BULLETIN

OF THE

Corey Botanical Club

VOL. 43

Founded by William Henry Leggett, 1870

EDITOR

ALEXANDER WILLIAM EVANS

ASSOCIATE EDITORS

Jean Broadhurst
James Arthur Harris
Marshall Avery Howe

William George Marquette
Herbert Maule Richards
Arlow Burdette Stout

Norman Taylor

NEW YORK
1916
Published for the Club
The New Era Printing Company
Lancaster, Pennsylyania

CONTENTS

Hooker, Henry D., Jr. Physiological observations on Drosera rotundi- folia I
Trowbridge, C. C. The thermometric movements of tree branches at freezing temperatures- 29
Dixon, H. N. New and rare African mosses, from Mitten's herbarium and other sources (plate I)- 63
Griffiths, David. New species of Opuntia (plates 2, 3) - 83
Pennell, F. W. Notes on plants of the southern United States-I- 93
McAllister, F. The morphology of Thallocarpus Curtisii (plate 4) - 117
Weatherwax, P. Morphology of the flowers of Zea Mays (plates 5, 6) 127
Riddle, Lincoln W. The lichens of Bermuda - 145
Collins, F. S., and Howe, M. A. Notes on species of Halymenia - - 169
Safford, William Edwin. Desmopsis, a new genus of Annonaceae (plates 7-9) 183
Bartholomew, E. T. Observations on the fern rust Hyalopsora Poly- podii - - 195
Benedict, R. C. The origin of new varieties of Nephrolepis by ortho- genetic saltation-I. Progressive variations (plates 10-15) 207
Nichols, George E. The vegetation of Connecticut-V. Plant societies along rivers and streams 235
Bicknell, Eugene P. The ferns and flowering plants of Nantucket- XVII 265
Berry, Edward Wilber. Contribution to the Mesozoic flora of the Atlantic coastal plain, XI.-Tennessee (plate 16) - 283
Rowlee, W. W. Plants from southern Patagonia collected by Charles Washington Furlong - 305
Williams, R. S. Peruvian mosses (plates 17-20) 323
Rydberg, P. A. Phytogeographical notes on the Rocky Mountain region-VI. Distribution of the subalpine plants - 343
Wuist, Elizabett D. Branched prothallia in the Polypodiaceae - 365
Rock, Joseph F. A new species of Pritchardia (plate 2I) - 385
Harper, Roland M. Botanical work of Dr. E. W. Hilgard - 389
Church, Margaret B. The development of the embryo sac and embryo of Cooperia Drummondii (plates 22, 23) 397
Pennell, Francis W. Notes on plants of the southern United States-II 407
Mackenzie, Kenneth Kent. Notes on Carex-X 423
Britton, Nathaniel Lord. Studies of West Indian plants-VIII - - 44 I
Smith, Gilbert Morgan. New or interesting algae from the lakes of Wisconsin (plates 24-26) 471
Harris, J. Arthur. A quantitative study of the factors influencing the weight of the bean seed-II. Correlation between number of pods per plant and seed weight 485
Sax, Karl. Fertilization in Fritillaria pudica (plates 27-29) 505
Griffiths, David. Additional species of Opuntia (plate 30) 523
Knudson, Lewis. Cambial activity in certain horticultural plants- 533
Smith, Pearl Mabry. The development of the embryo and seedling of Dioscorea villosa (plates 3I-34) - 545
Kunkel, L. O. Further studies of the orange rusts of Rubus in the
United States 559
Stewart, Ralph Randles. The flora of Ladak, Western Tibet-I.
Discussion of the flora 571
Mackenzie, Kenneth Kent. Notes on Carex-XI 601
Howe, Marshall A. A note on the structural dimorphism of sexual and tetrasporic plants of Galaxaura obtusata 621
Stewart, Ralph Randees. The flora of Ladak, Western Tibet-II.Check list of Ladak plants - 625

Index to American botanical literature, 57, 113, 16I, 201, 277, 335, 393, 435, 495, 539, 591, 651
Index to volume 43 - 659
Dates of Publication
No. I, for January. Pages $\mathbf{1 - 6 2}$. Issued February 15, 1916.

No. 2, for February.
No. 3, for March.
No. 4, for April.
No. 5, for May.
No. 6, for June.
No. 7 , for July.
No. 8, for August.
No. 9, for September.
No. 10, for October.
No. II, for November.
No. 12, for December.

Pages $1-62$.
63-116.
117 -168.
169-206.
207-282.
283-342.
343-396.
397-440.
441-504.
505-544.
545-600.
60I-676.

Issued February 15, 1916. March II, 1916.
April 14, 1916. May 20, 1916. June 16, 1916. June 29, 1916. August 14, 1916. August 22, 1916. October 20, 1916. November 7, 1916. November 27, 1916.

January 6, 1917.

Errata

Page 92 , line 2 from bottom, omit "about half natural size."
Page 345, lines 15-22, omit all species of Potamogeton and Triglochin, except P. alpinus.

BULLETIN

OF THE

TORREY BOTANICAL CLUB

JANUARY, 1916

Physiological observations on Drosera rotundifolia *

Henry D. Hooker, Jr.
(with eleven text figures)

CONTENTS
PAGE

1. INTRODUCTION .
2. Material . 2
3. Pigment . 3
4. Habit. 4
5. Parasttes. 4
6. Cultivation . 5
7. Mechanics of Movement... 5
(a) Normal Development. 5
(b) Experimental Method . 6
(c) Experimental Data. 7
(d) Discussion. 19
i. Bending . 19
ii. Unbending . 21
iii. Growth and Turgidity . 22
iv. Conductivity . ${ }^{23}$
v. Second and Third Reactions . 23
vi. Nastic Reactions . 24
vii. Discal Tentacles . 25
8. Summary . 26

I. INTRODUCTION

The object of the work, which this paper presents, was to determine whether the bending of Drosera tentacles was connected with a temporary acceleration of the rate of growth or with differences of turgidity; in physiological terms, whether the bend-

[^0]ing was a nutation or a variation movement. Analogy with the behavior of tendrils, which has been thoroughly investigated by Fitting, indicates that the reactions of Drosera are phenomena of growth, and this is substantiated by Baain's ('77, p. 36) somewhat meager measurements. These are, in Pfeffer's words ('o6, 3: 85), "not fully satisfactory." Although the primary purpose of this paper is to settle this point, a number of observations were made during the work which pertain to other matters. These minor points are of some physiological interest and will be mentioned before proceeding to the main discussion.

2. Material

The material used was collected during the months of July and August from Beaver Swamp in the city of New Haven, Connecticut. It was found advisable to use only fresh material for experimentation.

Plants of Drosera rotundifolia and D. longifolia were found growing in Sphagnum. In removing them, large pieces of the substratum were taken along with the plants to prevent injury to the roots and to insure their further development in the laboratory. Slight injuries to the roots cause the secretion of the glands to stop and render the tentacles inactive, so that they fail to respond to the customary stimuli. The root-hairs are particularly remarkable, for they are not restricted to a small region above the root-tip but cover the entire length of the root. They do not die, but continue to grow and function. In this way they increase the effectiveness of the small root-system.

The plants were placed in flat dishes, made wet with distilled water and covered with bell-jars. Under these conditions the development of the plants was far from normal. The rosette arrangement of the leaves was lost, a typical stem was developed by lengthening of the internodes and every trace of red pigment disappeared. No gradations from purple to green leaves were observed. All the leaves, which unfolded in the moist atmosphere and subdued light of the culture, were green. The size of the leaves diminished and their petioles made a more acute angle with the stem, causing them to point obliquely upward instead of horizontally outward.

3. Pigment

The red pigment of Drosera occurs predominantly in the leaves and the root-cap. Young leaves frequently have the pigment restricted to the glands of the tentacles. Later it appears in the epidermal cells of the marginal pedicels. Leaves of old plants often have the entire leaf-blade pigmented and, as the leaf matures, the color spreads down the petiole and often into the stalk. In general young plants are much greener than old ones, but wide variations are found.

The red pigment of Drosera rotundifolia and D. longifolia is identical with one of the pigments which Rennie ('87, '93) extracted from rhizomes of D. Whittakeri. Its formula is $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{5}$, and it is probably trihydroxymethylnapthoquinone, since it gives the reaction of Brissemoret and Combes ('o7) characteristic of α-napthoquinones.

To obtain the pigment, place a deep red leaf on a slide, add a few drops of hot alcohol, put on a cover-glass and heat directly over boiling water. The pigment is extracted from the leaf and, on the evaporation of the alcohol, it is deposited around the edges of the cover-glass. It forms crystals which are small red disks. It is insoluble in cold water, hardly soluble in cold alcohol and glacial acetic acid, but dissolves readily in boiling water, hot alcohol and ether, and to a lesser extent in benzol and carbon disulphide. It is soluble in alkalis. When a leaf is treated with ammonia, the pigment turns dark violet or brown; on standing the color fades. A timely treatment with dilute acid precipitates the pigment and restores the red color, but this does not occur after prolonged action of the ammonia. Reduction with stannous chloride and alcoholic hydrochloric acid gives a yellow product which crystallizes in needles. This is reoxidized to the original compound, when allowed to stand in alcoholic or alkaline solution exposed to the air. These properties were found for the pigment of D. rotundifolia. They coincide with those given by Rennie for the compound $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{5}$, and confirm the suggestion of their identity put forward by Kraemer ('io, p. 285).

Experiments were made with the green plants to determine under what circumstances the pigment reappeared. Several plants of D. longifolia were cultivated for a month in a moist
atmosphere, without being fed with insects. They lost all traces of pigment. Six of these were fed with small flies and two days later pigment was observed in the marginal tentacles of the youngest leaves, that had just unrolled. A similar reappearance of color was observed in three other plants which caught insects. This is the opposite of the results obtained by F. Darwin ('o8, p. 23) and by Büsgen (' 83 , p. 592), who found that plants fed with insects had much greener leaves than those which relied solely on photosynthesis for their nourishment. The contradiction may be owing to different environmental conditions, such as the chemical composition of the substrate, the intensity of the light, or the humidity of the atmosphere. The question merits further investigation.

4. Habit

Another peculiarity observed in plants cultivated in a moist atmosphere was the peculiar habit assumed by the plant. The internodes became lengthened, and this was the case with plants exposed either to the diffuse light of the laboratory or to direct sunlight. Plants exposed to dry air were observed to retain the rosette habit under both light conditions. This shows that the rosette habit characteristic of D. rotundifolia is dependent upon transpiration and not upon light, as Diels ('o6, p. 32) suggests. This relation represents an interesting adaptation, for as long as the plant is beneath the surface, the internodes lengthen, since transpiration is reduced to a minimum. In this way the terminal bud is brought to the surface, where rapid transpiration from the exposed leaves causes the development of a rosette.

5. Parasites

A great many of the plants cultivated in the laboratory were destroyed by larvae accidentally brought with the material from the swamp. They were larvae of one of the cut-leaf moths or noctuids. Since the adult form has not been obtained, it has been as yet impossible to identify them. The young larvae are about a quarter of an inch long and very pale. They climb up the under side of the leaf-petioles and eat the blade from behind. In this way they avoid the tentacles which could easily catch and digest such small creatures. The larvae select the youngest
leaves and destroy the plant by eating the terminal bud. Many of the fragments of parially eaten leaves fall onto the Sphagnum and produce new plants by regeneration. Here again is an arrangement which may be considered a reciprocal adaptation; the larvae are protected from the leaves which could consume them, and the destruction of the plant by the larvae results in vegetative reproduction. As the larvae grow older they increase greatly in size and become green. Even after they have reached a size which renders their capture by a Drosera leaf impossible, they continue to crawl along the under surface and eat the leaves from behind. They become exceedingly voracious and a single insect can devour a dozen flourishing plants in two days.

6. Cultivation

The Drosera plants used for experimentation were grown in uncovered dishes exposed for at least six hours a day to direct sunlight. Small flies and other insects were placed on the leaves from time to time. The best leaves were selected for reactions and were not fed. In one remarkable instance, a house-fly was placed on a small fresh leaf which was only slightly pigmented. A copious secretion resulted which enveloped and digested the fly. After five days, however, the entire leaf-blade had disappeared, being digested by its own fluid. The plant was not vigorous and the fly was too large for the leaf, but normally anti-enzymes or other adequate means must be present to prevent autolysis.

7. Mechanics of Movement

(a) Normal Development

The blade of the undeveloped Drosera leaf is rolled up. As it expands the marginal tentacles are seen to be bent over the blade, the glands pointing against the leaf and the pedicels arranged like rays around the edge. As the leaf grows, these tentacles increase considerably in length, the growth being greater on the adaxial side. By this means the incurved tentacles are straightened, a process which is assisted by the simultaneous flattening of the leaf-blade. When all the tentacles are straight, the leaf is mature and able to catch insects. The full grown tentacles do not increase perceptibly in length. They remain in this condition for about
two weeks, during which time their glands secrete actively. At the end of this period the tentacle begins to bend backward. In old leaves the marginal tentacles are much recurved, and in extreme cases the gland may pass through a complete revolution by the rolling up of the distal portion of the pedicel. The petiole of young leaves points up. As the leaf ages, its petiole bends down so that the mature leaf is horizontal.

The pedicels of the exterior tentacles are dorsi-ventrally flattened at the base. The abaxial side has numerous short glandular hairs distributed over its entire length. On the adaxial side they are fewer in number and are confined more or less to the base.

(b) Experimental Method

Fresh leaves which had not been previously touched were selected for experimentation. The entire plant was removed from the Sphagnum in which it grew and was placed in a large Stender dish. A piece of cork was fastened with sealing wax inside the dish and another piece attached to it by two pins. The petiole of the selected leaf was clamped horizontally between the two pieces of cork in such a way that the leaf-blade was vertical. The bottom of the dish was covered with water and the roots were wrapped in wet sphagnum. The cover of the Stender dish was replaced or discarded, as desired. A binocular microscope was used, because the greater distance from the objective to the object made it more convenient when the Stender dish was covered. An horizontal tentacle, which showed glandular hairs on both upper and lower sides and which was not obscured by its neighbors, was selected from the edge of the leaf opposite the petiole. Its pedicel was marked with China ink to facilitate identification.

Each tentacle was measured with a micrometer scale and drawn with a camera lucida before an experiment. The gland was then stimulated by placing upon it some object such as the leg of a fly. This was removed as soon as movement began. At each subsequent observation the time was recorded and the tentacle was sketched. This was continued at intervals until the pedicel was again straight. The tentacle was then measured for the second time with the micrometer scale.

The figures given in the tables are in hundredths of a millimeter. Measurements were made on the drawings, which were checked by the direct measurements. The time at the head of the first column shows when the gland was stimulated. The column to the right of the heavy line shows the first indication of unbending. The segments were marked off naturally by the presence of glandular hairs on the two flattened surfaces. They are numbered from the apex to the base. The segments on the concave side do not always correspond to those on the convex side.

Table I

	No, of Segment	$\begin{aligned} & 8 \dot{8} \\ & \dot{0} \times 1 \end{aligned}$	$\begin{aligned} & 2 \times 1 \\ & \vdots \\ & 0 \\ & \hline 1 \end{aligned}$				+	$\stackrel{8}{\text { ¢ }}$ -	焹	8	82	\%		$\begin{aligned} & 8 \underset{4}{4} \\ & +4 \sim \end{aligned}$	$\underset{\sim}{\circ}$	8	$\stackrel{n \dot{z}}{\stackrel{n}{i}}$	$\begin{aligned} & 8 \dot{\mathrm{n}} \\ & \dot{\mathrm{n}} \end{aligned}$	${ }^{\circ} \mathrm{O}$
	1	80	80	80	80	80	80	80	80	80	80		80	80	80	80	80	80	80
	2	23	23	23	23		25	25	25	25	25		25	25	25	25	25	25	25
	3	24	25	25	25		28	28	28	28	28		2	28	28	28	28	28	28
	4	29	31	31	32	34	35	35	35	35	35		35	35	35	35	34	34	34
	5	36	41	41	42		45	49	49	49	48		48	48	48	48	48	48	46
	6	43	5 I	52	53		57	59	59	59	59		58	57	55	55	55	55	55
	7	59	60	60	60		69	70	72	72	72		71	69	69	69	69	69	69
	Total	294	311	312	315	324	339	346	348	348	347		5	342	340	340	339	339	337
	1	78	78	78	78	78	78	78	78	78	78		78	78	78	78	78	78	78
	2	3	23	23	23	23	23	23	23	23	23		23	23	23	23	23	23	24
	3	24	25	25	25		25	25	25	25	25		25	25	26	26	26	27	27
	4	31	31	31	29		29	28	28	28	29		29	29	29	31	32	33	34
	5	40	40	40	40		40	40	40	41	4 I		4 I	41	41	41	43	44	46
	6	28	29	29	29		32	32	32	34	35		35	35	35	35	35	36	38
	7	28	28	28	28		28	28	28	28	29		3	32	33	34	34	35	37
	8	45	45	45	45	46	48	49	50	50	50		50	50	50	51	51	52	54
	Total	297	299	29		30	303	303	304	30	3			313	315	31	322	328	338

(c) Experimental Data

Measurements of the dorsal and ventral sides of a tentacle in the process of bending and unbending are given in Table I. The tentacle was selected from next to the outermost row on a fresh, red, young leaf which was secreting copiously. The leaf had been protected during its development and was not touched, or stimulated in any other way, prior to the experiment. Its reaction is typical of the marginal tentacles on young leaves, unless perhaps it is more than usually vigorous.

The straight tentacle measured 2.94 mm . in length. The leg of a small house-fly was laid on the gland. One minute and a
half after stimulation movement was detected, whereupon the fly-leg was removed. After fifteen minutes the tentacle was well bent and the gland had moved through an angle of about fifty degrees. Marked elongation took place on the convex side near the base in Segment 6, and to a lesser extent in Segment 5. The concave side remained nearly of the same length as before. The region of bending is coincident with the region of elongation on the

Fig. 1. Side views of a tentacle in the process of bending, $\times 22, a$, before stimulation; b, c and d, successive stages of inflexion; e, the fully bent tentacle.
convex side. As the tentacle continued to bend, the area of curvature and elongation was extended upward toward the gland, including Segments 4,3 , and 2 , and to a lesser extent downward so as to include a portion of Segment 7. In the ultimate stage the curved region subtended an angle of approximately 215 degrees. Both sides increased in length, but the increase of the convex side was eight times that of the concave. Fig. I is a series of camera lucida drawings made during the inflexion of this tentacle. In b the bending region is seen to be restricted at first to the lower end and to extend apically in c and d. The final
condition attained 3 hours and 15 minutes after stimulation is shown in e.

Unbending commenced immediately. Table I shows that this resulted from elongation of the concave side and contraction of the convex side. The region of elongation is at first near the base in Segment 7, which lies opposite the lower portion of Segment 6 on the convex side. This region gradually extends apically. The contraction on the convex side is mostly confined to the base, and it is moreover relatively slight, being only one fourth the amount of elongation on the concave side. Fig. 2 shows the result of these alterations in length. Since the reaction commences near the base, this portion is the first to straighten;

Fig. 2. Side views of the tentacle shown in Fig. I in the process of unbending. $\times 22, a-e$, successive stage in the expansion; f, the tentacle at the completion of the reaction.
as successive portions on the concave side further removed from the base elongate, the straight part of the pedicel lengthens. In unbending the tentacle is therefore curved in a different manner than during bending. In the latter case, the principal curve is near the base, in the former, nearer the apex. A comparison of

Fig. I, a and b, with Fig. 2, d and e, illustrates this. The most apical part which elongated during the process of bending is the last to regain its original position. The basal portion, however, does not stop increasing its length until the entire tentacle is straight. At the end of the reaction, after 23 hours and io minutes, the tentacle measured 3.37 mm . It had therefore grown during the process of bending and unbending 0.43 mm . (See

Fig. 3. Side views of the same tentacle before and after the reaction, to show the increase in length, $\times 22 . a$ is the same as Fig. I, $a ; b$ is the same as Fig. $2, f$.

Fig. 3). A control tentacle which had not been stimulated measured before and after the experiment 2.57 mm . Another measured 2.6 mm . They had not grown a measurable amount during the interval.

Fig. 4 is a graphical representation of the growth of the tentacle. The elongation of the abaxial side is shown by the

Fig. 4. A graph representing the reaction shown in Figs. I and 2, drawn according to data in Table I. See text for explanation.
heavy line; the growth of the adaxial side is shown by the light line. The calculated growth of the median section of the tentacle is given by the broken line. The time is plotted on the abscissae; each space is thirty minutes. The changes in length are plotted on the ordinates; each space represents 0.02 mm . The reaction time is not indicated. The cross shows when the bending was completed and when unbending began. It is evident from the figure that the inflexion of the tentacle is produced by a considerable acceleration of the rate of growth on the abaxial side and in the median section. The unbending is more gradual and takes six times as long as the bending. Moreover the unbending is produced by a similar but less intense acceleration of the growth on the adaxial side and in the median section together with contraction of the abaxial side during the beginning of the process.

The reaction of another tentacle is shown in Table II and Fig.
Table II

	$\begin{aligned} & \text { No. of } \\ & \text { Segment } \end{aligned}$	$\begin{aligned} & \text { ro.r6 } \\ & \text { A. M. } \end{aligned}$	A. ${ }^{\text {Io. } 54 .}$	$\begin{aligned} & \text { II, } 18 \\ & \text { A. M. } \end{aligned}$	$\begin{aligned} & \text { II, 28 } \\ & \text { A. M. } \end{aligned}$	Ar.3x.	II. 36 A. M.	$\begin{aligned} & 12.09 \\ & \mathrm{P} . \mathrm{M} . \end{aligned}$	$\begin{aligned} & \text { 12.38 } \\ & \text { P. M. } \end{aligned}$	3. 58 P. M.	A. M.
$\begin{aligned} & \text { ⿹ㅜㅇ } \\ & \frac{0}{4} \\ & \frac{0}{4} \end{aligned}$	1	72	72	72	72	72	72	72	72	72	72
	2	118	118	118	118	118	118	119	119	119	119
	3	26	27	28	28	31	32	33	34	36	34
	4	54	54	54	58	58	58	58	59	59	58
	Total	270	271	272	276	279	280	282	284	286	283
$\begin{aligned} & \frac{\pi}{x} \\ & \frac{0}{y} \\ & \frac{\tilde{y}}{6} \end{aligned}$	I	72	72	72	72	72	72	72	72	72	72
	2	121	121	121	121	121	121	120	120	120	121
	3	35	35	35	35	35	35	35	34	33	43
	4	38	37	37	37	36	35	35	34	34	42
Total		266	265	265	265	264	263	262	260	259	278

Fig. 5. A graph representing the bending and unbending of a tentacle, drawn according to data in Table II, and on the same scale as Fig. 4.
5. Before the experiment it measured 2.7 mm . The reaction is in all essential respects similar to the previous example, but there are important differences. The tentacle was on a mature leaf. It had not, however, been stimulated before the experiment. Bending was produced by an elongation of the convex side and the median section, accompanied by contraction of the concave side. The increase in length on the abaxial side was twice as great as the contraction of the adaxial side. The ultimate stage of bending was reached 5 hours and 45 minutes after stimulation. Unbending was caused by gradual growth on the concave side and in the median section together with slight contraction of the convex side. The original position was reached after 23 hours and 30 minutes. The tentacle then measured 2.83 mm . It had grown 0.13 mm . during the experiment.

A third example is given in Table III. This tentacle was in
Table III

	No, of Segment	P. $\begin{aligned} & 3.45 \\ & \text { P. }\end{aligned}$	P. $\begin{aligned} & 3.52 \\ & \text { M. }\end{aligned}$	P. M.	$\begin{aligned} & \begin{array}{l} 3 \cdot 58 \\ \text { P. M. } \end{array} . \end{aligned}$	P. M. M.	P. M.	A. M. ${ }_{\text {M }}$	P. M.	A. M . ${ }^{\text {a }}$.
	1	84	84	84	84	84	84	84	84	84
	2	57	57	58	58	58	58	58	58	58
	3	37	37	37	37	40	41	42	43	43
	4	31	31	31	34	40	43	43	43	43
	5	45	47	52	53	57	57	54	50	49
	Total...	254	256	263	266	279	283	281	278	277
	1	82	82	82	82	82	82	82	82	82
			57	57	57	57	57	58	59	61
	3	58	58	58	58	59	59	60	62	66
	4	46	46	42	37	37	40	42	42	42
	5	12	12	12	12	12	12	23	23	24
	Total...	255	255	251	246	247	250	265	268	275

the third row from the outside, on a leaf in excellent condition. It reacted with great rapidity. Movement was detected within a minute after stimulation, and the bending was completed in twenty minutes. The table shows clearly that elongation commenced in Segment 5, the most basal portion of the abaxial side; after ten minutes Segment 4 likewise increased in length; and after three minutes more Segment 3 began to grow. The drawings in Fig. 6 show the bending, and illustrate the apical progress of the reaction. As in the previous case, the bending was produced
by acceleration of the growth on the convex side and in the median section, with contraction of the concave side.

Fig. 6. Side views of a tentacle in the process of bending, $\times 22$. a, the straight tentacle before stimulation; e, the inflected tentacle twenty minutes after stimulation.

Fig. 7. Side views of the tentacle shown in Fig. 6 in the process of unbending, $\times 22$. a, the fully inflected tentacle; d, the straight tentacle at the end of the reaction.

The unbending presents no new features. Fig. 7 shows successive stages in the process and comparison with Fig. 6 emphasizes the different configuration of the bending and unbending tentacle. The tentacle grew from 2.54 mm . to 2.77 mm ., an increase of 0.23 mm .

The reaction is plotted in Fig. 8. The complete reaction took 39 hours and 15 minutes, an unusually long time. This experiment is perhaps more representative than the first in that growth was confined to the lower half of the pedicel.

After a day's rest, the tentacle used in the first experiment was stimulated a second time. The leaf was still fresh and actively secreting. At the beginning of this experiment the tentacle measured 3.37 mm . The results of the reaction are shown in Table IV, and are represented in graphical form in Fig. 9. Movement began within two minutes. The bending was produced by elongation of the abaxial side beginning in Segment 6 and extending apically to Segments 5 and 4 , and basally to a part of Segment 7. The region of elongation and curvature was shorter than in the first reaction, where it included Segments 3 and 2. The
 acceleration of the rate of growth was also less than during the first inflexion. The time required for the bending was increased to four hours. The time taken to regain the original position was
approximately the same as before, 22 hours and 45 minutes. At the end of the reaction the tentacle measured 3.74 mm . It had increased 0.37 mm . in length. A control, that like this tentacle

Table IV

	No. of Segment	$\begin{gathered} \text { Rٌz } \\ \end{gathered}$			$\begin{aligned} & 8 \stackrel{i}{x} \\ & \dot{H} \times \dot{x} \end{aligned}$				$\stackrel{n}{\sim}$	$\stackrel{8 \text { ¢ }}{\text { ¢ }}$	$\underset{\sim}{8}$		$\begin{array}{l\|l} 8 \dot{x} \\ \dot{\sigma} \end{array}$
	1	80	80	80	80	80	80	80	80	80	80	80	80
	2	25	25	25	25	25	25	25	25	25	25	25	25
	3	28	28	28	28	28	28	28	28	28	28	28	28
	4	34	35	35	35	35	36	36	36	36	36	36	36
	5	46	46	49	53	54	55	55	57	57	57	54	53
	6	55	64	64	69	69	69	69	71	71	71	71	70
	7	69	69	69	71	73	76	76	82	82	82	82	82
	Total	337	347	350	361	364	369	369	379	379	379	376	374
	1	78	78	78	78	78	78	78	78	78	78	79	79
	2	24	24	24	24	24	24	24	24	24	24	25	25
	3	27	27	27	27	28	28	28	28	28	28	28	28
	4	34	35	35	35	35	35	35	35	35	35	35	36
	5	46	46	47	47	47	47	47	47	47	47	53	54
	6	55	59	59	59	59	59	59	59	59	59	60	69
	7	75	75	75	75	75	76	77	78	79	84	84	84
	Total	339 '344		345	345	346	347	348	349	350	355	364	375

* Controls well bent.
had made one previous inflexion, measured 2.85 mm . before and after the experiment. Another that had never reacted measured similarly 2.3 mm .

This tentacle was allowed to rest over another day and it was stimulated for the third time. At this time it measured 3.74 mm .

Fig. 9. A graph representing the second reaction of the tentacle shown in Figs. 1-4; drawn according to data in Table IV, and on the same scale as Fig. 4.

The reaction is represented in Table V and Fig．io．No move－ ment was observed for an hour after stimulation．The region of elongation and curvature was shorter than in the second reaction．

Table V

	No．of Segment	12.00 M．	P．${ }^{2.55}$ ．	P． $\begin{aligned} & 7.30\end{aligned}$	10．40 P．M．	A．${ }_{\text {A．}}$ M．	$\stackrel{\text { r．oo }}{\text { P．}}$ M．
	1	80	80	80	80	80	80
	2	89	90	92	92	92	92
	3	53	54	54	54	54	54
	4	70	79	79	79	78	77
	5	82	98	98	98	96	95
	Total ．．．	374	401	403	403	400	398
$\begin{aligned} & \text { 帚 } \\ & \text { 孚荷 } \end{aligned}$	I	79	79	79	79	79	79
	2	89	94	93	93	93	93
	3	54	53	54	54	54	54
	5	69	68	68	68	75	77
	5	84	84	85	85	90	93
Total ．．．．		375	378	379	379	391	396

The acceleration of growth on the convex side was less than in the previous reaction，and the tentacle was not fully bent for 7 hours and 30 minutes．It remained in this condition 2 hours and 30 minutes before unbending again．The tentacle was again straight 25 hours after stimulation．It measured 3.98 mm ．，an increase of 0.24 mm ．After this experiment the tentacle stopped secreting， and no further reaction could be obtained．

Fig．10．A graph representing the third reaction of the same tentacle shown in Fig．9；drawn according to data in Table V，and on the same scale as Fig． 4.

The results of the three successive reactions of this tentacle are summarized in Table VI. The increase in length for the three reactions was 0.43 mm ., 0.37 mm . and 0.24 mm . The region of most intense growth moved basally. In the first reaction

Table VI

No. of Segment	$\begin{gathered} \text { Original } \\ \text { Length } \end{gathered}$		Amt. of Growth	Relative Amt. per Mm		Amt, of Growth	Relative		Amt. of Growth	Relative
1	80	80	0	0	80	-	0	80	0	0
2	47	53	6	13	53	o	o	53	o	o
3	29	34	5	17	36	2	6	39	3	8
4	36	46	Io	27	53	7	15	54	1	2
5	43	55	12	28	70	15	27	77	7	10
6	59	69	10	17	82	13	19	95	13	16
Total	294	337	43	15	374	37	II	398	24	6

it was in Segments 4 and 5; in the second in Segment 5; and in the third in Segment 6. The ultimate stages of bending in the three reactions are shown in Fig. iI. In each subsequent inflexion

Fig. II. The ultimate stages in three successive inflexions of the same tentacle, $\times 22$. a, at the end of the first inflexion; b, at the end of the second inflexion; e, at the end of the third inflexion.
the amount of bending decreased, the gland was moved through successively smaller angles and the zone of bending was restricted to shorter and more basal portions of the tentacle.

Table VII

No. of Segment	Original Length	Length after First Reaction	Amt, of Growth	Relative Amt. per Mm	Length after Second Reaction	Amt. of Growth	Relative Amt.	Length after Third Reaction	Amt, of Growth	Relative Amt.
I	23	23	0	0	23	0	0	23	0	0
2	40	40	0	0	40	0	0	40	0	0
3	II	II	0	0	II	0	0	11	0	0
4	22	23	I	5	23	0	0	23	0	0
5	35	34	3	9	41	3	8	41	0	0
6	20	23	3	I5	25	2	8	27	2	8
7	21	34	13	62	41	7	2 I	59	18	44
Total .	172	192	20	17	204	12	6	224	20	10

Table VII shows the growth of another tentacle during three successive reactions. The respective elongations were 0.2 $\mathrm{mm} ., 0.12 \mathrm{~mm}$. and 0.2 mm . During the first reaction Segments 4 to 7 grew. The rate of growth was most intense in the lowest segment and decreased toward the apex. The second reaction was produced by growth in Segments 5 to 7 . Segment 4 did not elongate. Here again the most intense growth was at the base. In the third reaction growth was confined to Segments 6 and 7, and was considerably more intense in the latter. Segments 4 and 5 did not increase in length. The tentacle was again stimulated but did not bend.

Table VIII

| No. of
 Segment | Original
 Length | Length
 After
 First
 Reac-
 tion | Amt. of
 Growth | Relative
 Amt.
 per Mm. | Length
 After
 Second
 Reac-
 tion | Length
 Amt. of
 Growth | Relative
 Amt. | After
 Third
 Reac-
 tion. | Amt. of
 Growth | Relative
 Amt. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | 85 | 85 | 0 | 0 | 85 | 0 | 0 | 85 | 0 | 0 |
| 2 | 52 | 54 | 2 | 4 | 54 | 0 | 0 | 54 | 0 | 0 |
| 3 | 82 | 88 | 6 | 7 | 89 | 1 | 1 | 89 | 0 | 0 |
| 4 | 23 | 25 | 2 | 9 | 33 | 8 | 32 | 38 | 5 | 15 |
| 5 | 36 | 42 | 6 | 17 | $5 I$ | 9 | 21 | 60 | 9 | 18 |
| Total ... | 278 | 294 | 16 | 6 | $3 I 2$ | 18 | 6 | 326 | 14 | 15 |

A third example of this sort is given in Table Vili. The reaction time of the first inflexion was 1 minute, 40 seconds. Segments 2 to 5 increased in length. The rate of growth was
greatest in the lowest segment and decreased apically. The second reaction was produced the day following the first. The reaction time was I minute, 30 seconds. Growth occurred in Segments 3 to 5. Segment 2 had stopped growing. The third reaction took place two days after the first one. More than an hour elapsed before movement was detected. Growth was confined to Segments 4 and 5. No elongation of Segments 2 and 3 took place. The third unbending of the tentacle was exceedingly slow, and the pedicel did not regain its original position until three days after stimulation. A fourth reaction could not be induced. The elongations accompanying the first, second and third inflexions were nearly constant, being 0.16 mm ., 0.18 mm . and 0.14 mm ., respectively.

Table IX

No. of Segment	Original Length	$\left\|\begin{array}{c} \text { Length after } \\ \text { First } \\ \text { Reaction } \end{array}\right\|$	Amt. of Growth	Relative Amt.	Length after Second Reaction	Amt. of Growth	Relative Amt.
1	80	80	o	0	80	o	o
2	19	20	1	5	20	o	o
3	20	21	1	5	21	0	0
4	16	18	2	13	18	o	\bigcirc
5	37	43	6	16	44	1	2
6	32	4 I	9	28	43	2	5
7	34	44	10	29	49	5	II
otal.	238	267	29	12	275	8	3

Table IX gives the growth during two successive reactions of a tentacle. The growing region is much more restricted in the second than in the first bending. In both cases the rate of growth increases toward the base of the pedicel.

(d) Discussion

i. Bending

The bending of a Drosera tentacle is produced by an acceleration of the rate of growth, which extends from the convex side through the middle of the tentacle. In some cases the concave side is likewise included, so that the entire cross-section of the pedicel participates. In other cases the region of accelerated growth stops at a so-called neutral line, somewhere between the middle and the concave side. Under such circumstances the con-
cave side becomes shorter, probably as a result of compression. The acceleration is greatest on the convex surface and diminishes toward the concave. This difference in the rate of growth produces the bending when the acceleration extends all the way through the pedicel and includes the concave surface. If a neutral line is present, it presumably serves as a brace against which the elongation of the convex side acts.

The increase in the rate of growth begins in a part of the pedicel at or near its base, whence it moves toward the gland, widening its scope until one to two thirds of the pedicel is involved. The gland and the adjacent portion of the pedicel do not grow. C. Darwin ('o8, p. 9) states that the distal half remains straight in all cases; but growth is not always as confined as he indicates, for in one case (Table VIII) 70 per cent of the tentacle grew, and in another (Table I) 73 per cent. If the place where the reaction begins is not the most basal portion of the pedicel, the acceleration of the rate of growth extends also a short distance in the direction of the leaf-blade (Table I). Those regions where the reaction commences have the highest rate of growth and are involved in the reaction for the greatest length of time: consequently they grow most, so that the amount of elongation is greatest at the base and decreases toward the apex. Ordinarily, bending is confined to one place, but in some of the long marginal tentacles the pedicel curves in two places-in the middle and again at the base (cf. C. Darwin, 'o8, p. 206). This is particularly characteristic of those tentacles which have the gland imbedded on the upper side of the pedicel, instead of at the apex.

The amount of bending is determined by two factors; the difference between the lengths of the convex and concave sides, and the thickness of the bending region. An increase in the former augments, in the latter diminishes the amount of bending. The longest tentacles bend most, since their growing region has the largest dimensions. The gland may be moved through a wide angle, for example 215 degrees as shown in Fig. 2. C. Darwin ('o8, p. 9) describes an instance of movement through an angle of 270 degrees. The time required for bending is very variable. It may be nearly six hours (Table II, Fig. 5), or only twenty minutes (Table III, Figs. 6, 7 and 8). C. Darwin ('o8, p. 23) once saw inflexion finished in 17 minutes, 30 seconds.

In all cases of direct stimulation of the gland, the bending of Drosera tentacles is nastic; the inflected gland always points toward the center of the leaf. The stimulus may be contact, heat, injury or some chemical substance in solution.

When a tentacle reacts to a single stimulation, it begins to unbend immediately after the ultimate degree of inflexion has been reached. This is the case when the gland has been irritated by contact with some object for a limited space of time. If the source of stimulation is not removed, as for example when an insect is caught and digested, the tentacle remains inflected for a period varying from one to eleven days, according to C . Darwin ('o8, pp. II, 195). During the interval between bending and unbending the tentacle does not grow in length.

ii. Unbending

The unbending of the tentacle is accompanied by an increase in the rate of growth on the concave side and in the median section. The convex side always contracts so that the so-called neutral line exists somewhere between it and the middle of the tentacle. The acceleration of the rate of growth is characterized by a transverse distribution which is exactly opposite that accompanying bending. Its longitudinal distribution is however identical. The increase in the rate of growth commences opposite that basal portion of the convex side which reacted first, and extends as far apically. Growth is most rapid near the base and becomes less intense toward the gland. The contraction of the convex side is usually restricted to a short basal region.

It frequently happens that the concave grows less than the convex side, since the latter is compressed during the expansion of the tentacle. The concave side may undergo a certain amount of compression during the inflexion of the tentacle, so that the two sides grow and contract approximately equal amounts. The unbending proceeds much more slowly than the bending.

In all probability the unbending of Drosera tentacles is autotropic (cf. Fitting, '03, p. 612). The stimulus perceived is the inequality of conditions, pressure, tissue-tension, etc., which is produced on the opposite sides of the originally straight tentacle by its bending. The unbending is therefore of a tropic nature,
since it is a reaction in response to differences existing on the opposite sides of the tentacle. The inflexion and expansion of a Drosera tentacle present a remarkable instance of a practically continuous reaction, produced by a single mechanism, but caused by two stimuli of different nature, so that it is partly nastic and partly tropic.

iii. Growth and Turgidity

Since the movement of a Drosera tentacle is the result of growth, it is always longer at the end of a reaction than at the beginning. The amount of elongation varies from 0.1 mm . to 0.5 mm . This suggests a simple demonstration to show that the reaction is accompanied by growth. If a single tentacle on a leaf is stimulated, it will project a noticeable distance beyond its fellows after regaining its original position. In the field, a Drosera leaf frequently has some tentacles longer than other ones in the same row. These inequalities are the result of growth attendant upon reaction, for all the tentacles in one row remain of equal length if not stimulated. Sometimes a small insect is caught by a single exterior tentacle, which carries it to the center of the leaf. The insect is, however, too minute to cause a sufficient impulse to be conducted from the discal to the other marginal tentacles. They do not bend, so that after the reaction is completed they are not as long as the tentacle which was inflected.

Turgidity does not play a part in the movement of the tentacles. This was proved by plasmolyzing bent tentacles in 20 per cent salt solution. The plasmolyzed tentacles remained bent.

A comparison of Figs. 4, 5 and 8 with graphs of Fitting, which show the haptotropic reactions of tendrils of Sicyos angulatus (Fitting, 'o2, p. 378), of Passiflora gracilis (Fitting, '03, p. 577, fig. 6) and of Pilogyne suavis (ibid., p. 578, fig. 7), shows that the mechanics of movement in tendrils and tentacles are the same. Similar figures are shown by Wiedersheim for photonastic reactions of leaves of Impatiens parviflora (Wiedersheim, '04, p. 24I, fig. I; p. 242, fig. 2; p. 244, fig. 5), and for thermonastic reactions of the perianth leaves of the tulip (ibid., p. 250, fig. 8) and the crocus (ibid., p. 254, fig. 10; p. 255, fig. 12). It is clear that all these reactions are produced by the same mechanism; rapid growth on the convex side and in the median section with attendant contrac-
tion or a slower rate of growth (ibid., p. 255, fig. 12) on the concave side. Drosera tentacles are characterized by a contraction of the convex side during expansion; this occurred in one case of a leaf of Impatiens parviflora (ibid., p. 242, fig. 2).

iv. Conductivity

The reaction time represents the interval necessary for the latent period and the conduction of an impulse from the gland to the region where the reaction commences. This region has been shown to be a basal portion of the pedicel, so that the impulse is conducted the entire length of the tentacle. The reaction time usually varies from one to two minutes. C. Darwin ('08, pp. 10, 191) saw movement ten seconds after stimulation. This shows that the rate of conduction can be quite high, for assuming the length of the tentacle (which Darwin does not give) to be 2 mm ., the rate of conduction would be 0.2 mm . per second, which is faster than any instance given for the haptotropic reaction of tendrils (Fitting, '04, p. 424). The rate of conduction in tentacles is generally much less (cf. Pfeffer, 'o6, Vol. III, pp. 93, 94). It should be emphasized that in Drosera tentacles stimuli are perceived by cells which are fully grown, and which undergo no further development.

It has not been definitely settled through what tissue impulses are conducted in Drosera, but in any case an impulse, in being conducted from the gland to the base of a tentacle, must pass through cells which later react, without producing a response in them. These cells apparently respond only to a secondary impulse released in the basal cells by the impulse conducted directly from the gland. This secondary impulse is conducted in the reverse direction, from the base toward the apex.

v. Second and Third Reactions

A tentacle is capable of reacting several times in succession. C. Darwin ('08, pp. 11, 19) observed a leaf inflected three times over insects, and suggested the possibility of more reactions. It is probable, however, that a leaf can clasp insects a greater number of times than any individual tentacle can react, because the capture of such prey does not always necessitate the cooperation
of all the tentacles. Those which remain inactive at one time, might bend on a subsequent occasion. However this may be, no tentacle has been observed to react the fourth time.

The second and third reactions of a tentacle are essentially similar to the first. After two reactions a tentacle is much less sensitive than before, as is shown by the increased reaction time. Each subsequent bending takes longer (cf. C. Darwin, 'o8, p. 19), but the original position is regained in approximately the same time. The amount of growth does not vary according to any definite rule. It depends rather on external conditions and is apparently uninfluenced by the age of the tentacle. If the external conditions are constant, the amount of growth remains the same. In one example (Table VIII) this was approximately the case, the increase in length for the first, second and third reactions being $0.16 \mathrm{~mm} ., 0.18 \mathrm{~mm}$. and 0.14 mm . respectively.

The region of growth is however more restricted in each subsequent reaction, and is confined to more basal portions of the tentacle. Table VII shows that 57 per cent of the tentacle grew in length during the first inflexion, 50 per cent during the second, and 32 per cent during the third. In another instance (Table VIII) the regions of growth were successively 70,53 , and 27 per cent of the length of the tentacle. In each reaction a certain portion of the tentacle becomes fully grown. A Drosera tentacle is therefore characterized by intercalary, basipetal growth. Because of this, the number of inflexions which a tentacle can make must necessarily be limited. It is therefore highly probable that a tentacle would bend a fourth time only under very exceptional circumstances.

Since growth is limited to more basal regions, the thickness of the reacting portion is greater at each successive inflexion. Moreover the greatest difference between the lengths of the opposite sides tends to decrease. Both of these factors cooperate in reducing the amount of bending, so that the gland is moved through successively smaller angles, as shown in Fig. II.

vi. Nastic reactions

In all the experiments described, the glands of the marginal tentacles were stimulated directly, but reactions follow likewise
in response to impulses received by the discal tentacles and conducted to the marginal ones. The mechanism by which these reactions are carried out is identical with that described above.

Numerous experiments were made to determine if the marginal tentacles bent toward the source of stimulation. The discal tentacles on one side of a leaf were stimulated and most of the marginal tentacles which reacted to the conducted impulse, in bending toward the center of the leaf bent likewise in the direction of the source of excitement. In a number of such cases, however, marginal tentacles were observed to bend toward the center of the leaf in a direction different from the point of excitement. One or two instances in which the tentacles bent slightly in the direction of the source of excitement and not toward the center of the leaf seemed to be purely accidental and due rather to irregularities in the contour of the leaf. Nitschke ('60, p. 240) and C. Darwin ('o8, p. 198 and fig. 10) noticed that when a gland on one side of the disk was stimulated, "the surrounding tentacles" bent to the point of excitement and not to the center of the leaf. The statement by Darwin together with his figure has generally been understood to include the marginal tentacles. He says, however ('o8, p. 200): "It is, perhaps, owing to the exterior pedicels being much flattened that they do not bend quite so accurately to the point of excitement as the more central ones." I am convinced that the peripheral tentacles seldom if ever carry out tropic movements.

vii. Discal Tentacles

The discal tentacles differ both anatomically and physiologically from the marginal tentacles. The latter are dorsi-ventral and nastic, the former are radial and tropic. The central tentacles do not bend in response to a direct stimulus, but only to a conducted impulse, and always toward the point of excitement. The method used for investigating the mechanics of the movement of the marginal tentacles is not adapted for studying them in the central tentacles. In all probability, however, their movements are likewise the result of differential growth on opposite sides. The angle of curvature is in any case slight. This and the small diameter of the tentacles indicate that the amount of growth is
small. The bending region is confined to a very short basal portion of the pedicel.

Transitions from exterior to central tentacles occur, which exhibit intermediate conditions not only in their structure but also in their behavior. It is probable that some of these tentacles are both nastic and tropic.

8. Summary

I. The red pigment which is found in the leaves and roots of Drosera rotundifolia is probably trihydroxymethylnapthoquinone.
2. The rosette habit is conditioned by transpiration.
3. The inflexion of Drosera tentacles is produced by an acceleration of the rate of growth on the convex side and in the median section. The unbending is caused by an increase in the rate of growth on the concave side and in the median section, accompanied by compression of the convex side.
4. In both cases the acceleration commences near the base and extends toward the gland. The amount of growth is greatest near the base and decreases apically.
5. A tentacle is capable of reacting three times. During each reaction an apical portion of the bending region becomes fully grown. Drosera tentacles have intercalary, basipetal growth.
6. The bending of the exterior tentacles is nastic; of the central tentacles, tropic. The unbending is in all cases owing to autotropism.

> Sheffield Scientific School, Yale University

Literature cited

Batalin, A. ('77). Mechanik der Bewegungen der insektenfressenden Pflanzen. Flora 60: 33-39; 54-58; 65-73; 105-111; 129-154.
Brissemoret, A., \& Combes, R. ('o7). Sur une réaction des oxyquinones. Jour. Pharm. et Chim. VI. 25: 53-58.
Büsgen, M. ('83). Die Bedeutung des Insektenfanges für Drosera rotundifolia. Bot. Zeit. 4I : 569-577; 585-594.
Darwin, C. ('o8). Insectivorous plants. Revised by F. Darwin. London.
Darwin, F. ('o8). Experiments on the nutrition of Drosera rotundifolia. Jour. Linn. Soc. Bot. 17: 17-32.

Diels, L. ('o6). Droseraceae. Engler's Pflanzenreich 4^{112}. Leipzig. Fitting, H. ('o2). Untersuchungen über den Haptotropismus der Ranken. Ber. d. Bot. Ges. 20: 373-382.
Fitting, H. ('o3). Untersuchungen über den Haptotropismus der Ranken. Jahrb. Wiss. Bot. 38: 545-634.
Fitting, H. ('o4). Weitere Untersuchungen zur Physiologie der Ranken. Jahrb. Wiss. Bot. 39: 424-526.
Kraemer, H. ('ıо). A text-book of botany and pharmacognosy. Fourth edition. Philadelphia.
Nitschke, T. ('60). Ueber die Reizbarkeit der Blätter von Drosera rotundifolia. Bot. Zeit. 18: 229-234; 237-243; 245-250.
Pfeffer, W. ('o6). The physiology of plants. English translation. Oxford.
Rennie, E. D. ('87). The coloring matter of Drosera Whittakeri. Jour. Chem. Soc. 51: 371-377.
Rennie, E. D. ('93). The coloring matters of Drosera Whittakeri. Jour. Chem. Soc. 63: 1083-1089.
Wiedersheim, W. ('O4). Studien über photonastische und thermonastische Bewegungen. Jahrb. Wiss. Bot. 40: 230-274.

The thermometric movements of tree branches at freezing temperatures*

C. C. Trowbridge

(with nineteen text figures)
During the winter of 1910, the writer of the present paper noticed that the branches of several linden trees on the grounds of Columbia University in the City of New York changed their position when a fall of temperature below freezing occurred.

Fig. r. Photograph showing the extent of the change of the position of a branch of a European linden tree (Tilia europaea) between normal and about twentytwo degrees below freezing, Fahrenheit. The lower branch (M) has been artificially inserted in the photograph to show extent of movement. Lower branch, at elbow, $M, 5.33 \mathrm{ft}$. elevation, temp. $+10^{\circ} \mathrm{F}$., February 10, 1912 . Upper branch, at elbow, $N, 6.82 \mathrm{ft}$. elevation, temp. $+35.6^{\circ} \mathrm{F}$., February 28, 1912. This branch is designated as "Branch A, Tree No. I," in the accompanying curves.

The matter was again strikingly called to mind during an exceedingly cold period in the early part of February, 1912. As the phenomenon seemed not to be generally known among botanists, a series of measurements was made to ascertain the extent of the movements, and, if possible, to learn something of their origin.

During the course of the work, two or three papers on the subject came to light, two of which anticipated the observations of the writer with respect to the general phenomena of the thermometric movements of branches of large trees. Since, however, the field of the investigation has been extended in several respects, and because the matter is so little understood, the observations made are published in full in the present paper.

The general facts relating to thermometric movements of branches of large trees as based on the writer's observations are as follows: It appears in the case of certain species, particularly the European linden (Tilia europaea), that when the temperature of the air reaches the freezing point of water, $32^{\circ} \mathrm{F}$. ($0^{\circ} \mathrm{C}$.), the branches of the tree, large and small, begin to bend and continue this movement with further reduction of temperature. At the lowest temperature measured, about $0^{\circ} \mathrm{F} .\left(-17.5^{\circ} \mathrm{C}\right.$. $)$, the ends of the large branches of a particular linden under observation showed depressions as great as from three to five feet below their position at $32^{\circ} \mathrm{F}$. The movements of the branches were found in general to correspond closely to the changes in temperature of the surrounding air, as will be shown. The observations made consisted of daily and hourly records of the height of branches of several species of trees with corresponding meteorological data. The work has been supplemented by photographs. The relation of the air temperature and the relative humidity to the observed changes in the branches will be presented in the form of curves.

The subject is an important as well as an interesting one, since frost cracks of the linden have been found by the writer to accompany in no accidental manner the thermometric movements of the branches. Frost cracks have much to do with the injury to various trees by insects and by decay, a matter well known, and at present a subject of investigation by the Bureau of Plant Industry of the Department of Agriculture of the United States.

Historical

A brief summary of the contents of papers relating to the subject of this paper is given below.

It is a noteworthy fact that comparatively little is to be found in the literature on the thermometric movement of branches of trees. Moreover, references in recent botanical papers to the few contributions on the subject are rare indeed; it is for this reason that the phenomenon is not well known among botanists. The writer was at first unable to find any published account of the gross thermometric movements to be described, but after the observations had been partly completed, his attention was called by Dr. J. T. Grossenbacher, of the Bureau of Plant Industry, Washington, D. C., to two papers on the subject, one by Robert Caspary, and the other by N. Geleznow, which were published in 1866 and 1872 respectively. Dr. Grossenbacher, having observed an abstract of the writer's observations,* published an article chiefly devoted to a discussion of these two early researches. \dagger To quote from a footnote in his paper: "This review of the literature of branch movements and observations grew out of a study of crown-rot of fruit trees and is published separately because it is only indirectly related to the main theme." Owing to the publication of a review of these papers, they are referred to more briefly in the present paper than otherwise would have been the case.

Mr. John Rogers, at Kent, England, was apparently the first to observe the movement of large branches of trees in cold weather. His first observations were made as early as 1838 , and a short note on the observations was published a few years later. \ddagger

In 1865, Professor Caspary, of Königsberg, made a series of measurements of the phenomenon observed by Rogers, on a number of species of trees in the Königsberg botanical gardens. The observations were published under the title, "Uber die veränderungen der Richtung der Äste holziger Gewächse bewirkt durch niedrige Wärmegrade."§ Caspary found three types of

[^1]

Fig. 2. Photograph of European linden tree No. I, when the air temperature was $+50^{\circ} \mathrm{F}$. Branches at normal level. Note positions of branches at A, B, C, D and E.

Fig. 3. Photograph of European linden tree No. I at $+14^{\circ} \mathrm{F}$. (18° below freezing) showing marked depression of branches. See position of branches at A, B, C. D and E.
movements accompanying a fall of temperature. In one class, (a), the branches became depressed; in the second, (b), they rose at first, then with continued fall of temperature became depressed; and (c) they became elevated without being depressed. The measurements were carefully made on ten species of trees. No definite conclusion, however, as to the cause of the movements was arrived at by Professor Caspary, although he suggested the theory that the movements were caused by a differential expansion between the upper and lower sides of the branches.

Fig. 4. Daily record of Branch A, Tree No. I (European linden) during February and March, 1912. Broken lines indicate where the daily record was not continuous. The branch movements are seen to follow closely the air temperature changes when below freezing. The amount of atmospheric moisture present, as shown by the relative humidity record (fine line curve), apparently has little effect on the position of the branch.

Later the following paper appeared: "Recherches sur la quantité et la répartition de l'eau dans la tige des plantes ligneuses," by N. Geleznow.* This contribution deals chiefly with the amount of moisture in the various parts of branches and tree trunks. Observations on the change in the position of branches with change of temperature were also made. Geleznow stated that he had first noted the phenomenon in 1854-5, and experiments made by him in 1864 and 1865 showed that the excentric

[^2]position of the medullary canal in some species had a marked influence on the phenomenon, but there were some anomalies which could not be explained. Experiments made in 1865-1867 showed a slight relation of the water content of the branches to the thermometric movement of the branches, but the connection was not at all definite. The work was undertaken largely to find an explanation of Caspary's work at Königsberg, already referred to.

Fig. 5. Daily record of Branch ' A, Tree No. I (European linden) during A pril and May, 1912. Little or no movement appears to accompany the large change ${ }_{S}$ of both the air temperatures (all above $32^{\circ} \mathrm{F}$.) and the relative humidity. The depression in the branch during May is due to the weight of the leaves.

A letter in Nature, entitled, " Position of boughs in summer and winter," by Agnes Fry,* records the height of branches of both a mulberry and a walnut tree in summer and in winter. The measurements show the reduced height in summer due to the weight of the leaves. The changes amounted to one foot or slightly more. This note is not pertinent to the subject under discussion since the movements observed were not thermometric.

In 1898, there appeared a paper of similar character to the last, entitled, " Preliminary observations of the seasonal variation of a branch of a horse chestnut tree," by Miller Christy. \dagger

[^3]The measurement reported consisted in the change in height of a branch of this species due to the growth and to the fall of the leaves. The height decreased in April and May, coincident with the growth of the leaves. Then followed a period of rest, but in August and September there was a further depression. In October, the branch rose with the fall of the leaves, the maximum variation being about one foot. "During the winter months, very little change in the elevation of the branch was observable, as shown by the observations, etc." No temperature changes were recorded. It is seen that this paper does not relate to the problem under discussion.
"An undescribed thermometric movement of the branches of shrubs and trees," by W. F. Ganong,* is in some respects closely connected with the work of Caspary and Geleznow and with the observations made by the writer of the present paper.

Fig. 6. Daily record of the movements of Branch B, Tree No. I (European linden) during February and March, 1912. The movements correspond closely with those of Branch A, in Fig. 4, although some of the observations were on different days.

Ganong's observations related mostly to the movements of twigs of shrubs and very small trees, and scarcely exceeded 12 cm . There is no mention, moreover, of the important fact (as

[^4]in the case of large trees) that the movement begins when the temperature of the air reaches the freezing point of water.

Two movements are described, a gradual seasonal displacement, and a secondary, depending indirectly on thermometric changes. Whether the latter is similar to the one to be described is difficult to ascertain. Ganong has performed some important experiments, and concludes that the secondary movements are correlated with changes in temperature but that they are not directly caused by temperature.

Miss Jean Broadhurst* is the author of a note entitled, "The weeping willow in winter," describing the observation that the slender unbranched twigs of this tree (twigs one to two feet long), which in November hang vertically, become curled up during the early winter so that the ends of the twigs are above their origin. The phenomenon appears to be a seasonal one rather

Fig. 7. Daily record of Branch B, Tree No. I (European linden) in April and May, in 1912, showing the same effect exhibited by Branch A, in Fig. 5, including the drooping in May due to the weight of the leaves.
than one depending on temporary temperature conditions. A further note on the subject entitled, "Winter changes in the weeping willow," was published later. \dagger It is possible that the

[^5]movements here described may be similar to those made on small shrubs by Ganong.

Observations by the writer in 1912 and igi3

The measurements conducted during the early part of 1912, described below, were not made under the most favorable circumstances, because it was near the end of the winter when the striking effects were noted and the measurements begun; also, there were few unusually cold periods during the winter of 1912-13. Enough observations, however, were taken to exhibit some interesting facts. Most of the observations in February, March, April and May, were made with Mr. E. Sweitzer, a special student in Columbia University. The observations during the winters of

Fig. 8. Curve showing the relation of temperature change to height of branch in the case of Branch A, Tree No. I (European linden). The curve shows a point of inflection at the freezing point of water. The variation among the observations is due to temperature lag or to strain in the branch as determined by hourly records of the thermometric movements.

1913-14 and 1914-15 were more extended and were made by the writer alone.

A study of movements of the branches of trees under freezing temperature was taken up solely on the physical side of the sub-
ject, the problem being to find the atmospheric conditions under which the movements took place, and to determine the extent of the effect produced. To illustrate the interesting phenomenon under discussion, photographs (Figs. I-3) have been taken.

In Fig. i, the extent of movements can be seen at a glance. The photograph has been artificially arranged with the addition of a duplicate photograph of a branch, fitted in according to scale, and is given here solely to show the magnitude of the effect. The upper branch shows the position as it was at $32^{\circ} \mathrm{F}$. or above; and the lower one, the same branch as it was at approximately $10^{\circ} \mathrm{F}$. This very large movement shown indicates some interesting processes going on within the living portion of the branch.

Method of measurement and species of trees studied

The apparatus used consisted of a specially constructed measuring rod, a steel tape, and thermometers. The linear measurements are given in feet and hundredths of feet. The temperatures are given in Fahrenheit as being more convenient, although many sets were taken in Centigrade. The Fahrenheit scale was used to compare temperatures with temperatures taken from a record of the United States Weather Bureau, which are expressed in Fahrenheit. Also, the temperature curve continually crossed the freezing point of water; hence the use of the Fahrenheit scale avoided the employment of the + and - sign. The heights of four branches from the ground were measured, three species of trees being selected, and also the distance from the point on the branch measured, as indicated by a plumb line, to the trunk of the tree in a horizontal line. The latter measurements are not given in this paper, since they correspond in general to the vertical measurements.

Two similar curved branches of a European linden tree designated as Tree No. I, were measured; also, a branch of a Paulownia tomentosa, designated as Tree No. 2, similar in shape to the branches of Tree No. I, and a horizontal branch of an oriental plane-tree or sycamore (Platanus orientalis) recorded as Tree No. 3 .

It was to be regretted that branches of the linden of various shapes were not measured, but the observations that were made
absorbed a good deal of time, and the desirability of an extension of the records to branches of different forms was not foreseen.

Temperature and relative humidity observations taken from the United States Weather Bureau have been used in a few cases. The Draper Observatory in Central Park, where these observations were made, is not more than three miles distant from the Columbia University grounds, and since it was shown by the thermometer records at the two places that the temperatures were usually within a degree or so of each other they agree sufficiently in the present case. No relative humidity observations were made, but the Draper Observatory record of the moisture was sufficiently

Fig. 9. Hourly record of Branches A and B, Tree No. I (European linden), showing rise of temperature through the freezing point and subsequent fall. Here the branches appear to respond quickly to the changes in temperature and there also appears to be a slight thermometric movement above freesing.
close for the use to which it was put, since large changes in relative humidity appeared to have little or no effect on the position of the branches.

Daily records and explanation of curves shown in Figs.

$$
4,5,6,7 \text { AND } 8
$$

The daily record of Branch A, Tree No. I (linden), is given in Figs. 4 and 5, for February, March, April and May. The facts shown by these curves are as follows:

The temperature when above 32° has little effect on the position of the branch, but whenever the temperature of the air passes below the freezing point of water, an immediate bending of the branches of the tree takes place. Throughout April and for some observations in May, very little change in the position of the branch takes place, except depression of the branch due to the weight of the leaves in May. Notwithstanding the fact that during April and May there was a large variation in temperature, no movement took place because all the temperatures were above 32° Fahrenheit. In regard to the influence of water vapor present in the atmosphere on the movement of the branches, it can be seen by the fine line curve in Figs. 4 and 5, representing relative humidity, that there is little, if any, effect. This is specially evident at points M and N in both figures, where the humidity was high and low respectively with apparently little influence on the height of the branch. The curves in Figs. 6 and 7

Fig. io. Hourly record of Branches A, B, and C, Tree No. I (European linden). Temperature on a large scale. Branch C observations were made at the extremity of a branch. The last reading was taken at 10.45 a .m., the previous observation at 12 midnight preceding.
made with a different branch show effects similar to those observed in the case of Branch A. The curves corresponded very closely
for Branches A and B, except that the days of observation were somewhat different. In Fig. 8, the relation of the variation in height of Branch A (same as Figs. 4 and 5) to the variation of temperature is shown. It is seen at once that there is a marked point of inflection of the curve at the freezing point of water. The fact that the observation points do not fall on the curve is significant and will be presently explained. While the major effect of the temperature is below $32^{\circ} \mathrm{F}$., there is evidently a minor thermometric effect just above 32°, which, however, is so small as perhaps to be due to a warping of the branch due to internal strains arising from the bending of the branch, caused by below freezing temperatures a short time before the observations at warmer temperatures were made. Thus the behavior of the branch depends somewhat on its immediately previous history.

Hourly records and explanation of curves in Figs. 9,
IO AND II

In these curves, an hourly record was kept of several of the branches of Tree No. I to ascertain how soon the branch responded

Fig. II. Hourly record of Branches A, B, and C, Tree No. I (European linden), showing the effect of a fall in temperature below freezing and the subsequent rise. Observations of Branch C were at the end of the branch. These curves demonstrated the lag in the movements of the branches with fairly rapid changes of temperature and explain the variations among the observations shown in the curve in FIG. I.
to the changes in the temperature of the air. While observations were not taken every hour, they were frequent enough to obtain the results required. It is seen in Fig. 9, which gives observation where the temperature rises to a maximum just above the freezing point of water, that both branches begin to fall with the temperature within a quarter of an hour after the high point of the temperature has been reached and before the temperature passes through the freezing point. This seems to show that there is a very small thermometric effect just above $32^{\circ} \mathrm{F}$. The same fact is indicated in other observations. In Fig. Io, three branches were measured and the resulting curves show the effect on the

Fig. 12. Photograph of Branch A, Tree No. 2 (Paulowina tomentosa). This branch showed little or no thermometric changes. The branch was selected because of its similarity in shape to Branches A and B. Tree No. I.
branches when the temperature of the air rises to a maximum, below the freezing point of water, and then falls again. C observations in this set were taken at the extremity of the branch and hence show the largest movement.

In Fig. in the readings of three branches were taken under conditions where the temperature had fallen to about $20^{\circ} \mathrm{F}$. and then rose. Here it is clearly shown that there is a lag amounting in time to about two hours before the branches begin to move upward, although a change in the rate of the depression is observed to take place as soon as the temperature of the air begins to rise. The effect on the branch of a change of temperature is therefore almost immediate with a lag depending on various conditions. It is probable that the size of the branch is the ruling factor, the very small branches responding almost at once to change in temperature.

Explanation of curves shown in Figs. I3 and 15

In Fig. I3 the daily record from February to May of a Paulownia (P. tomentosa), Tree No. 2, is shown. The branch measured has the same shape as that of the linden branch shown

Fig. 13. Daily record of Branch A, Tree No. 2 (Paulownia tomentosa). Record for February, March, April and May. No appreciable change is shown which accompanies below freezing temperatures,-but a gradual rise from February to May is evident and a particular response to warm days during that period is apparent.
in Fig. r. Here it is seen that there is little or no thermometric effect due to the changes of temperature of the air, although the
temperature repeatedly passed through the freezing point of water. There is, however, a continual rise of the branch from ear y in February till May. This elevation is evidently a response to heat and light of the sun, and being a seasonal change, is an entirely different effect from that observed in the linden.

Fig. 14. Photographs of Branch A, Tree No. 3, sycamore (Platanus orientalis). Measurements shown in Fig. 15. This branch differed from others measured in being straight and nearly horizontal.

In Fig. 15 an intermittent record of the height of a straight branch of a sycamore tree, Platanus orientalis, Tree No. 3, from February to well along in April, is given. Here also no thermometric movement is observed, the gradual rise of the branch recorded being a seasonal change. These observations merely show that in certain trees there is no thermometric movement of the branches.

The elastic constant of branches above and below freezing

In Fig. 16 s shown a plot of an experiment which consisted in weighting the branches of both Tree No. I, the linden, and Tree

No. 2, the Paulownia. Sixty-five pounds were added to the branch, five pounds at a time. This experiment was made both at a temperature above freezing, and also at a temperature well below freezing. It is seen that the constant of elasticity has changed in both cases, and the amount of depression per pound has decreased for the branches of both trees at the lower tempera-

Fig. 15. Daily record of height of Branch A, Tree No. 3 (sycamore), during February, March and April, showing no effects due to variation in air temperatures, below freezing, but a rise beginning in February, with a more decided increase in elevation in March and April, especially accentuated on warm days.
ture. It would therefore appear as if the change in the modulus of elasticity of the two branches, due to changes in the temperature, had little or nothing to do with the direct temperature effect produced in the case of Tree No. I, the linden, which showed large thermometric movements.

From theory it is to be expected that if there is a change in the modulus of elasticity due to temperature, and if a stiffening occurs at low temperature, the branch would not be as much depressed. Such an effect is opposite to the large thermometric movement actually observed. In the case of the weighted cold branches a loss in recovery is noted, which is probably temporary, but explains certain inconsistencies observed on other observations.

The following experiment was tried. A branch curved in form, was cut from the linden and at once artificially cooled to 0° F., in a salt-ice pack, but showed no change of curvature between $0^{\circ} \mathrm{F}$. and $40^{\circ} \mathrm{F}$. The experiment, however, was not conclusive, since the branch was not longer than about three

Fig. 16. Effect of loading Branch B, Tree No. I (European linden), and Branch A, Tree No. 2 (Paulownia tomentosa), at two differentt emperatures. The modulus of elasticity constant is less in both cases at temperatures below freezing, which is to be expected. A change of the constant, therefore, does not account for any part of the depression of the branches A, B and C, Tree No. I (linden), with low temperature since the effect of the change of the modulus is opposite to the thermometric movement observed.
feet. It was ascertained definitely, however, that certain branches which were curved upward on the linden became more curved when subjected to low temperature. This fact was found by attaching strings to the ends of branches which were curved
concave upward, and observing the change of the tension on the reduction of temperature. These cords which were taut at $32^{\circ} \mathrm{F}$. (or $0^{\circ} \mathrm{C}$.), sagged at $15^{\circ} \mathrm{F}$., showing an upward movement of branches which were concave upward. This is in agreement with observations made by Geleznow, who cut off branches, inverted them, and observed that their movement was opposite to those in the normal position.

Relation of frost cracks to the thermometric movement
It was noticed both during the winters of 1911-2 and 1912-3 that a linden showed a decided so-called frost crack or longitudinal cleft which was wide open during cold snaps, and in one case, the crack was extended for fifteen feet along the trunk. The width of this crack varied with the temperature and closed up completely as soon as the temperature rose to $32^{\circ} \mathrm{F}$. This was particularly noticeable during the coldest period of about February 10, 1912. Frost cracks in the linden are evidently due to the same origin as, or connected with, the thermometric movement of the branches, and therefore their study is intimately associated with the main theme of this paper.

The fact that frost cracks open in cold, and close in warm weather is well known.* In this connection an interesting and reliable observation reported to the writer illustrating the wellknown noises caused by frost cracks is as follows. In very cold weather some lindens in a certain grove produced such loud and sharp noises that they were thought to be pistol shots, but were found to be the sudden formation of cracks in the lindens which were observed at the time.

In Fig. I7 a frost crack in a linden is shown, which was about three-quarters of an inch broad. Measurements of this crack with curves of the tree temperatures are given in Figs. I8 and 19.

The facts shown by these curves indicate that the frost crack is not caused by a difference of temperature at successive depths of the tree trunk, but is due rather to a thermometric effect of some sort, not necessarily ordinary thermal expansion, acting on the cells of the tree, and probably those just below the bark.

[^6]In Fig. i8 the frost crack is shown closing rapidly when the "Bark" (one inch deep) and the "Medium" (three inches deep) rise abruptly, while the " Deep" thermometer (fiveinchesdeep) remained nearly constant. In Fig. is the Deep thermometer is still below $19^{\circ} \mathrm{F}$. while the frost crack is nearly closed. Moreover, in both sets of observations, the frost crack appears to close with the rise of temperature of the surface layers of the trunk.

The origin of the thermometric movement

While there may not yet be sufficient data on which to formulate a theory for the actual mechanism of the thermometric bending of the branches, there are some salient facts which indicate the origin of the phenomenon. It has been shown, at least so far as the linden is concerned, that the movement begins when the air temperature is at the freezing point of water. The internal temperature of the small branches could not be far from that degree of cold.

In the curves published by Caspary* on the European linden showing the branch movements with temperature, there is correspondence between the temperature and branch positions, which indicates that the depressions of the branches began at the freezing point of water, but there is no mention of this in his text. Owing to the fact that a number of trees were studied, which showed various behavior with change of temperature, the matter might well have been overlooked. This opinion seems to be substantiated by the following quotation from Caspary's paper:
"Der Grad der Kälte, bei welcher ein Sinken eintritt, kann wegen Mangel stündlichen Beobachtungen und Beobachtungen der Kälte des Holzes selbst im Innern nicht sicher angegeben werden."

Besides the linden, measurements of trees of various other species by Caspary show that the movement begins at approximately $32^{\circ} \mathrm{F}$. By making hourly observation, not made hitherto, the writer has brought out some important facts; namely, that below freezing the branches respond to the changes in temperature almost immediately. Thus, as shown by the curves in Fig. in, when the temperature falls to $20^{\circ} \mathrm{F}$., and then rises, the branches at once slow up in their downward movement, and shortly after-

[^7]

Fig. I7. Frost crack in European linden which opened and shut with changes of temperature and corresponded with movements of the branches. The measurements shown in Figs. I8 and ig were made on this tree.
wards move upwards. If the water in the branches was freezing as pure water, then the branches would continue to descend while the temperature remained below freezing, since ice would continue to form at any temperature below freezing. On the other hand, sap from the standpoint of physics is a solution, composed of salts of metals and of dissolved organic substances, and, as such, must freeze fractionally as the temperature is reduced. The sap thus becomes more concentrated as the freezing process continues. On a rise of temperature a fractional melting occurs.

In general, in the case of a solution composed of some salt, a point is reached where the solution will freeze at a definite temperature (in a manner similar to pure water); namely, when the solution reaches a certain degree of concentration. The indications are thus that it is the sap content of the branch rather than the water content which plays the important rôle in the thermometric movements of branches. Geleznow studied the water content of branches with little success in so far as determining the cause of the thermometric movement, and in the light of the explanation given above, negative results should be expected from a study of the water content. The mechanism bringing about the branch movements may well be a process in the living cells where enormous tension is produced in some way from the gradual separation of the ice crystals from the sap, the latter concentrating as the fractional freezing process advances. If this partial explanation is the true one, it should be expected that at some low degree of cold, certain trees would cease to show a thermometric movement of the branches, the sap having reached the so-called cryohydrate concentration where the solution would become solidified. Since the sap is a complex solution, the temperature of complete solidification would probably not be a definite one.

The question of the freezing of the tissues of trees appears not to be a proven question; yet there seems to be evidence that at least a partial freezing of trees at temperatures not far below freezing occurs.

In a paper entitled, "The Maple Sap Flow,"* experiments on

[^8]tree temperatures are described and the following statement made: "Casual observations made by one of the writers in mid-winter, showed maples frozen for a depth of an inch and a half in one case, and an inch in another, while both white and yellow birches were

Fig. 18. Curves showing the change of width of frost crack in European linden and change of temperatures of the tree trunk and atmosphere. The bulb of the "Bark" thermometer was one inch below the surface; that of the "Medium" three inches below; that of the "Deep" five inches below. From A to B on the curves all three tree temperatures were the same. Yet the frost crack decreased in width with the general rise of temperature of the tree trunk. The mean at A was $15.4^{\circ} \mathrm{F}$., and at $B 19.6^{\circ} \mathrm{F}$.
frozen through, except where the sun was beating upon them. It seems clear that some of the maple tissues are frozen in midwinter." Also, as a summation, this view is given: "These data and observations lead to the conclusion that in the winter, the temperature of the maple tree tissues is generally below $0^{\circ} \mathrm{C}$.
($32^{\circ} \mathrm{F}$.) , and that it may be considerably lower; that as the sugar season approaches it frequently rises above this point, and during its course is usually above, but occasionally falls below it; and that a part of the sap in the vessels of the outer rings freezes during the winter and may freeze during the sugar season."

Fig. 19. Curves showing the change in width of frost crack and change of temperature of tree trunk and atmosphere. At A the tree trunk was at a uniform temperature to a depth of five inches. From this point on, the frost crack decreased in width consistently with the rise of temperature of the trunk of the tree. At B, where the thermometer readings showed the greatest difference of temperature between the successive layers of the tree trunk, the frost crack was nearly closed.

In experiments on certain plants evidence has been presented showing that freezing apparently is arrested by what appears to be a sub-cooling process; i. e., the confines of the liquid content
being so small as to prevent solidification. Consequently it is possible that under certain conditions sap does not freeze (even fractionally) until at least at a very low temperature, but the evidence of the thermometric movements of branches and the thermometric opening and closing of frost cracks indicate a change which begins at $32^{\circ} \mathrm{F}$. and continues below that point, which must be regarded as evidence in favor of a fractional freezing of the sap. The alternative is that there is some cellular mechanism of the living wood of the tree which begins at $32^{\circ} \mathrm{F}$. and continues as the temperature falls without the fractional freezing process, but parallel to such a change of state of the sap.

A considerable number of experiments were performed in order to ascertain, if possible, the coefficient of expansion of the tree trunk just below the bark. It was found that below freezing with the reduction of temperature a very large contraction occurred in the horizontal direction, transverse to the grain; on the other hand, that there was only a very small contraction in the longitudinal direction; also, that this contraction in the transverse direction was far greater than for a corresponding range above $32^{\circ} \mathrm{F}$. Owing to a number of uncertainties in the experiments, they have not been published, and have been discarded for a more accurate method, which has been devised. The results indicated correspond with some measurements of Dr. J. G. Grossenbacher,* who measured the circumferences of a number of trees and determined that for a fall of temperature the decrease in circumference per degree was greater below freezing than above that point.

The fact, mentioned above, of greater coefficient of expansion below 32° in the transverse direction also corresponds with the published observation of Caspary who found that the circumference of the bark changed more rapidly than that of the wood cylinder in certain trees. \dagger

General conclusions

In this investigation the mechanics of the thermometric movements of branches has not yet been determined, but the

[^9]observations described have made an advance in the study of the subject. Some of the facts which have been determined are summarized below; temperatures are given in Fahrenheit for reasons previously stated.
I. The measurements which have been made on the movements of large branches of the European linden (Tilia europaea), due to a reduction of the atmospheric temperature seem to show that below $32^{\circ} \mathrm{F}$. the movements are thermometric; when the temperature of the air falls below the freezing point of water ($32^{\circ} \mathrm{F}$.) (or very shortly above that point) the depression of the branches begins, and continues until at least $0^{\circ} \mathrm{F}$., the lowest point at which observations were made.
2. There is scarcely any movement above $32^{\circ} \mathrm{F}$., the level of a branch at $70^{\circ} \mathrm{F}$. being approximately the same as at $32^{\circ} \mathrm{F}$. The freezing action of water (the aqueous part of a solution) is therefore the origin of the process which brings about the change in shape of the branch with change of temperature below $32^{\circ} \mathrm{F}$. There seems, however, to be a very slight thermometric movement just above $32^{\circ} \mathrm{F}$., the data on which is uncertain.
3. By making hourly observations not made hitherto, it has been shown that there may be a lag of one or two hours in the movements of the branches behind the changes of temperature, but if the air temperature is changing, a very slight change in the rate causes an almost immediate modification in the rate of movement of the branch. The observations made thus far indicate that a constant state of temperature for a considerable time, slightly below $32^{\circ} \mathrm{F}$., causes a small movement; then the branch remains stationary until the temperature changes. These facts lead to the conclusion that the freezing liquid bringing about the thermometric movements of the branches below freezing temperatures is not pure water, but a solution, namely, the sap.
4. By artificially depressing the branches by means of weights, it was found that strains in the wood cause the branch to become temporarily depressed by a small amount. These strains in the branch, and the effect of lag of position of the branch behind the temperature of the air, explain the fact that in the curves showing the relation of the position of a branch to air temperatures the points are somewhat inconsistent.
5. The degree of moisture in the atmosphere, as shown by relative humidity observations, has apparently a negligible effect on the position of the branch.
6. Modulus of elasticity experiments seem to show that there is a stiffening in the branch below freezing ($32^{\circ} \mathrm{F}$.) ; but a stiffening of the branch should produce a less mobility or less depression of the branch whatever the stress; hence the slight effect observed due to a change in the bending constant of the branch arising from a reduction of temperature, taken alone, is in the opposite direction to the gross changes of the level of the branch observed at low temperatures.
7. Observations on frost cracks of the linden have shown that the width of the longitudinal cracks follow the changes in air tem: perature approximately below $32^{\circ} \mathrm{F}$. When the crack first opens it is not thermometric because it is greatly affected by strain conditions, and resistance in the tearing of the wood.

Thermometers placed within the tree trunk at different distances from the surface indicated that the cracks were not caused by an unequal strain between the central core of the tree and the portion of the tree near the surface, arising directly from a difference of temperature, but due rather to excessive tension conditions in the living portion of the tree directly below the surface of the trunk.

All observations made indicate in a general way that the bending of the branches is closely related to the process which produced the longitudinal frost cracks in the linden.
8. Preliminary measurements indicate that the coefficient of expansion in the living linden in the transverse directions of the wood directly below the bark is very large below freezing, while small in the longitudinal direction.
9. Experiments on a Paulownia (Paulownia tomentosa) and a sycamore tree (Platanus orientalis), show scarcely a trace of the thermometric movement as exhibited by the linden.

The writer begs to acknowledge the courtesies shown by Professor Harper and other members of the Department of Botany at Columbia University, who have made many helpful suggestions pertaining to the botanical side of the present investigation.

[^10]
INDEX TO AMERICAN BOTANICAL LITERATURE

1916

The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material ; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included,-and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of one cent for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Allard, H. A. Distribution of the virus of the mosaic disease in capsules, filaments, anthers, and pistils of affected tobacco plants. Jour. Agr. Research 5: 251-256. pl. 23. 8 N 1915.
Arthur, J. C. New species of Uredineae-IX. Bull. Torrey Club 42: 585-593. I3 N 1915.
Includes II new species in Uropyxis (1), Uromyces (2), Puccinia (6), Uredo (1), and Aecidium (I).
Bailey, W. W. Something about goldenrods. Am. Bot. 21 : 84, 85 . Au 1915.
Ball, C. R. Notes on North American willows-III. Bot. Gaz. 60: 391-399. I5 N 1915.
Barrus, M. F. An athracnose-resistant red kidney bean. Phytopathology 5: 303-3II.f. I-4. N 1915.
Benedict, R. C. Does Ophioglossum vulgatum require ten years from spore to first green leaf? Am. Fern Jour. 5: 115-117. D 1915.
Bicknell, E. P. The ferns and flowering plants of Nantucket-XVI. Bull. Torrey Club 42: 549-570. I3 N 1915. Includes Solidago aestivalis sp . nov.
Blake, S. F. Four new Heterospermas. Jour. Bot. 53: 322-324. N 1915.
From South America and the West Indies.
Blakeslee, A. F. Sexual reactions between hermaphroditic and dioecious mucors. Biol. Bull. 29: 87-102. pl. $1-3$. Au 1915. [Illust.]

Blakeslee, A. F. Zygospores and Rhizopus for class use. Science II. 42: 768-770. 26 N 1915.
Blodgett, F. H. Morphology of the Lemna frond. Bot. Gaz. 60: 383-390. pl. 14+f. I. 15 N 1915.
Boncquet, P. A., \& Hartung, W. J. The comparative effect upon sugar beets of Eutettix tenella Baker from wild plants and from curly top beets. Phytopathology 5:348, 349.f. I. N 1915.
Bottomley, W. B. The root-nodules of Ceanothus americanus. Ann. Bot. 29: 605-610. pl. 28. O 1915.
Burrill, A. C. Insect control important in checking fire blight. Phytopathology 5: 343-347. N 1915.
Buswell, W. M. The spotted trumpet leaf. Am. Bot. 2I: 8I-84. Au 1915. [Illust.]
Cahn, A. R. An ecological survey of the Wingra Springs region, near Madison, Wisconsin, with specieal reference to its ornithology. Wisconsin Nat. Hist. Soc. Bull. 13: 123-177. f. I-II. S 1915.
Claassen, E. Caloplaca pyracea (Ach.) Th. Fr., eine Krustenflechte auf den Sandstein-Fussteigen zu East Cleveland, Cuyahoga County, Ohio. Hedwigia 54: 217, 218. Io F 1914.
Clute, W. N. A may-apple with multiple fruits. Am. Bot. 21:92, 93 . Au 1915. [Illust.]
[Clute, W. N.] The spiders in flower. Am. Bot. 2I: 94-96. Au 1915.
Clute, W. N. Vine hedges. Am. Bot. 21: 86-88. Au 1915. [Illust.]
Cockerell, T. D. A. The marking factor in sunflowers. Jour. Heredity 6: 542-545.f.5,6. 26 N 1915.
Cook, M. T. Report of the plant pathologist. Ann. Rep. New Jersey Agr. Exp. Sta. 1914: 467-504. 1915. Includes articles by H. C. Lint, G. W. Martin, and Cook \& Martin.
Cook, M. T., \& Wilson, G. W. The influence of ether on the growth of Endothia. Bot. Gaz. 60:412, 413 . 15 N 1915.
Cook, M. T., \& Wilson, G. W. The influence of the tannin content of the host plant on Endothia parasitica and related species. Bot. Gaz. 60: 346-361. I5 N 1915.
Coville, F. V. Grossularia marcescens. Proc. Biol. Soc. Washington 28: 181. 29 N 1915.
Earle, F. S., \& Popenoe, W. Plant breeding in Cuba. Jour. Heredity 6: 558-568. f. 10-15. 26 N 1915.
Garman, P. Some Porto Rican parasitic fungi. Mycologia 7: 333-340. pl. 171. N 1915.
Includes nine new species in Septoria (5), Dimerium (3), and Phyllachora (1).

Gates, F. C. Wind burn in Amorphophallus. Bot. Gaz. 60: $4^{1} 4$. 15 N 1915.
Gleason, H. A. Botanical sketches from the Asiatic tropics-III. Java. Torreya 15: 233-244.f. 23-27. 19 N 1915.
Gortner, R. A., \& Blakeslee, A. F. Observations on the toxin of Rhizopus nigricans. Am. Jour. Physiology 34:353-367. I J1 1914.
Greene, F. C. A preliminary list of the ferns of Rolla, Missouri. Am. Fern Jour. 5: 105-107. D 1915.
Harms, H. Einige neue Arten der Gattung Inga Scop. Repert. Sp. Nov. 13: 525-527. 30 Je 1915.
Harms, H. Zwei neue Arten der Gattung Prosopis L. Repert. Sp. Nov. 13: 523, 524. 30 Je 1915.
Seven new species are described.
Haynes, C. C. Bucegia, a new genus for North America. Bryologist 18: 93, 94.f. I. N 1915.
Heald, F. D. Preliminary note on leaf invasions by Bacillus amylovorus. Washington Agr. Exp. Sta. Bull. 125: I-7. f. I-3. S 1915.
Hedgcock, G. G., \& Long, W. H. Two new hosts for Peridermium pyriforme. Jour. Agr. Research 5:289, 290. pl. 27. 15 N 1915.
Hieronymus, G. Beiträge zur Kenntnis der Gattung Pteris.-I. Über Pteris longifolia L. und verwandte Arten. Hedwigia 54: 283-294. 20 Mr 1914.
Hitchcock, A. S. Note on a New Zealand grass. Proc. Biol. Soc. Washington 28: 182. 29 N 1915.
Hotson, J. W. Fire blight on cherries. Phytopathology 5: 312-316. pl. 14. N 1915.
Howe, R. H. The genus Teloschistes in North America. Bull. Torrey Club 42: 579-583.f. 1, 2. 13 N 1915.
Jennings, O. E. Systematic and ecological notes on the mosses of western Pennsylvania. Bryologist 18: 83-93. pl. 2. N 1915 .
Koehne, E. Zur Kenntniss von Prunus Grex Calycopadus, und Grex Gymnopadus Sect. Laurocerasus. Bot. Jahrb. 52: 279-333. 3 Au 1915.
Koehne, E. Zwei neue Amelanchier aus dem westlichen Nordamerika. Bot. Jahrb. 52: 277, 278. 3 Au 1915. Amelanchier plurinervis and A. Purpusii.
Kraus, E. J. The self-sterility problem. Jour. Heredity 6:549-557. f. 7 - 9.26 N 1915.

Lang, W. H. Plant morphology. Science II. 42: 780-791. 3 D 1915.
Lantz, C. W. A bibliography of non-parasitic diseases of plants. Illinois Agr. Exp. Sta. Circ. 183: 80-111. My 1915.
Lizer, C. Quelques notes pour servir de complément au recueil de Mr. L. Hauman-Merck sur "Les parasites végétaux des plantes cultivées en Argentine et dans les regions limitrophes." Anal. Soc. Cien. Argentina 78: 5-17. Au 1914.
Maza, M. G. de la, \& Roig, J. T. Flora de Cuba (datos para su estudio). Cuba Est. Exp. Agron. Bull. 22: 1-182. pl. 1-33. D 1914.

Melchers, L. E. The grouping and terminology of plant diseases. Phytopathology 5: 297-302. N 1915.
Melhus, I. E. Germination and infection with the fungus of the late blight of potato (Phytophthora infestans). Wisconsin Agr. Exp. Sta. Research Bull. 37: I-64.f. I-6. Au 1915.
Meyer, R. Über die Formen brevispina und longispina der Echinopsis campylacantha var. Poselgeri. Monats. Kakteenk. 25: 43, 44. Je 1915.
Moore, E. The Potamogetons in relation to pond culture. Bur. Fisheries Bull. 33:251-291. pl. 22-39. 28 J1 1915.
Moxley, G. E. Pellaea Rafaelensis, sp. nov. Am. Fern Jour. 5: 107, 108. pl. 8. D 1915.

Murrill, W. A. Preliminary list of Upper St. Regis fungi. Mycologia 7: 297-306. pl. $167-169+f .1$-4. N 1915.
Murrill, W. A. A visit to the pine barrens. Torreya 15: 247, 248. 19 N 1915.
O'Gara, P. J. A Podosporiella disease of germinating wheat. Phytopathology 5: 323-326. pl. 15, 16. N 1915.
Osterhout, W. J. V. The measurement of toxicity. Jour. Biol. Chemistry 23: 67-70.f. I. N 1915.
Parish, S. B. The southern California ferns. Am. Fern Jour. 5: 97-104. D 1915.
Payson, E. New and noteworthy plants from southwestern Colorado. Bot. Gaz. 60: 374-382. 15 N 1915. Includes ten new species in Aquilegia (1), Cleomella (1), Lupinus (2), Astragalus (2), Psoralea (I , Oreocarya (I), Pentstemon (I), and Helianthella (I).

Petch, T. Citrus mildew. Phytopathology 5: 350-352. N 1915.
Phelps, O. P. More about the habitat of Ophioglossum. Am. Fern. Jour. 5: $113-115 . \quad D 1915$.

Pieters, A. J. The ferax group of the genus Saprolegnia. Mycologia 7: 307-314. pl. 170. N 1915.
Pilger, R. Plantae Uleanae novae vel minus cognitae. Notizbl. Konigl. Bot. Gart. Berlin 6: 3II-396. 20 S 1915.
Includes articles by Ule (Vochysiaceae, Dichapetalaceae, Ochnaceae, Melastomataceae); Ulbrich (Malvaceae); Harms (Passifloraceae, Araliaceae); Fr. Kränzlin (Bignoniaceae); and Fritsch (Gesneriaceae).
Platt, E. L. The population of the "blanket-algae" of freshwater pools. Am. Nat. 49: 752-762. D 1915. [Illust.]
Pouysségur, H. B. Expedición al Iberá. An. Soc. Cien. Argentina 78: 241-258. D 1914: 79: 35-64. F 1915; 135-161. Ap 1915.
Rand, F. V. Dissemination of bacterial wilt of cucurbits. Jour. Agr. Research 5: 257-260. pl. 24. 8 N 1915. Preliminary note.
Reed, E. L. Drosera annua sp. nov. Torreya 15: 246, 247. f. I. I9 N 1915.
Rees, C. C., \& Macfarlane, W. A bibliography of recent literature concerning plant-disease prevention. Illinois Agr. Exp. Sta. Circ. 183: 2-78. Мy 1915.
Roberts, E. A. The distribution of beach plants. Bot. Gaz. 60 : 406-411. 15 N 1915.
Rolfe, R. A. Promenaea microptera. Curt. Bot. Mag. IV. in: pl. 8631. O 1915.

A plant from tropical South America.
Rolfe, R. A. Siezekingia shepheardii. Curt. Bot. Mag. IV. II: pl. 8635. N 1915.

A plant from Colombia.
Rosenbaum, J. Pathogenicity and identity of Sclerotinia libertiana and Sclerotinia smilacina on ginseng. Jour. Agr. Research 5: 291-298. pl. 28, 29+f. I. 15 N 1915.
Rothe, W. Über die Gattung Marsdenia R. Br. und die Stammpflanze der Condurangorinde. Bot. Jahrb. 52: 354-434. f. 1 -15. 3 Au 1915. Includes 8 new species from America.
Sifton, H. B. On the occurrence and significance of "bars " or "rims " of Sanio in the cycads. Bot. Gaz. 60:400-405. pl. 15. 15 N 1915.
Smith, E. H. Pythiacystis infection of deciduous nursery stock. Phytopathology 5: 317-322. f. $1-4$. N 1915 .
Smith, R. E., \& Boncquet, P. A. Connection of a bacterial organism with curly leaf of the sugar beet. Phytopathology 5: 335-342. pl. $17+f .1$. N 1915.

Spegazzini, C. La verdenasquina nueva variedad de Caucho. An. Soc. Cien. Argentina 78: 71-73. Au 1915.
Sprague, T. A. Ceanothus rigidus. Kew Bull. Misc. Inf. 1915: 379381. S 1915. [Illust.]

Standley, P. C. Hepaticae of New Mexico. Bryologist 18: 81-83. N 1915.
Standley, P. C. A new species of Iresine from the United States. Proc. Biol. Soc. Washington 28: 171 1-173. 29 N 1915. Iresine rhisomatosa sp . nov.
Stewart, A. The pistillate spikelet in Zea Mays. Science II. 42: 694. 12 N 1915.
Stewart, V. B. Mildew on black currants. Phytopathology 5: 349. N 1915.
Stewart, V. B. Notes on the fire blight disease. Phytopathology 5: 327-334. N 1915.
Taubenhaus, J. J., \& Manns, T. F. The diseases of the sweet potato and their control. Delaware Agr. Exp. Sta. Bull. 109: I-55. f.1-65. My 1915.

Theissen, F., \& Sydow, H. Die Dothideales. Ann. Myc. 13: 149430. pl. I-6. 3I Au 1915; 431-746. 30 O 1915.

Thériot, I. Sur quelques mousses recueillies au Chili par le Prof. Carlos E. Porter. Revist. Chilena Hist. Nat. 19: 30-37. pl. $7+$ f. 5. 1915 .

Tuttle, M. L. Fern trips in Virginia. Am. Fern Jour. 5: 108-113. D 1915.
Ulbrich, E. Malvaceae novae vel criticae austro-americanae. Repert. Sp. Nov. 13: 498-518. 30 Je 1915.
Valleau, W. D. Varietal resistance of plums to brown-rot. Jour. Agr. Research 5: 365-396. pl. 37-39. 20 N 1915.
Vaupel, F. Echinocactus Maassii Heese. Monats. Kakteenk. 25: 44. Je 1915. [Illust.]
Vries, H. de. Oenothera gigas nanella, a mendelian mutant. Bot. Gaz. 60: 337-345. 15 N 1915.
Williams, R. S. Mosses of the Philippine and Hawaiian Islands collected by the late John B. Leiberg. Bull. Torrey Club 42: 571 - 577 . ${ }^{2} 3$ N 1915.
Includes descriptions of four new species.
Winkler, C. H. The botany of Texas. Univ. Texas Bull. 18: $1-27$. 25 Mr 1915.

BULLETIN

OF THE

TORREY BOTANICAL CLUB

FEBRUARY, 1916

New and rare African mosses, from Mitten's herbarium and other sources

H. N. Dixon

(with plate I)
It is eminently desirable - if for purposes of reference onlyin short and scattered bryological papers, especially where new species are described, to deal separately with separate geographical areas, or at least only with such as can be described in the title of the paper. The practice of some authors, of describing in a paper purporting to deal with one geographical region, single species from quite another part of the globe is, I think, a very unfortunate one, and liable to lead easily to subsequent error. The description in the present paper of new species from as widely diverse localities as Cape Town, Kilimanjaro and Mauritius, is - not, I believe, a violation of the above canon. For it is more than ordinarily difficult to draw a line of demarcation between the floristic regions of South and Central Africa. It is an established fact with phanerogams: "One of the most marked facts connected with the flora of this continent is the wide range both in latitude and longitude of many of its species. No less than one fifth of the tropical species are common to east and west; while the range of the trumpet- or pig-lily, from Cape Town to the first cataract of the Nile, is the botanical parallel of the wide latitudinal range of the hippopotamus."*

[^11]This view is amply borne out by the facts of bryological distribution, so far as they have been studied, and is accentuated by some of the records which will be found below. For example, several of Mr. Wager's Transvaal gatherings here referred to are identical with species hitherto known only from the equatorial regions; a further example is that of Microthamnium saproadelphum from Mauritius, hitherto known only from a single station in the Cameroons; while Rigodium dentatum from Pretoria has at present only one African congener, and that a native of the equatorial zone. The more or less continuous, elevated forest belt connecting these regions, and the absence of any very pronounced geographical barrier, either mountain range, water, or desert, may perhaps help to account for this. The bryological flora of Southeast Africa, especially between the fifth and twenty-fifth parallels of south latitude, is, however, almost unknown, and promises an interesting field of discovery.

The facts above referred to render the description of "geographical species" even more dangerous than in other parts of the world. In describing new species from the Cameroons, for example, it is quite natural to give little heed to species only known from Abyssinia or from Cape Colony, whereas an identity is by no means improbable; and I have no doubt that a comprehensive knowledge of African bryology would lead to a considerable reduction in such species. On the other hand the relationships of African mosses-at least from the equator southwards-with those of other continental areas are much less close than those which obtain in the case of most of the continents, e.g., Europe and North America, Europe and North Africa, Oriental Asia and North America, Australasia and South America; and the number of specific forms common to these parts of Africa and other geographical areas appears to be very small.

Leucoloma Holstii Broth.

Kilimanjaro, Bishop Hannington, Mitten's herbarium.
A small, slender plant, which agrees exactly with an original specimen of Holst's at Kew, determined by Brotherus, from Usambara, except that the leaves are not markedly secund there, as they are in Hannington's plant.

Campylopus (Eu-Campylopus § Trichophylli) angolensis

Machado \& Dixon, sp. nov.
Sat robustus; caules circa 4 cm . alti, interdum furcati, densifolii, superne olivacei, infra fusci, per totam fere longitudinem dense rufo-tomentosi, haud intertexti, facile separabiles. Folia valde conferta, sicca suberecta, madida patentia, 5-7 mm. longa, o.75-1 mm. lata, e basi oblonga parum concava cito angustata, marginibus superioribus convolutis, serrulatis; inferiora in pilum breve fuscum subintegrum desinentia, superiora pilo longo flexuoso flavido denticulato aristata. Costa infra $\frac{2}{5}-\frac{3}{5}$ folii latitudinem occupans, optime limitata; sectione eae C. flexuosi Brid. sat similis. Areolatio superior breviter rhomboidea, cellulae supra-alares latae, rectangulares, marginem versus minime angustatae, alares magnae, rubellae, auriculas inflatas pernotatas instruentes.

Flores aggregati, comosi; setae aggregatae; theca leniter asymmetrica, basi parum strumosa; calyptra fimbriata.

Habitat: Gambos, Angola, on the ground at 1,250 m. alt., April, 1915, Juliano de Carvalho, communicated by Dr. Ant. Machado.

I do not know any species from Central or South Africa nearly resembling this; nearly all the Angola species as well as those from British East Africa have a very wide nerve. In the present plant the leaf base is almost exactly identical with that of C. flexuosus Brid., as is also the nerve section and areolation generally; the hair-point, which at once distinguishes it from that species, is notable in not being hyaline, but yellowish or, in the older leaves, brown, similarly to what obtains in some forms of C. introflexus (Hedw.) Mitt., from which however the plant is entirely distinct. C. athiops Welw. \& Dub. differs in the black color, entire leaf margin, etc.

Fissidens subobtusatus C. Müll.

Pretoria, Transvaal, H. A. Wager.
This agrees exactly with the description by C. Müller of Wilms's plant (Transvaal, L. Chriss). Wilms's specimens were, however, sterile, while Wager's are fruiting, with mature, deoperculate fruit. The terminal seta is short, $1.5^{-2.5} \mathrm{~mm}$. in length; while the capsule is erect, quite symmetrical, and constricted below the mouth when dry, so as to be markedly urceolate.

Didymodon afer (C. Müll.) Broth.
Trichostomum afrum C. Müll. Hedwigia 38: 98. 1899.
Near Pretoria, Transvaal, H. A. Wager $66 b$.
This agrees with a specimen, "Transvaal, coll. Wilms, 2475," in the Kew Herbarium. It was mixed with another species of Didymodon (Hydrogonium), which may be a form of Trichostomum afro-fontanum Rehm., but is rather widely different from Rehmann's specimen.

Tortula Eubryum (C. Müll.) Dixon, comb. nov.

Barbula Eubryum C. Müll. Flora 62: 379. 1879.
Hilly rocks, Pretoria, Transvaal, H. A. Wager 15; Barberton, Transvaal, H. A. Wager 280.

A very marked and distinct species, which I have no hesitation in referring to Barbula Eubryum C. Müll., from Central East Africa (Ukamba, Kitui, Hildebrandt, 1877). It is very distinct in the habit, the long, highly undulate, acute leaves with strongly recurved margin, the nerve strongly prominent at back, and shining when dry, excurrent in a short robust mucro or cusp, and in the large, highly developed gemmae in terminal cups or rosettes, as in T. pagorum (Milde) De Not. The similarity in this respect, the habit, the lax (very fragile) basal cells, and the upper areolation, leave no doubt, I think, that the proper position of the species is in Tortula (Syntrichia). Its occurrence in such widely separated stations is a striking fact.
C. Müller described it first as the type of a new section Bulbibarbula of Barbula, on account of the gemmae which he found at the base of the apical leaves. But, as he explains,* he was not able to confirm their occurrence upon a later reëxamination of the specimen, and therefore to avoid error he subsequently placed the species under a new section Rhystobarbula (from the undulate leaves). Mr. Wager's specimens, showing both these characters in a very highly distinct fashion, confirm the accuracy of C. Müller's first observation. In view, however, of the occurrence of somewhat similar gemmae in T. pagorum, T. laevipila var. laevipilaeformis (De Not.) Limpr., etc., the last chosen name

[^12]appears preferable to the former, if the plant be retained in a separate section, in view of the very marked and unusual transverse undulation of the leaves.

Tortula exesa (C. Müll.) Broth.
Zoutpansberg District, North Transvaal, T. Jenkins, communicated by W. Ingham.

This agrees quite well with the description of Barbula exesa C. Müll.* The very highly fragile leaves, of which it is hardly possible to find a perfect specimen, form the most noteworthy feature in this marked species.

Tortula erythroneura Schimp.
Cape of Good Hope, S. W. Hall, communicated by L. B. Hall. This agrees well with "Wilms, 2580," at Kew. Whether it be anything more than a form of T. ruralis (L.) Ehrh. may perhaps be doubtful.

Oedipodium australe Wager \& Dixon
This extremely interesting plant has been described by Wager \dagger but a few additional remarks may be of interest. It is very close to the European species, Oe. Griffithianum (Dicks.) Schwaegr., but differs in the non-ciliate, mucronate leaves and smaller cells. The stems also spring from a creeping rhizomatous primary stem, which has not been observed in the northern plant. The gemmae are very remarkable, being perhaps the largest and best developed of any known species of moss. They are large (300μ in diameter) and lenticular with a thin equatorial ring; while those of $O e$. Griffithianum are smaller, obovate, and less regular.

The geographical distribution of the two species is also highly remarkable, Oe. Griffithianum being confined to a few alpine summits in Great Britain, Scandinavia, Alaska and Greenland, while the stations for Oe. australe are confined to low or comparatively low elevations in Natal and the Transvaal.

Anomobryum procerrimum Rehm.
Dry earth, Pretoria and Van Reenen, Transvaal, H. A. Wager; Estcourt, South Africa, $4,600 \mathrm{ft}$. alt., R. C. Wroughton, March, 1913, communicated by W. R. Sherrin.

[^13]There is a good deal of confusion about the nomenclature of this plant, which is very near the northern A. filiforme (Dicks.) Husn., but which may perhaps be separable on the ground of its slightly pointed leaves and less highly appendiculate cilia.

Rehmann issued his Musci austr.-afr. 214 as Mielichhoferia procerrima; this C. Müller gives as a synonym of his Bryum promontorii. Paris, Index, Ed. 2, under the latter name gives as a synonym Mielichhoferia procumbens Rehm., which is no doubt simply a slip for procerrima. A more serious error lies in the fact of his retaining Bryum promontorii C. Müll. (with M. procerrima Rehm. 214 as a synonym), and at the same time Anomobryum procerrimum Rehm. 540, giving M. procerrima Rehm. 219 as a synonym. This would seem to imply that Rehmann's 214 is a different species (and genus) from his 219 and 540 . But Rehmann has himself cited his 214 as a synonym of his Anomobryum procerrimum Rehm. 540 (on the label of the latter), and there can be no ground for separating them.

Brotherus cites the plant as " A [nomobryum $]$ procerrimum (C. Müll. als Bryum)," but this too appears to be an error. The synonymy should, I believe, stand thus:

Anomobryum procerrimum Rehm. Musci austr.-afr. 540; Brotherus in Engler \& Prantl, Nat. Pflanzenfam. $\mathbf{I}^{3}: 563$. November, 1903*
Mielichhoferia procerrima Rehm. Musci austr-afr. 214, 219. Bryum procerrimum Par. Ind. 206. 1894.
Bryum promontorii C. Müll. Hedwigia 38: 69. 1899.
Bryum (Eubryum § Rosulata) canariensiforme Dixon, sp. nov.
B. canariensi Brid. peraffine; differt statura paullo graciliore, foliis perconcavis, marginibus erectis nec recurvis, apicibus brevius mucronatis, thecae operculo breviter conico, subobtuso. Inflorescentia autoica? [Fig. I.]

Habitat: Cape of Good Hope, July 25, 1900, C. H. Hobkirk 928 , communicated by G. Webster. A specimen in the British Museum collection, labelled, " Bry. canariense Schpr. Synops. SüdAfrica ", in Breutel's hand, also belongs here.

[^14]The differences from B. canariense and B. provinciale Philib. if not numerous are marked, and, I believe, constant. In these the leaf-margin is distinctly recurved, often all round, the nerve excurrent in a longish cuspidate point; the capsule lid is sharply acuminate, at times almost rostellate; here it is much lower and scarcely acute. B. polytrichoideum C. Müll. is described as having the leaves with recurved margins, obsoletely denticulate (here they are sharply toothed above), with the nerve longly excurrent. The nerve in the present species is excurrent in a very short, rather stout, often recurved mucronate point, entire or frequently denticulate.

I have found a terminal male inflorescence on a fruiting stem, but it is possible this may not be the only position in which the antheridia occur, in view of the allied B. provinciale.

Pogonatum simense (B. S. G.) Jaeg.

Van Reenen, Transvaal, 1914, H. A. Wager 52.
Another interesting extension of range, the species being hitherto known only from Abyssinia and the Cameroons. It agrees well with Schimper's and Mitten's specimens at Kew; Bruch and Schimper describe the inflorescence as hermaphrodite. It appears to me rather paroicous than synoicous, the antheridia being apparently below the innermost perichaetial bracts.

All the specimens show an occasional very faint rib on the capsule, which leads to a mild plication when dry and empty.

Erpodium Hanningtonii Mitt.

Trees, Kaapmuiden, near Barberton, Transvaal, 1910, H. A. Wager 258.

Mrs. Britton has kindly sent me a part of Mitten's type, so that I have been able to establish the identity of Wager's plant with the Lake Nyanza species. It is not recorded from any intermediate station, but I have a strong suspicion that E. Menyhardtii C. Müll. from the Zambesi will prove to be the same thing, and if so the geographical gap between the two would be materially bridged over. I have not seen E. Joannis-Meyeri C. Müll. from Kilimanjaro; Brotherus, who had specimens of both under his eye, I believe, keeps them separate, and one must suppose that
there are some differences. It may be pointed out, however, that C. Müller himself (who had not seen Mitten's plant) describes his species as, "e descr. E. Hanningtonii proximum, sed icone ejusdem valde remotum, multo robustius." Now the leaves of E. Hanningtonii are, as given by Mitten, I. 5 mm . long, including the hair-point, whereas the drawing by Brotherus of the leaf of E. Joannis-Meyeri represents it as almost exactly i mm. in actual length. It is difficult to see, therefore, how Müller's plant can be "multo robustius" as described by the author. Probably Mitten's drawing is at fault, for his figure of the species, "natural size",* certainly does not represent a plant with leaves I .5 mm . long. The difference in size, therefore, the only distinction suggested by C. Müller between the species, falls to the ground.

A further species from Barberton, Transvaal, which is being published by Mr. Wager, throws additional light on the distribution of this interesting genus. Its affinity is with E. grossirete C. Müll., from the Zambesi, having large, widely obtuse leaves with lax, smooth areolation, but it presents some differences from that species as described by C. Müller, and must therefore be considered distinct; the only other closely allied species is E. madagassum Par. \& Ren.

Braunia Elliotit \dagger Broth.

Kikuyu, British East Africa, 1910, A. Allan, communicated by W. Ingham, c. fr.

This agrees quite well with the sterile plant, labelled, "Shire Highlands, December, 1893, Scott Elliot." The fruit has not yet been described. The perichaetium is long, $2-3 \mathrm{~mm}$., the inner bracts erect, short-pointed, seta about 1 cm . long, capsule cylindrical, about 2 mm . long, with a distinct neck, pachydermatous, narrowed at mouth and also slightly constricted below the orifice when dry and empty, somewhat plicate when quite old; lid with a longer or shorter slightly curved rostrate beak; calyptra large, castaneous, cucullate. The branches show a great diversity, a few often, and at times the greater number, being flagelliform.

[^15]
Leucodon Dracaenae Vent.

Solai, Mt. Kenya, British East Africa, 1910, R. Kemp, communicated by W. R. Sherrin.

This agrees quite well with the specimen (Dendera, Abyssinia, 1862) in the Schimper herbarium, determined by E. S. Salmon as L. Dracaenae.

Pilotrichella conferta Ren. \& Card.

Barberton, Transvaal, January, 1914, H. A. Wager 257.
This agrees quite well with the description of the above species (from Lessonto, South Africa); the only difference I can find being a minor one, viz., that the alar cells which there are described as "plus minus incrassatis et granulatis" are here rather pellucid. It is a distinct species, the short, subdendroid, rather robust and rigid branching being very different from that of most of the African species of the genus.

Thamnium capense Broth. \& Dixon, sp. nov.

Caulis pertenuis, flexilis, elongatus, vage subpinnatim vel bipinnatim ramosus; atroviridis, vix nitidus; rami ramulique complanati, breves, obtusi. Folia ramea 2 mm . longa, late ovatooblonga, superne angustata late acuta, ramulina multo minora, angustiora; omnia concavo-carinata, sicca paullo plicata, marginibus planis, e basi denticulatis, supra grosse regulariter dentatis. Costa valida, subsinuosa, infra summum apicem evanida, dorso prominens, supra spinuloso-dentata. Cellulae superiores pellucidae, hexagonae, angulatae, $8-12 \mu$ latae, parietibus firmis, nec incrassatis, marginem versus majores, elongatae, infra sensim longiores, hexagono-rectangulares, ad infimam basin elongatae, flavidae, parietibus incrassatis. Cetera nulla. [Fig. 2.]

Habitat: in packing from Cape Town, 710 , communicated by G. Webster.

This species belongs to the small group with the nerve dentate at back above, to which belong the northern Th. alopecurum (L.) B. S. G., and Th. Leibergii E. G. Britton. The former differs in the more robust, dendroid habit, and smaller, denser, more incrassate cells; the latter in the more rigid habit, more obtusely pointed leaves, and larger cells. Th. maderense Kindb. is described as a much larger plant, with the growth of Th. alopecurum, the cells rhomboid-oval, the leaves "pauci-dentata," etc. The author
describes the nerve as smooth, but Brotherus places the species in the section with nerve toothed at back.

The habit of the species is unusual, the stems being filiform, flexuose and not at all dendroid, but it is quite probable that the scanty material may not represent the true habit altogether correctly. The leaf characters, however, are in any case distinctive.

Entodon brevirameus Dixon, sp. nov.

E. Dregeano peraffinis. Differt caule elongato, sat regulariter pinnatim ramoso, ramis patentibus brevibus obtusis, vix 0.5 cm . superantibus, foliis magis decurvatis; foliis perichaetialibus squarrosis; columella valde exserta; peristomii dentibus ubique fere longitudinaliter, ad infimam basin tantum transverse, striolatis, longioribus, melius evolutis, sporis laevibus. [Fig. 3.]

Habitat: on stones in bed of stream, 2,000-3,000 ft. alt., Pieter Maritzburg, Natal, 1909, H. A. Wager 9.

The characters above detailed are, I think, sufficient to separate this plant from E. Dregeanus (Hornsch.) C. Müll., which however varies considerably; the perichaetial bracts are usually erect and convolute, but specimens in the national collections in London, apparently correctly named, have the perichaetial bracts squarrose. For the present, however, I am not inclined to lay much stress on this character, nor on the single seta, in view of the small quantity of material available (in E. Dregeanus the setae are said to be usually aggregate, but I doubt if this be correct); the habit, branching and peristome characters are, however, probably reliable and of sufficient importance even though the others should prove invalid. In E. Dregeanus the peristome teeth are transversely striolate in the lower half, they are shorter and less regular, the columella I have not found exserted, the spores are slightly papillose. The inner peristome here is very delicate and adherent to the columella.

Trachyphyllum gastrodes (Welw. \& Dub.) Gepp
Barberton, Transvaal, H. A. Wager 265.
Eight African species have been described of this small genus, all of them are, as Brotherus has remarked, very closely related one to the other, and I should not be surprised if several of them have ultimately to be reduced to T. fabronioides (C. Müll.) Gepp.
T. gastrodes however is more marked as a species than some, in the widely spreading leaves, almost at right angles to the stem when moist, very widely cordate-oval, abruptly narrowed to a short but rather fine acumen; the cells are moderately papillose, the alar very numerous, extending half-way up the leaf at the margins. It is probably only known hitherto from the original station in Angola.

Stereophyllum odontocalyx (C. Müll.) Jaeg.

Trees, Barberton, Transvaal, 1914, H. A. Wager 261.

FABRONIA

Sect. Gymno-ischyrodon sect. nov.
Planta pro more robusta, dense foliosa. Folia integra; theca gymnostoma, operculo convexo, vix apiculata.

Fabronia Wageri Dixon, sp. nov.

Dioica videtur. Planta pro more robustiuscula, sordide viridis, vix nitida; caules elongati, dense intertexti, radiculosi, conferte subpinnatim ramosi, ramis brevibus, suberectis, hic illic ramulosis, obtusis, siccis subteretibus. Folia conferta, saepe plus minus homomalla, erecto-patentia, sicca erecta subappressa, vix concava, ovato-lanceolata, cito breviter acute acuminata, marginibus omnino planis, integerrimis, costa apud medium folium evanida; areolatio foliorum juniorum chlorophyllosa, subobscura, seniorum pellucida, e cellulis alaribus permultis, subquadratis, totam folii basin occupantibus, superioribus rhomboideis, circa 10μ latis, $\left(4^{-6 \times 1}\right)$, parietibus firmis, angustis, marginalibus serie unica saepe inanibus, instructa.

Fructus e caulibus ramisque enati; perichaetia cylindrica, pallida, foliis, infimis exceptis, truncatis, grosse irregulariter erose dentatis, omnibus pellucidis; vaginula archegoniis paucis praedita. Seta circa 1 cm . alta, pro more crassiuscula, pallide rubra, curvata; theca e collo brevi turgide ovalis, 1.5 mm . longa, operculo convexo, vix apiculato, sicco tantum nonnunquam inconspicue mamillato. Peristomium nullum. Spori parvi, $10-15 \mu$ lati; exothecii cellulae plerumque isodiametricae, parietibus incrassatis valde sinuosis flavidis, apud orificium 5^{-7} seriebus multo minoribus, valde compressis, transverse rectangularibus, parietibus incrassatis, firmis, rubris. Annulus inconspicuus, persistens. [Fig. 4.]

Habitat: in Cape Town, on trees, i910, H. A. Wager 5.
This distinct species seems best placed in a new section, characterized by the somewhat robust habit, entire leaves, gymnostomous capsules with plano-convex, scarcely apiculate lid. It is very near the species of the section Pseudo-ischyrodon Broth., but they have a peristome and an apiculate lid. Ischyrodon leptocladus Rehm. (Musc. austr.-afr. 633) which, I believe, is an undescribed species is very near it (though more robust and with longer pointed leaves) and may belong to this section. Although labelled " c. fr." there are no capsules to be found on the specimens either at Kew or the British Museum.

I have been unable to find male flowers, though the plants are in abundant fruit, and I think it is certainly dioicous.

LINDBERGIA

The genus Lindbergia Kindb. (Fabroleskea Best), founded on Pterogonium brachypterum Mitt., has been extended by Brotherus to include some half dozen other species, mostly formerly placed in Leskea, one (L. Austini [Sull.] Broth.) being from North America, two from China, one from the Himalayas, and one from Abyssinia. The genus is almost or entirely based on peristome characters, the processes of the inner peristome being wanting, and the endostome reduced to a very low basal membrane; the outer teeth are usually also densely papillose, with rather weak lamellae, and the spores are large.

The only African species hitherto known is L. abbreviata (Schimp.) Broth. (Leskea abbreviata Schimp.). It is interesting therefore to find two distinct new species in South Africa. The resemblance of the vegetative characters in the one case to Pseudoleskea and in the other to Haplocladium-both genera occurring in the same localities with them-is rather remarkable, and I have based the specific names on these resemblances. The fruit, however, serves as a ready method of distinguishing them, the capsules in Lindbergia being erect and symmetrical, whereas both in Pseudoleskea and Haplocladium they are inclined, somewhat asymmetrical and curved, with a much better developed inner peristome.

Lindbergia pseudoleskeoides Dixon, sp. nov.
Autoica; gracilis, repens, irregulariter ramosa, ramis inaequalibus subobtusis, siccitate teretibus, curvatis. Folia caulina laxiuscula, ramea dense conferta, madida patentia, sicca erecta appressa, late triangulari-ovata, breviter late acuminata, acuta vel subobtusa, paullo concava, marginibus planis integerrimis, costa sat valida, infra apicem evanida. Cellulae rotundo-ovales, irregulares, parietibus sat incrassatis, omnino fere laeves, subopacae; alares transverse elongatae, compressae, permultae, totam basin implentes.

Folia perichaetialia externa brevia, lata, subobtusa, raptim brevipungentia, interna multo longiora, erecta, convoluta, breviter rigide acuminata, omnia e cellulis elongatis, linearibus, laevissimis, flavo-viridibus instructa. Seta circa 1 cm . alta, pallide rubra, theca erecta, cylindrica, pallida, leptodermata, operculo conico, obtuso. Peristomium (imperfectum) tenue, flavidum; dentes externi dense papillosi, linea media atque articulationes pertenues inconspicuae; peristomii interni membrana brevis, dense papillosa. Spori $22-23 \mu$. [Fig. 5.]

Habitat: Buluwayo, South Africa, April 22, 1900, E. Sadler 3171, communicated by G. Webster.

Leskea abbreviata Schimp. in all its forms has the leaves with longer points, reflexed when dry, so that the branches are less julaceous; the branches also are not or very rarely curved when dry, the capsule wider, ovate-cylindric, darker and of stouter texture, the lid conico-rostellate. The following species is quite distinct in habit and leaf-form.

In habit and leaf-structure the present plant is almost exactly like some species of Pseudoleskea, and without fruit its generic position would be very difficult to determine. The peristomes in the material examined are old and the teeth broken, so that the lower part only could be examined.

Lindbergia haplocladioides Dixon, sp. nov.

Autoica. Olivacea vel aurantiaca, gracilis; caulis vage repens, ramis distantibus, elongatis, tenuibus, subrigidis. Folia madida patentia, sicca nonnunquam erecto-appressa, saepissime autem apice plus minusve fortiter recurvo; e basi ovata sensim longe anguste acuminata, acuta, integerrima; costa tenuis, in summo acumine soluta. Cellulae superiores rhomboideae, elongatae, incrassatae, in acumine multo angustiores, longiores, alares multae, transverse elongatae, compressae; omnes laevissimae.

Perichaetium ei praecedentis sat simile, paullo longius, foliis internis longius argutius acuminatis; seta rubra, paullo longior, theca rufescens. Operculum haud visum. Peristomium paullo saturatius flavidum, ceterum simile. Spori paullo minores. [Fig. 6.]

Habitat: Rydal Mount, Pretoria, South Africa, 1914, H. A. Wager 29.

Entirely different in habit, color, leaf-form and areolation from the last; in these respects closely resembling certain species of Haplocladium, though differing in the quite smooth cells. The sporophytic characters are almost those of L. pseudoleskeoides; the general color only being a little deeper in all the parts.

Haplocladium angustifolium (Hampe \& C. Müll.) Broth.
Macomo's Hoek, South Africa, 1897, Mrs. Clarke Williams, communicated by Rev. C. H. Binstead; near Pretoria (on dry earth) and at Van Reenen, Transvaal, H. A. Wager.

These plants agree in leaf characters with the specimens in Hampe's herbarium; they manifest some considerable degree of variability, especially in habit and branching, but I believe they all belong to one type, which like its congener, H. capillatum (Mitt.) Broth. in southern and eastern Asia, is somewhat polymorphous. I believe that H. afro-capillatum Broth. and H. amplexicaule (C. Müll.) Broth. are likely to prove forms of the same thing.

Pseudoleskea dispersa C. Müll.

Kilimanjaro, Bishop Hannington, Mitten's herbarium; Solai, Mt. Kenya, i9II, R. Kemp, communicated by W. R. Sherrin.

Although I have not see P. dispersa C. Müll., I have no hesitation in referring the above plant to it, from the description given by Brotherus.* The plants of the Cameroons were entirely sterile, and Mitten's specimen is an unnamed, sterile scrap. Kemp's, on the other hand, is in good condition and fruiting, though the capsules are old and deoperculate, with only fragments of peristome showing. The sporophytic characters may be described, so far as shown, as follows:

[^16]Perichaetium praelongum, $5^{-6} \mathrm{~mm}$. altum, nitidum, foliis profunde plicatis, longe acuminatis, integris vel tenerrime denticulatis, tenui-nervibus. Seta $2-2.5 \mathrm{~cm}$. longa, rubra, theca circa 3 mm . longa, curvata, asymmetrica, rufo-fusca. Peristomii dentes externi remotiusculi, lanceolati, opaci, transverse striolati, alte trabeculati; endostomii membrana altiuscula, papillosa; processus? Cetera ignota.

Kemp's gathering shows a handsome plant, the young branches bright green, the older part orange-brown. The widely cordate, deeply plicate leaves, intermixed with a dense growth of paraphyllia, give the stems quite a thuidioid appearance. The perichaetia are longer than in any other species with which I am acquainted, and the plant is altogether more robust than any of the species I have seen except P. denudata Kindb.

Drepanocladus Hallii Broth. \& Dixon, sp. nov.

Caules erecti, $4-5 \mathrm{~cm}$. alti, infra dense intertexti, caespites compactos, flavo-virides, interne pallidos formantes, subrigidi, laxe subpinnatim ramosi, ramis paucis, brevibus, circa .5 cm . longis, substrictis; caulium apices paullo incurvati, vix hamati.

Folia caulina sat dense conferta, homomallo-falcata, parva, circa I mm. longa, e basi ovata vix decurrente breviter late oblique acuminata, concaviuscula, obtusa vel subacuta, integra; costa tenuiuscula, male definita, circa $\frac{2}{3}$ folii attingens. Areolatio superior densa, opaca, e cellulis breviusculis incrassatis angustissime linearibus subvermicularibus instructa; cellulis inferioribus sensim laxioribus, basin versus lineari-rhomboideis; alaribus permultis, sensim angulos versus majoribus, quadratis et rectangularibus, pellucidis, omnibus subincrassatis. Folia ramea minora, angustiora, brevius acuminata, obtusa, vix falcata.

Dioica. Flores feminei tantum visi, medio caule siti, aggregati; folia perichaetialia interna patentia, caulinis similia sed echlorophyllosa. Cetera ignota. [Fig. 7.]

Habitat: Cape of Good Hope, 1912, S. W. Hall 7, communicated by L. B. Hall.

The affinity of this-for a Drepanocladus-well-marked species, is no doubt with D. aduncus (Hedw.) Warnst. It is peculiar in the short wide subobtuse acumen, and the numerous enlarged alar cells, which though very conspicuous, and the extreme angular ones rather large and pellucid, do not form well delimited or at all inflated auricles.

Microthamnium saproadelphum C. Müll.

On fallen trees, Ponce, Mauritius, September, 1862, Dr. Ayres, Mitten's herbarium, as M. tenellum Mitt.

A very slender, delicate plant, with minute, narrow leaves, and very narrow, smooth cells, which does not agree with any of the described species from South Africa or the insular regions, and appeared quite to justify Mitten in considering it a new species. On comparing it, however, with the original of M. saproadelphum C. Müll. (Cameroons, Dusén 499), I find it identical with that. Mitten's specimen is without capsules, but the setae, perichaetia, etc., are present, and in these and the vegetative characters it agrees exactly with Dusen's plant.

Plagiothecium nitens Dixon, sp. nov.

Dioicum. Caespites perlati, densi, depressi, argenteo-virides, nitentes. Caulis repens, sat dense ramosus, ramis complanatis, circa 2 cm . longis, plerumque attenuatis, cum foliis 3 mm . latis. Folia complanato-decurva, illis P. Mildbraedii Broth. persimilia, paullo angustiora, asymmetrica, apice integro vel 2-3-denticulato. Cellulae superiores anguste rhomboideae, $10-14 \mu$ latae.

Folia perichaetialia similia fere, sed brevius, minus acute acuminata. Seta brevis, I-I. 5 (raro $\mathbf{1} .75$) cm . longa; theca suberecta vel erecta, leniter tantum curvata, cylindrica, sicca paullo striata. [Fig. 8.]

Habitat: Solai, Mt. Kenya, British East Africa, 1910, R. Kemp, communicated by W. R. Sherrin.

This plant is clearly very closely allied to P. Mildbraedii Broth.* from the Ruwenzori region, which I have not seen; the vegetative characters indeed seem almost or quite identical (so that I have not thought it necessary to describe them fully). The leaves in that species are figured much wider than they are in this, but the description, "ovato-lanceolata," applies quite well; on the other hand, the cells figured are very similar to those of the present plant, but they are described as "angustissime linearibus," which is not at all applicable here. The fruiting characters, however, appear to present marked differences; the perichaetial bracts are described as "breviter subulatis," while here the points are rather wide and scarcely acute; the seta is " $2.5-3 \mathrm{~cm}$. alta," or about

[^17]twice the length of that of the present plant; the capsule is "horizontalis, asymmetrica, oblonga, laevis," while here it is erect, only very slightly curved and asymmetrical, subcylindric, and lightly plicate when dry.

> Vesicularia sphaerocarpa (C. Müll.) Broth.

Barberton, Transvaal, 1914, H. A. Wager 256, 259.
I was at first inclined to consider this plant distinct from the insular species, and I understand from Mr. Wager that Dr. Brotherus takes the same view. I have, however, examined a fairly long series of plants of the insular V. sphaerocarpa, and I believe that the Transvaal plant may well come within its range. The principal points of difference that I have observed are the slightly wider cells in the present plant, and the usually more shortly pointed leaves. Montagne's specimens, however, show some degree of variation in these respects, and I have found among them some stems with equally short-pointed leaves, while the cells vary a good deal in width, and occasionally quite match those of the Transvaal plant. The leaf apex may be either entire or denticulate.

At the most I think the South African plant can only be looked upon as a slightly divergent regional race. Dr. Brotherus, it may be noted, has recently recorded V. sphaerocarpa from Beni, in Central Africa.

Rigodium dentatum Dixon, sp. nov.

Pergracile. R. gracili Ren. \& Card., et R. kilimandscharico Broth. habita simile; caulis primarius longe repens, secundarius erectus, subdendroideus, ramis ramulisque numerosis, confertis, saepius curvatis, filiformibus, rigidis. Folia caulis primarii subappressa, secundarii patentia, late deltoidea, sensim longe tenuiacuminata, argute denticulata; folia ramea minora, concavia, erectopatentia, late ovata, anguste acuminata, marginibus anguste reflexis, per totam longitudinem, praecipue superne, dense argute denticulatis. Costa foliis caulinis debilis, circa medium folium attingens, rameis ramulinisque pertenuis, saepe obsoleta. Cellulae foliorum caulinorum breviter lineares, subsigmoideae, incrassatae, foliorum rameorum subsimiles, breviores, serie unica marginali multo breviores, latiores, limbum denticulatum conspicuum pulchre exhibentes; alares sat numerosae, subquadratae, obscurae. Cetera ignota. [FIG. 9.]

Habitat: Pretoria, Transvaal, 1914, communicated by Rev, Hilderic Friend.

An interesting addition to the genus, represented in Africa hitherto solely by Brotherus's species cited above, from Kilimanjaro and Usambara. The sharp denticulation of the leaves in the present plant differentiate it from that, and the weak nerve from both that and R. gracile Ren. \& Card.

Rhynchostegiella Holstil (Broth.) Broth.

Chaya, Congo Belge, June 16, $1911, R$. Kemp 14, communicated by W. R. Sherrin.

This agrees with Holst's Usambara plant at Kew, except that, growing among other mosses, it is a little more lax and straggling, and darker green.

Rhynchostegium Volkensii (Broth.) Par.

Chaya, Congo Belge, June 20, 19II, R. Kemp 19, communicated by W. R. Sherrin.

I hestitated at first to identify this with Brotherus's plant from Marangse in the Kilimanjaro region, on account of one or two slight discrepancies between it and the original descriptionthe numerous alar cells, which are not mentioned there, the nerve stout just at base, and then narrowed for the greater part of its length ("superne" according to Brotherus), and the capsule, which is described as "fusca, sub ore haud coarctata." The capsules here are blackish when mature, and very slightly contracted below the mouth when dry.

The British Museum specimen, however (Volkens 447), agrees exactly in all points with Kemp's plant; it has a single capsule, which agrees in all respects with the present specimens, in color and form, and is certainly not free from a suspicion of being slightly contracted below the mouth.

[^18]
Explanation of plate 1

The type specimen is figured in each case.
Fig. i. Bryum canariensiforme Dixon. a, leaf, $\times 18$. b, leaf apex, $\times 45$. c, capsule, \times about $21 / 2$.

Fig. 2. Thamnium capense Broth. \& Dixon. a, plant, about natural size. b, leaf, $\times 18 . \quad c$, leaf apex, $\times 45 . d$, upper cells, $\times 180$.

Fig. 3. Entodon brevirameus Dixon. a, part of outer peristome, $\times 180$.
Fig. 4. Fabronia Wageri Dixon. a, stem, about natural size. b, leaf, $\times 18$. c, upper cells, $\times 180 . d, d^{\prime}$, capsules, $\times 41 / 2$. e, exothecium cells at orifice, $\times 180$.

Fig. 5. Lindbergia pseudoleskeoides Dixon. a, leaf, $\times 18 . b$, perichaetium, $\times 18$. c, upper cells, $\times 180$.

Fig. 6. Lindbergia haplocladioides Dixon. a, leaves, $\times 18$. b, upper cells, $\times 180$.

Fig. 7. Drepanocladus Hallii Broth. \& Dixon. a, stems, about natural size. b, stem-leaf, $\times 18 . \quad b^{\prime}$, branch-leaf, $\times 18 . \quad c$, alar cells, $\times 90$.

Fig. 8. Plagiothecium nitens Dixon. a, stem, about natural size. b, leaf, $X 18$. c, upper cells, $\times 180$.

Fig. 9. Rigodium dentatum Dixon. a, plant, about natural size. b, stemleaf, $\times 18 . \quad b^{\prime}$, branch-leaf, $\times 18 . \quad c$, upper marginal cells of branch leaf, $\times 180$. d, alar cells of stem leaf, $\times 90$.

New species of Opuntia

David Griffiths

(WITH PLATES 2 AND 3)

A living assemblage of 2,400 collection-numbers of Opuntia has been established at Chico, California. The majority of the plants have reached fruiting condition. The plantation represents in the largest measure my own field work supplemented by donations, purchases from other collectors, and introductions through the Office of Seed and Plant Introduction of the United States Department of Agriculture. All of the species described below have been propagated vegetatively in this collection, have been studied in their native habitat in all but one instance, and the majority of them have been grown to maturity from seed, either from the type or from previous collections.

Opuntia humistrata sp. nov.
A densely pruinose, prostrate to ascending species, with long radiating, branched, reclining, tangled arms, 30 cm . high, and forming bunches a meter in diameter; joints obovate to elliptical, broadly to sharply rounded above, and stipitate based, or widest at middle, and long, attenuated above and below, commonly $6 \times 15 \mathrm{~cm}$., but may be $5 \times 18 \mathrm{~cm}$., and again commonly 5×10 cm ., surface flat, only very slightly raised at areoles even when young, at first dull medium to yellowish green, strongly turgid, with slight tinge of red about areoles of the edges especially, in the main densely pruinose; leaves reddish tinged, circular in section, subulate, cuspidate, 5 mm . long, mostly ascending, and finally curving inwardly; areoles at first tawny with light brown wool, which is soon obliterated by the spicules, subcircular to broadly obovate, 2 mm . in diameter, soon becoming 3 to 4 mm . in diameter; spicules brown, but in places may appear dirty yellowish, 2 to 3 mm . long, and completely filling areole with a compact truncate tuft 3 mm . long; spines none; flowers purplish, similar to those of Opuntia basilaris Engelm. \& Bigel., but usually smaller; fruit subglobose or more elongate, greenish or white with a blush of red, dry.

This species belongs to the Opuntia basilaris group, and it is dis-
tinguished from O. brachyclada Griffiths by its much wider, differentshaped joints; and from O. basilaris by its much smaller as well as different shaped joints. The branching in this species is more truly basilate than in O. basilaris when it is young but as the plants increase in size this characteristic is lost in the main branches. Its distribution seems to be confined to the floor of the mountain valleys of the San Bernardino region of California. While in the type the spicules are decidedly brown like those of the majority of O. basilaris, they may be entirely yellow. Indeed the species varies in coloration of the entire plant.

The type is preserved under my collection No. 10787, and was collected in the mountain cañons above San Bernardino, California, September 17, 1912. The description was drawn in the main from cultivated plants, grown at Chico, California, July 28, 1914.

Opuntia deltica sp. nov.

A tall, erect, tree-like form, often reaching a height of $2-3 \mathrm{~m}$., with a distinct trunk, rather loose and open branched; joints obovate but often widest at middle, about $17 \times 26 \mathrm{~cm}$., light, rather yellowish green, with a little bloom, sharply rounded above and contracted below into a short stipitate base; areoles bright, dark brown, broadly obovate to subcircular, $4^{-6} \mathrm{~mm}$. long, $2.5-4 \mathrm{~cm}$. apart on sides of joint and I cm . on edges; spicules prominent, scattered through entire areole, but more numerous above, the longer 1 cm . in length, unequal, scattered, yellow, formidable; spines yellowish, one to four, mostly two, increasing slightly in age, when two, one erect, other recurved, the upper the larger, flattened, often twisted, not annular, 3 cm . long; flowers yellow, becoming deeper yellow with slight tinge of red only late in the day, $7-8 \mathrm{~cm}$. in diameter when fully opened, slightly greenish tinged within, reddish when closed and bud greenish with only a slight tinge of red in edges of occasional bud scales, filaments greenish, style white, stigma long, five- to seven-parted, very light greenish tinged, almost white; fruit deep purplish red all way through, obovate with wide, nearly flat umbilicus, about $4 \times 4.5 \mathrm{~cm}$., areoles large, subcircular, tawny, 3 mm . long and ten to fifteen in number, spicules yellow, $2-3 \mathrm{~mm}$. or even 5 mm . long, but quite distinct from the fugacious spines which may reach extreme length of 2 cm ., widely spreading, five to ten in number.

This is another species peculiar to the delta of the Rio GrandeIt is not so conspicuously a tree as O. alta Griffiths, for it appears
to be less woody, more spreading and therefore more easily broken down. Like so many other species, when grown from cuttings it forms a hemispherical shrub, at least for five or six years, and only very remotely suggests a tree form. It is often a low-spreading to hemispherical shrub in its native heath, but when unmolested it assumes the form of a tree. The plants from which our specimens were secured were 3 m . high but have not gotten over I. 5 m . in any of our plantations up to this time after five years of cultivation. The species was secured originally in the vicinity of Brownsville, Texas, in 1908, and has been propagated vegetatively since that time at Brownsville and San Antonio, as well as at Chico, California. The type bears my collection number iO50I.

Opuntia laxiflora sp. nov.

A hemispherical shrub, 1 m . high and about 2 m . in spread of branch, main arms ascending or resting on edge, and secondary ones erect from them, open, lax in habit of growth; joints longobovate, mostly rather sharply rounded above, long contracted below into a strong stipitate base, light yellowish green, with some bloom, about $15 \times 30 \mathrm{~cm}$., prominently raised, tubercular at areoles for 2 years, with those on the margins very decidedly raised until the margins of the joints often appear notched between the areoles; leaves subulate, cuspidate, 8 mm . long, recurved at tip; areoles brown, subcircular, $4-5 \mathrm{~mm}$. in diameter, 4 cm . apart; spicules yellow, abundant, formidable, unequal, mostly scattered through upper and lateral margins of areole, $7-8 \mathrm{~mm}$. long, continuing to develop the second year, when they are frequently decidedly brown; spines yellow, one to four, mostly two, increasing in age to six, faintly annular, flattened, slightly deeper colored at base, when two, the upper porrect, and lower reflexed, the upper 2 cm . in length; flowers (late in the day), 8 cm . in diameter when fully opened, decidedly purple, the midribs of petals deep orangered, and the margins purple, exteriorly petals have a strong orange cast also, but purple impression is given of the whole, lax, petals long, obovate, cuspidate, pointed, tapering to almost cuneate below, $5^{-6} \mathrm{~cm}$. long, eroded-wavy above, light yellowish green with only a tinge of red in the apex of an occasional sepal in the bud, filaments tinged purplish below, style white, stigma light green, with six long linear divisions, ovary obovate, $3-4 \mathrm{~cm}$. in length, its areoles prominent, tawny to gray, with a pronounced protuberance of wool, $\mathrm{I}-1.5 \mathrm{~mm}$. high, spicules of same character as on joints, but there are two to seven or eight bristles 1.5 cm .
long identical with spicules, except in size, but are more fugacious even than the spicules; fruit when mature purplish red throughout.

This species is more closely related to Opuntia cyanella Griffiths, from which it differs very decidedly in laxness, shape, and tint of flower, color, shape, and character of joints and nature of spination. The flowers are decidedly purplish when they first open at 8 A.M.; but purple coloration exists only toward the base of the petals on the inside of the flower. They turn more purple as the day advances. There are really in each petal when the flower first opens, a small marginal area of purplish red and a larger midrib area of orange-red tint. In sunlight, they are fully opened by ten o'clock, but in the shadow of the joints, the opening is retarded by an hour; or sometimes it may not be fully opened before noon, if shading is heavy.

The type is No. 9915 DG, collected at Loma Alta, near Brownsville, Texas, August 18, 1912. The description was drawn in the main from cultivated plants grown at Chico, California, July 25, 1914. The plants at this place blossomed profusely from cuttings the second year.

Opuntia zuniensis sp. nov.

A low, prostrate, reclining species, 30 cm . high and sometimes I m . in diameter, the main branches most commonly resting on edge, or at times prostrate and the secondary ones erect from them, but usually only one or two joints in height; joints ovate obovate, pointed above and below, having a little bloom when young but losing this and becoming decidedly yellowish-green in age, II-12 $\times 18-23 \mathrm{~cm}$.; areoles obovate, commonly $6-7 \mathrm{~mm}$. long on edges of joints, shorter and more nearly subcircular on sides, especially toward the base of joint, brown; spicules yellow, 3 mm . long, in a compact crescentic tuft in upper angle of areole, in age filling entire areole and becoming often a cm . in length; spines white but on apex of current year's growth their bases vary from light straw-colored to dark brown, but the general impression given by even these is brown-tawny and even they are more or less white distally, flattened, slightly twisted, seldom even faintly annular, porrect-spreading, usually about six on apex of current year's growth, the lower one about 2 cm .. long and sloping down, the others stouter and varying from $2-5 \mathrm{~cm}$., increasing in both length and numbers in age; flowers yellow, about 7 cm . in diameter when fully opened, having a little red at base of petals when first opened
which becomes more prominent later, the whole turning light orange-red as day advances; fruit a dull, light yellowish-red, rind greenish, pulp colorless, areoles small, 1.5 mm . in diameter, graytawny, spicules yellow, protruding from wool $\mathrm{I}-2 \mathrm{~mm}$.; fugacious spines $5-8 \mathrm{~mm}$. long and two to six in number with a distinct tendency to whitening at complete maturity, and rarely accompanied by an occasional true white spine.

This belongs to the phaeacantha group and differs from previously described species in shape of joints, color of, as well as appendages, of the joints, and nature of flower, fruit and seed. The species was collected near Zuni, New Mexico, August 31, I9II, and the type bears my collection number 10345. It grows commonly in the open sage brush areas of the region, especially eastward and northward, and is probably the most common species of the region. The description applies to one form of the species, the other forms having spines decidedly brown, and the whole plant body, as well as the fruit, darker colored. The description is drawn in the main from plants propagated vegetatively at Chico, California, under field conditions, although it was also grown for a time in a sash house and in field at San Antonio, Texas.

Opuntia flexospina sp. nov.

An erect to ascending bushy species, $50-100 \mathrm{~cm}$. high and having a spread of about 2 m . when fully grown; joints broadly obovate, about $15-16 \times 20-22 \mathrm{~cm}$., yellowish green with little or no bloom, raised at areoles, smooth; areoles large, prominent, broadly obovate, $5^{-6} \mathrm{~mm}$. long on edges of joints, slightly smaller on sides, enlarging in size to subcircular, and often $8-10 \mathrm{~mm}$. in diameter, dark brown; spicules yellow with some brown mottling, scattered throughout the areole, but more numerous above and on edges of areole, giving general impression of being scattered, divergent, $5^{-7} \mathrm{~mm}$. long, increasing in age to 10 mm . in length and filling entire areole; spines at first porrect but soon bent downward parallel with sides of joint, and commonly tightly recurved on edges, one or two, mostly one on sides and two or three on edges at one year of age, increasing in numbers in age to six to ten, and all sloping down to tightly recurved, 3.5 cm . long at one year old but becoming 5 cm . in age, yellow, with or without brighter brown bases, more or less flattened; flowers deep yellow with blushes of red, filaments greenish below and tinged with red above, style red below and fading upward, stigma dark green, eight- to ten-parted, bud pointed, dull, light reddish, with touches
of dull, olive-green; fruit purplish red throughout, bearing light, tawny areoles $2-3 \mathrm{~mm}$. in diameter, and spicules of same nature as those of the stem, $3-5 \mathrm{~mm}$. long, fugacious spines being only slightly longer and consequently scarcely distinguishable from the spicules, umbilicus broad, nearly flat, pulp small in amount, acid, and not palatable, simply obovate to pyriform, about $3-3.5 \times 4-5$ cm.; seeds small.

The species inhabits the dry, gravelly hills in the vicinity of Laredo, Texas, where it was collected in June, 1911, under my inventory number 10301. It is rather common and easily recognized in vegetative condition by the nature of its spines. The first collections were made in 1908 but the living material of this was lost at both San Antonio and Brownsville, Texas. Mature plants have been grown from the type collection, however, at Chico, California.

Opuntia curvospina sp. nov.

An erect arborescent species, growing into a symmetrical tree form 5-8 feet high, having a distinct cylindrical trunk and a symmetrical, rounded top; joints subcircular, about $8-22 \mathrm{~cm}$. in diameter, smooth, scarcely at all raised at areoles after the first year, glaucous-gray-green, yellowish-green in age; areoles large, prominent, at first light-brown but dark-brown second year, obovate, on edges of joints 5 mm . long, enlarging in age to subcircular and $5-8 \mathrm{~mm}$. in diameter; spicules yellow, irregular in length on edges of joints, about 3 mm . long in upper part and $5^{-8} \mathrm{~mm}$. on lower edges of areole, making a nearly complete zone around the central, prominent wool, not increasing perceptibly in age for the wool develops rapidly into a columnar structure bounded by the marginal spicules and protrudes often I mm . or more above them; spines numerous, formidable, on second year's wood about six, four of which are yellow, often slightly tinted at base, the other two shorter, white or nearly so, diverging or bent in all directions, the four yellow centrals $4-5 \mathrm{~cm}$. long, flattened, annular, twisted, bent, and curving in various directions, in age increasing to eight or more and formidable; flowers yellow, $6-7 \mathrm{~cm}$. in diameter with a little dull red at the bases of the midribs, and developing a little more red in center as the day advances but never becoming prominently red-centered, petals cuneiform, broadly rounded, cuspidate above, filaments yellow, style white, stigma white, large, slightly flattened, nine- or ten-parted, buds light gray-green with blush of red, uniformly distributed in upper portions of sepals; fruit dull red on outside with abundant bloom,
rind greenish, and pulp nearly colorless, oval in outline, $3 \cdot 5-4 \times$ $4.5-5.5 \mathrm{~cm}$., slightly to deeply pitted, areoles tawny, subcircular, with prominent wool $\mathrm{I}-2 \mathrm{~mm}$. in diameter, spicules yellow, $\mathrm{I}-2$ mm . long, fugacious spines, delicate, 10 cm . long. [PLate 2.]

This species is more closely related to O. chlorotica Engelm. \& Bigel. (Plate 3) than any other described, but it is a larger, more robust plant throughout and possesses very different spination. The seeds and the fruits are also quite different. It is apparently quite widely distributed in the California-NevadaArizona Desert. The type was collected between Nipton, California, and Searchlight, Nevada, in April, 1912, under my inventory number 10530, when young plants were transferred into cultivation and are still growing, slowly but vigorously.

Opuntia semispinosa sp. nov.

An erect shrub $\mathbf{I - I . 5} \mathrm{m}$. high and having a spread under normal conditions of 2 m . or more, either open or compactly branched, growing mostly in thickets but occasionally isolated individuals; joints obovate, mostly pointed above and below, about $12 \times 25 \mathrm{~cm}$., dark green with a little bloom; areoles broadly obovate to subcircular, 5 mm . in length, enlarging to subcircular or even transversely elongated and often $6-8 \mathrm{~mm}$. in diametér, dirty tawny-gray but a lighter tawny with prominent wool when young; leaves subulate, terete, cuspidate, reddish tipped, 8-10 mm . long; spicules yellow, numerous, formidable, occupying one half of areole, very unequal, the upper crescentic, compact, first developed tuft 4 mm . long, the others below more scattering towards center of areole $I \mathrm{~cm}$. long, continuing to increase with age, especially in numbers; spines white and some of the more central larger ones brownish tinged at base, tips yellowish or simply transluscent-bonelike, some flattened, angular, twisted, at one or two years very faintly when at all annular, usually no trace of annulation; flowers $6-7 \mathrm{~cm}$. in diameter, yellow with tinge of red in the upper part of ribs making them appear a trifle deepyellow to orange in the upper part of the ribs and lighter-greenish tinged in center, filaments yellow, greenish at very base, style light-red, very large, sometimes 1 cm . in diameter at the largest point, stigma light green, eight- to ten-parted, buds light olive with a tinge of red in the tip, the outer sepals being mostly recurved in bud; fruit purplish red throughout, about $34 \times 50 \mathrm{~mm}$., obovate with broad, nearly flat umbilicus, areoles large, $3-4 \mathrm{~mm}$. in diameter with prominent tawny wool; spicules yellow, about 2 mm . long, fugacious spines, conspicuous, numerous, $4^{-12} \mathrm{~mm}$.
long and often ten to twelve in number, yellow or often with brownish zone toward the apex.

This is a common, conspicuous species in the coastal region of California and is likely to be confused on the one hand with 0 . occidentalis Engelm. \& Bigel., which has similar joints but is quite a different plant growing farther inland, and on the other hand with O. littoralis (Engelm.) B. \& R., which has more subcircular joints and more yellowish translucent spines. The species is very interesting inasmuch as it often has many joints or portions of joints practically destitute of spines, while neighboring areoles are normally spiny. The plant has been in cultivation with me since 1904. The spineless characteristic of a portion of the plant body is exceedingly interesting and it was thought for a time that it might prove of economic value, but vegetative propagation made every year or two since that time has failed to produce any marked change in the degree of spinelessness which the plant bears in nature. In four generations grown vegetatively from single joint cuttings no increase in spineless area was observable at either San Antonio or Brownsville.

Several collections have been made of the species between Santa Barbara and Tija Juana but my inventory number 10353 is designated as the type. It was collected at San Pedro, California, September 22, 1911, and is a plant showing very little of the spineless variation.

Opuntia pyrocarpa sp. nov.

An ascending-spreading, shrubby species 60 cm . high and having a spread of 2 m . or more when full grown, the main branches commonly resting on their edges at base and ascending at their extremities; joints large, nearly as broad as long, about 22×25 cm . but contracted below into a very short but mostly evident stipitate base, medium green with considerable bloom; areoles long, obovate, not raised after the first season, about 6 mm . in length, brown, enlarging to subcircular in age; spicules brown, in a compact tuft 4 mm . long occupying the upper two-thirds of the areole and filling it in age; spines porrect, divergent, but mostly sloping down in age, one to three, mostly one or two, yellowish distally and gradually darkening to rather bright, lightbrown proximally, the lower one-third of the joint unarmed, flattened, twisted, $3-4 \mathrm{~cm}$. long; flowers 8 cm . in diameter,
yellow with light-red centers, filaments yellow, style white, stigma light-green, large, coarse, nine- to ten-parted, buds pointed, light greenish-red with color equally distributed through entire scale but their margins lighter, petals broad, pointed above and below and widest slightly above the middle, about $4 \times 5.5 \mathrm{~cm}$., irregularly toothed or even cleft; fruit long, pyriform, burnt carmine with a decidedly purple tinge, same color in interior, spicules brownish but usually with yellowish tips, unequal, surrounded by the end of the gray wool, also having one to three fugacious spines in lower part of areole $5-6 \mathrm{~mm}$. long.

The species is delimited by its large, broad, stipitate joints, long pyriform fruits, large flowers with broad-pointed petals. The type was collected near Marble Falls, Texas, in July, 1908, under my collection number 9392 and has been grown to maturity from cuttings at Chico, California.

Opuntia squarrosa sp. nov.

A bushy, hemispherical shrub 1 m . high and 2 m . in diameter; joints subcircular, raised at areoles even the second year and pronouncedly so the first, deep blue-green with an abundant gray bloom turning more yellowish with age; leaves backwardcurved and standing almost at right angles to the surface, subulate, cuspidate, 6 mm . long, slightly flattened; areoles broadly obovate, subcircular in age, dark dull-brown, 6 mm . long, becoming dirty gray-black; spicules very prominent, dark brown, spreading, scattered through nearly the entire areole, their tips slightly yellow, often 8 -Io mm . long; spines variable in color, mostly yellowish distally and brown at base, mostly one or two, porrect, $\mathrm{I}-2 \mathrm{~cm}$. long, flattened, often twisted; flowers very large and showy, $9-10 \mathrm{~cm}$. in diameter, their centers bright purple fading to yellow at margins, the backs of the petals orange, filaments tinged a little above, apex of style also tinted slightly, stigma light-green, eightparted; buds light green, pointed with thick, heavy, recurved, prominent outer segments making the bud appear squarrose; fruit purplish red throughout.

The species is frequently met with in the lower Delta region of the Rio Grande in Mexico. It has not been reported from the United States but it probably occurs in the region of Brownsville. It is easily distinguished from other species of the Delta region by its blue-green color, brown spicules and spines, and large, striking flowers. The type was collected under my inventory number 998I in April, 1910, about 12 leagues south of Matamoros, Mexico.

Opuntia anahuacensis sp. nov.

A glossy, yellowish green, low, reclining to prostrate species, $45-50 \mathrm{~cm}$. high and having a spread of 1.5 m. ; joints obovate, thin, $1_{3} \times 27 \mathrm{~cm}$., commonly bent over and more or less dished the second year, apex sharply rounded and base more or less stipitate; areoles obovate, at first light brown then dirty grayblack, upper half armed, enlarging in age and becoming subcircular; spicules yellow, in a compact connivent tuft occupying one-half to two-thirds of the upper part of areole, about 2 mm . long, becoming more numerous in age and often 8 mm . in length; spines yellow, becoming white tardily, one or two porrect, $2-3$ cm . long, flattened, twisted, the shorter lower two often recurved and only I cm . long; flowers canary-yellow, turning slightly darker yellow toward close of day; filaments yellow, style white, stigma white, six-parted; buds light bright-green with only a tinge of red in the upper part of the tardily recurved sepals; fruit deep, dark-purplish-red throughout, pyriform, about $4 \times 7.5 \mathrm{~cm}$., deeply pitted; spicules yellow, usually 2 mm . long or less, fugacious spines, mostly merging into the spicules on the one hand and becoming $6-8 \mathrm{~mm}$. long on the other, two to four in number.

The species is characterized by its glossy yellowish green coloration and size and shape of its fruit. It is known to us only from a single collection made by Mr. C. B. Allaire near Anahuac, Texas, at the mouth of the Trinity River in Texas. My inventory number 9217 was assigned to it and it has been grown since at Chico, California, under this same number.
U. S. Department of Agriculture

Explanation of plates 2 and 3

Plate 2
Opuntia curvospina Griffiths
Terminal joints and two ripe fruits, a little more than one third natural size, cultivated at Chico, California.

Plate 3

Opuntia chlorotica Engelm. \& Bigel.
Terminal joints, about half natural size, three sevenths natural size, cultivated at Chico, California.

Notes on plants of the southern United States-I

Francis W. Pennell
During two seasons' field-study of the southern species of the group of scrophulariaceous plants termed by the writer the Agalinanae,* including the genera Agalinis, Aureolaria, Afzelia and Macranthera, various other plants belonging to many families were incidentally collected. Most of these have proved to be species well known in their respective areas. Others, and some of these, are believed to be of especial interest, and it is the purpose of this series of papers to consider such.

A considerable number of records extend materially the known ranges of certain species. Several species are here first described. For a number of critical groups revisions of southern species, more or less partial, are attempted. Of such groups Commelina, "Nemexia," Chamaecrista and Lacinaria are genera to which special attention was given in the field.

The two seasons spent by the writer in the south were those of 1912 and 1913. In 1912, from August 1 to October 18, he was in the southeast, August 2-6 about Atlanta (at Stone Mountain) and Rome, Georgia, after August 8 at various points in the Coastal Plain from the Mississippi River in Louisiana to Wilmington, North Carolina. From Covington, Louisiana, to north of the Savannah River in South Carolina he was in open grassy pine-land, where Pinus palustris, if not predominant, is at least an important tree. One week, August 20-26, was spent in West Feliciana Parish, Louisiana, in the region of loess hills just east of the Mississippi River. Here was enjoyed the hospitality of Mr. Edward Butler, and with him all specimens were collected. Near the Georgia coast, and across the portion of South Carolina traversed by the Atlantic Coast Line Railroad the writer was in a region of deeper sand and more scrub, consequently in a region having a flora materially different from that of the open pine-land.

[^19]About Wilmington, North Carolina, he was in yet another district of unusual interest, in aspect recalling the open grassy pine-lands further south.

In 1913, from August 22 to October 20, the writer was again in the field, traversing districts inland from, or west of, those visited the year before. In the Mississippi Valley collections were made in Indiana, Illinois, Missouri, especially in the eastern (Cambrian) Ozark region, Arkansas and Oklahoma. Most of September was spent in Texas, through the Black Belt, in the Edwards Plateau northwest of New Braunfels and at Boerne, in the coastal plain eastward from Cuero and Victoria to Rosenberg, and in the pine-land of the southeast. Late September and early October he was in the pine-land of western Louisiana, in Arkansas, in the mountains of northeastern Alabama and eastern Tennessee, and about Stone Mountain, Georgia. Detailed itineraries of the routes of both seasons will be published in the writer's "Agalinis and Allies in North America."*

All specimens collected by the writer, unless otherwise specified, are in the herbarium of the University of Pennsylvania. Some of these are represented by duplicates in the herbarium of the New York Botanical Garden, and in other herbaria. In the following lists numbers cited in parentheses are those of the writer's collecting. For groups critically studied specimens are cited from various herbaria indicated by letters as follows:

$$
\begin{align*}
& \text { Academy of Natural Sciences, Philadelphia . (A.) } \\
& \text { Biltmore Herbarium, Biltmore, North Carolina } \tag{B.}
\end{align*}
$$

To the custodians of all the above herbaria the writer is indebted. In an especial degree he must acknowledge the kindness of Dr. John M. Macfarlane, of the University of Pennsylvania, whose interest made possible the collecting of the specimens recorded as well as much of the opportunity for their study. This study has been conducted at the University of Pennsylvania and at the New York Botanical Garden.

[^20]
MISCELLANEOUS SPECIES

Adiantum pedatum L.
Collected in deciduous woodland in the loess hills near Catalpa, West Feliciana Parish, Louisiana, August 21, 1912, 4285 (P.); station previously known to Dr. R. S. Cocks of Tulane University.
Asplenium pycnocarpon Spreng.
A. angustifolium Michx.

In a damp ravine in deciduous woodland, Catalpa, Louisiana, August 22, 1912, 4312 (P., Y.); August 23, 4334 (P., Y.). Previously reported in the American Fern Journal 3: 16. 22 Mr 1913.

Sagittaria angustifolia Lindl.

Edge of small pool in open pine-land, east of Covington, St. Tammany Parish, Louisiana, August 16, 1912, 4243 (P.).
Paspalum Curtisianum Steud.
Open grassy pine-land, north of Abita Springs, St. Tammany Parish, Louisiana, August 14, 1912, 4159 (P.), identified by Mrs. Agnes Chase.

Stenophyllus ciliatifolius (Ell.) C. Mohr.
Open moist woodland, north of Abita Springs, Louisiana, August 18, 1912, 4264 (P., Y.).
Carex verrucosa Muhl.
Edge of pool, in pine-land, Abita Springs, Louisiana, August 12, 1912, 4130 (P., Y.).
Arisaema quinatum (Nutt.) Schott.
Deciduous woodland in loess hills, Catalpa, Louisiana, August 21, 1912, 4286 (P.).
Eriocaulon decangulare L.
In addition to the typical form, characterized by leaves linear, $3-5 \mathrm{~mm}$. wide, and involucral bracts glabrous, collected at Abita Springs, Louisiana, 4144 (P., Y.), and at Theodore, Mobile County, Alabama, 4472 (P., Y.), there was collected at Theodore, Alabama, a plant differing as follows: leaves broader, $10-15 \mathrm{~mm}$. wide, heads larger, lower involucral bracts broader, outer pubescent. This may possibly be a new species.

Aneilema nudiflorum (L.) Kunth, Enum. Pl. 4: 66. 1843
Based upon Commelina nudiflora L., citing the second edition of the Species Plantarum, where the species is continued unchanged from the first edition. Commelina nudifora L. (Sp. Pl. 41. 1753), "Habitat in India," is not to be typified by Hermann's plant described by Linnaeus in the Flora Zeylanica 13. 1748, and identified by C. B. Clarke as the species commonly known by this name. In the Species Plantarum Linnaeus's earlier description of this has been modified by the addition of the phrase "involucro nullo" and the adoption of the specific name " n udiflora," while from photographs kindly sent me through the courtesy of Mr. B. Daydon Jackson it appears that all specimens of this name in the Linnean herbarium in 1753, and incidentally all subsequently added, belong to Aneilema, apparently to this species. The combination Aneilema nudiflorum appears not to have been formed by Robert Brown (see Prod. 271. 1810), as it is usually quoted. Collected along streets of Thomasville, Thomas County, Georgia, September 29, 1912, 4737 (P.).

the genus commelina (Plumier) L. in the united STATES

The following revision of this genus in the United States is provisional, based upon studies in the field and examination of all material in the herbaria of the New York Botanical Garden, the University of Pennsylvania and the Academy of Natural Sciences. It is planned to gather at the Garden a living collection, as complete as possible, of all species inhabiting North America, and for the accomplishment of this the cooperation of all interested is solicited. Mature capsules and seeds, as well as specimens, sent to the writer will be appreciated. Perhaps with living plants for study several proposed species here reduced to synonymy will prove valid. Or, more probably, several here tentatively maintained will be found of varietal rank. At some future date it is hoped to attempt a fuller revision.

Key to the species

Spathes with margins not connate at base.
Two posterior petals blue, anterior much smaller, lanceolate, white. Capsule two-celled, four-seeded (no rudiment of third cell). Annual. Stems decumbent at base, rooting at lower nodes. Leaves lanceolate, $8-12 \mathrm{~cm}$. long. Anthers six. Seeds $3 \cdot 5-4 \mathrm{~mm}$. long, gray, rugose. I. C. communis.
All three petals blue, anterior slightly smaller, ovate. Capsule three-celled, fiveseeded (posterior cell one-seeded, indehiscent). Perennials.
Roots fibrous. Stems creeping, at least at base, rooting at the nodes. Spathes short-peduncled, acute to acuminate, $10-35 \mathrm{~mm}$. long, glabrous or nearly so. Posterior petals long-stalked, $6-8 \mathrm{~mm}$. long. Anthers five (posterior lacking).
Stems soon erect. Leaves lanceolate, $8-10 \mathrm{~cm}$. long. Spathes becoming long-acuminate, $25-35 \mathrm{~mm}$. long. Seeds $2.8-3 \mathrm{~mm}$. long, smooth.
2. C. caroliniana.

Stems extensively creeping. Leaves broadly lanceolate, $3^{-8} \mathrm{~cm}$. long. Spathes acute, $10-25 \mathrm{~mm}$. long. Seeds $2-2.5 \mathrm{~mm}$. long, reticulate.
3. C. longicaulis.

Roots tuberous, clustered. Stems erect, not rooting at the nodes. Spathe long-peduncled, caudate, $40-75 \mathrm{~mm}$. long, pubescent. Posterior petals short-stalked, $10-12 \mathrm{~mm}$. long. Anthers six.
4. C. dianthifolia.

Spathes with margins connate at base. Perennials. Seeds smooth, farinose.
All three petals blue, equal or nearly so, ovate. Plant strictly erect, relatively stout and broad-leaved. Sheaths ciliate with ferruginous hairs, without evident auricles. Spathes crowded near summit of stem, short-stalked. Two anterior cells of capsule each two-seeded, posterior relatively large but oneseeded and indehiscent.
5. C. virginica.

Two posterior petals blue, anterior much smaller, white. Plants often lax or slightly decumbent from base, more slender and narrower-leaved. Sheaths ciliate on rounded auricles with white hairs. Spathes more scattered, both near summit of and in axils along stem, longer-stalked. Cells of capsule all one-seeded, posterior normal, dehiscent, becoming reduced, tardily dehiscent, to even obsolete.
Leaf-blades linear-lanceolate to lanceolate, $8-14 \mathrm{~cm}$. long. Posterior petals Io-25 mm . long. Seeds somewhat flattened. Roots evidently fleshy. Stems green, erect or somewhat diffuse from the base, but not decumbent and rooting at the nodes.
Leaves lanceolate. Posterior petals usually larger, ${ }^{12-25} \mathrm{~mm}$. long. Seeds mostly more or less oblong. 6. C. evecta.
Leaves linear-lanceolate. Posterior petals usually smaller, ro-15 (-20) mm . long. Seeds mostly circular.
Spathes $1.5-3 \mathrm{~cm}$. long, with mostly long white hairs near the base. Posterior petals $12-18(-20) \mathrm{mm}$. long. 7. C. Crispa.
Spathes $\mathrm{I}-2 \mathrm{~cm}$. long, rarely with long white hairs near the base. Posterior petals mostly $10-15(-18) \mathrm{mm}$. long. 8. C. angustifolia. Leaf-blades lanceolate-ovate to ovate, $5-9 \mathrm{~cm}$. long. Posterior petals $8-11$ mm . long. Seeds scarcely flattened. Roots scarcely fleshy. Stems mostly reddish, more or less decumbent at the base and rooting at the lower nodes.

> 9. C. elegans.

i. Commelina communis L.

Commelina communis L. Sp. Pl. 40. 1753. "Habitat in America."
Apparently an erroneous statement of nativity, as the Linnean diagnosis, as well as the fuller description and figure of Dillenius (Hortus Elthamensis 93.pl. 78. 1732); appear to apply to this originally East Asian species. All specimens in the Linnean herbarium, from photographs sent me, are evidently the species here described.
Flowers and fruits August to October.
Moist loam or sandy soil, eastern Massachusetts to Virginia and western North Carolina; also in Jackson County, Missouri, and probably in the intervening area. Abundant as a weed eastward. Evidently introduced from eastern Asia.

Rhode Island. Newport:* roadsides near Old Harbor, Block Island, $>\dagger$ September 14, 1913, M. L. Fernald, B. Long \& ơ G. S. Torrey 9137 (A.).

New York. Bronx: garden, New York Botanical Garden, \gtrless September 24, 1915, F. W. Pennell 6649 (Y.), 6714 (Y.). Richmond: yard, Port Richmond, > September 23, 1915, F. W. Pennell 6648 (Y.).

New Jersey. Atlantic: Pleasantville, \gtrless September 1 , 1910, N. Taylor 2778 (Y.). Burlington: Kinkora, > August 18, 1910, N. Taylor 2550 (Y.). Camden: Fish House, $>$ August 17, 1910, B. Long 4512 (A.). Gloucester: Mickleton, $>$ September 10 , 1892, B. Heritage (A.). Mercer: Trenton, > July, 1889, F. E. Lloyd (Y.). Monmouth: Bradley Beach, \gtrless September 22, 1915, F. W. Pennell 6577 (Y.). Ocean: Point Pleasant, \gtrless September 22, 1915, F. W. Pennell 6603 (Y.).

Pennsylvania. Bucks: Bristol, \gtrless September 18 , 1898, C.D. Fretz (A.). Chester: West Chester, > August 24, -, W. Darlington (Y.). Delaware: cultivated soil, Wawa, \gtrless August 20, 1906, F. W. Pennell 1925 (Y.). Lancaster: in sandy places, Tucquan, \gtreqless August 31, 1899, A. MacElwee 1217 (A.). Lehigh: roadside, Alburtus, \gtrless August 27 , 1911, H. W. Pretz 3893 (A.). Montgomery: Pennsburg, > May 30, 1907, J. R. Mumbauer 400 (A.). Northampton: waste places, Easton, $>$ August 27,

[^21]1892, T. C. Porter (A.). Perry: Marysville, $>$ August 7, 1888, J. K. Small (Y.). Philadelphia: Wissahickon Ravine, > September 2, 1908, S. S. Van Pelt (A.).

Delaware. Newcastle: ditch banks, Wilmington, < September 10, 1873, A. Commons (A.).

Maryland. Harford: along shore south of Havre de Grace, $>$ August I, 1902, G. H. Shull 143 (Y.). Montgomery: along canal bank, Cabin John, > August 21, 1904, H. D. House 320 (Y.).

