COMPRESSED AIR # THEORY AND COMPUTATIONS BY # ELMO G. HARRIS, C.E. PROFESSOR OF CIVIL ENGINEERING, MISSOURI SCHOOL OF MINES, IN CHARGE OF COMPRESSED AIR AND HYDRAULICS; MEMBER OF AMERICAN SOCIETY CONCRETE CIVIL ENGINEERS FIRST EDITION SECOND IMPRESSION CORRECTED McGRAW-HILL BOOK COMPANY 239 WEST 39TH STREET, NEW YORK 6 BOUVERIE STREET, LONDON, E.C. 1910 H3 Engineering Library # HO WIND AIMBOHIAD MECPANICS DEPT. COPYRIGHT, 1910, BY THE McGRAW-HILL BOOK COMPANY Stanbope Press F. H. GILSON COMPANY BOSTON, U.S.A. # PREFACE This volume is designed to present the mathematical treatment of the problems in the production and application of compressed air. It is the author's opinion that prerequisite to a successful study of compressed air is a thorough training in mathematics, including calculus, and the mathematical sciences, such as physics, mechanics, hydraulics and thermodynamics. Therefore no attempt has been made to adapt this volume to the use of the self-made mechanic except in the insertion of more complete tables than usually accompany such work. Many phases of the subject are elusive and difficult to see clearly even by the thoroughly trained; and serious blunders are liable to occur when an installation is designed by one not well versed in the technicalities of the subject. As one advocating the increased application of compressed air and the more efficient use where at present applied, the author has prepared this volume for college-bred men, believing that such only, and only the best of such, should be entrusted with the designing of compressed-air installations. The author claims originality in the matter in, and the use of, Tables I, II, III, V, VI, VII and IX, in the chapter on friction in air pipes and in the chapter on the air-lift pump. Special effort has been made to give examples of a practical nature illustrating some important points in the use of air or bringing out some principles or facts not usually appreciated. Acknowledgment is herewith made to Mr. E. P. Seaver for tables of Common Logarithms of Numbers taken from his Handbook. # CONTENTS | SYMBOLS AND | FORMULAS | ix, xì | | | | | |--|---|--------|--|--|--|--| | CHAPTER I. | | | | | | | | | Formulas for Work. — Temperature Constant | 1 | | | | | | | Formula for Work. — Temperature Varying | 3 | | | | | | | Formula for Work. — Incomplete Expansion | 7 | | | | | | | Effect of Clearance. — In Compression | 8 | | | | | | | Effect of Clearance and Compression in Expan- | | | | | | | | sion Engines | 9 | | | | | | | Effect of Heating Air as it Enters Cylinders | 11 | | | | | | Art. 7. | Change of Temperature in Compression or Ex- | | | | | | | | pansion | 12 | | | | | | | Density at Given Temperature and Pressure | 13 | | | | | | | Cooling Water Required | 14 | | | | | | | Reheating and Cooling | 14 | | | | | | | Compounding | 16 | | | | | | | Proportions for Compounding | 19 | | | | | | | Work in Compound Compression | 20 | | | | | | | Work under Variable Intake Pressure | 21 | | | | | | | Exhaust Pumps | 22 | | | | | | | Efficiency when Air is Used without Expansion | 24 | | | | | | Art. 17. | Variation of Free Air Pressure with Altitude | 25 | | | | | | CHAPTER II | . Measurement of Air. | | | | | | | Art. 18. | General Discussion | 27 | | | | | | Art. 19. | Apparatus for Measuring Air by Orifice | 28 | | | | | | Art. 20. | Formula for Standard Orifice under Low Pressure | 29 | | | | | | Art. 21. | Air Measurement in Tanks | 30 | | | | | | CHAPTER II | I. FRICTION IN AIR PIPES. | | | | | | | Art. 22. | General