & 0.4802\end{array}$ $\begin{array}{ll}\text { UNEQUAL } & -0.6256 \\ \text { F.OIJAL. } & -0.730 \mathrm{~A}\end{array}$

$$
W \cap W I \times \forall W
$$

FOR HOI VARIANCFS ARE EQUAL. FI= 4.17 WITH 3 AND 2 DF PROR $>$ FI= 0.3991
Variablet spectond LOC N MEAN Bicy

APPENDIX A5.3.1

This Appendix is in three parts:

A5.3.1A - Summary Tables for Regression and Comparative Analyses

A5.3.1B - Linear Regression Data for Alluvial Wells
A5.3.1C - T-TEST Procedure Results for Alluvial Wells

Summary Tables for Regression and Comparative Analyses
List of Tables Appearing in Appendix A5.3.1A

TABLE NO.

PAGE

A5.3.1A-1Linear Regression of Water Quality Parameters vs. Time Alluvial Well WAOl	100

A5.3.1A-2 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WAO2 101
A5.3.1A-3 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WAO3 102
A5.3.1A-4 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WA05 103
A5.3.1A-5 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WA06 104
A5.3.1A-6 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WA07 105
A5.3.1A-7 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WA08 106
A5.3.1A-8 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WA09 107
A5.3.1A-9 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WAlO 108
A5.3.1A-10 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WAll 109
A5.3.1A-11 Linear Regression of Water Quality Parameters vs. Time Alluvial Well WAl2 110
A5.3.1A-12 T-Test Procedure Summary for Between-Station Comparisons of Alluvial Wells 111
Table A5.3.1A-1

* Lower and Upper Limits of slope based on standard error of the estimate and the t-statistic for the no. of degrees of freedom.
Table A5.3.1A-2
LINEAR REGRESSION OF WATER qUALITY PARAMETERS VS TIME
Alluvial Well WAO2

PARAMETERS	$\begin{aligned} & \text { No. OF } \\ & \text { OBS. } \end{aligned}$	ESTIMATE OF SLOPE	$\begin{gathered} L L^{*} \\ \text { (95\% Conf) } \\ \hline \end{gathered}$	$\begin{gathered} U L^{*} \\ (95 \% \text { Conf) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { T FOR Ho: } \\ & \text { SLOPE }={ }_{0} \end{aligned}$	IS SLOPE SIGNIFICANTLY DIFFERE:IT FROM ZERO? (95: Conf)
pH	5	0.105	-0.947	1.157	0.28	N
B	4	-0.712	-2.151	0.727	-1.58	N
F	5	-1.351	-3.40	06.78	-1.85	N
As	4	-0.00392	-0.010	0.00219	-2.05	N
SO_{4}	5	-69.9	-208.0	68.0	-1.41	N
Na	5	-53.1	-117.0	10.8	-2.31	N
NH_{3}	5	-0.0917	-0.756	0.572	-0.38	N
Mo	3	0.00672	-0.0630	0.0764	0.41	N

* Lower and Upper Limits of slope based on
t -statistic for the no. of degrees of freedom.
Table A5.3.1A-3

* Lower and Upper Limits of slope based on
standard error of the estimate and the
t-statistic for the no. of degrees of freedom.
Table A5.3.1A-4
LINEAR REGRESSION OF WATER QUALITY PARAMETERS VS TIME
Alluvial Well WA05

PARAME TERS	$\begin{gathered} \text { ilo. OF } \\ \text { OBS. } \\ \hline \end{gathered}$	ESTIMATE OF SLOPE	$L L^{*}$ $(95 \% \operatorname{Conf})$	$\begin{gathered} U L^{*} \\ (95 \% \operatorname{conf}) \end{gathered}$	$\begin{aligned} & \text { TFOR } H_{0} \\ & \text { SLOPE }=0 \end{aligned}$	IS SLOPE SIGNIFICANTLY DIFFERENT FROM ZERO? (95:' Conf)
pH	6	-0.0716	-0.370	0.226	-0.62	N
B	5	-0.273	-0.657	0.105	-2.01	N
F	6	-0.770	-2.59	1.05	-1.09	N
is	6	-0.00496	-0.0250	0.0150	-0.64	N
SO_{4}	6	-57.4	-136.6	21.8	1.86	N
ila	6	-25.9	-79.1	27.3	1.25	N
iH_{3}	5	-0. 107	-0.604	0.390	-0.60	N
MO	5	-0.000478	-0.0244	0.0234	-0.06	N
Level	33	-0.000409	-0.8580	0.8572	--	N

* Lower and Upper Limits of slope based on
t-statistic for the no. of degrees of freedom.
Table A5.3.1A-5
Alluvial Well WAO6

PARAMETERS	$\begin{aligned} & \mathrm{MO} . \mathrm{OF} \\ & \text { CBS. } \end{aligned}$	$\begin{aligned} & \text { EST I:ATE } \\ & \text { OF SLOPE } \end{aligned}$	$\begin{gathered} L \quad L^{\star} \\ (95 \% \text { Conf }) \\ \hline \end{gathered}$	$\begin{gathered} U L^{*} \\ (95 \% \text { Conf) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { T FOR } H_{0}: \\ & \text { SLOPE }=0 \\ & \hline \end{aligned}$	IS SLOPE SIGNIFICANTLY DIFFERENT FROM ZERO? (95\% Conf)
pH	11	0.0609	-0.260	0.382	0.42	N
B	6	-0.390	-0.773	-0.007	-2.62	γ
F	11	-0.357	-0.698	-0.016	-2.34	Y
is	10	0.00320	-0.0117	0.0181	-0.49	N
SO_{4}	11	-41.9	-64.4	-19.4	-4.15	Y
Na	11	-32.1	-58.5	-5.70	-2.71	Y
NH_{3}	10	-0.0828	-0.268	0.102	-1.01	N
Ho	5	-0.0103	-0.0228	0.0022	-2.29	N
Level	33	-0.05	-5.4430	5.5430	--	N

* Lower and Upper Limits of slope based on
t-statistic for the no. of degrees of freedom.
Table A5.3.1A-6
Linear regression of water quality parameters vs time
Alluvial Well WA07

PARAMETERS	NO. OF OBS.	ESTIMATE OF SLOPE	$\begin{gathered} L L^{\star} \\ (95 \% \text { Conf) } \\ \hline \end{gathered}$	$\begin{gathered} U L^{*} \\ \text { (95\% Conf) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { T FOR Ho: } \\ & \text { SLOPE }=0 \end{aligned}$	IS SLOPE SIGNIFICANTLY different from ZERO? (95\% Conf)
pH	12	-0.103	-0.210	0.0035	-2.12	N
B	7	-0.337	-0.661	-0.013	-2.55	Y
F	12	-0.361	-0.771	-0.011	-2.27	Y
As	11	0.00216	-0.0109	0.0153	0.37	N
SO_{4}	12	-31.6	-80.3	17.1	-1.43	N
:la	12	-52.7	-100.6	-4.8	-2.42	Y
iH_{3}	11	-1.05	-2.71	0.61	-1.41	N
Ho	6	0.00188	-0.0354	0.0392	0.13	N

* Lower and Upper Limits of slope based on
t-statistic for the no. of degrees of freedom.
Table A5.3.1A-7
Linear regression of water quality parameters vs time
Alluvial Well WA08

PARAMETERS	$\begin{aligned} & \text { fio. OF } \\ & \text { OBS. } \\ & \hline \end{aligned}$	ESTIMATE OF SLOPE	$\begin{gathered} L L^{\star} \\ (95 \% \text {. } \\ \hline \end{gathered}$	$\begin{gathered} U L^{*} \\ \text { (95\% Conf) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { T FOR Ho }{ }^{2} \\ & \text { SLOPE }=0 \\ & \hline \end{aligned}$	IS SLOPE Sigrificantly differeit from ZERO? (95: Conf
pH	8	-0.0923	-0.352	0.168	-0.84	N
B	7	-0.108	-0.229	0.013	-2.20	N
F	8	-0.0851	-0.206	0.0359	-1.66	N
is	8	0.00301	-0.00011	0.00613	-2.28	N
SO_{4}	8	4.27	-26.0	34.6	0.33	N
ila	8	-21.4	-58.5	15.7	-1.36	N
iH_{3}	7	0.369	-0.721	1.46	0.83	N
Mo	6	0.00699	-0.0133	0.0273	0.88	N
Level	33	-0.08	-3.7352	3.5752	--	N

Table A5.3.1A-8
LINEAR REGRESSION OF WATER QUALITY PARAMETERS VS TIME
Alluvial Well WA09
IS SLOPE
SIGNIFICANTLY

$z z z z z z z z$
$\begin{array}{llllllll}\infty & \square & n & \infty & 0 & 0 & 0 & 0 \\ 0 & \div & 0 & 0 & \vdots & \div & 0 & 0 \\ 0 & 0 & \div & \dot{0} & 0 & \div & 0 & \div \\ 1 & 1 & 1 & & 1 & 1 & 1 & 1\end{array}$
$\vdash \backsim$

	$\begin{array}{c}\text { NO. OF } \\ \text { OBS. }\end{array}$	$\begin{array}{c}\text { ESTIMATE } \\ \text { OF SLOPE }\end{array}$	$\begin{array}{c}L L^{*} \\ \left(95_{\%}^{\prime} \text { Conf) }\right.\end{array}$	$\begin{array}{c}U L^{\star} \\ \left(9 \%_{\%}^{\prime} \text { Conf) }\right.\end{array}$
pH	8	-0.072	-0.323	0.179
B	7	-0.0171	-0.318	0.284
F	8	-0.0877	-0.1991	0.0243
As	8	0.00284	-0.0004	0.00608
SO_{4}	8	-7.54	-69.5	54.4
Na	8	-7.00	-18.3	4.34
NH_{3}	7	-0.252	-0.918	0.414
Mo	7	-0.00761	-0.0256	0.0104

* Lower and Upper Limits of slope based on standard error of the estimate and the
t-statistic for the no. of degrees of freedom.
Table A5.3.1A-9
LINEAR REGRESSION OF WATER QUALITY PARAMETERS VS TIME

$z z z z>z<$

PARAMETERS	Alluvial Well WAlO					
	$\begin{aligned} & \text { NO. OF } \\ & \text { OBS. } \end{aligned}$	ESTIMATE OF SLOPE	$\begin{gathered} L \quad L^{\star} \\ (95 \% \text { Conf }) \end{gathered}$	$\begin{gathered} U L^{\star} \\ (95 \% \text { Conf }) \\ \hline \end{gathered}$	$\begin{aligned} & \text { T FOR } \mathrm{H}_{\mathrm{o}} \\ & \text { SLOPE }=0 \\ & \hline \end{aligned}$	IS SLOPE SIGHIFICANTLY DIFFERENT FROM ZERO? (95\% Conf)
pH	7	-0.154	-0.312	0.004	-2.38	N
B	6	-0.183	-0.407	0.041	-2.10	N
F	7	-0.0747	-0.228	0.0783	-1.19	N
As	7	0.00375	-0.00039	0.00789	2.22	N
SO_{4}	7	-19.6	-37.6	-16	-2.66	Y
Na	7	-7.92	-31.4	15.58	-0.82	N
NH_{3}	6	-0.0487	-0.268	0.170	-0.57	N
Mo	5	0.00533	0.00166	0.009	4.04	Y

[^9]Table A5.3.1A-10

PARMMETERS	Alluvial Well WAll					
	$\begin{aligned} & \text { NO. OF } \\ & \text { OBS. } \end{aligned}$	ESTIMATE OF SLOPE	$\begin{gathered} L L^{\star} \\ (95 \% \\ \hline \end{gathered}$	$\begin{gathered} U L^{\star} \\ \text { (95\% Conf) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { T FOR Ho: } \\ & \text { SLOPE }=0 \end{aligned}$	IS SLOPE SIGNIFICANTLY DIFFERENT FROM ZERO? (95\% Conf)
pH	8	-0.0811	-0.344	0.182	-0.73	N
B	7	-0.080	-0.237	0.077	-1.25	N
F	8	-0.0403	-0.0996	0.019	-1.61	N
As	8	0.00247	-0.00098	0.00592	1.69	N
SO_{4}	8	-10.7	-50.7	29.25	-0.63	N
Na	8	-3.91	-13.2	5.33	-1.00	N
NH_{3}	7	0.704	-0.205	1.61	1.90	N
Mo	5	-0.00651	-0.0530	0.0399	-0.39	N

* Lower and Upper Limits of slope based on
t-statistic for the no. of degrees of freedom.
Table A5.3.1A-11
Linear regression of water quality parameters vs time
Alluvial Well WAl2

PARAMETERS	$\begin{aligned} & \mathrm{NO} . \mathrm{OF} \\ & 0 B S . \\ & \hline \end{aligned}$	ESTIMATE OF SLOPE	$\begin{gathered} \text { L L* } \\ (95 \% \text { Conf) } \end{gathered}$	$\begin{gathered} \text { U L* } \\ \text { (95\% Conf) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { T FOR Ho: } \\ & \text { SLOPE }=0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IS SLOPE } \\ & \text { SIGNIFICANTLY } \\ & \text { DIFFEENT FROM } \\ & \text { ZERO? (95\% Conf) } \end{aligned}$
pH	8	-0.0654	-0.327	0.197	-0.59	N
B	7	-0.680	-1.81	0.45	-1.48	N
F	8	-0.209	-0.505	0.0865	-1.67	N
As	8	0.00219	-0.00131	0.00569	1.48	N
SO_{4}	8	-9.75	-29.4	9.85	-1.18	N
Va	8	-79.6	-195.0	36.0	-1.63	N
iH_{3}	7	-0.123	-0.382	0.136	-1.16	N
Mo	6	-0.00140	-0.0175	0.0147	-0.22	N

* Lower and Upper Limits of slope based on
t-statistic for the no. of degrees of freedom.
Table A5.3.1A-12
T-TEST PROCEDURE SUMMARY FOR BETWEEN STATION COMPARISONS OF ALLUVIAL WELLS

Variables	Locations WA03-WA05	Locations WA03-WA06	Locations WA03-WA08	Locations WA06-WA05	Locations WA06-WA08	Locations WA05-WA08
pH	R	R	R	R	R	R
B	R	R	R	R	R	R
F	R	R	R	R	R	R
As	R	R	R	R	R	R
Mb	R	A	R	R	R	R
SO_{4}	R	A	A	R	A	R
Na	R	A	R	R	A	R
NH_{3}	R	R	R	R	R	R
Spec Cond	R	A	A	A	A	R
TDS	R	A	R	R	R	R
Level	R	R	R	A	R	R

Table entries indicate acceptance (A) or rejection (R) of null hypothesis
H_{0} : The paired s
Note:

APPENDIX A5.3.1B
Linear Regression Data for Alluvial Wells

	\cdots－		
	－cos－r－ベーa	\cdots	NNODNM
	\cdots N－x－00－m	0	－ama
－	O mancuirao	5	－amoan
－	－－゙00つつ000	\sim	N－ヵor
－	－00000000	α	00000
6.	－•••••••		
u	－$\infty 000000$		
\mathfrak{M}	（ 0000 NiNNANNM かDonoominन	m	ninofor
$=$	へNひこロへのmoう。	2	00000に
\sim	ヘー－んn－minnomm	\cdots	conサール
w	ヘッツーー－	u	－•••
$\underset{\sim}{\sim}$		山	$0 m-000$
	00000000020	\propto	1111
			－
\sim	$0 \sim n \quad 0 \quad 0 \quad 00$	N	
－	Nom $\sim 1 \sim \infty$	－	－－い
－	N－ 0 －o	\sim	－mo
n	N－r 0 O	，	
＊	000	¢	$\begin{array}{ll} 00 & 0 \\ 11 & 1 \end{array}$
			NMmon
	Macouarn－m	－	
0	mへoonnmovvino	－	mommor
－	monnunnunn－	a	－m－orn
\sim	0n－00Nom－～	－	$\cdots \cdot \bullet$
$\underset{\sim}{\sim}$	－••••••	\propto	000000
\propto	1,000000000		1 1
			－On－00
	Noaneos		NNOPO
\checkmark		0	camour
0	マNN゚ロOV－4Na	＋	oromo－
\pm	－1000000000am	2	Nーテ－0
α	00000000005	a	00000
	00050050000		$00^{\circ 00}$
	000000000		
	～000～NNへmmm	\cdots	connaran
\cdots	－sonsoomndoor	O	no000m
山	～Nvocrummoo	\times	かmoser
$\underset{\sim}{0}$	～N－N゙ーminaor	0	maner
a	ーNomnい゙ッMm		
	－		0
	000000		，
	1		
		～	Monmm－
－	onajuarsavio	O	amanco
$\underset{\sim}{\infty}$	へocoornmasm	$\underset{\sim}{0}$	－uncom
\simeq		0	－muoro
a			ぺルm～
	－••••••		－－－
	00000000		000000
	oonas		mommon
	monovamn－60	－	Narab－
－	minaeseobunso	0	Nonaao
w	mminnnnunur	U	matoro
c	－rーーーrーrr	\propto	
	$\cdots \infty$	a	$\cdots \infty \times \infty$
	Onmomnomnoo		OMNMOO
	へ000mm－000io		Mmomio
x	へ00 nmunuono	x	べomno
$\underset{\sim}{\sim}$	－•••••••••	$\underset{\sim}{\alpha}$	－••••
\％	ひn060000000	2	
			n
	－omrmumme		omunno
	－noo0000n		noooon
	－ 30000000	\sim	000000
\sim	$0^{-00000000}$	\checkmark	－0000
	0000000000		へON＊゙＊
4	ammu゙Mmu゙！	\checkmark	－noóo
	－0000000000		
			○へO $0 \times$
	00－m o		
	ヘ－O．．．．．．	∞	$\bigcirc 0^{\circ} 0^{\circ}$
∞	000000		
	m	\pm	
I		a	$\sim \infty \times 0000$
		～	
\sim		$\xrightarrow{\square}$	
$\stackrel{\square}{0}$		\％	
z	－••••••	$\underset{\sim}{2}$	
\％		$=$	
$\stackrel{1}{1}$		a	
－	n	\bigcirc	Nmn－－
－			
		－	
F	－NMunonoono	\sim	－～Mーn＊
\sim	いuoneoor	\cdots	FnMouns
$\xrightarrow{-}$			
		0	ononor
\underline{x}	ㅇN－NOMOORO－	工	
		\propto	－nnoom
∞	ール゚ーが，	\％	MANANR
		\sim	
		∞	ornman
∞	－ODNmもMNO ∞ －nnnanunuño	－	mmmmmm

APPENDIX A5.3.1C

T-TEST Procedure Results for

Alluvial Wells WA03, WA05, WA06, WA08
15 :25 wednesmay. ferruary 2 ., rgid

TTEST PROCEDURE
PROR $>$ FI $=0.0397$
$|1|$ < Hodd 10

FOR HOI-VARIANCES ARE EOUAL FOE 10.95 MITHA AND 4 OF
T
0.9495
$1.28 A 6$
-1.6205
$-1 . R 276$
$\begin{array}{ll}7.5 & 0.1463 \\ 5.0 & 0.0876\end{array}$
$|1|<$ HOdd $4 a$
14.0
DF PROTD ITI
$\begin{array}{cc}\text { 5.? } \\ 15.0 & 0.3845 \\ 0.2171\end{array}$
-------------$-1: 1795$
Vartances T
UNGual
EOUAL
SכJNviarn wliwlevw
PROB > FI $=0.0001$
PROB $>F^{\prime}=0.2655$

11144 WEDNESDAY. FERRUARY 2A. 197 d

TTEST PROCEDURE
nf PROR > ITI
$3.0 \quad 0.9689$ $\begin{array}{ll}-0.0369 & 12: 0 \\ -0.0378 & 15.0\end{array}$ variances UNEDUAL maximum $00000005^{\circ} 8$ PROR $>$ FI $=0.7458$
HOWINIW BOze3 als 130 als

D
1.40 WITH 10 AND 5 DF
Ho4y3 OLS N30 OLS NY3W 0.10840254
0.20754758
3.05 UITH AND 5 DF
PROR $>$ FIE 0.2521
1
1.0462
-1.7979
1
-0.5054
-0.5203
$\because: 8$
0.978
$|1|$ < yoty 40
0.6116
SZכNVIUVA
UNEQUAL
ERUAL
stonviava nowixym
UNEQUAL $00000000 \cdot 1$ MAXIMUM
.05000000
PROB > FI $=0.0003$
PROR > FI= 0.6963
WNWINIW 0.00100000
$0: 00200000$ 0.05000000
0.05000000
14:16 WFDNFSNAY. FERRUARY 2A. 1978

TTEST PROCEDURE										
VARTABLE: SPECCONO										
LOC	N	MEAN	StD Dev	STD ERROR	MINIMUM	MAXIMUM	VARIANCES	\boldsymbol{T}	DF	PROR > 111
WAOJ WAOS	11	1778.09090909 1745.1666667	121.07886235 133.49219703	36.50665059 54.49796123	1200000000000 120000000000	1559.00000000 1521.00000000	UNFDIJAL EOIJAL	6.5019 0.5175	98.5	0.6271 0.6123
FOR HO: VARIANCES ARE EQUAL. FIE 1.22 WITH 5 AND 10 DF PROB ${ }^{\text {a }}$ FIa 0.7389										
variables tos										
LOC	N	MEAN	Sto DEV	STO ERROR	MINTMUM	MAXIMUM	VARIANCESS	1	万\%	PRKA > \|T1
WA03 WAO5	10	952.30000000 962.40000000	66.08252416 138.2954490	20.89712899 61.89232586	$\begin{aligned} & A 07.00000000 \\ & 851.00000000 \end{aligned}$	1022.00000000 120000000000	UNFOUAL	-0.1546 -0.1953	17.9	$\begin{aligned} & 0 . R A 33 \\ & 0 \cdot R 482 \end{aligned}$
FOR HO: VARIANCFS ARE EQUAL. Fix 4.39 WITH AND 9 DF PROR $>$ FI= 0.0612										

11133 WEDNESDAY．FEGRUARY 28． 1976

TTEST PROCEDURE

OF PROR＞TTT 980060 $9: 0$
$-\infty-\infty--\infty-\infty$

$$
!+!<\text { вовd } 10
$$

OF PROR＞ITI $\begin{array}{ll}9.1 & 0.5830 \\ 14.0 & 0.5586\end{array}$

1
1.0045
1.3439

PROB＞FI： 0.8025

$$
W \cap H I N I W
$$

variances
UNEQUAL
1
0.1193
0.1176
1 SJJNVI甘VA

MAXIMUM

.20000000 .40000000

PROB > Fi. 0.0003

$$
\text { PROB }>F^{\prime}=0.5786
$$

VARIANCES UNEQUAL
EOUAL

WOWIXVW
PROB $>$ FIE 0.0003
SJJNVI甘マA WNWIXVW
40843 015 A30 015

FOR HOI VARIANCES ARE EQUAL，FI＝ 16.68 YITH． 5 AND 10 DF
$P R O B>F=0.5786$

$$
\begin{array}{ll}
5.00000000 & \text { UNFOUAL } \\
1.90000000 & \text { EQUAL }
\end{array}
$$

$$
\begin{aligned}
& 0.05000000 \\
& 0.05000000
\end{aligned}
$$

$$
\begin{aligned}
& 00000 I 000^{\circ} \\
& 000002000^{\circ} 0 \\
& \text { WחWINIW }
\end{aligned}
$$

$$
\begin{aligned}
& 0000000 E \bullet \\
& 00000002{ }^{\circ} 0 \\
& 000
\end{aligned}
$$

WחWINIW

$$
\begin{aligned}
& 0.76088399 \\
& 0.13758964
\end{aligned}
$$

aworcien

$$
\begin{array}{lcccc}
\text { LOC } & \text { N } & \text { MEAN } & \text { STD DEV } & \text { STO ERROR } \\
\text { WAO5 } & 6 & 0.01400000 & 0.01885736 & 0.00769848 \\
\text { WAO6 } & 10 & 0.00880000 & 0.01554778 & 0.00491664 \\
\text { FOR HOI VARIANCFS ARE EDUAL. FIF } & 1.47 \text { WITH 5 AND 9 DF }
\end{array}
$$

$$
\begin{array}{r}
T \tag{1}\\
0.5693 \\
0.5992
\end{array}
$$

$$
\begin{array}{ll}
5.7 \\
15: 0 & 0.3569 \\
0.1990
\end{array}
$$

$15: 26$ WFDNESNAY, FERRIIARY 28.197 d

14102 WFDNESNAY. FFRRUARY 2A. 1979
STATISTICAL ANALYSIS SYSTEM

LOC	N	MEAN	Sto dev	STO ERROR	Minimum	MAXIMIJM	VARIANCES	T	DF	PROR > 171
WAO5 WAOK	11	1345.16666667 1481.18181818	133.49219703 90.78195656	54.49796123	1700.00000000 1350.00000000	$\begin{aligned} & 1521.00000000 \\ & 1650.00000000 \end{aligned}$	unédual FOUAL	$\begin{aligned} & -2.2303 \\ & -2.5063 \end{aligned}$	$\begin{array}{r} 7.6 \\ 19.0 \end{array}$	$\begin{aligned} & \overline{0} .0 \dot{0} 81 \\ & 0.0>4 ? \end{aligned}$
FOR HO: V	VARIA	NCES ARE EQUAL.	2.16 WITH 5 AND 10 DF		PROR > Fia 0.2803					
VARIABLE:	TOS									
LOC	N	MEȦN	STD NEV	STG ERROR	Minimum	MAXIMUM	VAFIANCES	7	OF	PROA $>$ ITI
WAP5 WAO6	10^{5}	$\begin{array}{r} 962.40000000 \\ 1058.400000000 \end{array}$	$\begin{array}{r} 138.39544790 \\ 96.52426293 \end{array}$	$\begin{aligned} & 61: 89232586 \\ & 30.52365203 \end{aligned}$	$\begin{aligned} & 851: 000000000 \\ & 912: 000000000 \end{aligned}$	$\begin{aligned} & 1200.00000000 \\ & 1200000000000 \end{aligned}$	UNEOUAL EDUAL	$\begin{aligned} & -1.3911 \\ & -1: 5776 \end{aligned}$	13.00	$\begin{aligned} & 0.2134 \\ & 0.1387 \end{aligned}$

$11: 39$ wednesday. ferruary 2R, 197 d
STATISTICAL ANALYSIS SYSTEM
TTEST PROCEDURE
DF PROR > ITI $\begin{array}{ll}11.9 & 0.9 \text { İ? } \\ 17.0 & 0.917\end{array}$

$\begin{array}{rr} \\ \text { DF PROR }>1 \mathrm{Cl} \\ 5.5 & 0.3004\end{array}$ $10.0 \quad 0.2719$
DF PROR > ITI $5.1 \quad 0.2304$ 0.1383 $\begin{array}{rr}\text { OF PROA } & >\mathrm{ITI} \\ 9.9 & 0.4019 \\ 0.3762\end{array}$ $\begin{array}{ll}5.9 & 0.4019 \\ 17.0 & 0.3762\end{array}$
 VARTĀNCES UNEQUAL MAXIMIJM
0.05000000 PROR > FI= 0.0129

- - - -

$$
130015
$$

D
2.16 WITH 7 ANO 5 DF
PROR $>F=0.4140$
VARIANCES
1
0.1124
0.1062

$$
\vdash
$$

1.1430
1.2727 VARIANCES T
1.3620
$1.5 月 20$ MAXIMUM VARIANCES UNEOIJAL
EOUAL MAXIMUM VARIANCES
UNEOHIAL
EOUAL.
EQUAL

$$
\begin{array}{ll}
4652: 0 \\
\text { LSC: }
\end{array}
$$

$S Y S T E M$
ANALYSIS

TTEST PROCEOURE

WחWINIW
PHUR > $F^{\circ}=0.0041$
VARIANCES

$$
\begin{aligned}
& \text { UNEOUAL } \\
& \text { FDIJAL }
\end{aligned}
$$

$$
\begin{aligned}
& -0.1436 \\
& -0.1390
\end{aligned}
$$

$$
\begin{array}{ll}
\text { A. } & \text { O.AR90 } \\
0.0 & 0 . R 925
\end{array}
$$

$$
\text { DF PROR }>|Y|
$$

14104 WFDNESDAY, FERRUARY 2A, 197 d

OF PROR	$>1 T 1$
9.7	0.2939
11.0	$0.2 A 29$

$\begin{array}{rr} \\ \text { DF } & \text { PROR }>171 \\ 7 . A & 0.4974 \\ 9.0 & 0.4970\end{array}$
-0.7115
-0.7115 UNEOUAL EOUAL
STATISTICAL ANALYSIS SYSTEM

					TTEST PROCEDURE	
VARIABLE: SPECCOND						
LOC	N	MEAN	StD Dev	STD ERROR	Minimum	maximum
WAOS WAOB	7	1745.16666667 1269.42857143	133.49219703 108.68900377	54.49796123 41.07302274	1200.00000000 1100.00000000	1521.00000000 $1400.00000000 ~$
FOR HOB VARIANCES ARE EQUAL, Fi= 1.51 WITH 5 AND 6 DF PROB $>$ F ${ }^{\prime}=0.6263$						
VARIABLE: TOS						
LOC	N	MEAN	STD DEV	STO ERROR	MINIMUM	maximum
WA05 WAOA	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} 962.40000000 \\ 1029.600000000 \end{array}$	$\begin{array}{r} 138.39544790 \\ 159.50956084 \end{array}$	$\begin{aligned} & 61.89232586 \\ & 71: 33484422 \end{aligned}$		$\begin{aligned} & 1200.00000000 \\ & 1200.000000000 \end{aligned}$
FOR HOI VARIANCES ARE EJUAL. Fi= 1.33 WITH 4 AND 4 OF PROR > FI= 0.7 T 98						

11:35 mednesoay. ferruary 2A, 197 d

LOC	N	mean	sto dev	Sto error	minimum	maxtmum	VARIANCES	\dagger	DF	PROB > 171
YA03 WAO6	11	8.12727273	0.33193647 0.3437583	0.10008261 0.10365231	7.500000000 7.4000000	$\begin{aligned} & \text { B. } 400000000 \\ & \text { B. } \mathrm{CO} 00 \mathrm{O} 00000 \end{aligned}$	UNEOUAL EQUAL	-0.3155 -0.3155	2n:0	0.7557 0.7557
variable: b										
LOC	N	MEAN	STD DEV	STO ERROR	minimum	maximum	variances	T	DF	PROR > $1 T 1$
Wal3	6	8:169333333	0.26553391	0.19840254	8:080000000	0.700000000 1.40000000	UNEQUAL ESUAL	$=0.9280$ $=0.9280$	7 10	0.3831
FOR HO: VARIANCFS ARE EOUAL, FIE A.08 WITH 5 AND 5 DF PROB P FiE 0.1491										
variablei f										
LOC	N	mean	sto dev	StD ERROR	minimum	maximum	variances	1	OF	PROR $>1 T 1$
HAO3 HAOS	11	0.50727273 0.54000000	0.48426481 0.4563321	0.13998111	$\begin{aligned} & 0.30000000 \\ & 0: 30000000 \end{aligned}$	$\begin{aligned} & 1: 90000000 \\ & 1: 9 n O n n o o l \end{aligned}$	UNFOUAL FOUAL	-0.1687 -0.1687		0.8693 0.8993
FOR HO: VARIANCFS ARE EOUAL: FiE 1,04 WITH 10 AND 10 DF PROB P Fi= 0.9576										
variable: as										
LOC	N	mean	sto dev	STO ERROR	minimum	Maximum	variances	1	of	Prob > 191
WAO3 WAOS	$1{ }^{9}$	0.00922222 $0: 00880000$	0.01646039 0.01554778	$\begin{aligned} & 0.00548680 \\ & 0.00491664 \end{aligned}$	$\begin{aligned} & 0.00100000 \\ & 0.0010000 \\ & 0 \end{aligned}$	0.05000000 0.05000000	UNEOIIAL EDUAL	- $\begin{aligned} & 0.0573 \\ & 0.0575\end{aligned}$	19.5	0.9550

15137 WEDNESDAY. FERRIIARY 2A. 1976

14114 WEDNESBAY, FERRUARY 2A, 1976

Variable: Ph										
LOC	N	MEAN	sto dev	STI ERROR	minimum	maximum	variances	T	DF	PROR > 1 IT
WAOG	18	8:17272727	0.34377583 0.41209396	${ }_{0}^{0} 01036593721$	7.40000000 7.60000000	8.60000000 8.70000000	UNEOIIAL FOIJAL	0.3368 0.3471	17.5	0.7414
VARIABLE: θ										
LOC	N	mean	StD DEV	STO ERROR	minimum	maximum	variances	T	DF	PROR > ITI
YAOG WAOB	9	0.39000000 0.16714286	0.53617161 0.23984122	0.21889114 0.09065146	0.06000000 0.03000000	1.40000000 0.70000000	unegual EOUAL	0.94066 0.9951	11.7	0.3797
variablet f										
LOC	N	mean	sto dev	STO ERROR	minimum	maximum	variances	\boldsymbol{T}	DF	PROR > 1 TI
YAOG WAOB	$1!$	0.54000000 0.27500000	0.45633321 0.21876275	0: 0.8775389364	0.30000000 0.10000000	1.900000000 0.80000000	Unfoulal	1:6789	1790	0: 011488
variable: as										
LOC	N	MEAN	sto dev	STO ERROR	minimum	maximum	variances	\uparrow	DF	PROR > $\|T\|$
YAOC WAOB	10	0.00880000 0.00675000	0:01554778	0:00491664	0.00100000 $0.00100000 ~$	0.050000000 0.02000000	unegial	0.37 AQ 0.34 AS	12.5	0.7111
FOR HO: VARIANCFS ARE EQUAL, FIE 5.93 WITH 9 AND 7 dF PROR > FI= 0.02 RS										

14114 WEDNESDAY, FERRIJARY 2R, 1979

LOC	N	MEAN	Sto dev	STO ERROR	MINIMUM	maximijm	VARIANCES	1	OF	PROR > ITI
WAO6 WAOB	11	1481.18181818 1769.42857143	90.78195656 108.6890377	27:37178978	1350.00000000 11000000000	1650.00000000 140000000000	UNFOUAL FOUAL	4.2902	11.?	$0.0 n 12$ $0.0 n 04$
FOR HOI V	IA	NCES ARE EQUAL.	$=1.43 \mathrm{WI}$	6 AND 10 DF	PROB > FI $=0.5859$					
VARIABLE: TDS										
LOC	N	MEAN	STO DEV	STO ERROR	MINIMUM	maximum	VARIANCES	1	DF	PROR > ITI
WAOG WAOB	10 5	1058.40000000 1029.60000000	96.52426293 159.5095084	30.52365203 71.3344422	912000000000 $8800000000 ~$	1200000000000 120000000000	UNEQUAL EQUAL	0.3712 0.4400	5.5 1700	0.7244 0.6671
FOR HO: V	IA	CFS ARE EOUAL.	¢ $=2.73$ WI	4 AND 9 DF	PROR > $\mathrm{F}^{\mathbf{\prime}}=0$.1941				

$$
\begin{aligned}
& \text { £ } 909^{\circ} 0 \\
& \mathbf{E} 49^{\circ} 0 \\
& \mid 11<6
\end{aligned}
$$

$$
30
$$

$$
\text { FOR HO: VARIANCFS ARE EQUAL. FI: } 1.23 \text { WITH } 5 \text { AND } 6 \text { DF }
$$

$$
\begin{aligned}
& 0.13998111 \\
& 0.07734431
\end{aligned}
$$

$$
10 \text { ANO } 7 \text { DF }
$$

TTEST PROCEDURE
UNEQUAL

$$
0 . R 0000000
$$

VARIANCES TUNEQUAL
70000000maximum
VARIANCES

$$
\begin{aligned}
& \text { UNEOUAL } \\
& \text { EDUAL }
\end{aligned}
$$

EDIAL.
VARIANCFS

$$
\begin{aligned}
& \text { UNEOUAL } \\
& \text { EOUAL }
\end{aligned}
$$

B:Oacie

$$
\begin{aligned}
& -0.0270 \\
& -8.0272
\end{aligned}
$$

VARIANCES T
1:3:38\%
0:319
DF PROA > ITI

10.3	0.9790
1.0	0.9788

$$
\text { DF PROR > }|T|
$$

PROA
o:
80
0.0
0.0
0.
\vdots
\vdots

$$
\text { HO883 01S N NVOW } 015 \text { NW }
$$

HOWIXVW WOWANIW A30 01S

$$
\begin{array}{ll}
221695 \% 100 & 962602 I+0 \\
9280001 \circ 0 & 16956 I E 60 \\
40843015 & \wedge 30015
\end{array}
$$

$$
\begin{aligned}
& \text { FOR HO\& VARIANCFS ARE EQUAL. FI: } 6.64 \text { MITH } 8 \text { AND } 7 \text { DF }
\end{aligned}
$$

1512B WFONFSOAY, ferruary PR, 197 d

APPENDIX A5.3.2

This Appendix consists of two parts:

A5.3.2A - Summary Tables for Ground Water Quality Analyses of Variance.