District of Columbia. Moist soil, Chain Bridge, $>$ August 10, i910, F. W. Pennell 2544 (Y.).

Virginia. Alexandria: along Potomac River opposite Washington, > July 22, 1910, F. W. Pennell 245 I (Y.).

North Carolina. Cherokee: in damp shady woods, Andrews, $>$ September 5, 1900, A. M. Huger (Y.).

Missouri. Jackson: along railroad, Independence, $>$ September 24, 1912, B. F. Bush 686 (Y.).

2. Commelina caroliniana Walt.

Commelina caroliniana Walt. F1. Carol. 68. 1788. Presumably from Berkeley County, South Carolina. Description apparently of species here considered. There is no type specimen in the Walter herbarium at the British Museum.
Flowers and fruits September to October.
At a few stations through the southern states, South Carolina and Florida to Missouri. Possibly introduced, but more probably native as its collection by Baldwin and other early collectors would suggest.

South Carolina. Charleston: Charleston, \gtrless November, 1855, L. R. Gibbes (Y.).

Florida. Duval: moist cultivated grounds near Jacksonville, \gtrless October I, I894, A. H. Curtiss 5177 (Y.); also 4144, 2992. Volusia: New Smyrna, Baldwin (A.).

Alabama. "Ala.," > September, 1839, S. B. Buckley (Y.).
Mississippi. Point St. Martin, < October 13, 1898, S. M. Tracy 5122 (Y.).

Missouri. Jackson: introduced, Sheffield, < September 14, 1905, B. F. Bush 3332 (Y.). "Missouri," T. Nuttall (A.).

3. Commelina longicaulis Jacq.

Commelina longicaulis Jacq. Coll. 3:234. 1789. ."Ad rivulos \& in humidis crescit ad Caracas." Description apparently of species here considered, although leaves unusually narrow. Figured in Jacq., Icon. Pl. Rar. pl. 294.
Nephralles parviflora Raf. Fl. Tellur. 3: 70. 1837. "Kentucky and Tennessee." Type of the genus Nephralles Raf. l.c. 70. A specimen of Rafinesque's collecting, labeled "Kentucky," and bearing this name, has been seen in the herbarium of Columbia University at the New York Botanical Garden.
Commelina diffusa Burm. f. (Fl. Ind. 18. pl. 7. f. 2. 1768) is treated as unidentifiable. While conceivably this, if the plant in both hemispheres be identical, the long pedicels, conventional flowers, and description (apparently contradicted by the figure) "involucro nullo" are not in accord with our plant.

Flowers and fruits, southward throughout the season, northward, late summer and autumn.

Moist loam or sandy soil, along streams, frequently a weed in cultivated ground, from eastern Kentucky and eastern Kansas southward to Bolivia. As usually understood, a widespread species of tropical and subtropical regions. From the few specimens seen the writer is not convinced that the plant of the Old World tropics is conspecific with that of the New. Possibly locally or extensively introduced in the United States.

Pennsylvania. Philadelphia: Old Navy Yard, on ballast, Philadelphia, I. Burk (P.).

Georgia. Catoosa: along Chickamauga Creek, near Ringgold, $>$ August 6-12, 1895, J. K. Small (Y.). Thomas: along streets, Thomasville, $>$ September 29, 1912, F. W. Pennell 4736 (P.). Wilkes: A. W. Chapman (Y.). "Georg.," ricefields, Leconte, sub. nom. "Commelina pestifera Leconte" (A.).

Florida. Franklin: low grounds, Apalachicola, $>$ JulySeptember, A. W. Chapman [Biltmore herbarium 2038a] (Y.). Gadsden: moist ground, River Junction, $>$ September 11, 1897, A. H. Curtiss 5991 (Y.). Lee: river bank, Myers, $>$ JulyAugust, 1900, A. S. Hitchoock 364 (Y.). Leon: Tallahassee, $>$ August 7-9, 1895, G. V. Nash 2345 (Y.). Manatee: Osprey, $>$ March 3, 1904, B. H. Smith (A.). Pinellas: low wet soil,

St. Petersburg, \gtrless April 3, 1908, Mrs. C. C. Deam 4062 (Y.). Wakulla: low pine-land, St. Marks, < September 25, 1912, F. W. Pennell 4700 (P.).

Alabama. Covington: cultivated soil, Florala, \gtrless September 14, 1912, F. W. Pennell 4638 (P.,'Y.). Lee: Auburn, $>$ September 9, 1897, F. S. Earle \&f C. F. Baker (Y.).

Mississippi. Harrison: Biloxi, September 29, 1899, $\gtrless S . M$. Tracy 6389 (Y.).

Tennessee. Knox: river-banks, Knoxville, > July, 1898, A. Ruth 134 (Y.).

Kentucky. Bell: along Cumberland River, > September, 1893, T. H. Kearney 590 (Y.). Fayette: damp, near Lexington, $>$ August, 1833, R. Peter (A., Y.). Harlan: $>$ July 24, 1888, F. E. Lloyd (Y.). Lyon: Kuttawa, > September 27-October 9, 1903, W. W. Eggleston 525 I (Y.).

Missouri. Barry: common, Eagle Rock, $>$ September 18, 1896, B. F. Bush 356 (Y.). Dunklin: common, Campbell, $>$ August 16, 1895, B. F. Bush 540 (Y.). St. Louis: wet ground along the Meramec River, Valley Park, $>$ August 27, 1913, F. W. Pennell 5314 (P.).

Kansas. Cherokee: rich woods, 1896, A. S. Hitchcock 841 (Y.). Miami: \gtrless July 30, I882, J. H. Oyster (Y.).

Arkansas. Pulaski: Little Rock, \gtrless August 15, 1885, H. E. Hasse (Y.).

Oкlahoma. Rogers: common, Verdigris, $>$ August 2, -, B. F. Bush 583 (Y.).

Louisiana. Plaquemines: in wet grounds, common, $>$ June, 1882, A. B. Langlois 348 (Y.). St. Tammany: low ground, Mandeville, > August 16, 1912, F. W. Pennell 424 (P.). Tangipahoa: Tangipahoa, J. L. Riddell (A.). West Feliciana: moist cultivated soil, Catalpa, $>$ August 22, 1912, F. W. Pennell 4294 (P.) ; also Pennell 4322 (P.).

Texas. Bowie: Texarkana, > May 9, 1891, E. N. Plank (Y.).
Also seen from Bermuda, Bahamas, Cuba, Santo Domingo, Jamaica, Porto Rico, Lesser Antilles, Mexico, Guatemala, Nicaragua, Panama, Colombia, British Guiana, Brazil and Bolivia.

4. Commelina dianthifolia Red.

Commelina dianthifolia Red. Lil. 7: 390. pl. 390. 1813. Illustration and description undoubtedly of species here considered, although native country not stated. Name of species probably proposed by Delile.
Flowers late-July to September.
Shady or open places, New Mexico and Arizona to Oaxaca. Northward at elevations of $6,000-9,500$ feet.

New Mexico. Bernalillo: sunny rocks, Sandia Mountains, $>$ July 2I, —— C. C. Ellis 174 (Y.). Dona Ana: Organ Mountains, 6,500 feet alt., > September 17, 1893, E. O. Wooton (Y.). Grant: Fort Bayard Watershed, $>$ September 10, 1905, J. C. Blumer 59 (Y.). Lincoln: White Mountains, 7,000 feet alt., $>$ August 11, 1897, E. O. Wooton 3 II (Y.). San Miguel: Pecos, 7,000 feet alt., $>$ August 21, 1908, P. C. Standley 5169 (Y.). Sierra: moist shady places, Lookout Mines, 8,500 feet, $>$ August I2, 1904, O. B. Metcalfe 1212 (Y.). Socorro: rocky places, Mogollon Mountains, > Auguist, 1881, H. H. Rusby 415 (P., Y.).

Arizona. Cochise: rolling andesitic pine-land, recently lumbered, Barfoot Park, Chiricahua Mountains, $8,000-8,250$ feet alt., $>$ September 5, 1906, J. C. Blumer 1354 (Y.). Yavapai: Prescott, $>$ August I5, 1896, O. Kuntze (Y.).

Also seen from Chihuahua, Durango, Federal District (of Mexico), and Oaxaca.

5. Commelina virginica L.

Commelina virginica L. Sp. Pl. ed. 2, 61. 1762. "Habitat in Virginia." Description unmistakably of species here considered, although this name has been usually applied to a state of C. erecta L.
Commelina longifolia Michx. Fl. Bor. Am. 1: 23. 1803. "Hab. in umbrosis sylvarum Virginiae et Carolinae." Not C. longifolia Lam. Tabl. Encyc. I: 129. I791. Description unmistakably of species here considered.
Commelina hirtella Vahl, Enum. Pl. 2: 166. 1806. New name for C. longifolia Michx.
Ananthopus clandestinus Raf. Fl. Ludov. 21. 1817. "Grows in shady and swampy soils." Louisiana, C. C. Robin. Type of
genus Ananthopus Raf. l.c. 20. Description of large leaves would indicate species here considered.
Ananthopus undulatus Raf. Fl. Tellur. 3: 70. 1837. "Alabama, in my herbal." Description of ample, ovate leaves, $5-8$ inches long, would indicate species here considered.
Allotria scabra Raf. l. c. 70. 1837. "Virginia and Carolina." Type of genus Allotria Raf. l.c. 70. Description of three subequal petals and of size of plant would indicate species here considered.
Commelina ignorata Kunth, Enum. P1. 4: 60. 1843. New name for Ananthopus clandestinus Raf.
Flowers and fruits mid-July to October.
Moist to wet loam soil, especially alluvial, mostly along riverbanks, southeastern Pennsylvania to northern Florida, inland to mountains of eastern Tennessee, southern Illinois, southern Missouri, and eastern Texas, locally frequent to common.

New Jersey. Camden: Kaighn's Point, > August, C. E. Smith (A., Y.).

Pennsylvania. Lancaster: island, Peach Bottom, > September 7, 1863, J. J. Carter (A.). Philadelphia: Gray's Ferry above Bartram's Garden, < September, 1862, A. H. Smith (A.), probably introduced.

Maryland. Baltimore: Baltimore, I866, P. V. LeRoy (Y.). Cecil : moist soil, Conowingo, July 1, 1914, F. W. Pennell 1565 (A.). Montgomery: along canal below Glen Echo, August 10, 1910, F. W. Pennell 2549 (Y.).

Virginia. Alexandria: moist soil, Alexander Island, \gtrless September 16, 1910, F. W. Pennell 2670 (Y.); also Pennell 2450 (Y.). Fairfax: moist soil along Potomac River above Great Falls, $<$ August 7, 1910, F. W. Pennell 2523 (Y.).

North Carolina. Brunswick: west of river, Wilmington, $>$ October 3, 1908, E. B. Bartram (A.). Cherokee: meadows, one or two miles east of Andrews, \gtrless August 4, 1900, A. M. Huger (Y.). Forsyth: Salem, L. D. von Schweinitz (A.). Rowan: Faith Post Office, August 14, 1891, J. K. Small \& A. A. Heller $4 I I$ (P., Y.). Wake: Raleigh, < August, 1898, C. W. Hyams (Y.).

Georgia. Bibb: muddy swamp of Ocmulgee River about two miles below Macon, < September 5, 1903, R. M. Harper

1969 (Y.). Floyd: moist soil along Coosa River, West Rome, < August 4, 1912, F. W. Pennell 4081 (P.). Sumter: muddy bank of Muckalee Creek, \gtrless August 9, I897, R. M. Harper (Y.).

Florida. Duval: miry, partially shaded places near Jacksonville, < August 29, 1896, A. H. Curtiss 5762 (Y.); also Curtiss 2993 (A., Y.). Franklin: Apalachicola, A. W. Chapman (Y.). Leon: near Tallahassee, N. K. Berg (Y.).

Alabama. Lee: Auburn, > September 8, 1897, F. S. Earle \&o C. F. Baker (Y.). Morgan: low ground, Decatur, $>$ July 18, 1900, Biltmore Herbarium 2037 e (Y.).

Mississippr. Oktibbeha: Agricultural College, > August 11-17, 1896, C. L. Pollard 1279, 1325 (Y.).

Tennessee. Cocke: along French Broad River between Paint Rock and Del Rio, \gtrless August 26, 1897, T. H. Kearney 924 (Y.). Knox: Knoxville, \gtrless July, I898, A. Ruth 135 (Y.).

Illinois. Union: Clear Creek, \gtrless August 13, 1900, F. S. Earle (Y.).

Missouri. Butler: swamps, < October 16, 1905, B. F. Bush 3717 (Y.). Dunklin: common, sands, Campbell, $>$ August 15, 1895, B. F. Bush 529 (Y.); also Bush 6292 (Y.). Jasper: low woods, Neck City, < September 12, 1908, E. J. Palmer 1288 (Y.). McDonald: bottoms, Noel, $>$ August 10, 1908, B. F. Bush 5053 (Y.). New Madrid: > September 15, 1893, B. F. Bush 133 (Y.).

Arkansas. Pulaski: Little Rock, $>$ August, 1885, H. E. Hasse (Y.).

Louisiana. Plaquemines: in low half-shady places, $>$ November, 1880, A. B. Langlois (P.). Terrebonne: low moist ground near swamp near Houma, \gtrless October 9, 1913, E. C. Wurzlow (Y.). West Feliciana: moist deciduous woodland, Catalpa, $>$ August 21, 1912, F. W. Pennell 4273 (P.).

Texas. Bowie: Texarkana, < October 20, 1894, Letterman 19 (Y.). Wood: swamps, Mineola, $>$ August 14, 1900, J. Reverchon 2187 (Y.).

6. Commelina erecta L.

Commelina erecta L. Sp. Pl. 41. 1753. "Habitat in Virginia." Description unmistakably of species here considered.

Ananthopus cordatus Raf. Fl. Ludov. 22. 1817. "In open fields." Louisiana, C. C. Robin. Description indicates this species, or possibly C. angustifolia Michx.
Larnalles dichotoma Raf. Fl. Tellur. 3: 71. 1837. "Apalachian mts." Type of genus Larnalles Raf. l. c. 70. A specimen of Rafinesque's collecting, labeled "Mts. Apalachis, Larnalles dichotoma Raf.," has been seen in the herbarium of Columbia University at the New York Botanical Garden.
Larnalles glauca Raf. l. c. 71. 1837. "Kentucky, Illinois." Description indicates this species, or possibly C. crispa Wooton. Commelina Rafinesquei Kunth, Enum. Pl. 4: 60. 1843. New name for Ananthopus cordatus Raf.
Commelina saxicola Small, Fl. S. E. U. S. 242, 1328.1903.
"Type, Stone Mt., Ga., Small, no. 124, in Herb. C. U." Small I24, indicated on sheet as type, was collected on Dunn's Mountain, Rowan County, North Carolina, August 18-27, 1894.

Commelina angustifola Michx. and C. crispa Wooton, until more fully compared living, are continued as of specific rank. Both are probably better considered as geographic varieties of C. erecta L.

Capsules with posterior cell more or less reduced and tardily dehiscent, a state which has been separated as "Commelina virginica," are to be found in the same colonies and even upon the same plants with capsules normally developed, three-celled and evenly dehiscent.

Flowers and fruits July to September.
Sandy to loamy, of ten rocky soil, New York City, New York, to northern Florida, westward to Kansas and Bexar County, Texas; southward below the fall-line only in local heavier soils; locally frequent to common, especially southward. Southward apparently passes into C. angustifolia Michx., westward apparently into C. crispa Wooton.

New York. New York: rocks, Inwood, \gtrless August 17, 1880, A. Brown (Y.); Washington Heights, clefts of rock with Cheilanthes vestita, > August, 1867, W. W. Denslow (Y.).

New Jersey. Burlington: banks of a ditch near Plattsburgh, $>$ July, 1850 (Y.). Camden: dry sandy ground, Griffith Swamp, I. Burk (P.).

Pennsylvania. Lancaster: rocky places along the railroad, Safe Harbor, § September 1, 1899, A. MacElwee 1238 (A., Y.).

Delaware. Sussex: dry sandy soil, Millsboro, > August 15, 1877, A. Commons (A.).

Maryland. Washington: hillside along railroad, Sandy Hook, \gtrless July 17, 1910, F. W. Pennell 2412, 2413 (Y.). Wicomico: dry sandy soil, Salisbury, < July 27, 1865, J. J. Carter (A.).

District of Columbia. Near Georgetown, Dr. Robbins 154 (Y.).

Virginia. Botecourt: Indian Rock, > June, 1887, H. E. Wetherill (P.). Elizabeth City: Old Point Comfort, \gtrless September 25, 1895, N. L. Britton (Y.). Fairfax: island at Great Falls, < September 2, 1905, C. S. Williamson (Y.).

West Virginia. Fayette: Nuttallburg, > August if, i891, C. F. Millspaugh 1113 (Y.).

North Carolina. Buncombe: in rich soil, Biltmore, \gtrless July 19, 1897, Biltmore Herbarium 2036c (P., Y.). Forsyth: Salem, L. D. von Schweinitz (A.). Polk: light soil, face of White Oak Mountains, near Columbus, $>$ July 5, 1897, Biltmore Herbarium $2036 a$ (P., Y.). Rowan: Dunn's Mountain, $>$ August 18-27, 1894, J. K. Small 124 (Y.), type of C. saxicola Small. Swain: sandy soil, 1,700 ft. alt., > July 1о, 1891, H. C. Beardslee \& C. A. Kofoid (Y.).

South Carolina. Oconee: Clemson College, $>$ June 19, 1906, H. D. House 2403 (Y.). Pickens: sandy places along rivers, > July 9, 1897, H. D. House 1338 (Y.).

Georgia. Cobb: dry rocky woods on Kennesaw Mountain, $>$ July 12, 1900, R. M. Harper 219 (Y.). DeKalb: light soil on granitic rock, Stone Mountain, August 2, 1912, F. W. Pennell 4036 (P.). Gwinnett: on the Yellow River near McGuire's Mill, \gtrless July II, 1893, J. K. Small (Y.). Rabun: in canyon at Tallulah Falls, April 20, 1893, J. K. Small (Y.).

Florida. Lake: hammock land, sand, Eustis, \gtrless July 1-15, 1894, G. V. Nash 1157 (A., Y.). Leon: near Tallahassee, N. K. Berg (Y.).

Alabama. Covington: cultivated soil, Florala, $>$ September 14, 1912, F. W. Pennell 4637 (P.). Elmore: Double Bridges, $>$ August 9, 1899, F. S. Earle 14 (Y.). Etowah: sandy hills,

Sand Mount, > July 9, 1898, H. Eggert (Y.). Lee: Auburn, $>$ August $8-11$, 1897, F. S. Earle \&f C. F. Baker 736, 1041 (Y.).

Mississippi. Clarke: Enterprise, > June 1о, 1897, S. M: Tracy 3278 (Y.). Lowndes: Columbus, > May 3, 1896, S. M. Tracy 3083 (Y.).

Tennessee. Cocke: along French Broad River between Paint Rock and Del Rio, > September 10, 1897, T. H. Kearney 923 (Y.). Davidson: Nashville, > August II, 1897, Biltmore Herbarium 3 IId (Y.). Rutherford: crevices of limestone rocks, Fosterville, > August 17, 1897, Biltmore Herbarium 3110 (Y.).

Missouri. Barry: woods, Eagle Rock, > August 12, 1905, B. F. Bush 3222 (Y.). McDonald: gravelly places, Noel, \gtrless August 7, 1908, B. F. Bush 4984 (Y.). Shannon: woods, Monteer, > August 5, 1910, B. F. Bush 6ior (Y.).

Kansas. Riley: shady places, > July 20, 1895, J. B. Norton 524 (Y.).

Arkansas. Pulaski: Little Rock, > June, 1885, H. E. Hasse (Y.).

Louisiana. West Feliciana: cultivated soil, Baines, $>$ August ${ }_{23}$, 1912, F. W. Pennell 4323 (P.).

Texas. Bexar: San Antonio, G. Jermy (Y.). Comal: New Braunfels, > September 14, 1913, F. W. Pennell 5454 (P.). Travis: Austin, > September 13, 1913, F. W. Pennell. 5432 (P.).

7. Commelina crispa Wooton

Commelina crispa Wooton, Bull. Torrey Club 25: 451. 13 Au 1898. "Collected at the base of the Organ Mountains, Doña Ana Co., [New Mexico], Sept. I; altitude 4,800 feet, [Wooton] no. 545." Co-type seen in the herbarium of the New York Botanical Garden.
Flowers and fruits June to September.
Dry sandy soil, woodland or open, dunes, sand-hills, etc., northern Indiana to Colorado south to Texas and eastern Arizona, apparently extending into northern Mexico.

Indiana. Lake: old sand-dunes, Miller, \gtrless August 23, 1915, F. W. Pennell 6422 (Y.). Porter: wooded sand-hill, Dune Park, ¿ August 16, 1897, A. Chase (A.).

Illinois. Henderson: sandy barrens near Oquawka, H. N. Patterson (Y.).

Nebraska. Cherry: Niobrara Reserve, \gtrsim July, 1903, L. Krautter (P.). Knox: Soldier Creek, > July 18, 1893, F. E. -Clements (Y.). Lincoln: dry sandhills north of North Platte, $>$ August 18, 1915, F. W. Pennell 6400 (Y.). Thomas: on Dismal River south of Thedford, > June 17, 1893, P. A. Rydberg 1345 (Y.).

Missouri. Jasper: dry soil, Prosperity, $>$ June 17, 1909, E. J. Palmer 2242 (Y.).

Kansas. Geary: Fort Riley, > September, 1892, E. E. Gayle 565 (Y.). Hamilton: Syracuse, $>$ July 1I, 1893, C. H. Thompson or (Y.). Kiowa: near Belvidere, \gtrless September 14, 1897, L. F. Ward (Y.).

Oкцанома. Payne: sandy woods, etc., very abundant, $>$ July, 1893, E. W. Olive 122 (Y.). "Arkansas," T. Nuttall (A.).

Texas. Coke: Fort Chadbourne, > May 16, 1858, S. Hayes (Y.). Concho: Paint Rock, > July 13, —, J. M. Bigelow (Y.). Culberson: dry, rocky ravine, Van Horn's Well, J. M. Bigelow (Y.). Duval: San Diego, 1884, M. B. Croft (Y.). McLennan: Waco, 1869, Griffith (Y.). Mitchell: G. W. Holstein (A.).

Colorado. Fremont: Cañon City, > August 8, 1896, C. L. Shear 3780 (Y.). Yuma: Wray, $>$ July 15, 1909, G. E. Osterhout 4030 (Y.).

New Mexico. Chaves: sandy plain, twenty miles south of Roswell, そAugust, 1900, F. S. \&o E. S. Earle (Y.). Doña Ana: Organ Mountains, \gtrless September I, 1897, E. O. Wooton 545 (Y.). Eddy: junction of Delaware Creek and the Pecos, 1856, Pope (Y.). Grant: Dog Springs, \gtrless September 16, 1893, E. A. Mearns 2349 (Y.). Otero: Jarilla Junction, > Séptember 4, 1900, F. S. \& E. S. Earle 523 (Y.).

Arizona. Cochise: Cochise, \gtrless October 12, 1900, D. Griffiths 1902 (Y.).
8. Commelina angustifolia Michx.

Commelina angustifolia Michx. Fl. Bor. Am. I: 24. 1803. "Hab. in campestribus Carolinae." Type not seen nor verified, but description evidently of species here considered. Commelina Swingleana Nash, Bull. Torrey Club 22: 160. 18 Ap 1895. "Collected in the high pine-land region at Umatilla
[Florida] early in August [1894, G. V. Nash]." Type, labeled, "vicinity of Eustis, Lake Co., Florida, G. V. Nash i525," seen in the herbarium of the New York Botanical Garden.
Commelina Nashii Small, Fl. S. E. U. S. 242, 1328. 1903. "Type, Nash, PI. Fla., no. 2465, in Herb. C. U." Type, collected at "Tampa, Hillsborough County, Florida, August 24, 1895," seen in the herbarium of Columbia University at the New York Botanical Garden.
Flowers and fruits June to October, southward throughout the season.

Sandy soil, pine-land, and fields; dunes, etc., in the Coastal Plain, North Carolina to southern Florida, Cuba and southern Texas.

North Carolina. Carteret: sand banks near Beaufort, 1906, I. F. Lewis 85 (Y.). New Hanover: dry sand, sea beach near Wrightsville, \gtrless September I , 1900, C. S. Williamson (Y.).

South Carolina. Beaufort: Bluffton, J. H. Mellichamp (Y.). Berkeley: Summerville, > June, 1850, L. R. Gibbes (Y.).

Georgia. Chatham: Savannah, Mrs. Say (A.). Glynn: sandy pine-land, Brunswick, $>$ October 10, 1912, F. W. Pennell 4833 (P.). Richmond: dry sandy soil, Augusta, $>$ July 6, 1898, A. Cuthbert (Y.).

Florida. Brevard: hammock, Merritt's Island, > September 15, 1895, A. A. Baldwin 112 (A., P.). Clay: Green Cove, 1881, M. Treat (A.). Dade: in pine-lands between Cutler and Longview Camp, > November 9-12, 1903, J. K. Small \& J. J. Carter 992 (A., Y.). Duval: dry fields and woods near Jacksonville, \gtrless June, A. H. Curtiss 2294 (A., P., Y.). Gadsden: old field near River Junction, > May 3, 1898, A. H. Curtiss 6339 (Y.). Hillsboro: high pine-land, Tampa, > April I-15, I894, G. V. Nash 387 (Y.). Lake: high pine-land, Eustis, > August, 1894, G. V. Nash 1644 (A., Y.). Lee: pine forest, Samville, $>$ June 6, 1912, J. W. Harshberger (P.). Manatee: Palma Sola, > May 5, 1900, S. M. Tracy 6756 (Y.). Monroe: shell sand-dunes, Boot Key, > April 7-12, 1909, N. L. Britton 530 (Y.). Nassau: near St. Mary's, ${ }^{181}$ 7, Dr. Bacon (Y.). Pinellas: pine clearing near bay, $>$ April 7, 1908, Mrs. C. C. Deam 4066 (Y.). St. John: St. Augustine, $>$ April 12, 1897, J. Crauford (Y.). St. Lucie: Fort Pierce,
$>$ April 8-9, 1904, A. B. Burgess 717 (Y.). Santa Rosa: moist sandy soil, Milton, > September 9, 1912, F. W. Pennell 4577 (P.). Volusia: New Smyrna, Baldwin (A.).

Alabama. Escambia: Flomaton, > August 24, 1897, S. M. Tracy 355 I (Y.). Mobile: sandy pine-land, Spring Hill, \gtrless September 5, 1912, F. W. Pennell 4533 (P.).

Mississippi. Harrison: Biloxi, < July 30, 1897, S. M. Tracy 356 I (Y.). Jackson: Horn Island, > July 14, 1899, S. M. Tracy 6388 (Y.).

Louisiana. Plaquemines: Breton Island, \gtrless August 18 , 1900, S. M. Tracy \& F. E. Lloyd 273 (P.).

Texas. Bexar: San Antonio, > June, -_, Blake (Y.). Brazos: gravelly banks, Bryan, > May 28, 1915, E. J. Palmer 7793 (Y.). Colorado: dry sandy oak-land, Sheridan, > September 21, 1913, F. W. Pennell 5524 (P.), 5537 (P., Y.). Galveston: sands, Galveston, > August 8, 1902, J. Reverchon 3415 (Y.). Harris: sandy soil, Houston, > May 29, 1903, Biltmore Herbarium $6685 a$ (Y.). Montgomery: \gtrless July 18-21, 1909, R. A. Dixon 400 (Y.). Nueces: near sea-level, Corpus Christi Bay, > April 9-12, 1894, A. A. Heller 1555 (Y.). Travis: loose loam soil, Austin, > September 13, 1913, F. W. Pennell 5433 (P.), 5434 (P.). Victoria: black sandy loam, Victoria, $>$ September 19, 1913, F. W. Pennell 5503 (P., Y.). Walker: in a pine grove, Huntsville, $>$ July 9-12, 1909, R. A. Dixon 406 (Y.).

Also in Cuba, where known as C. hamipila Wright.

9. Commelina elegans HBK.

Commelina elegans HBK. Nov. Gen. et Sp. 1: 259. 1816. "Crescit in regno Novogranatensi, locis temperatis, umbrosis, ad ripas fluvii Juanambu, alt. 760 hexap." Description apparently of species here considered.
Flowers and fruits throughout the season.
Moist soil, apparently throughout tropical America from southern Florida and southern Texas to Argentina.

Florida. "Chitto River, South Florida," \gtrless September, 1878, A. P. Garber 48 (A., Y.).

Texas. Duval: San Diego," $1884,{ }^{7}$ M. B. Croft 8 (Y.).

Also seen from Bermuda, Bahamas, Cuba, Santo Domingo, Jamaica, Porto Rico, Lesser Antilles, Mexico, Guatemala, Nicaragua, Costa Rica, Panama, Colombia, Venezuela, Brazil, Bolivia, Paraguay and Argentina.

New York Botanical Garden

INDEX TO AMERICAN BOTANICAL LITERATURE

1915

The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material ; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of one cent for each card. Selections of cards are not permitted ; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Arthur, J. C., \& Fromme, F. D. New species of grass rusts. Torreya 15: 260-265. 30 D 1915.
Includes 7 new species in Uromyces (2), Puccinia (4), and Uredo (1).
Baird, M. M. Anatomy of Platanus occidentalis. Kansas Univ. Sci. Bull. 9: 281-290. pl. 65-76. S 1915.
Bartlett, H. H. Mass mutation in Oenothera pratincola. Bot. Gaz. 60: 425-456.f. 1 -15. 16 D 1915.
Belling, J. Inheritance of length of pod in certain crosses. Jour. Agr. Research 5: 405-420. pl. 40. 6 D 1915.
Bergen, J. Y. Dwarfing effect of trees upon neighboring plants. Bot. Gaz. 60: 491, 492. I6 D 1915.
Bergen, J. Y. Weed growth and unusual rainfall. Rhodora 17: 224227. N 1915.

Börgeson, F. The marine algae of the Danish West Indies-2. Rhodophyceae. Dansk. Bot. Arkiv. 3: i-80. f. r-86. 1915.
Boerker, R. H. Some notes on forest ecology and its problems. Proc. Soc. Am. Foresters 10: 405-422. O 1915.
Bradford, F. C. The pollination of pomaceous fruits. II. Fruit-bud 113
development of the apple. Oregon Agr. Exp. Sta. Bull. 129: I-16. pl. \quad-6. My 1915.
Buckner, G. D. Translocation of mineral constituents of seeds and tubers of certain plants during growth. Jour. Agr. Research 5: 449-458. I3 D 1915.
Burt, E. A. The Thelephoraceae of North America-V. Tremellodendron, Eichleriella, and Sebacina. Ann. Missouri Bot. Gard. 2: 731-770. pl. 26, 27. N 1915.
Includes descriptions of eleven new species.
Cockerell, T. D. A. Equisetum in the Florissant Miocene. Torreya 15: 265-267.f. I. 30 D 1915. Includes Equisetum forissantense n. sp.
Cockerell, T. D. A. Variation in Oenothera hewetti. Science II. 42: 908, 909. 24 D 1915.
Coker, W. C. Observations on the lawns of Chapel Hill. Jour. Elisha Mitchell Sci. Soc. 3I: 113-119. N 1915.
Coker, W. C. Our mountain shrubs. Jour. Elisha Mitchell Sci. Soc. 3I: 91-II2. N 1915.
Coulter, J. M. A suggested explanation of " orthogenesis " in plants. Science II. 42: 859-863. 17 D 1915.
Crabill, C. H. Dimorphism in Coniothyrium pirinum Sheldon. Am. Jour. Bot. 2: 449-467. f. 1 -15. 16 D 1915.
Davis, A. R. Enzyme action in the marine algae. Ann. Missouri Bot. Gard. 2: 771-836. N 1915.
Deane, W. Floral changes in a salt marsh during reclamation. Rhodora 17: 205-222. N 1915.
Detwiler, S. B. White ash. Am. Forestry 2I: $108 \mathrm{I}-\mathrm{I} 083$. D 1915 [Illust.]

Edgerton, C. W. A new method of selecting tomatoes for resistance to the wilt disease. Science II. 42: 914, 915. 24 D 1915.
Elmore, C. J. Staminate flowers in Anemone. Bot. Gaz. 60:492, 493. 16 D $19{ }^{15} 5$.
Fernald, M. L. The identity of Circaea latifolia and the Asiatic C. quadrisulcata. Rhodora 17: 222-224. N 1915.
Frye, T. C., Rigg, G. B., \& Crandall, W. C. The size of kelps on the Pacific coast of North America. Bot. Gaz. 60: 473-482. f. I, 2. 16 D 1915.

Gates, R. R. Heredity and mutation as cell phenomena. Am. Jour. Bot. 2: 519-528. D 1915.
Grover, F. O. Extensions of range. Rhodora 17:227, 228. N 1915.
Hasselbring, H., \& Hawkins, L. A. Carbohydrate transformations in sweet potatoes. Jour. Agr. Research 5: 543-560. 27 D 1915.
Hasselbring, H., \& Hawkins, L. A. Respiration experiments with sweet potatoes. Jour. Agr. Research 5: 509-517. 20 D 1915.
Heald, F. D., \& Studhalter, R. A. Seasonal duration of ascospore expulsion of Endothia parasitica. Am. Jour. Bot. 2: 429-448. f. I-6. 16 D 1915.
Heald, F. D., \& Woolman, H. M. Bunt or stinking smut of wheat. Washington Agr. Exp. Sta. Bull. 126: 1-24.f. I-5. N 1915.
Hoffmann, C. A contribution to the subject of the factors concerned in soil productivity. Kansas Univ. Sci. Bull. 9: 81-99. pl. 23-27. D 1915.
Hotson, J. W. Enemies of the Rhododendron. The Mountaineer 8: 75-77. D 1915. [Illust.]
House, H. D. Report of the state botanist 1914. N. Y. State Mus. Bull. 179: 1-107. 15 D 1915. [Illust.]
Includes articles by L. H. Pennington and C. H. Kauffman here indexed separately.
Hutchinson, A. H. Fertilization in Abies balsamea. Bot. Gaz. 60 : 457-472. pl. $16-20+f$. I. 16 D 1915.
Jehle, R. A. El Tizón tardío y la pudrición de la papa. Cuba Estac. Exp. Agron. Circ. 48 : 1-6. f. r-6. 1915.
Kauffman, C. H. The fungi of North Elba. N. Y. State Mus. Bull. 179: 80-104. 15 D 1915.
Includes Boletus rubritubifer and Cortinarius chrysolitus, spp. nov.
Knudson, L. Toxicity of galactose for certain of the higher plants. Ann. Missouri Bot. Gard. 2: 659-666. pl. 22. N 1915.
Kraus, E. J. Somatic segregation. Jour. Heredity 7: 3-8. f. $1+$ frontispiece. 29 D 1915.
Long, W. H. A honeycomb heart-rot of oaks caused by Stereum subpileatum. Jour. Agr. Research 5: 421-428. pl. 41. 6 D 1915.
Lyman, G. R., \& Rogers, J. T. The native habitat of Spongospora subterranea. Science II. 42: 940, 941. 3I D 1915.

Mackenzie, K. K. Notes on Carex-IX. Bull. Torrey Club 42:603621. II D 1915.

Eight new species are described.
Muenscher, W. L. C. A Study of the relation of transpiration to the size and number of stomata. Am. Jour. Bot. 2: 487-504. f. $1-3$. 16 D 1915.

Mulsow, F. W. Differentiation of the oaks by histological methods. Kansas Univ. Sci. Bull. 9: 271-277. pl. 60-65. S 1915.
Nieuwland, J. A. Records of adventive plants, Am. Mid. Nat. 4: 290. N 1915.

Orton, C. R., \& Adams, J. F. Collar-blight and related forms of fireblight. Pennsylvania Agr. Exp. Sta. Bull. 136: I-23. f. I-I3. Au 1915.

Overholts, L. O. Comparative studies in the Polyporaceae. Ann. Missouri Bot. Gard. 2: 667-730. pl. 23-25+f. 1 -8. N 1915.
Pennington, L. H. New York species of Marasmius. N. Y. State Mus. Bull. 179: 52-79. 15 D 1915.
Pieters, A. J. New species of Achlya and of Saprolegnia. Bot. Gaz. 60: 483-490. pl. 21. 16 D 1915. Achlya Klebsiana and Saprolegnia Kaufmanniana, spp. nov., are described.
Pieters, A. J. The relation between vegetative vigor and reproduction in some Saprolegniaceae. Am. Jour. Bot. 2: 529-576. f. 1, 2. D 1915.

Pittier, H. On the characters and relationships of the genus Monopteryx Spruce. Bull. Torrey Club 42: 623-627.f. I, 2. If D 1915 . Monopteryx Jahnii sp. nov. is described.
Pool, R. J. A brief sketch of the life and work of Charles Edwin Bessey. Am. Jour. Bot. 2: 505-518. pl. 18. D 1915.
Rehder, A. The Bradley bibliography $3: i-x+1-806$. 1915 . Arboriculture.

Roig y Mesa, J. T. El marabú o Aroma. Cuba Estac. Exp. Agron. Circ. 50: I-16. pl. I-10. 1915.
Rydberg, P. A. Phytogeographical notes on the Rocky Mountain region. V. Grasslands of the Subalpine and Montane Zones. Bull. Torrey Club 42: 629-642. II D 1915 .
Shedd, O. M. Variations in mineral composition of sap, leaves, and stems of the wild-grape vine and sugar-maple tree. Jour. Agr. Research 5: 529-542. 20 D 1915.

OPUNTIA CURVOSPINA Griffiths

OPUNTIA CHLOROTICA Engelm. \& Bigel.

BULLETIN

OF THE

TORREY BOTANICAL CLUB

MARCH, 1916

The morphology of Thallocarpus Curtisii

F. McAllister

(with plate 4)
The first published description of Thallocarpus Curtisii (Aust.) Lindb. seems to have been by Austin in 1869 (I). The simple structure of its sporogonium, which is without foot or elaters, naturally pointed toward a relationship to Riccia. In the dried material from which his descriptions were made the thallus appeared very like that of Sphaerocarpos. This, together with the fact of the spores adhering in fours, led him to believe that it must also be related to Sphaerocarpos. He believed it to be a genus intermediate between Riccia and Sphaerocarpos and gave it the name Cryptocarpus, the only species being C. Curtisii. The following is his description of genus and species:

" CRYPTOCARPUS (gen. nov.) Aust. MSS., 1864.

"Frons laxe spongioso-reticulata, irregulariter subpalmatim lobata, tenuis, epidermide hand distincta. Costa nulla. Radices intus non papillosi (ut in Sphaerocarpo), longissimi, intertexti. Fructus in frondis substantia immersus (ut in Riccia). Sporangia depresso-globosa, singulatim nata, non libera. Calyptra stylo nigro persistente coronata. Sporae 4 -jugae (ut in Sphaerocarpo), vix solutae, in aspectu singulae et profunde quadrilobae."

" Cryptocarpus Curtisn Aust. MSS. 1864 .

" Riccia Curtisii, James, in Herb. (fide Curtis).
"Fronde caespitosa valde.imbricata fibroso-papulata, laciniis inciso-lobulatis nargine crenatis; sporangiis maximis in statu siccati latentibus sed frondes hume-
[The Bulletin for January (43: $63-116 . p l .1-3$) was issued March II, 1916.]
actae sunt in substantia earum ut maculis nigris apparentibus; sporis fusco-nigris valde muricatis.
"On moist ground, South Carolina, Ravenel (In Herb. Sulliv., 1849). North Carolina, Curtis (1. c., 1853). 'Montand après Marseille' (Herb. Lanning, 'ex Herb. Torrey')."

Somewhat later (10) Lindberg called attention to the fact that the generic name Cryptocarpus was already in use, being used as the name of a genus of the Chenopodiaceae as well as for a genus in the Orthotrichiaceae. He proposed the name Thallocarpus, which is still in use. He makes no mention of having examined any plants and apparently on the authority of Austin's description places the genus in the Jungermanniaceae, class Cleistocarpae.

In 1877 Trevisan (14) proposed the name Angiocarpus as a substitute for Cryptocarpus. He placed the genus in the order Ricciaceae, tribe Riccieae, with Ricciella, Riccia and Ricciocarpus.

Austin in 1875 (2) referring to Lindberg's change of the generic name to Thallocarpus* states that "the plant evidently belongs, with Sphaerocarpus (its nearest ally), to the Jungermaniaceae."

Later he refers again to Thallocarpus (3) having in the meantime studied fresh living material collected for him by Capt. John Donnell Smith in Florida. From this material he notes the striking similarity to Riccia "in which genus" he says "it should probably be included as a subgenus." He states that the adhesion of the spores of the tetrad "appears to be the only character in which it is decidedly different from Riccia." It is from this material that he determines the dioecious character of the liverwort.

This seems to be the literature that Schiffner has had access to in his account of Thallocarpus in Die natürlichen Pflanzenfamilien (II, p. 50). It is therefore surprising to find that Austin's latest reference to the plant has been overlooked or ignored and this genus placed in the subclass Jungermanniales and family Sphaerocarpoideae; in a family, the sporophyte of which is characterized by the presence of a foot and of sterile, "stärkereiche Nährzellen."

[^22]Stephani (12), under the name Riccia Curtisii, has elaborated the description of Thallocarpus from material "welche Pastor Curtis in seinem Garten gesammelt hat." He asserts that the plants which he examined were monoecious. In other respects his description does not seem to diverge in any important detail from that of Austin. He, however, insists that material from Austin's herbarium in the possession of Pearson corresponds fully with his description.

Thallocarpus is of common occurrence in the vicinity of Austin, Texas, during late winter and spring, growing most abundantly in sandy soil along with Riccias, Sphaerocarpos, and other liverworts. The plant studied corresponds very closely with those described by Austin if we take into account the essential corrections made in his later references to the liverwort. There seems little doubt that it should be regarded as the same species.

Because of the disagreement of Austin and Stephani as to the sex of the thallus of Thallocarpus I have examined a large number of thalli with this point in mind. Although a large number of plants of both sexes and of all ages were carefully dissected under a binocular microscope I was unable to find both archegonia and antheridia on any of the plants examined. Realizing the difficulty of detecting and recognizing immature sex organs in dissected material I have carefully examined paraffin sections of about fifty thalli, most of which were female. Part of these plants were sectioned to obtain material for a study of the morphology of the thallus and sporophyte, but special care was taken in each case to mount and stain the entire thallus. No case of the monoecious condition has been found in this material. The evidence seems fairly conclusive that Thallocarpus, as it occurs in the vicinity of Austin, is strictly dioecious.

I have accumulated considerable evidence to show that the four spores of the spore ball of Thallocarpus give rise to two female plants and two male plants as has been shown to be the case in Sphaerocarpos texanus Aust. (S. californicus Aust.) (13). I shall, in the near future, publish my results on this phase of the life history of Thallocarpus.

Material for this study was collected during the months of March, April, and May of the years 1914 and 1915. Weak

Flemming's solution gave perhaps the most successful fixation though there was no marked difference in the action of the killing solutions used. The gelatinous material of the older sporophytes interfered greatly with the penetration of the reagents, though an air pump was used to hasten the penetration of the liquids.

The thallus of Thallocarpus varies greatly in size. Mature sporophytes may be found in thalli with a diameter of but two millimeters, while in late spring sterile thalli may be found which have a diameter as great as fifteen millimeters. The male plants rarely exceed three or four millimeters in diameter, the average diameter being less than three millimeters.

When very young the thallus is distinctly bilobed, having a single distinct growing area. The mature male plants are usually bilobed only. The female thalli usually become symmetrically four-lobed but later the lobing becomes less regular and in the larger thalli there is often a suggestion of palmate lobing with the lobes often crowded and overlapping.

The thallus is very spongy in texture, resembling in this respect the spongy Riccias. Many irregular openings are visible in the upper surface. As is the case with the spongy Riccias the thallus is pale green in color. Superficially it resembles Riccia crystallina L .

Cross sections of the thallus show it to be made up, in the upper part of the thallus, of irregular plates of cells, mostly a single layer in thickness. At the upper surface these plates are broadened greatly to form the upper "epidermis" (Fig. I). The tissue at the base of the thallus is compact with but few intercellular spaces.

The archegonia begin development at the surface of the thallus just back of the growing point. The mother cell of the archegonium elongates and divides transversely, the upper cell being the smaller (Fig. 2). The lower cell divides again by a transverse wall (Fig. 3) which according to Campbell (6) also occurs in the development of the archegonium of Sphaerocarpos while in Riccia this cell remains undivided. The divisions of the upper cell seem to be the same as in Riccia. The general structure of the mature archegonium does not present anything new. The neck canal cells seem to number four or five (Figs. 4, 5).

As the archegonia develop, plates of cells are formed about them in such a manner as to entirely submerge them at maturity.

The antheridia arise back of the growing point of the male thallus in much the same position as the archegonium appears in the female plant. I have not followed the development of the antheridium in detail but there seems to be no noteworthy difference between them and those of Riccia. From Figs. 6 and 7 it will be seen that the early stages of development conform entirely with those of Riccia, according to the accounts of Garber, Campbell, and Lewis.

The fertilized egg divides by a wall transverse to the long axis of the archegonium (FIG. 8) as is the case with Riccia and the other Marchantiales. The subsequent divisions seem also to be the same as in Riccia, forming finally a sphere eight to ten cells across at the longest diameter. Divisions cease in the mass of sporophytic cells when the sporogonium is about half grown (Fig. Io). At this period the cells are all alike, no difference being observable between the cells that are later to form the wall and those that are to form the spore mother cells.

Frequently, however, a number of sporophytic cells adjoining the neck canal, fix and stain differently from the rest of the cells of the sporophyte. They are usually smaller cells with denser protoplasmic content and with nuclei which are smaller and which take the stain more readily than those of the other cells of the sporophyte. From Figs. 9, 10, II, and 12 it will be seen that they occur in sporophytes of all ages, except possibly those fully mature. Miss Black (5) has observed bacteria accumulated at the base of the neck canal in Riccia Frostii Aust., causing injury to the sporophytic cells of this region. It is possible that the above mentioned cells of the sporophyte of Thallocarpus may have been injured by secretions of bacterial origin though I have never observed bacteria-like structures in this region.

The single layer of cells of the venter divides early to form two layers (Fig. 9). These cells enlarge with the division and enlargement of the cells of the sporophyte but do not themselves undergo further division. Their dimensions at the maturity of the sporophyte are at least three times as great as at first (Figs. 12, 13). The outer layer of venter cells is seen early to be abund-
antly supplied with chloroplasts while the inner layer lacks them (Figs. II, I2). As the spores mature the inner of the two layers of venter cells is crushed and absorbed while the outer layer remains intact, forming a persistent layer about the mass of spores (Fig. I4).

The cells of the sporophyte are probably more than half grown before any difference is perceptible between the cells of the amphithecium and the sporogenous cells (Fig. 9). This difference is first seen in a decrease of the protoplasmic content of the peripheral cells, and a possible increase in the density of the protoplasm of the sporogenous cells (Fig. Io). Later, as the sporogenous cells continue to enlarge, a difference in the size of the cells is apparent. At the time of the rounding up of the spore mother cells before division, the cells of the peripheral layer have a very scanty protoplasmic content and small, degenerate nuclei. The cells are however plump and distended with cell sap and do not show signs of collapse till much later (Fig. I2). Their collapse and disintegration at a later stage greatly enlarges the cavity in which the spores lie (FIG. I3).

Beer (4) has observed similar, large, vacuolate cells making up the amphithecium of Riccia glauca L. Garber (7), Campbell (6), and Lewis (9) have, however, described the amphithecium of Riccia as made up of flat cells which have dense contents.

The rounding up of the spore mother cells previous to the reduction divisions is accompanied by a swelling and gelatinization of the cell walls (Fig. I2). The gelatinous material accumulates in the spaces between the now rounded spore mother cells (Fig. 13) where it interferes greatly with the penetration of the killing solutions. In fixed material it stains deeply with the violet stain. Garber and Lewis have both observed such gelatinous accumulations in Riccia and are of the opinion that it is food material, derived, in part at least, from the surrounding cells, which are believed to be abundantly supplied with food material. In Thallocarpus this is not the case. No excess of food is to be identified in the surrounding cells nor is there any marked change in these cells upon the appearance of the gelatinous material. The gelatinization of the walls of the spore mother cells together with the disintegration of the wall layer of cells seems sufficient to account for the amount of gelatin formed.

The gelatinous material persists for some time, disappearing only as the thick common wall is formed around the spore tetrad (Fig. 14). The sporogenous cells all round up to form spore mother cells and all of the spore mother cells undergo division and all of the resulting cells form spores. None become sterile nutritive cells nor elater-like cells.

After the division of the spore mother cell the resulting cells become separated by a thin wall but remain closely attached and finally become surrounded by a thick, papillate common wall (Figs. 14, 15). These spore walls remain thin and undeveloped until the thick retaining wall of the spore ball is completely formed (Fig. I4). The outer face of the tetrahedral spore is slightly roughened with projections which in cross section appear crenulate (Fig. I6). While thickened to a marked degree the wall of this outer face is not more than half as thick as the retaining wall of the spores of the tetrad. The inner faces of the spore are thickened only slightly.

It will be seen from the above that the structure and the development of the gametophyte and the sporophyte of Thallocarpus is practically identical with that of Riccia. The adhesion of the spores of the tetrad in a spore ball and the lack of peg-like thickenings in the rhizoids of the former are the only characters upon which a separation of the two genera could be based.

The morphology of the plant is nevertheless that of a Riccia rather than of a Sphaerocarpos. The adhesion of the spores is certainly very scanty evidence upon which to base relationship to the latter genus, for not all of the Sphaerocarpos species have spores remaining attached at the time of their shedding. The spores of S. cristatus M. A. Howe separate long before maturity and those of S. Donellii Aust. separate as they come to maturity (8).

The occurrence of peg-like rhizoid thickenings throughout the Marchantiales and their lack in the Jungermanniales may be a character of greater phylogenetic significance. While it is probable that this character should receive more consideration than the spore characters, nevertheless, in view of the essential identity of the structure of the gametophyte of Thallocarpus with that of Riccia, it would seem extreme to remove the genus Thallocarpus from the Marchantiales on the grounds of this character alone.

The monoecious plants which Stephani believed he had found may possibly be explained on the ground of the small size of the male plants and the crowded growth of the thalli, which become attached in masses by the rhizoids. The male plants cease growing early and are often entirely overgrown by the female plants. In dry material it would be difficult to separate the plants or even to identify any organic separation. This is often difficult in living material collected early in the season. Two cases of what seemed at first to be monoecious plants in paraffin sections turned out to be distinct plants, the male plant being entirely covered by the female plant. There seems little doubt that the Texas Thallocarpus, at least, is dioecious.

Summary

1. Thallocarpus, as it occurs in the vicinity of Austin, Texas, seems to be strictly dioecious.
2. The spores of the tetrad adhere after shedding and give upon germination two male and two female plants.
3. The structure of the thallus and the sporophyte is identical with that of the Riccias with the exception of the adhering spore tetrads and the pegless rhizoids.
4. The above mentioned structural differences seem insufficient to exclude Thallocarpus from the Marchantiales.

I am indebted to Mr. F. C. Werkenthin, of State College, New Mexico, for valuable aid in preparing sections for this study.

[^23]
Literature cited

I. Austin, C. F. Characters of some new Hepaticae (mostly North American), together with notes on a few imperfectly described species. Proc. Acad. Nat. Sci. Philadelphia 1869: 219-234. 1869.
2. Austin, C. F. New Hepaticae. Bull. Torrey Club 6: 17-21. 1875.
3. Austin, C. F. Notes on Hepaticology. Bull. Torrey Club 6: 301-306. 1879.
4. Beer, R. On the development of the spores of Riccia glauca. Ann. Bot. 20: 275-291. pl. 21, 22. 1906.
5. Black, C. A. The morphology of Riccia Frostii Aust. Ann. Bot. 27: 511-532. pl. 37, 38. 1913.
6. Campbell, D. H. The structure and development of Mosses and Ferns. 2d ed. New York. 1905.
7. Garber, J. F. The life history of Ricciocarpus natans. Bot. Gaz. 37: 161-177. pl. g, Io + f. r-4. 1904.
8. Howe, M. A. The Hepaticae and Anthocerotes of California. Mem. Torrey Club 7. 1899.
9. Lewis, C. E. The embryology and development of Riccia lutescens and R. crystallina. Bot. Gaz. 41 : 109-138. pl. 5-9. 1906.
Io. Lindberg, S. O. Manipulus Muscorum secundus. Not. F. et Fl. Fenn. 13: 353-418. 1874.
ir. Schiffner, V. Hepaticae. In Engler \& Prantl, Die natürlichen Pflanzenfamilien. $\mathbf{x}^{3}: 3$-141. 1893.
12. Stephani, F. Riccia. [In Species Hepaticarum.] Bull. Herb. Boissier 6: $36 \mathrm{I}-378.1898$.
13. Strasburger, E. Zeitpunkt der Bestimmung des Geschlechts, Apogamie, Parthenogenesis und Reduktionsteilung. Hist. Beitr. 7. Jena. 1909.
14. Trevisan de Saint-Léon, V. Schema di una nuova classificazione delle Epatiche. Mem. R. Ist. Lomb. III. 4: 383-451. 1877.

Explanation of plate 4

The magnification of the figures is about 250 diameters, with the exception of FIG. 1, which is magnified about 30 diameters.

Fig. I. A portion of a section of a thallus, showing a sporophyte, nearly mature. Figs. 2, 3. Early stages in the development of the archegonium.
Fig. 4. Archegonium, not quite mature, becoming submerged by outgrowths of the thallus.

Fig. 5. Archegonium after fertilization of the egg.
Figs. 6, 7. Early stages in the development of the antheridium.
Fig. 8. A four-celled embryo sporophyte.

Fig. 9. A later stage in the development of the embryo. Venter wall two cell layers in thickness. A group of cells at the apex of the sporophyte separated from the main mass.

Fig. 10. Embryo about half grown. No distinction visible between the peripheral cells and the inner cells of the sporophyte.

Fig. II. Peripheral cells of sporophyte now easily identified by their scanty protoplasmic content.

Fig. 12. Gelatinization of the cell walls and the rounding up of the spore mother cells. Cells of the amphithecium still plump and intact.

Fig. 13. Spore mother cells fully rounded up and surrounded by the homogeneous gelatinous material. Peripheral layer of cells disintegrated. Venter cells still intact.

Fig. 14. Spores approaching maturity. The papillate retaining wall of the spore ball nearly mature. The spore walls still thin.

Fig. I5. One spore and part of the common retaining wall.
Fig. I6. Section of nearly mature spore, pulled away from spore ball by sectioning knife.

Morphology of the flowers of Zea Mays

Paul Weatherwax

(with plates 5 and 6 and four text figures)

The structure of the maize plant presents a series of problems of a very special nature. Many of these have been thoroughly worked out from a purely morphological point of view, but it need hardly be said that the mass of economic information about corn almost obscures the part that may be considered purely botanical. Of the special morphology of the plant probably no part has received less thorough treatment, in proportion to its importance, than that pertaining to its floral parts. It is true that many studies have dealt in a way with this phase of the subject, but it has almost always been in connection with some more extended study and has, consequently, been superficially treated. The result is that one looks in vain through botanical literature for a complete and well-illustrated discussion of the structure of the maize flower.

The investigations upon which this work is based have extended over a period of almost two years, during which time representatives of all the six subspecies of Zea Mays have been under observation to a greater or less extent. The greater part of the work has been done upon different varieties of sweet corn, but the other five types have also been examined, especially where any variation from the sweet corn type of flower was apparent. All the available literature has been consulted, and most of the points made therein have been verified.

It is not intended here to present a group of facts that are entirely new. The available data, widely scattered, have been collected, and some changes and additions have been made, together with an attempt to illustrate fully wherever an illustration will emphasize a point or convey the meaning more clearly.

I desire to express my obligations to Professor D. M. Mottier for valuable suggestions and criticisms pertaining to this work,
and to a number of friends who have supplied me with seed of some of the varieties of corn used.

Inflorescence

In the typical case the male and female inflorescences are borne on separate parts of the same maize plant, the former being the tassel and the latter the forerunner of the ear. Exceptions to this separation of the two types of flower sometimes occur and will be discussed later.

The male inflorescence is a broadly expanded panicle, often more than a foot in length, and made up of a central axis and several spreading rachids. Upon each rachis and the central axis the spikelets are arranged in pairs or, more rarely, in groups of three or four; one spikelet of each group is usually pedicelled, while the others are sessile.

The female inflorescence is a thickened spike, later to develop into the ear with its woody cob. Upon the axis of this inflorescence are borne a number of double rows of spikelets, the rows being double because of the pairing of the spikelets, and from these are produced an even number of rows of grains. Normally the minimum number of rows is eight, and it may vary in even numbers from this to twenty-four or more. The whole female inflorescence is enclosed in the husks, which are modified leaf sheaths borne upon the short branch that bears the ear.

It is very probable that the ear has developed from a primitive bisexual inflorescence, which had a structure similar to that of the male inflorescence of the plant at the present time; but Harshberger (\mathbf{r}) and Montgomery (2), who have made extensive studies of this, disagree as to how this step actually took place, the one holding that the rachids of the primitive inflorescence united to form the ear, and the other maintaining that it was only the central spike of the tassel that persisted. Good arguments are found to support each view, and some other evidences not mentioned by either of the above, but having an important bearing upon the question, are now under observation and will be made the subject of a future report.

The normal male inflorescence of the plant at the present time is generally believed to have resulted from the suppression of the pistils of the hermaphrodite flowers of the primitive inflorescence.

Staminate Flower

The male spikelet contains, either functional or in rudimentary form, all the parts of the typical grass spikelet. It is normally two-flowered. A few one-flowered spikelets have been observed, but they usually contain a second flower in an undeveloped condition. At the ends of rachids, spikelets with more than two flowers are sometimes found, but they are probably to be understood as being two or more two-flowered spikelets combined.

Completely enclosing the rest of the spikelet before maturity are the two rather firm, taper-pointed, empty glumes, having a varying number of nerves and thickly beset, as is the rachilla below the glumes, with short, stiff bristles. The lower glume overlaps the edges of the upper and has the lower point of insertion upon the rachilla (Fig. r). The flower is in the axis of the thin, membranaceous, blunt-pointed, two- to fournerved lemma or flowering glume, and subtended by the palea, which has a similar structure except that it is reg-

Fig. i. Transverse section of lower part of staminate spikelet of Country Gentleman sweet corn, $\times 20$. G, glumes; Lod, lodicule; F, filament of a stamen; A, anther; L, lemma; P, rudimentary pistil; $P a$, palea. ularly two-nerved. No trace of a continuation of the rachilla has been observed between the paleae. On this basis, then, there is no indication that the normal spikelet was ever more than two-flowered. The rachilla is jointed just below the glumes.

In so far as was observed, the two flowers are identical in structure, but the upper one is the first to mature. During microspore development the anthers of the upper flower are often found with the tetrad stage or with the pollen grains rounded off, while those of the lower flower show resting or synaptic stages; but the pollen grains of the younger flowers are usually rounded off and apparently mature before the older flower puts out its stamens.

The three stamens of each flower are so arranged that their points of attachment form the vertices of a triangle which has one of its bases toward the palea. Midway between the two lateral stamens is the rudiment of a pistil. Next to the lemma,
and outside the triangular area to which the stamens and rudimentary pistil are attached, are the lodicules (Fig. 2 and Text FIG. I).

The immature stamens have short, stiff, and rather fleshy filaments, which become long, thin, and flexible in anthesis, allowing the anthers to hang well below the rest of the spikelet (compare Fig.

FIG. 2. Longitudinal section of staminate spikelet of Country Gentleman sweet corn, $X_{15} . G$, glume; $P a$, palea; $A n$, position of one of the lateral anthers; L, lemma; A, dorsal anther; P, rudimentary pistil; J, joint of rachilla. I with Fig. 2 and with Text fig. 2). The arrangement of the stamens in the flower seems to have nothing to do with the position that they will occupy in anthesis, all three sometimes falling from one side of the spikelet, or two from one side and one from the other as determined by external conditions. The immature anther has four loculi, which later form two "cells." The anther cells open by short slits and allow the pollen to sift out (FIG. I).

The thick, fleshy lodicules do not show the scale-like structure that often characterizes them in other grasses. Along the top of each there is a deep, rounded groove with irregular sides. The lodicule is well supplied with vascular tissue, transverse sections showing ten or twelve relatively large, well-distributed strands (Text fig. I). As the flower matures, the lodicules increase in size and push back the lemma and glume, thus opening the spikelet.

In the literature examined, the only mention of a pistil in a male flower is by , Baillon (4, p. 325) and Bentham and Hooker (5, p. III4), both of whom, however, say that it is not present. They treat the normal flower as being wholly staminate in structure as well as in function; but the rudimentary pistil, a very inconspicuous body, to be sure, has been found in every staminate flower that I have examined. Its development has not yet been worked out; but it is known that long before anthesis its growth stops, and, during the greater
part of the development of the rest of the flower, the pistil shows evidences of disorganization, especially by its manner of taking stains.

The vascular system of the base of the spikelet has not been thoroughly worked out, but strands have been traced to most of the organs, including a large one to each lodicule and a rudimentary one to the abortive pistil.

Pistillate Flower

The available descriptions of the female spikelet and flower are much better than those of the homologous parts of the male inflorescence. This is largely due to the fact that several investigators have, in dealing with embryological features, found it necessary to discuss the developing caryopsis in relation to the other parts of the spikelet. However, since much of the work on the structure of the spikelet and flower has been merely incidental to other lines of investigation, many inaccuracies have found their way into the recent works.

The pistillate spikelet is two-flowered, and its parts are, in number and arrangement, similar to those of the staminate spikelet, allowing, of course, for the functioning of a pistil instead of stamens and the abortion of certain other parts.

The empty glumes are rather thick and fleshy and do not completely enclose the other parts, except in pod corn, at any time during the development of the spikelet. The hairs that are present on the glumes of the male spikelet are here represented by similar ones around the edges and by pits scattered over the surface of the glumes. The rachilla is jointed just below the base of the glumes (Fig. 3). The lemma and palea are shorter and thinner than the glumes. These floral bracts cease to develop, in most varieties, about the time of fertilization and remain around the base of the fruit, forming the red or white more or less chaffy covering of the cob. If fertilization is prevented, they may grow to three or four times their normal size. In the pod corns the floral bracts, especially the glumes, become herbaceous and continue to grow after fertilization and are ultimately found completely enclosing the mature fruit.

In most varieties of maize the two flowers of the female
spikelet are quite different in function and detailed structure, the lower one being aborted; and the descriptions of the two must be dealt with separately. There are certain important exceptions, however, to this peculiarity of the lower flower, and these will be discussed later.

The functional pistil occupies a normal position between the lemma and palea of the upper flower (Text fig. 3). It is readily

Fig. 3. Longitudinal section of pistillate spikelet of Black Mexican sweet corn, $\times 25$. Sti, base of stigma; $S t y$, style; E, outline of embryo sac; L, lemma; $P a$, palea; St, stamen of aborted flower; SC, stylar canal; $O v$, functional ovule; G, glume; Sta, rudimentary stamen; P, pistil of aborted flower; J, joint of rachilla.
seen to consist of two parts, the bulb-shaped lower part, later developing into the caryopsis, and the long "silk" extending beyond the husks.

The accurate naming of at least one part of the pistil seems to have received little attention from recent writers. Harshberger (1, p. 400) speaks of the silk as a long, hairy style, and later adds that the style is hairy to entrap the round, smooth pollen grains. Hunt (6, p. 146) speaks of it as the "style, commonly known as the 'silk.'" Baillon (4, p. 325) and Bentham and Hooker (5, p. III4)
give similar descriptions and call the silk a style. Only one dissenting opinion has thus far been noted, and that in Wood's (7) text-book, published about 1870 . Here (p. 48) he figures the pistil of Zea and mentions its long, filamentous stigma.

All evidences indicate that the silk is stigmatic, at least in a rudimentary way, even to its base. The hairs are most numerous near the tip but are to be found all along the organ. Crozier (8) has noted that silks that have been repeatedly cut off are still capable of being pollenized, showing that it is not the forked tip alone that is stigmatic. Of course the part of the silk that is protected by the husks does not, under ordinary conditions, become a germinating place for pollen, but continued growth is always exposing parts that were previously covered. How long this might continue is not limited by any visible structural difference, and it is probable that pollen will germinate on any part of the silk. Even those who persistently call it a style admit that the silk catches the pollen grains and furnishes them a place to germinate, and this is by definition the function of a stigma. In cross section the silk has the shape of an asymmetrical figure eight (Fig. 8). This appearance is due to a longitudinal groove extending along both the adaxial and abaxial sides. The abaxial groove is deep and narrow, and the one on the adaxial side is broad and shallow (Figs. 6-8). Near the tip these two grooves unite, making the silk unequally two-pointed (Fig. 5). A strand of vascular tissue traverses each side of the silk and continues into the tip after the silk divides. In distribution the hairs are limited to the edges and adaxial side (Figs. 6-8), being more numerous, as has been said, near the distal extremity of the silk. If the two stigmas of the typical grass flower should unite for almost their entire length, the organ formed would be, except for relative length, not unlike a corn silk. It seems wholly consistent, therefore, to consider the corn silk a compound stigma.

Just what course the pollen tube takes with reference to the parts of the pistil is not definitely known, but growth of the tube causes the stigma to dry up. Silks that have been protected from pollen may, however, as Crozier (8) has pointed out, remain fresh for many days and continue to grow in length.

If the silk is to be considered a stigma, then the style is the
short protuberance at the top of the ovary, to one side of which the stigma is attached (Figs. 3 and 4 and Text fig. 3). The style is traversed by a tubular opening leading from the surface to the interior of the ovary (Figs. 3 and 4 and Text fig. 3.) This canal is especially prominent in young stages of ovarian development and never quite disappears. It has been termed the stylar canal by practically all that have had occasion to mention it, even by some of those that call the silk a style. Whether or not the pollen tube traverses this canal on its way to the ovule has not been determined.

The ovary is thick-walled and contains a single large, anatropous ovule. The embryo-sac is near the upper side, with reference to the cob as an axis, and the embryo is developed on that side of the caryopsis. The detailed structure and development of the ovary properly belongs in another connection and has been worked out by True (9, p. 212), Poindexter (II, p. 3), Guignard (10, p. 2), and others.

Just below the ovary, and somewhat irregularly spaced around the circumference of its support, are three small, rudimentary stamens (Fig. 4 and Text fig. 3). They have a yellowish, wrinkled appearance and stain like disorganizing tissue. Baillon (4, p. 325) makes mention of "stamina 3 (in flore foemineo ad staminodia vix conspicua reducta," but Bentham and Hooker (5, p. III4) dismiss the question with "staminodia o." The other works that I have examined make no mention of these rudimentary stamens.

In the normally functional flower of the female spikelet the lodicules are, in so far as I have observed, entirely lacking. Montgomery (2, p. 6I) has noted the same fact.

The aborted flower is much more simple in structure than the functional one just described. It is located between the lower lemma and palea, and, because of the suppressed development of its basal parts, it appears to be on the side of the pedicel that supports the functional flower (FIG. 4). In other words, the functional flower appears to terminate the rachilla, while the aborted one seems to be laterally attached; but there is no real evidence that either flower is morphologically at the end of the rachilla.

The male and female parts of this aborted flower make about equal development, the stamens being about as well developed as those of the functional female flower, and the pistil resembling that in the normal male flower. The lodicules are also present and pretty well developed (Fig. 9).

Sturtevant (12) reports that he found on one occasion an ear of pod corn that had the kernels "twinned in the pods." In several ears grown from seed furnished by Professor M. L. Fisher, of Purdue University, I have found a few pods each of which had two grains (Fig. I2). Examination of these shows that both flowers of a spikelet have developed. Kempton (14, pp. 8 and 9) reports the same occurrence in a few spikelets of a variety of corn grown by the Hopi Indians of Arizona and adds that the lower flower in several varieties occasionally develops, sometimes accompanied by the abortion of the upper flower. In the summer of I914, while preparing material for study, I found that the variety of sweet corn known as Country Gentleman regularly has both flowers of the female spikelet functional. Stewart ($\mathbf{I} 3$) has recently reported an observation of the same kind.

In this variety, then, two grains are produced where there is only one in most other varieties, and the ear has practically the double number of grains. On account of this the grains are so much crowded that they become long and slender (Fig. 13) and are thrown out of line so as to appear to be no longer arranged in rows (Fig. 14). Kempton (14, p. 8) speaks of one variety of sweet corn that shows an exception to the usual rowed arrangement of the grains, but he attributes the irregularity to an indiscriminate arrangement of the spikelets. The variety is not named, but, even to the "shoe peg" type of grain produced, it might be "Country Gentleman," except for the arrangement of the spikelets. I have found no variety of corn in which the spikelets were not arranged in rows on the cob.

In appearance and structure this functional lower flower of "Country Gentleman" sweet corn is similar to the upper one, but it is often somewhat smaller and slower to mature (TEXT fig. 4). With reference to their position on the cob as an axis, the arrangement of the parts of this flower is, as might be expected, the exact opposite of that of the upper flower. This causes the stigma to
make a sharp bend near its base in order to take its proper direction of growth toward the tip of the ear (Text fig. 4). Because also of this opposite arrangement of parts, the embryo develops on the abaxial side of the grain, and, in following a row, we find the alternate grains with their embryos turned toward the base of the ear, a thing that does not occur in the ordinary ear. This same pairing of the kernels with reference to the position of the embryos is noted in the pod corn that occasionally produces two grains in a pod.

An interesting suggestion as to the probable evolution of this peculiarity in this variety of sweet corn is offered by the fact that

A

Fig. 4. Longitudinal section of female spikelet of Black Mexican sweet corn (A) and of Country Gentleman sweet corn (B), X 12. Ov, functional ovule; 0, ovary that usually does not develop, except in Country Gentleman sweet corn; A, aborted flower; Lod, lodicule. (The lodicules are really lateral organs, but, when rudimentary, they are often sufficiently out of place to show in a median section.)
in the lower flower rudimentary lodicules are present as in the aborted flower of other kinds of maize. If the spikelet with two functional female flowers is the primitive one from which the other type has been developed by abortion of the lower flower, why should only one of the flowers retain its lodicules? It seems rather more probable that the second functional pistil has resulted from the development of the rudimentary one in the aborted lower flower of the typical female spikelet. In support of this belief may be added the fact that the lodicules of the functional flower
seem to be smaller and less developed than those of the aborted flower. This question will, however, bear further investigation.

Pollination

An unusually large number of interesting correlations are found between structure and function as applied to pollination. Practically the only means of pollen transfer are gravity and the wind. A few insects may work upon one or the other of the inflorescences, but none have been observed that find it profitable to visit both.

The most noticeable correlation, and one that sheds much light upon the probable course followed in the development of monoecism, is in the position of the male inflorescence above the female this tending to render functionless the ovaries in the tassel and the pollen in the lower inflorescence of the primitive ancestor of the maize plant.

The pollen is fine and light and easily carried by the wind. Each individual grain is smooth and dry on the outside and not well adapted to adhering to anything except something of the feathery nature of the stigma. Thus a minimum amount of pollen is lost by adhering to the leaves and stem above the female flowers.

Of course much pollen is lost by any plant that depends upon the wind for pollination, but ample allowance is made for this in maize. Lazenby's estimate for a dent variety shows that about 45,000 pollen grains are produced for every ovule; and Sargent estimates that the ratio is at least 9,000 to I. These figures are reported by $\operatorname{Hunt}(6$, p. 146). In a variety of popcorn that I have examined, the number of male spikelets produced is approximately the same as the number of female spikelets, the variety having an average of three ears to the stalk. But each female spikelet produces one ovule, while the six anthers of a male spikelet produce no less than 15,000 pollen grains. Since most varieties have a larger tassel and a smaller number of ears than this one, it is probable that this ratio of 15,000 pollen grains to I ovule is low enough.

The idea is held by many that self-pollination is prevented by the shedding of the pollen before the maturity of the stigmas
of the same plant, but such is not the case. Hunt (6, p. 146), Harshberger ($\mathbf{1}$, p. 401), Collins ($\mathbf{1 5}$, p. 3), and others say that self-pollination is possible, and my own observations are in accord with their conclusions. In securing pure lines for experimental work I have had occasion to self-pollenize individuals of about twenty varieties, and I have, in no case, had to have recourse to any means of pollen preservation. Contrary to the popular idea, I find that the period during which pollen is shed by any one plant extends pretty well over the time between the maturity of its first and last stigmas.

Anthesis in the male inflorescence begins a short distance from the tip of the central axis, and a little later at the tip of each rachis, and the region of maturity of the flowers passes downward along all the axes simultaneously. The period of maturity is further lengthened by the fact that the two flowers in a spikelet do not mature at the same time, and a second wave of maturity and pollen shedding follows the first. Furthermore, the anther does not discharge all its pollen as soon as it is ripe, but lets it sift out slowly. The combined effect of all these conditions is to lengthen the period over which the plant is shedding pollen.

The pistils near the base of the female inflorescence are the first to mature, and their stigmas emerge from the husk and become receptive usually about the time the first pollen is shed by the same plant. Many individuals are found, however, whose stigmas are out before the maturity of the male flowers, and the reverse is also true of many individuals. In most of the kinds commonly cultivated, however, neither of these characteristics seems to be constant for the variety. It is possible that, if the order of maturity of the two inflorescences behaves in true Mendelian fashion, this characteristic has been disregarded in hybridization and selection to such an extent that it has not become fixed for the variety. Self-pollination of an individual is rarely completely prevented in the commoner cultivated varieties by a difference in the time of maturity of the inflorescences.

But, in spite of the fact that self-pollination is possible and actually òccurs to a certain extent, it is clear that cross pollination is not only the common occurrence, but is necessary for complete
pollination and the production of well-filled ears, as is shown by a comparison of the ears from isolated plants with those that have been produced where a large number of plants near together were shedding pollen at the same time.

Whether or not cross pollination is necessary for the maintenance of the full vigor of a strain is another question, and one that is by no means settled at present. It is not at all impossible that our different agricultural varieties will ultimately be found to differ in this respect. The maize varieties that we now have are the result of much haphazard hybridization, and nothing short of years of work will ever give conclusive results along this line.

Floral Abnormalities

It has already been stated that monoecism is the rule, and that the male and female flowers are grouped together in separate inflorescences. But occasionally in probably all types, and often in at least one variety, some of the rudimentary organs are replaced by functional ones, and some usually functional are suppressed. As a result, organs of both sexes may be found in the same inflorescence in any one of three ways or in a combination of these ways:
I. Both sexes may occur in the same inflorescence but not necessarily in the same spikelet.
2. Male and female organs may be found in the same spikelet but not necessarily in the same flower.
3. The flowers may be perfect.

The first type of sex combination is very commonly observed in nearly all varieties of corn. Many writers have mentioned it, and Montgomery (2), especially, has published a number of illustrations of the phenomenon. Its occurrence in the tassel is apparently due to the development of the female instead of the male elements of the spikelets of one or more rachids or, more often, of the central spike. This produces a naked fructification resembling an ear, which Montgomery (2) makes the basis of his theory to account for the evolution of the ear. It has been noted also, as will be more fully discussed later, that some tassel spikelets in pod corn produce only female flowers. In the ear the flowers at the tip are often wholly staminate in structure, although they may never mature pollen. This transposition of sex in the ear
is known in nearly all varieties, but Kempton (14, p. II) is responsible for the statement that it never occurs in pod corn. It sometimes occurs that the staminate portion of the ear is not at the tip but back some distance, as shown in Fig. 16, where the staminate portion resembles the central spike of a tassel. At least one case has been noted also where a double row of spikelets on an ear was replaced for some distance by spikelets that had the structure of those usually found in the tassel.

In the variety of pod corn that I have been growing the tassels of most plants produce female flowers, and at maturity the tassel is bent sharply downward by the weight of the fruit (Fig. io). Kempton (14, p. 12) and others have noted the same, and the former observed that such plants produced no ears. The same thing was true for a number of my plants also, but most of them produced ears of the podded type. Examination of these tassels shows that many of the spikelets have one male and one female flower.

Bisexual flowers similar to the typical grass flower, except in the structure of the stigma and some minor points, have been found in both the ear and the tassel of pod corn. It is somewhat doubtful whether or not the stamens in the ear spikelets of my plants produced pollen, but they were of the normal size. In the tassel, however, both parts of the perfect flowers were most certainly functional. On account of the increased length of the glumes in these flowers, however, as in almost all flowers of this pod corn, the stamens are not exserted in anthesis. This introduces a special problem of pollination which has not yet been fully investigated.

The presence of these hermaphrodite flowers in pod corn and occasionally in other varieties, and the occurrence of both sexes in the same inflorescence but not in the same flower have provided the basis of the theory generally accepted that the monoecious flowers of the normal maize plant have developed, by the suppression of parts, from hermaphrodite flowers borne in tassel-like inflorescences by some unknown primitive ancestor.

Montgomery (3, p. 349) mentions an ear of dent corn that had three well-developed stamens with each grain and three small ones in the aborted flower. He says further: "This little abortive
flower can be found in the embryonic stages of development, and usually all trace of its presence is lost except the extra pair of glumes on the posterior side of the kernel. These little stamens, however, indicate that it at one time might have functioned and give us another clue to some of the evolutionary changes that this interesting plant has gone through."

Contrary to this statement, I find, as previously described, that all traces of the aborted flower are not lost but are present in every female spikelet, at least in rudimentary form, at the time of fecundation (Fig. 9). Moreover, if three rudimentary stamens in the spikelets of one particular ear give a clue to evolutionary changes, a much better clue must be given by the development of a normal caryopsis from the lower flower of every female spikelet of Country Gentleman sweet corn (Fig. 14).

The structure of the perfect flowers in pod corn, with reference to the order in which the four flowers of a pair of spikelets lost their staminate elements on becoming ear spikelets, has been worked out by Kempton (14, p. 10). He concludes that the first to change was the upper flower of the sessile spikelet, then the upper flower in the pedicelled spikelet, and then the other two flowers in the same order. Many evidences that I have observed in the tassel of pod corn are in accord with these conclusions, but an occasional spikelet with a functional ovule in the upper flower and the stamens of this one and both pistil and stamens of the lower flower aborted would lead to the belief that the entire lower flower may sometimes have become aborted without a previous loss of function by its stamens. In such spikelet, too, the lodicules of the lower flower are almost normal in appearance, while those of the upper flower are very much reduced in size. This indicates the beginning of the line of evolution that has left rudimentary lodicules in the aborted flower and entirely removed them from the upper flower of the ordinary female spikelet. Moreover, more weight must be attributed to evolutionary evidences from spikelets of the ear, which have passed through the process, than to those from tassel spikelets, which may or may not be giving indications that we are interpreting correctly.

The structure of the stamens of these tassel flowers presents a problem that cannot be solved from the standpoint of gross
morphology alone. Guided by size and shape we might select from an ordinary tassel a complete series of stamens represented at one end by a functional organ and at the other by a degree of abortion equal to that which is characteristic of the rudimentary stamens of the normal pistillate flower; and between the two extremes would be possible monstrous forms. It is only when the function of producing mature pollen has been lost that we can say that the flower has ceased to be perfect, and it is probable that, in some cases, this can be determined only cytologically or physiologically.

But the vital point of the whole question, in so far as evolution is concerned, is not the order in which the perfect flowers of a pair of tassel spikelets changed into the present pistillate condition, nor even the occurrence of occasional functional stamens or pistils in flowers of the opposite sex, but in the fact that every flower of either sex contains either rudimentary or functional elements of the opposite sex. This is the real indication of primitive hermaphroditism, and the other points only serve to supplement this fact.

Summary

I. Normally the maize plant is monoecious.
2. The male spikelet is two-flowered. Each flower has three stamens, two lodicules, and a rudimentary pistil.
3. The female spikelet is two-flowered, but, in most instances, the lower flower is aborted.
4. In Country Gentleman sweet corn the lower flower of the female spikelet regularly functions the same as the upper one. This same phenomenon has been noted in some spikelets of pod corn.
5. The upper female flower has a pistil and three rudimentary stamens but no lodicules.
6. The lower female flower has a pistil, three rudimentary stamens, and two rudimentary lodicules, whether the flower be aborted or functional.
7. Structurally and functionally the silk is a stigma.
8. Pollination is effected by gravity and the wind. A relatively large amount of pollen is produced. Cross pollination is the more common occurrence, but self-pollination is possible and occurs to a certain extent.
9. In flowers of either sex the rudimentary organs of the opposite sex may be replaced by organs of normal appearance. In many instances these are not functional, but pistils are regularly functional in the tassels of some varieties of pod corn.
10. Except in pod corn the glumes do not enclose the caryopsis as in most grasses.

University of Indiana, Bloomington, Indiana

Literature Cited

I. Harshberger, J. W. Maize, or Indian corn. Cyclopedia of American Agriculture. Fourth Edition. 2: 398-402. 1912.
2. Montgomery, E. G. What is an ear of corn? Pop. Sci. Mo. 68: 55-62. f. 1 -14. 1906.
3. Montgomery, E. G. Perfect flowers in maize. Pop. Sci. Mo. 79: 346-349.f. I-6. 1911.
4. Baillon, H. Histoire des plantes. 12. Paris. 1894.
5. Bentham, G., \& Hooker, J. D. Genera plantarum. 3. London. 1862.
6. Hunt, T. F. Cereals in America. London. 1912.
7. Wood, A. Botanist and florist. New York. 1870(?).
8. Crozier, A. A. Silk seeking pollen. Bot. Gaz. 13:242. 1888.
9. True, R. H. On the development of the caryopsis. Bot. Gaz. 18: 212-226, pl. 24-26. 1893.
10. Guignard, L. La double fécondation dans le maïs. Jour. de Bot. 15: 37-50. 1901.
II. Poindexter, C. C. The development of the spikelet and grain of corn. Ohio Nat. 4: 3-9.f. 1-II. I901.
12. Sturtevant, E. L. Notes on maize. Bull. Torrey Club 21: 319343. 1894. A similar article by the same author was published as Bull. 57, Bureau of Plant Industry, Washington.
13. Stewart, A. The pistillate spikelet in Zea Mays. Science, II. 42: 694. 1915.
14. Kempton, J. H. Floral abnormalities in maize. U. S. Dept. Agr. Bur. Pl. Ind. Bull. 278. 1913.
15. Collins, G. N. A variety of maize with silks maturing before the tassels. U. S. Dept. Agr. Bur. Pl. Ind. Circ. 107. 1913.

Explanation of plates 5 and 6

Plate 5

Fig. I. Male spikelet of Red Cob Cory sweet corn with one flower in anthesis, \times 12. G, glume; $P a$, palea; A, anther of unopened flower; F, elongated filament of mature stamen; O, opening of anther; J, joint of rachilla.

Fig. 2. Male flower of Red Cob Cory sweet corn with its own palea and the other half of the spikelet removed, $\times 15$. G, glume; Le, lemma; F, short, thick filament of immature stamen; P, rudimentary pistil; $P a$, base of palea that has been removed; L, lodicule.

Fig. 3. Female spikelet of Red Cob Cory, \times ıо. Sti, stigma; SC, stylar canal; Sty, style; Ov, ovary; G, glumes; J, joint of rachilla.

Fig. 4. Female spikelet of Red Cob Cory, with floral bracts removed, $\times 10$. Sti, base of stigma; $S C$, stylar canal; Sty, style; $O v$, ovary (functional); Sta, rudimentary stamen; P, pistil of aborted flower; Sta, stamen of aborted flower; G, L, and P, scars left by removal of glumes, lemmae, and paleae, respectively.

Fig. 5. Tip of stigma of Red Cob Cory, showing two points and hairs for catching pollen, $\times 15$.

Fig. 6. Adaxial side of a segment of the stigma a short distance from the style, $\times 15$.

Fig. 7. Same as Fig. 6 but seen from the abaxial side.
Fig. 8. Transverse section of the stigma, $\times 30$; the adaxial side is above. V, vascular strands; H, place of attachment of hairs.

Fig. 9. Aborted lower flower of female spikelet of Red Cob Cory, $\times 20$. Sta, stamen; P, pistil; L, lodicule; $P a$, palea; $L e$, scar left by removal of lemma.

Plate 6

Fig. 10. Tassel of pod corn, bent sharply downward by the weight of the fruits that have developed in it.

Fig. II. Pairs of spikelets from tassel of pod corn.
FIG. 12. Pairs of spikelets from ear of pod corn. One spikelet in each pair shown has two fruits.

Fig. 13. Grains of Country Gentleman sweet corn (above), and of Stowell's Evergreen (below).

Fig. 14. Ears of sweet corn. Stowell's Evergreen on the left, Country Gentleman on the right.

Fig. 15. Periodic pollination. This ear was bagged after a few silks had come out, and the bag was taken off before all the stigmas had lost their receptivity. The middle portion has no grains because the silks from this part passed their period of receptivity while the ear was protected from pollen.

Fig. 16. Ear of a yellow dent variety. The constricted place back of the tip is staminate in structure.

The Lichens of Bermuda

Lincoln W. Riddle

Our knowledge of the lichens of Bermuda up to the present time has been confined to the Reports of the Challenger Expedition, based on the collections made by H. N. Moseley, who secured in Bermuda only twenty-five species and varieties of lichens. Three successive reports on the lichens of the Challenger Expedition were published. The first was that of Stirton in the Journal of the Linnaean Society for 1875 (14: 369-372). Two years later Crombie, with the assistance of Nylander, went over the collection, revised many of Stirton's determinations, and published a report in the journal cited ($16: 214-217$). This report included several "new species and varieties" named by Nylander, but, with one exception noted below, these differed from wellknown species in chemical tests only or in such trivial characters that they cannot be considered valid. Finally, in 1885, in the official Report on the Scientific Results of the Voyage of H. M. S. Challenger, Botany, vol. I, No. 2, Part I, Hemsley published the list again, his list being practically a reprint of that of Crombie.

Meanwhile, in 1880 and in 1881, Professor W. G. Farlow, of Harvard University, had visited Bermuda and made a small but important collection of lichens. This was turned over to Tuckerman, who named twenty-one species, of which six were new. Tuckerman was then busy with his Synopsis of the North American Lichens and was approaching the end of his life, so that he was unable to publish descriptions of the new species that he named. Duplicates of some of these specimens were sent to the Royal Herbarium at Kew, England, and Hemsley gave a list of thirteen of these in a footnote on page 99 of his report. Descriptions of two of the new species, Gyalecta Farlowi and Verrucaria bermudana, were published by Nylander in 1890 and 1891, respectively, but the other new species from Professor Farlow's collection have remained undescribed. He has very kindly allowed me to incorporate the results of a study of his specimens in the present paper.

Between 1905 and 1914 a more complete exploration of the flora of Bermuda has been carried on by Dr. and Mrs. N. L. Britton, Dr. F. J. Seaver, and Messrs. Stewardson Brown and Paul Bisset, resulting in the finding of sixty-five species and varieties, of which fifty, including three new species, had not been previously reported.

As a result of these several collections, we now have a total of thirty-six genera, with eighty-six species and varieties of lichens, known to occur in Bermuda. Ten of these species are endemic.

The collection made by the members of the staff of the New York Botanical Garden, in coöperation with the Academy of Natural Sciences of Philadelphia, has formed the chief basis of the following enumeration. All numbers cited refer to these specimens. Since Mrs. Elizabeth G. Britton has collected more numbers than anyone else, the initials only are cited. The names of other collectors are given in full. References are also given to the species collected by Professor Farlow, and to the records of the Challenger Expedition.
i. Verrucaria rupestris Schrad.

On rocks, without definite station, W. G. Farlow.
2. Verrucaria rupestris var. ruderum DC.

Verrucaria ruderella Nyl.; Crombie, Jour. Linn. Soc. Bot. 16: $217 . \quad 1877$.

On rocks, without definite station, Challenger Expedition.
3. Thelidium bermudanum (Tuck.) Riddle, comb. nov.

Verrucaria bermudana Tuck.; Nylander, Sert. Lich. trop. Labuan et Singapore 43. I891.

As the original description is not readily accessible, it is given here: "Thallus vix ullus; apothecia pyrenio dimidiato-nigro (latit. circ. 0.25 mm .) convexa; sporae 8 nae breviter fusiformes I-septatae, long. $0.01 \mathrm{I}-12, \mathrm{cr}, 0.0035-45 \mathrm{~mm}$., in thecis angustis; paraphyses graciles. Super saxa calcarea in Ins. Bermudis. Affinis V. albido-atrae Nyl." South shore; type collected by Professor W. G. Farlow. This species and the next are strictly maritime, growing just at tide-limit.
4. Thelidium Farlowi Riddle, sp. nov.

Thallus epilithicus, crustaceus tenuis vel tenuissimus continuus laevigatus plumbeus, in margine linea obscuriore cinctus. Gonidia cystococcoidea. Perithecia partim confluentia, circa 0.5 mm . diam., nigra depresso-hemisphaerica semiimmersa, strato tenuissimo thallode fere ad instar pruinae velata, apice sat late denudato; amphithecio subgloboso completo, basi tenuiore, fusconigro. Paraphyses gelatinam percurrentes. Asci 8 -spori. Sporae incolores, oblongae vel ovales, biloculares, $18-20 \times 7-9 \mu$.

On calcareous rocks, south shore, collected by Professor W. G. Farlow, 188r.

Type in the Cryptogamic Herbarium of Harvard University.
This species appears to be related to Th. pyrenophorum (Ach.) Koerb., but is distinct in the lead-colored thallus and the confluent perithecia, with the thin thalline covering giving a pruinose effect.
5. Porina nucula Ach.

On bark of orange, Paynter's Vale, E. G. B. 363 .
6. Porina phaea (Ach.) Muell. Arg.

On Juniperus, Harrington House, Stewardson Brown 560.
7. Porina tetracerae (Ach.) Muell. Arg.

On coffee trees, Walsingham, E. G. B. 293.
8. Pyrenula aurantiaca Fée.

On Rhizophora, Fairy Land, E. G. B. 193; also W. G. Farlow, who states that it is generally common on Rhizophora, but very difficult to cut off.
9. Pyrenula brachysperma Muell. Arg.

On Eugenia, Hall's Island, Brown \& Britton 885.
This species was originally published in Mueller-Argau's Revisio Lichenum Eschweilerianum, Flora 67: 670. 1884. The type came from Brazil. It is exceptional among Pyrenulas in having two-celled spores. Although there has been no material available for comparison, the Bermuda specimen agrees so well with the description that there can be no doubt of its identity.
io. Pyrenula leucoplaca (Wallr.) Koerb.
On decorticated Juniperus, north of Hamilton, E. G. B. 69, on Nerium, Devonshire Marsh, E. G. B. 165; on Rhizophora, Fairy Land, E. G. B. 194; on Eugenia, Tucker's Town, E. G. B. 315; on Ficus, Wreck Hill, Brown \& Britton, IIO8; without definite station, Brown, Britton \&o Seaver, 1225.
if. Pyrenula mamillana (Ach.) Trev.
On Elaeodendron, without definite station, Brown, Britton \& Seaver, 1578 , 1587.
12. Pyrenula nitida var. nitidella (Flke.) Schaer.

On Melia, hillside near Flatts, E. G. B. 50, 53; on Nerium, Devonshire Marsh, E. G. B. I64; on trees, Church Cove, E. G. B. 108I. The material shows considerable variability, but on account of the small size of the perithecia appears to belong here.
13. Anthracothecium tetraspermum Riddle, sp. nov.

Thallus epiphloeodes crustaceus indeterminatus, sat crassus, continuus sat laevigatus aut subleprosus, olivaceus opacus. Gonidia chroolepoidea. Perithecia dispersa, 0.4 mm . diam., nigra, primum immersa et thallo obducta apice anguste denudato, demum emergentia; amphithecio globoso completo. Paraphyses simplices. Asci constanter 4 -spori. Sporae fuscae oblongae murali-divisae, 4-loculares, 2-locellati, $15-20 \times 8$-10 μ.

On bark of palmetto, Devonshire Marsh, collected by Mrs. E. G. Britton, No. 169 in part.

Distinct from all other species of the genus in the sporecharacters.

14. Melanotheca aggregata (Fée) Muell. Arg.

On Elaeodendron, without definite station, Brown, Britton \& Seaver, 1583.
15. Melanotheca cruenta (Mont.) Muell. Arg.

Without definite station, Challenger Expedition.
16. Pyrgillus cubanus Nyl.

On bark of palmetto, Devonshire Marsh, E. G. B. I6O in part. An interesting species known previously only from the original collection made by Charles Wright in the island of Cuba.
17. Arthonia conferta (Fée) Nyl.

On tamarisk, Biological Station, E. G. B. 35; on Melia, hillside near Flatts, E. G. B. 52; on Melia, Tucker's Town, E. G. B. 866; also, on Melia, Harrington Sound, Brown \& Britton, 836; and without definite station, W. G. Farlow.

As was pointed out by Willey (Synopsis of the Genus Arthonia 12), this is the Arthonia atrata of the list in Hemsley's Report, but not of Fée.
18. Arthonia polymorpha Ach.

On bark, without definite station, Challenger Expedition, under the name Arthonia polymorphoides Nyl. apud Crombie (opus citi), but the characters are certainly not of specific value, as they were based entirely on the chemical reactions of the hymenium.

19. Arthonia rubella (Fée) Nyl.

On bark, Abbot's Cliff, E. G. B. 924; Church Cave, E. G. B. 1082; without definite station, Challenger Expedition, under the name "var. inferiuscula Nyl.," but the varietal characters given are not of sufficient importance.
20. Arthothelium spectabile (Flot.) Mass.

On Elaeodendron, without definite station, Brown, Britton \& Seaver 1585.
21. Opegrapha atra Pers.

On Cocolobis, Hungry Bay, E. G. B. 203 in part, a small form; on Conocarpus, without definite station, Brown, Britton \& Seaver, I2II.
22. Opegrapha Bonplandi Fée.

On decorticated Juniperus, north of Hamilton, E. G. B. 69 in part; on Randia, sand hills near Paget, E. G. B. I22; Church Cave, Brown \& Britton, 1085; on dead Juniperus, St. David's Island, Brown, Britton \& Bisset, 2080, and on Elaeodendron, Abbotsford, Brown, Britton \& Bisset, 21IO; on Juniperus, without definite station, Brown, Britton \& Seaver, 1210, 1285.

This species is as variable as it is common. No. 1085, with olive-brown thallus and short apothecia, is the nearest to Fée's
original figure (Essai sur les Cryptogames pl.5,f.4. 1824). In Nos. 2110, 1210, 1285 , the thallus is glaucescent instead of olivaceous. In some of the specimens the spores are somewhat wider than the figures given by Mueller-Argau, but there is nothing else to distinguish these from the typical form.

23. Opegrapha Chevalieri var. incarnata Riddle, var. nov.

Thallus rimuloso-areolatus, roseo-suffusus vel tandem pallescens et argillaceus.

On calcareous rocks, without definite station, collected by Professor W. G. Farlow, 1880.

Type-specimen in the Cryptogamic Herbarium of Harvard University.
24. Opegrapha ophites Tuck. in herb., sp. nov.

Thallus epilithicus crustaceus indeterminatus tenuissimus, atro-griseus et fuligineo tinctus, aut demum evanescens. Lirellae sat graciles elongatae, $1.0-2.5 \mathrm{~mm}$. long, 0.15 mm . latit., sat flexuosae nigrae nitidiusculae simplices aut rariore furcatae laevigatae aut parce transversim diffractae, disco rimiformi. Sporae incolores, 6-8-loculares, circa $22 \times 7 \mu$.

On calcareous rocks, without definite station, collected by Professor W. G. Farlow, 1880.

Type-specimen in the Cryptogamic Herbarium of Harvard University.
25. Opegrapha vulgata Ach.

On Eugenia, without definite station, Brown, Britton \&o Seaver, 1288.
26. Graphis Afzelif Ach.

Without definite station, Challenger Expedition.
27. Graphis Lineola Ach.

On Melia, hillsides near Flatts, E. G. B. 51 .
28. Graphis Pavoniana Fée.

On Ilex, Devonshire Marsh, E. G. B. 377 a.
29. Graphis scripta (L.) Ach.

On Ilex, Devonshire Marsh, E. G. B. 377; without definite station, Challenger Expedition.
30. Graphis scripta var. serpentina (Ach.) Nyl.

On Celtis, Caves, Walsingham, E. G. B. 291.
3I. Graphis striatula (Ach.) Nyl.
On Laurocerasus, Paget Marsh, E. G. B. 230.
32. Phaeographis lobata (Eschw.) Muell. Arg.

Without definite station, Challenger Expedition.
33. Glyphis cicatricosa Ach.

On Celtis, Caves, Walsingham, E. G. B. 292, and Church Cave, E. G. B. Io84; on Elaeodendron, Walsingham, Brown \&o Britton 862; on lemon, Jayces' Dock, Brown, Britton \& Bisset 2104; also, without definite station, W. G. Farlow. Recorded in Hemsley's Report under the synonym Gl. Achariana Tuck.

34. Chiodecton Montagnei Tuck.?

It seems best to place here specimens of sterile thallus collected by Mrs. E. G. Britton, on Juniperus, Paynter's Vale, 366; on Elaeodendron, Abbot's Cliff, 94I; and on rocks at Abbot's Cliff, 950. In the absence of fruit the disposition of these specimens must remain doubtful.
35. Sclerophyton elegans Eschw.

On Elaeodendron, without definite station, Brown, Britton \& Seaver 1580.
36. Gyrostomum scyphuliferum (Ach.) Fr.

On Celtis, Walsingham, E. G. B. 289.
37. Leptotrema trypaneoides (Nyl.) Riddle, comb. nov.

Thelotrema trypaneoides Nyl. Ann. Sci. Nat. IV. 19:335. 1863. Type from Cuba.

On Elaeodendron, without definite station, Brown, Britton \&o Seaver 1581, 1588.
38. Microphiale lutea (Dicks.) Steiner.

On Melia, Tucker's Town, E. G. B., a few apothecia mixed with No. 867 .
39. Gyalecta Farlowi Tuck.; Nylander, Lich. Japon. 106. 1890.

The original description reads: "Species concinna affinis G. hyalinae Hepp; macula thallina alba vel carneoalba, apotheciis innatis dilute carneoluteis (latit. circ. 0.25 mm .) thelotremoideis; sporae ellipsoidea murales $18-23 \times 9.11$. ${ }^{\prime \prime}$."

On calcareous rocks, without definite station, W. G. Farlow.
Lecidea.
In the Journal of the Linnaean Society (14: 371. 1875), Stirton described three new species of Lecidea: L. euporiza, L. semiusta, and L. revertens. These were based on the collections of the Challenger Expedition, and are said by Crombie to be rock-specimens too fragmentary for determination. Indeed, Stirton himself says that one of these was based on a single apothecium!
40. Biatora fuscorubescens (Nyl.) Riddle, comb. nov.

Lecidea fuscorubescens Nyl. Bull. Soc. Linn. Norm. II. 7: 169. 1874.

Without definite station, Challenger Expedition.
Said to be related to Biatora vernalis (L.) Fr.

41. Bilimbia Brittoniana Riddle, sp. nov.

Thallus epiphloeodes crustaceus indeterminatus inaequaliter crassus, omnino granuloso-leprosus, sulphureus. Gonidia cystococcoidea. Apothecia sparsa et dispersa, sat thallo occulta minuta, $0.2-0.4 \mathrm{~mm}$. diam., plus minusve gyalectiformia, disco primum concavo demum plano pallide carneo, margine crasso integro persistente concolore; intus omnino incolores. Asci 8spori. Sporae incolores fusiformes, utrinque apices obtusae, 4-loculares, I_{5} - $18 \times 3 \mu$.

On exfoliating bark of Juniperus, north shore, collected by Mrs. E. G. Britton, August 31-September 20, 1905, no. 77.

This very distinct species has been named in honor of Dr. and Mrs. Britton. It is related to Bilimbia floridana (Tuck.) Riddle,
comb. nov., but differing in the thallus being entirely made up of sulphury granules, which under the microscope are seen to be glomerules of gonidia with a loose mixture of hyphae. The regular, marginate apothecia, resembling those of Microphiale hutea, also distinguish this species from B. floridana.
42. Bilimbia sphaeroides var. vacillans (Nyl.) Riddle, comb. nov. Lecidea sphaeroides var. vacillans Nyl. Lich. Scand. 204. 1861. Without definite station, Brown, Britton \&\& Seaver, 1279.
43. Bacidia fuscorubella (Hoffm.) Th. Fr.

On Rhizophora, Fairy Land, E. G. B. 194 in part; without definite station, W. G. Farlorv.

Agrees well with Wright's Lich. Cub. No. 220, in the Tuckerman Herbarium under the synonym Biatora rubella var. spadicea (Ach.) Tuck.
44. Cladonla fimbriata var. borbonica (Del.) Wainio.

On a roadside banking, Harrington House, Brown \&o Britton 852. Tropical material of the fimbriata-pityrea group offers an almost hopeless problem, but this specimen agrees well with Wright's Lich. Cub. No. 3I, which is cited by Wainio under his account of this variety.
45. Cladonia fimbriata var. nemoxyna (Ach.) Coem.

According to Wainio, the specimen called "Cl. fibula Hoffm." in Crombie's Report belongs here. The specimen listed in the same report as "Cl. acuminata var. hebescens Nyl." is said by Wainio to be related to Cl. fimbriata, but not in condition for determination.
46. Cladonia fimbriata var. simplex (Weis.) Flot.

On a stone-wall near St. Mark's Church, Brown \& Britton 496; E. G. B. 1861 .

The squamules of the primary thallus are more compact than i_{n} northern material, but there seems to be nothing else to distinguish this.
47. Cladonia mitrula Tuck.

On the ground, Hall's Island, E. G. B. 887 (typical) ; Paynter's Vale, Brown \& Britton, 980 (reduced); Paget Marsh, E. G. B. 1862; without definite station, Brown, Britton \&o Seaver I333; also Challenger Expedition.
48. Cladonia pityrea (Flke.) Fr.

On the ground, growing mixed with Cl . mitrula, Brown, Britton \&o Seaver, 1333 in part.
49. Cladonia rangiformis var. pungens (Ach.) Wainio.

Without definite station, Challenger Expedition.

50. Psorotichia bermudana Riddle, sp. nov.

Thallus crustaceus effusus indeterminatus crassus ($0.3-0.5$ mm .) diffracto-areolatus, areolis angulosis $1-2 \mathrm{~mm}$. latis subdispersis, nitidus fusco-niger (madefactus atro-olivaceus), minute crebreque verruculosus vel coralloideo-granulosus; pro maxima parte hyphis tenuibus laxisque constitutis, strato exteriore tenui parenchymatico cellulis $4^{-10} \times 4^{-6} \mu$. Gonidia gloeocapsoidea cellulis $4^{-6 \mu}$ diam., in glomerulosas circa $10-15 \mu$ consociatis, tegumento gelatino fuscoluteo. Apothecia primum subimmersa demum superficialia et lecanorina, ad 0.6 mm . diam., disco inaequali fusco-nigro, margine thallino tenui granulato; intus omnino incolores. Sporae incolores simplices ellipsoideae, $14{ }^{-}$ $16 \times 8 \mu$. Spermagonia ovoidea verruculis thallinis immersa. Spermatia oblonga recta, $2-4 \times$ 1 μ.

On calcareous rocks, without definite station, collected by Messrs. Brown, Britton \& Seaver, November 29-December I4, 1912, No. 1415.

In habit this species resembles Psorotichia diff racta Forssell, as represented in Claudel \& Harmand, Lich. Gall. Exsic. 301.
51. Omphalaria cubana Tuck.

On calcareous rocks, Castle Harbor, Stewardson Brown 628.
52. Omphalaria lingulata Tuck.

On calcareous rocks, Walsingham, W. G. Farlow, 1881; in the same region, Brown, Britton \& Seaver 2245.

Known elsewhere from Cuba and Mona Island.
53. Collema bermudanum Tuck. in herb., sp. nov.

Thallus foliaceus laxe adherentis irregulariter crebre laciniatus, siccus rigidus madefactus gelatinosus, lacinulis inciso-crenatis, ad I mm. latis, crassiusculis planis scrabiusculis apicibus turgidis adscendentibus imbricatis, in pulvinulos constipatis $5-10 \mathrm{~mm}$. diam., isidiis granulisque destitutus, superne atro-olivaceus subtus nigrescens; strato corticali destitutus. Gonidia nostocacea. Apothecia dispersa primum immersa demum subsuperficialia, ad 0.6 mm . diam., disco badio plano, margine thallino crasso integro persistente. Sporae incolores oblongae 4 -loculares, $20-30 \times$ I0-12 μ.

On calcareous rocks, Walsingham, collected by Professor W. G. Farlow, 1880 .

Type-specimen in the Cryptogamic Herbarium of Harvard University.

In a letter to Professor Farlow, under date of August 25, 1881, Tuckerman wrote of this species: "Collema cum C. furvo forsan comparabile sed distincta."

54. Collema flaccidum Ach.
 Without definite station, Brown, Britton \& Seaver 1348 .

55. Collema nigrescens (Huds.) Ach.

On Avicennia, Walsingham, W. G. Farlow.
56. Collema thamnodes Tuck. in herb., sp. nov.

Thallus fruticulosus irregulariter ramosus in pulvinulos constipatis $5-\mathrm{IO} \mathrm{mm}$. diam., ramis erectis compressis, circa 3-5 mm . altit., 1.2 mm . latit., 0.5 mm . crassis, partim crebris isidiis, viridi-fuscus vel fusco-niger; strato corticali destitutus. Gonidia nostocacea. Apothecia ignota.

On calcareous rocks, Walsingham, collected by Professor W. G. Farlow, 1880.

Type-specimen in the Cryptogamic Herbarium of Harvard University.
57. Leptogium marginellum (Sw.) Mont.

On Jasminium, Paynter's Vale, E. G. B. 368; on Juniperus, without definite station, Brown, Britton \& Seaver, 1410, 1586 (beautiful specimens!).
58. Leptogium tenuissimum (Dicks.) Koerb.

On the ground, Paynter's Vale, Brown \& Britton 979.
One would scarcely expect this northern species in Bermuda, and the material being sterile the determination is not certain, but the thalline characters agree with this species.
59. Leptogium tremelloides (L. f.) S. F. Gray.

Including L. diaphanum (Sw.) Ach. of Crombie's Report.
There are two recognizable phases of the species in Bermuda, although these are not distinct enough to receive names. The following specimens have abundant apothecia and few lobules: on Juniperus, Devonshire Marsh, E. G. B. 39; on Elaeodendron, 847, and on Conocarpus, Castle Harbor, Brown \& Britton 849. The remaining specimens are sparingly fruited and have the lobes more or less densely fringed with lobules: on various trees, Walsingham, M. A. Howe; Castle Harbor, 846, 848; Hall's Island, 886, and Paynter's Vale, Brown \&o Britton 992; St. David's Island, Brown, Britton \& Bisset, 2079. Also collected by the Challenger Expedition.
60. Pertusaria leioplaca (Ach.) Schaer.
P. papillata (Ach.) Nyl. of Crombie's Report.

On orange, Paynter's Vale, E. G. B. 364; without definite station, W. G. Farlow; also Challenger Expedition.

6I. Pertusaria lutescens (Eschw.) Krempelh. Lichenen-Flora der Südsee-Inseln, Jour. Mus. Godeffroy 1: 104. Hamburg. 1873.

Pertusaria communis var. lutescens Eschw.; Martius, Flor. Bras. 1: 118 . 1833.

A complete description of the species based on several specimens, including the type, was given in Mueller-Argau's Revisio Lichenum Eschweilerianum, Flora $67: 672$. 1884.

On tamarisk, Biological Station, E. G. B. 36 in part; and on Melia, hillside near Flatts, E. G. B. 55.

There has been no authentic specimen of this species for comparison but the material agrees well with Mueller-Argau's description cited above. The species is recorded from Rio Janeiro
and Bahia, Brazil, and from Cuba. In the Cryptogamic Herbarium of Harvard University there are specimens from the southern United States, which Tuckerman had labelled under this name with a query.

62. Pertusaria multipuncta (Turn.) Nyl.

On orange, Walsingham, E. G. B. i; on Elaeodendron, Walsingham, Brown छo Britton 863 , and Abbot's Cliff, Brown \&o Britton 943.

63. Pertusaria pustulata (Ach.) Nyl.

On bark, Mangrove Creek, W. G. Farlow; without definite station, Challenger Expedition.
64. Pertusaria tuberculifera Nyl.

On Celtis, Walsingham, E. G. B. 290.
65. Lecanora bermudensis Nyl.; Crombie, Jour. Linn. Soc. Bot. 16: 215. 1877.
Without definite station, Challenger Expedition.
Said to be related to L. Hageni Ach. I know nothing further of it.
66. Lecanora cinereocarnea (Eschw.) Wainio.

Including L. chlaronella Nyl. of Crombie's Report.
Occurring in three well-marked forms:
Forma typica, thallo crassitudine mediocre verruculoso vel verrucoso. On tamarisk, Biological Station, $37 b$; on Melia, hillside near Flatts, 54; on decorticated Juniperus, north of Hamilton, 68; on Rhizophora, Fairy Land, 192 in part; on cedar posts, Paynter's Vale, 988 ; all collected by Mrs. E. G. Britton.

Forma athallina Riddle, f. nov., thallo evanescente. On pine fence, Paynter's Vale, E. G. B. 989, g91a.

Forma rugosa Riddle, f. nov., thallo crasso rugoso. On Melia, west end of Causeway, Brown \& Britton, 996.
67. Lecanora pallida var. cancriformis Tuck.

Including L. glaucomodes var. conflectens Nyl. of Crombie's Report. On Diospyros, Warwick Marsh, E. G. B. 306; without definite station, W. G. Farlow; also Challenger Expedition.
68. Lecanora subfusca (L.) Ach.

On tamarisk, Biological Station, E. G. B. 37a; on Melia, Tucker's Town, E. G. B. 867 in part. These specimens appear to belong to the variety allophana Ach. In Crombie's Report, there is recorded a var. sylvestris Nyl. (Bull. Soc. Bot. France 15: 188. 1868), but this is a nomen nudum.
69. Lecanora varia (Hoffm.) Ach.

On Celtis, Walsingham, E. G. B. 288.
7o. Lecanora varia var. symmicta Ach.
On Conocarpus, without definite station, Brown, Britton $\&$ Seaver, $121 I$ in part.

7r. Haematomma puniceum (Ach.) Wainio.
On Diospyros, Warwick Marsh, E. G. B. 307; on Melia, Tucker's Town, E. G. B. 864; on palmetto, "the commonest habitat," without definite station, W. G. Farlow.
72. Parmelia latissima var. cristifera (Tayl.) Hue.

On palmetto, North Shore Road, E. G. B. 15 .
73. Parmelia perlata (L.) Ach.

Paynter's Vale, W. G. Farlow; without definite station, Challenger Expedition.

74. Parmelia tinctorum Despr.

On palmetto, Devonshire Marsh, E. G. B. 167; without definite station, Challenger Expedition.
75. Ramalina complanata (Sw.) Ach.

On various trees and shrubs, Abbot's Cliff, 889, 934, Fairy Land, 191, Walsingham, 295, Serpentine Marsh, 104, all collected by Mrs. E. G. Britton; also, Tucker's Town, 818, and Mangrove Pond, ro35, Brown \& Britton.
76. Buellia canescens (Dicks.) DeNot.

On roadside wall, Devonshire, E. G. B. 155 .
No fruit has been found so the determination cannot be
regarded as certain, but the thalline characters agree exactly with those of the species cited. As this species is entirely unknown in America, the interesting possibility suggests itself of its having been introduced into Bermuda from England, where it is common in just such habitats as the one given.
77. Buellia myriocarpa (DC.) Mudd.

On bark of Melia, Tucker's Town, E. G. B. 867 in part; without definite station, W. G. Farlow.
78. Buellia parasema (Ach.) Th. Fr.

On pine-rail fence, Paynter's Vale, Brown \&o Britton 99I; on Juniperus, St. David's Island, Brown, Britton \&o Bisset 2078.

The Bermuda material of this species varies considerably from the species as known in the northeastern United States. The thallus is either more distinctly areolate, or, in other specimens, almost absent, the disk of the apothecia is very flat, and the spores of the minimum size for the species. Yet it scarcely seems worth while giving a varietal name in the case of such a polymorphic species.
79. Rinodina insperata (Nyl.) Zahlbr.; Engler \& Prantl, Nat. Pflanzenfam. $\mathbf{I}^{1 *}: 232$. 1907.
Without definite station, Challenger Expedition.
This was published originally as Lecanora insperata Nyl. Act. Soc. Sci. Fenn. 7: 443. 1863. Then it was changed to Lecidea Nyl.; Crombie, Jour. Linn. Soc. Bot. 16: 215. 1877. Hue, in his Lichenes Exotici (Nouv. Arch. Mus. d'Hist. Nat. Paris III. 3: 139. 1891), places it under "Stirps Lecideae (Buelliae) myriocarpae." An examination of an apothecium from an original specimen in Lindig's Lich. Nov. Gran. No. 2616 shows beyond doubt that Zahlbruckner's disposition of the species is correct, in spite of the thalline exciple having disappeared.
80. Blastenia floridana (Tuck.) Zahlbr.

On tamarisk, Biological Station, E. G. B. 36, and on Coccolobis, north of Hamilton, E. G. B. 66.

8i. Physcia picta (Sw.) Nyl.

On a cliff, Paynter's Vale, 362; on Juniperus, Paynter's Vale, 367; on stone wall, Harrington House, 853; on Melia, Tucker's Town, 867; on palmetto, Devonshire Marsh, 160 in part; all collected by Mrs. E. G. Britton.
82. Physcia alba (Fée) Muell. Arg.

A small form on Rhizophora, Fairy Land, E. G. B. 192.
83. Physcia crispa (Pers.) Nyl.

On Avicennia, Serpentine Marsh, Io5; on rocks, Abbot's Cliff, 937, 945, 946, sterile, and 938, fruiting; on Celtis, Abbot's Cliff, 947, fruiting; all collected by Mrs. E. G. Britton; on Juniperus, Abbot's Cliff, 935; on rocks, Abbot's Cliff, 939, 940; on Avicennia, west end of Causeway, 995; all collected by Brown and Britton.
84. Physcia integrata var. sorediosa Wainio.

Ph. obsessa (Mont.) Nyl. of Crombie's Report.
On Celtis, Abbot's Cliff, E. G. B. 923, and on bark, Church Cave, 1080 in part, E. G. B.
85. Physcia Leana Tuck.

Without definite station, Challenger Expedition.
I give this record on the basis of Crombie's Report, not having seen the specimens, but it seems to me doubtful if the determination is correct.
86. Physcia stellaris (L.) Nyl.

On various trees and shrubs, Biological Station, 34; Serpentine Marsh, 106; Tucker's Town, 865; Abbot's Cliff, 922; Bassett's Caves, 1040; all collected by Mrs. E. G. Britton; also, Smith's Island, Brown, Britton \& Bisset 2102, and without definite station, W. G. Farlow.

[^24]
INDEX TO AMERICAN BOTANICAL LITERATURE

1911-1916

The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of one cent for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Alker, F. R. Some Brush Creek observations. Bot. Soc. W. Pennsylvania Publ. i: io, i1. 27 N igir.
Anderson, H. W. A new leaf spot to Viola cucullata. Proc. Indiana Acad. Sci. 1914: 187-190. 1914.
Andrews, F. M. Stomata of Trillium nivale. Proc. Indiana Acad. Sci. 1914: 209-212. f. I-3. 1914.
Arthur, J. C. Some large botanical problems. Proc. Indiana Acad. Sci. 1914: 267-271. 1914.
Arthur, J. C. Uredinales of Porto Rico based on collections by F. L. Stevens. Mycologia 7: 315-332. N 1915; 8: 16-33. Ja 1916. Includes 17 new species in Puccinia (I , Uredo (15), and Aecidium (I).
Bartram, H. E. Effect of natural low temperature on certain fungi and bacteria. Jour. Agr. Research 5: 651-655. 3 Ja 1916.
Beadle, C., \& Stevens, H. P. Hedychium coronarium for paper making. Paper 9: 17-19.f. 1, 2. 2 O 1912.
Bödeker, F. Mamillaria multihamata Bödeker spec. nov. Monats. Kakteenk 25: 76-80. O 1915 . [Illust.]
Bovie, W. T. The action of Schumann rays on living organisms. Bot. Gaz. 6I : 1-29.f. I-4. 15 Ja 1916.

Brand, A. Neue Beiträge zur Kenntnis der Polemoniaceen. Ann. Conserv. Jard. Bot. Geneva 15, 16: 322-342. 1913. Gilia royalis and Navarretia MacGregorii, spp. nov. from California, are described.
Briggs, L. J., \& Shantz, H. L. Hourly transpiration rate on clear days as determined by cyclic environmental factors. Jour. Agr. Research 5: 583-649. pl. 53-55+f. I-22. 3 Jа 1916.
Burns, G. P. The relative transpiration of white pine seedlings. Plant World 18: r-6. Ja 1915.
Cannon, W. A. A manometer method of determining the capillary pull of soils. Plant World 18: $1 \mathrm{I}-13$. Ja 1915.
Clinton, G. P. Botany in relation to agriculture. Science II. 43: 1-13. 7 Ja 1916.
Cook, M. T. The pathology of ornamental plants. Bot. Gaz. 6i: 67-69. I5 Ja 1916.
Coons, G. H. Factors involved in the growth and the pycnidium formation of Plenodomus fuscomaculans. Jour. Agr. Research 5: 713-769. 17 Ja 1916.
Cotton, A. D. Cryptogams from the Falkland Islands collected by Mrs. Vallentine. Jour. Linn. Soc. Bot. 43: 137-231. pl. 4-10. 30 N 1915.

Coulter, S. Notes upon the distribution of forest trees in Indiana. Proc. Indiana Acad. Sci. 1914: 167-177. 1914.
Coville, F. V. Directions for blueberry culture, 1916. U. S. Dept. Agr. Bull. 334: r-16. pl. 1-17. 28 D 1915.
Dalbey, N. E. A comparative study of some species of Xanthium. Kansas Univ. Sci. Bull. 9: 57-65. pl. 16-22. D 1914.
Deam, C. C. Plants new or rare to Indiana. No. V. Proc. Indiana Acad. Sci. 1914: 197-201. 1914.
Detwiler, S. B. The American chestnut tree. Am. Forestry 21: 957^{-} 960. O 1915. [Illust.]

Detwiler, S. B. The American white oak. Am. Forestry 22: 3-6. Ja 1916. [Illust.]
Detwiler, S. B. The sugar maple. Am. Forestry 2I: 1019-1022. N 1915. [Illust.]
Dodge, B. O. Fungi producing heart-rot of apple trees. Mycologia 8: 5-15. pl. 173-176. Ja 1916.
Elliott, J. A. A study of the histological variations of Quercus muhlenbergii. Kansas Univ. Sci. Bull. 9: 45-54. pl. 11-15. D 1914.

Farwell, O. A. Range extension of Ceanothus sanguineus. Rhodora 17: 229, 230. 6 Ja 1916.
Fawcett, W., \& Rendle, A. B. Some new Jamaica orchids. Jour. Bot. 47: 3-8. Ja 1909.
Fernald, M. L. The characters and range of Carex laevivaginata. Rhodora 17: 231, 232 . 6 Ja 1916.
Fernald, M. L., \& St. John, H. The occurrence of Botrychium virginianum, var. europaeum. Rhodora 17: 233, 234. 6 Ja 1916.
Fisher, M. L. Report on corn pollination-IV. Proc. Indiana Acad. Sci. 1914: 207, 208. 1914.
Foerste, A. F. Dictyophlois reticulata gen. et sp. nov. Bull. Torrey Club 42: 675-677. pl. 33. 22 Ja 1916.
Free, E. E. A relative score method of recording comparisons of plant condition and other unmeasured characters. Plant World 18: 249-256.f. I-4. S 1915.
Fritel, P. H. Remarques sur quelques espèces fossiles du genre Magnolia. Bull. Soc. Géol. France 13: 277-292. f. I-8. 1913.
Fritel, P. H. Sur l'attribution au genre Nuphar de quelques espèces fossiles de la flore arctique. Bull. Soc. Géol. France 13: 293-297. f. $1-4$. 1913.

Gassner, G. Die Getreideroste und ihr Auftreten im subtropischen östlichen Südamerika. Centralb. Bakt. Zweite Abt. 44: 305-381. 28 Au 1915.
Giddings, N. J., \& Berg, A. Apple rust. West Virginia Agr. Exp. Sta. Bull. I54: I-73. pl. I-Io. Au 1915.
Glover, G. H., \& Robbins, W. W. Colorado plants injurious to livestock. Colorado Agr. Exp. Sta. Bull. 21I: i-71. f. I-92. O 1915.
Goebel, K. Archegoniatenstudien. XV. Die Homologie der An-theridien- und der Archegonienhüllen bei den Lebermoosen. Flora 105: 53-70. f. 1 -15. 2 N 1912.
Includes description of Fossombronia Luetzelburgiana sp. nov. from Brazil.
Goebel, K. Morphologische und Biologische Bemerkungen [23-30]. Flora 108: 311-352. [Illust.] 9 S 1915. Includes notes on certain Brazilian plants.
Hall, J. G. 'Fire blight' of pear and apple. Washington Agr. Exp. Sta. Pop. Bull. 56: $[\mathrm{I}-8] f .1-4$. II S 1913.
Harris, J. A. On the distribution and correlation of the sexes (staminate and pistillate flowers) in the inflorescence of the aroids Arisarum
vulgare and Arisarum proboscideum. Bull. Torrey Club 42: 663673.f. 1, 2. 22 Ja 1916.

Harvey, B. T. Notes on the dissemination of Virginia creeper seeds by English sparrows. Plant World 18: 217-219. Au 1915.
Hayes, H. K., \& East, E. M. Further experiments on inheritance in maize. Connecticut Agr. Exp. Sta. Bull. 188: 1-31. pl. $1-7$. S 1915.
Heald, F. D., \& Woolman, H. M. Bunt or stinking smut of wheat. Washington Agr. Exp. Sta. Bull. 126: i-24.f. I-5. N 1915.
Heimlich, L. F. The primrose-leaved violet in White County. ProcIndiana Acad. Sci. 1914: 213-217. 1914. [Illust.]
Hopkins, L. S. The Pteridophytes of Allegheny County. Bot. Soc. W. Pennsylvania Publ. I: 11-40. 27 N 1911.

Howe, M. A. Ricciaceae [In Britton, N. L., "The Vegetation of Mona Island'J. Ann. Missouri Bot. Gard. 2: 50, 51. My 1915. Includes Riccia Brittonii and R. violacea, spp. nov.
Humphrey, H. B., \& Weaver, J. E. Natural reforestation in the mountains of northern Idaho. Plant World 18: 31-47. f. I-9. F 1915.
Jones, L. R., \& Gilman, J. C. The control of cabbage yellows through disease resistance. Wisconsin Agr. Exp. Sta. Research Bull. 38 : I-70. f. I-23. D 1915.
Lamb, G. N. Willows: their growth, use, and importance. U. S. Dept. Agr. Bull. 316: 1-52. pl. I-10. 20 D 1915.
Livingston, B. E. Atmometry and the porous cup atmometer. Plant World 18: 21 -30. F 1915; 5I-74. f. 1 -8. Mr 1915; 95-111. Ap 1915; 143-149. My 1915.
Loeske, L. Ein polyphyletisches Amblystegium. Neue Beiträge zur Frage der Parallelformen bei den Moosen. Hedwigia 51: 286-298. 25 Ja 1912.
Long, E. R. Acid accumulation and destruction in large succulents. Plant World 18: 26I-272. f. I. O 1915.
Ludwig, C. A. Continuous rust propagation without sexual reproduction. Proc. Indiana Acad. Sci. 1914: 219-230. 1914.
MacDougal, D. T. The vegetation of the Tucson region. Univ. Arizona Monthly 9: [1-18]. pl. $I+f$. r, 2. My 1908.
Malme, G. O. A. Die amerikanischen Spezies der Gattung Xyris L. Untergattung Euxyris (Endlicher). Arkiv. Bot. 13: 1-32. f. 1-3. 28 My 1913.

Malme, G. O. A. Xyris L. Untergattung Nematopus (Seubert) Entwurf einer Gliederung. Arkiv. Bot. 13: i-103. f. 1 -5. 9 Ap 1913.

McCrone, G. Histology of Malva rotundifolia. Kansas Univ. Sci. Bull. 9: 261-267. pl. 54-59. S 1915.
Meinecke, E. P. Peridermium Harknessii and Cronartium quercuum. Science II. 43: 73. I4 Ja 1916.
Merl, E. M. Beiträge zur Kenntnis der Utricularien und Genliseen. Flora 108: 127-200.f. I-4I. 9 S 1915.
Meyer, R. Verschollene Arten der Gattung Echinopsis. Montas. Kakteenk. 25: 60-64. Au 1915; 73-76. O 1915.
Moore, B. Notes on succession from pine to oak. Bot. Gaz. 6I : 5966. I5 Ja 1916.

Murrill, W. A. Index to Illustrations of Fungi I-XXII. Mycologia 8: 47-51. Ja 1916.
Murrill, W. A. A new family of Hymenomycetes. Mycologia 8: 56. Ja 1916. Porotheliaceae.
Murrill, W. A. A new genus of resupinate polypores. Mycologia 8: 56, 57. Ja 1916.
Xanthoporia gen. nov.
Nash, G. V., \& Hitchcock, A. S. (Poales.) Poaceae (Pars). N. Am. Fl. 17: 197-288. 20 D 1915.
Nelson, A., \& Macbride, F. J. Western plant studies-III. Bot. Gaz. 61: 30-47. I5 Ja 1916.
Includes Pachylophus psammophilus, Phacelia argentea, Oreocarya salmonensis, and Gaillardia crassifolia, spp. nov.
Nieuwland, J. A. Habits of waterlily seedlings. Am. Mid. Nat. 4: 291-297. pl. I4. Ja 1916.
Nothnagel, M., \& Pickett, F. L. Corrections to the lists of mosses of Monroe County, Indiana, I and II. Proc. Indiana Acad. Sci. 1914: 179, 180. 1914.
O'Neal, C. E. Some species of Nummularia common in Indiana. Proc. Indiana Acad. Sci. 1914: 235-249. pl. r-4. 1914.
Ostenfeld, C. H. Ruppia anomala sp. nov., an aberrant type of the Potamogetonaceae. Bull. Torrey Club 42: 659-662, pl. 32. 22 Ja 1916.

Parish, S. B. Observations in the Colorado desert. Plant Wöld 18: 75-88. f. I-4. Mr 1915.

Paulsen, O. Some remarks on the desert vegetation of America. Plant World 18: ${ }^{5} 55-161$. Je 1915.
Payson, E. The pollination of Asclepias cryptoceras. Bot. Gaz. 61: 72-74. I5 Ja 1916.
Pearl, R., \& Surface, F. M. Growth and variation in maize. Zeits. Induk. Abstammungs- und Vererbungslehre 14: 97-203. f. $1-16$, J1 1915.
Pease, A. S. Arenaria stricta in the White Mountains. Rhodora 17: 232, 233. 6 Ja 1916.
Peters, R. A preliminary study of the causes that produce "baldheaded" kelp. Kansas Univ. Sci. Bull. 9: 3-10. pl. I. D 1914.
Pickett, F. L., \& Nothnagel, M. The mosses of Monroe County, Indiana,-III. Proc. Indiana Acad. Sci. 1914: 181-184. 1914.
Pipal, F. J. Oat smut in Indiana. Proc. Indiana Acad. Sci. 1914: 191-196. 1914.
Pitz, W. Effect of elemental sulphur and of calcium sulphate on certain of the higher and lower forms of plant life. Jour. Agr. Research 5: 771-780. pl. 56. 17 Ja 1916.
Ramsey, G. B. The genus Rosellina in Indiana. Proc. Indiana Acad. Sci. 1914: 251-265. pl. $1-3$. 1914.
Read, A. D. The flora of the Williams division of the Tusayan national forest, Arizona. Plant World 18: 112-123.f. I, 2. Ap 1915.
Rehder, A. The Bradley bibliography $1: \mathrm{i}$-xii $+1-566$. 1911; 2 : $\mathrm{i}-\mathrm{vi}+\mathrm{I}-926 . \quad 1912$. Volume I, Dendrology, Part I; volume 2, Dendrology, Part II.
Robbins, W. W., \& Reinking, O. A. Fungous diseases of Colorado crop plants. Colorado Agr. Exp. Sta. Bull. 212: 1-54. pl. I-Ig. O 1915.
Rose, J. N. Edward Lee Greene. Bot. Gaz. 61: 70-72. 15 Ja 1915. [Portrait.]
Rübel, E. Die auf der "International pflanzen-geographischen Exkursion" durch Nordamerika 1913 kennengelernten Pflanzengesellschaften. Bot. Jahr. Beibl. 53: 3-36. pl. $1-6.1901915$.
Seaver, F. J. North American species of Ascodesmis. Mycologia 8: 1-4. pl. 172. Ja 1916. Ascodesmis porcina sp. nov. is described.
Shafer, J. F. Rambles in Panama and Jamaica. Bot. Soc. W. Pennsylvania Publ. 1: 19-22. 27 N 191r.

Shimek, B. An artificial prairie. Bull. Lab. Nat. Hist. Univ. Iowa 6: 35-42. pl. r. 26 Ap 1913.
Shive, J. W. An improved non-absorbing porous cup atmometer. Plant World 18: 7-10.f. I. Ja 1915.
Shreve, E. B. An investigation of the causes of autonomic movements in succulent plants. Plant World 18: 297-312. f. 1 - 6 . N 1915 ; 331-343.f. 7-10. D 1915.
Simmons, H. G. A survey of the phytogeography of the arctic American archipelago, with some notes about its exploration. Lunds Univ. Ärsskrift II. 9^{19} : 1-183. Map 1, 2. 1913.
Skinner, J. J. The antizymotic action of a harmful soil constituent salicylic aldehyde and mannite. Plant World 18: 162-167. Je 1915.

Skinner, J. J. Effect of vanillin as a soil constituent. Plant World 18: 321-330.f. I-5. D 1915.
Skottsberg, C. Notes on the relations between the floras of subantarctic America and New Zealand. Plant World 18: 129-142. My 1915.
Slosson, M. Notes on Trichomanes-I. The identity of Trichomanes pyxidiferum L. Bull. Torrey Club 42: 651-658. pl. 30, 31 . 22 Ja 1915.

Smith, E. F., \& Bryan, M. K. Angular leaf-spot of cucumbers. Jour. Agr. Research 5: 465-476. pl. 43-49. I3 D 1915.
Stakman, E. C. Spore germinations of cereal smuts. Minnesota Agr. Exp. Sta. Bull. 133: 1-52. pl. 1-25. Jl 1913.
Standley, P. C. Vegetation of the Brazos Canyon, New Mexico. Plant World 18: 179-191.f. I-3. J1 1915.
Standley, P. C. The genus Espeletia. Am. Jour. Bot. 2: 468-486. pl. $17+f$, I-6. 16 D 1915.
Includes descriptions of 6 new species.
Stapf, O. Iris bracteata. Curt. Bot. Mag. IV. II: pl. 8640. D 1915. A plant from Oregon.
Starr, A. M. A Mexican Aytonia. Bot. Gaz. 61: 48-58. pl. $1-4+f$. 30-33. I5 Ja 1916.
Sterrett, W. D. The ashes: their characteristics and management. U. S. Dept. Agr. Bull. 299: 1-88. pl. 1-16. I3 D 1915.

Stewart, A. Further observations on the origin of the Galapagos Islands. Plant World 18: 192-200. J1 1915.

Stewart, A. Some observations concerning the botanical conditions on the Galapagos Islands. Trans. Wisconsin Acad. Sci. 18: 272-340. O 1915.
Stewart, R. R. Some observations on the flora of the northwest Himalaya. Torreya 15: 251-260.f. I-4. 30 D 1915.

Stevens, H. E. Citrus canker-III. Florida Agr. Exp. Sta. Bull. I28: i-20. f. 1 -6. N 1915 .
Stomps, T. J. The dunes of Lake Michigan. Plant World 18: 205216. Au 1915.

Sturgis, W. C. Myxomycetes from South America. Mycologia 8: 34-41. Ja 1916.
Sumstine, D. R. The fungal flora of Pittsburgh. Bot. Soc. W. Pennsylvania Publ. 1: 14-18. 27 N i911.
Taylor, N. Endemism in the flora of the vicinity of New York. Torreya 16: 18-27. Ja 1916.
Thellung, G. Pflanzenwanderungen unter dem Einfluss des Menschen. Bot. Jahr. Beibl. 53: 37-66. 19 O 1915.
Thompson, W. G. Notes on Stockbridge trees. Stockbridge I: 8-10. I O 1914.
Transeau, E. N. Annotated list of the algae of eastern Illinois. Trans. Illinois Acad. Sci. 6: 69-89. 1913.
Transeau, E. N. The periodicity of algae in Illinois. Trans. Am. Micros. Soc. 32: 31-40. f. I-8. Ja 1913.
Transeau, E. N. Notes on the Zygnemales. Ohio Jour. Sci. 16: $17-31$. N 1915.
Includes Debarya americana, D. decussata, Zygnema cylindrica, Spirogyra Borgeana,
S. propria, S. novi-anglica, S. micropunctata, S. reflexa, S. hydrodictya, S. Farlowii, and S. floridana, spp. nov.
Travelbee, H. C. Correlation of certain long-cycled and short-cycled rusts. Proc. Indiana Acad. Sci. 1914: 23I-234. 1914.
Tufts, W. P. An inquiry into the nature of a somatic segregation of characters in the Le Conte pear. Oregon Agr. Exp. Sta. Bull. 123: 1-16. pl. 1, 2. D 1915.
Ullrich, F. T. The relation of evaporation and soil moisture to plant succession in a ravine. Bull. Illinois State Lab. Nat. Hist. 12: 1-16. pl. r-18. S 1915.
Weatherwax, P. Some peculiarities in Spirogyra dubia. Proc. Indiana Acad. Sci. 1914: 203-206. f. 1-5. 1914.

MCALLISTER: MORPHOLOGY OF THALLOCARPUS

BULLETIN

OF THE

TORREY BOTANICAL CLUB

APRIL, 1916

Notes on species of Halymenia

F. S. Collins and M. A. Howe

In connection with studies of a series of specimens of red algae of the genus Halymenia from Bermuda, southern Florida, and North Carolina, we have been forced to recognize as entitled to specific rank four striking and apparently well-defined forms that we are venturing to describe as new. One of these is related to Halymenia floridana J. Ag., two find their closest affinity in H. Floresia (Clem.) Ag., and the fourth is allied to H. actinophysa M. A. Howe. Descriptions follow:

Halymenia bermudensis sp. nov.

Thallo violaceo-rubro, plerumque stipitato; stipite inferne subtereti, superne complanato vel costato-alato, interdum ramoso, plus minusve elongato; fronde membranacea, firma, levi, nec nitente, $60-120 \mu$ crassa, suborbiculari, cordata vel obovata, saepe, interdum repetite, lobata vel prolifera, divisionibus frondi primariae conformibus; margine plana vel plicata, subintegra, crenata, vel interdum irregulariter dentata; medulla frondis subcompacta, inter fila tenuiora filis crassioribus stellatim radiatis frequenter sparsis; strato corticali frondis series $1-3$ cellularum minorum monstrante; strato subcorticali series I-3 cellularum majorum monstrante; tetrasporangiis sparsis; cystocarpiis ignotis.

Species H. floridanae J. Ag. proxima, sed differt colore magis saturate violaceo-rubro, minus roseo, fronde magis dissecta, substantia firmiore, cortice crassiore, firmiore, saepe pleiostromatico.
[The Bulletin for March (43: 117 -168. pl. 4-6) was issued April 14, 1916.]

Ad oras Insularum Bermudensium (typum legit F. S. Collins, Apr. 25, 1912, no. 7074).

Thallus usually stipitate; stipe commonly $2-10 \mathrm{~mm}$. long, $0.45^{-0.75 ~ \mathrm{~mm}}$. thick, subterete below, complanate or costatealate above, sometimes branched, occasionally more elongate and subrhizomatous; frond membranous, rather firm or slightly gelatinous, $60-120 \mu$ thick, variable in form, suborbicular, cordate, or obovate, attaining a width of $4-30 \mathrm{~cm}$., subentire, or sparingly or copiously lobed or proliferous, the lobes or proliferations conformable or ovate, themselves sometimes once or twice lobed in similar fashion, the proliferations often stipitate, the apices rounded-obtuse, the margins plane or more or less ruffled-plicate, subentire, lightly sinuate-crenate, or now and then irregularly coarsely or obscurely dentate; surface dull or rarely subnitent, smooth; color (dried) violet-red (rosolane-purple to Indian lake*); medulla of stipe compact, sometimes pseudoparenchymatous, $0.15-0.45 \mathrm{~mm}$. thick; cortex of stipe or of its costa very firm, compact, parenchymatous, $8-30$ cells thick, its cells in distinct anticlinal rows, cells of subcortex larger and irregularly disposed; medulla of frond moderately compact, its filaments mostly $3^{-8} \mu$ in diameter, usually interspersed (in older parts at least) with coarser filaments, $6-20 \mu$ in diameter, having more homogeneous refringent contents, such filaments radiating from substellate ganglion-like enlargements $15-65 \mu$ in diameter; cortex of frond parenchymatous or subparenchymatous, $\mathrm{I}-3$ cells thick, the cells usually firm-walled, subquadrate in section, the superficial cells angular, mostly $5-10 \mu$ in diameter in surface view, their outer walls $2-4 \mu$ thick, protoplasts close (separated $2-3 \mu$), subcortex I-3 cells thick, its cells mostly $13-25 \mu$ in diameter; tetrasporangia 12-16 $\mu \times 8-10 \mu$; cystocarps unknown.

Bermuda: In shallow water in clefts of rocks and caves and among roots- of Rhizophora; A. F. Kemp, August, 1856 (as Rhodymenia palmata); Walsingham, W. G. Farlow, February, 1881; near Hamilton, M. A. Howe 69, June 12, 1900; Stokes Bay, Tucker's Town, M. A. Howe 313, July 6, 1900; Harrington Sound, A. B. Hervey, January 15, 1913; Dingle Bay, A. B. Hervey, March 30, 1915; Grasmere, A. B. Hervey, March 9, 1914; Old Ferry, A. B. Hervey, April 2, 1913 ; Castle Harbor, F. S. Collins, April 25, 1912 (Phyc. Bor.-Am. 2050), and May 3, 1913.

Type: Castle Harbor, near Tucker's Town, April 25, 1912, F. S. Collins 7074, in herb. F. S. Collins.

[^25]This species seems to be fairly common in Bermuda. Its favorite habitat is the walls of narrow deep clefts in the shore cliffs, such as are found between Tucker's Town and Walsingham. Here it grows from a little below low-water mark down at least to a depth of two or three meters, usually as single separate plants rather than in dense tufts. It seems to thrive best where much shaded. In an unattached condition it occurs also among mangrove roots, as in the vicinity of Hamilton. These loose fronds are darker in color, firmer in texture, and less adherent to paper when dried under pressure than are the attached forms. There is much variation in the form of the frond; the primary form seems to be orbicular and plane with a slightly developed stipe. Rapid marginal growth of the frond results in ruffles and plications, and when these are well developed the plant has somewhat the aspect of Porphyra amplissima in miniature. In color and habit it is often suggestive also of certain conditions of Callymenia reniformis, from which, however, it differs markedly in structure. Proliferous growth is common; the proliferations are sometimes sessile but are oftener stipitate, the stipe terete or flattened, in the latter case with or without an obvious costa, which may be continued into the base of the main expansion. In the older plants, under certain conditions of growth, the basal stipe, terete or flattened, may branch and form a matted subrhizomatous complex from which individual fronds arise, these usually orbicular or cuneate, or sometimes cordate from a cuneate base. An important character of this species is the presence, in the medulla, of conspicuous stellate ganglia more or less similar to those exhibited by the type specimen of Halymenia floridana J. Ag. and by Sebdenia heteronema M. A. Howe.* These may be easily observed through the cortex by transmitted reduced light under low-power lenses without the use of any staining reagents; however, their protoplasts have a peculiar affinity for haematoxylin stains and they may be differentiated with remarkable distinctness by overstaining with preparations of haematoxylin and afterwards partly decolorizing. The nodes of the ganglia are irregularly stellate or subglobose; from each of them radiate three to ten coarse rather rigid and straight tapering filaments with dense homogeneous refringent contents; in the

[^26]less developed conditions these radiating arms seem to lose themselves among the ordinary filaments of the medulla, but in older well-developed states some of these radiating arms may be traced directly to other ganglia, which thus form an interconnecting system. When a portion of the thallus is crushed on a glass slide and the other parts are reduced to a confused mass these ganglia and their rays often persist with little change. Septa in these enlarged specialized filaments are distant and irregularly placed. We have seen but few tetraspores and these were apparently not very well developed. Cystocarps have not been observed, although hundreds of specimens have been examined with the hope of finding them. In one lot of material, however, from Grasmere, we found small red spots resembling cystocarps under a hand lens, but these spots were apparently caused by the irritation of some endophyte or through injury by some small animal.

Halymenia bermudensis evidently finds its nearest ally in the little-known H. floridana J. Ag.,* with the type of which, as also with the Peruvian Sebdenia heteronema M. A. Howe, \dagger it shows more or less agreement in having usually rather conspicuous substellate medullary ganglia. It differs, however, from H. floridana, which is now known only from southern Florida and from near Beaufort, North Carolina (W. D. Hoyt), in its darker color (rosolane purple rather than pinkish vinaceous), in its commonly more lobed or dissected thallus, in its rather firmer texture, in its thicker, firmer, and less monostromatic cortex, and in its possible loss of sexual reproduction. Although, in a general way, the two species show a similarity in the medullary ganglia and the dimorphous medullary filaments, a critical comparison shows certain points of difference in these organs. The ganglia are less numerous, less conspicuous, and less obviously anastomosing in H. bermudensis. The arms on leaving the ganglion commonly taper away gradually, usually without a septum or obvious interruption of the protoplast; in H. floridana, the arms usually taper towards the ganglion and usually have a septum or a wide interruption of the protoplast near the place of emergence. As a result of these

[^27]peculiarities, the outline of the central node or ganglion in H. bermudensis is, when viewed through the cortex, more lobed, stellate, or brachiate, and less orbicular or rotate than in H. floridana.
J. Agardh founded Halymenia floridana on several specimens sent to him from Florida by Mrs. Floretta C. Curtiss, and he appears to have put certain specimens of the same thing, or of the typical thing, in the "Kallymenia reniformis" cover in his herbarium. Specimens of it, collected by A. H. Curtiss at Gilbert's Bar, Florida, were distributed by Curtiss with a printed "Algae Floridanae" label under the name "Kallymenia reniformis J. Ag.," from which plant it differs greatly in structure. Halymenia floridana and H. bermudensis, however, differ from typical Halymenia (H. Floresia) in their firmer subparenchymatous cortex, in their much firmer, non-deliquescent and scarcely gelatinous outer walls of the superficial cells, and in the striking development of the medullary ganglia. It is possible, as has already been hinted by one of us,* that more critical studies, especially of the development of the cystocarps (abundant in H. foridana), may furnish adequate grounds for the establishment of a new generic group which would include not only Halymenia floridana and H. bermudensis but also the Peruvian Sebdenia heteronema. J. Agardh placed Halymenia floridana in his section Halarachnion of the genus Halymenia, and De-Tonit has ranged it, with a question mark, under the generic name Halarachnion, but the type of Halarachnion (H. ligulatum) has no medullary ganglia comparable with those of Halymenia floridana and it differs also in the structure of the cortex.

Halymenia bermudensis may or may not adhere to paper when dried under pressure.

Halymenia Gelinaria sp. nov.

Thallo roseo-vinaceo vel vinaceo-purpureo, brevi-stipitato; stipite a disco basali orto, inferne subtereti, superne cuneato; fronde plana, levi, nec nitente, membranacea vel subcarnosa, plerumque maxime gelatinosa, $60-600 \mu$ crassa, suborbiculari, oblonga, ovata vel cuneato-obovata, latitudine 5 cm . usque 6 dm .,

[^28]simplice vel parce subconformiter divisa, margine plana, integra vel irregulariter dentata aut crenulata, nonnunquam fimbriata; medulla frondis laxa vel subvacua, filamentis transversalibus crebris, filis stellatis paucis et inconspicuis; strato subcorticali dense filamentoso, filamentis anastomosantibus, cellulis nodalibus majoribus; strato corticali series $1-4$ cellularum monstrante, parietibus cellularum mollissimis, gelatinoso-deliquescentibus; tetrasporangiis decussatim divisis; cystocarpiis numerosis, minutis, ad una pagina frondis plerumque prominulis, massa sporarum turbinata, $120-140 \mu$ diam.

Species colore, habitu, cystocarpiorum forma, H. floridanae J. Ag. proxima, sed differt thallo multo magis gelatinoso, plerumque crassiore, cortice manifeste filamentoso, nec pseudoparenchymato, filis stellatis minus evolutis. Structura H. Floresiae (Clem.) Ag. similis, habitu differt, fronde latiore integra vel subintegra, nec regulariter pinnata.

Ad oras Floridae et Carolinae Septentrionalis (typum legit M. A. Howe in loco "Jupiter Inlet" dicto ad oras Floridae, Oct, 13, 1902, no. 1252).

Thallus short-stipitate from a small basal disk; stipe $3-5 \mathrm{~mm}$. long, o.75-1.2 mm. thick, cuneate from a subterete base;'frond plane, membranous or carnose-membranous, usually very gelatinous, $60-600^{*} \mu$ thick, suborbicular, oblong, ovate, or cuneate-obovate, attaining a width of 5 cm . to 6 dm ., subentire or rather sparingly (usually conformably) parted, lobed, or proliferous, the margins entire or very irregularly lobulate, dentate, erose-crenulate, or occasionally laciniate-fimbriate; surface dull, smooth; color pinkish vinaceous, rocellin-purple, vinaceous purple, or deep hellebore-red; \dagger medulla of stipe $0.45^{-0.75} \mathrm{~mm}$. thick, moderately compact, gelatinous; cortex of stipe gelatinous, mostly 8-15 cells thick; medulla of frond moderately compact or subvacuous, its filaments mostly $8-14 \mu$ in diameter, many of them obliquely transverse, connecting the opposite subcortical layers, the cells mostly $20-70 \mu$ long, the medulla occasionally showing a few rather inconspicuous stellate ganglia with nodes $20-40 \mu$ in diameter and slender, elongate, rigid, straight or flexuous, now and then tortuous or nodulose, usually long-celled, radiating filaments, these commonly $4-7 \mu$ in diameter, the ganglionic system with

[^29]more homogeneous refringent protoplasts; cortex and subcortex of frond rather distinctly filamentous; subcortex consisting of a close network of anastomosing filaments, the stellately branched nodal cells mostly $13-20 \mu$ in diameter; cortex $1-4$ cells thick, the superficial cells (protoplasts) $3-10 \mu$ in diameter in surface view, mostly obtuse and more or less isodiametric, sometimes broader than high, or, 1.5^{-2} times higher than broad and subacute, often segregated in groups of $2-8$, their outer walls very gelatinous and deliquescent; tetrasporangia (protoplasts) $18-26 \mu \times 13 \mu$, the spores decussately paired; cystocarps numerous, minute, commonly slightly protuberant on one face, the spore-mass turbinate, 120-240 μ in diameter.

Florida: Unattached, Jupiter Inlet, Mrs. G. A. Hall, September 14, 1896 (Phyc. Bor.-Am. 7496 and 749c, as H. floridana); M. A. Howe 1252-1255, October 13, 1902; Indian River Inlet, Mrs. G. A. Hall, May, 1899 (Phyc. Bor.-Am. 749a, as H. floridana, and 750 , as H. floridana, forma dentata); Key West, Mrs. G. A. Hall.

North Carolina: Bogue Beach, Beaufort, W. D. Hoyt, August 12 and 16, 1907.

Type: Jupiter Inlet, Florida, October 13, 1902, M. A. Howe 1252, sheet C, in herb. N. Y. Botanical Garden.

The plant is known locally in the Jupiter Inlet region as the "beefsteak" seaweed. In form and color of the thallus, as well as in size and form of the cystocarps, Halymenia Gelinaria bears a remarkable resemblance to H. floridana; in fact, for two species that differ so much in the structure of the cortex, the similarity is astonishing. The affinities of H. Gelinaria are, however, clearly with H. Floresia, a species that it resembles much less in general habit. From H. Floresia, it differs chiefly in forming broad, entire or subentire membranes, which may reach a length or width of 60 cm ., and in the less often acute, more isodiametric, superficial cells. H. Floresia, in typical forms, was found floating with it in Jupiter Inlet (Howe 123I) without intergrading conditions. When lobules, proliferations, or teeth occur in H. Gelinaria, they are very irregularly disposed, while in H. Floresia the branching is manifestly pinnate, or rather, bi-tri-pinnate. The main axes in H. Floresia may vary a good deal in width, but we have never seen them any broader than 7 cm . and they are rarely more than

2 or 3 cm . in width. From Halymenia foridana, H. Gelinaria differs in the much more gelatinous, often thicker, thallus, in the less firm, obviously filamentous rather than parenchymatous or subparenchymatous cortex, in the deliquescent outer walls of the superficial cells, in the longer cells of the medullary filaments, and in the comparatively rare and inconspicuous and differently shaped medullary ganglia. In H. foridana the freely anastomosing medullary ganglia are, with proper illumination or with differential staining* the most conspicuous anatomical feature of the thallus; their radiating branches are coarser than the ordinary medullary filaments and the ganglionic system looks like a sort of skeleton or framework about which the rest of the thallus has been filled in. In H. Gelinaria, small stellate cells, with ordinary unspecialized protoplasts are normal elements of the subcortex, but larger specialized stellate ganglia of the medulla with refringent protoplasts are rare or occasional and are not usually obvious without a special search; their radiating branches are commonly more slender than the ordinary medullary filaments among which they make their way; these branches rarely anastomose, commonly showing free ends, and they are, perhaps, rather more suggestive of medullary rhizoids than parts of a primary framework, yet they seem to differ from the medullary rhizoids of the Florideae in general in being straighter and more rigid, and in having denser more homogeneous refringent protoplasts. Medullary ganglia of a somewhat similar sort are of occasional occurrence in H. Floresia also. The difference between H. Gelinaria and H. floridana as to the character of the cortex comes out strongly when a section is made or even when a margin or a fold of the surface is examined microscopically; in H. Gelinaria, the dissolving away of the outer walls of the superficial cells leaves these cells more or less isolated and separate, so that the general surface appears minutely papillate, while in H. floridana under the same conditions the general surface is covered by a firm cuticle and is perfectly smooth. The cystocarps of H. floridana and H. Gelinaria appear to be very similar in form, size, and structure, but it is possible that an exhaustive study of the earlier stages of their development might reveal differences as marked

[^30]as are shown by a microscopic comparison of the vegetative characters of these two superficially similar plants. The cystocarp of H. floridana, however, is commonly somewhat protuberant on both faces of the frond, while that of H. Gelinaria is commonly protuberant on only one face. In both, the spore-mass or "nucleus" is very dense, turbinate or oblate-spheroid, sometimes apparently two- or three-lobed, and is supported by a short stalk.

In 1900 (Phyc. Bor-Am. 750) the senior author of the present paper used the name "Halymenia floridana forma dentata (Crouan) Collins" for a dentate-margined condition of the present species, citing Gelinaria dentata Crouan in Mazé \& Schramm, Algues de Guadeloupe, as a synonym. In doing this he was, in effect, adopting the opinion (expressed in litt.) of a distinguished phycologist who was familiar with the Guadeloupe specimens distributed by Mazé \& Schramm but knew Halymenia floridana J. Ag. from description only. However, the Mazé, Alg. Guad. no. 1602, "Capesterre, Plage du bourg" in the herbarium of the British Museum, is certainly very different, as to species, at least, from either H. floridana or H. Gelinaria. Whatever may be the relation of other Guadeloupe specimens to these two species, the name dentata of Crouan, a "nomen seminudum" at best, can not, under the provisions of the "American Code" at least, be adopted for either, on account of the previously published Halymenia dentata Suhr.

Halymenia Gelinaria adheres very firmly to paper when dried under pressure.

Halymenia pseudofloresia sp. nov.

Thallo violaceo-rubro, brevi-stipitata; stipite inferne subtereti, superne cuneato; fronde juvenili membranacea, gelatinosa, aetate provecta firmiore et subcoriacea, $50-450 \mu$ crassa, circumscriptione suborbiculari, ovata, cuneato-obovata, vel nonnunquam valde irregulari, longitudine $7-30 \mathrm{~cm}$., profunde lobata vel prolificationibus stipitatis munita; rachidibus $\mathrm{I}-8 \mathrm{~cm}$. latis, lobis et prolificationibus plerumque lanceolatis, serratis vel seriebus loborum etc. secundariorum munitis; superficie haud nitente, plerumque plana, sed aetate provecta minute verruculosa; medulla frondis laxa, subvacua, filamentis sparsis percursa, filamentis transversalibus crebris, filamentis stellatis paucis, inconspicuis; strato subcorticali indistincte filamentoso, cellulis $20-50 \mu$ diam.; strato
corticali cellularum minorum $2-6$ series monstrante, cellulis superficialibus aetate elongatis, obconicis vel clavato-truncatis, denique diametro plerumque $2-5$-plo longioribus, parietibus externalibus gelatinosis, deliquescentibus; tetrasporangiis decussatim divisis; cystocarpiis ignotis.

Ab H. Floresia (Clem.) Ag. et H. Gelinaria Collins \& Howe differt colore magis saturate rubro vel violaceo-rubro, fronde denique firmiore, subcoriacea, nonnunquam verruculosa, cellulis terminalibus filorum corticalium clavato-truncatis. Frons H. psendofloresiae magis divisa est quam H. Gelinariae, minus et minus regulariter quam H. Floresiae.

Ad oras Insularum Bermudensium (typum legit A. B. Hervey, Jan. 15, 1915).

Thallus short-stipitate; stipe* $5-\mathrm{IO} \mathrm{mm}$. long, $\mathrm{I}-2 \mathrm{~mm}$. thick, cuneate from a subterete base; frond membranous and gelatinous in younger parts, becoming firmer and subcoriaceous with age, 50-450 μ thick, suborbicular, ovate, cuneate-obovate, or commonly very irregular in general outline, attaining a length of $7-30 \mathrm{~cm}$., deeply, irregularly, or subpalmately lobed, or often showing cuneate-based substipitate marginal proliferations, the main expansions or axes $1-8 \mathrm{~cm}$. broad, the lobes or proliferations commonly lanceolate, serrate, biserrate, or subpinnately lobulate or bilobulate, the teeth mostly acuminate-deltoid; surface dull, mostly smooth, but often becoming rugose and minutely and copiously verruculose with age; color (when dried) daphne-red, becoming deep hellebore-red or neutral red \dagger in old fronds; medulla of stipe $0.75-1.0 \mathrm{~mm}$. thick, moderately compact; cortex of stipe rather firm, subparenchymatous, mostly 20-40 cells thick; medulla of frond mostly rather loose or subvacuous, its filaments 10-16 μ in diameter, many of them obliquely transverse, connecting the opposite subcortical layers, the cells $25-90 \mu$ long, the medulla or inner subcortex occasionally showing a few inconspicuous stellate ganglia with nodes $20-40 \mu$ in diameter and slender longcelled branches $2-5 \mu$ in diameter; cortex and subcortex rather firm and solid, obscurely filamentous; cells of subcortex ellipsoidal, mostly $20-50 \mu$ in diameter, obscurely anastomosing or concatenate; cortex $2-6$ cells thick, the superficial cells (protoplasts) $4^{-1} 3 \mu$ in diameter in surface view, angular, obtuse, subisodiametric or often broader than high in younger parts, becoming columnar, obtuse, acute, or acuminate, and finally, for the most

[^31]part, obconic or clavate-truncate and $2-5$ times higher than broad, their outer walls gelatinous or deliquescent; tetrasporangia (protoplasts) $14-26 \mu \times$ 12-14 μ, the spores decussately paired; cystocarps unknown.

Bermuda: W. G. Farlow, 188ı; Green Bay, W. S. Wadsworth, February, 1890; Castle Harbor, near Tucker's Town, F. S. Collins 7075, April 25, 1912; Walsingham, A. B. Hervey, January 15, 1915 (Phyc. Bor.-Am. 2099).

Type: Walsingham, A. B. Hervey, January 15, 1915, in herb. F. S. Collins.

Halymenia pseudoforesia differs from both H. Floresia and H. Gelinaria in its normally deeper red color, in the firmer subcoriaceous texture and verruculose surface of its older fronds, and in the mostly clavate-truncate and much elongate superficial cells of the older parts of its frond. From H. Floresia, which apparently occurs in southern Florida and the West Indies, as well as in the Mediterranean and adjacent regions, it differs also in the less deeply dissected frond, with the teeth or ultimate lobules mostly acuminate-deltoid from a broad base rather than mostly lanceolate, ligulate, or ciliiform from a somewhat constricted base. Lanceolate outgrowths from a narrowed base are of occasional occurrence, but such seem to have more the habit and nature of proliferations than of normal lobes and lobules. From Halymenia Gelinaria, H. pseudoforesia differs furthermore in its more lobed and dissected and more obviously pinnate frond and in its firmer, less distinctly filamentous cortex.

The older parts of Halymenia pseudofloresia, at least as shown in the Walsingham specimens collected by Hervey, are infested by four or five kinds of endophytic algae, and we have sometimes suspected that the small verrucae referred to in our description as occurring on the old fronds might be caused by irritation due to their presence. However, most of these verruculae appear to be free from any endophyte and we have thought best to treat them as more or less normal parts of the old frond. We have not observed any tendency of these verrucae of the general surface to develop into proliferations, even though the marginal proliferations commonly spring from somewhat similar outgrowths. These surface verruculae are dense, dark red, and about 0.2 -
0.6 mm . in diameter, and to the naked eye they sometimes look a little as if they might be cystocarps. A filamentous short-celled Rhodophyceous endophyte sometimes forms dense subglobose or irregularly lobed glomeruli in the medulla and these also may have the superficial appearance of being cystocarps of the Halymenia.

Halymenia pseudofloresia, like H. bermudensis, is commonly found in an unattached condition, and possibly the absence of cystocarps is in some way associated with this fact. The senior author has noted that Delesseria sinuosa and certain other membranaceous Rhodophyceae are commonly sterile when found in places where they have apparently been vegetating for some time unattached.

Specimens of Halymenia pseudoforesia, with occasional exceptions as to parts of the old fronds, adhere firmly to paper when dried under pressure.

Halymenia echinophysa sp. nov.
Thallo pallido-vinaceo vel lilacino, membranaceo, gelatinoso, $125-200 \mu$ crasso (madefacto), circumscriptione suborbiculari, $10-18 \mathrm{~cm}$. diam., profunde, irregulariter vel subpalmatim lobato, lobis irregulariter obovatis vel suborbicularibus, marginibus sinuato- vel eroso-dentatis; medulla frondis subvacua vel laxe filamentosa, filamentis homogeneis, Io-14 μ diam.; strato corticali gelatinoso translucido, submonostromatico, cellulis superficialibus ovoideis, subglobosis vel ellipsoideis, $4^{-8} \mu$ diam. max., $5^{-10} \mu$ inter se distantibus, in membrana communi horizontaliter vel verticaliter positis, parietibus exterioribus (vel membrana superficiali extra-cellulari) $10-18 \mu$ crassis; strato subcorticali $2-4$-stromatico, cellulis arcte anastomosantibus, ovoideis, ellipsoideis, vel interdum complanatis, extimis $6-10 \mu$ diam., intimis $25-65 \mu$ diam. max., nonnullis subglobosis, $80-180 \mu$ diam., echinato-stellatis, in medullam protrudentibus, processubus ${ }^{5} 5-40$, subrigidis, subspinescentibus, munitis.

Species H. actinophysae M. A. Howe proxima, sed differt thallo minore, crassiore, magis lobato, non-nitente, membrana superficiali communi duplo crassiore, cellulis superficialibus inter se duplo distantioribus, filamentis medullaribus dimidio minus crassis et minus regulariter et minus manifesto capitatis in strato subcorticali abientibus, cellulis intimis strati subcorticalis saepe
multum majoribus, magis echinato-stellatis, cum processubus subspinescentibus saepe permultis.

Ad oras Insularum Bermudensium, in profundis (typo in herb. Hort. Reg. Kew., a Exped. "Challenger" lecto et "Kallymenia reniformis" denominato).

Frond membranous, gelatinous, $125-200 \mu$ thick (when soaked out), suborbicular in general outline, attaining width of 10-18 cm ., deeply, irregularly or subpalmately lobed or divided, the lobes irregularly obovate or suborbicular, mostly $2-6 \mathrm{~cm}$. broad, their margins sinuate- or erose-dentate or sparingly sublobulate; surface dull; color (dried) light grayish vinaceous to Persian lilac;** medulla of frond subvacuous or loosely filamentous, its filaments homogeneous, mostly $10-14 \mu$ in diameter (including gelatinous walls; protoplasts commonly only $\mathrm{I}-4 \mu$); cortex of frond gelatinous, translucent, submonostromatic, the superficial cells (protoplasts) ovoid, subglobose, or ellipsoid, $4^{-8 \mu}$ in maximum diameter, widely spaced (separated $5-10 \mu$), their longer axes horizontal or vertical, their outer walls ("surface jelly") $10-18 \mu$ thick; subcortex of 2-4 layers of closely anastomosing, ovoid, ellipsoid, or often flattened, thick-walled cells, the outer (protoplasts) granular, $6-10 \mu$ in diameter, the inner mostly $25-65 \mu$ in maximum diameter, some of the inner cells larger, subglobose, $80-180 \mu$ in diameter, echinate-stelliform, projecting into the medullary cavity and showing when detached 15-40 rather rigid subspinescent processes, these mostly $25-60 \mu$ long and $10-20 \mu$ in diameter at base; other parts unknown.

Bermuda: Dredged in " 3 I fathoms, off Bermuda" by members of the Challenger Expedition in 1873, and reported as "Kallymenia reniformis J. G. Agardh" (Rep. Voy. Challenger, Bot. I: Bermudas 117. 1884). This is the only specimen known to the present writers.

Type: In the herbarium of the Royal Botanic Gardens, Kew, England.

Halymenia echinophysa appears to find its nearest ally in H. actinophysa M. A. Howe, \dagger from La Paz, Lower California, but differs in the smaller, thicker, more lobed, non-nitent thallus, with the surface jelly twice as thick, the surface cells twice as widely spaced, the medullary filaments one half as stout, in the less regularly and less obviously capitate terminations of these

[^32]filaments in the subcortex, and in the often much larger, more numerously and more echinately branched stelliform cells of the inner subcortex.

From H. bermudensis Collins \& Howe, to certain forms of which it bears a superficial resemblance, it differs in being much more gelatinous, in the much thicker surface jelly or outer walls of the superficial cells ($10-18 \mu$ vs. $2-4 \mu$ thick), in the more generally monostromatic cortex, in the more widely spaced ($5-$ Io μ vs. $2-3 \mu$) protoplasts of the superficial cells, in having a medulla that is filamentous and homogeneous instead of showing a system of substellate ganglia with refringent specialized protoplasts, and in the presence in the inner subcortex of cells that are $80-180 \mu$ in diameter with $15-40$ subspinescent processes, while the inner cells of the subcortex of H. bermudensis are $13-25 \mu$ in diameter and have no obvious appendages.

When the enlarged echinate-stelliform cells of the inner cortex are detached, some of their numerous sharp-pointed processes show apices that look as if they had been free from all cell connections, but most of them show at the apex traces of a septum to which they have narrowed down and at which point they have been disjoined from their former cell connections. The protoplasts of these large echinate cells are similar to those of their neighbors or are more vacuous, wherein they differ greatly from the substellate medullary ganglia of H. bermudensis and H. floridana, the protoplasts of which are conspicuously different from those of the ordinary cells in being denser, more homogeneous, and more refringent. As is the case in H. actinophysa, the cells of the subcortex of H. echinophysa are so gelatinous and translucent that their form and relations can not well be ascertained without resort to staining reagents, such as solutions of haematoxylin.

Of the four species above described, specimens of three, Halymenia Gelinaria, H. pseudofloresia, and H. bermudensis, have already been distributed in the Phycotheca Boreali-Americana of Collins, Holden \& Setchell, as indicated. This will, we trust, in a measure atone for the lack of illustrations in the present paper.

Desmopsis, a new genus of Annonaceae

William Edwin Safford

(with plates 7 -9 AND ONe text figure)

The genus Unona was based by the younger Linnaeus on an American plant, the peyrico-boom of Surinam, belonging to the previously established genus Xylopia. Its type, Unona discreta L. f., is identical with either Xylopia frutescens Aubl. or X. salicifolia Dunal, and is certainly not congeneric with the Asiatic plants usually referred to the genus Unona. Recognizing that Unona must become a synonym of Xylopia and that the name could no longer be used for any other genus, the writer restored the generic name Desmos, established by Loureiro in 1790, for the Asiatic Unona discolor, believed by Vahl (1791) to be a congener of the American U. discreta but which proved to be identical with Loureiro's Desmos chinensis. The type of Loureiro's genus, Desmos cochinchinensis, was arbitrarily renamed by Dunal (1817) Unona Desmos. The necessity of restoring the generic name Desmos* in accordance with accepted rules of nomenclature was recognized by Mr. Elmer D. Merrill, in his "Studies on Philippine Annonaceae." \dagger

That there are no American species congeneric with Desmos (Unona Vahl) was recognized by the writer, who in the publication above cited referred Unona panamensis Robinson and U. bibracteata Robinson to Unonopsis, established by Robert E. Fries in 1900. A further study of the genus Unonopsis, however, showed that Fries included in it plants differing widely in inflorescence and in the number and arrangement of the ovules. In proposing

* "Desmos the proper generic name for the so-called Unonas of the Old World." Bull. Torrey Club 39: 501-508. 1912.
\dagger "Safford has recently conclusively shown that the genus Unona Linn. f. was based upon an American species, Unona discreta Linn. f., and that Vahl was in error in placing under Unona the Asiatic U. discolor Vahl, Desmos chinensis Lour. The Indo-Malayan material that has by various authors been referred to Unona cannot properly be considered under this generic designation, and Safford has correctly taken up the generic appelation Desmos for the oriental forms, this genus having been proposed by Loureiro in 1790." Phil. Jour. Sci. Bot. 10: 234. 1915.
the genus Unonopsis, based chiefly upon plants which had been previously included in Trigyneia, Fries himself realized that the

Fig. i. Pistils, fruit clusters of small globose pisiform longand seed of Desmos. a, Pis- pedicelled flowers, usually growing from til of Desmos cochinchinensis Lour. (Unona Desmos Dunal), showing pilose ovary and glabrous style; b, pistil of Desmos chinensis Lour. (Unona discolor Vahl); c, d. fruit and seed of the same. a and b enlarged, c and d natural size. genus would probably have to be subdithe axils of fallen leaves, on the old wood. Quite distinct from these in the form of flowers and the number and arrangement of the ovules are the two species Unona panamensis and Unona bibracteata mentioned above, and I here propose for them the generic name Desmopsis, which is sug- gested by their resemblance to the genus Desmos of the Old World. To Desmopsis must also be referred Trigyneia Galeottiana Baill. and an undescribed species recently collected by Mr. William R. Maxon and Professor Henry Pittier in the Republic of Panama.