Discussion | 33 | | | | | | | Friction Formula assuming Density and Tem- | | | | | | | | perature Constant | 33 | | | | | | Art. 24. | Theoretically Correct Friction Formula | 36 | | | | | | Art. 25. | Efficiency of Power Transmission by Compressed | | | | | | | | Air | 39 | | | | | | CHAPTER IV. Hydraulic and Centrifugal Air Compres- | | | | | | | | | sors. | | | | | | | Art. 26. | Displacement Type of Air Compressor | 41 | | | | | | Art. 27. | Entanglement Type of Air Compressor | 42 | | | | | | Art. 28. | Centrifugal Type of Air Compressor | 44 | | | | | #### CONTENTS | \mathbf{P} | AGI | |--|-----| | CHAPTER V. Special Applications of Compressed Air. | | | Art. 29. The Return-Air System — In General | 45 | | 그리고 있는데 아내는 아내가 되었다. 그는 아내는 그는 아내가 아내면 살아 있다. 그는 아내는 아내는 아내는 아내는 아내는 아내는 아내는 아내는 아내는 아내 | 46 | | Art. 31. The Simple Displacement Pump | 48 | | CHAPTER VI. THE AIR-LIFT PUMP. | | | HER HOLDEN TO BE THE THE THE TOTAL OF THE THE TOTAL TO THE THE THE TOTAL TOTAL TO THE TOTAL TOTAL TO THE TOTAL | 49 | | 이 사람들은 사람들이 되었다. 그렇게 하면 하면 하는 사람들은 사람들이 되었다. 그렇게 하는 것이 없는 없다. | 49 | | | 52 | | | 57 | | 1 | 57 | | 1 1 0 T T 1 0 11 11 T 10 | 58 | | CHAPTER VII. Examples and Exercises | | | 4 4 90 | 60 | | PLATES AND TABLES. | 71 | | APPENDIX A. Drill Capacity Tables | 96 | | Assessed B. D. L. Billion and D. L. Billion | .00 | | APPENDIX C. Methods and Results of Experiments at Missouri
School of Mines Determining Friction in Pipes | | | 1 Total | 22 | # SYMBOLS For ready reference most of the symbols used in the text are assembled and defined here. - p= intensity of pressure (absolute), usually in pounds per square foot. Compressed-air formulas are much simplified by using pressures measured from the absolute zero. Hence where ordinary gage pressures are given, p= gage pressure + atmospheric pressure. In the majority of formulas p must be in pounds per square foot, while gage pressures are given in pounds per square inch. Then p= (gage pressure + atmospheric pressure in pounds per square inch) \times 144. - v = volume usually in cubic feet. Where sub-a is used, thus p_a , v_a , the symbol refers to free air conditions. $r = \text{ratio of compression or expansion} = \frac{\text{higher pressure}}{\text{lower pressure}}$ The lower pressure is not necessarily that of the atmosphere. - t = absolute temperature = Temp. F. + 460.6. - n = an empirical exponent varying from 1 to 1.41. - \log_e = hyperbolic logarithm = (common log.) \times 2.306. - W =work usually in foot-pounds per second. - Q = weight of air passed in unit time. - w = weight of a cubic unit of air. Other symbols are explained where used. # FORMULAS For convenience of reference the principal formulas appearing in the text are collected here with the article and page where demonstration and complete explanation can be found. | and c | complete explanation can be found. | | | |-------|--|-------|------| | No. | Formula . | Art. | Page | | 1. | $W = pv \log_e r \dots$ | 1 | 2 | | 1a. | $W = 53.17 t \log_e r$ for one pound | 1 | 2 | | 1b. | $W = (122.61 \log_{10} r) t$ for one pound | 1 | 2 | | 2. | $W = 63737 \log_{10} r$ for one pound at 60° F | 1 | 2 | | | $\log_{10} 63737 = 4.8043894.$ | | | | 3. | $\frac{p_1v_1}{p_2v_2} = \frac{t_1}{t_2}.