A5.3.2B - Potentiometric Surface Maps - Upper Aquifer (1976-1978)

Summary Tables for Ground Water Quality Analyses of Variance List of Tables Appearing in Appendix A5.3.2A

TABLE NO.

A5.3.2A-1 Ground Water Quality Analysis of Variance - Specific Conductance 140
A5.3.2A-2 Ground Water Quality Analysis of Variance - Boron (B) 141
A5.3.2A-3 Ground Water Quality Analysis of Variance - Aluminum (AT) 142
A5.3.2A-4 Ground Water Quality Analysis of Variance - Potassium (K) 143
A5.3.2A-5 Ground Water Quality Analysis of Variance - Total Dissolved Solids (TDS) 144
A5.3.2A-6 Ground Water Quality Analysis of Variance - Calcium (Ca) 145
A5.3.2A-7 Ground Water Quality Analysis of Variance - Sodium (Na) 146
A5.3.2A-8 Ground Water Quality Analysis of Variance - Ammonia (NH_{3}) 147
A5.3.2A-9 Ground Water Quality Analysis of Variance - Magnesium (Mg) 148
TABLE A5.3.2A-1 GROUND WATER QUALITY ANALYSIS OF VARIANCE

\ddagger
22.34**
3674.3
282359.83
12638.99
3889.5

会
3997.5

4783

5161
SPECIFIC CONDUCTANCE

1974
1975
140
1071
TABLE A5.3.2A-2 GROUND WATER QUALITY ANALYSIS OF VARIANCE

$\begin{array}{llll} & 0 & \stackrel{\sim}{0} & \stackrel{\infty}{0} \\ \mathrm{~m} & 0 & 0 \\ 0\end{array}$
4.643
1.965
$4 \stackrel{\circ}{\text { ¢ }}$
N
TABLE A5.3.2A-3 GROUND WATER QUALITY ANALYSIS OF VARIANCE

$$
\begin{aligned}
& z 1 \quad \circ \quad \backsim \quad \dot{\circ} \\
& 45.5
\end{aligned}
$$

8.8
$12.4 \quad 9.5$

** Significant at 95% level of confidence NM Not Monitored
$z 1$
: 응 N N N N ~~~~~
TABLE A5.3.2A-5 GROUND WATER QUALITY ANALYSIS OF VARIANCE

$\begin{array}{llll} & \stackrel{\circ}{\dot{\sigma}} & \stackrel{\sim}{\dot{\sigma}} & \stackrel{0}{\infty} \\ \underset{\sim}{\infty}\end{array}$
TABLE A5.3.2A-6 GROUND WATER QUALITY ANALYSIS OF VARIANCE

4873

1178

F
0.72
10.30 **

MS
$415 \quad 83$

1974
1975
1976
1977
1977

Sodium (Na)
$\Rightarrow \stackrel{\circ}{\circ}$ 膏

1974
1975
1976
1977
$N:$

- $\stackrel{\infty}{\infty} \stackrel{\infty}{\infty} \stackrel{\infty}{i}$

2.48
1.04
2.16
1.24
1.56
 Source
Years
Wells (Depth)
Error
TOTAL

Monitoring of
Not Monitored

* \sum_{Σ}
TABLE A5.3.2A-9 GROUND WATER QUALITY ANALYSIS OF VARIANCE

1974
1975
1976
1977
N:
148

Potentiometric Surface Maps - Upper Aquifer (1976-1978)

List of Figures Appearing in Appendix A5.3.2B

FIGURE NO. PAGE
A5.3.2B-1 Potentiometric Surface Map - Upper Aquifer, December 1976 150
A5.3.2B-2 Potentiometric Surface Map - Upper Aquifer, January 1977 151
A5.3.2B-3 Potentiometric Surface Map - Upper Aquifer, February 1977 152
A5.3.2B-4 Potentiometric Surface Map - Upper Aquifer, March 1977 153
A5.3.2B-5 Potentiometric Surface Map - Upper Aquifer, Apri1 1977 154
A5.3.2B-6 Potentiometric Surface Map - Upper Aquifer, May 1977 155
A5.3.2B-7 Potentiometric Surface Map - Upper Aquifer, August 1977 156
A5.3.2B-8 Potentiometric Surface Map - Upper Aquifer, September 1977 157
A5.3.2B-9 Potentiometric Surface Map - Upper Aquifer, October 1977 158
A5.3.2B-10 Potentiometric Surface Map - Upper Aquifer, December 1977 159
A5.3.2B-11 Potentiometric Surface Map - Upper Aquifer, Apri1 1978 160
A5.3.2B-12 Potentiometric Surface Map - Upper Aquifer, May 1978 161
A5.3.2B-13 Potentiometric Surface Map - Upper Aquifer, July 1978 162
A5.3.2B-14 Potentiometric Surface Map - Upper Aquifer, September 1978 163
A5.3.2B-15 Potentiometric Surface Map - Upper Aquifer, October 1978 164
A5.3.2B-16 Potentiometric Surface Map - Upper Aquifer, November 1978 165

FIGURE A5.3.2B-1 Potentiometric Surface Map - Upper Aquifer, December 1976

FIGURE A5.3.2B-2 Potentiometric Surface Map - Upper Aquifer, January 1977

FIGURE A5.3.2B-3 Potentiometric Surface Map - Upper Aquifer, February 1977

FIGURE A5.3.2B-4 Potentiometric Surface Map - Upper Aquifer, March 1977

FIGURE A5.3.2B-5 Potentiometric Surface Map - Upper Aquifer, April 1977

FIGURE A5.3.2B-6 Potentiometric Surface Map - Upper Aquifer, May 1977

FIGURE A5.3.2B-7 Potentiometric Surface Map - Upper Aquifer, August 1977

FIGURE A5.3.2B-8 Potentiometric Surface Map - Upper Aquifer, September 1977

FIGURE A5.3.2B-9 Potentiometric Surface Map - Upper Aquifer, October 1977

FIGURE A5.3.2B-10 Potentiometric Surface Map - Upper Aquifer, December 1977

FIGURE A5.3.2B-11 Potentiometric Surface Map - Upper Aquifer, April 1978

FIGURE A5.3.2B-12 Potentiometric Surface Map - Upper Aquifer, May 1978

FIGURE A5.3.2B-13 Potentiometric Surface Map - Upper Aquifer, July 1978

FIGURE A5.3.2B-14 Potentiometric Surface Map - Upper Aquifer, September 1978

FIGURE A5.3.2B-15 Potentiometric Surface Map - Upper Aquifer, October 1978

FIGURE A5.3.2B-16 Potentiometric Surface Map - Upper Aquifer, November 1978

Figure A6．2．1－1 CHANNEL＂UPTIME＂TIME－LINES SITE $A B 23$

					I－			，													
			＋																		
			＋																		
4．D． 200	C	\bigcirc	Cl	－			，	，	1	\square	Cl	120	\square	，	／		77				
Efr									＋1	－					＋1		－ $1+1$	－			
H．D． 100	7	，	77	7			1				7	\cdots	127				\％スて	17	\％	1	
FI，							＋				F＝	＋1．7					－＝ay			＝	＋
H．D． 30	CR	11	72	17	71	TR：	17		$\bigcirc 1$	\square	\square	2.71	\square	\square	7	7a	［	77			
ET．																					
W．S． 200	\cdots	17	$\square /$	7	C	77	7	77	7	2	7	7	\square	r	7	，	7	2			
4．5． 100	7	1							7	7		d	－								
FT．		＋										－			＋		E1	＋			
	2	27	7	－					入1	\square		2			$2 \cdot 1$						
																		＋			
BHi－d	72	27	，			7	12						7	\％	［1］	\checkmark	［		∇		
TMP 3	\％	172	77			\cdots	7	－11	To	7											
Emp 2	7	7	C1	C		I	7，	7	\square	7			\square	z	\square		7				
		\square	CVI	1	\cdots	7 C	－ 1					\square		Z							
PII	2	17 l	T12			入入					\square		± 7	L		V1	rexer	T			
BAR？	7		101／	7	1－2，	1×1	4 Cl	CNM	λ	1	1.						27%				
Prec		2	2	7	\cdots	\％		，	－	11.	LTM1	3 Cl		7		7	7	Lels	$1 / 7$		
								1													
											，				K． 1						
pait	T－1	$1{ }^{1}$	1	CT	1.71	［201					TE1 7	17.1	17	－			7．710：	Cal			
											91－10\％										
		9－77	7.77		17		71	17	17		77 77		－7\％	778							
						1															
	$\underline{\square}$					＋			＋						＋						
0	CR	CH1	$12 /$	7	\cdots		1.	1.1	\cdots	T／	$17 \sim 1$	71.	II	5	Ca	C／	（al）	$\square 7$			0
									＋1．						，		11				
20	［	L	1	［	\square	0	01	\square		$1 / 8$							T00］				
	，		＋1－1					－		1											
CH_{4}	\square	Lor		010	$\square \square$	71	471	\square	［ $<$	27						\square	cam	L			
		＋17	1		－1					＋							－ 1				
－THC	\square	［7］	\square	ロa	\square	2 Cl	421	\square		0							\square				
		－	1	1＋1	\＃	\pm											－				
		18	18	\ldots	1	$\underline{\sim}$					210	100			\bigcirc		？				
－ 2		11	14：		1－	반					－1－1						E－				
SO_{2}		TK	47	$7 /$	1	77		77	72		7 Coz	710			－		7	1			
			＋：1		1						－1\＃										
10	TZ	47	\square	$\square]$	$17 /$	7	7	\cdots	\square	Cl	7 Cl						－			7	
	－	－			F＝				1		＋1－1－						兰非	＋1	1	＝	
		20	com	$\underline{\square}$	C	C7．		17			$1 / 0$			\square		\square	$\square 17$	47	17		
$110 x$	\％	7	In	\square	17	17			\square	17	271						171	27	7	2	
											9／110／	1111									
		6． 76	27	77	77	． 77					7777	7.77	77	78		78	78.78				78
											－ 2										

Figure A6.2.1-2 CHANNEL "UPTIME" TIME-LINES

Figure A6.2.1-4 CHANNEL "UPTIME" TIME-LINES

			+																	
			-																	
								+												
.				INIS	SONDE															
			+	,	,															
			\cdots	,																
					,															
				+	-															
HelGIt	78		2000	0	177	7		717												
			0	-	,	\bigcirc														
			,	1	-	\cdots														
- 0.	20	8	-	8	$\square \square$	-ror	8	80												
			armor	\square	727	7\%		7 -												
			8if 78	18.8	48, 718	1878	18.78	18918												
	,																			
,				-	-															
			ACO	UST	TIC	SOU	OND	DFR												
-																				
-	=																			
MXTM			-																	
HEIGGT		7V	780	\square	$\square \square$	10a	707	7												
		4	+1.1.	-																
INVERSTOM			- -																	
HELCHT		78	787																	
	1572	$4{ }^{1} 4$	48 248348	48478	$4 / 8{ }^{5 / 8}{ }^{6}$	$8^{67} 7 / 8$	$48^{8 / 88}$	78.78												
			Hile	11	H	\pm				1	+			4	\pm	N	1	集	$+$	4

INSTRUMENT SPECIFICATIONS

These specifications apply to the analyzer types and time periods indicated. In some cases, current instruments will have different specifications, generally reflecting enhanced accuracy and sensitivity.

Sulfur dioxide/hydrogen sulfide November 1974 - March 1977 - Meloy SA-185-2

Range: $0-1$ ppm (1000 ppb)
Lower Detection Limit:
Noise:
Zero Drift:
Span Drift:
Precision:

March 1977 - September 1978 - Meloy SA-185-2A
Range: $0-.5 \mathrm{ppm}$
Lower Detection Limit: . 002 ppm
Noise: . 005 ppm
Zero Drift: . 001 ppm (24 hours)
Span Drift: 3.2\% (80\% URL)
Precision: . 001 ppm S.D. (20\% URL)
. 002 ppm S.D. (80% URL)

Carbon Monoxide November 1974 - August 1978 - Bendix 8200 Environmental Chromatograph

Range:
Noise:

Zero Drift:

Span Drift:
Precision:

0 - 1 ppm to 0 - 100 ppm, stepped
0.5% of full scale
< 1\% per day
< 1% per day
$\pm 1 \%$ of full scale

September 1978 - Beckman Mode1 866 - Ambient C0 Monitoring System
Range:
$0-50 \mathrm{ppm}$
Lower Detection Limit:
0.4 ppm
Noise:
0.2 ppm S.D.
Zero Drift:
$\pm 0.5 \mathrm{ppm}$ (24 hours)
Span Drift:
$\pm 1 \%$ full scale
Precision:
$\pm 0.2 \mathrm{ppm}$ S.D. full scale

Oxides of Nitrogen November 1974 - December 1977 - Meloy NA-520-2 Chemicuminizer Range: $0-.5 \mathrm{ppm}$

Lower Detection Limit: . 005 ppm
Noise: .005 ppm
Zero Drift: 005 ppm (24 hours)
Span Orift: .010 ppm (24 hours)
Precision: $\quad \pm 1 \%$ full scale

January 1978 - September 1978 - Monitor Labs Model 8440E Nitrogen Oxides Analyzer

Range:
Lower Detection Limit: . 002 ppm
Noise: $\quad .001$ ppm S.D.
Zero Drift: <. . 003 ppm / 7 days
Span Drift: $<4 \% / 7$ days
Precision: .004 ppm S.D. at 0.1 ppm
$0-.5 \mathrm{ppm}$

Ozone November 1974 - September 1978 - Meloy OA-350-2 - Ozone Analyzer

Range:	$0-.5 \mathrm{ppm}$
Lower Detection Limit:	.0005 ppm
Noise:	$\pm .3 \%$
Zero Drift:	$\pm 1 \%$ full scale/24 hours
Span Drift:	$< \pm$ full scale/24 hours
Precision:	$\pm 2 \%$ full scale

ERROR ANALYSIS DERIVATION

Random error distribution about a mean is best described by the standard deviation

$$
\begin{equation*}
\delta_{x}=\left(\frac{\Sigma_{i}\left(x_{i}-\bar{x}\right)^{2}}{n-1}\right)^{\frac{1}{2}} \tag{EQUATION 1}
\end{equation*}
$$

It should be noted that the term $\left(X_{i}-\bar{X}\right)^{2}$ causes large errors to impact δx to a higher degree than smaller errors.

Hagen postulates:

1. Errors are unavoidable
2. observed errors are a composite of smaller errors of equal magnitude.
3. elementary error has an equal probability of having a positive as well as a negative effect. The number of elementary errors become infinite as the magnitude of error diminishes.

The postulate may be expressed as:

$$
y=h e^{-h^{2} x^{2}} \pi^{-\frac{1}{2}}
$$

$$
\text { EQUATION } 2
$$

$h=$ constant, $x=$ precision modulus, $x=$ error magnitude, $y=\underset{\text { frequency }}{\substack{\text { occurrence }}} \begin{array}{r}\text { of }\end{array}$ h may be expressed as:

$$
h=\left\{\delta\left(2^{\frac{1}{2}}\right)\right\}^{-1}
$$

The following features are evident from the curve in Figure 1:

1. Curve is symetrical about the y - axis
2. The largest errors occur at minimum frequency and fall off according to $e^{-x^{2}}$.
3. For large h values (very precise measurements) small errors occur at higher frequency than cases for small values of h.

The variable y may also be viewed in terms of probability law such that:

$$
y=\frac{d P}{d X}
$$

EQUATION 4
where, P is the probability of an analyzer's response
to a known input. Therefore,

$$
P=\int_{-\infty}^{+\infty} y d x=1
$$

EQUATION 5
From equation 2, h is a constant of integration and upon evaluation is determined to be $\frac{h}{\pi}$. By substitution Equation 4 becomes:

$$
P=\frac{h^{+\infty}}{\pi} \int_{-\infty}^{+\infty} e^{-h^{2} x^{2}} d x
$$

The limits of integration can be expressed as mean deviation:

$$
a_{x}=\frac{\Sigma_{i}\left|x_{i}-\bar{x}\right|}{n}
$$

or the standard deviation (Equation 1).

From Equation 1, $X=$ error magniture, then δx would represent the magnitude of error for a data set.

From Equation 3, Equation 6 may now be expressed as:

$$
P=\left\{\delta(2 \pi)^{\frac{1}{2}}\right\}^{-1}{\underset{-}{\delta}}_{+}^{\delta} e^{-x^{2}} 2 \delta^{2} d x
$$

The area under the curve defined by the limits of this integration represents a 68% confidence level. 2δ would provide a 95% confidence level.

Error Propagation:

Error propagation results from instrument component contribution and operational error. Accepting the validity of the Hagens postulates for random error the following equation is presented:

$$
d R=\left.\frac{\partial R}{\partial X}\right|_{y, Z} d X+\left.\frac{\partial R}{\partial Y}\right|_{x, Z} \quad d y+\left.\frac{\partial R}{\partial Z}\right|_{x, y} \quad d Z \quad \text { EQUATION } 9
$$

where $R=$ component for which error evaluation is desired and x, y, z, are analyzer components contributing to error in R such that $R=f(x, y, Z)$.

Since $d X$, $d y$, and $d Z$ represent deviation from some X, y, Z then $\delta X, \delta y$ and δZ could be substituted.

The general case for $\delta_{x}{ }^{2}$ where n is large may be expressed as:

$$
\delta_{x}^{2}=\Sigma \frac{(d x)^{2}}{N}
$$

EQUATION 10

To substitute the δx^{2} definition into Equation 9 , it must first be squared:

$$
(d R)^{2}=\left(\frac{\partial R}{\partial X} d X+\frac{\partial R}{\partial y} d y+\frac{\partial R}{\partial Z} d Z\right)^{2} \text { EQUATION } 11
$$

Upon the summation of the terms from the squaring and considering that $d X$ and dy are independent of each other and recalling from Hagens postulates that there is equal probability of positive and negative values for $d X$ and $d y$, the positive terms will cancel the negative ones and Equation 11 becomes:

$$
\Sigma\left(d R_{i}\right)^{2}=\left(\frac{\partial R}{\partial X}\right)^{2} \Sigma\left(d X_{i}\right)^{2}+\left(\frac{\partial R}{\partial y}\right)^{2} \Sigma\left(d y_{i}\right)^{2}+\left(\frac{\partial R}{\partial Z}\right) \Sigma\left(d Z_{i}\right)^{2} \text { EQUATION } 12
$$

The form of Equation 10 may be obtained by dividing by N :

$$
\frac{\Sigma_{i}\left(d R_{i}\right)^{2}}{N}=\left(\frac{\partial R^{2}}{\partial y}\right)^{2} \frac{\Sigma_{i}\left(d X_{i}\right)^{2}}{N}+\ldots \text { EQUATION } 13
$$

substituting $\delta^{2}=\varepsilon \frac{(d X)^{2}}{N}$

Equation 13 becomes:

$$
\delta_{R}^{2}=\left(\frac{\partial R}{\partial X}\right)^{2} \delta_{x}^{2}+\left(\frac{\delta R}{\delta y}\right)^{2} \delta_{y}^{2} \quad \cdots \cdot \cdot \quad \text { EQUATION } 14
$$

Equation 14 is the final form from which error propagation may be calculated.
Table A6.2.1-3a
OIURIVAL VARIATION OF SOZ DIFFERENCE OF UNITZ - UNIJI (UG/MZ)
Table A6.2,1-3b

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
nY																								
1	0	-1	-2	0	11	0	0	0	\checkmark	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0
2	0	0	n	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	3	2
3	3	3	$?$	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	1	1	0	0	0	1	3	2	3	2	3	2	4	4	4	5	5
5	5	5	5	6	4	4	6	6	6	2	0	0	u	0	0	0	0	0	0	1	0	2	2	$\stackrel{3}{2}$
6	2	2	$?$	2	1	0	0	1	2	1	0	0	0	0	2	0	0	0	0	1	2	2	4	3
7	3	4	4	2	9	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0
8	0	J)	0	\checkmark	9	!	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	-1	0
10	0	0	-1	-1	-1	-1	0	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	9	0	0	0	0	0	0	0	0	0	0	4	11	0	u	0	0	$1)$	0	0	0	0	0
12	0	0	$1)$	0	0	0	0	J	-1	0	0	0	0	0	0	0	0	3	0	0	0	0	\checkmark	0
13	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0	0	0	0	0	0
14	0	0	0	1	0	0	0	0	\checkmark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	7	1	0	0	0	0	0	0	0	0	J	0	0	0	0	0	0	0	0	0	0	0
16	0	9	0	6	3	1	3	3	2	0	0	0	0	0	3	9	10	6	2	1	2	3	5	7
17	8	0	9	C	0	0	0	0	0	-2	-2	-2	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	2	1	0	1	2	2	0	0	v	0	0	0	0	0	0)	\checkmark	u	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\checkmark	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	d	0	0	0	0	0
22	0	0	0	1	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23	0	0	0	3	1	1	2	2	1	1	0	0	0	1	2	2	1	0	1	2	3	4	5	6
24	6	5	6	0	0	0	0	0	0	0	0	0	0	$1)$	0	2	5	3	4	4	5	5	7	7
25	6	6	6	0	0	0	0	0	\checkmark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	J	0	0
2.8	0	1	n	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2
29	2	2	2	2	0	0	1	2	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	J
30	0	0)	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
31	0	0	0	3	2	1	2	3	2	0	0	0	0	0	0	0	0	0	0	0	0	2	2	3

QUARTERLY SO_{2} CONCENTRATION ROSES, STATION AB23 (1976-1978)

QURRTEALT SJZ CONCENTRRTION ROSE OEC •75 - 5Eg •77
 tapat no. of 1 houn sanples -z078
10%
NERIM

```
QUARIEALY SCZ CONCENTARTION ACSE
```

QUARIEALY SCZ CONCENTARTION ACSE
MAR • 77 - MAY '77

```
    MAR • 77 - MAY '77
```



```
    TOTAL NO. OF 1 HQUA SAMPLES -2129
```

```
    TOTAL NO. OF 1 HQUA SAMPLES -2129
```


QUARTERLY SOZ CONCENTAATION AOSE DEC • 77 - FEB • 78
BOTAL Z OF CALMS OISPAKBUTEO COCOOK:
TOTAL NO. OF 1 HOUA SAMPLES -1147

25\%

QUARTERLI SO2 CONCEMIRATION ROSE JUN • 77 - RUG 177

JOtAL No. af : haun SAmples -1538

15\%

 10%

OUARTERLY SOL CONCENIARTION ROSE

$$
\text { MRR } \cdot 78-\text { RPR } \cdot 78
$$

Patal \% CF CaLMs oistatautea $10000 \% 1$ TOTAL Na. af I HOUR SAMPLES - 1272

181

QUARTERLY $\mathrm{H}_{2} \mathrm{~S}$ CONCENTRATION ROSES, STATION AB23 (1976-1978)

```
QUARIEA!Y HZS CONCENTARTION ROSE
        OEC •76 - FEE •77
    HOTAL & OF CALNS TISTRIBUTEO NOOCO%)
    total no. OF 1 moua samples -2050
```



```
CUARTEALY H2S CONCENTRATION ACSE
\[
\text { MRR } \cdot 77 \text { - MAT } \cdot 77
\]
```

POTAL F OF CALMS OLSTRIBUTEO 10000 /
:OTAL NO. OF : MOUA SAMPLES -2114

CUARTERLY H2S CONCENTRAIIO: ñOE

$$
\text { JUN } \cdot 77 \text { - RUG } \cdot 77
$$

$$
\text { TOTAL } z \text { OF CALNS JIstalgupeo to.20\%: }
$$

$$
\begin{aligned}
& \text { TOTAL } 2 \text { OF CALMS JISTAIgUPEO } 10.20: \\
& \text { TOTAL NO. CE : MOUR SAMPLES -IN63 }
\end{aligned}
$$

QUARTERLY H2S CONCENTRATION RCSE
MAR '78 - APA '78
POTAL x of CALHS OISTABBUTCO $10000 \% 1$
total mo. of : maum samples -1256

QURRTERLY MZS CONCENTRATICN ROSE
OEC •77-FEE •78

TOPAL $\%$ OF CALHS OISTABEUTEO COOCO:
TOTRL NO. OF 1 HOUA SAMPLES -1:27

concentration (ug/m ${ }^{3}$)

QUARTERLY NOX CONCENTRATION ROSES, STATION AB23 (1976-1978)

QUARTERLY NOX CONCENTRATION ROSE

$$
\text { DEC } 76=F E B \cdot 77
$$

POIGL z of CALRS OISTAIBUTEO 00000%
rotal mo. OF 1 MOUA SAMPLES -1773

QUARTERLY NCX CONCENTRATION ROSE
MAR 77 - MAY • 77
dotal \% of calms oistmiauteo loocjai
poral ma. of a maun samples -zo4s

CUAATEALY NOX GONCENTAGTION ROSE JUN $\cdot 77$ - RUG $\cdot 77$
total 2 or calims ofstarbuteo 10.00% TOTAL NO. OF I MOUR SAMPIES -1182
10%
NOATM

guarterly nox concentartion rose
SEP •77 - OCT ・フ7
TOTAL z of Chens OISTALButco (0000x)
potal mo. or 1 moun santles -Gs
15%

10\%

comecntration (ug/a)

QURATERLY NOZ CONCENTRATIGN ROSE DEC •75-FEB •77
total \% of calns otstatgeteg (00007,
total no. of i houn samples - 1773

QURRTERLY NO2 CONCENTARTION ROSE
MAR •77 - MAY •77

TOTAL NO. OF 1 MOUR SAMPLES -204:

QUARTERLY NOZ CONCENTRATION ROSE
JUN •77 - RUG •77
TOTAL x of CALMS ORSTATEUTEO 10.092 TOTAL NO. OP 1 moun sammes -1182

$$
10 \%
$$

QURRTERLT NOZ CONCENTRATIUN ROSE

$$
\text { SEP } 77 \text { - OCT } 77
$$

TOTAL \% OF CALNS OTSTATBUTEO (00007.)
IOTAL NO. OF I HOUR SANPLES -93

QUARTEALY NOZ CONCENTRATION ROSE
MAR •78 - APR • 78
total z of calns olstalbuteo looe0z
total no. of i houn smmencs -1143

184
1115

QUARTERLY CO CONCENTRATION ROSES, STATION AB23 (1976-1978)

QUARTERLY CO SCNCENTARTION ROSE OEG 7G - FEO -77

POTAL \% OF CALMS OISTAISUREO $\quad 0000 \%$
POTAL NO. OF I MOUR SAMPLES -15:3

QUARIERLT CO CONCENTARTION ROSE
MAR • 77 - MAY • 77
TOTAL : OF CALAS OLSIAIBUTEO (0000\%)
TOTAL NO. OF 1 MOUR SAMPLES - 1161

QURRIERLY CO CONCENTRATION ROSE
JUN • 77 - AUG ' 77
rosal \% of catms olstaloutco 10.00%
total mo. of 1 MOUA SAMPLES - 1246

QUARTERLT CO CONCENTRATION ROSE
MAR '78 - APR " 78
TOTAL z OF CALMS OISTALSUZEO 10000%
TOTAL NG. OF 1 MOUA SAMPLES -EIT

concimtration (uq/m ${ }^{3}$)

UNIVARIATE TIME SERIES ANALYSIS FOR OZONE AUGUST 1975

Station AB20

Parameter:	Ozone (8/75) (hours 433-744)	312 data points
Series:	Original	Differenced by 1 and 24
Series Mean:	42.6	0.101
Series Variance:	278.9	34.84
Trend at 95\% Confidence Level:	0.0	0.0
Series Minimum:	8.0	-23.0
Series Maximum:	78.0	30.0
Chi-Sq. for Data:	2776. with 47 d.f.	99.4 with 47 d.f.
Chi-Sq. at 95\% Level:	64.001 with 47 d.f.	64.001 with 47 d.f.
Model: $(0,24,24)$	$(1-B)^{1}(1-B)^{2} \quad z_{t}=0.090239+(1$	$\left.-.21382 B^{2}\right)\left(1-.74195 B^{24}\right) a t$
Coef. of Det:	0.917 for original series	0.311
Residual Mean:		. 179
Residual Variance:		23.77
Residual Minimum:		-17.0
Residual 1 Maximum:		28.0
Residual Chi-Sq.:		28.09 with 21 d.f.
Chi-Sq. at 95\% Leve]:		32.671 with 21 d.f.

Discussion: This is an ARIMA model based on a twice differenced series by lags of 1 and 24. The form of the model is $(0,24,24)$. The autocorrelation function of the differenced series contained significant spikes at lags 2, 24 , and 25. The trend term (.090239) was retained in the model even though it was not significant. The model has probably been overspecified in this case since the first difference of order 24 provided an autocorrelation function of lumpy, decaying exponential form similar to the hourly ozone series modeled for station AB23 August 1977 series.

Based on autocorrelation function comparison, this series is judged equivalent to AB23 August 1977 series except that the mean value is much lower.

NOTE: See Appendix A5.2.1D for discussion of Univariate Time Series Analysis.

UNIVARIATE TIME SERIES ANALYSIS FOR OZONE AUGUST 1977

Station AB23

Parameter:
Series:
Series Mean:
Series Variance:
Trend at 95\% Confidence Level: 0.0
Series Minimum: 31.0

Series Maximum:
Chi-Sq. for Data:
Chi-Sg. at 95\% Level:

Model: $(1,24,24)$
Coef. of Det.
Residual Mean: 0.24221

Residual Variance: 129.0
1480.3 with 47 d.f.
64.001 with 47 d.f. $\left(1-.86896 B^{1}\right)\left(z_{t}\right)=\left(1-.70217 B^{24}\right) a_{t}$

Residual Minimum:
Residual Maximum:
Residual Chi-Sq.:
47.884

Chi-Sq. at 95\% Level: 62.830 with 46 d.f.

Discussion: This is an ARIMA model of the form (1,24,24). The model was based on differencing once by 24 lags to obtain an autocorrelation function of a lumpy, decaying exponential form. Significant lags occurred in the PACF of the differenced series at lags 1 and 24. Lag 1 was retained in the autoregressive term and lag 24 retained in the moving average term. Trend was insignificant for both original and differenced series. Forecast model fits data well and accounts for diurnal cycle of 24 hours.

NOTE: See Appendix A5.2.1D for discussion of Univariate Time Series Analysis.

UNIVARIATE TIME SERIES ANALYSIS FOR OZONE AUGUST 1975

Station AB23

Parameter:

Series:
Series Mean:

Series Variance:

Trend at 95\% Confidence Level:
Ozone 8175 (hours 433-744) 312 data points

Original
52.3
204.57

Differenced by 1 and 24
.167

Series Minimum:

Series Maximum:
Chi-Sq. for Data:
Chi-Sq. at 95\% Level:

Mode1: $\quad(0,24,24)$
Coef. of Det:
Residual Mean: . 0772

Residual Variance: 25.97

Residual Minimum: -43.

Residual Maximum:
Residual Chi-Sq.:
Chi-Sq. at 95\% Level:
+36 .
27.87 with 28 d.f.
41.337 with 28 d.f.

Discussion: This is an ARIMA model based on twice differenced series by lags of
1 and 24. The form of the model is $(0,24,24)$ with the moving term containing three parameters of order 1, 6, and 24. The autocorrelation function of the differenced series contained random spikes that were significant at lags 1 , 6 , and 24. The trend parameter of .11026 was not significant but was retained in the final model. The model has probably been overspecified and could have been based on differencing by 24 only. The model and series is equivalent to that of ozone series for $A B 20$, August 1975.

A model based on differencing once by 24 lags would likely yield a form similar to that of ozone series for AB23, August 1977 except for a much lower mean value.

NOTE: See Appendix A5.2.1D for discussion of Univariate Time Series Analysis.

UNIVARIATE TIME SERIES ANALYSIS FOR PARTICULATES

Station AB23

Parameter:
Series Mean:
Particulates (41 monthly data points)
8.83171

Series Variance:
25.3322

Trend: $\quad 0.0$ at 95% confidence level
Series Minimum: 1.10
Series Maximum: 19.30
Chi-Sq. for Data: $\quad 70.7666$ with 39 d.f
Chi-Sq. at 95% Level: $\quad 54.572$ with 39 d.f.

Mode1: (12,0,0)
$\left(1-.60112 B^{1}\right)\left(1-.24026 B^{12}\right)\left(z_{t}-8.83171\right)=a_{t}$
Coef. of Det:
.402223
Residual Mean:
$-.496612=0$ at 95% confidence level
Residual Variance:
9.41857

Residual Minimum:
-4.71776
Residual Maximum:
10.9535

Residual Chi-Sq.:
13.4723 with 25 d.f.

Chi-Sq. at 95\% Level:
37.652 with 25 d.f.

Discussion: This is an ARIMA (p, d, q) model where $p=12, d=0$, and $q=0$. The partial-autocorrelation function of the data showed significant lags at times one and twelve. The trend term was insignificant at the 95\% confidence level. Although the chi-square statistic for the data was significant, the residual chi-square was not significant, indicating that the model has successfully reduced the residuals to uncorrelated white noise. No actual forecasting was done using this model.

NOTE: See Appendix A5.2.10 for discussion of Univariate Time Series Analysis.

UNIVARIATE TIME SERIES ANALYSIS FOR CARBON MONOXIDE

Station AB23
Parameter:
Carbon Monoxide (31 monthly data points filled in via forecasting.)

Series Mean:
816.040

Series Variance:
278064.

Trend:
0 at 95\% confidence level
Series Minimum:
239.3

Series Maximum:
1847.30

Chi-Sq. for Data:
Chi-Sq. at 95\% Level:
68.3723 with 15 d.f. 24.996 with 15 d.f.

Model: (1,0,0)
$(1-.813788)\left(z_{t}-816.040\right)=a_{t}$
Coef. of Det:
0.637104

Residual Mean:
0 at 95% confidence level
Residual Variance: 98534.9
Residual Minimum: -675.863
Residual Maximum: 661.020
Residual Chi-Sq.: 7.29373 with 14 d.f.
Chi-Sq. at 95\% Level: $\quad 23.685$ with 14 d.f.

Discussion: The above model is an ARIMA (p, d, q) model where p, the order of the $A R$ term $=1$, and d and q, the order of the differencing and MA terms, respectively $=0$.

This data is considered too limited for a meaningful time series. However, modeling of the "filled in" data showed a residual mean of 0 and an insignificant trend term at 95% confidence level. The residual chi-square was not significant showing that the residuals had been reduced to noise.

NOTE: See Appendix A5.2.1D for discussion of Univariate Time Series Analysis.

APPENDIX A6.2.3

Site Log Sheets for 1978 Visibility Study

4/06/78
MST
0750 - Arrived site. Windy not to cold. Some sunshine but cloudy overhead. All views good visibility. Clouds on H on View 4. Road dry.

0830 - All views good - cl on hz on View 4 only. Real overcast on View 4. No haze anywhere. Still windy from southeast. Rinda unusual? Sun behind large cloud.

0930 - No haze. Clouds on H on View 4 only. Still windy, a little more sunshine.

1030 - Some haze, View $1 \& 2$. Shadows on View 1 \& 2 . Still windy, some sunshine with high wispy clouds.

1130 - High cloudiness, sun shining. Light hz on View $1 \& 2$. Cl on H on View 1, 2, 3.

1300 - High cloudiness, sun shining. Lt hz. View 1. $C 1$ on 4 on Visw 1 , 2, 3. Warm 50+ and windy.

1400 - High clouds. with sun, real light hz. View $1 \& 2$. Keal clear on View $3 \& 4$. Shadows on View $1 \& 2$.

1500 - High clouds, general overcast, not too much sun. Light hz View $1 \& 2$ clear on View $3 \& 4$. Has been windy, blustry type spring day.

