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PREFACE*

THIS volume is designed , to present the mathematical

treatment of the problems in the production and applica-

tion of compressed air.

It is the author's opinion that prerequisite to a successful

study of compressed air is a thorough training in mathe-

matics, including calculus, and the mathematical sciences,

such as physics, mechanics, hydraulics and thermodynamics.
Therefore no attempt has been made to adapt this volume

to the use of the self-made mechanic except in the insertion

of more complete tables than usually accompany such work.

Many phases of the subject are elusive and difficult to see

clearly even by the thoroughly trained; and serious blunders

are liable to occur when an installation is designed by one

not well versed in the technicalities of the subject.

As one advocating the increased application of compressed
air and the more efficient use where at present applied, the

author has prepared this volume for college-bred men, believ-

ing that such only, and only the best of such, should be

entrusted with the designing of compressed-air installations.

The author claims originality in the matter in, and the use

of, Tables I, II, III, V, VI, VII and IX, in the chapter on

friction in air pipes and in the chapter on the air-lift pump.
Special effort has been made to give examples of a practical

nature illustrating some important points in the use of air

or bringing out some principles or facts not usually appre-
ciated.

Acknowledgment is herewith made to Mr. E. P. Seaver

for tables of Common Logarithms of Numbers taken from

his Handbook.

735781
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SYMBOLS

For ready reference most of the symbols used in the text are assembled

and defined here.

p = intensity of pressure (absolute), usually in pounds per square

foot. Compressed-air formulas are much simplified by

using pressures measured from the absolute zero. Hence

where ordinary gage pressures are given, p = gage pres-

sure + atmospheric pressure. In the majority of formulas

p must be in pounds per square foot, while gage pressures are

given in pounds per square inch. Then p = (gage pressure +
atmospheric pressure in pounds per square inch) X 144.

v = volume usually in cubic feet.

Where sub-a is used, thus pa ,
va ,

the symbol refers to free

air conditions.
. . . higher pressure

r = ratio of compression or expansion = f-^ -*
lower pressure

The lower pressure is not necessarily that of the atmos-

phere.

t = absolute temperature = Temp. F. + 460.6.

n = an empirical exponent varying from 1 to 1.41.

loge
= hyperbolic logarithm = (common log.) X 2.306.

W = work usually in foot-pounds per second.

Q = weight of air passed in unit time.

w = weight of a cubic unit of air.

Other symbols are explained where used.





FORMULAS

For convenience of reference the principal formulas appearing in the

text are collected here with the article and page where demonstration

and complete explanation can be found.

No. Formula Art. Page

1. W = pv\0ge r .......... ........................ 1 2

la. W = 53.17 t loge r for one pound ................. 1 2

lb. W = (122.61 logior) t for one pound ................ 1 2

2. W = 63737 logior for one pound at 60 F........... 1 2

logio 63737 = 4.8043894.

4. pv = 53.17 1 for one pound ........................ 2 3

5. pivi
n =

p-2v2
n .......................... .......... 2 3

6 . W -
Ti 1

7 -

8
|-n-i

-.

. W =
^-j- piz>i [r

" -
ij

8b. W = 95190 (r-
29 -

1) for 1 lb. at 60 F., n = 1.41 ... 2 5

8c. W = 138405 (r-
2 - 1 ) for 1 lb. at 60 F., n = 1.25 ... 2 5

logio 95190 = 4.978606, log 138405 = 5.141141.

8d . W =
[53.17^ (r~^~

-
l)J

t for one pound ...... 2 5

9. W =
^-TJ

+ ^2^2 paVi for partial expansion 3 8

10. Ev
= 1 + c (1 r) volumetric efficiency 4 10

lOa.
*
"Ml"! 5 u

i-i

11. U =

lla. fe
= M^i = 'iW n 7 13



xii FORMULAS

No. Formula Art. Page

12. w _ Q
??
- = weight per cubic foot ............... 8 13

53.17 1

12a. w = 2.708
(jj^jpJTT?)

= wei8ht Per cubic foot 8 13

12b. dz=-^=\ d3
=

; diameters, stage compression.. 12 19

(n
i \

n~"~ - 1) X 2; two-stage work ---- 13 20
n i

"

/ n ~ l
\

13a. W =^-iPaVa V2 2n -1JX2; two-stage work.... 13 20

/ n ~ l
\

13b. W =
^-^PaVa Vn -VX 3; three-stage work. . . 13 21

n i ILll \

13c. W =
^ j-poVaUa

3 B - VX 3; three-stage work.. . 13 21

15 23

. 16 24
rlo&r

16. pa =.4931m{l - .0001 (F -32)] .../. 17 25

17. log pa = 1.16866 -12^47 17 26

18. WeightQ = c .1632^\ \Pa] Pa in Ibs. per sq. in 20 29

18a. Q = c .6299 d2 V *- at sea level 20 30

20. / = 4^T! 23 35

21.
d-(c}^)

1

23 35

24. log^log^-C 24 37

39

26. *-~^j 26 42

27 Va - l n d
QQ w**

/^ -7.7 Q TT ~j

~~ oo Oo
y 77.O h Iogi r

28. sx = va [l
- X
A\ - Ml 33 56



COMP&SSSED A

CHAPTER S'iV"

FORMULAS FOR WORK

Art. 1. Temperature Constant or Isothermal Conditions.

From the laws of physics (Boyle's Law) we know that

while the temperature remains unchanged the product pv

remains constant for a fixed amount (weight) of air. Hence

to determine the work done on or by air confined in a cylinder,

or like conditions, when conditions are changed from p\v\ to

P2V2 we can write

p&i = pxvx = PzVz,

sub x indicating variable intermediate conditions.

L
p-



2 COMPRESSED AIR

work of compression or expansion between points B and C
(Fig. 1) is the integral of this, or

W =
PiVi I

' =
piVi (loge Vi loge 2)

Jv2
Vx

=
pivi\oge r = p2v2 \oge r.

Note that this analysis i$ only for thp.work against the/ron
of the pisto^VJijl'et^gsjjigJfj'pna^ t(x

c
C. To get the work

done during the entire stroke of piston from B to D we must

note that throughout the stroke (in case of ordinary compres-

sion) air is entering behind the piston and following it up
with pressure p\. Note also that after the piston reaches C

(at which time valve / opens) the pressure in front is constant

and = p2 for the remainder of the stroke. Hence the com-

plete expression for work done by, or against, the piston is

loge r piVi +
but since p&i = p2v2 , the whole work done is

W =
piVi loge r or p2v2 loge r. (1)

Note that the operation may be reversed and the work
be done by the air against the piston, as in a compressed-air

engine, without in any way affecting the formula.

Forestalling Art. 2, Eq. (4), we may substitute for pv in

Eq. (1) its equivalent, 53.17 t, for one pound of air and get
for one pound

W = 53.17 ZX loge r. (la)

This may be adopted for common logs by multiplying by
2.3026. It then becomes

W = (122.61 Iog10 r) t, (Ib)

(log 122.61 = 2.0878852.)

Note that in solving by logs the log of log r must be taken.

Values of the parenthesis in Eq. (Ib) are given in Table I

For the special temperature of 60 F. (Ib) becomes for one

pound of air

W = 63737 log, r, (2)

log 63737 = 4.8043894.



FORMULAS FOR WORK 3

Example la. What will be the work in foot-pounds per

stroke done by an air compressor displacing 2 cubic feet per

stroke, compressing from pa
= 14 Ibs. per sq. inch to a gage

pressure = 70 Ibs.; compression isothermal, T = 60 F.?

Solution (a):

Inserting the specified numerals in Eq. (1) it becomes

W = 144 X 14 X 2 X lo&
jt

U = 4032 X L79 = 7217 -

Solution (b): By Tables I and II.

By Table II the weight of a cubic foot of air at 14 Ibs. and

60 is .07277, and .07277 X 2 = .14554. The absolute t is

460 + 60 = 520, and r = 6.0.

Then in Table I, column 11, opposite r 6 we find 95.271,

whence
W = 95.271 X 520 X .14554 = 7208.

The difference in the two results is due to dropping off the

fraction in temperature.

Art. 2. Temperature Varying.

The conditions are said to be adiabatic when, during com-

pression or expansion, no heat is allowed to enter in, or

escape from, the air although the temperature in the body
of confined air changes radically during the process.

Physicists have proved that under adiabatic conditions

the following relations hold:

and since for one pound of air at 32 F. pv = 26,214 and t =

492.6, we get for one pound at any pressure, volume and

temperature,
pv = 53.17 1. (4)

While formulas (3) and (4) are very important, they do not

apply to the actual conditions under which compressed
air is worked, for in practice we get neither isothermal nor

adiabatic conditions but something intermediate.

For such conditions physicists have discovered that the

following holds nearly true:

= pxvx
n = p2vf, (5)



4 COMPRESSED AIR

sub x indicating any intermediate stage and the exponent n

varying between 1 and 1.41 according to the effectiveness

of the cooling in case of compression or the heating in case of

expansion. From this basic formula (5) the formulas for

work must be derived.

As in Art. (1) dW = pxdvx = V^^~ = Pii
n
<Xr

Therefore

Now since p&i" X v2
l~ n = p2V2

nX v2
l ~n = p2v2 and

=
pn>i the expression becomes

P\v\

n I

which represents the work done in compression or expansion

between B and C, Fig. 1. To this must be added the work

of expulsion, p2v2 ,
and from it must be subtracted the work

done by the air entering behind the piston, piVi. Hence the

whole net work done in one stroke is

(6)
n

= ^r (p&2
-

pii). (7)
n 1

Equation (7) is in convenient working form and may be used

when the data are in pressures and volumes, but it is common
to express the compression or expansion in terms of r. For

such cases a convenient working formula is gotten as follows:

From Eq. (5)

A i T>2 Vi
n

j_i f V\
Also r = ^ =

,
therefore = rn

,

PI v2 v2

n-l n~ 1 n-l

and = T n
> therefore '"-"- '"---* n

and Eq. (7) becomesW =
3 ftAir

* -
ij.

(8)
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The most common uses of equations (7) and (8) are when
air is compressed from free air conditions, then pi and v\ be-

come pa and va . This case must be carefully distinguished

from the case of incomplete expansion as presented in Art. 3.

In perfectly adiabatic conditions n =^1.41, but in practice

the compressor cylinders are water-jacketed and thereby

part of the heat of compression is conducted away, so that

n is less than 1.41. For such eases Church assumes n = 1.33

and Unwin assumes n = 1.25. Undoubtedly the value

varies with size and proportions of cylinders, details of

water-jacketing, temperature of cooling water and speed of

compressors. Hence precision in the value of n is not prac-

ticable. Fortunately the work does not vary as much as

n does.

For one pound of air at initial temperature of 60 F.

Eq. (8) gives in foot-pounds,

When n =
1.41, W = 95,193 (r-

29 -
1). (8b)

When n = 1.25, W = 138,405 (r-
2 -

1). (8c)

Common log of 95,193 = 4.978606.

Common log of 138,405 = 5.141141.

The above special values will be found convenient for

approximate computations. For compound compression
see Art. 12.

If in Eq. (8) we substitute for pv its value, 53.17 t, for

one pound, we get

f/ \ / *-i
YlW= (- -)53.17\r

n
-l] \Xt

= Kt, (8d)
Lv* i/ J

/ n-l \

where k = - n X 53.17^
n -

l)
-

Table I gives values of K for n = 1.25 and n = 1.41 and
for values of r up to 10, varying by one-tenth. The theoretic

work in any case is K X Q X t, where Q is the number of

pounds passed and t is the absolute lower temperature.
Further explanation accompanies the table.

The difference between isothermal and adiabatic compres-
sion (and expansion) can be very clearly shown graphically
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as in Fig. 2. In this illustration the terminal points are

correctly placed for a ratio of 5 for both the compression and

expansion curve.

Fig. 2.

Note'that in the compression diagram (a), the area between

the two curves aef represents the work lost in compres-
sion due to heating, and the area between the two curves

aeghb in (6) represents the work lost by cooling during

expansion. The isothermal curve, a e, will be the same in

the two cases.

Such illustrations can be readily adapted to show the

effect of reheating before expansion, cooling before compres-

sion, heating during expansion, etc.

Example 2a. What horse power will be required to com-

press 1000 cubic feet of free air per minute from pa = 14.5

to a gage pressure = 80, when n = 1.25 and initial tempera-
ture = 50 F.?

Solution. From Table II, interpolating between 40 and
60 the weight of one cubic foot is .07686 and the weight of

1000 is 76.86 -. The r from above data is 6.5. Then in
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Table I opposite r = 6.5 in column 9 we find .3658. Then

Horse power = .3658 X
100

X 510 = 143.

The student should check this result bj,Eq. (8) or (8d) with-

out the aid of the table.

Art. 3. Incomplete Expansion.
When compressed air is applied in an engine as a motive

power its economical use requires that it be used expansively
in a manner similar to the use of steam. But it is never

practicable to expand the air down to the free air pressure,

for two reasons : first, the increase of volume in the cylin-

ders would increase both cost and friction more than could

be balanced by the increase in power; and second, unless

some means of reheating be provided, a high ratio of expan-
sion of compressed air will cause a freezing of the moisture

in and about the ports.

The ideal indicator diagram for incomplete expansion is

shown in Fig. 3. In such diagrams it is convenient and

Fig. 3.

simplifies the demonstrations to let the horizontal length

represent volumes. In any cylinder the volumes are pro-

portional to the length.