$ | 2 | 3 | | | | | | | 4. | pv = 53.17 t for one pound | 2 | 3 | | 5. | $p_1v_1^n=p_2v_2^n$ | 2 | 3 | | 6. | $W = \frac{p_2 v_2 - p_1 v_1}{n-1} + p_2 v_2 - p_1 v_1 \dots$ | 2 | 4 | | | | | | | 7. | $W = \frac{n}{n-1}(p_2v_2 - p_1v_1)\dots$ | 2 | 4 | | | $n \qquad \lceil \frac{n-1}{2} \rceil$ | | | | 8. | $W = \frac{n}{n-1} p_1 v_1 \left[\frac{n-1}{r} - 1 \right] \dots$ | 2 | 4 | | 8b. | $W = 95190 (r^{0.29} - 1)$ for 1 lb. at 60° F., $n = 1.41$ | 2 | 5 | | 8c. | $W = 138405 (r^{0.2} - 1)$ for 1 lb. at 60° F., $n = 1.25$ | 2 | 5 | | | $\log_{10} 95190 = 4.978606, \log 138405 = 5.141141$ | | | | 0.1 | $W = \left\lceil 53.17 \frac{n}{n-1} \left(r^{\frac{n-1}{n}} - 1 \right) \right\rceil t \text{ for one pound.} \dots$ | | | | 8d. | $W = \begin{bmatrix} 33.17 & -1 \\ n-1 \end{bmatrix} t \text{ for one pound.} \dots$ | 2 | 5 | | 9. | $W = \frac{p_2 v_2 - p_1 v_1}{n-1} + p_2 v_2 - p_a v_1 \text{ for partial expansion.}.$ | 3 | 8 | | | 이 것은 아이들은 보다 하면 하면 그렇게 되었다면 하면 되었다면 하는데 하는데 하는데 되었다. | N. S. | | | 10. | $E_v = 1 + c (1 - r)$ volumetric efficiency | 4 | 10 | | 10a. | $\frac{v_2}{v_1} = \frac{c+k}{c+1} \dots$ | 5 | 11 | | | | | | | 11. | $t_2 = t_1 \left(\frac{v_1}{v_2}\right)^{n-1} \dots$ | 7 | 7.3 | | | | | | | 11a. | $t_2 = t_1 \left(\frac{p_2}{p_1} \right)^{n-1} = t_1(r)^{\frac{n-1}{n}} \dots$ | 7 | 13 | | No. | Formula | Art. | Page | |------|---|------|------| | 12. | $w = \frac{p}{53.17 t}$ = weight per cubic foot | 8 | 13 | | 12a. | $w = 2.708 \left(\frac{p_g + p_a}{460.6 + F} \right)$ = weight per cubic foot | 8 | 13 | | 12b. | $d_2 = \frac{d_1}{\sqrt{r_1}}$; $d_3 = \frac{d_1}{r_1}$; diameters, stage compression | 12 | 19 | | 13. | $W = \frac{n}{n-1} p_a v_a \left(r_1^{\frac{n-1}{n}} - 1 \right) \times 2; \text{ two-stage work} \dots$ | 13 | 20 | | 13a. | $W = \frac{n}{n-1} p_a v_a \left(r_2^{\frac{n-1}{2n}} - 1 \right) \times 2; \text{ two-stage work.} \dots$ | 13 | 20 | | 13b. | $W = \frac{n}{n-1} p_a v_a \left(r_1^{\frac{n-1}{n}} - 1 \right) \times 3; \text{ three-stage work.}$ | 13 | 21 | | 13c. | $W = \frac{n}{n-1} p_a v_a \left(r_3^{\frac{n-1}{3n}} - 1 \right) \times 3; \text{ three-stage work}$ | 13 | 21 | | 14. | $m = \frac{\log \frac{p_m}{p_o}}{\log \frac{V}{V+v}}.$ | 15 | 23 | | | | | | | 15. | $E = \frac{r-1}{r\log_e r} \dots$ | 16 | 24 | | 16. | $p_a = .4931 \ m \ [10001 \ (F - 32)] \dots$ | 17 | 25 | | 17. | $\log p_a = 1.16866 - \frac{h}{122.4 t} \dots$ | 17 | 26 | | 18. | Weight $Q = c .1632 d^2 \sqrt{\frac{i}{t} p_a}$; p_a in lbs. per sq. in | 20 | 29 | | 18a. | $Q = c .6299 d^2 \sqrt{\frac{i}{t}}$ at sea level | 20 | 30 | | 20. | $f = c \frac{l}{d^5} \frac{v_a^2}{r} \dots$ | 23 | 35 | | 21. | $d = \left(c\frac{l}{f} \frac{v_a^2}{r}\right)^{\frac{1}{b}}$ | 23 | 35 |
 24. | $\log p_2 = \log p_1 - C_2 \frac{t_a}{w_a} \frac{l}{d^5} \left(\frac{Q}{p_x}\right)^2 \dots$ | 24 | 37 | | 25. | $E = \frac{\log r_2}{\log r_1}$ | 25 | 39 | | 26. | $E = \frac{\log_e r}{r - 1} \dots$ | 26 | 42 | | 27. | $\frac{v_a}{Q} = \frac{1}{77.3} \frac{n}{E} \frac{d}{\log_{10} r} \dots$ | 33 | 53 | | 28. | $s_x = v_a \left[1 - \frac{x}{l} \left(1 - \frac{1}{r} \right) \right] \dots$ | 33 | 56 | # COMPRESSED AIR #### FORMULAS FOR WORK ### Art. 1. Temperature Constant or Isothermal Conditions. From the laws of physics (Boyle's Law) we know that while the temperature remains unchanged the product pv remains constant for a fixed amount (weight) of air. Hence to determine the work done on or by air confined in a cylinder, or like conditions, when conditions are changed from p_1v_1 to p_2v_2 we can write $$p_1v_1=p_xv_x=p_2v_2,$$ sub x indicating variable intermediate conditions. Whence $p_x = \frac{p_1 v_1}{v_x}$ and $dW = p_x A dl = p_x dv_x$ since A dl = dv; A being the area of cylinder, therefore $dW = p_1 v_1 \frac{dv_x}{v_x}$, and work of compression or expansion