4/12/78
MST
0800 - Arrived site. Fantastic morning. Not a cloud in sky. Sunny.
0830 - No change. Light hz all views snow on View $3 \& 4$. Not too cold. No breeze. Hz a little more to the west.

0930 - Nice - slight breeze - SW. View l\& 2. Have lt hz while View $3 \& 4$. Not too cold no breeze hz a little more to the west.

1030 - Same as 0930. Breeze picking up a little.
1130 - Lt Hz View 1. View 2, 3, 4 clear few scattered clouds. No cl on H some breeze from SW - Nice out.

1200 - Getting windy. Some scattered clouds. Very little hz on View 1 \& 2. 3 \& 4 clear. Still sunny most times clouds coming from east.

1400 - Windy with some pretty good gusts. Lt hz on View 1. View 2, 3, \& 4 clear. More clouds.

1500 - Still windy - Snow on View 3. Almost gone. Some hz View 1. All other views clear. Not too warm now, otherwise real nice day.

Depart site

4/18/78
MST
0800 - Arrived site. Calm, mostly clear. All views visible.
0830 - Sunny with some cl. Lt hz all views. Cl on Hz on Views 2,3, 4 . No cl on View 1, a patch of shadow between site \& View 1. Not too cold. Snow on View 4.

0930 - $\dot{C i}$ on H on View $3 \& 4$. Calm and real nice. Snow is gone on all views except View 4. Seem hazy in all directions today - windy yesterday.

1030 - Has turned windy, hz is almost gone except View 1. Cl on H on View 3 \& 4. A few scattered cl now to the N.

1130 - Still windy, shadow on View 2. Ht hz. View 1 - Rest are clear scattered $c l$ and sunny.

1300 - Continues to be windy - Lt hz View 1 \& 2. Clear to the east.
1400 - No change - very few clouds left in sky now.
1500 - Same - Windy but otherwise has been a real nice day.
Depart site

MST

0800 - Calm, sunny day. All views visible. Some hz all views
0830 - No change. A few high wispy cl. Snow on View 4. No cl on H . Some dust or smoke in area of C-b worksite.

0930 - Cl on H View 1, 2, 3 - 1t hz 1, 2, 3. No much Hz on View 4. Always heavier to the west. Small amount of dust can be seen from C -b work site. Sunny \& 1 t. wind.

1030 - Cl on H View $1 \& 2$ lt hz west, View $3 \& 4$ not bad. Lt. wind has started.

1130 - Cl on horizon all views. Lt hz View 1 and 2. $3 \& 4$ mostly clear wind is picking up a little more. Sunny.

1300 - Quite a bit of wind, gusty. Cl on H all view lt hz. View 1 \& 2 View 3 \& 4 mostly clear becoming overcast.

1400 - Gusty winds at time. Cl on H all views. Shadow on View 3. Lt hz to the west, better to the east. Not as overcast as 1300.

1500 - Cl on H all views, Wind isn't quite as gusty, cloudy to the south Sunny - lt hz View l \& 2, $3 \& 4$ pretty good.

Real nice day

4/30/78
MST
0805 - View l \& 2 covered with clouds View $3 \& 4$ can be seen but not too clear. Overcast with some sun, light wind blowing from SW. Rain last aight some shower to west and northwest.

0830 - Same as 0805. Some clearing on skyline to west.
0930 - No sun. Light rain total overcast. Can see View 4 only clouds on View 1, 2, \& 3. Pictures taken from inside cabin.

1030 - All views in clouds, however close objects all view are visible. Sunny to south. Windy. Not raining at site now.

1130 - View $2 \& 4$ visible. Rain showers. Some sun to south. View 3 heavy clouds. View 1 clouds.

1300 - Good rain at site - overcast can see View 1. View 2, 3, \& 4 covered with clouds. Wind, light out of SW. No sun now.

1400 - View 1 - Visible - some light cls on View 2. View 3 \& 4 are covered with clouds. Rain showers to View 4 sun shining again. But mostly overcast.

1500 - View $1 \& 2$ visible. View $3 \& 4$ in clouds. Some sun, but mostly cloudy. About same all day.

Depart site

MST
0800 - $1^{\prime \prime}$ snow at site - overcast - with some sunshine. View $2 \& 4$ visibile with cl on View l \& 4. Calm. Some blue skys too mostly overhead.

0830 - Cl on H all views. View l, 2, 3 visible. View 4 in clouds. Calm. Overcast right now. Radio says 100% for showers \& or snow today.

0930 - View $1 \& 2$ visible. View 3 just barely visible. View 4 snowing. Wind calm, a bit more cloudy - seems to be closing in a bit.

1030 - Weather getting worse. Can only see View 2. Storm moring west to east. Real light wind. No sun. Light snow on all higher areas.

1130 - View 1, 2, 3 visible. Snowing View 4. No sun. No wind. No warmth. Light snow \& rain showers at sight. Not much change.

1300 - View $1 \& 2$ visible. Snowing elsewhere. Just minutes after pictures were taken a snowstorm at site.

1400 - All views snowing. Some sun overhead good snowstorm from NW.
1400 - Snowing all views. Sun overhead some wind. Not too hot a day.
Depart site
NOTE: Forgot to change the month on calibration card!

5/12/78

MST 0805	- Sunny with a few scattered clouds on horizon to North \& NE. Breeze from SW. Nice morning.
0830	- Cl on H on View $3 \& 4$. Lt hz on View 1, 2, 3. View 4 real clear, snow on View 4. A low cl on 4 north \& east. Sunny with breeze from SW. Some gusts.
0930	- Cl on H all views. Lt hz. View 1, 2, 3. View 4 clear. Light breeze and sunny. No dust at all from C-b work site, or from Ca either.
1030	- View 4 clearest I have ever seen. $C 1$ on horizon View 1, 2, 3. Lt hz View 1 \& 2 . Sunny with breeze \& some gusts from SW.
1130	- C1 on Horizon, View 1, 2, 3. View 4 real clear. Lt hz on $1 \& 2$. 3 is not bad. Sunny, light wind and some gusts.
1300	- Clear H on View 3. Lt hz View 1 and 2. View 3 and 4 clear. Almost a cloudless day - sunny - some wind and gusts.
1400	- No cl on H all views. View 1 light hz. View 2, 3, 4 are clean. Breeze blowing from W with some gusts. Clear \& sunny.
1500	- No cl on H all views. Lt hz in west, cleaner to the east. Wind almost calm. Real nice day.
Depa	site 1510

5/18/78
MST
0800 - Skiff of snow on ground at site. Breeze from west, cool, scattered clouds. Some sunshine. View l, 2, 3 visible, hz to the northwest. View 4 in clouds. Road has been graded.

0830 - View 1, 2, 3 visible, some hz. Cl on 4. All views - scattered cls some sun, breeze (cool) from west.

0930 - All views visible. Lt hz in east to considerable amounts in west - snow on View 4. Scattered cl, some sun.

1030 - Same as 0930 but a little more wind. Some gusts.
1130 - Quite a bit of hz to the west and clear to the east. Mostly overcast with shadows from sun. Lt breeze from W.

1300 - Not much change.
1400 - Overcast at site, with shadows View 3 \& 4. Lt. breeze with gusts.
1500 - View 4 in sunshine, overcast rest of views. Not much haze as wind is stronger now.

Depart site 1510

MST
0800 - Only 2 cl in sky - wind from SE? Quite a bit of haze seems heaviest to the NW.

0830 - Heavy Hz on View 1 \& 2. Moderatge hz on View 3 \& 4. View 4 has snow. Windy - out of SE. Sunny. Sometimes gusty.

0930 - Note quite as hazy as 0830 still windy. Not much change.
1030 - View 4 is clearing up. Must be the wind. Still hard to see View 1. Windy from $S E$ with some good gusts. Sunny \& nice.

1130 - Same as 1030 , but starting to get some scattered clouds mostly north.

1300 - Fairly clear to the east but gets hazy to a point in where gou can hardly see View 1. Wind is shaking the shelter? Real gusty. Quite a few clouds from the south.

1400 - Real hazy View 1, View 2 not quite so bad, light hz. View 3, to almost clear View 4. Windy, clouds are making some shadows.

1500 - Same as 1400 - However cl are no on B on View 1, 2, 3, very windy day storm moving in from NW.

Depart Site 1515

MST
0755 - Pretty sunny morning. Light breeze from NE. All view visible Snow on View 4. All views 1 t . hz.

0830 - No cl or H View $1 \& 2$, 4, cl or h View 3, sunny with breeze from NW. Seems to be more hz in the NE than even before. Snow on View 4.

0930 - Weather about the same. No cl on h now. Some cl to the north. Light hz all views.

1030 - Not much change. View 4 may be a bit clearer. Seems like more hz in area of Rio Blanco.

1130 - Cloudy to the east. Wind from west. Lt hz all views. Cool outside.

1300 - Wind from NW. Cloudy over much of the south and east. View 4 much clearer and View 1 has more hz.

1400 - Overcast - some shadows. Cl on 4. All views moderate inz to the west to lt hz in the East. Still windy looks like some showers to the East.

1500 - Overcast - generally cloudy everywhere. Still windy getting pretty hazy in the east, View 4.

Depart site 1510

```
10/05/78
MST
0755 - Sunny morning. Calm. All views visable.
0830 - No CL. on H. Sunny & no haze. Calm.
0930 - Some clouds on Hor. to N. but not in picture area. Slight
        haze all views. Slight wind from east.
1030 - Same as at 0930. Still some haze. Wind now in west. Slightly
        cooler.
1130 - Some clouds on H. - N.W., but not in picture area. Slight
        haze all views. Wind from west.
13CO - CL. on H. views 1,2,4. Haze still exists. Wind from west.
        More haze on views 1&2.
1400 - CL on H. views 1,2,3. Haze still exists. Wind from N.w.
1500 - CL. on H. views 1,2,3,4. Has been a nice day.
1510 - Departed site.
```

10/11/78
MST
0800 - Arrived on sight. CL. on Hr. sights $1,2,3,4$. Calm $\&$ warm. All views visable but haze on all sights.

0830 - CL. on Hr all views. Still sumny \& warm. No wind.
0930 - More CL. on views 1,2,3. Not yet heavy on view 4. No wind. some haze. Looks like change of weather from N.W.

1030 - About same as 0930. Clouds slowly rising. Still no wind.
1130 - Getting quite a lot of haze, views 1,2,3. Breeze blowing from N.W. CL on Hr all views. Very clear south \& east.

1300 - Haze has lifted. All sights still CL. on Hr , but clouds more broken. Slight breeze from N.W.

1400 - Clouds more broken. Haze has lifted. CL on Hr. Wind from N.W. Sunny \& warm.

1500 - Some CL. on Hr. Views 1,2,4. Clear on view 3. Wind stronger. Still warm \& sunny.

1510 - Departed site.

```
MST
0 8 0 0 ~ - ~ A r r i v e d ~ a t ~ s i g h t . ~ C l o u d y ~ a l l ~ d i r e c t i o n s . ~ S i g h t s ~ a r e ~ v i s a b l e ,
    but all have haze.
0830 - Cloudy all directions. All sights barely visable. Southeast
        wind. All sights have haze.
0930 - Same as at 0830. No wind. 非4 barely visable.
1030 - Some broken clouds overhead. Still cloudy to sights. Wind from
        south.
1130 - Clouds more broken. All sights, clouds and haze. Wind stronger
        from south.
1300 - Variable high cloudiness. Haze on sights 1,2,3. Cannot see
        #4. Wind stronger from south.
1400 - Seems darker all sights. But high clouds so that all sights
        are visable.
1500 - About the same. More haze in picture areas. Wind strong.
1507 - Dearted site.
```

10/23/73
MST
0800 - Arrived on sight. Sunny \& very clear to views $1 \& 2$. Views $3 \& 4$ cannot see due to low clouds. No wind. Cloudy to $N \& W$.

0830 - Very clear, views of $1 \& 2$. Views $3 \& 4$ still covered with clouds. No wind.

0930 - Same as at 0830. Slight breeze from east.
1030 - Sights $1 \& 2$ still very clear. \#3 can now be seen under clouds. \#4 still covered with clouds. Clouds seem to be breaking up.

1130 - All sights now visable. Some haze on view 1. View 4, snow on peak.

1300 - Slight haze, views $1 \& 2$. Views $3 \& 4$ extremely clear. Slight breeze from west.

1400 - Same as at 1300. Slight breeze from west. Seems some cooler. Some haze \#3 \& 4. (No heat in shelter)

1500 - All locations very clear. Very nice day. Sunny \& cool.
1510 - Departed site.

10/29/78
MST
0810 - Arrived at sight. All sights very clear. Sunny \& Bright. Moderate wind from S.E.

0830 - Conditions same. Slight haze views $1 \& 2$. Views $3 \& 4$ very clear. Wind from S.E. cool. (No heat at location)

0930 - Same as at 0830. Wind much stronger.
1030 - More haze, views 1,2,3. Quite clear on view 4. Still very windy. A few high clouds forming.

1130 - More haze, all four locations. Very windy.
1300 - Still haze, all four locations. Strong \& gusty wind from S.E.
1400 - CL. on Hr views 1,2,3. Haze on view 4. Strong wind from S.E.
1500 - Cl. on Hr. Views 1,2,3. Haze on view 4. Wind still strong from S.E.

1515 - Departed site.

MST
0800 - Arrived at sight. Some high clouds. No wind. Light clouds all directions (trying new equipment today). Conditions same. Light clouds all directions. But sights are visable.

0930 - Condition same. Little more haze. Slight breeze from S.E.
1030 - Light clouds \& haze, views $1 \& 2$. A little less haze, views 3 \& 4. Slight breeze from S.E.

1130 - Conditions same. Clouds in background, all locations. Views $1 \& 2$ more haze. Wind has gotten stronger.

1300 - High clouds \& haze, views 1,2,3. Clearer on view 4. Conditions about same all day.

1400 - Conditions same. Wind has let up some.
1500 - Haze has lifted some. High clouds on all locations. Conditions have remained same all day.

Tried new equipment today. Am sure I need more instruction. No consistancy to readings.

1515 - Departed site.

11/10/78
MST
0800 - Arrived at sight. Snowing lightly. Light snow cover at sight. No sights are visable.

0830 - Conditions same. Light snow. No wind. Visability about 2 miles.

0930 - Visability has lifted some. Still no signts visable. Not snowing at present.

1030 - Little more visability. No sights yet visable.
1130 - Clouds all locations. Getting much colder.
1300 - Cloudy views 1-2-3. View 4 barely visable - (Tested this view with new instrument). First reading I have taken today. View 4 only.

1400 - CL views 1-23. \#4 barely visable. Took reading on instrument view, 4 only.

1500 - Cloudy. Conditions same as at 1400. Reading of new instrument on view 4 only.

This has been a cloudy, cold day.
1515 - Departed site.

11/16/78

MSI

0810 - Arrived at sight. About $8^{\prime \prime}$ of snow on ground. Completely socked in. Visfbility all directions about 100 yards. No wind.

0830 - Conditions same.
0930 - Conditions same.
1030 - Fog has lifted some. Visibility now about $\frac{1}{2}$ mile.
1130 - Still no sights visable. Visability about 1 mile. No wind.
1300 - Visibility much greater. Still no sights visable. No wind. Partly cloudy.

1400 - Conditions about same as at 1300. V1ew 非 slightly visable. CL on Hr . all directions.

1500 - CL obstruct views 1-23. 非4 slightly visable. View 4 is only time I could take reading on new instrument.

Has been a cold day. No wind. Departed sight 1520.

11/22/78

MST
0820 - Arrived a little late. Slipped off road on way in. Snowing hard at present. About 1 inch of new snow on ground. Looks like it will be another bad day.

0830 - Conditions same. Snowing hard. Visability about $\frac{1}{2}$ mile all directions. Slight wind from S.E.

0930 - Still snowing, but is clearing. Some blue sky overhead. Slight wind Erom south.

1030 - View 非 not visable. Views 2-34 barely visable. Wind strong from south. Very cold. No haze in clearing areas.

1130 - Views $1 \& 2-4$ not visable. View 3 is visable. Cloudy all directions. Strong wind from south. Cold.

1300 - Views 1 \& 2 not visable. Snowing to the west \& N.W. Views 3 \& 4 visable with clouds overhead. Wind is strong from south with some drifting now to 2^{\prime}.

1400 - All sights visable with background \& HR of clouds. Still very windy and cold.

1500 - All sights visable. CL on HR. No haze but clouds all around. Windy and cold.

1520 - Departed site.
$11 / 28 / 78$
MST
0800 - Snowing lightly. Completely overcast. About 6" new snow on ground. Cold wind from south.

0830 - Snowing harder. Visability about i_{2} mile. Completely overcast. About a foot of snow on ground.

0930 - Conditions same. Snowing. Wind from south. Looks like another bad day. "4th day in a row."

1030 - Snowing very light. No sights yet visable. Wind strong from south. Cloud cover not so heavy now.

1130 - No sights yet visable. Strong wind from south and very cold.
1300 - No sights visable. Snowing lightly again. Wind strong. Extremely cold.

Because of poor visibility - blowing and drifting snow decided to leave now rather than take a chance on getting caught in worse weather.

1345 - Departed site.

UNIVARIATE TIME SERIES ANALYSIS FOR TEMPERATURE

Station AB23

Parameter:
Series Mean:
Series Variance:
Trend:
Series Minimum:
Series Maximum:
Chi-Sq. for Data:
Chi-Sg. at 95\% Level:

Mode1: (12,0,0)
Coef. of Det:
Residual Mean:
Residual Variance:
Residual Minimum:
Residual Maximum:
Residual Chi-Sq.:
9.86816 with 45 d.f.

Chi-Sq. at 95\% Level:

Temperature (41 monthly data points)
6.04651
68.3787

0 at 95\% confidence level
-5.0
21.0
232.294 with 41 d.f.
60.561 with 41 d.f.
$\left(1-0.089864 B-0.84552 B^{12}\right)\left(z_{t}-6.04651\right)=a_{t}$
0.849677

0 at 95\% confidence level

Discussion: This is an $\operatorname{ARIMA}(12,0,0)$ model where $12=$ the order of the autoregressive terms, $0=$ the order of the difference term (there is no differencing), and the last $0=$ the order of the moving average terms (there are no moving average terms). The trend was not significant at the 95% confidence level. Although the chi-square statistic for the data is significant at the 95% level, the residual chi-square is not significant, indicating that the residuals have been reduced to uncorrelated white noise. The partial autocorrelation function of the actual data had significant spikes at lags 1, 2, 3, and nine. Insignificant parameters were discarded to obtain the current model which fits the data well and accounts for an annual cycle of 12 months.

NOTE: See Appendix A5.2.1D for discussion of Univariate Time Series Analysis.
TABLE A6.3.1-2

STA.	ITEM	$\underset{Y E A R}{\text { SEASONAL }}$	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	$\begin{aligned} & \text { ANN. } \\ & \text { MAX. } \\ & \text { AVG. } \\ & \text { MIN. } \end{aligned}$
AB20	hourly max.	1975	7	10	8	15	21	26	31	32	31	28	25	18	32
AB23	促	1975	9	6	6	10	20	22	28	29	28	26	22	17	29
AB20	HOURLY AVG.	1975	-11	-9	-7	0	2	9	14	19	17	12	6	-3	4
AB23	" "	1975	-4	-5	-4	-1	2	8	13	19	18	13	8	0	6
AB20	hourly Min.	1975	-34	-43	-31	-33	-28	-9	-1	6	-2	-8	-18	-27	-43
AB23		1975	-18	-21	-18	-21	-14	-6	1	11	4	-2	-10	-16	-21
AB20	HOURLY MAX.	1976	11	8	11	13	20	27(1)	30	34	31	30	25	(2)	34
AB23	"	1976	10	8	9	11	17	23	28	31	27	27	22	15	31
AB20	hourly avg.	1976	-6	-9	-3	-4	4	11	15	21	18	13	3	(2)	
AB23	hourl avg.	1976	-2	-4	-1	-2	6	11	16	21	18	13	6	1	7
AB20	hourly Min.	1976	-26	-41	-29	-32	-9	-7(1)	-8	4	1	-4	-14	(2)	-41
AB23		1976	-14	-21	-14	-15	-6	-3	-6	10	6	2	-9	-19	-21
AB20 AB23	HOURLY MAX.	1977	8	7	12	12	19	22(1)	28(1)	28(1)	29	34	22	18	34
AB20	HOURLY AVG.	1977													
AB23	" ${ }^{\text {" }}$	1977	-3	-5	-2	-2	6	$9(1)$	20(1)	21(1)	19	15	5	3	7
AB20	hOURLY MIN.	1977													
AB23		1977.	-13	-20	-13	-16	-11	-2(1)	7(1)	11(1)	3	-4	-12	-17	-20
AB20	HOURLY MAX.	1978								(2)	29	27			
AB23	" "	1978	13	13	6	15	18	24	28	31	29	28			31
AB20	hourly Avg.	1978								(2)	17	14			
AB23	1	1978	4	7	-3	2	6	9	17	21	18	15			
AB20	HOURLY MIN.	1978								(2)	2	-4			
AB23		1978	-8	-2	-15	-11	-5	-4	2	7	2	-3			-15

TABLE A6.3.1-3

	GROWING SEASON*					DEGREE-DAYS** (${ }^{0} \mathrm{C}$-DAYS $)$				
YEAR	START		STOP		LENGTH (days)	GROWING SEASON	APR-MAYJUN	$\begin{aligned} & \text { MAY- } \\ & \text { JUN- } \\ & \text { JUL } \end{aligned}$	$\begin{aligned} & \text { JUN- } \\ & \text { JUL- } \\ & \text { AUG } \end{aligned}$	JUL -AUGSEPT
1975	May	26	Sept		118	84	8	57	84	76
1976	June	14	Oct		111	111	15	87	108	93
1977	Apr	21	Sept		144	110	23	70	110	87
1978	May		Sept		124	223	33	121	169	163

[^10]GROWING SEASON AND DEGREE-DAYS BY YEAR

MONTH	TOTAL LANG. FOR MONTH UNMOD. MOD.*		AVG. DAY LIGHT HRS/DAY	DAYLIGHT HRS PER MONTH	UPTIME DAYLIGHT HRS/MO.	CORR. FACTOR $=(5)$ (6)	AVG. LANG/DAY (MOD.)	DAILY TO HIGHEST	AL/DATE LOWEST
(1)	(2)	$\text { (2) } \times(0)$	(4)	(5)	(6)	(7)	(3) (Days Per Mo.)	(9)	(1)
11/74	4121	4256	10	300	291	1.031	141.9	225/11	1/3
12/74	1878	3500	10	310	167	1.856	112.9	164/9	0/7
01/75	4036	4396	10	310	284	1.092	141.8	266/1	22/28
02/75	6880	7305	11	308	$29]$	1.058	260.9	416/24	100/15
03/75	7586	10076	12	372	280	1.329	325.0	479/19	142/9
04/75	10940	11325	13	390	375	1.040	377.5	550/25	65/7
05/75	14559	14559	14	434	434	1.000	496.6	706/26	94/28
06/75	13762	15667	15	450	395	1.139	522.2	737/26	166/18
07/75	16079	16659	15	465	447	1.040	537.4	687/6	227/16
08/75	15005	15870	14	434	409	1.061	511.9	665/3	324/13
09/75	11849	12324	13	390	375	1.040	410.8	545/6	180/11
10/75	10089	10114	12	372	372	1.000	326.3	446/1	28/31
11/75	4615	4670	10	300	297	1.010	155.7	279/1	11/28
12/75	3957	4007	10	310	307	1.010	129.3	207/18	13/25
01/76	6166	6176	10	310	310	1.000	199.2	303/29	85/5
02/76	8102	8102	11	308	308	1.000	279.4	393/22	59/6
03/76	11856	12046	12	372	365	1.019	388.6	567/30	133/25
04/76	11990	13225	13	390	355	1.099	440.8	656/28	187/17
05/76	14693	15198	14	434	421	1.031	490.3	732/16	224/6
06/76	18674	18689	15	450	450	1.000	623.0	741/21	227/22
07/76	171.12	17292	1.5	465	460	1.011	557.8	720/4	229/5
08/76	15351	15961	14	434	417	1.041	514.9	665/5	193/1
09/76	11477	11477	13	390	390	1.000	382.6	558/2	155/24
10/76	10178	10178	12	372	372	1.000	328.3	440/7	143/26
11/76	6725	6725	10	300	299	1.003	224.9	307/1	75/13
12/76	5685	5685	10	310	310	1.000	183.4	242/1	73/5
01/77	6043	6043	10	310	309	1.003	194.9	376/25	54/5
02/77	7850	7850	11	308	308	1.000	280.4	409/27	92/22
03/77	10737	11059	12	372	360	1.033	356.7	523/27	110/17
04/77	12870	12870	13	390	390	1.000	429.0	598/10824	90/19
05/77	16228	16390	14	434	431	1.007	528.7	717/18	209/14
06/77	18590	18590	15	450	450	1.000	619.7	744/19	381/7
07/77	14256	16124	15	465	420	1.107	520.1	731/10	269/4
08/77	13970	14249	14	434	424	1.024	459.6	674/1	172/17
09/77	11904	12380	13	390	375	1.040	412.7	568/2	121/28
10/77	9676	9870	12	372	365	1.019	318.4	667/2	89/31
11/77	5580	6026	10	300	279	1.075	200.9	323/1	36/19
12/77	1328	-	10	310	81	-	-	229/5	75/3
01/78	1147	-	10	310	98	- ${ }^{-}$	-	249/13	67/18
02/78	4508	8250	11	308	168	1.833	294.6	404/18	90/3
03/78	954	-	12	372	22	-	-	101/30	67/31
04/78	-	-	13	390	-	-	-		-
05/78	7587	-	14	434	183	-	-	714/1?	5/21
06/78	-	-	15	450	-	-	-	-	-
07/78	1835	-	15	465	55	-	-	646/30	366/29
08/78	16327	16441	14	434	431	1.007	530.4	663/3	234/14
09/78	12107	12557	13	390	376	3.037	418.6	483/22	126/18
$10 / 78$ $11 / 78$									
$\begin{aligned} & 11 / 78 \\ & 12 / 78 \end{aligned}$									

[^11]table A6.3.1-5

ive humidity															
STA.	ITEM	$\underset{\text { YEAR }}{\text { SEASONL }}$	DEC	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	$\begin{aligned} & \text { ANN. } \\ & \text { AVXG. } \\ & \text { MIN. } \end{aligned}$
AB23	hourly max.	1975	100	100	100	100	100	100	100	100	87	93	100	100	100
AB23	hourly avg.	1975	69	68	72	72	67	64	54	54	29	35	40	53	56
AB23	hourly min.	1975	25	26	32	37	32	28	25	28	12	16	15	19	12
AB23	hourly max.	1976	90	90	89	30	98	90	99	96	100	99	94	97	100
AB23	Hourly Avg.	1976	62	62	57	56	53	51	44	47	50	59	51	56	54
AB23	HOURLY MIN.	1976	34	25	22	23	21	24	27	29	32	32	32	32	21
AB23	hourly max.	1977	96(1)	(2)	(2)	74(1)	100	(2)	80	(2)	(2)	99(1)	(2)	(2)	100
AB23	hourly Avg.	1977	58(1)	(2)	(2)	$56(1)$	67	(2)	24	(2)	(2)	37(1)	(2)	(2)	(1)
AB23	Hourly min.	1977	30(1)	(2)	(2)	41(1)	37	(2)	1	(2)	(2)	15(1)	(2)	(2)	1
AB23	hourly max.	1978	99	97	96	96	95	94	96	94	94	97			99
AB23	hourly avg.	1978	65	74	71	66	53	49	42	38	38	45			
AB23	HOURLY MIN.	1978	10	32	25	20	14	13	12	9	9	8			8

(1) Partial Data Only
TABLE A6.3.1-6a
MONTHL.Y PRECIPITATION FOR 1975

STATION	COMPUTER CODE	MONTHLY TOTAL (cm)												ANN. TOTAL ACTUAL (EST)
		JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	
USGS 022	WU22		2.54	2.74	0.71				2.87	1.22	2.54			
USGS 015	WU15		1.27	1.22	2.54	2.57	5.18	2.36	0.30	0.66	2.79	2.79	2.03	
USGS 058	WU58								1.65	1.09	2.29			
USGS 050	WU50		1.27	1.52	1.65	0.28		1.27	0.51		1.65	1.78	2.01	
USGS 070	WU70	5.74	4.01	6.78	5.21			2.54	0.43	1.02	4.85	4.95	4.01	
AQ Sta 020	AB20	(1) Estimated "Tract" average from ratio of WU70 to the average of WU15, WU50, and WU22 for the month of February, i.e.: $5.74 \times \frac{1.69}{4.01}=2.42$												
AQ Sta 023	AB23													
MC Sta 1	BCOI							1.80	1.00	0.08	0.43	0.76	1.15	
MC Sta 2	BC02							1.80	0.80	0.20	0.41	1.42	1.35	
MC Sta 3	BC03					2.62	2.49	0.60	0.40	1.19	0.46	1.27	1.15	
MC Sta 4	BC04					2.59	4.62	2.50	1.00	0.36	0.50	1.14	1.52	
MC Sta 5	BC05						2.18	1.30	1.10	0.13	0.10	2.49	1.10	
MC Sta 6	BC06					3.40	6.99	2.40	0.70	0.61	0.48	3.07	1.37	
MC Sta 7	BC07					0.53	3.28	4.60	0.40	0				
MC Sta 8	BC08					0.64	1.52	3.20	0	0	0			
MC Sta 9	BC09						3.05	1.00	3.40	0.86	0.43	0.97	1.50	
MC Sta ${ }^{\text {c }} 13$	BCl 3					5.59	3.30	3.10	4.30	0.03	0.60	1.50	1.65	
AVERAGE*		(2.42)	1.66	1.83	1.6	2.28	3.62	2.16	1.32	0.49	0.98	1.72	1.48	(24.86
ERAGE EXCL.		(2.42)	1.69	1.83	1.61	1.43	5.18	1.82	1.33	0.99	2.32	2.29	2.02	$(24.95$

table A6.3.1-6b

STATION	COMPUTER CODE	monthly total (cm)												$\begin{array}{\|c\|c\|} \hline \text { ANN. } \\ \text { TOTAL } \\ \text { ACTUAL } \\ (E S T) \end{array}$
		Jan	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	nov	DEC	
USGS 022	WU22					4.06	2.01	4.24	2.26	2.79	0.51			
USGS 015	WU15		4.06	4.29	1.78	3.05	2.01	2.92	0.13	2.46		0.10	0	
USGS 058	WU58						2.90	4.09	1.12					
USGS 050	WU50		4.32	4.32	1.65	3.48	1.60	2.41	Tr.	2.03		0	0	
USGS 070	WU70	1.47	8.71	5.82				4.62	1.68	4.29	1.47	0.79	0.84	
AQ Sta 020	AB20												0.74	
AQ Sta 023	AB23												0.99	
MC Sta 1	BC01	3.90		4.10		0.79	0.97	0	1.30		0.66			
MC Sta 2	BC02	3.40		4.60		1.52	1.80	0	0.76		0			
MC Sta 3	BCO3	4.13	4.60	9.22	4.90	6.30	1.63	1.63	1.30			0.11	0	
MC Sta 4	BC04	2.29	2.48	0	0		1.88	0.36	1.47	0.79	0	0	0	
MC Sta 5	BC05	4.30	3.09	3.20		0.97	0.91	0.20	0.71		2.87	0.43		
MC Sta 6	BC06	2.20	0.99	2.63	0.79	1.68	2.29	3.56	0.56	0.91	2.14			
MC Sta 7	B607	2.20	1.41						1.78	0.72		0.86		
MC Sta 8	BC08	1.10	0.64	2.40	2.16	0.91	1.5	1.32	1.55					
MC Sta 9	BC09	2.00	4.19	2.90		2.01	0.74	0.25	1.73					
MC Stá 13	BCl 3	3.10	2.59	4.80		1.19	1.37	0.25	1.73					
avtrage*		2.86	2.81	3.86	1.88	2.36	1.67	1.6	1.17	1.62	1.03	0.25	0.29	(21.46)
average excl.		0	4.19	4.31	1.72	3.53	2.13	3.42	0.87	2.43	0.51	0.10	0.43	(23.64)

0८пM TJX3*
TABLE A6.3.1-6c

IABII At. 3.1-1
I VAPORATION (cmi) O STATION AB23

	MONTH				
	MAY	JUNE	JULY	AUGUST	SEPTEMBER
PAN	20.8	22.5	27.0	24.2	17.7
DAILY AVERAGE	0.67	0.75	0.87	0.78	0.59
(1)					
MONTHLY TOTAL	14.6	15.8	18.9	16.9	12.4
DAILY AVERAGE	0.47	0.53	0.61	0.55	0.41

(1) Assumes a pan coefficient of 0.7
TABLE A6.3.1-8
barometric frcssure, : MLlibars (daily extrema)

[^12]APPENDIX A6.3.2

This Appendix consists of two parts:

A6.3.2A - Wind Fields Summaries
A6.3.2B - Tracer Test Results

Wind Fields Summaries

List of Figures Appearing in Appendix A6.3.2A

FIGURE NO. PAGE
A6.3.2A-1 Meteorological Tower 10M Elevation, Quarterly Wind Roses 1976-1977 225
A6.3.2A-2 Meteorological Tower 10M Elevation, Quarterly Wind Roses 1977-1978 226
A6.3.2A-3 Meteorological Tower 30M Elevation, Quarterly Wind Roses 1976-1977 227
A6.3.2A-4 Meteorological Tower 30M Elevation, Quarterly Wind Roses 1977-1978 228
Aб.3.2A-5 Station AB20 Quarterly Wind Rose at 10M, 1976 229
A6.3.2A-6 Station AB20 Quarterly Wind Rose at 10M, 1978 230
A6.3.2A-7 Station AD42 Quarterly MRI Wind Roses at 10M, 1978 231
A6.3.2A-8 Station AD56 Quarterly MRI Wind Roses at 10M, 1978 232
A6.3.2A-9 C-b Average Hourly Inversion Height by Quarter for 1978, Station AB20 233
A6.3.2A-10 June 1976 Inversion Heights Plotted with Constant Potential Temperature Surfaces through Stations AB20 and AB23 on 24 June 1976, 0400-0600 MST 234
A6.3.2A-11 October 1976 Inversion Heights Plotted with Constant Potential Temperature Surfaces the Morning of 14 September 1978 235
A6.3.2A-12 Pibal Altitude - Temperature Profiles for Single and Double Theodolite Observations, (Early Morning) 236
A6.3.2A-13 Pibal Altitude - Temperature Profiles for Single and Double Theodolite Observations, (Afternoon) 237

Meteorological Tower Quarterly Wind Roses - 10 M Level (1976-1977)

```
QU&RTERLY H:NO ROSE-IOM LEVEL
```

SEP •76 - NOV •76
TOTAL \% OF CALMS DISTRIBUTE 10.00%
TOTAL NO. OF 1 HOUR SAMPLES -2148

DEC • 76 - FEB • 77
101AL \% OF CALMS DISTRIBUTES (0.00%
TOTAL NO. OF 1 HOUA SAMP!ES -2147
1.15%
10%


```
QUARTERLY WINO ROSE-IOM LEVEL JUN • 77 - AUG •77
```

TOTAL \% OF CALMS OISTRIBUTEO $\quad \mathbf{0 . 0 0 \%}$
TOTAL NO. OF 1 HOUR SAMPLES -1573

75:
10%

10%

Figure A6.3.2A-2
MeteoroTogical Tower Quarterly Wind Roses - 10M Level (1977-1978)
OUNAVALY WINO ROSE-IOM LEVEL
SEP •77-NOV•77
idial \% of calms oistaleuteo $10.14 \pi 1$
1OTAL NC. OF I HOUR SAMPLES - 2072


```
GUAFTENLL WINO ROSE-IOM LEVEL
    DEこ `77 - FE3 `78
```

TOTAL \% OF CRLMS DISTRIBUTEO 14.43% TOTAL NO. OF 1 HOUR SAMDLES - 1805

QuARTERLY WINO ROSE-1OM LEVEL JUN • 78 - RUG • 78

TOTAL z of CALMS DISTRIBUTED 11.71% tetal no. or 1 houn samples - 2159

Meteorological Tower Quarterly Wind Roses - 30M Level (1976-1977)

```
clortealy hino rose - jom level
    SEP '76 - NOV '76
```