Air at pressure p2 is admitted through that part of the

stroke represented by v2 thence the air expands through

the remainder of the stroke represented by vi, the pressure

dropping to pi. At this point the exhaust port opens and

the pressure drops to that of the free air. The dotted por-

tion would be added to the diagram if the expansion should

be carried down to free air pressure.
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To write a formula for the work done by the air in such a

case we will refer to Eq. (6) and its derivation. In the case

of simple compression or complete expansion it is correctly

written

which would give work in the case represented by Fig. 1

when there is a change of temperature, but in such a case as

is represented by Fig. 3 the equation must be modified thus :

pM, (9)
n 1

the reason being apparent on inspection.

In numerical problems under Eq. (9) there will be known

p2v2 , n, and either pi or VL The unknown must be computed
from the relations from Eq. (5) :

i

fv2\
n

ivzY
Pi = Pz (

-
)

or vi = v2
( )W W

Example 3a. A compressed-air motor takes air at a gage

pressure = 100 Ibs. and works with a cut-off at J stroke.

What work (ft.-lbs.) will be gotten per cu. ft. of compressed

air, assuming free air pressure = 14.5 Ibs. and n = 1.41 ?

Solution. Applying Eq. (9) and noting that all pressures

are to be multiplied by 144 and that the pressure at end of

/JA1.41

stroke = pi = 114.5 f
1

)

= 16.3 and that^i = 4z;2 ,
we get

= 25,444.

Art. 4. Effect of Clearance : In Compression.
It is not practicable to discharge all of the air that is

trapped in the cylinder; there are some pockets about the

valves that the piston cannot enter, and the piston must not

be allowed to strike the head of the cylinder. This clearance

can usually be determined by measuring the water that can
be let into the cylinder in front of the piston when at the end
of its stroke

;
but the construction of each compressor must
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be studied before this can be undertaken intelligently, and

it is not done with equal ease in all machines.

To formulate the effect of this clearance in the operation

of the machine,
Let v = volume of piston displacement (

= area of piston

X length of stroke) ,

Let cv = clearance, c being a percentage.

Then v + c v is the volume compressed each stroke. But
the clearance volume cv will expand to a volume rev as the

piston recedes, so that the fresh air taken in at each stroke

will be v + cv rev, and the volumetric efficiency will be

v = \ + c(\-r). (10)

When Ev
= c = -- and no air will be discharged.

Theoretically (as the word is usually used) clearance does

not cause a loss of work, but practically it does, insomuch as

it requires a larger machine, with its greater friction, to do

a given amount of effective work.

Example 4a. A compressor cylinder is 12" diam. X 16"

stroke. The clearance is found to hold 1^ pints of water

= -7 X 231 =36 cubic inches; therefore c =
113 X 16

= 0.02. /f
Then by Eq. (10) when r = 7

E = 1 + 0.02 (1
-

7)
= 88%.

Such a condition is not abnormal in small compressors, and

the volumetric efficiency is further reduced by the heating
of air during admission as considered in Art. 6.

Art. 5. Effect of Clearance and Compression in Expansion

Engines.

Fig. 4 is an ideal indicator diagram illustrating the effect

of clearance and compression in an expansion engine.

In this diagram the area E shows the effective work, D
the effect of clearance, B the effect of back pressure of the

atmosphere and C the effect of compression on the return

stroke.
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The study of effect of clearance in an expansion engine

differs from the study of that in compression, due to the

fact that the volume in the clearance space is exhausted

into the atmosphere at the end of each stroke.

Fig. 4.

If the engine takes full pressure throughout the stroke the

air (or steam) in the clearance is entirely wasted; but when
the air is allowed to expand as illustrated in the diagram some

useful work is gotten out of the air in the clearance during

the expansion.

The loss due to clearance in such engine is modified by the

amount of compression allowed in the back stroke. If the

compression pc
= p2 ,

the loss of work due to clearance will be

nothing, but the effective work of the engine will be consid-

erably reduced, as will be apparent by a study of a diagram
modified to conform to the assumption.

While the formula for work that includes the effect of

clearance and compression will not be often used in practice

its derivation is instructive and gives a clear insight into

these effects.

The symbols are placed on the diagram and will not need

further definition.

The effective work E will be gotten by subtracting from

the whole area the separate areas B, C and D. From Art. 2,

after making the proper substitutions for the volumes, there

results

'pz(c-{- k) pi (1 + c)

n-lTotal area = 1

1

+P,(c + *)
].
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Area B =
lpaj

Area D =
Ip2c,

Area C = iP'*
~

P
n ~ i

Subtracting the last three from the first and reducing their

results:

Work 1

Al nl
= Mean effective pressure.

The actual volume ratio before and after expansion is

Vi CVi + Vi C + 1

This is the ratio with which to enter Table I to get r and t

and from r the unknown pressure p\. Similarly for the
s*

compression curve the ratio of volumes is -, and pc can be
o

found as indicated above.

Art. 6. Effect of Heating Air as it Enters Cylinders.

When a compressor is in operation all the metal exposed
to the compressed air becomes hot even though the water

jacketing is of the best. The entering air comes in contact

with the admission valves, cylinder head and walls and the

piston head and piston rod, and is thereby heated to a very
considerable degree. In being so heated the volume is in-

creased in direct proportion to the absolute temperature

(see Eq. (5) ), since the pressure may be assumed constant

and equal that of the atmosphere. Hence a volume of

cool free air less than the cylinder volume will fill it when
heated. This condition is expressed by the ratio

%* = f or va = vc f,
vc tc tc

where vc and tc represent the cylinder volume and tempera-
ture. The volumetric efficiency as effected by the heating is
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Example 6a. Suppose in Example 4a the outside free air

temperature is 60 F. and in entering the temperature rises

to 160 F., then

460 + 60

tc 460 + 160

Then the final volumetric efficiency would be 88 X 84 =

74% nearly.

The volumetric efficiency of a compressor may be further

reduced by leaky valves and piston.

In Arts. 4 and 6 it is made evident that the volumetric

efficiency of an air compressor is a matter that cannot be

neglected in any case where an installation is to be intelli-

gently proportioned. It should be noted that the volu-

metric efficiency varies with the various makes and sizes

of compressors and that the catalog volume rating is always
based on the piston displacement.

These facts lead to the conclusion that much of the uncer-

tainty of computations in compressed-air problems and the

conflicting data recorded is due to the failure to determine

the actual amount of air involved either in terms of net

volume and temperature or in pounds.
Methods of determining volumetric efficiency of air com-

pressors are given in Chapter III.

The loss of work due to the air heating as it enters the

compressor cylinder is in direct proportion to the loss of

volumetric efficiency due to this cause. In Example 6a

only 84% of the work done on the air is effective.

By the same law any cooling of the air before entering the

compressor effects a saving of power. See Art! 9.

Art. 7. Change of Temperature in Compression or Ex-

pansion.

Eq. (4) may be written

Pivi
=

cti; p2v2 = ct2

and Eq. (5) may be factored thus,

Substituting we get
ctlVl

n ~ l = ct2v2
n~
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Whence fe^feY" (11)

and Ir-'tilrl ..
= ^ n

9 (lla)

since from Eq. (5)
'Pi

It is possible to computen from Eq. (11) by controlling the

Vi and t>2 and measured ti and 22 -

Table I, columns 5 and 6, is made up from Eq. (lla) and

columns 3 and 4 from Eq. (5) as just written.

Example 7. What would be the temperature of air at the

end of stroke whenr = 7 and initial temperature = 70 F.?

Solution. Referring to Table I in line with r= 7 note that

1.4758 when n= 1.25

/. t2
= (460 + 70) X 1.4758 - 460 = 322 F.

1.7585 when n = 1.41

/. t2
= (460 + 70) X 1.7585 - 460 = 472 F.

From the same table the volume of one cubic foot of free

air when compressed and still hot would be respectively 0.21

and 0.25, while when the compressed air is cooled back to

70 its volume would be 0.143.

Art. 8. Density at Given Temperature and Pressure.

By Eq. (4) pv = 53.17 t for one pound, and the weight of

one cubic foot

= w = l= 2
(12)

v 53.17*

Note that p must be the absolute pressure in pounds per

square foot, and t the absolute temperature. When gage

pressures are used and ordinary Fahrenheit temperature
the formula becomes

144
,,..,.,

F>

Table III is made up from Eq. (12).
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Art. 9. Cooling Water Required.
In isothermal changes, since pv is constant, evidently

there is no change in the mechanical energy in the body of

air as measured by the absolute pressure and using the term

"mechanical energy "to distinguish from heat energy. Hence

evidently all the work delivered to the air from outside must

be abstracted from the air in some other form, and we find

it in the heat absorbed by the cooling water. Therefore,

(B.T.U's)

of work done on compressed air = 35.5 log r (B.T.U's) per

pound of air compressed from temperature of 60 F. If the

water is to have a rise of temperature T (T being small, else

the assumption of isothermal changes will not hold), then

pv oge r _ poun(js of water required in same time.

Example 8a. How many cubic feet of water per minute will

be required to cool 1000 cubic feet of free air per minute,

air compressed from pa
= 14.2 to pg

= 90 gage, initial tem-

perature of air = 50 F. and rise in temperature of cooling

water = 25 ?

Solution:

144 X 14.2 X 1000 X

780X25X62 .5
- 24 cu. ft. per min.

It is practically possible to attain nearly isothermal con-

ditions by spraying cool water into the cylinder during

compression. In such a case this article would enable the

designer to compute the. quantity of water necessary and

therefrom the sizes of pipes, pumps, valves, etc.

Art. 10. Reheating and Cooling.

In any two cases of change of state of a given weight of

air, assuming the ratio of change in pressure to be the same,
the work done (in compression or expansion) will be directly

proportional to the volume, as will be evident by examina-

tion of the formulas for work. Also at any given pressure

the volumes will be directly proportional to the absolute tem-

peratures. Hence the work done either in compression or
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expansion (ratio of change in pressures being the same in each

case) will be directly proportional to the absolute initial tem-

peratures.

Thus if the temperature of the air in the intake end of one

compressor is 160 F. and, in another 50 F., the work done

on equal weights of air in the two cases will be in the pro-

portion of 460 + 150 to 460 + 50, or 1.2 to 1; that is, the

work in the first case is 20% more than that in the second

case. This is equally true, of course, for expansion.

The facts above stated reveal a possible and quite practi-

cable means of great economy of power in compressing air

and in using compressed air.

The opportunities for economy by cooling for compression
are not as good as in heating before the application in a

motor, but even in compression marked economy can be

gotten at almost no cost by admitting air to the compressor
from the coolest convenient source, and by the most thorough

water-jacketing with the coolest water that can be conven-

iently obtained.

In all properly designed compressor installations the air is

supplied to the machine through a pipe from outside the

building to avoid the warm air of the engine room. In

winter the difference in temperature may exceed 100, and

this simple device would reduce the work of compression by
about 20%. For the effect of intercoolers and interheaters

see Art. .12 on compounding.

By reheating before admitting air to a compressed-air

engine of any kind the possibilities of effecting economy
of power are greater than in cooling for compression, the

reason being that heating devices are simpler and less costly

than any means of cooling other than those cited above.

The compressed air passing to an engine can be heated to

any desired temperature; the only limit is that temperature
that will destroy the lubrication. Suppose the normal

temperature of the air in the pipe system is 60 F. and that

this is heated to 300 F. before entering the air engine, then

the power is increased 46%. Reheating has the further

advantage that it makes possible a greater ratio of expansion
without the temperature reaching freezing point.
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The devices for reheating are usually a coil or cluster of

pipes through which the air passes while the pipe is exposed
to the heat of combustion from outside. Ordinary steam

boilers may be used, the air taking the place of the steam and

water.

Unwin suggests reheating the air by burning the fuel in

the compressed air as suggested in the cut.

f-^=F-
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ciples involved in compound steam engines and in com-

pound air engines are quite different, the reasons underlying

the latter being much more definite.

The air is first compressed to a moderate ratio in the

low-pressure cylinder, whence it is discharged into the
"
inter-

cooler," where most of the heat developed in the first stage

is absorbed and thereby the volume materially reduced, so

that in the second stage there will be less volume to com-

press and a less injurious temperature.
The changes occurring and the manner in which economy

is effected in compression may be most easily understood

by reference to Fig. 5, which represents ideal indicator

diagrams from the two cylinders, superimposed one over

the other, the scale being the same in each, the dividing

line being kb.

e d f g

Fig. 5.

In this diagram, Fig. 5,

dbk is the compression line in the first-stage or low-pressure

cylinder,

cds is the compression line in the second-stage or high-pres-
sure cylinder,

be is the reduction of volume in the intercooler,



18 COMPRESSED AIR

abf would be the pressure line if no intercooling occurred,

The area cdfb is the work saved by the intercooler,

ace would be the compression line for isothermal compres-
sion,

aug would be the compression line for adiabatic compres-
sion.

The diagram Fig. 5 is correctly proportioned for r = 6.

Fig. 6 is a diagram drawn in a manner similar to that used

in Fig. 5 and is to illustrate the changes and economy effected

by compounding with heating when compressed air is applied

in an engine. It is assumed that the air is
"
preheated,"

that is, heated once before entering the high-pressure cylinder

and again heated between the two cylinders.

Fig. 6.

In this diagram, Fig. 6,

se is the volume of compressed air at normal temperature,

sf is the volume of compressed air after preheating,

fc is the expansion line in the high-pressure cylinder,

cb is the increase of volume in the interheater,

by is the expansion line in low-pressure cylinder,

ezq would be the adiabatic expansion line without any
heating,

efcz is work gained by preheating,

cbyx is work gained by interheating.
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In no case is it economical to expand down to atmospheric

pressure. Hence the diagram is shown cut off with pressure

still above that of free air.