DESMOPSIS Safford, gen. nov.

Peduncles opposite the leaves or terminal, bearing at the extremity one or two broadly ovate or suborbicular cordate leaflike bracts, and one or two (rarely three) long slender curved pedicels. Calyx segments three, valvate, broadly ovate or triangular. Petals six, equal or nearly so, lanceolate to linearoblong, continuing to elongate after anthesis, valvate, in two series, ascending, sometimes incurved at the apex. Stamens numerous, short, cuneate, with the connective broadly expanded into a concave disc above the two pollen sacs. Torus convex or subcylindrical, pilose between the stamens and the carpels. Carpels seven to nineteen. Ovaries pilose. Ovules two to six, twoseriate, parietal, forming a single column. Style depressed-spheroid, densely clothed with short hairs. Fruit a cluster of stipitate

[^33]subglobose, oval, or oblong one- to six-seeded berries, often more or less constricted between the seeds but never moniliform. Seeds horizontal, discoid, usually with a peripheral groove, the terminal ones depressed-hemispherical, or, if solitary, spheroidal; endosperm ruminate and embryo minute, as in all Annonaceae. Shrubs or small trees with alternate short-petioled entire leaves, and yellowish or greenish solitary or geminate flowers, often very fragrant, on long slender curved pedicels borne by short, bracted, leafopposed peduncles, and followed by clusters of pedicelled berries.

Type: Desmopsis panamensis (Robinson) Safford.
Geographical Range: From the state of Vera Cruz, Mexico, to the Isthmus of Panama.

This genus differs from the Old World Desmos in its peculiar bracted leaf-opposed inflorescence, the pilose indument of the torus between the stamens as well as between the carpels, the depressed-globose hairy styles, and the crowded discoid seeds marked with a peripheral groove, separated from each other by a slight constriction but never enclosed in a moniliform pericarp. In typical species of Desmos (Unona Vahl) the mature carpels are moniliform (Fig. I) the seeds devoid of a groove round their periphery, and the styles are not hairy.

Key to the species

Leaves not acuminate, narrowed to an obtuse or rounded apex,
oblong-lanceolate or rhomboid, glabrous or nearly so. 4. D. bibracteata. Leaves acuminate.

Lanceolate-elliptical, often unequal at the base, lower surface hirtellous-tomentose.
2. D. Galeottiana.

Elliptical or oblong, symmetrical at the base.
Petals incurved at the tips; leaves rufous-pubescent along the midrib and nerves beneath.

1. D. panamensis.

Petals not incurved at the tips; leaves almost quite giabrous beneath.
3. D. Maxonii.

1. Desmopsis panamensis (Robinson) Safford

Unona panamensis Robinson, Am. Jour. Sci. III. 50: 175. 1895.
A small symmetrical tree $5-8 \mathrm{~m}$. high with horizontal limbs and a straight trunk covered with brownish gray bark. Branches brown with lighter colored lenticels; young growth finely rufoustomentose with simple hairs. Leaves short-petioled, oblong or elliptic, shortly acuminate, narrowed or cuneate at the base, entire, $10-20 \mathrm{~cm}$. long and $4.5-8 \mathrm{~cm}$. broad, glabrous above, when young covered beneath with an appressed rufous silky pubescence, at length pubescent beneath only upon the nerves. Flowers greenish
yellow; peduncle short ($5-10 \mathrm{~mm}$. long), bearing at the summit a suborbicular cordate bract about 1 cm . in diameter (rarely larger and more like the leaves, rarely absent) and one or two elongated pedicels ($4-9 \mathrm{~cm}$. long), slightly thickened near their summits, these rarely bearing a small clasping suborbicular bract about 4 mm . broad below the middle. Calyx three-parted, with the segments ovate-triangular, $2-3 \mathrm{~mm}$. long; petals six, equal, lancelinear, $15-25 \mathrm{~mm}$. long, never widely spreading, the tips incurved and the edges revolute, finely pubescent on the outside and covered with minute yellowish green granules on the inner surface; torus convex or depressed-hemispherical, thickly covered with short straight fulvous hairs and bearing numerous closely crowded stamens surrounding the gynoecium; stamens 1.5 mm . long, with the brown connective broadly expanded above the two parallel pale straw-colored pollen sacs into a concave thickish disk; carpels seven to fifteen, ovaries 2 mm . long, clothed with fulvous hairs, containing two to eight ovules in a single vertical column and bearing a subglobose brown stigma clothed with short erect hairs; maturing carpels five to twelve, stipitate, oval to oblong, 14-18 mm . long and $10-14 \mathrm{~mm}$. in diameter, very slightly constricted between the seeds, and rounded at each end; stipe (carpophore) $8-10 \mathrm{~mm}$. long and $\mathrm{I} .5-2 \mathrm{~mm}$. thick; seeds two to six, disk-shaped, with an impressed line around the periphery, those at the ends depressed hemispherical. [Plate 7.]

Type in the Gray Herbarium of Harvard University, collected by Sutton Hayes in "woods near Gatún Station on the old Panama Railway, January 30, 1860 ." Specimen of type collection in United States National Herbarium bearing same data (sheet No. 314144).

Distribution: Known only from the Panama Canal Zone.

Specimens examined

Panama: Type as cited; same locality and data (type collection) in United States National Herbarium (sheet No. 314144); in forest, railroad relocation Caimito and New Frijoles, Canal Zone, altitude $10-50 \mathrm{~m}$., " 5 to 8 m ., fls. yellow," January 7, 191I, Pittier 2260; hills around the Agua Clara Reservoir, near Gatún, Canal Zone, altitude $20-30 \mathrm{~m}$., "a little tree with straight trunk 4 meters high, flowers greenish yellow," February 5, 1911, Pittier 2660.

This interesting species, hitherto known only from the type collection, was collected by Professor Henry Pittier during his
recent botanical exploration of Panama very nearly on the exact spot where Dr. Sutton Hayes found it. Professor Pittier reports it as "a small tree 5 to 8 meters high and regularly shaped. The straight trunk, covered with a brownish gray bark, is not divided but sends out radiating horizontal limbs, the extremities of which are slightly pendulous, and which are shorter toward the top, so as to form a pyramidal crown."

2. Desmopsis Galeottiana (Baill.) Safford

Trigyneia Galeottiana Baill. Adansonia 8: 181. 1868.

A shrub or small tree with slender branches, at length glabrate. Young growth hirtellous-tomentose with simple yellowish hairs. Leaves short-petioled, elliptic-lanceolate, shortly acuminate, obtuse at the tip and usually unsymmetrically cuneate at the base, above bright green, glabrate except along the impressed midrib, beneath fulvous tomentose-hirtellous especially along the prominent midrib and the primary nerves. Flowers green (according to Galeotti), borne on long slender curved pedicels, these solitary or in pairs (rarely in three's) growing from a short peduncle and subtended by a leaf-like elliptical or cordate bract with nerves and indument like the leaves; peduncle terminal or opposite a leaf, about 8 mm . long, at length woody and branch-like; pedicels recurved, 40-50 mm . long, at first filiform and hirtellous and bearing a small ovate clasping bract below the middle, at length glabrate and bractless. Calyx three-parted, the divisions short and usually acute, pubescent on the outside. Petals six, equal or nearly so, valvate, in two series, ovate-lanceolate, rather thick, usually acute at the apex, puberulous on the outside. Stamens numerous, borne on a convex torus, with the connective expanded above the linear pollen sacs into a broad more or less concave disk. Carpels (in specimens examined) seven to eleven; ovary oblong, tomentose, bearing the subglobose blackish style, the latter articulated at the base and easily detached. Ovules two to six in each ovary, arranged in a single vertical row. Fruit a cluster of several stipitate berries (mature carpels) radiating from the indurated receptacle (torus), these oblong or subglobose, puberulent at first, at length glabrate; stipes $4^{-6} \mathrm{~mm}$. long and I .5 mm . thick, straight or curving slightly upward; seeds one to four, discoid, or if solitary subglobose, endosperm ruminate as in all Annonaceae.

Type in Herbarium of Copenhagen, "Anonac. Mexic. Liebm. No. 153," collected at Palanque, state of Vera Cruz, Mexico, in March, 1841, by Liebmann (No. 7); cotypes in Paris Museum and

Herbarium Delessert, collected at Jalapa, altitude 2000 feet, by Galeotti (Nos. 4066 and 7083).

Distribution: Known only from the tierra templada of the state of Vera Cruz, Mexico.

Specimen examined:

Mexico: Near Orizaba, 1500 feet, July, Dr. C. Sartorius, in United States National Herbarium, Sheet No. 2571; and the following sheets belonging to the Copenhagen Herbarium: Palanque, Liebmann 7 (type, as cited, with duplicate bearing the same data); Colipa, Liebmann 5, 6, 9; Mirador, Liebmann 4, 19; between Mirador and Jalapa, Liebmann I; San Pablo, Liebmann 10.

For the opportnnity of examining the Liebmann material I am indebted to Dr. C. H. Ostenfeld, Director of the Copenhagen Herbarium. Since specimens from several localities are cited by Baillon in the original description of this species, and it is possible that differences may subsequently be found between plants growing remote from one another, it becomes necessary to designate one specimen as the type. I have therefore selected as the type Liebmann's No. 7 (sheet No. 153), including leaves, flowers, and mature fruit, since this number represents the species more completely than any of the others. This speciman therefore becomes the type of Desmopsis Galeottiana; and Palanque, near Colipa, in the state of Vera Cruz, Mexico, must be designated as its type locality.

3. Desmopsis Maxonii sp. nov.

A small tree $5-7 \mathrm{~m}$. high. Branches slender, brown with numerous lenticels; young growth clothed with appressed pale fulvous hairs. Leaves broadly elliptical to elliptical-oblong or lanceolate acuminate, narrowed at the base into the short petiole, the smaller ones about 10 cm . long and 3.8 cm . broad, gradually acuminate, the larger ones $12-14 \mathrm{~cm}$. long and $6-8 \mathrm{~cm}$. broad, abruptly acuminate, with the petiole about 5 mm . long, relatively thick and grooved above, with the acute base of the blade decurrent upon it, glabrous above, covered beneath when young with pale fulvous silky hairs, at length quite glabrous. Flowers strawcolored, or pale yellow, fragrant with the odor of banana; peduncle $7-14 \mathrm{~mm}$. long, opposite a leaf, or apparently terminating a branchlet, normally bearing at the summit a suborbicular or broadly ovate clasping leaf-like bract $7-15 \mathrm{~mm}$. broad and (in the specimens
observed) a solitary elongated very slender recurved pedicel 3.5^{-} 6 cm . long, thickened at the summit, clothed when very young with a few minute sparse appressed pale fulvous hairs, soon becoming quite glabrous, bearing a minute clasping bract below the middle and often a similar bract at the base adjacent to the much larger bract terminating the peduncle. Calyx-segments broadly triangular, 4 mm . long; petals equal, elongating after anthesis, linearoblong, $13-18 \mathrm{~mm}$. long, $4-5 \mathrm{~mm}$. broad, obtuse at the apex, pubescent on the outside with minute appressed grayish hairs, dark brown (in dried specimens) on the inside. Stamens numerous, resembling those of Desmopsis panamensis in size and form, their closely crowded concave expanded connectives forming, before anthesis, a tight domelike pavement over the androecium, protecting the pollen until the pollen sacs are ready to open. Gynoecium composed of a cluster of ten to fifteen carpels, with the ovaries, about 2 mm . long, clothed densely with silky hairs, at first dirty white, at length olivaceous, ovaries in a single ovary two to five, stigmas depressedglobose, covered with short hairs, adhering together in a dark brown mass after pollination and soon falling off. Fruit a cluster of short-stiped or nearly sessile one- to three-seeded spheroid or ovoid berries, scarcely at all constricted between the seeds, about 8 mm . in diameter, seeds discoid, horizontal, forming a single column. Stipes $1-3 \mathrm{~mm}$. long (in the type) and $\mathrm{I} \cdot 5^{-2} \mathrm{~mm}$. in thickness. [Plate 8.]

Type in the United States National Herbarium (sheet No. 677550), collected by Henry Pittier in the forest near El Boquete, Chiriquí, Republic of Panama, at an altitude of 1,000 to 1,300 meters, March 16, 1911 (No. 3154). Cotype (with flowers only) collected by William R. Maxon in the humid forest along the upper Caldera River, near Camp I, Holcomb's trail, above El Boquete, Chiriquí, altitude $1,450-1,650$ meters, March 22-24, I9II (No. 5564).

Distribution: Known only from the vicinity of El Boquete, Chiriquí, Republic of Panama.

Specimens examined

Type as cited and two additional sheets of type collection; cotype, as cited, with flowers only.

This species, like Desmopsis bibracteata, is remarkable for the banana-like fragrance of its flowers. It is easily distinguished from that species by its much broader, acuminate leaves, the much shorter and thicker stipes of the fruit, and the absence of constrictions between the seeds.

4. Desmopsis bibracteata (Robinson) Safford

Unona bibracteata Robinson, Am. Jour. Sci. III. 50: 175. 1895.
A shrub or small tree with slender branches. Very young branchlets minutely hirtellous, soon glabrous or nearly so. Leaves not acuminate, oblong-lanceolate or rhomboid, sometimes slightly falcate, narrowed to an obtuse or rounded apex, connected below to a very short thickish petiole, when very young clothed beneath with fulvous hairs, at length green and glabrous on both surfaces, $5 \cdot 5^{-14} \mathrm{~cm}$. long, $2.5^{-4} \mathrm{~cm}$. broad, firm but not coriaceous in texture. Flowers light yellow, very fragrant, borne on very slender wiry recurved pedicels about 2.5 cm . long, subtended by a suborbicular cordate bract about. 1.3 cm . in diameter and sometimes bearing a minute clasping bract below the middle, rarely a second flower growing from the axil of the basal bract; peduncle opposite a leaf, very short ($2-5 \mathrm{~mm}$. long). Calyx three-parted, the segments broadly ovate, rounded at the apex, to 5 mm . long. Petals increasing in length after anthesis, at first broadly ovate, densely clothed on the outside with pale grayish brown hairs, at length linear-oblong, about 18 mm . long and $5-6 \mathrm{~mm}$. broad, obtuse or rounded at the tips, and glabrous or nearly so, with the edges usually revolute. Stamens numerous, about 1.5 mm . long, broadly cuneate, the brown connective expanded above the pale yellow pollen sacs in the form of a thick concave saucer-shaped disk. Carpels fourteen to twenty, sessile at first, ovaries oblong, clothed with whitish or pale yellowish ascending hairs and bearing a de-pressed-spheroid glandular hairy brown style, styles constricted at the base, adhering together after pollination, and soon falling off in a mass. Fruit a cluster of slender-pedicelled two- or threeseeded berries, red when fresh, at length turning brown, covered with appressed hairs when young, at length glabrate, pericarp thin, constricted between the seeds, these arranged in a vertical row, disk-shaped, $5-7 \mathrm{~mm}$. in diameter, marked with a groove around the periphery, the end one depressed-hemispherical or convex on one side; stipes (carpophores) slender and wire-like, $5^{-8} \mathrm{~mm}$. long, I mm. thick. [Plate 9.]

Type in the Gray Herbarium of Harvard University, collected by Charles Wright in Nicaragua, on the North Pacific Exploring Expedition under Commanders Ringgold and Rodgers in 1855 (No. 1), bearing the label "Unona violacea Dun. aff." Duplicate of the type bearing the same data in the United States National Herbarium (sheet No. 2517).

Distribution: From Nicaragua to Chiriquí, Republic of Panama.

Specimens examined

Nicaragua: Type and duplicate of type as cited.
Costa Rica: " Terrenos incultos, Nuestro Amo, alt. 500 metros, arbusto de flores olorosas, nom. vulg. 'guineo,' " March, 1912, Otón Jiménez 416, in United States National Herbarium.

Panama: Vicinity of David, Chiriquí, altitude $30-80 \mathrm{~m} .$, small tree, flowers sulphur yellow, fruit red, March 25, 1911, H. Pittier 3367; vicinity of San Feliz, eastern Chiriquí, altitude $0-120 \mathrm{~m}$., tree about 3 m . high, flowers yellow, having the fragrance of a banana, and hence called "flor de guineo," H. Pittier 5747, in United States National Herbarium.

ADDENDUM

After receiving the proof of the above descriptions the writer came upon an additional species of Desmopsis among the Annonaceae of the Copenhagen Herbarium lent him for study. This species I have named in honor of its collector.

5. Desmopsis Oerstedii sp. nov.

A shrub or small tree with the young growth, petioles, midrib beneath, peduncles, and pedicels densely fulvous-hirtellous with soft simple hairs projecting outward. Leaves short-petioled, the blade resembling that of D. panamensis in shape, elliptic or ellipticoblong, shortly acuminate at the apex and narrowed or acute at the base, $10-13 \mathrm{~cm}$. long, $4-5 \mathrm{~cm}$. broad. Flowers not observed. Fruiting peduncle (normally terminating in a small leaf-like bract) leaf-opposed, I cm. long; pedicels (solitary in type material) 2-4 cm . long, clothed with persistent spreading fulvous hairs; bract separating the peduncle from the pedicel broadly cordate, 5 mm . long, sessile, sometimes missing. Maturing carpels usually about seven, subglobose to oval, $12-24 \mathrm{~mm}$. long and $10-12 \mathrm{~mm}$. in diameter, not constricted between the seeds, rounded at the apex, and narrowed at the base into a short stipe $5-7 \mathrm{~mm}$. long and ${ }^{2-3} \mathrm{~mm}$. thick. Seeds four to six, horizontal, discoid and circular, $9-10 \mathrm{~mm}$. in diameter, or surfaces beveled at an acute angle and more or less semicircular in outline, those of the two rows overlapping alternately, the testa light brown, thin, wrinkled by the inclosed ruminate endosperm, and marked by an impressed line around the periphery.

Type in the Botanical Museum of Copenhagen, collected by Anders Sandöe Oersted on Mount Aguacate, Costa Rica, in November, 1847, Plantae Centro-Americanae Oersted No. 148, bearing the generic name "Guatteria."

Distribution: known only from the province of Alajuela, Costa Rica.

Specimens examined

Costa Rica: Type material, as cited (three sheets); also Oersted I49, collected "in Monte Jaris, Nov. 1846." Common name, "Guinea."

The common name applied to this plant in Costa Rica is the same as that applied to Desmopsis bibracteata, as quoted by Jiménez, except it has a feminine instead of a masculine ending. It is undoubtedly derived from the banana ("guineo") odor of the flowers. In the specimens examined fruits only were observed. These differ from the fruits of all the other species observed in their larger size, and the alternate arrangement of the seeds, somewhat after the manner of the seeds of Asimina and Sapranthus. The leaves differ from those of D. panamensis in the indument of the midrib beneath, which is densely fulvous-hirtellous; and the species is easily distinguished from D. Maxonii by its much shorter floral pedicels. From D. bibracteata it is at once distinguished by the shape of the leaves.

This species and D. bibracteata would be desirable additions to the cultivated shrubs of the warmer parts of the United States on account of the fragrance of their flowers. Those of the latter species are much used by Spanish Americans in decorating their altars.

[^34]
Explanation of plates 7-9

Plate 7
Desmopsis panamensis (Robinson) Safford
Showing flowers, fruit and essential parts. a, Short peduncle terminating in leaf-like bract; b, elongated pedicels; c, torus devoid of stamens and bearing cluster of young carpels; d, stamen, showing concave connective expanded above pollen sacs; e, ovary bearing depressed spheroid hairy style; f, cluster of mature stiped carpels; g, carpel, showing column of discoid seeds; h, seed, lateral view; i, terminal seed, showing convex surface; d, e, enlarged; remaining parts natural size. Drawn by Theodore Bolton from the type specimen.

Plate 8

Desmopsis Maxonir Safford
a, Short peduncle terminating in leaf-like bract; b, elongated pedicel bearing small bracts at its base and below its middle; c, essential parts, showing cluster of carpels tipped with hairy styles surrounded by the stamens; d, stamen; e, cluster of young carpels from which styles have become detached; f, fruit, showing short-stiped carpels (nearly mature); g, a fruit (berry) with part of pericarp removed so as to show the seeds. Branches with flower, fruit and leaves, natural size; c and d enlarged. Drawn by Mrs. R. E. Gamble from the type specimen.

Plate 9
Desmopsis bibracteata (Robinson) Safford
a, Cluster of fruit; b, seeds. Natural size. Drawn by Theodore Bolton from type material in the United States National Herbarium.

Observations on the fern rust Hyalopsora Polypodii

E. T. Bartholomew

(WITH THREE TEXT FIGURES)

A study of this rust on Cystopteris fragilis (L.) Bernh. was undertaken in order if possible to bring together the somewhat widely varying statements of different writers with reference to its life history.

Lindau* states that Hyalopsora Polypodii (Pers.) Magn. has teliospores and uredinia, but no aecia, and that the uredinia have no peridia. Grove \dagger describes teliospores and uredinia but no aecia; the uredinia, with no peridium, containing yellow, sessile spores of two kinds, respectively thick- and thin-walled, both repeatedly found in the same sorus. In his artificial infection experiments, Dietel \ddagger found that the first uredinia contained only thin-walled spores; later, however, thick-walled spores also were found among the thin-walled spores and in many of the uredinia formed still later, the majority of the spores were thick-walled. Arthur§ describes the two kinds of yellow spores, which for convenience he considers respectively aeciospores and urediniospores, as being in separate sori; the aecia, containing the thick-walled spores, being without a peridium, and the uredinia, containing the thin-walled spores, having only a very delicate peridium; both kinds of spores borne singly on pedicels.

The observations recorded in the present paper were obtained in two ways; by a study of fresh material both in the field and in the greenhouse, and by that of fixed and sectioned material. In both field and greenhouse considerable difference was noted between the appearances of the sori produced in cloudy weather and of those produced during a period of sunshine. Several times during the months of May and June there were periods of cloudy weather

[^35]lasting from three or four days to a week or more. During these periods the sori remained pale gray, but within twenty-four hours after the sun appeared they assumed a bright orange color. In contrast to this history, the sori that developed during the bright periods began to take on the yellow color even while they were quite small. Often a marked difference could also be noticed between the sori on shaded and on unshaded fronds-those on the former remaining gray for a considerable length of time, while the sori on the latter began to turn yellow almost as soon as they were noticeable.

It is not difficult to dissect an infected pinna in such a manner that large masses of the mycelium may be obtained free from the host tissues. To do this most effectively, it was found best to soak the pinnae in Flemming's weak fixing fluid for two or three

FIG. r. Section through fixed and stained sorus, showing the peridium (per) and stalked spores (ss), X about 390. Camera lucida drawing.
hours, then to wash them in water for about the same length of time and afterward to dehydrate them by running them through a series of progressively stronger solutions of alcohol up to 95 per cent. A sorus was then cut from a pinna and dissected under a binocular microscope. Not only could mats of the mycelium be easily obtained in this manner, but in some cases rust spores remained attached to the hyphae. Often among the separated spores one was found with its short stalk still attached. This made it plain that the spores are not sessile as stated by Grove, but that, as Arthur says, they are borne on short stalks. This observation was verified by the study of sectioned and stained preparations (FIG. I).

In studying stained sections of a very large number of sori which had not yet broken open, not one was found without a peridium. Fig. i shows a typical sorus just as it is breaking open. Ordinarily, though not always, by the time the sorus has become erumpent, the peridial cells have distintegrated to such an extent that they are scarcely noticeable. In the material which was dissected with needles the peridial cells could easily be distinguished.

Fig. 2. Fragments of binucleate hyphae taken from the base of a sorus in which most of the spores were thick-walled, X about 700 . Camera lucida drawing.

Perhaps the most interesting part of the results of this investigation concerned the nuclear condition of the hyphae. The mats of mycelium which had been freed from the host tissues were transferred to separate slides and stained in toto. Without exception the cells of these hyphae were found to be binucleate. This was true of hyphae taken from the bases of sori in which the majority of the spores were thick-walled, as well as of those taken from the bases of sori containing mostly thin-walled spores. Small fragments of the mycelium are shown in Figs. 2 and 3. Sectioned material shows the same facts as to the binucleate condition of the hyphae.

From these observations it would seem that there can no longer be any basis for calling the thick-walled spores aeciospores and the thin-walled spores urediniospores. This conclusion would indicate that there must be an aecial host for this rust, and although Bubak* has been unsuccessful in his attempts to inoculate species

[^36]of Abies and Pinus with Hyalopsora, future workers will probably find the aecial host of Hyalopsora as has been done for different species of Uredinopsis.

An explanation for the production of two kinds of urediniospores at the present time may be at least suggested.* Of the

Fig. 3. Fragments of binucleate hyphae taken from the base of a sorus in which most of the spores were thin-walled, X about 680 . Camera lucida drawing.
groups of plants which now serve as hosts to the various rusts, the pteridophytes are the oldest. This gives some ground for assuming that the fern rusts are the most ancient of the rusts now living. Following the pteridophytes came the gymnosperms, and it is upon the conifers of this group that, as far as is now known, the aecial stage of the fern rusts appears. We may suppose, then, that some of the conifers became susceptible to infection by one stage of the rusts already parasitic upon the pteridophytes. It follows that one of the present spore forms of the fern rusts is a

[^37]relic of an autoecious condition which prevailed in connection with a uninucleate mycelium that developed from a sporidial infection. As a result of the passing of the aecial stage to the conifers, only binucleate mycelial stages are now found in the ferns. From the persistence of the primitive spore form under the changed conditions, one may infer that the autoecious condition in the history of these rusts existed for a long period of time. While not germane to the question as to the spore forms of the fern rusts, it may not be amiss to carry the speculation a little further with the suggestion that the angiosperms upon their appearance became infected by aeciospores from conifers, and that consequently the most primitive rusts of phanerogams bear their aecia upon coniferous hosts.

University of Wisconsin, Madison, Wisconsin

INDEX TO AMERICAN BOTANICAL LITERATURE 1907-1916

The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material ; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of one cent for each card. Selections of cards are not permitted ; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.
Appel, O. International phytopathology. Phytopathology 6: 55-63. 9 Fi916.
Arthur, J. C. A Gymnosporangium with repeating spores. Am. Jour. Bot. 3 : 40-45.f. r. $\quad 5$ F 1916.
Bailey, I. W., \& Sinnott, E. W. The climatic distribution of certain types of angiosperm leaves. Am. Jour. Bot. 3: 24-39. 5 F I916.
Bailey, W. W. Liverworts. Am. Bot. 2I: 132, 133. N 1915.
Barrus, M. F. Observations on the pathological morphology of stinking smut of wheat. Phytopathology 6:2I-28.f. I-3. 9F 1916. Bartram, H. E. A study of the brown rot fungus in northern Vermont. Phytopathology 6: 71-78. 9F 1916.
Batchelor, L. D. Problems in walnut breeding. Jour. Heredity 7: 6I-65.f. 4, 5. 25 Ja 1916.
Berry, E. W. The geological history of Gymnosperms. Plant World 19: 27-4I. f. 1,2 . F 1916.
Blake, S. F. Compositae new and transferred, chiefly Mexican. Proc. Am. Acad. Arts \& Sci. 5I: 515-526. Ja 1916. Includes eight new species in Gymnolomia (2), Viguiera (2), Perymenium (3) and Crysactinia (1), and the new genera Pionocarpus, Haplocalymma, and Phoebanthus.
Bovie, W. T. The action of light on protoplasm. Am. Jour. Trop. Diseases \& Prev. Med. 2: 506-517. [I-12].f. I, 2. F 1915.

Bowman, H. M. Adaptation of a sea grass. Science II. 43: 244-247. 18 F 1916.
Brooks, A. B. Chestnut blight and its control in West Virginia. Bien. Rep. West Virginia State Crop Pest Comm. 1: 90-94.f. 20. S 1914.
Brown, H. B., \& Ranck, E. M. Forage poisoning due to Claviceps Paspali on Paspalum. Mississippi Agr. Exp. Sta. Tech. Bull. 6: I-35.f. I-I8. F 1915.
Campbell, D. H. The archegonium and sporophyte of Treubia insignis Goebel. Proc. Nat. Acad. Sci. 2:30, 31. Ja 1916.
Campora, C. E. Nota sobre el "chañar" Gourliea decorticans Gillies. Trab. Inst. Bot. y Farm. Fac. Cien. Méd. Buenos Aires 29: I-15. f. 1,2 . 1913.

Chamberlain, C. J. Methods in plant histology. $i-x i+1-314$. f. I-IO6. Chicago. 1915. [Ed. 3.]

Clute, W. N. Heaths and heath plants. Am. Bot. 2I: 121-125. N 1915. [Illust.]
Clute, W. N. Latex. Am. Bot. 2I: 127-I3I. N 1915.
Clute, W. N. A wooden pear. Ám. Bot. 2I: I34, 135. N 1915. [Illust.]
The fruit of a tree, Xylomelum pyriforme.
Coker, W. C. Winter grasses of Chapel Hill. Jour. Elisha Mitchell Sci. Soc. 3I: 156-161. D 1915.
Cook, F. C. Boron: its absorption and distribution in plants and its effects on growth. Jour. Agr. Research 5: 877-890. 7 F 1916.
Coulter, J. M. Evolution of sex in plants. $\mathrm{i}-\mathrm{vii}+\mathrm{i}-140 . f .1-46$. Chicago. D 1914.
Crabill, C. H. Note on the white spot of alfalfa. Phytopathology 6: 91-93.f. I, 2. 9 F 1916.
Crabill, C. H., \& Thomas, H. E. Stippen and spray injury. Phytopathology 6: 51-54. 9F 1916.
Davidson, A. Allium Burlewii, n. sp. Bull. S. Calif. Acad. Sci. 15: ${ }^{17}$, 18. Ja 1916. [Illust.]
Emerson, R. A. Anomalous endosperm development in maize and the problem of bud sports. Zeits. Induk. Abstammungs- u. Vererbungslehre 14: 241-249.f. I. N 1915.
Farlow, W. G. Rhododendron maximum in New Hampshire. Rhodora 18: 25,26 . Ja 1916.

Faulin, M. Contribución al estudio de la corteza de la raíz de "Meloncillo" (Capparis Tweediana Eich.). Trob. Inst. Farm. Fac. Cien. Méd. Buenos Aires 27: 1-16. 1912.
Fedder, R. L. A freak lady-slipper. Am. Bot. 12: 126, 127. N 1915. [Illust.]
Fernald, M. L., \& Weatherby, C. A. The genus Puccinellia in eastern North America. Rhodora 18: i-23. pl. 114-117. Ja 1916.
Fromme, F. D. Violet root rot of alfalfa in Virginia. Phytopathology 6: 90. 9 F 1916.
Gates, F. C. The daily movements of leguminous leaflets. Plant World 19: 42-45. f. I, 2. F 1916.
Giddings, N. J., \& Berg, A. New or noteworthy facts concerning apple rust. Phytopathology 6: 79, 80. F 1916.
Grossenbacher, J. G. Some bark diseases of Citrus trees in Florida. Phytopathology 6: 29-50. f. I-g. 9F 1916.
Groth, B. H. A. Heredity and correlation of structures in tomatoes. Ann. Rep. New Jersey Agr. Exp. Sta. 35: 330-338. pl. 13+f. 1. 1915.

Güssow, H. T. Mordecai Cubitt Cooke. Phytopathology 6: $1-4$. pl. x. 9 F 1916.
Hall, H. M. Compositae of southern California. Univ. Calif. Publ. Bot. 3: 1-302. pl. 1 -3. 28 D 1907.
Halsted, B. D. Report of the botanical department. Ann. Rep. New Jersey Agr. Exp. Sta. 35: 295-330. pl. 1-12. 1915. Includes reports on breeding experiments with corn, peppers, and beans.
Harter, L. L. Sweet-potato scurf. Jour. Agr. Research 5: 787-792. pl. 57, 58. 24 Ja 1916. Monilochaetes infuscans.
Hauman-Merck, L. Observaciones etológicas y sistemáticas sobre las dos especies Argentinas del genero Elodea. Apuntes Hist. Nat. I: 164-171. I N 1909.
Hedgcock, G. G. Identity of Peridermium montanum with Peridermium acicolum. Phytopathology 6:64-67. 9F 1916.
Hicken, C. M. Algunas plantas del altiplano del Perú. Apuntes Hist. Nat. I: 172-176. I N 1909.
Hicken, C. M. Algunas plantas de la región del Nahuel-Huapi. Bol. Soc. Physics Buenos Aires 1: 437-44I. 3I D 1914.
Hicken, C. M. Chloris platensis Argentina. Apuntes Hist. Nat. 2: 4-292. 25 My 1910.

Hicken, C. M. Clave artificial de las Acrostíqueas Argentinas. Apuntes Hist. Nat. 1: 17-20. I F 1909.
Hicken, C. M. Clave artificial de las Aspidéas Argentinas. Apuntes Hist. Nat. 1: $145^{-1} 54$. I N 1909.
Hicken, C. M. Clave artificial de las Davalliéas Argentinas. Apuntes Hist. Nat. I: 154-156. $^{-1}$ N 1909.
Hicken, C. M. Clave artificial de las Polipodiéas Argentinas. Apuntes Hist. Nat. I: 156-164. I N 1909.
Hicken, C. M. Clave artificial para determinar los géneros de las Polypodiáceas Argentinas. Apuntes Hist. Nat. 1: 177-204. I D 1909.

Hicken, C. M. Helechos nuevos para la Argentina. Apuntes Hist. Nat. 1: 37. I My 1909.
Hicken, C. M. Holmbergia Hicken, Chenopodiacearum novum genus. Apuntes Hist. Nat. 1: 65, 66. I My 1909.
Hicken, C. M. Un nuevo Elafogloso. Apuntes Hist. Nat. 1: $34-36$. I My 1909. Elaphoglossum Porteri sp. nov.
Hicken, C. M. Un nuevo sistema de las Polipodiáceas. Apuntes Hist. Nat. 1: 5-8. I Ja 1909.
Hooker, H. D., Jr. Physiological observations on Drosera rotundifolia. Bull. Torrey Club 43: I-27.f. I-II. I5 F 1916.
Jones, L. R., \& Bartholomew, E. T. Apple rust and its control in Wisconsin. Wisconsin Agr. Exp. Sta. Bull. 257: 3-30. f. 1-14. J1 1915.
Kibbe, A. L. Some points in the structure of Alaria fistulosa. Puget Sound Marine Sta. Publ. 1: 43-57. pl. 7-9. 20 D 1915.
Long, B. On the occurrence of keeled garlic in America. Bartonia 7 : 6-16. O 1915.
Macbride, J. F. Amsinckia in the northeastern United States. Rhodora 18: 27, 28. Ja 1916.
Macbride, J. F. Certain Borraginaceae, new or transferred. Proc. Am. Acad. Arts \& Sci. 5I : 541-548. Ja 1916. Includes Heliotropium jaliscense and H. foliosissimum, spp. nov., and many new combinations.
Macbride, J. F. The correct name of an introduced Symphytum. Rhodora 18: 23-25. Ja 1916.
Marshall, R. Ferns of the dells of the Wisconsin River. 1-63. Appleton. 1910. [Illust.]

McCall, A. G. A method for the renewal of plant nutrients in sand cultures. Ohio Jour. Sci. 16: IoI-IO3.f. I. Ja 1916.

Melcher, L. E. Plant disease exhibit cases. Ohio Jour. Sci. 16: 105-109.f. 1 -3. Ja 1916.
Meôli, G. Las cenizas de la yerba mate. (Ilex paraguayensis St. Hil.) Trab. Inst. Farm. Fac. Cien. Méd. Buenos Aires 28: 1-50. 1912.
Meyer, R. Uber Echinocactus Emoryi Eng. Monats. Kakteenk. 25: 91-95. D 1915. [Illust.]
Morris, F. "Gleanings in fernland." Ottawa Nat. 29: 105-110. D 1915; 125-129. 7 F 1916.
Mottier, D. M. Vegetable chimeras. Am. Bot. 21: 136-139. N 1915. From an article published in School Science and Mathematics.
Moxley, G. L. Two new Zauschnerias. Bull. S. Calif. Acad. Sci. 15: 22. Ja 1916.

Munger, T. T. Parch blight on Douglas fir in the Pacific northwest. Plant World 19: 46, 47. F 1916.
Murrill, W. A. Illustrations of fungi. Jour. N. Y. Bot. Gard. 17: 7-13. Ja 1916.
Nowell, W. Fungoid and bacterial diseases. West Indian Bull. 15: 133-143. 1915.
Ochoterena, I. Notas de biología vegetal y de técnica microscópica. Bol. Direc. Estud. Biol. I: 135-140. N 1915 . [Illust.] Includes note on Cereus and Spirogyra.
O'Gara, P. J. A fungus of uncertain systematic position occurring on wheat and rye. Science II. 43: 111, 112. 21 Ja 1916.
O'Gara, P. J. A Phoma disease of western wheat-grass. Science II. 43: 110, 1II. 2I Ja 1916.
Otis, J. P. Notes from "The Eastern Shore." Bartonia 7: 17-21. O 1915.
Pennell, F. W. Report on a collecting trip to the central Rocky Mountain region. Jour. N. Y. Bot. Gard. 17: I-6. Ja 1916.
Pierce, R. G., \& Hartley, C. Horse-chestnut anthracnose. Phytopathology 6:93. 9 F 1916.
Pool, R. J. On the behavior of an excised branch of Sahuaro. Plant World 19: 17-22, f. I. Ja 1916.
Poole, H. S. Senecio Jacobaea and Callimorpha Jacobaea (the cattlekilling ragwort and the cinnabar moth). Proc. \& Trans. Nova Scotia Inst. Sci. 13: 279-288. 24 J1 1915.

Potter, A. A. The control of experimental conditions in phytopathological research. Phytopathology 6: 81-88. 9 F 1916.
Robinson, B. L. New, reclassified, or otherwise noteworthy Spermatophytes. Proc. Am. Acad. Arts \& Sci. 5I: 527-540. Ja 1916. New species in Eupatorium (5), Brickellia (I), Verbesina (I), and Liabum (I).
Rose, J. N. Recent explorations in the cactus deserts of South America. Proc. Nat. Acad. Sci. 2: 73, 74. F 1916.
Rosenbaum, J. Disease of ginseng. Cornell Agr. Exp. Sta. Bull. 363: 65-106. f. I-I8. O 1915.
Rothlin, E. Contribución al estudio de la resina de molle. Trab. Inst. Farm. Fac. Cien. Méd. Buenos Aires 26: 1-21. 1912.
Saunders, C. F. The tecate cypress. Bull. S. Calif. Acad. Sci. 15: 18-2I. Ja 1916. [Illust.]
Schaffner, J. H. Additions to the catalog of Ohio vascular plants for 1915. Ohio Jour. Sci. 16: 104. Ja 1916.

Sears, P. B. Evaporation and plant zones in the Cedar Point marsh. Ohio Jour. Sci. 16: 91-100. Ja 1916. [Illust.]
Shame1, A. D. Bud variation. Jour. Heredity 7: 82-87. f. 8. 25 Ja 1916.

Shear, C. L., \& Stevens, N. E. The discovery of the chestnut-blight parasite (Endothia parasitica) and other chestnut fungi in Japan. Science II. 43: $173-176$. 4 F 1916.
Smith, J. R. The Persian walnut. Jour. Heredity 7: 55-60. f. 3 . 25 Ja 1916.
Spoehr, H. A. The theories of photosynthesis in the light of some new facts. Plant World 19: I-16. Ja 1916.
Standley, P. C. Studies of tropical American phanerogams. Contr. U. S. Nat. Herb. 18: 87-142. i-x. II F 1916.

New species in Cyperaceae (2), Amaranthaceae (15), Allioniaceae (3), Caesalpiniaceae (4), Mimosaceae (3), Fabaceae (6), Geraniaceae (2), Rubiaceae (18), and 26 in various other families and the new genera Wercklea, Peltaea, and Lopimia.
Stewart, A. Notes on the anatomy of Peridermium galls. Am. Jour. Bot. 3: 12-22. pl. $I+f$. I. 5 F 1916.
Stewart, V. B. The leaf blotch disease of horse-chestnut. Phytopathology 6: 5-19. pl. 2-4+f. i. 9 F 1915.
Stone, W. Charles Sumner Williamson. Bartonia 7: 1-5. I 01915. [Portrait.]
Trowbridge, C. C. The thermometric movements of tree branches at freezing temperatures. Bull. Torrey Club 43: 29-56. f. 1-19. I5 F 1916.

DESMOPSIS PANAMENSIS (ROBINSON) SAFFORD

BULLETIN

OF THE

TORREY BOTANICAL CLUB

MAY, 1916

The origin of new varieties of Nephrolepis by orthogenetic saltation I. Progressive variations

R. C. Benedict

(With plates io-15)

A. Introduction

1. Definition and scope of paper

The title, "The origin of new varieties in Nephrolepis by orthogenetic saltation," was selected to emphasize two points: first, that the variations to be described are discontinuous and of considerable magnitude, i.e. jumps or saltations; second, that these variations occur in definite series along a few limited lines, i.e. they are orthogenetic. I purposely beg the question as to whether they are mutations or not because I do not know. The exact application of the term, mutation, seems at present to be in a state of some uncertainty, and in any event, there may be considerable question about classifying these vegetative fern sports in the same category with the forms of Oenothera, among which, surely, orthodox mutations must exist.

Nephrolepis is a genus of tropical ferns, several species of which have been cultivated. Nearly all these species have shown some variation under cultivation, but one of them, N. exaltata, through its variety, the so-called "Boston fern," N. exaltata bostoniensis, has been especially prolific of new forms. From this variety there have arisen in about fifteen years at least sixty
[The Bulletin for April (43 : 169-206. pl. 7-9) was issued May 20, 1916.]
named horticultural forms besides a probably equally large number which have never gained horticultural recognition. The present account is concerned only with a portion of these Boston fern varieties, the basis of selection being indicated below.

Reproduction in the Boston fern and its varieties, as indeed in the varieties of the other species of Nephrolepis, is almost exclusively vegetative. The varieties with a few possible exceptions have arisen strictly by bud variation, the explanation being found in the fact that almost all the forms, the wild species being excepted, produce imperfect sori with mostly abortive sporangia. As indicated, there are a few varieties reputed to have been raised from spores and there is nothing impossible in this connection, but there is also no question that the great majority of forms have developed from bud sports. Their study is therefore untroubled by questions of pure line or hybridization, nor does it readily allow these valuable analytical methods of attack, but calls mainly for an accurate determination of the origin and parentage of each form and an adequate description of its characters.

The large number of varieties mentioned includes a multiplicity of forms, some of which have arisen by progressive, some by regressive, variation. A complete description of all these at present would involve considerable difficulties in the way of preparation and presentation. The scope of this paper is therefore limited to deal mainly with the more pronounced lines of progressive variation. The terms "progressive," "regressive," and "reversion," are used here with only their ordinary nontechnical connotation. Progressive variations as understood are those which show less resemblance to var. bostoniensis than do their parent forms. It must be understood here that the variations from var. bostoniensis include series of forms with as many as six successive intensifications of a given character by which the first of the series diverged from var. bostoniensis. Such a series is considered progressive (see Plate io). Regressive variations or reversions, on the other hand, are understood to be those which show something of a return in characters toward var. bostoniensis. This classification is largely one of convenience, and the separation of the two types of forms may not always be justified as made. It will, however, furnish a good basis for a description and discussion of these forms.

As preliminary to such description, it will be appropriate to consider some of the significant features of these variations, and to compare them with other variations of possibly similar nature. This discussion will be dealt with under two headings: viz., Earlier studies of orthogenesis; Conditions under which Nephrolepis varieties have originated.

2. Earlier studies of orthogenesis

The term " orthogenesis" was proposed by Haacke to characterize what the zoölogist, Eimer, had been calling "bestimmt gerichtete Entwicklung," i.e. "definitely directed evolution" as translated by T. J. McCormack.* It appears that the botanist, Nägeli, had expressed views similar to those of Eimer at a somewhat earlier date. The evidence upon which these writers built their conclusions was systematic, and dealt with groups of living species showing close relationship. An orthogenetic series for Eimer was, for example, a group of related butterflies, the relationships between which was traced by gradations in the markings which varied from one extreme to another, but were connected by intervening forms. Evolution was postulated as progressive in one direction or the other.

Later writers, such as Cope, Hyatt, Grabau, and Osborn, have considered orthogenesis in connection with groups of organisms in geologic series. Grabau, for example, has illustrated orthogenesis in gastropods \dagger by series of fossils from successive strata, which show gradual but definite progressive variation in the sculpture of the shells.

A third line of orthogenetic study is illustrated by Coulter's recent discussion of orthogenesis in gymnosperms \ddagger This, of course, is similar to that of Grabau, Hyatt, etc., in that it deals with extinct forms, but differs in being applied to a much longer period of variation and to less closely related forms, and it differs further in that it deals with the evolution of organs as such, the egg, proembryo, seed, etc., rather than with the phylogeny of organisms.

[^38]The conclusions reached by the writers specified above are like those of any similar morphologic or systematic research, but differ in the use of the term "orthogenesis," instead of "tendency to vary," "trends of variation," or some similar expression. This difference is of interest, however, because it lays emphasis on the belief that the evolution of the present-day organic world has not been by chance fluctuation, but has proceeded in an orderly fashion in a law-conforming way. According to orthogenetic theory, evolution proceeds, at least in part, by the progressive intensification of characters in any series of forms, regardless of considerations of adaptation or utility. In the long run, of course, only such forms as possess useful characters will survive.

In the present case, the lines of variation do not appear to be in the jinterests of utility. The new forms produced are not as adaptable to natural conditions as the original species from which they all originated. Proof of this is found in the fact that the various new varieties are, in general, more difficult of cultivation than the original form, and further proof is contained in the fact that none of the varieties of N. exaltata bostoniensis have been found wild in the tropics. It may appear then that these fern varieties, produced so artificially and unnaturally, are poor forms to cite as illustrations of orthogenesis. This would be true were it not for the fact that the same types of variation appear everywhere among ferns as distinctive of recognized species or even genera. That is, fern species have differentiated naturally by the same manner and degree of variation as is shown by these horticultural varieties. On this basis, these Boston fern sports may be considered as unsuccessful variations, either premature or normal, perhaps called forth or at least perpetuated by the unusual cultural conditions. Like wild forms in other genera in the degree of their variation, they are unlike them in having developed no means of maintaining themselves under natural conditions, and if put to the test of competition, would soon be disposed of by natural selection. They may be said to indicate potentialities of variation in Nephrolepis. It is worth while noting that variations of similar type but of spore origin, have appeared in other fern genera, notably Polypodium and Polystichum.

3. Conditions under which Nephrolepis varieties have originated

It is suggested in the preceding paragraph that cultural conditions may be responsible in some degree for the development or preservation of so many new varieties. Two points are of special interest in connection with the cultural conditions: first, the fact that these are probably generally the optimum for these ferns; second, the very large numbers of individual plants raised each year.

For soil, the florist uses a good loam or leaf mould with at least one half to equal amounts of rotted manure. In one case the mixture used consists of one part sand to five parts rotted manure, leaf mould, and humus. New plants are propagated from stock plants which are planted out in long benches in shallow soil. A single stock plant may produce nearly one hundred runners, as the young plants are called, in a single year. These new plants develop from slender stolons which spring from the parent plant close to or connected with the leaf bases, and penetrate the soil in all directions. Each runner may produce a considerable number of buds as well as roots. It is worthy of present note that these stolons serve not only for reproduction but also as agents in the nourishment of the parent plant, at least until the secondary plants have attained some size. The main point to be noted in connection with the methods of propagation aside from the quality of the soil, etc., is the freedom of growth which is given the stock plants and their progeny in the early stages. The plants after potting are sometimes further fed with liquid fertilizer of some sort. They are grown in low-roofed houses with absence of draft, and usually with no other kinds of plants which might desire slightly different conditions. If variation is in any way connected with vigorous growth, there is every reason why these ferns should vary.

With respect to the number of plants grown per annum, it is hard to estimate in what will appear a conservative manner. I have talked with two growers who claimed to sell three and four hundred thousand small plants every year and there seemed to be noreason why they should be exaggerating. There are undoubtedly half a dozen florists in the eastern states who raise over one hundred thousand plants each year, and a larger number who produce fifty thousand. The number who grow fifteen to twenty thousand
is of course much larger still. Some deduction from the total thus indicated must be made in connection with smaller growers because of the fact that many buy part or all of their stock of ferns each year as small plants to raise to larger sizes. A single plant may thus be sold twice at wholesale, and once at retail, and the non-growing jobber may come in to make a third wholesale transfer. Taking everything into consideration, however, it seems safe to put the total number of plants raised every twelve months at not less than one million, and probably nearer two. As will readily be seen, this immense number offers large possibilities for the occurrence of variation.

A third factor connected with the selection and preservation of new varieties of these ferns is found in the fact that some of these varieties have been the means of large profits to their producers. The first good two-pinnate sport of var. bostoniensis created a furor in the florist trade, and was awarded gold medals and other insignia which no other new plant has ever received. The regular price for a small plant of a standard variety from a two and a half inch pot is five cents in hundred lots. New forms of merit now sell at introduction for twenty-five cents apiece, and some new forms have sold as high as one dollar per plant. In the past this has led to the exercise of great watchfulness for new forms of possible merit, and has thus aided in the discovery and development of new varieties. So many forms have now been developed, however, that there appears to be a reaction from the interest in new forms.

The figure as to the number of plants grown per year suggests the possibility of determining an approximate coefficient of variation, but this seems to be an almost impossible problem. For one variety about which I have made inquiry, the number indicated is at least one in three thousand. For another variety which is appearing rather frequently in different establishments at present, the coefficient is undoubtedly higher, perhaps one in one thousand. For yet another variety a figure of one in a million is probably too high an estimate. It should be added that these figures are for progressive variations only. Reversions or regressive variations appear much more frequently as a rule.

Two conclusions are evident from the foregoing: (1) the coefficient of variation differs with different varieties; (2) the coefficient of variation is never high for progressive variations.

4. Methods of study

One method of study of the Boston fern problem is indicated by the above facts as almost obligatory, viz., frequent visits to florists' establishments for purposes of observation. During the last two years I have visited nearly all the leading fern growers in the eastern states. Visits have been made to the greenhouses of the growers in Massachusetts, New York, New Jersey, Pennsylvania, and Ohio, who have produced practically all the new forms of Nephrolepis raised east of the Mississippi. These visits are being continued, and arrangements have been made for experimental work through the coöperation of some of the growers.

A second method of study has been connected with the assembling of a living collection of all obtainable varieties of these ferns at the Brooklyn Botanic Garden. These collections now number at least seventy-five varieties, nearly all obtained directly from their original producers, and orders are now in the hands of English and French growers for foreign varieties which will raise the total number to over one hundred. Requests have also been sent to a number of stations in the tropics for the collection of wild forms with a view to obtain a good representation of both horticultural and natural forms.

Still a third method which is really a combination of the other two has consisted in the introduction to florists all over the country of varieties with which they were not familiar. A large number of small plants have been sent out in this way. The benefit to the investigation will come in connection with future visits when a much larger number of varieties will be available for observation. A considerable number of new forms have also been obtained in this way by exchange.

It will be noted that there is little opportunity for the experimental production of new progressive variations in connection with the Botanic Garden collection. Not enough plants can be grown. In the florists' establishments, the number of plants may be large enough but it is not always possible to control all conditions or to find sufficient time for regular and thorough observation.

The greatest difficulty which inheres in the study of the known forms of these ferns is connected with the possible inaccuracy of the growers. For the facts as to the origin and parentage of each
variety it is necessary to rely almost wholly on the statement of the florist who produced it. With every desire for accuracy, the grower may easily be mistaken with respect to the relationship of any given form, even if it has been under his eye since its first appearance. Plants of various forms are often grown together in stock beds, and the stolons may spread two or three feet in all directions with consequent mixing of the runners. When a form is discovered by one florist and sold for development and introduction to another, there is still greater chance for inaccuracy.

In general, however, there is every reason for believing that the statements which follow regarding the origin and relationship of the varieties are in the main accurate. Many of them, nearly all, in fact, are established beyond the possibility of any reasonable doubt. A few are definitely indicated as open to possible question.

It is a pleasure to acknowledge indebtedness to the numerous florists who have contributed to the living collections which have been built up almost exclusively by their gifts of plants. A nearly complete list of the contributing florists is given at the end of this paper in connection with an index of the varieties. To Mr. W. R. Maxon, of the United States National Museum, my thanks are due for valuable information regarding his collections and observations of these ferns in the tropics. For the opportunities at the Brooklyn Botanic Garden, without which complete data could not have been accumulated, I am glad to make grateful acknowledgment to Dr. C. Stuart Gager, the director. To Dr. O. E. White of the same institution I am indebted for a reading of my manuscript and a number of suggestions. Finally the study has been aided by a grant of one hundred dollars from the American Association for the Advancement of Science, made at the Columbus meeting, which will be applied to the expenses incident to the visits to florists. Only a small part of this has so far been used, most of the visits to date having been made at private expense.
B. Origin and description of the varieties in Nephrolepis

I. N. exaltata and N. exaltata bostoniensis

Nephrolepis exaltata, or rather its variety bostoniensis, has been named as the form from which the variations under consideration have all originated. As already noted, a number of other species in the genus have also given rise under horticultural conditions to variations similar to those of N. exaltata, but none of the other species has received as extensive cultivation, and there has, therefore, been less opportunity for variation. It may be noted here that all the wild species forms of Nephrolepis are oncepinnate. This is significant in consideration of the fact that among the varieties of N. exaltata bostoniensis are two-, three-, four-, and even five-pinnate forms. So far as I have been able to discover, only two partial aberrations from the once-pinnate type have been found wild; one, N. biserrata (" davallioides") furcans, with dichotomously divided pinnae, the so-called "fish-tail" form of the florists (see Plate 12, fig. 3, for illustration of this type of variation in the variety falcata); and the other, the anomalous form known as N. Duffii from New Zealand, referred by Goebel to N. cordifolia as a variety.
N. exaltata is a species of common and general occurrence in tropical America, and of somewhat scattered distribution in the Old World tropics. As I have it from Porto Rico, it appears as a plant with narrow erect leaves with sharply acute pinnae (PLate 13, FIG. I), well deserving its common name of "sword fern.'" The sori are well developed and large with many fully formed sporangia. Presumably this form has been in cultivation in America for over fifty years, although the source and exact character of the original introduction are uncertain. It seems to have been first introduced into cultivation in 1793, at Kew, and came from Jamaica. The date of its American introduction I have not yet been able to discover, although this is a matter of consider-

[^39]able interest, especially with respect to the origin of the variety bostoniensis. Between 1890 and 1895 florists discovered that there were in cultivation under the name of sword fern two distinct forms, the one as above described, the other (see Plate 13, FIG. 2) laxer, with broader leaves, upon which the sori and sporangia were small and abortive. The second form was also more rapid in growth.

There are two versions of the origin and discovery of this second form which afterward came to be known as the "Boston fern," or "Boston sword fern." According to one version, the variety was first discovered among a lot of two hundred small plants shipped as plain sword fern by the Robert Craig Company, of Philadelphia, to F. C. Becker, of Cambridge, Massachusetts. It is certain that the latter florist was among the first to recognize the importance of the second form which he at first identified as N. davallioides. Under this name a considerable number of plants were sold. This identification was later challenged by G. W. Oliver, of Washington, who finally convinced Becker after a considerable exchange of opinion in the Florists' Exchange* that the fern in question was at least not N. davallioides, or, as it should be called, N. biserrata. The dispute ended according to the citations referred to by September 12, 1896. Becker stated that the plant had been submitted to a fern expert by the Nomenclature Commission of the Society of American Florists, and his advertisement was changed so that the fern was listed henceforth as N. exaltata bostoniensis.

The other version has recently received a convincing statement in the Florists' Exchanget by F. W. Fletcher, of Auburndale, Massachusetts. According to this version, the Boston fern, when attention was first directed to it, was in the hands of several growers, particularly about Boston. Many of these growers were of the opinion that they were the discoverers of it, but there seemed to be no way of determining its real origin. At any rate it was referred to the Nomenclature Commission of the Society of American Florists as stated above, and by them submitted first to Kew, and later to G. W. Davenport. The latter is said

[^40]to have been responsible for its identification as a variety of N. exaltata, and the assignment of the varietal name bostoniensis, because of its prevalence in the neighborhood of Boston. Supporting this statement, there is a single, small, and immature, leaf of var. bostoniensis preserved in the Gray Herbarium with Davenport named as collector and dated in 1896.

It may be noted that the second account does not preclude the possibility that a single florist, perhaps Becker, may have been originally responsible for the discovery of the new form. It is generally admitted that he had much to do with its exploitation and dissemination. It should be added, however, that some florists are of the opinion that the form has been in existence as long as forty years. A factor of great present uncertainty lies in the possibility of errors in identification on the part of florists. At present a number of florists are offering as N. exaltata a very different form, the species, N. cordifolia or N. tuberosa. Absolute nomenclatorial accuracy seems still to be beyond the abilities of botanists, even systematists, so that florists may be forgiven for occasional lapses, but the occurrence of such lapses indicates that the origin of var. bostoniensis may necessarily remain in the category of unsolved mysteries.

The study of tropical collections of Nephrolepis, both living and herbarium, may throw some light on this mystery. Another source of possible enlightenment lies in a study of the sources from which this species was introduced into cultivation. The possibilities of variation in a species so widely distributed as N. exaltata are too great to be overlooked. It is not impossible that the variety bostoniensis may have had a direct importation from the tropics.

2. Sports from var. bostoniensis

No matter what may be the uncertainty regarding the ancestry of var. bostoniensis, there is little or no uncertainty regarding its progeny. In the course of less than twenty years, it has given rise, directly and indirectly, to at least one hundred different forms. Its known first generation descendants probably number no more than twelve. The remaining ninety odd represent third, fourth, fifth, or even later generation sports of vegetative origin.

The forms which are claimed as direct sports from var. bostoniensis are as follows: Piersoni (Plate io, fig. 2; Plate if, fig. 2), Schilleri, Anna Foster, Amerpohli (Plate il, fig. 7), Harrisi (Plate I3, fig. 3), Roosevelti (Plate 13, fig. 3), Scotti (Plate 14, fig. 2, 5), Schultheisi, Giatrasi (Plate i5, fig. 2) and Wittboldi. These forms do not represent ten diverse lines of variation, but three, or at most four or five. Piersoni, Schilleri, Anna Foster, and Amerpohli show an increase in leaf division from the once-pinnate type of var. bostoniensis. Schilleri seems to be an approximation of the form shown by Piersoni, which appeared more than ten years earlier. Both are twice-pinnate, as is Anna Foster, but the latter shows further differences in the shape and size of the ultimate segments, and other features. Amerpohli is thrice-pinnate, and, if directly descended from bostoniensis, represents a skipping of the twice-pinnate stage.

Scotti (Plate 14, FIG. 2, 5), Schultheisi, and Giatrasi (Plate 15, FIG. 2) are dwarf sports of var. bostoniensis. Schultheisi seems to be an approximate repetition of Scotti, ten years afterward. Giatrasi is well distinguished from the other two dwarfs in characters of growth habits, leaf form, etc., so that there may be said to be at least two distinct kinds of dwarf sports.

Harrisi and Roosevelti (see Plate 13, fig. 3) are almost exactly alike in respect to the leaf characters, but both differ from var. bostoniensis in having the pinnae more wavy or undulate, due to an increase in the parenchymatous part of the pinnae especially along the margin. Wittboldi, for which a spore origin is claimed, was originally described as "twice as wide as var. bostoniensis, and with wavy pinnae." As yet I have no surely authentic plants, and so cannot speak with certainty. The original introducers do not have the plant in stock now, but the material at hand named Wittboldi indicates that var. bostoniensis was probably not the parent form. The new form may have arisen as a chance sporeling, the result of the accidental introduction of some entirely different form, a very frequent occurrence in greenhouses. Herbarium specimens from Florida indicate that there may also be a "fish-tail" sport of var. bostoniensis, not included in the list of sports named above. There have probably been a few other variations of var. bostoniensis, either like those already named, or so unsatisfactory from the florists' point of view that they have not been preserved.

Eliminating the last two mentioned types, Wittboldi and the "fish-tail" form, there remain then three main lines of variation from var. bostoniensis, namely: a line showing increased division in the leaf, a line showing increased waviness or ruffling of the

	$\left\{\begin{array}{l}\text { Piersoni ... } \\ \text { Schilleri }\end{array}\right.$	$\left\{\begin{array}{l}\text { Barrowsi Whitmani. } \\ \begin{array}{l}\text { PIERSONI- } \\ \text { " Improved" }\end{array} \\ \text { Elegantissima . . ELEGANTISIMA- } \\ \begin{array}{l}\text { Elegantissima- } \\ \text { compacta. . . . Sport like Whitr }\end{array} \\ \begin{array}{l}\text { Superbissima . . . Muscosa }\end{array} \\ \begin{array}{l}\text { Splendida }\end{array}\end{array}\right.$	$\left\{\begin{array}{l}\text { Whitmani- } \\ \text { "improved" } \\ \text { Whitmani- } \\ \text { compacta } \\ \text { Magnifica } \\ \left\{\begin{array}{l}\text { Gracillima } \\ \text { Goodi }\end{array}\right\} \\ \text { Elmsfordi }\end{array}\right\}$ mani-compacta
	Anna Foster Amerpohli. Harrisi.....	?Smithi \qquad Craigi Wm. K. Harris	
exaltata-.... ..bostoniensis.	Roosevelti .	FALCATA	SH-TAIL SPORT
	Scotti Schultheisi	Wagneri Scholzeli \qquad three-pinnate spo	
	Giatrasi.... Wittboldi	Dwarf sport two-pinnate sport	

Genealogical chart of progressive sports of bostoniensis
Black face type indicates division sports.
Italics indicate sports showing ruffling.
Plain Roman type indicates dwarfing.
Small capitals indicate other kinds of variation.
pinnae, and a line showing dwarfing. These types of variations are referred to as "lines of variation" because they represent the beginning of the orthogenetic series already mentioned, series in which these three kinds of variation are repeated in intensified
form in one or more further vegetative generations. In these three lines occur all the illustrations of progressive orthogenetic variation about which this paper is mainly concerned. Reversion or regressive variation is also common, but need not be considered here.

The variations classified as progressive according to the distinction already made are all arranged according to their origin in the chart on page 219. It should be understood that no attempt has been made at this time to include the English forms, as they are not yet available for study, but enough is known to indicate that they do not represent any kind of variation not shown by American forms.

The direct sports from var. bostoniensis are of further interest in connection with the present discussion only as they have given rise to progressive variations. Upon this basis we may eliminate at once the varieties, Schilleri, Anna Foster, Schultheisi, and Wittboldi. It does not follow that these varieties have no potentialities of variation. Their failure to vary has probably been due only to the fact that they have never been extensively cultivated, and this in turn, has been due to the fact that they have not offered to the florist sufficient inducement in the way of horticultural possibilities. It remains then to consider the other bostoniensis sports according to the lines of progressive variation which they exhibit.

3. Progressive division of the leaf

(Plates Io-I2)
Of the original bostoniensis varieties showing an increase in leaf division, Piersoni is of most importance. From this form have come three or possibly four types of sports, viz., varieties showing further increase in division, Barrowsi, elegantissima, and elegantissima-compacta: varieties showing dwarfing, superbissima; a variety with forked pinnae, splendida; and a so-called "improved" form, Piersoni "improved."

Piersoni represents a twice-pinnate sport from the once-pinnate var. bostoniensis. Barrowsi shows a slight increase in the lobing of the pinnulae, that is, it is twice-pinnate pinnatifid. Elegan-
tissima (Plate 12, fig. I) and elegantissima-compacta (Plate I2, FIG. 2) are, however, more divided, in some leaves as much as thrice-pinnate. Elegantissima-compacta is of further interest because it is also a dwarf, thus combining two lines of variation at once.

Piersoni "improved" illustrates a type of variation which is of special interest to florists, and to which they seem generally to apply the name "improved," as, for example, elegantissima "improved" and Whitmani "improved." All the forms in the division series revert more or less, that is, throw once-pinnate leaves, and sometimes runners, i.e. plants which revert as a whole. The florist objects to these mixed plants and selects for greater stability. When he obtains stock showing less reversion, he is likely to call it "improved." There is great variation in the matter of reversion. Some kinds are relatively stable from their first appearance, others may produce as many reverting leaves as of the new type. Usually in order to keep stock true to type, a florist must exercise care in the selection of the runners which are used as stock plants.

Another illustration of dwarfing from Piersoni apparently of a brachyotic nature is represented by the variety superbissima (Plate 12, fig. 4), which is much less than half as long as its parent form. The dwarfing has been achieved mainly by a radical shortening of the rachis, with proportionately less decrease in the size of the pinnae. The resulting leaf is dense, stiff and twisted, of no particular grace, but interesting as an oddity. Like Piersoni, superbissima exhibits considerable reversion, and as yet no certain "improved" or non-reverting form has been obtained.

The sixth sport of Piersoni which may be classed as progressive, exhibits the kinds of variation prevalent though not common throughout the fern order, that is, the forking or dichotomy of the leaf apex or of the segments. In this form, called splendida (Plate 12, FIG. 3), the pinnae show the forking, and a single plant may bear at one time several kinds of leaves, once-pinnate, twicepinnate, and forking.

Referring again to the form superbissima, it may be noted here that from this there has come, as from Piersoni itself, a further sport showing progressive increase in the division of the leaf.

This variety is called mucosa (Plate 12, fig. 6) because of the dense, finely divided condition of the leaf. It seems to represent the same amount of division of leaf as is seen in the forms elegantissima and elegantissima-compacta, that is, it is thrice-pinnate. Tracing the ancestry of muscosa, we find the four forms, bostoni-ensis-Piersoni-superbissima-muscosa, which are, respectively, one-pinnate, two-pinnate, dwarf, and three-pinnate.

Two generalizations are suggested by the facts shown in the preceding series, and borne out by others to be shown later, which, if thoroughly understood, will simplify the description and explanation of the remaining forms. They rest not only on these few examples, but, as will appear, are true in the case of nearly all the variations considered in this paper.
I. Progressive variation takes place naturally along the three lines already described, viz., increase in leaf division, increase in ruffling or crisping, and dwarfing.
2. Any form which has not reached the limits of possibility in variation along the first and last mentioned lines, may be expected to give rise to new forms showing further progressive variation in one or both of them.

To particularize, we may say that any once-pinnate form may be expected to give rise to a twice-pinnate variety. A twicepinnate variety may be expected to give rise to a thrice-pinnate form. The most highly divided form which has so far appeared is five times pinnate (see Plate io, fig. 5; Plate ii, fig. 6), and there appear to be constitutional physiological reasons why further division is unlikely. As is the case in the progressive division in the leaf, so also with dwarfing or pumilism. Any large form whether once- or twice-pinnate, may be expected to give rise to a dwarf variety, as superbissima was derived from Piersoni, and as dwarf forms have occurred in the other series to be described below. With respect to progressive increase in ruffling, it is uncertain whether the second generalization applies to this line of variation or not. It may be that it does not apply in this line at all, or it may be that in the division series, a change in the degree of waviness would be too relative to admit of exact determination. It is certain that dwarfing occurs in all three lines, and that increase in division occurs also in the dwarfing series. Whether
increase in division also occurs in the frilled or ruffled series is yet to be determined.

Of all the varieties of Piersoni, Barrowsi is perhaps of greatest interest because it has given rise to at least two further generations (vegetative) of division sports. From Barrowsi has come Whitmani, a clear increase in division, and from Whitmani have come several sports showing still more division.

Of the sports of Whitmani (Plate 10, fig. 3; Plate il, fig. 3) named on the chart, Whitmani "improved" represents a more stable form, i.e. less given to reversion. Whitmani-compacta is a trifle smaller than its parent form, and has a fuller leaf with more expanded segments. Goodi and Gracillima (Plate il, fig. 4; Plate 12, fig. 5) are apparently separate occurrences of the same variety, entirely thrice-pinnate, and with smaller segments than Whitmani. It may represent a dwarfing. Magnifica (PLATE IO, FIG. 4; Plate ii, fig. 5) is clearly four times pinnate, and represents the greatest amount of division which can be definitely stated to have been evolved in this particular series. Elmsfordi (Plate 12, fig. 7), a reputed spore sport, looks much like a miniature Whitmani, being less than half its size. It is different in another particular, in that it produces a much greater number of leaves to each crown, and in a given size pot. A plant grown to full size in a four-inch pot may show as many as a hundred leaves. In a twelve-inch pan, an estimate of a thousand leaves appeared conservative.

The other progressive sports in the Piersoni line are sufficiently described for the present by the typography of the chart and by the figures in plates $10-12$.

The other reputed bostoniensis sport from which further progressive variations in the line of division are believed to have come is Amerpohli, a thrice-pinnate variety. Amerpohli in leaf division is very like magnifica, and in growth habit and carriage of the leaf it is also similar. Because of this close resemblance it is more than reasonable to suggest that it may really have come from Whitmani as a sport and that its reputed origin from var. bostoniensis may be an error. From Amerpohli, the four times pinnate form, Smithi, is said to have come. There is some question as to the correctness of this assertion but none regarding the fact that from

Smithi a five times pinnate form, Craigi (Plate ro, fig. 5; Plate II, FIG. 6), has come. This form is particularly interesting as exemplifying what is at present the highest amount of leaf division that has been attained by these forms. Craigi is illustrated in the plate with Piersoni not as necessarily derived from this but in order to complete the possible series of division forms. In that plate Barrowsi has been omitted because I have not yet been able to get a mature leaf of it.

As appears most noticeably on the plates illustrating these division forms, the increase in pinnation seems generally to be accompanied by a striking decrease in the size of the leaf, that is, in the total area. It is probable, however, that the actual leaf surface area remains the same, the apparent decrease being compensated for by the multiplication of the segments which may even expose more actual surface.

4. Progressive increase in ruffling of the leaf

(Plate 13)
The series showing progressive increase in ruffling or crisping of the leaf begins with the original species, N. exaltata (Plate I $_{3}$, FIG. I), because one of the characters in which var. bostoniensis (Plate 13, Fig. 2) departs from the typical N. exaltata is in this feature. From var. bostoniensis there have been two more ruffled sports, Harrisi and Roosevelti, almost duplicating each other in appearance, but well distinguished as regards their progeny. Plate 13, fig. 3, may represent either Harrisi or Roosevelti, and Plate 1_{3}, fig. 4, may represent the variety $W m$. K. Harris, or a coördinate form of similar appearance derived from Roosevelti but unnamed. Both are alike in leaf characters including crisping of pinnae, and both represent the highest development of this character which has been obtained in a direct progressive series. It will be noted that with the increase in crisping there has come also a tendency to develop auricles on the pinnae. This is of interest because it is a feature characteristic of wild varieties of other fern species.

The form described above represents the final sport so far obtained from the Harrisi line. From the Roosevelti line, how-
ever, two additional generations have appeared, showing progressive dwarfing. The first, called Teddy Jr. (Plate 13, fig. 5), has the characteristics appropriate to the principles of its namesake, as it appears to be the most prolific in producing new progressive variations of any Nephrolepis form. These new variations have appeared in three forms, but the interesting feature about them is that they are apparently common wherever Teddy $J r$. is grown. In other words, Teddy $J r$. shows a high frequency of variation.

Teddy Jr. is about half the size of the parent form Roosevelti. The three new forms are further dwarfs as shown in Plate 13 , FIGS. 6-8, respectively, the last being the smallest of the three and perhaps brachyotic. Only one, the middle-sized one, has been named as yet, being called Randolphi (Fig. 7) or "Baby Randolph." The smallest form may come directly from Teddy $J r$. or it may also, according to report, arise as a sport from the largest of the three Teddy Jr. dwarfs.

It will be noted that the illustrations indicate that the amount of frilling continues to increase in the successively smaller forms. This increase, however, is probably to be correlated with the dwarfing, and should not be interpreted as in the line of progressive increase in ruffling.

From the largest of the three dwarf sports from Teddy $J r$. there has just come to my attention a fish-tail sport, a form of variation apparently possible in all ferns.

5. Progressive dwarfing

(Plates I4 AND 15)
Finally we have the series showing progressive dwarfing directly from var. bostoniensis. This seems to have occurred in three separate instances. The forms Scotti (Plate 14, Figs. 2, 5) and Schultheisi appear to be very similar, but independently derived. Of these Scotti is particularly interesting because it has given rise to other sports. Giatrasi (Plate 15, FIG. 2) is also interesting for the same reason, and because it has distinctive features of its own. Neither of these dwarfs seems to be brachyotic.

Scotti (Plate 14, Figs. 2, 5) differs from var. bostoniensis not only
in being smaller, but also in having blunter more wavy pinnae, and in having both leaves and pinnae more or less arched. From Scotti have come dwarf and division sports, as well as a fish-tail form. The further dwarf is called Wagneri (Plate 14, Figs. 3. 6), and seems to represent merely a foreshortening of the Scotti form with an intensification of the arching,

The division sport of Scotti is called Scholzeli (Plate 14, Fig. 7), and is practically a miniature Piersoni in the type of division, shape of pinnae, et al. From Scholzeli, a two-pinnate form, has come a three-pinnate sport (Plate 14, Fig. 8) to which no separate name has been given. It has been sold as Scholzeli. It corresponds to Whitmani in the division series proper, and like this would undoubtedly give rise to a four-pinnate form if grown in sufficient numbers.

Giatrasi (Plate I5, Fig. 2) is little more than half as large as Scotti, and differs further in being slower growing, in producing a larger number of leaves per crown, and in the characteristics of individual leaves as well. These are thinner, have undulating rachides, and the pinnae are shorter and blunter. Because of its slower habits of growth, it appears to have found favor only with its introducer, George Giatras, in whose establishment some five to ten thousand plants are grown each year. Under these conditions it has given rise to two further sports, both as yet unnamed. One of these is a further dwarf (Plate 15, Fig. 3), and the other is twice-pinnate (Plate 15, Fig. 4). These new forms seem to partake of the slower growth habits of Giatrasi, and are therefore unlikely ever to be grown in quantity. This is unfortunate from a scientific point of view, as their further development and possible sports would be of considerable interest.

C. General Considerations

Some general considerations suggest themselves as a result of the foregoing descriptions; for example, the character and significance of the reversions, the possibilities of spore reproduction and segregation of forms, the possible results of morphological and cytological studies, etc. Nothing, however, is to be gained by speculation along these lines in the absence of additional facts. The reversions are under observation, and I hope that another
growing season may allow the accumulation of sufficient information to make possible a description of these forms. Furthermore, the forms which have been so incompletely described in the preceding pages are worthy of a more careful and detailed study and description. I hope also to start spore cultures within a few weeks, using not only material known to be spore-fertile, but also forms presumably spore-sterile in the hope that apospory may result. There are indications that this phenomenon may occur.

Before concluding the present consideration, there are, however, two or three phases of the topic to which attention should be directed, by way of emphasis upon the significance of the variations which have been described.

First, further emphasis should be laid upon the separateness of the forms inter se. They are entirely discrete and distinct, and in this respect, are in accord with the characteristics ascribed to mutations. The individuals of a given variety show great uniformity under any given conditions of cultivations, and do not pass by imperceptible differences into related varieties. The fact that reversion takes place does not alter the separateness of the different varieties. In fact the reversions themselves furnish the best possible evidence of the distinctiveness and lack of continuity between even closely related varieties. The truth of this statement is established by the fact that the reversions are rarely if ever complete. A twice-pinnate variety may show some once-pinnate leaves and may give rise to new plants with once-pinnate leaves, but these once-pinnate leaves do not show a complete return to the form, size, etc., of the leaves of the original once-pinnate variety. The leaves of the reverted plant tend always to retain something of the character of the twice-pinnate plant. It appears then that the process by which the twice-pinnate form was produced from the original once-pinnate form must represent a protoplasmic change which is retained to some extent, even in the reversion. I cannot say that reversion may never be complete, but I have not yet found any cases where it is. This fact, however, that in any given progressive variation, a constitutional change is effected so pronounced that it can rarely if ever be completely reversed, is striking evidence that the varieties formed by progressive variation are distinct and discontinuous.

One of the interesting morphological possibilities is found in a problem under study, to determine whether new bud sports do not always appear first in the form of a variant leaf on the parent plant, this leaf showing the line of variation which the new form afterward fulfills. The solution of this problem depends on the possibility of determining whether each leaf has a subtending runner, and whether all the new plants from a given runner are alike and partake of the characteristics of the connected leaf. The problem, stated in other words, is to determine whether the actual process of variation takes place first in the cells of the leaf and is repeated in the runner and its sports, or whether the variation may not take place in the runner itself.

The fact that varieties in the division series do not always differ inter se merely by division, but also sometimes in the size and shape of the segments et al., and the further fact that other variations occur, such as dwarfing and ruffling, are in opposition to the conclusions reached by R. G. Leavitt,* who suggested that the appearance of varieties showing an increase in division was due merely to a translocation of the ability to divide from the whole leaf to the pinnae, a phenomenon to which he applied Bateson's term of homoeosis. To accept the hypothesis of such a translocation, it would be necessary to find that the twice-pinnate form differs from the once-pinnate form, from which it arose, merely in the amount of division, a supposition which is hardly supported by facts.

A further argument for the hypothesis of homoeosis adduced by Leavitt, and applied not only to these ferns but also, for example, to the horse-chestnut, lay in the fact that the new forms possessed no utilitarian advantage over their parents. The fact that the horse-chestnut leaf cuts off each pinna by a distinct callus as well as its petiole base, and that this double decision appears to have no adaptive value, was advanced as confirmatory of the homoeosis thesis. This is interesting, but will hardly be accepted as an argument in view of modern objections to teleological explanations. It may be noted that Eimer, twenty and more years ago, made a most determined stand against the belief that adaptability was a prime necessity in the appearance of new characters and the evolution of new forms.

[^41]With respect to the present group of horticulturally produced forms, it appears evident that the lack of adaptability to natural conditions shown by most of them would prevent their establishment if they were to be introduced. This statement is probably true for the original sports of var. bostoniensis as well as for the forms of later vegetative generations, and this fact in itself is an adequate explanation of the non-occurrence of any of these forms wild. On this assumption they represent new forms produced in the course of evolution, most of which would be eliminated by the discriminating agency of natural selection. They differ therefore from wild forms showing the same types of variation, only in their non-adaptability. Certainly the three lines of variation along which these forms of Nephrolepis have been differentiated, and especially the lines of increase in division and dwarfing, can be paralleled by similar lines of variation among wild forms which have succeeded better because provided with the means to meet natural conditions of competition, etc. Certainly also the forms described in this paper comprise, within their extremes of variation, greater differences than are required for the differentiation for many natural species. For example, differentiation of species and even genera on the basis of leaf division is too common, not only among ferns but also among flowering plants, to require more than mention.

As possible corollaries to the statements of the preceding paragraphs, two points are of interest and may be indicated in the form of questions. Is the rapidity of evolution of these Nephrolepis varieties, fifty or more in fifteen years, any indication of the speed of evolution of wild forms of similar distinctiveness? Or does the fact, that nearly all if not all of these forms would lose out in the struggle for existence, indicate that, while the appearance of illadapted variations may be common, the appearance of successful variations is most uncommon?

In the preceding paragraphs it has been assumed that the variations of these cultivated ferns are homologous with similar variations occurring among wild species. If this is true, (that the two lines of variations are homologous) it is not improbable that the causes may be similar. These causes may be sought by experimental methods, by the cultivation of a variety which shows a
relatively high coefficient of variability, as for example, Teddy Jr. They may be sought by cytological study of similar variations, as is shown by the production of dwarfs in many widely separated lines, or by the reversions. The cytological method would only show some possibly correlated facts of cell structure. The experimental method might show some connection between cultural methods and the appearance of new forms. In this connection it may be noted that Eimer and Coulter, perhaps the earliest and the latest to discuss the possible causes of orthogenetic variation, have both professed the opinion that climate is the probable causative agency.

The query has been expressed as to whether a hybrid origin might not account for these variations of bostoniensis. With this possibility in mind, one species of Nephrolepis, N. biserrata, which is co-extensive with N. exaltata in distribution, would seem to be worthy of investigation. It is hard to imagine, however, how the combination of any two twice-pinnate species of Nephrolepis, or indeed of any more dissimilar species, could account for the appearance not only of the three lines of variation but of the progressive intensification of these lines thereafter. The sterility of these forms is apparently the only feature these forms have in common with most hybrids, and this must presumably be accounted for in some other way.

For the present, all that can be said as to the genesis of these forms is they apparently proceed from some internal cause. It may be added that similar variations have occurred as a result of spore sporting, and also that similar variations are common wild. These forms may therefore be considered as indicating how species, showing similar differences, have arisen, that is, by what lines of variation. The evidence offered along this line by the progressive forms alone is most incomplete, however, without an understanding of the regressive variations as well.

D. Summary of facts and conclusions

I. Nephrolepis, a genus of once-pinnate tropical ferns, includes several species which are cultivated. Nearly all of these cultivated species show variation by bud sports, but N. exaltata through its variety bostoniensis is most prolific, having given rise
to more than one hundred different forms in less than fifteen years.
2. Cultural conditions are such as to favor the appearance and preservation of variations, because the soil and other environmental conditions are probably practically perfect, and because very large numbers of plants, one to two million, are grown per annum in the United States alone.
3. The variations may be classified under two headings, progressive, and regressive or reversive. Progressive varieties are defined as those which show less resemblance to var. bostoniensis than their parent forms. Regressive varieties are defined as those which show something of a return in characters toward var. bostoniensis.
4. Progressive variations have appeared along three main lines, viz., those showing increased division of the leaf; those showing increased ruffling of the pinnae; those showing dwarfing. Variations showing dichotomy of the pinnae and leaf tips also occur.
5. Progressive increase in division has gone through five vegetative generations, each succeeding step being an intensification of the preceding, the forms varying from once to five times pinnate. Progressive increase in ruffling has gone through three vegetative generations. Progressive dwarfing has gone through three vegetative generations.
6. The dwarfing seems to be clearly of two sorts: first, brachyotic or unilinear; and second, normal in all dimensions. More than one type of division sport is also indicated.
7. Progressive increase in leaf division and progressive dwarfing may be expected in any form which has not reached the limits of variation along these lines.
8. Regressive variations rarely if ever show complete return to their parent forms or to var. bostoniensis.
9. The indicated coefficient of variation for progressive variations is very low; probably between one in one million and one in one thousand. Regressive variation is much more common.
10. The variations are all discrete or discontinuous, not proceeding by imperceptible differences.
II. The progressive variations in their differences actually
parallel the differences existing between many wild species of ferns and flowering plants.
12. The main difference between these variations and those shown by wild forms lies in the fact that these horticultural forms do not possess adaptability to natural conditions. In most cases, with the variation, has come decreased vigor of growth.

I3. The cause or causes of these variations are undetermined. They proceed as if from internal stimulation. The improved cultural conditions do not appear as causes, but rather as a means of preserving forms which, under wild conditions, would be eliminated by natural selection.

E. Index of the sports described above

Varieties showing increase in leaf division Name Producer

Varieties showing progressive ruffling

Name
Var. bostoniensis
Harrisi
Wm. K. Harris.

Producer
?F. C. Becker, Cambridge, Mass.
Wm. K. Harris, Philadelphia, Pa.
Wm. K. Harris, Philadelphia, Pa.
Roosevelti . American Rose \& Plant Co., Springfield, Ohio.
Roosevelti sport, like Wm. K. Harris. .American Rose \& Plant Co., Springfield, Ohio.

Varieties showing progressive dwarfing

Name

Elegantissima-compacta
Elmsfordi
Giatrasi
George Giatras, West Hoboken, N. J.
Giatrasi, dwarf sport of George Giatras, West Hoboken, N. J.
Schultheisi . Anton Schultheis, College Point, N. Y.
Scotti
Superbissima F. R. Pierson, Tarrytown, N. Y.
Wagneri. Peter Wagner, Brooklyn, N. Y.

Varieties showing dichotomy of pinnae
Name
Froducer
Falcata $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ Peter Wagner, Brooklyn, N. Y.
Splendida. $\ldots \ldots \ldots \ldots \ldots$. Good \& Reese, Springfield, Ohio.

Variety of uncertain character Name Producer Wittboldi . Wittbold, Chicago, Ill.

Explanation of plates $10-15$

All photographs made to about the same scale except on Plates II and 14.

Plate io

Leaves illustrating a division series. Fig. I. Var. bostoniensis. Fig. 2. Piersoni. Fig. 3. Whitmani. Fig. 4. Magnifica. Fig. 5. Craigi.

Plate if

Pinnae illustrating a division series. Fig. I. Var. bostoniensis. Fig. 2. Piersoni. Fig. 3. Whitmani. Fig. 4. Goodi (or gracillima). Fig. 5. Magnifica. Fig. 6. Craigi. FIg. 7. Amerpohli.

Plate 12

Illustrating one secondary and four direct sports of Piersoni. Fig. I. Elegantissima. Fig. 2. Elegantissima-compacta. Fig. 3. Splendida. Fig. 4. Superbissima (small leaf). Fig. 5. Goodi (or gracillima). Fig. 6. Muscosa. Fig. 7. Elmsfordi.

Plate 13

Illustrating variations in ruffling and dwarfing. Fig. I. Nephrolepis exaltala. Fig. 2. Var. bostoniensis. Fig. 3. Harrisi (or Roosevelti). Fig. 4. Wm. K, Harris (or new sport of Roosevelti). Fig. 5: Teddy Jr. Figs. 6-8. Dwarf sports of Teddy Jr. Fig. 7. Randolphi.

Plate 14
Pinnae illustrating dwarfing and sports of Scotti. FIG. I. Var. bosloniensis. Fig. 2. Scotti. Fig. 3. Wagneri. Fig. 4. Falcata. Fig. 5. Scotti. Fig. 6. Wagneri. Fig. 7. Scholzeli. Fig. 8. Three-pinnate sport of Scholzeli.

Plate 15
Illustrating dwarfing and sports of Giatrasi. Fig. i. Var. bostoniensis. Fig. 2. Giatrasi. Fig. 3. Dwarf sport of Giatrasi. Fig. 4. Two-pinnate sport of Giatrasi.

The vegetation of Connecticut

V. Plant societies along rivers and streams*

George E. Nichols

(with eleven text figures)
In the present series of papers on the vegetation of Connecticut, the principle of succession has been adopted as the most satisfactory basis for classifying plant associations. This scheme of classification, it may here again be remarked, treats vegetation both from a genetic and a dynamic standpoint. It recognizes the fact that plant societies, or associations, as they exist today, are the product not alone of contemporaneous conditions, but of past conditions as well. It also emphasizes the fact that the plant associations of today are not necessarily permanent, but are liable to change through the influence of various factors.

In the third and fourth papers of the series, \dagger attention was directed to the plant associations of uplands and of lowlands. There the changes in vegetation, and therefore the succession of plant associations, are influenced primarily by plant and animal agencies-in other words, by biotic factors. There remain to be considered, then, successions which are associated not only with biotic factors but with topographic factors as well. Succession of this sort has been termed Topographic Succession. Topographic succession is seen principally along rivers and streams and along the coast. The present paper deals with plant societies along rivers and streams. Some of these societies might almost equally well have been treated along with the societies of uplands and of lowlands; yet, on the whole, so marked may be the impress of a stream on the vegetation at its margin, and so closely linked may be the development of the one with that of the other that the two cannot well be treated separately.

[^42]

FIG. I. Diagrams showing various stages in the development of a river.
The Life History of a River
Various stages in the life history of a river are graphically represented in Fig. i. In a young stream the current is swift and wears away the floor and sides of its channel. Vertical erosion,
however, is greater than lateral, so that the stream may gradually intrench itself in a narrow ravine or canyon. At this stage of stream development vegetation is largely confined to the flanks of the ravine. During the course of time, as the channel is cut deeper and deeper, downward erosion proceeds more and more slowly, ultimately ceasing altogether, while lateral erosion becomes correspondingly more pronounced; so that, as the stream approaches maturity, it comes to occupy a broad valley which it has carved out for itself. Vegetation covers both the bordering bluffs and the floor of the valley. As the level of the stream approaches the level of the water at its mouth, the current becomes sluggish and aggradation largely succeeds degradation. An old age river meanders about in broad, sweeping curves on the flood plain which it has built up out of sediment derived from younger parts of its system. A very distinctive type of vegetation is developed on flood plains.

Of course, the rate at which the topographic changes outlined in the preceding paragraph are effected varies widely according to the nature of the rock formations concerned. The scouring out of a ravine in clay or gravel, for example, may proceed with comparative rapidity, but the erosion of a ravine in rock is extremely slow. Ravines in glacial till and outwash have been developed since the retreat of the glaciers, and may even now be observed in the process of active formation. In most rock ravines, on the other hand, the topographic changes since the ice age have been practically negligible. The bearing of these facts on the nature of the vegetation will be referred to in later paragraphs (pp. 245, 249).

Rock Ravines

Occurrence and General Features.-Throughout the region under discussion the rock ravine is the common type. It abounds in the highland districts, and in the Central Lowland is frequent along the trap ranges and elsewhere. Owing mainly to the nature of the rocks concerned, canyons with overhanging or perpendicular walls are absent. The predominant type of rock ravine (Fig. 2) is somewhat V -shaped in cross section, often narrow and precipitous below but broadening out above. Toward the bottom the vegetation may be restricted to such forms as can cling to the
rock face or maintain a foothold in crevices, but higher up the sides are usually forested.

There are, of course, all sorts "and sizes of ravines. In the remarks on the nature of ravine vegetation which follow, the

Fig. 2. Precipitous rocky slopes along stream in Sage's Ravine, Salisbury. The cliffs in the foreground are covered with mosses and liverworts.
writer has in mind a number of unusually good examples, such as Sage's Ravine and the Wolf Den in ؟alisbury, the Glen along Spruce Brook at Beacon_ Falls, Wintergreen Falls ravine in

Hamden, Woodbridge Glen in Woodbridge, Roaring Brook ravine in Cheshire, Devil's Gulch in Branford, and Ninevah Falls ravine in Killingworth. Most of these are ravines of considerable depth and have a good-sized brook at the bottom. To shallower, less well-developed ravines the remarks naturally may not be equally applicable.

The Bryophytic Flora of Rock Ravines.-Perhaps the most striking feature of the vegetation near the bottom of a ravine (FIG. 2) is the rich display of mosses and liverworts. In the stream itself, attached to rocks but always submerged, grow various aquatic forms, such as Fontinalis. Other more or less hydrophytic species cover the low-lying, wet and frequently submerged rocks along the margin and in the bed of the stream, mantle the spraydashed rocks at the foot of waterfalls, and form extensive mats even in rapids and similar precarious situations. The following more or less hydrophytic species may be looked for in such places:

Chiloscyphus rivularis	Oxyrrhynchium rusciforme
Scapania undulata	Amblystegium fluviatile
Porella pinnata	Amblystegium irriguum
Fontinalis dalecarlica	Hygrohypnum dilatatum
Fontinalis gigantea	Hygrohypnum eugyrium
Fontinalis Lescurii	Hygrohypnum ochraceum

Growing on periodically inundated rock surfaces, either in the bed of the stream or along its sides, are such forms as Fissidens incurvus, Grimmia apocarpa, Racomitrium aciculare, and Brachythecium plumosum. Along with these, but usually on springy banks or on continuously moist rock surfaces, where they may or may not be submerged during flood time, may occur:

Conocephalum conicum	Mnium hornum
Pellia epiphylla	Mnium punctatum
Plagiochila asplenioides	Philonotis fontana
Lophocolea bidentata	Thuidium delicatulum
Jubula pennsylvanica	Brachythecium rivulare
Anthoceros laevis	Climacium americanum
Fissidens adiantoides	Catharinaea undulata

Higher up on the slopes, numerous species thrive in the crevices or plaster the faces of overhanging cliffs and precipitous rocks. The following are fairly characteristic of wet or moist cliffs:

Marsupella emarginata	Didymodon rubellus
Plagiochila asplenioides	Anoectangium Mougeotii
Scapania nemorosa	Plagiopus Oederi
Radula complanata	Plagiothecium denticulatum
Lejeunea cavifolia	Hylocomium brevirostre
Hymenostylium curvirostre	Thamnium alleghaniense

Inhabiting the drier cliffs, either in crevices or on the rock face, are such forms as:

Metzgeria conjugata
Cephaloziella Hampeana
Porella platyphylloidea
Leucolejeunea clypeata
Frullania Asagrayana
Rhabdoweisia denticulata
Grimmia conferta

Ulota americana
Bartramia pomiformis
Hedrvigia albicans
Neckera pennata
Haplohymenium triste
Anomodon attenuatus
Anomodon rostratus

The Influence of the Chemical Nature of Rocks on the Distribution of Bryophytes.-In earlier papers of this series* brief reference has been made to the influence of the chemical composition of the substratum on vegetation. In glaciated regions like Connecticut, where most soils are transported and residual soils are rare, this influence is nowhere seen to better advantage than in ravines and similar localities where there are exposures of bare rock. In Connecticut, the problem as to the effect of the chemical nature of the substratum on vegetation concerns chiefly calcareous versus potassic rocks. The granites, gneisses, schists and sandstones, which comprise the bed rock over much of this state, are for the most part rich in potassium, which is one of the principal constituents of orthoclase feldspar and of mica (muscovite and biotite). Calcium also, as one of the components of plagioclase feldspar, hornblende, and certain other minerals, is present in some of these rocks, and in the sedimentary formations-the sandstones and shales-small amounts of calcium carbonate may be included in the cementing material. But, except locally, the amount of lime in these rocks, in so far as it affects vegetation, appears relatively insignificant. The important lime-bearing formations of Connecticut are trap and marble. The former contains potassium in small amount, one or two per cent.; the latter con-

[^43]tains none. Trap outcrops (diabase and basalt) occur chiefly in the Central Lowland. The marble (sometimes referred to as a limestone or dolomite) forms extensive deposits in the western part of the state, particularly in the upper Housatonic Valley.

Owing to their frequently intimate association with rock surfaces, no group of plants, with the possible exception of the lichens, is better qualified to demonstrate the influence of the chemical composition of the substratum on vegetation than the bryophytes. To be sure, many mosses and liverworts apparently flourish indiscriminately on any sort of rock substratum, provided only that requisite conditions of moisture and shade are present. But a large number of species undoubtedly "prefer" either calcareous or potassic rocks, and some are confined to such substrata. A list is given below of local species which favor calcareous rocks. Nearly all of these are commonest in the marble areas of western Connecticut, and several of them have been collected only there. Some, however, occur also along the trap ranges, while a few are known from other scattered localities.

Grimaldia fragrans	Cratoneuron filicinum
Preissia quadrata	Hymenostylium curvirostre
Pellia Fabroniana	Tortella tortuosa
Lophozia badensis	Encalypta contorta
Lophocolea minor	Mnium orthorrhynchum
Cololejeunea Biddlecomiae	Plagiopus Oederi
Frullania riparia	Myurella julacea
Saelania glaucescens	Amblystegiella confervoides
Fissidens cristatus	Amblystegium noterophilum

The species cited in the next list are reputedly calciphobous (i.e. "lime-avoiding"), and are for the most part restricted to potassic rocks.

Marsupella emarginata	Glyphomitrium incurvum
Sphenolobus exsectus	Racomitrium aciculare
Scapania nemorosa	Ulota americana
Scapania undulata	Pterigynandrum filiforme
Radula obconica	Brachythecium plumosum
Andreaea petrophila	Sematophyllum carolinianum
Andreaea Rothii	Hygrohypnum dilatatum
Rhabdoweisia denticulata	Hygrohypnum eugyrium

Dicranum fulvum

The Mesophytism of the Flora in Rock Ravines.-A rock ravine, more than any other sort of habitat, affords environmental conditions congenial to pronounced mesophytic plants. Seepage water is usually abundant along the sides, there is protection from sun and wind, and the humidity of the air, as compared with the surrounding upland, is high. Certain mosses and liverworts are practically confined to such habitats. In a more arid region than Connecticut the same observation might be made with regard to many of the higher plants, but while it is a familiar fact that in this region as elsewhere the flora of rock ravines includes many of the most extreme shade- and moisture-loving ferns and flowering plants, most of the species present are equally representative of other habitats. Species intolerant of shade are largely excluded. The majority of the forms cited in earlier papers as typical of the climax forest of this region are to be found here, and not a few of the common plants of rock ravines thrive elsewhere in wooded swamps. The following list includes a number of ferns and herbaceous flowering plants which may be considered characteristic of rock ravines, though by no means peculiar to them.

Polypodium vulgare
Phegopteris polypodioides
Asplenium Trichomanes
Asplenium acrostichoides
Aspidium spinulosum
Cystopteris bulbifera
Cystopteris fragilis
Lycopodium lucidulum
Arisaema triphyllum
Smilacina racemosa
Streptopus roseus
Trillium erectum
Laportea canadensis
Pilea pumila
Solidago latifolia
Asarum canadense
Actaea rubra
Caulophyllum thalictroides
Chrysosplenium americanum
Impatiens pallida
Viola cucullata
Viola blanda
Viola rotundifolia
Circaea alpina
Aralia racemosa
Sanicula gregaria
Hydrocotyle americana
Cryptotaenia canadensis
Collinsonia canadensis

The Ravine Forest.-The intense mesophytism of a rock ravine is further accentuated by the nature of the ravine forest (Fig. 3). As a rule the hemlock and yellow birch are prominent, and more often than not they predominate. Along with them commonly
occur the sugar maple and others of the trees elsewhere cited as characteristic of the climax forest in this region. The woody undergrowth usually includes Hamamelis virginiana, Kalmia latifolia, and Viburnum acerifolium, while forms such as Carpinus

Fig. 3. Primeval forest in Sage's Ravine. Hemlock and yellow birch the common trees.
caroliniana, Alnus rugosa and Benzoin aestivale, which one ordinarily associates with swamps, frequently grow along the stream at the bottom. On the whole, ravine forests almost invariably are more mesophytic, and approximate more closely the climax
formation of this region thando the forests on the adjoining uplands. In a large measure this fact of course is due to the exceptionally favorable conditions of environment under which they have been developed. But there are other contributory causes which, while they have nothing to do with the development of these forests, may at least be partly responsible for their perpetuation. Thus, on account of their comparative topographic isolation, ravine forests may be largely immune from the fires which frequently devastate the surrounding uplands, while by reason of the difficulty in removing the timber they offer little temptation to the lumberman.

The Boreal Aspect of the Vegetation in Rock Ravines.-A few locally rare Canadian plants, such as Lophozia alpestris, Lophozia attenuata, Gymnostomum rupestre, Polytrichum alpinum, Lycopodium Selago, Streptopus amplexifolius, and Viola Selkirkii have been collected only in rock ravines. From an ecological standpoint, however, it is the mass-effect of the vegetation rather than the occurrence of isolated species which is significant. Many of the bryophytes, which have already been referred to as being largely restricted to rock ravines in Connecticut, are much more generally distributed farther north. But even if these rock-face and crevice forms are ignored, the stamp of the north on the vegetation here is unmistakable. The predominant trees of ravine forests are usually species of northward range. The bryophytic flora of these forests-the mossy carpet of Bazzania trilobata, Hylocomium splendens, Ptilium Crista-castrensis and Hypnum Schreberi which frequently covers the forest floor-likewise is strongly suggestive of the north. In Sage's Ravine, and doubtless elsewhere, masses of Sphagnum grow high up on the slopes-a common phenomenon in the Maritime Provinces of eastern Canada. Moreover, in Connecticut, many vascular plants characteristic of the north woods, while by no means confined to this sort of habitat, attain their optimum development in rock ravines. As representative of this latter group of species may be cited:

Phegopteris polypodioides	Acer pennsylvanicum
Taxus canadensis	Acer spicatum
Streptopus roseus	Viola rotundifolia
Actaea rubra	Lonicera canadensis
Oxalis acetosella	Aster acuminatus

On the whole, the display of Canadian plants in rock ravines is noticeably richer than in any other sort of habitat, with the exception of bogs. Various explanations for this fact may be suggested. In the first place, the atmospheric conditions here are congenial to northern plants. As compared with less protected habitats, the air is more humid, while, especially in summer, the temperature is uniformly lower and less subject to extremes. Moreover, the length of the growing season is presumably shorter than in more open situations. In a Connecticut rock ravine there may thus be reproduced in miniature a type of climate similar to that which in the Canadian Zone prevails over vast areas. In the second place, geological factors are of undoubted significance. As has already been remarked, most rock ravines have remained practically unaltered since glacial times; they represent very ancient plant habitats. It seems probable, therefore, that boreal plants which today are confined to rock ravines may formerly have been much more widely distributed, and that they have been able to persist in their present habitats because of the unusually favorable environmental conditions there afforded. In the same way it is conceivable that the present boreal aspect of the vegetation in rock ravines may be reminiscent of a one-time much more universal aspect of vegetation in this region.

Ravines in Unconsolidated Rocks

The unconsolidated stony materials which form so considerable a portion of the superficial crust of the earth are not commonly designated as rocks. "Yet no line of separation can be drawn between such solid rocks as those into which the sands and muds of distant geological ages have been transformed and the semiconsolidated deposits of more recent times, or the sediments now accumulating."* In the present paper, the term Unconsolidated Rock embraces any uncompacted rock formation, such as sand, gravel, and clay. For the sake of convenience, the word Rock itself, written without a qualifying adjective, is used in its popular sense to include only consolidated rock formations.

Distribution, Character, and Vegetation of Ravines in Unconsolidated Rocks.-In Connecticut, ravines of this description are by

[^44]no means uncommon. They are developed along streams throughout the Central Lowland, while in the Highlands they may occur wherever there are deposits of glacial drift. More often than not they are relatively small and correspondingly unimpressive; but in some cases, particularly in the northern half of the Central Lowland, they may assume considerable size and importance.

One of the best examples which the writer has examined of a ravine in unconsolidated rock is located in the town of Windsor. It has been scoured out to a depth of perhaps thirty feet from a coarse, sandy substratum through the activity of a small brook which flows into the Farmington River from the north. The slopes of the ravine, forested with hemlock, yellow birch, sugar maple, beech, white ash and tulip, contrast sharply with the surrounding upland which is largely overgrown with white pine, oaks, and chestnut. The undergrowth includes many of the herbaceous and shrubby species which have been listed as characteristic of rock ravines. But along with these grow Lycopodium obscurum, Oakesia sessilifolia, Corylus americana, Geranium maculatum, Chimaphila umbellata, Pyrola rotundifolia, and Erigeron pulchellus -all plants of relatively dry, open woods. As might be anticipated, the bryophytic flora is poorly represented. The rock-face and crevice mosses and liverworts, which constitute such a striking feature of the vegetation in rock ravines, are absent. Along the wet, sandy banks of the stream are a few species, such as Pellia epiphylla, Conocephalum conicum, Mnium hornum, and Catharinaea undulata; but aside from these about the only bryophytes present are a few forms which grow on rotten wood or humus, such as Mnium cuspidatum, Stereodon cupressiformis and Georgia pellucida.

Ravines in unconsolidated rock compare neither in scenic nor botanic interest with rock ravines. To be sure, all gradations are found between extremely shallow and scarcely perceptible depressions, which ordinarily would hardly be classed as ravines, and ravines of considerable depth, with fairly steep sides, like the one at Windsor. As a result of the diversity in environments which it is obvious may thus be afforded by different ravines, all stages of transition may be found between the vegetation of swamps and uplands on the one hand and that of typical ravines on the other. On the average, however, ravines in unconsolidated
rock are smaller in size and are relatively broader and shallower than rock ravines. In consequence, the atmospheric conditions are seldom as favorable as those of rock ravines, and the vegetation rarely equals that of rock ravines in the high degree of mesophytism attained. Soil moisture, as a rule, would seem to be more important here in its effect on vegetation than atmospheric humidity. The boreal tone which characterizes the vegetation of rock ravines is likewise lacking. This would naturally be expected, not only on account of the less congenial environmental relations but also because of the comparative recency with which ravines in glacial deposits have been developed.

Spring Brooks.-As Cowles* has remarked, "springs and spring brooks may be classed with ravine streams, but differ from them in the relative absence of erosion phenomena." They might equally well, if not better, be classed with spring swamps, \dagger with which they are usually associated. Spring brooks are common throughout Connecticut. Perhaps their most familiar floristic feature is the fringe of alders (Alnus rugosa, Alnus incana) which almost invariably lines their banks. Aside from these, the brookside flora may include any of the species elsewhere cited as characteristic of spring swamps.

The Succession of Vegetation during the Development of Ravines in Unconsolidated Rocks.-In his treatment of the plant societies of the Chicago region, Cowles \ddagger has described the development of clay ravines and the concomitant sequence of plant associations. The following observations are quoted from this work: "Wherever there is an elevated stretch of land adjoining a body of water, such as a lake bluff, one is apt to find excellent examples of the beginning of a ravine. Fig. I [reproduced in this paper as FIG. 4] shows an embryonic ravine of a type which may frequently be seen along the clay bluffs. . . . A ravine of this type is essentially a desert, so far as plant life is concerned. The exposure to wind and to alternations of temperature and moisture is excessive. The lack of vegetation, however, is due chiefly to the instability of the soil; this instability is particularly great in the case of clay bluffs, where the seepage of water causes extensive landslide action.

[^45]No plants can yet get a foothold in such a place, unless it be a few species that may be able to make their appearance between periods of landslide action; among these plants annuals particularly predominate. The perennials that may be found in such places are almost entirely plants which have slid down the bank. Ravines of a similar type may be seen in many places inland, and wherever found the poverty of vegetation on the slopes is the most striking character.

Fig. 4. An embryonic ravine in a clay bluff along the western shore of Lake Michigan. Vegetation entirely absent on the unstable clay slopes, except for shrubs and grasses which have slid down from the top. (After Cowles, Physiographic ecology of Chicago and vicinity; photograph furnished by H. C. Cowles.)
"As the ravine extends itself inland the conditions outlined above may be always seen about its head, but toward the mouth of the ravine the slopes are less precipitous. Torrents cut down the bed of the ravine until a depth is reached approaching the water level at its mouth. From this time on the slopes become reduced and the ravine widens more than it deepens, by reason of lateral cutting, landslide action, and side gullies. After a time a sufficient stability is reached to permit a considerable growth of vegetation.

If the erosion is slight enough to allow a vegetation carpet to develop, a high degree of luxuriance may be attained. In fact, ravine conditions are usually extremely favorable for plants, after the initial stages have passed. In a comparatively few years the vegetation leaps, as it were, by bounds through the herbaceous and shrubby stages into a mesophytic forest, Nothing shows as well as this the brief period necessary for a vegetation cycle in a favored situation as compared with an erosion cycle."

In Connecticut, clay ravines are much less frequent than are those in rock. They exist on a small scale in many parts of the Central Lowland, especially along the Connecticut River from Glastonbury to Windsor Locks, but elsewhere they are rare. Nowhere in this state are the successive changes in vegetation which accompany the development of a clay ravine so clearly shown as in the area described by Cowles, an area which the writer has visited on several occasions. So far as it has been possible to compare, however, the observations recorded in the Chicago region seem quite applicable to conditions in Connecticut.

Pre-erosion Topography and its Bearing on the Phenomena of Succession in Rock Ravines

"From the standpoint of dynamic plant geography our land areas are divided into two well-marked categories: on the one hand is the erosion topography which is characteristic of the eroding and depositing phases of present streams and shores, and on the other hand is the preërosion topography which is characteristic of those areas that have not as yet been invaded by erosive forces."* To this latter category, speaking from the standpoint of the succession of plant associations, belong rock ravines. For while it is conceivable that, just as in the case of clay ravines, the topographic changes which accompany the development of rock ravines might react on the vegetation, yet such changes are brought about with such extreme slowness that their effect on plant life may be regarded as practically negligible. Whatever changes in the nature of ravine vegetation may have taken place in the past have probably been associated not only with topographic changes but with climatic changes as well; and the same will very likely

[^46]hold true in the future. From a standpoint of present-day plant geography, therefore, the climax vegetation of rock ravines may be looked upon as practically permanent.

Although the fact cannot be overlooked that ordinarily the plant societies of rock ravines are associated with a definite phase of stream development, it should also be recognized that while very commonly the formation of a ravine has been due to the activity of streams which are still operative, this is by no means always the case. There are many rock ravines whose formation cannot be accounted for by contemporaneous factors at. all. Often, as in the Devil's Gulch, the streams now present in such ravines can have played little part in their formation. Many streams have been superposed, so to speak, on the topography. They have found rather than made their channels. Not infrequently, as in the Wolf Den, ravines have been developed in other ways than by stream erosion. It is largely due to the prevalence of this preërosion type of topography, which has been moulded by physiographic forces of the geologic past, that rock ravines are so much more highly developed in the Highlands than in the Lowland.

River and Stream Bluffs

The later phases in river activity may be observed along most of the larger streams throughout the state. As the result of lateral cutting, the ravine once present has been replaced by a broad valley. As a ravine widens out, the exposure to wind, sun, and changes of temperature increases, and the moisture content of the slopes is appreciably modified. The effect of these environmental changes on vegetation can be seen by comparing the flora of a river valley with that of a ravine. In a general way, the vegetation of stream valleys can be treated under two heads: BluFFs and Flood Plains. The term Bluff, as used here, includes not only the relatively steep slopes which frequently demarcate the valley from the upland, but also the gentler slopes which commonly occupy most of the intervening valley floor. In other words, it embraces all parts of the valley which, in contrast to flood plains, have been formed by erosion rather than by deposition.

The Vegetation of Bluffs in Unconsolidated Rocks.-In the

Chicago region,* the increased exposure which follows the widening out of a clay ravine may have a disastrous effect on the ravine flora.

Fig. 5. Forest of chestnut, white oak, red oak, etc., along a sandy bluff bordering West River, New Haven. Elsewhere along the bluff, hemlock, beech and basswood are more or less abundant.
"The rich mesophytic herbs, including the liverworts and mosses, dry up and die, . . . and a xerophytic undergrowth comes in. . . .

* See Cowles, H. C., 1901, op. cit., pp. 90-93.

After a few years have passed, xerophytic shrubs appear, . . . and it is not long until xerophytic or semi-xerophytic thickets prevail in place of the former mesophytic undershrubs. The last of the mesophytes to die are trees, because they are longer-lived than herbs and shrubs, and also because their roots reach down to the moisture"; but eventually these too give way to relatively xerophytic species. In Connecticut, the changes are not so radical; in fact, a bluff forest may be scarcely less mesophytic than a ravine forest. This is not surprising when it is considered that the climax formation in this region (that is, the most mesophytic type of vegetation which is capable of development on uplands) is very nearly as mesophytic as the climax association (termed by Cowles a "temporary climax") of ravines. In the Chicago region, on the other hand, the contrast between the mesophytic ravine forests and the xero-mesophytic climax forests on uplands is very pronounced.

The most striking difference between a bluff forest (Fig. 5) and a ravine forest is seen in the greater abundance of relatively intolerant trees. The undergrowth also, while it may contain any of the characteristic ravine species, includes many forms which ordinarily do not thrive under the shadier ravine conditions. On bluffs in unconsolidated rock, especially on clay and till, the soil moisture relations usually favor the continuance of a mesophytic flora. Near the mouth of the Windsor ravine, to select a concrete example, along the bluffs which border the Farmington Valley, common trees are Juglans cinerea, Tilia americana, Betula alba papyrifera, Ulmus americana, Platanus occidentalis, Carya cordiformis, Quercus rubra, Ostrya virginiana, and Carpinus caroliniana. Along with these occur the trees of the ravine forest-the sugar maple, white ash, tulip and yellow birch, and to a less extent the hemlock.

The undergrowth of moist valley forests is particularly rich in spring-flowering species. Among the herbaceous plants characteristic of such habitats may be mentioned the following:

Aspidium noveboracense
Asplenium Filix-femina
Adiantum pedatum
Osmunda Claytoniana
Botrychium virginianum
Oakesia sessilifolia
Allium tricoccum
Erythronium americanum

Asarum canadense
Claytonia virginica
Thalictrum dioicum
Anemonella thalictroides
Smilacina racemosa
Polygonatum biflorum
Medeola virginiana
Trillium erectum

Hepatica triloba
Anemone quinquefolia
Caulophyllum thalictroides
Sanguinaria canadensis
Dicentra cucullaria
Dentaria diphylla
Dentaria laciniata
Viola pubescens

The Vegetation of Rock Bluffs.-In comparing rock bluffs with rock ravines, one striking dissimilarity concerns the bryophytic flora. Species inhabiting the rock-face or the crevices, together with certain of the forest-floor species, may be well represented, but most of the others are absent. Under favorable circumstances a rock bluff may support a highly mesophytic vegetation; much apparently depends on exposure and on ground-water relations. Along the Connecticut River, south of Middletown, the northfacing bluffs are (or were) well forested; most of the vascular plants already cited as characteristic of rock ravines grow luxuriantly; Acer pennsylvanicum is common, attaining a height of more than thirty feet; and the mesophytic ravine mosses are well represented. The vegetation on the south-facing bluffs across the river, however, especially as regards the herbaceous flora, is much less mesophytic. In general, north- or east-facing bluffs are more mesophytic than those which face south or west. As might be expected, the highest degree of mesophytism prevails toward the bottom of a bluff; toward the top the vegetation is more xerophytic. In some cases, where the water supply is insufficient, mesophytes may be virtually lacking and xerophytes predominate from top to bottom. On the whole, the vegetation of the rock bluffs which border stream valleys throughout the state resembles that which has been described elsewhere* as characteristic of talus slopes.

Flood Plains

The topographic changes which take place during the building up of a flood-plain are accompanied by a fairly definite succession of plant associations. In the earlier stages of flood plain develop-

[^47]ment, the surface of the ground is so low that it is covered with water at all seasons of the year. Here the vegetation consists of aquatic or semi-aquatic plants. As the surface is built up higher, it reaches a level where it is exposed to the air during summer, the period of low water, and here aquatic plants are replaced by terrestrial herbs. As the constructive process continues, the surface is built up to a height where it is out of water much of the year, and finally it may attain an elevation where it is out of reach of all but the highest floods. On these older flood plains grow shrubs and trees.

Flood Plain Associations along the Connecticut River.-Flood plains are formed to some extent along every sizable stream. In Connecticut, as might be expected, they are developed on the largest scale along the Connecticut River. Here, on the higher flood plains from Middletown northward, the rich alluvial soil furnishes the most fertile farm-lands in the state. As the result of agriculture, much of the primitive vegetation has been obliterated,* but it may still be seen to advantage on various flood plain islands (Fig. 6) and elsewhere. On an island at Windsor, in particular, the natural vegetation has never been disturbed. Whether or not it is true, as old residents maintain, that this island -now about three-quarters of a mile long, perhaps a hundred yards wide, and rising to a height of more than a dozen feet above low water level-has been developed entirely within the last thirty years, it is certain that it is growing rapidly at the present time, having increased several hundred feet in length at the lower end since it first came under the writer's observation in 1910. The following notes on the vegetation of the Connecticut River flood plains are based partly on the study of this island, partly on studies made at Middletown, Haddam and other points along the river.

As compared with a lake-swamp succession, free-floating aquatics, for obvious reasons, are rarely represented in a flood

[^48]plain succession. The pond-lilies also are usually absent. Commonly the first forms to appear are submersed species, such as the pondweeds (Potamogeton sp.), Vallisneria spiralis and Elodea canadensis, which may grow in water four or even more feet in depth. In shallow water various aquatics with aerial foliage are ordinarily conspicuous. Of these, the following species are perhaps the most noteworthy:*

Fig. 6. Flood plain island in the Connecticut River, at Haddam. The plant in the foreground is the wild rice (Zizania palustris).

Equisetum fluviatile Typha latifolia Sagittaria latifolia Zizania palustris Scirpus americanus

Scirpus validus
Peltandra virginica
Orontium aquaticum
Pontederia cordata
Polygonum Muhlenbergii

While the number of species present at this early stage of flood plain development is relatively small, any lack of variety is more than counterbalanced by the luxuriance with which these
*From this and the two following lists have purposely been omitted a number of species which, while peculiar to the Connecticut River flood plains, seem too rare or too local to be of importance in the present connection. The majority of such species, so far as known, have already been mentioned elsewhere (Torreya 13: 106. 1913).
few forms often grow. Fringing zones of pickerel weed and the like are quite as characteristic of flood plains as of lake shores, while marshy swamps, predominated by wild rice (FIG. 7) and other grass-like plants, are a prominent feature of many low flood

Fig. 7. Wild rice along banks of the Quinnipiac River, North Haven. Some idea of the height of this grass is suggested by the bow of the canoe in the foreground.
plains, particularly toward the mouth of the river. Here, within the sphere of tidal influence, the ground occupied by these plants may be submerged at high tide and bare at low tide.

The second phase of flood plain development may well be designated the Strand Stage (FIG. 8). The surface of the ground is exposed for a longer or shorter period during summer, but is covered with water during winter. Certain algae, such as Vaucheria and Botrydium, are common here, as are also ephemeral bryophytes, such as Riccia, Ephemerum, and Physcomitrium immersum. The predominant vascular plants are either annuals or herbaceous perennials (or biennials)-forms which are able to develop between successive periods of submergence. On the lower, muddier parts

FIG. 8. A typical, low, flood plain strand along the Connecticut River, at East Windsor. Vegetation mostly herbaceous, but seedlings of willow and cottonwood abundant.
of the strand, species with more or less pronounced amphibious proclivities may be well represented: such, for example, as Echinochloa Walteri, Eleocharis aciculare, Penthorum sedoides, and Ludvigia palustris. A list of other species characteristic of the strand stage is here given.

Equisetum arvense Polygonum pennsylvanicum
Panicum agrostoides
Leersia virginica
Cyperus strigosus
Juncus effusus
Rumex crispus
Radicula palustris
Gnaphalium uliginosum
A mbrosia trifida
Xanthium echinatum
Bidens vulgatum

Woody plants are seldom wholly absent from the strand stage of a flood plain; commonly, seedlings of willow and cottonwood are abundant. Indeed, certain species of willow, such as Salix cordata and Salix longifolia, occur here which are usually lacking on older flood plains. But woody plants are rarely well developed; for even if they are able to withstand submergence in winter, trees and shrubs of any size are liable to be badly battered or else

Fig. 9. Nearly pure growth of willow (Salix nigra) near southern extremity of flood plain island in Connecticut River, Windsor.
uprooted and carried away by the ice when it breaks up in spring. As soon, however, as the surface has been built up to such a height that it is beyond the reach of the winter ice, trees become the controlling element of the vegetation and ultimately a luxuriant forest may be developed. The boundary between the wooded part of a flood plain and the strand area is often marked by a distinct shelf or step-the result of ice-shove in winter.

One of the first trees to establish itself on the flood plain is the black willow (Salix nigra). The willow is essentially a pioneer. Young flood plain forests (Fig. 9) may be composed almost wholly of this tree, while a zone of willow almost invariably fringes the shoreward margin of older forests. Closely following the willow, in fact often appearing simultaneously with it, are other trees, such as the sycamore (Platanus occidentalis) and the cottonwood

Fig. 10. Cottonwood forest with luxuriant herbaceous undergrowth (Laporlea, etc.) on flood plain island at Windsor.
(Populus deltoides), particularly the latter. As the surface of the ground continues to be built up higher, the soil becomes relatively drier and better aerated, so that conditions rapidly become less hydrophytic and more mesophytic. Under the changing conditions of soil and light, the willow gradually assumes a position of less and less importance, while the cottonwood comes to occupy a more and more prominent place in the rising forest (Fig. IO).

For while, like the willow, the cottonwood is relatively intolerant of shade, it grows more rapidly and to a much larger size, so that it tends to overtop and shade out the willow. Meanwhile other trees make their appearance. In addition to the species already enumerated, common trees on the Connecticut River flood plains are the elm (Ulmus americana), silver maple (Acer saccharinum), basswood (Tilia americana), white ash (Fraxinus americana) and red ash (Fraxinus pennsylvanica). Without exception, all of these lastnamed trees are more tolerant of shade than their predecessors. Springing up in the light shade which the cottonwood and willow produce, these more tolerant species become increasingly abundant until ultimately they dominate the forest. And while today the cottonwood and willow are perhaps the most conspicuous trees of the Connecticut River flood plains, there is little doubt that the forests which originally clothed the higher flood plains were made up largely of elm, silver maple, basswood, and ash.

A striking feature of the vegetation in flood plain forests is the wealth of lianas. Woody forms, such as Rhus Toxicodendron, Vitis vulpina, and Psedera quinquefolia, ascend the trunks of trees and hang in graceful festoons from the branches. A few herbaceous lianas also, notably Sicyos angulatus and Echinocystis lobata, clamber the trees, while numerous less vigorous species, e.g. Polygonum scandens, Amphicarpa monoica, Convolvulus sepium, Solanum Dulcamara, and Clematis virginiana, twine about or cling to any available support. The parasitic Cuscuta obtusiflora is a common form on the Windsor flood plain. Shrubs are usually few and scattered, about the only forms ordinarily present being Cornus Amomum and Sambucus canadensis.

The herbaceous undergrowth in such a forest is rank and luxuriant; some idea of its character is conveyed by Fig. 10. Tall, broad-, thin-leaved mesophytic plants predominate. The giant ragweed (Ambrosia trifida) commonly reaches a height of from ten to twelve feet, and the ostrich fern (Onoclea Struthiopteris), largest of the native ferns, a height of more than six feet. The nettles (Laportea canadensis and species of Urtica), growing more than waist-high, are uncomfortably abundant. Other characteristic herbaceous species worthy of mention are the following:

Asplenium Filix-femina
Onoclea sensibilis
Leersia virginica
Muhlenbergia mexicana
Cinna arundinacea
Bromus altissimus
Elymus canadensis
Pilea pumila
Boehmeria cylindrica
Thalictrum polygamum
Impatiens biflora
Viola cucullata
Circaea lutetiana
Verbena hastata
Eupatorium purpureum
Eupatorium urticaefolium
Solidago serotina
Aster paniculatus
Helenium autumnale

Flood Plain Associations along Other Streams.-The conditions described in the preceding paragraphs are found not only along the Connecticut, but also along the Housatonic and to a considerable

Fig. Ix. Cat-tail (Typha latifolia) marsh along Muddy River, North Haven. In the background is a flood plain forest of elna, pin oak, etc.
extent along others of the larger rivers. But even along these rivers, there is a more or less noticeable variation in the aspect of flood plain associations, while along the smaller streams the departure from the described conditions may be very pronounced. On gravelly or stony flood plains, such as occur along swift streams, the pioneer forms of vegetation may be scraggly willows, alders,
and red-osier dogwood, along with which may grow a few herbaceous plants. Along many of the smaller streams throughout the state, during the building up of a flood plain, a sequence of plant associations is commonly encountered which is essentially similar to what has been described in an earlier paper* as characteristic of lakes and swamps. With the exception of the free-floating forms, any of the aquatic plants there mentioned may occur here. Of the species with aerial photosynthetic organs, the cat-tail (Typha latifolia) is especially conspicuous along many slow streams, frequently monopolizing wet, swampy tracts to the exclusion of practically everything else (Fig. II). Marshes and meadows are quite as frequently developed along streams as along lake margins, and in general the aspect of the vegetation is similar in either case. \dagger Phalaris arundinacea and Leersia oryzoides, however, might be mentioned as being more common in alluvial swamps than in other habitats. All of the shrubs and trees listed as characteristic of lake swamps are likewise found on flood plains along streams. Typical flood plain forests are best developed in areas which are subject to inundation only in spring. Here the soil relations are essentially those of a periodic swamp. Prominent trees in these forests along most streams are Quercus bicolor and Quercus palustris, species which are at least very infrequent in similar situations along the Connecticut. Except along the larger rivers, on the other hand, the cottonwood is practically absent and the silver maple is scarce. In addition to the two oaks already mentioned, the following trees are commonly represented in flood plain forests.

Carya cordifolia
Carpinus caroliniana
Ulmus americana
Liriodendron tulipifera

Acer rubrum
Tilia americana
Nyssa sylvatica
Platanus occidentalis

[^49]
Fraxinus pennsylvanica

Fraxinus nigra
The Temporary Nature of Flood Plain Forests.-It has been shown in the preceding pages that during the development of a flood plain the vegetation becomes less hydrophytic and more mesophytic, culminating in the formation of a mesophytic forest. Such a forest is to be regarded as the climax association of flood plains. But it can easily be seen that, owing to the activity of the river, this forest may be relatively short lived; in other words, it may represent only a temporary climax. For as the river meanders about on its flood plain in serpentine curves, it is constantly wearing away its banks on the outer, concave side of each bend, while at the same time deposition is usually taking place on the opposite, convex shores. In this way "a river may swing quite across its flood plain, destroying all that it has built, including the mesophytic forest."* Changes of this sort take place with appreciable speed and may be observed along almost any depositing stream.

Ox-bow Ponds.-In this connection should also be mentioned the crescent-shaped curves, or ox-bows, which are a characteristic feature of old-age streams. Frequently the meandering river shifts its course, abandoning a loop-like channel for a more direct route. The loop then becomes an ox-bow pond (Fig. I, D), and as such its vegetation can best be treated with that of ponds and swamps. \dagger

The Subsequent History of Flood Plains.-One other phase of river activity may be briefly sketched. It has already been shown that while deposition is the main feature of old-age streams, erosion is not wholly absent. In the course of time, for various causes, downward cutting may be renewed, the flood plains become terraces, and new flood plains may ultimately be formed at lower levels. The resultant topography is well illustrated along the Connecticut and others of the larger streams. The low flood plains of today are comparatively recent in origin. The more ancient flood plains are represented by sandy terraces, of which

[^50]there may be one or more. These have attained their present condition through the downcutting of the rivers into the deep fill of glacial drift and outwash.* The effect of the changed topographic relations on these former flood plains as habitats for plants is readily comprehended. With the lowering of the river they must gradually have become more and more xerophytic and thus less and less tenable for the flood plain mesophytes. The actual effect of these changes on vegetation can only be conjectured. For, just as has been pointed out in the case of rock ravines, the period of time involved has been so great that oscillations in climate as well as changes in topography must presumably be taken into account. At the present day the vegetation of river and stream terraces is perhaps best treated with that of uplands, since the river has long since ceased to act as a dynamic factor in its development.

Acknowledgments

For suggestions in connection with the preparation of this paper, the writer is greatly indebted to Professor Joseph Barrell, of the Geological Faculty, and Professor A. W. Evans, of the Botanical Faculty of Yale University, and to Mr. C. A. Weatherby, of East Hartford.

Sheffield Scientific School of Yale University

[^51]
The ferns and flowering plants of Nantucket-XVII

Eugene P. Bicknell

COMPOSITAE-continued

Baccharis halimifolia L.

Very local, and confined to the eastern side of the island. As long ago as 1849 it was rather numerous on Coskaty, according to Mrs. Owen, and it is abundant there today. It occurs also on Coatue, and extends sparingly from Polpis southeasterly towards Siasconset, well away from any direct saline influence. A single small plant was seen in one of the higher bogs on Saul's Hills, and a shrub nearly seven feet tall in Gibb's Swamp. In 1904 a large clump grew in dry open ground about a mile northwest of Siasconset. Not yet in bloom September 6, 1904; in full flower September I7, 1899.

Pluchea camphorata (L.) DC.

Common about pools and mud flats in tidal marshes, blooming in August and September.
Antennaria plantaginifolia (L.) Richards.
Found everywhere throughout the island, along roadsides, on banks and in pine groves, in damp meadows with A. neglecta and on dry hills with A. neodioica, on the plains and commons and on dry lichen-clothed levels in the poorest soils. In full flower May 31, 1909, except in the shade of pines where only the most forward plants were in bloom; mostly gone to seed by June 15, 1910.

Exceedingly variable, forms with broad rounded leaves, and forms with narrowly oblanceolate leaves on elongated petioles (var. petiolata Fernald) often growing side by side. A small form having narrow and acute leaves, collected in the Miacomet pines, is especially noteworthy by reason of reddish glandular hairs scattered along the stems, these being rather numerous in some examples. More noteworthy still is a very small form found also among the Miacomet pines. It is at once set apart from
reduced examples of true A. plantaginifolia by perfectly white instead of purple styles, and is further well characterized by very small, orbicular to obovate, short-petioled basal leaves, often in a close rosette, their blades only $0.75-1.5 \mathrm{~cm}$. broad; the cauline leaves are mostly blunt or rounded at the apex, their upper surface invested with a minute appressed tomentum quite different from the loosely arachnoid pubescence characteristic of the attenuatetipped cauline leaves of true A. plantaginifolia. Not any of the pistillate plants were taller than $10-15 \mathrm{~cm}$., and the few staminate plants found were only $3-5 \mathrm{~cm}$. high; in several of them a few of the involucral bracts were bright rose color. Altogether the plant possesses a combination of striking characters that give it quite the aspect of a most distinct species. But certain Nantucket specimens of A. plantaginifolia show a tendency to develop somewhat similar characters, thus making it doubtful whether the smaller plant is other than a localized variety of the common species.

*Antennaria fallax Greene.

On Prospect Hill in the western outskirts of the town, also on a dry slope at Capaum Pond, only a few plants at each station. In full flower June 10, 1909; flowers passing, June 5, 1911. A stout form of the species, becoming 4 dm . high, the acute leaves $2-3 \mathrm{~cm}$. broad, pubescent on the upper surface; some stems with a few purplish glandular hairs below the rather close corymb.

*Antennaria neodioica Greene.

Rather common locally, but wanting in many parts of the island; perhaps most frequent on the rolling commons westward from the town; Madequet, Shawkemo, Siasconset. In full bloom, but also much of it only just in flower May 30, 1909, some heads mature by June 6 .

Much of the Nantucket plant appeared to be somewhat aberrant, and "specimens sent to Professor Fernald proved to be his var. attenuata (Proc. Bost. Soc. Nat. Hist. 28: 245. 1898). My collections seem to show that this variety is more common on Nantucket than the typical plant. Professor Fernald writes me that it appears to be more common than the type in the Canadian zone.
*Antennaria neglecta Greene.
In damp fields and open places, rather scarce and found mainly on the western side of the island. In full flower May 31, 1909; mature heads June 7, 1908.

*Antennaria petaloidea Fernald.

An extensive colony of this interesting plant overspreads many rods of a sterile hilltop field southwest of Capaum Pond, an extreme southern outpost of the species. On May 30, 1909, in fullest bloom, it was far more conspicuous in the whiteness of its inflorescence than any of our more familiar Antennarias, appearing like snow drifted along the hilltop with outlying patches down the slope. I had never before met with the species nor understood just how it differed from A. neglecta, but the eye needed no closer inquiry to approve it instantly as a beautifully distinct plant. Professor Fernald, who has kindly examined my specimens, writes me that they are typical of his var. subcorymbosa (Rhodora 16 : I33. I914) not known hitherto from south of Mt. Desert, whence it extends locally along the coast to Prince Edward's Island and eastern Nova Scotia, there very common, and further eastward to Newfoundland.
Anaphalis margaritacea (L.) Benth. \& Hook.
Not an abundant plant, but widely scattered over the island. It is frequent in close patches among the mixed growths of herbs and low woody plants that like miniature thickets are scattered over the plains and rolling upland, and is common in more open colonies on parts of Great Neck. Corymbs white, but no open flowers, July 1o, 1912; in full flower through August and September.

The close groups or patches, often far distant from each other, that are natural to its habit of growth in poor soils, are noticeable early in the season before the stems appear, from the whitish green color of the basal leaves; by midsummer it has become a conspicuous plant from the snowy whiteness of its flowering corymbs.

Gnaphalium obtusifolium L.

Common in dry soils, often in white sand among the beech grass. Plants very small up to late June; in full flower in August and September.

Gnaphalium uliginosum L.

Locally common in damp fields and cartways and occasional in the town streets. First flowers June 17, 1910; blooming through September.

Gnaphalium purpureum L.
On sandy levels about most of the ponds along the south side of the island, especially Nobadeer and Madequecham Ponds, sometimes in great abundance. Collected by Miss Gardner at Sachacha Pond. Reddened flower heads June 7, 1909; plants still small but in full flower July 9, 1912; flowers passing September I3, 1907.

*Inula Helenium L.

Sparingly established in a meadow near the Springfield House and in a low field at the southern end of the town. In full flower August 4, 1906; out of bloom August 27, 1904.

Rudbeckia hirta L.

Frequent or rather common in many parts of the island. According to Mrs. Owen its first appearance on Nantucket was probably about 1878 and ten years later it was rather common at Siasconset and becoming so elsewhere.

Helianthus divaricatus L.
Common on the plains and moorland towards Siasconset, and local throughout the eastern third of the island, not seen on the western two thirds. In exposed places on poor soils it is often much dwarfed, with unusually narrow leaves and few flowering heads or only a single one. In full bloom August 6, 1904; mostly passed flowering September 17, 1907.

Helianthus strumosus L.

Locally common in the northeastern quarter of the island in dry soil about the borders of thickets; not seen west of Swain's Neck. No flowers up to August 3, 1906; in full bloom September 17, 1907.

*Helianthus annuus L.

Occasional in waste ground and in old fields. In full flower August 1I, 1906.
*Helianthus scaberrimus Ell.
A casual waif. A single small flowering plant in an old field September 15, 1899; one plant past flowering September 20, 1907, in waste spot west of the town; a few small plants near Crooked Lane June, 1908.

Helianthus tuberosus L.
Yards and waste places and by roadsides, mainly near the town, growing in close colonies and not coming into full bloom until late in the season. Plants a few inches high June 3, 1909; a precocious flowering head September II, 1904; earliest flower September 14, 1907.
Bidens cernua L.
Frequent in wet places and locally abundant, as at Watt's Run and along ditches west of the town. Just in flower August 30, 1904; in full bloom September 14, 1907. Stout forms, having closely serrate leaves becoming 4 cm . broad, correspond with specimens in the herbarium of the New York Botanical Garden labeled var. elliptica by Dr. Wiegand (Bull. Torr. Club, 26: 417418).

Bidens connata Muhl.
Everywhere in low grounds, in bogs and along pond shores. At Maxcy's Pond five feet tall, with leaves as deeply lobed as in the smaller forms. No flowers up to August 15, 1906; just in flower at the end of August, 1904; blooming through September.
*Bidens petiolata Nutt.
Collected only in low grounds west of the town. Freshly in bloom September 21, 1899.

A plant of wet woods and thickets rather than of open bogs, and apparently not a common species on the immediate coast. I used to find it an abundant and characteristic plant of low open woods and shaded swamps in the lower Hudson River region where Bidens connata was of such rarity, if it occurred at all, that I never met with it. When first coming to know this plant in its coastal bogs I could not doubt that it was distinct from the Hudson Valley species, and my observation of the two plants for many years has only confirmed that view.
*Bidens frondosa L.
Frequent in low grounds and waste places about the town; sometimes on pond shores. In early flower at the end of August, 1904; in full flower September 10, 1907.
*Bidens vulgata Greene.
Frequent in yards and waste places and by streetsides in the town; Shawkemo. Just in flower in early September, 1904; in full flower September 16, 1907.

*Galinsoga aristulata sp. nov.

Galinsoga parviflora var. hispida DC. not G. hispida Benth.
A few plants on Easton Street in full flower September 13, 1907; Fair Street, September 19, 1914; specimen in herbarium of Miss Grace B. Gardner.

This now widespread weed wherever I have met with it has not failed to prove itself always readily distinguishable from the true G. parviflora Cav., even without reference to the constant and pronounced differences in the pappus scales. Nevertheless I do not discover that it has ever received an available specific name. In some European gardens of today it is evidently known as G. brachystephana Regel, since it has been grown at the New York Botanical Garden from seeds received from Europe under that name. There are before me specimens raised from such seeds that, noting their similarity to our plant known as G. parvifora var. hispida, I took from the herbaceous beds at the garden September ir, 1898. Although the close counterpart of these specimens has not been found in any example of our common weed met with since that time their divergencies, however obvious, are not greater than might well be expected to mark a long established garden form of so variable a plant. In any case, however, there need be no doubt that the name G. brachystephana in its use for this plant has been mistakenly applied. I have not been able to consult the rare pamphlet (Ind. Sem. Hort. Turic, 1846) that contains the original description of G. brachystephana, which species, if we may so understand its history, came from seeds received in Europe about the year 1846, from what country does not appear. Nor do I find any descriptive text in the different issues of that period of In-
dex Seminum Hortus Botanicus Imperialis Petropolitanus wherein the name appears. But a description, presumably a transcript of the original, is found in Walper's Repertorium (6: 722. 1846-7). Therein we read, "ligulae amoene roseae." The correlation is thus evidently with G. caracasana (DC.) Sch. Bip. and not with our white-rayed species. Another name requiring to be considered is Wiborgia urticaefolia H. B. K. (G. urticaefolia Benth.). An excellent illustration of this plant accompanying its description (Nov. Gen. et Sp. 4: 257. pl. 389. 1820) shows that it is closely related to our species but differs by larger rays and the absence of a pappus. G. Humboldtii Heiron. (Bot. Jahrb. 28: 618. 18991900) based on a variety of G. urticaefolia, which is cited as a synonym, differs in having a short coroniform pappus, thus excluding our plant with elongated attenuate or aristulate pappus scales. In some respects the characterization of G. quadriradiata Ruiz \& Pav. (Syst. Veg. 198. 1798) might seem to refer to our plant but, as a whole, it is more descriptive of, and clearly applicable to, a mere form of G. parviflora Cav. (G. quinquiradiata Ruiz \& Pav. l. c.), as was long ago determined by De Candolle.

Achillea Millefolium L.

Fields and roadsides, flowering from early June until October. In its best developed state it is often only slightly pubescent, and is branched above the middle to form an ample compound corymb, the heads having rays $2.5-3.5 \mathrm{~mm}$. broad. Reduced and more pubescent forms of poorer soils have more contracted leaves and are unbranched, bearing a single terminal corymb of somewhat smaller heads.

Dr. Rydberg, who has examined my Nantucket collections of Achillea, finds that certain specimens are quite clearly referable to the plant recognized in Europe as A. asplenifolia Vent. (A. rosea Desf.), in which the flowers are prevailingly rose color to magenta, and the ultimate subdivisions of the leaves finally thickened and callous at the ends below the cartilaginous pointed tip. The status of this plant, however, seems not to be very clear, and the question of its formal recognition may well await a better understanding of its relationship to A. Millefolium.
*Achillea occidentale Raf.
Specimens of this have been determined by Dr. Rydberg who
points out to me that its more obvious differences from A. Millefolium are smaller rays, $1.5^{-2} \mathrm{~mm}$. wide, more delicately dissected leaves with narrower unmargined or but slightly margined midrib, and more arachnoid pubescence, the crowded heads commonly with more cylindric involucres and narrower and paler or more stramineous bracts. This yarrow seems to be not uncommon on Martha's Vineyard, where I have collected very typical examples, and also on Long Island and near New York. When last on Nantucket I did not well enough distinguish it from A. Millefolium to learn its real status there, although noting that a yarrow having very small rays, now presumably this, was not at all an uncommon plant.
*Achillea pannonica Scheele, Linnaea 18: 471. 1835.
A. lanata Spreng, Cat. Fl. Hal. 1799 , not Lam. 1778.

This yarrow of southeastern Europe, not before, I think, reported from America, occurs in scattered growth on the dry plains towards the south shore of Nantucket especially near Madequecham Pond. In full flower July 9, 1912.

A very distinct appearing plant as compared with our common forms, densely white woolly throughout and with congested rounded or convex corymbs, and small rays I-I. 5 mm . wide. The numerous densely lanose-pubescent cauline leaves are narrow and ascending or erect, their short segments and subdivisions more or less incurved and closely crowded together. Dr. Rydberg, who has determined the identity of my specimens, has called my attention to the marked characters by which this plant differs from A. lanulosa Nutt. which in some respects it resembles.

Anthemis Cotula L.

Mainly in and about the town and suburbs, but also in fields and waste places. A precocious flower June 18, I910; first flowers June 27, 1912; blooming until late autumn.

Chrysanthemum Leucanthemum L.

Abundant throughout the island, whitening the fields in June. Sometimes growing in close groups in pure sand among the beach grass. First flowers May 30, I909; in full flower June 7, 1908. All presumably the var. pinnatifidum Lecoq \& Lamotte.

Chrysanthemum Parthenium (L.) Pers.

Occasionally spontaneous by streetsides and in waste places. Not yet in flower June 14, 1908; in full flower June 27, 1912.

The more common form of this plant seen in old gardens and as an escape, has a broad pale yellow disk and short rays and would appear to be the var. breviradiatum Rouy (Fl. de France 8: ${ }^{263}$). On this understanding the less usual plant, with us, having a smaller bright yellow disk and longer rays would be the typical form. This was found growing sparingly in a barnyard west of the town in full flower September 17, 1899, and in two instances by streetsides in the town.

*Chrysanthemum Balsamita L.

A casual estray from cultivation, and at a few stations persistent and spreading in abandoned grounds. Large flower heads August 29, 1904; heads yellow but not actually in flower September II, 1907.
Tanacetum vulgare L.
Frequent near old barns and farm houses and in abandoned grounds usually growing in close masses and appearing as if a survival of cultivation. The var. crispum DC. is perhaps more frequent than the typical form. Begins to bloom in August and continues in full flower through September.
Artemisia caudata Michx.
A characteristic plant of the commons and open sandy places and often growing in pure sand among the beach grass. No heads visible June 27, 1910; inflorescence appearing June 20, 1908; not quite in bloom July 13, 1912.
Artemisia vulgaris L.
An infrequent weed, seen only about the wharves. In full flower September 5, 1904.
*Artemisia biennis Willd.
A single stout plant near the wharves just in flower September 5. 1904; one plant back of the beach at Wauwinet, June 20, 1910, the heads very immature.

*Artemisia annua L.

Collected near the Springfield House in 1901 and, more recently west of the town, by Mrs. Flynn; Main Street, September 14, 1914, Walter Burdick, specimen in herbarium of Miss Gardner.

*Artemisia Absinthium L.

In full flower about a remote abandoned dwelling in Squam September 1, 1904; streetside in the town 1912.
*Artemisia pontica L.
Casually persistent and spreading as a survival of cultivation, not seen in flower. It is more frequent on Martha's Vineyard, but only as a relic or an estray from old gardens.

*Artemisia Stelleriana Bess.

A characteristic plant of the sea beaches, mainly on the north side of the island, growing in dense confluent patches on the white sand beyond the reach of the tides; rarely seen away from the immediate shore, but becoming established in spots among the beach grass above the highest bluffs. Nearly in flower May 30, 1909, June 7, 1911; earliest flowers June 17, 1910; past its height of bloom June 27, 1912; continuing to produce some flowering stems during the summer and sometimes into September.
Erechtites hieracifolia (L.) Raf.
Very common, especially among the open groups of mixed woody and herbaceous vegetation that are scattered over the plains, this being the first predominating plant that springs up after these growths have been laid waste by fires. It is even more abundant among the windrows of shore refuse back of the beaches around Sachacha Pond where it becomes unusually stout and hairy and develops much purplish coloring in its upper parts. Plants a few inches high June 19, 1910, June 27, 1912; in full flower during September.

Senecio vulgaris L.

Streets and alleys in the town and outlying waste places, also in cultivated fields at the Cabot farm in Shimmo and on the Appleton farm at Miacomet Pond. Mature seeding heads before the end of May, but continuing to bloom throughout the season, doubtless until frost.

Arctium minus Schk.
Infrequent; neglected places and about farm buildings near the town; Quaise; Shawkemo; Great Neck. Blooms from August through September.

*Arctium tomentosum (Lam.) Schk.

The common burdock of Nantucket, inhabiting barnyards and waste places all over the island. Often with very large cottony heads and otherwise strongly typical but sometimes with the heads smaller and only thinly arachnoid, more like those of A. minus. Occasional forms appear to approach A. Lappa L. which has not yet been detected on the island. In bloom from August through September.

Cirsium lanceolatum (L.) Hill.

Roadsides and open places in all parts of the island but nowhere in abundance. Basal leaves only June 15, 1910; first flower July 14, 1912; blooming through September.

Cirsium discolor (Muhl.) Spreng.

Locally common in the northeastern quarter of the island from Shawkemo to Polpis, Pocomo and, especially, in Squam. Most frequent about thickets near the shore. Comes into bloom the latest of the thistles. First flowers September II, 1907.

Cirsium odoratum (Muhl.) Britton.

Along roadsides, and widely scattered over the downs and commons. It is often strongly developed, and plants were observed bearing as many as nine flowering heads besides several not yet in bloom. First flowers June 20, 1910, June 27, 1912; mostly past flowering in August, but flowering heads are not unusual late in the month and even in September. Heads of palest pink are frequent; occasionally they are pure white.

Cirsium horridulum Michx.

Common, mainly in brackish soil or in low grounds near the shore, but found as well in damp places in all parts of the island, and not infrequently in dry sandy soil, even among open growths of pine. The flowering heads, normally of a yellowish color, are often deep reddish purple medially or, rarely, throughout. First flowers June 2, 1909, June 7, 1908, June 7, 1911; some plants past flowering by June 25, 1910; mostly out of bloom by the middle of July or earlier; rarely a flowering head is produced in September.

Cirsium arvense (L.) Scop.

Frequent near the town, and occasional elsewhere, but not much of it anywhere. First flowers July 1, 1912.

*Centaurea Cyanus L.

Transient in and near the town. First flowers on strayed plants June 6, 1911, June 21, 1910; flowering earlier in gardens. *Centaurea melitensis L.

Waste ground near Surfside, July 9, 1912, a few plants in earliest flower.

During the publication of this series further exploration on Nantucket, both by myself and by others, has brought to light a considerable number of plants not before discovered there. These later additions to the flora will be recorded in an appendix.

INDEX TO AMERICAN BOTANICAL LITERATURE

1909-1916

The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material ; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of one cent for each card. Selections of cards are not permitted ; eacb subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Adams, J. On the germination of the pollen grains of apple and other fruit trees. Bot. Gaz. 61: 131-147. I9 F 1916.
Andrews, A. L. Bryological Notes.-II. Two mosses new to Iceland. Torreya 16: 47-49. 26 F 1916.
Atkinson, G. F. Origin and development of lamellae in Coprinus. Bot. Gaz. 6I: 89-I 30. pl. 5-II +f. I-6. I9 F 1916.
Bailey, L. H. The standard Cyclopedia of Horticulture 4: 1761-2422. pl. $61-80+f .2048-2693.1916$.
Bartlett, H. H. Parthenium Lloydii, a new Mexican guayule. Torreya 16: 45, 46. 26 F 1916.
Béguinot, A. Fotomorfosi nelle plantule di Opuntia vulgaris Mill. Nuovo Giorn. Bot. Ital. 22: 297-294. pl. 12, 13. Au 1915.
Belling, J. Report of assistant botanist. Ann. Rep. Florida Agr. Exp. Sta. 1913: civ-cxxxi. f. 14-21. Je 1914; 1914: lxxxi-cvi. f. 5-9. Ap 1915. Reports on breeding work with beans and corn.
Benedict, R. C. Has Athyrium pycnocarpon been found in New Jersey? Am. Fern Jour. 6: 20, 21. Mr 1916.
Benedict, R. C. Some horticultural fern variations. Am. Fern Jour. 6: 8-15. pl. r-3. Mr 1916.

Benedict, R. C. Snow injury to trees. Torreya 16: 71, 72. 17 Mr 1916.

Bessey, E. A., \& McClintock, J. A. Some ginseng troubles. Ann. Rep. Sec. Michigan Board Agr. 54: 267-279. f. 1 -5. 1915.
Blake, S. F. A new Vaccinium from Costa Rica. Jour. Bot. 53: 271, 272. S 1915.

Brooks, C., \& Fisher, D. F. Brown-rot of prunes and cherries in the Pacific northwest. U. S. Dept. Agr. Bull. 368: 1-10. pl. 1-3. 6 Mr 1916.
Brown, W. H. The mechanism of movement and the duration of the effect of stimulation in the leaves of Dionaea. Am. Jour. Bot. 3: 68-90. f. I. 4 Mr 1916.
Castle, W. E. Variability under inbreeding and cross-breeding. Am. Nat. 50: ${ }_{17} 8$-183. Mr 1916.
Collins, G. N., \& Kempton, J. H. Parthenogenesis. Jour. Heredity 7: 106-118.f. 2-9. Mr 1916.
Diehl, W. W. The flora of the ledges region of Boone County, Iowa. Proc. Iowa Acad. Sci. 22: 77-104. pl. 18-19 +f. 1, 2. 1915.
Dixon, H. N. New and rare African mosses from Mitten's herbarium and other sources. Bull. Torrey Club 43: 63-81. pl. 1. II Mr 1916. Includes descriptions of nine new species.
Evans, A. W. A new species of Metzgeria from the Galapagos Islands. Torreya 16: 67-70.f. 1-5. 17 Mr 1916. Metzgeria grandifora sp. nov.
Fernald, M. L. A pubescent form of Salix Uva-ursi. Rhodora 18: 52. ${ }_{13} \mathrm{Mr} 1916$.
Floyd, B. F. Report of plant physiologist. Ann. Rep. Florida Exp. Sta. 1912: cii-cxiv. f. 3-8. Mr 1913.
Frye, T. C. Gas pressure in Nereocystis. Puget Sound Marine Sta. Publ. 1: 85-88. pl. 16. i F 1916.
Garman, H. Some Kentucky weeds and poisonous plants. Kentucky Agr. Exp. Sta. Bull. 183: 255-339.f. 1-45. Au 1914.
Garman, H., \& Didlake, M. Six different species of nodule bacteria. Kentucky Agr. Exp. Sta. Bull. 184: 343-363.f. 1-7. Au 1914.
Gassner, G. Untersuchungen über die Abhängigkeit des Auftretens der Getreideroste von Entwicklungszustand der Nährflanze und von äusseren Faktoren. Centralb. Bakt. Zweite Abt. 44: 512-617. Io D 1915.
Gates, F. C. The region of greatest stem thickness in Raphidophora. Am. Jour. Bot. 3: 65-67. f. I. 4 Mr 1916.

Gleason, H. A. Botanical sketches from the Asiatic tropics-IV. Ceylon. Torreya 16: 1 -17.f. 28-32. 17 Ja 1916; 33-45.f. 33-37. 26 F 1916.
Goldman, E. A. Plant records of an expedition to lower California. Contr. U. S. Nat. Herb. 16: i -xiii +309 -371. pl. 104-133 + map. io F 1916.
Includes 3 new species in Quercus.
Greene, L. An apple orchard survey of Mills County. Iowa Exp. Sta. Bull. 153: 253-316. f. x-35. N 1914. Includes notes and illustrations of the blister canker and other diseases of apples.
Griffiths, D. New species of Opuntia. Bull. Torrey Club 43: 83-92. pl. 2, 3. II Mr 1916. Includes descriptions of 12 new species.
Grout, A. J. Mosses of Colorado from Tolland and vicinity. Bryologist 19: 1-8. I3 Mr 1916.
Haumn-Merck, L. Cypella nova Argentina. Apuntes Hist. Nat. I: 84-86. f. a, b. I Je 1909. Cypella Wolffhuegeli and C. Herberti, spp. nov.
Hauman-Merck, L. Note sur la distribution geographique de deux Lycopodiales peu connues de la flore Argentine. Apuntes Hist. Nat. I: 171, 172. I N 1909.
Hauman-Merck, L. Nuevas especies de plantas Andinas (alta cordillera di Mendoza). Apuntes Hist. Nat. I: 54-58. I Ap 1909. Five new species are described.
Hauman-Merck, L. Phytolaccae novae Argentinae. Apuntes Hist. Nat. I: 107-110. I Jl 1909.
Herzog, T., and others. Die von Dr. Th. Herzog auf seiner zweiten Reise durch Bolivien in den Jahren 1910 und 1911 gesammelten Pflanzen. II. Mededeel. Rijks Herbarium 27: $1-90$. f. $1-5$. 1915.

Hicken, C. M. Clave artificial de las Aspleniéas Argentinas. Apuntes Hist. Nat. 1: 129-198. I S 1909.
Hicken, C. M. Clave artificial de las Gimnograméas Argentinas. Apuntes Hist. Nat. 1: 81-83. I Je 1909.
Hicken, C. M. Clave artificial de las Pterídeas Argentinas. Apuntes Hist. Nat. I: 113 -122. I Au 1909.
Hicken, C. M. Clave artificial de las Vitariéas Argentinas. Apuntes Hist. Nat. I: 49, 50. I Ap 1909.
Hicken, C. M. Plantae Fischerianae. Contribución al conocimento de la flora del Rio Negro. I-16. [1915.]

Hicken, C. M. Notas botánicas. An. Soc. Cien. Argentina 65: 290312. [1-25]. 1908.

Two new species are described in Symphyostemon (I) and Habenaria (I).
Hicken, C. M. Una nueva especie de Eryngium, Eryngium Kurtzı Hicken. Apuntes Hist. Nat. I: 52, 53. i Ap 1909.
Hicken, C. M. Una nueva variedad de Helecho. Apuntes Hist. Nat. 1: 51. I Ap 1909.
Hitchcock, A. S. The scope and relations of taxonomic botany. Science II. 43: 331-342. io Mr 1916.
Howe, R. H. An interesting tropical lichen new to the United States. Torreya 16: 50. 26 F 1916. Laurera madreporiformis comb. nov.
Hurd, A. M. Codium mucronatum. Puget Sound Marine Sta. Publ. I: 109-135. pl. 19-24. 25 F 1916.
Jackson, H. S. An Asiatic species of Gymnosporangium established in Oregon. Jour. Agr. Research 5: 1003-1010. pl. 78, 79. 28 F 1916.
Jeffrey, E. C. Hybridism and the rate of evolution in Angiosperms. Am. Nat. 50: 129-143.f. I-8. Mr 1916.
Jones, L. R., \& Bartholomew, E. T. Apple rust and its control in Wisconsin. Wisconsin Agr. Exp. Sta. Bull. 257: 1-30. f. I-14. Jl 1915.
Kaufman, P. Schizaea pusilla at Toms River. Am. Fern Jour. 6: i6-18. Mr 1916.
Kellogg, H. S. The flora of the Rainy river region, Proc. Iowa Acad. Sci. 22: 60-75. pi. 16, 17. 1915.
Knowlton, F. H. Notes on two conifers from the Pleistocene Rancho La Brea asphalt deposits, near Los Angeles, California. Jour. Washington Acad. Sci. 6: 85, 86. 19 F 1916.
Macbride, J. F. Anchusa in New England. Rhodora 18: 50, 5r. I3 Mr 1916.
Manns, T. F. Some new bacterial diseases of legumes and the relationship of the organisms causing the same. Delaware Agr. Exp. Sta. Bull. 108: 1-44. pl. 1 -21. Ap 1915.
McAtee, W. L. Plants collected on Matinicus Island, Maine, in late fall, 1915. Rhodora 18: 29-45. I3 Mr 1916.
McCubbin, W. A. Fruit tree diseases of southern Ontario. Canada Dept. Agr. Exp. Farms Bull. 24: 1-77. f. 1-70. 1915.
Merrill, E. D. On the identity of Blanco's species of Bambusa. Am. Jour. Bot. 3: 58-64. 4 Mr 1916.

Nieuwland, J. A. Critical notes of new and old genera of plants-VII. Am. Mid. Nat. 4: 374-378. Mr 1916; VIII. Am. Mid. Nat. 4: 379386. Mr 1916.

Osterhout, G. E. A new Phacelia from Colorado. Torreya 16: 70, 71. ${ }_{17} \mathrm{Mr} 1916$.
Phacelia denticulata sp. nov.
Osterhout, W. J. V. The decrease of permeability produced by anesthetics. Bot. Gaz. 6I: 148-158.f. I-6. I9 F 1916.
Pammel, L. H. A comparative study of the weeds of central Iowa, northern Minnesota and Wisconsin. Proc. Iowa Acad. Sci. 22: 57-59. 1915.
Pammel, L. H. Dr. Charles Edwin Bessey. Proc. Iowa Acad. Sci. 22: 11-13. pl. r. 1915.
Pammel, L. H., MacDonald, G. B., \& Clark, H. B. The native and cultivated forest trees and shrubs of the Missouri river basin. Proc. Iowa Acad. Sci. 22: 23-56. pl. 4-15. 1915.
Peck, M. E. Flora of the east slope of the Cascade Mountains, in Crook County, Oregon. Proc. Iowa Acad. Sci. 22: 143-164. 1915.
Pennell, F. W. Notes on plants of southern United States-I. Bull. Torrey Club 43: 93-111. ir Mr 1916.
Pool, V. W., \& McKay, M. B. Relation of stomatal movement to infection by Cercospora beticola. Jour. Agr. Research 5: 1011-1038. pl. $30,31+f .1$ - 6.28 F 1916.
Rigg, G. B. Physical conditions in Sphagnum bogs. Bot. Gaz. 61: 159-163. 19 F 1916.
Sargent, C. S. The name of the red oak. Rhodora 18: $45-48$. F 1916.

Seaver, F. J. An interesting case of tree girdling. Tree Talk 3: 80, 81, Ap 1916. [Illust.]
Shimek, B. Early Iowa locality records. Proc. Iowa Acad. Sci. 22: 105-119. 1915.
Shimek, B. The ecological histology of prairie plants. Proc. Iowa Acad. Sci. 22: 121-126. pl. 20. 1915.
Sinnott, E. W., \& Bartlett, H. H. Coniferous woods of the Potomac formation. Am. Jour. Sci. 41: 276-293.f. I-I8. Mr 1916.
Standley, P. C. The application of the generic name Achyranthes. Jour. Washington Acad. Sci. 5: 72-76. 4 F 1915.
Standley, P. C. The genus Arthrocnemum in North America. Jour. Washington Acad. Sci. 4: 398, 399. I9 Au 1914.

Standley, P. C. The genus Choisya. Proc. Biol. Soc. Washington 27. 221-224. 29 D 1914.
Three new species are described.
Standley, P. C. A new genus of Chenopodiaceae from Arizona. Jour. Washington Acad. Sci. 5: 57-59. 19 Ja 1915. Zuckia gen. nov. is described.
Standley, P. C. The North American tribes and genera of Amaranthaceae. Jour. Washington Acad. Sci. 5: 391-396. 4 Je 1915.
Standley, P. C. Some ferns of Dutchess County, New York. Am. Fern Jour. 6: 1-7. Mr 1916.
Sudworth, G. B. The spruce and balsam fir trees of the Rocky Mountain region. U. S. Dept. Agr. Bull. 327: x-43. pl. 1 - $25+$ maps I-10. 19 F 1916.
Taubenhaus, J. J. Soil stain, or scurf of the sweet potato. Jour. Agr. Research 5: 995-1002. pl. 76, 77. 21 F 1916.
Temple, C. E. Diseases and insect pests of the potato. Idaho Agr. Exp. Sta. Bull. 79: 40-67.f. 1-14. Ap 1914.
Thériot, I. Une rectification. Bryologist 19: 10. Ja 1916.
Thone, F. E. A. Pioneer plants on a new levee. Proc. Iowa Acad. Sci. 22: 135-142. f. 3. 1915.
True, R. H.; \& Stockberger, W. W. Physiological observations on alkaloids, latex and oxidases in Papaver somniferum. Am. Jour. Bot. 3: 1-11. 5 F 1916.
True, R. H., \& Bartlett, H. H. The exchange of ions between the roots of Lupinus albus and culture solutions containing three nutrient salts. Am. Jour. Bot. 3: 47-57.f. 1-3. 4 Mr 1916.
Victorin, M. Prenanthes mainensis: notes on the morphology, taxonomy and distribution of this hybrid form. Ottawa Nat. 29: 140145. F 1916. [Illust.]

Weatherby, C. A. Staminody of the petals in Amelanchier. Rhodora 18: 48, 49. 13 Mri916.
Weaver, J. E. A study of the root-systems of prairie plants of southeastern Washington. Plant World 18: 227-248. f. 1-9. S 1915; 273-292. f. IO-18. O 1915.
Weir, J. R. Larch mistletoe: some economic considerations of its injurious effects. U. S. Dept. Agr. Bull. 317: I-25.f. 1-13. 20 Ja 1916.

Weir, J. R., \& Hubert, E. E. Inoculation experiments with Peridermium montanum. Phytopathology 6: 68-70. F 1916.

BENEDICT: VARIETIES OF NEPHROLEPIS

BULLETIN

OF THE

TORREY BOTANICAL CLUB

JUNE, Igi6

Contributions to the Mesozoic flora of the Atlantic coastal plain, XI,-Tennessee *

Edward Wilber Berry

(WITH PLATE 16)

Tennessee west of the river of that name is physiographically and geologically a part of the Atlantic Coastal Plain. The Upper Cretaceous deposits of Tennessee outcrop in a belt of considerable width which extends across the state from north to south immediately west of the Tennessee River. In McNairy and Hardin counties on the south this belt is about sixty-eight miles in width, but the beds become thinner or are overlapped by the Eocene to the northward so that in Henry County on the northern boundary the Cretaceous belt is only about ten miles in width.

The Upper Cretaceous of Tennessee when compared with that of Alabama and Mississippi is seen to be much thinner. According to the nomenclature adopted for Tennessee \dagger the sequence from the top downward is as follows:
Ripley formation.... $\left\{\begin{array}{l}\text { McNairy sand member } \\ \text { Unnamed member }\end{array}\right.$

[^52][The Bulletin for May ($43: 207-282$. pl. $10-15$) was issued June 16, 1916.]

1
Representing a tongue of chalky material extending northward from about the middle of the Selma chalk of western Alabama

Eutaw formation.... Coffee sand member Tuscaloosa formation.

No fossil plants have been recorded from these beds in Tennessee except Salex eutawensis Berry, which is recorded from the Coffee sand near Parsons, Decatur County, Tennessee. While the materials are prevailingly littoral or sublittoral in character with numerous small clay lenses, the bulk of the deposits are sands, and while these are often lignitic or contain petrified wood, determinable fossil plants are rare. The apparent scarcity of fossil plants is due in a measure to lack of exploration, since this area has not yet been surveyed as thoroughly as the balance of the Cretaceous of the Eastern Gulf area. The country is thinly settled, and is for the most part without large towns, railroads or good wagon roads.

That eventually a considerable flora will be known from the Cretaceous of Tennessee is indicated by the results of a single season's detailed work in McNairy and Hardin Counties by Mr. Bruce Wade, a student of the Johns Hopkins University, working under the auspices of the Tennessee Geological Survey.

Determinable plants were obtained by him during the summer of 1915 at two horizons. The first of these is in the McNairy sand member of the Ripley formation and comes from two localities-one in the big cut on the Southern Railway west of Cypress and the other two and one half miles southwest of the town of Selmer, both in McNairy County. The second is in the Coffee sand member of the Eutaw formation and comes from the classic outcrop of the Upper Cretaceous at Coffee Bluff on the Tennessee River in Hardin County, first described by Safford in 1864.*

The flora collected by Mr . Wade is too limited to warrant a botanical analysis but it is of considerable interest stratigraphically and it possesses an especial botanical interest since hardly any-

[^53]thing is known of the later Upper Cretaceous floras of the Atlantic Coastal Plain. The forms identified with their geographical and geological ranges are shown in the following table:

This flora as at present known comprises twenty-four forms, of which Sabalites sp., Cinnamomum sp., and Eugenia (?) anceps are poorly characterized. Halymenites major is probably not a plant but it is a very characteristic object common in the western United States in the Colorado and Montana series.

The Tennessee Cretaceous flora is remarkable in not showing any traces of ferns or gymnosperms. When the prevailing coarseness of the sediments is considered the absence of ferns is not to be wondered at, but such sediments usually contain an abundance of coniferous twigs and with further exploration these should be discovered. The presence of considerable amber both
in the Coffee sand and in the McNairy sand is a sure indication of conifers, and the petrified wood found at Coffee Bluff is also coniferous and represents an undetermined species of Cupressinoxylon. Araucaria bladenensis, which is so common in the Black Creek and Lower Eutaw and ranges upward into the Cusseta sand, has not been discovered in Tennessee.

If the two Tennessee horizons be considered separately it will be noted that the Coffee sand flora as at present known consists of fourteen named species and an unidentified Cupressinoxylon. None of these are new. It is contrasted with the McNairy sand flora by having but one common species (Manihotites georgiana) and by a considerable number of forms that come up from older horizons. Thus it has four species that originate in the Raritan, although none of these are characteristic of the Raritan but of slightly younger horizons. It has three species common to the Woodbine sand, five to the Dakota sandstone, seven to the Magothy formation, and eight to the Tuscaloosa formation. Nine of the Coffee sand forms are common to the basal Eutaw and twelve of the fourteen species are found in the Black Creek formation of the Carolinas. The Coffee sand has not yielded an invertebrate fauna, although on stratigraphic grounds Stephenson refers it to the Exogyra ponderosa zone. The present collections unquestionably confirm this reference. Its exact position in this zone is not directly determinable since the possible equivalents of the Coffee sand in Mississippi and Alabama are strictly marine formations without fossil plants, so that we have the familiar but much involved problem of comparing a section in one area with plants and without invertebrates, with a section in an adjoining area containing invertebrates but no plants. While the interpretations resulting from the two classes of evidence are in substantial agreement the paleobotanical evidence would seem to indicate that the Coffee sand may be slightly older than Stephenson ($o p$. cit.) postulates, unless we are to assume that 86 per cent. of the Coffee sand flora comes up from older horizons and then becomes extinct in the relatively short interval between the Coffee and the McNairy sand. This is of course possible and future work may demonstrate its truth, but in the present state of our knowledge it seems improbable. Two of the Coffee sand
species, Ficus Krausiana and Diospyros primaeva, occur in both the Cenomanian and Turonian of Europe.