TOTAL \% OF CALMS OISTAIBUTEO 10.0% TOTAL NO. OF 1 HOUR SAMPLES -2152

```
QURRTERLY NINO ROSE - JOM LEVEL
    DEC •76 - FES •77
```

 TOTAL \% OF CALMS OISTAIBUTED \(10.0 \%\)
 TOTAL NO. OF I HOUR SAMPLES - 2145

$$
\begin{aligned}
& \text { QUARTERLY WIND ROSE - SOM LEVEL } \\
& \text { JUN } \cdot 77 \text { - AUG } 77
\end{aligned}
$$

TOTAL Z OF GALAS OISTRIBUTEO $10.0 \geqslant 3$ TOTAL NO. OF : HOUR SAMPLES - 1334

TOTAL \angle OF COINS O:STAIBUTEO $0.0 \% 1$ TOTAL NO. IF I MOUR SAMPLES -2162
10%

10%

Quarterly wind rose - 3OM level SEPT'77 - NOV'77

TOTAL \% UF CALMS DISTRIBUTED (0.00%) TOTAL NO. 1 - HR SAMPLES (2075)

QUARTERLY WIND ROSE - 3OM LEVEL
DEC'77 - FEB'78
TOTAL \% OF CALMS OISTRIBUTED (3.73%)
TOTAL NO. I - HR SAMPLES (1770)

Quarterly wind rose - 3OM level MAR'78 - APR'78

TOTAL \% UF CALMS DISTRIBUTED (4.20\%) TOTAL NO. 1 - HR SAMPLES (1333)

ANNUAL WIND ROSE - 3OM LEVEL
SEPT'77 - AUG'78
TOTAL \% OF CALMS DISTRIBUTED (2.24\%)
TOTAL NO. 1-HR SAMPLES (7335)

Figure A6.3.2A-4
METEOROLUGICAL TOWER 3OM ELEVATION QUARTERLY AND ANNUAL WINO ROSES

$$
\begin{array}{ll}
1977-1978 & 228
\end{array}
$$

1159

Quarterly wind rose - 3OM level JUNE'78 - AUG'78

TOTAL \% CALMS OISTRIBUTED (1.95\%) TOTAL NO. 1 - HR SAMPLES (2158)

Figure A6.3.2A-5
Station AB20 Quarterly Wind Rose - 10M Level (1976)

```
RB2O QUARTERLY WINO ROSE OIOM
                        SEP •7G - OCT •7G
                TOTAL % OF CALMS DISTRIBUTED 10.0%
                TOTAL NG. OF 1 HCUR SAmPLES -l40&
```


10M Level (1978)

$$
\begin{aligned}
& \text { AB20 QUNHILBLY HIHO HOSE Q } 10 \mathrm{H} \\
& \text { Jun •78 - nug • } 73 \\
& \text { total. \% of calms oistabbuico (2.99\%) } \\
& \text { total no. of } 1 \text { hour samples - } 1939
\end{aligned}
$$

AB2O Quarterly wind rose elom
MAR '78 - APR '78

$$
\stackrel{\text { iें }}{-1}
$$

Station AD42 Quarterly MRI Wind Roses - 10M Level (1978)
Figure A6.3.2A-7

$$
\text { is } 1
$$

HIHO SPEEO (MPS)

QUARTERLY MRI WIND ROSE ADYR
MAR $78-$ MAY $\cdots 78$
TOTAL \% OF CALLAS OISTAIBUTEO 10.00%
TOTAL NO. OF 1 HEUR SAMPLES -582
15%
10%

$$
\begin{aligned}
& \text { QUARTERLY MRI WIND ROSE AD42 } \\
& \text { tGtal \% of crlas oistabateo (0.00\%) } \\
& \text { total no. of } 1 \text { hour spmples - } 2198
\end{aligned}
$$

Figure A6.3.2A-8
Station AD56 Quarterly MRI Wind Roses - 10M Level (1978)
OUARTERLY MRI WIMD ROSE AD56
MAR 78 - MAY 78

$$
\begin{gathered}
20 \% \\
15 \%
\end{gathered}
$$

FIGURE A6.3.2A-9 C-b AVERAGE HOURLY INVERSION HEIGHT - BY QUARTER FOR 1978 STATION AB2O

hour of day
－－Constant pressure Lines（p）（mb）
－Constant potential temperature line（ θ ）（ ${ }^{\circ} \mathrm{K}$ ） \square JUNE 1976 MAXIMUM，MEAN，AND MINIMUM
INERSION HEIGHTS

FIGURE A6．3．2A－10 JUNE 1976 INVERSION HEIGHTS PLOTTED WITH CONSTANT POTENTIAL TEMPERATURE SURFACES through stations ab20 And ab23 ON 24 June 1976，0400－0600 MST．

FIGURE A6.3.2A-12 PIBAL ALTITUDE-TEMPERATURE
FOR SINGLE A!!D DOUBLE THEODOLITE OBSERVATIONS (EARLY MORNING)

APPENDIX A6.3.2B

Tracer Test Results

List of Figures Appearing in Appendix A6.3.2B
FIGURE NO. PAGE
A6.3.2B-1 Synoptic Weather Situation on 14 September 1978 240
A6.3.2B-2 Synoptic Weather Situation on 15 September 1978 240
A6.3.2B-3 Temperature Soundings Taken on 14 September 1978 241
A6.3.2B-4 Constant Potential Temperature Surfaces Constructed From Soundings Taken on 14 September 1978 241
A6.3.2B-5 Wind Soundings Taken on 14 September 1978 243
A6.3.2B-6 Streamlines of Drainage Situation Over Tract C-b 243
A6.3.2B-7 A Cross-Sectional View of the Drainage Flow 244
A6.3.2B-8 Streamlines of Upslope Flow Over Tract C-b 245
A6.3.2B-9 A Cross-Sectional View of the Upslope Flow 245
A6.3.2B-10 Streamlines of Synoptic Flow Over Tract C-b 246

To understand the distribution of tracer gas concentrations, one has to first understand the factors affecting such a distribution - namely, the meteorological conditions that existed during and immediately preceding the release of tracer gas.

Synoptic Weather Situation
After a frontal passage on September 11, a closed upper-level low formed north of Tract C-b. By the morning of September 14, a general northeast-southwest trough situation had developed from Manitoba to Nevada (See Figure A6.3.2B-1). Two distinct low pressure centers were centered in these areas with Colorado in between. Pressure gradients became weak over the tract.

After sunrise on the 14 th, an anomalous blocking pattern with a warm high over Western Canada formed. By the morning of the 15 th (Figure A6.3.2B-2) a fast west-east jet stream had set up along the U.S.-Canadian border. At the surface a rapidly moving, weak, dry front passed mainly south of the tract during the afternoon and early evening of the 14th. Clouds from this system cleared away shortly after midnight but the pressure maintained its weak pattern. By the afternoon of the 15 th, clouds and a strong southwest flow preceding another weather front were becoming established over the tract area.

The weak pressure gradients and the lack of clouds allowed the formation of strong drainage, particularly along Piceance Creek, on the morning of September 14. Although clouds formed during the afternoon of September 14, they cleared away shortly after midnight, allowing radiative cooling of the ground to take place. The drainage that developed on the morning of September 15, however, was much weaker than that of the 14th.

Meteorological Conditions on C-b Tract, 14 September 1978
The atmospheric structure over Piceance Creek as well as over the entire tract is best illustrated by soundings taken by tethersonde near Piceance Creek. Figure A6.3.2B-3 shows three soundings of temperature taken on September 14 。

As a result of strong radiative cooling, a very deep surface-based inversion appeared in the pre-dawn hours. This inversion was quite strong close to the surface but gradually weakened until about 500 m AGL, when it became isothermal. This situation was observed in soundings through 0700 MDT. Beginning at about 0800 MDT, the inversion lost more of its strength and the base of the isothermal layer lowered to about 350 m AGL. The destruction of the surface-based inversion began at about 0900 MDT and the top of the isothermal layer was detected at about 450 m AGL. This isothermal layer was topped by a neutral lapse layer. Further destruction of the surface-based inversion and lowering of the base of the neutral lapse layer continued until about 1100 MDT, when the inversion totally disappeared and was replaced by a neutral lapse condition. Similar conclusions could be derived from data collected by the acoustic radar at Site AB20.

Figure A6.3.2B-3 Temperature soundings taken on 14 September 1978.

Figure A6.3.2B-4 Constant potential temperature surfaces constructed from sounding taken on the morning of 14 September 1973.

This atmospheric structure would, of course, apply only along the Piceance Creek. However, one can infer that a surface-based inversion did exist over the entire tract, even on the ridges and above the release site. This inference is supported by the delta-temperature data collected at Site AB23 as well as by tethersonde profiles taken over the tract at various locations in 1976 (C-b Shale 0il Venture, 1976) Figure A6.3.2B-4 shows what the constant potential temperature surfaces should look like over the tract.

The soundings at Site 048 also provided valuable information concerning the wind flow above the Piceance Creek. Strong drainage was evident, with the maximum speed appearing shortly after 0600 MDT at about 150 m AGL. The synoptic flow pattern was not observed below about 600 m AGL in the early morning hours. As the morning advanced, the heat gained by the surface from solar radiation exceeded that lost by terrestrial radiation and the soil temperature rose, warming the air just above. This created pressure differences resulting in an upslope flow. The evidence of this upslope flow showed up at about 0900 MDT. At this time there were still remnants of the nighttime drainage on top of this newly developed upslope flow. The strongest shear appeared at around 200 m AGL. It was not until the end of the experiment, around 1100 MDT, that the drainage flow system was totally destroyed. Even at 1100 MDT, there was still a surface layer of upslope flow to about 150 m , above which existed the synoptic flow. This wind flow picture is illustrated in Figure A6.3.2B-5. It is interesting to note that at about $300 \mathrm{~m} A G L$, the wind speed was virtually zero at 0600-0700 MDT, the first hour of the sampling period.

The wind flow over the rest of the tract (other than over Piceance Creek) followed a similar pattern. Strong drainage prevailed between 0400-0600 MDT. Figure A6.3.2B-6 shows streamlines of the drainage situation while Figure $A 6.3 .2 B-7$ shows what the drainage looks like in a cross-section between Sites AB23 and AB20.

During the first hour of sampling, the overall pattern was still of the drainage type although almost calm conditions were detected at various locations over the tract. At the release site, the kytoon was observed to head towards the west, then rotated clockwise during the hour to finally end up pointing towards the south-southeast direction.

The second hour of sampling saw the head of the kytoon meandering between south-southeast to east. In other words, the wind at the level of release was from the south-southeast to east. Over other parts of the tract, the wind was light and often variable, with the predominant direction from the eastern sector. This is probably due to the fact that the tract is located west of the Continental Divide and in the macroscale, there would be a drainage that flows generally from east to west over the tract.

Between 0800-0900 MDT, the wind at the point of release, as indicated by the heading of the kytoon, was from the southeast to east. Meteorological data from other wind stations indicated that the wind was still light and variable, without a definitely organized flow system.

Figure A6.3.2B-5 Wind soundings taken on 14 September 1978.

Figure A6.3.2B-6 Streamlines of drainage situation over Tract C-b.

During the last two hours of the sampling period, the heading of the kytoon indicated that the wind at the point of release was from the north to east quadrant. Data collected also indicated that the wind was generally from the north in areas south of the Piceance Creek and from areas north of the Piceance Creek. This phenomenon is generalized in Figure A6.3.2B-8 and Figure A6.3.2B-9.

The synoptic flow (winds from the south) was never established at the surface during the sampling period. It appeared around noon. Figure A6.3.2B-10 shows a picture of the synoptic pattern in the afternoon.

Data collected at Site AB23 showed that turbulence was weak throughout the period of sampling, especially between 0600-0800 MDT.

In summary, during the first three hours of sampling drainage was evident along Piceance Creek and the gulches leading to Piceance Creek. Over the ridges and higher ground, the surface flow was disorganized and weak. In the last two hours of sampling, an upslope flow was discernible all over the tract. Turbulence was weak, especially between 0600-0800 MDT.

Figure A6.3.2B-7 A cross-sectional view of the dralnage flow.

Figure A6.3.28-8 Streamlines of upslope flow over Tract C-b.

Figure A6.3.2B-9 A cross-sectional view of the upslope flow.

Figure A6.3.2B-10 Streamlines of synoptic flow over Tract C-b.

Tracer Gas Release Data

The release rate was kept fairly constant during the experiment, at about $3.21 \mathrm{gm} / \mathrm{sec}(28.8 \mathrm{lb} / \mathrm{hr}$) in the first day and $3.14 \mathrm{gm} / \mathrm{sec}(28.0 \mathrm{lb} / \mathrm{hr}$) in the second day. The height of release was approximately $100 \mathrm{~m}(330 \mathrm{ft})$ AGL.

Distribution of Ground Level SF_{6} Concentration

The actual observed SF_{6} concentrations at all sites are presented in the data report for January 15, 1978.

Table A8.2.1-1a

Deer pellet-group densities in the chained rangeland habitat, 1977-78.

Transect	```Mean pellet-groups per acre \pm SE```	No. of 0.01 acre plots
$\begin{aligned} & \text { BA } 17 \\ & (\mathrm{CH}-\mathrm{C}-1) \end{aligned}$	235 ± 56	20
$\begin{aligned} & \mathrm{BA} 18 \\ & (\mathrm{CH}-\mathrm{C}-2) \end{aligned}$	245 ± 52	20
$\begin{aligned} & \mathrm{BA} 25 \\ & (\mathrm{CH}-\mathrm{C}-3) \end{aligned}$	385 ± 62	20
Combined	288 ± 33	60
$\begin{aligned} & \mathrm{BA} 21 \\ & (\mathrm{CH}-\mathrm{T}-1) \end{aligned}$	495 ± 67	20
$\begin{aligned} & \mathrm{BA} 20 \\ & (\mathrm{CH}-\mathrm{T}-2) \end{aligned}$	535 ± 72	20
$\begin{aligned} & \mathrm{BA} 23 \\ & (\mathrm{CH}-\mathrm{T}-3) \end{aligned}$	274 ± 38	19
Combined	437 ± 38	59

BA 21
$495 \pm 67$20
BA 20
$535 \pm 72$20
BA 23
274 ± 38
59

Deer pellet-group densities in the pinyon-juniper habitat, 1977-78.

Transect

> Mean pellet-groups
> per acre $\pm S E$

No. of 0.01
acre plots

BA 19
$(P J-C-1)$

BA 26
$(P J-C-2)$
BA 27
$(P J-C-3)$
360 ± 56
20
BA 19
$($ PJ-C-1)

BA 26
110 ± 34
(PJ-C-2)
$B A 27$
$(P J-C-3)$
245 ± 53
20

Combined
238 ± 31
60

BA 16
(PJ-T-1)

BA 22
195 ± 38
19
(PJ-T-2)

BA 24
(PJ-T-3)

Combined
198 ± 31
59

Deer pellet-group densities in the chained rangeland habitat on Big Jimmy ridge, 1977-78.

Transect	Mean pellet-groups per acre \pm SE	No. of 0.01 acre plots
BA 01	355 ± 60	20
BA 02	420 ± 73	20
BA 03	430 ± 66	20
BA 05 05	360 ± 41	20
BA 06	580 ± 88	20
BA 07	205 ± 44	20
BA 08	210 ± 69	20
Combined	415 ± 61	20

Table A8.2.1-1d

Deer pellet-group densities in the pinyon-juniper habitat north of Piceance Creek, 1977-78.

Transect	Mean pellet-groups per acre \pm SE	No. of 0.01 acre plots
BA 10	95 ± 26	20
BA 11	90 ± 22	20
BA 12	130 ± 31	20
Combined	105 ± 15	60
BA 13	345 ± 69	20
BA 14	440 ± 47	20
BA 15	285 ± 48	20
Combined	357 ± 33	60

Mule deer road counts conducted from Fall 1977 to Spring 1978.

Mile	SEP			OCT					NOV				Fall Totals
	Location	22	29	6	13	20	24	27	3	10	17	24	
41	White River												
40													
39													
38													
37													
36													
35													
34	Little Hi											4	4
33 (3													
32													3
31								40	15	13		19	87
30								12					12
29 (29													
28						3	7						10
27							5			8	7		20
26							7	9					16
25							5	42	24				71
24	Rock School							4		21			25
23												5	5
22						4	18	51	23		24	10	130
21	Hunter Cr						16	18		83	10	6	133
20	PL Gate				14	15	126	150	7	72	57	7	448
19	AQ 020					8	106	205	96		61		476
18	Sorghum,						115	122	41	60	45	9	392
17	Stewart G						30	101	236	138	8	5	518
16	AQ Traile						25	28	25	21	8	17	124
15							6	25	5		6		42
14								3	15				18
13								6					6
12	Sprague G								3	2			5
11 (10 20													
9 (9													
8													
7													
6													
5													
4													
3								6					
2							1	7					8
1							3	3					6
0	Rio Blanc							2					2
TOTA		0	0	0	14	30	480	837	498	418	226	82	

Table A8.2.2-1 (Continued)

Mile	Location	DEC					JAN				Winter Totals
		3	8	15	21	29	5	12	19	25	
41	White River										
40											
39										5	5
38											
37											
36											
35											
34	Little Hills				1						1
33			1			2					3
32			7	3							10
31		13	15	5		8				5	46
30			10								10
29											
28					5	3					8
27			6	15							21
26					3						3
25			4		6						10
24	Rock School				5	5					10
23							1			1	2
22		9	68	34	4	18	12	1		8	154
21	Hunter Creek	19.	16							4	39
20	PL Gate		2	23			2				27
19	$A Q 020$		4								4
18	Sorghum, Cottonwood										
17	Stewart Gulch Rd.										
16	AQ Trailer 021						1				
15						2					2
14											
13			5								5
12	Sprague Gulch										
11				5							
10							3				3
9							2				2
7							6				6
6											
5										1	1
4 (1											
3											
2											
1											
0	Rio Blanco						2				2
TOTAL		41	138	85	24	38	29	1	0	24	

Table A8.2.2-1 (Continued)

Mile	Location	FEB				MAR					Spring Totals
		2	9	16	23	2	9	16	23	30	
41	White River										
40							23		48		71
39					17	7		13	6		43
38					3		9	10	11		33
37				3	17		1	21	24		66
36					11				28		39
35			2	15	7				1	1	26
34	Little Hills			3	2						5
33					13			5			18
32					3	6	4	2		5	20
31					13	2	7	59	41	14	136
30				21	20	2	18	9	38		108
29					26	10		55	11	15	117
28			5	8	18	28	18			25	102
27					23			21	24	5	73
26					2		7	10	20	40	79
25				13	40		12	27	113	88	293
24	Rock School	6		11	53	2	17	40	39	58	226
23				3	11		8	13	19	17	71
22		2	13	9	23		37	9	81	61	235
21	Hunter Creek			8	74		61	62	12		217
20	PL Gate			31	13		24	45	25	75	213
19	AQ 020		3	18			13	22	49	47	152
18	Sorghum, Cottonwood		3	6			3	43	8	57	120
17	Stewart Gulch Rd.		4		20	3	10	15		18	70
16	AQ Trailer 021				5			5	4	12	26
15				10	4			33	3	2	52
14			3	4	8			20		10	45
13			21	18	13	8	1	21		21	103
12	Sprague Gulch		26	5	41	1	11	67		20	171
11		1	8	36	22	1	4	79		12	163
10			14	51	24			23		6	118
9		5	3	9	7	7	8	50		27	130
8		21	9	13	31	11	54	37	15		191
7			4	4	19	3	21	42	3	30	126
6			16		16		9	50		3	94
5 4						3		22			25
					9		23	18	1		51
3 2		2		25	6			21			54
1			1	23	28	3	18	39			112
0	Rio Blanco			14	8			26			48
TOT		37	135	361	650	97	421	1034	638	669	

Page 1 of 3

Table A8.5.7-1

BIRD SPECIES OBSERVED ON TRACT C-b DURING SPRING 1978 CENSUS

ORDER Family Species	Common Name	Observed		
		Pinyon-juniper	Chained pinyon-juniper	Fly over
FALCONIFORMES				
ACCIPITRIDAE				
Buteo jamaicensis	red-tailed hawk			x
COLUMBIFORMES				
COLUMBIDAE				
Zenaida macroura	mourning dove	x	x	
APODIFORMES				
APODIDAE				
Aeronautes saxatalis	white-throated swift			x
TRQCHILIDAE				
Selasphorus platycercus	broad-tailed hummingbird	x	x	
PICIFORMES				
PICIDAE				
Colaptes auratus	common flicker	x	x	
Sphyrapicus thyroideus	Williamson's sapsucker	x		
Picoides villosus	hairy woodpecker	x		
PASSERIFORMES				
TYRANNIDAE				
Myiarchus cinerascens	ash-throated flycatcher	x	x	
Empidonax ${ }^{\text {Emmondii }}$	Hammond's flycatcher	x		
Empidonax oberholseri	dusky flycatcher	x		

Table A8.5.1-1 (cont'd)
Page 2 of 3
x

ORDER	Common Name	Observed		
Family Species		Pinyon-juniper	Chained pinyon-juniper	Fly over
PASSERIFORMES (cont.)				
Gymnorhinus cyanocephalus Corvus corax	pinyon jay common raven	X	X	X
PARIDAE				
Parus gambeli	mountain chickadee	x		
Parus Inornatus	plain titmouse	x		
Psaltriparus minimus	bushtit	X		
\pm SItTIDAE				
$\stackrel{\sim}{0} \mathrm{~N}$ Sitta carolinensis	white-breasted nuthatch	X		
TROGLODYTIDAE X				
Troglodytes aedon	house wren	X	X	
TURDIDAE				
Myadestes townsendi	Townsend's solitaire	X		
Catharus guttata	hermit thrush	X		
Sialia currucoides	mountain bluebird	x	X	
VIREONIDAE				
Vireo solitarius	solitary vireo	X		
PARULIDAE				
Vermivora virginiae	Virginia's warbler	X		
Dendroica coronata	yellow-rumped warbler		X	
Dendroica	black-throated gray warbler	X	X	

Table A8.5.1-1 (cont'd)

ORDER Family Species	Common Name	Observed		
		Pinyon-juniper	Chained pinyon-juniper	Fly over
FRINGILLIDAE				
Pheucticus melanocephalus	black-headed grosbeak	x		
Carpodacus cassinii	Cassin's finch	x		
Carpodacus mexicanus	house finch		X	
Cardeulis pinus	pine siskin	x		
Pipilo chlorura	green-tailed towhee	X	X	
Pipilo erythropthalmus	rufous-sided towhee	X		
Passerculus sandwichensis	savannah sparrow		x	
pooecetes gramineus	vesper sparrow		x	
Junco caniceps	gray-headed junco	x		
Spizella passerina	chipping sparrow	X	X	
Spizella breweri	Brewer's sparrow	x	x	

AVIFAUNA ESTIMATES AT TRACT C-b FOR SPRING SAMPLE PERIOD, 1978 TRANSECT 1, CHAINED PINYON-JUNIPER RANGELAND (CONTROL).

Species	\#bs Obs det	Basal adj	Density /ha	\%Relative (1) abundance	
Mourning dove	1	1.00	$*$	0.02	0.9
Broad-tailed hummingbird	1	0.28	$*$	0.09	4.1
Ash-throated flycatcher	1	0.63	$*$	0.04	1.8
House wren	2	0.65	$*$	0.08	3.6
Mouncain blut ird	8	$*$	$*$	0.20	9.1
Black-throated gray warbler	1	1.00	$*$	0.03	1.4
House finch	1	0.62	$*$	0.04	1.8
Green-tailed towhee	8	0.57	$*$	0.36	16.4
Savannah sparrow	5	0.63	$*$	0.20	9.1
Chipping sparrow	1	0.63	$*$	0.04	1.8
Brewer's sparrow	21	0.49	$*$	1.10	50.0

(1) $\frac{\text { Species density/ha }}{2.20} \times 100 \%$

TABLE A8.5.1-2b
AVIFAUNA ESTIMATES AT TRACT C-b FOR SPRING SAMPLE PERIOD, 1978
TRANSECT 2, PINYON-JUNIPER WOODLAND (DISTURBED)

Species	非 Coef det	Basal adj	Density /ha	\% Relative (1) abundance	
Broad-tailed hummingbird	1	0.73	$*$	0.04	2.1
Common flicker	1	0.90	$*$	0.03	1.5
Ash-throated flycatcher	2	0.50	$*$	0.10	5.2
Pinyon jay	2	1.00	$*$	0.05	2.6
Mountain chickadee	5	0.56	$*$	0.23	11.8
Plain titinouse	1	0.31	$*$	0.08	4.1
Bushtit	3	0.22	$*$	0.35	18.0
White-breasted nuthatch	1	0.59	$*$	0.04	2.1
Mountain bluebird	3	0.42	$*$	0.18	9.2
Solitary vireo	2	0.59	$*$	0.09	4.6
Virginia's warbler	7	0.75	$*$	0.24	12.4
Black-throated gray warbler	8	0.60	$*$	0.34	17.5
Black-headed grosbeak	1	0.75	$*$	0.03	1.5
Gray-headed junco	1	0.43	$*$	0.06	3.1.
Brewer's sparrow	2	0.62	$*$	0.08	4.1

(1) $\frac{\text { Species density/ha }}{2.20} \times 100 \%$

AVIFAUNA ESTIMATES AT TRACT C-b FOR SPRING SAMPLE PERIOD, 1978 TRANSECT 3, CHAINED PINYON-JUNIPER RANGELAND (DISTURBED)

| Species | \#bs
 Obeff
 det | Basal
 adj | Density
 /ha | \% Relative (1)
 abundance | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Broad-tailed hummingbird | 1 | 0.28 | $*$ | 0.09 | 2.3 |
| Common flicker | 2 | 1.00 | $*$ | 0.05 | 1.3 |
| Ash-throated flycatcher | 3 | 0.63 | $*$ | 0.12 | 3.1 |
| Pinyon jay | 4 | 0.25 | $*$ | 0.41 | 10.7 |
| House wren | 2 | 0.65 | $*$ | 0.15 | 2.1 |
| Mountain bluebird | 10 | $*$ | $*$ | 0.26 | 6.8 |
| Yellow-rumped warbler | 2 | 0.19 | $*$ | 0.27 | 7.0 |
| Green-tailed towhee | 24 | 0.57 | $*$ | 1.08 | 28.2 |
| Vesper sparrow | 3 | 0.57 | $*$ | 0.10 | 2.6 |
| Chipping sparrow | 3 | 0.63 | $*$ | 0.12 | 3.1 |
| Brewer's sparrow | 24 | 0.49 | $*$ | 1.25 | 32.6 |

(1) Species density/ha $\times 100 \%$

AVIFAUNA ESTIMATES AT TRACT C-b FOR SPRING SAMPLE PERIOD, 1978

 TRANSECT 4, PINYON-JUNIPER WOODLAND (CONTROL)| Species | \#
 Obs | Coeff
 det | Basal
 adj | Density
 /ha | \% Relative (1)
 abundance |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Mourning dove | 5 | 0.74 | $*$ | 0.17 | 4.2 |
| Williamson's sapsucker | 1 | 0.38 | $*$ | 0.07 | 1.7 |
| Hammond's flycatcher | 1 | 0.25 | $*$ | 0.10 | 2.5 |
| Dusky flycatcher | 7 | 0.44 | $*$ | 0.41 | 10.2 |
| Mountain chickadee | 5 | 0.56 | $*$ | 0.23 | 5.7 |
| Bushtit | 2 | 0.22 | $*$ | 0.23 | 5.7 |
| House wren | 5 | 0.45 | $*$ | 0.28 | 6.9 |
| Hermit thrush | 4 | 0.66 | $*$ | 0.16 | 4.0 |
| Mountain bluebird | 10 | 0.42 | $*$ | 0.61 | 15.1 |
| Solitary vireo | 7 | 0.59 | $*$ | 0.30 | 7.4 |
| Black-throated gray warbler | 16 | 0.60 | $*$ | 0.68 | 16.9 |
| Black-headed grosbeak | 2 | 0.75 | $*$ | 0.07 | 1.7 |
| Cassin's finch | 1 | 0.50 | $*$ | 0.05 | 1.2 |
| Pine siskin | 1 | 0.43 | $*$ | 0.06 | 1.5 |
| Green-tailed towhee | 2 | 0.54 | $*$ | 0.10 | 2.5 |
| Rufous-sided towhee | 1 | 0.54 | $*$ | 0.05 | 1.2 |
| Chipping sparrow | 5 | 0.34 | $*$ | 0.38 | 9.4 |
| Brewer's sparrow | 2 | 0.62 | $*$ | 0.08 | 2.0 |

(1) $\frac{\text { Species density } / \text { ha }}{2.20} \times 100 \%$
Table A8.6.2-1

Table A8.6.2-1 (Continued)

Truxon

i. tripunctata var. schizonemoides
ii. viridula var. avenacea ii. viridula var. avenacea N. spp.
ve:diun sp
Nitzschia acicularis
Mitzschia acicularis
N. anicilata
N. dissipata
hencarica

- sicmoidea
‥ tryblionella var. levidensis
\therefore
Pinnularia borealis
P1 Sp.
Rhepaledia gibba var.
R. rusculus

Unidentified centrics
Table A8.6.2-1 (Continued)

	Stewart			
Rep 4	Rep 5	Rep 6	Mean	KRA
43	43	16	34.0	5.1
579	749	682	670.0	99.9
2			0.7	0.1
2			0.7	0.1

Hunter					
Rep 4	Rep 5	Rep 6	Mean	2RA	
38	36	26	33.3	7.1	
439	520	417	458.7	98.2	
2		2	1.3	0.3	
4	8	P	4.0	0.8	
8			2.7	0.6	
14	8	2	8.0	1.7	

Oscillatoria sp.	2			0.7	0.1					
Total Cyanophyta	2			0.7	0.1					
Cryptomonas ovata							2		0.7	0.1
Total Cryptophyta							2		0.7	0.1
Total Individuals	581	749	682	670.7		453	530	419	467.3	
Total Taxa	32	24	36	46		28	25	26	39	
Diversity ($\overline{\mathrm{d}}$)	3.64	3.48	3.0 ¢	3.67		3.69	3.50	3.42	3.70	
Maximum diversity ($\bar{d} \mathrm{max}$)	4.75	4.52	4.95	5.28		4.46	4.52	4.58	5.09	
Equitability (\%)	76.60	76.97	73.18	69.39		82.85	77.39	74.67	72.63	

Table A8.6.2-2

Taxon	Stewart					Hunter				
	Rep 4	Rep 5	Rep 6	Mean	\%RA	Rep 4	Rep	Rep 6	Mean	2RA
DIVISION BACILLARIOPHYTA (Diatoms)										
A. lanceolata var. dubia	6,190	39,200	41,200	28, 2 ? 0	3.8	79,400	43,100	61,200	61,250	7.6
A. minutissima	39,200	53,600	70,100	54,310	7.2	68,000	70,300	49,900	62,760	7.8
Amphora sp.		2,060		687	0.1	4,540		6,810	2,269	0.3
Cocconeis pediculus	P	P	2,060	687	0.1	2,270	2,270		1,513	0.2
C. placentula						6,810	P	4,540	3,781	0.5
Cyclotella meneghiniana	2,060	P	10,300	4,120	0.5					
Cymbella minuta	P		P	P						
C. sp.		P		P						
Fragilaria crotonensis			P	P						
\underline{F}. sp.	2,060			687	0.1		6,810		2,269	0.3
Gomphonema intricatum var. vibrio	P			P				2,270	756	0.1
G. olivaceum	14,400	18,600	8,250	13,750	1.8	25,000	4,540	6,810	12,100	1.5
G. parvulum	6,190	6,190	2,060	4,812	0.6		P	2,270	756	0.1
G. spp.	2,060	4,120		2,060	0.3	9,070			3,025	0.4
Hannaea arcus		P		P						
Hantzschia amphioxy		P	P	P						
Navicula cryptocephala var. veneta.	18,600	26,800	26,800	24,060	3.2	6,810			2,269	0.3
N. minina	12,400	14,400	18,600	15,120	2.0	4,540	6,810	13,600	8,320	1.0
N. secreta var. apiculata	57,700	74,200	66,000	66,000	8.8	22,700	22,700	34,000	26,470	3.3
N. tripunctata var. schizonemoides							2,270		756	0.1
N. viridula var. avenacea	16,500	16,500	33,000	22,000	2.9	95,300	86,200	79,400	86,960	10.7
N. spp.		37,100	6190	14,440	1.9		6810		2269	0.3

Table A8.6.2-2 (Continued)

Stewart					Hunter				
Rep 4	Rep 5	Rep 6	Mean	\$RA	Rep 4	Rep 5	Rep 6	Mean	\$RA
53,600	53,600	82,500	63,250	25.2	216,000	284,000	263,000	254,100	31.4
		P	P						
	4,120	2,060	2,060	0.3	13,600	2,270	15,900	10,590	1.3
2,060	2,060	4,120	2,750	0.4		2,270		756	0.1
		6,190	2,062	0.3					
72,200	78,400	51,600	67,370	8.9	61,200	122,000	93,000	92,200	11.4
						P		P	
315,500	338,200	286,700	313,500	41.6	83,900	188,000	141,000	137,600	17.0
p		P	P				2,270	756	0.1
P	P	2,060	687	0.1		P	4,540	1,512	0.2
8,250	4,120	8,250	6,875	0.9	13,600	4,540	4,540	7,562	0.9
6,190	P		2,062	0.3					
	4,120		1,406	0.2	2,270			756	0.1
2,060	2,060		1,375	0.2			2,270	$\because 36$	0.1
22,700	43,300	24,700	30,250	4.0	9,070	13,600	31,800	18,150	2.2
660,600	823,000	753,000	745,200	98.4	726,000	869,000	819,000	804,600	99.4
		2,060	687	0.1					
					2,270			756	0.1
	2,060		687	0.1	2,270	4,540		2,269	0.3
	2,060	P	687	0.1					
16,500	2,060	P	6,187	0.8					
16,500	6,190	2,060	8,249	1.1	4,540	4,540		3,025	0.4

DIVISION CHLOROPHYTA (Green algae)

Synedra ulna
Surirclla angustata
N. apiculata
N. dissipata
N. hungarica
N. $\frac{\text { lincaris }}{\text { N. palea }}$
N. signoidea
N. spp.
Vitzschia acicularis
Total Bacillariophyta
Table A8.6.2-2 (Continued)

	Stewart					Hunter				
Taxon	Rep 4	Rep 5	Rep 6	Mean	\%RA	Rep 4	Rep 5	Rep 6	Mean	\%RA
DIVISION CYANOPHYTA (Blue-green algae)										
Chroococcus sp.		P		P						
Oscillatoria sp.							4,540		1,512	0.2
Total Cyanophyta		p		P			4,540		1,512	0.2
Total Individuals	676,000	829,000	755,000	753,400		730,000	878,000	819,000	809,100	
Total Taxa	25	31	28	39		21	23	19	32	
Diversity (d)	2.87	3.13	3.17	3.15		3.27	72.86	3.09	3.14	
Maximum diversity ($\overline{\mathrm{d}}$ max)	4.32	4.52	4.39	4.95		4.39	4.25	4.25	4.95	
Equitability (\%)	66.44	69.29	72.17	63.55		74.40	67.45	72.65	63.35	

[^13]Table A8.6.2-3
Abundance (units/cm ${ }^{2}$), Percent Relative Abundance (\%RA), and Species Diveraity of Periphyton from Artificial Substrates on Piceance Creek, Colorado,