The diagram Fig. 6 is proportioned for preheating and re-

heating 300 F.

Art. 12. Proportions Jfor Compounding.
It is desirable that equal work be done in each stage of

compounding. If this condition 'be imposed, Eq. (8) indi-

cates that the r must be the same in each stage, for on the

assumption of complete intercooling the product pv will

be the same at the beginning of each stage.

If then 7*1 be the ratio of compression in the first stage,

the pressure at end of first stage will be ripa
=

pi, and the

pressure at end of second stage = rpi =
r-?pa p2 ,

and

similarly at end of third stage the pressure will be ps
= r^ pa ,

or

In two-stage work n =
(2i )

2 = r2
*

In three-stage work 7*1

Let Vi = free air intake per stroke in low-pressure cylinder

or first stage,

v2 = piston displacement in second stage,

v3 = piston displacement in third stage,

TI = ratio of compression in each cylinder.

Then, assuming complete intercooling,

V\ j ?>2 Vl
v% = ana Vz = =

,

or and - =

The length of stroke will be the same in each cylinder:

therefore the volumes are in the ratio of the squares of

diameters, or

Hence d2
= and d, = - (12b)
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If the intention to make the work equal in the different

cylinders be strictly carried out it will be necessary to make
the first-stage cylinder enough larger to counteract the

effect of volumetric efficiency. Thus if volumetric efficiency

be 75%, the volume (or area) of the intake cylinder should

be one-third larger. Note that the volumetric efficiency is

chargeable entirely to the intake or low-pressure cylinder.

Once the air is caught in that cylinder it must go on.

Example 12. Proportion the cylinders of a compound two-

stage compressor to deliver 300 cu. ft. of free air per minute

at a gage pressure = 150. Free air pressure =
14.0,

R.P.M. = 100, stroke 18", piston rod If" diameter, volu-

metric efficiency
= 75%.

Solution. From the above data the net intake must be

3 cu. ft. per revolution. Add to this the volume of one piston

rod stroke (
= .025 cu. ft.) and divide by 2. This gives

the volume of one piston stroke 1.512. The volume of one

foot of the cylinder will be X 1.512 = 1 .008 cu. ft. From
18

Table X the nearest cylinder is 14" diam., the total ratio of

compression =- -= 11.71, and the ratio in each stage

is (11.71)*= 3.7 = n, and by (12b)

d2
= ~ = = 7.3", say 7f", for the high-pressure cylinder.

(ri)
a 1-92

Now we must increase the low-pressure cylinder by one-

third to allow for volumetric efficiency. The volume per

foot will then be 1.344, which will require a cylinder about

15f
"
diameter. Note that the diameter of the high-pressure

cylinder will not be affected by the volumetric efficiency.

Art. 13. Work in Compound Compression.

Assuming that the work is the same in each stage, Eq. (8)

can be adapted to the case of multistage compression thus :

In two-stage work
/ n-l \

=~ -paVaVl
n
-I] X2

-
l) X 2. (13a)

W=~ -paVaVl
n
-I] X2 (13)

I

n 1
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In three-stage work

- l X 3 (13b)

(13C)
= -^PaVaVt^- l) X 3.

Tl 1

Note that r2 = and r3 = ^ and also that pava
Pa Pa

, etc., assuming complete intercooling.

Laborious precision in computing the work done on or by
compressed air is useless, for there are many uncertain and

changing factors: n is always uncertain and changes with

the amount and temperature of the jacket water, the volu-

metric efficiency, or actual amount of air compressed, is

usually unknown, the value of pa varies with the altitude,

and r is dependent on pa .

Art. 14. Work under Variable Intake Pressure.

There are some cases where air compressors operate on air

in which the intake pressure varies and the delivery pressure

is constant. This is true in case of exhaust pumps taking air

out of some closed vessels and delivering it into the atmos-

phere. It is also the condition in the
"
return-air" pumping

system in which one charge of air is alternately forced into

a tank to drive the water out and then exhausted from the

tank to admit water. For full mathematical discussion of

this pump see Trans. Am. So. C. E., Vol. 54, p. 19. The

following formulas and others more complex were first

worked out to apply to that pumping system.
In such cases it is necessary to determine the maximum

rate of work in order to design the motive power.
First assume the operation as being isothermal. Then

in Eq. (1), viz.

W = pxV loge
2t

Px

px is variable, while v and pi are constant. In this formula

W becomes zero when px is zero and again when px = pi,

since log 1 is zero. To find when the work is maximum,
differentiate and equate to zero; thus differential of
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v (px log pi
- px log px)=v\ log pidpx

- (px
-&L+ log pxdp x\

Equate this to zero and get log pi
= 1 + log Px,

or log
2i =

i, therefore ^ = e = 2.72.

Px Px

That is, when r = 2.72 the work is a maximum.
When the temperature exponent n is to be considered the

study must be made in Eq. (8), viz.

Differentiating this with respect to px and equating to zero,
n-i

the condition for maximumwork becomes!
^

)
n. InsertW

this in (8) and the reduced formula becomes

From the above expressions for maximum the following

results :

When n = 1.41 the maximum occurs when r 3.26.

When n = 1.25 the maximum occurs when r 3.05.

When n = 1. the maximum occurs when r = 2.72.

In practice r = 3 will be a safe and convenient rule.

Exercise 14a. Air is being exhausted out of a tank by an ex-

haust pump with capacity = 1 cu. ft. per stroke. At the be-

ginning the pressure in the tank is that of the atmosphere =
14.7 Ibs. per sq. in. Assume the pressure to drop by intervals

of one pound and plot the curve of work with px as the

horizontal ordinate and W as the vertical, using the formula

W = pxvlog^-
Px

Exercise 146. As in 14a plot the curve by Eq. (8) with

n = 1.25.

Art. 15. Exhaust Pumps.
In designing exhaust pumps the following problems may

arise.
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Given a closed tank and pipe system of volume V under

pressure p and an exhaust pump of stroke volume v, how

many strokes will be necessary to bring the pressure down

topm ?

The analytic solution is as fqllows, assuming isothermal

conditions in the volume V.

The initial product of pressure by volume is p V. After

the first stroke of the exhaust pump this air has expanded
into the cylinder of the pump and pressure has dropped to

Pi under the law that pressure by volume is constant.

Hence (V + v) p-L =p V, or pi
=
-^ at end of first stroke,

at end of second stroke,

<F + .)p.-*7, or P3
= P2 ^-.

=
PO(^-J

at end of third stroke, etc.

/ v \
m log t

9

Finally pm = p (

- and m = ft- . (14)

m is the required number of strokes.

Example 15a. A closed tank containing 100 cu. ft. of air

at atmospheric pressure (= 14.5 Ibs. per sq. in.) is to be

exhausted down to 5 bs. by a pump making 1 cu. ft. per

stroke. How many strokes required ?

Solution. ^ = T~ and -I- = 152.

pQ 14.5 V + v 101

log 5 = 0.69897 log 100 = 2.00000

log 14.5 = 1.16136 log 101 = 2.00432

1.53761 1.99568

These two logarithms may be written thus:

- 1 + 0.53761 = - .46239 , .46239 = 10
- =

- 1 + 0.99568 = - .00432 .00432

If the volumetric efficiency of the machine be E, then the

number of strokes would be 107 -f- E.
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The results found under Arts. 14 and 15 serve well to

illustrate the curious mathematical gymnastics that com-

pressed air is subject to, and should encourage the investi-

gator who likes such work, and should put the designer on

guard.

Art. 16. Efficiency when Air is Used without Expansion.

In many applications of compressed air convenience and

safety are the prime requisites, so that power efficiency

receives little attention at the place of application. This

is so with such apparatus as rock drills, pneumatic hammers,
air hoists and the like. The economy of such devices is so

great in replacing human labor that the cost in power is

little thought of. Further, the necessity of simplicity and

portability in such apparatus would bar the complications

needed to use the air expansively. There are other cases,

however, notably in pumping engines and devices of various

kinds, where the plant is fixed, the consumption of air con-

siderable and the work continuous, where neglect to work

the air expansively may not be justified.

In any case the designer or purchaser of a compressed-air

plant should know what is the sacrifice for simplicity or low

first cost when the proposition is to use the air at full pres-

sure throughout the stroke and then exhaust the cylinder

full of compressed air.

Let p be the absolute pressure on the driving side of the

piston and pa be that of the atmosphere on the side next

the exhaust. Then the effective pressure is p pa and the

effective work is (p pa ) v, while the least possible work

required to produce this air is pv loge r.

Hence the efficiency is E = ^ ~
Pa} v

-

pv loge r

Dividing numerator and denominator by pav this reduces to

E==* (15)
r loge r

This is the absolute limit to the efficiency when air is used

without expansion and without reheating. It cannot be

reached in practice.

Table VI represents this formula. Note that the effi-



FORMULAS FOR WORK 25

ciency decreases as r increases. Hence it may be justi-

fiable to use low-pressure air without expansion when it

would not be if the air must be used at high pressure.

Clearance in a machine of
t
this kind is just that much

compressed air wasted. If clearance be considered, Eq. (15)

becomes

E =
~

.

1 _L .

(l+c)rloge r

where c is the percentage of clearance. In some machines,

if this loss were a visible leak, it would not be tolerated.

Art. 17. Variation of Atmospheric Pressure with Altitude.

In most of the formulas relating to compressed-air opera-

tions the pressure pa ,
or weight wa ,

of free air is a factor.

This factor varies slightly at any fixed place, as indicated

by barometer readings, and it varies materially with varying

elevations.

To be precise in computations of work or of weights or

volumes of air moved, the factors pa and wa should be deter-

mined for each experiment or test, but such precision is

seldom warranted further than to get the value of pa for

the particular locality for ordinary atmospheric conditions.

This however should always be done. It is a simple matter

and does not increase the labor of computation. In many
plants in the elevated region pa may be less than 14.0 Ibs.

per sq. in., and to assume it 14.7 would involve an error of

more than 5%.
Direct reading of a barometer is the easiest and usual way

of getting atmospheric pressure, but barometers of the

aneroid class should be used with caution. Some are

found quite reliable, but others are not. In any case they

should be checked by comparison with a mercurial barom-

eter as frequently as possible.

If m be the barometer reading in inches of mercury and

F be the temperature (Fahrenheit), the pressure in pounds

per sq. in. is

oU

.4931 m [1
- .0001 (F

-
32)]. (10)
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The information in Table II will usually obviate the need of

using Eq. (16).

In case the elevation is known and no barometer available

the problem can be solved as follows:

Let ps
= pressure of air at sea level,

ws weight of air at sea level,

px ,
wx be like quantities for any other elevation.

Then in any vertical prism of unit area and height dh we
have

Px + dpx = px + wxdh,

or dpx
= wxdh.

But 1^ = 2*. therefore dpx
= pxdh,w8 ps ps

or dh = & &*, and therefrom h = ^ X log 2t,Ws Px Ws pa

where pa is the pressure at elevation h above sea level. Sub-

stitute for ws its equivalent

h v,
ve get 7^^- = log

^ .

53.17 1 pa

Whence loge pa = loge ps
-
^ ^ ^

Making ps
= 14.745 and adopting to common logarithm

and Fahrenheit temperatures,

login Pa = 1.16866 - . . ,j . . (17)

Table V is made up by formula 17.



CHAPTER II
A

MEASUREMENT OF Am

Art. 18. General Discussion.

Progress in the science of compressed-air production and

application has evidently been hindered by a lack of accu-

rate data as to the amount of compressed air produced and

used.

The custom is almost universal of basing computations

on, and of recording results as based on, catalog rating of

compressor volumes that is, on piston displacement.

The evil would not be so great if all compressors had

about the same volumetric efficiency, but it is a fact that the

volumetric efficiency varies from 60 per cent to 90 per cent,

depending on the make, size, condition and speed of the

machine; no wonder, then, that calculations often go wrong
and results seem to be inconsistent.

There are problems in compressed-air transmission and use

for the solution of which accurate knowledge of the volume

or weight of air passing is absolutely necessary. Chief among
these are the determination of friction factors in air pipes

and the efficiency of pumps, including air lifts.

Purchasers may be imposed upon, and no doubt often are,

in the purchase of compressors with abnormally low volu-

metric efficiencies. Contracts for important air-compressor

installation should set a minimum limit for the volumetric

efficiency, and the ordinary mechanical engineer should have

knowledge and means sufficient' to test the plant when
installed.

There is little difficulty in the measurement of air. The
calculations are a little more technical, but the apparatus
is as simple and the work much less disagreeable than in

measurements of water.

In many text-books theoretic formulas are presented for

27
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the flow of air at high pressures through orifices into the

atmosphere. Such formulas are complicated by the neces-

sity of considering change of volume and temperature, and

even where the proper empirical coefficients are found the

formulas are unwieldy.

Art. 19. Apparatus for Measuring Air by Orifice.

Present indications are that the standard method of

determining flow of air will require the pressure to be reduced

to less than one foot head of water in order that change
of volume and temperature may be neglected and the for-

mula simplified thereby.

Experiments under such circumstances show coefficients

even more constant than those for standard orifices for

measuring water. The coefficients given in Art. 20 were

determined at McGill University by methods and apparatus

described first in Trans. Am. So. Mech. E., Vol. 27, Dec., 1905,

and later in Compressed Air, Sept., 1906, p. 4187.

Having the coefficients once determined, the necessary

apparatus is simple and inexpensive. The essentials are

shown in Fig. 7.
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The box B may be mads of any convenient light material.

The pressure is only a few ounces and the tendency to leak

slight. The purpose of the throttle T is to control the

pressure against which the compressor works. The appro-

priate orifice can be
determined by a preliminary com-

putation, assuming i at'say 5". See Eq. (18).