between points B and C (Fig. 1) is the integral of this, or $$\begin{split} W &= p_1 v_1 \int_{v_2}^{v_1} \frac{dv_x}{v_x} = p_1 v_1 \left(\log_e v_1 - \log_e v_2 \right) \\ &= p_1 v_1 \log_e \frac{v_1}{v_2} = p_1 v_1 \log_e \frac{p_2}{v_2} = p_1 v_1 \log_e r = p_2 v_2 \log_e r. \end{split}$$ Note that this analysis is only for the work against the front of the piston while passing from B to C. To get the work done during the entire stroke of piston from B to D we must note that throughout the stroke (in case of ordinary compression) air is entering behind the piston and following it up with pressure p_1 . Note also that after the piston reaches C (at which time valve f opens) the pressure in front is constant and p_2 for the remainder of the stroke. Hence the complete expression for work done by, or against, the piston is $$p_1v_1\log_e r - p_1v_1 + p_2v_2;$$ but since $p_1v_1 = p_2v_2$, the whole work done is $$W = p_1 v_1 \log_e r \quad \text{or} \quad p_2 v_2 \log_e r. \tag{1}$$ Note that the operation may be reversed and the work be done by the air against the piston, as in a compressed-air engine, without in any way affecting the formula. Forestalling Art. 2, Eq. (4), we may substitute for pv in Eq. (1) its equivalent, 53.17 t, for one pound of air and get for one pound $$W = 53.17 t \times \log_e r. \tag{1a}$$ This may be adopted for common logs by multiplying by 2.3026. It then becomes $$W = (122.61 \log_{10} r) t, \tag{1b}$$ (log 122.61 = 2.0878852.) Note that in solving by logs the log of $\log r$ must be taken. Values of the parenthesis in Eq. (1b) are given in Table I For the special temperature of 60° F. (1b) becomes for one pound of air $$W = 63737 \log_{10} r,$$ (2) $$\log 63737 = 4.8043894.$$ **Example 1a.** What will be the work in foot-pounds per stroke done by an air compressor displacing 2 cubic feet per stroke, compressing from $p_a = 14$ lbs. per sq. inch to a gage pressure = 70 lbs.; compression isothermal, $T = 60^{\circ}$ F.? Solution (a): Inserting the specified numerals in Eq. (1) it becomes $$W = 144 \times 14 \times 2 \times \log_e \frac{70 + 14}{14} = 4032 \times 1.79 = 7217.$$ Solution (b): By Tables I and II. By Table II the weight of a cubic foot of air at 14 lbs. and 60° is .07277, and .07277 \times 2 = .14554. The absolute t is 460 + 60 = 520, and r = 6.0. Then in Table I, column 11, opposite r = 6 we find 95.271, whence $$W = 95.271 \times 520 \times .14554 = 7208.$$ The difference in the two results is due to dropping off the fraction in temperature. #### Art. 2. Temperature Varying. The conditions are said to be *adiabatic* when, during compression or expansion, no heat is allowed to enter in, or escape from, the air although the temperature in the body of confined air changes radically during the process. Physicists have proved that under adiabatic conditions the following relations hold: $$\frac{p_1 v_1}{p_2 v_2} = \frac{t_1}{t_2},\tag{3}$$ and since for one pound of air at 32° F. pv = 26,214 and t = 492.6, we get for one pound at any pressure, volume and temperature, $$pv = 53.17 t.