Stewart					Hunter				
Rep 1	Rep 2	Rep 3	Mean	2RA	Rep 1	Rep 2	Rep 3	Mean	2RA
18,974	22,769	92,972	44,905.0	9.0	34,153	18,974	14,230	22,452.3	5.9
177,406	200,175	235,276	204,285.7	41.1	83,485	124,279	93,921	100,561.7	26.4
203,021	123,330	192,585	172,978.7	34.8	135,663	142,304	159,380	145,782.3	38.3
2,846	1,897	5,692	3,478.3	0.7	949	949		632.7	0.2
	P	P	P	-	P	P		P	-
P	949	17,077	6,008.7	1.2	P	949	P	316.3	0.1
3,795	1,897	1,897	2,529.7	0.5	15,179	13,282	12,333	13,598.0	3.6
		949	316.3	0.1		P	2,846	948.7	0.2
					P		P	P	-
P			P	-					
949	P		316.3	0.1					
		2,846	948.1	0.2					
949			316.3	0.1					
					P			P	-
					949	2,846	P	1,265.0	0.3
19,923	11,384	7,590	12,965.7	2.6	4,743	3,795	949	3,162.3	0.8
	949	9,487	3,478.7	0.7	4,743	1,897	2,846	3,162.3	0.8
6,641	4,743	10,436	7,273.3	1.5	18,025	13,282	3,795	11,700.7	3.1
	2,846		948.7	0.2					
3,795	3,795	7,590	5,060.0	1.0	12,333	16,128	14,230	14,230.3	3.7
P		949	316.3	0.1		P		P	-
2,846		P	948.7	0.2	8,538	6,641	7,590	7,589.7	2.0

Taxon
dIVISION BACILLARIOPHYTA (DIatoms)

Hunter				
Rep 1	Rep 2	Rep 3	Mean	\%RA
7,590	4,743		4,111.0	1.1
P		949	316.3	0.1
	949	949	632.7	0.2
P		1,897	632.3	0.2
P		P	P	-
8,538	5,692	9,487	7,905.7	2.1
1,897	1,897		1,264.7	0.3
949	949	949	949.0	0.2
	P		P	-
	P		P	-
		P	P	-
5,692	949	3,795	3,478.7	0.9
343,428	360,504	330,146	$\because: 4,692.7$	90.5
		P	P	-
11,384	38,896	49,332	33,204.0	8.7
	949		316.3	0.1
2,846	949	3,795	2,530.0	0.7
14,230	40,794	53,127	36,050.3	9.5

Table A8.6.2-3 (Continued)

Stewart				
Rep 1	Rep 2	Rep 3	Mean	\%RA
2,846	949		1,265.0	0.2
949	2,846	949	1,581.3	0.3
P	P	P	P	-
	949	P	316.3	0.1
1,897	3,795	6,641	4,111.0	0.8
	1,897	949	948.7	0.2
949	?	P	316.3	0.1
P	949	P	316.3	0.1
		P	P	-
1,897	1,897	1,897	1,897.0	0.4
449,683	388, 017	595,780	477,826.7	96.0
		2,846	948.7	0.2
5,692	8,538	13,282	9,170.7	2.0
18,025	5,692	2,846	8,854.3	1.8
23,717	14,230	18,974	18,973.7	3.8

Table A8.6.2-3 (Continued)
Maximum diversity ($\bar{d}_{\text {max }}$) Equitability (\%)

$$
\begin{array}{rrrc}
473.399 & 403.196 & 615,703 & 497,432.7 \\
23 & 25 & 31 & 36 \\
2.16 & 2.18 & 2.44 & 2.37 \\
4.17 & 4.39 & 4.39 & 4.91 \\
51.70 & 49.63 & 55.60 & 48.35
\end{array}
$$

$$
\begin{aligned}
& \text { Taxon } \\
& \text { DIVISION CYANOPHYTA (Blue-green algae) } \\
& \text { Chroococcus sp. } \\
& \text { M.ri:inomidin tenuloulma } \\
& \text { Oscillatoria sp. } \\
& \text { Plunguldlum sp. } \\
& \text { Total Cyanophyta }
\end{aligned}
$$

Table A8.6.2-4

Stewart					Hunter				
Rep 1	Rep 2	Rep 3	Mean	\%RA	Rep 1	Rep 2	Rep 3	Mean	2RA
1,107	2,372	1,739	1.739 .3	3.3	9,487	7.590	9,487	8,854.7	3.1
16,760	13,756	20,081	16,865.7	32.0	36,999	100,562	61.665	66,408.7	23.2
3,953	5,099	11,226	$6,759.3$	12.8	116,690	41,742	116,690	91,707.3	32.1
632	593	158	461.0	0.9	16,128	4,743	8,538	9,803.0	3.4
474	949	949	790.7	1.5	949	P	P	316.3	0.1
1.739	4,743	10,594	5,692.0	10.8	61,665	14,230	30,358	$35,417.7$	12.4
4,111	4,506	6,166	4,927.7	9.4	12,333	28,461	11.384	17,392.7	6.1
790	356	316	487.3	0.9	949	2,846	2,846	2,213.7	0.8
					P			P	-
	118		39.3	0.1			949	316.3	0.1
	237		79.0	0.2					
					1,897			632.3	0.2
	474	316	263.3	0.5		949	4,744	1,897.7	0.6
474	712	1,265	817.0	1.6	2,846	3.795	2,846	3,162.3	1.1
		316	105.3	0.2	949			316.3	0.1
		158	52.7	0.1		P		P	-
P			P	-					
					P			P	-
	P		P	-					
P			P	-	949			316.3	0.1
474	2,846	3,637	2319.0	4.4		1.897	949	948.7	0.3
474	356	1,107	645.7	1.2					
158	1,067	474	566.3	1.1	2,846	1,897	P	1,581.0	0.6
1,107	4,981	4,269	3,452.3	6.6	3.795	9,487	8,538	7,273.3	2.5

DIVISION BACILLARIOPHYTA (Diatoms)
Achnanthes lanceolata
A. lancaclata var. dubia
A. minutissima
Amphora perpusilla
A. sp.
Cocconets pediculus
C. placentula var. euglypta
Cvclotella meneghintana Cvmatupleura elliptica Cvmatopleura elliptica
Cymbella affinis Cymbella affinis Fracilaria vaucheriae Gomphonema olivaceum G. parvulum G. spp. Gyrosigma sp. Hantzschia amphioxys Meridion circulare Navicula capitata N. cryptocephala N. cryptocephala N. nr. Iuzonensis

N. secreta var. apiculata N. notha

Rep 1	Rep 2	Rep 3		
P		2,846	948.7	0.3
6,641	10,436	15,179	10,752.0	3.8
	4.743	2,846	2,529.7	0.9
P		949	316.3	0.1
949	949	949	949.0	0.3
1,897	2,846	2,846	2,529.7	0.9
949			316.3	0.1
p	1,897		632.3	0.2
P			P	-
5,692	7,590	10,436	7,906.0	2.8
P	949	${ }^{\text {P }}$	316.3	0.1
P	1,897	3,795	1,897.3	0.7
		P	P	-
949	949	P	632.7	0.2
5,692		10,436	5,376.0	1.9
291,249	250,455	309,275	283,659.7	99.2
949		1,897	948.7	0.3
	949	2,846	1,265.0	0.4
949	949	4.743	2,213.7	0.8

Table A8.6.2-4 (Continued)

	Stewart				
Rep 1	Rep 2	Rep 3	Mean	KRA	
632	356	474	487.3	0.9	
	356.	158	171.3	0.3	
632	1,186		606.0	1.2	
	P	158	52.7	0.1	
	118	316	144.7	0.3	

…․․ㅇ․

$\stackrel{\infty}{\exists} \underset{\rightrightarrows}{\approx} \approx \stackrel{\infty}{\circ}$
~

$$
\begin{aligned}
& \begin{array}{l}
873.3 \\
37 \\
3.32 \\
5.04 \\
65.88
\end{array}
\end{aligned}
$$

Table A8.6.2-5

Taxon	Stewart					Hunter			
	Rep 1	Rep 2	Rep 3	Mean	\%RA	Rep 1	Rep 2	Rep 3 Mean	\%RA
LIVISION BACILLARIOPHYTA									
Achnanthes lanceolata	10,587	7,562	4,537	7,562.0	1.8			SAMPLER DESTROYED	
A. lanceolata var. dubia	3,025	P	1,512	1,512.3	0.4				
A. minutissima	323,656	302,482	453,724	359,954.0	83.7				
Amphora veneta		1,512		504.0	0.1				
A. sp.	P	P	1,512	503.3	0.1				
Cocconeis pediculus	48,397	13,612	19,661	27,223.3	6.3				
C. placentula var. euglypta	6,050	6,050	3,025	5,041.7	1.2				
Cymbella minuta	3,025	P	P	1,008.3	0.2				
Gomphonema subclavatum		P		P					
G. truncatum			4,537	1,512.3	0.4				
\underline{G}. spp.	1,512	3,025	1,512	2,016.3	0.5				
Navicula cryptocephala var. veneta	12,099	P	3,025	5,041.3	1.2				
N. secreta var. apiculata	1,512	1,512	3,025	2,016.3	0.5				
N. viridula var. avenacea		P		P					
N. spp.	3,025			1,008.3	0.2				
Nitzschia spp.	7,562	15,124	4,537	9,074.3	2.1				
Unidentlfied pennates	4,537	4,537	1,512	3,528.7	0.8				
Total Bacillariophyta	424,988	355,417	502,121	427,508.7	99.4				
DIVISION CHLOROPHYTA									
Oedogonium sp.		P							
Stigeoclonium sp.	P	P	1,512	504.0	0.1				
Unidentified coccold		6,050		2,016.7	0.5				
Total Chlorophyta	P	6,050	1,512	2,520.7	0.6				

Table A8.6.2-5 (Continued)

$$
\begin{aligned}
& \begin{array}{c}
\text { Rep 1 } \frac{\text { Hunter }}{\text { Rep } 2} \text { Mean } \\
\text { SAMPLER DESTROYED }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\mathrm{d} & \mathrm{~d} \\
\mathrm{~d} & \\
d & \\
d & d \\
d & \\
d &
\end{array} \\
& \begin{array}{rrrr}
424,988 & 361,467 & 503,633 & 430,029.3 \\
15 & 19 & 16 & 22 \\
1.40 & 1.10 & 0.76 & 1.14 \\
3.58 & 3.32 & 3.70 & 4.09 \\
39.19 & 33.20 & 20.55 & 27.77
\end{array} \\
& \text { Equitability (\%) } \\
& P=\text { Present }
\end{aligned}
$$

Table A8.6.2-6

$$
\begin{aligned}
& \begin{array}{l}
\text { 8, Cre } \\
\\
\hline
\end{array}
\end{aligned}
$$

Abundance (units $/ \mathrm{cm}^{2}$), Percent Relative Abundance (\%RA) and Species Diversity

Table A8.6.2-6 (Continued)

Table A8.6.2-6 (Continued)

	Stewart					Hunter				
Taxon	Rep 1	Rep 2	Rep 3	Mean	\%RA	Rep 1	Rep 2	Rep 3	Mean	2RA
dIYISION CHLOROPHYTA (Green algae)										
Closterium sp.						P	P	P	P	
Oedogonium sp.		P		P		379	P		126.3	0.2
Scendesmus acutus			P	P						
Stigeoclonium sp.	2,269	1,134	1,134	1,512.3	0.4			190	63.3	0.1
Ulothrix sp.		P	P	P						
Unidentified flagellate		P		P						
Unidentified filament	P			P		379			126.3	0.2
Total Chlorophyta	2,269	1,134	1,134	1,512.3	0.4	758	P	190	316.0	0.5
DIVISION CYANOPHYTA (Blue-green algae)										
Chroococcus sp.								285	95.6	0.1
Unidentified filament			P	P						
Total Cyanophyta			P	P				285	95.0	0.1
DIVISION CHRYSOPHYTA										
Unidentified coccoid							1,518		506.0	0.8
Total Chrysophyta							1,518		506.0	0.8
Total Individuals	361,845	390,202	368,651	373,566.0		78,742	63,373	51,514	64,543.0	
Total Taxa	24	34	31	44		27	26	30	40	
Diversity ($\overline{\mathrm{d}}$)	1.43	1.37	2.03	1.7057		3.08	2.87	3.25	3.15	
Maximum diversity (\bar{d} max)	4.09	4.00	4.25	4.58		4.46	4.25	4.70	5.00	
Equitability (\%)	35.06	34.32	47.89	37.20		68.99	67.62	69.10	69.92	

$P=$ present but not encountered while counting

Table A8.6.2-7
Sumary Species Lifet of Perfplyton Collected at Stewart and
Hunter Stations. Piceance Creck, Colorado, 1978

Table A8.6.2-7 (Continued)

Table A8.6.2-8

Summary of Species Diversity (\bar{d}) of the Mean for Periphyton Collected at Stewart and Hunter Stations, Piceance Creek, Colorado, 1978.

Date	Stewart	Hunter
May	3.67	3.70
June	3.15	3.14
July	2.37	2.78
August	3.59	3.32
September	1.14	Sampler Destroyed
October	1.70	3.15

Summary of Mean Biomass ($\mathrm{mg} / \mathrm{cm}^{2}$) Expressed as Ash-free Dry Weight for Periphyton Collected at Stewart and Hunter Stations, Piceance Creek, Colorado, 1978.

Date	Stewart	Hunter
May	0.52	0.66
June	0.42	1.66
July	0.24	0.37
August	0.05	0.28
September	0.35	Sampler Destroyed
October	0.13	0.22

TABLE A8.6.2-10

r.3 TAXA	$197:$					1975						1976			
	AIIG	SEP	OCT	1 HOV	UCC	JMH:	MAR	play	, Jut	SEP	1 HOV	JAN	PAR	"AY	1 JU.
Cillornlulvitai:															
Actinustrum sp.															
cladophora sp.															
Chactophora sp.															
closterium sp.															
Closterium licbleinii															
Closterium lunuls															
Clostoriun crachlis															
Cosmarium sp.															
Eintcromorpha sp.															
Microspora sp.															
Pediastrum sp.															
Protococcus sp.															
Protococcus virjdis															
Protodermi viride															
scencdesmus sp.															
Spirogyra sp.															
Stigocionium sp.															
Ulothrix sp.															
Ulothrix zonata															
zygnema sp.															
Draparnaldia sp.															
Unidentified Eygmemaraceaen															
Unidentified Green Coccoid															
BACILLAKIOPHIYCEAE															
Achnanthes lanccolata															
-Achnanthes lanceolata var. Dubia															
Amphora sp.		X	x	X											
Amphora ovalis									X		X		X	X	Y
Amphiphora ornata															
Astcrionella sp.															
Caloneis sp.		X	X												
Caloneis amphisbaena									X						
Caloneis silicula									X						
Ceratoncis sp.															
Cocconeis sp.			x	x											
Cocconeis placentula									X	X	x	x		X	x
Cymbella sp.		x	x												
Cymbella affinis									x						
Cymbella ventricosa										x	x				
Cymbclia tumida															
Cyclotella sp.															
Cyclotel ma menteghiniana															
Cymatopleura sp.				x											
Cymatopluura solca									\times				\times		
Deploncis sp.															
viatoma sp.				X											
Eunotia sp.															
Eunotju jrctnalis															
rragiturja sp.				X											
Fragilusia crotomerisis									X					-	\times
Froriliarlu crineteunds		x													

Station

TABLE A8.6.2-11
Station

TABLE A8.6.2-12

Table A8.7.1-1 . Herb quadrat summaries for Plot 1-0. Based on data from 25 permanently located quadrats. June 1978. Values in percents. "?" indicates uncertain identification. \pm Values are equal to the standard error of the mean.

Species	Mean Cover	Relative Cover	Range of Cover Values	Frequency
Agoseris glauca	0.1	0.01	0-1	16
Agropyron desertorum	3.6	0.25	0-20	40
Agropyron smithii	1.7	0.12	0-15	52
Antennaria rosea	0.7	0.05	0-6	20
Arabis holboellii	0.1	0.01	0-1	8
Artemisia ludoviciana	0.4	0.03	0-6	12
Aster fendleri	<0.1	<0.01	0-<1	4
Bouteloua gracilis	0.6	0.04	0-15	8
Bromus tectorum	0.8	0.06	0-3	88
Carex pennsylvanica	0.3	0.02	0-4	20
Chaenactis douglasii	0.1	0.01	<1-1	24
Chenopodium album	<0.1	<0.01	0-<1	12
Cryptantha sp.	0.1	0.01	<1-1	16
Descurainia pinnata	<0.1	<0.01	0-<1	8
Euphorbia robusta	<0.1	<0.01	0-<1	3
Festuca brachyphy1la (?)	0.2	0.02	0-6	8
Gayophytum ramocissimum	<0.1	<0.01	$0-<1$	32
Ipomopsis aggregata	<0.1	<0.01	$0-<1$	4
Lappula redowskii	0.1	0.01	0-1	12
Lepidium densiflorum	<0.1	<0.01	$0-<1$	4
Lomatium orientale	<0.1	<0.01	$0-<1$	8
Lupinus argenteus	<0.1	<0.01	$0-<1$	4
Mentzelia dispersa	0.1	0.01	0-1	12
Oryzopsis hymenoides	3.2	0.22	0-15	76
Phlox longifolia	<0.1	<0.01	$0-<1$	8
Poa fendleriana	0.1	0.01	0-3	4
Polygonum sawatchense	<0.1	<0.01	$0-<1$	28
Sitanion longifolium	0.4	0.03	0-2	32
Stipa comata	1.6	0.11	0-9	28
Townsendia sericea	<0.1	<0.01	0-<1	4
Unknown grass	0.1	0.01	0-3	4
Artemisia tridentata	<0.1	<0.01	0-<1	20
Gutierrezia sarothrae	0.2	1.10	0-2	20
Pinus edulis			$0-<1$	4
Total Herb	12.3		1-30	100
Total Woody	0.2		0-2	40
Mosses	0.3		0-5	12
Crustose Lichen	1.0		0-10	40
Litter	75.0		8-100	100
Bare Soil	21.4		0-89	96
Rock	2.5		0-25	56

Mean No. of Herb Species per $\mathrm{m}^{2}=6.32 \pm 0.55$
Mean No. of Species per $\mathrm{m}^{2}=6.56 \pm 0.55$

Table A8.7.1-2 . Herb quadrat summaries for Plot 1-F. Based on data from 25 permanently located quadrats. Jume 1978. Values in percents. "?" indicates uncertain identification. \pm Values are equal to the standard error of the mean.

Species	Mean Cover	Relative Cover	Range of Cover Values	Frequency
Agoseris glauca	0.1	0.38	0-1	12
Agropyron dasystachyrm	0.3	1.54	0-5	8
Agropyron desertorum	4.2	20.35	0-30	44
Agropyron smithii	0.8	3.65	0-11	16
Antennaria parvifolia	<0.1	<0.01	$0-<1$	8
Antennaria rosea	0.1	0.58	0-2	12
Arabis holboellii	<0.1	<0.01	$0-<1$	8
Artemisia ludoviciana	0.1	0.19	0-1	4
Aster fendleri	0.2	0.96	0-4	16
Astragalus ceramicus	0.1	0.19	0-1	32
Bromus tectorum	0.6	2.69	0-5	68
Carex pennsylvanica	0.3	1.34	0-4	12
Chaenactis douglasii	<0.1	<0.01	$0-<1$	4
Chenopodium album	<0.1	<0.01	$0-<1$	12
Coilin:ia parviflora	0.0	0.19	0-1	4
Cryptantha sp.	<0.1	<0.01	$0-<1$	4
Delphinium nelsoni	0.0	0.19	0-1	4
Descurainia pinnata	<0.1	<0.01	$0-<1$	8
Draba reptans	<0.1	<0.01	$0-<1$	4
Erigeron nematophylius	0.1	0.19	0-1	4
Festuca brachyphylla (?)	0.4	2.11	0-6	20
Gayophytum ramocissimum	<0.1	<0.01	$0-1$	8
Haplopappus nuttallii	0.2	1.15	0-4	12
Koeleria gracilis	2.0	9.79	0-14	28
Lappula redowskii	0.3	1.34	0-5	20
Lepidium densiflorm	<0.1	<0.01	$0-<1$	4
Mentzelia dispersa	0.2	1.15	0-6	8
Microsteris micrantha	<0.1	<0.01	$0-<1$	
Oryzopsis hymenoides	7.4	35.51	0-45	84
Phlox hoodii	1.1	5.18	0-8	36
Physaria floribunda	0.1	0.19	0-1	8
Poa fendleriana (?)	1.0	4.80	0-12	24
Polygonum sawatchense	<0.1	<0.01	$0-<1$	8
Senecio multilobatus	0.1	0.38	0-2	8
Sitanion longifolium	0.5	2.50	0-5	40
Stipa comata	0.1	0.58	0-3	8
Taraxacum officinale	<0.1	<0.01	$0-<1$	4
Tragopogon dubius	0.1	0.19	0-1	4
Zigadenus venenosus	<0.1	<0.01	$0-<1$	4

Table A8.7.1-2 . (Continued)

	Mean Cover	Relative Cover	Range of Cover Values	Frequency
Artemisia tridentata	<0.1	<0.01	$0-<1$	12
Chrysothamns nauseosus	<0.1	<0.01	$0-<1$	4
Gutierrezia sarothrae	0.6	2.69	$0-5$	16
Total Herb	18.9		$1-55$	100
Total Woody	0.6		$0-5$	44
Mosses	0.1		$0-1$	4
Crustose Lichen	0.2		$0-5$	16
Litter	77.8		$20-99$	100
Bare Soil	20.8		$0-80$	96
Rock	1.4		$0-30$	12

Mean No. of Herb Species per $\mathrm{m}^{2}=6.48 \pm 0.69$
Mean Total No. of Species per $\mathrm{m}^{2}=6.64 \pm 0.68$

Table A8.7.1-3. Herb quadrat sumnaries for Fiot 2-0. Based on data from 25 permanently located quadrats. June 1978. Values in percents. "?" indicates uncertain identification. Values are equal to the standard error of the mean.

Species	Mean Cover	Relative Cover	Range of Cover Values	Frequency
Agoseris glauca	0.1	0.24	0-1	4
Agropyron desertorm	3.8	22.82	0-16	36
Agropyron smithii	0.8	5.10	0-12	16
Antennaria rosea	<0.1	<0.01	0-<1	4
Artemisia ludoviciana	0.1	0.24	0-1	4
Aster fendleri	0.1	0.73	0-2	24
Aster glaucodes (?)	0.2	1.21	0-5	4
Astragalus ceramicus	<0.1	<0.01	0-<1	4
Bouteloua gracilis	0.4	2.43	0-9	12
Bromus tectorum	4.7	28.64	0-15	96
Carex pennsylvanica (?)	1.2	7.28	0-30	4
Chenopodium album	<0.1	<0.01	$0-<1$	16
Crepis acuminata	0.1	0.24	0-1	8
Descurainia pinnata	<0.1	<0.01	$0-1$	8
Festuca brachyphylla (?)	ᄂ. 4	2.67	0-6	16
Gayophytum ramocissimum	0.1	0.73	0-1	48
Heterotheca villosa	1.2	7.28	0-30	4
Koeleria gracilis	0.5	3.16	0-8	8
Lappula redowskii	0.2	1.21	0-3	40
Lepidium montanum	<0.1	<0.01	$0-1$	4
Microsteris micrantha	<0.1	<0.01	0-2	16
Oenothera trichocalyx	<0.1	<0.01	$0-1$	4
Oryzopsis hymenoides	0.2	0.97	0-2	16
Phlox longifolia	0.5	2.91	0-10	12
Poa sp.	0.1	0.49	0-1	8
Polygonum sawatchense	<0.1	<0.01	$0<1$	16
Salsola iberica	<0.1	<0.01	$0<1$	8
Sisymbrium altissimum	0.2	0.97	0-4	4
Sisymbrium officinale	0.1	0.24	0-1	4
Sitanion longifolium	1.1	6.55	0-8	44
Sphaeralcea coccinea	0.1	0.49	0-2	4
Taraxacum officinale	0.1	0.49	0-2	4
Tragopogon dubius	< 0.1	<0.01	$0-<1$	4
Unknown composite	0.2	1.21	0-5	4
Unknown mustard	0.1	0.49	0-2	8
Artemisia tridentata	0.2	1.21	0-2	28
Chrysothamnus nauseosus	< 0.1	< 0.01	0-1	24

Table A8.7.1-3. (Continued)
Species

| Mean | Relative | Range of
 Cover | Cover |
| :--- | :---: | :---: | :---: |\quad Frequency

Total Herbs	15.8		
Total Woody	0.4	$0-35$	100
Mosses	0.1	$0-3$	36
Crustose Lichen	0.1	$0-2$	4
Litter	82.4	$45-100$	20
Bare Soil	15.9	$0-45$	100
Rock	1.6	$0-25$	84

Mean No. of Herb Species per $m^{2}=5.04 \pm 0.45$
Mean Total No. of Species per $\mathrm{m}^{2}=5.56 \pm 0.49$

Table A8.7.1-4. Herb quadrat summaries for Plot 2-F. Based on data from 25 permanently located quadrats. June 1978. Values in percents. "?" indicates uncertain identification. (\pm values are equal to the standard error of the mean).

	Mean	Relative	Range of Cover	Cover

Agoseris glauca	0.1	0.54	0-1	8
Agropyron dasystachyrm	5.7	38.69	0-35	44
Agropyron desertorum	0.8	5.45	0-20	4
Agropyron smithii	0.6	4.36	0-6	24
Antennaria rosea	0.2	1.09	0-4	4
Aster fendleri	0.1	0.54	0-2	16
Astragalus ceramicus	<0.1	<0.01	$0-<1$	4
Astragalus diversifolius	0.1	0.27	0-1	4
Bouteloua gracilis	0.2	1.63	0-3	16
Bromus tectorum	2.7	18.53	0-20	76
Calochortus nuttallii	<0.1	<0.01	$0-<1$	4
Chenopodium album	<0.1	<0.01	$0-<1$	20
Erysimum asperum	<0.01	<0.01	0-<1	4
Festuca brachyphylla (?)	0.1	2.18	0-3	16
Gayophytum ramocissimum	0.1	9.82	0-1	32
Koeleria gracilis	0.6	3.81	0-9	12
Lappula redowskii	0.1	0.27	0-1	12
Lomatium grayi	0.1	0.27	0-1	4
Mentzelia dispersa	<0.1	<0.01	$0-<1$	4
Microsteris micrantha	<0.1	<0.01	0-<1	4
Phlox longifolia	0.1	0.27	0-1	8
Poa fendleriana	0.4	3.00	0-6	8
Poa pratensis	0.1	0.82	0-3	4
Polygonum sawatchense	<0.1	<0.01	0-<1	20
Oryzopsis hymenoides	0.9	5.99	0-5	24
Sitanion longifolium	1.0	7.08	0-7	36
Sphaeralcea coccinea	0.1	0.54	0-1	8
Stipa comata	0.2	1.63	0-6	4
Unknown mustard	<0.1	<0.01	0-4	4
Artemisia tridentata	0.2	1.63	0-3	44
Chrysothamnus nauseosus	0.1	0.27	0-1	12
Pinus edulis	0.1	0.27	0-1	4
Purshia tridentata	<0.1	<0.01	$0-<1$	4
Total Herb	12.6		1-40	100
Total Woody	0.3		0-3	56
Mosses	0.4		0-5	8
Crustose Lichen	0.6		0-8	20
Litter	81.8		25-100	100
Bare Soil	16.6		0-75	76
Rock	1.7		0-14	32

Mean No. of Herb Species per $m^{2}=4.36 \pm 0.44$
Mean Total No. of Species per $\mathrm{m}^{2}=4.96 \pm 0.46$
Table A8.7.1-5 . Frequency, mean cover, and relative cover values for shrub species in plot 1-0, 1974-1978. Based on data from $2010 \mathrm{~m} \times 4 \mathrm{~m}$ line strip transects.

Frequency				$(\%)$
1974	1976	1978		

Table Ao.7.1-5

Species	Frequency (\%)			Mean Cover (\%)			Relative Cover (\%)		
	1974	1976	1978	1974	1976	1978	1974	1976	1978
Amelanchier spp.	40	30	35	0.3	0.3	0.4	2.1	1.9	2.3
Artemisia tridentata	100	100	100	9.6	10.3	9.6	66.8	58.5	64.0
Cercocarpus montanus	65	65	70	0.4	0.3	0.2	3.1	1.9	1.1
Chrysothamnus nauseosus	30	45	40	0.4	0.2	0.2	2.8	1.2	1.0
Chrysothamnus viscidiflorus	5	15	15	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Juniperus osteosperma	40	35	45	0.6	0.4	2.0	3.8	2.3	13.1
Juniperus scopulorun	5	15		1.0	1.4		6.6	7.9	
Opuntia polyacantha	20	10	35	$\therefore 0.1$	<0.1	<0.1	<0.1	<0.1	<0.1
pinus edulis	55	70	75	0.8	1.6	1.2	5.5	9.2	8.1
Purshia tridentata	65	80	75	1.2	1.9	1.1	8.3	10.9	7.4
Symphoricarpos oreophilus	30	30	40	0.2	0.2	0.4	1.0	0.8	2.9
Total				14.5	16.6	15.1			

Table A8.7.1-6 . Frequency, mean cover, and relative cover values for shrub species in $p l o t$ l-F,
1974-1978. Based on data from 2010 m x 4 m line strip transects.

Species	Frequency (\%)			Mean Cover (\%)			Relative Cover (\%)					
	1974	1976	1978	1974	1976	1978	1974	1976	1978			
Anelanchier spp.	10	10	15	0.6	0.8	0.7	6.6	6.3	7.0			
Artemisia tridentata	80	80	100	5.3	7.4	6.4	58.6	58.6	61.7			
Cercocarpus montanus	50	55	50	0.1	0.1	0.2	1.1	0.7	1.9			
Chrysothannus nauseosus	50	50	55	1.4	1.5	1.3	15.5	12.1	12.5			
Chrysothamnus viscidiflorus	5	5		<0.1	<0.1		<0.1	<0.1				
Juniperus osteosperma	25	20	40	0.2	0.2	0.4	2.2	1.7	3.7			
Juniperus scopulorum	5	5		<0.1	0.1		<0.1	1.0				
Opuntia polyacantha	10		20	<0.1		<0.1	<0.1		<0.1			
Pinus edulis	25	25	25	0.2	0.2	0.3	2.8	1.9	2.6			
Pur", himas l\|r	r	l	ala	5)	65	55	0.6	1.6	1.0	6.6	12.5	9.5
 	$2.1)$	20	3.5	0.1	<0.1	0.1	1.1	<0.1	1.1			
: . 1.1				8. ${ }^{\text {a }}$	11.!	10.1						

Species	Frequency (\%)				Cover (\%)		Relative Cover (\%)		
	1974	1976	1978	1974	1976	1978	1974	1976	1978
Amelanchier spp.	20	10	10	0.2	0.6	0.7	3.7	7.4	7.8
Artemisia tridentata	50	50	75	0.3	0.9	1.7	5.5	12.0	19.2
Cercocarpus montanus	25	25	25	0.3	0.2	0.2	5.5	1.9	2.5
Chrysothannus nauseosus	85	90	95	2.6	3.4	4.2	46.7	42.8	46.9
Chrysothannus viscidiflorus	5	10		<0.1	<0.1		<0.1	<0.1	
Juniperus osteosperma	50	60	60	1.3	1.2	0.9	23.9	15.6	10.6
Opuntia polyacantha	35		20	<0.1		<0.1	<0.1		<0.1
Pinus edulis	65	60	60	0.8	0.5	0.3	13.8	5.9	3.7
Purshia tridentata	20	25	35	$\bigcirc 0.1$	0.6	0.4	<0.1	7.0	4.6
Symphoricarpos oreophilus	10	20	35	0.1	0.1	0.4	0.9	0.8	4.6
Total				5.6	7.5	8.8			

Table A8.7.1-8. Frequency, mean cover, and relative cover values for shrub species in plot $2-\mathrm{F}$, 1974-1978. Based on data from $2010 \mathrm{~m} \times 4 \mathrm{~m}$ line strip transects.
Relative Cover (\%)
197419761978

Frequency (\%)
$1974 \quad 1976 \quad 1978$
O-
0
5
25
70
10
∞
\because n in

\qquad

Mean				Cover	$(\%)$
1974	1976	1978			

<0.1
-

$$
\stackrel{-}{\mathrm{m}}
$$

$9.3 \quad 13.6 \quad 14.7$
Table A8.7.1-9.
<2.26m. 1974-1978.
Density values (No. per hectare) for shrub species at plots $1-0,1-\mathrm{F}, 2-0$, and $2-\mathrm{F}$; chained pinyon-juniper rangeland. Values based on $2010 \mathrm{~m} x 4 \mathrm{~m}$ belt transects. Height class $1=0.25 \mathrm{~m}-0.75 \mathrm{~m}$; class $2=0.76 \mathrm{~m}-1.50 \mathrm{~m}$; class $3=1.51 \mathrm{~m}-2.25 \mathrm{~m}$; class 4

	Height Class	Plot 1-0			Plot 1-F			Plot 2-0			Plot 2-F		
		1974	1976	1978	1974	1976	1978	1974	1976	1978	1974	1976	1978
Amelanchier spp.	1	162	99	163	25	25	88	62	49	38	75	25	25
	2	25	49	113	12	12	13	1.2		25	25	12	13
	3								12				
	4									13			
	Total	187	148	276	37	37	101	74	61	76	100	37	38
Artemisia tridentata	1.	2162	2561	2350	988	788	1138	138	151	575	212	388	700
	2	712	1074	1363	600	724	863	62	86	150	50	200	21.3
	3	12	25	38	12	49	150		12	25		49	63
	4			13			13						
	Total	2886	3661	3764	1000	1561.	21.64	200	249	735	262	6.37	976
Artemisia	1											12	
sp.	Total											12	
Cercocarpus montanus	1	262	375	350	138	138	100	38	62	75	50	62	100
	2	88	114	150	112	163	188	25	37	13		12	
	3					49	63	12	25		12	12	
	4								12	13		12	26
	Total	350	489	500	250	363	351	75	124	101	62	99	126
Chrysothamnus nauseosus	1	175	212	138	262	188	200	388	1037	1463	175	262	213
	2	25	12	13	12	62	50	100	225	163	50	114	100
	3									25			
	Total	200	224	151	272	250	250	488	1262	1651	225	376	313

Table A8.7.1-9. (Continued)

	Height Class	Plot 1-0			Plot 1-F			Plot 2-0			Plot 2-F		
		1974	1976	1978	1974	1976	1978	1974	1976	1978	1974	1976	1978
Chrysothamnus viscidiflorus	1	12	49	63	12	12		12	25		12	25	13
	Total	12	49	63	12	12		12	25		12	25	13
Juniperus osteosperma	1	75	37	88	38	49	88	75	74	75	200	138	150
	2	62	62	75	50	12	38	162	175	138	225	225	150
	3			50				12	37	50	12	37	88
	4			13							12	25	13
	Total	137	99	226	88	61	126	249	286	263	449	425	401
Juniperus scopulorum	1	25	12		12								
	2	25	25										
	Total	50	37		12								
Opuntia polyacantha	1	100	25	75	125		50	200		35	100		38
	Total	100	25	75	125		50	200		35	100		38
Pinus edul is	1	138	188	163	125	114	150	212	114	138	162	212	188
	2	125	200	125	38	49	38	75	126	75	138	225	113
	3	38	49	63	12	25	13	25	49	50	38	86	125
	4			25			13		12	38			38
	Total	301	437	376	175	188	214	312	301	301	338	523	464
Purshia tridentata	1	588	874	938	225	299	200	88	74	88	225	175	213
	2	12	1000	125	50	212	188	12	37	13	125	249	288
	3						13		12	13			50
	Total	600	1874	1063	275	511	401	100	123	114	350	424	551
Symphoricarpos oreophilus	1	150	262	438	112	62	188	112	99	188		49	125
	2			13		25	38			13		37	50
	Total	150	262	451	112	87	226	112	99	201		86	175

Table A8．7．2－1．Oven dry weights（grams）for range cages and adjacent open areas in the pinyon－juniper woodland community type． 1978.

							岢先	$\begin{aligned} & \text { 筲 } \\ & \text { 彩 } \end{aligned}$	
	1	1.513	0.068		17.647	0.418	5.456		25.102
	2	0.281			2.037	0.261			2.579
	3	0.191			7.901	9.377	0.334		17.803
\％	4			4.931	2.560	0.880			8.371
姿	5				2.152	2.518			4.670
－	6		0.011		3.597	0.188		2.926	6.722
面	7				2.188	0.062	0.139		2.389
\％	8		0.645	8.968	4.483	0.248	0.771		15.115
	9								
	10			2.631		3.148			5.779
	1	6.488			55.936	6.000	2.249		70.673
	2			7.909	0.597	3.329			11.835
	3	0.427			7.002	8.197	1.059		16.685
	4			9.988	20.771	1.580	0.015		32.354
\％	5				12.719	5.970	0.002		18.691
3	6				6.657	0.079	0.002		6.738
¢	7	0.212			6.848	0.222	0.139		7.421
3	8				1.002	7.997			8.999
2	9								
	10	0.631			10.669	8.034	0.008		19.342

Table A8.7.2-2. Mean production \pm the standard error of the mean (S.E.), frequency, and range of observed values for clipped plots in the pinyon-juniper woodland community. Production values in grams/m². 1978.