In testing a compressor it should be run until every part

is at its normal running temperature. By means of the

throttle T the compressor can be worked under various

pressures and speed and thereby its individual curves of

volumetric efficiency obtained.

Art. 20. Formula for Standard Orifice under Low
Pressure.

Let pa = air pressure in Ibs. per sq. in. inside the box,

Q = weight of air passing per second,

wa = weight of a cubic foot of air in pounds,
d = diameter of orifice in inches,

i = pressure as read on water gage in inches,

t absolute temperature Fahrenheit's scale, inside

box,

c = the experimental coefficient.

Where changes of density and temperature can be neg-

lected the theoretic velocity through the orifice is v = ^2 gh

where h is the head of air of uniform density that would

produce the pressure head i.

Hence h = -^ X ;
therefore v = \l2 g X

12 wa 12 wa
70

But Q = wa Xav where a = area of orifice in sq. ft. = -
4X 144

Inserting these values and putting wa under the radical there

results

o = ird
2

. L . i 62.5

4X144

But Wa =
53.17 1

Therefore Q = .0136d2

J\ pa
r = .1632 d2

J\ pa (18)
t * t

where pa is in Ibs. per sq. in.
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The pressure due to i (
= .036 i) should be included in pa .

If the work is at sea level and pressure i be neglected,

pa
= 14.7 X 144 and the formula becomes

Q = .6299 d2

^-, (18a)

which is the formula published by McGill University.

This is the theoretic formula. To it must be applied the

experimental coefficient c as given in Table VIII. Note
that c varies but little from 0.60, and the same c can be

used in Eq. (18) and (18a).

Example 20a. In a run with the apparatus shown in

Fig. 7 the following was recorded: d = 2.32"; i = 4.6";

T = 186 F. inside drum, T= 86 F. in free air. Elevation

1200'. Find the weight and volume of free air passing.

Solution. From Table II, interpolating for 86 in the line

with 1200 elevation we get wa =.0700 and pa for free air

= 14.1. Add the pressure due to i (
= .036 X 4.6) and we

get the corrected pa
= 14.26. In Table VIII the coefficient

for d = 2.32 and i = 4.6 is 0.599. These numbers inserted

in (18) give

Q = .599 X .1632 X (2.32)
2

l/~^ X 14.26
T 64o

=
. 1684 pound per second

and the free air volume

X 60 = 144.3 cu. ft. per minute.
.0700

ByEq. (18a) Q= .1747.

Art. 21. Air Measurement in Tanks.

The amount of air put into or taken out of a closed tank

or system of tanks and pipes, of known volume, can be

accurately determined by Eq. (3), viz.,

PxVx tx pa tx

By this means the volume of air delivered into a closed sys-

tem by a compressor can be very accurately determined.

The process would be as follows: Determine the volumes

of all tanks, pipes, etc., to be included in the closed system,
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open all to free air and observe the free-air temperature;
then switch the delivery from the compressor into the

closed system; count the strokes of the compressor until the

pressure is as high as desired; then shut off the closed tank

and note pressure and temperatures of each separate part
of the volume. Then the formula above will give the vol-

ume of free air which compressed and heated would occupy
the tanks. From this subtract the volume of free air origi-

nally in the tanks; the remainder will be what the compressor
has delivered into the system. Note that the compressor
should be running hot and at normal speed and pressure
when the test is made for its volumetric efficiency.

Usually the temperature changes will be considerable, but

if the system is tight, time can be given for the temperature
to come back to that of the atmosphere, thus saving the

necessity of any temperature observations.

Where a convenient closed-tank system is available this

method is recommended.

This method that is, Eq. (3) as stated above was used

to determine the quantity of air passing the orifices in the

experiments by which the coefficients were determined as

given in Art. 20, Table-VII.

Example 21a. A tank system consists of one receiver 3'

diam. X 12', one air pipe 6" X 40', one 4" X 4000
/ and a

second receiver at end of pipe 2' diam. X 8'. A compres-
sor 12" X 18" with li" piston rod puts the air from 1250

revolutions into the system, after which the pressure is

80 gage and temperature in first receiver 200, while in

other parts of the tank system it is 60. Temperature of

outside air being 50, pa
= 14.5 per sq. in. Find volu-

metric efficiency of the compressor.

Solution. Volumes (from Table X) :

1st receiver 84.84 cu. ft."

6" pipe 7.84

I" pipe 349.20 382.16

2nd receiver 25.12

Total 467.00 in tank system.



32 COMPRESSED AIR

Piston displacement in one revolution = 2.338 cu. ft.

(piston rod deducted).

By formula va = -^j
X -note that the quantity in paren-

\ Pa / lx

thesis is constant and therefore a slide rule can be conven-

iently used, otherwise work by logarithms.

, , . . x__ .

va in 6" pipe, 4" pipe and second receiver with total

volume 382.16 and i = 60 =
. 2447.1

Total 2864.3

Original volume of free air 467

Volume of free air added 2397.3

2397.3 -r- 2.338 = 1028.

Therefore the volumetric efficiency is

E = 1028 ^ 1250 = 82%.
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FRICTION IN AIR PIPES

Art. 22. In the literature on compressed air many for-

mulas can be found that are intended to give the friction in

air pipes in some form. Some of these formulas are, by
evidence on their face, unreliable, as for instance when no

density factor appears ;
the origin of others cannot be traced

and others are in inconvenient form. Tables claiming to

give friction loss in air pipes are conflicting, and reliable

experimental data relating to the subject are quite limited.

In this article and the next are presented the derivation

of rational formulas for friction in air pipes with full exposi-

tion of the assumptions on which they are based. The coeffi-

cients were gotten from the data collected in Appendix B.

Art. 23. The Formula for Practice.

The first investigation will be based on the assumption that

volume, density and temperature remain constant through-

out the pipe.

Evidently these assumptions are never correct; for any
decrease in pressure is accompanied by a corresponding

increase in volume even if temperature is constant. (The

assumption of constant temperature is always permissible.)

However, it is believed that the error involved in these

assumptions will be less than other unavoidable inaccuracies

involved in such computations.

Let / = lost pressure in pounds per sq. in.,

I = length of pipe in feet,

d = diameter of pipe in inches,

s = velocity of air in pipe in feet per second,

r = ratio of compression in atmospheres,

c = an empirical coefficient including all constants.
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Experiments have proved that fluid friction varies very

nearly with the square of the velocity and directly with

the density. Hence if k be the force in pounds necessary
to force atmospheric air (r

=
1) over one square foot of sur-

face at a velocity of one foot per second, then at any other

velocity and ratio of compression the force will be

and the force necessary to force the air over the whole

interior of a pipe will be

and the work done per second, being force multiplied by
distance, is

Work =
^XArs

3
.

Now if the pressure at entrance to the pipe is / pounds per

sq. in. greater than at the other end, the work per second

due to this difference (neglecting work of expansion in air) is

Work = / s.

4

Equating these two expressions for work there results

or

Now the volume of compressed air, v, passing through the

pipe is, in cubic feet,

ird2
v = -- s

4X 144

and the volume of free air, va ,
is rv.

Therefore va =
**** X rs

4 X 144

*-<
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Insert this value of s2 in Eq. (19) and reduce and there results

, 4 , /4 X 144V I v

or = c .C
d* r

(20)

where c is the experimental coefficient and includes all

constants.

From Eq. (20),
/jcWV
\fr I

(21)

From the data collected in Appendix B the following

results were computed. In this r and s are mean results

and c is the average of all the runs made on each pipe.

d
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modification renders the formula much more laborious

and would probably add nothing to its value for practical

purposes.

Table IX and Plates 0, I, II, III, and IV are based on
formula (20).

Art. 24. Theoretically Correct Friction Formula.

The theoretically correct formula for friction in air

pipes must involve the work done in expansion while the

pressure is dropping.

Let pi and p2 be the absolute pressures at entrance and

discharge of the pipe respectively and let Q be the total

weight of air passing per second.

Then the total energy in the air at entrance is

and at discharge, the energy is

Pa 2g
The difference in these two values must have been absorbed

in friction in the pipe. Hence, using the expression for

work done in friction that was derived in Art. 23, we get

-3 2

*J
IkTS* = pava (log

Ei - log 2l)12 V Pa Pal
+

Numerical computations will show the last term, viz.

-*-
(s2

2
Si

2
) is relatively so small that it can be neglected in

^ Q

any case in practice without appreciable error. Hence by a

simple reduction we get

X but
p2 12 pa va 4

which when substituted gives

_I = x
d

or considering pa as constant,

Iog10
2l= c

*
s

Pz d

or logio p2
=

logic, Pi
-

ci 3
2
. (22)

a



FRICTION IN AIR PIPES 37

In Eq. (22) Ci is the experimental coefficient and includes

all constants, s is the velocity in the air pipe and varies

slightly increasing as the pressure drops. All efforts so far

have failed to get a formula in satisfactory shape that makes

allowance for the variation in s.
-

i

In working out Ci from experimental data s should be the

mean between the Si and s2 ,
and when using the formula

the s may be taken as about 5 per cent greater than Si.

Note that in the solution of Eq. (22) common logarithms
should be used for convenience, allowing the modulus, 2.3+,
to go into the constant c\.

The working formula may be put in a different and

possibly a more convenient form, thus. In the expression

,
i = 2L* x jB_ rs,

p2 12 pava

substitute for s its value

4 X 144 va
s

ird-r

and reduce and we get

(23)

Still another form is gotten thus. The whole weight of air

passing is va X wa
= Q, and by Eq. (12)

Q = va
-~^ and therefore va

= :

53. 17* pa

Also rx = ^ and wa
= -&-- .

pa 53.17

Substitute these in (23) and it reduces to

log p2
= log Pl

- c2
-^L

(
2-Y (24)

Wad5
\px/

In ordinary practice may be taken as constant. If this

be done Eq. (24) becomes

log pz
= log pi

- c3
- r*-\ -

(24a)

If ta
= 525 and wa

=
.075, then c3

= 7000 o*.
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In (24) and (24a) px varies between pi and p2 . Careful

computations by sections of a long pipe show px to vary as

ordinates to a straight line. Modifying the formulas to

allow for this variation renders them unmanageable. In

working out the coefficient px may be taken as a mean
between pi and p2 ,

and in using the formula p may be taken

as pi less half of the assumed loss of pressure.

As before suggested, common logarithms should be used in

all the equations of this article.

Finally it should be said that extreme refinement in com-

puting friction in air pipes is a waste of labor, for there are

too many variables in practical conditions to warrant much
effort at precision.

A study of the data collected in Appendix B gives

values for c2 , Eq. (24), that, for pipes three to twelve inches

diameter, conform closely to the expression

c2 = .0124 - .0004 d,

which gives the following:

d" = 3

C2
= .0112

C3
= 78.4

With these coefficients px in equations (24) and (24a) is to

be taken in pounds per square inch.

Equations (24) and (24a) are theoretically more correct

than Eq. (20) and the coefficients of the former will not vary
so much as those for the latter, but when the coefficients are

correctly determined for Eq. (20) it is much easier to com-

pute and can be adapted to tabulation, while Eq. (24) can-

not be tabulated in any simple way.

Example 24a. Apply formulas (20) and (24) to find the

pressure lost in 1000' of 4" pipe when transmitting 1200

cu. ft. free air per minute compressed to 150 gage when at-

mospheric conditions are pa = 14.0, wa
=

. 073 and ta
= 540.

Solution by Eq. (20) : r = 15Q + 14 = 11.71. By Table IX

divide 23.44 by 11.71 and the result, 2 pounds, is the pres-

sure lost per 1000'.

4



FRICTION IN AIR PIPES 39

Solution ofEq. (24) : The coefficient for a 4" pipe is .0108,

and log pi
= log (150 + 14) = 2.214844.

Then log P2 - ,214844 - .0108 X

The log of the last term is 3.791193 and its corresponding
number is .006183.

2.214844 - .0(16183 = 2.208661 = log p2 .

Whence p2
= 161.7+ and pi

- p2
= 2.3.

Art. 25. Efficiency of Power Transmission by Compressed
Air.

In the study of propositions to transmit power by piping

compressed air, persons unfamiliar with the technicalities

of compressed air are apt to make the error of assuming
that the loss of power is proportional to the loss of pressure,

as is the case in transmitting power by piping water. Fol-

lowing is the mathematical presentment of the subject:

Pi
= absolute air pressure at entrance to transmission pipe,

p2
= absolute air pressure at end of transmission pipe,

i>i
= volume of compressed air entering pipe at pressure pi,

v2 = volume of compressed air discharged from pipe at

pressure p2 .

Then crediting the air with all the energy it can de-

velop in isothermal expansion, the energy at entrance

log n, and at discharge the energy iss log =
Pa

g^ = p#2 Iogr2 .

^

Hence efficiency E =
loge

~N
=

jog.*
.

loge ri
(25)

Common logs may be used since the modulus cancels. The

varying efficiencies are illustrated by the following tables.

pa = 14.5. pi = 87. ri = 6. log n = .7781.

P2
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= 14.5. pi = 145. n = 10. log n = 1.000.

T>



CHAPTER IV
.

OTHER
~
AIR COMPRESSORS

Art. 26. Hydraulic Air Compressors. Displacement Type.

Compressors of this type are of limited capacity and low

efficiency, as will be shown. They are therefore of little

practical importance. However, since they are frequently

the subject of patents and special forms are on the market,

their limitations are here shown for the benefit of those who

may be interested.