The McNairy sand flora consists of eleven species, five of which are new and peculiar to this horizon. Only one is common to the Coffee sand, although two additional are found in the basal Eutaw of Alabama or Georgia. Two are common to the Cusseta sand and two occur in the Black Creek formation. The distinctness of the McNairy sand flora is further emphasized by the total absence of any Raritan, Woodbine, Tuscaloosa, Dakota or Magothy species. Singularly enough it has no known elements in common with the Cretaceous floras of the Rocky mountain or Great Plains provinces. Compared with European Upper Cretaceous floras it has two species, Dryophyllum gracile and Cissites crispus, common to the Emscherian of Prussia and Bohemia and not found elsewhere. While this is not sufficient evidence upon which to base intercontinental correlation it is not without significance, especially in view of the fact that the McNairy sand has not yet furnished any elements common to the fairly abundant floras of the Campanian and Maestrichtian of Europe.

POALES

POACEAE

Phragmites Trinius

Phragmites Prattil Berry

Phragmites sp., Berry, Bull. Torrey Club 34: 190. pl. 11, f. 5 . 1907.

Phragmites Prattii Berry, Bull. Torrey Club 37: 191. 1910; U. S. Dept. Int. Geol. Surv. Professional Paper $84: 28,109.1914$. Grasslike leaf fragments referred to this species have been described from several localities in the Black Creek formation of the Carolinas and from the lower Eutaw of Georgia. Identical remains occur in the Upper Eutaw of Tennessee.

Occurrence: EuTAW FORMATION, Caffee sand member. Coffee Bluff, Hardin County, Tennessee.

ARECALES

PALMAE

Sabalites Saporta

Sabalites sp.

Fragments of leaves of a large fan palm are present in the basal Ripley beds of Benton County, and in the McNairy sand of McNairy County, Tennessee. They indicate large flabellate leaves with numerous rays $1.5^{-2} \mathrm{~cm}$. broad with an illy-defined midrib and closeset parallel lateral veins. The texture is coriaceous.

The material is very fragmentary and is altogether insufficient for specific diagnosis. It is in my judgment distinct from the so-called Sabalites Grayanus Lesquereux of the Montana Group, Sabalites magothiensis Berry of the Magothy formation or Sabalites carolinensis Berry of the Middendorf beds of South Carolina.

Occurrence: RIPLEY FORMATION, McNairy sand member. One half mile from Camden, Benton County; two and one half miles southwest of Selmer, McNairy County, Tennessee.

MYRICALES

MYRICACEAE

Myrica Linné

Myrica ripleyensis sp. nov.

Leaves of medium size, linear-lanceolate in outline with a gradually cuneate base. Length about 13 cm . Maximum width, in the middle part of the leaf, about 1.75 cm . Margins conspicuously serrate-toothed, the teeth somewhat irregular in size and disposition; distad they are reduced and close-set. They increase in size proximad until in the median and basal part of the leaf, they are large and triangular the intervening sharp sinuses reaching nearly to the midrib and closely simulating our recent Comptonia in character. Texture coriaceous. Petiole not preserved, presumably short and stout. Midrib stout, flexuous. Secondaries numerous, diverging from the midrib at wide angles.
about 70 degrees, every third or fourth one straighter than the rest and running to a marginal tooth, the intervening ones somewhat more curved and camptodrome.

This is an exceedingly well marked species, quite distinct from previously described forms and resembles closely some of the leaves of our existing Comptonia peregrina (Linné) Coulter. It is also much like some of the European Tertiary forms about which so much controversy raged in times past as to whether they were myricaceous or proteaceous.* For example some of the forms of Comptonia vindobonensis (Ettingshausen) Berry are close to the present species. A somewhat similar form is described by Velenovsky from the Bohemian Cretaceous as Dryandra cretacea, \dagger and another by Unger from the Cretaceous of Transylvania as Comptonites antiquus \ddagger These are both generically distinct from the present species as shown by their characteristic habit.

Occurrence: RIPLEY FORMATION, McNairy sand member. Camden-Paris Road, thirteen miles northwest of Camden, Benton County; two and one half miles southwest of Selmer, McNairy County, Tennessee.

SALICALES

SALICACEAE

Salix Linné

Salix eutawensis Berry

Salix eutawensis Berry, Bull. Torrey Club 37: 193. pl. 22, f. 1-11. 1910; U. S. Dept. Int. Geol. Surv. Professional Paper 84: 109. pl. 19,f.3. 1914.
This very characteristic willow, represented by both leaves and fruits in North Carolina is also found in Georgia. It is

[^54]not present in the material collected by Mr. Wade but was collected some years ago by Mr. Stephenson at the following locality.

Occurrence: EUTAW FORMATION, Coffee sand member. Cut on The North Carolina and St. Louis Railway, east of Parsons, Decatur County, Tennessee.

FAGALES

FAGACEAE

Dryophyllum Debey

Dryophyllum gracile Debey

Dryophyllum gracile Debey, Feuilles querciformes d'Aix-laChapelle. Compte rendu Congres bot. et hort. Brussels 10. f. 10, II. 1881.

Quercus pseudodrymeja Velenovsky, F1. Böhm. Kreidef. 2: 17. pl. 2, f. 21, 22. 1883; 4: 13. pl. 7, f. IO. 1885. Bayer, Sitz. k. Böhm. Gesell. Wiss. 1896: 10. Fric, Archiv. Naturw. Landes. Böhm. 10: 75. pl. 100. 1897.
Leaves oblonglanceolate in outline, with a cuneate base and a gradually narrowed tip. Length about 12 cm . Maximum width, in median part of leaf, ranging from 1.75 cm . to 2.5 cm . Petiole missing. Texture subcoriaceous. Margin with regularly spaced, fairly prominent, nearly straight-serrate teeth. Midrib stout, prominent on the lower surface of the leaf. Secondaries thin, regularly spaced, about fifteen craspedodrome pairs, branching from the midrib at angles of forty-five degrees or more, curving regularly upward, subparallel, terminating in the marginal teeth. Tertiaries thin, partly percurrent and partially alternating, joined midway between adjacent secondaries by a zigzag tertiary. [Fig. 6.]

This well-marked species is represented by five specimens in the small collection from the Cretaceous of Tennessee. None of these are complete, each showing about two thirds of a leaf, enough to demonstrate the identity with the European form. The type material came from the Emscherian where it is recorded from Aachen, Rhenish Prussia; Tannenberg, Bohemia and Kieslingswalde, Silesia, all at about the same horizon, probably representing the Santonian substage of the Emscherian.

Occurrence: RIPLEY FORMATION, McNairy sand member. Big Cut on Southern Railway near Cypress, two and one half miles southwest of Selmer, McNairy County, Tennessee.

URTICALES

MORACEAE

Ficus Linné

Ficus crassipes (Heer) Heer

Proteoides crassipes Heer, F1. Foss. Arct. 3^{2} : 110. pl. 31, f. 6-8. 1874.

Ficus crassipes Heer, Ibid. 6: 70. pl. 17, f. 9a; pl. 24, f. 1, 2. 1882 ; Berry, U. S. Dept. Int. Geol. Surv. Professional Paper 84: 37, 110. pl. 10, f. 12; pl. 12,f. 8-10. 1914.
The leaves of this species as they occur in the southern Coastal Plain are narrowly lanceolate with gradually narrowed apex and base, about 15 centimeters in length by 2.5 centimeters in greatest width, and resemble Ficus atavina Heer in outline but are relatively narrower. The texture is coriaceous and the midrib and petiole are extraordinarily stout in many specimens. The secondary venation when seen is of the usual camptodrome type with relatively long, ascending, curved secondaries.

This species was described originally from the Atane beds of western Greenland, the first rather fragmentary specimens collected having suggested the genus Proteoides. It was subsequently recorded from the Dakota sandstone of Kansas by Lesquereux. In the Atlantic Coastal Plain it is found in the Magothy and Black Creek formations, including the Middendorf member of the latter, and it is especially common in clays of the Tuscaloosa formation of Alabama. It occurs in the basal beds of the Eutaw formation in Georgia and the present occurrence extends its range upward to near the top of the latter formation.

Occurrence: EUTAW FORMATION, Coffee sand member. Coffee Bluff, Hardin County, Tennessee.

Ficus Krausiana Heer

Ficus Krausiana Heer, Neue Denks. Schw. Gesell. 23: 15. pl. 5, f. 3-6. 1869; Berry, U. S. Dept. Int. Geol. Surv. Professional Paper 84: 38, 1 10. pl. 11, f. 4-7; pl. 19, f. 4. 1914.
Leaves of large size, ovate lanceolate in outline, broadest at or below the middle. Apex and base acutely pointed, the apex
often extended and attenuated. Petiole and midrib stout Secondaries regular, open, thin, ascending, camptodrome, branching from the midrib at angles of forty-five degrees or more. Texture coriaceous or subcoriaceous. Length about 17 cm . Greatest width about 4 cm .

This species was described by Heer from Moletein in Moravia (Cenomanian), and it has been subsequently identified from a large number of American localities. In the West it occurs in the Dakota sandstone of Kansas and Colorado; in the East it is common from Martha's Vineyard and Block Island to Alabama and is present between these limits in Maryland, North Carolina and South Carolina. It occurs in the lower Eutaw of Georgia and the present record extends its range upward to near the top of the Eutaw.

Associated with this species at the type locality in Moravia are similar leaves which were described by Professor Heer as a different species, Ficus Mohliana. These are somewhat larger with a more sparse secondary venation. It seems probable that these merely represent the somewhat larger leaves of Ficus Krausiana, but they are not united with it in view of the lack of positive evidence, because Ficus Mohliana has priority and this would involve the change of name of this well-known type and horizon marker. In both North and South Carolina fruits are found associated with this species, but whether they are related to it or to some of the other rather numerous species of Ficus which occur at the same localities can not be determined.

Occurrence: Eutaw formation, Coffee sand member. Coffee Bluff, Hardin County, Tennessee.

Ficus ovatifolia Berry

Ficus ovata Newberry, Mon. U. S. Geol. Surv. 26: 70. pl. 24, f. I-3.
1896. Not Don, 1802-3.

Ficus ovatifolia Berry, Bull. Torrey Club 36:253. 1909.
Leaves ovate in outline, extended above into a narrow, usually pointed apex. Length $8-12 \mathrm{~cm}$. Greatest width, which is in the basal part of the leaf, $4^{-7} \mathrm{~cm}$. Base broadly rounded and in many specimens slightly decurrent. Margins entire. Primaries, three from the base, the midrib somewhat stouter than the lateral primaries. Secondaries camptodrome.

This species is closely allied to the Raritan species Ficus Woolsoni Newberry, differing primarily in its greater elongation and in the tendency of the former to a cordate outline. Ficus ovatifolia was described originally from the Raritan formation of New Jersey. It is present in the Black Creek formation of North Carolina and in the lower part of the Eutaw formation in Georgia.

Occurrence: Eutaw formation, Coffee sand memBer. Coffee Bluff, Hardin County, Tennessee.

RANALES

RANUNCULACEAE (?)

Dewalquea Saporta \& Marion

Dewalçuea Smithi Berry

Dewalquea Smithi Berry, Torreya ro: 36. f. I. 1910; U. S. Dept. Int. Geol. Surv. Professional Paper 84: 41. pl. 8, f. 3-9. 1914. Leaves palmately decompound, the petiole dividing into three principal branches, the angle of divergence varying from twenty to sixty degrees, and the two lateral branches forking at an acute angle $\mathrm{I}-2 \mathrm{~cm}$. above their base. The middle leaflet lanceolate in outline, being widest in its central part and tapering almost equally to the acute apex and base. Length $7 \cdot 5-16 \mathrm{~cm}$. Greatest width $1-4 \mathrm{~cm}$. Margin entire or serrate, usually entire below and serrate in the apical three-fourths, sometimes with large aqualine-serrate teeth. Midrib stout. Secondaries regular, subopposite, parallel; about twenty pairs, branching from the midrib at angles varying from forty-five to seventy degrees, usually about fifty degrees, curving upward and running to the marginal teeth, or camptodrome. The base of the leaflet extends downward to within 2 or 3 mm . of the forks of the petiole. Lateral leaflets more or less inequilateral, usually somewhat smaller than the middle leaflet. The internal lateral leaflet is lanceolate, the outer lamina starting at or very near the point where the lateral branch of the petiole forks. The inner lamina, however, extends downward almost to the base of the lateral branch, making the base markedly inequilateral. In general outline, marginal and venation characters, it is identical with the middle leaflet. The outer lateral leaflet is also somewhat inequilateral, but less so than the internal lateral leaflet, the internal lamina starting at
or near the fork and its outer lamina extending more or less below the fork. Marginal and venation characters as in the other leaflets.

This handsome species is abundantly represented in the Middendorf formation of South Carolina, mostly by terminal leaflets. It is common in the Upper Tuscaloosa of Alabama where nearly complete leaves have been collected. It is markedly distinct from the American species of Dewalquea previously described, all of which were apparently tripartite. Among the European forms it is quite similar to the Senonian species Dewalquea insignis Hos. \& v. d. Marck, which is, however, entirely distinct.

Occurrence: EUTAW FORMATION, Coffee sand member. Coffee Bluff, Hardin County, Tennessee.

ROSALES

CAESALPINIACEAE

Bauhinia Linné

Bauhinia ripleyensis sp. nov.

Leaves of medium size, more or less bilobate, but much less deeply divided than in the preceding species, obovate in general outline. Length along the midrib 4.5 cm . From apex of lobes to base 6.7 cm . Width across upper part of the leaf 5.5 cm . Apical sinus open, extending about one fourth of the distance toward the base of the leaf, its margins at the tip of the midrib forming an angle of about 90°, curving slightly upward and then conspicuously outward to the pointed tips of the lobes which are directly laterally. Outer margins of the leaf full and rounded, becoming straight toward the broadly cuneate base. Midrib of medium size. Lateral primaries branching from the base at angles with the midrib of about 25 degrees, of medium size, curved upward and then outward, and running to the tips of the lobes. They give off four or five camptodrome secondaries on the outside and two or three on the inside. The midrib, in its upper half, also gives off one or two secondaries on each side. Leaf substance somewhat coriaceous. [Fig. I.]

This species, which is sparingly represented in the argillaceous greensand marls along Cowikee Creek in Alabama, associated with
shallow water or estuarine mollusks of the Ripley formation, and in the McNairy sand of Tennessee, is markedly distinct from any described species of Bauhinia. It is much smaller and less deeply divided than Bauhinia gigantea Newberry or Bauhinia alabamensis Berry, and is much less ornate in character. It is, on the other hand, much larger than Bauhinia marylandicus Berry of the Magothy formation in the Maryland area. It differs from all of these American Cretaceous species in its pointed, outwardly-directed lobes, but is not unlike a number of existing species of this genus.

Occurrence: RIPLEY FORMATION. Right bank of Cowikee Creek, one-eighth of a mile above mouth, Barbour County, Alabama. McNairy sand member. Two and one half miles southwest of Selmer, McNairy County, Tennessee.

GERANIALES

EUPHORBIACEAE

Manihotites Berry

Manihotites georgiana Berry

Manihotites georgiana Berry, Bull. Torrey Club 37: 507. f. 1, 2. 1910; U. S. Dept. Int. Geol. Surv. Professional Paper 84: 114. pl. 22; pl. 23; pl. 24,f.4,5. 1914.

This remarkable large-leafed species has been somewhat fully described and figured recently. The type was based on nearly perfect material from the Lower Eutaw of McBrides Ford, Georgia. This species has also been recorded from the Cusseta sand member of the Ripley formation at Buena Vista, Georgia. It is present in the Black Creek formation of North Carolina and Mr. Wade's recent collections contain fragmentary but characteristic specimens from both the Eutaw and Ripley formations of Tennessee.

Occurrence: EUTAW FORMATION, Coffee sand member. Coffee Bluff, Hardin County. RIPLEY FORMATION, McNairy sand member. Two and one half miles southwest of Selmer, McNairy County, Tennessee.

RHAMNALES

VITACEAE

Cissites Heer

Cissites crispus Velenovsky

Cissites crispus Velenovsky, Fl. Böhm. Kreidef. 4: 12. pl. 4, f. 6 1885. Not Newberry, i896, Berry, 1906, 1911.

The present species was identified from the Raritan of New Jersey by Newberry and from the Magothy by Berry but neither occurrence represents the European form so that recently I made them the basis of a new species, Cissites Newberryi.*

A perfectly distinct small-leafed form which appears to be identical with the Bohemian type is present in the Ripley of Tennessee. It differs from Cissites Newberryi in its relatively shorter and broader form, its crenate instead of serrate or dentate teeth, its less ascending secondaries and its cordate base.

The type and only other known occurrence of Cissites crispus is the Chlomeker beds (Emscherian) of Bohemia.

Occurrence: RIPley FORMATION, McNairy sand member. Two and one half miles southwest of Selmer, McNairy County, Tennessee.

MALVALES

STERCULIACEAE

Sterculia Linné

Sterculia Snowii tennesseensis var. nov.

Leaf bilobate with a bluntly pointed base and gradually narrowed acuminate recurved apical lobes. Length about if cm . Width of entire basal part of leaf $2.5-2.75 \mathrm{~cm}$. Width of lobes $1.1-1.6 \mathrm{~cm}$. Margins entire. Texture subcoriaceous. Sinus extending half way to base or less, open, narrowly rounded. Midrib stout, flexuous. Lateral primary stout, diverging from midrib at an acute angle about 3 cm . above the base. Secondaries thin, largely immersed, diverging from primaries at wide angles at regular intervals, arching in a camptodrome manner near the margins. [FIG. 5.]

[^55]This striking form is unfortunately represented by only two specimens both of which are bilobate, although it, like so many fossil and existing species of Sterculia, may well have varied from entire to trilobate. Among previously described fossil forms it may be compared with the Magothy species Sterculia minima Berry, a smaller more variable form, or with the Dakota sandstone species Sterculia mucronata Lesquereux and Sterculia Snowii Lesquereux. The latter while often much larger and at times with five lobes is extremely variable. Two named varieties have already been recognized and the general character and venation of the Tennessee form leads me to conclude that it represents another variety of this protean species.

Occurrence: RIPLEy formation, McNairy sand member. Two and one half miles southwest of Selmer, McNairy County, Tennessee.

Pterospermites Heer

Pterospermites carolinensis Berry

Pterospermites carolinensis Berry, Bull. Torrey Club 34: 198. pl. 14.

f. 2. 1907.

This characteristic species, which was described from the Black Creek formation of North Carolina, is also not uncommon in the Tuscaloosa formation of Alabama. The present collections extend its range upward to the Coffee Sand Member of the Eutaw formation in which it occurs at Coffee Bluff, Hardin County, Tennessee.

THYMELEALES

LAURACEAE

Laurophyllum Goeppert

laurophyllum elegans Hollick

Laurophyllum elegans Hollick, Mon. U. S. Geol. Surv. 50: 81. pl. 27, f. 1-5. 1907; Berry, U. S. Dept. Int. Geol. Surv. Professional Paper 84: 53. pl. 12, f. 6. 1914.
Leaves elongate-lanceolate, somewhat flexuous, about 12-13 cm . in length by about 2 cm . in greatest width, which is about
midway between the apex and the base; from this point they narrow gradually apically into an attenuated acuminate, usually curved, tip; and basally into a long, narrowly cuneate base. Midrib and petiole stout. Secondaries numerous, usually less close and somewhat coarser than in Laurophyllum nervillosum, branching from the midrib at an acute angle below, which becomes more open above the base of the leaf; they are usually more curved than in L. nervillosum and more distinctly camptodrome. Tertiaries transverse throughout.

The species is certainly known from the upper Raritan at South Amboy, New Jersey, and is common in the Magothy formation of Maryland. It is sparsely represented in the Black Creek beds of North Carolina and is not uncommon in the Middendorf beds of South Carolina.

Occurrence: Eutaw FORMATION, Coffee sand member. Coffee Bluff, Hardin County, Tennessee.

Cinnamomum Sprengel

Cinnamomum Heerii Lesquereux

Cinnamomum Heerii Lesquereux, Cretaceous Flora 84. pl. 28, f. II. 1874 ; Mon. U. S. Geol. Surv. 17: 105. pl. 15, f. 1. 1892 ; Newberry, Mon. U. S. Geol. Surv. 35: ioo. pl. 17, f. 1-3. 1898; Berry, U. S. Dept. Int. Geol. Surv. Professional Paper 84: 118. pl. 21, f. 8. 1914.
Leaves coriaceous, entire, ovate in outline, more or less attenuated apically. Base broadly rounded. Primaries three, stout, suprabasilar. Secondaries camptodrome.

The exact status of this species is made out with difficulty. In typical specimens it is clearly distinct from Cinnamomum Newberryi Berry in its more regular outline and venation, broader form, more rounded base, and stouter suprabasilar primaries. Other remains have been referred to Cinnamomum Heerii which are not typical in some of these distinctive characters, and the well-known variation of the leaves of Cinnamomum renders a satisfactory solution of the problem difficult. It does, however, characterize the somewhat younger beds represented in the west by the Dakota sandstone and the Woodbine sand and in the Coastal Plain by the Magothy formation of the north and the Black Creek and Tuscaloosa formations of the south. In the
lower Eutaw of Georgia it is represented by fragments showing the coriaceous texture, broad base, and suprabasilar primaries of the species.

Occurrence: Eutaw Formation, Coffee sand member. Coffee Bluff, Hardin County, Tennessee.

Cinnamomum sp.

A characteristic Cinnamomum of uncertain specific identity occurs in the McNairy sand member of the Ripley formation at the locality two and one half miles southwest of Selmer in McNairy County, Tennessee.

Malapoenna Adanson

Malapoenna horrellensis Berry

Malapoenna horrellensis Berry, Bull. Torrey Bot. Club 37: 198. pl. 24, f. I-g. 1910; U. S. Dept. Int. Geol. Surv. Professional Paper 84: 118. 1914.
Leaves ovate-lanceolate, about 8 cm . long by 2.5 cm . in greatest width; broadest at the evenly rounded or slightly acute base, narrowing gradually upward, the apex narrow and extended but obtusely pointed. Leaf substance thin but persistent, evidently coriaceous in life, as these leaves occur abundantly at a locality where all the vegetable remains were thoroughly macerated before entombment. Secondaries four to six pairs, subopposite, curved upward, camptodrome, branching from the midrib at an acute angle, the lowest pair branching from the top of the petiole and extending upward halfway to the apex or farther, giving the leaf a triple-veined appearance. Perhaps they should be termed lateral primaries, although they are much finer than the fairly stout midrib. The next pair of secondaries branch at a less acute angle, a considerable distance above the base, one third to one half the distance to the apex. Tertiary venation typically lauraceous.

The present species may possibly be confused with Cinnamomum Heerii when only the basal part of the leaf is found, but the general proportions and characters of the whole leaf are perfectly distinct.

The genus Malapoenna has more than one hundred existing species, chiefly of the Oriental tropics, and is well represented in
the fossil state from the Dakota and Magothy formations upward. It is especially well represented in the Paleocene of Europe and in the Shoshone group of America. Of the two species in the Dakota sandstone of the West, one occurs in the Tuscaloosa formation at Cottondale, Alabama, and the other in the Magothy formation of New Jersey.

Occurrence: RIPLEY FORMATION, McNairy sand member. Near Cypress and two and one half miles southwest of Selmer, McNairy County, Tennessee.

MYRTALES

MYRTACEAE

Myrcia DeCandolle

Myrcia havanensis sp. nov.

Leaves linear-lanceolate in outline, falcate, about 9 cm . in length by 1 cm . in maximum width, which is in the lower half of the leaf. Margins entire. Apex gradually narrowed, acuminate. Base narrowly pointed, decurrent. Petiole very stout, tapering upward, 1.75 cm . in length. Midrib stout, curved. Secondaries numerous, thin, somewhat irregularly spaced, $2-6 \mathrm{~mm}$. apart, branching from the midrib at angles of about forty degrees, running with but slight curvature to the well-marked and nearly straight longitudinal vein which forms a marginal hem less than one half a millimeter from the margin. Texture coriaceous.

The present species is very close to some of the numerous forms which have been from time to time referred to Eucalyptus Geinitzi (Heer) Heer. It is, however, distinct from the latter, especially when compared with Heer's type or with the more typical American material. In general it is a smaller leaf with a larger and longer petiole, an outline less inclined toward ovate, and relatively much more produced apically. It is typically Myrcia-like in all of its characters. It is found in both the Ripley and Eutaw formations in Alabama and Tennessee.

Occurrence: EUTAW FORMATION. Two miles south of Havana, Hale County, Alabama. RIPLEY FORMATION, McNairy sand member. Two and one half miles southwest of Selmer, Big Cut on Southern Railway near Cypress, McNairy County; Camden, Benton County, Tennessee.

Eugenia Linné

Eugenia (?) anceps sp. nov.

Coriaceous leaves of variable size and form, lanceolate or oblong lanceolate. Base and apex equally acuminate or apex somewhat more attenuated. Margins entire. Length 7.75-10 cm . Maximum width, midway between the apex and the base, II -18 mm . Petiole enlarged, short and stout, $3-4 \mathrm{~mm}$. in length. Midrib stout. Secondaries thin, immersed in the leaf substance. [Figs. 2-4.]

This species is referred with much doubt to Eugenia. The material is abundant but poorly preserved and these leaves resemble a variety of forms referred to such genera as Salix, Laurophyllum, etc.

Eugenia has a species in the Tuscaloosa formation of Alabama, another in the Dakota sandstone, and is not uncommon in the Eocene of the Mississippi embayment area.

Occurrence: RIPLEY FORMATION, McNairy sand member. Two and one half miles southwest of Selmer, McNairy County, Tennessee.

ERICALES

ERICACEAE

Andromeda Linné

Andromeda novae-caesareae Hollick

Andromeda novae-caesareae Hollick; Newberry, Mon. U. S. Geol. Surv. 26: 121. pl. 42, f. 9-12, 28-31. 1896; Berry, U. S. Dept. Int. Geol. Surv. Professional Paper $84: 5^{8}$, 120, pl. 14, f. 5, 6 ; pl. 24,f. I. 1914.
Leaves small, thick, and entire, with stout petioles and midribs and obscure secondary venation which is immersed in the thick lamina. Length $2.5-5.0 \mathrm{~cm}$. Width varying from $0.9-$ 1.3 cm . Venation, where visible, showing numerous parallel, camptodrome, relatively long and thin secondaries which branch from the midrib at acute angles. While the majority of these leaves are equally acuminate at both ends there is considerable variation in this respect, and a well-marked tendency is shown in a considerable number of specimens which are relatively broader,
especially in the upper half, toward an obtusely rounded apex, the termination of the midrib showing as a small mucronate point. The base in these forms gradually narrows to the stout petiole.

This species is found as early as the uppermost Raritan in the New Jersey area and is also common in the overlying Magothy. It is exceedingly common throughout the Black Creek formation of the Carolinas and has also been recorded from the Cusseta sand member of the Ripley formation in Georgia. It occurs also in the Woodbine of Texas and the Tuscaloosa of Alabama so that it is apparently a form with a wide stratigraphic range.

Occurrence: Eutaw Formation, Coffee sand member. Coffee Bluff, Hardin County, Tennessee.

Andromeda Wardiana Lesquereux

Andromeda Wardiana Lesquereux, Mon. U. S. Geol. Surv. 17: 119. pl. 64, f. 17. 1892 ; Berry, U. S. Dept. Int. Geol. Surv. Professional Paper 84: 120. pl. 24, f. 3. 1914.
Leaf elliptical in outline, entire. Apex and base equally narrowed but the apex bluntly rounded. Length $5 \cdot 3 \mathrm{~cm}$. Greatest width, which is halfway between the apex and the base, 2.3 cm . Midrib thin. Secondaries not made out. In the type they are thin, diverging at an angle of about forty degrees and camptodrome.

The type material came from the Dakota sandstone of Ellsworth County, Kansas. The Georgia material which came from the basal beds of the Eutaw formation shows a leaf which is a trifle larger but which in its general proportions and outline is identical with the western form, and there can be no doubt of their identity.

It is quite possible, in fact probable, that this species is not distinct from Andromeda tenuinervis Lesquereux, which, if the form referred to it by Hollick is correctly identified, approaches it closely in size. The two differ somewhat in texture and in the degree of acuteness of the apex, but whether these features are of specific value or not is an open question. The Tennessee material extends the range of this species to the upper part of the Eutaw formation.

Occurrence: EUTAW FORMATION, Coffee sand member. Coffee Bluff, Hardin County, Tennessee.

EBENALES

EBENACEAE

Diospyros Linné

Diospyros primaeva Heer

Diospyros primaeva Heer, Phyll. Crét. d. Nebr. 19. pl. I, f. 6, 7 . 1866; Berry, U. S. Dept. Int. Geol. Surv. Professional Paper 84: 61. pl. 11, f. 3; pl. 14, f. 12, 13. 1914.
Leaves oblong-ovate in outline, variable according to age, ranging from $3^{-1} 5 \mathrm{~cm}$. in length, by $1.3-5 \mathrm{~cm}$. in greatest width, which is in the middle part of the leaf. Apex acute or obtuse. Base cuneate. Margins entire. Petiole rather long and very stout. Midrib also stout. Secondaries branching from the midrib at usually acute angles, subopposite or alternate, parallel, camptodrome. Tertiaries forming polygonal areoles whose relative prominence is one of the features of this species.

This species, which is quite suggestive of the modern Diospyros virginiana Linné, was described by Heer from the Dakota group of Nebraska nearly half a century ago. It has proved to be a most wide-ranging form, having been identified at both the Atane and Patoot horizons in Greenland; in the Cenomanian of Saxony and the Turonian of Bohemia; from various localities within the Dakota group, including its southern extension, the Woodbine formation of Texas; and with the exception of the fragments from Marthas Vineyard and Long Island, which are of questionable identity, it is present in either the Raritan, or Magothy, or homotaxial formations from New Jersey to Alabama. Its most marked character is the prominence of its tertiary areolation.

Occurrence: EUTAW FORMATION, Coffee Sand member. Coffee Bluff, Hardin County, Tennessee.

INCERTAE SEDIS

Halymenites major Lesquereux

Halymenites major Lesquereux, Tertiary Flora 38. pl. i, f. 7, 8 . 1878.

These very common objects, frequently considered as fucoids, are abundant in the western United States in sandy beds ranging
in age from the Colorado group to the Eocene. They were long considered typical of the Fox Hills horizon but are now known from both older and younger beds and characterize sandy ferruginous sediments. Typical material is abundant in the Coffee sand member of the Eutaw formation at Coffee Bluff, Hardin County, Tennessee, and this is the first record of these objects in the coastal plain. It occurs also in sands of the Lower Ripley and in the McNairy sand of McNairy County, but in a very friable condition and these last horizons are not represented by collected material.

Johns Hopkins University,
Baltimore, Maryland

Explanation of plate 15

Fig. I. Bauhinia ripleyensis Berry. More perfect 'specimen from Ripley, Barbour County, Alabama, to illustrate McNairy sand species.

Figs. 2-4. Eugenia (?) anceps Berry. McNairy sand two and one half miles southwest of Selmer, Tennessee.

Fig. 5. Sterculia Snowii tennesseensis Berry. McNairy sand, two and one half miles southwest of Selmer, Tennessee.

Fig. 6. Dryophyllum gracile Debey. McNairy sand, near Cypress, Tennessee.

Plants from southern Patagonia collected by Charles Wellington Furlong

W. W. Rowlee

Introduction
During the summer of 1907-1908 (November to March), Mr. Furlong collected a very interesting set of specimens representing the vegetation of southern Patagonia. The plants for the most part grew in the vicinity of the southern shore of Lake Argentine. Some, however, were secured in the journey overland from the mouth of the Gallegos river. Mr. Furlong was working primarily on problems of ethnology and the story of his journey is told in Harper's Magazine for June, 1910, and May, 1911.

The vegetation of the southern end of South America has been a subject for investigation for many years. One of Darwin's most valuable works is his account of his voyage to South America. He ascended the Santa Cruz River, the outlet of Lake Argentine, far enough to see the Andes, but not far enough to discover the Lake. Before Darwin's time, however, collections had been made especially along the Straits of Magellan; many have collected in the same region more recently. Few travellers, however, even up to the present time have explored the inland region of southern Patagonia.

If we except the so-called Antarctic Continent of the ice bound south polar region, it is the most southerly continental land. The plants inhabiting it have long been known to show affinity with the flora of Australia, New Zealand, and other Antarctic islands. This relation has led to the belief that there once existed a continent in the Southern Hemisphere which connected more or less completely these southern land masses. The results of antarctic explorations in recent years have tended to confirm this theory. Fossil remains of various gymnosperms and angiosperms have been discovered which represent the ancestral forms of closely related species now widely separated geographically.

Lake Argentine is located in southern Patagonia about latitude 5I degrees. Its latitude and longitude south correspond almost exactly to the latitude and longitude north of Lake Mistassinica in southern Labrador. The continents of North America and South America have generally speaking the same shape. Their configuration in relation to the tropics, however, is reversed. South America narrows southward until in the latitude of the region under discussion, it is about 200 miles wide; on the other hand North America widens towards the north until in the latitude of southern Labrador, it stretches out to more than three thousand miles. Arboreal vegetation extends as far south in South America as it does north in North America. In fact the climate of corresponding latitudes south seems to be less detrimental to plant-life than corresponding latitudes in North America. This is probably due to the influence of the oceans.

It has long been known that the only strip of deciduous forest in the southern continent is along the east side of the Andes in temperate South America. In the north temperate zone deciduous forests form a very dominating feature in the vegetation of both hemispheres. This type of vegetation is restricted in the Southern Hemisphere to a very limited area extending from subtropical Argentina and Chile southward and across the Fuegia Peninsula. In striking contrast to the northern deciduous forest the southern one is composed of a single generic type the socalled southern beeches (Nothofagus antarctica and its congeners). The west side of Patagonia and Fuegia has an evergreen rainforest. One of the most abundant elements in that forest is the evergreen species of this same genus, Nothofagus. This reminds one in a way of the oaks of North America which are represented by both deciduous and evergreen species. The rain-forest area comprises the westerly slope and summit of the Cordilleras of the Andes. This is a region of perpetual rain and fog. The easterly part of Patagonia and Fuegia presents the other extreme of climate in that it is arid and wind-swept with a comparatively small rainfall. It is the pampas region and supports a distinctly desert vegetation. Lying between these two extremes is the narrow belt of deciduous forest extending over about fifteen degrees of longitude, that is, from southern Fuegia to the Rio

Negro. This corresponds in distance from Central Labrador to Washington, or from Sitka to San Francisco. It seldom exceeds fifty miles in width and is confined to the easterly base of the Andes. Like most other regions lying between two extremes, this transitional region supports a vegetation that is unique and diversified.

Dusén made a special study of the vegetation of Fuegia and reports that few species (not more than four) represent the vegetation of the forest floor in the transitional region in Fuegia. Other travelers speak of the absence or scarcity of vegetation in the beech groves of Patagonia. Whether this is due to the intense shade of the beeches or to historical reasons or to both can only be conjectured. There seems to have been no type of vegetation in this southern region corresponding to the rich spring flora of the forest floor in the north temperate zone.

Lake Argentina is the most southerly of several large lakes in the easterly foothills of the Patagonia Andes. It is a large lake some forty miles long and fifteen miles wide and with long arms at the westerly end, one extending north and the other south for thirty or forty miles. Both of these arms have large glaciers flowing into them. The outlet of the lake is Santa Cruz River which flows eastward into the Atlantic Ocean. The western end of the lake and particularly the north and south arms are filled with icebergs for the greater part of the year. The northern shore rises abruptly into an elevated table land which has been explored only to a very limited extent and that principally along the Leona river which comes down from Lake Veidma some twenty-five miles away and empties into Santa Cruz River near Lake Argentina. The southern shore of the lake is more hospitable and a few sheep ranchers inhabit the region. Between Lake Argentina and its southwesterly arm the region is known as the Burmeister peninsula. There are two mountains on this peninsula, the westerly one Mt. Buenos Aires and the easterly one Mt. Frias. It was from this peninsula and the slopes of these mountains that the principal part of Mr. Furlong's collections were made. South of the Burmeister Peninsula there is a range of mountains, the Baguales, of considerable elevation which extends easterly into the Patagonia high pampas region. These mountains are rough,
covered with volcanic rock and present a formidable barrier to travel to the south. The lake Argentine valley is therefore a vast amphitheater in the east side of the main Cordilleras and apparently affords more favorable conditions for vegetation than any place south or immediately north of it.

The collections from which the descriptions of Patagonia plants have been made are very widely separated. Collections in herbaria in the United States are meager and often imperfectly named. The national herbaria of Chile and of Argentina contain a large amount of the material. The other principal collections are in the Kew Herbarium at London and the National Herbarium at Stockholm, Sweden. This makes it difficult to identify species with absolute certainty. The only works dealing with the flora in a synoptical way are Hooker's Flora Antarctica, Macloskie's Flora of Patagonia, and Reiche's Flora of Chile. Many monographs and lists, however, have appeared.

One of the most recent is a list of plants based on a collection of plants made by Pritchard and published by Rendle in the Journal of Botany in 1904. This collection was also made principally on the Burmeister Peninsula. Rendle's list contains about 150 species of flowering plants, 18 of which are described as new species. Our list contains 166 species of flowering plants. We have refrained from describing as new any of our plants at the present time, but have instead associated each specimen with a name already published. Further study and particularly opportunity to compare our specimens with authentic specimens may warrant recognition of novelties in the collection.

List of species collected

LICHENS

1. Cladonia coccifera (L.) Willd.
2. Sticta endochrysea Delise.
3. Nephroma antarcticum (Wulf.) Nyl.

Very closely related to N. arcticum (L.) E. Fr.

MOSSES

(Determined by A. LeR. Andrews)
4. Bartramia pomiformis (L.) Hedw. var. crispa B. \& S.
5. Weymouthia mollis (Hedw.) Broth.
6. Polytrichadelphus magellanicus (L.) Mitt.

LYCOPODIACEAE

7. Lycopodium magellanicum Sw. Syn. Fil. 13. 1806.

POLYPODIACEAE

8. Aspidium mohrioides Bory, Mém. Soc. Linn. Paris 4:597. 1826.
9. Cystopteris fragilis (L.) Bernh. Schrad. Neues Jour. Bot. $\mathrm{I}^{2}: 27$. pl. 2, f. g. 1806.
10. Asplenium magellanicum Kaulf. Enum. Fil. 175. 1824.

OPHIOGLOSSACEAE

if. Botrychium Lunaria (L.) Sw. Schrad. Jour. Bot. 1800^{2} : IIO. I80I.

GRAMINEAE

12. Deschampsia flexuosa (L.) Trin. Bull. Acad. Sc. St. Petersburg 1: 66. 1836.
Aira flexuosa L. Sp. Plant. 96. 1753.
13. Cortaderia pilosa (D'Urv.) Hack.; Dusén, Svenska Exped. till Magell. 3:222. 1900.
Arundo pilosa D'Urv. Mém. Soc. Linn. Paris 4:600. 1826.
The best known of this genus is Pampas Grass, C. argentea (Nees) Stapf. Our species is the only one in the Magellan region. The genus is confined to South America.
14. Bromus coloratus Steud. Syn. Pl. Gram. 429. 1855.
15. Poa fuegranus (Hook. f.) Hack.; Dusén, Svenska Exped. till Magell. 3 : 225. 1900. Macloskie, Rep. Princeton Univ. Exp. Pat. 8: 235. f. 42. 1905.
Festuca fuegianus Hook. f. Fl. Ant. 2: 380. pl. 141. 1847. This is the "forma vivipara" depicted in Hooker's illustration.

16. Festuca gracillima Hook. f. Fl. Ant. 2: 383. 1847.

The specimens have no flowers and their determination is uncertain. Mr. Furlong says: "Grass from the pampas of Patagonia, vicinity of foot-hills of the Andes between the source of
the Gallegos and Santa Cruz Rivers. It is upon this grass that the great herds of Patagonian sheep feed."
17. Festuca purpurascens Banks \& Sol.; Hooker, Fl. Ant. 2: 383. pl. 140. 1847.
18. Poa Pritchardi Rendle, Jour. Bot. 42:324. 1904.

From Mt. Buenos Aires, the locality where the type was collected.
19. Poa argentina Speg. Rev. Agron. i Vet. La Plata 1897: 584.

The type was collected at Lake Argentine. It belongs to the sect. Dioicopoa of Hackel (Engler \& Prantl, Nat. Pflanzenfam. $\mathbf{2}^{2}: 73$. 1888). Only the staminate plant appears in this collection.
20. Polypogon interruptus H. B. K. Nov. Gen. \& Sp. i : iog. pl. 44. 1815.
Awns longer and spike more compact than is represented in the original figures.
21. Stipa pogonathera Desv.; C. Gay, Fl. Chil. 6:277. 1853.

CYPERACEAE

22. Carex Banksil Boott, Trans. Linn. Soc. 20: 119.1846.
23. Carex inconspicua Steud. Syn. Pl. Cyp. 221.1855. Culms 25 cm . high.

JUNCACEAE

24. Luzula chilensis Nees \& Meyen; Kunth, Enum. Pl. 3:312. 1841.

LILIACEAE

25. Luzuriaga marginata (Banks \& Sol.) Benth. \& Hook. Gen. Pl. 3: 768. 1883.
Enargea marginata Banks \& Sol.; Gaertner, De Fruct. I: 283.pl. 59.f.3. 1788.

AMARYLLIDACEAE

26. Alstroemeria nana Rendle, Jour. Bot. 42 : 325. 1904.

IRIDACEAE

27. Sisyrinchium chilense Hook. Curt. Bot. Mag. pl. 2786. 1827.
28. S. junceum E. Meyer; Presl, Rel. Haenk. 1: 118. 1830.
29. S. striatum Sm. Icon. Pict. pl. g. 1789.
30. S. iridifolium H. B. K. Nov. Gen. \& Sp. 1: 324. 1815.

3I. Solenomelus Sisyrinchium (Griseb.) Pax; Engler \& Prantl, Nat. Pflanzenfam. 2^{5} : 152.1888.
Lechlera Sisyrinchium Griseb.; Lechler, PI. Chil. Exsic. 2966. 1853-1855.
Having every appearance of a Sisyrinchium except the elongated ovary.
32. Symphyostemon biflorus (Thunb.) Dusén, Svenska Exped. till Magell. 3: 203. 1900.
Gladiolus biflorus Thunb. Diss. Glad. 10. 1784.
33. S. Lyckholmi Dusén, Svenska Exped. till Magell. 3: 204. pl. 1о, f. 4-7. 1900.

BURMANNIACEAE

34. Arachnites uniflora Phil. Bot. Zeit. 28: 217 . 1864.

This is the only plant of this family growing outside tropical or subtropical regions except the species of Thismia discovered recently by Pfeiffer* near Chicago. Our plant, furthermore, is the only vascular saprophyte in south temperate South America. It was first found by Philippi in the Province of Valdivia, Chile, in 1864. In transmitting it to Professor Schlechtendahl, Dr. Phillippi made the following observation: "Arachnites uniflora Ph . A new orchid genus from Valdivia. A few weeks ago, in my property in S. Juan, my son discovered a wonderful (to me at least) orchid, a few hundred paces from the dwelling, and under the shade of a macqui-bush (Aristotelia Macqui). Unfortunately the large number of specimens which had been collected were destroyed in the fire which on November second laid my possessions in ashes in a half-hour. Only through a lucky accident a few escaped, and these have not been well enough preserved to allow me to make out distinctly the structure of the gynostemium,

[^56]which, at all events, is very anomalous." The next year he sent to the editor of Verh. *d. zoologisch-botanischen Gesellschaft the following letter:

"S. Juan in the Province of Valdivia,
"February 5th, 1865.

" Dear Sir:
"About a year ago I received from Professor von Schlechtendal a report on a remarkable orchid (?) which my eldest son had discovered here in several places on the same unlucky day in which the whole of my possessions were burned. I called this plant Arachnites uniflora. I had not been able to recognize with certainty the pistil and stamens in the small, dried specimens which I possessed. However, there appeared to me to be present six stamens of the usual form. In the latter part of November, my son, in spite of the great amount of labor that the management and rebuilding of the estate involved, again found this plant and studied and portrayed it. I herewith share with you his drawings and descriptions so that you may convince yourself that this plant must unquestionably found a distinct family.
"Arachnites occurs not infrequently in the neighborhood of my house, always in the shade of Aristotelia Macqui and other trees, which usually will not suffer other vegetation beneath them. It appears to be a wound (?) parasite. In height it varies from between a foot and a foot and a half. All specimens, without exception, are one-flowered."

It has been found in several places along the Andes south from Valdivia to somewhat south of Lake Argentine. It grows in peaty humus in the shade of various trees.

ORCHIDACEAE

35. Chloraea Kingit (Hook. f.) Wildeman, Rés. Voy. Belgica, Bot. Phan. 72. 1905.
Asarca Kingii Hook. f. Fl. Ant. 2: 351. 1847.
36. C. Pleistodactyla Kraenzl. \& Speg. Anal. Mus. Nac. Buenos Aires 7: 167. 1902.
This species is closely related to, if not identical with, Asarca arauacana Phil. Linnaea 29:56. 1857-1858.
37. C. magellanica Hook. f. Fl. Ant. 2: 350. 1847.

A beautiful and striking plant on account of dark veins of the bracts and the perianth.
38. Codonorchis Lessonil (D'Urv.) Lindl. Gen. \& Sp. Orch. 4II. 1830-1840.
Pogonia tetraphylla Poepp. \& Endl. Nov. Gen. \& Sp. Pl. 2: 16. pl. 122. 1838.

FAGACEAE

39. Nothofagus antarctica (Forst.) Oerst. Vidensk. Selsk. Skr. V. 9:354. 1873.
Fagus antarctica Forst. Comm. Soc. Gotting. 9:24. 1789. Young leaves just developing from the scaly buds.

URTICACEAE

40. Urtica magellanica Juss.; Poiret, Encycl. Meth. Suppl. 4: 223. 1815.

PROTEACEAE

41. Embothrium coccineum Forst. Char. Gen. Plant. 16. pl. 8. 1776.

MYZODENDRACEAE

42. Myzodendron quadriflorum DC. Coll. Mém. 6: pl. i2, f. 2, 1830; Skottsberg, Engler, Pflanzenreich 4 ${ }^{58}$: 12. 1914.
43. M. linearifolium DC. Prodr. 4: 671. 1830; Skottsberg, l.c. II .
44. M. punctulatum Banks; Solander in Forster, Comm. Soc. Gotting. 9: 45. 1789 (nomen nudum); De Candolle, Prodr. 4: 286. 1830; Skottsberg, l. c. 15.

SANTALACEAE

45. Arjona pusilla Hook. f. Fl. Ant. 2: 342. 1847.
46. A. tuberosa Cav. Icon. Pl. 4:57. pl. 383. 1797.
47. Myoschilos oblongum Ruiz \& Pavon, Syst. Veg. 73. 1798 ; Fl. Peruv. \& Chilen. 3: 20. pl. 242. 1802,
48. Quinchamalium procumbens Ruiz \& Pavon, Fl. Peruv. \& Chilen. 2: 1. pl. 107b. 1799.

CHENOPODIACEAE

49. Chenopodium album L. Sp. Plant. 219. 1753.
50. C. antarcticum (Hook. f.) Benth. \& Hook. f. Gen. Pl. 3: 52. 1880.

Blitum antarcticum Hook. f. Fl. Ant. 2: 549. 1847.

CARYOPHYLLACEAE

51. Cerastium arvense L. Sp. Pl. 438. 1753.
52. Melandrium magellanicum (Lam.) Fenzl; Rohrbach,

Linnaea 36: 224. 1869-70.

Lychnis magellanica Lam. Encycl. Méth. 3:641. 1784.
53. M. alpestre Dusén, Ark. f. Bot. 7^{2} : 15. 1907.
54. Stellaria debilis Urv. Mém. Soc. Linn. Paris 4:6i8. 1826.
55. Arenaria serpylloides C. Gay var. andicola (Gill.),

Reiche, Fl. Chil. I: 192. 1896.
Arenaria andicola Gill.; Hook. Bot. Misc. 3: 148. 1833.

RANUNCULACEAE

56. Anemone multifida Poir. var. grandiflora Rendle, Jour. Bot. 62:328. 1904.
57. Ranunculus peduncularis Sm. var. patagonicus Poepp. Frag. Syn. Phaner. 20. 1833.
58. R. Cymbalaria Pursh, Fl. Am. Sept. 392. 1814.

BERBERIDACEAE

59. Berberis empetrifolia Lam. Tab. Encyc. Bot. Illustr. Gen. 2: 391. 1793.
60. B. ilicifolia Linn. f. Suppl. Plant. 2io. if8i.
61. B. microphylla Forst. Comm. Soc. Gotting. 9: 29. 1789.

CRUCIFERAE

62. Cardamine hirsuta L. var. magellanica Phil. Anal. Univ. Chil. 666. 1872.
63. Thlaspi magellanicum Pers. Syn. Plant. 2: 189.1805.
64. Coronopus australis (Hook. f.) Macloskie, Rep. Princeton Univ. Exp. Pat. 8: 428 . 1905.
Senebiera australis Hook. f. Fl. Ant. 2: 241. 1847.

MAGNOLIACEAE

65. Drimys Winteri Forst. Char. Gen. Plant. 84. pl. 42. 1776.

SAXIFRAGACEAE

66. Escallonia rubra Pers. Syn. Plant. 2: 235 . 1805.

This is called by the English colonists the "Elserly Bush." The presence of resin dots on the lower surface of the leaves distinguishes it from the next species.
67. E. Britteniana Rendle, Jour. Bot. 42 : 330. 1904.
68. Ribes cucullatum Hook. \& Arn.; Hooker, Bot. Misc. 3: 340. 1833.
69. Saxifraga cordillerarum Presl, Rel. Haenk 2: 55. 1835^{-} 36.
70. S. cordillerarum Presl var. breviscapa (Hook. f.) Macloskie, Rep. Princeton Univ. Exp. Pat. 8: 459. 1905.
S. exarata Vill. var. breviscapa Hook. f. Fl. Ant, 2:280. 1847.

ROSACEAE

71. Acaena magellanica Vahl var. venulosa (Griseb.) Bitter, Biblist. Bot. 74: 168 . I9II.
A. venulosa Griseb. Goett. Abh. 6: II8. I854.
72. A. platyacantha Speg. Rev. Agron. i Vet. La Plata 1897: 515.
73. A. 'Philippi Dusén, Svenska Exp. till Magell. 3: 167. 1900. A. sericea Phil. Anal. Univ. Chil. 84: 621. 1893. Not A. sericea Jacq.
74. A. multifida Hook. f. Fl. Ant. 265. 1844.
75. Geum magellanicum Comm.; Persoon, Syn. Plant. 2: 57. 1807.
76. Potentilla anserina L. Sp. Plant. 495. 1753.

LEGUMINOSAE

77. Adesmia boronoides Hook. f. Fl. Ant. 257. 1844.
78. A. Salicornioides Speg. Anal. Soc. Cien. 53: 31. Igor.
79. A. glandulifera (Rendle) comb. nov.

Patagonium glanduliferum Rendle, Jour. Bot. 42: 332. 1904.

8o. A. campestris (Rendle) comb. nov.
Patagonium campestre Rendle, Jour. Bot. 42: 332. pl. 465. 1904.
81. A. parvifolia Phil. Linnaea 28:683. 1856.
82. A. pumila Hook. f. Fl. Ant. 255. 1844.
83. A. villosa Hook. f. Fl. Ant. 256. 1844.
84. Anarthrophyllum Pritchardi Rendle, Jour. Bot. 42: 331. 1904.
85. Astragalus Dusenii nom. nov.
A. brevicaulis Dusén, Svenska Exped. till. Magell. 3: 158. 1900. Not A. brevicaulis A. Nelson, Bull. Torrey Club 26:9. 1899.
86. A. patagonicus (Phil.) Dusén, Svenska Exped. till Magell. 3:256. 1900.
Phaca patagonica Phil. Anal. Univ. Chil. 84; 20. 1893.
87. Lathyrus magellanicus Lam. Encycl. Méth. 2: 708. 1806.
88. Vicia sericella Speg. Anal. Soc. ci Argent. 47:278. 1899.
89. V. magellanica Hook. f. Fl. Ant. 2: 257. 1847.
90. Erodium cicutarium L'Hérit.; Aiton, Hort. Kew., ed. i, 2:414. 1789.
91. Geranium sessiliflorum Cav. Icon. Plant. 4: 198. pl. 77, f.2. 1797.

Standley (Contr. U. S. Nat. Herb. 18: III. 1916) has described a closely related species, G. confertum, collected by Pittier from the Central Cordillera of Colombia at altitudes of 3,000 to 3,600 meters.
92. G. magellanicum Hook. f. Fl. Ant. 251. 1844.

OXALIDACEAE

93. Oxalis patagonica Speg. Rev. Agron. i Vet. La Plata 1897: 501.

EUPHORBIACEAE

94. Euphorbia portulacoides L. Sp. Plant. 456. I753.

CELASTRACEAE

95. Maytenus magellanicus (Lam.) Hook. f. Fl. Ant. 254. pl. 130. 1844.

Cassine magellanica Lam. Encycl. Méth. 10: Izo. 1811 .

RHAMNACEAE

96. Discaria discolor (Hook. f.) Reiche, Fl. Chil. i6. 1898. Colletia discolor Hook. f. Icon. Plant. pl. 538. 1838.

VIOLACEAE

97. Viola maculata Cav. Icon. Plant. 6: 20. pl. 539. 1793. "Throughout islands of Terra del Fuego. Vega regions." C. W. F.

LOASACEAE

98. Loasa volubilis Juss. Ann. Mus. Paris 5: 26. pl. 5, f. I. 1804.
99. L. argentina Urb. \& Gilg, Nov. Act. Nat. Cur. 76: 186. 1900.

ONAGRACEAE

100. Epilobium patagonicum Rendle, Jour. Bot. 42:367. 1904. 101. Fuchsia magellanica Lam. Encycl. Méth. 2: 564. 1783. 102. Oenothera odorata Jacq. Icon. Plant. Rar. 3: 3. pl. 456. 1786-93.
101. Pseudopanax laetevirens (C. Gay) Franchet, Miss. Sci. Cap. Horn 339. pl. I. 1889.
Aralia laetevirens C. Gay, Fl. Chil. 3: 151. 1847.

UMBELLIFERAE

104. Azorella trifurcata (Gaertn.) Pers. Syn. I: 303. Hook. f. Icon. Plant. 6: pl. 539. 1843.

Chamitis trifurcata Gaertn. De Fruct. I: 95. pl. 22.f. 4. 1788. 105. A. trifololiata Clos; C. Gay, Fl. Chil. 3: 85. pl. 3o, f. 2. 1847.

Leaflets less distinctly lobed than indicated in Gay's illustration.
106. Conium maculatum L. Sp. Plant. 243. 1753.
107. Mulinum spinosum Pers. Syn. Plant. I: 309. 1805.
108. Oreomyrrhis andicola Endl. Gen. Pl. 787. 1839.
109. Osmorhiza Berteril DC. Prodr. 4: 232. 1830.
ilo. Pernettya mucronata (Linn. f.) Gaud. Ann. Sci, Nat. Bot. I. 5: 102. 1825.

Arbutus mucronata Linn. f. Suppl. Plant. 239. 1781.

PRIMULACEAE

III. Samolus spathulatus (Cav.) Duby; DeCandolle, Prodr. 8: 74. 1844.
Androsace spathulata Cav. Icon. Plant. 5: 56. pl. 484. f. I. 1799.

PLUMBAGINACEAE

112. Armeria chilensis Boiss. var. magellanica Boiss.; De Candolle, Prodr. 12:682. 1848.

GENTIANACEAE

II3. Gentiana patagonica Griseb. Gen. Spec. Gent. 237. 1839.

POLEMONIACEAE

114. Collomia coccinea Lehm.; Bentham, Bot. Reg. pl. 1622. 1833.

Phlox linearis Cav. Icon. Plant. 6: 17. pl. 527. 1801.
115. C. Gracilis Dougl.; Hooker, Bot. Mag. pl. 2924. 1829 (as synonym); Bentham, Bot. Reg. pl. 1622. 1833.
Gilia gracilis Hook. Bot. Mag. pl. 2924. 1829.

HYDROPHYLLACEAE

i16. Phacelia circinata Jacq. f. Eclog. Am. Plant. I: 135. pl. I. 181I-16.

SCROPHULARIACEAE

117. Calceolaria biflora Lam. Encycl. Méth. I: 556. 1783.
C. plantaginea Smith, Plant. Icon. 1: 2. pl. 2. 1789.
118. C. tenella Poepp. \& Endl. Nov. Gen. Sp. Plant. 3: 76. pl. 287. 1845.
A delicate species. Leaves nearly orbicular, about 5 mm . in diameter, the flower about 1 cm . in length and breadth.
i19. C. uniflora Lam. Tab. Encycl. Méth. I: 52. 1791.
119. C. Pritchardi (Rendle) comb. nov.

Fagelia Prichardi Rendle, Jour. Bot. 42: 371. 1904.
121. Euphrasia antarctica Benth.; DeCandolle, Prodr. 10: 555. 1846.
122. Ourisia ruelloides (Linn. f.) Gaertn. f. De Fruct. 3: pl. 185. 1805-07.

Chelone ruelloides Linn. f. Suppl. Plant. 271. 1781.
Ourisia magellanica Gaertn. f. De Fruct. 3: 44. pl. 185. 1805-07.

BORAGINACEAE

123. Amsinckia angustifolia Lehm. Del. Sem. Hort. Hamb. $7 \cdot$ 1831.
124. Eritrichium diffusum Phil. Plant. Chil. 191. 1894.

VERBENACEAE

125. Verbena Pritchardi Rendle, Jour. Bot. 43:33. 1905.
126. V. Carroo Speg. Anal. Soc. Cient. Argent. 15: 112. 1883. 127. Satureia Darwinil (Benth.) Briquet; Engler \& Prantl, Nat. Pflanzenfam. $4^{3 a}: 300.1897$.
Micromeria Darwinii Benth.; DeCandolle, Prodr. 12: 222. I848.

PLANTAGINACEAE

128. Plantago maritima L. Sp. Plant. 114. 1753.

RUBIACEAE

129. Cruckshanksia glacialis Poepp. \& Endl. Nov. Gen. Sp. Plant. 3: 3I. pl. 236. 1845.
Oreopolus citrinus Schlecht. Linnaea 28: 493. 1856.
130. Relbunium pusillium (Gill.) K. Schum.; Martius, Fl. Bras. 66: 117. 1888.
Rubia pusilla Gill.; Hooker \& Arnott, Bot. Misc. 3: 363. 1833.
131. Galium Aparine L. Sp. Plant. 108. 1753.

VALERIANACEAE

132. Valeriana carnosa Smith, Pl. Icon. Ined. 3: pl. 52. 1791. 133. V. lapathifolia Vahl, Enum. Plant. 2: if. 1806.

CALYCERACEAE

134. Moschopsis spathulata Dusén, Ark. f. Bot. $7^{2}: 41$ 1. pl. 5, f. 7; pl. 8, f. 13, 15. 1908.
The specimens were collected near Cerro Sepulchro on a divide in the Baguales Mountains, at an altitude of 1,800 meters. They do not agree in all respects with the incomplete descriptions and figures given by Dusén but are more like that species than any other we have found described.

COMPOSITAE

135. Baccharis Darwinil Hook. \& Arn. Jour. Bot. 3:34. 1841. 136. B. patagonica Hook. \& Arn. l. c. 3:29. 1841.
136. B. magellanica (Lam.) Pers. Syn. Plant. 2:425. 1807. Conyza magellanica Lam. Encycl. Méth. 2:91. 1806.
137. Chiliotrichium diffusum (Forst.) Dusén Svenska Exped. till Magell. 3: 99. 1900.
Amellus diffusus Forst. Comm. Soc. Gotting. 9: 39. 1789.
138. Culcitium magellanicum (Hook. \& Arn.) Hombr. \& Jacquem.; Decaisne, Bot. Voy. Astrol. et Zél. 45. 1853 .
Senecio magellanicus Hook. \& Arn. Jour. Bot. 3:343. 184I.
139. Erigeron alpinus L. Sp. Plant. 864. 1753.

There is a great variation in size in the specimens. The largest are 25 cm . high. The smallest are nearly acaulescent and about 4 cm . high.
141. E. spiculosus Hook. \& Arn. Bot. Beech. Voy. I: 32 . 1841.
142. Hieracium triste Willd.; Sprengel in Linnaeus, Syst. Veg. ed. 16, 3: 640 . 1826.
143. H. austro-americanum Dahlst.; Dusén, Ark. f. Bot. 7^{2} : 5^{1}. 1907.
144. Hypochoeris arenaria Gaud. Ann. Sci. Nat. Bot. I. 5: 103. 1825.
145. Antennaria magellanica Sch. Bip. Flora 38: i17. 1855.
146. A. chilensis Remy; C. Gay, Fl. Chil. 4: 235. 1849.
147. Gnaphalium purpureum L. Sp. Plant. 854. 1753.
148. G. spicatum Lam. Encycl. Méth. 2: 757. 1806.
149. Lagenophora hirsuta Poepp.; Lessing, Linnaea 6: 131. 183 I .
150. Leuceria lanigera O. Hoffm.; Dusén, Svenska Exped. till Magell. 3: 115. 1900.
151. L. patagonica Speg. Rev. Agron. i Vet. La Plata 1897: 538.
152. L. multifida (DC.) S. Moore; Rendle, Jour. Bot. 42: 376 . 1904.

Chabraea multifida DC. Prodr. 7: 60, 1838.
153. L. purpurea (Vahl) O. Hoffm.; Dusén, Svenska Exp. till Magell. 3: if8. 1900.
Chabraea purpurea DC. Ann. Mus. Paris 19: 65, 71. pl. 19. 1812.
154. L. runcianata Gill. \& D. Don, Phil. Mag. 1832: 389.

Chabraea rosea DC.; Delessert, Icon. Sel. Plant. 4. pl. go. 1820.
155. Madia sativa Molina, Sagg. Chile 136. 1782.

The specimens vary from 40 cm . to only 4 cm . high.
156. Nardophyllum humile (Hook. f.) A. Gray, Proc. Amer. Acad. 5: 123. 1862.
Chiliotrichium humile Hook. f. Fl. Ant. 304. 1844.
157. Nassauvia Darwinil (Hook. \& Arn.) O. Hoffm.; Dusén, Svenska Exped. till Magell. 3:112. 1900.
Panargyrus Darwinii Hook. \& Arn. Comp. Bot. Mag. 2: 43. 1836.
158. N. pygmaea Hook. f. F. Ant. 2: 319. 1847.
159. N. revoluta D. Don, Phil. Mag. 11: 390. 1832.
160. N. subspinosa (Phil.) Wildeman, Rés. Voy. Belgica, Bot. Phan. 177. 1905.
Panargyrum subspinosum Phil. Anal. Univ. Chil. 85: 98. 1894.
161. Perezla recurvata (Vahl) Lag. Amen. Nat. Esp. 31. 181 if. 162. P. Linearis Less. Syn. Gen. Comp. 412. 1832.
163. Senecio acanthifolius Hombr. \& Jacquem.; Decaisne, Voy. Astrol. et Zél. 46. pl. 115.1853.
164. S. Hatcherianus Hoffm.; Macloskie, Rep. Princeton Univ. Exp. Pat. 8: 847. 1905.
165. S. patagonicus Hook. \& Arn. Jour. Bot. 3:344. 1841.
166. S. Darwinii Hook. \& Arn. l. c. 3:333. 1841.
167. S. falklandicus Hook. f. Fl. Ant. 316. pl. 110. 1844.
168. S. Kingii Hook. f. l. c. 314.1844.
169. S. Longipes Hook. f. l.c. 314.1844.
170. S. paeninsularis S. Moore; Rendle, Jour. Bot. 42: 374. 1904.
171. S. Sericeo-nitens Speg. Rev. Agron. i Vet. La Plata 1897:
537.
172. S. trifurcatus Less. Syn. Comp. 392. 1832.
173. Taraxacum laevigatum DC. Cat. Hort. Monsp. 149. 1813. 174. Achyrophorus tenuifolius DC. Prodr. 7: 94. 1838.
${ }^{175}$. Aster Vahlif Hook. \& Arn. Comp. Bot. Mag. 2: 49. 1836. 176. Matricaria Chamomilla L. Sp. Plant. 891. 1753.
177. Adenocaulon chilense Less. Linnaea 6: 107. 1831.

Cornell University

Peruvian mosses

R. S. Williams

(WITH PLATES $17-20$)
The following list is made up of two collections. The first, obtained by Harry Ward Foote, on the Yale Peruvian Expedition of I9II, was kindly forwarded by Dr. A. W. Evans of Yale. It consisted of forty-eight packets and contained thirty-seven species among which appear to be two novelties, also two species known before only from Patagonia. The specimens are from localities varying from about goo to 3,300 meters in altitude. They were without number, and I have accordingly rearranged and numbered them from I to 48 .

The second collection consisted of forty-three packets, obtained by Messrs. Cook and Gilbert, with the exception of three species by Hiram Bingham, while on the Yale University-National Geographic Society Peruvian Expedition in 1915. In this second collection four species are apparently new to science. I may say that it was through the coöperation of the United States Department of Agriculture that Messrs. Cook and Gilbert were detailed to accompany this expedition and the specimens were forwarded to me by Mr. William R. Maxon of the United States National Museum. The altitude at which this second collection was obtained varies from 1,800 to 4,100 meters, and there are thirty-three species not in the first collection, making seventy species in this list. The type specimens of the new species are deposited in the herbarium of the New York Botanical Garden. Dicranum Mittenii C. Müll.

Above Arma Valley, July, 1915, H. Bingham 2063.
I have not been able to find any publication of this species except that by Brotherus in Engler \& Prantl's Nat. Pflanzenfam. ($\mathrm{I}: 328$), under subgenus 4 . It is a plant of medium size with the ovate leaf-base quickly narrowed to a long, subulate and serrulate point; the alar cells are numerous, those above in the
broader part of the leaf narrow and elongate with pitted walls. The collection is scanty and sterile.
Campylopus leucognodes (C. Müll.) Paris.
Lucumayo Valley, 3,600 m., June, 1915, Cook \&o Gilbert $1264 a$. Fissidens asplenioides (Sw.) Hedw.

San Miguel, on rock, $1,820 \mathrm{~m}$., September, 191 I, Foote I.
Fissidens crispus Mont.
Ollantaytambo, about $3,000 \mathrm{~m} .$, May, 1915, Cook \&o Gilbert 754. Fissidens rigidulus Hook. f. \& Wils.

Ollantaytambo, on rock, about $3,000 \mathrm{~m} .$, May, 1915 , Cook \& Gilbert 670.
Trichostomum brachydontium Bruch.
Cuzco, on dry rock, about $3,500 \mathrm{~m}$., July, 1911, Foote 2; these Cuzco specimens have leaves shorter and broader than in typical specimens and possibly should not be referred here, but they seem to be only a stunted form of the species; Lucma, on dead wood, 2130 m. ., August, 1911, Foote $15 a$.
Trichostomum semivaginatum Schimp.
Ollantaytambo, about $3,000 \mathrm{~m}$., May, 1915, Cook \&o Gilbert 501a.

Leptodontium integrifolium sp. nov.

Dioecious, the male plants about like the fertile, the flowers with outer leaves similar to those of the stem, the inner broadly oblong, rounded obtuse, scarcely one third the length of the outer, costate, of mostly golden-brown, elongate, smooth cells enclosing five or six antheridia and numerous, longer, filiform paraphyses: fertile plants simple or slightly branched, the stems 3-4 cm. long with scattered, loose tufts of radicles and leaves, when dry rather loosely imbricate and incurved-flexuous, when moist spreading-recurved; stem-leaves $3-3.5 \mathrm{~mm}$. long, ovatelanceolate, the entire margins strongly recurved from a little below the apex to near the base and papillose; costa stout, papillose on the back, excurrent into a serrulate point sometimes 0.5 mm . long; cells of the upper part of leaf rather obscure, scarcely elongate, $8-9 \mu$ in diameter, densely papillose on both sides, in the lower fourth of leaf, elongate, narrowly rectangular, smooth, except near the margin and costa; perichaetial leaves about 6 mm . long, convolute, with a subulate, abruptly spreading, serrulate point; fruit unknown. (Plate 17, Figs. 1-7.)

Ollantaytambo, about 3,000 m., May, 1915, Cook \& Gilbert $704 a$.

Growing with Thuidium peruvianum.

Globulina peruviana sp. nov.

Inflorescence unknown: plants in rather compact mats with simple stems $\mathrm{I}-4 \mathrm{~mm}$. high, bearing radicles at the base and imbricate-appressed leaves rather uniformly placed along the stem or somewhat clustered at the apex and forming a globose bud about 0.5 mm . in diameter; stem in cross-section about 200μ in diameter with cells of outer walls not differentiated and with a distinct central strand; leaves rotundate or slightly oblong, about 0.5 mm . long, more or less cucullate, the flat margins crenulate half way down or more; costa vanishing abruptly a little below the apex, rather weak in the lower part, widest near the apex, slightly rough on the back and papillose on the inner face, in cross-section showing two rows of medium-sized, thickwalled cells on the dorsal side and a single row of much larger cells on the ventral side; cells mostly gradually smaller from the base to the apex of the leaf, more or less shortly rectangular below, $12-16 \mu$ by $16-30 \mu$, toward the apex square to rhomboidal, with sides $6-8 \mu$ long, finely papillose on both sides about the upper half of the costa, the marginal cells smooth; fruit unknown. (Plate 17, figs. 8-15.)

Araranca, south side of Roya Pass, about $4,100 \mathrm{~m}$., April, 1915, Cook \&o Gilbert 177 a.

Growing apparently on dry soil with Pogonatum polycarpum, at the highest elevation given for any of the collections.
Barbula costata Mitt.
Ollantaytambo, about $3,000 \mathrm{~m}$., May, 1915, Cook \&f Gilbert $610 b$.

A small amount of what is apparently this species occurred, with immature fruit, growing with Bryum argenteum. What appears to be this also was found sterile, mixed with Leskea gracillima, at the same locality by these collectors, $663 a$.
Barbula pruinosa (Mitt.) Jacq.
Cuzco, on dry rock, $3,500 \mathrm{~m}$., July, 191 I, Foote 3.
Barbula replicata Tayl.
Cuzco, on dry rock, $3,500 \mathrm{~m}$. ., July, 1911, Foote 4; Ollantaytambo, about $3,000 \mathrm{~m}$., on soil, May, 1915, Cook \& Gilbert $610 a$.

Mitten was correct, I believe, in thinking B. apiculata Hampe not distinct from this species.
Barbula subulatula C. Müll.
Urubamba, on damp earth, 2,900 m., July, i91I, Foote 5.
Tortula affinis Hampe.
Sicuani, Vilcanota Valley, on stone, about $3,600 \mathrm{~m}$., April, 1915, Cook \&f Gilbert 157; Ollantaytambo, on rock, about 3,000 m., May, 1915, Cook \& Gilbert 612; Urubamba, on rock, $2,900 \mathrm{~m}$., July, i911, Foote 6.

Tortula bipedicellata Besch. and T. confusa Card., I believe, do not differ from T. affinis, which in turn is very close to T. pichinchensis (Tayl.) Mitt., differing chiefly in having a low basal membrane of the peristome, the cell structure of which also varies. In T. pichinchensis the cells are often as high as broad, and somewhat rhomboidal in slightly oblique rows; in T. affinis the cells are low, mostly two or three times broader than high.

Tortula andicola Mont.

Ollantaytambo, about 3,ooo m., May, 1915, Cook \& © Gilbert 77 I.
Tortula lacerifolia sp. nov.
Dioecious: plants with stems (in this small collection scattered through cushions of Fabronia andina) mostly simple, $6-8 \mathrm{~mm}$. high, with radicles at the base and leaves more or less aggregate toward the apex; stem-leaves twisting incurved when dry, erectspreading when moist, oblong, mostly $2-2.5 \mathrm{~mm}$. long, the margins usually deeply incised in the upper half into readily separating, narrow, irregular segments, often 0.25 mm . long and twisted part way round or inflexed or reflexed, the margins of the lower leaf being entire and recurved; costa golden-brown, stout, near the base 80μ wide, smooth on the back, more or less papillose on the upper side, excurrent into a thorn-like spine, in cross-section showing two large guide-cells, a large band of stereid cells on the dorsal side, with two medium-sized cells on the ventral side; cells throughout upper leaf rather obscure, mostly hexagonal, mamillose and covered on both sides with small often C -shaped papillae, those of lower leaf pale, with few or no papillae and mostly shortrectangular, up to about 18μ wide by $40-50 \mu$ long; outer perichaetial leaves like those of the stem, the inner small, pale, more or less deeply cleft into numerous segments, the archegonia numerous, with few paraphyses; fruit unknown. (Plate 18, FIGS. I-6.)

Ollantaytambo, about 3,000 m., July, 1911, Foote 7. Grimmia micro-ovata C. Müll.

Temple of Viracocha near Tinta, on rock, about $3,500 \mathrm{~m}$., April, 1915, Cook \& Gilbert 206; Ollantaytambo, on rock, about $3,000 \mathrm{~m} .$, May, 1915, Cook \& Gilbert 600.
Grimmia ovata Web. \& Mohr.
Cuzco, on dry rock, about $3,500 \mathrm{~m}$., I911, Foote 8.

Grimmia rivulariopsis sp. nov.

Dioecious, the male plant rather more slender than the fertile with often $2-3$ flowers scattered along the stem; the inner perigonial leaves small, ovate, ecostate, or faintly costate, enclosing rather numerous, fusiform antheridia about 0.5 mm . long, without paraphyses: fruiting-plants abundantly branching, $2-3 \mathrm{~cm}$. high, without radicles and bearing slightly secund leaves, erect-spreading when moist, mostly somewhat incurved-appressed when dry; stem-leaves oblong-ovate, about 2 mm . long, rather abruptly narrowed to an acute, serrulate apex, the margins entire, of a double thickness of cells and recurved from a little below the apex to near the base; costa stout, percurrent, smooth on both sides and flat or convex on the ventral side in the upper part; cells of stem-leaves distinct, smooth, with slightly thickened, scarcely or not sinuous walls, the median mostly 6μ wide by $6-8 \mu$ long, the basal more or less rectangular, 8μ wide by 16-22 μ long; perichaetial leaves larger than those of the stem, about 3.5 mm . long, the costa of the inner leaves rather faint below, widest toward the apex, not quite percurrent, the cells of the lower half of leaf narrowly rectangular or linear with slightly thickened, straight walls; capsule ovate, immersed, about 1.5 mm . high, without stomata, a band of five or six rows of small, transversely elongate cells about the rim, the median exothecal cells scarcely or not elongate, rather irregular with scarcely thickened or sinuous walls, up to 25μ in diameter; seta erect, scarcely one half the capsule in height; peristome-teeth lanceolate, about 120μ wide at the base and 400μ high, red, papillose, entire or often split at the apex or along the median line and slightly lacunose; annulus none; lid convex, obliquely apiculate; calyptra little more than covering the apiculus, the base cleft into several lobes. (Plate 19.)

Ollantaytambo, about $3,000 \mathrm{~m}$., on rock in stream bed, May, 1915, Cook \&o Gilbert 753; and on rock, same place and collectors, 561.

Most closely related to G. amblyophylla C. Müll. of the South American species, but the apex of the leaf is very different, the
cells of the stem-leaves much smaller, with thinner, scarcely sinuous walls and the inner perichaetial leaves have much longer, narrower cells throughout the lower leaf.
Rhacomitrium crispipilum (Tayl.) Jacq.
Lucumayo Valley, 3,000 m., June, 1915, Cook \& Gilbert 1264. Funaria calvescens Schwaegr.

Ollantaytambo, about $3,000 \mathrm{~m}$., on wet soil, May, Cook \& Gilbert 669; Manchu Picchu, about 2,100 m., May, Cook \& Gilbert 996.
Mielichhoferia andina Sull.
Araranca, south side of La Roya Pass, about 4,100 m., on earth wall, April, 1915, Cook \&f Gilbert 182a.
Mielichhoferia bogotensis Hampe.
Ollantaytambo, about 3,000 m., May, 1915, Cook \& Gilbert 705. Leptobryum Wilsoni (Mitt.) Broth.

Arequipa, on wet rock, 2,300 m., June, 1911, Foote 9.
Anomobryum filiforme (Dicks.) Husn.
Santa Rosa, on dry hillside, $3,960 \mathrm{~m}$., July, 1911, Foote 10. Bryum andicola Hook.

Above San Miguel, on rocks, $1,830 \mathrm{~m}$., September, I9II, Foote II.

Bryum argenteum L.

Cuzco, on dry rock, $3,500 \mathrm{~m}$., 1911, Foote 12; Ollantaytambo, on soil, about $3,000 \mathrm{~m}$. , May, 1915, Cook \&f Gilbert 610.
Bryum biforme sp. nov.
Pseudoautoicous, the male plants minute, $1-2 \mathrm{~mm}$. high, attached by radicles to the tomentum of the fertile stems, each plant bearing one or two flowers containing two or three antheridia, with few, somewhat longer paraphyses; the outer antheridial leaves broadly ovate-lanceolate, scarcely serrulate, with costa vanishing well below the apex: fertile plants with more or less branching, tomentose stems $3-4 \mathrm{~cm}$. high, the short branches often bearing at the apex abundant, filiform flagella, $3-4 \mathrm{~mm}$. long and covered with minute scale-like leaves; stem-leaves widely spreading when moist, somewhat spreading-flexuous and twisted when dry, serrulate above, rather broadly ovate, acute, slightly decurrent, $3-3.5 \mathrm{~mm}$. long, the margins flat above, recurved below with a border of elongate, narrow, pale cells most distinct half
way down the leaf where it becomes four or five cells wide; costa not quite percurrent, from a broad, reddish brown base, tapering gradually to the slender apex; cells in upper leaf rhomboidal or hexagonal, in lower leaf larger and more or less rectangular, all with somewhat thickened walls distinctly pitted, at least in the lower leaf; the median cells about 16μ wide and $40-50 \mu$ long; outer perichaetial leaves about the length of the stem-leaves, from a broad base, oblong, acute, serrulate and with costa vanishing a little below the apex; seta about 2 cm . long; capsule pendent with sporangium rather narrowly ovate and tapering into a neck about one half the length of the sporangium, the median exothecal cells irregularly elongate with evenly thickened, mostly slightly curving walls, the stomata abundant in the neck, about 40μ long; annulus large; peristome-teeth lanceolate, about 100μ wide at the base and 600μ high, with hyaline borders and the outer plates finely punctate, mostly one and one half to two times wider than high, the inner lamellae without cross-walls; inner segments about the height of the teeth, keeled and solid along the median line, very slender-pointed with mostly two long, slender cilia between them, sometimes distinctly appendiculate; spores rough, up to 20μ in diameter; lid highly convex-apiculate. (Plate 20.)

Torontoy, Urubamba Valley, about 3,600 m., May, 1915 , Hiram Bingham 730.

This is, I believe, the only Bryum known having inflorescence as above described; the flagella also are unusual.

Bryum densifolium Brid.

Urubamba, on damp earth, 2,900 m., July, 1911, Foote 13; Santa Anna, 912 m., August, 1911, Foote 14. Mnium ligulatum C. Müll.

Lucma, on dead wood, 2,130 m., Aug. 1911, Foote 15, growing mixed with Cyclodictyon aeruginosum (Mitt.) Broth. and Trichostomum brachydontium Bruch.; Urubamba, on wet earth, 2,900 m., July, i911, Foote 16.
Anacolia subsessilis (Tayl.) Broth.
Urubamba, on loose earth and rocks, $2,900 \mathrm{~m}$., July, 1911, Foote 17; Ollantaytambo, about $3,000 \mathrm{~m}$., Cook \& Gilbert, May, 1915, 504, 749, 771a.
Breutelia bryocarpa Herzog.
Lucumayo Valley, 1,800-3,600 m., June, 1915, Cook \& Gilbert, I320a.

A few stems with one capsule were found mixed in with Breutelia tomentosa. This is evidently the same species as that collected by Weddell in Peru and named, apparently in manuscript only, Bartramia nutans by Montagne. It is also the same as my Bolivian collection, No. 2825 , referred to Breutelia nutans (Mont.).
Breutelia tomentosa (Sw.) Schimp.
San Miguel, Urubamba Valley, about 1,800 m., May, 1915, Cook \& Gilbert 988; Lucumayo Valley, $\mathbf{1}, 800-3,600$ m., June, 1915, Cook \& Gilbert 1320.
Pogonatum campylocarpum C. Müll.
Lucumayo Valley, $1,800-3,600 \mathrm{~m}$., June, 1915, Cook \& Gilbert 1322.

Pogonatum polycarpum (Schimp.) Broth.

Araranca, south side of La Roya Pass, about 4,ioo m., April, 1915, Cook \& Gilbert 177 and I82.
Polytrichum antillarum Rich.
Torontoy, Urubamba Valley, about $2,400 \mathrm{~m}$. ., June, 1915, Cook ©o Gilbert 1194; Lucumayo Valley, $1,800-3,600 \mathrm{~m}$., on wet earth, June, 1915, Cook \& Gilbert 1318.
Hedwigia albicans (Web.) Lindb.
Temple of Viracocha, near Tinta, about $3,500 \mathrm{~m}$., April, 1915, Cook \&o Gilbert 204; Ollantaytambo, about 3,000 m., May, 1915, Cook \&̛ Gilbert 501.
Hedwigidium imberbe (Sm.) B.S.G.
Urubamba, on rocks, 2,900 m., July, 1911, Foote I8; Ollantaytambo, 2,750 m., July, 1911, Foote 19; Temple of Viracocha, near Tinta, about 3,500 m., April, 1915, Cook \&o Gilbert $204 a$. Braunia canescens Schimp.

Near Calca, on rock, April, 1915, Cook \& Gilbert 245; Ollantaytambo, about $3,000 \mathrm{~m}$. , April and May, 1915, Cook \& Gilbert 473, 502, and 503. This species has been considered scarcely distinct from B. cirrifolia (Wils.) Jaeg., but it seems to me to be a rather smaller species with more closely imbricate leaves. The leaves also, below the apex of the stem, are broader in the upper part, often slightly obovate, and more abruptly narrowed to the pale apex of blade and hair point. B. cirrifolia has leaves rather
lanceolate and gradually narrowed to a yellowish apex and flexuous hair point. Braunia argentinica C. Müll. and B. cirriolia var. falcatula Herzog belong, I should say, under B. canescens. Prionodon bolivianus C. Müll.

Torontoy, Urubamba Valley, about $3,600 \mathrm{~m}$., May, 1915, Hiram Bingham 729.
Squamidium rotundifolium (Mitt.) Broth.
Above San Miguel, $1,830 \mathrm{~m}$. , September, 191 I, Foote 20.
Pilotrichella viridis (C. Müll.) Jacq.
San Miguel, Urubamba Valley, $1,800 \mathrm{~m} .$, May, 1915, Cook \& Gilbert 919.
Papillaria imponderosa (Tayl.) Broth.
Above San Miguel, on moist earth, $\mathbf{I}, 830 \mathrm{~m}$., September, 1911, Foote 21.
Meteoriopsis remotifolia (Hornsch.) Broth.
San Miguel, 1,500-1,830 m., July, i911, Foote 22.
Neckera eucarpa Schimp.
Urubamba, on bark, $2,900 \mathrm{~m}$. ., July, 191I, Foote 23; Ollantaytambo, about $3,000 \mathrm{~m} .$, May, 1915, Cook \& Gilbert 763.
Neckera Jamesoni Tayl.
Ollantaytambo, about $3,000 \mathrm{~m}$., on Alnus, May, 1915, Cook \& Gilbert $763 a$.
Neckera Lindigit Hampe.
Lucma, on dead wood, 2,130 m., August, 1911, Foote 24; Urubamba, on bark, with N. eucarpa, 2,900 m., July, I91I, Foote $23 a$.
Porotrichum valdiviae C. Müll.
Ollantaytambo, about $3,000 \mathrm{~m}$., on trunks, May, 1915, Cook \& Gilbert $762 a$; apparently the farthest northern station for this species.
Entodon platygyrioides C. Müll.
Above San Miguel, on rock, $1,830 \mathrm{~m}$., September, 1911, Foote 25.

Erythrodontium squarrosum (C. Müll.) Par.
Santa Ana, on rock, 912 m., August, 19II, Foote 26.

Fabronia andina Mitt.

Ollantaytambo, on rock, about 3,000 m., May, 1915, Cook \&o Gilbert 662; Urubamba, 2,900 m., July, 1911, Foote 27; Ollantaytambo, 2,750 m., July, i91 I, Foote 28.
Fabronia polycarpa Hook.
Santa Ana, 912 m., August, 1911 , Foote 29.
Cyclodictyon aeruginosum (Mitt.) Broth.
Lucma, on dead wood, 2,130 m., August, i91 I, Foote 30.
Rhacopilum tomentosum (Hedw.) Mitt.
Santa Ana, on dead wood, 912 m., August, 1911, Foote 31, 32; San Miguel, 1,525 m., September, 1911, Foote 33.
Leskea gracillima Tayl.
Urubamba, 2,900 m., July, I91 I, Foote 34, on bark, 35 on rock; Ollantaytambo, on rock, about 3,000 m., May, 1915, Cook \&o Gilbert $609 a, 663$.
Thuidium peruvianum Mitt.
Ollantaytambo, about 3,000 m., May, 1915, Cook \&fo Gilbert 704, 748.

Hygroamblystegium irriguum (Wils.) Loeske.

Urubamba, on rock, $2,900 \mathrm{~m}$. ., July, 19II, Foote 36. Apparently not before reported for South America. The next nearest known location is, I believe, Guatemala.
Drepanocladus longifolius (Wils.) comb. nov.
Amblystegium longifolium Wils.; Mitten; Jour. Linn. Soc. Bot. 12: 571. 1869.

Temple of Viracocha, near Tinta, about 3,500 m., in a spring, April, 191 5, Cook \& Gilbert 216.

These sterile specimens seem to belong under this species although only known from Patagonia up to the present time.

Hygrohypnum peruviense sp. nov.

Inflorescence unknown: growing in loose mats with irregularly branching stems without radicles, $2-3 \mathrm{~cm}$. long and about 200μ in diameter, in cross-section showing a distinct central strand and outer walls of about three rows of smaller, thick-walled cells; leaves loosely erect-spreading, more or less secund, rather broadly ovate-acute, somewhat cymbiform, $1.5^{-2} \mathrm{~mm}$. long, and nearly or quite entire; costa stout, 80μ wide or more at the base, simple
and extending about three fourths up the leaf or shorter and dividing into two to five branches; leaf-cells all elongate, prosenchymatose and mostly slightly sinuous, with rather thin walls, the median $5^{-6} \mu$ wide and $40-60 \mu$ long, the alar usually forming a distinct cluster of broad, short cells either greenish or finally reddish-brown; fruit not found. (Plate 18, figs. 7-12.)

A variety evidently of the above, growing in flowing water, has elongate, hispid, wiry stems, $10-15 \mathrm{~cm}$. long, without leaves below and in habit like H. Bestii, except much more slender.

Cuzco, on wet rock, $3,500 \mathrm{~m}$., July, 1911, Foote 37 (type); Ollantaytambo, about 3,000 m., on rock under spring, May, 1915, Cook \&o Gilbert 666 (the variety).

Ctenidium malacodes Mitt.

Ollantaytambo, about 3,000 m., on trunks, May, 1915, Cook \&o Gilbert $762 b$.
Mittenothamnium andicola (Hook.) Card.
Ollantaytambo, about $3,000 \mathrm{~m}$., on trunks, May, 1915, Cook \&o Gilbert 762.
Mittenothamnium oxystegum (Spruce) Card.
Santa Ana, on rock, 912 m., August, 1911, Foote 38.

Hypnum Schreberi Willd.

Ollantaytambo, about $3,000 \mathrm{~m} .$, May, 1915, Cook \& Gilbert $748 a$.

Ectropothecium aeruginosum (C. Müll.) Mitt.

Santa Ana, 912 m., on dead wood, August, 1911, Foote 39.
Palamocladium leskeotdes (Hook.) E. G. Britton.
San Miguel, on rock, 1,830 m., September, I911, Foote 40.
Brachythecium asperulum (Hampe) Jaeg.
Ollantaytambo, about $3,000 \mathrm{~m}$., May, 1915, Cook \& Gilbert $753 a$.

Brachythecium flaccum C. Müll.

Huadquinia, on wet earth, 1,530 m., August, 1911, Foote 41; Ollantaytambo, about $3,000 \mathrm{~m}$., on trunks, May, 1915, Cook \&8 Gilbert 7 bac.
Brachythecium sericeovirens (C. Müll.) Par.
Ollantaytambo, on rock, $2,750 \mathrm{~m}$., July, 1911, Foote 42. Known previously only from Patagonia.

Brachythecium stereopoma (Spruce) Jaeg.
San Miguel, on live wood, i,830 m., July, 19II, Foote 48.

Rhynchostegium aquaticum (Hampe) Jaeg.

Urubamba, in water, 2,900 m., July, 19II, Foote 43; Arequipa, in water, June, i9II, Foote 44; Cuzco, on wet rocks, July, I9II, Foote 45 .

Rhynchostegium conophyllum (Tayl.) Jaeg.

Urubamba, on rock, 2,900 m., July, 19I I, Foote 46; San Miguel, on live wood, 1,830 m., July, 1911, Foote 47.

New York Botanical Garden

Explanation of plates 17-20

Plate 17

Leptodontium integrifolium. I. Plant about natural size. 2. Perichaetium, \times 7. 3. Stem-leaf, $\times 15$. 4. One side of base of leaf, $\times 115$. 5. Median cells of leaf, $\times 240$. 6. Apex of leaf, $\times 50.7$. Cross-section of leaf, $\times 150$.

Globulina peruviana. 8. Plant about natural size. 9. Plant, \times ro. 10. Stemleaf, $\times 45$. II. Apex of costa and leaf, $\times 230$. 12. Median cells of leaf, $\times 230$. 13. Basal cells on one side of costa, $\times 230$. 14. Cross-section of stem, $\times 230$. 15. Cross-section of leaf, $\times 230$.

Plate 18

Tortula lacerifolia. 1. Plant about natural size. 2. Perichaetial leaf, $\times 25$. 3. Upper stem-leaf, $\times 25.4$. A segment from the leaf-margin, $\times 130$. 5. Base of leaf on one side of costa, $\times 180$. 6. Cross-section of leaf, $X 180$.

Hygrohypnum peruviense. 7. Plant about natural size. 8. Cross-section of stem, $\times 130.9$. Basal leaf-cells on one side of costa, $\times 270$. Io, ir. Stem-leaves, $\times 25$. 12. Median leaf-cells, $\times 270$.

Plate 19

Grimmia rivulariopsis. 1. Fertile and male plant about natural size. 2. Capsule, seta and perichaetial leaf, $\times 20$. 3. Calyptra, $\times 20$. 4. Lid, $\times 20$. 5. Part of peristome and rim of capsule, X 110. 6. Antheridia with leaf, $X 20$. 7. Upper part of stem leaf, $\times 180$. 8. Stem-leaf, $\times 18$. 9. Median cells of leaf, $\times 180$. 10. Cells in lower part of perichaetial leaf, $\times 180$. II. Perichaetial leaf, $\times 18$. 12. Median exothecal cells, $\times 180$. 13. Cross-section of stem-leaf, $\times 180$.

Plate 20

Bryum biforme, 1. Fertile and male plant about natural size. 2. Male plants, $\times 20$. 3. Capsule, moistened, $\times 8$. 4. Upper stem-leaf, $\times 16$. 5. Outer perichaetial leaf, $\times 16$. 6. Upper part of stem-leaf, $\times 135 . \quad$ 7. Border of leaf and adjoining cells about half way down, $\times 135$. 8. Inner perichaetial leaf, $\times 16$. 9. Stoma, $X 135$. 10. Median exothecal cells, $\times 135$. II. Part of peristome, annulus and rim of capsule, X roo.

INDEX TO AMERICAN BOTANICAL LITERATURE

1910-1916

The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of one cent for each card. Selections of cards are not permitted ; each subscriber must take all cards published during the term of his subscription. Corre. spondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Abbott, F. H. The red rot of conifers. Vermont Agr. Exp. Sta. Bull. I9I: 3-20. pl. 1 -3 $+f, 1,2$. N I9I5. Trametes pini.
Albert, F. Observaciones sobre los bosques de Guindos. Bol. Bosques, Pesca i Caza 3: 1-320. Je 1915.
Contains considerable information of a botanical nature.
Benedict, H. M. Senile changes in leaves of Vitis vulpina L. and other plants. Cornell Agr. Exp. Sta. Mem. 7: 281-370. f. 52-58. Je 1915.

Benedict, R. C. Nephrolepis. Standard Cyclopedia of Horticulture. 4: 2131-2135.f. 2460-2473. I5 D 1915.
Benoist, R. Descriptions de Lécythidacées nouvelles de l'amérique méridionale. Notulae Systematicae 3: 177-180. 1915. Four new species in Lecythis are described.
Berry, E. W. Notes on the ancestry of the beech. Plant World 19: 68-77.f. I, 2. Mr 1916.
Berry, E. W. Remarkable fossil fungi. Mycologia 8: 73-79. pl. I80182. II Ap 1916. Three new species are described.
Boyce, J. S. A note on Cronartium pyriforme. Phytopathology 6: 202, 203. 4 Ap 1916.

Bray, W. L. The development of the vegetation of New York State. New York State College of Forestry, Syracuse Univ. Tech. Publ. 3: I-186.f. 1 -52 + map. [F 1916.]
Britton, N. L. Cassia polyphylla. Addisonia $\mathrm{I}: 3,4 . \mathrm{pl} .2$. 3 I Mr 1916.

Britton, N. L. Nopalea Auberi. Addisonia I: 19, 20. pl. 10. 3 I Mr 1916.

Brown, N. E. Aristolochia Lawrenceae. Curt. Bot. Mag. IV. 12: pl. 8650. Mr 1916. A plant from Argentine.
Brown, N. E. Chamaedorea nana. Curt. Bot. Mag. IV. 12: pl. 8652. Mr 1916. A plant from Costa Rica.
Chapman, G. H. Effect of colored light on the mosaic disease of tobacco. Science II. 43: 537, 538. 14 Ap 1916.
Clausen, R. E., \& Goodspeed, T. H. Hereditary reaction-system relations-an extension of Mendelian concepts. Proc. Nat. Acad. Sci. 2: 240-244. Ap 1916.
Conzatti, C. Comentario al plan general de la clasificación de los vegetales. Bol. Direc. Estud. Biol. 1: 281-283. Ja 1916.
Cook, M. T. Common diseases of beans. New Jersey Agr. Exp. Sta. Circ. 50: I-4. 1916.
Cook, M. T., \& Helyar, J. P. Diseases of grains and forage crops. New Jersey Agr. Exp. Sta. Circ. 51: 1-8. 1916.
Cook, O. F., \& Doyle, C. B. Germinating cocoanuts. Jour. Heredity 7: 148-157.f. I-6. Ap 1916.
Cooper, W. S. A catalogue of the flora of Isle Royale, Lake Superior. Ann. Rep. Michigan Acad. Sci. 16: 109-131. [1915.]
Crabill, C. H. Note on apple root-rot in Virginia. Phytopathology 6: 159-161. f. I. Ap 1916.
Craib, W. G. Sophora macrocarpa. Curt. Bot. Mag. IV. 12: pl. 8647. F 1916. A plant from Chile.
Crocker, W. Mechanics of dormancy in seeds. Am. Jour. Bot. 3: 99-120. Mr 1916.
Dearness, J. New or noteworthy species of fungi. Mycologia 8: 98-107. II Ap 1916.
Twenty-five new species are described.

Detwiler, S. B. Douglas fir. Identification and characteristics. Am. Forestry 22: 67-69. F igi6. [1llust.]
Dodge, C. K. The flowering plants, ferns, and fern allies growing without cultivation in Lambton County, Ontario. Ann. Rep. Michigan Acad. Sci. 16: 132-200. [1915.]
Doolittle, S. P. A new infectious mosaic disease of cucumber. Phytopathology 6: 145-147. 4 Ap 1916.
Fawcett, H. S. Report of former plant pathologist. Ann. Rep. Florida Agr. Exp. Sta. 1912: Ixiv-xcii. Mr 19 I 3. Includes further report on stem-end rot, Phomopsis citri.
Fred, E. B. Relation of carbon bisulphide to soil organisms and plant growth. Jour. Agr. Research 6: 1-20. pl. 1, 2. 3 Ap 1916.
Gates, R. R. On pairs of species. Bot. Gaz. 61 : $177-212$. f. $1-12$. ${ }_{5} 5 \mathrm{Mr} 1916$.
Gilbert, W. W. Cucumber mosaic disease. Phytopathology 6: 143, 144. pl. 5. 4 Ap 1916.

Gregory, C. T. The taxonomic value and structure of the peach leaf glands. Cornell Agr. Exp. Sta. Bull. 365: 183-224. pl. \quad-9 + f. 37 , 38. N 1915.

Grossenbacher, J. G. Sour scab of Citrus in Florida, and its prevention. Phytopathology 6: 127-142. f. I-4. 4 Ap 1916.
Harper, E. T. Two parasitic mushrooms. Mycologia 8: 65-72. pl. 177-179. 11 Ap 1916.
Harter, L. L. Sweet-potato diseases. U. S. Dept. Agr. Farmers' Bull. 714: i-26.f. 1 -21. II Mr 1916.
Herriot, w. Data on seed maturity of some Ontario plants. Ottawa Nat. 29: 151-157. 1о Ap 1916.
Higgins, B. B. Plum wilt, its nature and causes. Georgia Agr. Exp. Sta. Bull. 118: 1-29. f. $1-25$. Ja 1916.
Hill, J. B. A method for the dehydration of histological material. Bot. Gaz. 6I: 255, 256. 15 Mr 1916.
Holden, R. Hybrids of the genus Epilobium. Am. Nat. 50: 243-247. f. I-4. Ap 1916.

Howitt, J. E., \& McCubbin, W. A. An outbreak of white pine blister rust in Ontario. Phytopathology 6: 182-185. 4 Ap 1916.
Howitt, J. E., \& Stone, R. E. A troublesome disease of winter tomatoes. Phytopathology 6: 162-166. 4 Ap 1916.

Humphrey, C. J. Laboratory tests on the durability of American woods-I. Flask tests on conifers. Mycologia 8: 80-92. pl. 183. il Ap 1916.
Jacobson, C. A. Water hemlock (Cicuta). Nevada Agr. Exp. Sta, Tech. Bull. 8r: 1-46. f. I-Io. Mr 1915.
Jagger, I. C. Experiments with the cucumber mosaic disease. Phytopathology 6: 148-151. 4 Ap 1916.
Johnson, J. Resistance in tobacco to the root-rot disease. Phytopathology 6: 167-181. f. $I-6.4$ Ар 1916.
Johnston, J. R. Causa de la enfermedad elamada pudricion del cogollo del cocotero. Cuba Estac. Exp. Agron. Bull. 27: 1-1o6. pl, 1-15. Ap 1915.
Jones, D. F. Natural cross-pollination in the tomato. Science II. 43: 509, 510. 7 Ap 1916.
Kirkwood, J. E. Bisporangiate cones of Larix. Bot. Gaz. 6I: 256, 257.f. f. 15 Mr 1916.

Kopeloff, N., Lint, H. C., \& Coleman, D. A. A new method of separating fungi from Protozoa and bacteria. Bot. Gaz. 61: 247-250. 15 Mr 1916.
Kroeber, A. L. Floral relations among the Galapagos Islands. Univ. Calif. Publ. Bot. 6: 199-220. ro Mr 1916.
Land, W. J. G. Chloroform as a paraffin solvent in the imbedding process. Bot. Gaz. 6I: 251-253. 15 Mr 1916.
Létourneau, F. Encore une plaie! Le Naturliste Canadien. 42: 113118. F 1916. Includes notes on "La brâlure" (Bacillus amylooorus).
Lloyd, C. G. Mycological notes 39: 525-540. f. 718-742. D 1915. Includes notes on several species of Cordyceps; the genus Mucronella; Polyporus Mylittae; Xylaria axifera, Cladoderris foridana; Exidia; Sebacina dendroidea; Strobilomyces pallidus.
Lloyd, F. E. Abscission in Mirabilis jalapa. Bot. Gaz. 61: $213-23^{0}$. pl. $13+$ f. 1, 2. 15 Mr 1916.
McAllister, F. The morphology of Thallocarpus Curtisii. Bull. Torrey Club 43: $117-126$. pl. 4. 14 Ap 1916.
McMurphy, J. A Phytophthora on oats. Science II. 43: 534. 14 Ap 1916.
Meinecke, E. P. Forest pathology in forest regulation. U. S. Dept. Agr. Bull. 275: 1-62. 7 Ap 1916.

Meyer, R. Einiges über Echinocactus arizonicus R. E. Kunze. Monats. Kakteenk. 26: 12-14. Ja 1916.
Murrill, W. A. An attractive species of Melanoleuca from Oregon. Mycologia 8: 113. II Ap 1916.
Melanoleuca olivaceifora sp. nov.
Nash, G. V. Begonia Cowellii, Addisonia 1: 9, 10. pl. 5. 31 Mr 1916. A new species.
Nash, G. V. Columnea gloriosa. Addisonia 1: 13, 14. pl. 7. 3I Mr 1916.

Nash, G. V. Fouquieria formosa. Addisonia 1 : $15,16$. pl. 8. 3 I Mr 1916.

Nash, G. V. Maxillaria ringens. Addisonia 1: 17, 18. pl. 9. 3I Mr 1916.

Nash, G. V. Rhododendron carolinianum. Addisonia 1: 1, 2. pl. I. 3I Mri916.
Nash, G. V. Robinia Kelseyi. Addisonia I: 5, 6. pl. 3. 3I Mr 1916.
Osterhout, W. J. V. The nature of mechanical stimulation. Proc. Nat. Acad. Sci. 2: 237-239.f. I. Ap 1916.
Peltier, G. L. Sclerotium Rolfsii in Illinois. Phytopathology 6: 201, 202. 4 Ap 1916.

Pittier, H. New or noteworthy plants from Colombia and Central America-5. Contr. U. S. Nat. Herb. 18: i-ix $+143^{-171}$. pl. $57-80+f .88-97.3 \mathrm{Mr} 1916$. Fourteen new species and one new genus (Bombacopsis) are described.
Pool, V. W., \& McKay, M. B. Climatic conditions as related to Cercospora beticola. Jour. Agr. Research 6: 21-60. pl. 3, $4+f .1-10$. 3 Ap 1916.
Reichert, E. T. The specificity of proteins and carbohydrates in relation to genera, species and varieties. Am. Jour. Bot. 3: 9^{1-98}. Mr 1916.
Rhoads, S. N. Botanica neglecta. William Young, Jr. (of Philadelphia) "Botaniste de Pensylvanie" and his long-forgotten book, being a facsimile reprint of his "Catalogue d'Arbres, Arbustes et Plantes Herbacées d'Amérique." i -xi +1 -55. Ap 1916. Includes a prefatory account of the author and critical notes by the editor.
Riddle, L. W. The lichens of Bermuda. Bull. Torrey Club 43: 145160. 14 Ap 1916. Includes description of seven new species.

Roe, M. L. The development of the conceptacle in Fucus. Bot. Gaz. 61: 231-246. pl. 14-17. I5 Mr 1916.
Rose, J. N. Echeveria setosa. Addisonia I: iI. pl. 6. 3 I Mr 1916.
Rose, J. N. Pachyphytum longifolium. Addisonia I: 7, 8. pl. 4. 31 Mr 1916.

Rydberg, P. A. Phytogeographical notes on the Rocky Mountain region-IV. Forests of the subalpine and montane zones. Bull. Torrey Club 42: $11-25.29$ Ja 1915.
Safford, W. E. The botanical identity of Lignum nephriticum. Science II. 43: 432. 24 Mr 1916.

Safford, W. E. Eysenhardtia polystachya, the source of the true Lignum nephriticum mexicanum. Jour. Washington Acad. Sci. 5: 503-517. f. 1, 2. I9 Au 1915.
Safford, W. E. A remarkable new Eysenhardtia from the west coast of Mexico. Jour. Washington Acad. Sci. 6: 133, 134.f. I. 19 Mr 1916. Eysenhardtia Olivana sp. nov.
Scott, C. A. Trees for Kansas. Kansas Agr. Exp. Sta. Circ. 55: I-19. Ja 1916. [Illust.]

Scott, W. M. Fighting orchard insects and diseases. Am. FruitGrower 2: 3-5. Mr 1916. [Illust.]
Seaver, F. J. The earth-inhabiting species of Ascobolus. Mycologia 8: 93-97. pl. 184. II Ap 1916. Three new species are described.
Shaw, W. R. Besseyosphaera, a new genus of the Volvocaceae. Bot. Gaz. 6I: 253, 254. I5 Mr 1916.
Shreve, F. The weight of physical factors in the study of plant distribution. Plant World 19: 53-67. Mr 1916.
Small, J. K. Exploration in southern Florida in 1915. Jour. N. Y. Bot. Gard. 17: 37-45. pl. 166-168. Mr 1916.
Smith, C. O. Cottony rot of lemons in California. Calif. Agr. Exp. Sta. Bull. 265: 237-258. f. I-1I. Ja 1916. Sclerotinia libertiana.
Smith, C. O. Preliminary studies on the resistance of Prunus to artificial inoculation with Bacterium tumefaciens. Phytopathology 6: 186-194. pl. 6. 4 Ap 1916.
Spaulding, P. The blister rust disease of white pine. Am. Forestry 22: 97, 98.f. $A-D$. F 1916.

Stapf, O. Lupinus Chamissonis. Curt. Bot. Mag. IV. 12: pl. 8657. Ap 1916.
A plant found in California.
Stevens, H. E. Report of plant pathologist. Ann. Rep. Florida Agr. Exp. Sta. 1914: lvii-lxxiv. Ap 1915.
Includes report of work on gummosis and melanose.
Stevens, N. E. Recovery of a tree from a lightning stroke. Phytopathology 6: 204-206. 4 Ap 1916.
Stewart, V. B., \& Leonard, M. D. Further studies in the rôle of insects in the dissemination of fire blight bacteria. Phytopathology 6: 152-158. 4 Ap 1916.
Sydow, H., \& Sydow, P. Fungi amazonici a cl. E. Ule lecti. Ann. Myc. 14: 65-97. 20 F 1916.
Includes six new genera and 60 new species in Uredinaceae (I4), Ustilagineae (I), Ascomycetes (38), and Fungi imperfecti (7).
Transeau, E. N. The periodicity of fresh water algae. Am. Jour. Bot. 3: 121-I33.f. I-3. Mr 1916.
Weatherwax, P. Morphology of the flowers of Zea Mays. Bull. Torrey Club 43: 127-144.pl. 5, 6+f. r-4. I4 Ap 1916.
Weir, J. R., \& Hubert, E. E. A serious disease in forest nurseries caused by Peridermium filamentosum. Jour. Agr. Research 5: 781785. 24 J Ј 1916.

Wells, B. W. A survey of the zoocecidia on species of Hicoria caused by parasites belonging to the Eriophyidea and the Itonididae (Cecidomyiidae). Ohio Jour. Sci. 16: 37-57. pl. I, 2. 20 D 1915.
Wester, P. J. Hybridization of Annonas. Philippine Agr. Rev. 7: 177-181. pl, 5-10. 1915.
Wester, P. J. Myrtaceous possibilities for the plant breeder. Philippine Agr. Rev. 7: 207-215. 1915.
Whetzel, H. H., \& Rosenbaum, J. The Phytophthora rot of apples. Phytopathology 6: 89, 90. F 1916.
Wieland, G. R. Was the Pterophyllum foliage transformed into leafy blades of dicotyls? Am. Jour. Sci. 38: 451-460. f. 1-3. N 1914.
Wilson, G. W. A new European species of Peronospora. Ann. Myc 8: 185-187. 1910. Peronospora Ononidis sp, nov.
Wilson, G. W. An anomalous hickory-nut. Proc. Iowa Acad. Sci. 22: 133. 1915.

Wilson, G. W. An Exobasidium on Armillaria. Proc. Iowa Acad. Sci. 22: 134. 1915.
Wolf, F. A. Further studies on peanut leafspot. Jour. Agr. Research 5: 891-902. 7 F 1916.
Wolf, F. A. Citrus canker. Jour. Agr. Research 6: 69-100. pl. 8-II +f. I-8. io Ap 1916.
Woodward, R. W. Bidens connata petiolata. Rhodora 17: 234. 6 Ja 1916.

Woolery, R. Meiotic divisions in the microspore mother-cells of Smilacina racemosa (L.) Desf. Ann. Bot. 29: 471-482. pl. 22+ f. I. O 1915 .

Wright, C. H. Eucharis Lowii. Curt. Bot. Mag. IV. 12: pl. 8646. F 1916. Found in western tropical America.
Wylie, R. B. A hybrid ragweed. Proc. Iowa Acad. Sci. 22: 127, 128. pl. 21. 1915.
Yasui, K. Studies of Diospyros Kaki-I. Bot. Gaz. 60: 362-373. pl. 12, $13+f .1-11$. 15 N 1915.
Yates, H. S. The comparative histology of certain Californian Boletaceae. Univ. Calif. Publ. Bot. 6: 221-274. pl. 21-24. 25 F 1916.
Young, E. Studies in Porto Rican parasitic fungi-II. Mycologia 8: 42-46. Ja 1916. Six new species of Cercospora are described.
Young, R. A., \& Popenoe, P. Saving the kokio tree. Jour. Heredity 7: 24-28.f. 6, 7. 29 D 1915.
Zahlbruckner, A. Neue Arten und Formen der Lobelioideen. I. Repert. Sp. Nov. 13: 528-537. 30 Je 1915.
Zahn, K. H. Hieracia domingensia. Bot. Jahrb. 52: 272. 16 Mr 1915; 273-276. 3 Au 1915.
Zeller, S. M., \& Neikirk, A. Gas exchange in the pneumatocyst of Nereocystis luetkeana (Mertens) P. \& R. Puget Sound Marine Sta. Publ. 1: 25-30. I Jl 1915.

 000008
+8
0

1-6. TORTULA LACERIFOLIA R. S. Whiliams 7-12. HYGROHYPNUM PERUVIENSE R. S. Williams

GRIMMIA RIVULARIOPSIS R. S. Williams

BRYUM BIFORME R. S. Williams

BULLETIN

OF THE

TORREY BOTANICAL CLUB

JULY, 1916

Phytogeographical notes on the Rocky Mountain region VI. Distribution of the subalpine plants

P. A. Rydberg

I have already pointed out in a paper entitled "Vegetative Life Zones of the Rocky Mountains," read at the twentieth anniversary of the New York Botanical Garden, that the Subalpine and Montane Zones of the Rockies are very different from those zones in the eastern part of North America, although the Hudsonian and Canadian Zones extend west to the foot of the Rockies from the headwaters of the Athabasca River northward. Also, I showed that the aspen was the only one among the ecologically important trees, common to the eastern and central (Rocky Mountain) provinces, that the Subalpine and Montane Zones of the central and western (Pacific) provinces merge in the north, and that many species have emigrated from either of these provinces to the other. These statements were largely based on the most conspicuous element of these zones, namely, the forest trees. Now it is to be shown whether or not these statements apply to the secondary species of the forests, to the grasslands and other herbaceous formations, and to the coppice.

The subalpine flora may be divided into the following cate-gories:-I. The transcontinental element, many members of which are also found in the Old World; II. Plants common to the Rockies and either of the other provinces; III. The endemic element. To the first belong the larger proportion of the plants common to the alpine-arctic zone.
[The Bulletin for June (43: 283-342. pl. 16-20) was issued June 29, 1916.]

Some of the plants of the first category may have a range limited in the Middle Province to the Canadian Rockies alone; others may extend throughout the Northern Rockies, but not be found in the Southern; while still others may extend throughout the Rocky Mountain system. Of the second category, some plants may be common to the Rockies and the Hudsonian Zone of the east, some others common to the Rockies and the Pacific mountains, or to the Sierra Madre in Mexico, or to the Alaskan mountains, or to the arctic coast. Some might have their home in the Rockies and spread toother regions, and othersmight be immigrants into the Rocky Mountain system. Among the plants of the third category, many are distributed throughout the Rockies, others have a distribution limited to either the Northern or the Southern Rockies, or to certain parts of either, while still others are purely local.

The strictly subalpine element of the flora of the Rockies is in fact very small, the plants consisting mostly of species that are found also in the Montane Zone, especially the upper part thereof, and of alpine-arctic species, running down in the swales, along the streams, or along the wind-swept hog-backs. In fact some plants, especially aquatics and hydrophytes, are common to three or more zones. In the following lists the plants common to the alpine-arctic zone are designated by a dagger (\dagger). No attempt is made to designate those common to the Montane Zone, as they would probably constitute 90 per cent. of the remaining species.

I

I. Transcontinental species ranging throughout the

Rockies

This element is represented among the trees by the quaking aspen, Populus tremuloides,* but this tree is not one of the characteristic trees of the Subalpine or Subarctic Zone either of the east or of the Rockies, nor is it limited to the subalpine regions. One should therefore not lay too much stress upon this tree and its

[^57]distribution when considering the resemblances of and distinctions between the Hudsonian flora and the subalpine flora of the Rockies. Looking over the following two lists we find that they are mostly made up of either aquatic plants and hydrophytes or plants from dense or open woods or copses, requiring a good deal of moisture.

Trees

Populus tremuloides

Shrubs	
Salix chlorophylla	Vaccinium caespitosum
Betula glandulosa	Linnaea americana
Lepargyrea canadensis	Distegia involucrata
Herbs	
Sparganium minimum	Avena striata Danthonia intermedia
" angustifolium	
Potamogeton natans	Trisetum subspicatum
" alpinus	Phragmites Phragmites
" heterophyllus	\dagger Catabrosa aquatica
" Richardsonii	Bromus ciliatus
" pectinatus	Poa pratensis
" filiformis	\dagger " alpina
Triglochin palustris	" crocata \dagger Festuca curtifolia
" märitima	
Scheuchzeria palustris	Panicularia nervata
Savastana odorata	Hordeum jubatum
Muhlenbergia racemosa	Agropyron violaceum Eriophorum angustifolium
Phleum pratense	
" alpinum	\dagger Carex Hepburnii
Alopecurus aristulatus	" leptalea
" occidentalis	\dagger " obtusata
Agrostis hiemalis	\dagger " gynocrates
" canina	" siccata
Calamagrostis Langsdorfii	" interior
" canadensis	" canescens
purpurascens	" brunnescens
Deschampsia caespitosa	" Rossii
" atropurpurea	" aurea

\dagger Carex	capillaris
"	misandra
	"

Lemna minor
\dagger Juncus triglumis
\dagger " castaneus
Juncoides parviflorum
\dagger " spicatum
intermedium
\dagger Lloydia serotina
Vagnera stellata
Lysiella obtusata
Peramium ophioides
\dagger Cytherea bulbosa
\dagger Oxyria digyna
\dagger Bistorta vivipara
Alsine longifolia
" laeta
" crassifolia
" borealis
Moehringia macrophylla
" lateriflora
Sagina saginoides
\dagger Silene acaulis
Anemone parviflora
Pulsatilla ludoviciana
\dagger Thalictrum alpinum
Batrachium confervoides
\dagger Draba crassifolia
\dagger ". fladnizensis
\dagger " aurea
\dagger Chrysosplenium tetrandrum
\dagger Saxifraga cernua
Leptasea Hirculus
\dagger Sibbaldia procumbens
\dagger Potentilla quinquefolia
\dagger " nivea
\dagger " uniflora
Dasiphora fruticosa
Geum rivale
Tium alpinum
Epilobium alpinum
" Hornemannii
\dagger " anagallidifolium
Chamaenerion angustifolium
\dagger " latifolium
Hippurus vulgaris
Moneses uniflora
Pyrola uliginosa
" chlorantha
" minor
" secunda
Menyanthes trifoliata
Veronica americana
" Wormskioldii
" serpyllifolia
\dagger Elephantella groenlandica
Utricularia vulgaris
" minor
Campanula petiolata
Erigeron jucundus
" compositus
Artemisia spithamaea
2. Transcontinental species confined to the Northern Rockies
The number of transcontinental plants found in the Northern Rockies, but not in the Southern, is much smaller, and of these a
larger percentage are arctic-alpine, descending into the Subalpine Zone. Among these plants there are no trees and only a few low shrubs.

\dagger Salix pseudomyrsinites
 Ribes hudsonianum
 Andromeda polifolia

\dagger Eriophorum Chamissonis
\dagger Scirpus pauciflorus
\dagger " caespitosus

Herbs

\dagger Ranunculus hyperboreus
Drosera rotundifolia
Parnassia palustris
\dagger " Kotzebuei
\dagger Saxifraga rivularis
Anthiphylla oppositifolia
Comarum palustre
Mertensia paniculata
Veronica scutellata
\dagger Pinguicula vulgaris
Valeriana septentrionalis
Erigeron alpinus
" unalaschkensis
" purpureum
Senecio pauciflorus
Chiogenes hispidula
Vaccinium uliginosum
\dagger Carex capitata
aenea
Heleonastes
supina
deflexa
Hassei
livida
vaginata
atratiformis
miliaris
scirpoidea
\dagger Juncoides hyperboreum Cypripedium passerinum

Shrubs

Rockies
Some of the transcontinental subarctic plants have not spread at all south in the mountains and are found in the Rockies only at an altitude where the Subarctic Zone covers the lowlands. In other words, they are found only in the Canadian Rockies. These plants are also found north of the arctic timberline. They are:

Shrubs
\dagger Rubus acaulis
\dagger " Chamaemorus
\dagger Ledum groenlandicum
\dagger Cassiope tetragona
\dagger Vaccinum Vitis-Idaea
\dagger Oxycoccus Oxycoccus

Herbs

\dagger Eriophorum Scheucheri
\dagger ". alpinum
\dagger Juncoides arcticum
\dagger arcuatum
\dagger Orchis rotundifolia

\dagger Arenaria norvegica
\dagger Drosera longifolia
\dagger Condrosea Aizoon
\dagger Leptasea tricuspidata

II

I. Species nearly equally distributed in the Rockies and the Pacific mountains

There are many species which seem equally at home both in the Rocky Mountains, the Sierra Nevada and the Cascade Mountains. The larger part of these are more or less xerophytic plants growing in the drier part of the subarctic zone, especially on southern exposures. Nearly all of the plants listed below are also equally distributed in the Montane and the Subalpine Zones. To these belong four of the conifers, Pseudotsuga mucronata, Pinus Murrayana, P. flexilis and P. albicaulis. Of these the last mentioned is the only one which is not better represented in the Montane Zone. Its distribution is also more extensive in the Pacific mountains, and it is not found in the Southern Rockies. It has therefore been placed among the immigrants, though its original home might be the Northern Rockies. Pseudotsuga mucronata is also found in the mountains of northern Mexico. All extend north in the Rockies to about latitude 55 degrees, except Pinus Murrayana, which grows much further north in the Yukon Valley, at latitude 65 degrees.

Trees

Pseudotsuga mucronata
Pinus Murrayana
Shrubs
Salix glaucops
Ribes montigenum
Pachystima myrsinites
Phyllodoce empetriformis
Ledum glandulosum
Kalmia microphylla
Gaultheria humifusa

Herbs

Muhlenbergia comata Agrostis asperifolia " variabilis
Danthonia californica
Graphephorum muticum
Poa longiligula Fendleriana
Bromus polyanthus
Panicularia pauciflora
Elymus glaucus
\dagger Carex nigricans
" Douglasii
" illota
" athrostachya
" phaeocephala
" festivella
" Reynoldsii
" nova
Lemna gibba
Veratrum speciosum
\dagger Juncus Drummondii
\dagger " Parryi
" Mertensianus
Eriogonum umbellatum
\dagger Bistorta bistortoides
Alsine bailcalensis
" calycantha
\dagger Cerastium beeringianum Alsinopsis Nuttallii
Nymphaea polysepala A nemone globosa

Ranunculus Eschscholtzii
Aconitum columbianum
Cardamine umbellata
Draba nitida*
\dagger " oligosperma
\dagger Rhodiola integrifolia
Parnassia fimbriata
Pectianthia pentandra
Micranthes arguta
Ivesia Gordonii
Potentilla diversifolia
Fragaria bracteata
Gayophytum racemosum
A marella strictiflora
" plebeia
Leptodactylon Nuttallii
Phacelia heterophylla
Pentstemon procerus
Mimulus Langsdorfii
Pedicularis racemosa
" bracteata
Erigeron simplex
" Coulteri
" salsuginosus
\dagger Antennaria media
" rosea
Dugaldia Hoopesii \ddagger
Achillea lanulosa
Arnica pedunculata
" cordifolia
2. Species common to the Rockies and the mountains of the Great Basin
A few plants are distributed through a larger or smaller part of the Southern Rockies (especially the Wasatch Mountains of Utah

[^58]and the Bear River Mountains of Idaho) and of the higher mountains of the Great Basin extending to the eastern slopes of the Sierra Nevada. These plants are very few in the Subalpine Zone, more in the Montane, and still more in the Submontane and Upper Sonoran. Some of these are listed under the endemic element of the Rockies, as it is very hard to tell whether their original homes are in the Rockies or in the Basin mountains. To this element belongs one tree, Pinus aristata, growing on dry southern slopes from Colorado west to eastern California. It is perhaps more frequently met with in Colorado, but it might have originated on the eastern slopes of the Sierra Nevada, as its only close relative, P. Balfouriana, is also found there. The following is a partial list of the plants of this category:

Tree

Pinus aristata

Herbs

\dagger Erigeron Kingii
\dagger Draba pectinata
Ivesia utahensis
Drymocallis pumila

Kentrophyta tegetaria
Macronema discoidea
Senecio seridophyllus

3. Species common to the Northern Rockies and the Cascade Mountains

As the Northern Rockies and the Cascades are connected by several mountain chains in British Columbia, it is very hard to decide where these common plants should be counted, to the Rocky Mountain flora or to the flora of the Cascades. It is probable that to the former should be counted those which are generally distributed in the main chain of the Rockies in Alberta and Montana, especially if their range extends south into the Yellowstone Park. I would even include in the Rocky Mountain flora such species as Larix Lyallii (although very local), which crosses the main range at a few places, while I would count Tsuga Mertensiana, which extends east only to the Bitter Root and Selkirk Mountains, to the Cascade element.

a. Rocky Mountain Element

Tree
Larix Lyallii
Shrubs
Ribes petiolaris
\dagger Phyllodoce glanduliflora
Herbs

Carex Tolmiei
Tofieldia intermedia
Erythronium grandiflorum
Eriogonum Piperi
" polyphyllum
\dagger Draba lonchocarpa
Ozomelis trifida
Heuchera ovalifolia
Drymocallis pseudorupestris

Atragallus spicatus Hedysarum sulphurescens Amarella anisopetala Pentstemon crassifolium Castilleja lutea
" pallescens
Erigeron pedatus
Antennaria corymbosa \dagger Senecio Fremontii

b. Cascade Ellement

Tree
Tsuga Mertensiana

Shrubs

Salix Barclayi
" subcaerulea
Alnus sinuata

Carex laeviculmis
" stenochlaena
" Mertensii
Juncoides glabratum
Alnus sinuata
Silene oregana
\dagger Ranunculus Suksdorfii
Aquilegia columbiana

Rubus nivalis
Azaliastrum albiflorum
Gaultheria ovatifolia
Herbs
\dagger Smelowskia ovalis
Arabis Lyallii
Hemieva ranunculifolia
\dagger Lutkea pectinata
Viola adunca
Osmorrhiza Leibergii
Pentstemon fruticosus
Synthyris reniformis

Most of these extend to the western slopes of the Rockies in British Columbia or northern Montana, but Tsuga Mertensiana, Osmorrhiza Leibergii and Synthyris reniformis are restricted to the western slopes of the Bitter Root Mountains in Idaho.

4. Western immigrants from the Sierra Nevada and the

 Cascades, which have invaded the Northern
Rockies

There are a number of species which are common to the Pacific mountains and the Rockies, but have a wider distribution in the former than in the latter. Their home may therefore be regarded as being on the west coast, and they may be regarded as immigrants into the Rocky Mountains. Those of the following list are common to the Sierra Nevada and the Cascades, and their range extends into the Northern Rockies. Some of these are found in the Bitter Root or the Selkirk Mountains only, and are without doubt immigrants. Others extend into the main Rockies of Alberta and Montana and even as far south as northern Wyoming. Whether these are immigrants or endemics to the Rockies is more doubtful. A very few reach the Wasatch Mountains in northern Utah. There are no immigrants from the Sierras to the southern Rockies. It is true that there are a few subalpine endemics common to the Sierra Nevada and the Southern Rockies, but these are plants characteristic of the mountains of the Great Basin, and limited to the eastern slope of the Sierra Nevada and the western slope of the Rockies.

Trees

Pinus albicaulis

Salix cascadensis
Ribes laxiflorum
Ribes glandulosum

Stipa oregonensis
Poa Cusickii

Shrubs
Cassiope Mertensiana
Vaccinium occidentale
Linnaea longiflora

Herbs

Salix sitchensis

Carex spectabilis
Xerophyllum tenax

Juncus Regelii	Dentaria rupicola
" nevadensis	Draba eurocarpa
Cytherea occidentalis	Pectianthia Breweri
\dagger Eriogonum pyrolaefolium	Heuchera glabra
Naiocrene parvifolia	Potentilla fabellifolia
\dagger Arenaria salmonensis	Epilobium oregonense
Anemone Drummondii	" luteum
Pulsatilla occidentalis	\dagger Dasystephana calycosa
Ranunculus alismellus	Romanzoffia sitchensis
Aquilegia formosa	Adenostegia ramosa
Thlaspi californicum	\dagger Pedicularis contorta

Of these Eriogonum pyrolaefolium, Draba eurocarpa, Potentilla flabellifolia and Linnaea longiflora are limited to the Bitter RootSelkirk region, while Pinus albicaulis and Stipa oregonensis extend south to Wyoming, and Vaccinium occidentale to northern Utah.

5. Immigrants from Alaska and the arctic coast

The following are mostly arctic, a few being subarctic plants from near the arctic timber line, which extend farther south in the Rockies and are there found in the subalpine as well as the alpine zone. Of these Silene repens, Micranthes Lyallii, Dasystephana glauca and Euphrasia mollis extend as far south as Montana; the others are limited to the Canadian Rockies.

Shrubs

\dagger Salix myrtillifolia
\dagger " alaxensis
\dagger " Barrattiana
\dagger " Seemanii
" Drummondiana

Carex venustula

- physocarpa
" MacCallae
Silene repens
\dagger Anemone Richardsonii

Salix arbusculoides
" desertorum
" saskatchewana
\dagger Arctous erythrocarpa

Herbs
Aconitum delphinifolium
Sophia sophioides
Pilosella Richardsoniana
A rabis ambigua
Micranthes Lyallii

Micranthes aestivalis
Spathularia Brunnoniana
ferruginea
Argentina subarctica
\dagger Hedysarum Mackenzii
Moneses reticulata Androsace septentrionalis* \dagger Amarella propinqua
\dagger Dasystephana glauca \dagger Castilleja pallida

Euphrasia mollis
Valeriana sitchensis
\dagger Campanula heterodoxa
Erigeron grandiflorum
Erigeron lanatus
\dagger Antennaria monocephala
\dagger Artemisia Richardsomiana Petasites frigida
corymbosa
Senecio lugens

6. Immigrants from the south

Immigrants from the south are almost unknown in the Subalpine Zone; they are more frequent in the Montane and Submontane Zone and are very common in the Sonoran. The following are the only ones found in the subalpine zone:

> Pseudocymopterus purpureus

Blepharineuron tricholepis

III

I. Endemic species, which also have emigrated into the Cascade Mountains
The endemic element of the Rocky Mountains is by far the largest. As the Rockies and the Cascades are connected through several mountain chains it is natural that many of the endemic Rocky Mountain species should have emigrated into the Cascade Mountains. Let us treat these species first.

The dominant tree in the Subalpine Zone is, as already stated in a previous article, \dagger the Engelmann spruce, Picea Engelmannii. Often associated with it is found the subalpine fir, Abies lasiocarpa. Both extend throughout the Rockies from about latitude 55 degrees southward to the higher mountains of New Mexico and Arizona. They are also found in the northern portion of the western or Pacific province, i.e. throughout the Cascades, but not in the Sierra Nevada region. They are not found in the eastern province but are represented there by Picea canadensis, P. mariana, and Abies balsamea. Although the two species of Picea have been reported

[^59]from Alberta and Montana, all specimens referred to these and seen by me have turned out to belong to Picea albertiana. Picea Engelmannii and Abies lasiocarpa may be regarded as endemic Rocky Mountain species, which have emigrated into the Cascades. In the Northern Rockies there could be added to these Larix Lyallii, which has also emigrated into the northern part of the Cascades. In the very lowest part of the Subalpine Zone there are sometimes found intermixed trees of Pseudotsuga mucronata belonging really to the Montane Zone. It has about the same distribution in the Rockies as the spruce and fir mentioned above, but is also equally common though in the Pacific province and extends south into the Sierra Madre of Mexico. It is hard to tell if its original home was in the Rockies or on the Pacific coast.

The two species, Picea Engelmannii and Abies lasiocarpa, are not restricted to the Subalpine Zone, however, for both run down into the Montane Zone on northern slopes and along streams. The element of the Rocky Mountain flora, which has the same distribution as these, is, as stated before, not large and it contains no other woody plants.

Picea Engelmannii

Trisetum majus

Poa reflexa
" leptocoma
" Paddensis
" nevadensis
\dagger " rupicola
\dagger Festuca saximontana
Carex Engelmannii
" pyrenaica*
" petasata
" Geyeri
Juncus balticus montanus
Ophrys nephrophylla
Trollius albiflorus
Cardamine acuminata

Trees

Abies lasiocarpa

Herbs

Arabis rupestris
" Drummondii
Lithophragma bulbifera
Ozomelis stauropetala
Leptasea austromontana \dagger Sieversia ciliata
Epilobium Drummondii
\dagger Phlox caespitosa
Macronema grindelifolium Aster apricus
Anaphalis subalpina
Antennaria umbrinella anaphaloides Arnica Parryi
" Rydbergii

[^60]
2. Endemic species, common to the Northern and Southern

 RockiesThe endemic element, which extends over the whole Rockies, but has not invaded the Cascades, is much larger, but it does not include any of the forest trees and only a few shrubs. It consists of the following species:

Shrubs
\dagger Salix petrophila
\dagger " saximontana

Potamogeton interior
Stipa Tweedyi
" minor
" Nelsonii
Deschampsia curtifolia
Poa Olneyi
" Buckleyana
" epilis
" laevigata
Bromus Porteri
" Pumpellianus
Festuca ingrata Agropyrum andinum Scribneri
Carex pseudoscirpoidea
\dagger " albonigra
\dagger " chalciolepis
\dagger " scopulorum
\dagger " chimaphila
Allium brevistylum
Disporum trachycarpum*
Ophrys borealis
Eriogonum flavum
Bistorta linearifolia

Ribes parvulum
\dagger Vaccinium oreophilum
" scoparium

Herbs

\dagger Claytonia megarrhiza
\dagger Oreobroma pygmaea
Alsine strictiflora \ddagger
Cerastium scopulorum
strictum
\dagger Alsinopsis propinqua
\dagger " obtusiloba
Silene Douglasii
" Menziesii
\dagger Anemone zephyra
Thalictrum venulosum
Atragene tenuiloba
\dagger Ranunculus affinis
\dagger " eximius
" alpeophilus
Aquilegia caerulea
Thlaspi glaucum
\dagger Smelowskia americana
Radicula alpina
\dagger Draba andina " crassa
\dagger Clementsia rhodantha
Heuchera parviflora
\dagger Saxifraga debilis

[^61]\dagger Muscaria adscendens*
66
delicatula
\dagger Micranthes rhomboidea
" arnoglossa
\dagger Spathularia Vreelandii
Potentilla filipes
" glaucophylla
" divisa
\dagger " saximontana
" arachnoidea
Fragaria glauca
\dagger Acomastylis turbinata
Lupinus parviflorus " caespitosus
\dagger Trifolium nanum Atelephragma elegans Aragallus deflexus \dagger Epilobium clavatum
"
wyomingense
Osmorrhiza obtusa
\dagger Vaccinium oreophilum
" scoparium
\dagger Primula Parryi
\dagger Androsace carinata
" subumbellata
" filiformis
Anthropogon elegans
\dagger Dasystephana Romanzovii
\dagger " affinis
Pleurogyne fontana
Swertia scopulina
\dagger " congesta
Leptodactylon pungens
\dagger Phlox depressa

Phlox Kelseyi
" alyssoides
\dagger Phacelia sericea
\dagger " ciliosa
\dagger Eritrichum elongatum
Myosotis alpestris*
Besseya gymnocarpa
Castilleja rhexifolia
" lanata
" lancifolia
\dagger " occidentalis
Valeriana edulis
Solidago scopulorum
\dagger " ciliosa
" oreophila
Chrysopsis pumila \dagger Aster alpinus*
" Fremontii
\dagger Erigeron trifidus
" glabellus
" flagellaris
Antennaria microphylla " sedoides
" aprica
Chaenactis alpina
\dagger Rydbergia grandiflora
Achillea subalpina
\dagger Artemisia scopulorum
Arnica subplumosa
" rhizomata
" pumila
\dagger Senecio Purshianus
" cymbalarioides
" pseudaureus

3. Endemic species limited to the Northern Rockies

The following endemics are not merely local but are practically limited to the Northern Rockies:

[^62]Shrubs
\dagger Salix Tweedyi

Alopecurus caespitosus* Agrostis idahoensis
Poa nervosa
" confusa
Sitanion rigidum Agropyron latiglume
Xerophyllum Douglasii
Erythronium obtusum
Eriogonum caespitosum " heracleoides
Spraguea multiceps
\dagger Alsine americana
Arenaria lithophila
\dagger Silene Lyallii multicaulis
Anemone tetonensis
" lithophila
Ranunculus saxicola " Helleri
\dagger Caltha leptosepala
\dagger Aquilegia Jonesii
\dagger Smelowskia lobata
\dagger Draba densiflora
Arabis oreophila " exilis
Coniomitella Williamsii
Heuchera flabellifolia
grossularifolia
\dagger Telesonix heucheriformis
\dagger Muscaria monticola
\dagger Micranthes Rydbergii

$\dagger \quad$ " | | occidentalis |
| :--- | :--- |
| | saximontana |

Salix Fernaldii
Herbs
Potentilla glomerata
" perdissecta
" Macounii
". ovina
\dagger Acomastylis sericea
Lupinus pulcherrimus
" monticola
Trifolium Haydeni
\dagger " montanense
Cystium platytropus \ddagger
Atelophagma Forwoodii
debilis
Homalobus Bourgovii
\dagger Aragallus foliolosus
\dagger " alpicola
\dagger " viscidus
\dagger " viscidulus
Viola flavovirens
Epilobium latiusculum
" saximontanum
Ligusticum filicinum
Pseudoreoxys bipinnata
Angelica Roseana
Bupleurum americanum
" purpureum
Vaccinium globularis
\dagger Douglasia montana
\dagger Dasystephana monticola
Polemonium pulcherrimum
\dagger " viscosum
\dagger Collomia debilis
\dagger Phlox costata
\dagger " diapensioides

Phacelia alpina	
\dagger	" Lyallii
Mertensia stenoloba	
\dagger	Tweedyi
Pentstemon Lyallii	
\dagger	montanus
	aridus
	pseudohumilus
	Tweedyi
nthyris laciniata	
	dissecta

\dagger Castilleja Tweedyi
\dagger " pulchella
\dagger Pedicularis ctenophora
\dagger " cystopteridifolia
Oreostemma Haydeni
\dagger Erigeron radicatus
Hulsea carnosa Senecio sphaerocephalus
\dagger " alpicola
" megacephalus

Some of these endemics of the Northern Rockies extend south into the Wasatch Mountains of Utah. As I have already stated, the exchange of species between the Northern and Southern Rockies does not take place along the continental divide in Wyoming, but between the Wasatch and Teton Mountains, through the Bear River Mountains in southeastern Idaho. This exchange is more evident in the Montane Zone, but the following northern endemics have crossed the line and their range extends into Utah:

Eriogonum heracleoides	Angelica Roseana
Arabis oreophila	Vaccinium globulare
Anemone tetonensis	Polemonium viscosum
Potentilla Macounii	Collomia debilis
Ligusticum filicinum	Synthyris laciniata

A few of the northern endemics extend eastwards into the Black Hills of South Dakota such as: Atelephragma Forwoodii

Epilobium saximontanum
4. Endemic species restricted to the Southern Rockies

The endemics are more numerous in the Southern Rockies than in the Northern. The more widely distributed are the following: Shrubs

Salix pseudolapponum " Wolfii

Ribes Wolfii
Sambucus microbotrys
Ribes coloradensis

Muhlenbergia Wolfi

".	subalpina
".	filiculmis
gracilis	

\dagger Deschampsia alpicola
\dagger Avena Mortoniana
Trisetum montanum
Graphephorum Wolfi
\dagger Poa alpicola
" Vaseyana
" occidentalis
" lucida
" aperta
" longipedunculata
" Sheldoni
\dagger " Pattersoni
" Traceyi
\dagger " Grayana
\dagger " Lettermanii
Festuca arizonica
$\dagger \quad$ ". Thurberi

Elymus simplex
Carex elynoides
" occidentalis
" Egglestonii
" eburnea
" Nelsonii
\dagger " bella
Veratrum tenuipetalum
Anticlea coloradensis
Juncus Hallii parous
Juncoides subapetalum
Erythronium parviflorum
Sisyrinchium alpestre
Limnorchis purpurascens

Herbs
Eriogonum arcuatum
" chloranthum
" neglectum
\dagger Paronychia pulvinata
Cerastium Earlei
" variabile
" oreophilum
Alsinopsis macrantha
Arenaria confusa
" Tweedyi
" Fendleri
Silene Hallii
\dagger Wahlbergella montana
Ranunculus alismaefolius*
" Macauleyi
" micropetalus
\dagger " adoneus
\dagger " stenolobus
\dagger Caltha rotundifolia
\dagger Aquilegia saximontana
" elegantula
" oreophila
Aconitum Bakeri
" insigne
Delphinium occidentale
" Barbeyi
\dagger Thlaspi coloradense
\dagger " purpurascens
\dagger Smelowskia lineariloba
Lesquerella parvula
" montana
Sophia purpurascens
Cheirinia oblanceolata
" nivalis
\dagger " radicata
\dagger " amoena
\dagger Draba Parryi

[^63]Draba chrysantha
" graminea
streptocarpa
spectabilis
luteola aureformis
\dagger Rhodiola polygama
Ozomelis stenopetala
" Parryi
Heuchera flavescens
\dagger Telesonix Jamesii
\dagger Saxifraga simulata
\dagger Micranthes brachypus
\dagger Leptasea chrysantha
Potentilla modesta
" viridior
" decurrens
Drymocallis fissa
\dagger Trifolium stenolobum
\dagger " lividum
\dagger " dasyphyllum
" Brandegei
\dagger " Parryi
Homalobus humilis
Aragallus oreophilus
" Parryi
Lathyrus arizonicus
Geranium Pattersonii
Viola neomexicana " bellidifolia
Epilobium ovatifolium
" stramineum
Ligusticum Porteri
Ligusticella Eastwoodiae
\dagger Oreoxis humilis
\dagger " Bakeri
\dagger " alpina
Pseudocymopterus montanus

Pseudocymopterus sylvaticus
\dagger
" Tidestromii
Pseudopteryxia anisata
" longiloba
Oxypolis Fendleri
\dagger Angelica Grayi
Conioselinum scopulorum
" coloradense
\dagger Primula angustifolia
Androsace pinetorum
\dagger Anthropogon barbellatum
\dagger Amarella monantha
\dagger Condrophora Fremontii
\dagger " americana
Dasystephana Parryi
Ploemonium delicatum
" foliosissimum
\dagger " confertum
" miletum
" Brandegei
Gilia globularis
\dagger Phlox condensata
Phacelia nervosa
\dagger Eritrichium argenteum
Mertensia polyphylla
\dagger " lateriflora
\dagger." Bakeri
\dagger " nivalis
\dagger " viridula
\dagger " Parryi
\dagger " alpina
\dagger Pentstemon Hallii
\dagger " stenosepalus
\dagger " Harbourii
\dagger " caespitosus
Chionophila Jamesii
\dagger Besseya alpina
" plantaginea

Besseya Ritteriana	\dagger Arlemisia saxicola	
Castilleja brunnescens	Arnica macilenta	
" confusa	"	"

5. Local endemic species

The following are rare and local species which have been collected at only one or two localities within the Canadian Rockies or the states mentioned below:

Canadian Rockies

\dagger Wahlbergella attenuata \dagger Cassiope saximontana \dagger Douglasia nivalis
\dagger Mertensia Drummondii
\dagger Antennaria chlorantha " acuta
> \dagger Potentilla Vreelandii
> Dodecatheon uniflorum

Allium simillisimum
Romanzoffia Leibergii
\dagger †reobroma minima
Aconitum ramosum
\dagger Draba ventrosa
\dagger Muscaria micropetala
Potentilla wyomingensis
" virgultata
" Nelsonii
\dagger Wahlbergella Kingii
Aquilegia scopulorum
Delphinium attenuatum
Capnorchis brachycarpum
Lesquerella Wardii
\dagger Draba sobolifera
" brachystylis
Poa callicroa
" pudica
" tricholepis
Allium Pikeanum
Alsine polygonoides
Radicula curvipes
Radicula Underwoodii
Arabis oblanceolata

Montana
Pedicularis Canbyi
Idaho
\dagger Tonestus laceratus
Wyoming
\dagger Pedicularis Hallii
" lunata
\dagger Trifolium scariosum Mertensia viridis Aquilegia larimiensis \dagger Erigeron flabellifolius Arnica tenuis

Utah
Gormannia debilis
Edwinia macrocalyx
Potentilla paucijuga
\dagger Synthyris pinnatifida
Castilleja viscida
" parvula
Colorado
\dagger Potentilla tenerrima
† " minutifolia
\dagger Trifolium bracteolatum
\dagger Trifolium attenuatum
\dagger Aragallus Hallii
\dagger Polemonium Grayanum
Besseya reflexa
Chaenactis peduncularia

One of the strangest distributions is that of Viola biflora, a European species, which has been collected in America only at a few places in Colorado and in Alaska.

Summary

The subalpine flora contains over eight hundred species. Of these about 30 per cent. are also found above the timberline and
about 60 per cent. are also found in the Montane Zone or pine belt. This leaves only about io per cent., which are restricted to the Subalpine Zone. The percentage of characteristic subalpine species is, however, larger, probably 25 per cent. or 30 per cent. of the number, for the 30 per cent. growing above the timberline is divided into two categories, alpine plants descending below the timberline, and subalpine species ascending above the same. So are also some of the plants which are common to the Subalpine and Montane Zones, essentially subalpine, though they descend into the upper part of the Montane Zone. A small proportion is even common to the three zones, and a few, as for instance Poa crocata, range from the plains to the alpine regions.

Of the eight hundred species, over 20 per cent. are transcontinental plants, and of these the larger part, about 15 per cent. of the whole number, extend as far south as Colorado and scarcely ${ }^{2}$ per cent. are confined to the Canadian Rockies. About one hundred species are common to the old world. Besides the transcontinental element nearly 20 per cent. more are common to some part of the Rocky Mountain region and some part of the Pacific mountains. Of these about 5 per cent. are equally distributed throughout both provinces and 6 per cent. limited to the northern part of both. The remainder is about equally divided between Rocky Mountain plants which have invaded the Cascades and Pacific plants found in the Northern Rockies.

The strictly endemic species constitute nearly 60 per cent., and if those which have invaded the Pacific mountains are added the endemic element comprises about 70 per cent. of the flora. Of the 60 per cent. of strictly endemic plants fully one half are restricted to the Southern Rockies, fully one fourth common to both, and less than one fourth restricted to the Northern.

Of the trees and shrubs found in the Subalpine Zone, eighteen are transcontinental, eighteen are common to the Pacific mountains or emigrants from them, nine are immigrants into the Canadian Rockies from arctic regions, and eighteen are endemics, five of which have invaded the Cascades. Of the endemics, eight are common to both the northern and the southern Rockies, and five are limited to each region; none of them are strictly local.

[^64]
Branched prothallia in the Polypodiaceae*

Elizabeth D. Wuist

(WITH FIFTEEN TEXT FIGURES)
Introduction
Branching in the early stages of the gametophytes of the Polypodiaceae has received little attention in the literature. Branching in older prothallia by means of adventitious outgrowths arising from any part of the prothallium has been described for various genera by Wiegand ('49), Hofmeister ('51), Kny ('70), Goebel ('77), De Bary ('78), Bauke ('78), Dodel-Port ('80), Klebs ('93), Heim ('96), Lagerburg ('06), Pace ('10), Heilbronn ('Io), Fischer ('II), Schlumberger ('II), Wuist ('I3), Pickett ('I4), and Black ('15). Few cases have been cited where branching took place at an early period in the development of the gametophyte, except in the case of Vittaria which has been described and figured by Britton and Taylor ('oz). As it is characteristic of the prothallia of that genus to branch extensively, resembling in this respect the gametophytes of the Hymenophyllaceae, no examples will be cited. Among the other genera of the Polypodiaceae the following cases of branching, while the prothallia were still in the filamentous stage, have been noted. Beck ('80) described branched prothallia of Scolopendrium vulgare Sm., while Klebs ('93) by means of weak light obtained, in Polypodium aureum L., branched prothallia with adventitious outgrowths. Atkinson ('94) observed "in Adiantum cuneatum . . . some curious forms of starved prothallia," and added: "In one case, first noted by a student, the protonemal thread forked a short distance from the spore, and the branches extended at right angles to the primary thread like the arms of the letter T, each arm bearing a prothallium. In another case observed the young prothallium produced nearly colourless protonemal threads from marginal cells. Each of these threads bore a prothallium, and in turn produced marginal threads

[^65]bearing other prothallia." Lagerburg ('o6) figured a slightly branched filamentous male gametophyte of Pteridium aquilinum (L.) Kuhn. Pace ('io) described branched filamentous prothallia of an unknown genus, and Black ('I5) observed extensive branching among the filamentous prothallia of Onoclea sensibilis L. which had grown in a submerged condition in cultures of distilled water.

Fig. I. Branched prothallia of Onoclea sensibilis L., $\times 125$.

Material

The branched prothallia described in this paper occurred in cultures which had been made for the study of the comparative length of the filamentous stage in various genera of the Polypodiaceae. The genera which showed a tendency to branch were the following: Adiantum, Asplenium, Camptosorus, Onoclea, Phegopteris, Polypodium, Pteridium, Scolopendrium, Woodsia and Woodwardia. The spores of these various genera were obtained from several sources. Those of Adiantum were secured from the greenhouse of the botanical department, Cornell University, and those of Phegopteris came from a lawn in Ithaca, New York. The spores of Camptosorus and Scolopendrium were collected in eastern New York by Mr. Ten Eyck Burr; while those of Asplenium, Onoclea,

Pteridium and Woodsia were obtained from the wild botanical gardens of Minneapolis, Minnesota, through the courtesy of Miss Eloise Butler. The spores of Woodwardia were collected near Ann Arbor, Michigan.

Fig. 2. Branched prothallia of Onoclea sensibilis L., X 125.
Cultures of these genera were made by sowing the spores on distilled water and on soil. A series of cultures of Camptosorus, Phegopteris, Pteridium, Onoclea, Scolopendrium, and Woodwardia were made by sowing the spores on Knop's and Prantl's full solutions and on certain modifications of these solutions.

The formulas used in making up Knop's and Prantl's ('8r) nutrient solutions are as follows:

The modifications employed were the following:

Knop's Solution
(a) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ omitted

Prantl's Solution
(a) $\mathrm{NH}_{4} \mathrm{NO}_{3}$ omitted
(b) NaCl and $\mathrm{Na}_{3} \mathrm{PO}_{4}$ omitted
(c) NaCl omitted
(d) $\mathrm{Na}_{3} \mathrm{PO}_{4}$ omitted
(e) CaSO_{4} omitted

After the spores were sown, the cultures were placed before an east window where the conditions of light and temperature were approximately the same for all.

DESCRIPTION OF THE BRANCHED PROTHALLIA

In all the cases observed, the germination of the spores, the manner and the rate of growth in the branching prothallia did not differ from that of the unbranched prothallia. Neither were the branched prothallia limited to one kind of culture, but were found in all three kinds. In some of the genera they appeared simultaneosluiyn the three kinds of cultures.

Fig. 3. Branched prothallia of Onoclea sensibilis L., $\times 75$.
Onoclea sensibilis L.-The prothallia of this species both on the distilled water and the soil cultures showed a decided tendency to branch. Likewise, the branches showed a great diversity of origin and form, and the beginnings of apical cells or more advanced
apical growth was present in all of them. The branched prothallia shown in Figs. I, A-F; 2, G-J; 4, N-Q; and 5, R-T, developed on the distilled water cultures, while those in Figs. 2, K; 3, L, M; and $5, \mathrm{U}$, developed close to the inner pot wall on the soil cultures. Fig. I, A, D, shows branched prothallia whose branches originated in the second cell of the filament. In these prothallia the branches tended to form immediately a plate of cells, while the cells of the filaments continued to divide transversely until three and five cells were formed before they developed an expanded region. In Fig. I, B, C, while the first branches developed from the second cell of the filament, later branches were given off by the expanded portions of the prothallia. Fig. I, D, shows not only the development of a branch from the second cell of the filament but also

Fig. 4. Branched prothallia of Onoclea sensibilis L., $\times 125$.
the tendency of the prothallium to revert to a filamentous stage after a small plate of cells has been formed, if the nutrition is not sufficient to meet its needs. In Figs. I, F; and 2, G, H, it seems characteristic for the first branch to originate in the third cell of the filament. However, other branches developed from the more expanded portion of the prothallia. Fig. 2, I, J, shows pronounced cases of dichotomous branching which occurred where
the filament usually gave rise to the expanded portion of the prothallium. In both of these cases the branches originated in the third cell of the filament. In Fig. 2, J, the group of cells at the apex between the branches indicate that there will be a continuation of the main growth of the prothallium. In Figs. 2, K, and 3, L, M, dichotomous branching developed at a slightly later stage after the first divisions of the expanded portion of the prothallia had been formed. Fig. 4, N-Q, show single lateral branches which appear to have originated at about the same period in the development of the prothallia as the dichotomous branches shown in Figs. 2, K, and 3, L, M. Fig. 5, R, S, shows branches developed from the expanded portions of the prothallia. In Fig.

Fig. 5. Branched prothallia of Onoclea sensibilis L. R-T, $\times{ }_{125} ; \mathrm{U}, \times 75$.

5, R, the branch formed a plate of cells while in Fig. 5 , S, it tended to assume a filamentous character. Fig. 5, T, shows another case of dichotomous branching but at a later stage in the development of the prothallium. Here it occurred at the apex of the expanded region of the young prothallium. Fig. 5, U, is unique in that the branch appears to have originated in the first, second and third cells of the filament.

Adiantum bellum Moore.-Branched prothallia in the various species of Adiantum studied occurred only on the distilled water cultures. In Fig. 6, A, is shown the only case of branching which was observed in A. bellum. Here the filamentous branch originated in the first cell of the filament.

Adiantum Capillus-Veneris L.-Examples of branching among the prothallia of this species were frequently observed. In all cases the branching was monopodial and in the majority of cases, as shown in Fig. 6, B-G, the branches developed from the second cell of the filament. Fig. 6, C-E, shows the manner of develop-

Fig. 6. A. Branched prothallium of Adiantum bellum Moore, $\times 175$. B-G. Branched prothallia of A. Capillus-Veneris L., $\times 125$. H. Branched prothallium of A. cardiochloena Kunze, X 125. I-L. Branched prothallia of A. cuneatum Langsd. \& Fisch., $\times 125$.
ment of the branch and likewise the continued growth of the main filament. In Fig. 6, F, no filament had been developed; the second cell divided to form the beginnings of the expanded portion of the prothallium. From this expanded region the branch was given off.

Adiantum cardiochloena Kunze.-Fig. 6, H. Here the branch developed from the cell which was cut off by the formation of a vertical wall in the second cell of the filament.

Adiantum cuneatum Langsd. \& Fisch.-Fig. 6, I-L. Branching in this species occurred at an early stage in the development of the prothallia. The branches originated in the first cell of the filament and the growth in all cases was very rapid. In Fig. 6, L, is shown a prothallium with a branch as long as the main filament.

Adiantum trapeziforme L.-Fig. 7, A-G, represents branched prothallia of this species. Here branching was both dichotomous and monopodial. In Fig. 7, E, is shown an unusual case of dichotomous branching where both branches tended to grow in the same direction.

Fig. 7. Branched prothallia of A. trapeziforme L., $\times 125$.

Camptosorus rhizophyllus (L.) Link.-Fig. 8, A-D, shows branched prothallia of this species which developed on the distilled water cultures, while Fig. 8, E, shows a prothallium which developed on the inner surface of the pot wall of the soil cultures. Fig. 8, A-D, shows the beginnings of branching in very young prothallia. Branching in two of the cases was dichotomous and in the other two cases monopodial. A few days after the spores were sown on the distilled water, germination took place in the normal manner. In Fig. 8, A, the first prothallial cell instead of dividing by a trans-
verse wall to form a filament of two cells, cut off by two oblique longitudinal walls, a branch cell on either side. Fig. 8, B, C, shows similar cases, however in Fig. 8, B, the second instead of the first prothallial gave rise to the branches. In Fig. 8, C, both the second and third cell each gave rise to a branch while the third cell of the filament continued the growth of the prothallium. In Fig. 8, D, the branch cell which developed from the first prothallial cell divided immediately to form the beginning of a plate of cells. The branched prothallium shown in Fig. 8, E, is in a much more

Fig. 8. Branched prothallia of Camptosorus rhizophyllus L. A-D, $\times 125$; E, $\times 75$.
advanced stage of development. Here a filament of four cells was formed, then a plate of cells developed. From this plate, early in its development, a lateral branch was cut off which in turn formed an expanded prothallium. The original plate of cells continued its growth into a broad prothallium which showed a decided tendency to branch at its apex.

Asplenium Filix-femina (L.) Bernh.-The branched prothallia of A. Filix-femina were observed on both the soil and distilled water cultures. Fig. 9, A, B, developed on the distilled water cultures and Fig. 9, C, on the inner surface of the pot
wall where the light conditions were good and the prothallium was not crowded by other prothallia. Fig. 9, A, shows a young branched prothallium of about twenty cells, which had formed a filament of three cells in the usual manner before the expanded portion of the prothallium developed. The second cell of this filament gave rise to a filamentous branch of three cells; the terminal one of which divided by two oblique longitudinal walls to form the beginnings of an apical cell. From the first cell of the branch was cut off laterally a cell which would later develop into

Fig. 9. Branched prothallia of Asplenium Filix-femina (L.) Bernh., $\times 75$.
another branch. The expanded portion of the prothallium also gave rise to a short filamentous branch of two cells.

In Fig. 9, B, a short filament of three cells was first formed by transverse divisions, then the third cell divided in such a manner as to form the beginnings of an apical cell. In the meantime a cell was cut off laterally from the first cell of the filament. By transverse and longitudinal divisions this branch developed becoming two cells in width and forming at the apex the beginnings of an apical cell. An extreme case of branching is shown in Fig. 9, C. A filament of three cells formed in the usual manner. From the
second cell there was cut off laterally a cell which developed immediately by longitudinal and transverse divisions into an expanded branch with a definite growing region at the apex. The third cell of the original filament divided by a longitudinal division into two cells, a larger and a smaller one. From the larger of these two cells a branch developed which formed another expanded prothallium whose growing point was not definitely marked. In the meantime the growth of the primary prothallium had continued and an expanded part was formed showing a decided tendency to branch dichotomously at the apex.

Fig. 10. A, B. Branched prothallia of Asplenium bulbiferum Forst., $\times 75$. C. Branched prothallium of Asplenium platyneuron (L.) Oakes, $\times 75$.

Asplenium platyneuron (L.) Oakes.-Fig. Io, C, shows a prothallium of this species which developed in a crowded region on a soil culture. In】 this case branching occurred at a later period in the development of the prothallia. No filament was formed in the early development of the prothallium, but the second cell by division gave rise immediately to the beginnings of an expanded cell plate which during development branched dichotomously. Each branch in turn formed a distinct growing region at its apex.

Asplenium bulbiferum Forst.-The two examples of branched prothallia which are shown in Fig. Io, A, B, developed on the distilled water culture. In both cases the branches originated after the expanded portion of the prothallia had been formed. In Fig. Io, A, the branching was dichotomous. This example is especially interesting as showing the tendency of the prothallium to revert to a filamentous condition at the time of the formation of the filamentous branch. In Fig. io, B, branching was monopodial and the branch tended to form immediately a plate of cells.

Fig. II. A-E. Branched prothallia of Phegopteris polypodioides Fée, X 125. G. Branched prothallium of Polypodium aureum L., $\times 125$.

Phegopteris polypodioides Fée.-The branched prothallium which is shown in Fig. II, A, occurred in an uncrowded region of the soil culture while those shown in Figs. 11, B-E, and 12, F, developed in modified Prantl's solutions. Fig. II, B-D, was found in the Prantl's solution with $\mathrm{K}_{2} \mathrm{SO}_{4}$ omitted, while Figs. II, E, and I2, E, occurred in Prantl's solution from which CaSO_{4} had been omitted. In all cases observed the branching was monopodial. In Fig. II, A, the branch was filamentous in form and originated in the second cell of the filament. Fig. II, B, shows
the origin of the branch from the first cell of the filament and Fig. II, D, shows the further development of this branch into a filament of five cells. In Fig. in, C, is shown an interesting example of branching. Here the first prothallial cell instead of dividing by a transverse wall into two cells, divided by means of a longitudinal wall, thus forming two cells side by side. One of these cells by growth and transverse division continued the growth of the filament while the other gave rise to two branches. One formed a filament of two cells, the first of which was extremely long. In Figs. i1, E, and 12, the branches were not formed until

Fig. 12. A-E. Branched prothallia of Woodsia obtusa (Spreng.) Torr., $\times 125$. F. Branched prothallium of Phegopteris polypodioides Fée, $\times 75$.
the expanded portion of the prothallia had begun to develop. In Fig. 12, the expanded portion later showed a decided tendericy to branch monopodially at its apex.

Polypodium aureum L.-Only one case of branching was observed in this species and it developed on the distilled water culture. As shown in Fig. II, G, the branch originated in the first prothallial cell. The rate of growth was the same for both the main filament and the branch.

Woodsia obtusa (Spreng.) Torr.-All the cases of branched prothallia of Woodsia obtusa were observed on distilled water cultures; in two cases branching was dichotomous while in the other three cases it was monopodial. Fig. 12, B, shows the branch originated from the first cell of the filament. In Fig. 12, A, the branch originated from the slightly developed cell plate. Fig. 12, C, D, shows different stages in the development of the dichotomous branches. Fig. 12, E, was an interesting case of branching. Here the wall which cuts off the branch from the main filament did not form at the usual place, but formed almost in the center of the filament cell which gave rise to the branch.

Fig. 13. Branched prothallia of Scolopendrium vulgare $\mathrm{Sm}_{,} \times 125$.
Scolopendrium vulgare Sm .-All cases of branching in this genus were observed on Prantl's solution with CaSO_{4} omitted. Fig. I3, A-E, shows typical examples of the types of branching found in these cultures. FIG. I3, A, is interesting as showing the tendency of both the second and third cells of the filament to form monopodial branches with very short cells. In Fig. 13, B, the branch which originated from the third cell of the filament formed immediately a plate of cells which in turn showed a tendency to
branch at one side of the apex. Fig. 13, C, shows the origin of a branch from the apex of the expanded portion of the prothallium, while Fig. I3, D, E, shows further development of such a branch. These branches formed a small plate of cells, two rows in width, then tended to revert to a filamentous condition, at the same time growing downward, thus giving the appearance of two young prothallia attached by their apexes. Fig. I3, F, shows the only case of dichotomous branching which was observed. One of the branches reverted from a plate of cells to a filament four cells in length.

Woodwardia virginica (L.) Sm.-The branched prothallia of

FIG. 14. Branched prothallia of Woodwardia virginica (L.) Sm. A, D, $\times 125$; B, C, $\times 75$.

Woodwardia virginica varied in size and shape and showed a decided tendency to branch dichotomously. Those shown in Fig. 14, A-D, and 15, E, F, developed on the inner surface of the pot wall of the soil culture. They were not crowded by other prothallia and were well lighted. Fig. I5, G, developed on Prantl's nutrient solution with CaSO_{4} omitted. In Fig. 14, A, B, branching took place from the first and second cells of the filament. In Fig. I4, C, D, and I5, G, branching took place after the plate of
cells had begun to develop, while in Fig. 15, E, F, branching occurred much later in the development of the prothallia.

Pteridium aquilinum (L.) Kuhn.-The only example of branching observed in this species was on Prantl's full solution (Fig. I5, H). Here the branch developed from the second cell of the filament and seemed to show a more vigorous growth than the main filament. The branch formed a short filament of two cells, then developed the beginnings of an expanded region while the

Fig. 15. E-G. Branched prothallia of Woodwardia virginica (L.) Sm., $\times 75 ; a$. antheridia. H. Branched prothallium of Pteridium aquilinum (L.) Kuhn, $\times 125$.
main filament developed three cells of irregular length before cutting off the beginnings of an apical cell. This slowness in growth and the irregularity of length of the cells of the filament would seem to indicate a poorly nourished condition of the main filament.

Discussion

A comparison of the previously described branched prothallia with those found by other writers would seem to indicate that whatever factor, or set of factors, working separately or together, may have been the determining ones, the development of branches
was associated with conditions of the environment. In Klebs's experiment weak light seemed to have been the cause of branching. Light may be the determining factor in branching where the prothallia are crowded and therefore shaded by other prothallia, but it can not be considered the determining factor in all the cases described in this paper, for the majority of these branched prothallia occurred in uncrowded regions of the cultures under good light conditions. However, all the branched prothallia except one developed on cultures of distilled water or nutrient solutions, from which some chemical element had been omitted; while all but two of the branched prothallia on the soil cultures were found on the inner surface of the pot wall. This is especially interesting as indicating that other factors than light entered into the problem. Atkinson designates the branched prothallia of Adiantum as "starved prothallia," which would seem to indicate that they had developed under poor nutritive conditions. Miss Black suggested the possibility of a lack of oxygen as the determining factor in the production of the branched prothallia in her cultures. This explanation would not hold good for the present cases, as all three cultures, distilled water, soil, and nutrient solution, were covered with loosely fitting glass plates and, since the prothallia were not submerged in the nutrient solution or distilled water they received a sufficient supply of oxygen.

As branching was not observed in the nutrient solution cultures, where all the chemical elements necessary for growth were present in sufficient quantities to meet the needs of the prothallia; as few cases of branching were observed among the prothallia of the soil cultures, in positions which appeared favorable for nutrition, it would seem as if there was an intimate connection between nutrition and branching, that poor nutritive conditions accelerated the stimulus of branching, and that good nutritive conditions weakened the stimulus. However, it is impossible to say just what factor of nutrition was the determining one; for even by cultivating prothallia on nutrient solutions whose chemical formula are known, we do not know the physiological effect from the chemical reactions due to the presence or absence of various chemical elements.

Summary

1. Branched prothallia occurred in cultures of Adiantum bellum, A. Capillus-Veneris, A. cardiochlaena, A. cuneatum, A. trapeziforme, Asplenium bulbiferum, A. Filix-femina, A. platyneuron, Camptosorus rhizophyllis, Onoclea sensibilis, Phegopteris polypodioides, Pteridium aquilinum, Scolopendrium vulgare, Woodsia obtusa, and Woodwardia virginica.
2. Branched prothallia were not confined to one type of culture medium, but developed on distilled water, on soil and on nutrient solutions.
3. Branches were not developed at any definite period in the life history of the prothallia, but were formed: (a) by any cell of the filament; (b) by divisions of the last cell of the filament; (c) from the margin and apex of the expanded portion of the prothallium.
4. Branching was both dichotomous and monopodial.
5. A definite relation seemed to exist between branching and nutrition.

In conclusion I wish to express my thanks to Professor Alexander W. Evans of Yale University and to Dr. C. H. Kauffman of the University of Michigan, to both of whom I am indebted for valuable suggestions in the preparation of this paper.

Yale University

Literature Cited

Atkinson, G. F. ('94). The study of the biology of ferns by the collodion method. New York.
Bary, A. de ('78). Ueber apogame Farne und die Erscheinung der Apogamie im Allgemeinen. Bot. Zeit. 36: 449-464, 465-480, 481487. pl. I4.

Bauke, H. ('78). Zur Kenntniss der sexuellen Generation bei den Gattungen Platycerium, Lygodium und Gymnogramme. Bot. Zeit. 36: 753-759, 769-780.
Beck, G. ('78). Entwicklungsgeschichte des Prothalliums von Scolopendrium vulgare Sym. Bot. Zeit. 36: 780. (Abstract.)
Black, C. ('14). Branched cells in the prothallium of Onoclea sensibilis L. Bull. Torrey Club 41: 617-620. pl. 22, 23 .