	Mean \pm	S.E.	Sample Size	Frequency (\%)	Range of Values
RANGE CAGES					
$\frac{\text { Agropyron }}{\text { smithii }}$	$0.862 \pm$	0.707	9	44	0-6.488
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$1.989 \pm$	1.327	9	22	0-9.988
Other perennial grasses	$13.578 \pm$	5.674	9	100	0.597-55.936
Perennial forbs	$4.601 \pm$	1.121	9	100	0.079-8.197
Annual forbs	$0.386 \pm$	0.260	9	78	0-2.249
Total	$21.415 \pm$	6.705	9	100	6.738-70.673
OPEN AREAS					
$\frac{\text { Agropyron }}{\text { smithii }}$	$0.221 \pm$	0.165	9	33	0-1.513
$\frac{\text { Bromus }}{\text { tectorum }}$	$0.080 \pm$	0.071	9	33	0-0.645
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$1.837 \pm$	1.063	9	33	0-8.968
Other perennial grasses	$4.729 \pm$	1.770	9	89	0-17.647
Perennial forbs	$1.900 \pm$	1.006	9	100	0.062-9.377
Annual forbs	$0.744 \pm$	0.595	9	44	0-5.456
Half shrubs	$0.325 \pm$	0.325	9	11	0-2.926
Total	$9.837 \pm$	2.602	9	100	2.389-25.102

Table A8．7．2－3．Oven dry weights（grams）for range cases and adjacent open areas in the chained pinyon－juniper rangeland commmity type． 1978.

		$\begin{aligned} & \text { ob: } \\ & \text { on } \\ & \text { ontin } \\ & \text { cen } \end{aligned}$				$\begin{aligned} & \text { 烒 } \\ & \text { تn } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\underset{\text { 水 }}{\stackrel{n}{\tilde{3}}}$	
	1		10.766	7.433	5.489	3.855	0.460		28.003
	2	0.359	0.166		17.501	5.563	0.068		23.657
	3	11.931		0.699	47.329				59.959
K	4	17.499	1.329	49.617	20.729				89.174
突	5	3.646		65.528	16.432	0.398			86.004
\％	6		0.460	4.388	15.209	11.170	0.088		31.315
面	7	52.547	0.551		7.339	0.015	0.006		60.458
己	δ	8.873			30.574	3.852	0.111		43.410
10									
$\begin{aligned} & \text { Nejn } \\ & \text { 3 } \end{aligned}$	1	15.961	7.354	1.726	1． 564		0.348		26.953
	2	4.816	0.483	7.894	13.087	0.363	0.028		26.671
	3	27.529		74.478	15.095				117.102
	4	6.747		52.070	75.576	9.018			143.411
	5	1.349		3.286	33.656				38.291
	6		0.425	55.143	10.048	4.145			69.761
	7	19.576	0.017	0.181	20.069	6.500	0.640		46.983
	8	9.696			59.015	1.014	0.147		69.872
	9	0.444			24.491	7.880			32.815

Table A8.7.2-4 . Mean production \pm the standard error of the mean (S.E.), frequency, and range of observed values for clipped plots in the chained pinyon-juniper rangeland. Production values in grams $/ \mathrm{m}^{2}$. 1978 .

| Mean \pm S.E. | Sample
 Size | Frequency
 $(\%)$ | Range
 of Values |
| :---: | :---: | :---: | :---: | :---: |

RANGE CAGES

$\begin{aligned} & \text { Agropyron } \\ & \text { smithii } \end{aligned}$	9.569	\pm	3.198	9	89	0-27.529
$\frac{\text { Bromus }}{\text { tectorm }}$	0.920	\pm	0.807	9	44	0-7.354
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	21.642	\pm	9.972	9	78	0-74.478
Other perennial grasses	28.067		8.116	9	100	1.564-75.576
Perennial forbs	3.213	\pm	1.242	9	67	0-9.018
Annual forbs	0.129	\pm	0.075	9	44	0-0.640
Total	63.540	\pm	13.885	9	100	26.671-143.411

OPEN AREAS

| $\frac{\text { Agropyron }}{}$ | 19.428 ± 10.358 | 9 | 67 | $0-52.547$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\frac{\text { Smithii }}{\text { Bromus }}$ | 1.481 ± 1.169 | 9 | 67 | $0-10.766$ |
| $\frac{\text { tectorum }}{\text { Oryzopsis }}$ | 14.282 ± 8.330 | 9 | 67 | $0-65.528$ |
| hymenoides | | | | |
| Other perennial
 grasses | 21.224 ± 4.357 | 9 | 100 | $5.489-47.329$ |
| Perennial
 forbs | 5.626 ± 2.803 | 9 | 78 | $0-25.785$ |
| Annual
 forbs | 0.090 ± 0.049 | 9 | 100 | $23.657-89.174$ |

Table A8.7.2-5. Oven dry weights (grams) for range cages and adjacent open areas in the upland sagebrush community type. 1978.

			$\left.\begin{array}{r\|r\|} 5 \\ \vdots \\ 0 & 0 \\ 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array} \right\rvert\,$						
	1	1.513			24.274	8.691		46.447	80.925
	2	1.981			13.875	0.105	0.005		15.966
	3	7.975	1.387	0.021	13.936	0.155	0.008		23.482
	4	29.125	0.807	1.765	28.673	2.886			63.256
爰	5	15.313	0.003		11.507	11.194	0.068		38.085
4	6	4.252			81.377	6.931	0.023		92.583
面	7	3.179	0.317		54.047	0.138	0.004		57.685
\%	8	9.584			11.209	4.420	0.123		25.336
	9	3.735			17.336	3.709		6.992	31.772
	10	13.852	0.192		27.445	1.178			42.667

	1	
	2	3.143
	3	30.171
\%	4	18.072
3	5	16.777
	6	12.633
z	7	2.575
¢	8	23.282
	9	0.508
	10	12.916

69.652	13.926	1.807	54.519
25.071	0.191		139.904
74.087	3.358	0.829	
34.241	0.499	0.003	
17.931	7.189		52.445
43.941	1.258		
80.774	1.905	0.072	
23.215	0.281	0.270	57.897
39.421	8.877		85.326
41.559	12.853		47.048
			48.806
			67.328

Table A8.7.2-6. Mean production \pm the standard error of the mean (S.E.), freauency, and range of observed values for clipped plots in the upland sagebrush community. Production values in grams/m2. 1978.

	Mean \pm	S.E.	Sample Size	Frequency (\%)	Range of Values
RANGE CAGES					
$\frac{\text { Agropyron }}{\text { smithii }}$	$12.008 \pm$	3.269	10	90	0-30.171
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$0.244 \pm$	0.244	10	10	0-2.443
Other perennial grasses	$44.989 \pm$	7.069	10	100	17.931-80.774
Perennial forbs	$5.034 \pm$	1.677	10	100	0.191-13.926
Annual forbs	$0.298 \pm$	0.187	10	50	0-1.807
$\begin{aligned} & \text { H• If } \\ & \text { shrubs } \end{aligned}$	$5.452 \pm$	5.452	10	10	0-54.519
Total	$68.025 \pm$	10.703	10	100	30.848-139.904
OPEN AREAS					
$\frac{\text { Agropyron }}{\text { smithii }}$	$9.051 \pm$	2.706	10	100	1.513-29.125
$\frac{\text { Bromus }}{\text { tectormm }}$	$0.271 \pm$	0.148	10	50	0-1.387
Oryzopsis hymenoides	$0.179 \pm$	0.176	10	20	0-1.765
Other perennial grasses	$28.368 \pm$	7.154	10	100	11.209-81.377
```Perennial forbs```	$3.941 \pm$	1.232	10	100	$0.105-11.194$
Annual forbs	$0.023 \pm$	0.013	10	60	0-0.123
Half shrubs	$5.344 \pm$	4.620	10	20	0-46.447
Total	$47.176 \pm$	8.112	10	100	15.966-92.583

Table A8．7．2－7．Oven dry weights（grams）for range cages and adjacent open areas in the bottomland sagebrush community type． 1978.

				cos		$\begin{aligned} & \text { 荡 } \\ & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \text { 告 } \\ \text { 荡 } \\ \end{gathered}$	
	1	1.144	2.566		12.138	7.799	11.485		35.132
	2	3.089	1.337		0.379				4.805
	3	9.624	5.012		0.299	5.288	1.405		21.628
\％	4		4.688		9.339		0.057	0.889	14.973
先	5		1.714		0.702	2.219	0.849		5.484
	6		10.539						10.539
圆	7	2.203	3.954			0.249	0.123		6.529
－	8	1.126	0.610	17.927	14.579	1.922	0.044		36.208
	9	0.522	2.992		2.902	0.338	$0.0 ¢ \in$		6.840
	10	0.328	22.758			0.022	0.480		23.588
	1		8.863		15.956	16.439	0.074		41.332
	2	15.629			8.588		0.334		24.551
	3	14.435	3.691		0.029	28.408	5.202		51.765
\％	4		$` 25.903$		1.057	16.089	2.558	4.148	49.755
\％	5		24.151		3.858	0.107	0.521		28.637
3	6		7.081		0.294		0.135		7.510
¢	7	3.450	2.112		38.429	0.018	0.113		44.122
z	8	1.175	3.283		0.138	0.209	0.014	0.229	5.048
$\ldots$	9	2.411	13.581		0.701		0.115		16.808
	10		58.747			0.111	0.596		59.454

Table A8.7.2-8. Mean production $\pm$ the standard error of the mean (S.E.), frequency, and range of observed values for clipped plots in the bottomland sagebrush community. Production values in grams/m². 1978.

| Mean $\pm$ S.E. | Sample <br> Size | Frequency <br> $(\%)$ | Range <br> of Values |
| :---: | :---: | :---: | :---: | :---: |

RANGE CAGES
$\frac{\text { Agropyron }}{\text { smithii }}$
$\frac{\text { Bromus }}{\text { tectorum }}$
Other perennial
$6.905 \pm 3.866$ grasses
Perennial forbs
Annual
$0.960 \pm 0.528$
10
100
0-15.629
forbs
Half
$0.438 \pm 0.413$
10
20
0-4. 148 shrubs

Total
$32.898 \pm 6.064$
10
100
5.048-59.454

OPEN AREAS

$\frac{\text { Agropyron }}{\text { smithii }}$	$1.804 \pm$	0.928	10	70	0-9.624
$\frac{\text { Bromus }}{\text { tectorum }}$	$5.617 \pm$	2.100	10	100	0.610-22.758
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$1.793 \pm$	1.793	10	10	0-17.927
Other perennial grasses	$4.032 \pm$	1.806	10	70	0-14.579
Perennial forbs	$1.784 \pm$	0.855	10	70	0-7.799
Annual forbs	$1.453 \pm$	1.124	10	80	0-11.485
Half shrubs	$0.089 \pm$	0.089	10	10	0-0.887
Total	$16.573 \pm$	3.802	10	100	4.805-36.208

Table A8.7.2-9. Regression equations used for converting fresh weight estimates to oven dry weights for the intensive study plots, May 1977.

Species / Species Group	Regression Equation	Correlation Coefficient
Agropyron smithii	$y=0.512 x+0.717$	0.70
Bromus tectorum	$y=0.435 x+0.185$	0.62
Oryzopsis hymenoides	$y=0.362 x+1.134$	0.84
Other perennial grasses	$y=0.543 x+0.720$	0.80
Perennial forbs	$y=0.431 x-0.228$	0.62
Annual forbs	$y=0.372 x-0.028$	0.68
Half shrubs*	$y=0.379 x$	0.82

*Only one data point

Table A8.7.2-10 Regression equations used for converting fresh weight estimates to oven dry weights for the intensive study plots, June 1977.

Species / Species Group	Regression Equation	Correlation Coefficient
Agropyron smithii	$y=0.711 x+1.519$	0.75
Bromus tectorum	$y=0.435 x+0.185$	0.62
Oryzopsis hymenoides	$y=0.920 x+0.065$	0.80
Other perennial grasses	$y=0.323 x+1.554$	0.55
Perennial forbs	$y=0.624 x+0.464$	0.86
Annual forbs	$y=0.701 x-0.234$	0.99
Half shrubs	$y=0.439 x-0.240$	0.92
Total biomass	$y=0.697 x+1.517$	0.77

*Same equation as used for May data.

Table A8.7.2-11 Regression equations used for converting fresh weight estimates to oven dry weights for the intensive study plots, July 1977.

Species / Species Group	Regression Equation	Correlation Coefficient
Agropyron smithii	$y=0.505 x+0.807$	0.70
Bromus tectorum*	$y=0.435 x+0.185$	0.62
Oryzopsis hymenoides	$y=0.870 x-0.592$	0.93
Other perennial grasses	$y=0.605 x+0.512$	0.95
Perennial forbs	$y=0.618 x-0.157$	0.94
Annual forbs	$y=0.338 x-0.189$	0.96
Half shrubs	$y=0.236 x+0.436$	0.98
Total biomass	$y=0.591 x+0.805$	0.91

*Same equation as used for May data.

Table A8.7.2-12. Mean production $\pm$ the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 1-0 and 1-F, May 1977. Based on data derived, from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

	Mean	$\pm$	S.E.	Sample Size	Frequency   (\%)	Range of Values
PLOT 1-0						
$\frac{\text { Agropyron }}{\text { smithii }}$	0.025	$\pm$	0.025	50	2	0-1.229
$\frac{\text { Bromus }}{\text { tectorum }}$	0.067	$\pm$	0.037	50	8	0-1.490
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	1.089	$\pm$	0.185	50	46	0-4.389
Other perennial grasses	5.992	$\pm$	0.686	50	92	0-22.452
Perennial forbs	0.868	$\pm$	0.229	50	58	0-6.238
Total	8.220	$\pm$	0.689	50	96	0-22.106
PLOT 1-F						
$\frac{\text { Agropyron }}{\text { smithij }}$	0.054	$\pm$	0.040	50	4	0-1.741
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	1.477	$\pm$	0.219	50	62	0-5.836
Other perennial grasses	5.657	$\pm$	0.682	50	96	0-22.452
Perennial forbs	1.112	$\pm$	0.270	50	50	0-9.413
Total	8.465	$\pm$	0.629	50	100	1.213-22.106

Table A8.7.2-13 Mean production $\pm$ the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 1-0 and 1-F, June 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

	Mean $\pm$	(S.E.)	Sample Size	Frequency (\%)	Range of Values
PLOT 1-0					
$\frac{\text { Agropyron }}{\text { smithii }}$	$0.415 \pm$	0.255	50	10	0-12.180
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$0.479 \pm$	0.196	50	30	0-9.263
Other perennial grasses	$3.609 \pm$	0.310	50	92	0-8.010
$\begin{aligned} & \text { Perennial } \\ & \text { forbs } \end{aligned}$	$0.492 \pm$	0.156	50	24	0-5.458
Half shrubs	$0.190 \pm$	0.117	50	6	0-5.069
Total	$7.418 \pm$	0.673	30	100	1.865-21.024
PLOT 1-F					
$\frac{\text { Agropyron }}{\text { smithii }}$	$1.181 \pm$	0.324	50	30	0-9.337
$\frac{\text { Bromus }}{\text { tectorum }}$	$0.008 \pm$	0.008	50	2	0-0.403
Oryzopsis hymenoides	$0.824 \pm$	0.199	50	36	0-6.504
Other perennial grasses	$4.227 \pm$	0.586	50	88	0-24.151
Perennial forbs	$2.261 \pm$	0.631	50	42	0-25.436
Half shrubs	$0.460 \pm$	0.180	50	16	0-6.387
Total	$9.825 \pm$	1.218	50	92	0-50.285

Table A8.7.2-14. Mean production $\pm$ the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 1-0 and 1-F, July 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

	Mean $\pm$	S.E.	Sample Size	Frequency   (\%)	Range of Values
PLOT 1-0					
$\frac{\text { Agropyron }}{\text { smithii }}$	$0.047 \pm$	0.033	50	4	0-1.312
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$2.057 \pm$	0.629	50	30	0-17.991
Other perennial grasses	$5.902 \pm$	0.639	50	92	0-15.648
Perennial forbs	$0.593 \pm$	0.274	50	24	0-11.587
Annual forbs	$0.005 \pm$	0.004	50	4	0-0.150
Half shrubs	$0.233 \pm$	0.181	50	8	0-8.943
Total	$8.751 \pm$	0.803	50	98	0-26.197
PLOT 1-F					
$\frac{\text { Agropyron }}{\text { smithil }}$	$0.407 \pm$	0.161	50	16	0-4.345
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$2.084 \pm$	0.481	50	42	0-17.121
Other perennial grasses	$7.623 \pm$	0.836	50	94	0-24.729
Perennial forbs	$1.584 \pm$	0.639	50	46	0-22.095
Annual forbs	$0.002 \pm$	0.002	50	2	0-0.100
Half shrubs	$0.107 \pm$	0.043	50	12	0-1.145
Total	$11.064 \pm$	0.928	50	98	0-31.807

Table A8.7.2-15 Mean production $\pm$ the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 2-0 and 2-F, May 1977. Based on data derived, from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

	Mean $\pm$	S.E.	Sample Size	Frequency   (\%)	Range of Values
PLOT 2-0					
$\frac{\text { Agropyron }}{\text { smithii }}$	$0.548 \pm$	0.131	50	30	0-3.276
$\frac{\text { Bromus }}{\text { tectormm }}$	$0.497 \pm$	0.157	50	36	0-6.709
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$0.488 \pm$	0.139	50	22	0-3.666
Other perennial grasses	$7.324 \pm$	1.003	50	80	0-27.885
Perennial forbs	$0.398 \pm$	0.127	50	46	0-4.945
Annual forbs	$0.077 \pm$	0.034	50	16	0-1.460
Half shrubs	$0.038 \pm$	0.038	50	2	0-1.895
Total	$9.482 \pm$	0.888	50	98	0-27.650
PLOT 2-F					
$\frac{\text { Agropyron }}{\text { smithii }}$	$0.843 \pm$	0.260	50	34	0-10.955
$\frac{\text { Bromus }}{\text { tectorum }}$	$0.702 \pm$	0.171	50	48	0-5.405
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$0.799 \pm$	0.161	50	36	0-3.666
Other perennial grasses	$5.306 \pm$	0.510	50	94	0-18.649
Perennial forbs	$3.043 \pm$	0.642	50	88	0-27.359
Annual forbs	$0.045 \pm$	0.030	50	12	0-1.460
Half shrubs	$0.857 \pm$	0.540	50	8	0-20.845
Total	$12.500 \pm$	1.215	50	100	1.213-39.033

Table A8.7.2-16 Mean production $\pm$ the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 2-0 and 2-F, June 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

	Mean $\pm$	S.E.	Sample Size	Frequency   (\%)	Range of Values
PLOT 2-0					
$\frac{\text { Agropyron }}{\text { smithii }}$	$0.684 \pm$	0.290	50	16	0-12.180
$\frac{\text { Bromus }}{\text { tectorum }}$	$0.016 \pm$	0.011	50	4	0-0.403
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$0.124 \pm$	0.084	50	6	0-3.745
Other perennial grasses	$3.412 \pm$	0.345	50	86	0-12.853
Perennial forbs	$1.291 \pm$	0.497	50	28	0-16.072
Annual forbs	$0.129 \pm$	0.070	50	10	0-3.039
Half shrubs	$0.031 \pm$	0.031	50	2	0-1.557
Total	$7.921 \pm$	0.849	50	96	0-25.552
PLOT 2-F					
$\frac{\text { Agropyron }}{\text { smithii }}$	$0.793 \pm$	0.220	50	26	0-5.073
Oryzopsis   hymenoides	$0.879 \pm$	0.309	50	22	0-9.263
Other perennial grasses	$2.004 \pm$	0.211	50	76	0-7.365
Perennial forbs	$1.365 \pm$	0.371	50	44	0-12.950
Annual forbs	$0.035 \pm$	0.020	50	6	0-0.585
Half shrubs	$0.040 \pm$	0.040	50	2	0-1.996
Total	$5.585 \pm$	0.551	50	94	0-16.147

Table A8.7.2-17. Mean production $\pm$ the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 2-0 and 2-F, July 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

Mean $\pm$ S.E. $\quad$\begin{tabular}{c}
Sample <br>
Size

$\quad$

Frequency <br>
$(\%)$

$\quad$

Range <br>
of Values
\end{tabular}

PLOT 2-0

$\frac{\text { Agropyron }}{\text { Smithil }}$	$1.024 \pm$	0.261	50	28	0-5.861
$\frac{\text { Bromus }}{\text { tectorm }}$	$0.009 \pm$	0.009	50	2	0-0.453
Oryzopsis hymenoides	$0.480 \pm$	0.226	50	12	0-9.291
Other perennial grasses	$4.746 \pm$	0.707	50	72	0-15.648
Perennial forbs	$0.685 \pm$	0.240	50	32	0-9.114
Annual forbs	$0.299 \pm$	0.203	50	20	0-9.957
Half shrubs	$0.013 \pm$	0.013	50	2	0-0.672
Total	$7.460 \pm$	0.832	50	92	0-22.063

PLOT 2-F

$\frac{\text { Agropyron }}{\text { smithil }}$	$0.372 \pm$	0.152	50	16	0-5.861
$\frac{\text { Bromus }}{\text { tectorum }}$	$0.014 \pm$	0.010	50	4	0-0.453
$\frac{\text { Oryzopsis }}{\text { hymenoldes }}$	$1.621 \pm$	0.557	50	24	0-17.991
Other perennial grasses	$4.819 \pm$	0.743	50	78	0-24.729
$\begin{aligned} & \text { Perennial } \\ & \text { forbs } \end{aligned}$	$1.152 \pm$	0.405	50	34	0-13.441
Annual forbs	$0.267 \pm$	0.201	50	12	0-9.957
Half shrubs	$0.032 \pm$	0.032	50	2	0-1.617
Total	$8.073 \pm$	0.942	50	94	0-24.425

Table A8.7.2-18 Mean production $\pm$ the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 3-0 and 3-F, May 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

	Mean $\pm$	S.E.	Sample Size	Frequency (\%)	Range of Values
PLOT 3-0					
$\frac{\text { Agropyron }}{\text { smithii }}$	$0.898 \pm$	0.133	50	56	0-3.276
Other perennial grasses	$7.576 \pm$	0.282	50	100	3.980-12.672
Perennial forbs	$3.066 \pm$	0.171	50	100	1.065-5.807
Annual forbs	$0.016 \pm$	0.007	50	10	0-0.158
Total	$12.215 \pm$	0.361	50	100	7.296-17.875

PLOT 3-F

$\frac{\text { Agropyron }}{\frac{\text { smithii }}{}}$	$4.607 \pm 0.301$	50	100	$1.741-9.931$
Other perennial   grasses	$8.913 \pm 0.387$	50	100	$1.807-14.846$
Perennial   forbs	$3.981 \pm 0.266$	50	100	$1.065-9.686$
Annual   forbs	$0.029 \pm 0.010$	50	16	$0-0.344$
Half   shrubs   Total	$0.008 \pm 0.008$	50	2	$0-0.379$

Table A8.7.2-19. Mean production $\pm$ the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 3-0 and 3-F, June 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

$\overline{\text { Mean } \pm \text { S.E. }}$| Sample |
| :---: |
| Size | | Frequency | $(\%)$ | Range |
| :---: | :---: | :---: |
|  | of Values |  |

PLOT 3-0

$\frac{\text { Agropyron }}{}$	$4.263 \pm 0.207$	50	100	$1.875-9.337$
Smithii   Other perennial   grasses	$2.942 \pm 0.115$	50	100	$1.877-5.428$
Perennial   forbs	$1.457 \pm 0.121$	50	96	$0-4.210$
Half   shrubs	$0.076 \pm 0.041$	50	8	$0-1.557$
Total	$8.421 \pm 0.345$	50	100	$3.955-14.754$

## PLOT 3-F

$\frac{\text { Agropyron }}{\frac{\text { smithii }}{}}$	$4.337 \pm 0.245$	50	96	$0-8.626$
Other perennial   grasses	$3.258 \pm 0.109$	50	100	$2.199-6.396$
Perennial   forbs	$1.617 \pm 0.162$	50	82	$0-5.458$
Half   shrubs	$0.164 \pm 0.076$	50	10	$0-2.874$
Total	$9.633 \pm 0.364$	50	100	$4.304-18.934$

Table A8.7.2-20. Mean production $\pm$ the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 3-0 and 3-F, July 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

Mean $\pm$ S.E.

PLOT 3-0

$\frac{\text { Agropyron }}{\frac{\text { smithii }}{}}$	$3.011 \pm 0.186$	50	100	$1.060-5.861$
Other perennial   grasses	$4.181 \pm 0.183$	50	100	$2.328-6.566$
Perennial   forbs	$0.622 \pm 0.089$	50	88	$0-2.933$
Half   shrubs	$0.067 \pm 0.029$	50	10	$0-0.909$
Total	$7.743 \pm 0.319$	50	100	$4.643-14.387$

PLOT 3-F

$\frac{\text { Agropyron }}{}$	$2.920 \pm 0.144$	50	100	$1.312-5.861$
Smithii				
Other perennial   grasses	$4.011 \pm 0.228$	50	100	$1.723-9.593$
Perennial   forbs	$0.616 \pm 0.122$	50	80	$0-4.170$
Half   $\quad$ shrubs	$0.056 \pm 0.028$	50	8	$0-0.909$

Total
$7.448 \pm 0.267$
50
100
4.348-12.025

Table A8.7.2-21. Mean production $\pm$ the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 4-0 and 4-F, May 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

$\overline{\text { Mean } \pm \text { S.E. }}$| Sample |
| :---: |
| Size |$\quad$| Frequency |
| :---: |
| $(\%)$ | | Range |
| :---: |
| of Values |

PLOT 4-0
$\left.\begin{array}{lllll}\frac{\text { Agropyron }}{\frac{\text { smithii }}{}} & 1.242 & \pm 0.170 & 50 & 64 \\ \frac{\text { Bromus }}{\frac{\text { tectorm }}{}} & 0.020 & \pm 0.015 & 50 & 4\end{array}\right) 0-4.300$

PLOT 4-F

$\frac{\text { Agropyron }}{\text { Smithii }}$	0.741	$\pm 0.117$	50	52	0-2.764
$\frac{\text { Bromus }}{\text { tectorum }}$	0.008	$\pm 0.008$	50	2	0-0.403
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	0.726	$\pm 0.188$	50	28	0-5.474
Other perennial grasses	0.809	$\pm 0.165$	50	46	0-6.153
Other annual grasses	0.021	$\pm 0.021$	50	2	0-1.055
Perennial forbs	0.054	$\pm 0.025$	50	18	0-1.065
Annual forbs	0.074	$\pm 0.034$	50	16	0-1.460
Total	2.541	$\pm 0.225$	50	90	0-7.296

Table A8.7.2-22 Mean production $\pm$ the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 4-0 and 4-F, June 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

	Mean $\pm$ S.E.	Sample   Size	Frequency   $(\%)$	Range   of Values
PLot 4-0	1.074	$\pm 0.152$	50	52

Table A8.7.2-23 Mean production $\pm$ the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 4-0 and 4-F, July 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

$\overline{\text { Mean } \pm \text { S.E. }}$| Sample |
| :---: |
| Size | | Frequency |
| :---: |
| $(\%)$ |

PLOT 4-0

$\frac{\text { Agropyron }}{\text { smithil }}$	$1.202 \pm$	0.246	50	50	0-9.904
$\frac{\text { Bromus }}{\text { tectorum }}$	$0.009 \pm$	0.009	50	2	0-0.453
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$0.593 \pm$	0.297	50	12	0-11.031
Other perennial grasses	$2.070 \pm$	0.728	50	40	0-32.600
```Perennial forbs```	$0.012 \pm$	0.010	50	4	0-0.461
Annual forbs	$0.006 \pm$	0.003	50	6	0-0.100
Half shrubs	$0.352 \pm$	0.212	50	8	0-7.525
Total	$4.605 \pm$	0.858	50	82	0-32.102
PLOT 4-F					
$\frac{\text { Agropyron }}{\text { smithii }}$	$0.870 \pm$	0.167	50	42	0-3.839
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$1.175 \pm$	0.292	50	28	0-6.681
Other perennial grasses	$1.363 \pm$	0.391	50	38	0-13.831
Perennial forbs	$0.015 \pm$	0.010	50	6	0-0.461
Annual forbs	$0.007 \pm$	0.004	50	6	0-0.150
Half shrubs	$0.594 \pm$	0.241	50	18	0-9.888
Total	$4.483 \pm$	0.709	50	86	0-27.968

Table A8.7.2-24. Mean production \pm the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 5-0 and 5-F, May 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

	Mean	\pm S.E.	Sample Size	Frequency (\%)	Range of Values
PLOT 5-0					
$\frac{\text { Agropyron }}{\text { smithii }}$	0.025	± 0.025	50	2	0-1.229
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	1.882	± 0.336	50	62	0-13.794
Other perennial grasses	2.201	± 0.439	50	40	0-18.649
Other annual grasses	0.039	± 0.038	50	2	0-1.925
Perennial forbs	0.529	± 0.367	50	12	0-17.014
Total	5.071	± 1.038	50	98	0-43.264
PLOT 5-F					
$\frac{\text { Agropyron }}{\text { smithii }}$	0.697	± 0.174	50	38	0-5.836
Oryzopsis hymenoides	1.613	± 0.240	50	58	0-5.474
Other perennial grasses	3.211	± 0.383	50	80	0-11. 586
Perennial forbs	0.599	± 0.135	50	50	0-4.083
Annual forbs	0.010	± 0.008	50	4	0-0.344
Total	6.238	± 0.508	50	100	1.213-16.817

Table A8.7.2-25 Mean production \pm the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 5-0 and 5-F, June 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

| Mean \pm S.E. | Sample
 Size | Frequency
 $(\%)$ | Range
 of Values |
| :---: | :---: | :---: | :---: | :---: |

PLOT 5-0

$\frac{\text { Agropyron }}{\frac{\text { smithii }}{}}$	0.232 ± 0.090	50	12	$0-2.230$
Oryzopsis	2.404 ± 0.417	50	62	$0-11.103$
hymenoides	0.728 ± 0.151	50	34	$0-3.491$
Other perennial grasses	0.031 ± 0.022	50	4	$0-0.776$
Perennial forbs	0.012 ± 0.012	50	2	$0-0.585$
Annual forbs	3.573 ± 0.365	84	$0-9.877$	

PLOT 5-F

$\frac{\text { Agropyron }}{\frac{\text { Smithii }}{}}$	0.941 ± 0.221	50	32	$0-6.494$
$\frac{\text { Oryzopsis }}{}$	1.839 ± 0.310	50	70	$0-7.424$
hymenoides				
Other perennial grasses	1.911 ± 0.212	50	70	$0-4.782$
Perennial forbs	0.330 ± 0.109	50	20	$0-3.586$
Annual forbs Half shrubs Total 0.012 ± 0.012	50	0	$0-0.585$	
	5.474 ± 0.453	50	100	$1.865-19.631$

Table A8.7.2-26. Mean production \pm the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 5-0 and 5-F, July 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

Mean \pm S.E. \begin{tabular}{c}
Sample

Size

\quad

Frequency

$(\%)$

\quad

Range

of Values
\end{tabular}

PLOT 5-0

$\frac{\text { Agropyron }}{\frac{\text { Smithii }}{}}$	0.748 ± 0.316	50	22	$0-13.441$
Oryzopsis	2.098 ± 0.414	50	62	$0-13.641$
hymenoides				
Other perennial grasses	2.460 ± 0.668	50	56	$0-22.913$
Perennial forbs	0.080 ± 0.041	50	16	$0-1.697$
Total	4.902 ± 0.854	50	94	$0-28.559$

PLOT 5-F

$\frac{\text { Agropyron }}{\text { Smithii }}$	$0.440 \pm$	0.094	50	32	0-1.818
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$2.115 \pm$	0.482	50	56	0-15.381
Other perennial grasses	$3.161 \pm$	0.430	50	84	0-18.520
Perennial forbs	$0.268 \pm$	0.134	50	18	0-6.024
Annual forbs	$0.002 \pm$	0.002	50	2	0-0.100
Half shrubs	$0.983 \pm$	0.052	50	18	0-1.697
Total	$5.029 \pm$	0.539	50	90	0-18.520

Table A8.7.2-27. Nean production \pm the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots $6-0$ and 6-F, May 1977. Based on data derived, from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

	Mean \pm	S.E.	Sample Size	Frequency (\%)	Range of Values
PLOT 6-0					
$\frac{\text { Agropyron }}{\text { Smithii }}$	$1.238 \pm$	0.582	50	42	0-28.631
Oryzopsis hymenoides	$0.052 \pm$	0.052	50	2	0-2.581
Other perennial grasses	$6.224 \pm$	0.600	50	88	0-17.019
Perennial forbs	$2.012 \pm$	0.469	50	70	0-14.859
Total	$9.965 \pm$	1.039	50	92	0-32.685
PLOT 6-F					
$\begin{aligned} & \text { Agropyron } \\ & \text { smithii } \end{aligned}$	$0.191 \pm$	0.059	50	18	0-1.229
Oryzopsis hymencides	$0.400 \pm$	0.120	50	20	0-3.304
Other perennial grasses	.3.440 \pm	0.314	50	96	0-11.586
Perennial forbs	$0.544 \pm$	0.240	50	48	0-10.548
Total	$4.695 \pm$	0.414	50	98	0-15.494

Table A8.7.2-28. Mean production \pm the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 6-0 and 6-F, June 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

	Mean \pm S.E.	Sample Size	Frequency $(\%)$	Range of Values
$\frac{\text { PLOT 6-0 }}{\text { Agropyron }}$	$0.546 \pm$	0.180	50	20

Table A8.7.2-29. Mean production \pm the standard error of the mean (S.E.), frequency, and range of observed values for quadrats in Plots 6-0 and 6-F, July 1977. Based on data derived from regression equations. Production values in grams $/ \mathrm{m}^{2}$.

| Mean \pm S.E. | Sample
 Size | Frequency
 $(\%)$ | Range
 of Values |
| :---: | :---: | :---: | :---: | :---: |

PLOT 6-0

| $\frac{\text { Agropyron }}{}$ | 0.677 ± 0.438 | 50 | 10 | $0-21.022$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Smithii | 6.305 ± 1.375 | 50 | 94 | $0-67.109$ |
| Other perennial
 grasses | 1.497 ± 0.381 | 50 | 62 | $0-12.205$ |
| Perennial
 forbs | 8.686 ± 1.609 | 50 | 96 | $0-75.209$ |

PLOT 6-F

$\frac{\text { Agropyron }}{\text { Smithii }}$	$0.093 \pm$	0.071	50	4	0-3.334
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$1.586 \pm$	0.407	50	46	0-15.381
Other perennial grasses	$4.307 \pm$	0.403	50	94	0-12.015
Perennial forbs	$0.886 \pm$	0.254	50	46	0-8.496
Annual forbs	$0.003 \pm$	0.003	50	2	0-0.150
Half shrubs	$0.016 \pm$	0.014	50	4	0-0.672
Total	$6.430 \pm$	0.546	50	96	0-16.158

Quadrat Number	1 26	2 27	3 28	4 29	5 30	6 31	7 32	8 33	9 34	10 35	11 36	$\begin{aligned} & 12 \\ & 37 \end{aligned}$	$\begin{aligned} & 13 \\ & 38 \end{aligned}$	14 39	15 40	$\begin{aligned} & 16 \\ & 41 \end{aligned}$	17 42	18 43	19	20 45	$\begin{aligned} & 21 \\ & 46 \end{aligned}$	22	23 48	24	25 50
$\frac{\text { Agropyron }}{\text { smithii }}$	1	<1			<1												18						$\begin{array}{r} 6 \\ <1 \end{array}$		11
$\frac{\text { Bromus }}{\text { tectorm }}$		1			1		$\begin{aligned} & \therefore 1 \\ & <1 \end{aligned}$				<1		$\begin{aligned} & <1 \\ & <1 \end{aligned}$		<1	<1		<1	<1	<1					1
Oryzopsis hymenoides		35 6	17	27	40	2	$\begin{array}{r} 10 \\ 100 \end{array}$	$\begin{aligned} & 17 \\ & 12 \end{aligned}$	$\begin{aligned} & 10 \\ & 65 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	12	33	30	$\begin{array}{r} 7 \\ 65 \end{array}$	55		50	45 5	50	$\begin{aligned} & 65 \\ & 40 \end{aligned}$	$\begin{aligned} & 13 \\ & <1 \end{aligned}$		80 40	7	25
Perennial grasses	20	$\begin{array}{r} 3 \\ 55 \end{array}$	12	$\begin{aligned} & 11 \\ & 40 \end{aligned}$	12	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	5	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	13	8 40	6 10	$\begin{array}{r} 37 \\ 5 \end{array}$	28	$\begin{aligned} & 30 \\ & 55 \end{aligned}$	85	5 13	18	45	$\begin{aligned} & 83 \\ & 15 \end{aligned}$	2 10	4	10	20
Perennial forbs					3	40			1			5	1	2	2	<1	$\begin{aligned} & 3 \\ & 2 \end{aligned}$			10					40
Annual forbs					$\begin{aligned} & <1 \\ & <1 \end{aligned}$		<1					<1					1			2					<1 1
Half shrubs					7		5				45		3				$\begin{array}{r} 30 \\ 4 \end{array}$			8			35 3		3
Total	20	39	17	38	15	75 37	30	29	10	33	70	13	36	46	28	30	52	50	50	112	96	2	125	0	11
Biomass	1	61	12	40	51	37	118	27	71	13	1	73	14	70	97	55	141	36	18	63	15	10	40	17	90

Table A8.7		$\begin{aligned} & \mathrm{Fr} \\ & \mathrm{ra} \end{aligned}$	esh ngel	wei and	J	$\begin{aligned} & \text { stim } \\ & 1 y, \end{aligned}$	1978	$(\mathrm{gr}$	ms)							$2-$									
Quadrat Number	1 26	2 27	3 28	4 29	5 30	6 31	7 32	8 33	9 34	10 35	11	12 37	13 38	14 39	15 40	16 41	17	18 43	19	20	21	22	23 48	24	$\begin{aligned} & 25 \\ & 50 \end{aligned}$
$\begin{aligned} & \text { Agropyron } \\ & \text { smithii } \end{aligned}$	13 6	2	$\begin{aligned} & 14 \\ & 40 \end{aligned}$	5 19	20	23	$\begin{array}{r} 2 \\ 20 \end{array}$	1 33	25	18		J.			18	27	25		6	11		26	80	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	5
$\frac{\text { Bromus }}{\text { tectorum }}$	$\begin{aligned} & <1 \\ & <1 \end{aligned}$	1	3	<1	<1	$\begin{array}{r} 3 \\ <1 \end{array}$	$\begin{array}{r} <1 \\ 3 \end{array}$	<1	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{array}{r} <1 \\ 9 \end{array}$	4 5	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	<1	6	4	3	1	$\begin{array}{r} 1 \\ <1 \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		2 1	1	3 5		7
Oryzopsis	16	17					33		33			8					4 35	$\begin{array}{r} 3 \\ 55 \end{array}$	8	7			10	30	
Perennial grasses	30	$\begin{array}{r} 35 \\ 2 \end{array}$	25	$\begin{aligned} & 55 \\ & 30 \end{aligned}$	7	2	30	$\begin{aligned} & 70 \\ & 12 \end{aligned}$	$\begin{array}{r} 15 \\ 5 \end{array}$		6	$\begin{array}{r} 1 \\ 18 \end{array}$	27	$\begin{array}{r} 60 \\ 1 \end{array}$		45	6	2	$\begin{array}{r} 3 \\ 20 \end{array}$	2	35	70		17	$\begin{array}{r} 52 \\ 6 \end{array}$
Perennial forbs		1	$\begin{array}{r} 18 \\ 2 \end{array}$				4	2	1	$\begin{array}{r} 20 \\ 2 \end{array}$					16		37	2	1		2			2	4
Annual forbs	1		<1			1			<1	2	4	$\begin{array}{r} <1 \\ 2 \end{array}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$		2		2	<1	2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$			
Half shrubs					3				11							12					4				
Total Biomass	43 23	55	35 67	60 49	23 12	29	39 53	73 45	53 42	38 13	14 12	4 29	27 <1	60	35	45	73 43	62	19	11	45 1	28 74	83 15	37 72	61 13

Fresh weight estimates (grams) for intensive study plot 5-F, pinyon-juniper woodland. July 1978.