Omitting all reference to the special mechanisms by which

the valves are operated, the scheme for such compressors is

to admit water under pressure into a tank in which air has

been trapped by the valve mechanisms. The entering

water brings the air to a pressure equal to that of the water;

after which the air is discharged to the receiver, or point of

use. When the air is all out the tank is full of water, at

which time the water discharge valves open, allowing the

water to escape and free air to enter the tank again, after

which the operation is repeated. Usually these operations

are automatic. The efficiency of such compression is limited

by the following conditions.

Let P = pressure of water above atmosphere, or ordinary

gage pressure,

V = volume of the tank.

Then P + pa
= absolute pressure of air when compressed.

The energy represented by one tank full of water is PV and

by one tank full of free air when compressed to P + pa is

P 4- v
paV loge

- I-^ = paV log, r.

Pa

Therefore the limit of the efficiency is

_ paV loger _ pa loge r

PV P
41
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But P = pi pa) where pi is the absolute pressure of the

compressed air. Inserting this and dividing by pa the expres-

sion becomes

E = loge r = Iog10r X 2.3
^

,

26
,

T 1 T 1

Table VII is made up from formula (26).

The practical necessity of low velocities for the water

entering and leaving the tanks renders the capacity of such

compressors low in addition to their low efficiency.

Should the problem arise of designing a large compressor
of this class an interesting problem would involve the time of

filling and emptying the tank under the varying pressure and

head. Since it is not likely to arise space is not given it.

It is possible to increase the efficiency of this style of

compressor by carrying air into the tank with the water by
induced current or Sprengle pump action a well-known

principle in hydraulics. At the beginning of the action

water is entering the tank under full head with no resist-

ance, and certainly additional air could be taken in with the

water.

Art. 27. Hydraulic Air Compressors. Entanglement Type.

A few compressors of this type have been built compara-

tively recently and have proven remarkably successful as

regards efficiency and economy of operation, but they are

limited to localities where a waterfall is available, and the

first cost of installation is high.

The principle involved is simply the reverse of the air-lift

pump, and what theory can be applied will be found in

Art. 33 on air-lift pumps.

Fig. 8 illustrates the elements of a hydraulic air compressor.
h is the effective water fall.

H is the water head producing the pressure in the compressed
air.

t is a steel tube down which the water flows.

S is a shaft in the rock to contain the tube t and allow the

water to return.

72 is an air-tight hood or dome, either of metal or of natural

rock, in which the air has time to separate from the water.
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A is the air pipe conducting the compressed air to point
of use.

b is a number of small tubes open
at top and terminating in a

throat or contraction, in the

tube t.

By a well-known hydraulic prin-

ciple, when water flows freely down
the tube t there will occur suction in

the contraction. This draws air

in through the tubes b, which air

becomes entangled in the passing
water in a myriad of small bub-

bles; these are swept down with

the current and finally liberated

under the dome R, whence the air

pipe A conducts it away as com-

pressed air.

The variables involved practically

defy algebraic manipulation, so that

clear comprehension of the prin-

ciples involved must be the guide
to the proportions.

Fig 8.

Attention to the following facts is essential to an intelli-

gent design of such a compressor.

1. Air must be admitted freely all that the water can

entangle.

2. The bubbles must be as small as possible.

3. The velocity of the descending water in the tube t

should be eight or ten times as great as the relative ascend-

ing velocity of the bubble.

The ascending velocity of the bubble relative to the water

increases with the volume of the bubble, and therefore

varies throughout the length of the tube, the volume of

any one bubble being smaller at the bottom of the tube

than at the top. For this reason it would be consistent to

make the lower end of the tube t smaller than the top.



44 COMPRESSED AIR

Efficiencies as high as 80 per cent are claimed for some
of these compressors, which is a result hardly to have been

expected.

The great advantage of this method of air compression
lies in its low cost of operation and in its continuity. Me-
chanical compressors operated by the water power could be

built for less first cost and probably with as high efficiency,

but cost of operation would be much higher.

Art. 28. Centrifugal Air Compressors.

With the perfection of the steam 'turbine it has become

practicable to deliver air at several atmospheres pressure

through centrifugal machines. Such machines are not yet

common, but doubtless in a few years they will become the

standard machine where large volumes of air are needed at

low and constant pressure. The simplicity, compactness and

low first cost of such machines assure them a popularity.

The theory of centrifugal fans or air compressors would

involve matter not appropriate to the purpose of this vol-

ume and is therefore omitted.

In testing centrifugal compressors or blowers the orifice

measurement, Art. 20, is the only practicable scheme. If

the coefficients have not been determined for orifices suffi-

ciently large to pass the volume of air, then more than one

orifice can be placed in the orifice box. It is not necessary

of course that these orifices all be of one size.

The volume of air delivered and the efficiency of centrif-

ugal fans and blowers is a matter little understood, seldom

known, and often far from what is assumed or claimed.

The remedy for this is to be found in intelligent use of the

orifice, large and small; and for such purposes the deter-

mination of orifice coefficients such as shown in Table V
should be extended to orifices all the way up to two feet in

diameter in order to test very large ventilating fans.

Some theoretic discussion of centrifugal fans can be found

in Trans. Am. So. C. E., Vol. 51, p. 12. See also
" Turbo

Compressors," Compressed Air, June, 1909, p. 5364, and En-

gineering Magazine, Vol. 39, p. 237.



CHAPTER V
jit

SPECIAL APPLICATIONS OF COMPRESSED AIK

IN this chapter attention is given only to those applications

of compressed air that involve technicalities with which

the designer or user may not be familiar, or by the discussion

of which misuse of compressed air may be discouraged and a

proper use encouraged.

Art. 29. The Return-Air System.

In the effort to economize in the use of compressed air by
working it expansively in a cylinder the designer meets

two difficulties: first, the machine is much enlarged when

proportioned for expansion; second, it is considerably- more

complicated; and third, unless reheating is applied the ex-

pansion is limited by danger of freezing.

To avoid these difficulties it has been proposed to use the

air at a high initial pressure, apply it in the engine without ex-

pansion, and exhaust it into a pipe, returning it to the intake

of the compressor with say half of its initial pressure remain-

ing. The diagram Fig. 9 will assist in comprehending the

system.

To illustrate the operation and theoretic advantages of

the system assume the compressor to discharge air at 200

pounds pressure and receive it back through R at 100

pounds. Then the ratio of compression is only 2 and yet

the effective pressure in the engine is 100 pounds.

Evidently then with a ratio of compression and expansion
of only 2 the trouble and loss due to heating are practically

removed; and the efficiency in the engine even without a

cut-off would be, by Eq. (15) 72 per cent. By the above dis-

cussion the advantages of the system are apparent, and where

a compressor is to run a single machine, as for instance a

pump, the advantage of this return-air system will surely

45
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outweigh the disadvantage of two pipes and the high pres-

sure, but where one compressor installation is to serve

various purposes such as rock drills, pumps, machine shops,

etc., the system cannot be applied. There should be a

receiver on each air pipe near the compressor.

Fig. 9.

Engine

Art. 30. The Return-Air Pumping System.

Following the preceding article it is appropriate to men-

tion the return-air pumping system. The economic principle

involved is different from that of the return-air system in

general.

The scheme is illustrated in Fig. 10. It consists of two

tanks near the source of water supply. Each tank is con-

nected with the compressor by a single air pipe, but the air

pipes pass through a switch whereby the connection with

the discharge and intake of the compressor can be reversed,

as is apparent on the diagram. In operation, the compressor
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discharges air into one tank, thereby forcing the water out

while it is exhausting the air from the other tanks, thereby

drawing the water in. The charge of air will adjust itself

so that when one tank is emptied the other will be filled,

at which time the switch will automatically reverse the

operation.

=^5- Water Supply

Fig. 10.

The economic advantage of the system lies in the fact that

the expansive energy in the air is not lost as in the ordinary

displacement pump (Art. 31). The compressor takes in air

at varying degrees of compression while it is exhausting the

tank.

The mathematical theory and derivation of formulas for

proportioning this style of pump are quite complicated but

interesting. Since the system is patented, further discus-

sion would seem out of place. It will be found in Trans.

Am. So. C. E., Vol. 54, p. 19.
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Art. 31. Simple Displacement Pump. First known as

the Shone ejector pump.

In this style of pump the tank is submerged so that when
the air escapes it will fill by gravity. The operation is simply
to force in air and drive the water out. When the tank is

emptied of water, a float mechanism closes the compressed-
air inlet and opens to* the atmosphere an outlet through
which the air escapes, allowing the tank to refill. Various

mechanisms are in use to control the air valve automati-

cally. The chief troubles are the unreliable nature of float

mechanisms and the liability to freezing caused by the

expansion of the escaping air. Some of the late designs
seem reliable.

The limit of efficiency of this pump is given by formula 15

and Table VI. The pump is well adapted to many cases

where pumping is necessary under low lifts. In case of drain-

age of shallow mines and quarries, lifting sewerage, and the

like, one compressor can operate a number of pumps placed
where convenient

;
and each pump will automatically stop

when the tank is uncovered and start again when the tank is

again submerged,



CHAPTER VI
i

AIR-LIF* PUMP

Art. 32. The air-lift pump was introduced in a practical

way about 1891, though it had been known previously, as

revealed by records of the Patent Office. The first effort at

mathematical analysis appeared in the Journal of the Frank-

lin Institute in July, 1895, with some notes on patent claims.

In 1891 the United States Patent Office twice rejected an

application for a patent to cover the pump on the ground
that it was contrary to the law of physics and therefore would

not work. Altogether the discovery of the air-lift pump
served to show that at that late date all the tricks of air

and water had not been found out.

The air lift is an important addition to the resources of the

hydraulic engineer. By it a greater quantity of water can

be gotten out of a small deep well than by any other known

means, and it is free from the vexatious and expensive depre-

ciation and breaks incident to other deep well pumps. While

the efficiency of the air lift is low it is, when properly pro-

portioned, probably better than would be gotten by any
other pump doing the same service.

The industrial importance of this pump; the difficulty

surrounding its theoretic analysis; the diversity in practice

and results; the scarcity of literature on the subject; and the

fact that no patent covers the air lift in its best form, seem

to justify the author in giving it relatively more discussion

than is given on some better understood applications of

compressed air.

Art. 33. Theory of the Air-lift Pump.

An attempt at rational analysis of this pump reveals so

many variables, and some of them uncontrollable, that

there seems little hope that a satisfactory rational formula
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will ever be worked out. However, a study of the theory
will reveal tendencies and better enable the experimenter to

interpret results.

In Fig. 11, P is the water discharge or reduction pipe with

area a, open at both ends and dipped into the water. A
is the air pipe through which air is forced into

the pipe, P, under pressure necessary to

overcome the head D. 6 is a bubble liberated

in the water and having a volume which

increases as the bubble approaches the top of

the pipe.

The motive force operating the pump is the

buoyancy of the bubble of air, but its buoy-

ancy causes it to slip through the water with

a relative velocity u.

In one second of time a volume of water
= au will have passed from above the bubble

r^jj
to below it and in so doing must have taken

__\ some absolute velocity s in passing the con-

,-,. tracted section around the bubble,
fig. 11.

Equating the work done by the buoyancy
of the bubble in ascending, to the kinetic energy given the

water descending we have

swOu = wau where w = weight of water,

or (a)

is the equivalent of the head h at top of the pipe which

is necessary to produce s, therefore h = -
ci

Suppose the volume of air, 0, to be divided into an infinite

number of small particles of air, then the volume of a particle

divided by a would be zero and therefore s would be zero;

but the sum of the volumes (
= 0) would reduce the specific

gravity of the water, and to have a balance of pressure be-

tween the columns inside and outside the pipe the equation

wO = wah must hold.
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Hence again h =
, showing that the head h depends only

on the volume of air in the pipe and not on the manner of

its subdivision.

The slip, u, of the air relative to the water constitutes

the chief loss of energy in the ajr lift. To find this apply the

law of physics, that forces are proportional to the velocities

they can produce in a 'given mass in a given time. The
force of buoyancy wO

f
of the bubble causes in one second a

downward velocity s in a weight of water wau. Therefore

wO s

wau g

Whence u = -
. But = as proved above.

as a 2 g

Therefore tt-. (b)

This shows that the slip varies with the square root of

the volume of the bubble. It is therefore desirable to

reduce the size of the bubbles by any means found possible.

If u =
^ ,

then the bubble will occupy half the cross
2

section of the pipe. This conclusion is modified by the

effect of surface tension, which tends to contract the bubble

into a sphere. The law and effect of this surface tension

cannot be formulated nor can the volume of the bubbles be

entirely controlled. Unfortunately, since the larger bubbles

slip through the water faster than the small ones, they tend

to coalesce; and while the conclusions reached above may
approximately exist about the lower end of an air lift, in

the upper portion, where the air has about regained its

free volume, no such decorous proceeding exists, but instead

there is a succession of more or less violent rushes of air

and foamy water.

The losses of energy in the air lift are due chiefly to two

causes: first, the slip of the bubbles, through the water,

and second, the friction of the water on the sides of the

pipe. As one of these decreases the other increases, for by
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reducing the velocity of the water the bubble remains

longer in the pipe and has more time to slip.

The best proportion for an air lift is that which makes the

sum of these two losses a minimum. Only experiment
can determine what this best proportion is. It will be

affected somewhat by the average volume of the bubbles.

As before said, any means of reducing this volume will

improve the results.

Art. 34. Design of Air-lift Pumps.
The variables involved in proportioning an air-lift pump

are:

Fig. 12.