Britton, E. C. \& Taylor, A. ('02). The life history of Vittaria lineat a Mem. Torrey Club. 8: 185-211. pl. 23-31.
Dodel-Port, A. ('80). Das amphibische Verhalten der Prothallien von Polypodiaceen. Bot. Zeit. 38: 525. 1880. (Review.)
Fischer, H. ('ri). Wasserkulturen von Farnprothallien, mit Bemerkungen über die Bedingungen der Sporenkeimung. Beih. zum Bot. Centralbl. 27^{1} : 54-59.
Goebel, K. ('77). Entwickelungsgeschichte des Prothalliums von Gymnogramme leptophylla. Bot. Zeit. 35: 671-694, 681-694, 697-711. pl. 12.
Heilbronn, A. ('ro). Apogamie, Bastardierung und Erblichkeitsverhältnisse bei einigen Farnen. Flora 101 : $\mathbf{1} \mathbf{- 4 2 . f . ~} 1$ - 43 .
Heim, C. ('96). Untersuchungen über Farnprothallien. Flora 82: 329-373. f. $1-16$.
Hofmeister, W. ('51). Vergleichende Untersuchungen der Keimung, Entfaltung und Fruchtbildung höherer Kryptogamen und der Samenbildung der Coniferen. Leipzig.
Klebs, G. ('93). Ueber den Einfluss des Lichtes auf die Fortpflanzung der Gewächse. Biol. Centralbl. 13: 641-656. 1893.
Kny, L. ('7o). Ueber den Bau und die Entwickelung des Farrn-antheridiums. Monatsber. K. Preuss. Akad. Wiss. Berlin 1869: 416-43I. f. $1-19$.

Lagerburg, T. ('o6). Zur Entwickelungsgeschichte des Pteridium aquilinum (L.) Kuhn. Arkiv. Bot. 65: 1-28. pl. 1-5.
Pace, L. ('10). Some peculiar fern prothallia. Bot. Gaz. 50: 4958. $f .1-11$.

Pickett, F. L. ('I4). The development of the prothallium of Camptosorus rhisophyllus. Bot. Gaz. 57: 228-238. pl. 12, 13 +f. 1-41.
Prantl, K. ('81). Beobachtungen über die Ernährung der Farnprothallien und die Vertheilung der Sexualorgane. Bot. Zeit. 39: 753758, 770-776.
Schlumberger, O. ('II). Familienmerkmale der Cyatheaceen und Polypodiaceen und die Beziehungen der Gattung Woodsia und verwandter Arten zu beiden Familien. Flora 102: 383 -414. f. 1 -15.
Wiegand, A. ('49). Zur Entwickelungsgeschichte der Farrnkräuter. Bot. Zeit. 7: $17-26,33-40,49-54,73-80,89-97,105-116$. pl. I.
Wuist, E. D. ('I3). Sex and development of the gametophyte of Onoclea Struthiopteris. Physiol. Researches 1: 93-132. f. $1-15$.

A new species of Pritchardia

Joseph F. Rock

(WITH PLATE $2 I$ AND ONE TEXT FIGURE)
The genus of palms, Pritchardia, is represented in the Hawaiian Islands by eleven species, including the new species treated in this paper. Originally, there were only two species known from these islands, Pritchardia Gaudichaudii Wendl. and Pritchardia Martii Wendl.

For several years I have carried on, on all the islands of this group, thorough botanical explorations; these have brought to light several new species of Pritchardia, most of which have been described by O. Beccari. Kauai has furnished two species; P. minor and P. eriophora; Maui, one species, P. arecina; Oahu, one species, P. Rockiana; and Hawaii, two species, P. eriostachya and P. Beccariana, the last (which is the handsomest of all) being here described for the first time. Beccari had described previously P. Hillebrandii from Molokai, P. lanigera from the Kohala Mountains, on Hawaii, and P. remota from Bird Island (Moku Manu), northwest of Kauai.

During a sojourn at the Volcano of Kilauea with my friend, M. L. Copeland, whom I take this opportunity to thank for his kind assistance, we discovered this handsome species in the humid forests of Glenwood. I was at once struck by the extraordinary size of this palm, its peculiar inflorescence and large globose fruits. We felled one tree and thus obtained complete specimens, some of which I forwarded to my friend, Dr. O. Beccari, with whom I had had long and interesting discussions of our Hawaiian palms while in Florence less than two years ago. He pronounced the palm a very distinct species but asked me, as he was occupied with other work, to describe it. With his consent I have taken the liberty of naming this beautiful species in his honor.

I believe that the Hawaiian Islands still harbor other species of Pritchardia, especially Lanai and the Island of Oahu; future
explorations will doubtless increase our knowledge of this beautiful genus of palms.

Pritchardia Beccariana Rock, sp. nov.

Trunk $20-25 \mathrm{~m}$. tall, about 40 cm . in diameter at the base, cylindrical, grayish, smooth, about 30 cm . in diameter breasthigh, with more or less distant rings, showing the attachment of the leaves, the crown of leaves forming perfect globose heads of large dimensions; leaves large, suborbicular, measuring 1.5 m . or more from the ligule to the apex of the median segment, the ligule rotundate and prolonged in the middle to a distinct point; petioles 3 m . long in young fronds, $1.5-2 \mathrm{~m}$. in mature fronds, stout, and covered on the under side with a fawn-colored squamaceous tomentum; segments about sixty, each segment $4-4.5 \mathrm{~cm}$. wide, and subdivided again for 30 cm . into linear-acuminate lobes, with filaments $15-25 \mathrm{~cm}$. long in the bifurcations, the lower surface of the leaves, especially near the petiole and costae covered with a squamaceous, flaky tomentum, upper surface glabrous; spadix $2-3 \mathrm{~m}$. long including a main peduncle of I m ., the spadix branching into three to five large open panicles at intervals of $3-4 \mathrm{dm}$.; the terete peduncle 2 cm . in diameter, enclosed by various, tubulose spathes $70-80 \mathrm{~cm}$. long; panicles compressed, loose, the first two or three open and loosely branched, the last two nearest the leaf-axil short and densely branched, the branchlets short and spirally twisted; the former bearing abortive flowers only, the latter, or often only the last panicle producing fertile flowers and mature fruits; each panicle enclosed in several, reddish brown spathes, $30-40 \mathrm{~cm}$., long covered with a squamaceous tomentum on the outside; flowers subsessile, on the more or less tortuous branchlets of the compound panicle, those bearing fertile flowers spirally twisted; calyx 5 mm . long, tubular-cylindrical, truncate at base and apex, with three very short teeth; petals (?); staminal cup much longer than the calyx, exserted 3 mm ., and terminating into six, somewhat compressed, filaments, 2 mm . long; anthers acute at the apex, obtuse and slightly notched at the base, 3.5 mm . long, attached at about the middle to the filament; style columnar, triquetrous, with three punctiform stigmas at the apex; mature fruits large, subglobose; black, shining, 4 cm . in diameter, slightly flattened on one side, with a short conical apex; epicarp black, thin, fragile at the maturity of the fruit and exposing the thick, fibrous mesocarp, $5-6 \mathrm{~mm}$. thick at the base, thinner at the apex; endocarp ligneous, I mm. thick; cavity of the endocarp circular, slightly flattened at the base, 2.75 cm . in diameter, not situated exactly in the middle of the fruit, but a little nearer to the apex;
seed globose, base slightly broader, dark, brownish black, albumen horny, snow-white, hilum orbicular, embryo situated immediately above the hilum. [Plate 21 and Text fig. i.]

Island of Hawaif: in the rain forests in the neighborhood of Glenwood at an elevation of 3,200 feet; collected flowering and fruiting, December 23, 1914. The type specimen is preserved in the herbarium of the College of Hawaii.

Fig. 1. Pritchardia Beccariana Rock
A. Mature fruit, slightly reduced. B. Mature fruit cut in half, showing whole seed, slightly reduced: p, pericarp; e, endocarp; h, hilum. C. Seed cut in half, slightly reduced: h, hilum; e, embryo.

This exceedingly distinct species is one of the handsomest and tallest of the genus Pritchardia. It forms large groves throughout the forest in the vicinity of Glenwood, several hundred feet below the volcano of Kilauea, growing in company with Metrosideros polymorpha, Cibotium Chamissoi, Cibotium Menziesii, etc., towering as high as the tallest Metrosideros (Ohia Lehua) trees.

This species differs from all other species of Pritchardia mainly in the enormous inflorescence, which branches into five distinct spadices; in the large globose fruits; and in the large dimensions of the plant in general.

College of Hawaif,
Honolulu, Hawaitan Islands

Description of plate 21

Stand of Pritchardia Beccariana Rock, growing in the humid forest near Glenwood, Olaa, Hawaii, at an elevation of 3,200 feet. Ferns in the foreground, Cibolium Chamissoi and C. Menziesii; trees in the background, Metrosideros polymor pha.

Botanical work of Dr, E W. Hilgard

Roland M. Harper

Dr. Eugene Woldemar Hilgard, who was born in Zweibrücken, Bavaria, January 5, 1833, and died in Berkeley, California, three days after his eighty-third birthday, was a shining example of a versatile type of scientist, common in the nineteenth century but becoming scarce in these days of increasing specialization. He was best known as a soil investigator and agronomist, but also ranked high as a geologist and chemist, and was pretty well versed in systematic and geographical botany. He was one of the pioneers in the correlation of soils with vegetation in America, and always emphasized the importance of native vegetation as an indicator of the productivity of soils. The fact that the scientific study of soils is almost inseparable from that of plant ecology was more fully appreciated by him than by most American soil investigators now living (some of whom seem to have little or no botanical training, if one may judge by their writings).

His first contribution to botanical science washis 415 -page report on the geology and agriculture of Mississippi, published in 1860. In that the soils and vegetation of the several geographical divisions of the state (except the alluvium of the Mississippi River) were described in considerable detail, and it was at the time and for years afterward the best account of Mississippi vegetation in existence. As it was written before the publication of Chapman's Flora of the Southern United States, when there were no very satisfactory manuals for that part of the country (the best available being Darby's), some of the plants were wrongly identified, but a reader familiar with the southern flora can easily make the necessary corrections for himself.

A somewhat similar treatment was employed in a 44 -page pamphlet on a geological reconnaissance of Louisiana, published in New Orleans in 1869, and in his descriptions of Mississippi, Louisiana and California, in the fifth and sixth volumes of the Tenth Census (1884), which have never received the attention from botanists that they deserve.

In Garden and Forest for March 7 and June 13, 1888, he had short papers on California forest trees; and a longer account of the weeds of that state by him appeared in the California Experiment Station Report for 1890 (pp. 238-252) and, almost simultaneously, in several numbers of Garden and Forest during the second half of 1891. His paper on the cienagas of southern California, published in the Bulletin of the Geological Society of America in 1892 and in the California Experiment Station Report for 18921894, is of some botanical interest, as are several papers on deserts and alkali lands in various publications. His review of Fernald's "Soil preferences of alpine plants," in Science for January 24, 1908, shows an intimate knowledge of ecological principles.

His text-book on Soils, with 620 pages and numerous illustrations, published in 1906, is practically a summary of all his researches, and contains much that is of interest and value to botanists.* He contributed many papers on cultivated plants to the reports and bulletins of the California Experiment Station (of which he was director from 1888 to 1904), which it is hardly worth while to enumerate separately.

In the line of botanical discoveries, he is credited by Chapman (Fl. So. U. S. ed. 2, 658. 1883) with being the first to find Eriocaulon septangulare in the South. \dagger During his geographical explorations for the "Northern Transcontinental Survey" in Montana and Washington in 1882 he collected a few plants, at least one of which turned out to be undescribed; this was named Oenothera Hilgardi by Greene (Bull. Torrey Club 10: 41. 1883) and afterwards transferred to Sphaerostigma by Small (see Piper, Contr. U. S. Nat. Herb. II: 18, 406. 1906).

The writer, after corresponding with Dr. Hilgard for several

[^66]years, had the pleasure of meeting him at his home in Berkeley at the time of the A.A.A.S. meetings last summer, and found him somewhat enfeebled by age but wide-awake mentally. He always wrote for publication in plain simple language, as free as possible from technicalities, and was very modest, sincere and unaffected, as befits a great scientist.

Accounts of his life and work by two of his California colleagues were published in Science for March 31, 1916, and reprinted with some additions, two portraits, and a bibliography of over 250 titles, in the University of California Chronicle, vol. 18, no. 2 (this also issued in June as a separately paged pamphlet with 50 pages). Other recent biographical sketches are in the Experiment Station Record (Washington) for March, 1916, and the Geographical Review (New York) for May. The last contains references to a few earlier ones.

College Point, New York

INDEX TO AMERICAN BOTANICAL LITERATURE 1915-1916

The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of one cent for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Appleman, C. O. Biochemical and physiological study of the rest period in the tubers of Solanum tuberosum. Bot. Gaz. 6r: 265-294. f. 1 , 2. 18 Ap 1916.

Bartholomew, E. T. Observations on the fern rust Hyalopsora Polypodii. Bull. Torrey Club 43: 195-199.f. I-3. 20 My 1916.
Beardslee, H. C. Boletus rubinellus. In Lloyd, C. G., Mycological Notes 40: 543, 544.f. 745. F 1916.
Boshnakian, S. Breeding Nephrolepis ferns. Jour. Heredity 7: 225236. f. 18 -25. 26 Ap 1916.

Bourdot, H. New porias from France. In Lloyd, C. G., Mycological Notes 40: 543.f. 743, 744. F 1916. Poria mellita and P. mollicula.
Chase, A. The structure of the spikelet of Aphanelytrım. Bot. Gaz. 6I: 340-343.f. I. 18 Ap 1916.
Cockerell, T. D. A. A lower Cretaceous flora in Colorado. Jour: Washington Acad. Sci. 6: 109-II2.f. 1, 2. 4 Mri916.
Coker, W. C. The laurel oak or Darlinyston oak (Cuercus laurifolia Michx.). Jour. Elisha Mitchell Sci. Soc. 32: 38-40. pl. 2-5. Ap .1916.
Collins, F. S., \& Howe, M. A. Notes on species of Halymenia. Bull. Torrey Club 43: 169-182. 20 My 1916.
Four new species are described.

Collins, F. S., \& others. Notes from the Woods Hole Laboratory-1915. Rhodora 18: 90-92.f. 1, 2. Ap 1916.
Includes notes on 1. Prasiola stipitata Suhr., 2. Chamaesiphon incrustans Grun., and 3. Compsopogon coerulens (Balbis) Mont.
Cook, M. T. Common diseases of the grape. New Jersey Agr. Exp. Sta. Circ. 55: 1-8.f. I, 2. I5 Ja 1916.
Crabill, C. H. The frog-eye leaf spot of apples. Virginia Agr. Exp. Sta. Bull. 209: I-I6.f. I-5. D 1915. Sphaeropsis malorum.
Detwiler, S. B. The birches. Am. Forestry 22: 195-198. Ap 1916. [Illust.]
Dunham, E. M. How to know the mosses without the aid of a lens. Bryologist 19: 19-23. Mr 1916.
East, E. M. Studies on size inheritance in Nicotiana. Genetics I: 164-176.f. 1-4. Mr 1916.
Eriksson, J. Fortgesetzte Studien über Rhizoctonia violacea DC. Arkiv. Bot. 14 ${ }^{12}$: I-3I.f. 1 -I3. 8 J1 1915.
Evans, A. W. Additions to the hepatic flora of Quebec. Bryologist 19: 27-30. Mr 1916.
Evans, A. W. Notes on New England Hepaticae-XIII. Rhodora 18: 74-85.f. I-13. 7 Ap 1916; 103-120. pl. $120+f .14-40.4$ My 1916.

Gates, F. C. Notes on Philippine vegetation: the Casuarina association. Torreya 16: 91-95.f. I-4. Ap 1916.
Grantham, A. E., \& Groff, F. Occurrence of sterile spikelets in wheat. Jour. Agr. Research 6: 235-250. pl. 27. 8 My 1916.
Harris, J. A. Studies on the correlation of morphological and physiological characters: the development of the primordial leaves in teratological bean seedlings. Genetics $\mathbf{1}$: 185-196. Mr 1916.
Hassler, E. Ex herbario Hassleriano: Novitates paraguariensis. XX. Repert. Sp. Nov. 14: 161-180. 31 D 1915.
Includes descriptions of twelve new species and several new varieties and new combinations.
Hawkins, L. A. Effect of certain species of Fusarium on the composition of the potato tuber. Jour. Agr. Research 6: $183^{-196 .}$ I My 1916.

Higgins, J. E. Growing melons on trees. Jour. Heredity 7: 208-220. f. 7-13. 26 Ap 1916.

Howard, W. L. An experimental study of the rest period in plants. II. The summer rest of bulbs and herbaceous perennials. Missouri Agr. Exp. Sta. Research Bull. 15: 3-25. Ap 1915; III. Pot grown woody plants. Missouri Agr. Exp. Sta. Research Bull. 16: $1-27$. f. I-12. Ap 1915; IV. Seeds. Missouri Agr. Exp. Sta. Research Bull. 17: 1-58. Ap 1915.
Howe, M. A., \& Lyon, H. L. Algae. [In Rock, J. F., Palmyra Island with a description of its flora.] College of Hawaii Publ. Bull. 4: 31, 32. 19 Ap 1916. Includes Cladophora sabulosa Lyon sp, nov.
Kränzlin, F. Orchidaceae quaedam Americanae. Arkiv. Bot. 14^{10} : I-8. 22 Ap 1915.
Includes descriptions of 5 new species from Brazil and 2 from Mexico.
Levison, J. J., \& Richards, J. L. Ornamental and shade trees. Damage by spurs. Am. Forestry 22: 228-231. Ap 1916. [Illust.]
Lloyd, C. G. Mycological notes 40: 541-556. f. 743-765 + frontispiece. F 1916.
Loessener, T. Mexikanische und Zentralamerikanische Novitäten. V. Repert Sp. Nov. 14: 97-113. 15 O 1915. Includes brief articles by various authors not indexed separately.
Lorenz, A. Notes on Nardia crenuliformis (Aust.) Lindb. Bryologist 19: 24. pl. 2. Mr 1916.
Lyon, H. L. Fungi. [In Rock, J. F., Palmyra Island with a description of its flora.] College Hawaii Publ. Bull. 4: 33. 19 Ap 1916. Includes Auricularia adnata and Polystictus palmyrensis, spp. nov.
Martin, G. W. The common diseases of the pear. New Jersey Agr. Exp. Sta. 52: 1-12.f. 1 -6. I D 1915.
Meier, F. C. Watermelon stem-end rot. Jour. Agr. Research 6: 149-152. pl. 17. 24 Ap 1916.
Merriman, M. L. Nuclear division of Spirogyra. II. Nuclear division in S. bellis. Bot. Gaz. 61: 311-324. pl. 18-20. 18 Ap 1916.
Meyer, R. Einiges über den Echinocactus gibbosus P. DC. Monats. Kakteenk. 26: 20-23. F i916. [Illust.]
Michell, M. R. The embryo sac of Richardia africana Kth. Bot. Gaz. 61: 325-336. pl. 2I-23. 18 Ap 1916.
Millspaugh, C. F. Contributions to North American EuphorbiaceaeVI. Field Mus. Nat. Hist. Publ. Bot. 2: 401-420. Ap 1916. Includes descriptions of 15 new species, Chamaesyce (9), Acalypha (2), Croton (3), and Tragia (I).

Millspaugh, C. F. Vegetation of Alacran reef. Field Mus. Nat. Hist. Publ. Bot. 2: 421-43I. Ap 1916. [Illust.]
Piper, C. V. Notes on Quamasia with a description of a new species. Proc. Biol. Soc. Washington 29: 77-82. 4 Ap 1916.
Plitt, C. C. Dr. Hermann Edward Hasse. Bryologist 19: 30-33. Mr 1916. [Portrait.]
Rhodes, P. G. M. Some bryological photographs from North Wales. Bryologist 19: 26, 27. pl. I. Mr 1916.
Rigg, G. B. Decay and soil toxins. Bot. Gaz. 6I: 295-310. 18 Ap 1916.

Rock, J. F. Palmyra Island with a description of its flora. College of Hawaii Publ. Bull. 4: i-53. pl. $1-20$. 19 Ap 1916.
Published with the cooperation of O. Beccari, A. Zahlbruckner, U. Martelli, H. L. Lyon, and M. A. Howe.

Safford, W. E. Desmopsis, a new genus of Annonaceae. Bull. Torrey Club 43: 183-193. pl. 7-9 +f. r. 20 My 1916.
Smith, E. F. Crowngall studies showing changes in plant structure due to a changed stimulus. Jour. Agr. Research 6: 179-182. pl. 18-23. 24 Ap 1916. Preliminary note.
Spaulding, P. Foresters have a vital interest in the white pine blister rust. Proc. Soc. Am. Foresters II: 40-47. Ja 1916.
Stevens, O. A. Notes on the distribution and growth of North Dakota Cuscutae. Am. Jour. Bot. 3: 185-188. f. 1-12. Ap 1916.
Stevenson, J. J. Interrelations of the fossil fuels. I. Proc. Am. Philos. Soc. 55: 21-203. 1916.
St. John, H. Additional notes on Rhododendron maximum in New Hampshire. Rhodora 18: 73, 74. Ap 1916.
Taylor, N. The Wild Flower Preservation Society of America. Torreya 16: 79, 80. Ap 1916.
Thom, C., \& Ayers, S. H. Effect of pasteurization on mold spores. Jour. Agr. Research 6: $153-166 . f .1-3 . \quad 24$ Ap 1916.
Thompson, W. P. The morphology and affinities of Gnetum. Am. Jour. Bot. 3: 135-184. pl. 2-7. Ap 1916.
Tupper, W. W., \& Bartlett, H. H. A comparison of the wood structure of Oenothera stenomeres and its tetraploid mutation gigas. Genetics I: 177-184. Mr 1916.
Turesson, G. Lysichiton camtschatcense (L.) Schott., and its behavior in Sphagnum bogs. Am. Jour. Bot. 3: 189-209.f. 1-5. Ap 1916.

PRITCHARDIA BECCARIANA Rock

BULLETIN

OF THE

TORREY BOTANICAL CLUB

AUGUST, 1916

The development of the embryo sac and embryo of Cooperia Drummondii*

Margaret B. Church

(with plates 22 AND 23)
The following study of the embryo sac and embryo of Cooperia Drummondii was undertaken with the idea that a further knowledge of the embryo sac of the Amaryllidaceae would doubtless be of value and interest, since little or no work of this kind has been attempted recently in connection with this family.

The geographical range of Cooperia Drummondii extends from the prairies of southern Kansas southwest into northern Mexico and as far west as New Mexico. The leaves of a mature plant are glabrous, the very narrow grass-like blades arising from coated, subglobose bulbs which are six to eight inches below the surface of the ground. The roots are coarse and unbranched except when injured at the tip. The flower scape varies from pale green at the base to yellow at the perianth. Its veins are a distinct rose color. The flower at the time of opening is creamy white with the tips of the lobes of the salverform perianth sometimes rose-colored. It becomes pure white when in full bloom and on withering gradually changes to deep dull rose. No difficulty was encountered in obtaining seed in the greenhouse from self-pollinated flowers.

Cooperia Drummondii is popularly known as "Rain Lily," because the flower scapes shoot up and bear blooms very rapidly
[The Bulletin for July (43: $343^{-396}, \mathrm{pl} .21$) was issued August 12, 1916.]

* Contribution from the Botanical Laboratory of Brown University.
after a heavy shower of rain. In contrast it is worth noting that Habranthus [Zephyranthes] gracilifolius β Boothianus breaks the sheath three days before the flower opens (Lindley, 7). The flowering period of Cooperia Drummondii in the vicinity of Austin, Texas, usually includes the last week in April and the first week in May.

The material for the study of the development of the embryo sac was furnished to the writer by Professor H. H. York, who collected it on the campus of the University of Texas. For the study of the development of the embryo, bulbs were secured from the above mentioned place, and were grown in the greenhouse at Brown University. Flemming's weaker and stronger solutions, chromo-acetic acid, alcoholic and aqueous picro-acetic acid were used in general for killing and fixation. Aqueous picro-acetic gave the best results in the case of the embryo sac and the mature embryo. The following additional solutions were tried in an attempt to prevent the shrinking of the immature embryo during the process of killing and fixation: (1) 2 c.c. of a one per cent. aqueous solution of acetic acid, II c.c. of a one per cent. aqueous solution of osmic acid and II c.c. of water for fifteen minutes; (2) a one per cent. aqueous solution of osmic acid for fifteen minutes; (3) a one per cent. aqueous solution of osmic acid for three minutes, followed by twenty-four hours in Schaffner's chromo-acetic; (4) a solution of osmic acid and acetic acid in the proportions mentioned above for three minutes, followed by Schaffner's chromo-acetic for twenty-four hours; and (5) a two per cent. aqueous solution of acetic acid for twenty-four hours. The two per cent. aqueous solution of acetic acid proved to be a perfect fixing agent for the immature embryos, especially if the individual ovules were dissected out from the ovary immediately before fixing. Dehydration and imbedding were carried on in the usual way, except in the case of embryos large enough to be dissected out of the ovule. Here the laying of the material in a certain position in order that sectioning might be in the right plane was facilitated by staining the embryos in toto by means of a dip into erythrosin before dehydration was completed, and the subsequent use of the binocular microscope and substage illumination as will be described. The binocular microscope was unscrewed
from its stand and placed upon a ground glass plate below which in a convenient compartment was an electric light bulb. A glass plate, bearing the imbedding ells, was placed on the arms of the stage. The light from the electric bulb readily made visible the gross structure of the embryo, so that the orientation of the object could be positively determined. Care was taken not to overheat the lenses of the binocular by leaving the electric bulb lighted for too long a period. The imbedding was done therefore quite rapidly. Serial sections $10-12 \mu$ in thickness were cut. Delafield's hematoxylin; Haidenhain's iron-alum haematoxylin with fuchsin, erythrosin or Orange G; thionin with erythrosin; and Flemming's triple stain were used. The last gave the best results.

Very early in the development of the ovule, the primitive archesporial cell, which is hypodermal in origin, may be distinguished from the surrounding somatic tissue by its size, its granular content and its prominent nucleus (Fig. I). Two hypodermal cells in one ovule were noted in five examples out of one hundred and forty-six ovules examined (Fig. 2). It was not possible to follow the subsequent development. Guignard (4) reported this condition in Ornithogalum pyrenaicum, and similar instances have been found in an increasing number of the Liliaceae. See Coulter and Chamberlain (1), Lechmere (6), and McAllister (8, 9). At this time the integuments of the ovule are not visible. The archesporial cell develops at the expense of the surrounding nucellus into a large oblong cell, which stands with its longer axis parallel to that of the ovule (Fig. 3). No tapetal cells were observed. The absence of a parietal tissue occurs among some of the close relatives of the Amaryllidaceae, as in Allium, Hemerocallis, Lilium, and Erythronium of the Liliaceae; and in Sisyrinchium iridifolium and Iris stylosa of the Iridaceae (Coulter and Chamberlain, r).

Megaspore formation takes place in the way usual for the Liliaceae. The archesporial cell becomes directly the one-celled stage of the embryo sac (Fig. 3). It was not possible to follow out the behavior of the chromosomes in any of the divisions of the embryo sac nuclei. Since the mode of development of the embryo sac of Cooperia Drummondii is similar to that of Ery-
thronium (Schaffner, II), Lilium and Tulipa Gesneriana (Treub and Mellink, $\mathbf{1 2}$) and other Liliaceae, we may for the present assume that the reduction division occurs with the division of the one-celled stage and is completed when the four-nucleate embryo sac is formed (Figs. 4, 5). By a division of the four nuclei the eightnucleate sac results (Fig. 6).

At the time of fertilization the two polar nuclei are in the chalazal half of the sac, the antipodals near the chalaza, and the egg cell and the synergids opposite the micropyle (Fig. 6). The polar nuclei have a very thin protoplasmic content, although their nucleoli stain heavily. The three antipodals are at first arranged in a pyramid whose apex points toward the micropyle. Just before fertilization they become rearranged in a row, parallel with the longitudinal axis of the chalazal end of the embryo sac; while after fertilization they generally move again, this time to form a pyramid with its apex directed toward the chalaza. The antipodals stained very deeply in all of the combinations of stains that were used. This may be indicative of disintegration. The synergids have dense but vacuolated protoplasm. The egg cell is large and pear-shaped with a large round nucleus. It is directly in front of the micropyle. The dense protoplasm of the egg is less vacuolated than that of the synergids.

The nucellus at the time of fertilization has been largely absorbed or digested except for a thin layer of cells about the micropylar portion of the sac and a small mass of cells located at the chalaza and almost wholly deprived of protoplasm. The antipodals show a marked tendency to enlarge, and in numerous instances increase so as to almost equal the egg cell in size. This tendency toward enlargement persists even after fertilization, when the partial development of the embryo has taken place. Ordinarily, however, the antipodals have almost disintegrated when the embryo has become two-celled. The two polar nuclei, which are in close contact at maturation, fuse at the time of fertilization. A few examples of triple fusion were observed (Fig. 8). Ernst (2) has observed this condition in Paris quadrifolia. Further, it has been observed in other Liliaceae: as in Trillium grandifolium; in species of Lilium, of Fritillaria, and of Tulipa; and in Endymion nutans (Coulter and Chamberlain, $\mathbf{1}$). The synergids disappear at fertilization.

Following fertilization the endosperm nucleus divides, and by subsequent mitotic divisions a number of free nuclei, apparently without nuclear walls, are formed (Fig. 17), which are imbedded in the cytoplasm lining the wall of the sac and surrounding the embryo. Free nuclei are found in Alisma Plantago (Schaffner, 10), Leucojum vernum (Hofmeister, 5), and Xyris indica (Weinzieher, 13). Eventually these nuclei become separated by cell walls, which are at first laid down so as to include several nuclei in each lumen (Fig. 18). Later these multinucleate cells divide in such a manner that a single nucleus becomes enclosed within a lumen. The cells divide by amitosis after the walls are laid down. Several cases have been noted where endosperm formation was lacking. In connection with endosperm development in Cooperia Drummondii the description of endosperm formation in Leucojum vernum as given by Hofmeister (5) is of interest: ". . . the kernels in the inner fluid of the embryo sac increase in size and number; most of them lie now against the wall of the embryo sac; . . . they unite with the cells which fill up the space of the embryo sac. The lower part of the nucellus is pressed continually outward by the growing endosperm as the seed ripens."

At first it was impossible to kill and fix the early stages of the embryo. This difficulty was due to the fact that a suitable killing and fixing agent which would not cause great shrinkage of the protoplasm in these particular stages was not known. Therefore free hand sections or sections cut on a freezing microtome were used. The working out of the anatomical details of the developing embryo becomes possible with the use of a two per cent. acetic acid in water solution as a killing and fixing agent.

After fertilization the oöspore continues to occupy the same position as the oösphere. It enlarges (FIG. 7) and soon divides by a transverse wall (Fig. 9). Soon after the first division of the oöspore, the two-celled proembryo is in contact with the nucellus at the micropylar end of the embryo sac, and a little later is firmly attached at the same point. The basal cell of the proembryo develops into a suspensor, while the free terminal cell gives rise to the embryo proper (Fig. 10). The second cell division of the proembryo occurs in the basal cell, resulting in the
formation of a two-celled suspensor. Further cell divisions in the suspensor have not been observed. A number of examples were found where the suspensor consisted of but a single cell. Following the division of the basal cell, the free terminal cell divides first in a plane parallel with the longitudinal axis of the proembryo, forming the two-celled embryo (Fig. II). The four-celled stage results from radial walls perpendicular to the first (Fig. I2).

From the four-celled stage by repeated division arises a spherical mass of cells (Figs. 13, 14), on one side of which develops a niche or indentation (Fig. 15). This niche is the point where the shoot primordium will arise, while the cotyledon differentiates off from the rounded top, and the hypocotyl from the cells just above the suspensor of this immature embryo. In one instance this niche in an early stage was covered with a thin cell-like transparent membrane (Fig. 16). Later stages are shown in Figs. 19 and 20.

The structure of the mature embryo may be seen in Figs. 22 and 23 . In relief a scarcely protruding pocket protects the leaf primordia by surrounding their outer surface as they lie against the base of the cotyledon. This is the "cotylar" sheath, corresponding to the sheath of a monocotyledonous leaf. This sheath has no vascular system and is very simple in structure. The long spindle-shaped cotyledon is succulent and projects into the mass of the endosperm (Fig. 2I), where like a haustorium it absorbs food for the development of the embryo by means of a thin-walled row of parenchymatous cells running parallel with the longitudinal axis of the embryo. This strong development of the cotyledon is assumed to be in itself indicative of richness of endosperm development, and is, according to Goebel (3), characteristic of plants such as Leucojum and Narcissus.

The suspensor, varying in the number and arrangement of its cells, still holds the embryo in position at maturity.

The number of leaf primordia developed at the time the seed is ripe depends on the individual embryo, influenced as it is by various conditions of internal and external factors. No cases have been noted where the first leaf is undeveloped at the end of the same period, but the development and size attained by such leaf primordia in a mature embryo is not at all constant. The
leaf base of Cooperia Drummondii, like that of Leucojum and Narcissus (Goebel, 3), is closed. The primary root arises from the base of the hypocotyl and developing downward is protected by a well-developed root cap even as early as at the maturity of the seed.

In conclusion it may be of interest to contrast Hofmeister's description (5) of embryo sac and embryo development in A maryllis longiflora with that of Cooperia Drummondii. They are almost entirely dissimilar. Hofmeister states that A. longiflora (Hippeastrum solandriflorum) is the only member of the Amaryllidaceae having irregular megasporangium formation. Just what he had in mind the writer does not dare to say, as no figures are given and his interpretation of the embryo sac was not that of present-day botanists. In regard to Cooperia Drummondii the statement may again be made that the embryo-sac development is without doubt regular, as compared with its near relatives.

In Amaryllis longiflora endosperm formation is sparing. The endosperm cells are displaced by the embryo before they become united into a compact tissue; while Cooperia Drummondii, as has been shown, has a firm, abundant and well-developed endosperm tissue. The embryo of Amaryllis longiflora is spindleshaped in the region of the root and plumule but the cotyledon is bent and consequently knee-shaped, where that of Cooperia Drummondii grows straight upward forming a regular, spindle-shaped body except in individual instances where too much externalpres sure is exerted by earlier developed or more rapidly growing ovules.

This paper represents in part work undertaken by the author during the years 1912-1914 for the degree of Master of Arts at Brown University. The writer begs to acknowledge the assistance given by Professor Harlan H. York, of the Botanical Deaprtment of Brown University, and the courtesies of all others who may have made any helpful suggestions whatsoever.

Literature cited

1. Coulter \& Chamberlain. Morphology of the Angiosperms. New York. 1903.
2. Ernst, A. Chromosomenreduction, Entwickelung des Embryosackes und Befruchtung bei Paris quadrifolia L. and Trillium grandiflorum Salisb. Flora 91: 1-46. pl. 1-6. 1902.
3. Goebel, K. Organography of plants. English Translation. Oxford. 1900-05.
4. Guignard, L. Recherches sur le sac embryonaire des Phanérogames Angiospermes. Ann. Sci. Nat. Bot. VI. 13: 136-199. pl. 3-7. 1882.
5. Hofmeister, W. Neuere Beobachtungen über Embryobildung der Phanerogamen. Jahrb. Wiss. Bot. 1: 82-188. pl. 7-10. 1858.
6. Lechmere, A. Two embryo-sac mother-cells in the ovule of Fritillaria. New Phytol. 9: 257-259. f. 19. 1910.
7. Lindley, J. [Habranthus gracilifolius β Boothianus.] Bot. Reg. pl. 1967. 1837.
8. McAllister, F. The development of the embryo sac of Smilacina stellata. Bot. Gaz. 48: 200-215. pl. 15. O 1909.
9. - On the cytology and embryology of Smilacina racemosa. Trans. Wisconsin Acad. 17: 599-660. pl. 56-58. 1913.
10. Schaffner, J. H. The embryo-sac of Alisma Plantago. Bot. Gaz. 21: 123-132. pl. 9, 10. Mr 1896.
II. - A contribution to the life history and cytology of Erythronium. Bot. Gaz. 31: 369-387. pl. 4-9. Je 1901.
11. Treub, M. \& Mellink, J. F. A. Notice sur le développement du sac embryonaire dans quelques angiospermes. Archiv. Néerlandaises Sci. 15: 452-457. pl. 9, 1o. 1880.
12. Weinzieher, S. Beiträge zur Entwicklungsgeschichte von Xyris indica L. Flora 106: $393-432$. pl. 6-7 +f. I-IO. 1914.

Explanation of plates 22 and 23

All figures except where noted are Zeiss camera lucida drawings from microtome sections. A Leitz compound microscope was used for all drawings. In some cases the scale of magnification is designated; in other cases the ocular and objective combinations are given.

Fig. r. Archesporial cell, $\times 3$ Io.
Fig. 2. Ovule with two archesporial cells, $\times 300$.
Fig. 3. Uninucleate embryo sac, $\times 3$ ro.
Fig. 4. Two-nucleate embryo sac, $X 200$.
Fig. 5. Four-nucleate embryo sac, $X i 10$.
Fig. 6. Eight-nucleate embryo sac, $\times 150$.
Fig. 7. Fertilized egg and pollen tube nucleus from fresh material; 1 ocular, 7 objective.

Fig. 8. Fused polar nuclei and pollen tube nucleus, $\times 600$.
Fig. 9. Proembryo, two-celled and as yet unattached; 4 ocular, 7 objective
Fig. ro. One-celled embryo with suspensor and endosperm, from free-hand section of fresh material; 4 ocular, 7 objective.

FIG. II. Two-celled embryo, from fresh material cut on freezing microtome, $\times 3$ ro.

Fig. 12. Four-celled embryo, from fresh material cut on freezing microtome, $\times 130$.

Fig. 13. Longitudinal section through young embryo, from fresh material cut on freezing microtome, $\times{ }_{150}$.

Fig. 14. Outline of young embryo and suspensor with endosperm at one side, from free-hand section of fresh material; 4 ocular, 7 objective.

Fig. 15. Outline of embryo with suspensor, showing niche where growing point is developing, from free-hand section of fresh material; 4 ocular, 7 objective.

FIG. I6. Outline of embryo with suspensor, showing further differentiation of a growing point over which is a transparent cell-like membrane; 4 ocular, 7 objective.

Fig. 17. Free nucleus from endosperm; cytoplasm in which nucleus is imbedded not shown in drawing. Oil immersion.

Fig. 18. Cell walls being laid down between free nuclei of endosperm; walls warped by plasmolysis; diagrammatic, $\times 60$.

Fig. r9. Outline of embryo, showing differentiation of root, sheath, plumule, and cotyledon regions, $\times 70$.

FIg. 20. Outline of immature embryo, $\times 60$.
Fig. 21. Diagram of mature seed, showing seed coats, endosperm, and embryo fitting loosely in the endosperm.

Fig. 22. Mature embryo, dissected out of ovule; 2 ocular, I inch Beck objective.

Fig. 23. Longitudinal section through mature embryo, $\times{ }_{150}$.

Notes on plants of the southern United States-II

Francis W. Pennell

In the first series of these notes, published in the February Bulletin of this year, there was given a tentative revision of the genus Commelina. The treatment of species there presented differed widely from current treatments and should probably have been preceded by a fuller introductory statement. A summary of the conclusions reached may therefore be in place.

Commelina communis L . is the common introduced weed of the northeastern states. Both Commelina longicaulis Jacq. and the little-known C. caroliniana Walt. have passed as C. nudiflora L., but, as is shown on page 96 , the latter specific name must be retained for a plant of another genus, Aneilema nudiflorum (L.) Kunth. Strangely enough the Linnean Commelina nudiflora had been perpetuated in the names of two species belonging to different genera. Linnaeus's description of his Commelina virginica is clear and diagnostic, and leaves no doubt that the plant he was considering is that we have been calling C. hirtella Vahl. But the plant which has been separated in recent floras, by reason of having its capsule three-celled, as C. virginica, is but a state or condition of C. erecta L. C. crispa Wooton and C. angustifolia Michx. are continued as species but are very near, possibly not distinct from, C. erecta. Commelina elegans HBK. is a widespread species of tropical America.

In the present paper further noteworthy records, based upon my southern collections of 1912 and 1913, are given, and revisions are made of a portion of the genus Schoenocaulon, and of the Nemexia subgenus of the genus Smilax.

MISCELLANEOUS SPECIES

Carex glaucescens Ell.

This species was listed in the first series of these Notes (p. 95) as C. verrucosa Muhl., a later name. See Mackenzie; Small, Fl. SE. U. S. ed. 2, 1324. 1915.

Pleea tenuifolia Michx.
Moist sandy soil in pine-land, Winter Park near Wilmington, New Hanover County, North Carolina, October 16, 1912, 4917. Yucca glauca Nutt.?

As compared with the prevalent growth of this widespread species, plants collected near Dallas, Texas (Reverchon 4029, 4029A, F. W. Pennell 5407), apparently differ as follows:
Leaves thickened, rigid, usually conspicuously fibrillose. Upper bracts ovate, acute, pale, with broad white margins. Capsule $50-60 \mathrm{~mm}$. long, oblong, not or scarcely constricted. Seeds flat, $9-10 \mathrm{~mm}$. long.

1. Y. glauca Nutt.

Leaves thinner, shorter, dull-green, weak-tipped, short-fibrillose
above, more fibrillose at base. Upper bracts broadly lanceolate, acuminate, brown, with narrower white margins. Capsule 30 mm . long, oblong-ovoid, evidently constricted about the middle Seeds more turgid, 6 mm . long.
2. Y. sp.

Full identification of the doubtful plant is left for someone more conversant with this group.
Gyrotheca tinctoria (Walt.) Salisb.
Moist open pine-land, north of Abita Springs, St. Tammany Parish, Louisiana, > August 14, 1912, 4196.
Blephariglottis conspicua (Nash) Small.
Moist sandy open pine-land, Pass Christian, Harrison County, Mississippi, > August 27, 1912, 4364.
Ibidium Beckit (Lindl.) House.
Moist deciduous woodland, Catalpa, West Feliciana Parish, Louisiana, > August 21, 1912, 4282.

SChoenocaulon a. Gray in southern texas

Two species of this genus, hitherto confused, may be distinguished as follows:
Base of stem scarcely or not fibrous-coated. Leaves $3-5 \mathrm{~mm}$. wide, slightly or not glaucous, shorter than the scape. Scape stout. Inflorescence ${ }^{5-20} \mathrm{~mm}$, thick. Bracts rounded. Perianth-segments oblong-ovate, nearly membranous, with broad scarious margins, crenulate. Filaments stout, much dilated, $5-7 \mathrm{~mm}$. long. Styles $\mathrm{I}-2 \mathrm{~mm}$. long. Flowering in autumn.
I. S. Drummondii.

Base of stem densely fibrous-coated. Leaves $1.5-4 \mathrm{~mm}$. wide, glaucous, mostly equaling the scape. Scape slender. Inflorescence $9-15 \mathrm{~mm}$. thick. Bracts acutish to acute. Perianth-segments linear-oblong, thickened, not scariousmargined, entire. Filaments slender, not dilated, $3^{-4} \mathrm{~mm}$. long. Styles less than $I \mathrm{~mm}$. long. Flowering in spring.
I. Schoenocaulon Drummondi A. Gray; Torrey, Bot. Mex. Bound. Surv. 222. 1858-9. "This species was first discovered by Drummond, and is No. 284 of his third Texan collection." Co-type seen in the herbarium of Columbia University at the New York Botanical Garden.
Texas. In the lower coastal plain. Flowers late-September to early-October.

Texas. Colorado: sandy soil, three miles east of Alleyton, $>$ September 22, 1913, F. W. Pennell 5557 (P, Y). Dewitt: roadside near Yorktown, $>$ October 6, 1857, A. Schott (Y).
2. Schoenocaulon texanum Scheele, Linnaea 25:262. 1852.
"Gesellschaftlich auf trockner Prairie, deren sehr nahe Unterlage Kalkfelsen ist, bei Neubraunfels: Lindheimer, April 1846." Lindheimer 122I, seen in the herbaria of the New York Botanical Garden, the Academy of Natural Sciences at Philadelphia and the University of Pennsylvania, is probably from the type-locality.
Texas to Chihuahua and San Luis Potosi. Edwards Plateau and southwestward. Flowers April to June.

Texas. Hays: San Marcos > Spring, 1898, S. W. Stanfield (Y). Kendall: Rocky bluffs, > June, 1885, J. Reverchon 1607 (P, Y). Kerr: Kerrville $>$ April to June, 1894, A. A. Heller 1626 (A, Y). Travis: hills, Austin, > May 13, 1872, E. Hall 644 (Y).

SMILAX, Subgenus NEMEXIA (Raf.), IN THE EASTERN UNITED STATES

The subgenus or section of Smilax containing the herbaceousstemmed vines, frequently with beautiful foliage and bearing umbels of lurid green, mostly malodorous flowers-a group of plants commonly known as the carrion-flowers-is one which has long been of especial difficulty to taxonomists. Various writers have held nearly the entire group of species here presented, as well as certain East Asian allies, in one species, Smilax herbacea, while others have attempted segregations based upon the shape of the branchlets, the length of the peduncles, the number of primary veins, and other characters which field-study proves too variable for certain use. But it has gradually become apparent
that a number of species may be distinguished upon features at first thought of little moment.

Linnaeus in the first edition of the Species Plantarum recognized two species, Smilax herbacea and S. Pseudo China. The types of these show that they are identical, and that the widespread glaucous- and glabrous-leaved species of the east is properly called S. herbacea. Smilax tamnifolia and S. pulverulenta, two surprisingly distinct species considering how poorly our books have described them, were added by Michaux. Smilax lasioneuron was described by Hooker in 1840 from the Saskatchewan region, and the main innovation of this present revision is the extension of this species eastward to embrace a plant widespread through the Mississippi Valley states. Hooker and his followers have laid emphasis upon the short-peduncled cymes of S. lasioneuron, but it requires but slight inspection of a series of any species of this group to show how undependable this character is; indeed, that peduncles should be shortened in specimens of western more arid regions seems natural. Two southern species have been added by Dr. Small, and the present writer describes one species, believed new to science, from Georgia.

The carrion-flowers are here continued as a subgenus of Smilax, in deference to the opinion of Mr. John B. Norton, of the United States Department of Agriculture, who is engaged in a study of the entire genus Smilax. To him I am indebted for valuable criticism.

My interest in this group extends from 1908, and my collections include most of the species, although several critical southern species have not been obtained.
Anthers about equaling the filaments. Leaves lanceolate to triangular-ovate, usually more or less hastate-lobed at base. Leaves slightly paler and glabrous beneath. Peduncles frequently several in an axil.
Perianth-segments $1.5-2.5 \mathrm{~mm}$. long. Peduncles and pedicels relatively short, the latter less than 10 mm . long.
Perianth-segments 4 mm . long. Peduncles and pedicels longer, the latter about 20 mm . long.

1. S. tamnifolia.

Anthers shorter than the filaments. Leaves ovate to cordate,
not hastate-lobed at base. not hastate-lobed at base.

> Mature leaves pale beneath, relatively short-acuminate. Berries dark-blue, glaucous. Perianth-segments broadly lanceolate, $2-5 \mathrm{~mm}$. lorg.

Leaves glabrous beneath. Bracts on stem below leaves appressed.
Stem 3-5 dm. tall, erect, without tendrils. Leaves all clustered near summit of stem, oblong-ovate, acute. Perianth-segments $2-3 \mathrm{~mm}$. long. Seeds $4 \cdot 5-5 \mathrm{~mm}$. long, maturing two to a berry.
Stem elongated, climbing, with tendrils. Leaves on adult stems all alternate, cordate to ovate, acuminate. Perianth-segments $3-4 \mathrm{~mm}$. long. Seeds $3.5-4 \mathrm{~mm}$. long, maturing three to five to a berry. Leaves puberulent to pubescent beneath. Bracts on stem below leaves more or less spreading.
Stem elongated, climbing, with numerous tendrils. Peduncles all in the axils of normal leaves. Leaves puberulent to pubescent beneath, acuminate. Seeds maturing three to five to a berry. Perianth-segments $3.5-4.5 \mathrm{~mm}$. long. Leaves ovate to cordate.
Perianth-segments $2-2.5 \mathrm{~mm}$. long. Leaves tri-angular-ovate.
Stem not or slightly elongated, not climbing, with few to no tendrils. Peduncles, at least in part, in the axils of bracts below the leaves. Leaves pubescent beneath.
Perianth-segments $4-5 \mathrm{~mm}$. long. Seeds maturing three to five to a berry. Leaves acuminate, paler beneath. Stems frequently somewhat elongated and with tendrils.
Perianth-segments $2.5-3 \mathrm{~mm}$. long. Seeds maturing two to three to a berry. Leaves acute to mucronate, whitened beneath. Stems not elongated, very rarely with tendrils.
Mature leaves shining-green beneath, strongly acuminate. Berries black, not or scarcely glaucous. Seeds maturing three to five to a berry. Perianth-segments lanceolate, $4^{-6} \mathrm{~mm}$. long.
3. S. biltmoreana.
4. S. herbacea.
5. S. lasioneuron.
6. S. tenuis.
7. S. ecirrhata.
8. S. Hugeri.
9. S. pulverulenta.

I. Smilax tamnifolia Michx.

Smilax tamnifolia Michx. Fl. Bor. Am. 2: 238. 1803. "Hab. in Carolina." Description of leaves as "rotundato-obtusis" apparently applies to this. Type not verified. Coprosmanthus tamnifolius Kunth, Enum. Pl. 5: 267.1850. Nemexia tamnifolia Small, Fl. SE. U. S. 281. 1903.

Moist sandy soil near streams, in the Coastal Plain; Long Island to South Carolina.

Flowers after the other species, in northern New Jersey and on Long Island in late-June and early-July.

New York. Nassau: Rockville Center, E. P. Bicknell $>$ June 27 (Y).

New Jersey. Atlantic: Egg Harbor, J. B. Brinton > June 21 (P). Burlington: Atsion, B. Long $6217>$ July 19 (A). Camden: Parkdale, G. W. Bassett $66>$ June 14 (A). Cape May: Court House, F.W. Pennell $3984>$ July 15 (A). Cumberland: Beaver Dam, B. Long 4943 (A). Gloucester: Repaupo, E. B. Bartram $>$ June 23 (A). Middlesex: near Milltown, N. Williamson $>$ August (Y). Monmouth: Farmingdale, N. Taylor $2148>$ July 4 (Y). Ocean: Barnegat, B. Long $5296<$ September 29 (A). Salem: Yorktown, B. Long 4137 (A).

Pennsylvania. Delaware: Tinicum, T. C. Porter (Y).
Delaware. Sussex: Laurel, A. Commons $>$ June 18 (A).
Maryland. Dorchester: near Sharptown, J. P. Otis (A). Kent: Chestertown, E. G. Vanatta < August 3 (A). Prince Georges: Hyattsville, F. H. Knowlton $>$ June 27 (U).

District of Columbia. Terra Cotta, C. S. Pollard 606 (U).
Virginia. Nansemond: Suffolk, A. A. Heller $925>$ June 8-13 (P, U, Y), a large-leaved form.

South Carolina. Aiken: Graniteville, H. Eggert $>$ May 21 (M). Clarendon: Manning, W. Stone $245>$ May 21 (A).
2. Smilax leptanthera Pennell, sp nov.

Stem striate, glabrous. Leaves alternate; petioles slender, rounded, narrowly channeled above, $6-7 \mathrm{~cm}$. long; blades tri-angular-ovate, cordate at base, acuminate at apex, dull-green above, slightly glaucous beneath, glabrous above and beneath. Tendrils about 7 cm . long, stouter than in S. tamnifolia, two to an axil. Staminate inflorescence: peduncles $12-15 \mathrm{~cm}$. long; umbels thirty-five- to forty-flowered; pedicels filiform, $18-22 \mathrm{~mm}$. long; sepals six, lanceolate, yellowish green, one-nerved, 4 mm . long, spreading to reflexed-spreading; filaments six, 1.2 mm . long, glabrous; anthers linear, recurved-coiled, $\mathrm{I}-\mathrm{I} .2 \mathrm{~mm}$. long. Pistillate inflorescence not seen.

Type: Warm Springs, Meriwether County, Georgia, collected in flower May 22, 1905, S. M. Tracy 9257, in the herbarium of the New York Botanical Garden.

Piedmont Region of central Georgia, known only from the original collection.

Species closely allied to S. tamnifolia.
3. Smilax biltmoreana (Small) J. B. Norton, comb. nov.

Nemexia biltmoreana Small, Fl. SE. U. S. 281, 1328. 1903.
"Type, Biltmore Herbarium, no. 906b, in Herb. N. Y. B. G." Type seen.

Woodlands; highlands of North Carolina and upper South Carolina.

Flowers in May, fruits in August.
North Carolina. Buncombe: Biltmore, Biltmore Herbarium $906,906 b>$ May 4 (B, Y). Cleveland: Kings Mountain, Biltm re Herbarium 14954 p. p. (B). Henderson: Flat Rock, Dr. Shoolbred (Y). Rutherford: Hickory Nut Gap, J. K. Small \& A. M. Huger < October 3 (Y).

South Carolina. Greenville: Caesars Head, L. M. Bragg 3637 < August 26 (S).*

4. Smilax herbacea L.

Smilax herbacea L. Sp. Pl. 1030. 1753. "Habitat in Virginia, Marilandia." Type, a specimen in the Linnaean herbarium, obtained evidently from Gronovius and labeled by him "Smilax annua inermis caule fusco purpureo glabro claviculis plurimis teneris vestito. Ex alis foliorum oritur pedunculus teres glaber semipedalis gerens flores in capitulos globos, collectos." This is evidently a duplicate of Clayton's No. 541 from Virginia, identified both in the Linnaean and Gronovian herbaria as the plant here considered.
Smilax Pseudo China L. l. c. I031. 1753. "Habitat in Virginia, Jamaica." Species clearly aggregate, represented in the Linnean herbarium by specimens written up by Linnaeus as follows, according to a letter of B. D. Jackson: "three sheets pinned together; the first is 'II K Pseudo China,' it is a barren branch, the leaves leathery: the second sheet is written up 'II' and seems quite the same plant as the former, but has one berry, the third sheet is of a West Indian species, coll. by Patrick Browne in Jamaica, probably S. celastroides." From the wording of the Linnaean description none of these can be considered the type of S. Pseudo China, but this would be

[^67] dicated by "S."
rather a specimen of Gronovius, also studied by Linnaeus, now in the Gronovian herbarium in the British Museum. The description of Linnaeus is word for word from Gronovius, except for the addition of the phrase "racemis ovato-oblongis," inappropriate for any Smilax whatever. "Smilax caule tereti inermi: foliis inermibus, caulinis cordatis, ramorum lanceolatis; pedunculis longissimis," Gronovius, Fl. Virg. I56. 1742, citing Clayton's Nos. 541, 561 and 630 , is represented in the herbarium by Nos. 561 and 630 (for No. 541 see above note under S. herbacea). These two numbers are identified by Dr. A. B. Rendle as both the same as No. 541, that is, as genuine Smilax herbacea L. For the verification of these two Linnaean types I am indebted to Dr. B. Dayden Jackson, of the Linnaean Society of London, and to Dr. A. B. Rendle, of the British Museum.
Smilax inermis Walt. Fl. Carol. 244. 1788. Type, presumably from Berkeley County, South Carolina, not verified.
Smilax peduncularis Muhl.; Willdenow, in Linnaeus, Sp. Pl., ed. 4, 4: 786. 1806. "Habitat in Canada, Pensylvania." Type not verified.
Nemexia nigra Raf. Neogenyt. 3. 1825. New name for S. herbacea L., but apparently intended for the black-fruited S. pulverulenta Michx.

Nemexia cerulea Raf. l.c.3. 1825. New name for S. peduncularis Muhl.
Coprosmanthus peduncularis Kunth, Enum. Pl. 5: 264.1850.
Coprosmanthus herbaceus Kunth, l. c. 265. 1850.
Smilax herbacea α Simsii A. DC. Monogr. Phan. I: 51. 1878. "S. herbacea Sims, Bot. Mag. pl. 1920." From figure and description evidently a narrow-leaved form of S. herbacea.
Smilax herbacea β peduncularis A. DC. l. c. 51. 1878.
Nemexia herbacea Small, F1. SE. U. S. 280. 1903.
Smilax herbacea crispifolia Pennell, Proc. Acad. Nat. Sci. Phila. 62: 559. 1910. "Type.-Serpentine, Mineral Hill, Delaware County, Penna., F. W. Pennell 594, coll. Sept. 6, 1908, in Herb. Acad. Nat. Sci. Phila." A narrow, rigid-leaved form of dry soils, probably identical with S. herbacea Simsii.
Most woodlands, spring-heads, and near streams; more rarely,
in dry soils, thickets, or open barrens; under the latter circumstances, usually as forma crispifolia: New Brunswick to Alabama, west to Indiana and Nebraska.

Flowers in eastern Pennsylvania, New Jersey and southeastern New York late-May to early-June, fruits September to November.

New Brunswick. York: Fredericton, J. Fowler (U).
Ontario. York: Toronto, Biltmore Herbarium gozb > June (B).
Maine. Penobscot: Oldtown, L. H. Harvey IoI4 (U).
New Hampshire. Grafton: Lisbon, F. Blanchard (M).
Vermont. Caledonia: Barnet, F. Blanchard (M).
Massachusetts. Berkshire: Great Barrington, C. L. Pollard (U). Bristol: Nonquitt, E. L. Sturtevant (M). Essex: Ipswich, T. Morong $>$ June 23 (M, Y). Plymouth: Marion, A. M. Vail $>$ July (Y).

Rhode Island. Newport: Crescent Beach, Block Island, Fernald, Long \& Torrey 9249 (A).

Connecticut. Fairfield: Greens Farms, C. L.Pollard $36>$ June 7 (U). New Haven: Mt. Carmel, W. E. Safford $137>$ June 5 (U).

New York. Bronx: east of Van Cortlandt Park, F. W. Pennell $7039>$ June 14 (Y). Delaware: Arkville, E. N. Harvey > August (P). Essex: Westport, N. L. Britton (Y). Greene: New Baltimore, N. Taylor 1375 < August 19 (Y). Oneida: Sylvan Beach, W. R. Maxon 554 (U). Onondaga: Syracuse, L. M. Underwood > June (Y). Orange: Guymarch, F. W. Pennell 6919 (Y). Queens: College Point, J. Schrenk $>$ June 3 (Y). Richmond: near Garretson, A. M. Vail < October 24 (Y). Rockland: Spring Valley, P. Wilson (Y). Sullivan: Mongaup, F. W. Pennell 6820 (Y). Tioga: Apalachin, F. E. Fenno $402>$ July 27 (Y). Tompkins: Fall Creek, W. Trelease $>$ June 13 (M). Ulster: Cragsmoor, E. M. Farr (P). Washington: S. H. Burnham $>$ July 18 (B). Westchester: Tarrytown Heights, F. W. Pennell $7001>$ June 13 (Y).

New Jersey. Bergen: Alpine, F. W. Pennell 5729 < September 12 (Y). Burlington: Bordentown, B. Long 3086 (A). Cape May: Court House, F. W. Pennell $2601<$ August 30 (Y). Essex: Montclair, J. F. Poggenburg < September 5 (Y). Gloucester: Woodbury, C. S. Williamson $>$ May 25 (A). Middlesex: Milltown, A. M. Vail (Y). Monmouth: Farmingdale, B. Long \&o
S. Brown $3545>$ May 28-30 (A). Ocean: New Egypt, J. H. Grove $285^{*}>$ May 31 (A). Sussex: Andover, N. L. Britton < September 28 (Y).

Pennsylvania. Bucks: Penn Valley, J. Crauford (U). Chester: Sugartown, F. W. Pennell $82 I^{*}<$ September 23 (A). Delaware: Wawa, F. W. Pennell $3648^{*}, 3649^{*}>$ June 9 (A). Fayette: Ohio Pyle, Brown, Crawford \& Van Pelt 29 (A). Lancaster: Pleasant Grove, J. J. Carter < August 22 (Y). Lehigh: Slatington, C. C. Bachman $2413>$ June 8 (A). Montgomery: Ashbourne, B. Long $5835,5836>$ May 28 (A). Northampton: Bangor, C. S. Williamson $>$ May 30 (A). Philadelphia: Germantown, T. Meehan* < September 24 (A). Westmoreland: P. E. Pierron $>$ June io (U). York: McCalls Ferry, N. L. Britton (Y).

Delaware. Newcastle: Townsend, J. B. Brinton $>$ May 30 (A).

Maryland. Allegany: Cumberland, H. Shriver (Y). Garrett: Oakland, F. W. Pennell 6729 (Y). Kent: Chestertown, E. G. Vanatta (A).

Virginia. Fairfax: Great Falls, F. W. Pennell (Y). Page: Stony Man Mountain, E. S. \& Mrs. Steele $176<$ September I (B, M, U, Y). Pulaski: Peak Mountain, J. K. Small (B, M, U). Rockingham: Mt. Crawford, A. A. Heller $>$ May 5^{-13} (A). Tazewell: Tazewell Peak, A. H. Howell 437 (U).

North Carolina. Guilford: High Point, Biltmore Herbarium $902 c$ (B). Haywood: Eagle's Nest, P. C. Standley 5480 < September 4 (U). Iredell: Statesville, Biltmore Herbarium go2d $>$ May 19 (B). Watauga: Blowing Rock, A. M. Huger (Y).

South Carolina. Anderson: Pendleton, L. M. Bragg 3897 (S). Greenville: Paris Mount, J. K. Small (Y). Oconee: Clemson College, H. D. House ziIg (U).

Georgia. DeKalb: H. Eggert $>$ May 23 (M).
Alabama. Lee: Auburn, F. S. Earle (Y).
Oнго. Licking: W. W. Stockberger $902>$ June I (B).
Indiana. Steuben: Clear Lake, C. C. Deam (U). Wells: Twin Bridges, C. C. Deam $>$ June 12 (B).

Illinois. Clinton: Carlyle, N. M. Glatfelter (M). Stark: Wady Petra, V. H. Chase > May 28 (U).

[^68]Nebraska. Lancaster: Lincoln, H. J. Webber (Y).
Missouri. Greene: Springfield, P. C. Standley $9745<$ September $2(\mathrm{U})$.

5. Smilax lasioneuron Hook.

Smilax lasioneuron Hook. Fl. Bor. Amer. 2: 173. pl. 187, A. 1840. "Hab. Carlton House Fort on the Saskatchawan, Dr. Richardson." Type not verified, but evidently plant here considered. Coprosmanthus lasioneuron Kunth, Enum. Pl. 5: 265. 1850.
Smilax herbacea γ lasioneuron A. DC. Monogr. Phan. I:52. 1878.
(?) Smilax diversifolia Small, Bull. Torrey Club 25:607. 1898.
"The original specimens were collected by the writer along the Flint River near Albany, Georgia, May 24-28, 1895." Type, in immature fruit, seen in the herbarium of Columbia University at the New York Botanical Garden. Needs to be studied in flower and mature fruit.
(?) Nemexia diversifolia Small, Fl. SE. U. S. 281. 1903.
Nemexia herbacea melica A. Nels. Proc. Biol. Soc. Wash. 17: 175. 1904. "I take as type Mr. Andrews' specimens from Boulder Cañon [Colorado],-fruit in 1903, flowers (staminate and pistillate) in 1904." Type not seen, but evidently plant here considered.
Nemexia lasioneuron Rydb. Bull. Torrey Club 32: 610. 1905.
Moist soil, thickets, and along streams; southwestern Ontario and Ohio to Georgia, Alabama, Colorado and Wyoming. Intergrades with S. herbacea and with S. ecirrhata. Through the Mississippi Valley this species grows much larger and frequently bears peduncles much longer than does the typical form of drier western regions.

Ontario. Huron: Wingham, J. A. Morton $5971>$ June 25 (A, Y).

Georgia, Dougherty: Albany, J. K. Small (Y), type of S. diversifolia Small.

Alabama. Bullock: Union Springs, Biltmore Herbarium $14675 a$ (B).

Kentucky. Warren: near Green River, S. F. Price (M).
Ohio. Hamilton: Cincinnati, C. G. Lloyd $>$ May 23 (M).
Indiana. Allen: Fort Wayne, F. W. Pennell 5301 (P). Wells: Bluffton, C. C. Deam I4 (M, U),

Illinois. Cook: Chicago, W. C. Ohlendorf $>$ May 15 (B). Dupage: Naperville, L. M. Umbach (U). Kane: Elgin, E. E. Sherff < September 14 (M). Lasalle: Starved Rock, Greenman, Lansing \&o Dixon II8 (Y). St. Clair: H. Eggert $>$ June I4 (M). Stark: Wady Petra, V. H. Chase $>$ May 28 (A).

Wisconsin. Milwaukee: Milwaukee, H. E. Hasse (Y).
Minnesota. Winona: Stockton, J. M. Holzinger < September (U).

North Dakota. Benson: Lake Ibsen, J. Lunell (Y). McHenry: Towner, J. Lunell < September io (Y).

South Dakota. Fall River: Hot Springs, P. A. Rydberg $1052>$ June 19 (U, Y). Lawrence: Deadwood, W. P. Carr 154 (Y). Mellette: White River, E. J. Wallace (Y). Washabaugh: S. S. Visher 2280 < August 22.

Iowa. Decatur: J. P. Anderson (M). Johnson: Iowa City, A. S. Hitchcock (U).

Nebraska. Cedar: St. James, F. Clements 2600 (U). Lancaster: Lincoln, G. G. Hedgcock $>$ May 22 (M). Lincoln: Hershey, C. D. Mell $4 I>$ May I_{5} (U). Thomas: Halsey, L. Krautter $>$ May 29 (P).

Missouri. Barry: Monett, F. W. Pennell 5350 (P). Cass: G. C. Broadhead $>$ June 17 (M). Greene: Springfield, P. C. Standley 8397 < August 29 (U). Jackson: Independence, B. F. Bush $529>$ June 7 (M). Jasper: Webb City, E. J. Palmer $473>$ June $20(\mathrm{M})$. Jefferson: Sulphur Springs, W. Trelease < October 23 (M). St. Louis: Valley Park, F. W. Pennell 5315 (P). Shannon: B. F. Bush $68>$ June $8(\mathrm{U})$.

Arkansas. Benton: Sulphur Springs, F. W. Pennell 5364, 5366 < September 3 (P).

Oкцанома. Creek: Sapulpa, F. W. Pennell 5379 < September 7 (P). Kay: M. White (Y).

Wyoming. Crook: Sundance Mountain, A. Nelson $2139>$ July 3 (B, M, Y). Fremont: Wind River, T. A. Williams (Y). Sheridan: Dayton, F. Tweedy $2277<$ September (Y).

Colorado. Boulder: Boulder, F. Daniels 224 (M). El Paso: Colorado Springs, M. E. Jones $997>$ June 18 (U, Y). Larimer: Horsetooth Mountain, F. W. Pennell 5850 (Y).

6. Smilax tenuis Small

Smilax tenuis Small, Bull. Torrey Club 25: 607. 16 D 1898. "The original specimens were collected by Dr. Hale, many years ago in Louisiana." Type seen in the herbarium of Columbia University at the New York Botanical Garden.
Nemexia tenuis Small, Fl. SE. U. S. 281, 1329. 1903. Woods, Louisiana and eastern Texas.
Louisiana. Dr. Hale $>$ April (Y).
Texas. San Augustine: San Augustine, G. L. Corbett (U).
7. Smilax ecirrhata (Engelm.) S. Wats.

Smilax herbacea \in ecirrhata Engelm.; A. DeCandolle, Monogr. Phan. 1: 52. 1878. "Prope Saint-Louis Americae bor. (Engelm.) . . . in h. ber. fol. 89 . . . et in h. Boiss." Type not seen nor verified.
Smilax ecirrhata S. Wats.; A. Gray, Man. ed. 6, 520. 1890.
Coprosmanthus ecirrhatus Chapm. Fl. S. U. S. ed. 3, 504. 1897.
Nemexia ecirrhata Small, Fl. SE. U. S. 280. 1903.
Woodlands; southwestern Ontario to Tennessee, Minnesota and Missouri.

Ontario. Huron: Wingham, J. A. Morton $2283>$ June 14 (M, U).

Tennessee. Franklin: Cowan, H. Eggert $>$ May 7 (M). Knox: Knoxville, Biltmore Herbarium go6d > May I (B).

Kentucky. Bell: Pineville, Biltmore Herbarium gooc > May 7 (B). Estill: Irvine, Biltmore Herbarium 14826 (B).

Oнio. Erie: Groton, E. L. Moseley < October 23 (U). Lorain: Amherst, A. E. Ricksecker > May 12 (U).

Indiana. Huntingdon: C. C. Deam 1953 (Deam). Tippecanoe: Lafayette, F. W. Pennell 5310 (P). Wells: Bluffton, C. C. Deam $>$ May $12(\mathrm{M}, \mathrm{U})$.

Illinois. Cook: West Pullman, L. M. Umbach > May 21 (U). Hancock: - > May 2I (M). McLean: Bloomington, G. Vasey (U). St. Clair: French Village, H. Eggert $>$ May 8 (M, Y).

Michigan. Gratiot: Alma, C. A. Davis > May I5 (U).
Wisconsin. Grant: Boscobel, C. H. Sylvester > June (Y).

Minnesota. Chippewa: Montevideo, L. R. Moyer > May 30 (B). Winona: Winona, J. M. Holzinger $>$ June (U).

Iowa. Fayette: B. Fink $614>$ June (U). Harrison: R. Burgess (Y). Johnson: T. J. ©́ M. F. L. Fitzpatrick $>$ May I3 (U).

Missouri. Clark: Dumas, B. F. Bush (M). Jackson: Courtney, B. F. Bush (M). Jefferson: Victoria, H. Eggert < August 24 (M, Y).
8. Smilax Hugeri (Small) J. B. Norton, comb. nov.

Nemexia Hugeri Small, Fl. SE. U. S. 280, 1328. 1903. "Type, Stone Mt., Ga., Small, May 1-18, 1895 (fl.); Hickory Nut Gap, N. C., Small \& Huger, Oct. 3, 1901, in Herb. N. Y. B. G." Type, "Stone Mt., De Kalb Co., Georgia, J. K. Small, May 1-18, 1895," seen in the herbarium of the New York Botanical Garden. Fruiting specimen cited is S. biltmoreana. Woodlands, Piedmont and upper coastal plain of South Carolina to Alabama.

South Carolina. Aiken: Graniteville, H. Eggert (M). Berkeley: Santee Canal, H. W. Ravenel $>$ April (S). Eutaw: Nelson's Ferry Road, L. M. Bragg (S).

Georgia. Clarke: Athens, Biltmore Herbarium 14826 < July 22 (B). Dekalb: Stone Mountain, J. K. Small > May I-I8 (Y), type. Marion: Buena Vista, R. M. Harper 1400 (M, U, Y).

Florida. Gadsden: A. W. Chapman (Y).
Alabama. Lee: Auburn, F. S. Earle \&f C. F. Baker < September 8 (Y). Tallapoosa: Dadeville, C. L. Pollard \&o W. R. Maxon 138 (U, Y). Tuscaloosa: Tuscaloosa, E. A. Smith $>$ April (M).
9. Smilax pulverulenta Michx.

Smilax pulverulenta Michx. Fl. Bor. Amer. 2: 238. 1803. "Hab. in Canada et Pensylvania." Type not verified, but a specimen of this plant of Michaux's collecting, "No. 29," seen in the herbarium of the Academy of Natural Sciences of Philadelphia, is probably a co-type.
Smilax herbacea var. pulverulenta A. Gray.
Nemexia pulverulenta Small, F1. SE. U. S. 281. 1903.
Rich woods; southeastern New York to North Carolina and

Tennessee; also in southern Missouri. Frequent in the Piedmont region of southeastern Pennsylvania.

Flowers in New Jersey and southeastern Pennsylvania earlyto late-May, two weeks to ten days before S. herbacea; fruits September to November.

New York. Bronx: east of Van Cortlandt Park, F. W. Pennell 7070 (Y).

New Jersey. Bergen: Fort Lee, F. W. Pennell 7061 (Y). Cape May: Cold Spring, O. H. Brown (A). Gloucester: Swedesboro, C. D. Lippincott $>$ May 22 (A). Mercer: near Trenton, A. R. Slack (P).

Pennsylvania. Bucks: Nockamixon, A. MacElwee $>$ May 28 (A). Chester: New Garden Station, F. W. Pennell 4995 (A). Delaware: Cheyney, F. W. Pennell $1986<$ September 17 (Y). Franklin: Mercersburg, Detwileer $>$ June 12 (A). Lancaster: Haines Station, J. J. Carter > May 16 (Y). Montgomery: Ashbourne, B. Long 5824, $5828>$ May 21 (A). Northampton: Easton, T. Seal $>$ June 2 (A). Philadelphia: Cobbs Creek, T. S. Githens $>$ May I4 (A). York: J. Crawford (A).

Delaware. Newcastle: Stanton, W. M. Canby $>$ June 13 (B).

Maryland. Cecil: Conowingo, S. S. Van Pelt \& B. Long > May 21 (A). Montgomery: High Island, C. L. Pollard $254>$ May 19 (U).

District of Columbia. Rock Creek Park, H. D. House 716 $>$ May I3 (U).

Virginia. Alexandria: Rosslyn, C. L. Pollard $>$ May 6 (U). Smyth: Marion, N. L. Britton \& others $>$ May 22 (Y).

West Virginia. Fayette: Thurmond, Biltmore Herbarium goze (B).

North Carolina. Buncombe: Biltmore, $->$ May 8 (B). Forsyth: Salem, L. D. von Schweinitz (A). Halifax: Weldon, E. B. Bartram $>$ April I9 (A).

Tennessee. Knox: Knoxville, A. Ruth $154>$ May (Y).
Missouri. Greene: Gates, P. C. Standley 9377 < August 26 (U). Howell: Willow Springs, F. W. Pennell 5330 (P). Jasper: Webb City, E. J. Palmer 487 (M). Shannon: Monteer, B. F. Bush $2787>$ May 11 (M).

New York Botanical Garden.

Notes on Carex-X

Kenneth Kent Mackenzie

Carex rosea Schk. and its allies

Schkuhr's original illustration of Carex rosea in the Riedgräser ($p l . Z Z Z, f .179$) is drawn with his usual care and accuracy. Two culms in mature condition are shown. One has four spikes having respectively (commencing with the lowest) eight, seven, five, and five perigynia; and the other has five spikes having respectively eight, eleven, seven, six, and six perigynia. The detailed illustrations of the perigynia show that the body of the perigynium tapers or is but little contracted into the beak, and also that the perigynia are light green in color and are not conspicuously white-hyaline at the orifice. It is further to be especially noticed that the stigmas are slender and not twisted and that the exserted portion is about one third the length of the perigynium at flowering time.

The plant so illustrated is a slender plant with leaf-blades averaging about 1.5 mm . in width. The lower spikes usually have from five to eight perigynia, but the number varies between three and twelve. The most distinctive features, however, are to be found in the shape of the stigmas, slender and not twisted, and in their light reddish brown color. This plant, the genuine Carex rosea, is not the plant usually so treated in the manuals, but is the plant which is the basis of many records of Carex rosea var. radiata. The only work known to me where the distinctive stigmas are alluded to is Boott's Illustrations of the Genus Carex (2:81), where the plant under discussion is treated as var. minor Boott of Carex rosea and briefly described and figured ($p l .224$). It is a widely distributed species, ranging from Maine and Quebec, westward to North Dakota and southward to Georgia, Alabama, Mississippi and Louisiana. It flowers late in April or in May, is mature late in May or in June, and in July can be found only in very poor condition.

The plant which has usually been taken for Carex rosea is a
much stouter plant of a deeper green color. The leaf-blades average nearly 2.5 mm . in width, and the lower spikes usually have from nine to twelve perigynia, although the number varies between six and twenty. The stigmas are short, thickish and twisted and are dark brownish red in color. The perigynium is abruptly contracted into the beak, is deep green in color, and is conspicuously white-hyaline at the orifice. Like Carex rosea, this is a widely distributed plant, ranging from Maine to Manitoba and southward to Alabama, Tennessee and Missouri; and like it, it matures in late May or June. For this species, which is apparently nameless, the name Carex convoluta is here proposed.

A third plant of much more restricted range remains for consideration. This is a very slender plant, in which the leaf-blades average little more than I mm . in width. The perigynia are very small, mostly $2.5-3 \mathrm{~mm}$. in length, and are ascending or but little spreading. Each spike has but two to six perigynia, and the bract of the lowest spike is as conspicuous as the bract in Carex trisperma. In fact, the general aspect of the plant is very much like that of Carex trisperma. The stigmas are short and twisted, as in Carex convoluta, and the perigynium is abruptly contracted into the beak, as in that species. The perigynia, however, are rather lighter green in color, and less conspicuously white-hyaline at the orifice.

This is a later maturing plant than either of the other two. It blooms late in May or in June, and can be found in good condition in July and August. It is Alleghenian in its distribution and I have seen specimens showing a range from Maine and New York southward to North Carolina and Tennessee. It is the plant treated by Dr. Small (FI. SE. U. S. 218) as Carex radiata and also the plant treated by Dewey (Am. Jour. Arts and Sciences, 10: 276) and also by Boott (Ill. Car. 2: 81. pl. 225) as Carex rosea var. radiata. The name "radiata," however, goes back to a plant described by Wahlenberg (Kongl. Vet. Akad. Hand1. [II.] 24: 147) under Carex stellulata, as β radiata, and collected in North America by Rev. Hultgren. As pointed out by Boott (l.c. 8I) the description of this plant agrees best with Carex trisperma or some species of the C. stellulata group. Schkuhr referred it as a synonym to his Carex rosea (l. c. 15), and Dewey, as stated above, referred it to
the plant now under discussion. In the absence of opportunity to examine the original specimen, I am not changing the application of the name. Tuckerman's Carex neglecta (Enum. Method. 19) is the oldest specific name for the species, but the name "neglecta" had previously been used by other authors for other species. It is interesting to note that both Tuckerman and Wahlenberg (if his name is correctly applied) erroneously placed this species among those with the staminate flowers below the pistillate.

The best characters to separate the three species in question may be contrasted as follows:

> Stigmas slender, not twisted, elongated, light brownish red; perigynium tapering or but little contracted into beak, inconspicuously whitehyaline at the orifice.
> C. rosea.

> Stigmas stouter, twisted, short, deep brownish red; perigynium contracted into beak, conspicuously white-hyaline at the orifice.
> Leaf-blades averaging 2.5 mm . wide; spikes usually with nine to twelve perigynia; perigynia $3.25-4.5 \mathrm{~mm}$. long, widely radiating.
> C. convoluta.

> Leaf-blades averaging little more than I mm . wide; spikes usually with two to six perigynia; perigynia $2.5-3 \mathrm{~mm}$. long, more ascending.
> C. radiata.

Carex rosea Schk.; Willdenow, in Linnaeus, Sp. Pl. ed. 4, 4: 237. 1805; Riedgr. Nachtr. 15. pl. zzz, f. 179. 1806 Carex rosea var. minor Boott, Ill. Car. 2: 81. pl. 224. 1860. Carex rosea var. staminata Peck; E. C. Howe, Rep. New York State Mus. Nat. Hist. 48: 132. 1895.
Densely cespitose, the culms $2-5 \mathrm{dm}$. high, slender, $1-1.75$ mm . wide at base, aphyllopodic, smooth or slightly serrulate on the angles above, usually exceeding but at times equalled by the leaves, light brownish tinged and fibrillose at base. Leaves with well-developed blades three to six (usually four or five) to a culm, on lower fourth, but not bunched, the blades erect-ascending, $1-2 \mathrm{~mm}$. wide, 3 dm . long or less, light green, flat, strongly minutely serrulate on the margins and on the veins towards the apex, the sheaths tight, not septate-nodulose. Spikes four to eight, androgynous, in an elongate terminal head, 5 cm . long or less, $5-8 \mathrm{~mm}$. wide, the lower three to five separate, the upper three or four aggregated. Staminate flowers apical, inconspicuous, with the four to twelve ascending or at maturity widely radiating perigynia below. Bracts bristle-form, that of the lowest spike conspicuous, Io cm . long or less, those of the upper spikes much smaller and often rudimentary. Scales triangular-ovate, greenish hyaline,
thin, the midrib not strong, green, the scales obtusish, about width of and half length of body of perigynium. Perigynia soon widely spreading, plano-convex with slightly raised margins ventrally, light green, nerveless or obscurely nerved, roughened on margins above, $3-3.5 \mathrm{~mm}$. long, 1.5 mm . wide, spongy and rounded at base, tapering or somewhat contracted into a bidentate beak, one fourth length of body, inconspicuously hyaline between teeth. Achenes lenticular, broadly obovate, filling perigynia, 1.75 mm . long, 1.25 mm . wide. Style enlarged at base, deciduous. Stigmas two, elongate, slender, usually not twisted, light reddish brown.

Specimens examined

Quebec: Montmorency Falls, Macoun 67755, June 28, 1905 (N. Y.).

Maine: Veazie, Knight, June 10, 1905 (K. M.).
New Hampshire: Orange, Briggs, 1900 (N. Y.).
Massachusetts: Chapman herbarium (C.).
New York: Staten Island, Britton, May 25, 1889 (C., P.); New York City, Morong, May 28, 1893 (C.); Penn Yan, Sartwell 25 (C.); Oneida County, Vasey (C., P.); Oneida, Maxon 4552, July 8, 1909 (N. Y., K. M.) ; Cooperstown Junction, Peck, June, var. staminata Peck; Apalachin, Fenno 49r, May 30, 1898 (N. Y.).

New Jersey: Closter, Bergen County, Mackenzie 5427, June 8, 1913 (K. M.) ; Summit, Union County, Mackenzie I6I, May 30, 1903 (K. M.) ; Eagle Rock, Essex County, Mackenzie 143, May 17, 1903 (K. M.) ; Berkeley Heights, Union County, Mackenzie 203I, May 30, 1906 (K. M.) ; Landisville, Gross, June, 1878 (P.); Mickleton, Brinton, June 15, 1890 (P.); Salem County, Heritage, May 28, 1892 (P.); New Egypt, Grove, May 21, 1905 (P.); Swedesboro, Lippencott, May 20, 1892, June 7, 1893 (P.); Kinkora, Long 12245, May 27, 1915 (P.); Vincentown, Long 12214, May 25, 1915 (P.); Edgewater Park, Long I2018, May 18, 1915 (P.).

Pennsylvania: Easton, Porter, June 3, 1890 (C.) ; New Texas, Carter, May 20, 1909 (N. Y.) ; York Furnace, Brinton, May 30, 1892 (P.); Glenolden, Keller, June 9, 1895 (P.); Delaware County, Smith, May 30, 1898 (P.) ; Bartram's Garden, Crawford, June 3, 1892 (P.); Byberry, Martindale, June, 1863 (P.); Haverford, Smith, June II, 1897 (P.); Penn Valley, Crawford, June I, 1899 (P.); Germantown, Wister, June 17, 1862 (P.); Philadelphia

County, Van Pelt, June 1о, 1908 (P.); West Park, MacElwee, May 27, 1892 (P.); Wawa, MacElwee, June 5, I892 (P.); Bethlehem, Schweinitz (P.); Sellersville, Fretz, June, 1883 (P.); Lafayette, Saunders, May 28, 1898 (P.); Ryets, Long, June 15, 1909 (P.); Penllyn, Long 915, June 12, 1909 (P.); Fort Washington, Long 913, 914, June II, 1909 (P.); Bear Hill, Pennell 3956, June 28, 1912 (P.); Brookfield, Pennell 3688, June 12, 1912 (P.); Bartram's Garden, Crawford, June 3, 1892 (P.); Wawa, Pennell 2083, 209I, May, 1909 (P.); Phoenixville, Brinton, May 25, I890 (P.); Mt. Bethel, Bartram, May 30, 1908 (P.) ; Slatington, Bachman 2408, June 7, 1912 (P.); Mountainville, Pretz 5325, 5335, 5336, May 18, 1913 (P.) ; Allentown, Pretz 549I, June 17, 1913 (P.) ; Hosensack, Pretz 5407, May 30, 1913 (P.); Jordan, Pretz 5512, 5532, 5542, June 21, 1913 (P.); Bletzel, Pretz 1775, May 11, 1909 (P.) ; Allentown, Pretz 380, June 8, 1907 (P.); Mt. Cuba, Keller, May 30, 1895 (P.); Lowhill, Pretz 4659, June 23, 1912 (P.); Lanark, Pretz 4475, June I, 1912 (P.); Henningville, Pretz 6532, May 30, 1914 (P.); Emaus, Pretz 6595, 6611, June, 1914 (P.); Bethlehem, Schweinitz (P.); Long Pond, Crawford, July 3, 1893 (P.) ; Fulton County, Stone 242, June 6, 1905 (P.).

Delaware. Belleview, Commons, June 2, 1897 (P.); Greenbank, Commons, June 4, 1882 (P.).

District of Columbia: House 792, May 23, 1905 (N. Y.); Steele, May 21, 1898 (K. M.).

North Carolina: Chapel Hill, Ashe, April (N. Y.); Salem, Schweinitz (P.).

South Carolina: Oconee County, House 213I, May 13, 1906 (N. Y.).

Georgia: Bear Creek, Whitfield County, Harper 248, July 18, 1900 (N. Y.); Chokee Creek, Sumter County, Harper III6, July 25, 1901 (N. Y.).

Alabama: Auburn, Earle, June 2, 1901 (N. Y.).
Mississippi: Starkville, Tracy, April 15, 1888 (C.).
Tennessee: Knoxville, Ruth 927, June, 1895 (N. Y.).
Kentucky: Lexington, Short, 1836 (C.).
OHio: Akron, Foltz, May 19, 1889 (N. Y.); Strongsville, Watson, May 10, 1896 (K. M.).

Ontario: Walpole Island, Dodge, May 24, 1910 (K. M.).

Michigan: Agricultural College, Wheeler, May 2, 1895 (C.); Mayville, Dodge, June 16, 1910 (K. M.); Port Huron, Dodge, May and June, 191I, and June, 1915 (K. M.); Long Lake, Lapeer County, Dodge, June 2, 1911 (K. M.); Detroit, Billington, 1915 (K. M.).

Indiana: Clapp (C.); Helmsburg, Deam 11i68, June 16 1912 (N. Y.); Vermilion County, Deam 5791, May 8, 1910 (K. M.); Decatur County, Mrs. Deam 8ı48, May I3, 19II (K. M.); Brown County, Deam 6406, 11168 , May 21, 1910, June 16, 1912 (K. M.); Greene County, Deam 10723, May 26, 1912 (K. M.); Ripley County, Deam 10563, May 19, 1912 (K. M.); Allen County, Deam 14244, May 31, 1914 (K. M.); Wells County, Deam 14175, May 17, 1914 (K. M.); Marion County, Deam 8524, I2905, May 30, I911, May 22, 1913 (K. M.); Posey County, Deam 8347, May 24, 1911 (K. M.) ; Martin County, Deam 12845, May 21, 1913 (K. M.).

Illinois: Cook County, Chase, May 31, 1897 (P.); Decatur, Clokey, June 2, 1899 (K. M.); Macon County, Clokey, June 4, 1915 (K. M.); "Illinois," Vasey (P.).

Wisconsin: Milwaukee, Hasse, June (N. Y.).
Minnesota: Chaska, Ballard, June, i89I (C.).
North Dakota: Fargo, Waldron, June 2, 1900 (N. Y.); Towner, McHenry County, Lunell, June 12, 1913 (K. M.).

Missouri: Independence, Bush 717 , June 2, 1895 (C.); St. Louis, Riehl 394, June, 1843 (C.); Butler County, Bush 2659, May 1; 1905 (K. M., N. Y.); Courtney, Bush 6751, May 31, 1912 (K. M., N. Y.); St. Louis, Glatfelter, May 15, 1894 (K. M.); Adams, Mackenzie, May 23, 1897 (K. M.); Clay County, Mackenzie 820, April 27, 1895 (K. M.); Sibley, Mackenzie 66, May 29, 1898 (K. M.); Thornton, Mackenzie I2I, June 5, 1898 (K. M.); Courtney, Bush 6825, June 18, 1912 (K. M.); Buckner, Bush 6785 , June 5, 1912 (K. M.); Cockrell, Bush 6717, May 21, 1912 (N. Y., K. M.).

Arkansas: Moark, Bush 2575, May I, 1905 (K. M.).
Louisiana: Leavenworth (C.).

Carex convoluta sp. nov.

"Carex rosea Schk." Boott, Ill. Car. 2: 81 pl. 223. 1860.
Carex rosea var. pusilla Peck; E. C. Howe, Rep. New York State Mus. Nat. Hist. 48. I32. I895.

Densely cespitose, the culms $3-6 \mathrm{dm}$. high, strict, 2.5 mm . wide at base, aphyllopodic, roughened above, equalling leaves, light brownish tinged and fibrillose at base. Leaves with well-developed blades four to six to a fertile culm, on lower fourth, but not bunched, the sheaths tight, somewhat septate-nodulose, the blades flat, $1.5-3 \mathrm{~mm}$. wide, deep green. Spikes four to seven, androgynous, the upper closely contiguous, the lower strongly separate, with six to twenty perigynia, the staminate flowers few and inconspicuous; lowest bract setaceous, prolonged and often overtopping the culm, the others less developed. Scales broadly ovate, obtuse, thin, white-hyaline with green midvein, about width of and half length of body of perigynium. Perigynia soon widely spreading, plano-convex with slightly raised margins ventrally, deep green, nerveless or obscurely nerved, roughened on margins above, $3.25-4.5 \mathrm{~mm}$. long, 1.75 mm . wide, spongy and rounding at base, abruptly contracted into a bidentate beak, one third length of body, conspicuously hyaline between teeth. Achenes lenticular, orbicular-obovate, filling perigynia, 2 mm . long, 1.6 mm . wide. Style enlarged at base, deciduous. Stigmas two, short, thickish, twisted, dark brown.

My No. 2088 collected June 10, 1906, at Budd's Lake, New Jersey, and preserved in my herbarium may be taken as the type.

Specimens examined

Maine: Veazie, Knight, June 10, 1905 (K. M.).
New Hampshire: Blake (C.).
Massachusetts: Great Barrington, Brown, June 3, 1894 (C., P.) ; Cambridge, Fernald, May 30, 1891 (C.); Dedham, Forbes, June 27, 1903 (K. M.); "Mass." Dewey (P.).

Rhode Island: North Kingstown, May, 1872 (N. Y.); Olney, June (N. Y., P.) ; Lime Rock, Batchelder, June 4, 1913 (P.).

Connecticut: Trumbull, Eames, May 20, 1903 (K. M.).
New York: Torrey (C.); Penn Yan, Sartwell 24 (C.); High Bridge, Bicknell, July 5, 1890 (C.); Lake George, Kemp, June 1901 (N. Y.) ; Binghampton, Clute, 1895 (N. Y.); Apalachin, Fenno 492, 500, May 1898 (N. Y.); Portage, Peck, var. pusilla Peck (N. Y.).

New Jersey: Budd's Lake, Mackenzie 2088, June 10, 1906 (K. M.) ; Cranberry Lake, Mackenzie 732, 1295, June 12, 1904, May 30, 1905 (K. M.); Mickleton, Heritage, May 18, 1892 (P.); Mickleton, Brinton, June 15, 1890 (P.); Glassboro, Long 3419,

May 16, 1910 (P.); Farmingdale, Long \& Brown 3702, May 28, 1910 (P.); Bordentown, Long 12468, June 11, 1915 (P.); Mullica Hill, Long 12390, June 4, 1915 (P.); Sharptown, Long I2354, June I, 1915 (P.).

Pennsylvania: York County, Glatfelter, June, 1895 (K. M.); Llewellyn Mills, Pennell 5065, July 16, 1913 (P.); Byberry, Martindale, June, 1865 (P.); Rock Hill, Keller, June 19, 1892 (P.); Lafayette, Keller, June 2, 1895 (P.); Spring Mount, Van Pelt, June 12, 1908 (P.); Gwynedd, MacElwee 2322, June 8, 1902 (P.); Green Lane, Allebach, May, I9II (P.); Wernersville, Lightfoot, July 6, 1892 (P.); Easton, Porter, May 28, 1895 (P.); Rock Hill, Saunders, May 30, 1898 (P.); Chestnut Hill, Porter, June 14, 1898 (P.); Lancaster, Long, June 22, 1909 (P.); Revere, Long, July 6, 1909 (P.); Churchtown, Long, June 17, 1909 (P.); Bustleton, Long, June 15, 1909 (P.); Willow Grove, Long 3778, June I, 1910 (P.); Chester Heights, Pennell 5045, June 21, 1913 (P.); Montgomery County, Long 8274, May 18, 1913 (P.); Limeport, Pretz 5646, 5700, June and July, 1913 (P.); Locust Valley, Pretz 5675, July 4, 1913 (P.); Mill Hill, Pretz 543 r, May 30, 1913 (P.); Mountainville, Pretz 1855, 5342, 6650, 6776, May 29, 1909, May 18, 1913, June, 1914 (P.); Jordan, Pretz 5545, June 21, 1913 (P.); Jordan Creek, Pretz 5566, June 22, 1913 (P.); Vera Cruz, Pretz 3472a, 5621, June 4, 1911, June 29, 1913 (P.); Hosensack, Pretz 4828B, July 21, 1912 (P.); Treichler, Pretz 4583, June 22, 1912 (P.); Dillinger, Pretz 3487, June 4, 1911 (P.); Emaus, Pretz 6583, June 6, 1914 (P.); Spring Valley, Pretz 4535, June 9, 1912 (P.); Fleetwood, Long 12603, June 27, 1915 (P.) ; Laurel Hill, Somerset County, Brown \& Saunders, May 30, 1899 (P.); Tannersville, Brown, July 4, 1901 (P.); Easton, Porter, 1891 and 1895 (C.); Conewago, Small, May 28, 1889 (C.).

Delaware: Mt. Cuba, Brinton, June 22, 1890 (P.); Greenbank, Commons, June 17, 1882 (P.).

District of Columbia: Steele, May 15, 1896 (K. M.); Williams, May 30, 1899 (K. M.).

Virginia: Smyth County, Britton \&o others, May, 1892 (C., P.); June I, 1892 (C., K. M.); Wytheville, Shriver, 1874 (P.).

North Carolina: Hunter (C.); Biltmore, Biltmore Herbarium 263a, June 3, 1896 (N. Y.).

South Carolina: Clemson, House 3389, May 22, 1907 (N. Y.). Alabama: Buckley, May, 1841 (C.); Point Clear, Baldwin County, Mohr, April 29, 1879 (N. Y.).

Tennessee: Franklin County, Eggert, June 8, 1897 (N. Y.); Prospect, Gattinger, May 18, 1883 (N. Y.).

Kentucky: Short, in 1842 (C., N. Y.); Lexington, Peter, May, 1834 (P.).

Oніо: Frank 55, 1835 (C., N. Y.).
Ontario: Guelph, Klugh, July 9, 1905 (K. M.); Ontario, J. M. Macoun, June 12, 1891 (C.).

Michigan: Cassapolis, Wheeler 22, June 2, 1890 (C.); Agricultural College, Wheeler, May 6, 1895 (C.); Olivet, McClatchie, June 3, 1887 (N. Y.); Flint, Clarke (P.); Tuscola County, Dodge, June 20, 1910 (K. M.) : Mackinack County, Dodge, July I, 1912 (K. M.) ; Port Huron, Dodge, June 6, igII (K. M.); Lapeer County, Dodge, June 2, 1911 (K. M.).

Indiana: Greencastle, Underwood, June, 1893 (N. Y.); Laporte County, Deam 8745, June 17, 1911 (K. M.); Noble County, Deam 6786, June 20, 1910 (K. M.); Putnam County, Deam 6506 (K. M.); Clarke County, Deam 6476, May 25, 1910 (K. M.); Vermilion County, Deam 584I, 584Ia, 5842, May 8, 1910 (K. M.); Wells County, Deam I4I81, May 17, 1914 (K. M.); Ripley County, Deam 10588, 10606, May 19, 1912 (K. M.); Hendricks County, Deam 10885, June I, 1912 (K. M.); Elkhart County, Deam 10998, June 4, 1912 (K. M.); Howard County, Deam 5913, 5950, May 15, 1910 (K. M.) ; Brown County, Deam 6560, June 5, 1910 (K. M.) ; Wayne County, Deam 13146, June 4, 1913 (K. M.); Jackson County, Deam 12719, May II, 1913 (K. M.); Johnson County, Deam 11082, June 8, 1912 (K. M.); Hamilton County, Mrs. Deam 10540, May 19, 1912 (K. M.); Lagrange County, Deam 15945, June 5, 1915 (K. M.).

Wisconsin: Milwaukee, Hasse, June I, 1880 (N. Y.); Madison, Hale (P.).

Illinois: Mt. Carmel, Schneck, May 15, 1880 (C.); Peoria, McDonald, June, 1903 (N. Y.); Lasalle County, Greenman \&o others. 59, June, ig09 (N. Y.).

Minnesota: Center City, Taylor, June, 1892 (C.).
Iowa: Ames, Ball 15, June 4, 1898 (N. Y.); Charles City,

Arthur, May 16, 1875 (N. Y.); Fayette, Fink, June, 1895 (N. Y.); Iowa Lake, Cratty, June 8, I88i (N. Y.); Armstrong, Cratty, June 22, 1898 (N. Y.) ; Marshalltown, Pammel 384, May 1, 1897 (K. M.).

Missouri: Monteer, Bush 4673, 4689, May 24, 1907 (K. M.); Swan, Bush 4513, $4513 a$, May 17, 1907 (K. M.); Martin City, Mackenzie, June 13, 1900 (K. M.); Monteer, Bush 2802, 2870, May, 1905 (K. M.); Burge Park, Mackenzie, May 16, 1896 (K. M.); Courtney, Mackenzie, May 23, 1896 (K. M.); Courtney, Bush, May 18, 1891 (C., P.), and 6810, June 10, 1912 (K. M., N. Y.); Swan, Bush 2914, May 19, 1905 (K. M., N. Y.).

Kansas: Leavenworth County, Hitchcock 867, 1896 (N. Y.); Quindaro, Mackenzie, May 30, 1897 (K. M.).

Nebraska: Ponca, Clements 2557, June 15, 1893 (C.) ; Lincoln, Webber, June, 1886 (C.); Ashland, Williams, 1890 (K. M.).

South Dakota: Bigstone, Williams, June, 1895 (K. M.).
Manitoba: Portage la Prairie, Macoun 72775, June 9, 1906 (N. Y.).

Carex radiata (Wahl.) Small, Fl. SE. U. S. 218. 1903
Carex stellulata β. C. radiata Wahl. Kongl. Vet. Akad. Handl. (II.)
24: 147. 1803.
Carex rosea β. radiata Dewey, Am. Jour. Sci. 10: 276.1826. Carex neglecta Tuckerman, Enum. Method. 19. 1843.
"Carex disperma Dewey" Kunze, Riedgr. Suppl. I3I. pl. 33. 1840-50.
Densely cespitose, the culms $2.5-5 \mathrm{dm}$. high, very slender, 1.5 mm . thick at base, weak, aphyllopodic, roughened above, equalling leaves, light brownish tinged and fibrillose at base. Leaves with well-developed blades four to six to a fertile culm on lower fourth, but not bunched, the sheaths tight, not septatenodulose, the blades flat, $\mathbf{I}-1.75 \mathrm{~mm}$. wide, light green. Spikes mostly four, androgynous, the two upper closely contiguous, the lower strongly separate, with two to six perigynia, the staminate flowers few and inconspicuous; lowest bract setaceous, erect, prolonged and often overtopping the culm; the others less developed. Scales ovate, obtuse, thin, white-hyaline with green midvein, about width of but shorter than body of perigynium. Perigynia at first erect, at maturity more or less strongly spreading, plano-convex with slightly raised margins ventrally, deep green, nerveless or obscurely nerved, roughened on margins above,
$2.25-3 \mathrm{~mm}$. long, 1.5 mm . wide, somewhat spongy and rounding at base, abruptly contracted into a bidentate beak, half length of body, hyaline between teeth. Achenes lenticular, orbicularobovate, filling perigynia, 1.5 mm . long, nearly as wide. Style enlarged at base, deciduous. Stigmas two, short, twisted, dark reddish brown.

Specimens examined

Maine: Orono, Briggs, June, 1892 (N. Y.); Orono, Fernald, July 1, 1891 (C.).

New Hampshire: East Andover, Briggs, 1900 (N. Y.).
Vermont: Middlebury, Brainerd, June 20, 1880 (P.).
Massachusetts: Plainfield, Porter (C.); Ashfield, Forbes, August 19, 1904 (K. M.) ; North Adams, Fernald \&o Long 9017, June 23, 1913 (P.); "Mass." Nuttall (P.).

Rhode Island: Olney (N. Y., K. M.).
Connecticut: Barratt (N. Y.); West Goshen, Underwood, June 29, 1891 (C.).

New York: Oneida County, Vasey (N. Y., K. M., P.) ; Hunter, Catskill Mountains, Britton, August I, 1898 (N. Y.); Tannersville, Vail, July 16, 1892 (C.); Preston, Coville, June 28, 1886 (K. M.).

New Jersey: Water Gap, Mackenzie 5306, September 28, 1912 (K. M.) ; Moe, Passaic County, Mackenzie 6005, July 5, 1914 (K. M.).

Pennsilvania: Pike County, Brown \&o Saunders, July 9, 1899 (P.) ; Nockamixon, MacElwee, May 28, 1893 (P.); Rockdale, Krout, June, 1877 (P.); New Jerusalem Church, Lehigh County, Hamm 839, August 14, 1911 (P.); Rockdale, Van Pelt, July 25, 1909 (P.) ; Hoffman, Pretz 7752, August 8, 1915 (P.); Rockdale, Pretz 2019, July 25, 1909 (P.); Bethlehem, Schweinitz (P.); Tobyhanna, Brown, July 2-4, 1893 (P.); Ararat, Susquehanna County, Saunders, July 8-20, 1900 (P.).

Virginia: Peaks of Otter, Curtiss, June 28, 1871 (N. Y.), Brown \&o others, May and June, 1890 (C., P.); Smyth County, Britton \&o others, June, 1892 (C.); Grayson County, Britton \&o others, June 15, 1892 (C., K. M.); Mountain Lake, Britton \&o others, June 1, 1890 (C.); Pond Mountain, Small, June 11, 1892 (C.) ; Luray, Steele, August II, 1901 (N. Y.).

Kentucky: Big Black Mountain, Harlan County, Kearney 156, August, 1893 (C.).

Tennessee: Thunderhead Mountain, 671 ft. alt., Ruth 928 , July, 1894 (N. Y.), and 30, June, 1894 (K. M.).

North Carolina: Mt. Mitchell, Biltmore Herbarium 206b, Juner 8, 1898 (N. Y.); Craggy Mountain, Biltmore Herbarium 206a, July 9, 1897 (N. Y.); Macon County, Buckley (C.); Swain County, Beardsley \& others, July, 1891 (C.); Watauga County, Small \&o Heller 265, June 24, 1891 (C., P.); Mt. Mitchell, Biltmore Herbarium 4974c, June 20, 1898 (N. Y.).

INDEX TO AMERICAN BOTANICAL LITERATURE

1909-1916

The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material ; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of one cent for each card. Selections of cards are not permitted ; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Adams, J. F. Internal uredinia. Mycologia 8: 181, 182. pl. 186. 23 My i9i6.
Alsberg, C. L., \& Black, O. F. The separation of autogenous and added hydrocyanic acid from certain plant tissues and its disappearance during maceration. Jour. Biol. Chem. 25: 133-140. My 1916.
Anderson, P. J., \& Rankin, W. H. Endothia canker of chestnut. Cornell Agr. Exp. Sta. Bull. 347: 533-618. pl. 36-40+f. 77-101. Je 1914.
Appleman, C. O. Relation of oxidases and catalase to respiration in plants. Am. Jour. Bot. 3: 223-233. 26 My 1916.
Arthur, J. C. Cultures of Uredineae in 1915. Mycologia 8: 125-141. 23 My 1916.
Blankinship, J. W. Conditions of plant life in the Selby smoke zone, January I to July i, I9I4. U. S. Dept. Int. Mines Bull. 98:381-397. pl. 29-3Itf. 4. Jl 1915. Includes notes on fungus diseases.
Brandegee, T. S. Species novae vel minus cognitae. Univ. Calif. Publ. Bot. 6: $357-361.6$ My 1916.
Includes II new species in Aristolochia (3), Sedum (I), Asclepias (I), Jatropha (I), Lycium (I), Galvesia (I), Antirrhinum (I), Maximowiczia (I), and Orobanche (I).

Britton, E. G. Wild plants needing protection-ı. "Liver-leaf" (Hepatica Hepatica (L.) Karst.). Jour. N. Y. Bot. Garden 17: 55, 56. pl. 170. Ap 1916.

Brown, W. H., \& Mathews, D. M. Philippine dipterocarp forests. Philip. Jour. Sci. 9: (Chem. \& Geol.) 413-561. pl. $1-13+f .1-11$. S, N 1914.
Cardoso, A. El rio de la Plata desde su génesis hasta la conquista. An. Mus. Nac. Hist. Nat. Buenos Aires 27: 153-284. 1915. [Illust.] Contains a chapter on the fauna and flora of the region.
Carpenter, C. W. The Rio Grande lettuce disease. Phytopathology 6: 303-305.f. r. Je 1916.
Chamberlain, C. J. Stangeria paradoxa. Bot. Gaz. 6I: 353-372. pl. 24-26+f. I. 15 My 1916.
Chandler, W. H. The killing of plant tissue by low temperature. Missouri Agr. Exp. Sta. Research Bull. 8: 14I-309. f. 1 -3+chart. D 1913.
Chandler, W. H. Sap studies with horticultural plants. Missouri Agr. Exp. Sta. Research Bull. 14: 491-552. pl. 1-13. My 1914.
Choate, H. A. An unpublished letter by Gronovius. Torreya 16: 116-120. My 1916.
Churchill, O. O., \& Wright, A. H. The grain sorghums. Oklahoma Agr. Exp. Sta. Bull. 102: 3-70.f. I-3I. O 1914.
Cunningham, G. C. Studies in club-root. II. Disease resistance of crucifers; methods of combating club-root. Vermont Agr. Exp. Sta. Bull. 185: 67-96. pl. 1 - . N 1914.
Detwiler, S. B. The American elm (Ulmus americana). Am. Forestry 22: 259-267. My 1916.' [Illust.]
Dunham, E. M. How to know the mosses. $\mathrm{i}-\mathrm{xxv}+\mathrm{i}-287$. pl. $1-4$. 1916. [Illust.]
"A popular guide to the mosses of the northeastern United States."
East, E. M. Significant accuracy in recording genetic data. Am. Jour. Bot. 3: 211-222. My 1916.
Edson, H. A., Jones, C. H., \& Carpenter, C. W. Micro-organisms of maple sap. Vermont Agr. Exp. Sta. Bull. 167: 323-606. pl. 1 -16 +f. I-I4. Je 1912.
Emerson, R. A. A genetic study of plant height in Phasaeolus vulgaris. Nebraska Agr. Exp. Sta. Research Bull. 7: 1-73. f. I-I6. 15, Mr 1916.

Farwell, O. A. A freak of nature. Torreya 16: 115, 116. f. I. 24 My 1916.
Flett, J. B. The flora of the mountain slopes. [In Williams, J. H., The mountain that was "God."] 129-I39. I9II.

Gates, F. C. Xerofotic movement in leaves. Bot. Gaz. 6I: 399-407. f. 1 -8. 15 My 1916.

Gilkey, H. M. A revision of the Tuberales of California. Univ. Calif. Publ. Bot. 6: 275-356. pl. 26-30. 31 Mr 1916.
Graff, P. W. Fungi. [In Merrill, E. D., An enumeration of the plants of Guam.] Philip. Jour. Sci. 9: (Bot.) 37-40. Ap 1916. Includes Cladosporium Clemensiae Graff.
Harper, R. M. Geography and vegetation of northern Florida. Ann. Rep. Florida State Geol. Surv. 6: 167-451. f. 4I-90. 1914.
Harter, L. L. Rhizoctonia and Sclerotium rolfsii on sweet potatoes. Phytopathology 6: 305, 306. Je 1916.
Hauman, L. Dioscoréacées de l'Argentine. An. Mus. Nac. Hist. Nat. Buenos Aires 27: 441-516. f. 1-33. 1915. Includes seven new species and six new varieties.
Hauman, L. Les Alismatacées Argentines. An. Mus. Nac. Hist. Nat. Buenos Aires 27: 307-324. pl. 8. 1915.
Hauman, L. Note sur Hydromystria stonolifera Mey. An. Mus. Nac. Hist. Nat. Buenos Aires 27: 325-331. 1915.
Hauman, L. Note sur les Joncacées des petits genres andins. An. Mus. Nac. Hist. Nat. Buenos Aires 27: 285-306. pl. 6, $7+f . r-4$. 1915. Includes the new genus A ndesia.
Hawkins, L. A. The influence of calcium, magnesium and potassium nitrates upon the toxicity of certain heavy metals toward fungus spores. Physiol. Researches 1: 57-92. f. I-6. Au 1913.
Heatley, M. A study of the life history of Trillium cernuum L. Bot. Gaz. 61: 425-429. pl. 27. I5 My 1916.
Hollick, A. A quaint old work on seaweeds. Proc. Staten Island Assoc. Arts \& Sci. 5: 85-91. My 1915.
Hollick, A. Some botanical and geological features of the Silver Lake basin. Proc. Staten Island Assoc. Arts \& Sci. 5: 60-65. pl. 2-5. 10 Ap 1916.
Hotson, J. W. Observations on fire blight in the Yakima Valley, Washington. Phytopathology 6: 288-292. pl. 7, 8. Je 1916.
Humphreys, E. W. Sphenozamites Rogersianus Fontaine; an addition to the Rhaetic flora of San Juancito, Honduras. Jour. N. Y. Bot. Gard. 17: 56-58. Ap 1916.
Jessen, K. The structure and biology of arctic flowering plants -II. I. Rosaceae. Meddelelser om Grönland 37: 1-126. f. I-4I. 1913.

Jones, F. R. Pleosphaerulina on alfalfa. Phytopathology 6: 299, 300. Je 1916.

Jones, W. W. The occurrence of sulphur dioxide injury to plants in the Selby smoke zone. U. S. Dept. Int. Mines Bull. 98: 398-427, pl. 33-37. J1 1915.
Kern, F. D., \& Orton, C. R. Phytophthora infestans on tomatoes. Phytopathology 6: 284-287. f. 1, 2. Je 1916.
Knowlton, C. H., \& Deane, W. Reports on the flora of the Boston district-XXI. Rhodora 17: 202-203. O 1915;-XXII. Rhodora 18: 86-90. Ap 1916.
Lehenbauer, P. A. Growth of maize seedlings in relation to temperature. Physiol. Researches 1: 247-288. f. I-4. D 1914.
Levy, D. J. Common mosses, according to habitat. A non-technical description based on macroscopical characters. Torreya 16 : 55-67.f. 1-5. 17 Mr 1916; 80-91; Ap 1916; 103-115; 24 My 1916.
Lewis, C. E. Apple diseases caused by Coryneum foliicolum Fckl. and Phoma mali Schulz et Sac. Maine Agr. Exp. Sta. Bull. 170: 185-200. f. $17-42$. N 1909.
Lewis, C. E. A new species of Endomyces from decaying apple. Maine Agr. Exp. Sta. Bull. $178: 45-64$. f. $5^{8-71 .}$ Ap 1910.
Livingston, B. E. Physiological temperature indices for the study of plant growth in relation to climatic conditions. Physiol. Researches I: 399-420. f. I-4. Ap 1916.
Lloyd, C. G. The genus Hydnochaete. Mycological Notes No. 41 : 559-572. f. 766 -781. Mr 1916.
Lloyd, C. G. H. C. Beardslee. Mycological Notes No. 41: 58. Mr 1916. [Portrait.]

Lloyd, F. E. The red color of the mesocarp of seeded fruits in the persimmon (Diospyros Kaki) II. A visual method for estimating astringency. Plant World 19: 106-116. f. I. Ap 1916.
Long, W. H. Five undescribed species of Ravenelia. Bot Gaz. 6I: 417-424. 15 My 1916.
Long, W. H. Note on western red rot in Pinus ponderosa. Mycologia 8: 178 -180. 23 My 1916.
Love, H. H., \& Leighty, C. E. Variation and correlation of oats (Avena sativa). Studies showing the effect of seasonal changes on biometrical constants. Cornell Agr. Exp. Sta. Mem. 3: 9-70. Au 1914.
Lunell, E. J. Enumeratur plantae Dakotae septentrionalis vasculares -III. Am. Mid. Nat. 4: 229-244. N 1915;-IV. Am. Mid. Nat. 4: 297-310. Ja 1916;-V. Am. Mid. Nat. 4: 355-366. Mr 1916; -VI. Am. Mid. Nat. 4: 409-418. Mr 1916.
Malte, M. O., \& Macoun, J. M. Hybridization in the genus Viola. Ottawa Nat. 28: 145-150. 27 F $1915 ; 161-168$. Ap 1915.

McCormick, F. A. Notes on the anatomy of the young tuber of Ipomoea batatas Lam. Bot. Gaz. 61:388-398.f. 1-8. 15 My 1916. Meinecke, E. P. Peridermium harknessii and Cronartium Quercuum. Phytopathology 6: 225-240.f. I, 2, Je 1916.
Merrill, E. D. New or noteworthy Philippine plants-XI. Philip. Jour. Sci. 10: (Bot.) 1-84. 23 Ap 1915;-XII. Philip. Jour. Sci. 10: (Bot.) 287-349. S 1915.
Metcalf, H. Spread of the chestnut blight in Pennsylvania. Phytopathology 6: 302. Je 1916.
Mix, A. J. The formation of parenchyma wood following winter injury to the cambium. Phytopathology 6: 279-283.f. 1-3. Je 1916.

Murrill, W. A. Illustrations of fungi-XXIII. Mycologia 8: 121-124. pl. 185. 23 My 1916. Russula delica, R. fava, R. virescens, R. obscura and R. compacta are illustrated.
Murrill, W. A. A very dangerous mushroom. Mycologia 8: 186,187 . 23 My 1916.
Panaeolus venenosus sp. nov.
Olsen, C. The structure and biology of artic flowering plants-II. 2 . Cornaceae. Meddelelser om Grönland 37: 129-150.f. 1-13. 1914.
Ostenfeld, C. H. Plants collected during the first Thule Expedition to northernmost Greenland. Meddelelser om Grönland 37: 373-381. 15 S 1915.
Pierce, R. G. Pinus resinosa, a new host for Peridermium acicolum. Phytopathology 6: 302, 303. Je 1916.
Reed, G. B. The significance of color changes in oxidase reagents. Bot. Gaz. 61: 430-432. I5 My 1916.
Rigg, G. B., Trumbull, H. L., \& Lincoln, M. Physical properties of some toxic solutions. Bot. Gaz. 61: 408-416. I5 My 1916.
Robbins, W. J. Influence of certain salts and nutrient solutions on the secretion of diastase by Pencillium Camembertii. Am. Jour. Bot. 3: 234-260. f. I-3. 26 My 1916.
Rosenbaum, J. Phytophthora disease of ginseng. Cornell Agr. Exp. Sta. Bull. 363: 65-106. f. 2-18. O 1915.
Sandsten, E. P. Some conditions which influence the germination and fertility of pollen. Wisconsin Agr. Exp. Sta. Research Bull. 4: 149-172. Je 1909.
Schlechter, R. Orchidaceae novae et criticae, Decas XXXVIII. Repert. Sp. Nov. 12: 202-206. 30 My 1913; Decas XXXIX. Repert. Sp. Nov. 12: 212-216. 25 Je 1913.
Nineteen new species are described.

Schorger, A. W. Chemistry as an aid in the identification of species. Proc. Soc. Am. Foresters II: 33-39. Ja 1916.
Scott, D. H. Count Solms-Laubach. Bot. Gaz. 6I: 433, 434. I5 My 1916. [Portrait.]

Shive, J. W. A study of physiological balance in nutrient media. Physiol. Researches 1: 327 -397. f. 1 -15. N 1915.
Smith, C. O. Cottony rot of lemons in California. Phytopathology 6: 268-278. f. 1-5. Je 1916.
Smith, J. D. Undescribed plants from Guatemala and other Central American republics-XXXIX. Bot. Gaz. 61: 373-387. I5 My 1916.

Twenty new species are described.
Spegazzini, C. Segunda contribución al conocimiento de las Laboulbeniales Italianas. An. Mus. Nac. Hist. Nat. Buenos Aires 27: 37-74. f. 1 -38. 1915.
Includes the new genera Parahydraeomyces and Thripomyces and 31 new species in various genera.
Standish, L. M. What is happening to the hawthorns? Jour. Heredity 7: 266-279. f. 7-I7. 25 Мy 1916.
Standley, P. C. Fungi of New Mexico. Mycologia 8: 142-177. 23 My 1916. Includes Aecidium Cockerellii Arthur.
Stevens, F. L., \& Peterson, A. Some new strawberry fungi. Phytopathology 6: 258-266. f. I-26. Je 1916.
Includes descriptions of Sphaeronaemella Fragariae and Patellina Fragariae, spp. nov.
Sumstine, D. R. A new species of Colus from Pennsylvania. Mycologia 8: 183, 184. 23 My 1916. Colus Schellenbergiae sp. nov.
Swingle, D. B. Fruit diseases in Montana. Montana Agr. Exp. Sta. Circ. 37: 263-329. f. I-2I. F 1914.
Taubenhaus, J. J. A wilt disease of the columbine. Phytopathology 6: 254-257.f. 1, 2. Je 1916.
Tottingham, W. E. A quantitative chemical and physiological study of nutrient solutions for plant cultures. Physiol. Researches I: 133-245.f. 1 -15. My 1914.
Trelease, W. Two new terms, cormophytaster and xeniophyte, axiomatically fundamental in botany. Proc. Am. Philos. Soc. 55: 237-242. My 1916.
Turrill, W. B. Pentstemon rupicola. Curt. Bot. Mag. IV. 12: pl. 8660. Мy 1916. A North American plant.

CHURCH: COOPERIA DRUMMONDII

BULLEIIN

of THE

TORREY BOTANICAL CLUB

SEPTEMBER, 1916

Studies of West Indian plants-VIII
Nathaniel Lord Britton

44. FURTHER RECORDS OF JAMAICA SEDGES*

Cyperus fugax Liebm. Vid. Selks. Skr. V. 2: 196. 1851 Savanna, Belle Vue, near Spanish Town (Harris 12183). Distribution: Mexico and Guatemala.

Cyperus cyperoides (L.) Kuntze, Rev. Gen. Pl. 3^{2} : 333 . 1898
Scirpus cyperoides L. Mant. 181. 1771.
Mariscus Sieberianus Nees, Linnaea 9:286. 1834.
Maviscus cyperoides Urban, Symb. Ant. 2: 164. 1900. Not M. cyperoides A. Dietr.
Belle Vue, near Spanish Town, in wet hollows in pastures (Harris 12045); previously collected in Jamaica by Hart and by Wullschlaegel.

Distribution: Trinidad. Native of the Old World tropics.

Cyperus nanus Willd.

In Bull. Dept. Agric. Jamaica 5:Suppl. I, 9, I noted Mr. C. B. Clarke's record of this species from Jamaica, as based on the same specimen (March 13) as his record of Mariscus gracilis Vahl (Cyperus granularis [Desf.] Britton), and I subsequently ascertained that this specimen preserved in the Kew herbarium is

* Bull. Dept. Agric. Jamaica 5: Suppl. r. 1907. Bull. Torrey Club 35: 568, 569 . 1909. Ibid. 41: 1,2 . 19 I9.
[The Bulletin for August (43: 397-440. pl. 22, 23) was issued August 22, 1916 .]
C. granularis. It would therefore appear that C. nanus was entered as Jamaican by Mr. Clarke in error. C. granularis on the other hand is now known to me to inhabit dry soil at Long Acre Point near Black River (Britton 1383).

Cyperus ignotus sp. nov.

Perennial, glabrous; culm rather stout, smooth, bluntly 3angled, about 5 dm . high. Basal leaves as long as the culm or longer, smooth, $2.5-4 \mathrm{~mm}$. wide, those of the involucre similar, much longer than the inflorescence, sometimes 3 dm . long; umbel compound, its primary rays 8 cm . long or less; spikelets compressed, capitate, $6-8$-flowered, the heads numerous, $8-10 \mathrm{~mm}$. in diameter; rachis wingless; scales ovate-lanceolate, mucronulate, very faintly nerved, closely appressed and overlapping, 2 mm . long; style 3 cleft; achene oblong, trigonous, r.3 mm. long, about twice as long as thick, narrowed at both ends.
In damp, shaded places, near Vinegar Hill, St. George, at about 1,100 m. alt. (Harris 12350). Plant with the habit of C. elegans L., but with flat leaves and quite different spikelets.

Eleocharis nodulosa (Roth) Schultes; R. \& S. Mant. 2: 87. 1824
Scirpus nodulosus Roth, Nov. Pl. Sp. 29. 1821.
Swamp, Belle Vue near Spanish Town (Harris 12179).
Distribution: Southern United States; Cuba; Hispaniola; Porto Rico; Antigua; Guadeloupe; continental tropical America.

Eleocharis microcarpa Torr. (E. minima Kunth), was recorded by Mr. Clarke as collected in Jamaica by Purdie, but his determination of the specimen from the interior of Manchester preserved in the Kew herbarium was subsequently doubted by Mr. Clarke, and we have no other knowledge of the existence of this species in Jamaica.

Stenophyllus junciformis (HBK.)

Isolepis junciformis HBK. Nov. Gen. I: 222. 1815.
 Scirpus juncoides Willd.; Griseb. F1. Br. W. I. 572. 1864.

Summit of Bull Head Mountain (Underwood 3364); Liguanea Ridge, St. Andrew (Harris 12219, 12345).

Distribution: Cuba; South America.

Owing to two different species having been distributed as Scirpus juncoides under C. Wright's Cuban No. I533, I formerly misidentified Professor Underwood's. No. 3364 and recorded it* as Stenophyllus subaphyllus (Clarke) Britton, a species apparently restricted to eastern Cuba.

Fimbristylis miliacea (L.) Vahl, Enum. 2:287. 1806
Savannas and swamps, Belle Vue, near Spanish Town (Harris 12182, 12188).

Distribution: Southern United States; Cuba; Porto Rico; continental tropical America and Old World tropics.

Rynchospora oligantha A. Gray, Ann. Lyc. N. Y. 3:212. 1835
Hollis savanna, Upper Clarendon (Harris 12249).
Distribution: Southeastern United States. Not yet detected in Cuban savannas.

Rynchospora pusilla Chapm.; Curtis, Am. Jour. Sci. II. 7: 409. 1849

Rynchospora intermixta C. Wright; Sauvalle, Anales Acad. Habana 8: 88. 1872
Bull Head Mountain, along roadside in wet places (Harris 12261).

Distribution: Southeastern United States; Santa Clara, Pinar del Rio and Isle of Pines, Cuba.

Scleria gracilis Ell. Bot. S. C. \& Ga. 2: 571. 1824

Bull Head Mountain, $800-900 \mathrm{~m}$. alt., forming small patches on exposed hillside (Harris 12262).

Distribution: Southeastern United States; Pinar del Rio and Isle of Pines, Cuba.

45. STENOPHYLLUS Raf. IN THE WEST INDIES

Type species: Scirpus Stenophyllus Ell. The generic name dates from 1825 (Neog. 4). The name Bulbostylis, taken up by Mr. C. B.Clarke for the genus in 1893 (Hook. f. Fl. Brit. India) and subsequently, was first published by Kunth, under Isolepis, in 1837 (Enum. 2:205).

* Bull. Dept. Agric. Jamaica 5: Suppl. 1, 12. 1907.
A. Spikelet solitary.

Spikelet terminal, not subtended by a bract.
Caudex stout, $2-15 \mathrm{~cm}$. high, densely clothed with persistent leaf-bases.
Caudex none.
Leaves elongated; spikelet straw-color.
Leaves short; spikelet dark brown.
Spikelet apparently lateral, subtended by a bract.
Achene smooth.
Achene papillose-reticulated.
Achene twice as long as thick.
Achene scarcely longer than thick.
I. S. paradoxus.
2. S. leucostachys.
3. S. conifera.
4. S. floccosus.
5. S. portoricensis.
6. S. curassavicus.
B. Spikelets (except in depauperate plants) several or numerous.
a. Spikelets in a single capitate cluster.

Plants leafless or nearly so, or leaves $\mathrm{I}-3 \mathrm{~cm}$. long.
Spikelets few, 6 mm . long or less.
Leaf-blade 6 mm . long or less. Leaf-blade $\mathrm{r}-3 \mathrm{~cm}$. long.
Spikelets several, $6-20 \mathrm{~mm}$. long.
Scales loosely pubescent. Scales glabrous or ciliolate.
Leaves about one half as long as the culm.
b. Spikelets in a simple or compound umbel, or sometimes compact or capitate.
Spikelets clustered in umbelled heads or spikes, or head sometimes solitary.
Culm pilose above.
Culm glabrous.
Scales mucronate by the excurrent midvein.
Scales acute, the midvein not excurrent; achene papillose.
Spikelets not clustered in the umbels, or somewhat clustered.
Achene 0.5 mm . long, gray, densely pitted; scales suborbicular.
Achene $0.7-1 \mathrm{~mm}$, long, white, transversely undulate; scales ovate.
15. S. coarctatus.
16. S. capillaris.
I. Stenophyllus paradoxus (Spreng.) Standley, Contr. U. S. Nat. Herb. 18: $88 . \quad 1916$
Schoenus paradoxus Spreng. Syst. 1: 190. 1825.
Bulbostylis paradoxa Linden; Regnell, Cyp. 17. 1900.
Type locality: Mt. Silla de Cacares, near El Pexual, Venezuela.

Distribution: Isle of Pines, Cuba: continental tropical America.

One of the noteworthy elements in the vegetation of sandy pine-lands on the Isle of Pines, sometimes occupying areas many acres in extent.

2. Stenophyllus leucostachyus (HBK.)

Isolepis leucostachya HBK. Nov. Gen. I: 220. 1815.
Bulbostylis leucostachya Kunth; Clarke in Urban, Symb. Ant. 2: 85. 1900.

Type locality: Wet woods of the Orinoco at Maypuri.
Distribution: West Indies (Swartz, according to Clarke): northern South America. Unknown to me from the West Indies.

3. Stenophyllus coniferus (Kunth)

Isolepis conifera Kunth, Enum. 2: 206. 1837.
Type locality: Surinam.
Distribution: Recorded by Clarke as doubtfully collected by Mayerhoff in Hispaniola: northern South America.
4. Stenophyllus floccosus (Griseb.) Britton, Torreya 13 : 216. 1913

Scirpus floccosus Griseb. Cat. Pl. Cub. 241. 1866.
Bulbostylis floccosa Clarke; Urban, Symb. Ant. 2: 86. 1900.
Type locality: Eastern Cuba.
Distribution: Known only from the type locality.
5. Stenophyllus portoricensis Britton, Torreya 13: 216. 1913

Type locality: Rocky coastal thicket near Guanica, Porto Rico.

Distribution: Coastal thickets, southwestern Porto Rico.
6. Stenophyllus curassavicus Britton, nom. nov.

Bulbostylis floccosa var.(?) pumilio Clarke; Urban, Symb. Ant. 5:
290. 1907.

Type locality: Curaçao.
Distribution: Banks and limestone rocks, Bonaire and Curaçao.

The spikelets of this species are much compressed. The
varietal name published by Mr. Clarke is not taken up because the plant attains a greater size than his description indicates. The plant is abundant about Willamsted, Curaçao (Britton \& Shafer 2946).
> 7. Stenophyllus subaphyllus (Clarke) Britton, Bull. Dept. Agric. Jamaica 5: Suppl. I, 12. 1907

Bulbostylis subaphylla Clarke; Urban, Symb. Ant. 2: 86. 1900.
Type locality: Eastern Cuba.
Distribution: Eastern Cuba; formerly erroneously attributed by me (loc. cit.) to Jamaica (see page 443).

8. Stenophyllus alpestris (Urban)

Bulbostylis alpestris Urban, Symb. Ant. 7: 168. 1912.
Type locality: Near Constanza, Santo Domingo, in pine-lands, 2,500 m. alt.

Distribution: Known only from the type locality.
9. Stenophyllus Wilsoni Britton, Torreya 13: 215. 1913

Type locality: Castle Island, Bahamas.
Distribution: Castle Island and Little Inagua, Bahamas.

10. Stenophyllus Tuerckheimii (Urban)

Bulbostylis Tuerckheimii Urban, Symb. Ant. 7: 169. 1912.
Type locality: Near Constanza, Santo Domingo, in pinelands, $\mathrm{I}, 250 \mathrm{~m}$. alt.

Distribution: Known only from the type locality.

II. Stenophyllus fimbriatus (Nees)

Oncostylis fimbriata Nees; Martius, Fl. Bras. 2: 88, 1843.
Scirpus Dussii Boeckl. Cyp. Nov. 2: 38. 1890.
Bulbostylis fimbriata Clarke; Urban, Symb. Ant. 2: 87. 1900.
Type locality: River-banks at Villa Rica, Brazil.
Distribution: Martinique; Peru; Brazil.
I2. Stenophyllus vestitus (Kunth)
Isolepis vestita Kunth, Enum. 2:210. 1837.
Oncostylis vestita Nees; Martius, Fl. Bras. 2: 88. 1843.
Scirpus hirtus Griseb. Cat. Pl. Cub. 241. 1866.

Type locality: Surinam.
Distribution: Province of Pinar del Rio, Cuba; western Porto Rico: continental tropical America. The Porto Rico plant was referred by Clarke to Bulbostylis Langsdorffiana.
13. Stenophyllus junciformis (HBK.) Britton, Bull. Torrey Club 43: 442. 1916
Isolepis junciformis HBK. Nov. Gen. 1: 222. 1815. Scirpus juncoides Willd.; Griseb. Fl. Br. W. I. 572. 1864.

Type locality: Near the Guachari cavern, 500 feet alt.
Distribution: Savannas and pine-lands, province of Pinar del Rio, Cuba; Hispaniola; Jamaica; Trinidad: continental tropical America.
14. Stenophyllus antillanus sp. nov.

Culms tufted, nearly filiform, $2-4.5 \mathrm{dm}$. long, minutely roughciliolate or smooth. Leaves filiform, similar to the culm and one half to two thirds its length, rough-ciliolate or smooth, their sheaths pilose. Umbel compact or subcapitate; spikelets few or several, linear, $6-12 \mathrm{~mm}$. long, 1.5 mm . wide, $8-12$-flowered; scales ovate, known with a strong, whitish keel, acute, 1.5 mm . long; achene obovoid, nearly white, sharply trigonous, 0.7 mm . long, papillose, tipped by a minute, conic tubercle.

Dominica and Martinique. Type from Grand Savanna, Dominica (F. E. Lloyd 822).

Referred by Clarke (in Urban, Symb. Ant. 2: 89. 1900) to S. capillaris.
15. Stenophyllus coarctatus (Ell.) Britton; Small, Fl. SE. U. S. 189. 1903

Scirpus coarctatus ElI. Bot. S. C. \& Ga. I: 83. 1816 .
Type locality: Beaufort, South Carolina.
Distribution: On a sand pile in Santiago Harbor, Oriente, Cuba, March, 1909; southeastern United States.
16. Stenophyllus capillaris (L.) Britton, Bull. Torrey Club

$$
\text { 21: } 30 . \quad 1894
$$

Scirpus capillaris L. Sp. Pl. 49. 1753.
Bulbostylis capillaris Clarke; Hook. f. Fl. Brit. India 6: 652.
1893.

Type locality: Virginia.

Distribution: Sandy and rocky soil, provinces of Oriente and Pinar del Rio and on the Isle of Pines, Cuba; pinelands at high elevations in Santo Domingo; Jamaica (not recently collected): continental North America; temperate South America.

Stenophyllus tenuifolius (Rudge).
Scirpus tenuifolius Rudge, Pl. Guian. 18, pl. 22. 1805.
Scirpus bufonius Poir. Encycl. Suppl. 5: 105. 1817.
Bulbostylis capillaris tenuifolia Clarke; Urban, Symb. Ant. 2: 89. 1900.
Recorded by Clarke as collected by C. Wright in Cuba (Wright 3382), but ous specimens of that number are not essentially different from S. capillaris. The species inhabits tropical South America.

46. GALACTIA P.Br. IN CUBA

Type species: Glycine Galactia L.

A. Corolla $2-2.5 \mathrm{~cm}$. long, the standard parallel with the wings and keel.

> 1. G. rudolphioides.
B. Corolla not more than 1.7 cm . long, the standard erect, not parallel with the wings and keel.
a. Twining or trailing vines.

Corolla about 1.7 cm . long; leaflets 8 mm . long or less; peduncle I -flowered.
Corolla less than 1.5 mm . long; leaflets $1-6 \mathrm{~cm}$. long; peduncles mostly few- to several-flowered.
Terminal leaflet (when 3) long-stalked. Calyx-lobes longer than the tube.

Inflorescence short, I- to few-flowered.
Branches prostrate; calyx loosely pubescent.
Leaflets 3 or I, oblong to narrowly linear, $2-10 \mathrm{~mm}$. wide.
Leaflet only 1 , ovate or elliptic, 10-18 mm . wide.
Branches suberect; calyx densely villous. Inflorescence elongated, several- to manyflowered.
Leaflets membranous or chartaceous, flat, dull; standard $9-11 \mathrm{~mm}$. long.
Leaflets oblong to obovate-oblong.
Leaflets ovate to elliptic or ovatelanceolate.
Leaflets membranous; raceme usually long-peduncled.
7. G. striata.

Leaflets chartaceous; raceme shortpeduncled or sessile.
Leaflets subcoriaceous, revolute-margined, shining; standard 7 mm . long.
2. G. minutifolia.
3. G. parvifolia.
4. G. monophylla.
5. G. suberecta.
6. G. Combsii.
8. G. spiciformis.
9. G. Earlei.
I. Galactia rudolphioides (Griseb.) Benth. \& Hook.; Sauvalle, Anales Acad. Habana 5: 337. 1869

Dioclea rudolphioides Griseb. Mem. Am. Acad. II. 8: 178.1860. Galactia Odonia Griseb. Cat. Pl. Cub. 75. 1866.

Pinelands, thickets and hillsides, Oriente, Matanzas: Bahamas.
2. Galactia minutifolia Urban, Symb. Ant. 2: 325. 1900

Dry soil, Oriente. Endemic. Referred by Grisebach to G. parvifolia A. Rich.
3. Galactia parvifolia A. Rich. Ess. Fl. Cub. 414. 1845

Galactia stenophylla Urban, Symb. Ant. 2:313. 1900. Not H. \& A.

Galactia parvifolia triphylla Urban, loc. cit. 314. 1900.
Galactia parvifolia heterophylla Urban, loc. cit. 315. 1900. Galactia parvifolia monophylla Urban, loc. cit. 315. 1900. Galactia Grisebachii Urban, Symb. Ant. 5: 372. 1908.

Grassy fields and banks at lower elevations, all provinces and Isle of Pines: South Florida; Hispaniola. Consists of races differing in number, form and size of leaflets.
4. Galactia monophylla Griseb. Cat. Pl. Cub. 75. 1866

Grassy places, Oriente, Havana; Bahamas.

5. Galactia suberecta sp. nov.

A somewhat woody trailing vine, with slender, villous, erect or ascending branches $\mathrm{I}-2.5 \mathrm{dm}$. high. Stipules lanceolate, acute, $2-3 \mathrm{~mm}$. long; petioles slender, villous, $1-2 \mathrm{~cm}$. long; leaflets 3 , oblong to oblong-oblanceolate or oval, $1-3 \mathrm{~cm}$. long, mostly obtuse or rounded at the apex, appressed-pubescent on both sides, strongly reticulate-veined beneath, the lateral ones nearly sessile, obtuse or rounded at the base, the terminal one narrowed at the base, on a petiolule $3-4 \mathrm{~mm}$. long; peduncles I -flowered, shorter than the petioles; calyx villous, 6 mm . long, its lanceolate lobes longer than the tube; corolla purple, 1 cm . long.

Savanna near San Juan, Isle of Pines, Cuba (Britton \&o Wilson 14973).
6. Galactia Combsif Urban, Symb. Ant. 2: 219. I900

Grassy places, Santa Clara, Pinar del Rio. Endemic. Referred by Combs to G. angustifolia HBK.
7. Galactia striata (Jacq.) Urban, Symb. Ant. 2: 320. 1900

Glycine striata Jacq. Hort. Vind. 1: 32. pl. 76. 1770.
Galactia cubensis HBK. Nov. Gen. 6: 429. . 1823. Galactia Berteriana DC. Prodr. 2: 238 . 1825.
Galactia striata cubensis Urban, Symb. Ant. 2:322. 1900. Galactia striata Berteriana Urban, loc. cit. 1900.

Thickets and hillsides at lower elevations, all provinces and Isle of Pines: Jamaica; Hispaniola; Porto Rico; continental tropical America. Recorded by Grisebach and by Wright as G. filiformis Benth. Some Cuban specimens with short-peduncled inflorescence are only with difficulty separable from the following species. Races differ in pubescence.
8. Galactia spiciformis T. \& G. Fl. N. A. I: 288. 1838

Thickets, Cays of Camaguey: southern Florida; Bahamas.

9. Galactia Earlei sp. nov.

Stem slender, somewhat woody, twining, finely appressedpubescent 5 dm . long or longer. Stipules lanceolate-subulate, about 2 mm . long; petioles slender, sparingly pubescent, 3 cm . long or less; leaflets 3 , oblong or elliptic, $1.5-3 \mathrm{~cm}$. long, $8-15 \mathrm{~mm}$. wide, glabrous and shining with the midvein impressed above,
sparingly appressed-pubescent beneath, revolute-margined, obtuse or slightly emarginate at the apex, rounded at the base, the terminal one with a petiolule $4-8 \mathrm{~mm}$. long, the lateral ones nearly sessile; inflorescence stalked, slender, many-flowered, $6-12 \mathrm{~cm}$. long, densely brownish-pubescent; flowers clustered, almost sessile; calyx $6-7 \mathrm{~mm}$. long, densely brownish appressed-pubescent, its teeth longer than the tube, the upper one ovate, the others lanceolate; standard clawed, nearly orbicular, 7 mm . long.

Pine woods, Baracoa, Oriente (Underwood \& Earle 1342).

II. Galactia Jenningsii sp. nov.

A very slender, slightly woody vine, the branches $1.5-3.5 \mathrm{dm}$. long, loosely pilose or glabrate. Stipules subulate, striate, about I mm . long; petioles slender, pilose, $3-10 \mathrm{~mm}$. long; leaflets 3 , nearly equally short-petioluled, obovate, oblong or oblong-obovate, subchartaceous, $6-20 \mathrm{~mm}$. long, rounded or emarginate at the apex, rounded or narrowed at the base, pubescent on both sides, strongly reticulate-veined above; peduncles axillary, I - to fewflowered, as long as the petioles or shorter; calyx pilose, about 6 mm . long, its lanceolate acuminate lobes about as long as the tube or a little longer; flowers purple; standard suborbicular, clawed, $7-8 \mathrm{~mm}$. long; wings narrowly oblong, about as long as the standard; pod linear, short-beaked, appressed-pubescent, sessile in the calyx, 2.5 cm . long, 5 mm . wide.

White-sand pine-barrens, Isle of Pines, scarce and local (Britton \&f Wilson 14,186, type; O. E. Jennings 350).
10. Galactia brachyodon Griseb. Mem. Am. Acad. II. 8: 178. 1860

Near Monte Verde, Oriente. Endemic.
12. Galactia revoluta Urban, Symb. Ant. 2:333. 1900

Dry hillsides, northern Oriente. Endemic.
13. Galactia galactioides (Griseb.) Hitchc. Rep. Mo. Bot.

$$
\text { Gard. } 4: 77 . \quad 1893
$$

Dioclea galactioides Griseb. Cat. Pl. Cub. 76. 1866.
Galactia impressa C. Wright; Sauvalle, Anales Acad. Habana 5:
337. 1869.

Near Bahia Honda, Pinar del Rio, collected only by Wright. Endemic. Erroneously recorded from the Bahamas.

14. Galactia savannarum sp , nov.

A slender, somewhat woody vine, 6 dm . long or longer, rather densely pubescent with brownish reflexed hairs, or the older parts glabrate. Stipules lanceolate, acuminate, $\mathbf{r}-2 \mathrm{~mm}$. long; petioles slender, $5^{-10 ~ m m . ~ l o n g ; ~ l e a f l e t s ~} 1$ or 3, oblong, oblong-lanceolate, or the terminal one oblong-oblanceolate, subcoriaceous, revolutemargined, $\mathrm{I}-3 \mathrm{~cm}$. long, $6-12 \mathrm{~mm}$. wide, glabrous on both sides or with some scattered hairs beneath, obtuse or emarginate at the apex, rounded at the base, the pubescent petiolules equal, about 1.5 mm . long; inflorescence interruptedly spicate, slender, $5^{-12} \mathrm{~cm}$. long, densely appressed-pubescent; flowering pedicels 0.5 mm . long or less; calyx $4-5 \mathrm{~mm}$. long, appressed-pubescent, its lobes about equalling the tube; flowers blue-purple, about 8 mm . long; standard suborbicular, clawed, about 6.5 mm . broad; wings and keel nearly equal in length; pod borne on a pedicel about I. 5 mm . long, linear, acute, densely villous, $2.5-3 \mathrm{~cm}$. long, 7 mm . wide.

Barren savannas, Oriente, Camaguey, Santa Clara. Type from savanna southeast of Holguin, Oriente (Shafer 1237).
15. Galactia Jussiaeana Kunth, Mimos. 196. 1824

Clitoria glomerata Griseb. Cat. Pl. Cub. 74. 1866.
Pine-lands and plains, Pinar del Rio and Isle of Pines: Jamaica; Hispaniola; tropical South America. Common in pine-lands on the Isle of Pines, attaining a height of 6 dm .
> 47. THE GENUS MACHAONIA H. \& B. IN CUBA

> Type species: Machaonia acuminata H. \& B.

Fruit essentially glabrous.
Fruit constricted below the middle. 1. M. pauciflora.
$\begin{array}{ll}\text { Fruit gradually narrowed to the base. } & \text { 2. M. littoralis. }\end{array}$
Fruit pubescent.
Fruit sparingly pubescent, the persistent calyx-lobes long. 3. M. trifurcata.
Fruit densely pubescent, the persistent calyx-lobes short.
Fruit broadly obpyramidal, 2.5 mm . long.
Fruit narrowly obpyramidal, 3-4 mm. long.
4. M. microphylla.
5. M. calcicola.
I. Machaonia pauciflora Urban, Symb. Ant. 5: 5I2. 1908

The species is based on part of C. Wright's 433, collected, presumably, in Oriente, and has not been found by us.
2. Machaonia littoralis sp. nov.

A shrub, about 2 m . high, with slender branches, the young wigs short-pilose, leafy to their tips. Leaves rhombic-ovate to
elliptic, $6-10 \mathrm{~mm}$. long, subcoriaceous, entire, 7 mm . wide or less, abruptly acute, obtuse, or some of them rounded at the apex, narrowed at the base, glabrous, pinnately few-veined, the glabrous or somewhat pubescent petioles $0.5-1 \mathrm{~mm}$. long; inflorescence corymbose-cymose, several-flowered; pedicels very slender, sparingly pubescent, $1-2 \mathrm{~mm}$. long; fruit narrowly obpyramidal, sparingly papillose or glabrous, 2 mm . long, 1 mm . thick at the top, evenly gradually narrowed to the rounded base, the persistent calyx-lobes ovate or ovate-lanceolate, about 0.5 mm . long.

Coastal thickets, vicinity of Siguanea, Isle of Pines, Cuba (Britton \& Wilson I4942.)
3. Machaonia trifurcata Urban, Symb. Ant. 5: 5I2. 1908

Cuba (C. Wright 2760). Referred by Grisebach to the Jamaican M. cymosa Griseb., but clearly different from that species. Not found by us. A part of C. Wright 433 in the herbarium of the New York Botanical Garden has the characters of this species.
4. Machaonia microphylla Griseb. Mem. Am. Acad. II. 8: 510. 1862

Rocky hills at lower elevations in dry districts, province of Oriente.

A barren specimen, collected in the palm barren near the city of Santa Clara, Santa Clara province (Britton \& Wilson 6I30) is doubtfully referred to this species.

5. Machaonia calcicola sp. nov.

?Spermacoce spinosa Jacq. Stirp. Am. 21. 1763. Not L. 1762.
Not Machaeonia spinosa C. \& S.
?Spermacoce havanensis Jacq.; Gmel. Syst. 234. 1796.
A much-branched shrub or small tree up to 3 m . high, the slender twigs densely puberulent, bristle-tipped. Leaves ovate or rhombic-ovate to elliptic or oblong-lanceolate, $6-15 \mathrm{~mm}$. long, acute, short-acuminate, or some of them obtuse at the apex, narrowed or obtuse at the base, glabrous, pinnately few-veined, the short petioles puberulent; inflorescence corymbose-cymose, severalto many-flowered; pedicels slender, pubescent, $\mathbf{1 - 2} \mathrm{mm}$. long, calyx densely pubescent, its ovate or ovate-lanceolate lobes as long as the tube or somewhat shorter; corolla white or yellowish, about I mm. long, its ovate-oblong obtuse lobes about as long as the
tube; stamens shorter than the corolla; fruit obpyramidal, $3-4 \mathrm{~mm}$, long, 1.5 mm . thick at the top, tapering gradually to the base, densely pubescent, the persistent calyx-lobes about 0.5 mm . long.

Limestone rocks, northern parts of Havanna and Pinar de. Rio. Type from coastal hillside, Bay of Mariel, Pinar del Rio (Britton \&o Earle 7619).

A barren specimen from limestone rocks at Cape Corrientes (Britton \& Cowell 9894) is doubtfully referred to this species.

48. THE GENUS HEPTANTHUS Griseb.

A Cuban genus, of which three species were described at the place of original publication (Cat. Pl. Cub. 148. 1866); all were from western Cuba, H. cochlearifolius Griseb. being typical, and none have since been added to the genus. I now propose three others, all from eastern Cuba.

Leaf-blades glabrous above or merely puberulent.
Peduncles longer than the leaves.

1. H. cochlearifolius.

Peduncles shorter than the leaves.
Leaf-blades orbicular-ovate, $\mathbf{I - 2} \mathrm{cm}$. long; petioles densely villous.
2. H. cordifolius.

Leaf-blades triangular- ovate, $4-6 \mathrm{~mm}$. long; petioles sparingly villous.
3. H. Shaferi.

Leaf-blades pubescent on both surfaces.
Leaf-blades repand-dentate; peduncles much shorter than the petioles.
4. H. brevipes.

Leaf blades incised-serrate or lobed; peduncles as long as the leaves or longer.
Leaf-blades 12 mm . long or less, incised-serrate.
Leaf-blades $\mathrm{I}-2.5 \mathrm{~cm}$. long, deeply 3 -lobed, the lobes coarsely few-toothed.
5. H. ranunculoides.
6. H. lobatus.
i. Heptanthus cochlearifolius Griseb. Cat. Pl. Cub. 148.

$$
1866
$$

Type locality: Western Cuba.
Distribution: Pine-lands and savannas, Pinar del Rio.
The upper leaf-surfaces are glabrous or nearly so.
A plant related in leaf-form, but with the upper leaf-surfaces densely puberulent is common in pine-lands and white sand in the central districts of the Isle of Pines, but could not be found in flower during our visit to this region in February and March, 1916 (Britton \& Wilson 14I63); it is therefore referred to this species with doubt.
2. Heptanthus cordifolius sp . nov.

In habit and aspect similar to H. cochlearifolius, forming cushionlike tufts i-1.5 dm. broad. Petioles densely villous, 8 cm . long or less; leaf-blades orbicular-ovate, $1-2 \mathrm{~cm}$. long, nearly or quite as wide as long, repand-dentate, rounded or obtuse at the apex, cordate at the base, distinctly punctate, glabrous above, villous on the few veins beneath; peduncles filiform, sparingly villous, shorter than the petioles; involucre campanulate, about 5 -flowered; flowers white.

In damp soil among stones at edge of low thicket in deciduous woods near the base of Loma Mensura, Oriente, about 680 m . alt. (Shafer 3786).

3. Heptanthus Shaferi sp. nov.

Forming small tufts $4^{-6 ~ c m}$. broad. Petioles filiform, loosely villous, 4 cm . long or less; leaf-blades triangular ovate, $4^{-6} \mathrm{~mm}$. long, rather sharply few-dentate, bluntly acute at the apex, cordate at the base, distinctly punctate, glabrous on both sides or with a few hairs on the veins beneath; peduncle filiform, loosely villous, about 2.5 cm . long; involucre narrowly companulate, 4 -flowered, about I .5 mm . long.

On bank of a stream, Camp La Gloria, south of Sierra Moa, Oriente (Shafer 8217).
4. Heptanthus brevipes Griseb. Cat. Pl. Cub. 148. i866

Type locality: Low riparian woods near Toscano [Pinar del Rio].

Distribution: Known only from the type locality and from the original collection (Wright 282I).
5. Heptanthus ranunculoides Griseb. Cat. Pl. Cub. 148. 1866

Type locality: Western Cuba.
Distribution: Known only from the original specimens (Wright 2820).

6. Heptanthus lobatus sp. nov.

Densely tufted, the tufts $\mathbf{I}-\mathrm{I} .5 \mathrm{dm}$. broad. Petioles densely villous, 7.5 cm . long or less; leaf-blades broadly ovate or orbicularovate in outline, pubescent with long hairs on both surfaces, $\mathrm{I}-2.5 \mathrm{~cm}$. long, deeply 3 -lobed, the lobes coarsely few-toothed, the middle one obovate-cuneate, obtuse; peduncles filiform, loosely
villous, as long as the petioles or longer; involucre narrowly campanulate, about 3 mm . long, several-flowered; flowers white.

Sandy bank, alluvial valley of Rio Yamaniguey, Oriente (Shafer 420I).

49. UNDESCRIBED SPECIES FROM PORTO RICO

Malpighia Shaferi Britton \& Wilson, sp. nov.
A shrub $2-2.5 \mathrm{~m}$. tall, with grayish-brown twigs. Leaves oblong-elliptic to elliptic or somewhat oblong-lanceolate, 13-17 cm . long, $4.5^{-8.5} \mathrm{~cm}$. broad, acute, or rounded and mucronate, or occasionally retuse at the apex, more or less inequilateral and acute or rounded at the base, reticulate-veined above, armed beneath with closely-appressed stinging hairs, the margin somewhat revolute; petioles stout, $8-12 \mathrm{~mm}$. long; cymes nearly sessile; pedicels $8-18 \mathrm{~mm}$. long; sepals elliptic to broadly ovate, $2-3 \mathrm{~mm}$. long, $1.2-1.5 \mathrm{~mm}$. broad; glands fully one half the length of the sepals; larger petals $10-11 \mathrm{~mm}$. long, the blades 6 mm . broad, pink, prominently keeled on the back; stamens unequal; anthers cordate; styles unequal, the anterior one slightly shorter than the posterior ones; fruit red.

Type collected in the vicinity of Isabel Segunda, Vieques Island (Shafer 2448).

Byrsonima ophiticola Small, sp. nov.
Tree up to 8 m . tall, the twigs with dark gray bark, the young tips with dark red pubescence. Leaves clustered at the ends of the twigs, $3-6.5 \mathrm{~cm}$. long, the blades spatulate to narrowly obovate, rounded or obtuse at the apex, closely and finely pubescent when young, sparingly pubescent when full-grown, dull, paler green beneath than above, acute or acuminate at the base, rather longpetioled; panicles $5-9 \mathrm{~cm}$. long, the bracts less than 3 mm . long; pedicels closely pubescent, at least in anthesis; sepals ovate or oblong-ovate, $2.5-3 \mathrm{~mm}$. long, obtuse or acutish, the glands mostly less than one half as long as the sepal-body; petals yellow, turning to scarlet, $8-10 \mathrm{~mm}$. long, the blade broadly reniform or orbicularreniform, $7-8 \mathrm{~mm}$. wide, the claw shorter than the blades; drupes not seen.

Serpentine slopes, Guanajibo near Mayaguez (Britton, Cowell, \&o Brown 4350). Related to Byrsonima lucida DC., from which it differs in the longer petioles, larger panicles, and larger flowers. The petals besides unfolding yellow and turning scarlet, have relatively shorter claws and more broadly reniform blades than in B. lucida, and are of very firm texture and more persistent.

Chamaesyce Cowellii Millspaugh, sp. nov.
A small, prostrate, glabrous annual, many-stemmed from the rootstalk; stems short; branches filiform, $2-3 \mathrm{~cm}$. long; nodes swollen and prominent. Inflorescence solitary in the upper axils. Leaves thick, sarcous, ovate, entire, blunt, $2-3.5 \times 1.5-2 \mathrm{~mm}$., strongly inequilateral at the oblique and but slightly cordate base, petiolate; stipules various, those of the upper surface mostly quadrilateral and often bilobed, others triangular, all lacerate; those of the under surface of the branches formless in laceration. Involucres turbinate, short-pedunculate, glabrous without, densely woolly within; lobes triangular, aristate, densely ciliate; sulcus shallow, inconspicuous, flanked by two minute lobes similar in form to the others; glands green, flattened parallel to the walls of the involucre; appendages narrow, greenish, crenate, about half the width of the glands. Capsule glabrous, deeply sulcate; seeds pink, ovate-quadrangular, the dorsal angle most prominent, I $\times 0.6 \mathrm{~mm}$., the facets finely and anastomosely transverse-ridged in a central longitudinal line. Allied to Chamaesyce serpens (HBK.) Small.

Collected from the crevices of limestone rocks at Cayo Muertos (Britton, Cowell \& Brown 5007). Type, sheet No. 427101, in the herbarium of the Field Columbian Museum.

Sebesten brachycalyx (Urban)

Cordia Sebestena brachycalyx Urban, Symb. Ant. 1: 389. 1899.
This tree, first made known from the southern and eastern coasts of Porto Rico, appears to differ specifically from the related Sebesten Sebestena (L.) Britton (Cordia Sebestena L.) of wide distribution in the West Indies, Florida and tropical continental America, and there much planted for ornament. S. brachycalyx has much rougher upper leaf-surfaces and a much smoother calyx than S. Sebestena (often glabrous), and its yellow or orange fruit is shorter-beaked than the white fruit of that species; the corolla of S. brachycalyx has a narrower limb than that of S. Sebestena. The species inhabits Porto Rico, Vieques, Culebra, and Buck Island, St. Thomas.

Crescentia portoricensis sp. nov.
A vine-like, glabrous shrub, with long, slender branches, the bark light gray. Leaves elliptic-obovate, fascicled at the nodes, 15 cm . long or less, $2-8 \mathrm{~cm}$. wide, coriaceous, shining above, dull beneath, strongly reticulate-veined on both sides, abruptly short-
acuminate at the apex, cuneate at the base, the slender petioles $6-12 \mathrm{~mm}$. long; peduncle $1-2 \mathrm{~cm}$. long, slender in flower, much thickened in fruit; calyx 2 cm . long, deeply 2 -lobed; corolla subcampanulate, 4 cm . long, yellowish white, reticulate-veined, its broadly ovate, entire, acute or blunt lobes about one fourth as long as the tube; fruit narrowly oblong, 10 cm . long, 3.5 cm . in diameter, terete, pointed at the apex, truncate at the base.

River-valley forests, mountains of western Porto Rico. Type from Rio de Maricao, $500-600 \mathrm{~m}$. alt. (Britton, Stevens \&o Hess 2455).

Mikania Stevensiana sp. nov.

Climbing to a height of 5 m ., the branches glabrous, striate, nearly terete, the twigs angular, sparingly pubescent. Leaves triangular-ovate in outline, firm in texture, brittle when dry, 5 cm . long or less, very scabrous and sparingly short-hispid above, pubescent on the elevated veins beneath, 5 -nerved, sharply 3 -lobed, the middle lobe triangular-lanceolate, long-acuminate, dentate, 3 or 4 times as long as the acute, entire or sparingly toothed, lateral ones; petioles sparingly pubescent, $\mathrm{I}-2 \mathrm{~cm}$. long; inflorescence corymbose-paniculate; heads peduncled; bracts of the involucre linear, acute, 7 mm . long; achenes angled, glabrous, 5 mm . long; pappus-bristles about 40 ; corolla 7 mm . long, as long as the pappus, its lobes acute.

Wooded valley, Maricao River, above Maricao (Britton \& Cowell 4225, type; Britton, Stevens \& Hess 2439).

50. UNDESCRIBED SPECIES FROM CUBA

Schoepfia cubensis Britton \& Wilson, sp. nov.
A slender, glabrous shrub, 2.5-4 m. tall, the young twigs compressed, longitudinally ridged, often flexuose, glabrous. Leaves elliptic to oval, $2-3.4 \mathrm{~cm}$. long, $1.5^{-2.8} \mathrm{~cm}$. broad, short-petioled, entire, glabrous, rounded at the apex, equilateral and rounded or occasionally subcordate at the base, lustrous and rather indistinctly veined on both surfaces; principal veins 5 or 6 on each side of the midvein, strongly divergent; peduncles $0.8-\mathrm{I} .2 \mathrm{~cm}$. long; fruit sessile, ellipsoid, 8 mm . long, 7 mm . wide.

Camp La Gloria, Oriente (Shafer 8278).

Cassia scleroxyla sp. nov.

A slender tree, about 8 m . high, with smooth bark and exceedingly hard wood, the young twigs loosely appressed-pubescent.

Leaves glandular, 8-10 cm. long; petiole and rachis grooved above, sparingly appressed-pubescent; petiole $\mathrm{I}-2 \mathrm{~cm}$. long; leaflets 6-8 pairs, linear-lanceolate, chartaceous, $2-4 \mathrm{~cm}$. long, acute and mucronate at the apex, rounded or narrowed at the base, rather dark green and glabrous above, pale green and sparingly pubescent beneath, the pubescent petiolules about 2 mm . long; flowers loosely corymbose; pedicels slender, puberulent, about 1 cm . long; sepals very unequal, sparingly pubescent, ciliate, the larger ones $4-5 \mathrm{~mm}$. long; petals bright yellow, the larger $6-7 \mathrm{~mm}$. long; perfect anthers 7 , about 3 mm . long; pod linear, glabrous, $3-4.5 \mathrm{~cm}$. long, $6-7 \mathrm{~mm}$. wide, reticulate-veined, abruptly acute, septate between the seeds.

Hillside, Berraco, near Daiquiri, Oriente (Britton \&o Cowell 12664).

Among West Indian species, perhaps most nearly related to C. domingensis Spreng.

Cassia Shaferi Britton \& Wilson, sp. nov.

Shrub I m. tall; twigs, petioles, rachis, and branches of the inflorescence hirsutulous. Leaves $6.5-10 \mathrm{~cm}$. long, glandular, the gland slender, $\mathrm{I} .5^{-2} \mathrm{~mm}$. high, acutish or obtuse, situated either between the leaflets of the lowest pair or below on the petiole; petioles and rachis grooved; stipules narrowly oblong-lanceolate, 6-7 mm. long, acuminate; leaflets 4^{-6} pairs, oblong to elliptic, I.5-3 cm. long, 7-12 mm. broad, rounded and mucronulate at the apex, rounded and very inequilateral at the base, sparingly hirsutulous on the midrib above, hirsutulous beneath, the hairs scattered and mostly appressed, short-petioluled; margin thickened, ciliate; pedicels hirsutulous; buds subglobose; sepals densely hirsutulous; pod flat, II cm . long, 9 mm . broad; seeds $3.5-4.5$ mm . long.

Pine-lands near the base of Loma Mensura, Oriente (Shafer 3770) ; also collected in open places at base of Loma Mensura (Shafer 3803).

Apparently closely related to Cassia bahamensis Mill.
Pachyanthus reticulatus Britton \& Wilson, sp. nov.
A shrub $\mathrm{I}-\mathbf{I} .5 \mathrm{~m}$. tall; young twigs compressed, more or less grooved, ferruginous, stellately scabrous-puberulent. Leaves ovate, $9-12 \mathrm{~cm}$. long, $5-7 \mathrm{~cm}$. broad, obtuse at the apex, cordate at the base, above densely ferruginously stellate-puberulent when young, glabrescent, lustrous and dark green in age, the venation strongly impressed, below pale brown, reticulate-veined and
densely stellate-canescent, prominently 5-nerved; petioles I.5-2.5 cm . long; flowers sessile, calyx campanulate, densely stellatetomentulose, the lobes 5 , deltoid at the base, linear above, 5^{-6} mm . long.

Low dry thickets, pine-lands, Sierra Nipe, near Woodfred, Oriente (Shafer 2967).

Labatia aristata Britton \& Wilson, sp. nov.

A much-branched shrub, 2-3 m. high, the branches rigid, gray, the young twigs appressed-pubescent. Leaves broadly ovate to suborbicular, $2-3.5 \mathrm{~cm}$. long, coriaceous, glabrous, strongly pinnately and reticulate-veined, dark green and shining above, dull green beneath, aristate at the apex, rounded or subcordate at the base, the yellowish green, rather stout petioles $5-10 \mathrm{~mm}$. long; pedicels solitary or several together, slender, glabrous, $5-8 \mathrm{~mm}$. long; calyx sparingly pubescent, $2.5-3 \mathrm{~mm}$. long, deeply 4 - to 5 -lobed, the lobes lanceolate or oblong-lanceolate, acutish, scarcely imbricated; corolla green, about 2.5 mm . long, $4-5$-lobed to about the middle, the lobes rounded, slightly imbricated; anthers oblong, a little longer than the filaments; staminodia obovate, somewhat longer than the filaments; drupe oval, dark purple, 2.5 cm . long, its flesh very thin; seeds 2 , oblong.

Coastal hills and thickets, provinces of Oriente, Santa Clara and Havana, Cuba; type collected between the Rio Chorrera and Marianao, Havana (Brother Leon 6230).

Tournefortia Earlei sp. nov.

A shrub, $\mathrm{I}-2 \mathrm{~m}$. high, with long, slender branches, or vine-like and 3 m . long, the branches densely pubescent with short, soft, appressed hairs. Leaves narrowly linear, or linear-lanceolate, $3-7 \mathrm{~cm}$. long, $2-6 \mathrm{~mm}$. wide, acute or bluntish at the apex, densely appressed-pubescent above, densely white-tomentulose beneath, the petioles $1.5-3 \mathrm{~mm}$. long; cymes short-peduncled, their few, very slender branches $2-4 \mathrm{~cm}$. long; calyx I mm . long, appressedpubescent, its lanceolate or ovate-lanceolate lobes acute; corollatube about 2 mm . long, the narrowly lanceolate lobes about as long; fruit depressed, 4 mm . broad, about one half as high as broad, glabrous.

Hillsides, Guantanamo Bay and Santiago Bay, Oriente. Type from Guantanamo Bay (F. S. Earle 82). Related to T. incana Lam. and T. stenophylla Urban.

Cestrum pinetorum sp. nov.

A glabrous shrub, about I m . high, with slender branches. Leaves narrowly oblong to oblong-lanceolate, 7 cm . long or less, $6-16 \mathrm{~mm}$. wide, rather thin in texture, faintly shining, bluntly acute at the apex, narrowed at the base, the midvein slender above, prominent beneath, the lateral veins few, obscure, the slender petioles $3-5 \mathrm{~mm}$. long; clusters axillary, few- to several-flowered; fruiting pedicels very short; fruiting calyx obconic-campanulate, about 5 mm . long, its triangular-ovate teeth acutish, about one third as long as the tube; berry globose-ovoid, purplish, about 7 mm . long.

Open pine-woods Sierra Nipe near Woodfred, Oriente, 500-650 m. alt. (Shafer 3031, type; 3591).

Casasia parvifolia sp. nov.

A much-branched shrub, about 2 m . high, the twigs slender, puberulent when young. Stipules lanceolate, acute, about 3 mm . long. Leaves glabrous, oblong-spatulate, 3 cm . long or less, 5-8 mm . wide, obtuse or acutish at the apex, narrowed or cuneate at the base, coriaceous, clustered at the ends of the twigs, pinnately few-veined, shining and with impressed midvein above, the midvein very prominent beneath, the petioles about I mm. long; fruit terminal, solitary, sessile, globose, warty, about 10 mm . in diameter.

Rocky river-banks, mountains of northern Oriente; type collected between Camp La Barga and Camp San Benito, 450-900 m. alt. (Shafer 4100).

Baccharis Shaferi sp. nov.

A glabrous shrub, 6 dm . high or less, with slender ascending branches, the twigs angled. Leaves triangular-cuneate, $6-12 \mathrm{~mm}$. long, 7 mm . wide or less at the truncate or subtruncate apex, bright green and shining above, dull and whitish-papillose beneath, the slender midvein slightly elevated on both sides, the lateral veins I-3; heads sessile, solitary or 2 or 3 together at the ends of short twigs, or in the axils; young involucres about 4 mm . long, the ovate, acute bracts imbricated in about 4 series.

Dry pine woods, Arroyo del Medio above the falls, $450-550 \mathrm{~m}$. alt., Oriente (Shafer 3257, type); specimens from Camp La Gloria, south of Sierra Moa, Oriente (Shafer 8213), have longer leaves than the type specimens.

51. UNDESCRIBED SPECIES FROM THE ISLE OF PINES, CUBA

Zamia silicea sp. nov.

Caudex slender, completely buried in sand, 2 dm . long or longer. Basal scales lanceolate, villous, $\mathrm{I}-2$ cnit. long; leaves glabrous or the base of the petiole villous, spreading or ascending, I-4 dm. long; leaflets 30 or fewer, coriaceous, shining, manyveined, obovate-oblanceolate, $3^{-6} \mathrm{~cm}$. long, 2 cm . wide or less, rounded or obliquely subtruncate and callously denticulate at the apex, narrowed at the base; peduncles densely short-pubescent, $2-4 \mathrm{~cm}$. long; male cone cylindric, about 3 cm . long and 1.3 cm . thick, its scales densely pubescent, hexagonal, the upper and lower ones about as wide as high, the middle ones nearly twice as wide as high; ripe pistillate cones ellipsoid, short-tipped, $5-6 \mathrm{~cm}$. long, about 2.5 cm . thick, the hexagonal scales puberulent, seeds red, about 12 mm . long, broadly grooved on the inner side, rounded on the back, obliquely and obtusely umbonate at the apex.

Frequent in pine-lands and in white silicious sand. Type from near Los Indios (Britton \& Wilson I4I60).

Cyperus pinetorum sp. nov.