$$ (4) While formulas (3) and (4) are very important, they do not apply to the actual conditions under which compressed air is worked, for in practice we get neither isothermal nor adiabatic conditions but something intermediate. For such conditions physicists have discovered that the following holds nearly true: $$p_1 v_1^n = p_x v_x^n = p_2 v_2^n, (5)$$ sub x indicating any intermediate stage and the exponent n varying between 1 and 1.41 according to the effectiveness of the cooling in case of compression or the heating in case of expansion. From this basic formula (5) the formulas for work must be derived. As in Art. (1) $$dW = p_x dv_x = p_1 v_1^n \frac{dv_x}{v_x^n} = p_1 v_1^n (v_x^{-n}) dv_x$$. Therefore $$W' = p_1 v_1^n \int_{v_2}^{v_1} v_x^{-n} dv_x = p_1 v_1^n \left(\frac{v_1^{1-n} - v_2^{1-n}}{1-n} \right) = p_1 v_1^n \left(\frac{v_2^{1-n} - v_1^{1-n}}{n-1} \right) \cdot$$ Now since $p_1v_1^n \times v_2^{1-n} = p_2v_2^n \times v_2^{1-n} = p_2v_2$ and $p_1v_1^nv_1^{1-n} = p_1v_1$ the expression becomes $$W' = \frac{p_2 v_2 - p_1 v_1}{n - 1},$$ which represents the work done in compression or expansion between B and C, Fig. 1. To this must be added the work of expulsion, p_2v_2 , and from it must be subtracted the work done by the air entering behind the piston, p_1v_1 . Hence the whole net work done in one stroke is $$W = \frac{p_2 v_2 - p_1 v_1}{n - 1} + p_2 v_2 - p_1 v_1 \tag{6}$$ $$=\frac{n}{n-1}(p_2v_2-p_1v_1). (7)$$ Equation (7) is in convenient working form and may be used when the data are in pressures and volumes, but it is common to express the compression or expansion in terms of r. For such cases a convenient working formula is gotten as follows: From Eq. (5) $$p_{2}v_{2} = \frac{p_{1}v_{1} \times v_{1}^{n-1}}{v_{2}^{n-1}}.$$ Also $$r = \frac{p_{2}}{p_{1}} = \frac{v_{1}^{n}}{v_{2}^{n}}, \text{ therefore } \frac{v_{1}}{v_{2}} = r^{\frac{1}{n}},$$ and $$\frac{v_{1}^{n-1}}{v_{2}^{n-1}} = r^{\frac{n-1}{n}}, \text{ therefore } p_{2}v_{2} = p_{1}v_{1}r^{\frac{n-1}{n}},$$ and Eq. (7) becomes $W = \frac{n}{n-1} p_{1}v_{1} \left[r^{\frac{n-1}{n}} - 1 \right].$ (8) The most common uses of equations (7) and (8) are when air is compressed from free air conditions, then p_1 and v_1 become p_a and v_a . This case must be carefully distinguished from the case of incomplete expansion as presented in Art. 3. In perfectly adiabatic conditions n=1.41, but in practice the compressor cylinders are water-jacketed and thereby part of the heat of compression is conducted away, so that n is less than 1.41. For such cases Church assumes n=1.33 and Unwin assumes n=1.25. Undoubtedly the value varies with size and proportions of cylinders, details of water-jacketing, temperature of cooling water and speed of compressors. Hence precision in the value of n is not practicable. Fortunately the work does not vary as much as n does. For one pound of air at initial temperature of 60° F. Eq. (8) gives in foot-pounds, When $$n = 1.41$$, $W = 95{,}193 (r^{0.29} - 1)$. (8b) When $$n = 1.25$$, $W = 138,405 (r^{0.2} - 1)$. (8c) Common log of $95{,}193 = 4.978606$. Common log of 138,405 = 5.141141. The above special values will be found convenient for approximate computations. For compound compression see Art. 12. If in Eq. (8) we substitute for pv its value, 53.17 t, for one pound, we get $$W = \left[\left(\frac{n}{n-1} \right) 53.17 \left(r^{\frac{n-1}{n}} - 1 \right) \right] \times t = Kt, \tag{8d}$$ $$k = \frac{n}{n-1} \times 53.17 \left(r^{\frac{n-1}{n}} - 1 \right).