Q = volume of water to be lifted,

h = effective lift from free water surface

outside the discharge pipe,

I = D + h = total length of water pipe
above air inlet,

D = Depth of submergence = depth at which

air is liberated in water pipe meas-

ured from free water surface outside

the discharge pipe.

va = volume per second of free air forced into

well,

a = area of water pipe,

A = area of air pipe,
= volume of the individual bubbles.

The designer can control A, a, D + h and

va but he has little control over 0, and cannot

foretell what D and Q will be until the pump
is in and tested.

When the pump is put in operation the

free water surface in the well will always drop.

What this drop will be depends first on the

geology and second on the amount, Q, of water taken out.

In very favorable conditions, as in cavernous limestone,

very porous sandstone or gravel, the drop may be only a

few feet, but in other cases it may be so much as to prove
the well worthless. In any case it can be determined by

noting the drop in the air pressure when the water begins
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flowing. If this drop is p pounds, the drop of water surface

in the well is 2.3 X p feet.

Unless other and similar wells in the locality have been

tested, the designer should not expect to get the best pro-

portion with the first set of piping, and an inefficient set of

piping should not be left in the \$ell.

The following suggesfions for proportioning air lifts have

proved safe in practice, but, of course, are subject to revision

as further experimental data are obtained. (See Figs. 13

and 14.)

Air Pipe. Since in the usually very limited space high

velocities must be permitted we may allow a velocity of

about 30 ft. per second in the air pipe.

Submergence. The ratio :
is defined as the Sub-

D + h

mergence ratio. Experience seems to indicate that this

should be not less than one-half; and about 60 per cent

is a common rule of practice. Probably the efficiency will

increase with the submergence. The cost of the extra depth

of well necessary to get this submergence is the most serious

handicap to the air-lift pump.

Ratio -~

Let D = depth of submergence and h effective lift =
nD. Then the energy in the compressed air is

pava logeP + 33 -3>

),
5-lL33 3̂

being the ratio of compres-
V 33.3 / 33.3

sion, = r, and the effective work in water lifted is

wQh = 62.5 QnD.

If E be the efficiency of the system, then

62.5 X Q X nD = E X 2100 va X 2.3 Iogi (r),

cubic foot units being used and common logs.

Whence ^ = J_ ^ -JL-. (27)
Q 77.3 E logio r

Several apparently well proportioned wells are on record,

see Art. 37, in which D is from 350 to 500 feet, n about
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and E 40 to 50 per cent. Taking n

cent, Eq. (27) reduces to

Q 50 logio r

From which the following table is computed.

and E = 45 per

(27a)

h
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The velocity at any section of the pipe will be

where Q and v are the volumes of water and air respectively

and a the effective area of the water pipe, s increases

from bottom to top probably very nearly according to the

formula

(28)

where

r = ratio of compression under running conditions,

I = total length of discharge pipe above air inlet,

x = distance down from top of discharge pipe to section

where velocity is s.

The formula (28) is based on the assumption that the vol-

ume of air varies as the ordinate to a straight line while

ascending the pipe through length L As the volume of each

bubble increases in ascending the pipe, the velocity of the

mixture of water and air should also increase in order to

keep the sum of losses due to slip of bubble and friction of

water a minimum; but for deep wells with the resultant

great expansion of air the velocity in the upper part of the

pipe will be greater than desired, especially if the discharge

pipe be of uniform diameter. Hence it will be advantageous
to increase the diameter of the discharge pipe as it ascends.

The highest velocity (at top) probably should never exceed

twenty feet per second if good efficiency is the controlling

object.

Good results have been gotten in deep wells with velocities

about six feet at air inlet and about twenty feet at top. (See

Art. 37.)

Fig. 13 shows the proportions and conditions in an air

lift at Missouri School of Mines.

The flaring inlet on the bottom should never be omitted.

Well-informed students of hydraulics will see the reason for

this, and the arguments will not be given here.
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The numerous small perforations in the lower joint of the

air pipe liberate the bubbles in small subdivisions and some

advantage is certainly gotten thereby.

No simpler or cheaper layout can be designed, and it has

proved as effective as any. It is the author's opinion that

nothing better has been found where submergence greater

than 50 per cent can be had.

Art. 35. The Air Lift as a Dredge Pump.

The possibilities in the application of the air lift as a

dredge pump do not seem to have been fully appreciated.

This may be due to its being free from patents and therefore

no one being financially interested in advocating its use.

With compressed air available a very effective dredge
can be rigged up at relatively very little cost and one that

can be adapted to a greater variety of conditions than those

in common use, as the following will show.

Suggestions:

Clamp the descending air pipe to the outside of the dis-

charge pipe. Suspend the discharge pipe from a derrick

and connect to the air supply with a flexible pipe (or hose).

With such a rigging the lower end of the discharge pipe can

be kept in contact with the material to be dredged by lower-

ing from the derrick; the point of operation can be quickly

changed within the reach of the derrick, and the dredge can

operate in very limited space. In dredging operations the

lift of the material above the water surface is usually small,

hence a good submergence would be available. The depth
from which dredging could be done is limited only by the

weight of pipe that can be handled.

Art. 36. Testing Wells with the Air Lift.

The air lift affords the most satisfactory means yet found

for testing wells, even if it is not to be permanently installed.

Such a test will reveal, in addition to the yield of water, the

position of the free water surface in the well at every stage

of the pumping, this being shown by the gage pressures.

However, some precautions are necessary in order properly
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to correct the gage readings for friction loss in the air

pipe.

The length of air pipe in the well and any necessary cor-

rections to gage readings must be known.

The following order of proceeding is recommended.
At the start run the compressor very slowly and note the

pressure pi at which the gage comes to a stand. This will

indicate the submergence before pumping commences, since

there will be practically no air friction and no water flowing

at the point where air is discharged. Now suddenly speed

up the compressor to its prescribed rate and again note the

gage pressure p2 before any discharge of water occurs. Then

Pz PI
= Pf is the pressure lost in friction in the air pipe.

When the well is in full flow the gage pressure p3 indicates

the submergence plus friction, or submergence pressure ps
=

p3 p/. The water head in feet may be taken as 2.3 X p.

Then, knowing the length of air pipe, the distance down to

water can be computed for conditions when not pumping
and also while pumping.

Art. 37. Data on Operating Ak Lifts.

In Figs. 13 and 14 are shown the controlling numerical

data of two air -lifts at Holla, Mo. These pumps are perhaps
unusual in the combination of high lift and good efficiency.

The data may assist in designing other pumps under some-

what similar circumstances.

The figures down the left side show the depth from sur-

face. The lower standing-water surface is maintained

while the pump is in operation; the upper where it is not

working.
The broken line on the right shows, by its ordinate, the

varying velocities of mixed air and water as it ascends the

pipe.

The pump Fig. 13 delivers 120 gallons per minute with a

ratio T^
e air = 6.0. The submergence is 58 per cent and

Water

efficiency =
Net energy in water lift = 5Q

pv loge r
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The pump Fig. 14 delivers 290 gallons per minute with

a rat i

Free air = 5.2. Submergence = 64 per cent and
Water

efficiency =
Net energy in water lift = 45 per cent

pv\oge r
'

coo

Fig. 13. Fig. 14.

The volumes of air used in the above data are the actual

volumes delivered by the compressor. The volumetric

efficiencies of the compressors by careful tests proved to be

about 72 per cent.



CHAPTER VII

EXAMPLES AND EXERCISES

Art. 38. The following combined example includes a solu-

tion of many of the types of problems that arise in designing

compressed-air plants. The student will find it well worth

while to become familiar with every step and detail of the

solutions, which are given more fully than would be nec-

essary except for a first exercise.

Example 26. An air-compressor plant is to be installed

to operate a mine pump under the following specifications:

1. Volume of water = 1500 gallons per minute.

2. Net water lift = 430 feet.

3. Length of water pipe = 1280 feet.

4. Diameter of water pipe =10 inches.

5. Length of air pipe = 1160 feet.

6. Atmospheric pressure = 14.0 pounds per sq. in.

7. Atmospheric temperature 50 F.

8. Loss in transmission through air line = 8 per cent of

the pv logg r at compressor.

9. Mechanical efficiency of the pump = 90 per cent as

revealed by the indicators on the air end and the known
work delivered to the water.

10. Average piston speed of pump = 200 feet per minute.

11. Mechanical efficiency of the air compressor = 85 per
cent as revealed by the indicator cards.

12. R.P.M. of air compressor = 90 and volumetric effi-

ciency = 82 per cent.

13. In compression and expansion n = 1.25.

Preliminary to the study of the problems involving the air

we must determine:

(a) Total pressure head against which the pump must work.

By the methods taught in hydraulics the friction head in a

pipe 10 inches in diameter, 1280 feet long, delivering 1500

60
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gallons per minute, is about 20 feet. Therefore the total

head = 450 feet.

(b) Total work (W\) delivered to the water in one minute.

Wi = 1500 X 8} X 450 = 5,625,000 foot-pounds.

(c) Total work (W) required in air end of pump.w
By specification 9, W = ^ = 6,250,000 ft.-lbs. = 190

.90

horse power.
For the purpose of comparison, two air plants will be

designed; the first, designated d, as follows:

(d) Compression single-stage to 80 pounds gage. No
reheating. No expansion in air end of pump. Pump direct

acting without fly wheels.

Determine the following:

(dl) Air pressure at pump and pressure lost in air pipe.

By specification 8 and Eq. (25),

14

Whence, using common logs, log
^- = 0.76118 and

p2
= 80.78.

Then lost pressure =
pi
- p2

= 94 - 80.78 = 13.22 =
f,

and gage pressure at pump = 80 - 13.22 = 66.78.

(d2) Ratio between areas of air and water cylinders in pump.
The pressure due to 450 feet head = 450 X .434 =

194.3,

say 195 pounds, per sq. in.; and since pressure by area must

be equal on the two ends,
area air en^- = -^- =3 nearly.

area water end 66.78

(d3) Volume of compressed air used in the pump. Cubic

feet per minute:

Evidently from solution (d2) the volume of compressed
air used in the pump will be three times that of the water

pumped, or

ISO? x3 = 601.6 cu. ft. per min.
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Diameters of air cylinder and of water cylinder.

Since the piston speed is limited to 200 feet per min.

(spec. 10) and the volume is 1500 gallons, we have, when all is

reduced to inch units and letting a = area of water cylinder,

a X 200 X 12 = 1500 X 231. Whence a = 144 sq. in. which

requires a diameter of about 13f inches.

The area of air cylinder is by d% three times that of the

water cylinder, which gives a diameter 23J inches for the air

cylinder.

(c5) Volume of free air.

From dl, r at the pump = 5.76. Therefore

va = 601.6 X 5.76 = 3465 cu. ft. per min.

Diameter of air pipe.

The mean r in the air pipe is
5 '76 + 6 '72 = 6.24. Using

2i

this in Eq. (21) with c = .06, we get d = 5 inches.

Or using plate III with r X 13.22 -r- 1.160 or r X ^^
JL XOvJ

as vertical ordinate and 3465 as horizontal ordinate, the in-

tersection falls near the 5-inch line.

(dl) Horse power required in steam end of compressor.

By table II the weight per foot of free air is .07422 pound

per cu. ft. Total weight of air compressed = Q

Q = .07422 X 3465 = 257 pounds per min.

In table I opposite r = 6.72 in column 9 find by inter-

polation .3736. Then

Horse power = 2.57 X .3736 X (460 + 50) = 489.6 in air

end = -^- = 576 in steam end.
.85

The second plant will be designated by the letter e and

will be two-stage compression to 200 pounds gage at air

compressor, will be reheated to 300 at the pump and used

expansively in the pump; the expansion to be such that the

temperature will be 32 at end of stroke.

(el) Air pressure at pump.

Apply Eq. (25) as in dl. In this case n (at the com-

pressor)
= 15.3 and r2 (at the pump) = 12.3. Therefore
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pressure at the pump = 12.3 X 14 = 172.3 and the lost

pressure = 214 - 172.3 = 41.7- = f.

(e2) Point of cut-off in air end of pump = fraction of

stroke during which air is .admitted.

t /n\n
~ 1

By Eq. (11) viz. - = (-
1

)

v

, putting in numbers we get

12? = f&V* whence -1 = .176, which is the point of cut-off,
760 \v2/ v2

and v2 = 5.68 vi.

760
Or go into table I in column 5, find the ratio - =

1.545,49.2

and in same horizontal line in column 3 find .176.

(e3) Volume of compressed hot air admitted to air end of

pump.

Apply Eq. (9) viz. Work = P&^-M* +^ _^
n I

In this we have Work = 6,250,000, v2 = 5.68 v1} pi
= 214,

n 1 = .25, pa = 14, and p2 must be found by Eq. (lla), or

it may be gotten from table I by noting that for a tempera-

ture ratio of 1.545 the pressure ratio is 8.8 and - =
.1136,

r

therefore pz
= .1136 X 172.3 = 19.57. This would give gage

pressure = 5.57.

Inserting these numerals in Eq. (9) we get

6,250,000 = 144 Vl
/ll2 -3" 5-68X19.57 +172.3_14X5.68Y
\ -25 /

Whence Vi
= 128.6 cu. ft. per min.

(e4) Diameter of air cylinder of pump when air and water

pistons are direct connected.

Since expansion ratio is 5.68 (see e2) and the volume before

cut-off is 128.6, the total piston displacement is 128.6 X 5.68 =
730.8 cu. ft. per min. When the air and water pistons are

direct connected they must travel through equal distances,

therefore the air piston travels through 200 ft. per min. (spec.

10). Then if a = area of piston in sq. ft. we have

200 a = 730.8 and a = 3.654 sq. ft.

By table X the diameter is 26 inches nearly.
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(e5) Volume of cool compressed air used by pump, cu. ft.

per min.