Quadrat Number	1 26	27	3 28	4 29	5 30	6 31	7 32	8 33	9 34	$\begin{aligned} & 10 \\ & 35 \end{aligned}$	11 36	12 37	13 38	14 39	15 40	16	17 42	18 43	19 44	20 45	21 46	$\begin{aligned} & 22 \\ & 47 \end{aligned}$	$\begin{aligned} & 23 \\ & 48 \end{aligned}$	24 49	$\begin{aligned} & 25 \\ & 50 \end{aligned}$
$\frac{\text { Agropyron }}{\text { Smithii }}$		3			12	3	4	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & <1 \\ & 15 \end{aligned}$	6	20	$\begin{array}{r} 2 \\ 10 \end{array}$	$\begin{aligned} & 9 \\ & 3 \end{aligned}$	35	6	1	$\begin{array}{r} 4 \\ 20 \end{array}$		$\begin{aligned} & 1 \\ & 5 \end{aligned}$		9	3	$\begin{array}{r} 9 \\ 45 \end{array}$		
$\frac{\text { Bronus }}{\text { tectorum }}$					2									<1	4										
Oryzopsis hymenoides				$\begin{aligned} & 30 \\ & 12 \end{aligned}$	30	6				13			2	3	45	65		35		15 12	47	$\begin{array}{r} 40 \\ 2 \end{array}$	50		10
Perennial grasses	$\begin{aligned} & 70 \\ & 50 \end{aligned}$	$\begin{aligned} & 55 \\ & 20 \end{aligned}$	$\begin{array}{r} 20 \\ 150 \end{array}$	$\begin{aligned} & 95 \\ & 55 \end{aligned}$	$\begin{array}{r} 100 \\ 60 \end{array}$	30 85	$\begin{array}{r} 60 \\ 110 \end{array}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} 20 \\ 120 \end{array}$	85	<1 17	$\begin{aligned} & 13 \\ & 30 \end{aligned}$	$\begin{aligned} & 10 \\ & 85 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	28	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	60 55	$\begin{array}{r} 100 \\ 35 \end{array}$	7 30	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 110 \\ 30 \end{array}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 14 \end{aligned}$
Perennial forbs	$\begin{array}{r} 2 \\ 15 \end{array}$	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	20	55	$\begin{array}{r} 4 \\ 25 \end{array}$	$\begin{array}{r} 3 \\ 18 \end{array}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 45 \\ & 32 \end{aligned}$	$\begin{array}{r} 15 \\ 7 \end{array}$	35	18	7	$\begin{aligned} & 1 \\ & 6 \end{aligned}$	14	30	$\begin{aligned} & 35 \\ & 15 \end{aligned}$	22	$\begin{aligned} & 10 \\ & 33 \end{aligned}$	$\begin{aligned} & 12 \\ & 30 \end{aligned}$	20 1	$\begin{array}{r} 22 \\ 6 \end{array}$	$\begin{aligned} & 60 \\ & 12 \end{aligned}$	25	50 20	$\begin{aligned} & 30 \\ & 15 \end{aligned}$
Annual forbs								<1		11			<1											1 <1	
Half shrubs		60							10			7													
Total	72	130	20	125	104	36	67	98	45	11	<1	29	20	54	64	146	86	145	20	135	179	140	79	116	85
Biomass	65	53	170	122	129	109	112	85	142	139	55	47	96	43	60	65	81	68			45	57	140	80	29

Table A8.7.2-34. Oven dry weights (grams) for chained pinyon-juniper rangeland plots $1-F$ and 2-F. 1978.

Table A8．7．2－35．Oven dry weights（grams）for pinyon－juniper woodland plots $5-\mathrm{F}$ and 6－F． 1978.

								范	
	7	1.573		4.089	0.372		0.179		5.841
	9				3.776				3.776
	12				1.199		0.157		1.356
	14			1.787	3.859				5.646
4	31				3.819		1.073		4.892
	35			10.729	3.109				13.838
$\stackrel{\rightharpoonup}{\circ}$	41		0.087		2.144		0.152		2.383
え	44				20.260	4.358			24.618
	46		$0.2{ }^{\wedge} 2$	3.941		0.173	0.702		5.058
	48				21.615	1.776	0.471		23.862
	6	0.396			7.489	1.210			9.095
	13	1.989			5.911	0.148			8.048
	21	4.441		24.508	55.049	15.879	0.025		95.461
	28	4.903			56.719	5.568			62.287
山	33	3.570			27.376	14.751	0.875		46.572
$\stackrel{\square}{6}$	38	3.194			67.699	1.755			72.648
	43	1.344			22.264	26.876	0.199		49.140
$\stackrel{1}{2}$	47	3.374	0.020	0.373	22.784	8.857			35.388
－	49				28.806	11.719	0.415		40.940
	50				5.448	7.123			12.571

Table A8.7.2-36. Regression equations used for converting fresh weight estimates to oven dry weights in plots $1-\mathrm{F}, 2-\mathrm{F}, 5-\mathrm{F}$, and 6-F. 1978.

Species / Species Group	Regression Equation	Correlation Coefficient
Agropyron smithii	$y=0.650 x+2.503$	0.70
$\underline{\text { Bromus tectormm }}$	$y=2.748 x-1.543$	0.93
Oryzopsis hymenoides	$y=0.586 x+0.565$	0.95
Other perennial grasses	$y=0.520 x+3.415$	0.88
Perennial forbs	$y=0.616 x-0.893$	0.91
Annual forbs	$y=0.537 x+0.234$	0.81
Half shrubs	$y=0.924 x-2.160$	0.99
Total Biomass	$y=0.518 x+6.597$	0.89

Table A8.7.2-37. Mean production \pm the standard error of the mean (S.E.), frequency, and range of observed values for quadrats at chained pinyon-juniper rangeland Plots 1-F and 2-F, 1978. Production data are in grams $/ \mathrm{m}^{2}$ based on data derived from regression equations.

| Mean \pm S.E. | Sample
 Size | Frequency
 $(\%)$ | Range
 of Values |
| :---: | :---: | :---: | :---: | :---: |

PLOT 1-F
Agropyron
0.838 ± 0.370
50
14
0-14.201
smithii
Bromus
Oryzopsis
12.115 ± 2.098
50
50
26
0-1. 205

64
0-59.125 hymenoides
$\begin{aligned} & \text { Other perennial } \\ & \text { grasses }\end{aligned} 12.077 \pm 1.579$
Perennial forbs

Annual
1.164 ± 0.668
50
50
84

24

16

22
0-39.420 shrubs
Total
29.461 ± 2.542
50
100
6.597-79.635

PLOT 2-F
$\frac{\text { Agropyron }}{\text { Smithii }}$
7.800 ± 1.539
50
52
0-54.495

50
74
0-23.189
Bromus
3.968 ± 0.796

50
26
0-32.733
Oryzopsis
3.180 ± 1.005

50
62
0-39.832 grasses
Perennial forbs

Annual
0.411 ± 0.105
50 forbs
Half
0.382 ± 0.238
50 shrubs
Total
24.406 ± 1.707
50
100
6.856-49.591

Table A8.7.2-38. Mean production \pm the standard error of the mean (S.E.), frequency, and range of observed values for quadrats at pinyon-juniper woodland Plots 5-F and 6-F, 1978. Production data are in grams $/ \mathrm{m}^{2}$ based on data derived from regression equations.

Mean \pm S.E.	Sample Size	Frequency	Range
	$(\%)$	of Values	

PLOT 5-F

$\frac{\text { Agropyron }}{\text { smithii }}$	$1.036 \pm$	0.277	50	24	0-7.702
$\frac{\text { Bromus }}{\text { tectorm }}$	$0.113 \pm$	0.082	50	14	0-3.953
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$3.357 \pm$	0.823	50	50	0-29.846
Other perennial grasses	$11.724 \pm$	2.287	50	88	0-107.464
$\begin{aligned} & \text { Perennial } \\ & \text { forbs } \end{aligned}$	$0.433 \pm$	0.213	50	28	0-9.579
Annual forbs	$0.323 \pm$	0.062	50	44	0-2.381
Half shrubs	$0.004 \pm$	0.003	50	4	0-0.100
Total	$19.169 \pm$	2.332	50	100	7-110.197

PLOT 6-F
Agropyron
4.721 ± 1.031
50
58
$0-31.750$
smithii
Bromus
0.272 ± 0.203
50
8
0-9.449

34
$0-38.630$
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$
Other perennial
30.654 ± 2.556
50 grasses

Perennial
9.566 ± 1.307
50
88
$0-36.068$
forbs
Annual
0.183 ± 0.124
50
forbs
Half shrubs
1.293 ± 1.074
50
6
0-53.280
Total
50.306 ± 3.303
50
100
6.856-99. 319

Table A8.7.2-39. Oven dry weights (grams) for range cages and adjacent open areas in the pinyon-juniper woodland treatment (development) site north of Piceance Creek. 1978.

								${\underset{\sim}{4}}_{\stackrel{n}{\pi}}^{\text {B }}$	
	1		0.366	4.515	3.098	0.133	0.069		8.181
	2			1.806				1.403	3.209
	3			2.571	8.848		0.465		11.884
	4	0.378		3.391	4.084		0.660		8.513
鮑	5		0.048	1.558		0.049	0.077	2.921	4.653
<	6			0.648	3.891		0.098		4.637
z	7				12.104	0.729	0.567		13.400
$\stackrel{3}{6}$	8	2.158			1. 775	0.048	0.016		3.577
	9		8.606	4.672	6.279	0.169	5.644		25.370
	10		0.071	4.198	9.465	1.341	0.050		15.125
	1			1.649	19.731	0.763			22.143
	2			1.590	28.659	2.967	0.012	0.691	33.919
	3		0.018	1.745	6.834		0.557		9.154
	4	0.424	2.971	7.971	35.753	0.388	2.859		50.366
S	5			3.365			0.052	1.278	4.695
O	6	2.337			1.036				3.373
	7		0.907	18.739	12.863	0.049	1.165	0.474	34.197
K	8	0.488		12.971			0.015		13.474
\ldots	9		3.731	6.907	3.853		1.646		16.137
	10		0.017	9.379					9.396

Table A8.7.2-40 . Oven dry weights (grams) for range cages and adjacent open areas in the pinyon-juniper woodland control site north of Piceance Creek. 1978.

						$\begin{aligned} & \text { 哥 } \\ & \text { Bn } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
	1			5.648		0.049			5.697
	2			10.816			0.024		10.840
	3	3.339		2.964	1.347	0.447		3.769	11.866
	4		0.041		4.271	0.159		0.983	5.454
\%	5			0.430		0.042		0.492	0.964
4	6			5.057	5.309	2.077		1.073	13.516
面	7		0.037	2.436		0.920			3.393
8	8			3.796					3.796
	9			0.011	0.168		3.395		3.574
	10				6.749				6.749
	1		0.791	13.983	4.815		0.078		19.667
	2			24.159		0.014			24.173
	3	0.084		5.207	8.961	0.306		0.417	14.975
∞	4			0.563	9.198	6.506		5.739	22.006
כ	5				22.659	5.137		0.148	27.946
3	6			1.488	9.459	0.497		1.359	12.803
$\underline{1}$	7			8.416		0.370	0.142		8.928
3	8			9.730				1.565	11.295
2	9			3.633	1.943		0.003	0.248	5.827
	10			2.915	25.130	1.809		0.024	29.878

Table A8.7.2-41. Mean production \pm the standard error of the mean (S.E.), frequency, and range of observed values for clipped plots in the pinyon-juniper woodland development (treatment) site north of Piceance Creek. Production values in grams $/ \mathrm{m}^{2}$. 1978.

Mean \pm S.E.

RANGE CAGES

$\frac{\text { Agropyron }}{\text { Smithii }}$	$0.325 \pm$	0.232	10	30	0-2.337
$\frac{\text { Bromus }}{\text { tectorum }}$	$0.764 \pm$	0.444	10	50	0-3.731
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$6.433 \pm$	1.899	10	90	0-18.739
Other perennial grasses	$10.873 \pm$	4.130	10	70	0-35.753
Perennial forbs	$0.417 \pm$	0.294	10	40	0-2.967
Annual forbs	$0.631 \pm$	1.309	10	70	0-2.859
Half shrubs	$0.244 \pm$	0.139	10	30	0-1.278
Total	$19.685 \pm$	4.853	10	100	3.373-50.366
OPEN AREAS					
$\frac{\text { Agropyron }}{\text { Smithii }}$	$0.252 \pm$	0.213	10	20	0-2.138
$\frac{\text { Bromus }}{\text { tectorum }}$	$0.909 \pm$	0.856	10	40	0-8.606
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$2.336 \pm$	0.572	10	80	0-4.672
Other perennial grasses	$4.914 \pm$	1.315	10	80	0-12.104
Perennial forbs	$0.247 \pm$	0.140	10	60	0-1.341
Annual forbs	$0.765 \pm$	0.548	10	90	0-5.644
Half shrubs	$0.432 \pm$	0.310	10	20	0-2.921
Total	$9.855 \pm$	2.180	10	100	3.209-25.370

Table A8.7.2-42. Mean production \pm the standard error of the mean (S.E.), frequency, and range of observed values for clipped plots in the pinyon-juniper woodland control site north of Piceance Creek. Production values in grams $/ \mathrm{m}^{2}$. 1978.

$\overline{\text { Mean } \pm \text { S.E. }}$| Sample |
| :---: |
| Size | | Frequency |
| :---: |
| $(\%)$ |

RANGE CAGES

$\frac{\text { Agropyron }}{\text { Smithii }}$	$0.008 \pm$	0.008	10	10	0-0.084
$\frac{\text { Bromus }}{\text { tectorum }}$	$0.079 \pm$	0.079	10	10	0-0.791
Oryzopsis hymenoides	$7.009 \pm$	2.368	10	90	0-24.159
Other perennial grass	$8.216 \pm$	2.889	10	70	0-25.130
Perennial forbs	$1.464 \pm$	0.753	10	70	0-6.506
Ainnual forbs	$0.022 \pm$	0.015	10	30	0-0.142
Half shrubs	$0.950 \pm$	0.562	10	70	0-5.739
Total	$17.750 \pm$	2.599	10	100	5.827-29.878
OPEN AREAS					
$\frac{\text { Agropyron }}{\text { smithii }}$	$0.334 \pm$	0.334	10	10	0-3.339
$\frac{\text { Bromus }}{\text { tectorum }}$	$0.008 \pm$	0.005	10	20	0-0.041
$\frac{\text { Oryzopsis }}{\text { hymenoides }}$	$3.116 \pm$	1.089	10	80	0-10.816
Other perennial grasses	$1.784 \pm$	0.830	10	50	0-6.749
Perennial forbs	$0.369 \pm$	0.211	10	60	0-2.077
Annual forbs	$0.342 \pm$	0.339	10	20	0-3.395
Half shrubs	$0.632 \pm$	0.374	10	40	0-3.769
Total	$6.585 \pm$	1.311	10	100	0.964-13.516

Table A8.7.3-1

Production and utilization of bitterbrush in the chained rangeland habitat, 1977-78.

	A	B	C
	PRODUCTION: length of new shoots in fall(mm)	Length of shoots remaining in spring (mm)	UTILIZATION: in percent A-B
Transect	Mean \pm SE (N)	Mean \pm SE (N)	$C=\frac{A}{A} \times 100$

| BA 17 |
| :--- | :--- | :--- |
| $(\mathrm{CH}-\mathrm{C}-1)$ |$\quad 42 \pm 3.8(100) \quad 3 \pm 0.6(90) \quad 92$

BA 18
$75 \pm 9.0(100)$
$4 \pm 0.9(100)$

BA 25
$73 \pm 8.3(100)$
$5 \pm 0.8(100)$

Combined
$63 \pm 4.3(300)$
$4 \pm 0.5(290)$

BA 21
$73 \pm 6.4(100)$
$9 \pm 1.1(100)$
88
(CH-T-1)

BA 20
$145 \pm 11.2(100)$
$10 \pm 1.5(100)$
93
($\mathrm{CH}-\mathrm{T}-2$)

BA 23
$143 \pm 10.6 .(100)$
$16 \pm 2.3(100)$
89

Combined
$120 \pm 5.9(300)$
$12 \pm 1.0(300)$
90

Production and utilization of bitterbrush in the pinyon-juniper habitat, 1977-78.

	A	B	C
Transect	PRODUCTION: length of new shoots in fall(mm) Mean \pm SE (N)	Length of shoots remaining in spring (mm) Mean \pm SE (N)	UTILIZATION: in percent $C=\frac{A-B}{A} \times 100$
$\begin{aligned} & \text { BA } 19 \\ & (\text { PJ-C-1) } \end{aligned}$	48 ± 3.9 (100)	$9 \pm 2.1(100)$	81
$\begin{aligned} & \text { BA } 26 \\ & (P J-C-2) \end{aligned}$	43 ± 3.9 (100)	$4 \pm 0.9(100)$	91
BA 27 $(P J-C-3)$	$29 \pm 3.1(100)$	$4 \pm 1.0(100)$	85
Combined	$40 \pm 2.2(300)$	$6 \pm 0.8(300)$	85
$\begin{aligned} & \text { BA } 16 \\ & (\text { PJ-T-1) } \end{aligned}$	28 ± 2.6 (99)	5 ± 0.8 (80)	82
$\begin{aligned} & \text { BA } 22 \\ & (\text { PJ-T-2) } \end{aligned}$	94 ± 7.1 (100)	$15 \pm 1.8(100)$	84
$\begin{aligned} & \text { BA } 24 \\ & (\text { PJ-T-3) } \end{aligned}$	$36 \pm 2.4(100)$	9 ± 1.5 (90)	75
Combined	53 ± 3.2 (299)	10 ± 0.9 (270)	81

Production and utilization of mountain mahogany in the chained rangeland habitat, 1977-78.

	A	B	C
Transect	PRODUCTION: length of new shoots in fall(mm) Mean \pm SE (N)	Length of shoots remaining in spring (mm) Mean \pm SE (N)	UTILIZATION: in percent $C=\frac{A-B}{A} \times 100$
$\begin{aligned} & \mathrm{BA} 17 \\ & (\mathrm{CH}-\mathrm{C}-1) \end{aligned}$	$5 \pm 0.4(100)$	$0.5 \pm 0.13(100)$	91
$\begin{aligned} & \mathrm{BA} 18 \\ & (\mathrm{CH}-\mathrm{C}-2) \end{aligned}$	$16 \pm 4.2(100)$	3.5 ± 1.23 (100)	79
$\begin{aligned} & \mathrm{BA} 25 \\ & (\mathrm{CH}-\mathrm{C}-3) \end{aligned}$	$13 \pm 1.5(50)$	1.4 ± 0.38 (50)	89
Combined	$11 \pm 1.7(250)$	1.8 ± 0.51 (250)	83
$\begin{aligned} & \mathrm{BA} 21 \\ & (\mathrm{CH}-\mathrm{T}-1) \end{aligned}$	$9 \pm 1.0(100)$	0.7 ± 0.28 (80)	92
$\begin{aligned} & \mathrm{BA} 20 \\ & (\mathrm{CH}-\mathrm{T}-2) \end{aligned}$	15 $\pm 2.7(100)$	0.9 ± 0.21 (100)	94
$\begin{aligned} & \mathrm{BA} 23 \\ & (\mathrm{CH}-\mathrm{T}-3) \end{aligned}$	44 ± 6.6 (98)	4.5 ± 0.80 (100)	90
Combined	23 ± 2.5 (298)	2.1 ± 0.32 (280)	91

Production and utilization of mountain mahogany in the pinyonjuniper habitat, 1977-78.

	A	8	C
Transect	PROCUCTION: length of new shoots in fall(mm) Mean \pm SE (N)	Length of shoots remaining in spring (mm) Mean \pm SE (N)	UTILIZATION: in percent $C=\frac{A-B}{A} \times 100$
$\begin{aligned} & \text { BA } 19 \\ & (\text { PJ-C-1) } \end{aligned}$	$4 \pm 0.2(100)$	$1.0 \pm 0.18(100)$	72
$\begin{aligned} & \text { BA } 26 \\ & (\text { PJ }-\mathrm{C}-2) \end{aligned}$	$8 \pm 1.1(100)$	1.4 ± 0.38 (100)	82
$\begin{aligned} & \text { BA } 27 \\ & (\text { PJ-C-3) } \end{aligned}$	$12 \pm 2.2(100)$	2.5 ± 0.90 (100)	80
Combined	$8 \pm 0.8(300)$	1.6 ± 0.33 (300)	79
$\begin{aligned} & \text { BA } 16 \\ & (\text { PJ-T-1) } \end{aligned}$	2 ± 0.3 (20)	1.5 ± 0.58 (20)	37
$\begin{aligned} & \text { BA } 22 \\ & (\text { PJ-T-2) } \end{aligned}$	$23 \pm 4.7(40)$	4.6 ± 1.82 (30)	80
$\begin{aligned} & \text { BA } 24 \\ & (P J-T-3) \end{aligned}$	19 ± 2.2 (99)	$4.6 \pm 1.05(100)$	76
Combined	18 ± 1.9 (159)	4.2 ± 0.79 (150)	77

		PRODUCTION: length of new shoots in fall(mm)
Transect	Habitat	Mean \pm SE (N)
BA 18	chained rangeland	266 ± 16.6 (100)
BA 25	'	$174 \pm 11.7(100)$
BA 21	11	$211 \pm 17.2(100)$
BA 20	"	$246 \pm 18.8(100)$
BA 23	"	274 ± 25.4 (100)
BA 19	pinyon-juniper	$123 \pm 7.7(100)$
BA 26	"	$133 \pm 8.3(100)$
BA 27	"	$154 \pm 8.7(100)$
BA 16	11	$149 \pm 9.8(100)$
BA 22	11	$179 \pm 14.2(100)$
BA 24	"	$120 \pm 8.2(100)$

Table A8.7.3-6
Baseline evaluation of bitterbrush on Big Jimmy ridge. Twenty 0.04 acre plots occurred along each transect.

Transect	Density: No. of shrubs per acre	No. of shrubs counted	Height class (cm) $<15 \quad 15-40>40$			Percent live tissue on individual shrubs $\begin{array}{lllll}<25 & 25 & 50 & 75 & 100\end{array}$					No. of seedlings encountered in twenty 0.003 acre plots
BA 01	49	39	3	30	6	0	3	16	19	1	0
BA 02	61	49	7	36	6	2	5	24	15	3	1
BA 03	30	24	1	13	10	1	0	6	10	7	0
BA 04	144	115	24	54	37	16	22	34	34	9	0
BA 05	114	91	10	45	36	0	20	45	22	4	0
BA 06	113	90	2	35	53	3	5	33	42	7	0
BA 07	29	23	0	7	16	0	0	4	13	6	0
BA 08	34	27	2	8	17	0	0	6	14	7	0
BA 09	6	5	0	2	3	0	0	2	3	0	0

Baseline evaluation of mountain mahogany on Big Jimmy ridge. Twenty 0.04 acre plots occurred along each transect.

Density: No. of

Transect

shrubs per acre

BA $01 \quad 56$

BA 02
0

BA 03 3

BA 04 29

BA 053

BA 060

BA 079

BA 08 0

BA 093

Sagebrush Habitat

Transect	Paces	$\begin{aligned} & \text { Sample } \\ & \text { Size } \\ & \hline \end{aligned}$	Young	Mature	Decadent	Low	Medium	High	Density
BAOI	2	50	10	40	---		48	2	
BA02	$2 .$.	50	12	38	---	34	16	-	
BA03	2	50	11	39	---	40	10	---	
BA04	3	50	1	48	1	22	24	4	5, 3, 3, 4, 4
BA05	3	50	1	41	8	10	21	19	7, 9, 11, 5, 9
BA06	3	50	2	47	1	21	10	19	9, 9, 6, 4, 14
BA07	3	50	1	47	2	32	13	5	10, 8, 12, 8, 5
BA08	3	50	3	39	8	12	20	18	9, 3, 4, 11, 7
BA09	2	50	1	37	12	7	8	35	7, 6, 2, 11, 6
BAl7	2	50	1	49	---	41	9	---	3, 2, 1, 4, 7
BA18	3	50	8	42	---	27	23	---	1, 2, 1, 3, 1
BA20	3	50	1	47	2	15	20	15	5, 2, 3, 7, 3
BA21	3	50	2	47	1	17	27	6	2, 1, 3, 1, 2
BA23	3	50	--	50	-	25	22	3	2, 3, 7, 6, 4
8425	2	50	\cdots	49	1	11	24	15	4, 9, 7, 1, 1
TOTAL		750	54	660	36	314	295	141	
PERCENT			7.2	88	4.8	41.9	39.3	18.8	

Pinyon Juniper Habitat

Transect	Paces	Sample Size	Young	Mature	Decadent	Low	Medium	High	Density
BAIO	5	25	--	15	10	2	10	13	1, 1, 1
BAll	5	25	--	17	8	---	19	6	1, 1, 1
BA12	3	40	--	22	18	5	20	15	1, 2, 1, 1
BAl3	3	50	--	30	20	7	20	23	$4,3,6,2,1$
8A14	3	50	--	37	13	3	25	22	3, 4, 4, 1, 1
BAI5	3	50	--	31	19	3	22	25	1, 5, 5, 1, 3
BAl6	3	50	--	20	30	---	13	37	4, 3, 4, 1, 2
BA19	5	25	--	3	22	1	10	14	1, 2, 1
BA22	5	25	--	4	21	1	9	15	2, 1
BA24	5	25	--	2	23	2	3	20	0, 1
BA26	3	50	--	20	30	1	17	32	1, 2, 1, 1, 0
BA27	3	50	--	25	25	2	20	28	$1,1,2,1,1$
TOTAL		465	0	226	239	27	188	250	
PERCENT				48.6	51.4	5.8	40.4	53.8	

Table A8.7.3-9
Production of bitterbrush and mountain mahogany treated with fertilizer, 1978. All transects are located in the chained rangeland habitat.

PRODUCTION:
length of new
shoots in fall(mm)
Transect
Mean \pm SE (N)
Treatment

Bitterbrush:

BA 28
185 ± 16 (99)
ammonia nitrate

BA 31
$260 \pm 20(100)$
ammonia nitrate

BA 17
$223 \pm 21(100)$
nitrogen and phosphorus

BA 30
$201 \pm 17(100)$
nitrogen and phosphorus

Mountain mahogany:

BA 28
$132 \pm 7(100)$
ammonia nitrate

BA 17
$114 \pm 7(100)$
nitrogen and phosphorus

THIS PAGE
 INTENTIONALLY LEFT BLANK

SINGLE POINT TWO POINTS OVERLAID
 It !
 ∞

$A=$ SINGLE POINT

$$
\begin{aligned}
& A=\text { SINGLE POINT } \\
& B=\text { TWO POINTS OVERLAID }
\end{aligned}
$$

Table A12.3.2-1
STEPWISE REGRESSION ANALYSIS STATISTICS - STEP 1

VARIABLE	MEAN	Stancaro	CORRELATION	REGRESSION	ST. ERROR,	COMPUTED
NO. NAME		OEVIATION	$X V S Y$	COEFFICIENT	OF REG. COEF.	I Value
3 OCT	256.75977	221.43738	0.40638	0.00959	0.00602	1.59263
5 CART	61.87909	17.23685	-0.22688	-0.01038	0.07677	-0.13516
- PREC	23.39994	31.52641	-0.20665	-0.02918	0.03604	-0.20956
DEPENDENT						
2 KILL	3.96000	5.73352				
INTERCEPT		2.82307				
MULTIPLE	CORGELATION	0.43667				
STD. ERROR	R OF ESTIMATE	5.51612				

analysis of variance for the regression

SOURCE OF VARIATION	DEGREES OF FREEOOM	$\begin{aligned} & \text { SUM OF } \\ & \text { SOUARES } \end{aligned}$	MEAN SQUARES	F value
ATTRIBUTABLE TO REGRESSION DEVIATION FROM REGRESSION TOTAL	$\begin{array}{r} 3 \\ 21 \\ 24 \end{array}$	150.44177 638.51709 788.95874	$\begin{aligned} & 50.14725 \\ & 30.40556 \end{aligned}$	1.64928

Table Al2.3.2-2

STEPWISE	REGRESSION	ANALYSIS STA	STICS - STEP	2	
VARIABLE MEAN	STANOARO	CORRELATION	REGRESSION	ST. ERROR,	COMPUTED
NO. NAME	OEVIATION	X VS Y	COEFFICIENT	OF REG.COEF.	T VAlue
3 OCT1 256.75977	221.43738	0.40638	0.01026	0.00592	1.73318
5 CAR1 61.87999	17.23685	-0.22688	-0.00656	0.07002	-0.08608
$\begin{array}{ll} \text { DFPENDENT } \\ 2 \text { KILL. } & 3.96000 \end{array}$	5.73352				
INTERCEPT	1.73187				
MULTIPLE CORRELATION	0.40673				
STO. ERROR OF ESTIMATE	5.47077				

ANALYSIS OF VARIANCE FOR THE REGRESSION

SOURCE OF VARIATION	OEGREES	SUM OF	MEAN
	OF FREEDOM	SOUARES	SOUARES
MTTRIBUTABLE TO REGRESSION	2	130.51462	65.25731
OEVIATION FROM REGRESSION	22	658.64434	29.92928
TOTAL	24	788.55876	

Table A12.3.2-3
STEPNISE REGRESSION ANALYSIS STATISTICS - STEP 3

VARI4 3LE	MEAN	STANJARO	CORFELATION	REGRESSION	ST. ERPOR,	COMPUTEO
$\begin{gathered} \text { NO. NAME } \\ 3 \text { OCT } 1 \end{gathered}$	256.75977	$\begin{array}{r} \text { DEVIATIDV } \\ 221.43753 \end{array}$	$\begin{gathered} x \text { VS } \\ 0.4305 \end{gathered}$	$\begin{aligned} & \text { COEFFICIENT } \\ & 0.01052 \end{aligned}$	$\begin{aligned} & \text { 1)F REG. COEF. } \\ & 0.004 \div 3 \end{aligned}$	$\begin{gathered} \text { VVALUC } \\ 2.13300 \end{gathered}$
DEPENDENT						
2 KILL	3.96000	5.73352				
INTERCFPT		1.25034				
MULTIPLF C	CORPELATION	0.40638				
STO. FRROR	R OF ESTIMATS	5.35142				

APPENDIX I

Socio - Economic Monitoring Reports 2, 3, \& 4

C-b Shale Oil Venture
Socio-Economic Monitoring Report
Number Two
(Quarterly Report)
November 30, 1978

This is the second report which provides selected information on the $C-b$ project workforce. The data for the report was collected through a questionnaire given to those employed at the $C-b$ site, Completed surveys are available from 60% of the current workforce, therefore the statistics used in this report are estimates rather than actual numbers.

The C-b Fiorkforce

The workforce reached a high in September of about 375. The workforce level at the end of November, 1978 was 282. The decrease of about $1 S$ workers, since the July Monitoring Report, which indicated approximately 300 employees, is a temporary condition due to completion of the shaft headframes. The number of workers will increase again in January when shaft sinking resumes. About 90 percent of the workers still hold construction or temporary jobs at the site, while only 10 percent of the workers are considered permanent. Figure A shows the actual workforce as it compares to the projected workforce.