Perennial by short rootstocks; culms tufted, stiff and wiry, compressed, $1.5-2.5 \mathrm{~cm}$. high. Basal sheaths striate-veined, acute, $2-4 \mathrm{~cm}$. long; involucral leaves I or 2 , nearly subulate, $0.5-3$ cm . long; spikelets linear, $10-22 \mathrm{~mm}$. long, I .5 mm . wide, digitate, one cluster subtended by the involucral leaves with usually a similar one on a slender ray 4 cm . long or less; scales elliptic, obtuse, mucronulate, yellowish-brown, 1.5 mm . long; achene sharply trigonous, about 0.6 mm . long, nearly as thick as long, often persistent on the rachis after the scales have fallen away.

White sand pine barrens. Type from the vicinity of Los Indios (Britton and Wilson 14I70).

Related to C. Haspan L., differing in broader spikelets, broader scales and proliferous inflorescence.

Xyris longibracteata Britton \& Wilson, sp. nov.

Annual(?); leaves erect, linear, 8-10 cm. long, $1-1.5 \mathrm{~mm}$. broad, occasionally somewhat spirally twisted, the margin rough; scapes several, erect, glabrous, $15-18 \mathrm{~cm}$. tall, terete or nearly so; involucre subtending the spike composed of several bracts of unequal length, each tapering abruptly into a long, linear tip, the longest bract often exceeding the spike; spikes ellipsoid to ovoid, $7-9 \mathrm{~mm}$.
long, 4-6 mm. broad; bracts ovate to orbicular-ovate, $4^{-5} \mathrm{~mm}$. long, $3.5-4 \mathrm{~mm}$. broad, acute at the apex; lateral sepals included; keel toothed from the apex to below the middle; petals broadly obovate, 5 mm . long, $3.5-4 \mathrm{~mm}$. broad.

White sand, vicinity of Los Indios, Isle of Pines (Britton, Britton © Wilson 14215).

Chamaecrista micrantha sp. nov.

Stems several from a woody root, ascending or suberect, fewbranched or simple, slender, villous, $2-3 \mathrm{dm}$. long. Stipules lanceolate acuminate, $2.5-4 \mathrm{~mm}$. long; leaves $8-18 \mathrm{~mm}$. long; petiolar gland short-stalked; rachis villous; leaflets $10-24$, oblong, villous, $3-3.5 \mathrm{~mm}$. long, mucronulate, the midvein very excentric; peduncles very slender, villous, $6-15 \mathrm{~mm}$. long; sepals lanceolate, acute, villous, about 4 mm . long; petals rounded, 5 mm . long; pod linear, finely pubescent, $2-3 \mathrm{~cm}$. long, $3-4 \mathrm{~mm}$. wide.

Pine-lands and savannas, Pinar del Rio and Isle of Pines, Cuba. Type collected near San Pedro, Isle of Pines (Britton \& Wilson 14294). Referred by Grisebach to Cassia pygmaea DC., and taken up by Bentham under Cassia procumbens L., but the type of C. procumbens is the same as C. nictitans L.

Chamaecrista savannarum sp. nov.

Stems several from a deep woody root, slender, ascending or erect, short-pubescent, 2-4 dm. high, simple or little-branched. Stipules lanceolate or ovate-lanceolate, $2-4 \mathrm{~mm}$. long, acuminate, strongly veined; leaves 2.5 cm . long or less, the rachis pubescent; petioles $2-4 \mathrm{~mm}$. long, bearing a scutellate, sessile or very shortstalked gland; leaflets $3-13$ pairs, appressed-pubescent or glabrate, oblong or linear-oblong, $3^{-7} \mathrm{~mm}$. long, somewhat oblique, aristulate, the midvein very excentric; peduncles slender or nearly filiform, $8-20 \mathrm{~mm}$. long; sepals lanceolate, acuminate, slightly pubescent; 4-5 mm. long; petals $7-8 \mathrm{~mm}$. long; pod linear, sparingly pubescent, $3-4 \mathrm{~cm}$. long, 4 mm . wide.

Savannas and pine-lands, Pinar del Rio and Isle of Pines, Cuba. Type collected near Siguanea, Isle of Pines (Britton \&f Wilson 14379).

> Bauhinia Jenningsii P. Wilson, sp. nov.

A slender shrub or tree, sometimes 5 m . high; young twigs, branches of the inflorescence, under surface of the leaves and pods finely puberulent with minute, mostly appressed hairs; petioles
1.5-2 cm. long; leaves lanceolate-ovate to oblong-ovate or ovate, $7-14 \mathrm{~cm}$. long, $2.5-5 \mathrm{~cm}$. broad, acute at the apex, subtruncate or rounded at the base, 5 -nerved, finely reticulate-veined and glabrous above, reticulate-veined and minutely papillose beneath; inflorescence corymbose; flowers long-pedicelled; calyx scarlet, puberulent with appressed hairs; petals lanceolate or occasionally somewhat oblanceolate, $1.2-1.6 \mathrm{~cm}$. long, $2-2.7 \mathrm{~mm}$. broàd; sterile stamens 9 , half as long as the fertile stamen; ovary stipitate; pods oblong, $5-9 \mathrm{~cm}$. long, $0.8-1.5 \mathrm{~cm}$. broad, brown; seeds oblongelliptic to elliptic, $7-8 \mathrm{~mm}$. long, 5-5.5 mm . broad, brownish black.

Wooded limestone plain, Coe's Camp, Ensenada de Siguanea (Britton \& Wilson 14851 , type) ; coastal plain, San Juan (Britton \&o Wilson 15544); coral soil, north of Caleta Grande (O. E. Jennings 480).

Savia perlucens sp. nov.

A shrub, about 2 m . high, the slender branches terete, grey. Stipules ovate, acute; leaves obovate or elliptic-obovate, coriaceous entire, 9 cm . long or less, acute or acuminate at the apex, obtuse or acute at the base, bright green and strongly shining above, dull green beneath, the midvein prominent above and beneath, both surfaces reticulate-veined; flower-clusters supra-axillary, depressed, about 3 mm . broad, puberulent.

Limestone plain, Caleta Grande (Britton, Wilson \&o Leon 15330).

Phyllanthus nanus Millspaugh, sp. nov.
A low, spreading, glabrous perennial, about 5 cm . in extent, with thick, strongly imbricated leaves. Root thick, branching, giving off a mass of thread-like rootlets. Stems many, springing from the rootstalk, very short ($1-1.5 \mathrm{~cm}$.) ; branches diffuse, rather thick and striate, $\mathrm{I}-2 \mathrm{~cm}$. long. Inflorescence dioecious, biflorate, in the axils of the apical leaves of the short branchlets. Leaves thick, glabrous, ovate, cordate, acute, entire, $1.3 \times 1-$ $2.3 \times 1.75 \mathrm{~mm}$.; petioles very short; stipules entire, aristate from a deltoid base, the upper half withered to a dark brown color. Flowers sessile or nearly so; sepals 5 , equal, ovate, acute, strongly striate-keeled; glands 5 , verruçoid, minute; staminal column twice the length of the anthers; anthers 2 , transversely connate in an apical ring; female calyx as in the male but nearly twice the size; ovary 3 -carpelled, 6 -celled, nearly sessile; styles 3 , short, bifid to half their length, the stigmatic apices cleaveate; capsule depressedglobose, glabrous; seeds dark brown, sharply angled, $0.9 \times 0.75 \mathrm{~mm}$. dorsal facet minutely and closely transverse anastomose-wrinkled.

In white sand in the vicinity of Los Indios (Britton \& Wilson
14192). Type sheet in the herbarium of the Field Columbian Museum.

Chamaesyce Jenningsii Millspaugh, sp. nov.
Prostrate, spreading from a low rootstock; stems many, divaricately branching, internodes about $1.5-3 \mathrm{~cm}$.; branches 2 to many at each swollen node, wiry, divergently forking; leaves oval to ovate, $5 \times 3-8 \times 4 \mathrm{~mm}$., glabrous above, finely long silverypubescent beneath, obliquely cordate, blunt, shallowly but sharply serrate throughout the margins. Inflorescence solitary in the terminal forks and axils; involucres long-turbinate, glabrous without, hairy within; pedicels about twice the length of the tube; lobes triangular; sulcus large, deep, triangular, the fundus unoccupied; glands nearly circular, flattened to the walls of the involucre; appendages none, or rarely merely a marginal line of the same color and texture as the glands; bracteoles as many as the stamens, ligulate, transparent. Capsule glabrous, ovoid; carpels strongly keeled; seeds ovate-quadrangular, $1.2 \times 1 \mathrm{~mm}$., angles sharp, facets sharply and anastomosely transverse ridged including deep, quadrangular pits.

Vivijagua (O. E. Jennings 62I); type in the herbarium of the Carnegie Museum, Pittsburgh, Pennsylvania. Also in coastal sands at the same place (Britton \& Wilson 14690).

Tapura obovata Britton \& Wilson, sp. nov.

A tree 10 m . tall; young twigs and petioles minutely strigillose; leaves obovate, $3 \cdot 5-7 \mathrm{~cm}$. long, $1 \cdot 5-4.4 \mathrm{~cm}$. broad, rounded at the apex, cuneate to rounded-cuneate at the base, dull above, lustrous beneath and reticulate-veined, glabrous, short-petioled; flowers short-pedicelled; calyx-lobes 5 , ciliate, sparingly appressed-pilose on the outside, the two outer lobes smaller than the three inner ones, broadly oblong-elliptic to oval, $2.5-3.2 \mathrm{~mm}$. long, $2-2.2 \mathrm{~mm}$. broad, the three inner lobes oval to suborbicular, $3 \cdot 4-3.8 \mathrm{~mm}$. long, $3-3.3 \mathrm{~mm}$. broad; corolla-lobes 5 , unequal, the three smaller lobes spatulate-obovate, $4-4.6 \mathrm{~mm}$. long, I .2 mm . broad, the two larger lobes spatulate, $4.6-5 \mathrm{~mm}$. long, $2.2-2.5 \mathrm{~mm}$. broad; filaments lanceolate-oblong to oblong; ovary pilose; style filiform, pilose, 3-lobed.

Savanna, Vivijagua (Britton \&f Wilson 15607, type); coastal plain, San Juan (Britton \&o Wilson 15524).

Calyptranthes pinetorum Britton \& Wilson, sp. nov.
A depressed, glabrous, much-branched shrub 6 dm . high or less, $3-10 \mathrm{dm}$. broad, the twigs stout, gray, terete or nearly so. Leaves
opposite, thick-coriaceous, ovate to orbicular, flat, $\mathrm{I}-3.5 \mathrm{~cm}$. long, rounded or obtuse at the apex, cordate or subcordate at the base, bright green and shining above, pale green and dull beneath, densely punctate, the midvein prominent, the lateral veins faint, the stout petioles $\mathrm{I}-2 \mathrm{~mm}$. long; peduncles rather stout, somewhat longer than the leaves; inflorescence cymose, few- to several-flowered; young fruit sessile, subglobose, 2 mm . in diameter, the calyxlimb 2 mm . broad.

Pine-lands, central districts. Type from north of Los Indios (O. E. Jennings 390).

Related to C. nummularia Berg. of Hispaniola, C. Maxoni Britton \& Urban of Jamaica, and C. Boldinghi Urban of St. Martin.

Evolvulus arenicola Britton \& Wilson, sp. nov.

A diminutive perennial, with a slender, woody root, the few or solitary, simple or few-branched stems slender, appressed-pubescent, $2-5 \mathrm{~cm}$. long, ascending or nearly prostrate. Leaves ovate to elliptic, $9-15 \mathrm{~mm}$. long, puberulent or glabrate above, appressed-pubescent beneath, mostly obtuse or rounded at both ends, the midvein faint, the lateral veins wholly obscure, the pubescent petioles I-2 mm. long; flowers I or 2 at the ends of the stems or branches; pedicels $5-8 \mathrm{~mm}$. long, pubescent; sepals linearlanceolate, acuminate, villous, 5 mm . long; corolla white, rotate, $9-12 \mathrm{~mm}$. broad; obscurely lobed; stamens about one-half as long as the corolla; styles deeply 2 -cleft; capsule subglobose, shorter than the sepals.

White sand, vicinity of Los Indios (Britton \& Wilson I4190).

Gerardia pinetorum Britton \& Wilson, sp. nov.

Acaulescent; leaves elliptic-ovate to elliptic, $1.5^{-2} \mathrm{~cm}$. long, $5-8 \mathrm{~mm}$. broad, rounded at the apex, cuneate or somewhat rounded at the base, hispidulous above and below with jointed hairs; petioles I-I. 5 cm . long, densely hispidulous; scape erect, $4-8 \mathrm{~cm}$. high, more or less hispidulous with jointed hairs, the spikes fewflowered, $1-2 \mathrm{~cm}$. high, the bracts lanceolate, $4-5 \mathrm{~mm}$. long, ciliolate, long-acuminate; calyx-lobes subequal, narrowly lanceolate, $4-4.5 \mathrm{~mm}$. long, $0.5-0.8 \mathrm{~mm}$. broad, ciliolate; corolla rosepink, glabrous, the tube cylindric, $5-5.5 \mathrm{~mm}$. long, the limb subequally 5 -lobed, the lobes broadly obovate to somewhat ovalobovate, $4.5-8 \mathrm{~mm}$. long, $2.5-5 \mathrm{~mm}$. broad.

Along the Los Indios River above Los Indios (O. E. Jennings 456).

Rondeletia calcicola sp, nov.

A glabrous shrub about 2 m . high, the twigs slender. Leaves coriaceous, narrowly oblong to oblong-oblanceolate, $5^{-1} 3 \mathrm{~cm}$. long, $8-18 \mathrm{~mm}$. wide, shining above, dull beneath, acute at the apex, attenuate at the base into petioles about 1 cm . long or less, loosely reticulate-veined with the midvein prominent on the under surface; inflorescence terminal, few-flowered; fruiting pedicels rather stout, $3-7 \mathrm{~mm}$. long; capsule oblong or oblong-obovoid, glabrous, 1 cm . long, about twice as long as thick; fruiting calyxlobes ovate-lanceolate, acute, $\mathrm{I}-1.5 \mathrm{~mm}$. long.

Wooded limestone plain, Coe's Camp, Ensenada de Siguanea (Britton \&o Wilson 14842).

Diodia ciliata Britton \& Wilson, sp. nov.

Stems perennial, prostrate, $4^{-6} \mathrm{dm}$. or more in length, rooting and partly buried in sand, densely pilose with whitish hairs on the younger growth; leaves elliptic to somewhat elliptic-obovate, 1.5-3 cm . long, $7-14 \mathrm{~mm}$. broad, acute at the apex, cuneate to broadly cuneate at the base, the margin conspicuously and densely ciliate with rather stiff white hairs, yellowish green and glabrous above, the midvein and lateral veins inconspicuous, whitish-pilose beneath, especially on the midvein, sessile; stipules ciliate; ovary 2 -celled; fruit elliptic-obovoid, 3 mm . high, glabrous, or with few scattered appressed hairs on the back.

In white sand, vicinity of Los Indios (Britton \& Wilson 15347).

Diodia arenicola Britton \& Wilson, sp. nov.

Perennial; stems ascending, I-1.5 dm. high, glabrous; leaves lanceolate, $6-14 \mathrm{~mm}$. long, $2-3 \mathrm{~mm}$. broad, acute at the apex, rounded or somewhat acutish at the base, glabrous or with few, stout, scattered, mostly appressed hairs above, glabrous beneath, sessile; stipules linear-lanceolate, 2 mm . long; calyxlobes triangularovate, ciliate; corolla 5 mm . high, the lobes ovate, obtuse; anthers ovate-lanceolate; style 3 -lobed; fruit ellipsoid, 2.5 mm . high, x .2 mm . broad, glabrous.

Along arroyo, Los Indios, Isle of Pines (O. E. Jennings 355 in part, type) ; vicinity of Los Indios (Britton \& Wilson 15812).

Mitracarpum depauperatum Britton \& Wilson, sp. nov.
A diminutive, woody perennial, $2-5 \mathrm{~cm}$. high, forming small tufts, the stems few-branched or simple, the internodes very short. Leaves narrowly linear, $6-15 \mathrm{~mm}$. long, less than 1 mm . wide,
densely clustered, acute, sessile, glabrous; stipules deeply laciniate, about one-third as long as the leaves; calyx very small; corolla salverform, white, its tube cylindric, 2.5 cm . long, its limb spreading, 4 -lobed, the lobes ovate, acute, nearly 1 mm . long.

Dry white sand, central districts; type from near Los Indios (Britton \& Wilson 14197).

Palicourea elongata Britton \& Wilson, sp. nov.

A shrub 2 m . or more high; twigs, branches of the inflorescence, and pedicels minutely hispidulous with brownish hairs; leaves in whorls of threes, lanceolate or occasionally broadly oblanceolate, $12-19 \mathrm{~cm}$. long, $4^{-6} \mathrm{~cm}$. broad, acuminate at the apex, cuneate to somewhat rounded cuneate at the base, puberulent above on the midvein when young, puberulentbeneath, especially on the midvein and lateral veins; stipules linear-lanceolate, $8-12 \mathrm{~mm}$. long, ciliate; panicle elongate, $7-19 \mathrm{~cm}$. high; calyx-lobes deltoid-ovate, ciliate; corolla puberulent, $7-10 \mathrm{~mm}$. long, the lobes triangular-ovate; fruit broadly ovoid, $4-5 \mathrm{~mm}$. long, $4-4.5 \mathrm{~mm}$. broad, flattened.

Arroyo, Las Tunas (Britton \&o Wilson 14749, type); Arroyo, vicinity of San Pedro (Britton \&o Wilson 15785); Los Indios (O. E. Jennings 332).

Elephantopus arenarius Britton \& Wilson, sp. nov.

Plant $6-8 \mathrm{~cm}$. high, the stem branching from the base; leaves cauline, linear, $2-4 \mathrm{~cm}$. long, 1 mm . broad, involute, conspicuously ciliate at the broadened, clasping base with long hairs, entire; peduncles loosely hirsutulous, $2-3.5 \mathrm{~cm}$. long; glomerules $5-6 \mathrm{~mm}$. high; bracts broadly ovate to ovate-orbicular, cordate at the base with a linear, ligulate tip, $0.5-1 \mathrm{~cm}$. long, reticulate-veined on the back, glabrous; scales acuminate, glabrous; achenes (immature) 2 mm . long; pappus-scales triangular to lanceolate, ciliate.

White sand, vicinity of Los Indios (Britton \&o Wilson 14206).
Closely related to Elephantopus pratensis C. Wright, but differing in the narrow involute leaves and linear ligulate tipped bracts.

Erigeron purpuripes Britton \& Wilson, sp. nov.

A low, scapose perennial. Leaves tufted, erect, the blades elliptic to oblong-obovate, $1-2 \mathrm{~cm}$. long, pinnately few-veined, obtuse at the apex, narrowed at the base, ciliolate, puberulent or glabrate; petioles very slender, purple, 2 to 4 times as long as the blades; scapes nearly filiform, erect, appressed-pubescent, about
twice as long as the leaves; involucre 4 mm . high, subcylindric, its bracts in 2 or 3 series, linear, puberulent, the outer shorter than the inner; ligules white; disk-flowers tubular, 5 -lobed, the lobes obtuse; achenes flattened, oblong or somewhat oblong-elliptic, minutely hispidulous; pappus-bristles in I series, barbellate.

In white sand, vicinity of Los Indios (Britton \& Wilson 14207).
Helenium scaposum sp. nov.
A low, pubescent, scapose perennial. Leaves several or many, densely tufted, short-petioled, oblong to spatulate, punctate, I.5-3 cm . long, $6-10 \mathrm{~mm}$. wide, rather strongly 5 - to 7 -nerved, entire or repand-dentate, obtuse or acute at the apex, narrowed or cuneate at the base; scapes rather stout, 5 -II cm . high; involucre about 5 mm . high; its bracts ovate-lanceolate, acute, appressed or little spreading; rays io to 12 , bright yellow, obovate, 3 -toothed, $5-8 \mathrm{~mm}$. long; disk yellowish, depressed-globose, $8-12 \mathrm{~mm}$. in diameter, its corollas 5 -lobed, the lobes triangular-ovate; pappus scales of rayflowers and disk-flowers alike, elliptic to obovate, lacerate, not aristate.

White sand pine-lands, west-central districts. Type from near Siguanea (Britton \&f Wilson 14346).

A plant with quite the floral structure of Helenium, but its scapose habit is aberrant, resembling that of some Tetraneuris species.

New or interesting algae from the lakes of Wiscorsin
Gilbert Morgan Smith
(WITH PLATES 24-26)
The present paper embodies various notes that have accumulated in a study of the algae of Wisconsin lakes for the Wisconsin Natural History and Geological Survey. Although a systematic account of the algae found has been prepared, it has been thought advisable to publish descriptions of the new species and notes on certain other species at this time.

Chaetosphaeridium ovalis sp. nov.
Thallus of five to twenty cells, epiphytic upon filamentous Chlorophyceae, gelatinous sheath indistinct. Cells ovoid, with two parietal chloroplasts each containing a pyrenoid. Sheath at the base of setae conspicuous.

Cells $22-20 \mu$ long, $15-13 \mu$ wide; length of setae about 125μ; basal sheath of setae $15 \times 3 \mu$.

Plate 24, fig. I
Distribution: along shore, Marion Lake.
The two species of the genus that are generally recognized, C. globosum (Nords.) Klebh. and C. Pringsheimii Klebh., are found also in the lakes of the state. C. ovalis resembles C. Pringsheimii forma conferta Klebh. in the arrangement of its cells, but the cellshape is quite different. This species also differs from the others since it is the only one which regularly has more than a single chromatophore, while the basal sheath of the bristle is also more conspicuous in this than in the other species.

Oocystis panduriformis minor var. nov.
Cells $35-30 \mu$ long; maximal diameter $15-12 \mu$, median diameter $14-11 \mu$.

$$
\text { Plate 24, Fig. } 2
$$

Distribution: plankton, Star Lake.

The type form, described by W. and G. S. West,* is nearly twice as large as the dimensions given above. The peculiar median constriction and the numerous chromatophores, however, show that the above described alga should be considered a variety of O. panduriformis W. West.

Tetrastrum apiculatum (Lemm.) Brunnthaler

Staurogenia apiculata Lemm. Bot. Centralbl. 76: 151. 1898; Forschungsb. Biol. Stat. Plön 7: II9. pl. I, f. I4. 1899 ; Schmidle, Ber. Deutsch. Bot. Ges. 18: 157.1900. Tetrastrum apiculatum Brunnthaler; Pascher, Süsswasser-flora Deutschlands, Österreichs und der Schweiz. 5: 177.f.258. 1915.

$$
\text { Plate 24, fig. } 3
$$

I have observed this alga twice in the plankton of Lake Mendota. Some investigators follow Schmidle in placing Tetrastrum as a subgenus of Crucigenia Morren, but in my opinion the two genera are distinct.

Characium stipitatum (Bachmann) Wille

Chlamydomonas stipitata Bachmann, Arch. Hydrobiol. u. Planktonkde. 3: 81. f. $X I^{1}-X I^{15}$. 1908.
Characium stipitatum Wille; Engler \& Prantl, Nat. Pflanzenfam. I^{2} (Nachtr.) : 45. I9II; Brunnthaler in Pascher, Süsswasserflora Deutschlands, Österreichs und der Schweiz 5: 81. f. 26. 1915.

Plate 24, Figs. 4-6

This peculiar species was previously known only from Scotland, where it was described as a Chlamydomonas species. I have found it in the plankton of three lakes, Minocqua, Pardee and Sishebogema, in the northern part of the state. There is but little doubt that this is the same organism as that described by Bachmann, since the cell-shape and dimensions agree and it is only found epiphytic upon the same alga, Coelosphaerium Naegeliana Unger (Gomphosphaeria Naegeliana Lemm.).

The alga is entirely enclosed by the gelatinous envelope of the Coelosphaerium colony and does not, as Bachmann describes, merely have its stipe in the envelope. The figure copied by Brunn-

[^69]thaler is not typical since the pyrenoid is never outside of, but always within, the chromatophore.

Kirchneriella elongata sp. nov.

Colonies of four, eight, sixteen, or many cells embedded in a copious homogeneous matrix. Cells cylindrical, rounded at ends, spirally or irregularly twisted into a knot-like snarl. Chloroplast single, parietal, without (?) a pyrenoid.

Colonies up to 100μ in diameter. Cells $25-15 \mu$ long, 2.75^{-} 2.00μ wide.

$$
\text { Plate 24, Fig. } 7
$$

Distribution: plankton, No Mans Lake; along shore, Plum Lake.

This species approaches K. contorta (Schmidle) Bohlin, which I have collected from four Wisconsin lakes, but the cells are larger, some being twice as long as those of K. contorta, and there are usually more cells to the colony.

Schroederia setigera (Schröder) Lemm.
Reinschiella setigera Schröder, Ber. Deutsch. Bot. Ges. 15: 489. pl. 25, f. 4. 1897.
Schroederia setigera Lemm. Hedwigia 37: 311. 1898.
Raphidium setigerum W. \& G. S. West, Trans. Yorkshire Nat. Union 25: 122. 1901.
Ankistrodesmus setigerus G. S. West, Brit. Freshw. Algae 224. f. $94 F$. 1904.

Plate 24, Fig. 8
An organism found in the plankton of Devil's Lake agrees very well with the original description of S. setigera, with one exception. Schröder and the Wests appear to be the only ones who have observed the living plant and neither mentioned the disc at the end of one of the prolonged apices. There is no doubt in my mind but that this structure was present in the cells they studied, but since it is practically invisible under a magnification of six hundred diameters or less, they probably overlooked it.

An apparently closely related form is Ankistrodesmus nitzschioides G. S. West,* which has also been figured by Printz. \dagger It differs

[^70]only in the lack of a pyrenoid and the terminal disc. G. S. West and Brunnthaler place the species in the genus Ankistrodesmus. Although the shape of the cells shows a great resemblance to that of Ankistrodesmus I believe that the retention of the genus Schroederia is to be preferred. If this species with the fine hairlike terminal processes can be shown to reproduce in the same manner as Ankistrodesmus, Schroederia should be considered a synonym; but since, in my observations on over a thousand individuals, I have never found autospores within the mother cell wall (a condition occurring abdundantly in all species of Ankistrodesmus), I am convinced that this species does not reproduce in the same manner as Ankistrodesmus. On the other hand the discshaped end of one of the apical processes suggests that the species may be an epiphytic Characium, possibly like C. limneticus Lemm. At first I considered it an epiphytic form that had broken off but since the examination of so many individuals has not shown any attachment to other plankton, it must be assumed to be naturally free-floating and not accidentally detached.

Schroederia Judayi sp. nov.

Cells fusiform, straight or curved, ends attenuated into hairlike projections, one of which terminates in a disc. Chromatophore single, parietal, with one pyrenoid.

Length, with spines, $63-45 \mu$, without spines, $30-14 \mu$; breadth $6-2.5 \mu$; width of terminal disc $4-2 \mu$.

Plate 24, figs. 9-II

Distribution: plankton, Birch, Kawaguesaga, Kegonsa and Mendata Lakes.

This species resembles the Egyptian Ankistrodesmus setigerus forma minor G . S. West but is somewhat longer, twice as wide, and never lacks a pyrenoid. It is named after Mr. Chauncey Juday, who first called my attention to it.

Gloeocystopsis gen. nov.

Cells elongate, cylindrical, more or less curved, with rounded ends. Cells aggregated in fours or eights within a non-lamellated, sharply defined, spherical, gelatinous sheath. Colonies of an indefinite number of these aggregates arranged in a spherical or ovoid mass. Chromatophore diffuse, assimilation product starch.

Reproduction, aside from cell division, unknown. (Name from Gloeocystis and ö ψ cs, appearance.)

This genus combines the general external morphological characteristics of Gloeocystis Naegeli and the cell shape of Nephrocytium Naegeli. Although ovoid cells have been described in species of Gloeocystis, the cells of this species are too markedly lunate to be classed with Gloeocystis. The enveloping mucilaginous mass around the cell aggregates is not lamellated as in Gloeocystis, neither is there a common gelatinous envelope for these aggregates. On the other hand although the cell-shape resembles certain Nephrocytium species (N. allantoideum Bohl. for example) the ovoid colonies of Nephrocytium are not composed of distinct aggregates of cells, each with its own envelope.

A further study of the method of reproduction, whether by autospores or zoospores, will determine the exact systematic position of the genus. From the data at hand the natural inference is that it should be placed in the vicinity of Gloeocystis.

Gloeocystopsis limneticus sp. nov.
Cells ${ }_{15}-10 \mu$ long, $6-4 \mu$ wide. Cell aggregates $30-25 \mu$ in diameter. Colonies up to 125μ in diameter.

Plate 24, fig. 12

Distribution: plankton, Catfish and Harris Lakes.
The alga was found in two lakes in northern Wisconsin which are about fifty miles apart and on different watersheds. The dimensions of the alga are the same in both stations. It is probable that Gloeocystis Rehmanni Woloszynska from Africa is another species, but since the original description is very vague and no celldimensions are given, it must remain a doubtful species until more fully described.

Pediastrum sculptatum sp. nov.

Colonies oval or circular discs of eight to thirty-two cells. Interior cells four- to six-sided with few interstices between the cells. Marginal cells bilobed, with the lobes produced into divergent or parallel horn-like processes. Cell wall covered with a network of very fine ridges.

Diameter of colonies $150-80 \mu$; diameter of cells $5_{5-10} \mu$.

Plate 25, fig. I3

Distribution: plankton, South Turtle Lake.
The shape of the cells in this species resembles P. Boryanum (Turp.) Menegh. but the markings are decidedly different. The nearest approach in cell-marking is found in P. araneosum, but reticulations in this species are much coarser.

Pediastrum araneosum (Raciborski) comb. nov.
Pediastrum angulosum var. araneosum Raciborski, Verh. u. Sitzungsb. Akad. Wiss. Krakau 20: 101. 1889.
Distribution: plankton, Devil's Lake; along shore, Beaver and Muskallonge Lakes.

This has been regarded as a variety and not a distinct species. In my opinion the coarsely reticulate structure of the wall, which is correlated with a certain cell-shape, is sufficiently distinctive to warrant regarding it as a distinct species and not as a variety of some other species.

Pediastrum araneosum rugulosum (G. S. West) comb. nov. Pediastrum Boryanum var. rugulosum G. S. West, Jour. Linn. Soc. Bot. 38: 132. pl. 5, f. 22. 1907.

Plate 25, fig. 14

Distribution: plankton, Meta Lake.
With the recognition of P. araneosum as a species the variety rugulosum very naturally comes under this species instead of P. Boryanum.

Peroniella planctonica sp. nov.

Cells single, gregarious, epiphytic upon cells of, and embedded in, mucilaginous envelopes of Sphaerozosma. Cell-shape ovoidpyriform, with a long delicate stipe. Chromatophore single (rarely two), yellow-green in color, without pyrenoid or starch. Reproduction by division of cell contents into two to four zoospores with one (?) cilium.

Length of cell, without stipe, $9.5-6 \mu$; with stipe, $18-15 \mu$; stipes 10-8×1. 2μ.

$$
\text { Plate 25, fig. } 15
$$

Distribution: on Sphaerozosma sp., in plankton of Devil's Lake.

The genera Peroniella Gobi and Stipitococcus W. \& G. S. West are quite similar but differ in that the cells of the latter are apiculate or irregularly expanded at the apex and are not ovoid. Since the apices of the cells are rounded in the above described alga it belongs to the genus Peroniella. It differs from the single known species, P. Hyalothecae Gobi, in that the cells are ovoid and smaller.

A study of the cell contents shows that the genus should be classified with the Heterokonteae and not with the Chlorophyceae. The chromatophores are without starch or pyrenoids and have a decided yellowish green color. Numerous oil droplets, which are probably the product of assimilation, are scattered throughout the cytoplasm. Few instances of zoospore formation were found, but those that were showed no lateral rupture through which the zoospores escaped, as Gobi* describes for P. Hyalothecae. Only one cilium was observed although a very careful search was made for a second shorter one. In this respect it resembles certain other Heterokonteae.

Chodatella ciliata minor var. nov.

Cells ovoid, with eight to six bristles at each end. Cells io- 8μ long, $7 \cdot 5^{-6} \mu$ wide; bristles about 20μ in length.

Plate 25, fig. I6

Distribution: plankton, Muskallonge Lake.
The cells of this species are about the same size as those of C. subsalsa Lemm., but the number of terminal bristles is that of C. ciliata (Lagerh.) Lemm. The variety minor never reaches the minimal limit of the type form.

Micractinium pusillum Fresenius

Micractinium pusillum Fresenius, Abh. Senckenberg. Naturf. Ges. 2:236. pl. II, f.46-49. 1858; Lemm. Ber. Deutsch. Bot. Ges. 22: 21. 1904; Wille in Engler \& Prantl, Nat. Pflanzenfam. I^{2} (Nachtr.): 57.1911.
Archerina Boltoni Lankester, Quart. Jour. Micr. Sci. N. S. 25: 61. pl. 7, f. 1 -23. 1885; l.c. 52: 423. 1908.

Golenkinia botryoides Schmidle, Allg. Bot. Zeitschr. 2: 194.1896. Golenkinia fenestrata Schröder, Ber. Deutsch. Bot. Ges. I5: 492. pl. 25, f. 5. 1897.
*Scripta Bot. Hort. Univ. Petrop. 2: 233-255. pl. r. 1886-1887.

Richteriella globosa Lemm. Forschungsb. Biol. Stat. Plön 5: 107. 1897.

Richteriella botryoides Lemm. Hedwigia 37: 307. pl. 10, f. 1-6. 1898; Arch. Hydrobiol. u. Planktonkde. 5: 306. 1910.
Richteriella botryoides forma fenestrata Chodat, Matér. pour la Flore Crypt. Suisse \mathbf{I}^{3} : 194. f. 110. 1902.
Richteriella botryoides forma tetraedrica Lemm. Arch. Hydrobiol.
u. Planktonkde. 5: 307. 1910; Ber. Deutsch. Bot. Ges. 18:
90. pl. 3, f. 9-10. 1900.

Plate 25, fig. 18
This alga is most widely known as Richteriella botryoides, a name which is untenable under any circumstance. In 1904 Lemmermann pointed out that the overlooked genus Micractinium Fresenius bears considerable resemblance to Richteriella Lemm. He thinks, however, since the description is so vague and most of Fresenius's figures illustrate only single cells, that the organism Fresenius saw was what is commonly called Golenkinia. Wille holds that all of the spherical-celled forms with radiating bristles constitute a single genus and makes the subgenus Golenkinia for the solitary forms and Richteriella for the colonial ones. He very logically applies Fresenius's name Micractinium to this composite genus.

In my opinion the colonial and solitary habits are too diverse to warrant placing both of them in the same genus. The question then arising is, shall Micractinium be substituted for Golenkinia or for Richteriella? Lemmermann's account (1904) creates the impression that Fresenius's description fits Golenkinia better than Richteriella. The cell measurements given by Fresenius, $1 / 170-$ $1 / 150 \mathrm{~mm} .(5.88-6.67 \mu)$ as a maximal and $1 / 300 \mathrm{~mm} .(3.33 \mu)$ or less as the minimal dimensions, are much nearer Richteriella botryoides than Golenkinia radiata Chodat or any other Golenkinia species. It must be admitted that Fresenius does not emphasize the colonial habit, which characterizes Richteriella, but he does state that colonies of two to four cells are found and that there may be more than four cells in the colony so that a berry-shaped (mulberry?) colony is formed. Since Golenkinia forms only temporary colonies and since these never contain more than four cells it seems to me that the organism Fresenius saw is the one which Lemmermann has described as R. botryoides.

Lankester states that the genus Archerina antedates Richteriella. There is no question of the identity of the two organisms, f. $2 x$ of Lankester's plate being especially characteristic. In the material studied by Lankester he mistook a naked amoeboid parasite investing the plant cells for an integral part of the organism and so considered Archerina a protozoan and not an alga. The name Richteriella cannot be retained in any case, since those who regard the description of Micractinium as being too vague should use Archerina in its place.

This alga, which I have found in abundance in some of the local lakes, at times forms large irregular colonies containing over a thousand cells. The most common state, however, is the flat plate of sixteen cells with an open central space, the form afenestrata Chodat. This name and also the form-name tetraedrica Lemmermann are unwarranted since they may both occur in the same colony.

Micractinium quadrisetum (Lemm.) comb. nov. Richteriella quadriseta Lemm. Hedwigia 37:307. pl. 10, f. 7. 1898. Richteriella botryoides var. quadriseta Chodat, Matér. pour la Flore Crypt. Suisse \mathbf{r}^{3} : 194. 1902.

Plate 25, fig. 17
Distribution: plankton, Catfish and Cranberry Lakes.
The character on which the specific name is based, that of four spines, is not constant enough to warrant the establishment of a separate species. It is probably on this account that several investigators have followed Chodat's lead and considered it a form hardly worthy of naming. On the other hand the cell is always distinctly ovoid in this species, whereas it is always spherical in M. pusillum. The cell-dimensions in M. quadriseta are also always constantly larger. Since there are these differences M. quadriseta should be considered a distinct species.

Tetraedron planctonicum sp. nov.

Cells four- or five-sided, sides generally incurved and equal. Angles of cells prolonged into bifurcate or trifurcate processes ending in two or three horns. Processes broad in top view, narrow in side view.

Diameter of cell without processes $24-18 \mu$; with processes (diagonally) $70-50 \mu$; diameter of processes $12-9 \times 8-5 \mu$; length 25-15 μ.

> Plate 26, figs. 19-20

Distribution: plankton, Cranberry, Lost, No Mans and Pardee Lakes.

This striking form is confined to the plankton of lakes in the northern part of the state. It resembles T. limneticum Borge to a certain extent but agrees more nearly with the description of T. gracile (Reinsch) Hansg. The processes differ from those of T. gracile, however, since when they are seen in a side view they are narrow but in a top view they are broad. The processes end in two horns in T. gracile while in this species there are often three.

Tetraedron lobatum polyfurcatum var, nov.
Cells four-sided, flat or pyramidal. Angles prolonged, tapering but slightly. Prolongations branching three to five times, ultimate branches with three spines. Prolongations nearly as long as cell. Sides of cell incurved.

Diameter (without processes) $20-15 \mu$; (with processes) $40-$ 30μ; diagonal diameter $50-35 \mu$.

Plate 26, figs. 21, 22

Distribution: plankton, Muskallonge and Pardee Lakes.
This may be classed as a variety of T. lobatum on account of the cell-shape, but the extensive system of rebranching apical prolongations is not found in any described variety of T. lobatum. The branches resemble T. enorme (Ralfs) Hansg. but the sides of the alga under consideration are too deeply incised and the corners of the cells too long to regard it as a variety of T.enorme.

Actinastrum gracillimum sp. nov.

Colonies of four or eight cells radiating from a common center. Cells elongate, cylindrical or slightly tapering. Chromatophore single, parietal, without a pyrenoid.

Cells $18-14 \mu$ long, $2-1.75 \mu$ wide.

Plate 26, fig. 23

Distribution : plankton, Kegonsa and Mendota Lakes.
This is much more delicate than any previously described species of Actinastrum.

Cylindrospermum stagnale angustum var. nov.
Cells $4.5-4 \mu$ wide; $10-8 \mu$ long. Heterocysts $6.5-5.5 \mu$ wide; II -7μ long. Spores $9-7 \mu$ wide; $25-18 \mu$ long.

Plate 26, fig. 24

Distribution: bottom of Oconomowoc Lake.
The much narrower and shorter spores distinguish this from the type.

> Spirulina laxa sp. nov.

Plant mass dark blue-green. Cells $2.5^{-2} \mu$ wide, in a very loose spiral. Width of spiral 6-4 μ, distance between turns $20-15 \mu$. Cell contents blue-green.

Plate 26, fig. 25

Distribution: along shore, Soft Lake.
The loose spiral suggests Arthrospira rather than Spirulina but, since a careful examination fails to reveal the presence of transverse walls, I am convinced the plant in question is a Spirulina.

Chroococcus limneticus distans var. nov.

Colonies spherical or ovoid, of four to thirty-two cells, rarely more, embedded in a copious, hyaline, unlamellated, gelatinous envelope. Cells hemispherical to spherical, with grayish or light blue-green contents, "gas vacuoles" rarely present.

Diameter of cells $7-6.5 \mu$; diameter of colonies up to 60μ.

$$
\text { Plate 26, fig. } 26
$$

Distribution : plankton, Cranberry and Muskallonge Lakes.
This Chroococcus variety has the characteristic C. limneticus Lemm. structure of a few spherical cells embedded in a wide gelatinous sheath. The cell-dimensions are different from those of the other C. limneticus varieties so that it seems best to regard it as a new variety.

Anabaena limnetica sp, nov.
Trichomes free-swimming, solitary, straight or slightly curved. Vegetative cells generally spherical, $10-14 \mu$ in diameter, with "gas vacuoles." Heterocysts spherical, $10-12 \mu$ in diameter. Spores smooth-walled, solitary, ovoid, adjacent to, or a short distance from, the heterocysts, $20-17 \mu$ in diameter, $25-20 \mu$ long.

Distribution: plankton, Birch, Soft and Tamarack Lakes.
The species resembles A. macrospora Klebh. in the general appearance of the trichome, but the cellular dimensions are quite different, since the cells of A. macrospora are much smaller and the spores proportionally larger.

Lyngbya Birgei sp. nov.

Filaments free-floating, straight, rarely curved. Sheath firm, hyaline, homogeneous. Trichomes not constricted at cross walls, ends rounded but not attenuated. Cells shorter than broad, with many "gas vacuoles" at times.

Filaments $24-20 \mu$ wide; trichomes $22-18 \mu$ wide.

Plate 26, fig. 28

Distribution : plankton, Kegonsa, Mendota, Monona, Oconomowoc, Squirrel and Waubesa Lakes.

Almost all of the true plankton species of Lyngbya have filaments that are less than 5μ in diameter. The only other plankton species of any size is L. Hieronymusii Lemm., but the Wisconsin Lyngbya is much larger. This species is found in abundance in the Madison lakes and at times has been the major constituent of the "blooms" that have appeared in these lakes. This is especially the case in Lake Kegonsa. The cell contents at such times are very characteristic of "bloom"-producing Myxophyceae, since there are large numbers of reddish "gas vacuoles" in each cell. The species is named after Mr. E. A. Birge, Director of the State Survey.

The University of Wisconsin

Explanation of plates 24-26

All the figures were drawn from life with the aid of the Abbe camera lucida, the drawings being made at the level of the base of the microscope. The Leitz objective 6 was used with the ocular 4 , and the objective $1 / 16$ with the oculars I, 3 and 4. The magnifications are, respectively, $750,1,000,1,650$ and 2,000 diameters. The drawings have been reduced a little more than one half (to eleven twentyfourths their original size) in reproduction.

Plate 24
Fig. r. Chae'osphaeridium ovalis G. M. Smith, \times_{345}.
Fig. 2. Oocystis panduriformis minor G. M. Smith, X920.
Fig. 3. Tetrastrum apiculatum (Lemm.) Brunnthaler, $\times 920$.
Figs. 4-6. Characium stipitatum (Bachmann) Wille, X920.
Fig. 7. Kirchneriella elongata G. M. Smith, X920.
Fig. 8. Schroederia setigera (Schröder) Lemm., X920.
Figs. 9-II. Schroederia Judayi G. M. Smith, X920.
Fig. 12. Gloeocystopsis limneticus G. M. Smith, $\times 920$.

Plate 25

Fig. ${ }^{5}{ }^{1} 3$. Pediastrum sculptatum G. M. Smith, X_{460}.
Fig. 14. Pediastrum araneosum rugulosum (G. S. West) G. M. Smith, X920.
Fig. 15. Peroniella planctonica G. M. Smith, X920.
Fig. 16. Chodatella ciliata minor G. M. Smith, $\times 920$.
Fig. 17. Micractinium quadrisetum (Lemm.) G. M. Smith, X920.
FIg. 18. Micractinium pusillum Fresenius, X920.

Plate 26

Figs. 19, 20. Tetraedron planctonicum G. M. Smith, X_{920}.
FIGS. 21, 22. Tetraedron lobatum polyfurcatum G. M. Smith, X920.
Fig. 23. Actinastrum gracillimum G. M. Smith, X920.
Fig. 24. Cylindrospermum stagnale angustum G. M. Smith, X920.
FIg. 25. Spirulina laxa G. M. Smith, X920.
Fig. 26. Chroococcus limneticus distans G. M. Smith, $\times 760$.
FIG. 27. Anabaena limnetica G. M. Smith, $\times 760$.
Fig. 28. Lyngbya Birgii G. M. Smith, $\times 760$.

A quantitative study of the factors influencing the weight of the bean seed-II. Correlation between number of pods per plant and seed weight

J. Arthur Harris

(WITH FOUR TEXT FIGURES)

I. Introductory remarks

This study, like the one which preceded it,* presents a portion of the results of an attempt to express in quantitative terms the influence of the various differentiable factors to which the weight of the bean seed is due.

Such an investigation has a three-fold significance: (a) it has the biological interest common to studies in developmental mechanics; (b) it forms a part of the system of physiological data on seed production which can never be too detailed or precise as a foundation for economic science; (c) it pertains to a character which through the theories of Johannsen and his followers has assumed a prominent place in genetic literature.

In the first paper I considered the correlation between the characteristics of the pod (number of ovules laid down, number of seeds matured, and position of seed in the pod) and seed weight. In this place I propose to deal with the problem of the relationship between the size of the plant, as measured by the number of fertile pods produced, and seed weight. These constants will be compared with these showing the relationship between the number of pods per plant and pod characteristics, already published.

II. Materials and methods

The materials upon which the present discussion are based comprise 78,975 individually weighed seeds, derived from 15,897 plants, belonging to 27 experimental cultures, representing 5

[^71]varieties. These cultures were made under a wide range of environmental conditions. They are here designated by the key letters employed in other publications. It is, therefore, unnecessary to burden this paper with information which the reader who cares to do so may obtain elsewhere.*

The biometric methods employed in the analysis of the data should now be familiar in a general way to all serious biological workers. \dagger

III. Presentation and discussion of data

The physical constants for the unweighted frequency distributions of both number of pods per plant and weight of seed have been given elsewhere. \ddagger

The weighted frequency constants have little independent biological interest. We may, therefore, limit our attention to the degree of interdependence between the two variables.

The correlation coefficients for number of pods and seed weight with their probable errors and their ratios to their probable errors appear in Table I.

The regression straight line equations giving the numerical equivalents of

$$
w=\left(\bar{w}-r_{p w} \frac{\sigma_{w}}{\sigma_{p}} \bar{p}\right)+r_{p w} \frac{\sigma_{w}}{\sigma_{p}} p,
$$

where the bars denote means and the sigmas represent the standard deviations of the characters indicated by the subscripts are given in Table II. These show the absolute change in seed weight associated with unit change in number of pods per plant. If the regression straight lines and the empirical mean seed weights for plants with various numbers of pods for a number of series be

[^72]Table I

Series	Number of Plants	Number of Seeds Weighed	Correlation Fods and Weight	$r \mid E_{r}$
L	185	2861	.157 $\pm .012$	13.08
LL	1141	3947	. $074 \pm .011$	6.73
GG	747	8364	. $055 \pm .007$	7.86
GGH	583	2828	$.173 \pm .012$	14.42
GGH_{2}	499	1284	.081 $\pm .019$	4.26
GGHH	396	1329	.039 $\pm .019$	2.05
GGD	514	2140	.150土.014	10.71
$G G D_{2}$	449	1419	. $240 \pm .017$	14.12
$G G D D$	342	1093	.193土.020	9.65
H	160	5778	.145 $\pm .009$	16.11
HH	1484	7325	. $191 \pm .008$	23.87
HHH	1271	5601	$.264 \pm .008$	33.00
$H D$	1416	6630	. $303 \pm .008$	37.87
$H D D$	1204	5029	. $171 \pm .009$	19.00
D	445	2362	. $031 \pm .014$	2.21
$D D$	513	2362	$.339 \pm .012$	28.25
$D D D$	459	1946	. $077 \pm .015$	5.13
DH	670	3222	. $221 \pm$.or1	20.09
DHH	565	2433	. $307 \pm .012$	25.58
USH	361	1164	. $154 \pm .019$	8.11
USHH	224	530	. $108 \pm .029$	3.73
USD	312	1002	. $282 \pm .020$	14.10
USDD	237	789	. $210 \pm .023$	9.13
FSH	476	2117	. $005 \pm .015$. 33
FSHH	429	1788	$.053 \pm .016$	3.31
FSD	428	1989	. $205 \pm .015$	13.66
$F S D D$	387	1643	. $069 \pm .017$	4.06

expressed graphically on the same diagram, as in Figs. I and 2,* the results seem very irregular indeed. This lack of uniformity appears in both the varying slope of the lines and in the scatter of the observed means about these lines.

The variation in the slope of the lines must be considered in relation to the great diversity in environmental conditions under which the plants were grown.

The slope of the line is determined solely by the magnitude of the absolute variation constants for seed weight and number of pods per plant and the correlation between them. The standard deviation of seed weight is relatively little influenced by the differences in environmental conditions obtaining between the cultures here considered. The standard deviation of number of pods per plant varies greatly from experiment to experiment. Thus with the same degree of correlation, the actual rate of change in seed

[^73]Table II

Series	Regression Equation	End Points of Line
L	$W=.3522+.0023 P$	$\mathrm{I}=.354, \quad 3 \mathrm{I}=.422$
LL	$W=.3291+.0012 P$	$\mathrm{I}=.330, \quad 27=.360$
GG	$W=.4167+.0012 P$	$\mathrm{I}=.418, \quad 26=.447$
GGH	$W=.4298+.0027 P$	$I=.433, \quad 33=.543$
GGH_{2}	$W=.4427+.0022 P$	$\mathrm{I}=.445, \quad 17=.479$
GGHH	$W=.4409+.0010 \quad P$	$\mathrm{I}=.442, \quad 15=.456$
GGD	$W=.3385+.0079 P$	$I=.347, \quad 8=.402$
$G G D_{2}$	$W=.3609+.0128 \mathrm{P}$	$\mathrm{I}=.374, \quad 7=.45 \mathrm{I}$
GGDD	$W=.3670+.01118$	$\mathrm{I}=.378, \quad 9=.456$
H	$W=.2127+.0007 P$	$I=.214, \quad 46=.246$
HH	$W=.2184+.0008 P$	$\mathrm{I}=.219,67=.27 \mathrm{I}$
HHH	$W=.1825+.0017 P$	$\mathrm{I}=.184, \quad 34=.24 \mathrm{I}$
$H D$	$W=.1772+.0058$	$1=.183, \quad 14=.258$
$H D D$	$W=.2102+.0027 P$	$1=.213, \quad 16=.253$
D	$W=.1723+.0008 \mathrm{P}$	$\mathrm{I}=.173, \quad 9=.180$
DD	$W=.1757+.0065 P$	$\mathrm{I}=.182, \quad 14=.266$
DDD	$W=.1976+.0014 P$	$1=.199 . \quad 13=.216$
DH	$W=.1961+.0009 P$	$\mathrm{I}=.197, \quad 50=.239$
DHH	$W=.1797+.0020 \quad P$	$\mathrm{I}=.182, \quad 27=.232$
USH	$W=.3182+.0017 P$	$\mathrm{I}=.320, \quad 39=.385$
USHH	$W=.3018+.0019 P$	$\mathrm{I}=.305, \quad 15=.33 \mathrm{I}$
USD	$W=.2243+.0108 \mathrm{P}$	$\mathrm{I}=.235, \quad 7=.300$
USDD	$W=.2806+.0049 \cdot P$	$\mathrm{I}=.286, \quad 16=.358$
FSH FSHH	$W=.2001+.0000 \quad P$	$\mathrm{I}=.200, \quad 50=.201$
FSHH	$W=.1645+.0003 P$	$I=.165,34=.175$
FSS	$W=.1501+.0032 P$	$1=.153, \quad 10=.182$
FSDD	$W=.1632+.0012 P$	$\mathrm{I}=.164, \quad 14=.179$

$W=$ Weight in grams, $P=$ Pods per plant. End points of lines give calculated mean seed weight in grams for number of pods indicated.
weight will vary widely because of differences in the variability of number of pods per plant.

The irregularity of the means of seed weight for plants with different numbers of pods is attributable to several factors. Note the following:

Taken as a whole the correlations are of a very low order. In such cases the empirical means must be expected to deviate considerably from the theoretical means as predicted from the regression formula unless the number of observations be very large indeed.

Number of pods per plant is an exceedingly variable character. In consequence, the means for seed weight must, in experiments made under favorable conditions, be based upon a relatively small number of seeds, even in series in which the total number of seeds weighed is very large. It is impossible, if all series are to be treated alike, to increase the number of seeds upon which means

FIG. r. Regression straight lines showing change in seed weight associated with variation in number of pods per plant.
are based by clubbing together plants with similar numbers of pods, since in many of the experiments the range of variation is too narrow to permit of such combination.

Finally, it is to be noted that in general about five seeds per plant have been weighed. When the number of plants with a

Fig. 2. Regression of seed weight on number of pods per plant. See explanation of Fig. I.
given number of pods is small, this weighting will, I believe, tend to result in abnormal irregularity of the means of arrays. The biological reason for this condition I hope to discuss later.

Notwithstanding the conspicuous irregularity of the means, the number of regression diagrams in the two figures indicate that, taken by and large, a straight line represents the change in mean seed weight associated with variation in the number of pods on the plant as well as any other single equation would do.

It is quite idle to apply mathematical tests for goodness of fit in these series, for these involve the calculation of a measure of interdependence which is greatly influenced by the special difficulties which are met in graphical tests for linearity.

Thus, notwithstanding difficulties inherent in the materials the correlation coefficient seems the best numerical expression of the degree of interdependence between the variables.

All of the 27 values are positive. Numerically they are of a low

Fig. 3. Comparison of correlations between number of pods per plant and seed weight with that between number of pods per plant and number of ovules per pod in 27 cultures of Phaseolus.
order, ranging from +.005 to +.339 with the average value +.159 . With two or three exceptions only, the correlation coefficients may be considered statistically significant in comparison with their probable errors.

As a basis of comparison there are available from an earlier paper* the constants showing the relationship between the number of ovules and seeds per pod and the number of pods per plant in these same series.

The results are exhibited graphically in Figs. 3 and 4. In these the circles on the ordinates joined by the heavy lines show on the scale to the left the values of the correlations for number of pods per plant and seed weight arranged in the order of their magnitude. The circles connected by the narrow lines show on the same scale the magnitude of the correlations for ovules and seeds respectively.

The bars indicating the averages show that the mean correlation for number of pods per plant and number of ovules per plant is numerically higher than that for number of pods per plant and seed weight. The mean correlation for number of pods per plant and seeds per pod is lower than that for pods per plant and seed weight.

The magnitude of the differences is not, however, very large. The actual averages are: \dagger
For pods per plant and ovules per pod,

$$
\bar{r}=.1924 \pm .0124 .
$$

For pods per plant and seeds per pod,

$$
r=.1327 \pm .0118
$$

For pods per plant and seed weight,

$$
\bar{r}=.1592 \pm .0119 .
$$

The difference between the mean value of the correlation for pods and ovules and pods and seed weight is therefore

[^74]

Fig. 4. Comparison of correlations between number of pods per plant and seed weight with that between number of pods per plant and number of seeds: matured per pod in 27 cultures of Phaseolus.

$$
(.1592-.1924) \pm \sqrt{(.0119)^{2}+(.0124)^{2}}=-.0332 \pm .0172
$$

while that for pods and seeds and pods and weight is

$$
(.1592-.1327) \pm \sqrt{(.0119)^{2}+(.0118)^{2}}=.0265 \pm .0168
$$

Differences in correlations of the order of .03 can ordinarily be given little weight. In the present instance neither of the differences is quite twice as large as its probable error. They cannot therefore be asserted to represent real physiological differences in the closeness of interdependence of the magnitudes of the three variables under consideration.

Not only are the means of the three correlations essentially the same, but the variability of the three sets of constants is practically identical. The values are:

For pods and ovules per pod, $\sigma_{r}=.0953 \pm .0087$.
For pods and seeds per pod, $\sigma_{r}=.0906 \pm .0083$.

For pods aṇd seed weight, $\quad \sigma_{r}=.0916 \pm .0084$.
The differences in the variabilities of the three sets of correlations are therefore:

For pods and ovules and pods and seeds, .0047 士.0II7.
For pods and ovules and pods and weight, .0037 士.0II8.
For pods and seeds and pods and weight, $.0010 \pm .0118$.
All of these differences are only a fraction of their probable errors.

It is quite clear from the irregularity with which the values of the correlations for pods and ovules and for pods and seeds are scattered about the line showing the distribution of the correlations for number of pods per plant and seed weight, that there is very little if any interdependence between these three correlations.

IV. Recapitulation

This paper, which is one of a series dealing with the physiology of seed production, presents constants showing the degree of correlation between the weight attained by the individual seed and the number of pods per plant.

The correlations are positive throughout the twenty-seven series for which data are available, but are of a low order of magnitude and highly variable. They range from +.005 to +.339 , with a mean of $+.159 \pm .012$ and an absolute variability of $.092 \pm .008$.

In both average magnitude and variability the correlations for seed weight and number of pods per plant are in excellent agreement with those for number of ovules per pod and number of pods per plant and with the correlation for number of seeds per pod and number of pods per plant.

The average value of the correlation for pods and weight is lower than that for pods per plant and ovules per pod and higher than that for pods per plant and seeds per pod, but both of these differences are low, and may not be significant in comparison with their probable errors.

These studies will be continued.
Cold Spring Harbor, New York.

INDEX TO AMERICAN BOTANICAL LITERATURE

1913-1916

The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of one cent for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription, Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Andrews, A. L. Two extensions of range. Bryologist 19: 37, 38. 26 My 1916.
Sphagnum Dusenii from British Columbia, and Rhabdoweisia crispata from North Carolina.
Andrews, E. F. Socialism in the plant world. International Socialist Review 17: 18, i9.f. I. Jl 1916.
Anthony, R. D. Some notes on the breeding of raspberries. New York Agr. Exp. Sta. Bull. 417: 75-88. pl. 1-8. Mr 1916.
Bailey, L. H. Nomenclatorial transfers. Rhodora 18: $152-160$. I J1 1916.

Benedict, R. C. The origin of new varieties of Nephrolepis by orthogenetic saltation. I. Progressive variations. Bull. Torrey Club 43: 207-234. pl. 10-15. 16 Je 1916.
Benedict, R. C. Some interesting fern papers in Rhodora. Am. Fern Jour. 6: 33-37. Je 1916.
Berry, E. W. Contributions to the Mesozoic flora of the Atlantic coastal plain-XI-Tennessee. Bull. Torrey Club 43: 283-304. pl. 15. 29 Je 1916.
Includes Myrica ripleyensis, Bauhinia ripleyensis, and Myrcia havanensis, spp. nov.

Berry, E. W. The physical conditions and age indicated by the flora of the Alum Bluff formation. U. S. Dept. Int. Geol. Surv. Prof. Paper 98-E: 41-59. pl. 7-10+f. 8. 27 My 1916.
Includes Ulmus foridana, Sabalites apalachicolensis, Pisonia apalachicolensis Caesalpinia Sellardsi, Fagara apalachicolensis, Rhamnus apalachicolensis, Bumeila apalachicolensis, Nectandra apalachicolensis and Sapotacites Spatalatus, spp. nov.
Berry, E. W. The physical conditions indicated by the flora of the Calvert formation. U. S. Dept. Int. Geol. Surv. Prof. Paper 98 F: 61-73. pl. II, 12. 27 My 1916.
Includes Quercus chapmanifolia, Ilex Calvertensis, Phyllites cercocarpifolia, Cassia toraformis and Berchemia priscaformis, spp. nov.
Bicknell, E. P. The ferns and flowering plants of Nantucket-XVII. Bull. Torrey Club 43: 265-276. 16 Je 1916. Includes Galinsoga aristulata sp. nov.
Bigelow, H. C. Fall fruiting of the interrupted fern. Am. Fern Jour. 6: 56. Je 1916.
Boyer, C. S. The Diatomaceae of Philadelphia and vicinity. 1-143. pl. $1-40+$ frontispiece. Philadelphia. 1916.
Britton, E. G. The preservation of our native plants. Jour. N. Y. Bot. Gard. 17: 72, 73. 22 Je 1916.
Britton, E. G. Wild plants needing protection. II. "Bloodroot" (Sanguinaria canadensis L.). Jour. N. Y. Bot. Gard. 17: 63, 64. pl. 17I. 22 Je 1916.
Britton, E. G. Wild plants needing protection. 12. "Fringed Gentian" (Gentiana crinita Froel.). Jour. N. Y. Bot. Gard. 17: 81, 82. pl. 172. I4 Jl 1916.
Britton, N. L. The natural vegetation of the Isle of Pines, Cuba. Jour. N. Y. Bot. Gard. 17: 64-71. pl. 170. 22 Je 1916.
Burlison, W. L. Availability of mineral phosphates for plant nutrition. Jour. Agr. Research 6: 485-514. pl. 73-8o. 26 Je 1916.
Burnham, S. H. The admirable Polyporus in the flora of the Lake George region. Torreya 16: 139-142. 15 Je 1916.
Buswell, W. M. The birch harvest. Am. Bot. 22: 16-18. F 1916. [Illust.]
Campbell, D. H. The archegonium and sporophyte of Treubia insignis Goebel. Am. Jour. Bot. 3:261-273.f. I-6. 15
Carhart, M. A collector's list of New Jersey ferns. Am. Fern Jour. 6: 5I-54. Je 19I6.
Churchill, J. R. Lappula deflexa in Vermont. Rhodora 18: 138-140. I Je 1916.

Collins, G. N. Correlated characters in maize breeding. Jour. Agr. Research 6: 435-454. pl. 53-63. 19 Je 1916.
Conard, H. S. Nymphaea and Nuphar again. Rhodora 18: 161-164. I Jl 1916.
Cook, M. T., \& Lint, H. C. Potato diseases in New Jersey. New Jersey Agr. Exp. Sta. Circ. 53. 1-23. f. 1-9. 1916.
Cook, O. F. Branching and flowering habits of cacao and patashte. Contr. U. S. Nat. Herb. 17: 609-625. pl. 44-54. 28 Je 1916.
Coons, G. H., \& Levin, E. The Septoria leaf spot disease of celery, or celery blight. Michigan Agr. Exp. Sta. Special Bull. 77: i-8. f. I-g. Mr 1916.

Davis, B. M. Hybrids of Oenothera biennis and Oenothera franciscana in the first and second generations. Genetics 1: 197-251. f. 1-26. My 1916.
Detwiler, S. B. The redwoods. Identification and characteristics. Am. Forest 22: 323-328. Je 1916. [Illust.]
Douglas, G. E. A study of development in the genus Cortinarius. Am. Jour. Bot. 3: 319-335. pl. 8-13+f. I. I5 Jl 1916.
Duggar, B. M. Rhizoctonia Solani in relation to the "Mopopilz" and the "Vermehrungspilz." Ann. Missouri Bot. Gard. 3: i-1o. F 1916.
Duggar, B. M. The Texas root rot fungus and its conidial stage. Ann. Missouri Bot. Gard. 3: 11-23.f. 1-5. F 1916.
Erwin, A. T. Late potato blight in Iowa. Iowa Agr. Exp. Sta. Bull. 163: 287-305. f. I-8. Ap 1916.
Evans, A. W. Lichens and Bryophytes at Cinchona. Science II. 43: 918. 30 Je 1916.
Ewing, H. E. Trifolium pratense quinquefolium. Am. Nat. 50: 370373. f. I. Je 1916.

Farr, C. H. Cytological material at Cinchona. Science II. 43: 918, 919. 30 Je 1916.

Fernald, M. L. The genus Sabatia in New England. Rhodora 18: 145-152. pl. i2I. I Jl 1916. Includes Sabatia Kennedyana sp. nov.
Fernald, M. L. Prunus virginiana the correct name of the choke cherry. Rhodora 18: 140, 141. I Je 1916.
Fletcher, E. M. Wool-waste plants at Westford, Massachusetts. Rhodora 18: 143, 144. Je 1916.

Gates, R. R., \& Goodspeed, T. H. Pollen sterility in relation to crossing. Science II. $43: 859-861$. 16 Je 1916.
Gilman, J. C. Cabbage yellows and the relation of temperature to its occurrence. Ann. Missouri Bot. Gard. 3:25-82. pl. I, $2+f$. I-2I. F 1916.
Cabbage yellows caused by Fusarium conglutinans.
Gloyer, W. O., \& Fulton, B. B. Tree crickets as carriers of Leptosphaeria coniothyrium (Fckl.) Sacc. and other fungi. N. Y. Agr. Exp. Sta. Tech. Bull. 50: 3-22. pl. 1-4. Mr 1916.
(ookin, A. L. Plant wastes. Am. Bot. 22: 10-15. F i916. [Illust.]
Graff, P. W. Basidiomycetes collected in Indo-china by C. B. Robinson. Mycologia 8: 214-217. I5 Jl 1916.
Greenman, J. R. Monograph of the North and Central American species of the genus Senecio. Part II. Ann. Missouri Bot. Gard. 3: 85-194. pl. 3-5. F 1916. Includes descriptions of five new species.
Hans, A. An interesting hybrid. Am. Fern Jour. 6: 37-39. pl. 4. Je 1916. Asplenium Trichomanes var. confluens.
Harder, E. C. The occurrence of bacteria in frozen soil. Bot. Gaz. 61: 507-517.f. 1, 2. I5 Je 1916.
Harper, R. M, The forest census of Alabama by geographical divisions. Proc. Soc. Am. Forest II: 208-214. Je 1916. [Illust.]
Harper, R. M. An inventory of Florida's forests and the outlook for the future. Florida Agr. Dept. Quart. Bull. 26²: 5-24. f. 1 -I2. Je 1916.
Harper, R. M. Is forestry a science? Torreya 16: 136-139. I5 Je 1916.

Harter, L. L. Storage-rots of economic aroids. Jour. Agr. Research 6: $549-572$. pl. $81-83+f$. I. Iо J1 1916.
Hill, E. J. Notes on Funaria. Bryologist 19: 35-37. 26 My 1916.
Hillard, A. R. A note on preservatives for algae. Torreya 16: 142, 143. 15 Je 1916.

Holman, R. M. The orientation of primary terrestrial roots with particular reference to the medium in which they are grown. Am. Jour. Bot. 3: 274-318. f. 1-7. I5 J1 1916.
Howitt, J. E. Grape diseases. Ontario Dept. Agr. Bull. 237: 44-48. Mr. 1916.
Jeffrey, E. C. Charles René Zeiller. Bot. Gaz. 6r: 528, 529. 15 Je 1916. [Illust.]

Johnson, D. S. Cinchona as a tropical station for American botanists. Science II. 43: 917-919. 30 Je 1916.
Jones, D. H. Some bacterial diseases of vegetables found in Ontario. Ontario Dept. Agr. Bull. 240: 1-24. pl. 1 -10. Je 1916.
Lamb, W. H. Hybrid trees. Jour. Heredity 7: 311-319. f. 12-15. 26 Je 1916.
A review of a recent paper by A. Henry, "The black poplars," and contains additional information and suggestions.
Livingston, B. E. A single index to represent both moisture and temperature conditions as related to plants. Physiol. Researches I: 42I-440.f. i. My 1916.
Long, B. A belated correction. Rhodora 18: 142, 143. I Je 1916. Juncus brachycarpus does not occur at Fort Fairfield, Maine.
Long, B. Distribution of Carex aggregata in the Philadelphia region. Torreya 16: 131-136. 15 Je 1916.
MacCaughey, V. The tree ferns of Hawaii. Am. Bot. 22: I-9. F 1916.

Maxon, W. R. Studies of tropical American ferns-No. 6. Contr. U. S. Nat. Herb. 17: 541-608+i-viii. pl. 32-43. 23 My 1916. Includes Polypodium Williamsii, P. subvestitum, P. fallacissimum, P. Rusbyi,
P. guttatum, P. Collinsii, P. macrolepis, P. argentinum, P. bombycinum, P. Rosei, and six other new species of Polypodium, and Notholaena neglecta and N. aliena, spp. nov.
Miller, E. C. Comparative study of the root systems and leaf areas of corn and the sorghums. Jour. Agr. Research 6: 31I-332. pl. $38-44+f .1-3 . \quad 29$ Мy 1916.
Murrill, W. A. (Agaricales) Agaricaceae (pars). Agariceae (pars). N. Am. Fl. 9: 297-374. 7 Je 1916.

Includes Geopetalum albescens, G. geophilum, G. subelatinum, G. tremelliforme,
G. subhaedinum, Micromphale badium, Omphalopsis translucentipes, O. turbinata,
O. pseudogrisea, eleven other species in this genus and 53 in Prunulus, 15 in Ophalina and 44 in Gymnopus.
Murrill, W. A. Edible and poisonous mushrooms. 1-76. Chart. New York. 26 Je 1916.
Murrill, W. A. Illustrations of fungi-XXIV. Mycologia 8: 191194. I5 J1 1916.

The following species are illustrated in color: Lactaria atroviridis, L. hygrophoroides,
L. testacea, sp. nov.; L. maculosa sp. nov. and L. torminosa.

Murrill, W. A. An interesting Arum from India. Jour. N. Y. Bot. Gard. 17: 85, 86. I4 J1 1916.
Amor phophallus bulbifer.

Murrill, W. A. Pleurotus, Omphalia, Mycena, and Collybia, published in North American Flora. Mycologia 8: 218-221. I5 Jl 1916.
Nichols, G. E. The Bryophytes of Nova Scotia, with special reference to Cape Breton. Bryologist 19: 38-47. 26 My 1916.
Nichols, G. E. The vegetation of Connecticut. V. Plant societies along rivers and streams. Bull. Torrey Club 43: 235-264. f. I-II. 16 Je 1916.
Noble, M. A. Fern hunting in Florida in the phosphate country. Am. Fern Jour. 6: 42-44. Je 1916.
Nothnagel, M. Reduction divisions in the pollen mother cells of Allium tricoccum. Bot. Gaz. 61: 453-476. pl. 28-30+f. I. 15 Je 1916.

Ochoterena, I. Lo Carioquinesis vegetativa en las plantas Mexicanas. Bol. Dir. Est. Biol. 1: 412-430. f. 1-19. Ap 1916.
Olive, E. W. Report of a trip to study and collect rusts and other parasitic fungi of Porto Rico. Brooklyn Bot. Gard. Record 5: 117-122. f. 8. Jl 1916.
Orton, C. R. The diseases of the potato. Pennsylvania Agr. Exp. Sta. Bull. 140: 4-37.f. 1-23. My 1916.
Osterhout, W. J. V. Permeability and viscosity. Science II. 43: 857-859. 16 Je 1916.
Overholts, L. O. New or interesting species of gill fungi from Missouri. Ann. Missouri Bot. Gard. 3: 195-200. pl. 6+f. 1. F 1916. Includes Claudopus subnidulans, Panaeolus reticulatus, P, rufus and P, variabilis, spp. nov.
Pfeifer, N. E. The prothallia of Ophioglossum vulgatum. Bot. Gaz. 6I: 518-522. f. I-4. 16 Je 1916.
Piper, C. V. New plants from Oregon. Proc. Biol. Soc. Washington 29: 99-102. 6 Je 1916.
Describes Asarum marmoratum, Sidalcea cusickii, Carum erythrorhizum, Solidago cusickii and Eucephalus gormani, spp. nov.
[Popenoe, P.] Where are the best papaws? Jour. Heredity 7: 291-296. f. 1 -4 + frontispiece. Jl 1916. Asimina triloba.
Pratt, O. A. A western fieldrot of the Irish potato tuber caused by Fusarium radicicola. Jour. Agr. Research 6: 297-310. pl. 34-37 29 My 1916.
Prescott, A. Oswego tea in the garden. Am. Bot. 22: 19. F 1916. Price, W. A. Starch in apple trees. Ohio Jour. Sci. 16: $356-359$. Je 1916.

Pritchard, F. J. Change of sex in hemp. Jour Heredity 7: 325-329. f. 19. 26 Je 1916.

Rand, F. V., \& Enlows, E. M. A. Transmission and control of bacterial wilt of cucurbits. Jour. Agr. Research 6: 417-434. pl. 53, $54+$ f. 1 -3. 12 Je 1916.

Rangel, E. Contribuição para e estudo dos Puccinias das Myrtaceas. Archiv. Mus. Nac. Rio de Janeiro. 18: 147-156. pl. I-4. 1916. Includes descriptions and illustrations of four new species.
Rangel, E. Fungos do Brazil, novos ou mal conhecidos. Archiv. Mus. Nac. Rio. de Janeiro. 18: ${ }_{157-164 . ~ p l . ~ 5-7 . ~} 1916$.
Includes descriptions of fifteen new species in Puccinia (1), Uromyces (3), Uredo
(4), Mycosphaerella (1), Laestadia (2), Phyllosticta (I), Coniothyrium (1), Septo-
gleum (I , Cercospora (I , and Phaeophleospora eugeniae gen. et sp. nov.
Reed, E. L. Ecologic notes on Drosera annua. Torreya 16: 125-130. f. 1,2 . 15 Je 1916.

Reed, G. B. The measurement of oxidation potential and its significance in the study of oxidases. Bot. Gaz. 6I: 523-527.f. I, 2. 15 Je 1916.
Rosen, H. R. A known species of smut on a new host. Mycologia 8: 225, 226. I5 Jl 1916.
Cintractia leucoderma on Cyperus Gatesii.
Rowlee, W. W. Plants from southern Patagonia collected by Charles Wellington Furlong. Bull. Torrey Club 43: 305-321. 29 Je 1916.
Sampaio, A. J. de. Contribuição ao estudo da flora do estado de Minas Geraes. Archiv. Mus. Nac. Rio de Janeiro 18: 1-38. 1916.
Sampaio, A. J. de. Plantae novae vel minus cognitae. I. Orchidaceae. Archiv. Mus. Nac. Rio de Janeiro 18: 55-63. pl. 1-3. 1916. Includes Quekettia longirostellata, Pleurothallis Gouveiae, P. acuminatipetala and
Phymatidium paranaense, spp. nov.
Satchwell, M. A. Ferns of Duval County, Florida. Am. Fern Jour. 6: 39-42. Je 1916.
Saunders, C. F. A useful wild fruit. Am. Bot. 22:20, 21. F 1916. Opuntia Ficus-Indica.
Schaffner, J. H. A general system of floral diagrams. Ohio Jour. Sci. 16: 360-364. pl. 27. Je 1916.
Schultz, E. S. Silver-scurf of the Irish potato caused by Spondylocladium atrovirens. Jour. Agr. Research 6: 339-350. pl. 45-48. 5 Je 1916.
Seaver, F. J. Photographs and descriptions of cup-fungi-III. Peziza domiciliana and Peziza repanda. Mycologia 8: 195-199. pl. 188, 189 . 15 Jl 1916.

Shaw, C. H. The vegetation of the Selkirks. Bot. Gaz. 61: 477-494. Maps. 15 Je 1916. Paper compiled by Miss Caroline S. Romer.
Sherff, E. E. Studies in the genus Bidens. III. Bot. Gaz. 6I : 495-506. pl. 3 I. I5 Je 1916.
Includes Bidens Andrei, B. attenuata, and B. mirabilis, spp. nov.
Shreve, F. Experimental work at Cinchona. Science II. 43: 919. 30 Je 1916.
Smith, E. F. Studies on the crown gall of plants; its relation to human cancer. Jour. Cancer Research 1: 231-309. pl. I-25. Ap 1916.
Smith, E. F. Further evidence that crown gall of plants is cancer. Science II. 43: 871-889. 23 Je 1916.
Spaulding, P. The white-pine blister rust. U. S. Dept. Agr. Farmers' Bull. 742: $1-15 . p l . ~ I+f . ~ i-4$. 9 Je 1916.
Stakman, E. C., \& Tolaas, A. G. Fruit and vegetable diseases and their control. Minnesota Agr. Exp. Sta. Bull. 153: 7-67. f. 1-32. Ja 1916.
Stakman, E. C., \& Tolaas, A. G. Potato diseases and their control. Minnesota Agr. Exp. Sta. Bull. 158: 7-47.f. 1-28. F 1916.
Standley, P. C. The ferns of Greene County, Missouri. Am. Fern Jour. 6: 44-5I. Je 1916.
Stapf, O. Saxegothaea conspicua. Curt. Bot. Mag. IV. 12: pl. 8664. Je 1916. A plant from Chile.
Stevens, F. L. Collecting plants in Porto Rico. Jour. N. Y. Bot. Gard. 17: 82-85. I4 J1 1916.
Stevens, N. E. Pathological histology of strawberries affected by species of Botrytis and Rhizopus. Jour. Agr. Research 6: 361-366. pl. 49, 50. 5 Je 1916.
St. John, H. A revision of the North American species of Potamogeton of the section Coleophylli. Rhodora 18: 121-138. I Je 1916.
Sturgis, W. C. Notes on the Myxomycetes of the Curtis Herbarium. Mycologia 8: 199-213. I5 Jl 1916.
Surface, F. M. Studies on oat breeding. III. On the inheritance of certain glume characters in the cross Avena fatua \times A. sativa var. kherson. Genetics 1: 252-286. pl. 2, 3. My 1916.
Surface, F. M., \& Zinn, J. Studies on oat breeding. IV. Pure line varieties. Maine Agr. Exp. Sta. Bull. 250: 97-148.f. 14-24. My 1916.

Trelease, W. The genus Phoradendron. A monographic revision. 1-224. pl. I-245 +frontispiece. Urbana. 1916.
Includes descriptions of to5 new species and several new varieties, new combinations and new names.

Victorin, M. La flore du Témiscouata. Le Naturaliste Canadien 42 : 51-59. O 1915; 68-79. N 1915; 106-111. f. 12. Ja 1916; 121126. f. i1. F 1916; 136-143.f. I3. Mr 1906; 153-158. f. I4. Ap 1916.
Victorin, M. Aberration in Hepatica acutiloba. Ottawa Nat. 30: 27, 28. f. i. My 1916.

Viehover, A., Johns, C. O., \& Alsberg, C. L. Cyanogenesis in plants. Studies on Tridens flavus (tall red top). Jour. Biol. Chem. 25: 14I-150. My 1916.

Vries, H. de. The origin by mutation of the endemic plants of Ceylon. Science II. 43: 785-787. 2 Je 1916.
Watson, B. M. The viburnums. Landscape Architecutre 6: 140-144. Ap 1916.
Weir, J. R. Pathological observations on the chestnut in southern Indiana. Ann. Rep. Indiana State Board Forestry 1915: 140-163. f. 26-32. 1915.

Weir, J. R. Hypoderma deformans, an undescribed needle fungus of the western yellow pine. Jour. Agr. Research 6: 277-288. pl. $32+f .1-4.22$ My 1916.
Weir, J. R. Mistletoe injury to conifers in the northwest. U. S. Dept. Agr. Bull. 360: $1-39$. pl. $1-4+f .1-27.17$ Je 1916.
Wells, A. E. Fumigation experiments to determine the effect of highly diluted sulphur dioxide on a growing grain crop. U. S. Dept. Int. Mines Bull. 98: 213-307. pl. 14-25. J1 1915.
Wells, B. W. The comparative morphology of the Zoocecidia of Celtis occidentalis. Ohio Jour. Sci. 16: 249-290. pl. 12-19. My 1916.

Werkenthin, F. C. Fungous flora of Texas soils. Phytopathology 6: 241-253. Je 1916.
White, O. E. Variation, environment and the laws of heredity. Brooklyn Bot. Gard. Leaflets $4^{9}:[1-12]$. f. $1-9.28$ Je 1916.
Williams, R. S. Peruvian mosses. Bull. Torrey Club 43: 323-334. pl. 17-20. 29 Je 1916.
Includes Leptodontium integrifolium, Globulina peruviana, Tortula lacerifolia, Grimmia rivulariopsis, Bryum biforme, and Hygrohypnum peruviense, spp. nov,

Wilson, T. The use of wild plants as food by Indians. Ottawa Nat. 30: 17-21. My 1916.
Wolf, F. A. Citrus canker. Alabama Agr. Exp. Sta. Bull. 190: 91100. pl. I, $2+f$. I-6. Мy 1916.

Wolf, F. A. Dissemination of bur clover leaf spot. Phytopathology 6 301. Je 1916.

Wolf, F. A. Neocosmospora vasinfecta Erw. Sm. on potato and adzuki bean. Phytopathology 6: 301. Je 1916.
Wolf, F. A. Sclerotium Rolfsii Sacc. on Citrus. Phytopathology 6: 302. Je 1916.

Wolfe, T. K. Fasciation in maize kernels. Am. Nat. 50: 306-309. f. 1-3. My 1916.

Wuist, E. D. Sex and development of the gametophyte of Onoclea Struthiopteris. Physiol. Researches I: 93-132. f. 1-15. S 1913.
Young, H. D. Studies on the relation of cement dust to Citrus vegetation. I. The effect on photosynthesis. Bioch. Bull. 5: 95-100. Mr 1916.
Zahlbruckner, A. Neue Arten und Formen der Lobelioiden. II. Repert. Sp. Nov. 14: 133-142. I5 O 1915; III. Repert. Sp. Nov. 14: 180-185. 31 D 1915.
Includes nineteen new species in Centropogon (15), and Siphocamplyus (4).

5
 3

G. M. SMITH: WISCONSIN ALGAE

BULLETIN

OF THE

TORREY BOTANICAL CLUB

OCTOBER, I916

Fertilization in Fritillaria pudica

Karl Sax

(WITH PLATES 27-29 AND THREE TEXT-FIGURES)
Fertilization in the Angiosperms and especially in the Liliaceae has been the subject of research of many botanists. Yet it is surprising how incomplete and fragmentary is our knowledge of this important and interesting process.

Strasburger (13) in 1884 described fertilization in Monotropa Hypopitys. He observed the streaming of the cytoplasm in the embryo sac in the living condition and suggested that the male nucleus was carried to the egg by cytoplasmic streaming.

Guignard (4) in 1891 described fertilization in Lilium Martagon and showed a large number of fertilization stages.

In 1897 Mottier (8) first described the vermiform shape of the male nuclei in Lilium Martagon.

In 1899 Guignard (5) and Nawaschin (10) published independently their discovery of double fertilization in Lilium and Fritillaria.

Nawaschin (10, II, 12) has described fertilization in Lilium Martagon, Fritillaria tenella, Juglans nigra and Helianthus annuus. In Lilium Martagon and Fritillaria tenella he describes the vermiform male nuclei and concludes that they are motile. He maintains that the male nuclei are discharged into the space between the egg apparatus and the "Endospermanlage," whence they make their way to the egg and polar nucleus. He believes that the male nuclei must be motile in order to pass from one [The Bulletin for September (43: 441-504. ph. 24-26) was issued October 20, 1916.]
medium to another and to penetrate the membranes of the egg cell and the "Endospermanlage." In one case he finds the male nuclei linked together and attacks Strasburger's (I3) theory of cytoplasmic streaming on the ground that streaming could not carry these nuclei in different directions. He also notes that the bodies, the "X-Körper," which accompany the male nuclei in the pollen tube, are not carried with the male nuclei toward the egg or upper polar nucleus. He suggests that in Helianthus annuus one synergid penetrates the embryo sac and pours its contents into the micropyle canal and thereby aids in the entrance of the pollen tube. The cases of fertilization found were apparently few.

In 1900 Guignard (6) published his paper on fertilization in the tulip. He describes the male nuclei in the pollen tube as being of curved shape and of almost homogeneous structure. On leaving the tube they are accompanied by a dense granular substance. The pollen tube closes after the male nuclei escape.

Blackman and Welsford (I) in 1913, working on Lilium Martagon and L. auratum, describe and picture vermiform male nuclei both in the contents of the pollen tube and attached to the egg and polar nuclei. They also mention and show the two dark bodies in the end of the pollen tube. The male nuclei pictured are long vermiform and often pointed at one end, and their contents are arranged in a rather regular network. The authors maintain that the first male nucleus is smaller and suggest that, since the smaller male nucleus is found in contact with the egg, the first male nucleus goes to the egg. They also believe that the male nuclei are motile.

Welsford (14) believes that the "X-Körper" of Nawaschin are the disintegrating cytoplasm which surrounded the male nuclei. Mention is also made that the pollen tube itself enters the embryo sac before the discharge of the contents.

Other writers have published more or less complete descriptions of fertilization in various Angiosperms. But nowhere is there so complete a description of fertilization in the Angiosperms as has been published by Miss Ferguson $(2,3)$ and others for the Gymnosperms. Miss Ferguson describes a complete series of egg and sperm fusions in Pinus strobus and finds the interesting fact
that the sexual nuclei do not completely fuse but form independent spindles in close proximity to each other.

The material for the present study was collected near Pullman, Washington, in April and May, 1914 and 1915. Fritillaria pudica Spreng. is exceptionally good for the study of the process of fertilization because it seeds so freely. In many ovaries practically every sac contained a stage in fertilization. In several ovaries stages were found from synapsis of the megaspore mother cell to stages in fertilization. In the material cut and stained I have found not less than two thousand cases of double fertilization at various stages.

Strong chrom-acetic acid and Flemming's stronger solution were used as fixatives. Most of the sections were cut io μ thick, but a few were cut $\mathrm{I}_{5} \mu$ and 20μ. They were stained with modifications of Flemming's triple stain and with safranin and Lichtgrün. Good results were obtained with all stains used.

Although the development of the ovule has been traced from the stage containing the megaspore mother cell up to the time when the young embryo and endosperm are formed, this paper will deal largely with fertilization. Other processes of interest will be dealt with in a later paper.

The mature embryo sac of Fritillaria pudica contains the egg and two synergids at the micropylar end, and one normal antipodal cell and one which is disorganized at the chalazal end. Between these groups of cells is the "Endospermanlage" of Nawaschin, which contains the two polar nuclei, the upper one near the egg apparatus, the lower one near the antipodal end. There are thus usually but seven nuclei in the mature embryo sac. The one nearest the chalazal end is at least partly disorganized. The lowest of the four nuclei resulting from the second division usually fails to divide. The three cells of the egg apparatus are somewhat pear-shaped and arranged symmetrically in the upper end of the sac. They are usually very much alike in size and appearance and it is very doubtful if the egg can be distinguished from the other two cells until the time of fertilization. They are bounded by very delicate membranes,
which shows them to be distinct cells. Their cytoplasmic contents are less dense and stain lighter than those of the "Endospermanlage" and antipodal cells. At each end of the "Endo-

Fig. I. Mature embryo sac showing: the egg apparatus, one cell of which is only partly visible; the "Endospermanlage" containing the two polar nuclei, the upper one near the egg apparatus; one normal antipodal cell and one which is disorganizing. spermanlage" is a distinct membrane. At the micropylar end the "Endospermanlage" may project up between or around the cells of the egg apparatus. There is a great deal of variation in this respect, the "Endospermanlage" extending up around the cells of the egg apparatus at different points to varying distances. The upper polar nucleus is smaller and less regular in outline than the lower one. It is always located near the periphery of the sac and surrounded by less cytoplasm. The central portion of the "Endospermanlage" consists of a large vacuole and a thin peripheral layer of cytoplasm. The thickness of this layer is considerably less than the upper polar nucleus (Text FIG. I).

Only one case was observed where the tube had reached the embryo sac but had not penetrated it. The tip of the tube was enlarged and rounded and had turned along the nucellus towards one of the nuclei of egg apparatus, probably that of a synergid. In practically all cases one of the synergids is destroyed by the entering pollen tube; but just what the relationship between the synergid and the pollen tube is could not be determined. In one case the cell as well as the nucleus in it, through which the pollen tube is about to enter, has a pointed end towards the end of the pollen tube. But two, or even all of the cells and nuclei of the egg apparatus, may be more or less pointed towards the micropyle. When the pollen tube is in contact with the embryo sac, the cells of the egg apparatus are all intact and show no signs of having emptied their contents into the micropyle, or even of having penetrated the wall of the embryo sac.

In most cases the pollen tube enters the embryo sac somewhat from the side after turning from the micropyle, but sometimes it penetrates the nucellus and embryo sac directly from the micropyle.

The pollen tube just after entering the embryo sac is rounded and swollen at the tip. Only one case was found at this stage but it was well fixed, very clearly stained and apparently normal. The pollen tube and embryo sac are cut longitudinally. The pollen tube contains the two male nuclei. They stain darkly and are much elongated. Two other nuclei are also seen in the sections of the tube. The male nucleus (a) nearest the tip shows in Figs. 3A and 3B. It is long and much coiled and consequently cut across at several places. The second male nucleus (b) is seen mostly in Fig. 3C, but the ends of the nucleus are seen in Fig. 3B. This male nucleus is not so long and coiled as the other. The second male nucleus and perhaps the first one are somewhat pointed at the end. The contents at this stage are in an irregular network which takes a deep red stain with saffranin. The chromatin is not entirely peripheral as is shown where the male nuclei are seen in section. To the right in Fig. 3C is a nucleus (d) of practically the same size, shape and appearance as the synergid nuclei. The nucleus of the synergid into which the pollen tube has passed, is not found elsewhere in the embryo sac. To the left in Fig. ${ }_{3}$ C is a second vegetative nucleus (c) which is flattened and irregular in shape and situated between the two male nuclei. Portions of these vegetative nuclei are seen in Fig. 3B. Fig. 3A contains some dark-staining granules. The pollen tube did not stain nearly as darkly as others in the same ovary where the male nuclei had already escaped. It is questionable whether both of the vegetative nuclei, (c) and (d), are tube nuclei, or whether the one to the right (d) is the synergid nucleús which has been surrounded by the pollen tube.

The examples of stages in fertilization described so far are comparatively few. But after the male nuclei leave the pollen tube, numerous examples of the stages are found. Not less than eighty male nuclei were found free in the cytoplasm of the cells of the embryo sac, and typical cases of these are figured.

On leaving the pollen tube the male nuclei apparently retain
their curved or coiled shape for some time and in many instances it is probable that they never lose their coiled or curved shape during migration. When the male nucleus escapes near the nucleus with which it is about to fuse, which is always true in the case of the egg, it is probable that it seldom loses its coiled shape, although cases were observed where it was practically straightened out. The male nucleus going to the upper polar nucleus is more frequently straightened out than is the case with the one going to the egg nucleus, probably due to the greater distance it has to travel.

A clear example of the male nucleus going to the upper polar nucleus is shown in Fig. 2. The upper polar nucleus is at the right of the "Endospermanlage." The free male nucleus is distinctly pointed at one end and is curved in a manner that gives it the appearance of motility. The end toward the upper polar nucleus is larger, rounded and tapers slightly toward the middle, where it forms a short rounded arch, and then curves to one side and tapers to a point.

Fig. I shows almost all of the contents of the upper end of the embryo sac. The pollen tube is seen entering at one side after turning from the micropyle along the outer wall of the nucellus. It contains two red bodies, the "X-Körper" of Nawaschin, in a disorganized condition. The tube is badly ruptured just below the tip. To the right of the pollen tube is the egg nucleus. One male nucleus is just out of the pollen tube and is partly under the egg nucleus. It is curved and is of about the same thickness throughout. At the lower right side of the figure, the upper polar nucleus is seen. Between the egg nucleus and the polar nucleus is a synergid. The long slightly curved male nucleus is seen in the cytoplasm of the "Endospermanlage." It is smaller at the ends but does not have such an appearance of motility as the male nucleus shown in Fig. 2.

Fig. 5 shows a slightly curved male nucleus in the cytoplasm of the "Endospermanlage" almost in contact with the upper polar nucleus. It is slightly curved and tapers back somewhat from the end nearer the polar nucleus. Both ends are rounded. A male nucleus at practically the same stage is shown in Fig. $7 \cdot$ Fig. 6 represents a rather unusual case of this stage. The male
nucleus is twisted, and much coiled, and is small at both ends. The end to the left is nearer the polar nucleus and curves beneath the thick central portion.

The contents of all of the male nuclei which are free in the cytoplasm of the cells of the embryo sac show great similarity. A typical, very distinct example is shown in Fig. 7. The chromatin contents are in an irregular network. Usually somewhat larger chromatin granules are present in the network in the central portion of the male nucleus (Figs. I, 6, 7). There are apparently no nucleoli to be seen at this stage. The male nuclei stain darker than other nuclei of the sac with the stains used.

After the male nuclei are discharged, there are usually two dark staining bodies to be seen in the end of the pollen tube. These bodies, the "X-Körper" of Nawaschin, often show structure and appear to be more or less disorganized nuclei, but in some instances one or both are entirely lacking in structure. They are of various shapes. Usually, however, one is nearly spherical while the other is larger, ovoid, and often pointed at one end (FIG. 9). In this figure the bodies also show definite nuclear structure. They persist throughout all stages of fertilization and even in young embryo development. That these bodies are nuclei can hardly be questioned. They are probably the two vegetative nuclei corresponding to the vegetative nuclei, (c) and (d), in Figs. 3 B and ${ }_{3} \mathrm{C}$.

The male nucleus, when in contact with the egg nucleus, is usually coiled or curved. In some few cases, however, the male nucleus is straightened out when it first comes in contact with the egg nucleus. Fig. 4 shows a long tapering male nucleus with the large end touching the egg nucleus. Fig. 8 shows a male nucleus with the large end in contact with the egg nucleus. Many cases of these examples have been observed and usually the male nucleus is larger at the point of contact with the egg.

Whether the male nucleus reaches the egg nucleus while straightened out or coiled, sooner or later it becomes more or less curved around one side of the egg nucleus. Figs. 10, II, 12 and 13 show the male nucleus partly curved around the egg nucleus. In Fig. I3, the side of the egg nucleus is somewhat indented where the male nucleus is in contact. This is not uncommon.

The male nuclei finally lose their long curved shape. They contract somewhat, becoming shorter and more rounded in contact with the egg. In some cases the male nucleus seems to occupy an indentation in the egg (Fig. 15), while in other cases the two sexual nuclei are flattened at the point of contact (Figs. 16, 17). The male nucleus, on losing its vermiform shape, also loses the fine irregular network of its chromatin contents, characteristic of earlier stages. Fig. I4 shows this condition. The male nucleus has contracted somewhat and its contents consist of large and small granules with some of its earlier net-like structure. The egg nucleus is slightly indented. The chromatin granules of the male nucleus become coarser with finer threads running out from them. Many small pieces of chromatin are also to be seen. A little later in some cases nucleoli appear to be present. Fig. 15 shows the male nucleus after it has lost most of its earlier structure, in an indentation in the egg nucleus. Fig. i6 shows a little later stage than Fig. 15, but with the male and female nuclei flattened at the point of contact. In both cases, the male nucleus stains a little darker. The egg nucleus has very large chromatin granules. In Fig. 16, the male nucleus has very small pieces of chromatin along their common boundary. The male and egg nuclei remain in contact a long while before their common boundary finally disappears and their contents mingle. Fig. 17 shows the male and egg nucleus in contact, each containing a large mass of chromatin and small nucleoli. In Fig. 18 the fusion is almost complete. Most of the contents of the male nucleus are in a thread-like structure. Some of the contents of the egg nucleus are thread-like, but a large part are massed in the center of the nucleus. A large nucleolus is present. The thread-like structure appears to run from one nucleus into the other. In both Figs. 17 and 18, the male nucleus is smaller than the egg nucleus. Fig. I9 shows a stage where the common boundary has disappeared, the contents have apparently mingled, and those from the male and female nuclei are not to be distinguished, but there is still an indication of the outlines of the two nuclei. A similar stage is shown in Fig. 20. In this case the chromatin contents of the fused nuclei are more irregular.

In most cases it is not until the male nucleus and the egg
nucleus have completely fused that we find any appearance of the formation of the spireme. In rare cases, however, the spireme stage is found while the two nuclei are still distinct in outline. A very clear example of this condition is shown in Fig. 21. The spireme thread is rather thick in both nuclei and small nucleoli are still present. It is possible that the nuclear walls have broken down at the point of contact but the nuclei appear to be quite distinct.

Soon after the complete fusion of the egg and the male nucleus, the resulting nucleus becomes more nearly spherical in shape. A spireme is formed. FIG. 22 shows the pear-shaped egg cell with the early spireme of the fertilized egg. The chromatin of the male and female nuclei cannot be distinguished. Delicate threads can be seen at places along the spireme. The thread shortens and thickens until it appears as shown in Fig. 23. Here the spireme is in a late stage-just before the chromosomes are formed. The division of the fertilized egg is normal as is shown in Figs. 24 and 25. The spindle shows plainly in most cases (Fig. 24), but sometimes it stains lightly (Fig. 25). The figures do not show the entire dividing nuclei but are drawn from sections of the same.

Fig. 25 represents a condition of the egg cell which is characteristic for this and later stages as well as many earlier stages. The egg cell elongates after fertilization. A large vacuole usually forms in the upper part. The fusing sexual nuclei before and after fusion are located in the lower part-lying in a dense cytoplasm. A longitudinal section of the cell shows a more or less crescent-shaped mass of dense cytoplasm, which is well shown in Figs. 19 and 25.

The two-nucleate embryo is shown in Fig. 26. After division, a definite wall is formed, making two cells, which also appear somewhat crescent-shaped in section. The nuclei are flattened, the short diameter corresponding to that of the cells.

The fusion of the second male nucleus and the two polar nuclei has also been studied. The male nucleus first comes in contact with the upper polar nucleus and together these nuclei migrate to the lower polar nucleus. When the male nucleus comes in contact with the upper polar nucleus, it is usually more or less straightened out. Fig. 27 shows the male nucleus curved along
one side of the upper polar nucleus. Several cases were observed where the male nucleus had both ends in contact with the upper polar nucleus (Fig. 29). Sometimes the male nucleus appears to have come in contact with the upper polar nucleus while still coiled. The male nucleus soon shortens

Fig. 2. Embryo sac showing: one male nucleus in contact with the egg nucleus; the other male nucleus and upper polar nucleus in contact and migrating toward the lower polar nucleus. and thickens along one side of the polar nucleus (Fig. 28). The contents of the male nucleus are denser and in larger pieces. The polar nucleus is not indented as is often the case of the egg, but often becomes flattened at the point of contact.

The contraction and loss of the vermiform shape of the male nucleus usually occurs before the two nuclei migrate to the lower polar nucleus. The male nucleus may, however, retain its vermiform shape during the time of its migration with the upper polar nucleus, or even after the two nuclei have reached the lower polar nucleus. Text fig. 2 shows a longitudinal section of the entire embryo sac with the egg and one of the male nuclei in contact, a synergid, the upper polar nucleus and the second male nucleus in contact, beginning their migration towards the lower polar nucleus, and the antipodal nuclei. The male nucleus in contact with the upper polar nucleus has lost its vermiform shape. The cytoplasm of the upper part of the "Endospermanlage" is massed mostly along one side of the sac and especially around the two migrating nuclei. The strands of cytoplasm and the massing of the contents largely along the one side of the "Endospermanlage" at the upper end is very characteristic.

FIG. 31 shows the migrating nuclei almost in contact with the lower polar nucleus. The male nucleus is on the side nearest the lower polar nucleus and has retained its net-like structure.

Both polar nuclei appear to be in a resting condition. The male nucleus may be attached on any side of the upper polar nucleus.

The cases of migration of the upper polar nucleus together with the male nucleus were not found frequently, only forty-seven cases being found in the great number of fertilization stages. However, the cases of triple fusion of the polar nuclei and male nucleus were very abundant.

Text fig. 3 shows the embryo sac in longitudinal section with a synergid, the egg and male nucleus in contact, and the two polar nuclei and second male nucleus in contact. The male nucleus stains darker and is between the polar nuclei. It will be noted that there is very little cytoplasm in the upper end of the "Endospermanlage" at this time, which is very characteristic. It might appear, on comparing Text figs. 2 and 3, that the lower polar nucleus migrates also to meet the two approaching nuclei, but if there is a migration of the lower polar nucleus, it is slight, as has been observed in numerous examples, and it is accidental that the two sacs drawn should differ so markedly in this respect.

Figs. 33 and 34 show triple fusion. In Fig. 34, the male nucleus is at the side, while in Fig. 33, it is between the two polar nuclei. At this stage the chromatin of the male nucleus has lost some of its net-like structure and contains large pieces of chromatin with delicate threads, and in some cases, nucleoli.

Fig. 3. Embryo sac showing: the remaining synergid; one of the male nuclei coiled and in contact with the egg nucleus; the other male nucleus and upper polar nucleus just reaching the lower polar nucleus.

Fig. 32 shows a case where the two polar nuclei and male nucleus are in contact, but the latter is still vermiform and its contents are in a net-like structure.

The polar nuclei remain in contact without fusing for considerable time. At the time of fusion the chromatin contents
are partly thread-like with large irregular pieces of chromatin scattered throughout. Figs. 35, 36 and 37 show the three nuclei completely fused. In Fig. 37, the outlines of the three nuclei can be seen but their common membranes have disappeared. A fine network is to be noted in the central part of the fused nuclei.

Many cases of complete fusion were observed. There is no question but that the two polar nuclei and the male nucleus completely fuse and that no chromatin is thrown out in the process.

The duration of the spireme must be very short, as only a few very clear spireme stages of the triple fusion, or endosperm nucleus, were found. A clear example of a late spireme stage is shown in Fig. 38. There is an irregular nucleolar mass to the left. At this stage the thread is thickened and apparently approximately equally distributed throughout the nuclear cavity. The thread is just beginning to form chromosomes. The nuclear membrane has disappeared and delicate strands of cytoplasm are in contact with the forming chromosomes.

The cases of first division of the endosperm nucleus were abundant and in every case appeared to be normal, apparently an equal number of chromosomes going to each pole. Fig. 39 shows a very clear anaphase of the first division of the endosperm nucleus. The spindle is very clear in this and most other cases. The spindle is pointed at both ends. The first division of the endosperm nucleus results in the formation of two free nucleiThese divide rapidly and often the four or six nucleate endosperm is formed before the egg and male nuclei are completely fused.

Aberrant fertilizations are occasionally encountered. In three cases both the egg and the remaining synergid were being fertilized. The male nuclei were still distinct. In two of these cases the upper polar nucleus was in its usual position near the egg apparatus, but unfertilized. In the third case the upper polar nucleus had almost reached the lower polar nucleus, having migrated alone.

Two cases were observed where two pollen tubes had entered the ovule, one coming down the micropyle, the other entering the ovule at about the level of the egg apparatus. Only the pollen tube coming down the micropyle had entered the embryo sac.

Besides the fertilization of the egg and polar nucleus there
are other processes of interest. Many cases were observed where the contents of the nucleus of the remaining synergid were in the spireme stage. Other stages in the division of the synergid as well as the two-celled stage were observed. No stage of development beyond the two-celled stage was observed.

Several stages were found where the normal antipodal nucleus was dividing. It will be interesting to follow the development of the dividing synergid and the antipodal nucleus through later stages of embryo and endosperm development.

It was noted that the embryo sac becomes longer and curved as it develops. In some stages of early embryo development, it is bent at almost right angles.

Discussion

The cases of the entrance of the pollen tube into the embryo sac , although few, throw some light on problems relating to this process. There is no evidence in Fritillaria pudica to show that the synergid empties its contents into the micropyle in order to aid in the entrance of the pollen tube, as has been suggested by several writers. The fact that all the cells of the egg apparatus are intact at the time the tip of the pollen tube is in contact with the wall of the embryo sac excludes such possibilities in Fritillaria pudica.

The pollen tube turns along the nucellus and apparently is attracted as close as possible to the nucleus of a synergid before entering. One synergid is practically always destroyed by the entering pollen tube. The suggestion lies close at hand that the synergid is a factor in attracting the pollen tube. The suggestion that the synergid, or parts of it, are used as food by the pollen tube, seems quite tenable.

It is practically certain that in Fritillaria pudica the "XKörper" of Nawaschin are more or less disorganized nuclei. They may be two tube nuclei, but whether there are two tube nuclei formed here has not been determined. Or one of the red bodies may be the disintegrating nucleus of the synergid through which the pollen tube has passed. At all events it is clear that the "X-Körper" of Nawaschin are more or less disorganized nuclei, and not disintegrating masses of cytoplasm from which
the male nuclei have escaped, as Welsford (14) has maintained is the case in Lilium.

The male nuclei while free in the cytoplasm of the cells of the embryo sac usually do not have the appearance of motility (Figs. 1, 5, 7). However, the vermiform appearance of some of the male nuclei while free in the cytoplasm and in contact with the female nuclei, is certainly suggestive of motility (Figs. 1, 2, $6, \mathrm{II}, \mathrm{I}_{3}, 27,30$). It has been noted that the male nuclei, while in the pollen tube, are more or less coiled. Yet when seen part way to the nuclei with which they fuse, especially when the distances are long, the male nuclei are quite straight. The uncoiling is also slightly suggestive of motility. The male nuclei in contact with the egg and polar nuclei are seen to curve around the latter, which suggests independent motility and movement on the part of the male nuclei. The large number of stages found at this time as well as the appearance of the male nuclei, suggests that their movement may be rather slow, perhaps a creeping amoeboid motion. It might be suggested that it is possible that the male nuclei may be conveyed to the nuclei with which they fuse, both by their own motility and by the streaming of the cytoplasm.

It is quite certain that the upper polar nucleus and male nucleus in contact, migrate to the lower polar nucleus by cytoplasmic streaming. In most cases the male nucleus has lost its vermiform appearance before migration. Moreover, it is found in contact at any side of the upper polar nucleus. The accumulation of cytoplasm around the migrating nuclei and the small amount left in the upper portion of the "Endospermanlage" at the time of triple fusion, is evidence that the two nuclei are very probably carried by cytoplasmic streaming (Text figs. 2, 3).

It has been suggested that the rapidity of movement of the male nuclei is evidence of their motility. Yet the migration of the upper polar nucleus with the male nucleus, which appears to be brought about by streaming, even though the latter have further to go, is observed quite as rarely as free male nuclei.

The abundance of material showing the various stages leading to the complete fusion of the male and female nuclei, as well as the numerous examples of complete fusion and subsequent stages
in the division of the fertilized egg, leaves no doubt that at least in Fritillaria pudica the complete union of the male and female nuclei actually occurs. The rare appearance of such cases as that of the spireme stage in the egg and male nuclei when their outlines are still distinct, is probably of little significance in this respect. It is probable that these nuclei subsequently fuse completely because no later stages of incomplete fusion were found. If the adjacent walls of these two nuclei are not broken down, it would suggest that the fusion of the two sexual nuclei is not necessary to stimulate the formation of the early stages in division. This suggestion is supported by cases found in the Gymnosperms by Miss Ferguson and others.

From the many stages and abundant cases of triple fusion, there is no doubt that the two polar nuclei and the male nucleus fuse completely and that the subsequent division is normal. In this fusion there are at least twice as many female as male chromosomes. If this phenomenon of a normal triple fusion holds true for plants whose hybrids show a Mendelian ratio in endosperm characters, then an interesting question arises as to the distribution of the characters among the chromosomes.

Summary

The results obtained from the study of fertilization in Fritillaria pudica may be summarized as follows:

1. In the mature embryo sac of Fritillaria pudica the egg cell cannot be distinguished from the other two cells of the egg apparatus. The "Endospermanlage" extends up between and around the cells of the egg apparatus.
2. The pollen tube usually turns along the outer wall of the nucellus or embryo sac before entering. At this time the cells of the egg apparatus are all intact.
3. The pollen tube practically always enters and at least partly destroys one synergid.
4. Although a distinct appearance of motility is evident in many male nuclei, the majority do not suggest much motility.
5. The male nucleus and the egg nucleus fuse completely before division.
6. The upper polar nucleus, with the male nucleus in contact
with it, migrates to the lower one, probably by cytoplasmic streaming.
7. The two polar nuclei and male nucleus fuse completely and the subsequent division is normal.
8. The two red bodies, the "X-Körper" of Nawaschin, which remain in the pollen tube after the male nuclei have been discharged, are very probably nuclei. They probably correspond to the two vegetative nuclei described in the pollen tube before the two male nuclei were discharged.

In conclusion I wish to acknowledge my indebtedness to Dr. C. E. Allen for literature, to Dr. F. L. Pickett for extending the privileges of his laboratory, and especially am I indebted to my wife, Dr. Hally Jolivette Sax, for her constant encouragement and assistance throughout the work.

Literature cited

1. Blackman, V. H. \& Welsford, E. J. Fertilization in Lilium. Ann. Bot. 27: 111-114. pl. 12. 1913.
2. Ferguson, M. C. The development of the pollen tube and the division of the generative nucleus in certain species of pines. Ann. Bot. 15: 193-223. pl. 12-14. 1901.
3. - The development of the egg and fertilization in Pinus Strobus. Ann. Bot. 15: 435-479. pl. 23-25. 1901.
4. Guignard, L. Nouvelles études sur la fécondation. Ann. Sci. Nat. Bot. VII. 14: 163-296. pl. 9-18. 1891.
5. - Sur les antherozoides et la double copulation sexuelle chez les végétaux angiospermes. Compt. Rend. 128: 864-87r. f. 1 -Ig. 1899.
6. L'appareil sexuel et la double fécondation dans les Tulipes. Ann. Sci. Nat. Bot. VIII, II : 365-387. pl. Q-1I. 1900.
7. - Nouvelles recherches sur la double fécondation chez les végtéaux angiospermes. Compt. Rend. 13I: $153-160.1900$.
8. Mottier, D. M. Ueber das Verhalten der Kerne bei der Entwickelung des Embryosacks und die Vorgänge bei der $\mathrm{Be}-$ fruchtung. Jahrb. Wiss. Bot. 31: 125-158. pl. 2, 3. 1898.
9. - Fecundation in plants. Carnegie Inst. Publ. 15. 1904.
10. Nawaschin, S. Neue Beobactungen über Befruchtung bei Fritillaria tenella und Lilium Martagon. Bot. Centralb. 77: 62. 1899.
II. - Ueber die Befruchtungsvorgänge bei'einiger Dicotyledonen. Ber. Deutsch. Bot. Ges. 18: 224-230. pl. g. 1900.
11. - Ueber das selbständige Bewegungsvermögen der Spermakerne bei einigen Angiospermen. Oesterr. Bot. Zeitsch. 59: 457-467. 1909.
I3. Strasburger, E. Ueber Kern- und Zelltheilung im Pflanzenreiche, nebst einem Anhang über Befruchtung. Histol. Beitr. I. Jena. 1888.
12. Welsford, E. J. The genesis of the male nuclei in Lilium. Ann. Bot. 28: 265-270. pl. 16, 17. 1914.

Explanation of plates 27-29

All drawings were made with the aid of the camera lucida. All figures were drawn from single sections. The magnification is as follows: Fig. 8, 520 diameters; Figs. 1, 30-39, 720 diameters; Fig. 2, 750 diameters; Figs. 3-7, 9, 10-29, 1,120 diameters.

Plate 27

Fig. I. Micropylar end of the embryo sac in section, showing entrance of pollen tube, with disorganized red bodies-a portion of one synergid-one male nucleus coming in contact with the egg nucleus on the under side, and the second male nucleus in the cytoplasm of the "Endospermanlage" on its way to the upper polar nucleus.

Fig. 2. Section of upper part of embryo sac showing one of the male nuclei on way to polar nucleus.

Figs. $3 A, 3 B, 3 C$. Consecutive longitudinal sections of a pollen tube after entering the embryo sac. The two male nuclei, (a) and (b), stain darker than the vegetative nuclei. Two vegetative nuclei are shown, (c) and (d).

Fig. 4. Male nucleus coming in contact with the egg nucleus.
Fig. 5. Male nucleus almost to upper polar nucleus.
Fig. 6. Male nucleus coiled and twisted, on way to upper polar nucleus.
Fig. 7. Male nucleus on way to upper polar nucleus.
Fig. 8. Male nucleus touching the egg nucleus.
Fig. 9. Pollen tube containing the two dark bodies which show nuclear structure.

Fig. 1o. Male nucleus coiled and in contact with the egg nucleus.
Fig. Ir. Male nucleus in contact with egg nucleus.

Plate 28

Figs. 12, 13. Male nucleus in contact with egg nucleus.
Fig. 14. A later stage. The male nucleus has lost its vermiform shape and its earlier net-like structure.

Fig. 15. Male nucleus in indentation of egg nucleus.
Figs. 16, 17, 18. Male nucleus and egg nucleus fusing.
Fig. 19. Egg cell with male nucleus and egg nucleus completely fused.
Fig. 20. Complete fusion of egg and male nucleus.
Fig. 2r. Case of formation of spireme before complete fusion.
FIg. 22. Egg cell containing the fertilized egg in early spireme.

Fig. 23. Egg cell containing the fertilized egg in late spireme.
Fig. 24. Equatorial plate stage in first division of fertilized egg.
Fig. 25. Typical crescent-shaped section of the equatorial plate stage of dividing fertilized egg cell.

Fig. 26. Two-nucleate stage of embryo.
Plate 29
Fig. 27. Male nucleus in contact with upper polar nucleus.
Fig. 28. A slightly later stage than Fig. 27.
Fig. 29. Male nucleus with both ends in contact with upper polar nucleus.
Fig. 30. Male nucleus in contact with upper polar nucleus while on way, to lower polar nucleus.

Fig. 31. Male nucleus and upper polar nucleus almost touching the lower polar nucleus.

Fig. 32. Two polar nuclei and coiled male nucleus in contact.
Fig. 33. Triple fusion. Male nucleus between the polar nuclei.
Fig. 34. Later stage of triple fusion with male nucleus on the side.
Figs. 35, 36, 37. Endosperm nucleus resulting from the complete fusion of male nucleus and polar nuclei.

Fig. 38. Late spireme stage of endosperm nucleus.
Fig. 39. Early anaphase of first division of endosperm nucleus.

Additional species of Opuntia

David Griffiths

(with plate 30)
Plants of the following species have been growing in our collections for the past five to eight years. Some of them have been held under provisional names for a long time in the hope that they might eventually be referred to species already described. They can not, however, be so referred and must receive new names.

Opuntia columbiana sp. nov.

A low, half prostrate species, seldom over 15 cm . high; the distal joints mostly erect, the ones on the ground rooting freely; joints narrowly obovate, about $5 \times 15 \mathrm{~cm}$. in last year's growth, at first yellowish to medium light green but the second year becoming decidedly yellowish green, slightly raised at areoles, fragile, and easily broken, making it very difficult to grow plants to maturity; areoles subcircular to obovate, 2 mm . long, enlarging in age and prominent, 2 mm . high on account of the profuse development of wool, light brown; spicules yellow at first, in a compact tuft I to 1.5 mm . long in upper part of areole, later, especially the second year, becoming unequal and scattering, and 5 mm . or more in length; spines yellowish to white, centrals one to three with one long, porrect or sloping down $3-4 \mathrm{~cm}$. long and the other one or two 2 cm . long and widely spreading, and commonly three or four about 1 cm . long in the lower angle of the areole tightly recurved, often there are two or three porrectspreading, long spines, and the others (three short and about two 2 cm . in length) all tightly recurved; flowers light yellow, filaments reddish brown, style white, stigma light green.

This species is apparently confined to the sandy lands along the Columbia and Snake River valleys, and is particularly abundant near Pasco, Washington. The above description applies to my inventory No. I0041, from Pasco, Washington, but the spines vary greatly in color, and associated with this difference in color of the spines is a comparable difference in coloration of the plant body. Specimens collected under my inventory No. IOO42 have
darker colored spines; the joints commonly about $4 \times 9 \mathrm{~cm}$. and the spines in part brown, especially on apex of joints.

Opuntia cucumiformis sp. nov.

A low, branched, cylindrical-oval-jointed plant, 18 cm . high and $35-50 \mathrm{~cm}$. in diameter; at first yellowish green, turning gray; joints 10 cm . long, 3.5 cm . in diameter, broadly pointed to rounded above, cylindrical, tubercular, raised at areoles, the low, rounded ridge extending downward $\mathrm{I} .5^{-2} \mathrm{~cm}$.; areoles obovate, 2.5 mm . long, gray, rather sunken, $1.5-2 \mathrm{~cm}$. apart, only upper ones armed; leaves conical, ascending, 5 mm . long, slightly flattened on inside; spicules yellowish, at first not visible but at one year of age filling entire areole, which becomes subcircular, the spicules developing in successive lengthening zones from center of pulvinus; spines yellowish, translucent, bone-like, $\mathrm{I}-2.5 \mathrm{~cm}$. long, porrect, diverging but slightly, one to five in upper areoles only, not sheathed; flowers deep yellow, lighter within, having faint tinge of red in upper edges, about two rows of petals opening to 4 cm . in diameter; filaments white, style white, stigma white, variable, six-parted, small; bud distinctly reddish tinged at apex which is bluntly pointed and subtended by spicules, $3-5 \mathrm{~mm}$. long, from the marginal areoles of the ovary; fruit oval to obovate, about 16 by 38 mm ., deeply pitted at apex with small cavity about 4 by 8 mm . containing numerous small, atrophied ovules, its areoles small and distant below but closer above, bearing around top of ovary one or two yellowish spines $12-15 \mathrm{~mm}$. long, and a small tuft of spicules $4-5 \mathrm{~mm}$. long.

This species has been received from European collections as Opuntia ciribe Engelm., a native of the peninsula of Lower California, but it has little relation to that species and in all probability is native to the Cordillera region of South America. Several plants of it have been grown to maturity, but in no case have the fruits, which are produced in considerable abundance, matured seeds. The pulp cavity is always empty and the fruit remains attached to the plants indefinitely.

Opuntia calantha sp. nov.

A low, creeping, prostrate species, 15 cm. high and a meter in spread; joints obovate, sub-pointed above and below, inequilateral, about $4 \times$ II cm. ., tuberculate-wrinkled, mostly deep green; areole small, $\mathrm{I}-\mathrm{I} .5 \mathrm{~mm}$. long, obovate, at first tawny, turning gray; leaves small, subulate, cuspidate, red, I mm. long;
spicules yellow, not prominent at first but later $3-4 \mathrm{~mm}$. long and scarcely distinguishable from the spines, from which they differ only in size and position, and very slightly in color; spines white, short, porrect-divergent, five to ten in number, 5 mm . or less in length with often as many spicules a trifle less divergent in upper portion of areole; flowers carmine, filaments carmine, stigma very deep, dark green, thirteen-parted, with short segments and open throat; fruit, with us, greenish to yellowish, hemispherical, deeply pitted, 1.5 cm . in diameter.

This species is more or less common in European collections, and is probably of South American origin. It is commonly received as Opuntia microdisca A. Weber, but differs from that species in almost every diagnostic character. We have had plants of it in blossom for three or four years but in no case have fertile fruits been produced, although hand-pollination has been resorted to and natural pollination by insects has been universal. The reason for this sterility is not apparent, but it may be due to our intense heat and drought during the time that the flowers are open.

Opuntia longiclada sp. nov.

An erect, open-branched shrub a meter or more high and having a spread of 2 m .; joints elliptical, widest slightly below middle and gradually narrowed both ways, pointed above and below, commonly $12 \times 36 \mathrm{~cm}$., this season's growth now in blossom commonly $10.5 \times 33 \mathrm{~cm}$., at first rather bright yellowish green, turning slightly gray green yet having but little bloom, slightly raised at areoles and this disappearing the second year; areoles gray or light tawny, oval to subcircular, commonly 4 mm . long, bearing a darker central area; spicules inconspicuous, yellow, becoming noticeable and 2 mm . long in a compact, connivent tuft in upper portion of areole at one year of age; spines one to three, $1-1.5 \mathrm{~cm}$. long, yellow, turning white, increasing with age to six to eight and often becoming 3 cm . long, usually one or two on sides of joints and more numerous on edges, flattened, twisted, with translucent tips; flowers yellow, greener within, 5.5 cm . in diameter or 6 cm . when fully opened; turning deeper yellow and developing the faintest tinge of red within at close of day; filaments greenish, style white, stigma large, light green, nine-parted; inner petals nearly orbicular; buds dull light green with tinge of dull red on the upper edges of the sepals; fruit pyriform, purplish red throughout. (Plate 30.)

This species has been carried in our collections for the past
eight years under S. T. G. No. 2838, and has been grown successfully in two situations in Texas besides Chico, California. It was not known for a long time whether it was hardy or not, consequently we grew it inside at Chico where it produced a moderate crop of fruit and a prolific vegetative growth. In the field, however, its vegetative development is very much curtailed but it is loaded with fruit. It was received originally from some European collections. Since being transferred to Chico it has grown under S. T. G. No. 2838. Its natural habitat is unknown.

Opuntia platynoda sp. nov.

A low, erect to ascending, densely branched, fragile-jointed species, seldom 45 cm . high, but often $60-100 \mathrm{~cm}$. in diameter; joints flattened, small, obovate to mostly fusiform-oblong, $4 \times$ 13 cm . for old joints of this season, but very variable, many joints of last season's growth only $3.5 \times 9 \mathrm{~cm}$., dark, glossy green, and darker and often purplish below the areoles, which are slightly raised, tubercular at areoles first season but later entirely smooth, but always more or less darkened in color below them; areoles gray to light tawny, obovate, about 4 mm . long, increasing in age to subcircular; spicules at first inconspicuous in a small tuft in upper portion of areole, but later at two or three years occupying half of the areole, and fading to a light dirty brown or yellowish; spines erect, divergent, at first brown, turning through a mottled condition to white with translucent bone-like tips, flattened, twisted, stout, one to three, seldom four, with lower areoles naked, upper terete spine largest, $2.5-3 \mathrm{~cm}$. in length, and ascending or porrect, the others lateral or situated directly below, besides these often there are two delicate short lower lateral ones, 3 mm . in length in addition; flowers lemon yellow, $4.5-5 \mathrm{~cm}$. wide when fully opened, outer segments greenish red and tightly appressed as is typical of South American forms in the bud; petals tipped with greenish red, obovate, retuse, and minutely cuspidate in the notch; filaments white, style white, stigma white, six-parted, petals about 3 cm . long; fruit pyriform, green with blush of greenish red on one side, or entirely greenish red, with exception of basal portion, large, subcircular, gray to tawny areoles, $12-18 \mathrm{~mm}$. apart, and an occasional short spine.

With us the plant grows very rampant in the sash house, requiring constant pruning to keep it in check. It blossoms very freely in June and July. Up to this time the fruit has been all but sterile, none having over one half dozen mature seeds, but a
great many aborted ones, showing that there is something wrong with the fertilization of the plant in this situation.

The description is drawn from No. 9266 P. I. G., cultivated at Chico, California, from cuttings secured from European collections. I have no definite information of its habitat, but feel certain that it is of South American origin. Its affinity is clearly that of a large group of South American speccies with short, blunt buds of closely appressed, wide, thick scales, short leaves, and copperized areolar stains. The species is frequently injured by cold weather out-of-doors at Chico, California.

Opuntia microcarpa Engelm.

A stout, robust, large-jointed, erect species, making a bush 1.5 m . high and 2 m . in spread, with the main lower arms mostly resting on edges or self-supporting, ascending or nearly horizontal; joints large, light bluish, moderately glaucous, of ten $25 \times 35 \mathrm{~cm}$., sharply rounded above, not raised at areoles after first year; areoles variable in size, light brown, obovate, $5^{-6} \mathrm{~mm}$. long on sides and some 8 mm . on edges of last year's growth, becoming subcircular and black in age; spicules light-brownish yellow, scattered, unequal, $3-10 \mathrm{~mm}$. in length, not especially prominent excepting on margins of joints; spines white, with brown bases of very ununiformly tinted but always dull and dark brown, strongly flattened, twisted, bent and variously curved, variable in number and length, two to six and $\mathrm{I}-4 \mathrm{~cm}$. long, increasing in length and numbers in age; flowers large, $9-10 \mathrm{~cm}$. in diameter, yellow with greenish centers, filaments yellow, style greenish to very faintly reddish tinted, stigma large, deep green, ten- to thirteen-parted, coarse; buds rather sharply pointed, olive green with a very faint blush of red in the tips of the outer, lax to recurved sepals; fruit deep purplish red throughout and bearing prominent, tawny areoles, having the usual quota of spicules, rather lighter than those of the plant, and a few fugacious spines 1 cm . long; umbilicus broad, flat to slightly concave.

This is one of the larger, more robust of the southern Arizona species. The description of the spines might be misleading for the general impression which they give is that of white, leaning toward that peculiar translucent aspect common to so many species. It is not at all abundant but occurs commonly in scattering individuals in the foothills at an elevation of about 3,000 feet. This is the first time this species, which was named by Dr. Engel-
mann* from Stanley's figures, has been recognized, although it has a considerable known distribution and is a very characteristic thing. I have seen fine specimens of it in the type locality near Solomonville, Arizona, and at various points to the southwestward. It extends in this direction as far as the Tucson region. I have had it in manuscript under a provisional new name for years from the latter region, but refrained from publishing on account of a suspicion that it might be this species on account of the shape of the joints as shown in the Stanley figures. A careful study of the pears of the type locality leaves no doubt in my mind as to its identity.

Opuntia crystalenia sp. nov.

An erect, tree-like form, $2-2.5 \mathrm{~m}$. high with a distinct cylindrical trunk and tree-like top; joints broadly obovate to nearly subcircular, about $18 \times 25 \mathrm{~cm}$., glaucous, blue-green, becoming more yellow after two years of age, at one year about 3 mm . long on sides of joints but enlarging irregularly and becoming subcircular in age, at first tawny but turning gray; leaves small, 4 mm . long, subulate, cuspidate, slightly flattened and becoming somewhat recurved at tip; spicules yellow, in a compact tuft in upper part of areole, not prominent, scarcely protruding from surface of joint, increasing only in occasional areoles in age; spines white, porrect in upper two thirds of joints only, one to three or four, usually two, variable, the longest $10-15 \mathrm{~mm}$. in length and there are usually present one to two or three hair-like, delicate spines besides in the lower angle of the areole; flowers yellow, lighter colored within, filaments yellow above and greenish below, style white, stigma large, conical, dull dark green, tenparted; buds light, dull greenish red, with a slight grayish, glaucous sheen; fruit subglobose, medium sized, about $4-4.5 \mathrm{~cm}$. in diameter, light red all the way through, flower-scar moderately dished to nearly flat, areoles tawny to brown, about 8 mm . apart and having prominent wool, variable spicules $\mathrm{I}-2 \mathrm{~mm}$. in length and four to ten delicate fugacious spines, $4-12 \mathrm{~mm}$. long, tawny brown.

This is a common species both native and in cultivation upon the Mexican highlands and is prized for its edible fruits. The type was collected at Cardenas, Mexico, under my inventory number 8030 in August, 1905. It has been grown in our experimental plantings at Brownsville and San Antonio, Texas, and Chico, California.

[^75]
Opuntia ithypetala sp. nov.

A tall, erect, tree-like, open-branching plant 2 m . high or more with a distinct trunk and widely spreading, ascending to drooping branches; joints large, obovate, contracted below into a long stipitate base, very often $19 \times 45 \mathrm{~cm}$., but commonly only 14×26 cm. ., bright dark green, tubercular-raised at the areoles, the surface not becoming flat and smooth for two or three years at least, bright dark green, mostly without bloom; leaves subulate, cuspi-date-pointed, slightly flattened, $5-6 \mathrm{~mm}$. long; areoles oval to subcircular and often 1 cm . in diameter, $4-5 \mathrm{~cm}$. apart on sides of joints; spicules not visible; spines white on second year's growth, three to five, mostly three or four, the central one porrect and largest $3-4 \mathrm{~cm}$. long, the lower one short, $\mathrm{I}-2 \mathrm{~cm}$. and recurved, the others divergent, flattened, twisted, formidable, increasing on old trunks to six to ten and often becoming 8 cm . long and very stout; flowers light canary yellow, fading to light rose purplish late in the day, the petals erect, not spreading, becoming 3 cm . in diameter when fully opened; filaments white to slightly greenish below and very light pinkish tinted above, style white, stigma very light green, six-parted; buds conical-pointed, light olive with only a tinge of red at the tip, the scales wide and closely appressed; fruit light purplish red, slightly raised tubercular at areoles and deeply pitted, each upper areole bearing mostly I white, porrect spine 1 cm . long and occasionally an additional smaller one 3 to 5 mm . long below the big one, the pulp being much deeper purplish red than the outside and brittle with a pleasant touch but not very sweet.

This species was received from the Royal Botanical Garden at Berlin as Opuntia Hanburyana A. Weber. It is more closely related to Opuntia Schumanni A. Weber but as the description above indicates it is very different from either one. It agrees with the latter in having the petals erect when the flower is fully opened; it does not agree with the former in any particular. It has been grown to maturity very successfully in our two situations in Texas as well as at Chico, California. When first received it was assigned the inventory number of our San Antonio garden, 506, and under this number it has been carried at Chico, California.

Opuntia rubiflora sp. nov.

Plant low, spreading, $30-45 \mathrm{~cm}$. high and having a spread of a meter or more; joints obovate, mostly $12 \times 18 \mathrm{~cm}$. in last year's growth, but older ones larger, medium dark green with a little
pruinosity, broadly rounded above and gradually narrowed below into a short stipe; areoles obovate above and subcircular below, about 3-4 mm. long with prominent gray wool the second year; spicules brown on this year's growth, changing to yellow in situ the second year, situated in a compact tuft in upper portion of areole, 2 mm . long; spines white with brown to straw-colored bases, on last year's joints two or three, usually one recurved I-2 cm. long, white, the others stouter, $3-4 \mathrm{~cm}$. long, white with brown to straw-colored bases, porrect, divergent, flattened, slightly twisted and at times showing a very faint annulation, increasing and becoming six to eight in number and somewhat lengthened in age; bud medium-pointed with loose, narro N scales of an olive green color but with a tinge of dull pinkish red in the upper portion; flowers pink, filaments yellow, greenish below, style white, stigma very light greenish, six-parted, with longpointed divisions which are cuspidate, the general shape of the stigma being conical.

The species was received originally in the form of cuttings from European collections, designated by an unpublished varietal name under Opuntia camanchica Engelm. \& Bigel. It is, however, a perfectly good species. Its habitat was not stated.

Opuntia megalantha sp. nov.

A tall, robust, erect, open-branching plant 2 m . or more in height; joints obovate, broadly rounded or often, when young, bluntly pointed above, becoming more rounded the second year, glaucous-gray-green, last year's joints commonly $14 \times 21 \mathrm{~cm}$.; areoles at first brown turning gray, variable, oval-obovate to subcircular, enlarging in age, about $3-5 \mathrm{~mm}$. long the first season; spicules yellow, scattered through the edge of the areole, wool $4-5 \mathrm{~mm}$. long, increasing slightly in age but only in scattered places on the plant, usually there is no increase at all but the wool increases or grows anew and the areoles on the old trunks three or more years old often bright brown like new growth, often becoming transversely elongated and 1 cm . in width on old trunks; spines yellow, in some cases slightly tinted at base, some more or less mottled after first year but semi-translucent, dirty yellow in age, one to three, the longest 2.5 cm ., increasing to $4-5 \mathrm{~cm}$. in length and four or five in number on old wood; flowers yellow, $10-11 \mathrm{~cm}$. in diameter, petals 5 cm . long, obovate, usually notched at the rounded apex, filaments greenish below and white or yellowish above, style white, stigma large, in rare instances 1 cm . in diameter, white or slightly greenish tinged, flattened by incurving of points, eight- to nine-parted; fruit dark red throughout
with subcircular areoles 3 mm . in diameter, the upper especially with prominent spicules $3-4 \mathrm{~mm}$. long, merging imperceptibly into the delicate, fugacious spines which may be a cm . long or less.

This species was received from the Royal Botanical Garden at Berlin as Opuntia Bergeriana A. Weber, and has been grown with us in two situations in Texas and one in California. In some respects the plant does suggest Opuntia Bergeriana but the character of the flowers alone would exclude it from that species. It differs also in general habit, nature of spination and form and character of joints. In the season of 1914 our plants at Chico, California, blossomed profusely and set a good crop of fruit, but in no case did any seed form, the fruit being made up mainly of rind with a very small, empty seed cavity, save for the minute dried ovules. In 1915, however, the earlier fruits did not differ very materially from those of the previous year except that two or three seeds were produced in the fruit; but later crops, blossoming in late June and early July, produced an abundant seed crop. The species is carried in our collections under No. 2825 S. T. G. Its habitat is not known.

United States Department of Agriculture

Explanation of plate 30

Opuntia longiclada Griffiths
Terminal joints and flower buds, about half natural size, cultivated at Chico, California.

Cambial activity in certain horticultural plants*

Lewis Knudson

As stated by the writer in a previous publication, \dagger there is a scarcity of data respecting the season of cambial activity in woody plants. This lack of knowledge, particularly with respect to cambial activity in the fruit trees, is the more surprising when one considers its significance to pruning and fertilizer practices, and since ultimately a rational system of fruit culture will be based on an accurate knowledge of the life history of the plant. It was in the hope of supplying some of the desired information that an investigation on this subject was begun in the summer of 1909. \ddagger It was found impossible to continue the investigation, except for a few observations made in the summer of 1913, but because of the scarcity of data on this subject it seems advisable to record the results of the observations made.

Observations on the grape

Methods.-For the investigation a number of vines were selected of the Worden variety (Vitis labrusca). They were uniform as regards size and conditions of growth. They had been growing for four years on a plot of land on the campus of Cornell University, Ithaca, New York. The vines were under the care of the Department of Pomology, and had been properly pruned during the previous seasons.

At intervals throughout the season cuttings were taken from the one-year-old wood. These cuttings were removed in all cases from the basal internodes of different shoots and, as far as possible, from shoots of the same exposure and the same diameter. Cuttings from new shoots were likewise made from the basal

[^76]internodes. The material was fixed in Gilson's solution, imbedded in celloidin, and later sectioned and stained. On the same days that material was collected, observations were taken on the external manifestations of growth in order that the formation of xylem and phloem could be correlated with the growth of leaves, elongation of new shoot, and development of fruit.

In Table I are given the data on the growth-measurements in the grape.

Table I
DIAMETER INCREASE OF PHLOEM AND XYLEM IN ONE-YEAR-OLD SHOOTS OF THE GRAPE

Number of cutting	Date		Diameter of branch, mm .	Increase of xylem, microns	Increase of phloem, microns	Leaf, fruit, and shoot development
4	May		3.5	0	\bigcirc	Buds swelling
12		${ }^{15}$	4.75	\bigcirc	0	Largest leaf 2 mm . wide
25	"		6	0	-	New shoot 30 cm . long. Largest leaf II mm. wide. Fruit-bud cluster 3 cm . long
46	"	29	4.5	102	61	Leaf $16 \times 16 \mathrm{~cm}$. New shoot 60 cm . long. Fruit-bud cluster $6-8 \mathrm{~cm}$. long, not yet open
74	June		4.75	\bigcirc	o	Largest leaves $18 \times 18 \mathrm{~cm}$. New shoot 86 cm . Fruit-bud cluster 5.5 cm . long; some open
94		15	5	143	73	Leaf $20 \times 19 \mathrm{~cm}$. New shoot 96 cm . Tendril developing. Axillary shoot 12 cm . long, with leaves 4 cm . broad. Fruit set. Only occasional stamens to be seen
110		20	-	102	71	Leaf 20 cm . broad. New shoot 100 cm . Grapes size of peas
144		29	6.5	486	222	Leaf $20 \times 20 \mathrm{~cm}$. New shoot 155 cm . Size of berries (largest) 12 mm . diameter
168	July	19		1,000	445	New shoot 195 cm .
185	Aug.			980	405	Grapes nearly full-grown, 16 mm . diameter
197	Nov.	-		729	405	

Diameter increase began simultaneously in both phloem and xylem. The cambial activity began between May 23 and May 29, at which time the leaves were almost completely developed. Cambial activity ceased before August 9, for at this time the new xylem and the new phloem were completely differentiated and the cambium was in the resting condition. Between July 19 and August 19 a periderm layer was produced, cutting off the old phloem from the new. At the base of the new shoot, at about the same time, a periderm layer developed just outside the phloem, cutting off the entire cortex.

ObSERVATIONS ON THE PEACH

In studying cambial activity in the peach the methods employed were essentially the same as for the grape. Three peach trees were used, all growing under apparently identical conditions on the grounds of Cornell University. The trees were of the variety known as Wakefield and they were probably fifteen years of age. They had produced a good crop of fruit during the preceding season, and the same held true for the year when the observations were made. Cuttings were taken of one-year-old, five-year-old, and ten-year-old branches, the branches being respectively of approximately the same exposure and the same diameter. The detailed data follow in Table II.

Table II
Average diameter increase in the peach

An examination of the table reveals the fact that cambial activity began in the peach at the time of the opening of the buds. This is contrary to the condition found in the larch, grape, and apple. Complete differentiation of the new xylem was evident by July i9, when the cambium layer appeared to be in a resting condition. It is not possible to draw conclusions regarding the period of greatest cambial activity, since the variation in growth in the different branches is apparently considerable.

Observations on the apple
The methods of investigation in the apple were essentially the same as in grape and peach. Only one tree was used. It was growing on the campus at the foot of a four-foot road embankment The tree was about forty years old, and for several years no practical attention had been given it. Cuttings were removed from one-year-old branches, from four-year-old branches and from one of the main branches having a diameter of 4 cm . The detailed data are given in Table III.

Table III
Average diameter increase in the apple

In each case cambial activity began before May 15, but it was impossible to determine from the sections whether or not phloem formation had begun. In all cases xylem formation was completed by July 19 and the characteristic thickening of the cell walls was also practically completed. By August 9, the date of the last observations, the cambium was in its resting condition. The most rapid increase began just after the leaves had attained full size.

Incidental observations in 1913

Material for examination was collected in 1913 from the apple, peach, pear, plum, and cherry. Two apple trees were examined, a Baldwin and a Rhode Island Greening. The trees were about
seventy years of age and were growing in an old orchard. In both cases examination of sections from one-year-old, three-year-old, and five-year-old branches revealed the fact that by July 17 the last few layers of xylem cells were being formed, and sometimes between July 23 and July 30 the xylem and phloem formation was completed and the cells were completely differentiated. The cambium was then in its resting condition. Material was also taken from three-year-old and five-year-old branches of the pear. The tree was about twenty years of age and was growing in a yard. In each case xylem formation was completed by July 17. Incidental observations made on the plum, peach, and cherry on threeand four-year-old branches indicated that xylem formation was complete by July 23 and the cambium was in a resting condition. These trees were bearing trees about twenty years old and were growing in a farmyard.

In concluding, mention should be made of the fact that no evidence was obtained to indicate that phloem formation continued later than xylem formation.

INDEX TO AMERICAN BOTANICAL LITERATURE

1913-1916

The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints'are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of one cent for each card. Selections of cards are not permitted ; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Allard, H. A. Some properties of the virus of the mosaic disease of tobacco. Jour. Agr. Research 6: 649-674. pl. gr. 24 J1 1916.
Ayres, A. H. The temperature coefficient of the duration of life of Ceramium tenuissimum. Bot. Gaz. 62: 65-69. I5 J1 1916.
Bailey, I. W. The structure of the bordered pits of conifers and its bearing upon the tension hypothesis of the ascent of sap in plants. Bot. Gaz. 62: $133-142$. pl. $I+f .1$, 2. 15 Au 1916.
Bartlett, H. H. The botanical work of Edward Lee Greene. Torreya 16: 151-175. Portrait. Jl 1916.
Bassler, H. A cycadophyte from the North American coal measures. Am. Jour. Sci, IV. 42: 21-26. Jl 1916.
Berry, E. W. A Zamia from the lower Eocene. Torreya 16: 177-179. f. I. Au 1916.

Zamia mississippiensis sp. nov.
Blake, S. F. A revision of the genus Polygala in Mexico, Central America, and the West Indies. Contr. Gray Herb. II. 47: I-122. pl. i, 2. Au 1916.
Includes descriptions of thirty-six new species.

Braun, E. L. The physiographic ecology of the Cincinnati region. Ohio Biol. Surv. 2I: II5-2II.f. I-59. Je 1916.
Briggs, L. J., Jensen, C. A., \& McLane, J. W. Mottle-leaf of Citrus trees in relation to soil conditions. Jour. Agr. Research 6: 72I-740. pl. $H, 96,97+f .1-4.7$ Au 1916.

Britton, E. G. Clethra alnifolia. Sweet pepperbush. Addisonia I: 23 pl. 12. 30 Je 1916.
Britton, E. G. A national flower. Jour. N. Y. Bot. Gard. 17: 104-106. 5 Au 1916.
Britton, E. G. Wild-flower Preservation Society of America. Torreya 16: 182, 183. Au 1916.
Britton, N. L. Exogonium microdactylum. Slender red Exogonium. Addisonia I: $33,34 . \mathrm{pl} .17 .30 \mathrm{Je} 1916$.
Britton, N. L. Opuntia macrorhiza. Large-rooted prickly pear. Addisonia I: 37, 38. pl. 19. 30 Je 1916.
Bush, B. F. The mosses of the Pech catalogue-Missouri. Bryologist 19: 52-60. 25 Jl 1916.
Campbell, D. H. The fern-flora of Cinchona. Science II. 43: 917, 918. 30 Je 1916.

Child, C. M. Axial susceptibility gradients in algae. Bot. Gaz. 62: 89-114. I5 Au 1916.
Church, M. B. The development of the embryo sac and embryo of Cooperia Drummondii. Bull. Torrey Club 43: 397-405. pl. 22, 23. 22 Au 1916.
Cockerell, T. D. A. The northwestern Cytherea. Torreya 16: 184, 185. Au 1916.

Conzatti, C. Comentario al plan general de la clasificación de los vegetales. Bot. Dir. Estud. Biol. 1: 281-283. Ja 1916.
Cordero, M. Fermentación diastasica del jugo del Agave. Bol. Dir. Estud. Biol. I: 302-308. Ja 1916.
Corrie, L. G. Pollinating fruit trees. Jour. Heredity 7: 365-369. f. 10. Au 1916.

Coulter, J. M. Inheritance through spores. Proc. Am. Philos. Soc. 55: 344-347. Je 1916.
Davis, B. M. Life histories in the red algae. Am. Nat. 50: 502-512. Au 1916.

Detwiler, S. B. The hickories. Am. Forestry 22: 45I-455. Au 1916. [Illust.]
Detwiler, S. B. The white pine. Identification and characteristics. Am. Forest. 22: 387-39I. Jl 1916. [Illust.]
Dixon, H. N. Mnium antiquorum Cardot and Dixon, an extinct moss. Bryologist 19: 51, 52. f. I-5. 25 Jl 1916.
Doryland, C. J. T. The influence of energy material upon the relation of soil microorganisms to soluble plant food. N. Dakota Agr. Exp. Sta. Bull. 116: 319-40I. pl. 1, 2. My 1916.
Durfee, T. Lichens of the Mt. Monadnock region, N. H.-No. 7. Bryologist 19: 65, 66. 25 Jl 1916.
Fernald, M. L. Some notes on Spartina. Rhodora 18: 177-180. 3 Au 1916.
Forbes, S. A. Thomas Jonathan Burrill. Univ. Illinois Alumni Quart. I ${ }^{19}$: I-9. 15 J1 1916.
Forsaith, C. C. A report on some allocthonous peat deposits of Florida. Bot. Gaz. 62: 32-52. f. I. 15 Jl 1916.
Frost, H. B. Mutation in Matthiola annua, a "Mendelizing" species. Am. Jour. Bot. 3: 377-383.f. I-3. Au 1916.
Gortner, R. A., Lawrence, J. V., \& Harris, J. A. The extraction of sap from plant tissues by pressure. Biochem. Bull. 5: 139-142. pl. I. My 1916.
Graff, P. W. The stamens of Erythronium americanum. Torreya 16: 180-182. Au 1916.
Grose, L. R. The alternate hosts of the white pine blister rust. Am. Forestry 22: 469-47I. Au 1916. [Illust.]
Haas, A. R. A simple and rapid method of studying respiration by the detection of exceedingly minute quantities of carbon dioxide. Science II. 44: 105-108. 21 J1 1916.
Harper, R. M. Baptisia perfoliata in Florida? Torreya 16: 183, 184. Au 1916.
Harper, R. M. Botanical work of Dr. E. W. Hilgard. Bull. Torrey Club 43: 389-391. 12 Au 1916.
Harrington, G. T. Agricultural value of impermeable seeds. Jour. Agr. Research 6: 76i-796. pl. 106 +f. f-6. 14 Au 1916.
Harshberger, J. W. The origin and vegetation of salt marsh pools. Proc. Am. Philos. Soc. 55: 481-484. pl. و-14. Io Jl 1916.

Hartwell, B. L. Starch congestion accompanying certain factors which retard plant growth. Rhode Island Agr. Exp. Sta. Bull. 165: 3-23. My 1916.
Hawkins, L. A. The disease of potatoes known as "leak." Jour. Agr. Research 6: 627-640. pl. $90+f$. I. 24 Jl 1916.
Hervey, E. W. Variants of Aster Herveyi. Rhodora 18: 183, 184. 3 Au 1916.

Hicken, C. M. Plantae Fischerianae. Contribución al conocimiento de la flora del Rio Negro. Physis 2: 1-18. io N 1915; 101-122. 12 F 1916.
Includes Gallardoa Fischeri gen. et sp. nov. and Setaria villiglumis, Polygala Rosei, Croton? malpighipilus, and Frankenia Fischeri, spp. nov.
Hoffstadt, R. E. The vascular anatomy of Piper methysticum. Bot. Gaz. 62: 115-132. f. 1-23. I5 Au 1916.
Jacobson, H. O. Correlative characters of the rice plant. Philip. Agr. Rev. 9: 74-119. 1916.
Knowlton, C. H., \& Deane, W. Reports on the flora of the Boston district-XXIII. Rhodora 18: 165-168. J1 1916.
Levin, E. The leaf-spot disease of tomato. Michigan Agr. Exp. Sta. Tech. Bull. 25: I-51. pl. $1-9+f .1$, 2. Mr 1916.
Lloyd, C. G. Mycological notes. 42: 572-588. f. 808-829. Je 1916.
Loeb, J. On the arsociation and possible identity of root-forming and geotropic substances or hormones in Bryophyllum calycinum. Science II. 44: 210, 211. II Au 1916.
Long, B. Delphinium Consolida in America, with a consideration of the status of Delphinium Ajacis. Rhodora 18: 169-177. 3 Aul 1916.
Macbride, J. F. Vegetative succession under irrigation. Jour. Agr. Research 6: 741-760. pl. 98-105. 7 Au 1916.
Mackenzie, K. K. Notes on Carex-X. Bull. Torrey Club 43: 423434. 22 Au 1916. Includes Carex convoluta sp. nov.
McDougal, W. B. The growth of forest tree roots. Am. Jour. Bot. 3: 384-392. Au 1916.
Merrill, E. D. Notes on the flora of Borneo. Philip. Jour. Sci. II: (Bot.) 49-100. Mr 1916.
Includes descriptions of forty-ight new species and the new genus Moultonianthus.

Miller, E. C. Relative water requirement of corn and the sorghums Jour. Agr. Research 6: 473-484. pl. 70-72 +f. i. 26 Je 1916.
Murphy, P. A. The black leg disease of potatoes caused by Bacillus Solanisaprus Harrison. Canada Dept. Agr. Exp. Farms Circ. ir. I-8. f. $A-D$. 1916.
Murphy, P. A. Late blight and rot of potatoes. Canada Dept. Agr. Exp. Frams Circ. 10: 1 -I3. f. A, B. 1916. "Caused by the fungus Phytophthora infestans, de Bary."
Nash, G. V. Clerodendron trichotomum. Japanese Clerodendron. Addisonia 1: 29. pl. 15. 30 Je 1916.
Nash, G. V. Mina lobata. Lobate Mina. Addisonia 1: 27. pl. 14. 30 Je 1916.
Nash, G. V. Notylia sagittifera. Arrow-head Notylia. Addisonia I: 31, 32. pl. I6. 30 Je 1916.
Nash, G. V. Vitex Agnus-castus. Chaste tree. Addisonia I: $35,36$. pl. 18. 30 Je 1916.
Nelson, A., \& Macbride, J. F. Western plant studies-IV. Bot. Gaz. 62: 143-I $\mathbf{5}_{2}$, I5 Au 1916.
Includes new species in Crytantha (I), Oreocarya (2), Amsinckia (I), Mertensia (I),
Pentstemon (2), Machaeranthera (2), and Macronema (6).
Norton, J. B. S. Internal action of chemicals on resistance of tomatoes to leaf diseases. Maryland Agr. Exp. Sta. Bull. 192, 17-30. f. I. Ja 1916.
Ochoterena, I. Comentarios a la "Teoría de la Mutación." Bol. Dir. Est. Biol. I: 296-30I. Ja 1916.
Peltier, G. L. Parasitic Rhizoctonias in America. Illinois Agr. Exp. Sta. Bull. 189: 283-390.f. 1 -23. Je 1916.
Peltier, G. L. A serious disease of cultivated perennials caused by Sclerotium Rolfsii. Illinois Agr. Exp. Sta. Circ. 187: I-3. f. I. Jl 1916.
Pennell, F. W. Commelina communis. Asiatic day-flower. Addisonia I: $39,40 . p l$. 20. 30 Je 1916.
Pennell, F. W. Notes on plants of the southern United States-II. Bull. Torrey Club 43: 407-421. 22 Au 1916. Includes Smilax leptanthera sp. nov.
Price, D. J., \& McCormick, E. B. Dust explosions and fires in grain separators in the Pacific northwest. U. S. Dept. Agr. Bull. 379: I-22. pl. i-II. 4 Au 1916.

Pritchard, F. J. Correlations between morphological characters and the saccharine content of sugar beet. Am. Jour. Bot. 3: 361-376. f. 1 -8. Au 1916.

Ramaley, F. Quadrat studies in a mountain grassland. Bot. Gaz. 62: 70-74. 15 Jl 1916.
Reed, G. B. On the mechanism of oxidase action. Bot. Gaz. 62: 53-64. f. r-4. $\quad 15 \mathrm{Jl} 1916$.
Reed, G. B. The powdery mildews of Avena and Triticum. Missouri Agr. Exp. Sta. Research Bull. 23: 1-19. Je 1916.
Rock, J. F. A new species of Pritchardia. Bull. Torrey Club 43: 385-387. pl. 21 + f. I. i2 Au 1916. Pritchardia Beccariana Rock.
Rose, J. N. Echeveria cornicolor. Flesh-colored Echeveria. Addisonia I: 25. pl. 13. 30 Je 1916.
Rosen, H. R. The development of Phylloxera vestatrix leaf gall. Am. Jour. Bot. 3: 337-360. pl. I4, $15+$ f. $1-5$. Au 1916.
Rumbold, C. Pathological anatomy of the injected trunks of chestnut trees. Proc. Am. Philos. Soc. 55: 485-493. pl. 15-18. io J1 1916.
Rydberg, P. A. Phytogeographical notes on the Rocky Mountain region-VI. Distribution of the subalpine plants. Bull. Torrey Club 43: 343-364. 22 Au 1916.
Saccardo, P. Notae mycologicae, Series XX. Nuovo Giorn. Bot. Ital. 23: 185-234. Ap 1916.
Includes Meliola pitya, Chorostate Peckiana, Hypoderma tenellum, Phaeangium Peckianum, spp. nov., and Microascus americanus gen. et sp. nov.
Saunders, E. R. On selective partial sterility as an explanation of the behavior of the double-throwing stock and the Petunia. Am. Nat. 50: 486-498. Au 1916.
Seaver, F. J. Borers infesting the ash. Jour. N. Y. Bot. Gard. 17: 95-97. pl. 173, 174. J1 1916.
Shull, C. A. Measurement of the surface forces in soils. Bot. Gaz. 62: I-31.f. I-5. I5 Jl 1916.
Sinnott, E. W. Comparative rapidity of evolution in various plant types. Am. Nat. 50: 466-478. Au 1916.
Smith, E. F. Further evidence as to the relation between crown gall and cancer. Proc. Nat. Acad. Sci. 2: 444-448. Au 1916.

K. Sax del.

K. Sax del.

31

32

39

s.iguts

BULLETIN

OF THE

TORREY BOTANICAL CLUB

NOVEMBER, 1916.

The development of the embryo and seedling of Dioscorea villosa
Pearl Mabry Smith
(with plates 3I-34)

Introduction

According to the standard manuals, Dioscorea villosa L. is the only North American species of the Dioscoreaceae, a family that is mainly tropical and subtropical in distribution. Bartlett (1910), however, considers the name D. villosa at once a misnomer and a possible source of confusion and error, and proposes that it be dropped. In his classification, the Dioscoreae of the United States are referred to five separate species; the one treated in the present paper he calls D. paniculata Michx.

The early discussions of the embryos and seedlings of members of this family are confined to the mature embryo and its behavior in germination, and were prompted chiefly by taxonomic considerations. Dutrochet (1835) says that the embryo of Tamus communis is at first globular, then pear-shaped; the slender part is the cotyledon, the swollen part the body of the embryo. He describes two cotyledons: the one, conical in form, remaining within the seed during germination; the other, so closely applied to the globular part of the embryo that it is distinguishable only after germination. The larger cotyledon persists until the middle of summer. Dutrochet also describes the structure of the aerial stem, whose fibro-vascular bundles are of the monocotyledonous type, but arranged in a ring. He thinks that this apparent mingling of monocotyledonous and dicotyThe Bulletin for October (43 : 505-544. pl. 27-30) was issued November 7, 1916.
ledonous characters indicates that the genus is intermediate between the two classes, although he refers it to the Asparageae. Endlicher (1836, p. 157) notes a resemblance in stem structure between Tamus and Aristolochia.

Jussieu (1839) finds a structure corresponding to the "second cotyledon" of Dutrochet in the embryos of Dioscorea villosa, D. cordifolia, and Rajania hastata. However, he thinks it to be not a cotyledon, but a sheath formed by the growth of the cotyledon, its development being coincident with the elongation of the cotyledonary limb. In his classification the genera in question are placed among the Asparageae.

Beccari (1870a), in agreement with Dutrochet, concludes from his examination of the embryos of Dioscorea bonariensis, D. brasiliensis, D. sinuosa, Rajania cordifolia, Tamus communis, and Trichopus zeylanicus (Trichopodium zeylanicum) that the organ in question is a rudimentary cotyledon; he finds it present, with some variation in shape and size, in all the species named. Beccari also studied the germination of D. bonariensis; his description and figure agree substantially with Dutrochet's account of the process in Tamus communis.

The textbook of Le Maout and Decaisne (1873, p. 794) contains a figure of a longitudinal section of a germinating seed of Tamus communis, which shows very clearly the structures described by Dutrochet and others.

According to the view advanced by Strasburger (1872, pp. 317, 318), monocotyledons were derived from dicotyledons by the loss of one cotyledon. Obviously, if the Dioscoreaceae can be held to constitute a transition stage, or transition stages, between monocotyledons and dicotyledons, the "second cotyledon" might well represent a stage in the degeneration of one of the cotyledons of the latter group. Stimulated by these considerations, SolmsLaubach (1878) studied the embryology of Dioscorea pyrenaica and Tamus communis, the latter in some detail, but his results did not convince him that a second cotyledon was formed. However, he found a type of embryological development quite different from that which, since the work of Hanstein (I870), had been considered characteristic of monocotyledons. The growing point of the stem appears early in a terminal or nearly terminal position,
from which it is pushed aside by the development of the lateral true cotyledon. The so-called second cotyledon is, he thinks, merely a sheath. Both cotyledon and sheath are developed, however, according to Solms-Laubach, from a ring-shaped primordium.

Bucherer (1889) points out the additional fact that in Tamus not only the first secondary leaf, but all the secondary leaves, have similar sheaths. He also describes the anatomy of the mature embryo, and the processes of germination and of tuber formation. His account of the germination of the seed does not differ from the accounts of his predecessors.

Material and methods

Material was collected in the vicinity of Madison, Wisconsin, at intervals of two or three days during the months of June, July, and August, 1913 and 1914. The flowers were fixed entire; when the ovules became sufficiently large, they were removed from the capsules before fixing. Later, the embryos were dissected out of the young seeds and then fixed. Difficulty was experienced in inducing the seeds to germinate, but germination was finally secured by keeping the seeds in soil out of doors all winter and bringing them into the greenhouse in the spring.

Strong and medium chrom-osmic-acetic acid solutions were used for all material of the embryo-sac and embryo which was to be sectioned; the stronger solution proved the more satisfactory. For embryos to be mounted in toto Carnoy's solution was used; for the seedling, a chrom-acetic acid solution, containing three tenths of a gram of chromic acid and seven tenths of a gram of acetic acid in each hundred grams of the solution, gave good results. The usual methods of hardening and embedding in paraffin were followed. Microtome sections were cut from five to seven microns thick.

Material containing embryo-sacs or early embryonic stages was stained with Flemming's triple stain. For the study of the later stages in embryo-development, Heidenhain's iron-alumhaematoxylin gave the best results. Some of the mature embryos were stained in toto with Delafield's haematoxylin. Staining with safranin and Lichtgrün proved useful in differentiating the tissues of the seedling.

The embryo-sac

Two anatropous ovules are borne in each cell of the threecelled ovary and are pendulous on rather short funiculi. Beccari (I870b) figures the ovules in Trichopus zeylanicus as turned towards the axis of the pistil, but in Dioscorea villosa they are turned away from the axis.

At the time when the embryo-sac is fully organized (Fig. I), the three antipodal cells have already begun to degenerate and fusion of the polar nuclei has taken place. Before the egg divides, its cytoplasm is highly vacuolate, and the nucleus occupies a position either approximately in the center or at the distal end of the cell. Both synergids persist, at least in some cases, until after the first division of the egg. When the embryo is somewhat older, only one structure is found beside it which I take to be a synergid. This structure (Fig. 5, s) sometimes forms a beak with faint longitudinal striations, which extends into the micropyle and corresponds closely in form and appearance with the "Fadenapparat" first described by Schacht (1856).

The embryo

The first division of the egg takes place only after seyeral nuclear divisions have occurred in the endosperm. In an embryosac containing a two-celled embryo a count of the endosperm nuclei shows that five divisions have taken place, and the general appearance of the endosperm in other similar cases indicates that about the same number of divisions has occurred. In all cases observed, the plane of the first division of the egg is oblique (Fig. 2), approaching in a few instances the vertical (Fig. 4) or the horizontal (FIG. 5). The corresponding division is in an oblique plane in Tulipa Gesneriana (Ernst, 1901), and occasionally in Avena fatua (Cannon, 1900), and Aglaonema (Campbell, 1900). But in most monocotyledons, so far as has been reported, the plane of this division is transverse, as for instance in such forms as Sagittaria variabilis (Schaffner, 1897), Lilaea subulata (Campbell, 1898), and Lilium philadelphicum (Coulter, 1897). A transverse first division is found also in Tamus communis (SolmsLaubach, 1878), another of the Dioscoreaceae. The cells pro-
duced by this division in Dioscorea villosa are usually of about the same size (Fig. 4), but sometimes the basal cell is larger (Fig. 2). On account of the flattened shape of the seed it is possible to section the ovules always in the same plane. All figures of sections of the embryo are drawn from median longitudinal sections which are vertical to the plane of the cotyledon and which consequently afford a fair basis for comparison. In no case is a large vesicular basal cell formed, such as has been described in the embryos of the Najadaceae and Alismaceae.

The second division occurs in the basal cell, at right angles to the first wall (Fig. 3). Next, the terminal cell divides (Fig. 4); the position of the wall formed as a result of this division varies: in some embryos it is in the same plane as that of the second division (FIG. 4); in others, it is at right angles to the second wall, as in the embryo shown in Fig. 5, in which the third wall is nearly in the plane of the section and therefore cannot be shown in the figure. By either method, four similar cells are formed, as is the case in a few monocotyledons which have a massive proembryo rather than one of the filamentous sort that was formerly considered typical for the class. Quadrant formation has been observed in three genera of monocotyledons, Lysichiton (Campbell 1900), Lilium (Coulter, 1897), and Erythronium (Schaffner, 1901). It can hardly, however, be considered typical for the Dioscoreaceae, since in Tamus communis (Solms-Laubach, 1878) a filamentous three-celled proembryo has been described.

The next division may take place in one of the two distal cells or in one of the two basal cells. In the embryo shown in Fig. 5, the nucleus of one of the distal cells of a four-celled embryo is dividing; the wall separating the two distal cells is, as already noted, so nearly parallel to the plane of the section that it cannot be indicated in the figure. The spindle is at a lower focus than the resting nucleus shown.

In most cases, the second of the two distal cells of the fourcelled stage now divides, so that a six-celled embryo is formed. Up to this time the embryo has not materially increased in size, but from now on there is a gradual growth. At the eight-celled stage (Fig. 6) the embryo is already noticeably larger, the size of the individual cells at this time being approximately equal to
that of the cells at the six-celled stage. At the sixteen-celled stage, the embryo assumes one of two typical shapes, each of which has been observed in several cases: it may be either elongated (Fig. 7), or nearly globular (Fig. 8). The exact sequence of divisions cannot be followed with any certainty after the eightcelled stage, nor is it possible to trace the development of the organs of the full-grown embryo from particular cells.

As the embryo develops a region is differentiated at the apex in which division is especially active, as indicated by the smaller size of the cells (Fig. 9, m). An elongation of the embryo, together with the increased rate of growth in its apical region, renders it a little later roughly pear-shaped (Fig. Io). The suspensor is now definitely marked off from the rest of the embryo (Fig. Io, s), and reacts differently to stains in this and succeeding stages. Now, too, the dermatogen is differentiated except on the side from which the first secondary leaf is to develop (Fig. IO, l; compare also Fig. in, l). An embryo of the age of that shown in Fig. io bears a fairly close resemblance to one of Lilium philadelphicum figured by Coulter (1897, pl. 34, f. 3I). SolmsLaubach (1878) shows no embryo of Tamus communis or of Dioscorea pyrenaica at a similar stage of development. Older stages than that of my Fig. II are represented in his figures only by drawings of surface views of whole embryos. According to Solms-Laubach's description the original terminal arch of the embryo becomes somewhat flattened and laterally displaced by the growth of one side of the embryo. From the flattened portion the plumule develops, surrounded by a ring-shaped wall of tissue. In my preparations of D. villosa, it appears clear that the lateral swelling shown at Fig. 11, l, which probably corresponds to that described by Solms-Laubach, is the primordium of the first secondary leaf, whose further development is shown in Figs. 15-24. The growing point of the stem lies in the axil of the first secondary leaf, and it is obvious that both these structures are lateral in origin. The cotyledon (Fig. II, c) develops in a terminal position. In Tamus communis and Dioscorea pyrenaica, according to Solms-Laubach, first the cotyledon and then the sheath develop from opposite points in the ring-shaped primordium, and are hence of lateral origin.

A careful study of serial sections of embryos of Dioscorea villosa, corresponding in size to those figured by Solms-Laubach, shows that no ring-primordium is formed, but that the first secondary leaf and cotyledon originate as limited areas of meristematic activity in an embryo which is still meristematic in all its parts; there is a very great increase in the size of the embryo as a whole after the first secondary leaf and the cotyledon have begun their development (Figs. 15-24, all drawn on the same scale). The growing point of the stem consists merely of a group of cells in the axil of the first secondary leaf, and remains quite undifferentiated (Fig. 12, g) until germination occurs. The growth of the first secondary leaf is more vigorous at the start than that of the cotyledon (Fig. I5); but the latter soon begins to elongate rapidly, then expands to form a foliaceous structure which, in the fully-developed embryo, is peripherally very thin and flat, but is much thicker in the middle portion and at the base (Figs. 13, 24). The first secondary leaf continues to swell out, then arches over and finally covers the growing point of the stem (Fig. 24). In the full-grown embryo, the edges of the base of the cotyledon extend for a short distance over the first secondary leaf, but by no means cover it (Fig. I3). A strikingly different structure has been described for embryos of other members of the Dioscoreaceaé, which have a distinct sheath entirely covering the first secondary leaf. Beccari ($1870 a$) finds this sheath entire in the genera Dioscorea and Trichopus, and two-parted in Rajania and Tamus; Solms-Laubach (1878) says that it is entire in Testudinaria. The short, thick suspensor persists to the time of the maturity of the seed (Fig. I3, s).

A vascular system, consisting of procambium strands, is present in the full-grown embryo of Dioscorea villosa. Cross-sections through the hypocotyl show a solid plerome cylinder which becomes a hollow cylinder at the base of the cotyledon. The hollow cylinder opens out into a trough-shaped mass as it passes into the cotyledon, then branches into three main bundles, which, in turn, branch profusely (Fig. 13). The first secondary leaf has a wellmarked median bundle and two rather weakly developed lateral bundles. Bucherer (1889) describes but one vascular strand in the cotyledon of Tamus communis; in Tamus, however, the
cotyledon is tongue-shaped and not flattened. Bucherer also says that the primary root is endogenous and breaks through several rows of parenchyma cells when the seed germinates. No evidence of this condition has been found in D. villosa. There are no parenchyma layers outside the well-defined root-cap, which lies in immediate contact with the suspensor.

The endosperm

As has been said, the polar nuclei fuse early and the primary endosperm nucleus undergoes several divisions previous to the first division of the egg; the nuclear divisions in the endosperm are simultaneous. The young embryo is at all times closely invested with a thick layer of endosperm cytoplasm. The endosperm makes rapid inroads on the nucellar tissue, using up all of it excepting two layers at the sides of the embryo-sac cavity and thicker masses at the chalazal and micropylar ends before cell division begins in the endosperm. Cell formation in the endosperm begins when the embryo has reached about the stage shown in Fig. io. Tissue is formed at first throughout the whole of the cavity; later, but before the maturing of the seed, enough of this tissue is dissolved to form a large fissure in the central part of the seed which affords room for the rapid growth of the cotyledon at the time of germination. The cells of the endosperm contain abundant reserves of hemicellulose, protein, and oil. Dutrochet (1835) and Beccari (1870a) refer to the food material in the seeds of various Dioscoreaceae as "perisperm," but in Dioscorea villosa the material is clearly endosperm.

Formation of endosperm tissue is accompanied by, and is perhaps responsible for, certain changes in the contour of the seed and in the position of the embryo. When cell walls begin to form in the endosperm, nuclear division continues and is especially active in the region opposite the funiculus and adjacent to the embryo with the final result that this portion of the seed becomes proportionately larger than the other parts. As a result of this one-sided growth, the embryo, whose long axis at first corresponds to the long axis of the embryo-sac, comes to lie with its axis at an angle of approximately forty-five degrees to the long axis of the seed.