By e3 the volume of hot compressed air is 128.6, and since

under constant pressure volumes are proportional to abso-

lute temperatures, we have
ci n

= ^~ - Whence v = 86.3 cu. ft. per min.
128.6 760

(e6) Volume offree air used.

From el the ratio of compression at the pump is 12.3 and

from e5 the volume of cool compressed air is 86.3, therefore

the volume of free air is 86.3 X 12.3 = 1061.6.

(el) Diameter of air pipe.

The r for Eq. (21) is
12 -3 + 15 -3 = 13.8.

Applying Eq. (21) with coefficient c = .07 we have

/ 07 X 1160

(eS) Horse power required in steam end of compressor.

By dl the weight per cu. ft. of free air is .07422 and by eQ

the volume of free air compressed is 1061.6. Therefore the

total weight compressed is .07422 X 1061.6 = 78.8 pounds

per min., and the initial absolute temperature is 510.

In the two-stage compression r2 = 15.3, and assuming equal

work in the two stages the rx
= Vl5.3 = 3.91 nearly.

(See Art. 12.) Then going into Table I with r = 3.91 in column

9 find .2525. Hence horse power = .2525 X 78.8 X 510 =
101.5 for one stage, and for the two stages 101.5 X 2 = 203,

203
and (spec. 11)

- = 238.8 horse power in steam end.
.85

(e9) Diameter of air compressor cylinders, assuming 3-

foot strokes and 2%-inch piston rods, equal work in the two

cylinders and allowing for volumetric efficiency.

By eft the free air volume is 1061.6 and (spec. 12) the

volumetric efficiency = 82 per cent. Therefore the piston

displacement = - ^ L- = 1294.6 cu. ft. per min.
.82
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By spec. 12 the R.P.M. = 90. Therefore the displace-

ment per revolution =
14.7, nearly, for the low-pressure

cylinder. Add to this the volume of one piston rod length

of 3 feet, which is 3 X .0341 = 0.1023. Whence the volume

per revolution must be 14.8 or for one stroke 7.4. Whence

the area = ^- = 2.466 sq. ft. <J3y Table X the diameter
o

is 21J inches nearly for low-pressure cylinders.

The high-pressure cylinder must take in the net volume

of air compressed to r = 3.91 (see e8). Therefore the net

volume per revolution = -
^

= 3.02. Add one piston
90 X o.91

rod volume and get 3.12 per revolution or 1.56 per stroke

and an area of 0.53 sq. ft. By Table X this requires a

diameter of 10 inches nearly.

(elO) Temperature of air at end of each compression stroke.

In Table I the ratio of temperatures for r = 3.91 is 1.313.

Hence the higher temperature = 510 X 1.313 = 669 absolute

**= 209 F.

EXERCISES

i . (a) Assuming isothermal conditions, how many revo-

lutions of a compressor 16" stroke, 14" diameter, double

acting, would bring the pressure up to 100 Ibs. gage in a

tank 4 feet diam. X 12 feet length, atmospheric pres-

sure = 14.5 per sq. in.?

(b) What would be the horse power of such a compressor

running at 100 R.P.M. ?

(c) What would be the horse power if the compression
were adiabatic ?

(d) What weight of air would be passed per minute when
R.P.M. = 100 and T = 60 F. ?

2. The air end of a pump (operated by compressed air) is

20" diam. by 30" stroke, R.P.M. = 50, cut-off at \ stroke,

free air pressure = 14.0, Ta
= 60, compressed air delivered

at 75 Ibs. gage, T = 60 and n = 1.41.

(a) Find work done in horse power.

(b) Find weight handled per minute.

(c) Find temperature of exhaust (degrees F).
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3. With atmospheric pressure, pa
=

14.7, and Ta
= 50,

under perfect adiabatic compression, what would be the pres-

sure (gage) and temperature (F.) when air is compressed to

(a) | its original volume ?

(6) i its original volume ?

(c) its original volume ?

(d) I its original volume ?

(e) TU its original volume ?

4. With pa = 14.1 and Ta
= 60 what will be the pres-

sure of a pound of air when its volume = 3 cu. ft. ?

5. What would be the theoretic horse power to compress
10 pounds of air per minute from pa

= 14.3 and Ta
= 60 to

90 pounds gage?

(a) Compression isothermal.

(6) Compression adiabatic.

6. Find the point of cut-off when air is admitted to a motor

at 250 F. and expanded adiabatically until the temperature
falls to 32 F.

7. What is the weight of 1 cu. ft. of air when pa
= 14.0

and Ta
= - 10 ?

8. A compressor cylinder is 20" diam. by 26" stroke double

acting. Clearance = 0.8%, piston rod = 2", R.P.M. = 100,

atmospheric pressure, pa
=

14.3, atmospheric temperature
= Ta

= 60 F., and gage pressure = 98 Ibs.

Determine the following:

(a) Compression isothermal.

la. Volume of free air compressed, cu. ft. per min.

2a. Volume of compressed air, cu. ft. per min.

3a. Work of compression, ft.-lbs. per min.

4a. Lbs. of cooling water, 7\ = 50, T2
= 75.

(6) n = 1.25 and air heated to 100 while entering.

16. Volume of free air compressed per min.

26. Volume of cool compressed air per min.

36. Work done in compression.

46. Temperature of air at discharge.

9. The cylinder of a compressed-air motor is 18" X 24",

the R.P.M. = 90, air pressure 100 pounds gage. In the
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motor the air is expanded to four times its original volume

(cut-off at J), with n = 1.25.

(a). Determine the horse power and final temperature
when initial T = 60 F.

(6) . Determine the horse power and final temperature when
initial T = 212 F.

10. Observations on~ an air compressor show the intake

temperature to be 60 F., the r = 7 and the discharge tem-

perature = 300 F. What is the n during compression ?

Hint. Use Eq. (lla) with n unknown.

11. In a compressed-air motor what percentage of power
will be gained by heating the air before admission from

60 to 300 F. ?

12. If air is delivered into a motor at 60 F. and the ex-

haust temperature is not to fall below 32 F., what ratio of

expansion can be allowed ? What could be allowed if initial

temperature were 300 ? What would be the ratio of work

gotten in the two cases assuming n = 1.25 ?

13. A compressed-air locomotive system is estimated to

require 4000 cu. ft. per min. of free air compressed to 500

pounds gage in three stages with complete cooling between

stages.

Assume n =
1.25, pa = 14.5, Ta

= 60, Vol. Eff. = 80 per

cent, Mechanical Eff. = 85 per cent and R.P.M. = 60.

Compute the volume of piston stroke in each of the three

cylinders and the total horse power required of the steam end.

14. A compressor is guaranteed to deliver 4 cu. ft. of free

air per revolution at a pressure of 116 (absolute). To test

this the compressor is caused to deliver into a closed system

consisting of a receiver, a pipe line and a tank. Observed

conditions are as follows: .
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How many revolutions of the compressor should produce
this effect ?

15. Find the discharge in pounds per minute through a

standard orifice when d = 2", i 5", t = 600 and pa
=

14.0.

16. What diameter of orifice should be supplied to test

the delivery of a compressor that is guaranteed to deliver

1000 cu. ft. per min. of free air ?

17. What is the efficiency of transmission when air pres-

sure drops from 100 to 90 pounds (gage) in passing through
a pipe system ?

18. A compressor must deliver 100 cu. ft. per min. of com-

pressed air at a pressure = 90 pounds, gage, at the terminus

of a pipe 3000 ft. long and 3" diameter. pa = 14.4, Ta
=

60 F.

(a) Assuming a Vol. Eff. = 75 per cent, what must be the

piston displacement of the compressor ?

(6) What pressure is lost in transmission ?

(c) What horse power is necessary in steam end of com-

pressor if n = 1.25 and the mechanical efficiency
= 85 per

cent?

(d) What would be the efficiency of the whole system
if air is applied in the motor without expansion, the

efficiency to be reckoned from steam engine to work done

in motor ?

19. It is proposed to convey compressed air into a mine

a distance of 5000'. The question arises: Which is better,

a 3" or a 4" pipe?

Compare the propositions financially, using the following

data: Nominal capacity of the plant = 1000 cu. ft. free

air per min., Vol. Eff. of compressor = 80 per cent, n = 1.25

gage pressure at compressor = 100, weight of free, air wa
=

.074, pa
= 14.36, weight of 3" pipe = 7.5 and of 4" pipe =

10.7 pounds per foot. Cost of pipe in place = 4 cents per

pound. Cost of one horse power in form of pv log r for 10

hours per day for one year = $150. Plant runs 24 hours per

day. Rate of interest = 6 per cent.
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20. Air enters a 4" pipe with 60 feet velocity and 80

pounds gage pressure; the air pipe is 1500 feet long; pa = 14.7.

(a) Find the efficiency of transmission.

(b) Find horse power delivered at end of pipe in form

pv log r when T = 60 F.

(c) Find horse power delivered at end of pipe in form

P Xv.

21. An air pipe is to be 2000 feet long and must deliver 50

horse power at the end with a loss of 5 per cent of the pv log r

as measured at compressor. The pressure at compressor is

75 pounds gage. pa
= 14.7. Find diameter of pipe.

22. Modify 21 to read: 50 horse power . . . with loss of

5 per cent of the energy in form Pg X v, where Pg is gage

pressure, and find diameter of air pipe.

23. In case 21 let pressure at compressor be 250 pounds

gage and find diameter of air pipe.

24. The air cylinder of a compressed-air pump is 20"

diam. by 30" stroke. The machine is double acting and

makes 50 R.P.M. The cut-oft is to be so adjusted that the

temperature of exhaust shall be 30. pa
= 14.5 and the r at

pump = 8.

(a) Find cut-off when initial temperature is 60 F.

(b) Find cut-off when initial temperature is 250 F.

(c) Find horse power in case (a) .

(d) Find horse power in case (b).

(e) In case (a) find efficiency in applying the pv log r of

cool air.

(/) In case (b) find efficiency in applying the pv log r of

cool air.

(g) Find the volumes of free air used in cases (a) and (b).

25. A compound mine pump is to receive air at 150 Ibs.

gage; this is to be reheated from 60 to 250 F., let into the

H.P. cylinder of the pump and expanded until the temperature
is 32, then exhausted into an interheater where the tempera-
ture is again brought to 250. It then goes into the L.P.

cylinder and is expanded down to atmospheric pressure
= 14.5, (ab.).

(a) Find point of cut-off in each cylinder, n = 1.25.



70 COMPRESSED AIR

(6) If the air is compressed in two stages with n = 1.25,

what will be the efficiency of the system, neglecting friction

losses \ and (.

(c) How much free air will be required to operate the

pump if it is to deliver 250 horse power, assuming the efficiency

of the pump to be 80 per cent reckoned from the work in the

air end ?

(d) If the pump strokes be 60 per min. and 60" long, fix

diameters of air cylinders in case (c).

26. Compute the horse power of a motor passing one

pound of air per minute admitted at 200 F. and 116.0

pounds (ab.) r = 8, the air to be expanded until pressure

drops to 29 pounds (ab.), r = 2.

27. A pump to be operated by compressed air must deliver

1000 gallons of water per minute against a net head of 200'

through 800' of 10" pipe. The pump is double acting, 30"

stroke, 50 strokes per min. The air is reheated to 275 F.

before entering the pump. The cut-off is so adjusted that

with n = 1.25 the temperature at exhaust = 36 F. Mec. Effi.

of pump = 80%. Air pressure at compressor = 90 pounds

gage, pa = 14.4. Length of air pipe = 2000'. Permissible

loss in transmission = 7 per cent of the pv log r at com-

pressor. Mec. Effi. of compressor= 85 per cent. Vol. Effi.

= 80 per cent.

(a) Proportion the cylinders of the pump.
(6) Determine the volume of free air used.

(c) Determine the diameter of air pipe.

28. Compare the volume displacement of two air com-

pressors, one at sea level and the other at 12,000 feet eleva-

tion; the compressors to handle the same weight of air.

29. (a) An exhaust pump has an effective displacement of

3 cu. ft. per revolution. How many revolutions will reduce

the pressure in a gas tank from 30 to 5 pounds absolute?

Volume of tank = 400 cu. ft. when pa = 14.7 ?

(6) If the pump is delivering the gas under a constant

pressure of 30 pounds, what is the maximum rate of work
done by the pump foot pounds per revolution?
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NOTES ON TABLE I.

The table is the solution of formulas n, na, 8a and la.

When the weight of air passed and its initial temperature are known,
the table covers all conditions including elevation above sea level, reheating,
and compounding.

In compounding, either compression or expansion, the same weight
goes through each cylinder. Then knowing the initial / and the r for each

cylinder, find from the table the work done in each cylinder and add. Usu-

ally the r and t are assumed the same for each cylinder then take out the

work for one stage and multiply by the number of stages.
The table does not include friction in the machine nor the effect of clear-

ance in expansion motors.
The table is equally applicable to compression or expansion provided

the correct r be taken in cases of expansion.

Example. Air is received at such a pressure that r = 8. What should be
the cut-off in order that the temperature drop from 60 to 32 F. ? Expan-
sion adiabatic.

The ratio of temperatures is 1.057, which by linear interpolation corre-

sponds to a volume ratio of .871 or cut-off at about f-.

What would be the pressure at exhaust?

The two ratios above correspond to a =
.825. Therefore the final

pressure is .825 X initial pressure.
To find the foot-pounds of work per pound of air compressed multiply

the number opposite the r in column 7, 8 or n as the case may be by the

absolute initial temperature, /.

To find the weight compressed, go into Table II with known atmos-

pheric conditions and the cubic feet capacity of the machine.