The majority (51.8%) of the worker's surveyed reside in Rifle. Table I shows the place of residence of the workers surveyed. A comparison of the place of residence of employees as shown in this report with that shown in the first monitoring report indicates that the percentage of employees living in Rifle and Silt has decreased whereas the percentage in Meeker has remained the same.
C.b Shale Oil Venture

PROJECT MANDOWER ESTIMATE

Figure A

PLACE OF RESIDENCE

Community	$\begin{gathered} \text { Percent of C-b Work- } \\ \text { force Residing there } \\ \text { July, 1978 } \\ (N=296) \end{gathered}$	Percent of Norkers Surveyed, Residing there, Nov., 1978 $(N=168)$
Rifle	54.7	51.8
Grand Junction Area	6.4	13.1
Meeker	7.1	7.1
Silt	10.1	5.4
Glenwood Springs	4.1	3.6
Rangely	. 7	2.4
New Castle	4.7	2.4
Craig	-	1.8
Grand Valley	3.4	-
Piceance Creek	1.7	-
Denver Area	1.0	-
Other Nest Slope	5.1	2.4
Outside State	1,0	2.9
Unknown	$\frac{\cdots}{100.0 \%}$	$\frac{7.1}{100.0 \%}$
Most of the workers are residing in these communities on a full		
time basis, while 15.5 percent indicated they live in a community		
close to the $C-b$ si residence on weeken	e on weekdays and re S.	o their permanent

Approximately 62 percent of the workers responding have lived in their present hone less than a year, while the other 38 percent have resided at their present location for over one year. Over
half of the workers who live in Rifle, Meeker, and
Glenwood are newcomers to those communities. Table II indicates the percentage of employees in each community according to the length of their residence.

TABLE II

LENGTH OF RESIDENCE

Percent of C - b Work-
Community

Rifle	21.8	78.2	100%
Grand Junction	68.2	31.8	100%
Meeker	33.3	66.6	100%
Silt	88.8	11.1	100%
Glenwood	50.0	50	100%
All Other Communities	46.9	53.1	100%

The median age of the employees is 28. About seventy percent of the workforce surveyed were married. For those employees living in Rifle and Meeker, the percentage married is greater than it is for the total workforce, but it should be noted that many of those employees have not brought their families with them. Table III indicates the percentage of workers, married and single, surveyed according to place of residence. The average family size for the married workers surveyed was 3.3 , or an average of 1.3 children per family.

Of those employees living in Rifle less than a year, 40 percent have their families living with them. The new residents in Rifle
have brought an average of 1.1 school children per family.

When asked to state if they were planning to move their families into the area, 20 of the workers showed they were planning to move their spouses to Rifle, bringing with them 21 school age children. Therefore, based on the return of the questionaire from 60% of the workforce, it is estimated that a total of 25 of the workers will move their spouse to Rifle with 28 school age children.

In Meeker, 85 percent of the employees responding to the survey living there less than a year, have their families living with them. These employees have brought four school age children to the community within the last ycar.

TABLL III
MARITAL STATUS OF WORKFORCE
Community
Percent Married
Percent Single

Rifle	72.4	27.6	100%
Grand Junction Area	54.5	45.5	100%
Meeker	75	25	100%
Silt	66.6	33.3	100%
Total of Workers Surveyed	69.6	30.4	100%

Type of Residence of The Workforce

Table IV lists the percentages of the workforce in various types of residences. In Meeker, Grand Junction and Silt a greater percentage of residents are living in houses than in any other type of residence. In Rifle, the largest percentage of the workforce is living in apartments. When asked to state what type of residence the workers preferred, the majority indicated single family housing. Table V shows the preferences, in detail.

TYPE OF RESIDENCE OF WORK FORCE

	$\%$ of Total Type of Residence Workforce	$\%$ of Residents Rifle	$\%$ Residents Grand Junction	$\%$ Residents Meeker	of Residents Silt
Wwn House	23	18.4	29.4	33.3	22.2
Rent House	15.8	6.8	29.4	16.6	55.5
Own Mobile Hone	14.5	14.9	17.6	8.3	11.1
Rent Mobile Home	10.3	10.3	5.8	16.6	11.1
Apartment	28.5	37.9	11.8	25	0
R.V./Camper	5.4	8	5.8	0	0

TABLE V

HOUSING PREFERENCES OF THE WORKFORCE

Type

House

Apartment
Mobile Home

Percent Responding 60.4
22.9
$\frac{16.6}{100 \%}$
lionthly figures provided by local realtors in Rifle and Meeker give an indication of the housing availability and cost in the communities. Table VIII indicates the housing availability in Rifle. In Rifle, the median unit price increased 12% for new
housing and 6% for old units during the three months from September to November. The median cost of residential lots for sale increased 33% from September to November.

TABLE VIII

RIFLE HOUSING AVAILABILITY REPORT
September October November

No. New Units for sale	12	14	11
Median Unit Price	$\$ 59,000$	$\$ 64,557$	$\$ 66,180$
Average weeks offered	6 weeks	7 weeks	5 weeks

No. O1d Units for sale
24
28 23

Median Unit Price
$\$ 56,500$
$\$ 57,100$
$\$ 60,000$
Average weeks offered
5 weeks
12 weeks
14 weeks

No. Resident Lots for sale
48
55
17
Median Lot Price
$\$ 12,200$
$\$ 16,250$
\$16, 250

No. Houses for Rent
None
None
None

No. Apartments for Rent
1
\$ 425

6
None
\$ 366

Source: Leo Swartzendruber, Rifle Realty, Inc.

In Meeker, estimates of housing availability were provided by Bob Cox, Home Loan Officer at the First National Bank, who indicated that during the first half of November, average new homes were selling in the range of $\$ 47,500$ to $\$ 52,000$. Resident lots with water and sewer taps were selling in the range of $\$ 15,500$ to
$\$ 17,500$. Apartments for rent were very limited, with some two bedroom apartments renting for $\$ 350$ to $\$ 400$. There were no known mobile home spaces available.

Recreational Activities of the Workforce

When asked what type of recreational activities they participate in regularly, the employees indicated 72 different activities. Hunting, fishing and skiing were mentioned most frequently as recreational activities of both the employee and his or her family. Table IX shows the frequency of responses.

TABLE IX

RECREATIONAL ACTIVITIES

Activity

$$
\begin{aligned}
& \text { Percentage of } \\
& \text { Responses } \\
& (N=462)^{*}
\end{aligned}
$$

Hunting 22%
Fishing 22
Skiing 8
Camping 4
Bowling 3
Softちall/Baseball 3
Swimming 3
Tennis 2
Basketball 2
Motorcycles/Dirtbikes 2
Horseback Riding 2
Drinking/Partying 2
All Others (Less than 2% Responding) 24

* Percent does not total 100% due to multiple response

During the fall of 1978, the "typical" C-b employee was a 28 year old, married man. He lived in Rifle with his wife and child He is a new resident in the community and paid $\$ 360$ per month for his apartment. When he was not working, he enjoyed hunting and fishing.

C-b SHALE OIL VENTURE SOCIO-ECONOMIC MONITORING REPORT
 NUMBER THREE
 (ANNUAL REPORT)
 February, 1979

Prepared by Quality Development Associates, Inc.
Introduction 1
I. The C-b Workforce 2
A. Housing 2

1. Location 2
2. Length of Residence 2
3. Type 5
4. Preference 6
5. Cost 6
B. Age, Marital Status and Family Size 7
6. Age 7
7. Marital Status 7
8. Family Size 7
C. Recreational Activities 8
II. The Communities 10
A. Housing and Land Use 10
9. Rifle 10
10. Meeker 11
B. Law Enforcement 13
11. Rifle 13
12. Meeker 14
C. Schools 14
13. Rifle 14
14. Meeker 15
15. Secondary Dropout Rate 17
D. Hospitals and Health Care 17
E. Economic Indicators 19
I. Place of Residence 4
II. Length of Residence 5
III. Type of Residence of Workforce 6
IV. Housing Preferences of Total Workforce 6
V. Monthly Cost of Housing to C-b Workforce 7
VI. Marital Status of Workforce 8
VII. Recreational Activities 9
VIII. Average Housing and Rental Costs in Rifle for Fourth Quarter 1976-1978 11
IX. Housing Sales and Price Ranges in Meeker 1978 12
X. Rifle Law Enforcement Data 1976-1978 13
XI. Meeker Law Enforcement Data 1976-1978 14
XII. Garfield School District RE-2 Data 15
XIII. Meeker School District RE-1 16
XIV. Secondary Drop-out Rates 16
XV. Hospital Statistics in Rifle and Meeker 17
XVI. Economic Indicators in Rifle and Meeker 19
LIST OF FIGURES
A. Occidental 0il Shale Process Project Manpower Estimate. . . 3

This is the third monitoring report, issued by the C-b shale oil project. This report contains selected information on the C-b project workforce and socio-economic conditions within nearby communities. The workforce data presented in this report reflects current conditions, as of February, 1979. The community data is tabulated for the year, 1978, whenever possible and is analyzed in comparison with data from previous years.

The workforce data was collected through a questionnaire completed by persons employed at the $C-b$ site. Completed surveys are available from 66 percent of the current workforce, therefore the statistics presented in this portion of the report are estimates rather than actual numbers.

The community data was collected from various sources in the communities of Rifle and Meeker; and from Garfield and Rio Blanco counties.

1. THE C-b HORKFORCE

The on-site workforce included a total of 253 persons as of February, 1979. This is a decrease of 29 workers since the last monitoring report was released in November, 1978. The activity lag between the completion of the head frame construction and resumption of shaft sinking accounts for the temporary decrease in the workforce. The workforce is anticipated to rise through 1979 to the level indicated in Figure A, as shaft sinking activity increases.

About 90 percent of the workers still hold construction or temporary jobs at the site, while 10 percent of the workers are considered permanent. Figure A shows the actual workforce as it compares to the projected workforce.
A. Housing

1. Location

The majority (56\%) of the workers surveyed reside in Rifle. This percentage has remained relatively constant since July, 1978. Table I shows the place of residence of all workers surveyed as of February, 1979 and compares those figures with the figures released in July, 1978.

2. Length of Residence

Approximately 60 percent of the workers surveyed have lived in their present homes less than a year, while 40 percent have resided at their present location for over one year. Seventy-two percent of the workers living in Rifle are newcomers to that community, while 58 percent of the workers living in Meeker have resided there less than one year. These figures seem to reflect the tendency for workers, who have recently
ommen llo jeus a.

ivanpower estimate PROJECT
process
FIGURE A

TABLE I

PLACE OF RESIDENCE

Community	Percentage of Workers Surveyed, Residing There February, 1979 $(N=168)$	Percent of Workers Surveyed, Residing There July, 1978 $(N=296)$
Rifle	56	55
Meeker	8	7
Silt	8	10
Grand Junction Area	7	6
Glenwood Springs	4	4
New Castle	3	5
Grand Valley	1	3
Rangely	0	1
Other West Slope	2	5
Piceance Creek	0	2
Denver Area	-	1
Outside Colorado	4	1
Unknowr	7	-
TOTAL	100	100

relocated to the project area, to establish residence in either Rifle or Meaker. Table II shows the percentage of employees in each community according to the length of their residence.

TABLE II

LENGTH OF RESIDENCE

Community	Percent of C-b Work- force Residing There More than One Year	Percent of C-b Workforce Residing Than One Year	
Rifle	28	72	100%
Meeker	42	58	100%
Silt	77	23	100%
Grand Junction Area	73	27	100%
Glenwood Springs	57	43	100%
All Other Communities	43	57	100%
Total Workforce	40	60	100%

3. Type

Table III lists by community the percentages of the workforce living in various types of housing. Approximately the same percentage of the total workforce own their own house, rent houses and/or rent apartments. Of the employees residing in Rifle, 50 percent live in a home which they own, while 23 percent of employees living in Meeker own homes.

TABLE III
TYPE OF RESIDENCE OF WORK FORCE

Community	Own House	Rent House	Own Mobile Home	Rent Mobile Home	Apartment	RV	Motel	
Rifle	34	12	16	7	24	4	3	100\%
Meeker	23	46		8	23	-	-	100\%
Silt	13	47	16	7	6	-	-	100\%
Total Work		23	16	5	22	3	6	100\%

4. Preference

When asked to state what type of residence they preferred to be living in, the majority of workers indicated single family housing. Table IV shows the preferences in detail.

TABLE IV
HOUSING PREFERENCES OF THE TOTAL WORKFORCE

Preferred Type	Percent Responding
Single Family House	76
Mobile Home	13
Apartment	11

5. Cost

Response to the survey showed the median cost of housing per month to be $\$ 248$ for home owners, $\$ 200$ for home renters, $\$ 200$ for mobile home owners, $\$ 155$ for mobile home renters, and $\$ 225$ for apartment renters. (See Table V). However, these figures are lower than the data on current housing and rental costs in the local communities presented in the Housing and Land Use Section of this report. The median monthly cost of housing to the workforce is low, since it
includes cost for long term residents, who gnerally pay less for housing and single status workers, who live together and share costs. The low and high figure in Table V reflects the large range in monthly cost of housing to the C-b workforce.

TABLE V
MONTHLY COST OF HOUSING TO THE C-b WORKFORCE

Type	Median	Low Figure	High Figure
Own House	$\$ 248$	$\$ 50$	$\$ 700$
Rent House	$\$ 200$	$\$ 60$	$\$ 450$
Own Mobile Home	$\$ 200$	$\$ 60$	$\$ 440$
Rent Mobile Home	$\$ 155$	$\$ 50$	$\$ 300$
Apartment	$\$ 225$	$\$ 100$	$\$ 350$

B. Age, Marital Status and Family Size

1. Age

The median age of current employees is 31 years. This is three years older than that recorded in the last report.

2. Marital Status

About 70 percent of the workers surveyed are married, but only 46 percent are living with their families full-time. Table VI shows the percentage of workers, by community; who are married and reside with their families; who are married but do not reside with their families full-time; and who are single.

3. Family Size

Average family size for all married members of the workforce is 3.5 persons, or two adults and 1.5 children per family. An estimated 60 C -b worker families

MARITAL STATUS OF WORKFORCE

Community	Percent Maried and Living With Family	Percent Married But Not Living With Family Full-time	Percent Single	
Rifle	49	26	25	100%
Meeker	58	17	25	100%
Silt	67	8	31	100%
Grand Junction Area	36	9	55	100%
Glenwood Springs	43	14	43	100%
All Others	37	34	35	100%
Total Workforce	46	24	30	100%

have relocated to communities close to the project within the past year. These families have contributed approximately 100 children to the area, of which an estimated 55 are school-age children (ages 5-18).

In Rifle, an estimated 42 families of C-b workers are new to the community, and they have contributed approximately 70 children of which about 40 are school age.

About 30 of the present C-b workers who have families, but who do not have their families in the local area, are planning to have their families join them in the near future. Most of these new families are planning to settle in Rifle and would contribute an estimated 25 new school children to that community.

C. Recreational Activities

The most popular recreation activities among the C-b workerforce are fishing, hunting and skiing. Fishing, hunting and swimming appear to be the most popular activities among family members of $\mathrm{C}-\mathrm{b}$ workers.

Table VII lists the percentages of the workers and the percentages of worker family members who participate in various recreational activities.

TABLE VII

RECREATIONAL ACTIVITIES

Activity	Percentage of the Workforce Participating*	Percentage of Worker Family Members Participating*
Fishing	30	26
Hunting	29	19
Skiing	19	9
Camping	10	7
Basketball	7	17
Swimming	6	5
Tennis	6	1
Bowling	3	1
Golf	3	1

* Does not total 100 percent due to multiple responses.

Other responses include: dancing, football, photography, macrame, flying, tubing, trapping, horseshoes, running, movies, gardening.
A. Housing and Land Use

1. Rifle

The community of Rifle continues to show the most growth in housing and subdivision development. According to the Rifle Building Department, 257 building permits were issued in 1978. This number is more than double the number of permits issued in 1977. In Rifle there were seventy new homes built in 1978; four town houses, thirteen four-plexes including the senior citizen housing project, twelve duplexes, and six new conmerical buildings. The valuation of the new construction was $\$ 5,556,668$ in 1978, while in 1977 the valuation was $\$ 2,606,000$. In 1978 a total of sixty-one mobile home permits were also issued in Rifle.

During the fourth quarter in 1978 the average sales price of a new single family home in Rifle was $\$ 55,241$. This is 19 percent higher than the average price of a home during the fourth quarter in 1977 (see Table VIII.) The average sales price for existing housing during the fourth quarter 1978 was $\$ 60,872$, forty-four percent higher than in 1977 . The average residential lot price, in the fourth quarter, increased 70 percent in 1978 from $\$ 9,921$ in 1977 to $\$ 16,878$ in 1978.

Cost of rental housing has also increased in Rifle. Although there were no houses available for rent in the fourth quarter of 1978 , the first monitoring report, released in July, showed that the average rent for single family housing was $\$ 200$. The most dramatic increase in rents were for apartments. The average rental price for an apartment rented during the fourth quarter 1978 was $\$ 355$, a 140 percent increase over the average rental of \$148 in 1977.

	Oct-Dec 1976	Oct-Dec 1977	Oct-Dec 1978	Percent Increase $1977-1978$
Average sales price for new houses	$\$ 41,937$	$\$ 46,392$	$\$ 55,392$	19%
Average sales price for existing houses	$\$ 39,411$	$\$ 42,228$	$\$ 60,872$	44%
Average resident lot price	$\$ 6,840$	$\$ 9,921$	$\$ 16,878$	70%
Average advertised monthly rental for houses	$\$ 148$	$\$ 188$	None Available	$\$ 148$
Average advertised monthly rental for apartments	$\$ 139$	$\$ 140 \%$		

Source: Lynn Behrns, former Rifle Planner Leo Swartzendruber, Rifle Realty

2. Meeker

Meeker also continues to grow, although it shows less growth than Rifle. According to county warranty deeds, which give information on housing sales and prices, the average sales price of a hone in Meeker increased from $\$ 46,237$ in the first half of 1978 to $\$ 48,083$ in the second half. The greatest number of homes sold were in the $\$ 50,000$ to $\$ 54,999$ range. The total number of houses sold in Meeker is estimated to be 60 homes in 1978 (see Table IX.)

A telephone survey in January, 1979 of three major rental property owners in Meeker, indicated only one house and four apartments advertised for rent. Recently constructed apartments in Meeker rented between $\$ 275$ and $\$ 350$ per month in July, but in January 1979 were renting between $\$ 355$ to $\$ 400$. Depending 11
on the renter, the owner of the property, and the type of rental property, rents may vary in Meeker anywhere from $\$ 150$ to $\$ 400$ per month.

TABLE IX

$$
\begin{gathered}
\text { HOUSING SALES AND PRICE RANGES IN MEEKER } \\
1978
\end{gathered}
$$

	January-June		-December	Total
Sales	30		18	48
Price Volume	\$1,387,100	\$	865,500	\$2,252,600
Avarage Price	\$ 46,237	\$	48,083	\$ 46,929
Sales by Price Range				
\$25-29,999	3		0	3
30-34,999	5		0	5
35-39,999	3		4	7
40-44,999	3		2	5
45-49,999	5		2	7
50-54,999	5		5	10
55-59,999	3		3	6
60-64,999	0		2	2
65-69,999	0		0	0
70-74,999	2		0	2
75-79,999	0		0	-
80,000 +	1		0	1

Source: Survey of Warranty Deeds, Clerk's office, Rio Blanco County and Credit Bureau Bulletin, Craig Credit Collection Service and QDA, A Housing Market Feasibility Analysis, 1979, Rio Blanco County.

Those housing sales where there was no land transaction (new construction on previously purchased subdivision lot) are not accounted for in Warranty Deeds. It is estimated that this later group of sales is approximately 20% of all sales in Meeker. Therefore, total sales in Meeker is estimated to be 58 homes.
B. Law Enforcenment

1. Rifle

Growth has affected the number of crimes reported to the police in both Rifle and Meeker. The total number of crimes reported increased 80 percent from 1977 to 1978 in Rifle. Increases in criminal activity in Rifle were primarily in the rategories of theft, drugs, disorderly conduct, criminal trespass, criminal mischief, child abuse and neglect, runaway and curfew violations. Traffic accidents increased 71 percent (see Table X.).

TABLE X
RIFLE LAW ENFORCEMENT DATA 1976-1978

Selected Crimes Reported ${ }^{1}$	1976	1977	1978	1977-78 Percent Increase
Theft	85	119	182	53
Narcotics/Drugs	7	5	15	200
DUI/DWI ${ }^{2}$	32	27	74	174
Disorderly Conduct	18	15	70	366
Criminal Trespass	11	17	26	53
Criminal Mischief	37	28	48	71
Family Disturbance	3	6	2	(-66)
Child Abuse/Neglect		7	9	29
Runaways	16	9	18	100
Curfew Violation	9	8	14	75
Total Reports	395	371	690	Sj
Total Arrests	162	164	399	173
Total Juvenile Cases	95	95	160	¢
Total Traffic- Accidents		123	210	i

1. All crimes reported are not included in this report
2. Driving under the influence, driving while intoxicated.

Source: Rifle Police Department
2. Meeker

Crimes reported in Meeker increased 84 percent from 1977 to 1978. In Meeker, increases in crimes reported were primarily in the categories of assault, burglary, theft, sex offenses, disorderly conduct and fraud (see Table XI.).

TABLE XI
MEEKER LAW ENFORCEMENT DATA 1976-1978

Selected Crimes Reported 1	1976	1977	1978	Percent Increase $1977-1978$
Assault	6	8	11	38
Burglary	14	7	13	86
Theft	50	42	84	100
Sex Offenses	1	3	6	100
Marcotics	5	10	5	-50
Driving Under the Influence	13	24	24	0
Disorderly Conduct	6	8	25	133
Fraud	0	3	7	11
Runaway	123	174	320	84
Total Reports				

1. All crimes reported are not included in this report

Source: Meeker Police Department
C. Schools

1. Rifle

Enrollment in Garfield School District RE-2 has decreased slightly according to figures representing Fall enrollment 1978 through February enrollment 1979.
Dariel Clarke, the district superintendent, felt the decrease was temporary due to a decrease of construction workers during the winter months. Yet,
current enrollment still shows an increase over the enrollment at the close of the Spring Term 1978. The RE-2 School District currently has the full time equivalent (FTE) of 94 certificated staff and 64 support staff employed. The assessed valuation of the school district increased 12 percent from 1977 to 1978, while the mill levy decreased (see Table XII.)

TABLE XII
GARFIELD SCHOOL DISTRICT RE-2 DATA

Enrollment S	Spring 1977	$\begin{aligned} & \text { Sept } \\ & 1978 \end{aligned}$	$\begin{aligned} & \text { Oct. } \\ & 1978 \end{aligned}$	$\begin{aligned} & \text { Nov. } \\ & 1978 \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 1978 \end{aligned}$	$\begin{aligned} & \text { Jan. } \\ & 1979 \end{aligned}$	$\begin{aligned} & \text { Feb. } \\ & 1979 \end{aligned}$
Elementary	887	922	913	938	932	922	917
Secondary	993	814	819	819	816	802	804
Total	1622	1740	1732	1732	1748	1724	1721
1977		1978				1979	
Staff							
Certificated (FTE)						94	
Support Staff (Number employed)						64	
Assessed Vaiuation	\$18,557,630	\$18,851,520				\$21,167,920	
Mill Levy	56.14	56.13					49.81

Source: Garfield School District RE-2 Superintendent

2. Meeker

The Meeker School District also showed a slight decrease in enrollment from Fall 1978 to January 1979. The school superintendent's office explained the decrease is due to workers who left the community upon completion of the Irbe construction project. Currently there are 46.35 (FTE) certified staff and 29 support staff. The assessed valuation has increased as well as the mill levy (see Table XIII) from 1978 to 1979.

Enrollment	Capacity	Spring 1978	Fall 1978	January 1979
Rock School (Grades 1-8)	40		21	27
Grades 1-4	350	(Total elementary)	276	126
Grades 5-6	150		257	
Grades 7-8	250	113	118	124
Senior High	450	227	248	106
Total	1240	692	768	240
Staff			754	
Certified (FTE)				
Support (Number employed)				
Assessed Valuation				
Mill Levy				

Source: Meeker School District RE-1 Superintendent

TABLE XIV
SECONDARY DROPOUT RATES

School	$1975-76$	$1976-77$	$1977-78$
Rifle Senior High	11.4	5.7	18.0
Meeker Senior High	5.6	6.3	0
State High School Totals	7.8	9.3	9.8

Source: Colorado Department of Education

3. Secondary Drop-Out Rate

Secondary school drop-out rates are computed each year as a percent of October school enrollments for grades 10-12. The dropout rate increased during the 1977-78 school year in Rifle. The Meeker dropout rate decreased to zero (see Table XIV.)

D. Hospitals and Health Care

The Clagett Memorial Hospital in Rifle is still experiencing operating deficits due to its low level of occupancy. The administration is encouraged though, by a higher daily census recently. A hospital planning committee has been meeting on a monthly basis since last fall. One of their top priorities has been the recruitment of an additional physician to town, but that has not been achieved to date and the community continues to be served by four physicians.

The following is a breakdown of pertinent statistics for the hospitals in Meeker and Rifle. Statistics which reflect the full year 1978 are listed first. These are followed, for comparison, by numbers which reflect the first half of 1978 and which were published in the first monitoring report. TABLE XV

HOSPITAL STATISTICS IN RIFLE AND MEEKER

	Clagett Memorial Hospital First Half	Pioneer Memorial Hospital		
Total Admissions	909	491	1978	First Half 1978
Total Emergency Room Visits	2356	1232	415	210
Average Daily Census	8.3	8.1	1354	526
Average Occupancy	26.0	25.3	5.8	6.7
Total Newborn	64	34	34.4	39.7

Source: Harald Frieser, Clagett
Russ McDaniels, Pioneer

The statistics show that hospital functions have remained relatively stable in most areas throughout the year. In Meeker, there has been a noticeable increase in emergency room visits, but the daily census and average occupancy levels have declined since the first part of the year.

Included in this section are statistics which give some indication of economic trends within the communities of Meeker and Rifle (see Table XVI.)

TABLE XVI
ECONOMIC INDICATORS IN RIFLE AND MEEKER

Meeker

 RifleMunicipal Budget

1979 (Estimated)	$\$ 2,572,225$	$\$ 1,107,700$
1978 (Actual)	$\$ 1,550,210$	$\$ 842,890$

Municipal Debt
December 1978
July 1978
Assessed Valuation
December 1978
December 1977
Commercial Bank Total Deposits

December 1978
December 1977
Commecial Bank
Total Loans
December 1978
December 1977
Retail Sales*
1978 (Estimated)
1977
\$ 8,186,601
\$ 9,600,000
\$19,991,000
\$15,419,000

* Estimated based upon actual figures for January - September 1978. Fourth quarter 1978 figures are not yet available.

These figures are evidence of a growing economy in both Meeker and Rifle. Meeker's assessed valuation, a sign of real property growth, has increased by almost 8 percent over the year. Commercial bank deposits, an indicator of a growing money supply, have increased by 9 percent, while bank loans have increased by 24 percent. Retail sales in Meeker, the best indicator of commercial activity, increased 17 percent over the year. The demand upon public services and facilities in Meeker has shown a large increase, as the municipal budget has increased by 66 percent and the municipal debt by -25 percent.

In Rifle, the assessed valuation has increased by 14 percent in the last year. Commercial bank deposits jumped 21 percent and bank loans were up 27 percent. Retail sales in Rifle increased 30 percent over the year. Rifle also shows evidence of the pressure to expand public services in that the municipal budget increased 31 percent and the municipal outstanding debt level rose 130 percent over the year.

C-b SHALE OIL VENTURE
SOCIO-ECONOMIC MONITORING REPORT NUMBER FOUR
(QUARTERLY REPORT) APRIL, 1979

Prepared by
Quality Development Associates, Inc.
Introduction 1
I. The C-b Workforce 2
A. Housing 2

1. Location 2
2. Length of Residence 2
3. Type 5
4. Preference 6
5. Cost 6
B. Age, Sex, Marital Status and Family Size 8
6. Age 8
7. Sex 8
8. Marital Status 8
9. Family Size 9
C. Recreational Activities 10
II. Corrections 10

INTRODUCTION

This is the fourth monitoring report, issued by the C-b Shale $0 i l$ Venture. This report contains selected information on the C-b project workforce. The data was collected through a questionnaire completed by persons employed on the C-b tract, and reflects the current workforce as of April 6, 1979. Sixty two percent of the workforce were surveyed, therefore the statistics presented in this report are estimates rather than actual numbers.

As of April 6, 1979 there were 245 persons employed at the C-b site. This is a slight decrease from the 253 persons employed as of February 1979.

About 90 percent of the workers still hold construction or temporary jobs at the site, while 10 percent of the workers are considered permanent. Figure A shows the actual workforce as it compares to the projected workforce.

A. Housing

1. Location

Most of the workers (52\%) reside in Rifle, although there has been a slight percentage decrease from the previous monitoring reports. An increased percentage of workers are residing in Meeker. Table I shows the place of residence of all workers surveyed as of April 6, 1979 and compares those figures with those released in February 1979.

2. Length of Residence

The percentage of workers who have lived in their present homes less than a year has remained at 60 percent, while 40 percent have resided at their present location over a year. The percentage of workers who are newcomers to Rifle has remained relatively constant, around 70 percent, while in Meeker, the percentage of workers who lived there less than a year increased from 58 percent in February to 81 percent in April 1979. Table II shows the percentage of employees in each community according to the length of their residence.
OMTMO HO O1O4S 9.

occidental oil siale process project manpower estiviate
FIGURE A
TABLE I

	Percentage of Workers Surveyed Residing There Aprif 1979 $(N=153)$	Percentage of Workers Surveyed Residing There February $(N=1979$	Percentage of Workers Surveyed Residing There July $(N=296)$
Rifle	52	56	55
Meeker	10	8	7
Silt	8	8	10
Grand Junction Area	6	7	6
Glenwood Springs	5	4	4
New Castle	4	3	5
Grand Valley	2	1	3
Rangely	1	0	1
Other West Slope	1	2	5
Piceance Creek	1	0	2
Other Colorado	2	0	1
Outside Colorado	8	4	1
Unknown	100	100	0

LENGTH OF RESIDENCE

(April 1979)

Community	Percent of Workers Surveyed Residing there more than one year	Percent of Workers Sur Residing there less than one year
Rifle	30	70
Meeker	19	81
Silt	83	17
Grand Junction Area	77	23
Glenwood Springs	100	0
All other Communities	33	67
Total Workforce	40	60

Of those workers listing their permanent residence as out of state, the majority are from Utah, while others list the States of Washington, Nevada, Arizona, New Mexico, South Dakota, Minnesota, California, West Virginia, Michigan, Oregon and Mississippi, as home.

3. Type

Table III presents the various types of housing in which the workers are living. A comparison of the current statistics with the February, 1979 monitoring report shows that a slightly greater percentage of the total workforce own their own houses and rent apartments.

PERCENT OF WORKFORCE RESIDING

IN VARIOUS TYPES OF HOUSING
April 1979

Community	Own Home	Rent Home	$\begin{gathered} \text { Own } \\ \text { Mobile Home } \end{gathered}$	Rent Mobile Home	Apartment	RV	Mote	
Rifle	25	13	18	5	33	3	3	100\%
Meeker	19	19	19	0	43	0	0	100\%
Silt	25	41	17	17	0	0	0	100\%
Total Workforce	27	18	16	6	29	1	3	100\%

4. Preference

The majority of the workers indicated they preferred to live in single family housing. Table IV shows the preferences of the current workforce are similar to the previous monitoring report.

TABLE IV
HOUS ING PREFERENCES OF THE TOTAL WORKFORCE

Preferred Type	\% Responding February 1979	\% Responding Apri1 1979
Single Family House	76	73
Mobile Home	13	14
Apartment	11	13

5. Cost

Response to the survey showed the median monthly cost for home owners to be $\$ 248$, $\$ 200$ for home renters, $\$ 165$ for mobile home owners, $\$ 100$ for mobile home renters and $\$ 240$ for apartment renters.

Table V shows how the current median cost compares with the figures presented in the last monitoring report.

TABLE V

MONTHLY COST OF HOUSING TO THE C-b WORKFORCE

Type	Median Cost Feb. 1979	Median Cost April 1979	Low Figure April 1979	High Figure April 1979
Own House	$\$ 248$	$\$ 248$	$\$ 103$	$\$ 700$
Rent House	200	200	150	400
Own Mobile Home	200	165	60	600
Rent Mobile Home	155	100	50	300
Apartment	225	240	100	350

Monthly figures provided by a Rifle realtor give an indication of housing cost in Rifle. Table VI shows the average cost for various types of housing in Rifle. For each type of housing except for apartment rentals, the average cost appears to be increasing.

TABLE VI

AVERAGE HOUSING AND RENTAL COSTS IN RIFLE

	Oct.-Dec. 1978	Jan.-March Average 1979
Average Sales Price for new houses	$\$ 55,392$	$\$ 77,500$
Average sales price for existing houses	$\$ 60,872$	$\$ 63,250$
Average resident lot price	$\$ 16,878$	$\$ 17,662$
average advertised monthly rent for houses	None available	None available
Average advertised monthly rent for apartments	$\$ 355$	$\$ 325$

Source: Leo Swartzendruber, Rifle Realty
B. Age, Sex, Marital Status and Family Size

1. Age

The Median Age of the employees has remained at 31 years.
2. Sex

Ninety-one percent of the current workforce are males, 9 percent are female.

3. Marital Status

Sixty-eight percent of the workforce are married, but only 49 percent live with their families full-time. Table VI shows the percentage of workers, by community, who are married and reside with their families; who are married but do not reside with their families full-time; and who are single.

MARITAL STATUS OF WORKFORCE April 1979
4. Family Size

Average family size for all married members of the workforce is 3.3 persoris or two adults and 1.3 children per family. Average family size for the total workforce (including singles) is 2.7 persons. It is estimated that 39 percent of the children are non-school age, while 61 percent are schoolage children.

It is estimated that 41 of the workers have moved their families with them within the last year, to an area near the tract. They have brought with then an estimated 23 non-school age children and 40 school-age children.

About 14 of the present C-b workers, who are not living with their families, are planning to have their families join them in the near future. Most of these workers are planning to settle in Rifle and would contribute an estimated 30 new school children to that community.

C. Recreational Activities

Fishing, hunting, skiing and camping are still the most popular recreational activities of the workforce and their families. Other activities that were mentioned were basketball, swimming, tennis, bowling, golf, horseback riding, four-wheeling, softball, motorcycling, water skiing, flying, snowmobiling, biking, running, boating, raquetball and pistol shooting.

II. CORRECTIONS

Since the last monitoring report, it was learned that there were some figures that were incorrectly reported. Please make a note of these changes in your copy of the February 1979 Monitoring Report.

The enrollment figures for the Meeker School District did not include kindergarten. The revised numbers are:

MEEKER SCHOOL DISTRICT RE-1
January 1979

Enrollment	January 1979
Rock School (Grades 1-8)	27
Kindergarten	56
Grades 1-4	257
Grades 5-6	124
Grades 7-8	106
Senior High	240
Total	810

The number of certified (FTE) staff in Meeker in January, 1979 was 46 and the number of support staff was 29.

The February monitoring report showed the Rifle secondary dropouts rate for 1977-78 to be 18.0. This rate is actually only 7.7.

[^0]: COLORADO

[^1]: * Plots not included (Insufficient Data)

[^2]: ** Regression equation using the eight regression coefficients from Table 6.2.3-1 used for prediction is: +0.07 TP - 6.42 PR - 1.80 MW нy $18^{\circ} 0-2092^{\circ} 0$ Symbols and units are given in Table 6.2.3-i

[^3]: ＊Partial data only，less than 100\％ but more than 50\％

 1 Missing data

[^4]: judgment.

[^5]: * NS $=$ Not significant

 SIG $=$ Significant

[^6]: * NS = Not Significant, SIG = Significant
 $\gamma_{1}=$ dejrees of freedom for numerator ; $\gamma_{2}=$ degrees of freélunt fur denominator 168

[^7]: " "
 『๐

[^8]: * Lower and Upper Limits of slope based on
 t -statistic for the no. of degrees of freedom.

[^9]: * Lower and Upper Limits of slope based on
 t-statistic for the no. of degrees of freedom.

[^10]: * Hourly minimum air temperature always $>0^{\circ} \mathrm{C}$

 > Where $T_{a v}=$ daily average temperature $\left({ }^{0} F\right)$ specifically for those days whose average is (Ref: Munn (1970))

[^11]: * "Modified" by the ratio of total-daylight to uptime-daylight hrs/mo
 for cases where uptime $>50 \%$ of total.

[^12]: (1) Partial Data Only
 (2) Missing Data
 (3) Station Inoperative

[^13]: $\mathrm{P}=$ present