The seedling

In the mature seed, the embryo is very small in proportion to the size of the seed. On germination the cotyledon increases rapidly in size (FIG. 28, c), filling the entire fissure which has been referred to as formed within the endosperm, and remaining within it. The basal part of the cotyledon elongates, forming a troughshaped petiole in whose hollow the first secondary leaf lies. The primary root elongates rapidly and soon begins to give off secondary roots. The first secondary leaf elongates, then arches itself until its tip becomes free from the seed coats. Beccari (1870a) says that in Dioscorea bonariensis the first secondary leaf is bent over so that the upper surface of the lamina lies against the petiole until the entire leaf emerges. In D. villosa the leaf is not bent over while in the seed, but assumes the position described by Beccari on freeing itself from the seed and retains it until it is well above ground. In the seedling illustrated in Fig. 28, the second, third, and fourth secondary leaves have already begun to develop.

The three bundles of the cotyledon fuse in the petiole to form a single massive bundle (Fig. 27) which extends the entire length of the petiole, is clearly recognizable in the hypocotyl (Fig. 26, t), and forms one of the poles of the tetrarch root (Fig. 25, t). This condition differs from that in Tamus, in which, according to Miss Sargant (1903), the symmetry of the root stele depends upon plumular traces alone. No traces of cambium, such as often occur in monocotyledonous seedlings, were found. Each secondary leaf has three bundles. Excepting the traces from the second and third secondary leaves, no vascular strands are present in the seedling that are not represented in the embryo by procambial tissue.

There are eight bundles in the hypocotyl (Fig. 26). The largest one (t) is continuous with the cotyledonary bundle. Of the remaining bundles, the three largest $(l t)$ are continuous respectively with the three bundles of the first secondary leaf. The hypocotyl is short, as in most monocotyledons, so that the bundles of the hypocotyl converge rather rapidly as they enter the root and are consequently difficult to follow. It is evident, however, that branching of the phloem groups of the four main bundles
occurs, and that the branches fuse in pairs to form the phloem groups of the root. At the same time, a rearrangement of the xylem groups takes place, with the result that the protoxylem, which is external in the hypocotyl, becomes internal in the root.

Conclusions

Apparently the early divisions in the embryo of Dioscorea villosa have no very definite relation to the formation of organs or to the constitution of the embryo, since no important differences are found among the ripened embryos which might correspond to the observed differences in the plane of the first division or in the shape of the proembryo.

Widely accepted generalizations on the embryology of monocotyledons and dicotyledons have been based on cases such as Sagittaria and Capsella in which a filamentous proembryo is formed whose terminal cell gives rise to the cotyledon in monocotyledons and to the stem primordium in dicotyledons. However, as Coulter and Land (1914) have pointed out in the case of Sagittaria, the origin of organs from particular cells of filamentous proembryos has been assumed rather than proved. Moreover, a number of genera, both of monocotyledons and dicotyledons, have now been investigated in which the proembryo is massive. In several monocotyledonous genera, including Zannichellia (Campbell, 1897), Lilaea (Campbell, 1898), Sparganium (Campbell, 1899), Avena (Cannon, 1900), and sometimes Limnocharis (Hall, 1902), both cotyledon and growing point are found to originate from the terminal segment. However, a considerable amount of growth, resulting in a mass of tissue, must occur in the embryo before actual differentiation of organs takes place. If the positions of the primordia of the cotyledon and stem on this mass of tissue can be said to be terminal or lateral, this difference might serve as a basis for the distinction between monocotyledonous and dicotyledonous embryos. Unfortunately, it is at just this period of development that gaps in embryological studies are usually found. If position of origin be considered the criterion, the embryo of Dioscorea villosa is strictly monocotyledonous.

Lyon (1901) has advanced the view that an area extending entirely around the axis of the embryo is potentially cotyledonary.

The maximum development in this area takes place at the point or points that are in the most favorable position to function; in monocotyledons maximum development occurs on only one side, while in dicotyledons equal growth occurs at two points diametrically opposite each other. This notion has been further developed by Coulter and Land (1914) in connection with their work on some of the South African Liliaceae, particularly Agapanthus. Coulter (1915) even extends the generalization to gymnosperms. According to his view, a variable number of primordia appear on the cotyledonary ring; one, two, or more of these develop, the growth of the others being checked, principally by the growth of other organs of the embryo. As I have pointed out, no cotyledonary ring was observed at ąy time in the embryo of Dioscorea villosa, although such a structure has been described for D. pyrenaica and Tamus communis (Solms-Laubach, 1878). The two primordia that do appear in Dioscorea villosa develop into the cotyledon and the first secondary leaf respectively. The only way in which this case can be made to fit Coulter's theory is by assuming that the vigorous development of the first secondary leaf has entirely checked the development of the cotyledonary zone except at one point. However, the figures of Solms-Laubach (1878) indicate that the development of the first secondary leaf is just as vigorous in Tamus. I have no explanation to offer of the entire absence in D. villosa of a sheath covering the first secondary leaf, which is so prominent a feature in the embryos of other Dioscoreaceae.

There is so much diversity of opinion in regard to the phylogenetic significance of seedling anatomy that it seems hardly worth while to discuss the question to any extent in connection with Dioscorea villosa. Miss Sargant (1903) considers the tetrarch root such as is found in D. villosa primitive; however, in her opinion, this form of root structure is associated with the early development of the plumule which is characteristic of climbers. On the other hand, Hill and De Fraine (1913) consider diarch root structure primitive, but think that the root structure in any given case is largely dependent upon the size of the seedling. The seedling of D. villosa is small so that the formation of a tetrarch root cannot be accounted for on the basis of the size of the seedling. The
plant is a climber, however, and the structure of the root might be explained on that ground, thus losing its phylogenetic significance.

Summary

I. The plane of the first division of the egg is oblique.
2. A spherical four-celled proembryo is formed.
3. The first secondary leaf is the first organ of the embryo to be differentiated. The growing point of the stem consists, up to the time of germination, of a group of cells in the axil of the first secondary leaf. Both structures are lateral in origin.
4. No "cotyledonary ring" was observed. The cotyledon originates in a terminal position.
5. No structure which is in any way comparable to a second cotyledon is present; the sheath which is described as covering the plumule in other Dioscoreaceae is wanting.
6. Abundant endosperm is present in the seed.
7. The growing point of the stem begins to give off secondary leaves soon after the seed germinates.
8. The root of the seedling is tetrarch; the hypocotyl is polyarch.

Sincere thanks are due to Professor I. F. Lewis, at whose suggestion the investigation here reported was begun, and to Professor C. E. Allen, under whom it was continued, for helpful advice and criticism.

University of, Wisconsin

Literature cited

Bartlett, H. H. 1910. Source of the drug Dioscorea, with a consideration of the Dioscoreae found in the United States. U. S. Dept. Agr. Bur. Pl. Ind. Bull. 189.
Beccari, O. 1870a. Nota sull' embrione delle Dioscoreacee. Nuov. Giorn. Bot. Ital. 2: $1^{4-155} \cdot \mathrm{pl} .4$.
Beccari, O. 1870b. Nota sul Trichopodium zeylanicum. Nuov. Giorn. Bot. Ital. 2: 13-19. pl. 3 .
Bucherer, E. 1889. Beiträge zur Morphologie und Anatomie der Dioscoreaceen. Bibliotheca Botanica 16.
Campbell, D. H. 1897. A morphological study of Naias and Zannichellia. Proc. Calif. Acad. Sci. III. I: 1-61. pl. 1-5.
Campbell, D. H. 1898. The development of the flower and embryo in Lilaea subulata, H. B. K. Ann. Bot. 12: 1-28. pl. 1-3.

Campbell, D. H. 1899. Studies on the flower and embryo of Sparganium. Proc. Calif. Acad. Sci. III. 1: 293-328. pl. 46-48.
Campbell, D. H. 1900. Studies on the Araceae. Ann. Bot. 14: 1-25. pl. $1-3$.
Cannon, W. A. 1900. A morphological study of the flower and embryo of the wild oat, Avena fatua. Proc. Calif. Acad. Sci. III. I: 329-364. pl. 49-53.
Coulter, J. M. 1897. Contribution to the life history of Lilium philadelphicum. Bot. Gaz. 23: 412-422. pl. 32-34.
Coulter, J. M. 1915. A suggested explanation of orthogenesis in plants. Science II. 42: 859-863.
Coulter, J. M. \& Land, W. J. G. 1914. The origin of monocotyledony. Bot. Gaz. 57: 509-519. pl. 28, 29.
Dutrochet, H. J. 1835. Observations sur les embryons végétaux. Nouv. Ann. Mus. Hist. Nat. 4: 169.
Endlicher, S. L. 1836. Genera plantarum. Vienna.
Ernst, A. 1901. Beiträge zur Kenntniss der Entwickelung des Embryosackes und des Embryo (Polyembryonie) von Tulipa Gesneriana L. Flora 88: 37-77. pl. 4-8.
Hall, J. G. 1902. An embryological study of Limnocharis emarginata. Bot. Gaz. 33 : 214-219. pl. g.
Hanstein, J. 1870. Entwickelungsgeschichte der Keime der Monocotyledonen und Dicotyledonen. Bot. Abhandl. I: 1-112. pl. I-I8.
Hill, T. J. \& de Fraine, E. 1913. A consideration of the facts relating to the structure of seedlings. Ann. Bot. 27: 257-272.
Jussieu, A. de. 1839. Mémoire sur les embryons monocotylédons. Ann. Sci. Nat. Bot. II. 2: 341-361. pl. 17.
Le Maout, E., \& Decaisne, J. 1873. Ageneral system of botany, descriptive and analytical. English translation by Mrs. Hooker. London.
Lyon, H. L. 1901. The phylogeny of the cotyledon. Postelsia $1901: 55-86$.
Sargent, E. 1903. A theory of the origin of monocotyledons, founded on the structure of their seedlings. Ann. Bot. 17: 1-92. pl. x-7.
Schacht, H. 1856. Der Vorgang der Befruchtung bei Gladiolus segetum. Monatsber. Königl. Akad. Wiss. Berlin 1856: 266-279. pl. I, 2.
Schaffner, J. H. 1897. Contribution to the life history of Sagittaria variabilis. Bot. Gaz. 23: 252-273. pl. 20-26.
Schaffner, J. H. 1901. A contribution to the life history and cytology of Erythronium. Bot. Gaz. 31: 369-387. pl. 4-9.
Solms-Laubach, H. Graf zu. 1878. Ueber monocotyle Embryonen mit scheitelbürtigen Vegetationspunkt. Bot. Zeit. 36: 65-74, 8193. pl. 4.

Strasburger, E. 1872. Die Coniferen und die Gnetaceen. Jena.

Description of plates 31-34

With the exception of Fig. 28, all drawings were made with an Abbé camera lucida, the drawing being at the level of the base of the microscope. Leitz oculars and objectives were used: Fig. 1, ocular III and objective 7; FIGS. 2-9, ocular III and objective I/I6; Figs. IO-12, ocular I and objec ive 7; Fig. 13, ocular I and objective 3; FIGs. 14-24, ocular I and objective 4; Figs. 25-27, ocular I and objective 6. The drawings have been reduced one fourth in reproduction.

Plate 31

Fig. I. Mature embryo-sac.
Fig. 2. Two-celled embryo.
Fig. 3. Three-celled embryo.
Fig. 4. Four-celled embryo.
Fig. 5. Four-celled embryo with one of the terminal cells in mitosis.
Fig. 6. Eight-celled embryo.
Figs. 7, 8. Sixteen-celled embryos.
Fig. 9. Embryo somewhat older than those shown in Figs. 7 and 8; region in which cell division has become especially active, m.

Fig. 10. Older embryo in which suspensor and body have become differentiated and which shows the first indication of the development of the primordium of the first secondary leaf, l; suspensor, s.

Fig. II. Still older embryo in which the first secondary leaf, l, has begun development. The section was cut somewhat obliquely so that not all of the suspensor is shown; cotyledon, c.

Plate 32

Fig. 12. Median longitudinal section through the fully-developed embryo, showing first secondary leaf, l, and the growing point of the stem, g.

Fig. 13. Surface view of the full-grown embryo; suspensor, s; first secondary leaf, l; cotyledon, c.

Figs. 14-2I. Series of outlines, all on the same scale, of median longitudinal sections of embryos, showing the development of the mature organs; first secondary leaf, l; cotyledon, c.

Plate 33
Figs. 22-24. Continuation of the preceding series, FIG. 24 showing the fullgrown embryo.

Fig. 25. Cross-section through the primary root of the seedling; cotyledonary trace, t.

Plate 34
Fig. 26. Cross-section through the hypocotyl of the seedling; cotyledonary trace, t; traces from the first secondary leaf, $l t$.

Fig. 27. Cross-section through the base of the petiole of the cotyledon.
Fig. 28. Seedling dissected out of the seed; first secondary leaf, l; cotyledon, c.

Further studies of the orange rusts of Rubus in the United States
L. O. Kunkel
(with five text figures)

Introduction

The writer's previousstudies of the orange rust, showing that the Caeoma spores in material from New York, Illinois, Missouri and Wisconsin $(6,7)$ germinate like teleutospores, left the question as to the relationships of Puccinia Peckiana Howe unsolved.

Fischer (5) has recently tested the germination of the aecidiospores of the European Gymnoconia interstitialis (Schlecht.) Lagerh. He obtained long germ tubes having all the characteristics of ordinary aecidiospore germ tubes. No promycelia were observed and no cross walls were to be seen in any of the tubes. In one case a thinner tube that resembled somewhat a long sterigma developed at the end of a germ tube. This he thinks may have been the result of growth disturbances. Fischer also made infection experiments and obtained Puccinia Peckiana by sowing the aecidiospores on supposedly healthy plants of Rubus saxatilis. His results, taken in connection with those of Tranzschel (13), Clinton (3), and Liro (9), give strong evidence in favor of the view that Caeoma interstitiale Schlecht. and Puccinia Peckiana are connected. Fischer (5) explains the seeming contradiction between his results and those of the writer by assuming that we have been working with two different fungi. According to this view there would be two orange rusts on the blackberries of America: one the aecidial stage of Gymnoconia interstitialis, the other a short-cycled rust closely related to the genus Endophyllum. So far as known the short-cycled rust, which we may refer to under the name Caeoma nitens Burrill, does not occur in Europe. The fact that there, both are limited to the same low-growing wild species of Rubus is evidence in favor of such an assumption. Puccinia Peckiana, however, is not uncommon in several different parts of America, and we must expect to find its aecidial stage in these localities.

If there are, then, two orange rusts on the blackberries of the United States it would seem highly interesting and important to study them side by side in order to determine whether in addition to the difference in the way their aecidiospores germinate there are to be found morphological differences between the two Caeomas. The object of this paper is to bring the evidence which shows that we have two orange rusts on the American blackberries and to give a brief comparison of the two forms which have previously been confused and supposed to be one and the same rust.

Observations

It was in the hope of obtaining material for testing Fischer's assumption that the writer, at the suggestion of and in company with Professor R. A. Harper, made a trip to the White Mountains of New Hampshire. Here in the vicinity of the village of Glen the writer had on two previous occasions marked spots where the wild blackberry plants were infected with Puccinia Peckiana. On visiting these spots June 28, 1916, we found the plants well infected with a Caeoma. So far as we were able to determine macroscopically this Caeoma had all the characteristics of Caeoma nitens. The young infected shoots were chlorotic and somewhat taller than the normal ones. Many of the infected leaves were more or less deformed just as may be observed in the case of plants diseased with Caeoma nitens. Spermogonia were present in great abundance. Several infected plants and a considerable number of well-infected leaves were taken to New York City. The plants were put into flower pots and placed in a greenhouse, the purpose being to find out whether they would produce teleutospores later in the summer.

In order to test the germination of the aecidiospores they were dusted over the surface of tap water in Petri dishes. Twentyone cultures were thus made and incubated at room temperature (about $25^{\circ} \mathrm{C}$.). In twenty-four hours most of the spores had germinated. They produced long germ tubes having all the characteristics of aecidiospore germ tubes. No cross walls were to be found and no branches that might be taken for elongated sterigmata. The twenty-one cultures of germinating aecidiospores were carefully observed under the microscope and in only
one case must an exception be noted. One spore was found which had put forth a long germ tube that branched into two parts. On one of these branches two quite normal sporidia were borne on typically formed sterigmata. It is difficult to explain this case. Either the spore which gave the promycelium was a contamination or the aecidiospores of Gymnoconia interstitialis are in rare instances capable of functioning as teleutospores. The writer is inclined to the latter view.

In order to further test the germination of these aecidiospores a second sowing was made. This time the spores were dusted over the surface of three plates of tap water and three plates of Beyerinck agar. At the same time material of Caeoma nitens on Rubus frondosus Bigel. was brought into the laboratory from Van Cortlandt Park. These spores were also dusted over the surface of three plates containing tap water and three plates of Beyerinck agar. All of the cultures were made at the same time, on the same media and all were incubated at room temperature. A large percentage of the spores germinated in each of the cultures. The aecidiospores brought from New Hampshire produced long non-septate germ tubes that resemble in every way the germ tubes of other rust aecidiospores. Somewhat better germination was obtained on the agar than on the tap water, but the manner of germination was the same on the two media. The spores brought from Van Cortlandt Park gave practically one hundred per cent. germination and they produced in all cases promycelia.

Having used up all of the aecidiospores brought from New Hampshire in germination and inoculation experiments a second trip was made to Glen on July 7. This time the Caeoma was collected from three different localities and on two species of Rubus, namely, Rubus canadensis L. and Rubus nigrobaccus Bailey. Many cultures were made from the aecidiospores obtained from the three different localities. In each case a high per cent. of the spores germinated and they all produced long non-septate germ tubes like those shown in Figs. I and 2. In order to study the nuclear behavior in the germ tubes a considerable quantity of germinating spores was fixed and stained according to a method outlined in an earlier paper (7). A study of the stained material shows that the long tubes typically contain two nuclei. These
nuclei lie close together near the end of the tube as is shown in Fig. 3. Sometimes they are separated by a distance of two or three hundred microns but they are never very far apart. The close proximity of the nuclei suggests that these germ tubes would give rise to sporophytic mycelium. The bases of the tubes appear quite empty while the protoplasm shows more and more density as we pass toward their apices. This is well shown in Fig. 3. The nuclei are strikingly large. They often show almost as great a diameter as the tubes that contain them. In some cases they have the appearance of ordinary resting nuclei with a distinct

Gymnoconia interstitialis (Schlect.) Lagerh.
Figs. I and 2 show the long unbranched aecidiospore germ tubes as they appear in the living condition, $X 175$. Fig. 3 shows a germ tube stained; the two nuclei lie near the end of the tube where the protoplasm is dense, $X 175$. Fig. 4 shows the nuclei in the resting condition; nuclear membranes and chromatin strands are clearly seen, $\times 590$. Fig. 5 shows the deep-staining nuclei; nuclear membranes are not to be observed and chromatin strands are indistinct, $\times 590$.
nuclear membrane and blue staining chromatin strands. Such nuclei are illustrated in Fig. 4. In other cases, however, it is difficult to make out a nuclear membrane; the chromatin strands are quite dense and stain so deeply that the whole nucleus appears a dark blue color. Such nuclei are illustrated in Fig. 5. In no case have nucleoli been observed and nuclear division figures seem to be absent from the preparations. One tube was found that had three nuclei, but this is a very rare case. The length of the germ. tubes, the presence of only two nuclei, the large size of the nuclei, the absence of division figures and the lack of septa are all char-
acteristics which show that these spores in their germination function as aecidiospores. The appearance and behavior of the nuclei in the tubes is in striking contrast to what was observed in the study of the germination of the spores of Caeoma nitens $(6,7)$.

The germination tests show that the aecidiospores brought from New Hampshire function in an entirely different way from those collected in the vicinity of New York City. An experiment was next performed for the purpose of determining whether they would infect wild blackberry plants growing in this region and whether or not they would give rise to the teleuto-stage of Gymnoconia interstitialis. A number of plants of Rubus villosus Ait. and Rubus argutus Link found growing wild in the Bronx, New York City, were transplanted to flower pots and placed in a greenhouse. After they had recovered somewhat from wilting due to the cutting of the larger roots, nine plants of Rubus villosus Ait. and three plants of Rubus argutus Link, were placed in a moist chamber after being dusted with aecidiospores brought from New Hampshire. Unfortunately most of the spores had been used in the germination tests and only a limited quantity of the material was left for the infection work. An equal number of plants of each of the species used in this experiment were left uninoculated and served as checks. The plants were inoculated on the afternoon of July I and were left in a damp chamber for twenty-four hours. They were then placed in the open greenhouse beside the uninoculated plants. On August 15, all of the plants were carefully observed. One plant of Rubus argutus Link, was found to bear sori of Puccinia Peckiana. Only four leaves were infected but each of these showed numerous sori. All of the other plants appeared quite healthy and showed no signs of infection. It is difficult to understand why more of the plants inoculated did not become infected, but Liro ($\mathbf{9}$) and Fischer (5) both report similar experiences with Gymnoconia. The check plants were all quite free of rust. Since Puccinia Peckiana has never been found on the blackberry plants in the vicinity of New York City we must assume that the plants brought into the greenhouse from the Bronx were free from this rust and that the infection obtained was the result of sowing the aecidiospores of the New Hampshire Caeoma. This experiment confirms the results of Tranzschel (13), Clinton
(3), Liro (9), and Fischer (5). Without a doubt, Puccinia Peckiana is the teleuto-stage of Gymnoconia interstitialis. The plants of Rubus canadensis L. that were brought here from New Hampshire bearing the Caeoma and planted out in flower pots were on August 15 found to be well infected with teleutospores of Gymnoconia. These results, together with the germination tests, seem to show conclusively that the orange rust common on wild blackberries in the vicinity of Glen, New Hampshire, is Gymnoconia interstitialis.

It seems proper to report at this point an infection experiment with Caeoma nitens. This experiment was performed in 1913 and 1914, but has not previously been reported. Sixteen plants of Rubus villosus Ait. found growing wild in Van Cortlandt Park were transplanted to flower pots and placed in a greenhouse. The plants were all quite free from rust infection and no infected plants were observed near where they were found growing. They were brought into the greenhouse the latter part of June. Ten of the plants were well dusted with the spores of Caeoma nitens and placed under bell jars for about one week. They were then placed in the open greenhouse. The other six plants were left uninoculated and were used as checks. No infection was observed on any of the plants during the summer and fall of 1913. In the spring of 1914, however, the young shoots of three of the plants that had been inoculated the preceding summer bore leaves well infected with Caeoma nitens. None of the check plants gave any infected shoots. The experiment shows that the spores of Caeoma nitens are capable of infecting new plants. It further shows that the Caeoma can reproduce itself without an intermediate stage. A similar experiment was performed in which the teleutospores of Gymnoconia interstitialis were used instead of the functional teleutospores (aecidiospores) of the short-cycled form. Ten plants of Rubus procumbens were inoculated by scraping teleutospores from mature sori with a wet knife blade and then smearing them over the surface of the leaves and young shoots. The plants thus inoculated were kept under bell jars for one week and then placed in the open greenhouse. They have been under observation for more than two years but the plants have not become infected. The viability of the spores was shown by germination tests and
the writer is unable to explain why infection did not result. The experiment should be repeated.

After being fully convinced that the orange rust, so common around New York City, is functionally different from the one in New Hampshire a special effort was made to discover possible morphological differences between the two forms. Infected plants from the two sources were placed side by side and carefully compared. Special notice was taken of the color of the spores in mass, the size and distribution of the Caeomas, the effect on the host, etc. Material of both forms was fixed in Flemming's weaker solution, embedded in paraffin in the usual way, sectioned with a microtome and studied under the microscope. Spermogonia are abundant in both cases. Their form, size and distribution was noted as well as the size and shape of the spermatia. In both forms the aecidiospores are born in chains with intercalary cells. The spores from the two sources were compared as to size, shape, content, thickness of spore wall and spore wall markings. Fifty ripe aecidiospores from the New Hampshire material were chosen at random and measured along their greatest diameters. The average diameter for the fifty spores was found to be 25.25μ. Fifty aecidiospores of Caeoma nitens were likewise chosen and measured in the same way. Here the average diameter was found to be 25.29μ. The difference obtained is not great and may well be attributed to errors in making the measurements.

This comparative study has failed to disclose either macroscopic or microscopic morphological differences between the two rusts. So far as the writer has been able to observe both are exactly alike morphologically. Only after having germinated the spores is it possible to distinguish between the two forms.

Discussion

The close morphological and pathological similarity between two apparently different rusts at once raises the question as to whether or not they are genetically related. Do we have here a case of parallelism or has one of the Caeomas been derived from the other? It is possible to conceive that two rusts living on the same hosts may after a time show similar morphological characteristics, but it is hard to think they would become so much alike
as to be morphologically indistinguishable. If we consider only the life cycles of the two forms we find that they belong in groups that are rather widely separated in our classifications of the rusts. The short-cycled Caeoma nitens we would place near the genus Endophyllum; Gymnoconia interstitialis belongs near Phragmidium. Arthur (\mathbf{r}) puts Gymnoconia in the Aecidiaceae while Endophyllum he places in the Uredinaceae. When we consider the two rusts from a morphological standpoint we find that in their Caeoma stage they are alike and we are inclined to consider them related forms. Werth (14) believes the aecidiospores of Endophyllum Sempervivi are capable of functioning either as aecidiospores or as teleutospores, according to the conditions under which they germinate. Maire (ro) reports a variety of E. Sempervivi that regularly produces ordinary aecidiospore germ tubes. These suggestions are interesting in this connection and they deserve consideration in our studies of the two orange rusts. The finding of a basidium in cultures of the aecidiospores of Gymnoconia interstitialis offers a further suggestion and leads the writer to believe that the two rusts may be related. If a strain of the orange rust could be found in which some of the aecidiospores germinate by ordinary germ tubes while others produce promycelia the question as to the relationship of the two forms would be much clearer. An effort should be made to find such an intermediate strain.

The two Caeomas have undoubtedly been confused in this country. There is no way of knowing which rust Burrill (2) described as Caeoma nitens since it seems that both occur in the vicinity of Urbana, Illinois. Both are reported from Missouri and it is impossible to determine which form Newcombe and Galloway (II) used in their work. From their drawings of the germinating spores, however, one would guess that they had the short-cycled form. It is also probable that the material used by Olive (12) in his study of sexual cell fusions in the rusts was Caeoma nitens, but of this we can not be sure.

As one looks over the group of host species as given by Arthur (I) the question presents itself as to which ones are really host species for Gymnoconia and which ones are the host species of Caeoma nitens. This list undoubtedly includes the hosts of both
rusts and it is not possible in any given case to determine with certainty which rust was collected. Since Gymnoconia occurs on Rubus saxatilis and R. arcticus in Europe it seems natural to assume that the Caeoma on related species in this country belongs to Gymnoconia. It is probable, therefore, that the orange rust on the low-growing R. arcticus L. of Yukon, R. stellatus Smith of Alaska, and R. triflorus Richardson or R. americanus Britton of New Hampshire and Wisconsin will prove to be Gymnoconia. The writer has collected Gymnoconia on R. frondosus Bigel., R. canadensis L. and R. nigrobaccus Bailey. These are all uprightgrowing species and it may be that the orange rust on many of the other upright species is Gymnoconia. The writer feels inclined to think, however, that Caeoma nitens is the more common of the two rusts and that it will prove to have a wider range of host species than Gymnoconia. According to Clinton (3) the Caeoma has been reported from Carolina, Connecticut, Georgia, Illinois, Iowa, Kansas, Maryland, Massachusetts, Minnesota, Mississippi, Missouri, Nebraska, New Hampshire, New Jersey, New York, Ohio, Pennsylvania, Texas, West Virginia and Wisconsin while the teleuto-stage is reported from only four states: Illinois, Massachusetts, Missouri and New York. The orange rust in most of those states where the teleuto-stage has not been found is probably Caeoma nitens. New Hampshire, however, must be mentioned as an exception, since the rust common in that state has proven to be Gymnoconia. The fact that the orange rust is much more conspicuous than the teleuto-stage may to some extent account for its being more often reported. Only a careful study of the distribution and host limitations of the two forms in the several states can furnish grounds for definite conclusions. Nevertheless we may predict that the orange rust reported on R. cuneifolius Pursh, R. occidentalis L., R. Randii (Bailey) Rydb., R. strigosus Michx., R. trivialis Michx., R. villosus Ait., R. vermontanus Blanch. and R. vitifolius Cham. \& Schlecht. is Caeoma nitens.

So far as is at present known the short-cycled orange rust does not occur in Europe. Before accepting this conclusion, however, a careful study of the manner of germination of the aecidiospores from various localities should be made. Special attention should be given to the Caeoma in those sections where
the teleuto-stage of Gymnoconia has not yet been found. Lageheim's (8) suggestion, "dass das Caeoma sich reproduciren kann," is interesting in this connection. He writes: "Aus mehreren Gründen scheint es mir nun nicht unmöglich, dass die Aecidien unserer Gymnoconia sich zu reproduciren vermögen. Während dieselben nämlich an vielen Orten des europäischen und asiatischen Russlands, im nördlichen, mittleren und südlichen Schweden.und bei München gefunden worden sind, so sind die dazu gehörenden Teleutosporen (in Europa) nur bei Kuikkjokk im SchwedischLappland, bei St. Petersburg und Moskau beobachtet worden." The orange rust of Europe seems to be of no economic importance and so far as the writer knows has not been found on cultivated blackberries or raspberries. This suggests that the rust so often reported as doing great damage to cultivated blackberries and raspberries in the United States is the short-cycled form. The writer has twice collected the orange rust on cultivated blackberries and in both cases it proved to be Caeoma nitens. It would be an interesting experiment to determine whether Gymnoconia is capable of infecting our cultivated blackberries and raspberries. This and many other experiments that suggest themselves must be left for future studies. Questions as to which of the two forms is the more primitive and as to what environmental conditions may have led to the development of two rusts with such different life histories and yet so much alike morphologically must at present be left unanswered. Both forms deserve further study.

Summary

1. There are two forms of the orange rust on the blackberries of the United States. One is the Caeoma-stage of Gymnoconia interstitialis (Schlecht.) Lagerh.; the other is a short-cycled rust with a life history like the Endophyllums as described-by Arthur (I).
2. The two rusts are morphologically alike in their Caeomastage though so different in their life histories.
3. The germination of the Caeoma spores is in the one case (Caeoma nitens) teleutoid, in the other (Gymnoconia interstitialis) it is just as typically aecidioid.
4. It is impossible at present to determine in the numerous references to orange rust of blackberries which form was under
observation except in a few cases where germination tests or infection experiments were made.
5. The short-cycled Caeoma nitens seems more widespread in the United States than Gymnoconia interstitialis.
6. It seems to be the short-cycled form of the orange rust that is so destructive to our cultivated blackberries and raspberries in this country.

I wish to thank Professor R. A. Harper for much helpful advice and criticism in connection with this work.

Columbia University

Bibliography

1. Arthur, J. C. North American Flora 7^{3} : 161-268. 1912.
2. Burrill, T. J. Parasitic fungi of Illinois. Part I. Bull. Illinois Lab. Nat. Hist. 2: 141-255. 1885.
3. Clinton, G. P. Orange rust of raspberry and blackberry. Illinois Agr. Exp. Sta. Bull. 29: 273-300. pl. 1-4. 1893.
4. Clinton, G. P. Relationship of Caeoma nitens and Puccinia Peckiana. Bot. Gaz. 20: 116, 117.1895.
5. Fischer, E. Die Frage der Zusammengehörigkeit von Caeoma interstitiale Schlecht. und Gymnoconia Peckiana (Howe) Trotter. Mitteil. Naturf. Gesells. Bern 13. 1915.
6. Kunkel, L. O. The production of a promycelium by the aecidiospores of Caeoma nitens Burrill. Bull. Torrey Club 40: 361-366. f. I. 1913.
7. Kunkel, L. O. Nuclear behavior in the promycelia of Caeoma nitens Burrill and Puccinia Peckiana Howe. Am. Jour. Bot. 1: 37-47. pl. 3. 1914.
8. Lagerheim, N. G. Ueber Uredineen mit variablem Pleomorphismus. Tromsö Mus. Aarsch. 16: 105-152. 1894.
9. Liro, J. I. Kulturversuche mit finnischen Rostpilzen. II. Acta Soc. F. et Fl. Fenn. 297: 1-58. 1907.
10. Maire, R. L'évolution nucleaire chez les Endophyllum. Jour. de Bot. 14: 369-382. 1900.
II. Newcombe, F. C., \& Galloway, B. T. Perrennial mycelium of the fungus of the blackberry rust. Jour. Mycol. 6: 106-107. 1890.
11. Olive, E. W. Sexual cell fusions and vegetative nuclear divisions in the rusts. Ann. Bot. 22: 331-360. pl. 22. 1908.
12. Tranzschel, W. Culturversuche mit Caeoma interstitiale Schlecht. ($=$ Caeoma nitens Schw.). Hedwigia 32: 257-259. 1893.
13. Werth, E. Zur Kenntniss des Sempervivum-Rostes. Centralb. Bakt. Zweite Abt. 39: 395-408. 1913. [Illust.]

The flora of Ladak, Western Tibet. I. Discussion of the flora

Ralph Randles Stewart

(WITH TWO TEXt FIGURES)

INTRODUCTION

In the books that deal with the "Trans-Himalaya" region there is the greatest confusion in the way the term "Western Tibet" is applied. The term may mean any place from the arid region, north of Sikkim, to the Karakoram Mountains, on the road to Turkestan. The result is that when the record "Western Tibet" appears in Hooker's Flora of British India (22)* one knows very little about where the specimen really came from. Even when the name of the collector is given, the source of the specimen cannot always be determined, as several explorers travelled extensively. As a result, a number of the species mentioned in the check list in the second part of the present paper may not grow in Ladak, but they are listed for the sake of completeness.

The region with which this paper deals is properly called Ladak to distinguish it from the other parts of Little or Western Tibet. Its inhabitants are largely Tibetan Buddhists and its flora is closely related to that of Tibet proper, but it is under the political control of Great Britain, being a part of the dominions of the Maharajah of Kashmir. Hemsley and Pearson's list of the plants of Tibet ($\mathbf{2 0}$) does not include those from this region.

In their Flora Indica (23) Hooker and Thomson limit Ladak to a narrow strip on each side of the Indus, but I shall follow Neve's Tourist Guide (1913 edition). \dagger According to Neve:-"Ladak is a large tract of country including Rupshu, Zanskar, Nubra, as well as Middle Ladak, and the lofty plateaux south of the Karakoram. It contains the loftiest inhabited districts in the world. No part is below $9,000 \mathrm{ft}$. and a large portion of the population live at

[^77]elevations of from 12,000 to 15,000 feet. While this is the height of the valleys and plateaux, the mountain ranges average from 17,000 to 21,000 feet and many peaks are 25,000 feet high."

In the check list of plants an effort has been made to list those reported from the region as given by Neve, using the "Great" or Snowy Range as the boundary on the Indian side, Baltistan on the west, the foot of the Karakorams on the north, Tibet on the east and also on the southeast.

One of the most characteristic features of Ladak is the Indus. The main caravan routes follow it or its branches and the villages are all placed so that they can get a little of its water for the fields. In fact, Ladak might be called the part of the drainage system of the Indus above 8,500 feet. The next lower part is called Skardo or Baltistan.

Contrary to the popular opinion, Tibet, including Ladak, is a very rugged country, rough, rocky and stony with countless mountain peaks and sandy desert valleys. The level places are either troughs between the mountains or the basins of extinct lakes. The further into the country one penetrates the more rounded are the hills and the gentler the slopes of the valleys, because of the smaller amount of erosion. There are many things that indicate that the Indus has been doing efficient work in clearing out the valleys near Kashmir, such as its deep gorges, the V -shaped valleys and the old marks of higher levels. Other great rivers are doing the same thing farther east.

Of the parts of Ladak visited, Rupshu is the least eroded. The whole country is above 15,000 feet and is extremely cold, barren and desolate. Springs are sometimes a day's journey apart and many valleys seem without any water. Many streams dry up before they reach a permanent river and in other places are shallow saline lakes, devoid of outlets. Despite its great altitude eighty flowering plants were found. There are practically no cryptogams. Both the flora and the topography resemble that of Tibet proper.

At the other extreme, Suru is supplied with much more water. The snow line is much lower and there are many streams and springs. The valleys in Suru are deep and the flora is more like that of Kashmir than that of Tibet. Dras is also more fertile than the rest of Ladak.

GEOLOGY

Although the geology of Ladak is not very well known, the following interesting facts are gathered from Burrard and Hayden (8) :-
" All the geologic series is reproduced in Tibet from almost the earliest till modern times. Tibet, counting everything behind the great Himalayan range, consists of more than 20,000 feet of sediments, almost entirely of marine origin and represented by such rocks as slate, sandstone, conglomerate and limestone. Along its southern border it is in contact with the Himalayan granite which throws out branches ramifying through and metamorphosing the sediments.
"During almost all geologic time all of Tibet and the northern slope of the Himalayas was under a sea which at one time stretched to China and at another to the Mediterranean. The region kept subsiding and subsiding and later was elevated. In Cambrian times it is beiieved that Tibet and North America were joined, as the fossils are similar while they differ from those of Europe. At the close of the Cambrian this sea (the Tethys of Suess) linked up with the Palaeozoic sea of Europe.
"Crystalline and metamorphic rocks, granite, gneiss and schist cover the greater part of northern Kashmir, including Baltistan and west to the mountains of Afghanistan. To the east they run through northern Ladak. In eastern Kashmir they constitute much of Zanskar."

In view of the agreement among geologists that the elevation of the Himalayas has taken place in very recent time, and that Tibet, including Ladak, was under a sea which piled up tremendous sedimentary deposits until the Tertiary period, the flora can not be considered an old one. Nevertheless, the Russian botanist, Maximowicz (27), who worked on the plants of the untiring Tibetan explorer Prejevalsky, says that the flora is extremely ancient.

As the Workmans and other travellers have remarked, Ladak and Baltistan are lands of rock ruin. In the summer the heat in the daytime is so intense and it is so cold at night that the mountains are cracked and crumbling and there are huge talus slopes at their feet. Even in the winter Moorcroft reports that the heat may be intense for an hour or two in the sun, making a great daily variation in temperature.

CLIMATE

Ladak is almost cloudless in the summer time and the glare from the bare rocks and the sand is so intense that travellers must wear smoked glasses and pith helmets and must take especial care to protect the skin. Sun temperatures are so high that it is a wonder that any plant can live out in the deserts. India is
noted for its heat but the Workmans found that the sun temperatures in India rarely go to $170^{\circ} \mathrm{F}$. At altitudes of $14,000^{-}$ 19,000 feet, however, they obtained maximum temperatures of from 183° to $204^{\circ} \mathrm{F}$., although it was from 47° to 60° in the shade. The result is that one frequently finds it uncomfortably cool in the shade of a great rock while the sand is blazing hot in the sun.

The plants, therefore, that are not in damp places are exposed to extremes of temperature. This is true even in the winter time, for although a little snow falls, it does not lie long in the valleys. The missionaries at Khalotse, however, told us that the Indus remains frozen over during a part of the winter at least.

The growing season in Ladak is a very short one, even in the lower parts, and a traveller who visits the country only in July and August can therefore find the great majority of the species. There are several causes for this. In the first place, there is no rainy season to give birth to an ephemeral desert flora such as we have in the American Southwest. In the second place, plants that are in fruit at one altitude can be found in flower at higher altitudes. Further, most of the wild flora, excluding the annual weeds in the villages, is perennial and the leaves can be found even if the flowers are missing.

At Leh, Moorcroft reported that frosts began early in September and continued until May. Barley sown May roth was cut September 12 th. At Spituk, nearly $\mathbf{1}, 000$ feet lower, he says that it took barley only two months to mature. Strachey says that in western Tibet elevations below 14,000 feet appear to be exempt from night frost for the greater part of the summer quarter. At 15,500 feet it freezes every night in the year. At $18,000-19,000$ feet it thaws only during the afternoons of July and August. While we were in Rupshu in August we suffered greatly at night from the cold. One night half an inch of ice formed and the thermometer registered $21^{\circ} \mathrm{F}$.

The country is practically without rainfall. The average at Leh is about three inches a year. Usually what precipitation there is falls at night and only on the mountain ridges and passes. A number of times in July and August we noticed that a light blanket of snow fell on the mountain tops while there was no
precipitation in the valleys. This is the reason that up to a certain altitude the number of species tends to increase instead of decrease. Even passes like the Fotu and Namika that are not near perpetual snow have more plants near the summit than in the deserts that have to be crossed in the ascent.

BOTANICAL EXPLORATIONS

Considering its remoteness, Ladak has been visited by a surprisingly large number of explorers who collected plants. This is due to the fact that it is on the only practicable highway from India to Central Asia, since Afghanistan is closed, and because it has been the base of a great deal of Tibetan exploration.

Despite its many visitors and the abundance of meager references the only attempt to bring together the work of the different visitors is that of the Flora of British India by Hooker (22) and here of necessity the plants are scattered through the seven volumes in their natural arrangement. Hooker never visited the Northwest Himalaya himself but we would be lost without his book. When we use Hooker's volume we are tempted to complain of the indefiniteness of many descriptions, the lack of keys to genera, and the "lumping of species"; but when we consider that he has done for British India what no one has done for the United States we are thankful indeed.

It is probable that the first Europeans to visit our region were the Jesuits, Desideri and Freyre, who passed through Ladak in I7I4 on their way to Lhassa, but they have given us no botanical information. It was not until the expedition of Dr. Moorcroft, from 1819 to 1825 , that we learn anything first-hand. In 1812 he had gained experience by penetrating into Tibet and exploring the region of the sacred Lake Manasarowar. In 1819 he started with Trebeck and Guthrie in an attempt to open up Central Asia to British trade. He entered Ladak from Lahoul, crossing over the Baralacha Pass and penetrating to Leh via Rupshu. He desired to press on to Turkestan, but although he waited about two years he failed to get permission from the authorities because of the jealousy of the Kashmir merchants. During his stay, however, he took time to explore Nubra, Zanskar, Dras and other parts of the country. He was not a botanist but he took a keen
interest in the agriculture of the people and the plants that might be useful elsewhere. Though his book (29) is nearly a hundred years old it is the best account of the crops and methods of cultivation. The few specimens he collected were sent to Wallich or Royle.

Vigne (38), who visited Kashmir, Astor, Skardu and Ladak in 1835 , collected ninety species, but some were in such bad shape that Royle could not determine them.

Falconer, who was in charge of the Saharunpur Gardens, collected a little later (1839?) in Kashmir and Baltistan but he does not seem to have penetrated into Ladak any further than Dras.

The best collecting that has been done was probably by Thomas Thomson (36,37), from 1847 to 1848 . He was botanist to the Tibetan Boundary Commission appointed by Lord Hardinge. Captain Henry Strachey, another keen observer, was in charge of the survey. Western Tibet was explored from Spiti to the Karakorams and large collections were accumulated which were widely distributed. Most of the Ladak specimens in the herbarium of the New York Botanical Garden were collected at this time.

In 1848, Richard Strachey (35) with J. E. Winterbottom, visited Lake Manasarowar and explored the Tibetan course of the Sutlej. This is really outside of Ladak but the flora is much the same. The next year, with his brother Henry, Richard Strachey went in from Ladak and explored Hanle and the Tibetan province of Guge. We are indebted to these three men for a great deal of valuable botanical and geographical information.

From 1855 to 1857 the Schlagintweit brothers (32) visited the Himalayas, crossing Ladak and going into Tibet. They were not botanists but they collected plants carefully and their collections have been worked up by different specialists.

About 1862, while on a pleasure trip, William Hay made a collection of Rupshu plants to which Hooker had access He does not seem to have published anything.
J. L. Stewart (33), about 1868, made a botanical tour through Rupshu and Ladak. Although he mentions some of his findings in his publications he did not publish a complete list.

In 1873 Henderson and Hume (21), members of the Forsyth Mission, published a list of four hundred and twelve plants col-
lected in Ladak and Yarkand. About two hundred and seventysix of these are definitely listed from Ladak.

A great deal of our knowledge of the plants of Gilgit, Skardu, and the Karakoram is due to C. B. Clarke (12), although he does not seem to have done much, if any, work in Ladak proper.
J. F. Duthie crossed the Zoji in July, 1893, visited Dras, the Deosai Plains, and went back to Kashmir via Bandipur. In his reports (16) he does not list many of the plants he found.
A. Meebold entered Ladak from Kashmir via the Bhot Khol Pass in 1905 and explored parts of Suru, the Kangi region, and the road to Dah. He visited Leh and the Khardong, and has published interesting lists of plants (28).

A number of other men who collected in Ladak did not publish anything of their findings. Among these are Lance, Cayley, Stoliozka, and the Moravian missionaries, Heyde and Jaeschke. Hooker had access to most of these collections. Mention should also be made of the illustrated works of Royle (31), Jacquemont and Hoffmeister. The last two did not live to reach Europe and complete their work but Jacquemont's plants were published by Cambessedes and Decaisne (9), while Klotsch and Garcke (25) completed the work of Hoffmeister. Although none of these men visited Ladak they explored adjacent regions and their books are therefore very useful.

Recent lists of plants by Conway, Deasy, the Workmans and De Filippi of the Abruzzi expedition give us a good idea of the flora of the Baltistan and Karakoram region and are useful for comparison. The paper by Hemsley and Pearson on the Flora of Tibet (20), which covers the work of Thorold, Prejevalsky, Hedin and the other Tibetan explorers, is very valuable.

My own work was undertaken in 1912 and 1913. It covers Dras, Suru, Middle Ladak as far up the Indus as Upshi, and the region of Rupshu. The only districts that do not seem to have been collected in before are the Sapi, Rusi, and Yarungshan Passes in Suru and the obsolete road from Bosgo to Khalotse, via Tingmogung.

Itinerary of my trips.-I entered Ladak July 18, 1912, with three other men. We crossed the Zoji Pass ($1 \mathrm{I}, 500 \mathrm{ft}$.) from Kashmir and followed the main caravan road to Leh (II,500 ft.),
arriving there July 30 . August 2 we climbed to the Khardong Pass ($17,500 \mathrm{ft}$.) but a snowstorm made it impossible to see what grew near the summit. This was the highest point reached in 1912.

Leaving Leh we returned to Kashmir by another route. From Bosgo we took the old and higher road via Timisgam and Tingmogung, rejoining the new road at Khalotse. August 14 we left the main path below Moolbeck and turned off toward Suru, crossing the Sapi La ($16,000 \mathrm{ft}$.) on the 16 th and visiting the Pakartse on the 19th. The 21st we crossed the Yarungshan La ($15,500 \mathrm{ft}$.) and returned to Kashmir via the Wardwan Valley.

With another party I returned to Ladak in the same way (via the Zoji) in 1913 and arrived at Leh by the end of the month of July, staying a week in the vicinity. August 6th we started on up the Indus, passing the famous Himis Monastery and leaving the Indus at Upshi in order to visit Rupshu, reputed to be the highest inhabited part of the world. The inhabitants are nomads, depending for their livelihood on their herds of yaks, goats and sheep. From Gya we ascended the Takalung $\mathrm{La}(17,500 \mathrm{ft}$.) and descended to the plains that seem to be the favorite home of the wild ass, Equus kyang, and the Tibetan hare. August 9, we visited the salt lake called the Tsokar, one of the many Central Asian lakes without an outlet. August 12, we crossed the Lachalung La ($16,600 \mathrm{ft}$.) and the Baralacha ($16,000 \mathrm{ft}$.) the 15 th, arriving in Kyelang, the main village of Lahoul, the next day. Thence via the Rotang and Kulu we went on to Simla.

Travelling on foot we covered about 400 miles in Ladak each summer. Not many novelties were found, though four or five things seem to be new. In order to make sure a trip to Calcutta or Kew would be necessary. With the exception of a few from Kargil ($8,700 \mathrm{ft}$.) my specimens, which amount to about 475 species, were gathered at altitudes of frotn 9,000 to 17,500 feet.

FLORISTICS

Though the flora on the Indian side of the "Great range" of the Himalayas, which separates Kashmir from Ladak, is luxuriant and abundant, the opposite is true on the other side. In Kashmir, forests with Betula utilis at the upper limit are found up to about
$I_{3}, 000$ feet but there is no forest in Ladak. Trees will grow when they are irrigated, or in a rare spot where they can find water naturally, but they form a very small part of the covering of the country.

Between Kashmir and Ladak there is, to be sure, a transition zone which is possibly widest in the Suru region, Himalayan alpine plants being found where there is water far into the heart of Tibet. Taking the flora as a whole, however, there could hardly be a more pronounced contrast than between these two regions. This is due not to altitude but entirely to water relations. The high mountains stop the rain-laden clouds and very little moisture gets across. Wherever there is enough water from melting snow, which can be led out by irrigation ditches to carefully prepared terraces, crops

FIG. I. An oasis in the Rupshu region, altitude about 15,000 feet.
and trees flourish. Wheat or barley may be growing on one side of an irrigation ditch while desert plants are on the other. These ditches are prepared with great care and run along the hillsides for long distances. They are conspicuous objects because of the border of grass due to the extrat moisture.

There are, as Meebold also notes, three main elements in the flora of Ladak, alpine, desert and oasitic. These three are very easily recognizable and separable. The alpine element is largely
confined to narrow belts below the melting snows and along the upper courses of the streams and does not spread out into the valleys. The main part of the country is desert with a flora that connects up with Turkestan more than it does with India. The flora of the oasis (Fig. I) is cosmopolitan. A few things like Lancea tibetica, Pedicularis longiflora, and species of Gentiana, which grow out in the desert if there is water, are indigenous without doubt, but most of the plants are weeds that may be native but are probably introduced. When a country has been settled as long as parts of Central Asia it becomes difficult to tell what the indigenous flora is.

If one unfamiliar with Ladak were to read through a systematic list of the species growing there he would suppose that the flora as a whole was mesophytic. This is chiefly because of the large number of weeds growing in the villages. As a matter of fact, most of the country is desert, but the number of truly xerophytic species is not proportionately large.

Fotu La and Namika La*

The following list of the plants collected on and near the barren Fotu and Namika Passes gives an idea of the type of plants that are found out in the open, away from the villages, at altitudes of from 10,000 to 13,000 feet. Even in this list there are a good many, such as the buttercups, the species of Triglochin, the gentians, the dandelion and the saxifrages, that grow only near springs in the desert.

Funaria submicrostoma
Ephedra Gerardiana
Triglochin palustris
" maritima
Pennisetum flaccidum
Agrostis alba
Bromus tectorum
Polygonum aviculare
Atriplex crassifolia
Eurotia ceratioides
Kochia prostrata

Silene Moorcroftiana

Ranunculus Cymbalaria pulchellus
Corydalis flabellata
Lepidum latifolium
Sisymbrium Columnae
Christolea crassifolia
Sempervivum acuminatum
Saxifraga sibirica
Potentilla anserina
bifurca

[^78]Potentilla multifida
Rosa Webbiana
Caragana pygmea
Astragalus Munroi
" \quad macropterus
Oxytropis cachemirica
Epilobium Royleanum
Bupleurum falcatum nigrocarpa
Ligusticum Thomsoni
Primula sibirica
Androsace villosa
Acantholimon lycopodioides
Gentiana humilis
" serrata
Pleurogyne Thomsoni

Cynanchum acutum
Lindelofia Benthami
Eritrichium strictum?
Nepeta floccosa
Stachys tibetica
Lancea tibetica
Pedicularis longiflora
Rubia tibetica
Lonicera spinosa
Aster tibeticus
Erigeron andryaloides
Leontopodium alpinum
Chrysanthemum Richteria
Cousinia Falconeri
Scorzonera divaricata
Taraxacum officinale

Suru, Yarungshan La, Sapi La, and Rusi La
Along the transition zone between Kashmir and Ladak almost any Kashmir plant that will live above 10,000 feet may be found, especially in Suru. Most of the plants are alpine mesophytes. Only io per cent. of these were also found in Rupshu, and they are forms like Delphinium Brunonianum, Potentilla bifurca, Leontopodium, Taraxacum, and Aster heterochaeta, which are widespread at high altitudes. Most of the plants in my list, that do not seem to have been reported before from Ladak, are from this transition region and are common Kashmir types. Examples are Podophyllum Emodi, Lavatera Kashmiriana, species of Impatiens, Lotus corniculatus, and Astragalus frigidus. The same may be said of the species from this region which were first collected by Meebold.

Coming from Kashmir, Meebold was impressed with the barren, Tibetan aspects of Suru, but going in the other direction later in the summer I was struck by the greater amount of green on the hillsides. While there are no forests and few trees, except willows, Juniperus and Lonicera glauca, there is much more herbaceous vegetation than in the rest of Ladak and everything indicates more moisture. This increased water supply is no doubt due to the presence of the Nun Kun peaks and glaciers. The greater
cloudiness, too, probably prevents the ground from drying out the way it does further into Ladak.

A list of plants from this region is given below. Definite stations will be cited in the second part of this paper.

Bryum tibeticum
Cystopteris fragilis
Juniperus macropoda
Ephedra Gerardiana
Andropogon Ischaemum
Panicum miliaceum
Phleum alpinum
Alopecurus himalaicus
Agrostis alba
Trisetum subspicatum
Poa annua
" nemoralis
Elymus dahuricus
Carex rigida
Juncus membranaceus
Salix daphnoides?
Polygonum affine
" polystachyum
" tortuosum
Axyris amaranthoides
Stellaria graminea
Arenaria Griffithii
foliosa
Silene vulgaris
" tenuis
Lychnis apetala
" nutans
" himalayensis
Dianthus anatolicus
Aquilegia vulgaris pyrenaica
Delphinium Brunonianum cashmirianum
Aconitum heterophyllum

Aconitum Napellus multifidum
Anemone rupicola
Ranunculus pulchellus
" hirtellus
Podophyllum Emodi
Corydalis Gortschakovii
Thlaspi arvense
Draba glacialis
" alpina
Chorispora sabulosa
Sedum Rhodiola
" asiaticum
" Ewersii
" tibeticum Stracheyi
Sempervivum acuminatum
Saxifraga cernua
" Hirculus indica
". Jacquemontiana
" flagellaris
" Stracheyi
Ribes orientale
Potentilla Sibbaldi
fruticosa Inglisii
bifurca
argyrophylla
Rosa Webbiana
Thermopsis inflata
Astragalus tibetanus
" melanostachys
" himalayanus
" coluteocarpus
". frigidus
" rhizanthus

A stragalus subulatus
Lotus corniculatus
Hedysarum microcalyx
Cicer songaricum
Geranium collinum?
Impatiens brachycentra " Thomsoni
Lavatera kashmiriana
Hypericum perforatum
Epilobium latifolium
angustifolium
Chaerophyllum acuminatum
Trachydium Roylei
Pleurospermum Candollii
Bupleurum falcatum
Acantholimon lycopodioides
Primula Stuartii
Androsace villosa
Gentiana Moorcroftiana "
" tenella
" carinata " decumbens
Pleurogyne carinthiaca
Swertia cordata
" patiolata
Cuscuta capitata
Myosotis sylvatica
Scutellaria prostrata
Nepeta discolor
" leucolaena
Dracocephalum nutans
Phlomis bracteosa
Lamium album
Origanum vulgare
Elsholtzia densa
Verbascum Thapsus
Scrophularia scabiosaefolia

Lagotis glauca
Veronica deltigera
Pedicularis tenuirostris
" bicornuta
Galium verum
" boreale
Lonicera glauca
" asperifolia microphylla
Campanula latifolia
" aristata
Aster heterochaeta
Erigeron alpinus multicaulis
" alpinus uniflorus
Leontopodium alpinum
Anaphalis nubigena
" virgata
Inula barbata
" rhizocephaloides
Chrysanthemum Richteria
Tanacetum artemisioides
Allardia glabra
" nivea
" tomentosa
" Stoliczkai
Artemisia amygdalina
" salsoloides
Senecio chrysanthemoides
" arnicoides frigida
Cremanthodium Decaisnei
Arctium Lappa
Saussurea Jacea
" albescens
" sorocephala
Jurinea ceratocarpa
" ceratocarpa depressa
Koelpinia linearis
Tragopogon pratense?

Taraxacum officinale parvulum Lactuca decipiens

Lactuca Scariola?

Baralacha La

Farther east, where Rupshu adjoins Lahoul, the plant life is very scanty because of the great altitude and because conditions of rainfall are very different from those in Suru. Lahoul itself is the transition zone to the luxuriant flora of the outer Himalaya. On the Baralacha Pass ($16,000 \mathrm{ft}$.) scarcely twenty species were noticed, as shown by the following list. On each side of the Pass there is a very cold alpine lake that seems too icy for plant life. As early as 1820 Moorcroft wrote quaintly of one of them:- "Not a weed deformed its pellucid and tranquil waters. There seemed to be no fish in it, nor was any bird or even a fly in its vicinity."

Carex nivalis
Oxyria digyna
Polygonum cognatum
" affine
" molliaeforme
Stellaria decumbens
Silene Moorcroftiana
Dianthus anatolicus
Ranunculus hirtellus
Meconopsis aculeata

> Corydalis meifolia
> Draba lasiophylla
> Sedum Rhodiola
> Saxifraga sibirica
> Potentilla fruticosa pumila?

" argyrophylla leucochroa
Nepeta glutinosa
Allardia tomentosa
Werneria nana affinis

Rupshu

As mentioned earlier, the most Tibetan part of Ladak visited was Rupshu. Plants must grow there to an elevation of fully 18,000 feet, for we found half a dozen species at 17,500 feet. All of the plants listed, with possibly two or three exceptions, grew above ${ }^{15}, 000$ feet. Species of Oxytropis, Potentilla, and Nepeta, Sedum tibeticum Stracheyi, Aster heterochaeta, Elsholtzia pusilla, Delphinium Brunonianum and Caragana pygmea grew at the upper limit of plant life. On hillsides Caragana was the most conspicuous and abundant plant, spreading out on the ground in the way juniper does in the northeastern United States (Fig. 2). It furnishes the chief fuel in these lofty regions. The Delphinium is also a conspicuous plant with much the largest leaves and flowers of any plant near the top of the passes. The blades of its leaves may be
two inches in diameter. The wild rhubarb is the only Rupshu plant with good sized leaves. They are thick and very coriaceous.

The wind on the passes is so terrible that the plants that grow on the very top are prostrate and scarcely an inch high

FIG. 2. A shrubby pea, Caragana pygmea DC ., the only conspicuous plant in large sections of Western Tibet, above an altitude of 14,000 feet.
with very small leaves and flowers. Examples are Oxytropis densa, Potentilla bifurca, P. sericea and Nepeta longibracteata.

Potamogeton pectinatus
Triglochin maritima
Stipa barbata
Deschampsia caespitosa
Poa pratensis
" nemoralis ligulata

Festuca rubra

Bromus crinitus
" barbatus
" macrostachys
Kobresia schoenoides
Carex Moorcroftii
Urtica hyperborea Rheum spiciforme
Polygonum tortuosum

Polygonum sibiricum
Chenopodium album
Atriplex crassifolia
" rosea
Eurotia ceratioides
Salsola collina
Stellaria graminea Arenaria musciformis " holosteoides
Lychnis macrorhiza
" brachypetala
Isopyrum grandiflorum
Aquilegia vulgaris viscosa
Delphinium Brunonianum
Ranunculus pulchellus

Hypecoum leptocarpum
Corydalis crassifolia?
"
stricta
Lepidium capitatum
Arabis tibetica
Alyssum canescens
Braya alpina
Christolea crassifolia
Sedum tibeticum Stracheyi
Sempervivum acuminatum
Saxifraga Hirculus indica
Potentilla tetrandra
" fruticosa ochreata
" ambigua
" bifurca
" multifida
" sericea
Caragana pygmea
Oxytropis densa
" lapponica
" microphylla
" tatarica
Biebersteinia Emodii
Pleurospermum stellatum
Primula sibirica

Gentiana aquatica
Marrubium lanatum
Nepeta longibracteata
" nivalis
" tibetica
Dracocephalum heterophyllum
Thymus Serpyllum
Elsholtzia pusilla
Veronica ciliata?
Rubia tibetica
Galium pauciflorum
Lonicera spinosa
Aster heterochaeta
" tibeticus
Leontopodium alpinum
Anaphalis nubigena
Tanacetum fruticulosum
Artemisia minor
Senecio arnicoides frigida
Werneria nana
Saussurea bracteata
" glanduligera
Taraxacum officinale
" officinale parvulum

Native and naturalized species of the eastern United States occurring in Western Tibet
In comparing the flora of Ladak with a distant flora like that of the eastern United States there are many more similarities than one would suspect and it is possibly worth while to make a list of species that are common to both countries. Plant lists do not, of course, give a picture of a region, and the aspect of the two countries is absolutely different, but there are enough things similar to make an American feel somewhat at home.

At least 140 of the plants of Ladak, which amount to about 825 forms, occur here in America, too, but when one comes to examine them it appears that no less than 85 are weeds and not
native. As mentioned before it cannot be stated how many are introduced in Ladak. When one looks at the list of those that are native here it appears that nearly all are plants that like a great deal of water. An abundance of moisture is a great equalizer of environments and plants like Potamogetons, Lemna and Triglochins are very cosmopolitan. A smaller group consists of wide ranging temperate plants. There are therefore three groups of plants native to both countries: weeds, water-loving plants, and a few temperate cosmopolitan types.

Cystopteris fragilis
Equisetum arvense
Juniperus communis
Potamogeton pectinatus perfoliatus
Zannichellia palustris
Triglochin maritima " palustris
Milium effusum
Deschampsia caespitosa
Phragmites communis
Koeleria cristata
Catabrosa aquatica
Poa alpina
pratensis
" nemoralis
Festuca rubra
Scirpus pauciflorus rufus
Eleocharis palustris
Carex stenophylla
" rigida
" Goodenovii
Lemna minor
Oxyria digyna
Polygonum aviculare
6 viviparum

Native species

Polygonum Hydropiper?
Chenopodium hybridum
Corispermum hyssopifolium
Salsola Kali
Sagina procumbens
Ranunculus Cymbalaria
" aquatilis
Barbarea vulgaris
Cardamine pratensis
Braya humilis
Sedum Rhodiola
Saxifraga oppositifolia
Parnassia palustris
Potentilla Sibbaldi
" Anserina
" fruticosa
Astragalus alpinus
Epilobium angustifolium
Hippuris vulgaris
Primula farinosa
Glaux maritima
Limosella aquatica
Veronica Anagallis-aquatica
Utricularia minor
Plantago major
Galium Aparine
" boreale

Naturalized species

Panicum miliaceum
Setaria viridis
Heleochloa schoenoides
Alopecurus pratensis
Polypogon monspeliensis
Agrostis alba
" canina
Aira caryophyllea
Avena fatua
Eragrostis minor
Briza media
Dactylis glomerata
Poa annua
Festuca Myuros
Bromus tectorum
japonicus
Lolium perenne
Agropyron repens
Salix alba
" fragilis
Populus alba
" candicans
" nigra italica
Urtica dioica
Parietaria debilis
Morus alba
Rumex Acetosa
Polygonum lapathifolium " Persicaria
" Convolvulus
Chenopodium album
glaucum
Botrys
Atriplex rosea
Stellaria glauca media

Cerastium vulgatum
Arenaria serpyllifolia
Dianthus deltoides
Saponaria Vaccaria
Aquilegia vulgaris
Berberis vulgaris
Lepidium ruderale
Sisymbrium Sophia "

Thalianum
Brassica juncea
" nigra
Sedum Rhodiola
Ribes Grossularia
Pyrus Malus
Trifolium pratense
Medicago falcata
" sativa
" lupulina
Melilotus alba
" officinalis
Lotus corniculatus
Geranium pratense
" sibiricum
Erodium cicutarium
Tribulus terrestris
Malva verticillata
Carum Carvi
Pimpinella Saxifraga
Convolvulus arvensis
Cuscuta europaea
Lithospermum arvense
Lycopsis arvensis
Lamium amplexicaule
Thymus Serpyllum
Mentha longifolium
Verbascum Thapsus
Veronica Beccabunga

Veronica agrestis
Galium verum
Gifola germanica
Tussilago Farfara
Arctium Lappa
Carduus nutans

Cnicus arvensis
Tragopogon pratense
Taraxacum officinale
Sonchus oleraceus
Lactuca Scariola

Genera best represented in Western Tibet

When we come to look at the commonest genera in Ladak, we find that only two are not represented in the eastern United States. These are members of the Compositae, Allardia and Suassurea. In addition, we have no native species of Dianthus or Nepeta. It is interesting to note that the genera such as Tanacetum, Artemisia, Astragalus and Oxytropis, which are more numerous in Ladak than in the eastern United States, are genera which are common in the Russian parts of Central Asia.

Stipa*	Chenopodium	Saxifraga	Lonicera
Poa	Stellaria	Potentilla	Galium
Bromus*	Arenaria	Astragalus*	Campanula
Festuca	Dianthus* \dagger	Oxytropis*	Erigeron
Scirpus	Ranunculus	Epilobium	Inula*
Kobresia*	Thalictrum	Primula*	Tanacetum*
Carex	Corydalis*	Androsace*	Allardia* \dagger
Juncus	Sisymbrium* *	Gentiana*	Artemisia*
Allium*	Draba*	Nepeta* $\dagger^{\text {Senecio }}$	
Populus	Geranium* *	Veronica	Saussurea* \dagger
Salix	Sedum*	Pedicularis*	Lactuca
Polygonum			

[^79]
PLANT ASSOCIATIONS

From the foregoing we have seen that most of Ladak is covered by open desert associations with bare ground between the individual plants. Many hillsides have so little soil and the summer heat is so intense that there is scarcely any vegetation at all. Sometimes a plant that would otherwise be sure to be eaten off can find a refuge beneath a thorny bush of Caragana, but as a rule they stand alone or in tufts.

Occasionally we find a modification of the desert flora. Where there is a spring on the mountainside and the water cannot drain away readily we get a continuous sod and a typical association of Pedicularis longiflora and species of Triglochin, Carex, Gentiana, and Taraxacum. The ground is often boggy in such situations and the water may be alkaline.

Alpine meadows are rare except in the transition zone near Kashmir. The places along the streams that may have been meadows ages ago have been made to grow a few food plants. Usually the streams are so swift that they are bounded by steep banks and there is very little opportunity for plants to gain a foothold or for a sod to form.

The oases which surround the villages contain practically the only trees, and these, with the exception of the Hippophaë, which is frequently used for hedges, are practically all introduced. The commonest trees are willows, poplars, walnuts, mulberries, apples and apricots. Small groves of the native juniper, Juniperus macropoda, are sometimes found. The commonest crops are barley, wheat and buckwheat. Our common garden vegetables do well and so do many of our common garden weeds.

Although there are no forests in Ladak, there are frequently thickets along streams and on little islands in the rivers. These have a typical association of the Myricaria, Hippophaë, Rosa and Clematis orientalis. These furnish shade for more delicate plants, such as species of Veronica and Epilobium.

INDEX TO AMERICAN BOTANICAL LITERATURE

1912-1916

The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material ; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of one cent for each card. Selections of cards are not permitted; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Abrams, L. R. The floral features of California. Pop. Sci. Mo. 87: 22-30. Jl 1915 ,
Allard, H. A. The mosaic disease of tomatoes and petunias. Phytopathology 6: 328-335.f. 1, 2. I2 S 1916.
Altenburg, E. Linkage in Primula sinensis. Genetics 1: 354-366. Jl 1916.
Andrews, A. L. Notes on North American Sphagnum. VI. Bryologist 18: I-6. 16 Ja 1915.
Anrep, A. Investigation on the peat bogs and peat industry of Canada 1913-1914. Canada Dept. Mines. Mines Branch Bull. II: i-xii+ 1-185. pl. 1 -92 + f. $66+$ maps 354-383. 1915.
Atkinson, G. F. The development of Lepiota cristata and L. seminuda. Mem. N. Y. Bot. Gard. 6: 209-228. pl. 2I-26. 3I Au 1916.
Atkinson, G. F. Homology of the "universal veil" in Agaricus. Myc. Centralb. 5: 1 -19. pl. $1-3$. 1914.
Barnhart, J. H. Segregation of genera in Lentibulariaceae. Mem. N. Y. Bot. Gard. 6: 39-64. f. I-25. 31 Au 1916. Recognizes sixteen genera, including the new genera Pelidnia, Orchyllium, Calpidisca, Avesicaria, and Pleiochasia.

Bartlett, H. H. The status of the mutation theory, with especial reference to Oenothera. Am. Nat. 50: 513-529. S 1916.
Bates, J. M. A new species of Allium. Am. Bot. 22: 58, 59. My 1916. Allium lavendulare Bates.
Beal, W. J. Some things learned in managing a botanical garden. Mem. N. Y. Bot. Gard. 6: 513-516. 3I Au 1916.
Berry, E. W. The age of the Cretaceous flora of southern New York and New England. Jour. Geol. 23: 608-618. N 1915.
Berry, E. W. An Eocene ancestor of the Zapodilla. Am. Jour. Sci. IV. 39: 208-213. pl. I. F 1915.

Berry, E. W. Fruits of a date palm in the Tertiary deposits of eastern Texas. Am. Jour. Sci. IV. 37: 403-406. f. I, 2. My 1914.
Berry, E. W. Paleobotanic evidence of the age of the Morrison formation. Bull. Geol. Soc. Am. 26: 335-342. I7 Au 1915.
Blakeslee, A. F. Inheritable variations in the yellow daisy (Rudbeckia hirta). Mem. N. Y. Bot. Gard. 6: 89. 3I Au 1916.
Blakeslee, A. F. Lindner's roll tube method of separation cultures. Phytopathology 5: 68-70. pl. 7. F 1915.
Black, C. A. The nature of the inflorescence and fruit of Pyrus Malus, Mem. N. Y. Bot. Gard. 6: 519-547. pl. 33-4o. 31 Au 1916.
Booth, R. C. Atriplex hymenelytra and one of its habitats. S. Calif. Acad. Sci. Bull. 15: 37-41. Jl 1916. [Illust.]
Boyce, J. S. Spore variation in Neopeckia Coulteri. Phytopathology 6: 357-359. I2 S 1916.
Brandegee, T. S. Plantae mexicanae Purpusianae-VII. Univ. Calif. Publ. Bot. 6: 177-197. 30 O 1915. Includes descriptions of fifty-nine new species.
Briggs, L. J., \& Schantz, H. L. Influence of hybridization and crosspollination on the water requirement of plants. Jour. Agr. Research 4: 391-402. pl. 58 +f. I. 16 Au 1915.
Britton, N. L. The vegetation of Anegada. Mem. N. Y. Bot. Gard. 6: $565-580$. 31 Au 1916.
Includes Acacia anegadensis and Arthonia anegadensis Riddle, spp. nov.
Brown, P. E. Bacterial activities and crop production. Iowa Agr. Exp. Sta. Research Bull. 25: 359-388. J1,1915.
Bruner, S. C. A new species of Endothia. Mycologia 8: 239-242. pl. 192. 14 S 1916.

Buller, A. H. R. Micheli and the discovery of reproduction in fungi. Trans. Roy. Soc. Canada-III. 94: 1-25. pl. $1-3$. Je 1915.
Butler, O. Observations on the California vine disease. Mem. Torrey Club 14: 111-153. pl. r-5. 18 Je 1910.
Call, R. E. Observations on the flora of Mammoth Cave, Kentucky. Mem. N. Y. Bot. Gard. 6: 65-68. 3I Au 1916.
Chivers, A. H. Directing factors in the teaching of botany. Mem. N. Y. Bot. Gard. 6: 33-37. 31 Au 1916.

Clark, F. C. Diatoms. S. Calif. Acad. Sci. Bull. 15: 43-45. J1 1916. [Illust.]
Conard, H. S. Nymphaea magnifica. Rhodora 18: 120. 4 My 1916.
Cook, M. T., \& Schwarze, C. A. Two interesting diseases of greenhouse tomatoes. Phytopathology 6:364-366.f. I. I2 S 1916.
Davidson, A. Additions to the flora of Los Angeles County in 1916. S. Calif. Acad. Sci, Bull. 15: 33, 34. Jl 1916.

Davidson, A. Opuntia rubiflora n. sp. S. Calif. Acad. Sci. Bull. 15: 33. Jl i916. [Illust.]

Davis, J. J. Notes on parasitic fungi in Wisconsin-I. Trans. Wisconsin Acad. Sci. 18: 78-92;-II. 93-109;-III. 251-271. 1915. Includes descriptions of twenty-five hew species.
Diehl, W. W. Notes on an artificial culture of Rhizoctonia crocorum. Phytopathology 6: 336-340.f. I. I2 S 1916.
Edson, H. A. Histological relations of sugar-beet seedlings and Phoma betae. Jour. Agr. Research 5: 55-58. pl. 1-2. 401915.
East, E. M. Inheritance in crosses between Nicotiana Langsdorffii and Nicotiana alata. Genetics 1: 311-333.f. 1-10. J1 1916.
Farr, C. F. Cytokinesis of the pollen-mother-cells of certain Dicotyledons. Mem. N. Y. Bot. Gard. 6: 253-317. pl. 27-29. 31 Au 1916.

Farwell, O. A. The genus Hippochaete in North America, north of Mexico. Mem. N. Y. Bot. Gard. 6: 461-472. 3I Au 1916.
Fernald, M. L. A calciphile variety of Andromeda glaucophylla. Rhodora 18: 100-102. 4 My 1916.
Fink, B. Hermann Edward Hasse-lichenist. Mycologia 8: 243-248. pl. 193. 14 S 1916.
Gager, C. S. Present status of the problem of the effect of radium rays on plant life. Mem. N. Y. Bot. Gard. 6: $153-160$. 3I Au 1916.

Goldschmidt, R. Nochmals über die Merogonie der OenotheraBastarde. Genetics I: 348-353. pl. 4. Jl 1916.
Graff, P. W. Bibliography and new species of Philippine fungi. Mycologia 8: 253-288. 14 S 1916.
Graves, A. H. Chemotropic reactions in Rhizopus nigricans. Mem. N. Y. Bot. Gard. 6: 323-331. 3I Au 1916.

Graves, A. H. A botanical trip to North Wales in June. Mem. N. Y. Bot. Gard. 6: 167-172.f. 1 -3. 31 Au 1916.
Grier, N. M. Regeneration in Elodea. Am. Bot. 22: 55-57. My 1916.

Grossenbacher, J. G. The periodicity and distribution of radial growth in trees and their relation to the development of "annual" rings. Trans. Wisconsin Acad. Sci. 18: 1-77. 1915.
Groth, B. H. A. Some results in size inheritance. New Jersey Agr. Exp. Sta. Bull. 278: 3-92. pl. 1-34. I4 Ap 1915.
Hall, H. M. New and noteworthy Californian plants-II. Univ. Calif. Publ. Bot. 6: 165-176. pl. 20. 2801915.
Harper, R. A. On the nature of types in Pediastrum. Mem. N. Y. Bot. Gard. 6: 91-104. f. I, 2. 3I Au 1916.
Harper, R. M. Tramping and camping on the southeastern rim of the everglades. Florida Review 4: 44-55; 147-157. Jl-Au 1910.
Harris, F. S., \& Hogenson, J. C. Some correlations in sugar beets. Genetics I: 334-347. Jl 1916.
Harris, J. A. On the relationship between bilateral asymmetry and fertility and fecundity. Archiv. Entwicklungsm. Organismen 35: 500-522.f. I-5. 17 D 1912.
Harris, J. A. A simple demonstration of the action of natural selection. Science II. 36: 713-715. 22 N 1912.
Harris, J. A., \& Gortner, R. A. On the relationship between the weight of the sugar beet and the composition of its juice. Jour. Indus. \& Engl. Chem. 5: [1-7]. Mr 1913.
Harris, J. A., \& Gortner, R. A. Further notes on the relationship between the weight of the sugar beet and the composition of its juice. Biochem. Bull. 2: 524-529. pl. 8. Jl 1913.
Harris, J. A. The relationship between the weight of the seed planted and the characteristics of the plant produced-II. Biometrika 10: 72-84.f. 1-4. Ap 1914.
Harris, J. A. A tetracotyledonous race of Phaseolus vulgaris. Mem. N. Y. Bot. Gard. 6: 229-244. f. I-3. 3I Au 1916.

Hart, E. B., \& Tottingham, W. E. Relation of sulphur compounds to plant nutrition. Jour. Agr. Research 5: 233-250. pl. 20-22. 8 N 1915.

Haskell, R. J. Potato wilt and tuber rot caused by Fusarium eumartii. Phytopathology 6: 32I-327.f. 1 -3. I2 S 1916.
Headley, F. B., Curtis, E. W., \& Scofield, C. S. Effect on plant growth of sodium salts in the soil. Jour. Agr. Research 6: $857-869$. f. $1-8$ 28 Au 1916.
Holden, R. A Jurassic weed from Scotland. New Phytologist 14: 205-209. pl. 3. Jl 1915.
Hollick, A. A fossil fern monstrosity. Mem. N. Y. Bot. Gard. 6. 473, 474. pl. 31, 32. 3I Au 1916. Anomaloflicites monstrosus gen, et sp. nov.
Howard, W. L. An experimental study of the rest period of plants. Physiological changes accompanying breaking of the rest period. Missouri Agr. Exp. Sta. Research Bull. 21: I-72.f. I-10. Je 1915.
Howe, M. A., \& Hoyt, W. D. Notes on some marine algae from the vicinity of Beaufort, North Carolina. Mem. N. Y. Bot. Gard. 6: 105-123. pl. 11 -15. 31 Au 1916.
Includes Microchaete nana, Derbesia turbinata, Phaeostroma pusillum, Erythro-
cladia recondita, E. vagabunda, Acrochaetium infestans, and A. affine, spp. nov.
Howitt, J. E., \& Stone, R. E. Smuts and rusts of grain crops. Ontario Dept. Agr. Bull. 229: 1-24.f. 1-15. F 1915.
Humphreys, E. W. A new fossil fig and its significance. Guide to Nature 8: 82-84.f. I, 2. Au 1915.
Humphreys, E. W. Triassic plants from Sonora, Mexico, including a Neocalamites not previously reported from North America. Mem. N. Y. Bot. Gard. 6: 75-78. pl. 5. 3I Au 1916.

Kellerman, K. F. Cooperation in the investigation and control of plant diseases. Mem. N. Y. Bot. Gard. 6: 517. 31 Au 1916.
Kern, F. D. Japanese species of Gymnosporangium. Mem. N. Y. Bot. Gard. 6: 245-252. 3I Au 1916.
Kurtz, F. Essai d'une bibliographie botanique de l'Argentine. Bol. Acad. Nac. Cien. Cordoba 19: $221-376$. 24 S 1913.
Lemoine, P. Melobesieae. Jour. Linnean Soc. 43: 193-200. pl. 9, 10. N 1915.
Levine, M. Somatic and reduction divisions in certain species of Drosera. Mem. N. Y. Bot. Gard. 6: 125-147. pl. 16-19. 31 Au 1916.

Lipman, C. B. Plant ecology and the new soil fertility. Mem. N. Y. Bot. Gard. 6: 319-321. 31 Au 1916.
Lloyd, F. E. The embryo-sac and pollen grain as colloidal systems. Mem. N. Y. Bot. Gard. 6: 561-563. 31 Au 1916.
Löfgren, A. O genero Rhipsalis. 1-48. Rio de Janeiro. 1915. Includes Rhipsalis pulchra, R. rigida, R. chrysocarpa, R. chrysantha, spp. nov.'
MacDougal, D. T. The mechanism and conditions of growth. Mem. N. Y. Bot. Gard. 6: 5-26. pl. I f. I-4. 3I Au 1916.

MacCaughey, V. Vegetation of the Hawaiian summit bogs. Am. Bot. 22: 45-52. My 1916.
McAtee, W. L. The winter flora of Muskeget Island, Massachusetts. Rhodora 18: 93-99. 4 My 1916.
McCubbin, W. A. The white pine blister rust in Canada. Ann. Rept. Quebec Soc. for Protection of Plants from Insect and Fungous Diseases 8: 64-72. 1916. [Illust.]
Mains, E. B. The wintering of Coleosporium solidaginis. Phytopathology 6: 371, 372. I2 S 1916.
Maublanc, A., \& Rangel, E. Alguns fungos do Brazil. Novos ou mal conhecidos. A Lavoura 18: 19-32. pl. 4-9. Ap 1914. Includes eight new species of Pyrenomycetes, twenty-five new species and two new genera of the Fungi Imperfecti.
Mattoon, W. R. Short-leaf pine; its economic importance and forest management. U. S. Dept. Agr. Bull. 308: 1-66. pl. i-1o. 22 N 1915.

Melchers, L. E. Smuts of grain and forage crops in Kansas. Kansas Agr. Exp. Sta. Bull. 210: 1-38. f. I-20. Ja 1916.
Melhus, I. E. Hibernation of Phytophthora infestans of the Irish potato. Jour. Agr. Research 5: 71-102. pl. $4-8+f .1-3$. II 0 1915.

Melhus, I. E. Perennial mycelium in species of Peronosporaceae related to Phytophthora infestans. Jour. Agr. Research 5: 59-70. pl. $3+$ f. I. II O 1915.
Merrill, E. D. Studies on Philippine Anonaceae,-I. Philip. Jour. Sci. 10: (Bot.) 227-264. Jl 1915. Includes descriptions of twenty-five new species.
Murrill, W. A. Illustrations of fungi-XXV. Mycologia 8: 231-234. pl. 190. 14 S 1916.
Venenarius solitarius, V. glabriceps, V. phalloides, Vaginata albocreata, and Lepiota aspera are illustrated in color.

Moxley, G. L. Notes on Zauschneria. S. Calif. Acad. Sci. Bull. 15 : 47-54. J1 1916.
Nash, G. V. The white cedar and its relatives. Jour. Hort. Soc. N. Y. I: 227-234. O 1912.

Norton, J. B. S. Variation in Tithymalopsis. Mem, N. Y. Bot. Gard. 6: 455-459. 31 Au 1916.
Norton, J. B. S. Some obscure diseases of peach. Jour. Econ. Entomology 3: 228-236. 1910.
Norton, J. B. S. Some unusual tomato variations. Proc. Soc. Hort. Sci. 1910: i-5. I91I.
Ochoterena, I. Fosforescencia de las flores de las Cactáceas. Bol. Dir. Est. Biol. I: $135-140$. N 1915 . [Illust.]
O'Gara, P. J. A bacterial disease of western wheat-grass, Agropyron Smithii. Occurrence of a new type of bacterial diseases in American Phytopathology 6: 341-350. pl. 9-13. I2 S 1916. A planobacter Agropyri sp. nov.
Orton, C. R. North American species of Allodus. Mem. N. Y. Bot. Gard. 6: 173-208. 31 Au 1916. Includes descriptions of four new species.
Osterhout, W. J. V. A dynamical theory of antagonism. Proc. Am. Philos. Soc. 55: 533-553.f. I-II. I9 Au 1916.
Osterhout, W. J. V. On the nature of antagonism. Science II. 4I : 255, 256. I2 F 1915.
Overholts, L. O., \& Overholts, M. F. Some Kentucky fungi. Mycologia 8: 249-252. I4 S 1916.
Patterson, F. W., \& Charles, V. K. The occurrence of bamboo smut in America. Phytopathology 6: 351-356.f. I. I2 S 1916.
Pratt, O. A. Control of the powdery dry rot of western potatoes caused by Fusarium trichothecioides. Jour. Agr. Research 6: 817832. pl. 108. 21 Au 1916.

Rangel, E. Fungos parasitas do guando Cajanus indicus Spreng. A Lavoura 18: 5-12. pl. 1-3. Ap 1914.
Includes Vellosiella gen. nov., Cercospora instabilis, Calletotrichum Cajani, Phyllosticta Cajani, and Phoma Cajani, spp. nov. The same article is also published in French, pp. 12-18, in the same number of this journal.
Roberts, J. W. Sources of the early infections of apple bitter-rot. Jour. Agr. Research 4: 59-64. pl. 7. 15 Ap 1915.
Rydberg, P. A. Vegetative life zones of the Rocky Mountain region. Mem. N. Y. Bot. Gard. 6: 477-499. 31 Au 1916.

Sampaio, A. J. de. A flora de Matto Grosso. Archiv. Mus. Nac. Rio de Janeiro 19: 1-125. maps [1-11]. 1916.
Saunders, C. F. Soap from wild plants. Am. Bot. 22: 53, 54. My 1916. [Illust.]

Saunders, E. R. The results of further breeding experiments with Petunia. Am. Nat. 50: 548-553. S 1916.
Scala, A. C. Manual de manipulaciones de Botanica. 1-244. f. I-77. 1912.

Schlechter, R. Orchidaceae novae et criticae. Decas XLIII-XLVI. Repert. Sp. Nov, 14: 114-133. 1501915. Includes descriptions of forty new species.
Schmitz, H. Preliminary note on the occurrence of Peridermium balsameum in Washington. Phytopathology 6: 369-371. f. I, 2. I2 S 1916.
Seaver, F. J. Photographs and descriptions of cup-fungi-IV. Peziza clypeata. Mycologia 8: 235-238. pl. 191. 14 S 1916.
Seaver, F. J. Bermuda fungi. Mem. N. Y. Bot. Gard. 6: 501-5II. 3I Au 1916.
Includes Ascophanus bermudensis, Calonectria Umbelliferarum, C. granulosa, and Nectria Lantanae, spp. nov.
Shaw, H. B. Self, close, and cross fertilization of beets. Mem. N. Y. Bot. Gard. 6: 149-152. pl. 20 +f. 1. 31 Au 1916.
Sinnott, E. W. Endemism as a criterion of antiquity among plants. Mem. N. Y. Bot. Gard. 6: 1,61-166. 31 Au 1916.
Small, J. K. Recent exploration in southern Florida. Mem. N. Y. Bot. Gard. 6: 475, 476. 3I Au 1916.
Stakman, E. C., \& Piemeisel, F. J. Infection of timothy by Puccinia graminis. Jour. Agr. Research 6: 813-816. 21 Au 1916.
Standley, P. C. Additional notes upon New Mexican Hepaticae. Bryologist 19: 64, 65. 25 Jl 1916.
Stevens, F. L. The genus Meliola in Porto Rico. Illinois Biol. Mon. 2: 1-86. pl. r-5. Ap 1916.
"Includes descriptions of sixty new species and varieties and a synopsis of all known Porto Rican forms."
Stevens, F. L. A convenient, little-known method of making micromounts of fungi. Phytopathology 6: 367,368. 12 S 1916.
Stout, A. B. Self- and cross-pollinations in Cichorium intybus with reference to sterility. Mem. N. Y. Bot. Gard. 6: 333-454. pl. 30. 31 Au 1916.

Stone, G. E. Practical suggestions regarding the fumigation of greenhouses. Jour. N. Y. Bot. Gard. 17: 97-103. Jl 1916.
Stuckey, H. P. Transmission of resistance and susceptibility to blossom-end rot in tomatoes. Georgia Agr. Exp. Sta. Bull. I2I: 83-91. f. I-3. Je 1916.
Surface, F. M. On the inheritance of certain glume characters in the cross Avena fatua \times A, sativa var. Kherson. Proc. Nat. Acad. Sci, 2: 478-484.f. 1 -3. Au 1916.
Taubenhaus, J. J. A contribution to our knowledge of silver scurf (Spondylocladium atrovirens Harz) of the white potato. Mem. N. Y. Bot. Gard. 6: 549-560. pl. 41-43. 3I Au 1916.
Taylor, N. A white-cedar swamp at Merrick, Long Island, and its significance. Mem. N. Y. Bot. Gard. 6: 79-88. pl. 6-10. 3I Au 1916.

Thaxter, R. New or critical species of Chitonomyces and Rickia. Proc. Am. Acad. Arts \& Sci. 52: 1-54. Je 1916. Includes fourteen new species in Chitonomyces and thirty-five in Rickia.
Thompson, W. G. Address of welcome. Mem. N. Y. Bot. Gard. 6: 1-4. 31 Au 1916.
Thompson, W. P., \& Bailey, I. W. Are Tetracentron, Trochodendron, and Drimys specialized or primitive types? Mem. N. Y. Bot. Gard. 6: 27-32. pl. 2-4. 31 Au 1916.
Trelease, W. Thomas Jonathan Burrill. Bot. Gaz. 62: 153-155. ${ }_{15} \mathrm{Au} 1916$.
Valleau, W. D. Inheritance of sex in the grape. Am. Nat. 50: 554^{-} 564. S 1916.

Victorin, M. Anomalie chez le Trillium grandiflorum. Le Naturaliste Canadien 43: 9, 10. Jl 1916.
Victorin, M. Mosses, hepatics, and lichens of the quartzite hills of the Kamouraska formation, Quebec, Canada. Bryologist 19: 6064. 25 Jl 1916.

Waller, A. E. Xenia in maize. Am. Bot. 22: 41-43. My 1916. [Illust.]
Weatherby, C. A. Some western species of Puccinellia. Rhodora 18: 181-183. 3 Au 1916. Includes Puccinellia Cusickii sp. nov.
Weir, J. R., \& Hubert, E. E. A successful inoculation of Abies lasiocarpa with Pucciniastrum pustulatum. Phytopathology 6: 373. 12 S 1916.

Weir, J. R. Keithia thujina, the cause of a serious leaf disease of the western red cedar. Phytopathology 6: $360-363$. f. 1, 2. 12 S 1916.
Weir, J. R., \& Hubert, E. E. Successful inoculations of Larix occidentalis and Larix europea with Melampsora bigelowii. Phytopathology 6: 372, 373. I2 S 1916.
Wester, P. J. Plant propagation in the tropics. Philippine Dept. Pub. Inst. Agr. Bur. Bull. 32: $1-87 . p l . ~ I-12+f .1-40$. 1916.
Whetzel, H. H., and others. Ginseng diseases and their control. U. S. Dept. Agr. Farmers' Bull. 736: i-22. f. $1-26$. I7 J1 1916.

White, O. E. Inheritance studies in Pisum-I. Inheritance of cotyledon color. Am. Nat. 50: 530-547. S 1916.
Willis, M. A. A root disease of prunes. Phytopathology 6: 368, 369 . 12 S 1916.
Wilson, P. Crinum americanum. Florida swamp lily. Addisonia I: 21. pl. II. 30 Je 1916.

Wilson, W. J. Palaeobotany. Summary Report, Dept. Mines Canada Geol. Surv. 1915 Sessional paper 26: 205-209. 1916.
Wuist, E. D. Branched prothallia in the Polypodiaceae. Bull. Torrey Club 43: 365-383.f. 1 -15. 12 Au 1916.
Wyatt, F. A. Influence of calcium and magnesium compounds on plant growth. Jour. Agr. Research 6: 589-620. pl. 84-88. 17 J1 1916.
Yampolsky, C. Observations on inheritance of sex-ratios in Mercurialis annua. Mem. N. Y. Bot. Gard. 6: 69-74. 31 Au 1916.
Zimmerman, C. Contribuição para o estudo das Diatomaceas dos Estados Unidos do Brazil. Broteria 13: 37-56. I Ap 1915.
Zimmerman, H. E. The licorice plant. Am. Bot. 22: 43, 44. My 1916. [Illust.]

Zoller, H. F. The bromine content of Puget Sound Nereocystis (Giant kelp). Science II. 44: 358, 359. 8 S 1916.

P. M. S. del.
P. M. SMITH: EMBRYOLOGY OF DIOSCOREA VILLOSA

P. M. S. del.
P. M. SMITH: EMBRYOLOGY OF DIOSCOREA VILLOSA

P. M. S. del.
P. M. SMITH: EMBRYOLOGY OF DIOSCOREA VILLOSA

P. M. S. del.
P. M. SMITH: EMBRYOLOGY OF DIOSCOREA VILLOSA

BULLETIN

TORREY BOTANICAL CLUB

DECEMBER, 1916.

Notes on Carex-XI

Kenneth Kent Mackenzie

Californian representatives of the Ovales

During the past few years I have been favored with opportunities to examine a very considerable percentage of all collections of Carex heretofore made in the state of California. With the exception of specimens referable to the Ovales, these collections contain comparatively few plants not readily referable to species heretofore described. In the case of the Ovales, however, it has turned out that there are a number of undescribed species in California. In fact, most of the Californian collections in the group belong to undescribed species.

This situation arises from the fact that attempts have been made in the past to refer the Californian Ovales to species in the group found in the eastern portion of the United States or in the Rocky Mountain region. Similar attempts were made at one time with a number of species belonging to other groups of Carices, but these have gradually been corrected. In the case of the Ovales little has been done in this direction, and as a result a number of species are attributed to California which do not occur within a great many miles of that state.

The fact is that the species of Carex found in California are very largely peculiar to that state, and this is just as true in the case of the Ovales as in other groups.

The collections examined for the purpose of this paper were those of the University of California (abbreviated "Cal."), Leland [The Bulletin for November (43: $545-600$. pl. 31-34) was issued Nov. 27, 1916.]

Stanford, Jr., University (abbreviated "L. S."), S. B. Parish, E. Brainerd, Columbia College (abbreviated "C.") and New York Botanical Garden (abbreviated "N. Y."), and the new species described below are in these collections, as indicated, or in my own herbarium (abbreviated "K. M.").

A key covering all members of the Ovales known to me from California is given immediately below, and this is followed by descriptions of the new species proposed.

1. Beak of perigynium flat and serrulate to tip.Sheaths white-hyaline opposite blades.Upper sheaths (at least) strongly prolonged upward op-posite point of insertion of blade, the prolongation verymembranaceous.C. specifica.
Sheaths not prolonged upward opposite point of insertionof blade.
Perigynia thin with margins conspicuously wrinkleddorsally; culms $1-3.5 \mathrm{dm}$. high; spikes ovoid,densely capitate.
C. straminiformis.
Perigynia thick with margins not wrinkled dorsally; culms $6-9 \mathrm{dm}$. high; spikes oblong in an oblong head. C. multicostata.
C. feta.
II. Beak of perigynium terete towards apex, the upper $1-3 \mathrm{~mm}$., smooth or nearly so.
A. Perigynia appressed, nearly or entirely covered by scales, the tips of the beaks not conspicuous in the spikes. Culms slender; spikes in a flexuous nodding head.Culms stiff; spikes approximate in an erect head.Culms $1-6 \mathrm{dm}$. high, the leaves not bunched near base;blades $2-3 \mathrm{~mm}$. wide, flat; beak of perigynium nothyaline at orifice.Culms I-3 dm. high, the leaves bunched near base;blades $1.5^{-2} \mathrm{~mm}$. wide, more or less involute;perigynium beak hyaline at orifice.
Perigynia oblong-ovate, rather strongly margined.Perigynia linear-lanceolate, very narrowly mar-gined, boat-shaped.
C. leporina.
C. phaeocephala.
C. leporinella.
B. Upper part of perigynia conspicuous, not covered by scales.
(a) Perigynia lanceolate, $5.5-8.5 \mathrm{~mm}$. in length, $3-5$ times as long as wide.
Spikes about 3, not capitate; scales little more than half length of perigynia. C. Davyi.
Spikes 6-12, capitate; scales equalling bodies of peri- gynia. C. lancifructus.
(b) Perigynia ovate or lanceolate; if lanceolate shorter than 5.5 mm . in length.

Lower bracts leaflet-like, much exceeding head.
Perigynia obscurely nerved ventrally, the beak ferruginous at orifice, bidentate.
C. athrostachya.

Perigynia strongly nerved ventrally, the beak hyaline at orifice, bidentulate.
C. tenuirostris.

Lower bracts scale-like, much shorter than or slightly exceeding head.
Perigynia flat, except where distended by achenes about equally in front and behind.
C. microptera.

Perigynia strongly plano-convex.
Perigynia ${ }_{+} 2.25-3.5 \mathrm{~mm}$. in length.
Margins of perigynia entire (or very obscurely subserrulate).
Margins of perigynia strongly serrulate.
Head stiff; culms stiff, smooth; leafblades averaging 2.5 mm . in width, light green.
Head nodding; culms very slender, roughened above; leaf-blades averaging 1.5 mm . in width, deep green.
Perigynia 3.5 mm . or more in length.
Perigynia beaks at tip and scales brownish or blackish tinged.
C. olympica.

Perigynia beaks at tip and scales reddish or reddish-brown tinged.
Perigynia and scales little reddish tinged; lower bracts at least strongly amplectant.
Perigynia and scales strongly reddish tinged; lower bracts not strongly amplectant.
(*) Perigynia with thick firm walls. Perigynia strongly few- to severalnerved dorsally. Perigynia nerveless or very nearly so ventrally.
Spikes strongly capitate; blades averaging 3 mm . wide; culms $3 \cdot 5-12 \mathrm{dm}$. high. head slender; blades averaging $1.5^{-2} \mathrm{~mm}$. wide; culms $\mathrm{I}-5 \mathrm{dm}$. high.
Culms slender; leaves not clustered, the blades I-2 dm. .1ong; spikes with ten to twenty perigynia. C. gracilior.

Carex multicostata sp. nov.

Cespitose, the culms $3-9 \mathrm{dm}$. high, rather stout, many-striate, bluntly triangular, smooth or slightly roughened on angles beneath head, exceeding leaves, aphyllopodic; sterile shoots not seen. Leaves with well-developed blades usually three or four to a fertile culm, on lower fourth, but not bunched, the sheaths strongly white hyaline ventrally, but not prolonged upward beyond blade; the blades flat, $2.5-6 \mathrm{~mm}$. wide, usually $\mathrm{I}-3 \mathrm{dm}$. long, not long attenuate. Head oblong, $2-4 \mathrm{~cm}$. long, $\mathrm{I}-2 \mathrm{~cm}$. wide, containing about ten closely aggregated but readily distinguishable gynaecandrous oblong or oblong-ovoid spikes $8-16 \mathrm{~mm}$. long, $6-8 \mathrm{~mm}$. wide, rounded or short pointed at apex, the lateral rounded and the terminal short tapering at base, the twenty to thirty perigynia appressed in many rows, the tips not conspicuous, the staminate flowers inconspicuous; lowest one to several bracts slightly prolonged, the others scale-like. Scales ovate, obtuse or acute, reddish brown with lighter midvein and conspicuous white hyaline margins, narrower and shorter than perigynia. Perigynia green or in age straw-colored, ovate, $3.5-4.5 \mathrm{~mm}$. long, $2-2.25 \mathrm{~mm}$. wide (widest near top of achene), plano-convex, winged to the rounded base, serrulate to below middle, conspicuously many nerved on outer and several nerved on inner face, abruptly contracted into a broad, flat, bidentate, non-hyaline, tawny tipped beak 1 mm . long, winged and serrulate to the tip, the teeth erect, contiguous. Achenes lenticular, broadly oval, substipitate, 1.75 mm . long, 1.5 mm . wide, short apiculate, the style slender, at length deciduous; stigmas two.

This species is related to the eastern Carex brevior (Dewey)

Mackenzie, but is distinguished by the more colored scales, more strongly nerved perigynia and relatively longer perigynia beaks. It is found in the higher mountains of southern California and extends north in the Sierra Nevadas to Nevada County.

Specimens examined

California: Bear Valley Dam, San Bernardino County, Parish 3600, June, 1895 (type, in Herb. S. B. Parish); Lake Surprise, San Jacinto Mountains, 8,200 ft., Hall 2492, July-August, 1901 (Cal.); Truckee River Basin, Nevada County, $7,000 \mathrm{ft} .$, Davy, June 25-30, 1897 (Cal.).

Carex leporinella sp. nov.
"Carex tenuirostris Olney" Bailey, Mem. Torrey Club I: 15 . 1889 (as to plant described).
Very densely cespitose from short creeping rootstocks, the culms $1.5-3 \mathrm{dm}$. high, exceeding the leaves, stiff, biennial, aphyllopodic, sharply triangular, smooth, brownish at base. Leaves with well-developed blades three to five to a fertile culm, on lower fourth and more or less bunched, the blades involute, $0.75-1.5$ mm . wide, mostly $5-10 \mathrm{~cm}$. long, sparingly roughened towards apex. Inflorescence consisting of three to six gynaecandrous spikes aggregated into a head or more or less separate, the head erect, rather stiff, $1.5-3 \mathrm{~cm}$. long, less than 1 cm . wide, the spikes narrowly oblong-oval, $6-15 \mathrm{~mm}$. long, $3^{-5} \mathrm{~mm}$. wide, short clavate at base, short pointed at apex, the staminate flowers few, the perigynia eight to twenty, closely appressed, the tips erectappressed; bracts scale-like, the lowest occasionally short prolonged. Scales oblong ovate, reddish-brown with lighter midvein and white hyaline margins, acute, slightly longer and wider than and concealing perigynia. Perigynia narrowly lanceolate, widest near middle of achene, 4 mm . long, scarcely I mm . wide, strongly plano-convex, very narrowly margined, serrulate above middle, finely striate dorsally, at first nerveless ventrally, at maturity few nerved, yellowish tinged, contracted and tapering at base, tapering into the short (1 mm . long), beak, which is light reddish tinged, not bidentate, hyaline at apex and obliquely cut dorsally. Achenes lenticular, oblong obovoid, 2 mm . long, less than I mm. wide, apiculate, the slender style at length deciduous. Stigmas two.

This species bears a close outward resemblance to Carex phaeocephala Piper, but is readily distinguished by the narrowly mar-
gined "boat-shaped" perigynia. Carex tenuirostris Olney, with which this species has been confused, is much like Carex athrostachya Olney in appearance, and is the plant described by Kükenthal as Carex macloviana var. pachystachya forma involucrata (Pflanzenreich 4^{20} : 197. 1909). Like Carex phaeocephala the present species is found on the higher peaks.

Specimens examined

California: Soda Springs of Tuolumne, Congdon, August 18, 1890 (Bailey); Summit Valley, Sierra Nevadas, Pringle, September 18, 1882 (Bailey); among summit rocks, Pyramid Peak, Eldorado County, $10,020 \mathrm{ft} .$, Hall \& Chandler 4716, August 1-2, 1903 (type, in Herb. Cal.); "Cal." (C.).

Oregon: Head of Wallowa River, 9,000 ft., Cusack 2479, August 17, 1900 (N. Y.).

Washington: Skamania County, Suksdorf 5229, August I3, 1905 (L. S.).

Carex Davyi sp. nov.

Densely cespitose, the culms $2.5-3.5 \mathrm{dm}$. high, strongly biennial, much exceeding leaves, erect but slender, sharply triangular, smooth on angles, brownish at base. Leaves with welldeveloped blades three to four to a fertile culm, on lower fourth, but not bunched, the blades flat or canaliculate, $I .5^{-2.5} \mathrm{~mm}$. wide, mostly $8-12 \mathrm{~cm}$. long, the sheaths strongly hyaline ventrally and fragile. Spikes mostly three, approximate in a head about 2.5 cm . long, the spikes oblong-obovoid, $12-18 \mathrm{~mm}$. long, $6-8 \mathrm{~mm}$. wide, rounded at apex, clavate and staminate at base, the perigynia ten to fifteen, in several to many rows, closely appressed, the beaks erect. Bracts scale-like. Scales oblong-ovate, very obtuse, chestnut with lighter center and hyaline margins, about width of but only half length of perigynia. Perigynia lanceoldte, thin, green or in age straw-colored, 7.5 mm . long, 2 mm . wide, strongly many striate dorsally, less so ventrally, contracted into a substipitate base, narrowly margined from base, serrulate from middle of achene, tapering into a sharply bidentate beak, not differentiated from body, the apex and dorsal suture reddish tinged, obliquely cut dorsally at mouth. Achenes lenticular, oblong-obovoid, 2.5 mm . long, 1.25 mm . wide, substipitate, apiculate, the slender style at length deciduous. Stigmas two.

Carex petasata Dewey (C. Liddoni Boott), to which this species has been referred, has the perigynia practically concealed by the
scales. The leaf-blades also are noticeably wider. The present species seems to be confined to the Sierra Nevadas.

Specimens examined

California: In meadows along Truckee River, Placer County, Davy 3266, June 25-30, 1897 (type, in Herb. Cal., sheet 50814); Devil's Basin, Eldorado County, 8,300 ft., Brainerd, July 19, 1897 (Cal. in part); near Snowy Cascade, Eldorado County, $6,500 \mathrm{ft}$., Brainerd IOI, July I3, 1897 (Brainerd).

Carex lancifructus sp. nov.

Culms $2.5-4.5 \mathrm{dm}$. high, stiff, erect, triangular, smooth or nearly so, much exceeding leaves, aphyllopodic, brownish at base. Leaves with well-developed blades, two to four to a fertile culm, bunched above base, the blades flat or canaliculate, thick, $2-3.5$ mm . wide, mostly $7-12 \mathrm{~cm}$. long, the sheaths tight, hyaline ventrally, little prolonged above blade, not readily rupturing. Head globose, $1.5^{-2} \mathrm{~cm}$. long, and nearly as wide, the spikes six to ten, densely aggregated, gynaecandrous, oblong-ovoid, 6-9 mm . long, 4 mm . wide, tapering at both ends, the staminate flowers inconspicuous, the perigynia eight to fifteen in several ranks, appressed, the beaks not spreading. Bracts scale-like. Scales lanceolate-ovate, acute, reddish brown with lighter midvein and narrowly hyaline margins, about width of, but shorter than perigynia. Perigynia lanceolate, thin plano-convex, strawcolored, 6 mm . long, I. 5 mm . wide, finely several to many nerved on both faces, contracted to a substipitate base, narrowly margined (serrulate above) to base, tapering into beak one-third length of body, slender above, serrulate below, bidentate, lightreddish tipped, obliquely cut dorsally. Achenes lenticular, shortoblong, nearly 2 mm . long, I mm . wide, stipitate, apiculate, the slender style at length deciduous. Stigmas two.

In Californian collections this plant has been most often confused with Carex specifica Bailey, a species differentiated from all others of the Ovales by the very membranaceous texture of the sheaths opposite the leaf-blades. This thin membranaceous easily ruptured portion is also strongly prolonged upward opposite the point of insertion of the blade. Carex lancifructus lacks these characters, and also differs in other respects, as shown in the key published herewith. It is, in fact, most closely related to Carex ebenea Rydb., a species with blackish scales, although the difference in the color of the scales gives it a very different appearance.

Specimens examined

California: Volcano Creek, Upper Kern River, Tulare County, $7,500 \mathrm{ft}$., Hall \& Babcock 5472, July, 1904 (type, in Herb. Cal., sheet 127,723); Little Lake, Meisner's Ranch, Eldorado County, 7,500 ft., Brainerd, July 17, 1897 (Cal.); Echo Lake, 7.500 ft ., Brainerd 188, July 11, 1897 (Brainerd) ; mountain north of Slippery Ford, 7,500 ft., Brainerd 191, July 19, 1897 (Brainerd).

Carex integra sp. nov.

Very densely cespitose, the culms 1.5-3.5 dm. high, slender but erect, rather bluntly triangular, smooth, much exceeding the leaves, aphyllopodic, light brownish at base. Sterile shoots numerous, with five to eight erect leaves. Fertile culms with one or two old leaves at base and with three or four well-developed leaves just above the base, the sheaths hyaline ventrally, the blades flat, $\mathrm{I}-2 \mathrm{~mm}$. wide, $3-10 \mathrm{~cm}$. long; sterile shoots with leaf-blades much longer. Spikes four to eight, densely aggregated in a head I-2 cm . long, $6-10 \mathrm{~mm}$. wide, the spikes gynaecandrous, obovoid or oblong-obovoid, $4^{-8} \mathrm{~mm}$. long, $3.5-5 \mathrm{~mm}$. wide, rounded at apex, tapering at base, the perigynia ten to twenty in several ranks, appressed or appressed-ascending. Lowest bract slightly prolonged, much shorter than head, the upper scale-like. Scales ovate, dark chestnut with prominent green midvein and in age hyaline margins, acute or short-cuspidate, nearly width of, but shorter than mature perigynia. Perigynia very small, 2.25-2.75 mm . long, $0.75^{-1} \mathrm{~mm}$. wide, plano-convex, thickish, brownish tinged, lightly few nerved dorsally, nerveless or very obscurely nerved ventrally, lanceolate, narrowly margined to the round tapering base, tapering or somewhat contracted into a slender beak one-half to three-fourths length of body, the margins smooth (or very sparingly subserrulate under a microscope), chestnutbrown tipped with white-hyaline apex, obliquely cut dorsally. Achenes lenticular, yellowish, filling perigynia, short oblong, I-2 mm . long, 0.6 mm . wide, short apiculate, the straight slender style at length deciduous. Stigmas two.

This species bears a strong outward resemblance to Carex subfusca W. Boott. It is well distinguished, however, by the very small, narrow perigynia, and especially by the margins of body and beak being smooth.

Specimens examined

California: Summit, Placer County, 7,000 feet, Heller 9841, July 16, 1909 (type, in Herb. K.M.); Jason \& Stewart's Camp, headwaters of Hat Creek, Shasta County, 2,120 m., Eggleston 7380,7430 , July 31, 1911 (K.M.); meadow near Stoneman Bridge, Yosemite Valley, Abrams 4399, July 19, 1911 (K.M.); trail to Slippery Ford, Eldorado County, Brainerd 216, July 10, 1897 (Brainerd); above Slippery Ford, Eldorado County, Brainerd 205 in part, July 15, 1897 (Brainerd).

Oregon: West slope of Three Sisters, 5,000 ft., M. E. Peck 72, July 19, 1914 (K.M.).

Carex teneraeformis sp. nov.

Cespitose, the culms $3-4.5 \mathrm{dm}$. high, erect, very slender, triangular, smooth or nearly so on angles, exceeding leaves, aphyllopodic, light brownish at base. Sterile shoots conspicuous with four to six erect leaves. Fertile culms normally making growth in one year, with three to four leaves on lower fourth, but not bunched, the sheaths strongly hyaline ventrally, the blades flat or with slightly revolute margins, 1.5 mm . wide, usually $6-18 \mathrm{~cm}$. long; sterile shoots with similar leaves. Spikes five to eight, readily distinguishable, \pm strongly separate in a slender head, 1.5^{-} 2.5 cm . long and much narrower, the spikes gynaecandrous, $3 \cdot 5^{-6} \mathrm{~mm}$. long, $3 \cdot 5-4.5 \mathrm{~mm}$. wide, rounded at apex, the lateral rounded and the terminal short tapering at base, the six to twelve perigynia loosely appressed in several ranks, with rather conspicuous tips, the staminate flowers few and inconspicuous; bracts scale-like or lowest sometimes slightly prolonged. Scales ovate, acute, light brownish with lighter midvein and inconspicuous white hyaline margins, narrower and slightly shorter than perigynia. Perigynia green, ovate, widest near middle of achene, 3.25 mm . long, I .25 mm . wide, plano-convex, thickish, winged to base, the walls submembranaceous, conspicuously several nerved on outer face, nerveless or nearly so on inner, rounded at base, serrulate above and on beak, tapering into a slender white hyaline slightly dark tipped beak, I mm. long, obliquely cut dorsally, the tip wingless and scarcely serrulate, the teeth strictly erect and closely contiguous. Achenes lenticular, short suborbicular, sessile, 1 mm . long, nearly 1 mm . wide, apiculate, the style slender, at length deciduous; stigmas two.

Related to Carex subfusca W. Boott, from which it is to be distinguished by the loose inflorescence and in general by being a
much more slender plant. It bears about the same relation to that species that Carex tenera Dewey does to Carex Bebbii Olney. The type specimen was collected "in shade of thicket" at Jonesville, Northern Butte County, at an elevation of 5,100 feet, on July 25, 1914, by Professor H. M. Hall (No. 9781), and is in my herbarium. Professor Jepson's 4374, collected July 6, 1911, at Eagle Pass, Yosemite, is to be referred here, as is probably also a young specimen collected by Bioletti near Nevada Falls, Yosemite Valley, in May, 1900.

Carex olympica sp. nov.
Densely cespitose, the rootstocks short, slender, conspicuously fibrillose covered; culms in small clumps very slender, but stiff and erect, $1.5-6 \mathrm{dm}$. high, $\mathrm{I}-2 \mathrm{~mm}$. wide at base, much exceeding leaves, roughened on angles beneath head, aphyllopodic, and light brownish at base, maturing second year, old leaves of first year's growth conspicuous. Leaves with well-developed blades, three or four to a fertile culm, inserted on lower fifth, the blades flat with slightly revolute margins, $\mathrm{I}-2 \mathrm{~mm}$. wide, $7 \cdot 5-15 \mathrm{~cm}$. long, light green, roughened towards apex; the sheaths hyaline opposite blades, truncate at mouth and not prolonged upward; sterile culm leaves similar. Spikes three to six, aggregated or in a slender more or less strongly interrupted head, 12-24 mm. long, 5-10 mm . wide, the spikes orbicular, $4-6 \mathrm{~mm}$. in diameter, rounded at apex, rounded or the terminal one clavate at base, the perigynia eight to fifteen closely packed in several rows, ascending or in age more or less spreading, the tips conspicuous; basal staminate flowers inconspicuous, except in terminal spike; bracts scale-like or lower slightly prolonged. Scales ovate, acute or subcuspidate, at maturity chestnut brown with lighter midvein and slightly hyaline margins, as wide as but conspicuously shorter than perigynia. Perigynia narrowly to broadly ovate, thickish and strongly plano-convex, narrowly winged, the walls thickish, 3.5-5 mm . long, $1.5^{-2} \mathrm{~mm}$. wide, greenish but soon becoming olivebrown tinged, rounded at base, several nerved on outer face, nerveless or very obscurely nerved at base on inner face, the body little serrulate, tapering into the serrulate beak half length of body, which is dark tipped, minutely bidentate, smooth and obscurely hyaline at the extreme apex, obliquely cut on convex side, the orifice not hyaline. Achenes lenticular, ovate, 1.25 mm . long, 0.75 mm . wide; stigmas two, slender, short.

The species here described is a widely distributed plant in British Columbia, Washington and Oregon, and extends as far
south as the northern part of California. It is one of the species of the C. festiva group with the scales dark colored at maturity, and the perigynia strongly plano-convex. In general it is most closely related to Carex pachystachya Cham., but it is a more slender plant with looser inflorescence and less spreading perigynia and narrower lighter-green leaf-blades. In Carex pachystachya, too, the culms make their growth and flower in the same year, and the white hyaline band of the leaf-sheath is very conspicuous. Another widely distributed plant of the same region is Carex Preslii Steud. (Carex multimoda Bailey). In its deep green foliage, habit of growth and leaf sheaths it closely simulates Carex pachystachya, but it has a looser inflorescence like the present species. From both Carex olympica and Carex pachystachya it differs in the reddish scales and reddish tipped perigynium beak, which, although slender at the top, is serrulate more nearly to the apex.

Specimens examined

California: Humboldt County, 3,000 ft. alt., Tracy 3390, July 7, 1911 (K.M.); Sisson, Siskiyou County, 3,500 ft., Hall \&o Babcock 4063, June, 1903 (Cal.).

Oregon: Meacham, M. E. Peck 39, July 18, 1915 (K.M.); E. Hall 585, 187 I (N.Y.).

Washington: Falcon Valley, Klickitat County, Suksdorf 6254, July I, 1908 (K.M.); Seattle, E. C. Smith 996, June 12, 1890 (Piper); Bingen, Suksdorf 2617, June 26, 1896 (K.M.); Chiquash Mountains, Suksdorf 3143, September 7, 1898 (K.M.); Sequin, J. M. Grant 701, 703, 700 in 1915 (K.M.); Olympic Mountains, Elmer 2700, June, 1900 (N.Y.).

British Columbia: Roger's Pass, Henry, June 27, 1913 (Henry); Castlegar, Kootenay, Henry, June 14, 1914 (Henry); Carbonate, Petersen 366, July 16, 1904 (N. Y.); Chilliwack Valley, Macoun 26648, June 20, 1901 (N.Y.); Comox, Macoan 349, June 21, 1893 (C.).
${ }^{\wedge}$ Carex amplectens sp. nov.
Cespitose, the culms $5-8 \mathrm{dm}$. high, exceeding leaves, aphyllopodic, triangular, stiff, slightly roughened immediately beneath head, brownish at base; sterile shoots with well-developed tall culms. Leaves with well-developed blades four to six to a fertile
culm, on lower half, not bunched, the sheaths rather loose, hyaline ventrally, soon breaking, conspicuously many-striate dorsally; the blades erect, flat, $2.5-4 \mathrm{~mm}$. wide, mostly $\mathrm{I}-2 \mathrm{dm}$. long. Head $2.5-3.5 \mathrm{~cm}$. long, $8-15 \mathrm{~mm}$. wide, the spikes six to twelve, closely approximate or lower slightly separate, ovoid or oblong ovoid, $7^{-15} \mathrm{~mm}$. long, about $4-5 \mathrm{~mm}$. wide, short clavate and sparingly staminate at base, rounded at apex, the fifteen to thirty-five perigynia closely appressed with erect tips. Bracts conspicuous, dilated at base, closely appressed to spikes, the lower three or four usually prolonged and from nearly equalling to exceeding head, the others less prolonged. Scales ovate, acute or short cuspidate, greenish and slightly tawny tinged, the midvein prominent, somewhat narrower and shorter than perigynia. Perigynia (young) ovate, $3.5-4 \mathrm{~mm}$. long, 1.75 mm . wide, rounded and contracted at base, margined, several nerved on both faces, strongly serrulate, light green, contracted into a beak one third to one half length of body, the tip slightly tawny tinged and obliquely cut dorsally. Achenes lenticular, apiculate, the slender style at length deciduous. Stigmas two.

The type specimen of this species in the herbarium of Dr. Brainerd was called to my attention by him several years ago as probably representing an undescribed species. The bracts are especially amplectant at flowering time. At maturity this character is less evident. It is a species of the Sierra Nevada Mountains.

Specimens examined

California: Yosemite, $4,000 \mathrm{ft}$., Jepson 4265 in part, June 24, 1911 (K.M.); Nevada Falls, Yosemite Valley, Bioletti, May, 1900 (K.M.); Snow Creek Trail, Yosemite, 6,000 ft., Jepson 4388 in part, July 8, 191 I (K.M.); Big Tree Grove, $4,788 \mathrm{ft}$., Bolander 4978, 1866 (Cal., Brainerd); road near Lover's Leap, Eldorado County, 5,900 ft., Brainerd 209, July 22, 1897 (type, in Herb. Brainerd).

Carex sub-bracteata sp. nov.

Cespitose, from short creeping tough black fibrillose rootstocks, the culms erect, $5^{-8} \mathrm{dm}$. high, obtusely triangular, smooth, much exceeding leaves, light brownish at base. Leaves with welldeveloped blades usually three to five to a fertile culm, on lower fourth, but not bunched, the blades flat, $2.5-4 \mathrm{~mm}$. wide, usually I-3 dm. long. Head globose or ovoid, $1.5^{-2.5} \mathrm{~cm}$. long, and rather narrower, the spikes five to ten, closely aggregated, gynae-
candrous, ovoid, rounded at base, round tapering at apex, 6-10 mm . long, $4^{-6} \mathrm{~mm}$. wide, the staminate flowers few, the perigynia ten to twenty in several to many rows, appressed or in age appressed-ascending, the beaks not spreading; one to several of lower bracts conspicuous, dilated at base, brown with hyaline margins, the tips shorter than or occasionally exceeding head. Scales ovate, obtuse or acutish, reddish brown with lighter center and hyaline margins, slightly narrower and shorter than perigynia. Perigynia dull green or soon yellowish brown, narrowly ovate, thick, plano-convex, 4 mm . long, 1.5 mm . wide, finely few nerved dorsally, nerveless or essentially so ventrally, round-tapering at base, tapering somewhat abruptly into the bidentate beak, narrowly margined (serrulate above) from base, the beak one third length of body, slender, serrulate below, chestnut tinged, obliquely cut and hyaline at apex. Achenes lenticular, thick, short oblong, 1.75 mm . long, 1.2 mm . wide, apiculate, the slender style at length deciduous. Stigmas two.

This species is closely related to Carex gracilior, described below, but is a much more robust plant with a more capitate head and wider leaf-blades. It is a plant of the Coast Ranges and extends from Santa Barbara.County on the south to Mendocino County in the north. A specimen collected by Bolander at Oakland and in the Columbia College herbarium is taken as the type.

Specimens examined

California: Meadow on Russian River, Sonoma County, Bolander 3868 , April, 1864 (Cal.); Mendocino City, Bolander 4771, Spring, 1866 (Cal.); Bolander 6203 (C., Brainerd); Monterey, Parry, April, 1850 (C.); Oakland, Bolander (type, in Herb. C.); Santa Cruz, Wood, 1866 (C.); Lake San Andreas, San Mateo County, Davy 763, June 21, 1893 (C.); and Bioletti, June 20, 1893 (C.) ; San Francisco, Jones, May 12, 1882 (N.Y.) ; Crystal Springs Lake, San Mateo County, Elmer 4420, April, 1903 (N.Y.); Kellogg \& Harford 1065, 1868-9 (N.Y.); Santa Barbara, Elmer 3756, May, 1902 (N.Y.); Comptche, Mendocino County, McMurphy 43I, May, 1903 (N.Y., L.S.); Humboldt Bay, Chandler 1II5, May, 1901 (L.S., N.Y.); Oakland, Bolander, May-June, 1862 (L.S.); "California," Brewer (L.S.).

Carex gracilior sp. nov.
Cespitose, but with slender short-creeping black fibrillose rootstocks, the clumps medium-sized, the culms slender, $3^{-6} \mathrm{dm}$. high, exceeding leaves, smooth or nearly so on angles, aphyllopodic, brownish at base. Leaves with well-developed blades three to five to a fertile culm, on lower third, but not bunched, the blades flat, $1-2 \mathrm{~mm}$. wide, $5^{-15} \mathrm{~cm}$. long. Inflorescence consisting of three to six small few-flowered spikes aggregated (or lower one or two a little separate) into a narrow or oblong head $12-20 \mathrm{~mm}$. long, $5^{-12} \mathrm{~mm}$. wide, the spikes sessile, bluntish, suborbicular, $5^{-8} \mathrm{~mm}$. long, $4^{-6} \mathrm{~mm}$. wide, the basal staminate flowers few and inconspicuous, the perigynia four to twelve to a spike, ascending to rather strongly spreading-ascending with conspicuous beaks; lower bract present, setaceous and from shorter than to (rarely) exceeding the head; the upper wanting or very much reduced. Scales ovate, obtusish or acutish, chestnut brown with lighter colored midrib and narrow hyaline margins, about width of, but shorter than perigynia. Perigynia plano-convex, thick, narrowly winged, $3.5-4.5 \mathrm{~mm}$. long, I .5 mm . wide, lance-ovate, dull green, the body faintly nerved dorsally, nerveless ventrally or nearly so, round tapering at base, tapering somewhat abruptly into the slender beak, one half length of body of perigynia, chestnut-brown and then hyaline at apex, obliquely cut dorsally at mouth, smooth towards apex, serrulate below. Achenes lenticular, obovate, 2 mm . long, 1.2 mm . wide, apiculate, the slender style at length deciduous; stigmas two.

Bolander's No. 3822, collected April, 1864, at Cloverdale, Sonoma County, and mounted on a sheet in the Leland Stanford University herbarium is taken as the type. This is a plant of the Coast Ranges and is found from San Francisco Bay, northward at least to Mendocino County.

Specimens examined

California: Mark West's Creek, Bigelow ig (Whipple Expedition), April 30, 1854 (C.); same station, Bolander 3814, April, 1864 (L.S., Cal.); Petaluma, Bolander 4635, Spring, 1866 (Cal.); Berkeley, Mrs. Walker I8, Spring, 1906 (Cal.) ; Sonoma, R. Kuhn, April 18, 1913 (K.M.); Cloverdale, Sonoma County, Bolander 3822, $3822-A$, April, 1864, (L.S.); Mendocino County, Bolander 4635 , April 12, 1866 (L.S.); Bolander \&o Keller, 1872 (C.).

Carex paucifructus sp. nov.

Densely cespitose, the culms $1-2.5 \mathrm{dm}$. high, erect, stiff, sharply triangular, smooth, much exceeding leaves, aphyllopodic, brown at base. Leaves with well-developed blades two to four to a fertile culm, bunched above the base, the blades $1.5^{-3} \mathrm{~mm}$. wide, flat or canaliculate, short, mostly $3-7 \mathrm{~cm}$. long. Head ovoid or oblong, $1-2 \mathrm{~cm}$. long, $6-12 \mathrm{~mm}$. wide, the spikes four to eight, aggregated, gynaecandrous, ovoid, tapering at base, roundtapering at apex, $6-9 \mathrm{~mm}$. long, 4.5 mm . wide, the basal staminate flowers rather conspicuous, the perigynia six to twelve, in few to several rows, appressed or appressed-ascending, the beaks not conspicuous. Lowest bract short-prolonged, much shorter than head, the others scale-like. Scales ovate, chestnut with lighter midvein and conspicuous hyaline margins, about width of, but shorter than perigynia. Perigynia dull green or soon yellowish brown, ovate, thick, strongly plano-convex, 4 mm . long, I .5 mm . wide, nerveless ventrally, finely many nerved dorsally, roundtapering at base, tapering into the scarcely bidentate beak, margined (serrulate above) from base, the beak one third length of body, slender at tip, serrulate below, reddish tipped, obliquely cut dorsally. Achenes lenticular, short-oblong, 1.75 mm . long, over I mm . wide, substipitate, apiculate, the slender style at length deciduous. Stigmas two.

Dr. Brainerd's specimen cited below and in his herbarium is taken as the type of this species. Mounted on the same sheet with a duplicate of the type in the University of California collection is a specimen of Carex Davyi Mackenzie. The plant here described is a species of the Sierra Nevada Mountains.

Specimens examined

California: Devil's Basin, Eldorado County, $8,300 \mathrm{ft}$., Brainerd 200, July 19, 1897 (Brainerd, Cal. in part); Webber Lake, Sierra County, 6,769 ft., Kennedy \& Doten 7o, July 2, 1901 (Cal.) ; Sierra Nevadạ, Brandegee (N. Y.).

Carex Harfordii sp. nov.

Cespitose, the thick rootstocks short, the culms erect, stiff, ${ }^{2} \cdot 5^{-8} \mathrm{dm}$. high, obtusely triangular, smooth, much exceeding leaves, light brownish at base. Leaves with well-developed blades usually three to five to a fertile culm, on lower fourth, but not bunched, the blades flat, $2.5-4.5 \mathrm{~mm}$. wide, usually $\mathrm{I}-3 \mathrm{dm}$. long. Head globose to oblong-ovoid, $1.5^{-2.5} \mathrm{~cm}$. long, $\mathrm{I}-2 \mathrm{~cm}$. wide,
the spikes ten to twenty, all closely aggregated, and the upper scarcely distinguishable, gynaecandrous, ovoid, rounded at base, rounded or tapering at apex, $6-10 \mathrm{~mm}$. long, $4^{-6} \mathrm{~mm}$. wide, the staminate flowers few, the perigynia ten to thirty in several to many rows, appressed-ascending or in age spreading, the beaks not conspicuous; one to several of lower bracts conspicuous, dilated and brown with hyaline margins, their tips usually shorter than or rarely little exceeding head. Scales ovate, acute, reddish brown with lighter midvein and very narrow hyaline margins, about width of and somewhat shorter than perigynia. Perigynia dull green or soon yellowish brown, narrowly ovate, thick and strongly plano-convex at maturity, 4.25 mm . long, 1.5 mm . wide, several nerved ventrally, strongly finely nerved dorsally, roundtapering to a substipitate beak, tapering into the bidentate beak, narrowly margined (serrulate above) from base, the beak one fourth length of body, slender, serrulate below, chestnut-tinged, obliquely cut dorsally and hyaline at apex. Achenes lenticular, thick, short-oblong, 2 mm . long, 1.25 mm . wide, apiculate, the slender style at length deciduous. Stigmas two.

This is a species only reported from near the coast. So far it has been found between Sonoma County on the north and Monterey County on the south. The bracts are often quite conspicuous. A specimen collected by Messrs. Kellogg and Harford (No. 1173) in 1868-9, and preserved at the New York Botanical Garden is taken as the type.

Specimens examined

California: Kellogg \& Harford 1073, 1868-9 (type, in Herb. N. Y.) ; Pacific Grove, Monterey County, in pine woods, Heller 6786, May 25, 1903 (N.Y., L.S.) ; "In salt marsh at Fort Point, San Francisco ", Bolander 1568a, June, 1862 (Cal.); "California" (C.) ; Punta de los Reyes, Bigelow, 1853-4 (C.); San Francisco, Congdon, May 3, I88I (L.S.); Petaluma, Sonoma County, Congdon, May 12, 1880 (L.S.).

Carex pachycarpa sp. nov.
Carex adusta var. congesta W. Boott, Bot. Calif. 2: 238.1880 .
Carex Liddoni var. incerta Bailey (in part), Bot. Gaz. 13: 88 .
I 888.
Culms 3-6 dm. high, erect, obtusely triangular, smooth, much exceeding leaves, light brownish at base. Leaves with well-
developed blades three to four to a fertile culm, on lower fourth, but not bunched, the blades flat, $2.5-4 \mathrm{~mm}$. wide, usually $\mathrm{I}-2 \mathrm{dm}$. long. Head globose or short ovoid, $1.5^{-2.5} \mathrm{~cm}$. long, nearly as wide, the spikes 5^{-8}, closely aggregated, gynaecandrous, ovoid, rounded at base, round-tapering at apex, 6-10 mm . long, 6-9 mm. wide, the staminate flowers few, the perigynia ten to twenty in several to many rows, appressed, the beaks not spreading; bracts scale-like, not prolonged. Scales ovate, acute or subcuspidate, light reddish-brown, with sharply defined lighter midvein and hyaline margins, about width of, but somewhat shorter than, mature perigynia. Perigynia dull green or soon straw-colored, ovate (rather narrowly), thick and strongly plano-convex, 5 mm . long, 2 mm . wide, many-striate dorsally, very faintly many-striate ventrally, round-tapering at base, contracted into bidentate beak, narrowly margined (serrulate above) from base, the beak half length of body, serrulate below, slender, reddish-tinged, obliquely cut dorsally and hyaline at apex. Achenes lenticular, thick, light brown, short oblong, 2 mm . long, 1.5 mm . wide, substipitate, apiculate, the slender style at length deciduous. Stigmas two.

Two specimens of this species in the herbarium of the University of California are in fully mature condition and are both labeled "Carex Liddonii" var. incerta Bailey. At least two of the three specimens cited by W. Boott under his Carex adusta var. congesta belong here, and as Prof. Bailey's Carex Liddonii var. incerta is based on Boott's variety primarily, it also is to be regarded as a synonym of the present species, although the only specimen cited by him (collected by Dr. Kellogg) may belong to something else. In general appearance specimens of this species strongly resemble coarse specimens of Carex abrupta Mackenzie. The perigynia, however, are markedly different, as shown in the key. This is apparently an Oregon species which ranges southward in the Sierra Nevadas.

Specimens examined

California: Big Tree Road, Silver Valley, 8,000 ft., Brewer 1977, July 31, 1863 (type, in Herb. Cal., part of sheet 1060); Big Trees, $4,788 \mathrm{ft}$., Hillebrand 2310 (Cal., mounted with type); Echo Lake, Eldorado County, 7,500 ft., Brainerd 197, July II, 1897 (Brainerd); Meisner's, Eldorado County, 7,600 ft., Brainerd 198, July 17, 1897 (Brainerd); Dinsmore's Ranch, Humboldt County, Tracy 4145, June 16, 1913 (K.M.).

Oregon: Anthony Lake, Elkhorn Mountains, M. E. Peck I,

August 19, 1915 (K.M.); Rock Creek Lake, Elkhorn Mountains, M. E. Peck 3I, August 12, 1915 (K.M.); East Pine Creek, near Cornucopia, M. E. Peck 45, August 30, 1915 (K.M.); top of Mt. Ashland, Jackson County, M. E. Peck 6, July 16, 1913 (K.M.).

Carex abrupta sp. nov.

Densely cespitose, the culms 4-6 dm. high, slender but erect, triangular, smooth, much exceeding the leaves, aphyllopodic, light brownish at base. Sterile shoots less numerous than fertile, with four to six erect leaves. Fertile culms normally making growth in one year, with three or four well-developed leaves just above the base, the sheaths hyaline ventrally, the blades flat, I. $5-2.5 \mathrm{~mm}$. wide, $5^{-15} 5 \mathrm{~cm}$. long; sterile shoots with similar leaves. Spikes four to eight, very densely aggregated in a suborbicular head $9-16 \mathrm{~mm}$. long and nearly as wide, the spikes gynaecandrous, with few staminate flowers, ovoid, $5^{-8} \mathrm{~mm}$. long, $5^{-6} \mathrm{~mm}$. wide, rounded at base and apex, the perigynia ten to twenty in several ranks, ascending. Bracts scale-like. Scales ovate, chestnut brown with greenish center and at length hyaline margins, the midvein not conspicuous, obtuse, narrower and shorter than perigynia. Perigynia $3.75-4 \mathrm{~mm}$. long, I .5 mm . wide, plano-convex but thin-walled, soon brownish tinged with several conspicuous slender nerves on both sides, oblong-lanceolate, rather narrowly margined to the rounded base, the body serrulate on the margins above, abruptly contracted into the slender blackishtipped beak with smooth margins and white-hyaline apex, obliquely cut dorsally. Achenes lenticular, oblong-ovoid, yellowish, substipitate, 1.8 mm . long, nearly 1 mm . wide, apiculate, the style slender straight, at length deciduous; stigmas two.

Distinguished by its abruptly beaked thin-walled strongly nerved perigynia.

Specimens examined

California: West Branch of North Fork of Feather River, near Sterling, Butte County, 3,000 ft., Heller 10820, June 7, 1913 (type, in Herb. K.M.); Hot Springs Valley near Lassen Peak, 6,000 ft., Jepson 410I, June 9, 1910 (K.M.); Poison Meadow, Big Arroyo, Sierra Nevada, 9,500 ft., Jepson 1131, August 1-12, 1900 (K.M.); Vivian Creek, San Bernardino County, 9,500 ft., Geo. B. Grant 6403, July 24, 1904 (Parish, K.M.); Mt. Tallac, near Lake Tahoe, 9,000 ft., Abrams 4848, July 29, 1911 (K.M.); Northeastern Modoc County, Mrs. Manning 952 in part, June, 1903
(Cal.); Round Valley, San Jacinto Mountains, 9,500 ft., Hasse, June, 1903 (Parish); east slope of San Jacinto Peak, 9,600 ft., F. M. Reed 2499, July 11, 1908 (Parish); Bluff Lake, San Bernardino Mountains, Mrs. Benton, September, 1908 (Parish); San Jacinto Mountains, io,800 ft., Hall 2416, July, 1901 (L.S.); Mt. Dana, ir,ooo ft., Bolander 5060, 1866 (Cal.); alpine meadows along river, Truckee River Basin, Nevada County, $7,000 \mathrm{ft}$., Davy, June 25-30, 1897 (Cal.); Ebbett's Pass, 8,500 ft., Brewer 2024, August 3, 1863 (Cal.); 2075 (L.S.); Lassen's Peak, 9,000 ft., Brewer 2178 , September 26-28, 1863 (Cal., L.S.); Echo Lake, $7,600 \mathrm{ft}$., Brainerd 193, July 11, 1897 (Brainerd); Mt. Goddard, 11,000 ft., Hall \& Chandler 693, July 24-26, 1900 (L.S.); "California," 1866 (N.Y.); Soda Springs of Tuolumne, Congdon, August 14, 1894 (L.S.); near Bear Valley, San Bernardino County, Abrams 2856, August 2, 1902 (N.Y.).

Oregon: Head of East Pine Creek, M. E. Peck 58, 59, September 3, 1915 (K.M.); Anthony Lake, Elkhorn Mountains, M. E. Peck 4, 5, August 19, 1915 (K.M.); Silvies River, near mouth of Emigrant Creek, Harney County, M. E. Peck I, July 9, 1912 (K.M.).

Carex mariposana Bailey, sp. nov.
Densely cespitose, the culms $2.5^{-6} \mathrm{dm}$. high, slender, much exceeding leaves, triangular, smooth, aphyllopodic, light brownish at base. Leaves with well-developed blades three to five to a fertile culm, on lower fourth, somewhat bunched, the blades flat, ${ }^{2-3} \mathrm{~mm}$. wide, usually $\mathrm{r}-2 \mathrm{dm}$. long. Head $2-3.5 \mathrm{~cm}$. long, oblong or ovoid, the spikes four to twelve, the upper closely approximate, the lower one to three slightly separate, ovoid or oblong ovoid, $8-12 \mathrm{~mm}$. long, 4.5-7 mm. wide, short clavate and sparingly staminate at base, rounded at apex, the ten to twenty perigynia closely appressed with erect tips. Lower one or two bracts short prolonged, much shorter than head, the others scalelike. Scales ovate, acute, reddish with lighter center, noticeably narrower and shorter than perigynia. Perigynia deep green or in age greenish straw-colored, contrasting strongly with scales, narrowly ovate, 5 mm . long, 1.75 mm . wide, plano-convex at maturity, the walls membranaceous, strongly striate on both faces, narrowly winged, serrulate to middle, round tapering at base, tapering into slender, bidentate beak, one fourth length of body, light reddish tipped and scarcely hyaline at apex, ob-
liquely cut dorsally. Achenes lenticular, obovoid, 2 mm . long, I. 5 mm . wide, substipitate, short apiculate, the slender style at length deciduous. Stigmas two.

Professor Bailey has long had in his herbarium under the name here published, the four sheets of this species referred to below, all collected in Mariposa County by Mr. J. W. Congdon. As all of these specimens are in very poor desiccated condition, I have taken the liberty of designating as the type of this species a most excellent specimen collected by Professor W. L. Jepson in the Tuolumne Meadows, No. 4476, on the 20th of July, i91 I, and in my herbarium. This species is closely related in technical characters to Carex abrupta Mackenzie. However, the red scales in strong contrast with the green perigynia, together with the looser inflorescence, give it quite a different aspect, especially in fresh material.

Specimens examined

California: Yosemite, Bolander 6222, Summer, i866 (Cal.); Yosemite, 4,000 ft., Brewer 164I, June 17, 1863 (Cal.); Soda Springs of San Joaquin, Congdon, Aug. 20, 1895 (Cal.); Lake Tahoe, Bear Valley, Kellogg (L.S.); Summit Camp, Sierra Nevada, Kellogg, July 9 (L.S.); headwaters of Hat Creek, Shasta County, 2,120 m., Eggleston 7880, July 31, 1911 (N.Y.); Clark's ranch, on branch of Merced River, Torrey 55I, 1865 (N.Y.); Little Lake, near Meisner's Ranch, 7,600 ft., Brainerd, July 17, 1897 (Brainerd); above Slippery Ford, Brainerd 205 in part, July 13, 1897 (Brainerd); Strawberry Creek, Brainerd 226, July 15, 1897 (Brainerd); Yosemite Valley, Bioletti, 1900 (Cal.); Lake Tenaya, Yosemite, Hall \&o Babcock 3639, June, 1902 (Cal.); Tuolumne Meadows, Sierra Nevada, $8,800 \mathrm{ft}$., Jepson 4476, July 20, 1911 (type, in Herb. K.M.) ; Johnson Lake, Mariposa County, Congdon, August 2, 1898 (Bailey); Crescent Lake, Mariposa County, Congdon, August 2, 1898 (Bailey); Yosemite, Congdon, August 28, 1899 (Bailey); Bridal Veil Trail, Mariposa County, Congdon, August 3, 1898 (Bailey); Butte Mountain, Northern Butte County, Hall 9792, 7,000 ft., July 27, 1914 (K.M.).

A note on the structural dimorphism of sexual and tetrasporic plants of Galaxaura obtusata

Marshall A. Howe

In a monograph of Galaxaura, a genus of calcified red algae of the family Chaetangiaceae, published by the late Professor Kjellman of Upsala in 1900,* two groups of species, denominated the "Cameratae" and the "Spissae," are recognized in the section Dichotomaria, the section that includes the West Indian Galaxaura obtusata (Ell. \& Sol.) Lamour. and its allies. The plants of these two groups differ markedly and constantly in the structure of the cortex, as may be determined by a microscopic examination, particularly after decalcification. In both groups, the cortex consists essentially of three layers of cells. In the "Cameratae," the cells of the outermost or superficial layer are funnel-shaped or broadly obconic and are supported by the cylindric, clavate, or narrowly funnel-shaped, widely spaced cells of the middle layer, which, in turn, spring from the very large firmly united cells of the inmost layer; the funnel-shaped superficial cells are in contact by their edges only and they arch over large intercellular chambers, which are continuous or confluent, being bounded below by the large cells of the inmost layer and merely traversed rather than bounded by the widely spaced stalk-cells; in other words, the single superficial layer constitutes a sort of a roof or outer sheath, supported by short pillars. In the "Spissae," the cells of the outermost or superficial layer are hemispheric or saucer-shaped and are supported by the ovoid or subglobose, connivent or rather close-set cells of the middle layer, which, in turn, rest upon the large firmly united cells of the inmost layer; the intercellular spaces are comparatively small and instead of obviously extending from the superficial layer to the inmost layer they are commonly divided into two series or strata by the rounded connivent cells of the middle layer. In other words, the middle layer of the

[^80]cortex in the "Cameratae" consists chiefly of large obviously confluent intercellular chambers filled with lime, while in the "Spissae" this middle layer is made up chiefly of rounded calcified cells. Expressed in another way, it may be said that the two outer layers of the cortex in the "Cameratae" are filamentous, if two cells in a row (or, often, two or three cells supported capitately by a single stalk-cell) may be said to constitute a filament, while in the "Spissae," the cortex is parenchymatous or subparenchymatous throughout. In the process of decay or on teasing to pieces with needles after decalcification, it often happens that the outer cortex peels off, leaving the inner cortex still surrounding the central strand of filaments. In the "Cameratae", such a separation commonly takes place near the base of the stalk-cells constituting the middle layer, so that the two outer layers are exfoliated together, leaving the stumps of the stalk-cells protruding from the large firmly coherent cells of the inmost layer. In the "Spissae," the separation under such circumstances takes place between the two outer layers, only the single superficial layer being exfoliated, the middle layer of rounded subparenchymatous cells remaining firmly attached to the larger cells of the inmost layer.

In the course of a microscopic examination of certain specimens of Galaxaura from Bermuda, Florida, and the West Indies, representing forms currently referred to G. obtusata, it was noted that some of these specimens showed the cortex structure of the "Cameratae" group while others showed that of the "Spissae" group. It was at first supposed that two or more species were represented in this material, but it was afterwards observed that the two forms were often collected together almost throughout their range, that they showed the same or parallel variations in external characters, and that they could not be separated without a microscopic examination. A little later it was noted that whenever reproductive organs could be found (and by search they could be found in most of the specimens), the plants of the "Cameratae" structure were always tetrasporic, while those of the "Spissae" structure were always antheridial or cystocarpic. This discovery led to a careful reexamination of all the available material, with results that were confirmatory of this correlation.

One of the largest single collections at hand was that made by the writer on Condé Beach, Guantanamo Bay, Cuba, in March, 1909 (no. 6460), where nineteen plants or fragments of plants were picked up on the shore (the species is apparently an inhabitant of rather deep water and is found washed ashore or by dredging in $7-18$ meters). Of these nineteen, three were antheridial and of the "Spissae" structure," three were cystocarpic and of the "Spissae" structure, twelve were tetrasporic and of the "Cameratae" structure, and the remaining one was apparently sterile and of the "Cameratae" structure. Of five plants dredged in 18 meters off Ratones Island near Ponce, Porto Rico (no. 7575), four belonged to the "Cameratae" and were tetrasporic, and one belonged to the "Spissae" and was cystocarpic. Of numerous plants or fragments dredged in 7-10 meters at the mouth of Guanica Harbor, Porto Rico (no. 7005), all of the thirteen examined showed the "Spissae" structure, three or four of them being evidently antheridial, one cystocarpic, and the rest apparently sterile. Of five plants found washed ashore in the harbor of Port Morant, Jamaica (no. 6276), two had the "Spissae" structure and were cystocarpic, while three showed the "Cameratae" structure, though tetraspores could actually be found on only one of the three. In six plants from Barbados, similar to each other in general habit, though not all collected at the same time and place, five were "Cameratae," four of them with obvious tetraspores, while the sixth showed the structure of the "Spissae" group and was cystocarpic. On the coast of Florida also, in the region of Jupiter Inlet, Indian River, and Lake Worth, in plants that are somewhat larger, coarser, and longer-segmented than the typical Galaxaura obtusata, the same correlations may be observed.

Finally, it is to be noted by consulting Kjellman's monograph, that all of the species that he placed in the group "Cameratae," in so far as their mode of reproduction was known to him, are tetrasporic, while of the "Spissae" the one species of which the reproductive organs are described is cystocarpic.

For complete proof that the "Cameratae" structure is a constant characteristic of the tetrasporic plants of Galaxaura obtusata and its allies and that the "Spissae" structure is likewise a constant character of the sexual plants, it would of course be desirable that
actual cultures should be made under control conditions as has been done by Hoyt* and by Lewis \dagger to demonstrate the alternation of generations in certain other tetraspore-producing algae. This could be done only in tropical or subtropical waters, would probably require months for its accomplishment, and is not likely to be achieved in the immediate future. Meanwhile, however, it seems to the writer that the proof is conclusive that the suggested correlation exists, that the "Spissae" and "Cameratae" characters, first accurately pointed out by Kjellman, do not offer a proper basis for subgeneric groupings of species as supposed by him, but merely distinguish the gametophytic and sporophytic phases in the life-cycle of a single species.

It is well known that differences of habit occur between sexual and tetrasporic plants of certain red algae, as, for example, in species of Griffithsia, but such differences seem to be due largely to the presence of the reproductive organs themselves or to differences in the form of the cells that are rather directly concerned with their production. So far as is known to the writer of these notes, there has been no previous record of a case in which there has been alleged to exist any such constant and pronounced dimorphism in the purely vegetative microscopic structure of the sexual and tetrasporic plants in the Rhodophyceae as is here attributed to Galaxaura obtusata-differences that do not express themselves in general habit, but afford an easy means of distinguishing a tetrasporic from a sexual plant, even though apparently sterile.

> New York Botanical Garden, Bronx Park, New York City

[^81]
The flora of Ladak, Western Tibet. II. List of Ladak plants

Ralph Randles Stewart

The terminology employed in the present list does not always agree with the most advanced usage in North America because of the desire to make it conform to that in Hooker's Flora of British India (22). Hooker's work is likely to be used in India for years to come, and Kew standards rather than American will be followed. Where Hooker's name has been changed it is given as a synonym in parentheses.

The identifications in most cases are my own, though I have had a great deal of assistance from members of the staff at the New York Botanical Garden and from Mr. Hutchinson of Kew, who kindly determined a number of difficult specimens.

As my plants were all collected between July 17th and August 2Ist, it is hardly necessary to print the date of each specimen and as Hooker is careful to give altitudes, only those that differ from his or those that seem specially noteworthy are given. A list of the heights of the localities mentioned is appended, however, so that the approximate height at which individual plants grew can be found out if desired.

The following abbreviations are used: FBI, Hooker's Flora of British India (22); Hend., Henderson and Hume's Lahore to Yarkand (2I) ; J.L.S., J. L. Stewart's Punjab Plants (34), etc.; R.R.S., R. R. Stewart. Species marked with an asterisk (*) were not found by me.

FUNARIACEAE

Funaria submicrostoma C. Müll. Fotu La.
BRYACEAE
Bryum tibeticum Mitt. \dagger Sapi La.

POLYPODIACEAE

Cystopteris fragilis (L.) Bernh. Common throughout.
\dagger A second undetermined species of Bryum was collected at Yarungshan.

EQUISETACEAE

Equisetum arvense L.* Dras (Hend.).
" Diffusum Don. Khalotse to Yuru.
" Ramosissimum Desf. Spitug. Baker (\mathbf{x}) says this is equally E. elongatum Willd. and E. ramosum Schk.; Henderson and Hume call their Indus Valley specimens E. ramosum.

PINACEAE

Juniperus macropoda Boiss. Not rare; specimens from Himis Shukpa grove the best.
Juniperus Wallichiana Hook. f. (J. Pseudo-Sabina Fisch. \& Mey.). "Western Tibet" (Brandis, FBI).
Juniperus communis L.* Dras Valley (Hend.).
GNETACEAE
Ephedra Gerardiana Wall. Common, very variable in height.
" intermedia Schrenk \& C. A. Mey.* Zanskar (Brandis, FBI).
NAIADACEAE
Potamogeton pectinatus L. Common.
" perfoliatus L. Common.
Zannichellia palustris L.* "Western Tibet" (FBI).

JUNCAGINACEAE

Triglochin maritima L. Common. " palustris L. Common.

GRAMINEAE

Erianthus Ravennae Beauv.* "Western Tibet" (FBI); probably from Skardo.
Andropogon Ischaemum L. Common.
Paspalum ambiguum DC.* "Western Tibet" (FBI).
Panicum miliaceum L. Suru, cultivated.
Setaria viridis (L.) Beauv. Leh, Shergol.
Pennisetum lanatum Klotzsch.* "Western Tibet" (FBI); probably not from Ladak.
Pennisetum flaccidum Griseb. Very common.
Stipa barbata Desf. (under S. orientalis Trin. in FBI). Tralse, Leh, Himis Shupka, Tsokar Lake.
Stipa basiplumosa Munro.* Nubra and Lanak La (FBI).
" purpurea Griseb.* Lake Rukshan (FBI).
" purpurea longe-aristata.* "Western Tibet" (FBI).
" mongolica Turcz,* Ladak (FBI).

* sibirica Lam.* Dras (Hend.).
" Hookeri Stapf.* Nubra (FBI).
" splendens Trin. Spituk, Himis Shupka.
Oryzopsis lateralis Stapf.* "Western Tibet" (FBI).
" Munror Stapf.* Ladak, Nubra, Zanskar (FBI).
Milium effusum L.*
Heleochloa schoenoides (L.) Host. "Western Tibet" (FBI).
Phleum alpinum L. Suru to Sirimarg.

Alopecurus himalaicus Hook. Rusi La. " pratensis L.* Zoji La (Hend.).
Polypogon monspeliensis Desf. Saspola.
Agrostis alba L. Common.
" canina L. Ladak (Hend.), "Western Tibet" (FBI).
Calamagrostis littorea DC. Common.
Stoliczkar Hook.* Zanskar on Pensi La (FBI).
deyeuxia compacta Munro.* Nubra (FBI).
" scabrescens Munro.* Leh (Meebold).
Atra caryophyllea L.* "Western Tibet" (FBI).
Deschampsia caespitosa (L.) Beauv. Rogshin. koelerioides Regel.* Dras (FBI).
Trisetum spicatum (L.) Richter (Avena subspicata Clairv, in FBI). Khardong La, Rusi La.
Avena fatua L. Field work in Ladak.
" sativa L. Himis Shukpa, not caltivated.
Danthonia kashmiriana Duthie.* "Western Tibet" (FBI).
Chloris virgata Sw.* "Western Tibet" (FBI); doubtfully in Ladak.
Phragmites communis Trin. Spituk, Himis Shupka.
Eragrostis minor Host. Leh.
Koeleria cristata Pers.* Dras Valley (Hend.), "Western Tibet" (FBI).
" argentea Griseb.* "Western Tibet" (FBI).
Catabrosa aquatica angusta Stapf.* Lanak La (Fbi), Leh (Meebold). " Thomsoni Hook.* Nubra (FBI).
Melica Cupani Guss.* (M. ciliata L. of Hend. and of Duthie). Dras (Hend.),
"Western Tibet" (FBI).
Briza media L.* "Western Tibet" (FBI).
Dactylis glomeratal. Dras.
Schizmus marginatus Beauv.* Nubra, Dras (FBI).
Poa persica Trin.* "Western Tibet" (FBI).
" bulbosa L.* Zanskar (FBI).
" alpina L.* Ladak (Hend.), "Western Tibet" (FBI).
" tibetica Munro.* Ladak, saline plains (FBI).
" pratensis L. Rogshin, Nyemo?
" attenuata Trin. Khardong La.
" nemoralis ligulata Stapf. Rokshin, Suru, Yarungshan.
" tremula Stapf.* Ladak (FBI).
" annua L. Yarungshan.
Glyceria distans Wahlenb.* "Western Tibet" (FBI).
." Thomsoni Stapf.* Rupshu (FBI), Leh (Meebold).
". poakoides Stapf.* Rupshu (FBI).
Festuca nitidula Stapf.* Nubra. (FBI).
" altaica Trin.* Dras. (FBI).
" rubra L. Rogshin.
" sibirica Hack.* Ladak. (FBI).
" Myuros L.* "Western Tibet" (FBI).
Bromus crinitus Boiss. \& Hohen. Rachogpa.
" tectorum L. Namika La, Timisgam.
" patulus Mert. \& Koch.* Ladak (Hend.).

Bromus oxyodon Schrenk.* Dras, Zanskar (FBI).
" macrostachys Desf. Rupshu.
" barbatus Beauv. Tsokar Lake; common in Indus Valley.
Duthiea bromoides Haeckel.* "Western Tibet" (FBI).
Lolium perenne L.* "Western Tibet" (FBI).
Agropyron longe-aristatum Boiss. Khardong.
" Jacquemontir Hook.* Nubra (FBI).
" Repens (L.) Beauv.* Ladak (FBI).
". dentatum elatum Hook. f.* Dras. (FBI).
Triticum vulgare L. Cultivated in Ladak.
Hordeum vulgare L. Cultivated widely to about $14,000 \mathrm{ft}$. alt.
" nodosum L. (H. secalinum Schreb, in FBI). Common.
Elymus sibiricus L. Common.
" dahuricus Turcz. Common.
" dasystachys Trin. Common.

CYPERACEAE

Scirpus paucielorus Lightf.* "Western Tibet" (FBI).
" pumilus Vahl.* Skardo and Hanle (FBI).
" setaceus L. Timisgam.
" Lacustris L.* Ladak (FBI).
" Caricis Retz,* Leh (FBI).
" RuFus (Huds.) Schrad. "Western Tibet" (FBI), Himis Shupka?
Eleocharis palustris (L.) R. \& S. Khardong.
Kobresia pygmaea C. B. Clarke.* Ladak (FBI).
" Capillifolia (Decne.) C. B. Clarke.* Kangi (Meebold).
" schoenoides (C. A. Mey.) Steud. Tsokar Lake, Khardong.
" Royleana (Nees) Boeck.* "Western Tibet" (FBI).
" Royleana Kokanica (Regel) Kükenth.* Kangi (Meebold).
" macrantha Boeck.* Nubra and Ladak (FBI).
Carex incurva Lightf.* Kunawar and Kashmir to the Karakorum (FBI).
" stenophylla Wahlenb.* Piti and Kashmir to the Karakorum (FBI).
" RIGIDA Good. Khardong, Rusi La?
" vulgaris Fries.* From Gilgit to Lahoul (FBI).
" microglochin Wahlenb.* Karakorum to Kunawar (FBI).
" parva Nees.* Deosai to Sikkim (FBI).
" nivalis Boott. Suru, Baralacha.
" Moorcroftir Falc. Often common at high altitudes.
" ustulata Wahlenb.* Karakorum to Sikkim (FBI).
" diluta M. Bieb.* Indus Valley (FBI).
" haematostoma Nees.* Nubra (FBI).
" oligocarpa Schkuhr.* Dras to the Karakorum (FBI).
" hirtella Drej.* Eastern Kangi (Meebold).

LEMNACEAE

Lemna minor L.* "Western Tibet" (FBI).
JUNCACEAE
Juncus membranaceus Royle. Rusi La, Dras, Sapi La, Suru to Sirimarg. " Sphacelatus Decne. Khardong La (immature and possibly J. himalensis Klotzsch.), East Kangi (Meebold).

Juncus lampocarpus Ehr.* "Western Tibet" (FBI).
" triglumis L.* "Western Tibet" (FBI).
" himalensis Klotzsch.* "Western Tibet" to Bhotan (FBI).
" Leucomelas Royle.* "Western Tibet" (FBI).

LILIACEAE

Eremurus himalaicus Baker. Near Dras.
Gagea persica Boiss. Kangi (Meebold).
Allium Cepa L. Cultivated.
" Semenovi Regel.* Kangi (Meebold).
" Schoenoprasum L. Kangi (Meebold).
" Platyspathum falcata Regel.* "Western Tibet" (FBI).
" Jacquemonti Regel.* "Western Tibet" (FBI); probably southeast of Ladak.
Allium odorum L.* Indus Valley, Ladak (Hend.), "Western Tibet" (FBI).
" Govanianum Wall.* Dras Valley (Hend).
" oreoprasum Schrenk.* Zalung-Karpo Pass (FBI).
" Loratum Baker.* \dagger "Western Tibet" (FBI).
Fritillaria Roylei Hook. Zoji to Matayan.
Lloydia serotina Roxb. Ladak (Hend., FBI).
Polygonatum verticillatum All.* Dras Valley (Hend.).

IRIDACEAE

Iris ensata Thunb. Common in the Indus Valley.
" kamaonensis Wall.* Dras (Duthie), Ladak (Hend., J.L.S.).

ORCHIDACEAE

Orchis latifolia L. Zoji Matayan.
Herminium Monorchis R. Br. Himis Shupka.
Epipactis latifolia Thomsoni Hook. f.* "Western Tibet" (FBI).

SALICACEAE

Populus alba L.* To 9,200 ft. alt. in Tibet (FBI).
" euphratica Oliv.* Nubra along the Shayok (FBI).
" candicans Ait. Commonly cultivated in Ladak; especially fine specimens are in the commissioner's garden at Leh.
Populus nigra italica Du Roi. Commonly cultivated, especially in Leh.
". ciliata Wall.* Leh (Meebold).
Salix alba L.* Commonly cultivated.
" elegans Wall.* Dras Valley near Snow (Hend.).
" sclerophylla Anderss.* Dras (FBI).
" Fragilis L.* Cultivated in "Western Tibet" (Brandis).
" hastata L.* North side, Zoji (Hend., named S. arbuscula?), "Tibet" (FBI).
" daphnotdes Vill. Sapi River?, "Western Tibet" (FBI), Ladak (Hend.).
" flabellaris Anderss,* Cultivated in Ladak (Brandis), Kangi (Meebold).
". pycnostachya Anderss.* Cultivated in Ladak (Brandis).
" angustifolia Willd. Cultivated at Khalotse (R.R.S.), Nubra and Shayuk (FBI).
\dagger An undetermined species of Allium, close to A. rubellum Bieb., was collected at Suru.

```
Salix divergens Anders.* Zanskar. (FBI).
    " tetrasperma Roxb.* Dras Valley (Hend.).
    " oxycarpa Anderss.*† Kangi (Meebold).
```


JUGLANDACEAE

Juglans regia L. Cultivated in Indus Valley.

BETULACEAE

Betula utilis D. Don. Not noticed beyond the Zoji Pass (R.R.S.), (Hend.).

ULMACEAE

Ulmus parvifolia Jacq. Saspola (R.R.S.), Nubra (FBI).

URTICACEAE

Urtica hyperborea Jacq. Lachalung, Kargil?
" dioica L.* "Western Tibet" (FBI).
Pilea peploides Hook. \& Arn.* Zanskar (F BI). Parietaria debilis Forst.* "Western Tibet" (FBI).

MORACEAE

Morus alba L. Cultivated in the Indus Valley.

SANTALACEAE

Thesium himalense Royle.* Dras Valley (Hend., under Th. multicaule Ledeb.), East Kangi (Meebold), "Western Tibet" (FBI).

POLYGONACEAE

Rumex orientalis Bernh. Nyemo. The fruit is almost free from tubercles and the plant may therefore be R. aquaticus L. The same thing, collected by Schlagintweit, is marked " R. crispus L. var."
Rumex Acetosa L.* Dras (Hend.).
Oxyria digyna (L.) Hill. Saspola, Baralacha.
Rheum spiciforme Royle. Lachalung La.

* tibeticum Meissn. Gya.
" Webbianum Royle.* Kangi (Meebold).
" Emodi Wall.* Kangi (Meebold).
Polygonum islandicum Hook. Gya.
" Filicaule Wall.* Ladak (FBI).
" Cognatum Meissn. Dras, Baralacha.
" paronychioides C. A. Mey. Kharbu, Leh?
* aviculare L. Fotu La.
". tubulosum Boiss.* "Western Tibet" (FBI), Leh (Meebold).
" molliafeorme Boiss. Baralacha, very dwarf.
" viviparum L. Khardong La, Kharbu,
" Sphaerostachyum Meissn.* "Western Tibet" (FBI).
" amplexicaule D. Don. Suru.
" Affine D. Don. Sapi La, Baralacha,
" Vaccinitifolium Wall.* Ladak (FBI).
" Lapathifolium L. Khalotse to Yuru.

Polygonum tomentosum Schrank. Leh (R.R.S.); a specimen of this from Schlagintweit is mixed with P. Persicaria.
Polygonum Persicaria L.* "Western Tibet" (FBI).
" Hydropiper eglandulosa Hook. f.* Ladak (FBI).
. polystachyum Wall. Suru.
" tortuosum D. Don.* Rupshu, Sapi La, Lachalung.
" sibiricum Laxm. Gya, Himis, Lachalung; very dwarf.
" Convolvulus L.* Nubra (FBI), Eastern Kangi (Meebold, as P. nepalense Meissn.).
Polygonum alatum Buch.-Ham. Timisgam.
Fagopyrum tataricum Gaertn. Leh, etc., cultivated.
" esculentum Moench.* Weed of cultivated grounds in Ladak (Hend.), Zanskar, etc. (FBI).

CHENOPODIACEAE

Chenopodium album L. Lachalung, $16,000 \mathrm{ft}$. alt. A Himis specimen is only 2 in . tall. Ubiquitous.
Chenopodium opulifolium Schrad.* "Western Tibet" (FBI).
" Hybridum L.* Ladak (FBI).
" Glaucum L.* Ladak (FBI).

* Botrys L. Common weed in Indus Valley; Ladak.
. Blitum Hook. Matayan.
Atriplex hortensis L.* "Western Tibet" (FBI).
" Crassifolia C. A. Mey. Rachogpa, Fotu La, Kargil.
" rosea L. Leh (Hend.), Sassar and Haule (FBI), Rokshin (R.R.S.).
Eurotia ceratoides C. A. Mey. Common, sometimes furnishing the only fuel at high altitudes.
Axyris amaranthoides L.* "Western Tibet" (FBI).
" amaranthoides humifusa? Rusi La.
Chenolea divaricata Hook. Nyemo; a colonial annual, forming dense, hairy, pyramidal masses in the desert. This may be the Echinopsilon mollis of Henderson, which he noted in the Indus Valley.
Kochia prostrata Schrad. Dras, Namika, Kargil.
" odontoptera Schrenk. Saspola, Himis.
Corispermum hyssopifolium L.* "Western Tibet" (FBI).
Suaeda corniculata Bunge.* "Western Tibet," Parang Valley and Hanle plains (FBI).
Suaeda microsperma Ledeb. Ladak, banks of the Indus, Pangong Lake, etc. (FBI); I have immature specimens from Spitug by the Indus that seem to be this.
Salsola Kali L. Khalotse to Leh. ." collina Pall. Khalotse to Leh, Tsokar Lake.
Haloxylon Thomsoni Bunge. Tralsi, Nyemo, Leh.
Halocharis violacea Bunge. Saspola, Gya, Tralse, Leh?
Halogeton glomeratus C. A. Mey. Gya, Leh.

CARYOPHYLLACEAE

Stellaria media (L.) Cyrill. Leh.
" tibetica Kurz.* Trantse Lundo (FBI).
" graminea L. Common.
.. DECUMBENS Edgew. Baralacha.

Stellaria glauca With.* Indus Valley (FBI).
" subumbellata Edgew.* Nubra (FBI).
". Semivestita Edgew.* Kangi (Meebold).
Cerastium trigynum Villars. Khardong.
" vulgatum L. Zoji to Matayan.
" vulgatum tibetica Edgew. \& Hook. f.* Ladak.
" vulgatum nepalense Wall.* Kangi (Meebold).
Sagina procumbens L.* "Western Tibet" (FBI).
Arenaria Griffithsir Boiss. Dras Kharbu, Sapi La, Rusi La.
" kashmirica Edgew.* Kangi (Meebold), "Western Tibet" (FBI).
" musciformis Wall. Lachalung.
" foliosa Royle. Sapi.
" SERPYLLifolia L.* "Western Tibet" (FBI).
" Stracheyi Edgew.* Ladak (FBI).
" holosteoides Edgew. Common in fields.
Thylacospermum rupifragum Schrenk.* "Alpine Western Tibet" (FBI).
Silene vulgaris (Moench.) Garcke (S. inflata Smith). Common in fields.
" conoidea L.* Moolbeck (Hend.), Leh (Meebold), Ladak (FBI).
" Moorcroftiana Wall. Namika La, Kharbu, Baralacha.
" tenuis Willd. Common.
Lychnis apetala L. Yarungshan, Khardong, Lachalung.
" himalayensis Edgew. Leh, Suru; more than minutely pubescent.
" nutans Benth. Suru.
" macrorhiza Royle. Lachalung.
Gypsophila sedifolia Kurz. Zanskar and Dras (FBI); mine is sine loco.
Dianthus anatolicus Boiss. Zoji to Matayan, Sapi, Baralacha.
" deltoides L.* "Western Tibet" (FBI).
" Seguieri Vill. Ladak (FBI).
" Angulatus Royle.* Zanskar (FBI).
" CRinitus Sm.* Moolbeck (Hend.), Western Tibet (FBI).
Saponaria Vaccaria L. A common weed in fields.

RANUNCULACEAE

Isopyrum Grandiflorum Fisch. Lachalung.
Aquilegia vulgaris viscosa Hook. f. \& Thoms. Kargil, Lachalung.
" vulgaris pyrenaica (DC.) Hook. f. \& Thoms. Moolbeck, Sapi La.
Delphinium Brunonianum Royle. Khardong, Takilung La, Yarungshan, etc. " Cashmirianum Royle. Sapi La.
Aconitum heterophyllum Wall. Suru to Sirimarg, Yarungshan.
Napellus multifidum (Royle) Hook. f. \& Thoms. Suru, Sapi La.
Anemone rupicola Cambess. Rusi La, Zoji to Matayan.
" rivularis Buch.-Ham. Timisgam.
" albana Stev.* "Western Tibet" (FBI).
Clematis orientalis acutifolia Hook. f. \& Thoms. Common in the Indus Valley; one collection near Saspola Drokpo had almost black flowers.
Oxygraphis polypetala Hook. f. \& Thoms.* Kangi La (Meebold), Dras (Duthie, etc.).
Ranunculus Cymbalaria Pursh. Common; the leaves are smaller and less lobed than American specimens.