To find the horse power per hundred pounds of air passed per minute,

multiply the number opposite r in column 9, 10 or 12 as the case may be by
the absolute lower temperature, t.



TABLE I. GENERAL TABLE RELATING TO AIR COM-
PRESSION AND EXPANSION



TABLE I (Continued}.
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NOTES ON TABLE II.

The purpose of this table is to determine the weight of air compressed
by a machine of known cubic feet capacity. It is to be used in connection
with Table I for determining power or work.
The barometric readings and elevations are made out for a uniform

temperature of 60 F. and are subject to slight errors but not enough to

materially affect results. Table V gives more accurately the relation be-
tween elevation temperature and pressure.

TABLE II. WEIGHTS OF FREE AIR UNDER VARIOUS
CONDITIONS

Approximate

Baro-

metric

Reading.

T=6o.
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TABLE II. Continued.

25-03



TABLE III. WEIGHTS OF COMPRESSED AIR
Pounds per Cubic Foot.

The Ratio - is for absolute pressure in pounds per square inch and abso-

lute temperature Fahrenheit. (See Note at foot of previous page.)

I
t



TABLE IV. * ~ SPECIAL TABLE RELATING TO STAGE COM-
PRESSION FROM FREE AIR AT 14.7 POUNDS PRESSURE
AND 62 TEMPERATURE.

Compression adiabatic but cooled between stages.
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TABLE IV (Continued).

79



TABLE V. VARYING PRESSURES WITH ELEVATIONS.
Solution of formula 17, Art. 17, viz. Iogi />a

= 1. 16866
122.4

Elevation in Feet.
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TABLE VII. EFFICIENCY OF DIRECT HYDRAULIC AIR

COMPRESSORS.

Formula 26, Art. 25, viz. E
2 ' 3

Water Head.
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TABLE IX. FRICTION IN AIR PIPES.



TABLE IX (Continued}.
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TABLE X. TABLE OF CONTENTS OF PIPES IN CUBIC
FEET AND IN U. S. GALLON.



TABLE XI CYLINDRICAL VESSELS, TANKS, CISTERNS,
ETC.

Diameter in Feet and Inches, Area in Square Feet, and U. S. Gallons

Capacity for One Foot in Depth.
i cubic foot

i gallon
=

231 cubic inches = = 0.13368 cubic feet.

7.4805

Diam.
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TABLE XII. STANDARD DIMENSIONS OF WROUGHT-IRON
WELDED PIPE.

(National Tube*<Works.)

Nominal
Inside

Diameter



TABLE XIII. HYPERBOLIC LOGARITHMS.
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APPENDIX A

The following notes and tables relating to drill capacities

and losses due to valves, elbows and tees are taken from the

Ingersoll-Rand catalog.

DRILL CAPACITY TABLES

The following tables are to determine the amount of free

air required to operate rock drills at various altitudes with

air at given pressures.

The tables have been compiled from a review of a wide

experience and from tests run on drills of various sizes. They
are intended for fair conditions in ordinary hard rock, but

owing to varying conditions it is impossible to make any

guarantee without a full knowledge of existing conditions.

In soft material where the actual time of drilling is short,

more drills can be run with a given sized compressor than

when working in hard material, when the drills would be

working continuously for a longer period, thereby increasing

the chance of all the drills operating at the same time.

In tunnel work, where the rock is hard, it has been the

experience that more rapid progress has been made when the

drills were operated under a high air pressure, and that it

has been found profitable to provide compressor capacity in

excess of the requirements by about 25 per cent. There is

also a distinct advantage in having a compressor of large

capacity, in that it saves the trouble and expense of

moving the compressor as the work progresses, and will

not interfere with the progress of the work by crowding the

tunnel.

No allowance has been made in the tables for loss due to

leaky pipes, or for transmission loss due to friction, but the

capacities given are merely the displacement required, so

114
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that when selecting a compressor for the work required these

matters must be taken into account.

Table I gives cubic feet of free air required to operate one

drill of a given size and under a given pressure.

Table II gives multiplication factors for altitudes and

number of drills by which the air consumption of one drill

must be multiplied in order td give the total amount of air.

TABLE I. CUBIC FEET OF FREE AIR REQUIRED TO RUN
ONE DRILL OFVHE SIZE AND AT THE PRESSURE
STATED BELOW

1
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GLOBE VALVES, TEES AND ELBOWS

The reduction of pressure produced by globe valves is the

same as that caused by the following additional lengths

of straight pipe, as calculated by the formula :

. . 114 X diameter of pipeAdditional length of pipe = ; 77
1 + (36 -r- diameter)

Diameter of pipe i 1 1J 2 2} 3 3 4 5 6 inches

Additional length (2^4 7 10 13 16 20 28 36 feet

7 8 10 12 15 18 20 22 24 inches

44 53 70 88 115 143 162 181 200 feet

The reduction of pressure produced by elbows and tees is

equal to two-thirds of that caused by globe valves. The

following are the additional lengths of straight pipe to be

taken into account for elbows and tees. For globe valves

multiply by f .

Diameter of pipe }
1 1 2 2 3 3J 4 56 inches

Additional length J 2 3 5 7 9 11 13 19 24 feet

7 8 10 12 15 18 20 22 24 inches

30 35 47 59 77 96 108 120 134 feet

These additional lengths of pipe for globe valves, elbows

and tees must be added in each case to the actual lengths

of straight pipe. Thus a 6-inch pipe, 500 feet long, with

1 globe valve, 2 elbows and 3 tees, would be equivalent to

a straight pipe 500 + 36 + (2 X 24) + (3 X 24) = 656 feet

long.
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In the following tables are collected all the reliable data

that the author has been able to -find relative to friction in

air pipes.

In these tables the significance of the symbols is as fol-

lows:

No = Reference number of the experiment.

PI
= Absolute pressure at first station on the pipe =

pounds per square inch.

pz
= Absolute pressure at second station on the pipe =

pounds per square inch.

pm = P1 ^2 = mean pressure in pipe between stations.

/ =
PI Pz

= pressure lost between stations = pounds

per square inch.

r = Mean ratio of compression between stations.

va
= Cubic feet of free air passing per second.

vm = Cubic feet of compressed air passing per second.

s = Velocity of air in pipe = feet per second.

Q = Weight in pounds of air passing per second.

d = Diameter of pipe in inches.

I = Length of pipe in feet.

c = Coefficient in formula (20), Art. 23,viz.,f = c ~ ^-

118
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During 1910 and 1911, an extensive series of experiments

were made at Missouri School of Mines to determine the

laws of friction of air in pipes under three inches in diam-

eter; the chief object being to determine the coefficient

(See Art. 23.)

The general scheme is illustrated in Fig. 15, in which the

parts are lettered as follows:

"c" :
I v<?

in the formula / = c -r
b

(d)
(f)

Fig. 15. Diagram Illustrating Assembled Apparatus.

o, is the compressed-air supply pipe.

6, a receiver of about 25 cubic feet capacity.

c, a thermometer set in receiver.

d and d, points of attachment of differential gauge.

/ and /, lengths of straight pipe going to and from the

group of fittings.

e, the pressure gauge.

g, the group of fittings varied in different experiments.

h
t
the throttle valve to control pressure.

/, the orifice drum for measuring air, with the attach-

ments as in Fig. 7.
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On each set of fittings there were made ten or twelve runs

with varying pressures and quantities of air in order to show
Va

2

the relation of / to over as wide a field as possible.

The data of each run ,was worked up and recorded in

tabular form. Three of the^e tables, relating to 1-inch pipe

and fittings, are shown herewith as example. It should

be recorded that in the series of runs and checks some

puzzling inconsistencies developed, but not more notice-

able than appears in the data from European experiments

on larger pipe. (See Appendix B.)

In these tables the symbols are as follows:

z = Head, in inches of mercury, in differential gauge.

/ = Lost pressure in pounds per square inch.

pz
= Gauge pressure at entrance to pipe.

rm = Mean ratio of compression in pipe.

i = Water head, in inches, in U tube on orifice drum.

Tc
= Temperature (centigrade) in drum.

d = Diameter, in inches, of orifice in drum.

va = Volume of free air passing (cubic feet per second).

S = Velocity of compressed air in pipe (feet per second) .

/'
= Value of / when corrected for temperature.



124 APPENDIX C

co

w

GO

S W
3 ^

fe t'O i^
q

o ~,O
S I

S
_|

o

S H

'r1 02

Q tc

r-i CO "tf O i-t <N T- O i- O O T- O O O O O i-

CsflOCOl^-'<*( rfCiCOCs;I CO^tl

s

OOOOOOtOiOOOOOOOOOO^O

^t^t^CQiOCOCOCOCOOOOOOOOOOCOCOCO

CO-^T-iOiCO(N^tOCOOiCi
i t !> i iCOOiOCOCXD' iCOCD

' i<Ni-HO<MOO'-HOOi lOO



APPENDIX C 125

M
i H

1
B g ^M >4 *d

SJ 5*
v lw ^
-E

hH f-rij ^*

g O '5
P 05

III
s a

w

w

g s

H

Cs}COt^C<JO-<tl Oi i CO O r-i C<1 O O O< O O I-H

O5OO> 00<N'-Ht^OOCOCO'-it>.C<l'<*<^O5iO
to O CO <N "3 i-H <N CO T-H (M <N 1-1 I-H <N .-H

t^. I-H 00 CO OS OO I~H iO l** ^O '^
Oi Ol I~H CO t^* *"! t^* t^* OO t^* CO

r- CO 10 ** r- t^ r-4 "f t>- C^ "* t CQ C^l 00 (N CO 00

cq <M' <M' T^' r^' rt o co cd o t o o> o o o

Cq CO l> <N C' * O <N CO I-H ^H C< O C5 W O O <N

i i <N CO Tj< iO CD t>- 00 O5 O I-H (M CO Tt< ^O CO 1> 00



126 APPENDIX C

OO-LOio-HCOOO-COCO^I^t-^OiCO
i (Tt<GOO(MtOO'-iCOO'-H(NOO' (OOi (

J

COOOi (ICO* I

tOT-(MT-ocOI>-COT-<
(MOO T-H (M T-I



APPENDIX C 127

On platting the values of / and - - as corresponding co-

ordinates, it becomes apparent that they are related to each

other in all cases as ordinates to a straight line; which could

have been anticipated from the established laws of fluid

frictions. This is shown on Plate VI.

1
2
o g

J
a n*;; ^3

5! - |

.32

e Q 4

Values of ""

From this plate we get the following three equations;

80.0 K + 2e + 5u + 4g =
18.3,

9u =11.8,

13 m =
6.8,
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Va
2

in which K~ = resistance due to one foot of pipe;

e = resistance due to one elbow
;

in
y-

= resistance due to one extra ferrule or

joint with ends reamed;

u
~f~

= resistance due to one extra ferrule or

joint with ends unreamed;
Va

2

g = resistance due to one globe valve.

So by attaching other lengths or fittings we get other

equations and by simple algebra can find the numerical

value of each symbol.

11
2

7 17 2

Then Kl
V
-?- = c or c = d*K.
r d? r

Also the length of pipe giving friction equal to that of
o

one elbow is j ,
and so with other fittings,

/c

These experiments covered standard galvanized pipes of

2, 1J, 1, |, and J inch diameter. With each size pipe, runs

were made to find friction loss in ordinary elbows, 45 elbows,

globe valves, return bends, unreamed joints, and reamed

joints. For each combination, data was taken for platting

twelve to eighteen points, altogether about eight hundred.

The results as a whole are satisfactory for the 2-, 1J-, and

1-inch pipes.

For the f
- and J-inch pipes, especially the J-inch pipe,

the results were so irregular, erratic, and conflicting that the

results finally recorded cannot be accepted as final. In the

light of these results, it is not probable that a satisfactory

coefficient will ever be gotten for pipes under 1 inch; the

reason being that in pipes of such small diameter, irregu-

larities have relatively much greater effect than in larger

pipes, and the probability of obstructions lodging in such
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pipes is relatively greater. In the J,-inch pipe and fitting,

unreamed joints were found at which four-tenths of the area

was obstructed, and this with a knife edge. No doubt

consistent results could have been gotten by using only

pipes that had been
' '

plugged and reamed/' and selected fill-

ing, but these results would ijxrt have been a safe guide for

practice unless such preparation of the pipe be specified.

s $ $ 5 S 3
Coefficient "c"

The results of these researches are embodied in Plate VII.

They show the averages of such data as seem worthy of

consideration. The data for pipes exceeding 2 inches diam-
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eter are taken from the matter recorded in Appendix B.

Verification of these by the use of the sensitive differential

gauge is desirable.

Table IX and Plates to IV of this volume were worked

out with coefficients differing slightly from those here rec-

ommended, but the errors are probably well within those

ordinarily effecting results in practice. Until the results of

further research are available, the author recommends the

use, in practice, of the coefficients taken from the curve

AB, Plate VII.

In the series of experiments referred to, the results worked

out for the resistance of fittings were more erratic than those

for straight pipes. Hence no clain is made for precision or

finality in the results here presented. However, two im-

portant conclusions are reached. One is that the resistance

of globe valves has heretofore been underestimated, and

the importance of reaming small pipe has not been appre-
ciated.

TABLE OF LENGTHS OF PIPE IN FEET THAT GIVE
RESISTANCE EQUAL THAT OF VARIOUS FITTINGS

Diameter
of Pipe.
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may have been due to these end contractions or to some

other obstruction. It is a further illustration of the fact

that reliable coefficients cannot be gotten for pipes of half-

inch diameter and less.

Diameter of hose in inches

Resistance in 50-foot joints
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