Ranunculus hyperboreus natans Regel. Khardong.
" hyperboreus multifidus Hook, f. \& Thoms.* Ladak (FBI).
" Pulchellus C. A. Mey. Common at high levels.
" Laetus Wall.* Near Zoji (Hend.), "Western Tibet" (FBI).
" affinis R. Br. Kharbu.
" hirtellus Royle. Common, especially along the great range of the Himalaya.
Ranunculus lobatus Jacquem.* Ladak (Hend.), Zanskar (FBI).
" AQUATILIS TRIChophyllus Gray. Matayan.
Thalictrum minus L. To Matayan.
" minus foetidum (L.) Hook. f. \& Thoms. Common in villages.
" alpinum L.* "Western Tibet" (FBI).
" platycarpum Hook. f. \& Thoms.* Nubra (FBI).
" Rutaefolium Hook. f. \& Thoms.* "Western Tibet" (FBI).
Adonis chrysocanthus Hook. f. \& Thoms. Matayan.

BERBERIDACEAE

Podophyllum Emodi Wall. Suru.
Berberis vulgaris L. Near Kargil (Hend.), "Western Tibet" (FBI).
" ulicina Hook. f. \& Thoms.* Nubra (FBI).
PAPAVERACEAE
Hypecoum leptocarpum Hook. f. \& Thoms. Lachalung La.
Meconopsis aculeata Royle. Baralacha Pass and along "great range."
Papaver nudicaule L. Khardong La.
Corydalis tibetica Hook. f. \& Thoms. Back of Leh.
" Moorcroftiana Wall.* Guge (FBI).
" Gortschakovil Schrenk. Yarungshan.
" Stricta Steph. Lachalung.
" flabellata Edgew. Numika La, Kargil to Moolbeck.
" adiantifolia Hook. f. \& Thoms.* Zanskar (FBI).
" Crassifolia Royle. Rachogpa? (R.R.S.), Dras (Duthie).
" meifolia Wall. Baralacha Pass.

CRUCIFERAE

Lepidium latifolium L. Namika La, Saspola, Spituk, etc.; Thellung notes several varieties of this in Ladak.
Lepidium capitatum Hook. f. \& Thoms. Lachalung La.
" apetalum Willd. A species close to the above, Gya, "Western Tibet" (FBI, under L. ruderale L.).
Dilophia salsa Thoms.* "Western Tibet" (FBI).
Thlaspi arvense L. Sapi La, Kharbu, Nyemo, Shergol.
" alpestre L. Matayan, Spituk.
Cochlearia scapiflora Hook. f. \& Thoms.* Masimik La (Hend.).
Sisymbrium mollissimum C. A. Mey. Leh.
" humile C. A. Mey.* (Braya humilis Robinson). Chang La (Hend.), Kangi (Meebold), "Western Tibet" (FBI).
Sisymbrium minutiflorum Hook. f. \& Thoms.* Zanskat (FBI).
" Sophia L.* Leh, Nyemo.
". Columnae Jacquem. Namika La, Gya.
" Thalianum (L.) J. Gay.

Tauscheria lasiocarpa DC.* "Western Tibet" (FBI).
Brassica Napus L. Sometimes very dwarf; Spituk, Khalotse to Yuru. It is probable that other species of Brassica occur, such as B. nigra (L.) Koch and B. juncea (L.) Coss.
Crambe cordifolia Stev.* "Western Tibet" (FBI).
barbarea ${ }^{\text {TVulgaris R. Br.* Dras (Hend.), "Western Tibet" (FBI). }}$
Cardaminemacrophylla lobata Hook. f. \& Thoms.* "Western Tibet" (FBI).
Capsella elliptica C. A. Mey.* Leh (Meebold), "Western Tibet" (FBI).
" Thomsoni Hook. f.* Ladak, Nubra (FBI).
Draba glactalis Adams. Rusi la.
" alpina L. Yarungshan, Sapi?
". incana L.* "Western Tibet" (FBI).
" lasiophylla Royle. Baralacha Pass.
" fladnizensis Wulf.* Leh, Kangi (Meebold), "Western Tibet" (FBI).
" fladnizensis homotricha (Ledeb.) Hook. f. \& Thoms. Nubra (FBI).
" tibetica Thomsoni Hook. f. \& Thoms. \dagger Zanskar (FBI).
Arabis tibetica Hook. f. \& Thoms. Lachalung.
". GLANDULOSA Gar. \& Kit.* Near Ladak (FBI). Leh (Mee bold).
" alpina L. Zoji La (Hend.).
Erysimum odoratum Ehrh. Zoji to Matayan.
" hieractifolium L.* Dras Valley (Hend., under E. strictum Gaertn.).
Cheiranthus himalayensis Cambess.* Kangi La (Meebold), "Western Tibet" (FBI).
Cheiranthus Stewartil T. Anders.* Near Ladak (FBI). albiflorus T. Anders.* Zanskar (FBI).
Alyssum canescens DC. Tsokar Lake.
Braya alpina Sternb. \& Hoppe. Rokshin.
" uniflora Hook. f. \& Thoms.* Nubra (FBI).
" tibetica Hook. f. \& Thoms.* "Western Tibet" (FBI).
" rosea Bunge.* "Western Tibet" (FBI), Leh (Meebold).
Atelanthera perpusilla Hook. f. \& Thoms.* Zanskar (FBI).
Malcolmia africana R. Br.* Ladak (J.L.S.), "Western Tibet" (FBI).
Euclidium syriacum R. Br.* East Kangi (Meebold).
Matthiola odoratissima R. Br. Near Leh, to Kargil.
Chorispora sabulosa Cambess. Suru, Zoji to Matayan.
Christolea crassifolia Cambess. Common on high dry passes such as the Fotu, Namika and Lachalung.
Parrya exscapa C. A. Mey.* "Western Tibet" (FBI).
" macrocarpa R. Br.* Alpine region of Western Tibet (FBI). " lanuginosa Hook. f. \& Thoms.* Gugi (FBI); probably not Ladak.
Conringia planislileua Fisch. \& Mey. Saspola.

CAPPARIDACEAE

Capparis spinosa L. Khalotse.
\dagger An undetermined species of Draba, close to D. incana but with the fruit not hairy, was collected at Rokshin and Yarungshan; a second undetermined species. probably undescribed, was likewise found at Yarungshan.

Stewart: Flora of Ladak, Western Tibet

CRASSULACEAE

Sedum Rhodiola DC. Dras, Suru, Rusi La, Baralacha.
" tillaeoides Duthie? Khardong.
" Quadrifidum Pall.* Leh oasis (Meebold).
" asiaticum Spreng. Suru, Sirimarg.
". Ewersir Ledeb. Sapi La, Suru to Sirimarg, Khalotse to Yuru.
" tibeticum Stracheyi Hook. f. \& Thoms. Common at high altitudes; Rupshu, Suru and Ladak.
Sempervivum acuminatum Jacquem. Common.

SAXIFRAGACEAE

Saxifraga sibirica L. Fotu La, Baralache Matayan.
" cernua L. Yarungshan.
" Hirculus L. "Western Tibet" (FBI), the typical form and varieties.
" Hirculus indica C. B. Clarke. Rokshin, Rusi La, Yarungshan,
Khardong.
Saxifraga Jacquemontiana Decne. Yarungshan.
" ramulosa Wall.* Kangi (Meebold).
" Flagellaris Willd. Khardong La, Rusi La, Yarungshan.
. Flagellaris mucronulata (Royle) C. B. Clarke. Zoji to Matayan, Moolbeck.
Saxifraga oppositifolia L.* "Western Tibet" (FBI).
" Stracheyi Hook, f. \& Thoms. Sapi La.
Parnassia ovata Ledeb. Kharbu, Gya.
" palustris L.* "Western Tibet" (FBI); probably from Skardo.
Ribes orientale Desf. Dras, Dras to Kharbu, Barso Valley.
" Grossularia L.*

ROSACEAE

Cotoneaster vulgaris Lindl.* "Western Tibet" (FBI).
" nummularia Fisch. \& Mey. Near Kargil.
" acuminata Lindl. Eastern Kangi (Meebold).
Pyrus Malus L. Cultivated in Ladak.
" communis L. "Western Tibet" (FBI); rare in Ladak, if present at all.
Rubus saxatilis L.* Dras (FBI).
Potentilla Sibbaldi Hall. f.(Sibbaldia procumbens L.). Suru to Sirimarg.
" tetrandra Hook. f. Lachalung, back of Leh.
.. FRUTICOSA L. Ladak, Baralacha; not the typical American P. fruti$\cos a$.
Potentilla fruticosa ochreata (Lindl.) Lehm. Rachogpa.
. Fruticosa Inglisil (Royle) Hook. f. Yarungshan Pass.
.. FRUTICOSA PUMILA Hook, f. Ladak (place lost), Kangi (Meebold).
" SalesoviI Steph.* Ladak (J.L.S.), Eastern Kangi (Meebold),
" Western Tibet" (FBI).
Potentilla ambigua Cambess. Zingzingbar, Rupshu.
" Anserina L. Leh, Timisgam, Fotu La.
" bifurca L. Common.
." multifida L. Common; the typical form and varieties.
.. SERICEA L. Common.
". curviseta Hook. f.* Kangi (Meebold).

Potentilla argyophylla Wall. Matayan, Baralacha?
" ARGYROPHYLLA LEUCOCHROA (Lindl.) Hook.f. Baralacha, Khardong. " ATROSANGUINEA Lodd. Zoji.
" GELIDA C. A. Mey.* "Western Tibet" (FBI).
" NIVEA L. "Western Tibet" (FBI).
Chamaerhodos sabulosa Bunge.* "Western Tibet" (FBI).
Rosa Eglanteria L. Zoji to Matayan, Kharbu, Himis Shukpa; some of the flowers are double.
Rosa Webbiana Wall. Common; large and very handsome, often covering arid hillsides with pink.
Prunus Armeniaca L. The chief fruit tree in Ladak up to if,000 ft. alt.
" Tomentosa Thunb. Saspola.
" Persica (L.) Stokes.* Ladak (Vigne, J.L.S.).

LEGUMINOSEAE

Sophora Moorcroftiana Benth.* Ladak (FBI).

* Alopecuroides L.* "Western Tibet" (FBI).

Thermopsis inflata Cambess. Rusi La.
Trigonella Emodi Benth. Himis Shupko. corniculata L.* Dras (Hend.), Ladak (FBI).
Trifolium pratense L.*
Medicago falcata L. Common in villages.
" Sativa L. Cultivated.

* Lupulina L. Matayan, Leh, Gya.

Melilotus officinalis (L.) Lam. Common in villages.
" ALbA Desr.* Saspola? (R.R.S.), Nubra, Ladak (FBI).
Colutea arborescens nepalensis (Sims) Baker.* Ladak (Brandis).
CARAGANA PYGMEA DC. Common from 12,000 to nearly $17,000 \mathrm{ft}$. alt. Its thick woody roots and thorny stems furnish the only fuel for travellers in many places. Especially common in Rupshu.
Caragana cuneata Baker.* Ladak (FBI), Leh (Meebold).
Astragalus Heydei Baker.* Tsokar Lake (FBI).
" Tribulifolius Benth.* Hanle and Rupshu (FBI).
" Falconeri Bunge.* Kangi (Meebold), "Western Tibet" (FBI).
4 ADesmiaefolius Benth. Kargil.
" OPHIOCARPUS Benth.* Ladak (FBI).

* GRACILIPES Benth.* Zanskar and Indus Valley (FBI).

4. Confertus Benth.* Ladak (Hend., FBI).

* tibetanus Benth. Sapi La, Gya.
* Strictus R. Grah. Leh, Himis.
" oxyodon Baker.* Khardong (Meebold).
" DENSiflorus Kar. \& Kir.* Leh (Meebold), Ladak (FBI).
" MELANOStachys Benth. Suru to Sirimarg.
* Himalayanus Klotzsch. Suru, Matayan to Dras.
". Munroi Benth. Moolbeck, Himis Shupko, Khalotse, Namika La. A remarkable, densely hairy species with large inflated pods and yellow flowers, growing in the open desert.
Astragalus macropterus DC. Kharbu, Namika La.
ciliolatus Benth.* Dras (Hend.), Ladak (FBI).

Astragalus coluteocarpus Boiss. Dras, Barso Valley.
" FRIGIDUS (L.) Bunge. Zoji, Suru Sirimarg?
". Rhizanthus Royle. \dagger Matayan, Dras, Khardong, Suru to Sirimarg.
" Webbianus R. Grah.* "Western Tibet" (FBI).
" Royleanus Bunge. A. Candolleanus Royle,* not Boiss., "Western
Tibet" (FBI); I found this species at Amarnath just over the Great Range on the Kashmir side.
Astragalus cicerifolius Royle. Leh.
" multiceps Wall.* Ladak (FBI).
" peduncularis Royle.* Dras, Zanskar (FBI).
" subulatus Pall. Kharbu, Matayan, Gya, Sapi La.
" nivalis Kar. \& Kir. Fotu La.
" HYPOGLOTTOIDES Baker.* "Tibetan Himalayas" (FBI).
". zanskarensis Benth.* Zanskar (FBI).
Lotus corniculatus L. Suru.
Oxytropis lapponica Gaud. Nyemo, Leh, Spitug, Khardong, Lachalung.
" mollis Royle. To Matayan.
" DENSA Benth. Lachalung.
" tatarica Cambess. Dras, Kharku Moolbeck, Lachalung, etc.
" cachemirica Cambess. Namika La.
" microphylla DC. Gya, Tsokar, Lachalung.
" Thomsoni Benth.* \ddagger Ladak (FBI).
Stracheya tibetica Benth.* Pangong Lake (FBI).
Hedysarum microcalyx Baker. Suru.
Cicer songaricum Steph. Commonly cultivated.
Vicia faba L. Cultivated.
" tenuifolia Roth. Kharbu.
Ervum lens L. Cultivated in Ladak.
Lathyrus sativus L.* In fields (J.L.S., Hend.).
". altaicus Ledeb. To Matayan, Suru to Wardwan.
Pisum sativum L. Cultivated in Ladak.

GERANIACEAE

Geranium collinum Steph. Khardong, Sapi?
" Grandiflorum Edgew.* Kangi (Meebold).
" pratense L. Kharbu, Himis.
" Sibiricum L.* Ladak (FBI).
" polyanthes Edgew. \& Hook. f.* Dras (Duthie).
Erodium Stephanianum Willd.* Ladak (FBI).
" tibetanum Edgew. Gya.
". cicutarium (L.) L’Her. "Little Tibet" (FBI).
Biebersteinia Emodi Jaub. \& Spach. (B. odora Royle.) Lachalung, Khardong (given by Dr. Schmidt).

LINACEAE

Linum perenne L. Dras.
\dagger Another species of Astragalus, close to A. rhisanthus but not matched at Kew, was found at Namika La.
\ddagger A species of Oxytropis, not matched at Kew, was found between Suru and Sirimarg.

ZYGOPHYLLACEAE

Peganum Harmala L. Himis, Leh, Saspola. Tribulus terrestris L. Leh.

EUPHORBIACEAE

Euphorbia tibetica Boiss. Kharbu, Himis.
" Thomsoniana Boiss. Matayan.
" Maddenir Boiss.* Ladak (Hend.).

BALSAMINACEAE

Impatiens brachycentra Kar. \& Kir. Suru to Sirimarg.
" Thomsoni Hook. f. Suru.

MALVACEAE

Lavatera kashmiriana Cambess. Suru. Malva verticillata L. Leh.

HYPERICACEAE

Hypericum perforatum L. Suru.
TAMARICACEAE
Tamarix gallica Pallasif (Desv.) Thist.-Dyer.* Ladak (Hend.), "Western Tibet" (FBI).
Myricarta elegans Royel. Common in the thickets along the Indus and tributaries. " Germanica Desv. In similar situations as the above.
" Germanica prostrata Hook f. \& Thoms. Ladak, $16,000 \mathrm{ft}$. alt. (Hend.)'

VIOLACEAE

Viola kunawarensis Royle. Near Leh (specimen given by Dr. Schmidt).
" cinerea Boiss.* Ladak (Hend.); probably the above.

ELAEAGNACEAE

Hippophaë rhamnoides L. Common; its spinous branches are much used for - hedges.

Hippophaë salicifolia D. Don.* Dras (Duthie, 17).
Elaeagnus hortensis Bieb. Leh (specimens given by Dr. Schmidt).

ONAGRACEAE

Epilobium Royleanum Haussk. Common and very variable.
" Roseum anagallidifolium (Lam.) C. B. Clarke.* "Western Tibet" (FBI).
Epilobium latifolium L. Suru-Sirimarg, Rusi La.
" Angustifolium L. In the shade of willows; Kharbu, Dras, Sapi River, etc.
Epilobium minutiflorum Haussk.* (E. palustre minimum C. B. Clarke of FBI). Leh, Nubra (Haussknecht).

HALORAGIDACEAE
Hippuris vulgaris L. Leh.

UMBELLIFERAE

Eryngium Billardieri Delar.* Ladak (FBI).
Chaerophyllum villosum Wall. Without definite locality (R.R.S.), Dras and Lamayuru (Hend.).
Chaerophyllum acuminatum Lindl. Suru.
Trachydium Roylei Lindl. Rusi La.
Pleurospermum Hookeri Thomsoni C. B. Clarke.* "Western Tibet" (FBI). " Candollii Benth.? Yarungshan, Suru-Sirimarg (not mature). ". stellatum Lindleyanum (Klotzsch) C. B. Clarke. Lachalung.
Prangos pabularia Lindl. Matayan.
Bupleurum falcatum L. Zoji to Matayan, Suru.
. falcatum nigrocarpa (Jacquem.) C. B. Clarke. Fotu La. ". tenue Buch.-Ham.* Lamayuru (Hend.).
Pituranthos Thomsoni C. B. Clarke.* "Western Tibet" (FBI).
Carum Carvi L. Leh, in the village.
Pimpinella Saxifraga dissectifolia C. B. Clarke. "Western Tibet" (FBI), Gya? (R.R.S.).

Ligusticum Thomsoni C. B. Clarke. Common.
Ferula Jaeschkeana Vatke. Matayan.
Heracleum Thomsoni C. B. Clarke.* Ladak (FBI).
" Thomsoni glabrior C. B. Clarke.* Dras (Hend.).
". pinnatum C. B. Clarke. Moolbeck, Himis?
". candicans Wall. Zoji to Matayan, Dras?

PRIMULACEAE

Primula denticulata capitata (Hook.).* Zoji la (Hend.).
" farinosa L.* "Western Tibet" (FBI).
" Heyder Watt.* "Western Tibet" (FBI).
" sibirica Jacq. Fotu La, Lachalung, Chamba Kharbu.
" brevicalyx DC. Kangi (Meebold).
" involucrata Wall.* "Western Tibet" (FBI).
". Elliptica Royle. Rupshu to Lahoul (R.R.S.), Ladak (FBI).
" Meeboldil Pax.* Kangi (Meebold).
./ purpurea Royle (included under P. Stuartii in FBI). Leh (specimens given by Dr. Schmidt), Yarungshan.
Primula Stuartil Wall.* "Western Tibet" (FBI).
Androsace rotundifolia glandulosa Hook. f.* "Western Tibet" (FBI).
" rotundifolia Thomsoni Hook. f.* "Western Tibet" (FBI).
" septentrionalis L. Spituk.
" Aizoon Duby.* Dras (Hend.), "Western Tibet" (FBI).
" SEmpervivoides Jacquem.* "Western Tibet" (FBI).
" microphylla Hook. f.* "Western Tibet" (FBI).
" sarmentosa Wall.* Ladak (Hend.).
" sarmentosa primuloides (Duby) Hook. f. Matayan.
". Chamaejasme Wulf.* Ladak (Hend.).
" Chamaejasme coronata Hook. f.* "Western Tibet" (FBI).
" villosa L. Fotu La, Sapi.
Glaux maritima L.* Ladak (Hend.), "Western Tibet" (FBI).

PLUMBAGINACEAE

Acantholimon lycopodioides Boiss. A remarkable sharp-leaved, tufted plant; common on the passes in Ladak.
Statice macrorrhabdos Boiss.* Ladak (FBI).

OLEACEAE

Fraxinus excelsior L.* Ladak (FBI).

GENTIANACEAE

Jaeschkea latisepala C. B. Clarke.* "Western Tibet" (FBI).
Gentiana Moorcroftiana Griseb. Kharbu, Sapi La, Suru to Sirimarg.
" aurea L. Kharbu, Sapi La, Moolbeck?
" Thomsoni C. B. Clarke.* Karakorum, Nubra (FBI).
" borealis Bunge.* "Western Tibet" (FBI).
" tenella Rottb. Yarungshan, Himis Shupko.
" aquatica L. Leh, Himis Shupka, Himis Lachalung La.
" humilis Stev. Fotu La.
" pSEuDO-HUMILIS Burk.* Leh, Himis, Kargil, Rupshu, etc. (7)
" pygmaea C. B. Clarke.* Karakorum, Nubra (FBI).
" squarrosa Ledeb.* "Western Tibet" (FBI).
" carinata Griseb. Yarungshan.
" Hugelir Griseb.* Zanskar (FBI).
" decumbens L. Sapi La.
" serrata Gunner. Kharby, Gya, Fotu La.
" serrata Stracheyi (C. B. Clarke) comb. nov. (G. detonsa Stracheyi C. B.
Clarke). Himis Shupka.
Gentiana leucomelaena Maxim.* Kangi (Meebold).
Pleurogyne carinthiaca G. Don. Rusi La, Sapi la.
" Thomsoni C. B. Clarke. Fotula
" brachyanthera C. B. Clarke.* Karakorum (FBI).
Swertia cordata Wall. "Western Tibet" (FBI).
" petiolata Royle. Rusi La, Sapi La?
Halenia elliptica D. Don. Himis Shupka.

APOCYNACEAE

Apocynum venetum L. Khalotse.

ASCLEPIADACEAE

Cynanchum glaucum Wall. Kargil, Saspola.
" acutum L. Namika La.
. Heyder Hook. f. Between Saspola and Khalotse. My specimens are from the type locality, and it seems that this may be only a form of C. acutum with overlapping basal lobes to the leaves.

CONVOLVULACEAE

Cuscuta capitata Roxb. Barso Valley, on Galium.
" europaea L. Indus Valley, up to if,ooo ft. alt. The species which J.L. Stewart reported as common under the name C. planiflora Tenore is probably this. Convolvulus arvensis L. A weed of cultivated land in Ladak.

BORAGINACEAE \dagger

Actinocarya tibetica Benth. Nubra, near Karsar Village (FBI).
Omphalodes Thomsoni C. B. Clarke.* Nubra (FBI).
Cynoglossum petiolatum A. DC.* Zanskat (FBI).
" Wallichil G. Don. Dras, Kharbu? I am following Collett (I3) in including C. denticulatum G. Don here.
Lindelofia Benthami Hook. f. Leh, Namika La.
Solenanthus circinatus Ledeb. Zanskar (FBI).
Paracaryum hellocarpum Kern. Matayan to Dras.
" Thomsoni C. B. Clarke.* Nubra (FBI).
" himalayense C. B. Clarke. Nubra (FBI), without definite locality (R.R.S.).

Paracaryum tibeticum C. B. Clarke. Himis Shupka, Khalotse to Yuru.
Echinospermum barbatum Lehm.* Ladak (Hend.).
" Redowskil Lehm.* Leh (FBI).
" SEmiglabrum Ledeb.* "Western Tibet" (FBI).
Eritrichium strictum Decne. Fotu La? Khardong? (R.R.S.), "Western Tibet" (FBI).
Eritrichium spathulatum C. B. Clarke.* "Western Tibet" (FBI).
" tibeticum C. B. Clarke.* Ladak (FBI).
Asperugo procumbens L.* "Western Tibet" and the Karakorums (FBI).
Microula Benthami C. B. Clarke.* "Western Tibet" (FBI).
Lycopsis arvensis L. Kharbu.
Myosotis sylvatica Hoffm. Yarungshan, Spituk? very near M. alpestris F. W! Schmidt.
Mertensia echioides Benth.* "Western Tibet" (FBI).
" tibetica C. B. Clarke.* Karakorum (FBI).
Lithospermum arvense L.* "Western Tibet" (FBI).
Macrotomia Benthami DC.* Kangi (Meebold).
" PERENNIS Boiss. Dras.
Arnebia tibetana Kurz. Saspola, Nyemo.
" Thomsoni C. B. Clarke. Ladak.
Onosma echioides L. Matayan.
Rochelia stellulata Reichb.* Nubra (FBI).
" RECTIPES Stocks.* Zanskar (FBI).
" cardiosepala Bunge.* Nubra (FBI).

LABIATAE

Scutellaria prostrata Jacquem. Zoji to Matayan, Suru to Wardwan. " Heydei Hook. f.* Zanskar (FBI), Kangi (Meebold).
Marrubium Lanatum Benth. Tsokar Lake.
Nepeta botryoides Ait. Rupshu (FBI).
" Linearis Royle. Matayan.
". Thomsoni Benth.* Hanle (FBI).
". Discolor Royle. Zoji to Matayan, Khardong La, Rusi La, Nyemo, etc., Suru to Sirimarg; the specimens are rather large and may be near N. spicata Benth.
\dagger Failure to get specimens in fruit made determinations of some of the Boraginaceae impossible.

Nepeta longibracteata Benth. Lachalung.
" Glutinosa Benth. Baralacha.
" floccosa Benth. Common in the Indus Valley.
". leucolaena Benth. Dras, Suru, Kharbu.
" Salviaefolia Royle. Near Kargil. The relationship of the last two should be studied in the field. The dry specimens seem to intergrade.
Nepeta nivalis Benth. Lachalung La.
" tibetica Benth. Lachalung La.
" Eriostachya Benth.* Khardong (Meebold).
Calamintha umbrosa Fisch. \& Mey. Zoji to Matayan.
Dracocephalum heterophyllum Benth. Gya, Khardong La, Lachalung.
" Stamineum Kar. \& Kir.* Ladak (Hend.), "Western Tibet" (FBI). " NUTANS L. Suru.
Phlomis bracteosa Royle. Yarungshan La.
Lamium rhomboideum Benth.* "Western Tibet" (FBI).
" amplexicaule L. A weed in cultivated ground.
" album L. Suru.
Stachys tibetica Vatke. Common in Indus Valley.
Perowskia abrotanoides Kiril. Common in Ladak.
Origanum vulgare L. Suru.
Thymus Serpyllum L. Dras, Lachalung.
Mentha sylvestris L. Common.
arvensis L.* Ladak, Indus Valley (Hend.).
Elsholtzia densa Benth. Suru.
" pusilla Benth. Lachalung (FBI, as a variety of E. eriostachya Benth.).
" cristata Willd.* "Western Tibet" (FBI).

SOLANACEAE

Lycium ruthenicum Murr. Nyemo, Tralse.
Physochlaina praealta Miers. A common weed.
Hyoscyamus pusillus L. Kharbu, Khalotse Himis; a remarkable range, from Egypt to Persia and the Altai.
Physalis Alkekengi L.* Burgo (Hend.), probably cultivated.
Solanum nigrum L. Kargil.
" tuberosum L. Introduced by the missionaries. About the finest tops
I have ever seen were in Dr. Schmidt's garden in Leh, 11,500 ft. alt.
Nicotiana rustica L.* Ladak (J.L.S.).
" Tabacum L.* Dras (Hend.)

SCROPHULARIACEAE

Verbascum Thapsus L. Dras to Kharbu, Barso Valley.
Scrophularia lucida L. Zoji, Matayan.
" variegata Bieb.* Moolbeck (Hend.).
" dentata Royle. Kharbu? (R.R.S.), Ladak (FBI).

* scabiosaefolia Benth. Sapi La.

Mimulus strictus Benth.* Indus Valley, Ladak (Hend.).
Lancea tibetica Hook. f. \& Thoms. Fotu La, Leh.
Limosella aquatica L.* "Western Tibet" (FBI).
Veronica deltigera Wall. Matayan to Dias, Suru to Sirimarg.
" Ciliata Fisch.? Rokshin, Nyemo.

Veronica macrostemon Bunge.* Zanskar (FBI).
" Anagallis-aquatica L. Leh.
" Beccabunga L.* Ladak (Hend.).
" biloba L.* "Western Tibet" (FBI), Eastern Kangi (Meebold).
" Laxa Benth. Zoji to Matayan.
" agrestis L. \dagger "Western Tibet" (FBI).
Lagotis glauca J. Gaertn. Rusi La.
" globosa Hook. f.* "Western Tibet," Therichan Pass (FBI), Kangi La (Meebold).
Leptorhabdos Benthamiana Walp.* Dras (FBI).
Euphrasia officinalis L. Himis, Kharbu, Shergol.
Pedicularis tenuirostris Benth. Suru.
" cheilanthifolia Schrenk. Himis, Kharbu, Khalotse to Leh.
" mollis Wall.* Nubra (FBI).
." pycnantha Boiss.* Kangi (Meebold).
". bicornuta Klotzsch. Suru-Sirimarg.
". Siphonantha D. Don. Kharbu.
". RHinanthoides Schrenk. Dras. It is difficult to separate this species, from the preceding at least when working with dry material.
Pedicularis longiflora Rudolph (P. tubiflora Fisch.). This is an unusually interesting species, with yellow flowers and a very long corolla tube. It is abundant in wet places.
Pedicularis dolichorrhiza Schrenk (P. fissa Hook, f.). Zoji to Matayan.
" Oederi Vahl. P versicolor Wahlenb. Lanak La (FBI), Zoji (Hend.). Like dozens of other plants this is found chiefly on the Indian side of the backbone of the Hirnalayas and has only scattered stations on the Tibetan side.

OROBANCHACEAE

Orobanche cernua Loefl.* "Western Tibet" (FBI).
" Hansil Kern. Shergol.

LENTIBULARIACEAE

Utricularia minor L.* Nubra (FBI).

PLANTAGINACEAE

Plantago major L. Shergol.
" tibetica Hook. f. \& Thoms. Saspola, Gya, Tralse,
" brachyphylla Edgew.* "Western Tibet" (FBI), Kangi (Meebold).

RUBIACEAE

Galium Aparine L. Leh.
" Verum L. Zoji to Matayan, Dras, Barso Valley.
". boreale L. Zoji, Zoji to Matayan, Sapi La, Barso Valley, Spituk.
" tricorne Stokes.* Leh (Hend.), "Western Tibet" (FBI).
" pauciflorum Bunge. Rachogpa.
Rubia tibetica Hook. Fotu La, Rachogpa.
\dagger An undetermined species of Veronica with glandular hairs and very small flowers was collected at Dras.

CAPRIFOLIACEAE

Lonicera glauca Hook. f. \& Thoms. Leh, Sapi La, Lachalung.
" Asperifolia Hook. f. \& Thoms. Zoji to Matayan, Sapi La.
" rupicola Hook. f. \& Thoms.* "Western Tibet" (FBI).
" spinosa Jacq. Lachalung, Fotu La, Chamba Kharbu.
" microphylla Willd. Sapi La.
" heterophylla Decne. To Matayan.
" Myrtillus Hook. f. \& Thoms.* Ladak (Hend.), Kangi (Meebold).
" caerulea L. Zoji La; not the typical form.

VALERIANACEAE

Valeriana dioica L. Ladak, probably correct but not in fruit; Kashmir to the Karakorum (FBI).
Valeriana Stracheyi C. B. Clarke. Kargil.
" Wallichil DC.* Kangi (Meebold).

CAMPANULACEAE

Campanula latifolia L. Suru.
" Colorata tibetica Hook, f. \& Thoms. Sapi [La, Kharbu, Saspola, Khalotse to Yuru.
Campanula argyrotricha Wall.* Eastern Kangi (Meebold).
" Cashmiriana Royle. Leh, Sapi La, Chamba Kharbu.
" aristata Wall. Gya, Himis Shupka, Suru to Sirimarg.
Codonopsis ovata Benth. Moolbeck, Kharbu.

COMPOSITAE

Aster heterochaeta C. B. Clarke. Common up to $17,000 \mathrm{ft}$. alt. and very variable.
Aster tibeticus Hook. f. Common.
" altaicus Willd.* \dagger "Western Tibet" (FBI).
Brachyactis umbrosa Benth. Gya. robusta Benth. Leh. May bê a large variety of B. umbrosa. The pappus is lighter colored than in Thomson's specimens.
Erigeron andryaloides Benth. Namika La, Fotu La.
" Bellidioides Benth.* Kangi (Meebold).
" alpinus uniflorus Hook. f. Yarungshan La, Leh.
" multicaulis Wall. (under E. alpinus L. in FBI.) Common, especially in the Suru region.
Erigeron multiradiatus Benth. \& Hook. f, \dagger Zoji to Matayan.
Blumea bifoliata DC.* Leh (Meebold).
Filago arvensis L.* Dras (FBi).
Gifola germanica (L.) Dumort.*
Antennaria nana Hook. f. \& Thoms.* Nubra and Shayok Valleys, etc. (FBI).
Leontopodium alpinum Cass. Very abundant and beautiful in the alpine region. Anaphalis nubigena DC. Sapi La, Matayan to Dras, Lachalung, near Leh (Dr. Schmidt).
\dagger There is much confusion over the limits of the Himalayan asters and erigerons, as they seem to intergrade. A species of Erigeron, apparently undescribed, was collected at Baralacha Pass.

Anaphalis Stoliczkai C. B. Clarke.* "Western Tibet," 5,000-10,000 ft. alt. (FBI). There is no part of Western Tibet as low as $5,000 \mathrm{ft}$. Hooker considers the species a state of A. virgata.
Anaphalis virgata Thoms. Himis Shukpa, Sapi La, near Kargil.
" Contorta Hook. f.* Dras (Hend.).
Gnaphalium Stewartil C. B. Clarke.* Karakorum (FBI).
Inula obtusifolia Kern. Common in Ladak.
" Falconeri Hook. f.* "Western Tibet" (Falconer), Skardu (Clarke).
" barbata Wall. Suru. My specimen seems to match I. barbata Wall., No. 2961, a species listed by Clarke (io) but not mentioned in FBI.
Inula rhizocephaloides C. B. Clarke. Sapi La.
" Royleana DC.* \dagger Kangi (Meebold).
Chrysanthemum tibeticum C. B. Clarke. Himis Shupka (specimens viscid), Khalotse to Yuru (specimens not viscid).
Chrysanthemum Stoliczkai C. B. Clarke. Zoji-Matayan; much larger than Thomson's specimens.
Chrysanthemum Richteria Benth. Namika La, Leh, Fotu La, Sapi La.
" Indicum L.* Ladak (J.L.S.); cultivated.
Tanacetum fruticulosum Ledeb. Lachalung.
" Artemisioides Sch. Bip. Shergol Dras, Sapi La.
" Gracile Hook. f. \& Thoms. Ladak.
" tomentosum DC.* (FBI, as T. Senecionis J. Gay.) Reported by Stewart as common. This is a more eastern plant and is probably a mistake.
Tanacetum nanum C. B. Clarke.* Nubra Valley (FBI).
" tibeticum Hook. f. \& Thoms.* Parang and Lanak Passes (FBI), East Kangi (Meebold).
Tanacetum longifolium Wall.* East Kangi (Meebold).
Allardia glabra Decne. Khardong, Sapi La, Rusi La.
" Vestita Hook. f. \& Thoms.* Zanskar (FBI).
" nivea Hook. Sapi River; Khardong La.
" tomentosa Decne. Rusi La, Baralacha.
" Stoliczkai C. B. Clarke. Suru to Sirimarg.
Artemisia salsoloides Willd. Sapi La.
" Dracunculus L.* Ladak (Hend.), "Western Tibet" (FBI).
" DESERTORUM Spreng. Suru? "Western Tibet" (FBI).
" parviflora Buch.-Ham. Reported by J. L. Stewart but probably misnamed (not listed from Ladak in FBI).
Artemisia scoparia Waldst. \& Kit. Leh.
" stricta Edgew. "Western Tibet" (FBI).
" maritima L.* Ladak (FBI).
". Tournefortiana Reichb. Shergol.
. \quad biennis Willd. Leh (Meebold).
" Laciniata Willd. Dras and Tankse Valleys (Hend.), Leh? (R.R.S.).
" sacrorum Ledeb.* Ladak (J.L.S.), "Western Tibet" (FBI).
" Moorcroftiana Wall. Himis, Shupka.
" PERSICA Boiss. Dras; immature and possibly A. marilima; "Western Tibet" (FBI).
Artemisia Falconeri C. B. Clarke.* "Western Tibet" (FBI), probably from Skardo.
\dagger An undetermined species of Inula was found in the Barso Valley.

Artemisia Stracheyi Hook. f. \& Thoms.* Rupshu and Lanak La (FBI).
" Absinthium L. Dras.
" MINOR Jacquem. Tsokar Lake, Lachalung La.
" Siversiana Willd. Nyemo, Leh, Dras.
" macrocephala Jacquem.* "Western Tibet" (FBI).
" Amygdalina Decne.? Suru.
Tussilago Farfara L. Zoji, Khalotse to Yuru.
Doronicum Falconeri C. B. Clarke.* Karakorum (FBI).
Senecio chrysanthemoides DC. Sapi La, Zoji to Matayan, Matayan to Dras.
" 'coronopifolius Desf.* Kangi (Meebold).
" pedunculatus Edgew. Common in Indus Valley, Ladak.
" dubius Ledeb. Parang Pass (FBI).
" arnicoides Frigida Hook. f. "Dwarf Sunflower," one of the prettiest
Ladak flowers; found in wet places.
Senecio tibeticus Hook. f.* Karakorum (FBi).
Cremanthodium Decaisnei C. B. Clarke. Rusi La, Yarungshan La.
" oblongatum C. B. Clarke.* Leh (Meebold).
Werneria nana (Decne.) Benth. \& Hook. f. (Ligularia nana Decne.), Rokshin, Lachalung. The involucre is cut more deeply than described.
Werneria nana affinis C. B. Clarke. Baralacha Pass. Involucral cup cut more than half way down, ligules many nerved and twice as long as the bracts, leaves toothed.
Echinops cornigerus DC. "Globe Thistle," dry hillsides in Ladak. " niveus Wall.* Dras (Hend.).
Arctium Lappa L. Near Suru.
Cousinia Falconeri Hook. Fotu La.
Saussurea Schultzii Hook. f. Near Leh (specimens from Dr. Schmidt).
" bracteata Decne. Lachalung.
" Thomsoni C. B. Clarke.* Nubra (FBI).
" subulata C. B. Clarke.* Nubra (FBI).
" Stoliczkai C. B. Clarke.* "Western Tibet" (FBI).

* taraxifolia Wall. Gya.
". Falconeri Hook. f.* Karakorum (FBI).
" Graminifolia Wall.* Ladak (FBI).
" Glanduligera Sch.-Bip. Lachalung.
" Elliptica C. B. Clarke.* Karakorum (FBI).
" Jacea C. B. Clarke. Barso Valley,
" Albescens Hook. f. \& Thoms. Suru.
" Sorocephala Hook. f. \& Thoms. Rusi La, Yarungshan La.
Jurinea ceratocarpa Benth. Near Suru. ceratocarpa depressa C. B. Clarke. Kharbu, Sapi La.
Carduus nutans L.* Ladak (Hend.), Nubra (FBI).
" Thomsoni Hook. f.* Ladak (FBI).
Tricholepis tibetica Hook. f. \& Thoms.* "Western Tibet" (FBI),
Centaurea depressa Bieb. Moolbeck.
Cnicus Wallichil platylepis Hook. f.* Dras (FBI).
" arvensis (L.) Hoffm. Kargil.
Koelpinia linearis Pall. Sapi La.
Tragopogon pratensis L. Sapi La? "Western Tibet" (FBI).

Tragopogon porrifolius L.* "Western Tibet" (FBI).
Scorzonera divaricata Turcz. Dras, Kargil, Himis, Namika La.
" purpurea L. Zoji to Matayan.
Chondrilla graminea Bieb. Karakorum (FBI).
Taraxacum officinale Weber. Common, very variable and growing almost to the snow line. The Himalayan dandelions could be split up into species much more marked than Dahlstedt's European ones. Some are very hairy, some alpine specimens have white flowers, some are very dwarf.
Taraxacum officinale parvulum (Walb.) Hook. f. Common. " Leucanthum Ledeb.* Kangi (Meebold).
Sonchus asper (L.) Hill. Tralsi.
" oleraceus L. Saspola.
Lactuca orientalis Boiss. Himis Shupka.
" Scariola L. Suru? (R.R.S.), "Western Tibet" (FBI). " sativa L.* Cultivated in Ladak (Hend.).
" undulata Ledeb.* "Western Tibet" (FBI).
" longifolia DC.* Common in Ladak (Hend.); possibly a mistake as Hooker (FBI) does not list the species from Ladak.
Lactuca tatarica C. A. Mey. Without definite locality (R.R.S.), Nubra, Hanle, etc. (FBI).
Lactuca decipiens C. B. Clarke. Suru to Sirimarg, Kharbu?
Crepis flexuosa Benth. \& Hook. f. Himis Shupka.
" tenuifolia Willd. Khalotse to Yuru.
" Stoliczkai C. B. Clarke.* "Western Tibet" and Karakorum (FBI).

Table of Altitudes \dagger

Baralacha Pass....... $16,200 \mathrm{ft}$.	Rachogpa. 13,400 ft.
Barso Valley, Suru.... 11,000	Rokshin................... 15.300
Dras. 10 10,000	Rusi La.................. 16,00
Fotu La \ddagger. 13,000	Sapi La................... 14,500
Gya. 13,000	Saspola 9,700
Himis.............. 11,000	Saspola Drokpo............ 11,000
Himis Shupka........ 11,000	Shergol. 9,000
Kargil.............. 8, 8,700	Shishpur to Iljook. 11,00
Khalotse............ 9,500	Spituk................... 10,500
Kharbu............... 11,000	Suru.................... 11,000
Khardong La 17,600	Suru to Sirimarg ... r1,000 to 13,700
Lachalung La 16,600	Timisgam................ 11,000
Lamayuru........... 11,000	Tralse.................... 11.000
Leh................ 11,500	Tsokar Lake.............. 15,5
Matayan........... 10,500	Yarungshan............... 15,500
Moolbeck............ 9,000	Zoji La................... 11,300
Namika La........... 13,000	Zoji to Matayan ... 11,300 to 10,500
Nyemo. 10 10,000	

\dagger The plants were gathered very frequently between towns and so altitudes are only approximately correct as applied to the plants.
\ddagger "La" is Tibetan for Pass.

Bibliography

I. Baker, E. G. Handbook of the fern-allies. London. 1887.
2. Beddome, R. H. Handbook to the ferns of British India. 1883.
3. Beddome, R. H. The ferns of British India. 1, 2. Madras. 1866-68.
4. Boott, F. Illustrations of the genus Carex. 1-4. London. 185867.
5. Brandis, D. The forest flora of north-west and central India. 1874 .
6. Brandis, D. Indian trees; account of trees, shrubs, woody climbers, bamboos and palms, indigenous or commonly cultivated in the British Indian Empire. London. 1906.
7. Burkill, I. H. Gentianacearum species Asiaticas novas descripsit I. H. Burkill sequentes. Jour. Asiat. Soc. Bengal II. 2: 309327. 1906.
8. Burrard, S. G., \& Hayden, H. H. A sketch of the geography and geology of the Himalaya Mountains \& Tibet. Calcutta. 1907-08.
9. Cambessedes, J., \& Decaisne, F. Jacquemont, V., Voyage dans l'Inde pendant les années $1828-32$. 4. Paris. 1845.
10. Clarke, C. B. Compositae Indicae descriptae et secus genera Benthami ordinatae. Calcutta. 1876.
II. Clarke, C. B. A review of the ferns of northern India. Trans. Linn. Soc. II. I: 425-6II. pl. 49-84. 1880.
12. Clarke, C. B. On the subsubareas of British India, illustrated by the detailed distribution of the Cyperaceae in that empire. Jour. Linn. Soc. Bot. 34: 1-146. pl. I. 1898.
I3. Collett, H. Flora Simlensis: a handbook of the flowering plants of Simla and the neighbourhood. London. 1902.
14. Conway, W. M. Climbing and exploration in the KarakoramHimalayas. London. 1894.
15. Deasy, H. H. P. In Tibet and Chinese Turkestan, being the record of three years exploration. New York. 1900.
List of plants, 394-405.
16. Duthie, J. F. List of plants collected in Kumaon and the adjoining parts of Tibet by T. Strachey and J. E. Winterbottom. Atkinson's Gazetteer of the N. W. Provinces 10: 403-670. 1882.
17. Duthie, J. F. Report on a botanical tour in Kashmir. Records Botanical Survey of India 1: 1-18. 1893.
18. Ganzenmuller, K. Nach den Resultaten geographischer Forschungen früherer und neuester Zeit. 1878.
19. Griffith, W. Icones Plantarum Asiaticarum. I-3. Calcutta. 1847-51.
20. Hemsley, W. B., \& Pearson, H. H. W. The flora of Tibet or High Asia; being a consolidated account of the various Tibetan botanical collections in the herbarium of the Royal Gardens, Kew, together with an exposition of what is known of the flora of Tibet. Jour. Linn. Soc. Bot. 35: 124-265. 1902.
21. Henderson, G., \& Hume, A. O. Lahore to Yarkand. 1873.
22. Hooker, J. D. Flora of British India. 1-7. London. 1872 -97.
23. Hooker, J. D., \& Thomson, T. Flora Indica. I. London. 1855. 1855.
24. Jaubert, H. F., \& Spach, E. Illustrationes plantarum orientalium. x-5. Paris. 1842-57.
25. Klotzsch, J. F., \& Garcke, A. Die botanischen Ergebnisse der Reise seiner königl. Hoheit des Prinzen Waldemar von Preussen in den Jahren 1845 und 46 . Berlin. 1862.
The plants were collected by W. Hoofmeister.
26. Ledebour, K. F. von. Icones plantarum novarum vel imperfecte cognitarum Floram rossicam. 1-5. Riga. 1829-34.
27. Maximowicz, C. J. Sur les collections botaniques de la Mongolie et du Tibet septentrional (Tangout) recueillies par des voyageurs russes et conservées à St.-Pétersbourg. Bull. Cong. Int. Bot. et Hort. St.-Pétersbourg 135-196. 1884.
28. Meebold, A. Eine botanische Reise durch Kaschmir. Bot. Jahrb. 43 (Beibl.): 63-90. 1909.
29. Moorcroft, W., \& Trebeck, G. Travels in the Himalayan provinces of Hindustan. 1, 2. London. 1841.
30. Prain, D. The species of Pedicularis. Ann. Roy. Bot. Gard. Calcutta 3: 1-196. 1891.
3I. Royle, J. F. Illustrations of the botany and other branches of natural history of the Himalayan Mountains and of the flora of Cashmere. 1, 2. London. 1839.
32. Schlagintweit, H. \& R. von. Results of a scientific mission to India and high Asia. 1, 2. 1861-6.
33. Stewart, J. L. Notes of a botanical tour in Ladak or Western Tibet. Trans. Bot. Soc. Edinburgh 10: 207-239. 1869.
34. Stewart, J. L. Punjab plants. Lahore. 1869.
35. Strachey, R. Physical geography of western Tibet. Jour. Roy. Geog. Soc. 23: 1-69. 1855.
36. Thomson, T. Western Himalaya and Tibet, a narrative of a journey through the mountains of Northern India, during the years 1847-48. London. 1852.
37. Thomson, T. Notes on the herbarium of the Calcutta Botanic Garden. Hooker's Jour. Bot. 9: 10-14, 33-41. 1857.
38. Vigne, G. T. Travels in Kashmir \& Ladak, Iscardo, the countries adjoining the mountain-course of the Indus, and the Himalaya, north of the Punjab. 1, 2. London. 1842.
39. Wallich, N. Plantae asiaticae rariores. 1-3. London. 1830-2.

INDEX TO AMERICAN BOTANICAL LITERATURE

1912-1916

The aim of this Index is to include all current botanical literature written by Americans, published in America, or based upon American material ; the word America being used in the broadest sense.

Reviews, and papers that relate exclusively to forestry, agriculture, horticulture, manufactured products of vegetable origin, or laboratory methods are not included, and no attempt is made to index the literature of bacteriology. An occasional exception is made in favor of some paper appearing in an American periodical which is devoted wholly to botany. Reprints are not mentioned unless they differ from the original in some important particular. If users of the Index will call the attention of the editor to errors or omissions, their kindness will be appreciated.

This Index is reprinted monthly on cards, and furnished in this form to subscribers at the rate of one cent for each card. Selections of cards are not permitted ; each subscriber must take all cards published during the term of his subscription. Correspondence relating to the card issue should be addressed to the Treasurer of the Torrey Botanical Club.

Alderwerelt, C. R. W. K. van. The Amboina Pteridophyta collected by C. B. Robinson. Philip. Jour. Sci. 1I: (Bot.) 101-123. pl. 5, 6. My 1916.
Eight new species are described.
Andrews, E. C. The geological history of the Australian flowering plants. Am. Jour. Sci. 23: 171-232. S 1916.
Bakke, A. L., \& Livingston, B. E. Further studies on foliar transpiring power in plants. Physol. Researches 2: 51, 52. J1 1916.
Beccari, O. The palms indigenous to Cuba, I. Pomona College Jour. Econ. Bot. 2: 253-276. f. 109-118. My 1912;-II. Pomona College Jour. Econ. Bot. 2: 351-377. f. 144-153. D 1912;-III. Pomona College Jour. Econ. Bot. 3: 392-417.f. 154-172. F 1913. Includes Oreodoxc princeps sp. nov.
Benedict, R. C. An Adirondack fern list. Am. Fern Jour. 6: $8 \mathrm{I}-85$. S 1916.
Berry, E. W. A fossil nutmeg from the Tertiary of Texas. Am. Jour. Sci. 23: 241-245.f. I-6. S 1916. Myristica catahoulensis sp. nov. is described.

Boerker, R. H. A historical study of forest ecology; its development in fields of botany and forestry. Forest. Quart. 14: 380-432. S 1916.

Britton, N. L. The rose garden plans. - Jour. N. Y. Bot. Gard. 17: III-II5. pl. 175-177. 12 S 1916.

Burnham, S. H. The ferns of the Lake George flora, New York. Am. Fern Jour. 6: 85-90. S 1916.
Buscalioni, L., \& Muscatello, G. Studio monografico sulle specie americane del Gen. "Surauia" Willd. Malpighia 24: 381-412. 1912; 25: 1-16. 1912; 103-118. 1912; 187-250. 1912; 389436. 1913; 26: 1-32. 1913; 97-144. 1913; 281-312. 1913; 389-420. 1913; 27: 1-32. 1915; 127-158. 1916.
Buscalioni, L., \& Muscatello, G. Studio anatomo-biologico sul Gen. "Saurauia" Willd. con speciale riguardo alle specie americane. Malpighia 26: 49-56. 1913; 261-276. 1913; 313-328. 1913; 421-452. 1913; 27: 33-48. 1915; 159-190. 1916.
Campbell, D. H. Plant distribution in California. Sci. Mo. 2: 215225.f. I-I3. Mr 1916.

Chien, S. S. Two Asiatic allies of Ranunculus pensylvanicus. Rhodora 18: 189, 190. IS 1916. Ranunculus brachyrhynchus and R. arcuans, spp. nov.
Chodat, R. Les espèces du genre Prosopanche. Bull. Soc. Bot. Genève II. 7: I, 2. 1915.

Chodat, R. Notes biologiques sur les Broméliacées. Bull. Soc. Genève II. 7: 12, 13. 1915.

Cockerell, T. D. A. Collarette flowers. Jour. Heredity 7: 428-43I. f. 18-20. S 1916.

Cooper, W. S. Plant succession in the Mount Robson region, British Columbia. Plant World 19: 211-238.f. r-8. Au 1916.
Cosens, A., \& Sinclair, T. A. Aeriferous tissue in willow galls. Bot. Gaz. 62: 2 10-225. pl. 2-4 +f. 1-5. 15 S 1916.
Detwiler, S. B. Shortleaf pine. Identification and characteristics. Am. Forest. 22: 513-517. S 1916. [Illust.]
Eggleston, W. W. Additions and corrections to the new Vermont flora. Vermont Bot. \& Bird Clubs Joint Bull. 2: 9-13. Ap 1916.
Faull, J. H. Chondromyces Thaxteri, a new Myxobacterium. Bot. Gaz. 62: 226-232. pl. 5, 6. I5 S 1916.

Fedde, F. Neue Arten aus der Verwandtschaft der Corydalis aurea Willd, von Nord-Amerika.-IX. Repert. Sp. Nov. 12: 37-39. 20 Mr 1913. Includes Corydalis pachyloba sp. nov.
Fenn, W. O. Salt antagonism in gelatine. Proc. Nat. Acad. Sci. 2': 534-538. f. 1-3. S 1916.
Fenn, W. O. Similarity in the behavior of protoplasm and gelatine. Proc. Nat. Acad. Sci. 2: 539-543.f. I. S 1916.
Fernald, M. L. The representatives of Trisetum spicatum in eastern America. Rhodora 18: 195-198. I S 1916.
Flynn, N. F. One afternoon's botanizing. Vermont Bot. \& Bird Club Joint Bull. 2: 19. Ap 1916.
Ford, W. W. Plant poisons and their antibodies. Centralb. Bakt. Erste Abt. 58: 129-162. 4 Jl 1913; 193-222. II Jl 1913.
Fromme, F. D. Facultative heteroecism (?) of Peridermium harknessii and Cronartium quercus. Phytopathology 6: 411, 412. O 1916.
Frost, W. D., \& Bachmann, F. Another use of the double-plate method. Science II. 44: 433, 434.f. 1, 2. 22 S 1916.
Gates, R. R. On the mendelian interpretation of Oenothera crosses. Rhodora 18: 198-201. i S 1916.
Graff, P. W. Philippine Basidiomycetes-II. Philip. Jour. Sci. 9: (Bot.) 235-254. pl. 2. 1914.
Includes new species in Lepiota, Tricholoma, Lentinus, Agaricus, Stropharia, and Coprinus.
Gregory, C. T. Studies on Plasmopara viticola. Rep. Internat. Cong. Viticulture 1915: 126-150. pl. 1-5. San Francisco. Je 1916.
Harper, R. M. The fern grottoes of Citrus County, Florida. Am. Fern Jour. 6: 68-81. pl. 5. S 1916.
Harper, R. M. An overlooked environmental factor for species of Prunus. Rhodora 18: 201-203. IS 1916.
Harris, J. A., \& Lawrence, J. V. The cryoscopic constants of expressed vegetable saps as related to local environmental conditions in the Arizona deserts. Physiol. Researches 2: 1, 2. Jl 1916. Abstract.
Hibbard, R. P., \& Harrington, O. E. Depression of the freezing-point in triturated plant tissues and the magnitude of this depression as related to soil moisture. Physiol. Researches I: 441, 442. Au 1916.

Higgins, D. F. The white-barked pine. Jour. Heredity 7: 399-40I. f. 5, 6. S 1916.

Hotson, J. W. The longevity of Bacillus amylovorus under field conditions. Phytopathology 6: 400-408. f. 1-4. O 1916.

Howe, I. A. Botanizing in St. Johnsbury in 1915. Vermont Bot. \& Bird Club Joint Bull. 2: 21, 22. Ap 1916.

Jones, L. R., Johnson, A. G., and Reddy, C. S. Bacterial blights of barley and certain other cereals. Science II. 44: 432, 433. 22 S 1916.

Johnston, J. R. Phytopathological work in the tropics. Phytopathology 6: $38 \mathrm{I}-386$. O 1916.

Kurtz, F. Essai d'une bibliographie botanique de l'Argentine. Bol. Acad. Nac. Cien. Cordoba 16: 117-272. 1900.
Lazenby, W. R. Qualities and uses of the woods of Ohio. Ohio Biol. Surv. 2: 75-III.f. I-I8. Ja 1916.

Leighty, C. E. Carman's wheat-rye hybrids. Jour. Heredity 7: 420427.f. 14-17. S 1916.

Link, G. K. K. A physiological study of two strains of Fusarium in their causal relation to tuber rot and wilt of potato. Bot. Gaz. 62: 169-209. f. I-13. I5 S 1916.
Lipman, C. B. A critique of the hypothesis of the lime-magnesia ratio. I. Plant World 19: 83-105. Ap 1916. II. Plant World 19; 119-135. My 1916.

Löhnis, F., \& Smith, N. R. Life cycles of the bacteria. Jour. Agr. Research 6: 675-702. pl. A-G+f. I. 31 Jl 1916.
Lorenz, A. Additions to the Vermont hepatic list for 1915. Vermont Bot. \& Bird Club Joint Bull. 2: 13, 14. Ap 1916.
Lunell, J. Enumerantur plantae Dakotae septentrionalis vascularesVII. Am. Mid. Nat. 4: 419-431. 26 Jl 1916;-VIII. Am. Mid. Nat. 4: 467-487. S 1916.
MacDougal, D. T. Imbibitional swelling of plants and colloidal mixtures. Science II. 44: 502-505. 601916.
Manns, T. F., \& Taubenhaus, J. I. Streak: a bacterial disease of the sweet pea and clovers. Gard. Chron. III. 53: 215, 216. f. 96, 97. 5 Ap 1913.

Marsh, C. D., Clawson, A. B., \& Marsh, H. Larkspur poisoning of live stock. U. S. Dept. Agr. Bull. 365: 1-90. pl. 1 -15 +f. I-12. 8 S 1916.
Matz, J. A method to induce sporulation in cultures of Botryosphaeria berengeriana. Phytopathology 6: 387 -389.f. 1. O 1916.
Maxon, W. R. Notes on American ferns-X. Am. Fern Jour. 6: 65-68. S 1916.
Maza, M. G. de la. Determinacion de plantas cubanas fanerogamas. An. Acad. Cie. Habana 49: 556-613. 1912; 895-910. 1913.
Meinecke, E. P. Forest pathology in forest regulation. U. S. Dept. Agr. Bull. 275: i-62. 7 Ap 1916.
Merrill, E. D. New or interesting Philippine Vitaceae. Philip. Jour. Sci. II: (Bot.) 125-145. My 1916. Fourteen new species are described.

Morse, W. J. Further observations relative to the ability of the apple scab fungus to live over winter on young twigs. Maine Agr. Exp. Sta. Bull. 252: 191, 192. My 1916.
Morse, W. J. Two apple-leaf troubles new to Maine. Maine Agr. Exp. Sta. Bull. 252: 186-190.f. 26, 27. Мy 1916. Chlorosis and silver leaf.

Nelson, A. The trend and influence of certain phases of taxonomy. Science II. 39: 92I-927. 26 Je 1914.
Nieuwland, J. A. Cleistogamous flowers in the pansies. Am. Mid. Nat. 4: 464-466. 26 Jl 1916.
Nieuwland, J. A. Cleistogamy in Cubelium. Am. Mid. Nat. 4: 501, 502. S 1916.

Nieuwland, J. A. Critical notes on new and old genera of plants-VI. Am. Mid. Nat. 4: 333-335. Ja 1916.
Nieuwland, J. A. Proliferation in Calendula. Am. Mid. Nat. 4: 502. S 1916.
Norton, J. B. S. Some Maryland woodland plants for spring study. Maryland Agr. College Bull. 3^{3} : $1-29 . p l .1-10 . ~ M r ~ 1907 . ~$
Osterhout, W. J. V. Antagonism and Weber's law. Science II. 44: 318-320. I S 1916.
Osterhout, W. J. V. The penetration of balanced solutions and the theory of antagonism. Science II, 44: 395, 396. 15 S 1916.
[Popenoe, P.] Pollination in the pine. Jour. Heredity 7: 402-405. f. 7-10. S i916.

Quehl, L. Bermerkungen über einige arten von Mamillarien aus der Untergattung Coryphantha Engelm. Reihe Aulacothele Lem. Monats. Kakteenk. 22: 67, 68. I5 My 1912.

Reddick, D. Powdery mildew of grapes and its control in the United States. Rep. Internat. Cong. Viticulture 1915: 117-125. Je 1916.
Reed, G. B. The mode of action of plant peroxidases. Bot. Gaz. 62: 233-238. f. I, 2. I5 S 1916.

Rodrigues, J. B. Myrtacées du Paraguay recueillies par Mr. le Dr. Emile Hassler. 1-20. pl. 1-26. 1903.
Rodrigues, J. B. L'Uiraêry et de son emploi. I-I80. pl. I-7. 1903.
Rolfe, R. A. Acacallis cyanea. Curt. Bot. Mag. IV. 12: pl. 8678. S 1916.
A plant of the upper Amazon.
Rübel, E. Die internationale pflanzengeographische Exkursion durch Nordamerika 1913. Actes Soc. Helvétique Sci. Nat. 97 ${ }^{2}$: 59-87. f. I-20. 1915.

Rusby, H. H. Floral features of the American equatorial belt. Jour. N. Y. Bot. Gard. 17: $115-140.12 \mathrm{~S}_{-1} 1916$.

Scheppegrell, W. Hay fever and its prevention. U. S. Public Health Serv. Reprint 349: I-I3.f. 1 -16. 21 J1 1916. [Illust.]
Schmitz, H. Some observations on witches-brooms of cherries. Plant World 19: 239-242. Au 1916.
Schneider, A. A parasitic Saccharomycete of the tomato. Phytopathology 6: 395-399.f. I-4. O 1916.
Shreve, E. B. An analysis of the cause of variations in the transpiring power of Cacti. Physiol. Researches 2: 73-127. f. I-IO. S 1916.
Schröter, K. Ueber neuere pflanzengeographische Forschungen in Nordamerika. Actes Soc. Helvétique Sci. Nat. $97^{2}: 213,214.1915$.
Sinnott, E. W. The evolution of herbs. Science II. 44: 291-298. I S 1916.

Stephani, F. Species Hepaticarum 3: 517-693. 1909.
Includes new American species in Mastigobryum (I3), Micropterygium (2),
Psiloclada (I), Lepidozia (34), Blepharostoma (I), and Isotachis (13). Issued as Compl. Bull. Herb. Boissier.

Stephani, F. Species Hepaticarum 4: 1-824. 1909-1912.
Includes new American species in Schisma (22), Trichocolea (13), Schistochila (5), Balantiopsis (5), Diplophyllum (I), Scapania (I), Radula (25), Madotheca (14), Frullania (113), Jubula (1), Peltolejeunea (1), Archilejeunea (10), Leucolejeunea (2), and Mastigolejeunea (4). Issued as Compl. Bull. Herb. Boissier.
Stevenson, J. J. The formation of coal beds.-III. Proc. Am. Phil. Soc. 51: 423-553. I3 D 1912;-IV. Proc. Am. Phil. Soc. 52: 31162. 19 My 1913.

Taubenhaus, J. J., \& Manns, T. F. Diseases of the sweet pea. Gard. Chron. III. 54: 21-25.f. 8-19. I2 Jl 1913.
Tisdale, W. H. A Melanconium parasitic on tomato. Phytopathology 6: 390-394.f. I-3. O 1916.
Tisdale, W. H. Relation of soil temperature to infection of flax by Fusarium lini. Phytopathology 6: 412, 413. O 1916.
Townsend, C. H. Voyage of the "Albatross" to the gulf of California in 1911. Am. Mus. Nat. Hist. Bull. 35: 399-476.f. 1-45. 2 Au 1916.

Contains information of a botanical nature.
Townsend, C. W. The old stumps at Blanc Sablon. Rhodora 18: 185-188. I S 1916.
Trabut, L. Pyronia. Jour. Heredity 7: 416-419.f. 12, I3. S 1916. A hybrid between the pear and quince.
Urban, I. Sertum antillarum.-II. Repert. Sp. Nov. I3: 465-484. I Ap 1915.
Includes twenty-two new species and one new genus.
Victorin, M. La flore du Temiscouata. [I-127.] Quebec. 1916. Reprinted for the "Naturaliste Canadien" with separate pagination.
Vischer, W. Zur Biologie einiger paraguayanischer Bromeliaceen. Actes Soc. Helvétique Sci. Nat. 97²: 211.1915.
Waksman, S. A. Do fungi live and produce mycelium in the soil? Science II. 44: 320-322. I S 1916.
Weatherby, C. A., \& Blake, S. F. Galium pilosum and its varieties. Rhodora 18: 190-195. I S 1916.
Weir, J. R. Phacidium infestans on western conifers. Phytopathology 6: 413, 414. O 1916.
Weir, J. R. Pinus ponderosa and P. jeffreyi, hosts for Razoumofskya americana. Phytopathology 6: 414. O 1916.

Wernham, H. F. New Rubiaceae from tropical America-V. Jour. Bot. 52: 313-316. D 1914.

Wheeler, L. A. Notes on the plants of the West river valley. Vermont Bot. and Bird Club Joint Bull. 2: 17. Ap 1916.

Wille, N. Om Udbredelsen af Artemisia norvegica Fr. Bot. Not. 1916: 133-137. 1916.

Zimmermann, C. Contribuicão para o estudo das diatomaceas dos estados unidos do Brazil. Broteria"II: 149-164. D 1913.

INDEX TO VOLUME 43

New names and final members of new combinations are in bold face type

Abies, 198; balsamea, 354; lasiocarpa, 355
Acaena magellanica venulosa, 315 ; multifida, 315; Philippi, 315 ; platyacantha, 315
Acantholimon lycopodioides, 581, 583,640
Acer pennsylvanicum, 244; rubrum, 262; saccharinum, 260; spicatum, 244, 253
Achillea lanata, 272; lanulosa, 272, 349; Millefolium, 271; occidentale, 271; pannonica, 272 ; subalpina, 357
Acomastylis sericea, 358; turbinata, 357
Aconitum Bakeri, 360; columbianum, 349; delphinifolium, 353; heterophyllum, 582, 632 ; insigne, 360; Napellus multifidum, 582 , 632 ; ramosum, 363
Acraea rubra, 242, 244
Actinastrum gracillimum, 480
Actinocarya tibetica, 64 I
Additional species of Opuntia, 523
Adenostegia ramosa, 353
Adesmia boronoides, 315 ; campestris, 315 ; glandulifera, 315; parvifolia, 315; pumila, 315; salicornioides, 315 ; villosa, 315
Adiantum, 366 ; bellum, 371,382 ; Capil-lus-Veneris, 371, 382; cardiochloena, 371,382 ; cuneatum, $365,366,382$; pedatum, 95, 252; trapeziforme, 372, 382
Adonis chrysocanthus, 633
Aglaonema, 548
Agropyron andinum, 356; dentatum elatum, 628; Jacquemontii, 628; latiglume, 358 ; longe-aristatum, 628 ; repens, 588 , 628; Scribneri, 356; violaceum, 345
Agrostis alba, $580,582,588,627$; asperifolia, 349 ; canina, $345,588,627$; hiemalis, 345 ; idahoensis, 358 ; variabilis, 349
Aira caryophyllea, 588, 627
Alisma Plantago, 401
Allardia, 589 ; glabra, 583,645 ; nivea, 583,645 ; Stoliczkai, 583, 645; tomentosa, 583,645 ; vestita, 645
Allium, 399, 589; brevistylum, 356; Cepa, 629; Govanianum, 629; Jacquemonti, 629; loratum, 629; odorum, 629; oreoprasum, 629; Pikeanum, 363; platyspathum, 629; Schoenoprasum, 629; Semenovi, 629; simillisimum, 363; tricoccum, 252

Allotria, I03; scabra, 103
Alnus incana, 247; rugosa, 243, 247; sinuata, 35 I
Alopecurus aristulatus, 345; himalaicus, 582, 627; occidentalis, 345 ; pratensis, 588, 627
Alsine americana, 358 ; bailcalensis, 349 ; borealis, 346 ; calycantha, 349; crassifolia, 346 ; laeta, 346 ; longifolia, 346 ; polygonoides, 363
Alsinopsis macrantha, 360; Nuttallii, 349
Alstroemeria nana, 310
Alyssum canescens, 586, 634
Amarella anisopetala, 351; monantha, 361 ; plebeia, 349; propinqua, 354; strictiflora, 349
Amaryllis longiflora, 403
Amblystegiella confervoides, 24 I
Amblystegium fluviatile, 239; irriguum, 239 ; noterophilum, 241
Ambrosia trifida, 257, 260
Amphicarpa monoica, 260
Amsinckia angustifolia, 318
Anabaena limnetica, 48I; macrospora, 482
Anacolia subsessilis, 329
Ananthopus, 103; clandestinus, 102; cordatus, 105; undulatus, 103
Anaphalis contorta, 645; margaritacea, 267; nubigena, $583,586,644$; Stoliczkai, 645; subalpina, 355 ; virgata, 583,645
Anarthrophyllum Pritchardi, 315
Andreaea petrophila, 24I; Rothii, 24 I
Andromeda novae-caesareae, 285, 301; polifolia, 347; tenuinervis, 302; Wardiana, 285, 302
Andropogon Ischaemum, 582, 624
Androsace, 589; carinata, 357; Chamaejasme, 639; Chamaejasme coronata, 639; filiformis, 357; microphylla, 639; pinetorum, 36 I ; rotundifolia, 639 ; rotundifolia glandulosa, 639; sarmentosa, 639; sarmentosa primuloides, 639 ; sempervivoides, 639; septentrionalis, 639 ; subumbellata, 357 ; villosa, 58 r , 583, 624
Aneilema nudiflorum, 96
Anemone albana, 632 ; Drummondii, 353 ; globosa, 349 ; lithophila, 358 ; parviffora, 346; Richardsonii, 353; quinquefolia, 253; rivularis, 632 ; rupicola, 582, 632 ; tetonensis, 358, 359

Anemonella thalictroides, 253
Angelica Grayi, 361; Roseana, 358, 359
Ankistrodesmus nitzschioides, 473; setigerus, 473
Anomobryum filiforme, 68,328 ; procerrimum, 67, 68
Anoectangium Mougeotii, 240
Anomodon attenuatus, 240 ; rostratus, 240
Antennaria acuta, 362 ; anaphaloides, 355; aprica, 357 ; chilensis, 320 ; chlorantha, 362; corymbosa, 351 ; fallax, 266 ; magellanica, 320; microphylla, 357; media, 349 ; monocephala, 354 ; nana, 644; neglecta, 267; neodioica, 266; petaloidea, 267 ; plantaginifolia, 265; plantaginifolia petiola, 265 ; rosea, 349 ; sedoides, 357 ; umbrinella, 355
Anthemis Cotula, 272
Anthiphylla oppositifolia, 347
Anthoceros laevis, 239
Anthracothecium tetraspermum, 148
Anthropogon barbellatum, 36 I ; elegans, 357
Anticlea coloradensis, 360
Apocynaceae, 640
Apocynum venetum, 640
Aquilegia columbiana, 35I; elegantula, 360 ; formosa, 353; Jonesii, 358; larimensis, 363 ; oreophila, 360 ; saximontana, 360 ; scopulorum, 363 ; vulgaris, 588; vulgaris pyrenaica, 582, 632; vulgaris viscosa, 632
Arabis alpina, 634; ambigua, 353; Drummondii, 355; exilis, 358 ; glabrata, 634; glandulosa, 634; Lyallii, 35I; oblanceolata, 363 ; oreophila, 358,359 ; rupestris, 355 ; tibetica, 586, 634
Archeria Boltoni, 477
Arachnites uniflora, 3 II
Aragallus alpicola, 358; deflexus, 357; foliolosus, 358 ; Hallii, 363 ; oreophilus, 361 ; Parryi, 361 ; viscidus, 358 ; viscidulus, 358
Aralia racemosa, 242
Arctium Lappa, 275, 583, 589, 646; minus, 274 ; tomentosum, 275
Arctous erythrocarpa, 353
Arenaria andicola, 314 ; foliosa, 582, 632; Fendleri, 360; Griffithsii, 582, 632; holosteoides, 585, 632 ; kashmirica, 632 ; lithophila, 358 ; musciformis, 585,632 ; norvegica, 349 ; salmonensis, 353 ; serpyllifolia, 588, 632; serpylloides, 314 ; Stracheyi, 632; Tweedyi, 360
Argentina subarctica, 354
Arjona pusilla, 313 ; tuberosa, 313
Arisaema quinatum, 95 ; triphyllum, 242
Armeria chilensis, 317
Arnebia tibetana, 64I ; Thomsoni, 641
Arnica cordifolia, 349; macilenta, 362 ; ovata, 362 ; Parryi, 355 ; pedunculata, 349; pumila, 357; rhizomata, 357;

Rydbergii, 355; subplumosa, 357; tenuis, 363
Artemisia Absinthium, 274, 646; amygdalina, 583,646 ; annua, 273 ; biennis, 273 , 645; caudata, 273; desertorum, 645; Dracunculus, 645; Falconeri, 645; laciniata, 645; macrocephala, 646; maritima, 645 ; minor, 586,646 ; parviflora, 645; Pattersonii, 362; persica, 645; pontica, 274; Richardsoniana, 354; sacrorum, 645; salsoloides, 583 , 645 ; saxicola, 363 ; scopulorum, 357; scoparia, 645 ; Siversiana, 646 ; spithamaea, 346 ; stelleriana, 274 ; Stracheyi, 646; stricta, 645; Tournefortiana, 645; vulgaris, 273
Arthonia atrata, 149; conferta, 149; polymorpha, I49; rubella, I49
Arthothelium spectabile, I49
Asarum canadense, 242, 253
Asclepiadaceae, 640
Asperugo procumbens, 641
Aspidium mohrioides, 309; noveboracense, 252 ; spinulosum, 242
Asplenium acrostichoides, 242 ; angustifolium, 95; bulbiferum, 376,382 ; Filixfemina, $261,373,382$; magellanicum, 309 ; platyneuron, 375,382 ; pycnocarpon, 95; Trichomanes, 242
Aster acuminatus, 244; alpinus, 357 ; apricus, 355; Canbyi, 362; Fremontii, 357; heterochaeta, $583,586,644$; paniculatus, 26 I ; tibeticus, $58 \mathrm{I}, 586$, 644; Vahlii, 32 I
Astragalus adesmiaefolius, 636; alpinus, 587 ; brevicaulus, 315 ; cicerifolius, 637 ; ciliolatus, 636 ; coluteocarpus, 582,637 ; confertus, 636 ; Dusenii, 315 ; Falconeri, 636; frigidus, $581,582,637$; Heydei, 636; himalayanus, 582,636 ; hypoglottoides, 637 ; macropterus, 580,636 ; multiceps, 637; Munroi, 580, 637; melanostachys, 582,636 ; nivalis, 580 , 637 ; ophiocarpus, 636 ; oxyodon, 636 ; patagonicus, 316 ; peduncularis, 637 ; rhizanthus, 582, 637; Royleanus, 637; strictus, 636; subulatus, 583,637 ; tibetanus, 582, 636; tribulifolius, 636; Webbianus, 637; zanskarensis, 637
Atelanthera perpusilla, 634
Atelephragma elegans, 357 ; debilis, 358 ; Forwoodii, 358, 359
Atriplex crassifolia, $580,585,631$; hortensis, 63 I ; rosea, $585,588,631$
Avena fatua, $548,554,588,627$; Mortoniana, 360 ; sativa, 637 ; striata, 345
Axyris amaranthoides, 582,631; amaran-
thoides humifusa, 631
Azaliastrum albiflorum, 35 I
Azorella trifoliata, 3I7; trifurcata, 317
Baccharis Darwinii, 319; halmifolia, 265 ;
magellanica, 319; patagonica, 319; Shaferi, 46 I
Bacidia fuscorubella, 153
Balsaminaceae, 638
Barbarea vulgaris, 587
Barbula costata, 325; Eubryum, 66; exesa, 67 ; pruinosa, 325 ; replicata, 325 ; subulatula, 326
Bartholomew, E. T. Observations on the fern rust Hyalopsora Polypodii, 195
Bartramia pomiformis, 240, 308
Bauhinia gigantea, 295; Jenningsii, 463; marylandicus, 295; ripleyensis, 285 , 294
Bazzania trilobata, 244
Benedict, R. C. The origin of new varieties of Nephrolepis by orthogenetic saltation. I. Progressive variations, 207
Benzoin aestivale, 243
Berberidaceae, 314, 633
Berberis empetrifolia, 314; ilicifolia, 314; microphylla, 314 ; ulicina, 633 ; vulgaris, 588, 632
Bermuda, The lichens of, 145
Berry, E. W. Contributions to the Mesozoic flora of the Atlantic coastal plain,-XI. Tennessee, 283
Besseya alpina, 361; gymnocarpa, 357; plantaginea, 361 ; reflexa, 363 ; Ritteriana, 362
Betula alba papyrifera, 252 ; glandulosa, 345; utilis, 578,630
Betulaceae, 630
Biatora fuscorubescens, 152
Bicknell, E. P. The ferns and flowering plants of Nantucket-XVII, 265
Bidens cernua, 269; cernua elliptica, 269 ; connata, 269; frondosa, 270; petiolata, 269; vulgata, 257, 270
Biebersteinia Emodii, 586, 637
Bilimbia Brittoniana, 152; floridana, 152 ; sphaeroides vacillans, 153
Bistorta bistortoides, 349; linearifolia, 356; vivipara, 346
Blastenia floridana, 159
Blephariglottis conspicua, 408
Blumea bifoliata, 644
Boehmeria cylindrica, 261
Boraginaceae, 318, 641
Botanical work of Dr. E. W. Hilgard, 389
Botrychium Lunaria, 309; virginianum, 252, 257
Brachyactis robusta, 644; umbrosa, 644
Brachythecium asperulum, 333; flaccum, 333; rivulare, 239; plumosum, 241 ; sericeovirens, 333; stereopoma, 334
Branched prothallia in the Polypodiaceae, 365
Brassica juncea, 588; Napus, 634; nigra, 588
Braunia canescens, 330; Elliottii, 70

Braya alpina, 586, 634; humilis, 587; rosea, 634 ; tibetica, 634; uniflora, 634
Breutelia bryocarpa, 329; tomentosa, 330
Britton, N. L. Studies of West Indian plants-VIII, 441
Briza media, 588, 627
Bromus altissimus, 261; barbatus, 585 . 628; ciliatus, 345; coloratus, 309 ; crinitus, 585,627 ; macrostachys, 585 , 628 ; oxyodon, 628 ; patulus, 627 ; polyanthus, 349 ; tectorum, 580, 588, 627
Bryaceae, 625
Bryum andicola, 328; argenteum, 328 ; biforme, 328 ; canariense, 69; canariensiforme, 68 ; densifolium, 329 ; polytrichoideum, 69 ; procerrimum, 68; promontorii, 68; provinciale, 69 ; tibeticum, 582, 625
Buellia canescens, 158; myriocarpa, 159 ; parasema, I59
Bulbostylis alpestris, 446; capillaris, 447; fimbriata, 446; floccosa, 445; leucostachys, 445 ; paradoxa, 444; subaphylla, 446; Tuerckheimii, 446
Bupleurum falcatum, 583, 639; falcatum nigrocarpa, 581, 639; tenue, 639
Byrsonima lucida, 456; ophiticola, 456
Caesalpiniaceae, 294
Caesoma interstitiale, 559; nitans, 559569
Calamagrostis canadensis, 345; Langsdorfi, 345; littorea, 627; purpurascens, 345; Stoliczkai, 627
Calamintha umbrosa, 642
Calceolaria biflora, 318; Pritchardi, 318; tenella, 318; uniflora, 318
Callymenia reniformis, 171,173
Caltha leptosepala, 358 ; rotundifolia, 360
Calyceraceae, 319
Calyptranthes Boldinghi, 466; Maxoni, 466; nummularia, 466; pinetorum, 465
Cambial activity in certain horticultural plants, 533
Campanula, 589 ; argyotricha, 644; aristata, 583, 644; colorata tibetica, 644; cashmiriana, 644; heterodoxa, 354; latifolia, 583, 644; Parryi, 362; petiolata, 346
Campanulaceae, 644
Camptosorus, 366 ; rhizophyllus, 372,382
Campylopus aethiops, 65 ; angolensis, 65 ; flexuosus, 65; introflexus, 65; leucognodes, 324
Capnorchis brachycarpum, 363
Capparidaceae, 634
Capparis spinosa, 634
Caprifoliaceae, 644
Capsella elliptica, 634; Thomsoni, 634
Caragana cuneata, 636 ; pygmea, 58 I, 586 , 636
Cardamine acuminata, 355; hirsuta, 314;
macrophylla, 634; pratensis, 587 ; umbellata, 349
Carduus nutans, 589,646 ; Thomsoni, 646
Carex adusta, 616, 617 ; abrupta, 604, 618, 620; aenea, 347; albonigra, 356; amplectens, 603, 6II; athrostachys, 349, 603; atrata, 345; atrotiformis, 347; aurea, 345; Banksii, 310; bella, 360; brunnescens, 345; canescens, 345; capillaris, 346 ; capitata, 347 ; chalciolepis, 356 ; chimaphila, 356 ; convoluta, 424. 428; Davyi, 602, 606, 615 ; deflexa, 347; diluta, 628; Douglasii, 349; eburnea, 360; Egglestonii, 360; elynoides, 360 ; Engelmanii, 355 ; festiva, 6 II; festivella, 349 ; feta, 602 ; Geyeri, 355; glaucescens, 407; Goodenovii, 587 ; gracilior, 603, 614; gynocrates, 345; haematostoma, 628; Halleri, 346; Hassei, 347; Harfordii, 604, 615; Heliomastes, 347; Hepburnii, 345; hirtella, 628 ; illota, 349; inconspicua, 310; incurva, 628 ; integra, 604, 608; interior, 345; laeviculmis, 35I; lancifructus, 602, 607; leporina, 602; leporinella, 602, 605 ; leptalea, 345; livida, 347; MacCallae, 353; mariposana, 604, 619; microglochin, 628; microptera, 603; Mertensii, 351 ; miliaris, 347; misandra, 346; Moorcroftii, 585,628 ; multicostata, 602, 604; multimoda, 6II; neglecta, 425; Nelsonii, 360; nigricans, 349; nivalis, 584, 628; nova, 349; obtusata, 345; occidentalis, 360 ; oligocarpa, 628 ; olympica, 603, 610; pachycarpa, 604, 616; pachystachya, 6I1; parva, 628; paucifructus, 604,615 ; petasata, 355 , 606; phaeocephala, 349, 602; physocarpa, 353; praticola, 602; Preslii, 611 ; pseudoscupoidea, 356; pyrenaica, 355; radiata, 425, 432; Reynoldsii, 349 ; rigida, $582,587,628$; rosea, 423,435 ; rosea radiata, 423 ; rosea minor, 423 ; Rossii, 345; rostrata, 346; scirpoidea, 347; siccata, 345; stellulata, 424; stenochlaena, 351; stenophylla, 587. 628; straminiformis, 602; sub-bracteata, 603,612 ; subfusca, $603,608,609$; supina, 347; teneraeformis, 603, 609; tenuirostrus, 603, 605; Tolmiei, 35I; trisperma, 424; vaginata, 347 ; venustula, 353; verrucosum, 95, 407; vulgaris, 628
Carex, Notes on, -X, 423; -XI, 601
Carex rosea and its allies, 423
Carpinus caroliniana, 243, 252
Carum Carvi, 588, 639
Carya cordifolia, 262; cordiformis, 252
Caryophyllaceae, $3,13,631$
Casasia parvifolia, 46 I
Cassia bahamensis, 459; domingensis, 459; nictitans, 463 ; procumbens, 463
pygmaea, 463; scleroxyla, 458; Shaferi, 459
Cassine magellanica, 316
Cassiope Mertensiana, 352; saximontana, 362; tetragoma, 347
Castilleja brunnescens, 362; confusa, 362 ; lanata, 357; lancifolia, 357; lutea, 351 ; occidentalis, 357 ; pallescens, 351 ; pallida, 354 ; puberula, 362 ; pulchella, 359; rhexifolia, 357; Tweedyi, 359
Catabrosa aquatica, $345,587,627$; Thomsoni, 627
Catharinaea undulata,: 239,246
Caulophyllum thalictroides, 242, 253
Celastraceae, 316
Centaurea Cyanus, 276; depressa, 646; melitensis, 276
Cephaloziella Hampeana, 240
Cerastium arvense, 313 ; beeringianum, 349; Earlei, 360; oreophilum, 360; scopulorum, 356 ; strictum, 356 ; trigynum, 632 ; variabile, 360 ; vulgatum, 588,632 ; vulgatum nepalense, 632 ; vulgatum tibetica, 632
Cestrum pinetorum, 461
Chaerophyllum acuminatum, 583,639 ; villosum, 639
Chaetosphaeridium globosum, 471 ; ovalis, 47 I ; Pringsheimii, 471
Chamaecrista micrantha, 463 ; savannarum, 463
Chamaerhodos subulosa, 636
Chamaesyce Cowellii, 457; Jenningsii, 465
Characium stipitatum, 472
Cheiranthus albiflorus, 634 ; himalayensis, 634; Stewartii, 634
Cheirinia amoena, 360 ; nivalis, 360 ; oblanceolata, 360 ; radicata, 360
Chenolea divaricata, 63 I
Chenopodiaceae, 313, 631
Chenopodium album, $313,585,588,631$; antarcticum, 313; Botrys, 588, 63I; Blitum, 63I; glaucum, 588, 63I; hybridum, 587, 631
Chiloscyphus rivularis, 239
Chimaphila umbellata, 246
Chiodecton Montagnei, ${ }^{5} 51$
Chiogenes hispidula, 347
Chionophila Jamesii, 361
Chlamydomonas stipitata, 472
Chloraea Kingii, 312; magellanica, 312; pleistodactyla, 312
Chloris virgata, 627
Chodatella ciliata, 477 ; ciliata minor, 477; subsalsa, 477
Chondriella graminea, 647
Chorispora sabulosa, 582, 634
Christolea crassifolia, $580,586,634$
Chroococcus limneticus, 481 ; limneticus distans, 48 I
Chrysanthemum Balsamita, 273; Leu-
canthemum, 272; Leucanthemum pinnatifidum, 272; Parthenium, 273; Parthenium breviradiatum, 273; Richteria, 581, 583, 645; Stoliczkai, 645; tibeticum, 645
Chrysopsis alpicola, 362; asprella, 362 ; pumila, 357
Chrysosplenium americanum, 242
Church, M. B. The development of the embryo sac and embryo of Cooperia Drummondii, 397
Cibotium Chamissoi, 387; Menziesii, 387
Cicer songaricum, 583, 637
Cinna arundinacea, 261
Cinnamomum Heeri, 285, 298; sp., 285
Circaea alpina, 242; lutetiana, 261
Cirsium arvense, 276; discolor, 275; horridulum, 275; lanceolatum, 275; odoratum, 275
Cissites crispus, 285, 296; Newberryi, 296
Cladonia coccifera, 308; fimbriata barbonica, 153; fimbriata nemoxyna, 153; fimbriata simplex, 153; mitrula, I54; pityrea, 154 ; rangiformis pungens, 154
Claytonia megarrhiza, 356; virginica, 253
Clematis orientalis, 590,632 ; rhodantha, 356
Climacium americanum, 239
Clitoria glomerata, 452
Cnicus arvensis, 589, 646; Wallichii, 646
Cochlearia scapiflora, 633
Codonopsis ovata, 644
Codonorchis Lessonii, 312
Coelosphaerium Naegelianum, 472
Coleosanthus umbellatus, 362
Collema bermudanum, 155; flaccidum, 155; furvum, 155; nigrescens, 155; thamnodes, 155
Collins, F. S. \& Howe, M. A. Notes on species of Halymenia, 169
Collinsonia canadensis, 242
Collomia coccinea, 318; gracilis, 318 ; debilis, 358 , 359
Cololejeunea Biddlecomiae, 24I
Colutea arborescens, 636
Comarum palustre, 347
Commelina angustifolia, 97, 105, 108, 407; caroliniana, 97, 99, 407; communis, 97. 98, 407; crispa, 97, 107, 407; dianthifolia, 97, 102; diffusa, 100; elegans, 97 . 110, 407; erecta, 97, 104, 105, 407; hirtella, 102, 407; ignorata, 103; longicaulis, 97 , 100, 407; longifolia, ro2; Nashii, 109; nudiflora, 96, 407; ignorata, ro3; Rafinesquei, ro5; saxicola, 105; Swingleana, 108; virginica, 97. 102, 407

Commelina (Plumier) L. in the United States, The genus, 96
Compositae, 319, 644
Condrophora americana, 361; Fremontii, 361

Condrosea Aizoon, 348
Coniomitella Williamsii, 358
Conium maculatum, 317
Connecticut, The vegetation of, 235
Conocephalum conicum, 239, 246
Conringia planisiliqua, 634
Contributions to the Mesozoic flora of the Atlantic coastal plain-XI. Tennessee, 283
Convolvulaceae, 640
Convolvulus arvensis, 588, 640
Cooperia Drummondii, The development of the embryo sac and embryo of, 397
Coprosmanthus herbaceus, 414 ; peduncularis, 4I4; tenuifolius, 4II
Cordia Sebestena brachycalyx, 457
Corispermum hyssopifolium, 587, 63I
Coronopus australis, 314
Cortaderia pilosa, 309
Corydalis adiantifolia, 633; crassifolia, 586,633 ; flabellata, 580,633 ; Gortschakovii, 582, 633; meifolia, 584, 633; Moorcroftiana, 633; stricta, 586, 633; tibetica, 633
Corylus americana, 246
Cotoneaster acuminata, 635 ; nummularia, 635 ; vulgaris, 635
Cousinia Falconeri, 581, 646
Crambe cordifolia, 634
Crassulaceae, 635
Cratoneuron filicinum, 241
Cremanthodium Decaisnei, 583, 646; oblongatum, 646
Crepis flexuosa, 647; Stoliczkai, 647; tenuifolia, 647
Crescentia portoricensis, 457
Cruciferae, 314, 633
Cryptotaenia canadensis, 242
Cryptocarpus Curtisii, II7
Ctenidium malacodes, 333
Culcitium magellanicum, 320
Cuscuta capitata, 583,640 ; europaea, 588 , 640
Cyclodictyon aeruginosum, 332
Cylindrospermum stagnale angustatum, 48I
Cynanchum acutum, 581, 640; glaucum, 640 ; Heydei, 640
Cynoglossum petiolatum, 64I; Wallichii, 641
Cyperaceae, 310, 628
Cyperus cyperoides, 44I; fugax, 44I; granularis, 441; Haspan, 462; nanus, 441, 442; ignotus, 442; pinetorum, 462
Cypripedium passerinum, 347
Cystium platytropus, 358
Cystopteris bulbifera. 242; fragilis, 195. 242, 309, 582, 587, 625
Cytherea bulbosa, 346 ; occidentalis, 353
Dactylis glomerata, 588, 627

Danthonia californica, 349; kashmiriana, 627
Dasiphora fruticosa, 346
Dasystephana affinis, 357; ćalycosa, 353; glauca, 353, 354; monticola, 358; Parryi, 361; Romanzovii, 357
Delesseria sinuosa, 180
Delphinium attenuatum, 363; Barbeyi, 360; Brunonianum, 581, 582, 584, 585, 632 ; cashmirianum, 582,632 ; occidentale, 360
Dentaria diphylla, 253; laciniata, 253; rupicola, 353
Deschampsia atropurpurea, 345; caespitosa, 345,585, 587, 627; curtifolia, 356; flexuosa, 309; koelerioides, 627
Desmopsis, 184; bibracteata, 190, 192, 193; Galeottiana, 185-188; Maxonii, 185, 188, 193; panamensis, 185, 189, 192, 193; Oerstedii, 191
Desmopsis, A new genus of Annonaceae, 183
Desmos, 183, 185; chinensis, 183, 184; cochinchinensis, 183
Dewalquea insignis, 294; Smithi, 285, 293
Development of the embryo sac and embryo of Cooperia Drummondii, The, 397
Development of the embryo and seedling of Dioscorea villosa, The, 545
Deyeuxia compacta, 627 ; scabrescens, 627
Dianthus anatolicus, $582,584,632$; angulatus, 632 ; crinitus, 632 ; deltoides, 588, 632; Seguieri, 632
Dicentra cucullaria, 253
Dichotomaria, 62 I
Dicranum fulvum, 24I; Mittenii, 323
Didymodon afer, 66; rubellus, 240
Dilophia salsa, 633
Dioclea galactioides, 45I; rudolphioides, 449
Diodia arenicola, 467 ; ciliata, 467
Diospyros primaeva, 285 ; virginica, 303
Dioscorea bonariensis, 546; brasiliensis, 546; cordifolia, 546; paniculata, 545; pyrenaica, 546,555 ; sinuosa, 546 ; villosa, 545
Dioscorea villosa, The development of the embryo and seedling of, 545
Discaria discolor, 316
Disporum trachycarpum, 356
Distegia involucrata, 345
Dixon, H. N. New and rare African mosses, from Mitten's herbarium and other sources, 63
Dodecatheon uniflorum, 363
Doronicum Falconeri, 646
Douglasia montana, 358; nivalis, 362
Draba alpina, 582,634 ; andina, 356 ; aurea, 346 ; aureformis, 361 ; brachystylis, 363 ; chrysantha, 361 ; crassa, 356; crassifolia, 346; densiflora, 358;
eurocarpa, 353; fladnizensis, 346; glacialis, 582, 634; graminea, 361 ; incana, 634; lasiophylla, 584, 634; lonchocarpa, 35I; luteola, 361 ; nitida, 349; oligosperma, 349; Parryi, 360; pectinata, 350 ; spectabilis, 361 ; sobolifera, 363 ; streptocarpa, 361; tibetica, 634; ventrosa, 363
Dracocephalum heterophyllum, 586, 642; nutans, 583,642 ; stamineum, 642
Drepanocladus aduncus, 77; Hallii, 77; longifolius, 332
Drimys Winteri, 3 I4
Drosera longifolia, 2, 3, 348; rotundifolia, 1-27, 347; Whittakeri, 3
Drosera rotundifolia, Physiological observations on, I
Drymocallis fissa, 36I; pseudorupestria, 351; pumila, 350
Dryophyllum gracile, 285, 290
Dugaldia Hoopesii, 349
Duthiea bromoides. 628
Ebenaceae, 303
Echinops cornigerus, 646; niveus, 646
Echinospermum barbatum, 641; Redowskii, 64I; semiglabrum, 641
Edwinia macrocalyx, 363
Elaeagnaceae, 638
Elaeagnus hortensis, 638
Eleocharis microcarpa, 442; nodulosus, 442; paulstris, 587, 628
Elephantella groenlandica, 346
Elephantopus arenarius, 468 ; pratensis, 468
Elodea canadensis, 255
Elsholtzia cristata, 642; densa, 583, 642; pusilla, 584, 642
Elymus canadensis, 261 ; dahuricus, 582 , 628 ; dasystachys, 628 ; glaucus, 349 ; sibiricus, 628 ; simplex, 360
Embothrium coccineum, 313
Encalypta contorta, 241
Endophyllum, 566; Sempervivi, 566
Endymion nutans, 400
Entodon brevirameus, 72; Dregeanus, 72; platygyrioides, 33 I
Ephedra Gerardiana, 580, 582, 626; intermedia, 626
Epilobium alpinum, 346; anagallidifolium, 346; angustifolium, $583,587,638$; clavatum, 357; Drummondii, 355; Hornemannii, 346 ; latifolium, 583, 638 ; latiusculum, 358 ; minutiflorurh, 638 ; ovatifolium, 36 I ; patagonicum, 317 ; Royleanum, $58 \mathrm{I}, 638$; stramineum, 36 I ; wyomingense, 357
Epipactis latifolia, 629
Equisetaceae, 626
Equisetum arvense, 257, 587, 626; diffusum, 626; fluviatile, 255 ; ramosissimum, 626

Eragrostis minor, 588
Erechtites hieracifolia, 274
Eremurus himalaicus, 629
Erianthus Ravennae, 626
Ericaceae, 301
Erigeron alpinus, 320, 347, 644; alpinus multicaulis, 583 ; alpinus uniflorus, 583 , 644; andryaloides, 58 I ; bellidoides, 644; compositus, 346 ; Coulteri, 349 ; elatior, 362 ; flabelliformis, 363 ; flagellaris, 357 ; formosissimum, 362; glabellus, 357; glandulosus, 362; grandiflorum, 355; jucundus, 346; Kingii, 350; leiomeris, 362 ; lanatus, 354 ; melanocephalus, 362 ; multicaulis, 644; multiradiatus, 644; pedatus, 351 ; pinnatisectus, 362 ; pulchellus, 246 ; purpureum, 347 ; purpuripes, 468 ; radicatus, 359 ; superbus, 362 ; spiculosus, 320 ; trifidus, 357 ; unalaschkensis, 347
Eriocaulon decangulare, 95; lineare, 390; septangulare, 390
Eriogonum arcuatum, 360; caespitosum, 358; chloranthum, 360; flavum, 356 ; heracleoides, 358, 359; neglectum, 360 ; Piperi, 351; polyphyllum, 351; pyrolaefolium, 353 ; umbellatum, 349
Eriophorum alpinum, 348; angustifolium, 345; Chamissonis, 347; Scheucheri, 348
Eritrichium strictum, 581, 641; spathulatum, 64I; tibeticum, 641
Erodium cicutarium, 316, 588, 637; Stephanianum, 637; tibetanum, 637
Erpodium grossirete, 70; Hanningtonii, 69; Joannis-Meyeri, 69 ; Menyhardtii, 69
Ervum lens, 637
Eryngium Billardieri, 639
Erysimum hieracifolium, 634; odoratum, 634
Erythrodontium squarrosum, 331
Erythronium, 399; americanum, 252; grandiflorum, 35 I ; obtusum, 358 ; parviflorum, 360
Escallonia Britteniana, 314; rubra, 314
Euclidium syriacum, 634
Eugenia anceps, 285, 301
Eupatorium articaefolium, 261 ; purpureum, 26 I
Euphorbia Maddenii, 638 ; portulacoides, 316; Thomsoniana, 638; tibetica, 638
Euphorbiaceae, 295, 316, 638
Euphrasia mollis, 354; officinalis, 643
Eurotia ceratioides, $580,585,63 \mathrm{I}$
Evolvulus arenicola, 466
Fabronia, 73; andina, 332; polycarpa, 332; Wageri, 73
Fagaceae, $29 \div 313$
Fagopyrum esculentum, 631; tartaricum, 631
Ferns and flowering plants of Nantucket, The, -XVII, 265

Fertilization in Fritillaria pudica, 505
Ferula Jaeschkeana, 639
Festuca, 589 ; altaica, 627 ; arizonica, 360 ; crassipes, 285,291 ; curtifolia, 345 ; gracillima, 309; minutiflora, 360; Myuros, 588, 627; nitidula, 627; purpurascens, 310 ; rubra, $585,587,627$; sibirica, 627 ; Thurberi, 360
-Ficus atavina, 291; crassipes, 285, 291; Krausiana, 285, 291; Mohliana, 292; ovatifolia, 285, 293; Woolsoni, 293
Filago arvensis, 644
Fimbristylis miliacea, 443
Fissidens adiantoides, 239; asplenioides, 324 ; crispus, 324 ; cristatus, 241 ; incurvus, 239 ; rigidulus, 324 ; subobtusatus, 65
Flora of Ladak, Western Tibet, The,-I. Discussion of the flora, 57 I ; -II. Check list of Ladak plants, 625
Fontinalis, 239; dalecarlica, 239 ; gigantea, 239; Lescurii, 239
Fragaria bracteata, 349; glauca, 357
Fraxinius americana, 260, 263; excelsior, 640; nigra, 263 ; pennsylvanica, 260, 263 Fritillaria pudica, 505; Roylei, 629; tenella, 505
Frullania Asagrayana, 240; riparia, 241
Fuchsia magellanica, 317
Funaria calvescens, 328 ; submicrostoma, 580, 625
Fumariaceae, 625
Furlong, Charles Wellington, Plants from southern Patagonia collected by, 305
Further records of Jamaica sedges, 441
Further studies of the orange rusts of Rubus in the United States, 559

Gagea persica, 629
Galactia angustifolia, 450; Berteriana, 450; brachyodon, 449, 45I; Combsii, 448, 450; cubensis, 450; Earlei, 448, 450; galactioides, 449, 45I; Grisebachii, 449; impressa, 45I; Jenningsii, 449, 45I; Jussiaeana, 449, 452; minutifolia, 448, 449; monophylla, 448, 449 ; Odonia, 449; parvifolia, 448, 449; revoluta, 449. 45I; rudolphioides, 448, 449; savannarum, 449, 452; spiciformis, 448, 450 ; stenophylla, 449 ; striata, 448, 450 ; suberecta, 448,450
Galactia P. Br. in Cuba, 448
Galaxaura obtusata, A note on the structural dimorphism of sexual and tetrasporic plants of, 621
Galinsoga aristulata, 270; brachystephana, 270; caracasana, 271; hispida, 270, Humboldtii, 271 ; parviflora, 270 , 271 ; parviflora hispida, 270 ; quadriradiata, 271 ; quinquiradiata, 271 ; urticaefolia, 271
Galium Aparine, 319, 587, 643; boreale,

583, 587, 643: pauciflorum, 586, 643; tricorne, 643; verum, 583, 589, 643
Gaultheria humifusa, 348 ; ovatifolia, 35 I
Gayophytum racemosa, 349
Gentiana aquatica, 586, 640; aurea, 583, 640; borealis, 640; carinata, 583, 640; decumbens, 583, 640; Hugelii, 640; humilis, 581, 640; leucomelaena, 640; Moorcroftiana, 583,640 ; patagonica, 318; pseudo-humilis, 640; pygmaea, 640; serrata, 581, 640; serrata Stracheyi, 640; squarrosa, 640; tenella, 583, 640; Thomsoni, 640
Gentianaceae, 318, 640
Genus Machaonia H. \& B. in Cuba, The, 452
Georgia pellucida, 246
Geraniaceae, 637
Geranium collinum, 583, 637; grandiflorum, 637; maculatum, 246; magellanicum, 316; Pattersonii, 361; polyanthes, 637 ; pratense, 637 ; sessiliflorum, 316 ; sibiricum, 637
Gerardia pinetorum, 466
Geum magellanicum, 315 ; rivale, 346
Gifola germanica, 589, 644
Gilia globularis, 36 I
Glaux maritima, 587, 639
Globulina peruviana, 325
Gloeocystopsis, 474 ; limneticus, 475
Gloesocystis Rehmanni, 475
Glyceria distans, 627 ; poaeoides, 627 ; Thomsoni, 627
Glyphis cicatricosa, 151
Glyphomitrium incurvum, 241
Gnaphalium obtusifolium, 267 ; purpureum, 268, 320; spicatum, 320; Stewartii, 645; uliginosum, 257, 268
Gnetaceae, 626
Golenkinia botryoides, 477; fenestrata, 477
Gomphosphaeria Naegeliana, 472
Gormannia debilis, 363
Gramineae, 309, 626
Graphis Afzelii, 150 ; Lineola, 150 ; $\mathrm{Pa}-$ voniana, 150 ; scripta, 151 ; scripta serpentina, 151 ; striatula, 151
Graphephorum muticum, 349; Wolfii, 360
Griffiths, D., Additional species of Opuntia, 523: New species of Opuntia, 83
Grimaldia fragrans, 24 I
Grimmia apocarpa, 239; conferta, 240; micro-ovata, 327 ; ovata, 327 ; rivulariopsis, 327
Gyalecta Farlowi, 145, 152; hyalina, 152
Gymnoconia interstitialis, 559-569
Gymno-ischyrodon, 73
Gymnostomum, rupestre, 244
Gypsophila, 632
Gyrostomum scyphuliferum, 151
Gyrotheca tinctoria, 408

Habranthus gracilifolius Borthianus, 398
Haematomma puniceum, 158
Halarachnion ligulatum, 173
Halenia elliptica, 640
Haloragidaceae, 638
Halocharis violaceae, 631
Haloxylon Thomsoni, 631
Halymenia actinophysa, 169, 180, 181, 182; bermudensis, $169,173,180,182$; echinophysa, 180, 18I; Floresia, 169179 ; floridana, $169^{-176}, 182$; floridana dentata, 177; Gelinaria, 173, 175-177, 179, 182; pseudofloresia, 177-179, 182
Halymenia, Notes on species of, 169
Halymenites major, 285, 303
Hamamelis virginiana, 243
Haplocladium amplexicaule, 76; angustifolium, 76 ; afro-capillatum, 76; capillatum, 76
Haplohymenium triste, 240
Harper, R. M. Botanical work of Dr. E. W. Hilgard, 389

Harris, J. A. A quantitative study of the factors influencing the weight of the bean seed-II. Correlation between number of pods per plant and seed weight, 485
Hedwigia albicans, 240, 330 ; imberbe, 330
Hedysarum Mackenzii, 354; microcalyx, 583, 637; sulphurescens, 351
Helenium autumnale, 261; scaposum, 469
Helianthus annuus, $505,506,268$; divaricatus, 268 ; scaberrimus, 269; strumosus, 268 ; tuberosus, 269
Heleochloa schoenoides, 626
Hemerocallis, 399
Hemieva ranunculifolia, 35I
Hepatica triloba, 253
Heptanthus brevipes, 454, 455; cochlearifolius, 454 ; cordifolius, 454,455 ; lobatus, 454, 455; ranunculoides, 454, 455; Shaferi, 454, 455
Heracleum candicans, 639; pinnatum, 639; Thomsoni, 639
Herminium Monorchis, 629
Heuchera flabellifolia, 359; flavescens, 361 ; glabra. 353; grossularifolia, 359; ovalifolia, 351; parviflora, 356
Hieracium austro-americanum, 320; triste, 320
Hilgard, Botanical work of Dr. E. W., 389
Hippeastrum solandriflorum, 403
Hippophae rhamnoides, 638 ; salicifolia, 638
Hippurus vulgaris, $346,638,587$
Homalobus Bourgovii, 358; humilis, 36 I
Hooker, H. D., Jr. Physiological observations on Drosera rotundifolia, I
Hordeum jubatum, 345; nodosum, 628; vulgare, 628
Howe, M. A. A note on the structural
dimorphism of sexual and tetrasporic plants of Galaxaura obtusata, 62 I
Howe, M. A. \& Collins, F. S. Notes on species of Halymenia, 169
Hulsea carnosa, 359
Hyalopsora Polypodii, Observations on the fern rust, 195
Hydrocotyle americana, 242
Hydrophyllaceae, 318
Hygrohypnum dilatatum, 239, 241 ; eugyrium, 239,. 24I; ochraceum, 239; peruviense, 332
Hylocomium brevirostre, 240 ; splendens, 244
Hymenopappus cinereus, 362
Hymenostylium curvirostre, 240, 24 I
Hyoscyamus pusillus, 642
Hypecoum, 586, 633
Hypericaceae, 638
Hypericum perfoliatum, 583, 638
Hypnum Schreberi, 244, 333
Ibidium Beckii, 408
Impatiens, 58 I ; biflora, 26 I ; brachycentra, 583,638 ; pallida, 242 ; Thomsoni, 583, 638
Index to American botanical literature, 57, 113, 161, 201, 277, 335, 393, 435, 495, 539, 591, 651
Inula Helenium, 268 ; barbata, 583,645 ; Falconeri, 645; Helenium, 268; obtusifolia, 645; rhizocephaloides, 583,645 ; Royleana, 645
Iridaceae, 311, 629
Iris ensata, 629 ; kamaoensis, 629 ; stylosa, 399
Isolepis conifera, 445; junciformis, 442, 447; leucostachya, 445; vestita, 446
Isopyrum grandiflorum, 585, 632
Ivesia Gordonii, 349; utahensis, 35°
Jaeschkea latisepala, 640
Jubula pennsylvanica, 239
Juglandaceae, 630
Juglans cinerea, 252 ; nigra, 505, regia, 630
Juncaceae, 628, 310
Juncaginaceae, 626
Juncoides arcticum, 348; arcuatum, 348; glabratum, 35I; hyperboreum, 347; intermedium, 346; parviflorum, 346; spicatum, 346 ; subapetalum, 360
Juncus effusus, 257; Drummondii, 349; Hallii, 360; himalensis, 629; lampocarpus, 629; leucomelas, 629; membranaceus, 582, 629; Mertensianus, 349; nevadensis, 353; Parryi, 349; Regelii, 353; sphacelatus, 628 ; triglumis, 629
Juniperus, 58 I ; communis, 587,626 ; macropoda, 582, 626; Wallichiana, 626
Jurinea ceratocarpa, 583, 646; ceratocarpa depressa, 583,646

Kallymenia reniformis, 181
Kalmia latifolia, 243; microphylla, 348
Kentrophyta tegetaria, 350
Kirchneriella contorta, 473; elongata, 473
Knudson, L. Cambial activity in certain horticultural plants, 533
Kobresia capillifolia, 628; macrantha, 628; pygmaea, 628; Royleana, 628; Royleana Kokanica, 628; schoenoides, 585, 628
Kochia odontoptera, 631; prostrata, 580 , 631
Koeleria argentea, 627 ; cristata, 587,627
Koelpinia linearis, 583, 646
Kunkel, L. O. Further studies of the orange rusts of Rubus in the United States, 559

Labatia aristata, 460
Labiatae, 641
Lactuca, 589; decipiens, 584, 647; longifolia, 647 ; orientalis, 647 ; sativa, 647 ; Scariola, 584, 589, 647; tartarica, 647; undulata, 647
Ladak, The flora of, 571, 625
Lagostis glauca, 583. 643; globosa, 643
Lamium album, 583, 642; amolexicaule, 588, 642 ; rhomboideum, 642
Lancea tibetica, 580, 581, 642
Laportea canadensis, 242, 259
Larix Lyallii, 350, 351
Larnalles, 105; dichotoma, 105; glauca, 105
Lathyrus altaicus, 637; arizonicus, 361; magellanicus, 316; sativus, 637
Lauraceae, 297
Laurophyllum elegans, 285, 297; nervillosum, 298
Lavatera kashmiriana, $58 \mathrm{I}, 583,638$
Ledum glandulosum, 348 ; groenlandicum, 347
Lecanora bermudensis, 157; cinereocarnea, 157; cinereocarnea athallina, 157; cinereocarnea rugosa, 157 ; claronella, 157; glaucomodes conflectens, 157; pallida cancriformis, 157; subfusca, 158 ; varia, 158 ; varia symmicta, 158
Lecidea euporiza, 152 ; fuscorubescens, 152; revertens, 152; semiusta, 152; sphaeroides vacillans, 153
Leersia virginica, 257, 261
Leguminoseae, 315, 636
Lejeunea cavifolia, 240
Lemna gibba, 349; minor, 346, 587, 628
Lemnaceae, 628
Lentibulariaceae, 643
Leontopodium alpinum, 58 I, $583,586,644$
Lepargyrea canadensis, 345
Lepidium apetalum, 633; capitatum, 586 , 633; latifolium, 580, 633; ruderale, 588
Leptasea austromantana, 355; chrysan-
tha, 36 r ; Hirculus, 346 ; tricuspidata, 348
Leptobryum Wilsoni, 328
Leptodactylon Nuttallii, 349; pungens, 357
Leptodontium integrifolium, 324
Leptogium diaphanum; marginellum, 155; tenuissimum, 156; tremelloides, 156
Leptorhabdos Benthamiana, 643
Leptotrema trypaneoides, 151
Leskea abbreviata, 74. 75; gracillima, 332
Lesquerella montana, 360 ; parvula, 360 ; Wardii, 363
Leuceria lanigera, 320 ; multifida, 320 ; patagonica, 320 ; purpurea, 320 ; runcianata, 320
Leucodon Draceanae, 71
Leucoloma Holstii, 64
Leucolejeunea clypeata, 240
Leucojum vernum, 40 I
Lichens of Bermuda, The, 145
Ligusticum filicinum, 358, 359; Porterí, 61; Thomsoni, 581, 639
Lilaea subulata, 548, 554
Liliaceae, 310, 629
Lilium, 399; auratum, 506; Martagon, 505, 506; philadelphicum, 548, 549,550
Limnocharis, 554
Limnorchis purpurascens, 360
Limnosella aquatica, 587, 642
Linaceae, 637
Lindbergia abbreviata, 74; Austini, 74; haplocladioides, 75; pseudoleskeoides, 75
Lindelofia Benthami, 581, 641
Linnaea americana, 345; longiflora, 35^{2}
Linum perenne, 637
Liriodendron tulipifera, 262
Lithophragma bulbifera, 355
Lithospermum arvense, 588,64I
Lloydia serotina, 346, 629
Loasa argentina, 317 ; volubilis, 317
Loasaceae, 317
Lolium perenne, 588, 628
Lonicera canadensis, 244; asperifolia, 583 ; 644; caerulea, 644; glauca, $58 \mathrm{r}, 583$, 644; heterophylla, 644; microphylla, 583,644 ; Myrtillus, 644; rupicola, 644 ; spinosa, $58 \mathrm{r}, 586,644$
Lophocolea bidentata, 239 ; minor, 241
Lophozia alpestris, 244; attenuata, 244; badensis, 241
Lotus corniculatus, $58 \mathrm{I}, 583,588,637$
Lupinus caespitosus, 357 ; monticola, 358 ; parviflorus, 357 ; pulcherrimus, 358
Lutkea pectinata, 351
Luzula chilensis, 310
Luzuriago marginata, 310
Lychnis apetala, 582, 632; brachypetala, 585; himalayensis, 582,632 ; macrorhiza, 585,632 ; nutans, 582,632

Lycium ruthenicum, 642
Lycopodium magellicum, 309; obscurum, 246; Selago, 244
Lycopis arvensis, 588,641
Lyngbya Birgei, 482; Hieronymusii, 482
Lysiella obtusata, 346
Machaonia calcicola, 452, 453; littoralis, 452; microphylla, 452, 453; pauciflora, 452; trifurcata, 452, 453
Mackenzie, K. K. Notes on Carex-X, 423; -XI, 601
Macronema discoidea, 350; grindelifolium, 355
Macrotomia Benthami, 64I; perennis, 641
Madia sativa, 32 I
Magnoliaceae, 314
Malapoenna horrellensis, 285, 299
Malcolmia africana, 634
Malpighia Shaferi, 456
Malva verticillata, 588,638
Malvaceae, 638
Manihotites georgiana, 285, 295
Marrubium lanatum, 586, 641
Marsupella emarginata, 240, 24 I
Matricaria chamomilla, 321
Matthiola odoratissima, 634
Maviscus cyperoides, 44I; gracilis, 44 I ; Sieberianus, 441
Maytenus magellanicus, 316
McAllister, F. The morphology of Thallocarpus Curtisii, 117
Meconopsis aculeata, 584, 633
Medeola virginiana, 253
Medicago falcata, 588,636 ; Iupulina, 588 , 636; sativa, 588, 636
Melandrium alpestris, 314 ; magellanicum, 313
Melanotheca aggregata, 148 ; cruenta, 148
Melica ciliata, 627; cupani, 627
Melilotus alba, 588, 636; officinalis, 588, 636
Mentha arvensis, 642; longioolium, 588; sylvestris, 642
Menyanthes trifoliata, 346
Mertensia alpina, 361; Bakeri, 361; Drummondii, 362 ; echioides, 641 ; lateriflora, 361 ; nivalis, 361 ; Parryi, 361 ; polyphylla, 361 ; stenoloba, 359 ; Tweedyi, 359 ; viridis, 363 ; virudula, 361
Meteoriopsis remotifolia, 331
Metrosideros, 387 ; polymorpha, 387
Metzgeria conjugata, 240
Micractinium pusillum, 477, 479; quadrisetum, 479
Microphiale lutea, ${ }^{5} 52$
Microthamnium saproadelphum, 64, 78 ; tenellum, 78
Micranthes arguta, 349; aestivalis, 354 ; arnoglossa, 357 ; brachypus, 361 ; Lyallii, 353 ; occidentalis, 35^{8}; rhomboi-
dea, 357 ; saximontana, 358 ; Rydbergii, 358
Microula Benthami, 641
Mielichhoferia andina, 328 ; bogotensis, 328 ; procerrima, 68 ; procumbens, 68 ; promontorii, 68
Mikania Stevensiana, 458
Milium effusum, 587,626
Mimulus Langsforfii, 349; strictus, 642
Mitracarpum depauperatum, 467
Mittenothamnium andicola, 333; oxystegum, 333
Mnium cuspidatum, 246; hornum, 239, 246; ligulatum, 329; orthorrhynchum, 24I; punctatum, 239
Moehringia laterifolia, 346 ; macrophylla, 346
Moneses reticulata, 354; uniflora, 346
Monotropa Hypopitys, 505
Moraceae, 291, 630
Morphology of Thallocarpus Curtisii, The, II7
Morphology of the flowers of Zea Mays, 127
Morus alba, 588, 630
Moschopsis spathulata, 319
Muhlenbergia comata, 349; filiculmis, 360 ; gracilis, 360 ; mexicana, 261 ; racemosa, 345 ; subalpina, 360 ; Wolfi, 360
Muscaria adscendens, 357; delicatula, 357 ; micropetala, 363
Myıcia havanensis, 285,300
Myrica ripleyensis, 285, 288
Myricaceae, 288
Myrtaceae, 300
Myricaria elegans, 638; germanica, 638; germanica prostrata, 638
Myurella julacea, 241
Myzodendraceae, 313
Myzodendron linearifolium, 313 ; quadriflorum, 313 ; punctulatum, 313

Naiadaceae, 626
Naiocrene parvifolia, 353
Nantucket, The ferns and flowering plants of, -XVII, 265
Nassauvia Darwinii, 321 ; pygmaea, 321 ; revoluta, 321 ; subspinosa, 321
Neckera eucarpa, 33I; Jamesoni, 33I; Lindigii, 331 ; pennata, 240
Nemexia biltmoreana, 4I3; cerulea, 4I4; diversifolia, 417 ; ecirrhata, 419 ; herbacea, 414, 417; herbacea melica, 417; Hugeri, 420; lasioneuron, 417; nigra, 414; pulverulenta, 420; tamnifolia, 411; tenuis, 4I9
Nepeta botryoides, 64I; discolor, 583, 641; eriostachya, 642; floccosa, 581, 642; glutinosa, 584, 642; leucolaena, 583. 642; linearis, 641; longibracteata, 585,642 ; nivalis, 586,642 ; salviaefolia, 642 ; Thomsoni, 641; tibetica, 586, 642

Nephralles, ioo; parviflora, 100
Nephrocytium allantoideum, 475
Nephrolepis biserrata furcans, 215,216 , 230; cordifolia, 215, 217 ; davallioides, 216; Duffii, 215 ; exaltata, 207, 215-217, 224, 230; exaltata bostoniensis, 207233; tuberosa, 217
Nephrolepis exaltata bostoniensis, sports of, 232
Nephroma antarcticum, 308; arcticum, 308
New and rare African mosses, from Mitten's herbarium and other sources, 63
New or interesting algae from the lakes of Wisconsin, 471
New species of Opuntia, 83
New species of Pritchardia, A, 385
Nichols, G. E. The vegetation of Connecticut-V. Plant societies along rivers and streams, 235
Nicotiana rustica, 642; Tabacum, 642
Note on the structural dimorphism of sexual and tetrasporic plants of Galaxaura obtusata, A, 621
Notes on Carex,-X, 423; -XI, 601
Notes on plants of the southern United States-I, 93 ; II, 407
Notes on species of Halymenia, I69
Nothofagus antaretica, 306, 313
Nymphaea polysepala, 349
Oakesia sessilifolia, 252
Observations on the fern rust Hyolopsora Polypodii, 195
Oedipodium australe, 67; Griffithianum, 67
Oenothera, 207; Hilgardi, 390; odorata, 3I7
Oleaceae, 640
Omphalaria cubana, 154 ; lingulata, I54
Omphalodes Thomsoni, 64I
Onagraceae, 317, 638
Oncostylis fimbriata, 446; vestita, 446
Onoclea, 366 ; sensibilis, $366,368,382$, 26 I ; Struthiopteris, 260
Oocystis, panduriformis, 47 I ; panduriformis minor, 47 r
Onosma echioides, 641
Opegrapha atra, I49; Bonplandi, 149; chevalieri incarnata, 150; ophites, I50; vulgata, I50
Ophioglossaceae, 309
Ophrys borealis, 356 ; nephrophylla, 355
Opuntia, Additional species of, 523 ; New species of, 83
Opuntia alta, 84 ; anahuacensis, 92 ; basilaris, 83, 84; Bergeriana, 53I; brachyclada, 84 ; calantha, 524 ; camanchica, 530 ; chlorotica, 89 ; cirbe, 524 ; columbiana, 523 ; crystalenia, 528 ; cucumiformis, 524 ; curvospina, 88 ;
deltica, 84; flexospina, 87; Hanburyana, 529; ithypetala, 529; humistrata, 83 ; laxifiora, 85 ; littoralis, 90 ; longiclada, 525 ; megalantha, 530 ; microcarpa, 527 ; microdisca, 525 ; occidentalis, 90 ; platynoda, 526 ; pyrocarpa, 90 ;
rubiflora, 529 ; semispinosa, 89 ; squar-
rosa, 9r; zuniensis, 86
Orchidaceae, 312, 629
Orchis latifolia, 629; rotundifolia, 348
Oreobroma minima, 363
Oreochrysum Parryi, 362
Oreoxis alpina, 361 ; Bakeri, 361 ; humilis, 361
Origanum vulgare, 583, 642
Origin of new species of Nephrolepis by orthogenetic saltation, The,-I. Progressive variations, 207
Orobanchaceae, 643
Orobanche cernua, 643; Hansii, 643
Orontium aquaticum, 255
Oryzopsis lateralis, 626; Munroi, 626
Osmorrhiza Berterii, 317; Leibergii, 351, 352; obtusa, 357
Osmunda Claytoniana, 252
Ostrya virginiana, 252
Ourisia ruelloides, 318
Oxalidaceae, 316
Oxalis acetosella, 244; patagonica, 316
Oxycoccus Oxycoccus, 347
Oxygraphis polypetala, 632
Oxypolis Fendleri, 361
Oxyria digyna, 584, 587, 630
Oxyrrhynchium rusciforme, 239
Oxytropis cachemirica, 581, 637; densa, 586, 637; lapponica, 586, 637; microphylla, 586,637 ; mollis, 637 ; tatarica, 586, 637; Thomsoni, 637
Ozomelis Parryi, 361; stauropetala, 355, 361; trifida, 35 I

Pachyanthus reticulatus, 459 ; myrsinites, 34^{8}
Palicourea elongata, 468
Palamocladium leskeoides, 333
Paimae, 288
Panicularia nervata, 345; pauciflora, 349
Panicum agrostoides, 257; miliaceum, 582, 588, 626
Papaver nudicaule, 633
Papaveraceae, 633
Papillaria imponderosa, 331
Paracaryum heliocarpum, 641; himalayense, 641 ; tibeticum, 641 ; Thomsoni, 641
Parietaria debilis, 630
Paris quadrifolia, 400
Parmelia latissima cristifera, 158 ; perlata, ${ }^{158}$; tinctorum, 158
Parnassia fimbriata, 349; Kotzebuei, 347 ; ovata, 635 ; palustris, 347,635
Paronychia pulvinata, 360

Parrya exscapa, 634; lanuginosa, 634; macrocarpa, 634
Paspalum ambiguum, 626; Curtisianum, 95
Paulowina tomentosa, 43-56
Pectianthia Breweri, 353; pentandra, 349
Pediastrum, angulosưm araneosum, 476; araneosum, 476; araneosum rugulosum, 476; Boryanum, 476; sculptatum, 475
Pedicularis bicornuta, 583, 643; bracteata, 349; cheilanthifolia, 643; dolichorrhiza, 643; Grayi, 362; Hallii, 363; longiffora, 580, 581, 643 ; lunata, 363 ; mollis, 643 ; Oederi, 643; Parryi, 362; pycnantha, 643 ; racemosa, 349 ; rhinanthoides, 643 ; scopulorum, 363; siphonantha, 643; tenuirostris, 643
Peganum Harmala, 638
Pellia epiphylla, 239, 246; Fabroniana, 241
Peltandra virginica, 255
Pennell, F. W. Notes on plants of the southern United States, -I, 93; -II, 407
Pennisetum flaccidum, 580,626 ; lanatum, 626
Pentstemon aridus, 359; caespitosus, 361 ; crassifolium, 35I; fruticosus, 35I; Hallii, 361; Harbourii, 361; Lyallii, 359; montanus, 359; procerus, 349; pseudohumilus, 359 ; stenosepalus, 36 I ; Tweedyi, 359
Perezia linearis, 32 I ; recurvata, 32 I
Pernettya mucronata, 317
Peroniella Hyalothecae. 477; planctonica, 476
Perowskia abrotanoides, 642
Pertusaria communis lutescens, 156; leioplaca, 156; lutescens, 156 ; multipunctata, 157 ; papillata, 156 ; pustulata, 157; tuberculifera, 157
Peruvian mosses, 323
Petasites corymbosa, 354 ; frigida, 354
Phacelia alpina, 359 ; ciliosa, 357 ; circinata, 3I8; heterophylla, 349; Lyallii, 359; nervosa, 36 x ; sericea, 357
Phaeographis lobata, 151
Phalaris arundinaceae, 262
Phegopteris polypodioides, $242,244,376$, 382
Philonotis fontana, 239
Phleum alpinum, 582, 626; pratense, 345
Phlomis bracteosa, 583, 642
Phlox alyssoides, 357; caespitosa, 355; condensata, 361 ; costata, 358 ; depressa, 357; diapensioides, 358; Kelseyi, 357
Phragmidium, 566
Phragmites communis, 587, 627; Phragmites, 345; Prattii, 285, 287
Phyllanthus nanus, 464
Phyllodoce empetriformis, 348 ; glanduliflora, 351

Physalis Alkekengi, 642
Physcia alba, 160; crispa, 160; integrata sorediosa, 160; Leana, 160; picta, 160; stellaris, 160
Physiological observations on Drosera rotundifolia, r
Physochlaina praealta, 642
Phytogeographical notes on the Rocky Mountain region-VI. Distribution of the subalpine plants, 343
Picea albertiana, 355; canadensis, 354; Engelmannii, 354, 355; mariana, 354
Pilea pelpoides, 630; pumila, 242, 261
Pilosella Richardsoniana, 353
Pilotrichella conferta, 7 I; viridis, 33 I
Pimpinella Saxafraga, 588, 639
Pinaceae, 626
Pinguicula vulgaris, 347
Pinus, 198; albicaulis, 348, 352; aristata, 350; Balfouriana, 350 ; flexilis, 348 ; Murrayana, 348; palustris, 93 ; Strobus, 506
Pisum sativum, 637
Pituranthos Thomsoni, 639
Plagiochila asplenioides, 239, 240
Plagiothecium denticulatum, 240 ; nitens, 78 ; Mildbraedii, 78
Plagiopus Oederi, $240,24 \mathrm{I}$
Plantaginaceae, 319, 643
Plantago brachyphylla, 643; major, 587 . 643; maritima, 319; tibetica, 643
Plants from southern Patagonia collected by Charles Wellington Furlong, 305
Platanus occidentalis, $252,259,262$; orientalis, $39,45,56$
Pleea tenuifolia, 408
Pleurogyne brachyanthera, 640; carinthiaca, 583,640 ; fontana, 357; Thomsoni, 581; 640
Pleurospermum Candollii, 583, 639; Hookeri, 639; stellatum, 586, 639
Pluchea camphorata, 265
Plumbaginaceae, 317,640
Poa alpicola, 360 ; alpina, 587,627 ; annua, $582,588,627$; aperta, 360 ; argentina, 310; attenuata, 627 ; Buckleyana, 356 ; bulbosa, 627 ; crocata, 345 ; confusa, 358; Cusickii, 352; epilis, 356 ; Fenderleriana, 349; fuegianus, 309; Grayana, 360; laevigata, 356; leptocoma, 355; Lettermanii, 360; longiligula, 349 ; longipedunculata, 360 ; lucida, 360 ; nemoralis, 582,587 ; nemoralis ligulata, 585, 627; nervosa, 358 ; nevadensis, 355 ; occidentalis, 360 ; Olneyi, 356; Paddensis, 355; Pattersonii, 360 ; pratensis, $585,587,627$; Pritchardi, 310; pudica, 363; reflexa, 355; rupicola, 355; Sheldoni, 360; tibetica, 627; Traceyi, 360; tremula, 627 ; triclolepis, 363 ; Vaseyana, 360
Poaceae, 287

Podophyllum Emodi, 581, 582, 633
Pogonatum campylocarpum, 330; polycarpum, 330; simense, 69
Polygonaceae, 630
Polygonatum biflorum, 253; verticillatum, 629
Polemoniaceae, 318
Polemonium Brandegei, 361; confertum, 361 ; delicatum, 361 ; foliosissimum, 361 ; Grayanum, 363; miletum, 361; viscosum, 359
Polygonum affine, 582, 584, 630; alatum, 631 ; amplexicaule, 630; aviculare, 580 , 587,630 ; cognatum, 584, 630; Convolvulus, 631 ; filicaule, 630 ; Hydropiper, 587.631 ; interruptus, 310 ; islandica, 630; lapathifolium, 630; molliaeforme, 584, 630; Muhlenbergii, 255; paronychioides, 630; pennsylvanicum, 257; Persicaria, 63I; polystachyum, 582, 631; scandens, 257, 260; sibiricum, $585,63 \mathrm{I}$; sphaerostachyum, 630 ; tortuosum, $582,585,631$; tubulosum, 630 ; vaccinifolium, 630; viviparum, 587, 630
Polypodiaceae, 309, 625
Polypodiaceae, Branched prothallia in the, 365
Polypodium, 210; aureum, 365, 377; vulgare, 24^{2}
Polypogon monspeliensis, 588, 627
Polystichum, 210
Polytrichadelphus magellanicus, 309
Polytrichum alpinum, 244; antillarum, 330
Pontederia cordata, 255
Populus, 589 ; alba, 588, 629; ciliata, 629; candicans, 588,629 ; deltoides, 259 ; euphratica, 629 ; nigra italica, 588,629 ; tremuloides, 344
Porella pinnata, 239 ; platyphylloides, 240
Porina nucula, 147; phaea, 147; tetracerae, 147
Powtrichum valdiviae, 33 I
Porphyra amplissima, I7I
Potamogeton alpinum, 345; filiformis, 345 ; heterophyllus, 345 ; interior, 356 ; nalus, 345 ; Richardsonii, 345 ; pectinatus, $345,585,587,626$; perfoliatus, 587, 626; sp., 255
Potentilla ambigua, 586, 635; anserina, $315,580,587,635$; arachnoides, 357 ; argyrophylla, $582,584,636$; atrosanguinea, 636; bifurca, $580,581-586$; curviseta, 635 ; divisa, 357; flabellifolia, 353; fruticosa, 635; fruticosa Inglisii, 582, 584, 587, 635; fruticosa ochreata, 635 ; fruticosa pumila, 635 ; filipes, 357 ; gelida, 636; glaucophylla, 357 ; glomerata, 358; Macounii, 358, 359; minutifolia, 363 ; modesta, 361 ; multifida, 58 r , 586,635 ; Nelsonii, 363 ; nivea, 346,636 ;
ovina, 358 ; paucijuga, 363 ; perdissecta, 358; quinquefolia, 346 ; saximontana, 357; sericea, 587,635 ; Salesovii, 635 ; Sibbaldi, 582, 635; tenerrima, 363; tetrandra, 587,635 ; uniflora, 346 ; virgulata, 363 ; viridis, 361 ; wyomingensis, 363
Prangos pabularia, 639
Preissia quadrata, 241
Primula angustifolia, 36I; brevicalyx, 639 ; denticulata capitata, 639; elliptica, 639; farinosa. 587, 639; Heydei, 639; involucrata, 639; Meeboldii, 639; Parryi, 357; purpurea, 639; sibirica, 581, 586, 639; Stuartii, 583, 639
Primulaceae, 317, 639
Prionodon bolivianus, 33 I
Pritchardia arecina, 385; Beccariana, 385 , 386; eriophora, 385; eriostachya, 385 ; Gaudichaudii, 385; Hillebrandii, 385; lanigera, 385 ; Martii, 385 ; minor, 385 ; remota, 385 ; Rockiana, 385
Pritchardia, A new species of, 385
Proteaceae, 313
Prunus armeniaca, 636; persica, 636; tomentosa, 636
Psedra quinquefolia, 260
Pseudocymopterus montanus, 361 ; purpureus, 354 ; sylvaticus, 361 ; Tidestromii, 361
Pseudoleskea denudata, 77 ; dispersa, 76
Pseudoreoxys bipinnata, 358
Pseudopteryxia anisata, 361 ; longiloba, 361
Pseudotsuga mucronata, 348, 355
Psorotichia bermudana, 154; diffracta, 154
Pteridium, 366 ; aquilinum, $366,380,382$
Pterigynandrum filiforme, 241
Pterospermites carolinensis, 285, 297
Ptilium Crista-castrensis, 244
Puccinia Peckiana, 559, 563
Pulsatilla occidentalis, 353
Pyrenula aurantiaca, 147; brachysperma, 147; leucoplaca, 148; manillana, 148; nitida nitidella, 148
Pyrgillus cubanus, 148
Pyrola chlorantha, 346 ; minor, 346; secunda, 346 ; uliginosa, 346 ; rotundifolia, 246
Pyrrocoma Clementis, 362
Pyrus communis, 635; Malus, 589, 635
Quantitative study of the factors influencing the weight of the bean seed-II. Correlation between the number of pods per plant and seed weight, 485
Quercus bicolor, 262; palustris, 262; rubra, 252
Quinchamalium procumbens, 313
Racomitrium aciculare, 239, 241

Radicula alpina, 356; curvipes, 363 ; palustris, 257; Underwoodii, 363
Radula complanata, 240; obconica, 241
Rajania cordifolia, 546 ; hastata, 546
Ramalina complanata, 158
Ranunculaceae, 293, 314, 632
Ranunculus adoneus, 360 ; affinis, 356 , 633 ; alismaefolius, 360 ; alpeophilus, 356; aquatilis, 587, 633; Cymbalaria, $314,580,587,632$; eximius, 356 ; hirtellus, 582, 584,632 ; Helleri, 358 ; hyperboreus, 347, 633; laetus, 633; Macauleyi, 360; micropetalus, 360; peduncularis, 314 ; pulchellus, 580,582 , 585,632 ; saxicola, 358 ; stenolobus, 360 ; Suksdorfii, 35I
Raphidium setigerum, 473
Reinschiella setigera, 473
Relbunium pusillum, 319
Rhabdoweisia denticulata, 240, 241
Rhacomitrium crispipilum, 328
Rhacopilum tomentosum, 332
Rhamnaceae, 316
Rheum Emodi, 630; spiciforme, 585, 630; tibeticum, 630; Webbianum, 630
Rhodiola polygama, 361
Rhus Toxicodendron, 260
Rhynchostegium aquaticum, 334; conophyllum, 334
Rhynchostegiella Holstii, 80 ; Volkensii, 80
Ribes coloradensis, 359; cucullatum, 315 ; glandulosum, 352; Grossularia, 588, 635; hudsonianum, 347; laxiflorum, 352; montigenum, 348; orientale, 582 , 635 ; parvulum, 356 ; petiolaris, 351 ; Wolfii, 359
Richteriella botryoides, 478, 479; globosa, 478; quadriseta, 479
Riccia crystallina, 120; Curtisii, 117, 119; Frostii, 121; glauca, 122
Riddle, L. W. The lichens of Bermuda, 145
Rigodium dentatum, 64, 79; gracile, 79; kilimandscharico, 79
Rinodium insperata, 159
Rochelia cardiosepala, 64 I ; rectipes, 64 I ; stellulata, 641
Rock, J. F. A new species of Pritchardia, 385
Romanzoffia Leibergii, 363 ; sitchensis, 353
Rondeletia calcicola, 467
Rosa Eglanteria, 636; Webbiana, 581, 582, 636
Rosaceae, 315, 635
Rowlee, W. W. Plants from southern Patagonia collected by Charles Wellington Furlong, 305
Rubia tibetica, 581, 586
Rubiaceae, 643
Rubus acaulis, 347; americanus, 567; arcticus, 567 ; argutus, 563 ; canadensis,

561, 564, 567; Chamaemorus, 347; cuneifolius, 567 ; frondosus, 561, 567 ; nigrobaccus, 561,567 ; nivalis, 351 ; occidentalis, 567 ; procumbens, 564 ; Randii, 567; saxatilis, 559, 567, 635; stellatus, 567 ; strigosus, 567 ; triflorus, 567; trivialis, 567 ; vermontanus. 567 ; villosus, 567 ; vitifolius, 567
Rudbeckia hirta, 268
Rumex Acetosa, 588, 630 ; orientalis, 630
Rydberg, P. A. Phytogeographical notes on the Rocky Mountain regionVI. Distribution of the subalpine plants, 343
Rydbergia Brandegei, 362; grandiflora, 357
Rynchospora intermixta, 443; oligantha, 443; pusilla, 443

Sabalites sp., 285, 288
Saelania glaucescens, 241
Safford, W. E. Desmopsis, a new genus of Annonaceae, 183
Sagina procumbens, 587 ; saginoides, 346
Sagittaria angustifolia, 95; latifolia, 255; variabilis, 548,554
Salicaceae, 289, 629
Salix alaxensis, 353 ; alba, 588, 629; angustifolia, 629; Barclayi, 351; cascadensis, 352 ; chlorophylla, 345 ; cordata, 258; daphnoides, 582, 629; desertorum, 353; divergens, 630; Drummondiana, 353; elegans, 629; eutawensis, 285, 289; Fernaldii, 358; flabellaris, 629; fragilis, 588, 629; glaucops, 348; hastata, 629; longifolia, 258 ; nigra, 259 ; oxycarpa, 630; myrtillifolia, 353; pseudomyrsinites, 347 ; pycnostachya, 629 ; saskatchewana, 353 ; saximontana, 356 ; sclerophylla, 629; Seemanii, 353; subcaerulea, 35I; tetrasperma, 630; Tweedyi, 358; Wolfii, 359
Sambucus canadensis, 260 ; microbotrys, 359
Salsola collina, 585, 63I ; Kali, 587, 63 I
Samolus spathulatus, 317
Sanguinaria canadensis, 253
Sanicula gregaria, 242
Santalaceae, 313, 630
Saponaria Vaccaria, 632
Satureia Darwinii, 319
Saussurea albescens, 646; bracteata, 646; elliptica, 646; Falconeri, 646; glanduligera, 646; graminifolia, 646; Jacea, 646; Schultzii, 646; sorocephala, 646; Stoliczkai, 646; subulata, 646; taraxifolia, 646; Thomsoni, 646
Saussurea, 589 ; albescens, 583 ; bracteata, 586; Jacea, 583; glanduligera, 586; sorocephala, 583
Savastana odorata, 345
Savia perlucens, 464

Sax, K. Fertilization in Fritillaria pudica, 505
Saxifraga, 361, 589; cernua, 346, 582, 635; cordillerarum, 315 ; debilis, 356 ; flagellaris, 582, 635; Hirculus indica, 582 , 635; Jacquemontiana, 635; oppositifolia, 587,635 ; ramulosa, 635 ; rivularis, 347; sibirica, 580, 584, 635; Stracheyi, 582, 635
Saxifragaceae, 314, 635
Scapania memorosa, 240, 24 I
Scheuzeria palustris, 345
Schizmus marginatus, 627
Schoenocaulon Drummondii, 408, 409; texanum, 408, 409
Schoenacaulon A. Gray in southern Texas, 408
Schoenus paradoxus, 444
Schoepfia cubensis, 458
Schroederia Judayi, 474; setigera, 473
Scirpus americanus, 255; caespitosus, 347; Caricis, 628 ; capillaris, 447 ; cyperoides, 44 I ; coarctatus, 447 ; floccosus, 445; hirtus, 446; juncoides, 442, 447; lacustris, 628 ; nodulosus, 442 ; pauciflorus, 587,628 ; pumilus, 628 ; rufus, 587,628 ; setaceus, 628; stenophyllus, 443; validus, 255
Scleria gracilis, 443
Sclerophyton elegans, 151
Scolopendrium, 366 ; vulgare, 365,378 , 382
Scorzonera divaricata, 58 1, 647 ; purpurea, 647
Scrophularia dentata, 642; lucida, 642 ; scabiosaefolia, 583,642 ; variegata, 642
Scrophulariaceae, 318, 64^{2}
Scutellaria Heydei, 64r; prostrata, 583 , 641
Sebdenia heteronema, 171,172
Sebesten brachycalyx, 457 ; Sebestena, 457
Sedum, 589; asiaticum, 582, 635; Ewersii, 582, 635; quadrifidium, 635; Rhodiola, $582,584,587,635$; tillaeoides, 635; tibeticum, 582, 584, 586, 635
Sematophyllum carolinianum, 241
Sempervivium acuminatum, 580, 582, 586, 635
Senecio admirabilis, 362 ; alpicola, 359 ; acanthifolius, 321 ; ambrosioides, 362 ; amplectens, 362 ; anacletus, 362 ; arnicoides frigida, $583,586,646$; atratus, 362 ; carthamoides, 362 ; chloranthus, 362 ; chrysanthemoides, 583,646 ; coronopifolius, 646 ; crassulus, 362 ; crocatus, 362; cymbalarioides, 357; Darwinii, 321; dubius, 646; falklandicus, 321 ; foliosus, 362 ; Harbourii, 362 ; Holmii, 362; Hatcherianus, 321; Jonesii, 362; Kingii, 321 ; lapathifolium, 362 ; longipes, 321 ; lugens, 354 ; megacephalus, 359; multicapitatus, 362 ; Nelsonii, 362 ;
paeninsularis, 321 ; pagosanus, 362 ; pauciflorus, 347 ; pedunculatus, 646 ; perplexans, 362 ; pentadontus, 362 ; pudica, 362; Purshianus, 357; pseudareus, 357 ; sericeo-nitens, 321 ; seridophyllus, 350 ; soldanella, 362 ; sphaerocephalus, 359 ; taraxacoides, 362 ; tibeticus, 646; trifurcatus, 321 ; vulgaris, 274 ; werneriaefolius, 362
Setaria viridis, 588,626
Sibbaldia procumbens, 346
Sicyos angulatus, 260
Sieversia ciliata, 355
Silene, 358; acaulis, 346; conoidea, 632; Douglasii, 356; Hallii, 360; Menziesii, 356; Moorcroftiana, 580, 584, 632; oregana, 35 I ; repens, 353 ; tenuis, 582 , 632 ; vulgaris, 582,632
Sisymbrium, 589; Columnae, 580, 633; humile, 633 ; mollissimum, 633 ; minutiflorum, 633; Sophia, 633; Thalianum,633
Sisyrinchium alpestre, 360 ; chilense, 311 ; iridifolium, 311, 399; junceum, 311; striatum, 311
Sitanion rigidum, 358
Smelkowskia americana, 356; lineariloba, 360 ; lobata, 358 ; ovalis, 35 I
Smilacina racemosa, 242, 253
Smilax biltmoreana, 4II, 4I3; diversifolia, 417; ecirrhata, 41I, 419; herbacea, 410, 4II, 4I3, 4I 4; Hugeri, 4II, 420 ; inermis, 414; lasioneuron, 410, 4II, 417; leptanthera, 410,412 ; peduncularis, 414; Pseudo China, 410, 413 ; pulverulenta, 410, 411, 420; tamnifolia, 410, 4II; tenuis, 4II, 419
Smilax, Subgenus Nemexia (Raf.) in the eastern United States, 409
Smith, G. M. New or interesting algae from the lakes of Wisconsin, 471
Smith, P. M. The development of the embryo and seedling of Dioscorea villosa, 545
Solanaceae, 642
Solanum Dulcamara, 260; nigrum, 642; tuberosum, 642
Solenanthus circinatus, 64 I
Solenomelus Sisyrinchium, 3 II
Solidago ciliosa, 357; decumbens, 362 ; latifolia, 242 ; oreophila, 357 ; scopulorum, 358; serotina, 261
Sonchus asper, 647; oleraceus, 589, 647
Sophia purpurascens, 360 ; sophioides, 353
Sophora alopecuroides, 636; Moorcroftiana, 636
Sparganium, 554; angustifolium, 345; minimum, 345
Spathularia Brunnoniana, 354; ferruginea, 354; Vreelandii, 357
Sphaerocarpos, 117, 119; californicus 119; cristatus, 123; Donnellii, 123; texanus, 119

Sphaerostigma Hilgardi, 390
Sphagnum, 2
Spermacoce havanensis, 453 ; spinosa, 453
Sphenolobus exsectus, 241
Spirulina laxa, 48 I
Spraguea multiceps, 358
Squamidium rotundifolium, 331
Stachys tibetica, 581, 642
Statice macrorrhabdos, 640
Staurogenia apiculata, 472
Stellaria debilis, 314 ; decumbens, 584 , 631 ; graminea, $582,585,588,631$; glauca, 588,631 ; media, 588, 63I; semivestita, 632 ; tibetica, 63 I
Stenophyllus alpestris, 44,446 ; antillanus, 444, 447; capillaris, 444, 447; ciliatifolius, 95; coarctatus, 444, 447; coniferus, 444, 445; curassavicus, 445; fimbriatus, 444, 446; floccosus, 444, 445; junciformis, 442, 444, 447; leucostachys, 444, 445; paradoxus, 444; portoricensis, 444, 445; subaphyllus, $443,444,446$; tenuifolius, 448 ; Tuerckheimii, 444, 446; vetistus, 444, 446; Wilsoni, 444, 446
Sterculiaceae, 296
Sterculia Snowii tennesseensis, 285, 296
Stereodon cupressiformis, 246
Stereophyllum odontocalyx, 73
Stewart, R. R. The flora of Ladak, western Tibet-I. Discussion of the flora, 571; -II. Check list of Ladak plants, 625
Sticta endochrysea, 308
Stipa barbata, 585, 626; basiplumosa, 626; Hookeri, 626; minor, 356; mongolica, 626; oregonensis, 352 ; Nelsonii, 356; pogonathera, 310 ; purpurea, 626 ; purpurea longe-aristata, 626 ; sibirica, 626 ; splendens, 626; Tweedyi, 356
Stracheya tibetica, 637
Streptopus amplexifolius, 244; roseus, 242, 244
Studies of West Indian plants-VIII, 44I
Suaeda corniculata, 631; microsperma, 631
Swertia congesta, 357; cordata, 583, 640; petiolata, 583,640 ; scopulina, 357
Symphyostemon biflorus, 311; Lyckholmi, 3 II
Synthyris dissecta, 359; laciniata, 359; pinnatifida, 363 ; reniformis, $351,35^{2}$

Tamaricaceae, 638
Tamarix gallica Pallasii, 638
Tamus communis, $545,546,548,550$, 551, 555
Tanacetum, 589; artemisioides, 583, 645; fruticulosum, 586, 645; gracile, 645; longifolium, 645; nanum, 645; tibeticum, 645; tomentosum, 645 ; vulgare, 273

Tapura obovata, 465
Taraxicum laevigatum, 32; leucanthum, 647; officinale, 581, 584,586,589, 647
Tauscheria lasiocarpa, 634
Telesonix heucheriformis, 358; Jamesii, 361
Tennessee, Contributions to the Mesozoic flora of the Atlantic coastal plain, 283
Tetraedron enorme, 480 ; gracile, 480 ; limneticum, 480; lobatum polyfurcatum, 480; planctonicum, 479
Tetrastrum apiculatum, 472
Thalictrum, 589 ; alpinum, 346, 633; dioicum, 253; minus, 633; minus foetidum, 633; platycarpum, 633; rutaefolium, 633; venulosum, 356
Thallocarpus Curtisii, The morphology of, 117
Thamnium alleghaniense, 240 ; alopecurum, 7I; capense, 7I; Leibergii, 7I; maderense, 71
Thelidium bermudanum, 146; Farlowi, 147; pyrenophorum, 147
Thelotrema trypaneoides, 14 I
Thermometric movements of tree branches at freezing temperatures, The, 29
Thermopsis inflata, 582, 636
Thesium himalense, 630
Thlaspi arvense, 582, 633; alpestre, 633; californicum, 353; coloradense, 360; glaucum, 356; magellanicum, 314; purpurascens, 360
Thuidium delicatulum, 239; peruvianum, 332
Thylacospermum rupifragum, 632
Thymus Serpyllum, 586, 588, 642
Tilia americana, 252, 260, 262; europaea, 29
Tofieldia intermedia, 351
Tonestus laceratus, 363 ; pygmaeus, 362
Tortella tortuosa, 24 I
Tortula affinis, 326 ; andicola, 326 ; confusa, 326; erythroneura, 67; Eubryum, 66; exesa, 67; lacerifolia, 326; laevipila, 66; pagorum, 66; ruralis, 67
Tournefortia Earlei, 460; incana, 460; stenophylla, 460
Townsendia grandiflora, 362
Trachydium Roylei, 583, 639
Trachyphyllum fabronioides, 72; gastrodes, 72
Tragopogon porrifolius, 647; pratense, 583, 589, 646
Tribulus terrestris, 588, 638
Tricholepis tibetica, 646
Trichopus zeylanicus, 546,548
Trichostomum afrum, 66; afro-fontanum, 66; brachydontium, 324
Trifolium attenuatum, 363 ; bracteolatum, 363; Brandegei, 361 ; dasyphyllum, 361; Haydeni, 358 ; lividum, 361 ; monta-
nense, 358; nanum, 357; Parryi, 361; pratense, 588, 636; scariosum, 363 ; stenolobum, 36 I
Triglochin maritima, $345,580,585,587$, 626 ; palustris, $345,580,587,626$
Trigonella corniculata, 636; Emodi, 636
Trigyneia, 184; Galeottiana, 184, 187
Trillium erectum, 242, 253
Trisetum majus, 355; montanum, 360; subspicatum, 345,582, 627
Triticum vulgare, 628
Trollius albiflorus, 355
Trowbridge, C. C. The thermometric movements of tree branches at freezing temperatures, 29
Tsuga Mertensiana, 352
Tium alpinum, 346
Tulipa Gesneriana, 400, 548
Tussilago Farfara, 589, 646
Typha latifolia, 255, 261, 262
Ulmaceae, 630
Ulmus americana, 252 ; parvifolia, 630
Ulota americana, 240, 241
Umbelliferae, 317, 639
Undescribed species from Cuba, 458
Undescribed species from Porto Rico, 456
Undescribed species from the Isle of Pines, 462
Unona, 183; bibracteata, 183, 184, 190; Desmos, 183 ; discolor, 183 ; discreta, 183; panamensis, 183-185; violacea, 190
Unonopsis, 183,184 ; angustifolia, 184; Perottetii, 184; rufescens, 184
Uredinopsis, 198
Urtica dioica, 588, 630; hyperborea, 585 , 630; magellianica, 313
Urticaceae, 313, 630
Utricularia minor, $346,587,643$; vulgaris, 346

Vaccinium caespitosum, 345; globularis, 359; occidentale, 352 ; oreophilum, 356, 357; scoparium, 356, 357; uliginosum, 347; Vitis-Idaea, 347
Vagnera stellata, 346
Valeriana acutiloba, 362; carnosa, 319; dioica, 644; edulis, 357 ; septentrionalis, 347; sitchensis, 354; lapathifolia, 319; Stracheyi, 644; Wallichii, 644
Valerianaceae, 319, 644
Vallisneria spiralis, 255
Vegetation of Connecticut, The,-V. Plant societies along rivers and streams, 235
Veratrum reciosum, 349
Verbascum Thapsus, 583, 588, 642
Verbena Carroo, 319; hastata, 261; Pritchardi, 319
Veronica agrestis, 589, 643; americana, 346; Anagallis-aquatica, 587,643 ; Beccabeenga, 588, 643; biloba, 643;
ciliata, 586, 642; deltigera, 583, 642; scutellata, 347; serpyllifolia, 346; Wormskioldii, 346
Verrucaria albido-atra, 146; bermudana, 145, 146; ruderella, 146; rupestris, 146; rupestris ruderum, 146
Vesicularia sphaerocarpa, 79
Viburnum acerifolium, 243
Vicia Faba, 637; magellanica, 316; sericella, 316; tenuifolia, 637
Viola adunca, 35I; bellidifolia, 361; blanda, 242; cinerea, 638; cucullata, 242, 261 ; flavovirens, 358; kunawarensis, 638; maculata, 316 ; neomexicana, 361 ; pubescens, 253 ; rotundifolia, 242, 244
Violaceae, 316, 638
Vitaceae, 296
Vitis barbrusca, 533

Wahlberdella attenuata, 363; Kingii, 363 ; montana, 360

Weatherwax, P. Morphology of the flowers of Zea Mays, 127
Werneria nana, 587,646 ; nana affinis, 584, 646
Weymouthia mollis, 309
Williams, R. S. Peruvian mosses, 323
Woodsia, 366; obtusa, 378, 382
Woodwardia, 366; virginica, 379, 382
Wuist, E. D. Branched prothallia in the Polypodiaceae, 365

Xerophyllum tenax, 352
Xylopia frutescens, 183 ; salicifolia, 183
Xyris indica, 401; longibracteata, 462
Yucca glauca, 408; sp., 408
Zamia silicea, 462
Zannichellia, 554; palustris, 587, 626
Zea Mays, Morphology of the flowers of, 127
Zizania palustris, 255
Zygophyllaceae, 638

[^0]: * Contribution from the Osborn Botanical Laboratory.
 [The Bulletin for December ($42: 651-698 . p l .30-33$) was issued January 20, 1916.]

[^1]: * Branch movements of certain trees in freezing temperatures. Torreya 13: 86-87. 1913.
 \dagger Branch movements induced by changes of temperature. Science II. 38 : 201-205. 1913.
 \ddagger Trans. Hort. Soc. London II. 2: 230.1842.
 § Internat. Hort. Exhib. Bot. Congress 98-II7. 1866.

[^2]: * Bull. Acad. Imp. Sci. St. Petersburg 9: 667-685. $1873-1877$.

[^3]: * Nature 54: 198.1896.
 \dagger Jour. Linn. Soc. Bot. 33: 501. 1898.

[^4]: * Ann. Bot. 18: 631-644.f. 52-57. 1904.

[^5]: * Torreya 10: 38,39 . 19 ío.
 \dagger Torreya 14: 31, 32. 1914.

[^6]: * See J. G. Grossenbacher, Science II. 38: 204. 1913.

[^7]: * Loc. cit.

[^8]: * C. H. Jones, A. W. Edson and W. J. Morse, Vermont Agric. Exp. Sta., Bull. 103: $4 \mathrm{I}-184 . p l .1-17+f .1-5$. 1903.

[^9]: * Crown rot of fruit trees; field studies. New York State Agric. Exp. Sta. Tech. Bull. 23. 1912.
 \dagger R. Caspary, Neue Untersuchungen über Frostspalten. Bot. Zeit. 15: 329-35: 345-50; 36I-7I. 1857.

[^10]: Phoenix Physical Laboratory, Columbia University

[^11]: [The Bulletin for January (43: $1-62$) was issued February 15, 1916.]

 * See Boulger, Plant Geography 108. 1912.

[^12]: *Gen. Musc. Frond. 463 . Igor.

[^13]: *Hedwigia 38: 103. 1899.
 \dagger Trans. Roy. Soc. South Africa, 4:3. p1. I.

[^14]: * A. procerrimum Par. (Ind. Ed. 2, 1:52) dates from December, 1903.

[^15]: * Jour. Linn. Soc. Bot. 22: pl. 16, f. 4.
 \dagger This is the correct spelling, not Elliottii as originally published.

[^16]: * Bot. Jahrb. 24: 282. 1897.

[^17]: * Wissensch. Ergebn. der Deutsch. Zentral-Afrika-Exped. 2: 169. 1907-8.

[^18]: Northampton, England

[^19]: * Bull. Torrey Club 40: 119-130, April 7; 401-439. August 13, 1913.

[^20]: * It is expected that this paper will soon appear in the Contributions of the Botanical Laboratory of the University of Pennsylvania.

[^21]: * In the following lists one specimen from each county is cited, counties being arranged alphabetically.
 \dagger Before dates cited the following signs are used: $>$, in flower; $<$, in fruit.

[^22]: * Although Lindberg proposed the name Thallocarpus he does not seem to have suggested the combination T. Curtisii. Austin makes use of this combination in 1875 but does not cite Lindberg as authority.

[^23]: University of Texas, Austin, Texas

[^24]: Wellesley College, Wellesley, Massachusetts

[^25]: * Ridgway, R. Color standards and color nomenclature pl. 26. 1912.

[^26]: * Mem. Torrey Club 15: 163 -165. pl. 58. 1914.

[^27]: * Anal. Alg. 59. 1892. Howe, Bull. Torrey Club 38: 511 . 1911; Mem. Torrey Club 15: 164. 1914.
 \dagger Loc. cit.

[^28]: * Howe, Mem. Torrey Club 15: 165. 1914.
 \dagger Syll. Alg. 4: 1655. 1905.

[^29]: * The minimum is drawn from the thinner parts of dried specimens, as shown when sections are soaked out with water; the maximum is from the older parts as shown in formalin-preserved material.
 \dagger Ridgway, loc. cit. pl. 27 and 38.

[^30]: * See page 171 .

[^31]: * A well-developed original stipe has been seen in only one case.
 \dagger Ridgway, loc. cit., pl. 38.

[^32]: * Ridgway, loc. cit. pl. 38, 39.
 \dagger Bull. Torrey Club 38: 509. pl. 34. 1911.

[^33]: * Beiträge zur Kenntnis der süd-amerikanischen Anonaceen, Kongl. Svenska Vetensk Akad. Handl. 3I: 26. Igoo.

[^34]: Bureau of Plant Industry, United States Department of Agriculture

[^35]: * Kryptogamenflora für Anfänger 2. Berlin. 1912.
 \dagger The British Rust Fungi 375. Cambridge. 1913.
 \ddagger Ueber einige Kulturversuche mit $\dot{H} y$ alopsora Polypodii (Pers.) Magn. Ann. Mycol. 9: 530-533. 1911 .
 § No. Am. Flora 7: 112. 1907.

[^36]: * Infektionsversuche mit einigen Uredineen. Centralb. Bakt. Zweite Abt. 12: $41 I-426 . \quad 1904 ;$ I6: $150-159$. I 1906.

[^37]: * This suggestion was first made to the writer by Dr. J. J. Davis of this laboratory.

[^38]: * Eimer. On orthogenesis. Chicago. 1898.
 \dagger Studies in Gastropoda III. Am. Nat. 41: 607-651. 1907.
 \ddagger Science II. 42: 859-863. 1915 .

[^39]: *There is a great deal of confusion in the trade use of the names "sword fern," "Boston fern," and Nephrolepis exaltata. In Florida, Dr. J. K. Small tells me the wild species, N. exaltata, is called "Boston fern," and the term "sword fern" is applied to the other Florida species, N. biserrata, a very different thing. Several florists, at least, list as N. exaltata, the dissimilar N. cordifolia, a further element of confusion.

[^40]: *8: 23; 57; 92; 122; 814; 858. 1896.
 † 40: II34, II35. 20 N I9I5.

[^41]: * Bot. Gaz. 47: 30-68. Ja 1909.

[^42]: * Contribution from the Osborn Botanical Laboratory.
 \dagger Torreya 14: 167-194. 1914; Bull. Torrey Club 42: 169-217. 1915.

[^43]: * See Torreya 13: 109, 110. I913; 14: 185. I914.

[^44]: * Barrell, J. \& Loughlin, G. F., Conn. State Geol. and Nat. History Survey, Bull. 13: 17. 1910.

[^45]: * The physiographic ecology of Chicago and vicinity. Bot. Gaz. 31: 98. 1901.
 \dagger See Bull. Torrey Club 42: 192, 193. 1915.
 \ddagger Op. cit., pp. 86-88.

[^46]: * Cowles, H. C. Bot. Gaz. 51: 172, 173. 191 I.

[^47]: * See Torreya 14: 181-184. I914.

[^48]: * Many of the grassy meadows along the Connecticut date back to pre-colonial days. It is recorded that when the first settlers arrived these areas were open and under cultivation by the Indians, who were accustomed to burn them over annually. But from the fact that today trees occur along the sloughs and scattered through the grassland, wherever they are permitted to grow, it would seem probable that these meadows were formerly forested, and that, if left to themselves, they would soon revert to their original condition.

[^49]: * Bull. Torrey Club 42: 176-194. 1915.
 + Regarding the vegetation of Connecticut meadows in general it should be remarked here that while in the case of many wet meadows there seems to be no doubt that the present vegetation represents the original type, this is probably not true of all present-day meadow-lands. There is reason to believe that most of the less wet areas now occupied by meadow associations were formerly forested, and that their present vegetation has been developed only as a result of human interference with the original conditions. See footnote on p. 254 .

[^50]: * Cowles, H. C., 190r, op. cit., p. 107.
 \dagger See Bull. Torrey Club 42: 171. 1915. Fig. I of this paper pictures a typical ox-bow pond.

[^51]: * In this connection, see Rice, W. N., \& Gregory, H. E., Manual of the Geology of Connecticut. Conn. State Geol. and Nat. Hist. Surv. Bull. 6: 35, 36. 1906.

[^52]: * The last previous contribution of this series appeared in the Bull. Torrey Club 40: 295-300. 19I4.
 \dagger Stephenson, L. W. U. S. Dept. Int. Geol. Surv. Professional Paper 8I. 1914 .

[^53]: * Safford, J. M. Am. Jour. Sci. II. 37: 360-372. 1864.

[^54]: * The reader who wishes additional information on this point should consult my paper on Living and Fossil Species of Comptonia. Amer. Nat. $40: 4^{85-520} . p l$. 1-4. 1906.
 \dagger Velenovsky. Fl. Böhm. Kreidef. 2: 1. pl. 1. f. 1-5. 1883.
 \ddagger Unger. Ueber einige fossile Pflanzenreste aus Siebenbürgen und Ungarn. Sitz. K. Akad. Wiss. Wien 51: 2, pl, 1, f. f. 1865.

[^55]: * Berry, E. W. Md. Geol. Surv. Upper Cret. 856. 1916.

[^56]: * Bot. Gaz. 57: 122. 1914.

[^57]: * It is true that some botanists, such as Tidestrom, Wooton and Standley, regard the Rocky Mountain aspen as a distinct species, Populus aurea, differing in smaller, thicker, less toothed leaves and different colored anthers and bark, but as the distribution of this species has not been worked out, it is better here to ignore the same and include it in P. tremuloides.

[^58]: * Lacking in Colorado.
 \ddagger In the Southern Rockies only.

[^59]: * Also in Europe.
 \dagger See Bull. Torrey Club 42: I1. Ja 1915.

[^60]: *Also in Europe and Asia.

[^61]: * East to Manitoba and the Black Hills.
 \ddagger East to Quebec.

[^62]: * Also in Europe.

[^63]: * North to Wyoming.

[^64]: New York Botanical Garden

[^65]: * Contribution from the Osborn Botanical Laboratory.

[^66]: * See review in Torreya 7: 170-175. Aug. 1907; and comments in Bull. Torrey Club 40: 377 et seq. Aug. 1913.
 \dagger The plant so determined, if collected on his trip to southeastern Mississippi in the spring or early summer of 1859 , as seems most likely, may have been another species, perhaps E. lineare Small, which was not distinguished until 1903 (see Bull. Torrey Club 32: $461-463 ; 33: 527$). For E. septangulare grows mostly on sandy shores of lakes and ponds, and blooms in late summer, while E. lineare is a typical pine-barren plant, and blooms in April and May. The only southern stations for E. septangulare known to the writer are in Lowndes County, Georgia, and Leon, Walton and Santa Rosa Counties, Florida. In Small's Flora it is said to range west to Texas, but this statement lacks verification.

[^67]: * Specimens from the Charleston Museum, Charleston, South Carolina, are in-

[^68]: * Forma crispifolia.

[^69]: *Jour, Roy. Micr. Soc. 1894: 15. pl. 2, f. 33-35. 1894.

[^70]: * Jour. Linn. Soc. Bot. 38; 140. pl. 5, f. 18. 1907.
 \dagger Skr. Vidensk. Kristiania, Math.-Naturvid. Kl. 1913 ${ }^{6}$:97. pl. 7, f. 217-220, 1914.

[^71]: * Harris, J. Arthur. A quantitative study of the factors influencing the weight of the bean seed. I. Intra-ovarial correlations. Beih. Bot. Centralbl. 3 $\mathbf{I}^{1}: 1-12$. pl. r-4. 1913. See also: The influence of position in the pod upon the weight of the bean seed. Amer. Nat. 49: 44-47.f. I-4. I9I3.

[^72]: * See a bibliography in Amer. Jour. Bot. 1: 410-4II. 1915.
 \dagger Number of pods per plant is an integral variate which has been treated without grouping. Seed weight has been dealt with in classes of 0.025 gram range, e.g. $0.175-0.200,0.200-0.225,0.225-0.250$. Sheppards' correction was applied to the second moment for seed weight but not to that for number of pods per plant. Number of pods per plant was of course weighted with number of seeds weighed per plant.
 \ddagger These are sometimes based upon slightly different numbers than these hereemployed, but the constants are sensibly the same.

[^73]: * In order to accommodate as large a series as possible of figures on the same diagram the marginal scales have been given no numerical values. The numbers of pods and the end points of the lines drawn are given in the table.

[^74]: * Harris, J. Arthur. On the correlation between somatic characters and fertility. II. Illustrations from Phaseolus vulgaris. Amer. Jour. Bot. 1: 398-4II. 1914.
 \dagger The mean values of the correlations for pods and ovules and pods and seeds given here differ slightly but insignificantly from those published elsewhere, because only 27 of the 32 series are used here.

[^75]: * Emory's Recon. Append. 2: 158.1848.

[^76]: * Contribution from the Laboratory of Plant Physiology, Cornell University.
 \dagger Observations on the inception, season, and duration of cambium development in the American larch [Larix laricina (Du Roi) Koch]. Bull. Torrey Club 40: 271293. pl. 18, 19. 1913.
 \ddagger The field notes and collection of material were made by Dr. George R. Hill, Jr.

[^77]: * The numbers refer to the Bibliography at the close of the second part of this paper.
 \dagger Neve, A. Tourist's guide to Kashmir, Ladakh and Skardo. 1913.

[^78]: * The Tibetan word "La" signifies Pass.

[^79]: * More species in western Tibet than in the eastern United States.
 \dagger No native species in the eastern United States.

[^80]: * Kjellman, F. R. Om Floridé-slägtet Galaxaura, dess organografi och systematik. Kongl. Sv. Vet.-Akad. Handl. 33¹; I-109. pl. I-2c. 1900.

[^81]: * Hoyt, W. D. Alternation of generations and sexuality in Dictyota dichotoma. Bot. Gaz. 49: 55-57. 1910.
 \dagger Lewis, I. F. Alternation of generations in certain Florideae. Bot. Gaz. 53: 236-242. 1912.