$$ where Table I gives values of K for n=1.25 and n=1.41 and for values of r up to 10, varying by one-tenth. The theoretic work in any case is $K \times Q \times t$, where Q is the number of pounds passed and t is the absolute lower temperature. Further explanation accompanies the table. The difference between isothermal and adiabatic compression (and expansion) can be very clearly shown graphically as in Fig. 2. In this illustration the terminal points are correctly placed for a ratio of 5 for both the compression and expansion curve. Note that in the compression diagram (a), the area between the two curves aef represents the work lost in compression due to heating, and the area between the two curves aeghb in (b) represents the work lost by cooling during expansion. The isothermal curve, a e, will be the same in the two cases. Such illustrations can be readily adapted to show the effect of reheating before expansion, cooling before compression, heating during expansion, etc. **Example 2a.** What horse power will be required to compress 1000 cubic feet of free air per minute from $p_a = 14.5$ to a gage pressure = 80, when n = 1.25 and initial temperature = 50° F.? Solution. From Table II, interpolating between 40° and 60° the weight of one cubic foot is .07686 and the weight of 1000 is 76.86 —. The r from above data is 6.5. Then in Table I opposite r = 6.5 in column 9 we find .3658. Then Horse power = $$.3658 \times \frac{76.86}{100} \times 510 = 143$$. The student should check this result by Eq. (8) or (8d) without the aid of the table. #### Art. 3. Incomplete Expansion. When compressed air is applied in an engine as a motive power its economical use requires that it be used expansively in a manner similar to the use of steam. But it is never practicable to expand the air down to the free air pressure, for two reasons: — first, the increase of volume in the cylinders would increase both cost and friction more than could be balanced by the increase in power; and second, unless some means of reheating be provided, a high ratio of expansion of compressed air will cause a freezing of the moisture in and about the ports. The ideal indicator diagram for incomplete expansion is shown in Fig. 3. In such
diagrams it is convenient and Fig. 3. simplifies the demonstrations to let the horizontal length represent volumes. In any cylinder the volumes are proportional to the length. Air at pressure p_2 is admitted through that part of the stroke represented by v_2 — thence the air expands through the remainder of the stroke represented by v_1 , the pressure dropping to p_1 . At this point the exhaust port opens and the pressure drops to that of the free air. The dotted portion would be added to the diagram if the expansion should be carried down to free air pressure. To write a formula for the work done by the air in such a case we will refer to Eq. (6) and its derivation. In the case of simple compression or complete expansion it is correctly written $$W = \frac{p_2 v_2 - p_a v_a}{n - 1} + p_2 v_2 - p_a v_a,$$ which would give work in the case represented by Fig. 1 when there is a change of temperature, but in such a case as is represented by Fig. 3 the equation must be modified thus: $$W = \frac{p_2 v_2 - p_1 v_1}{n - 1} + p_2 v_2 - p_a v_1, \tag{9}$$ the reason being apparent on inspection. In numerical problems under Eq. (9) there will be known p_2v_2 , n, and either p_1 or v_1 . The unknown must be computed from the relations from Eq. (5): $$p_1 = p_2 \left(\frac{v_2}{v_1}\right)^n \quad \text{or} \quad v_1 = v_2 \left(\frac{p_2}{p_1}\right)^{\frac{1}{n}}.$$ **Example 3a.** A compressed-air motor takes air at a gage pressure = 100 lbs. and works with a cut-off at $\frac{1}{4}$ stroke. What work (ft.-lbs.) will be gotten per cu. ft. of compressed air, assuming free air pressure = 14.5 lbs. and n = 1.41? Solution. Applying Eq. (9) and noting that all pressures are to be multiplied by 144 and that the pressure at end of stroke = $p_1 = 114.5 \left(\frac{1}{4}\right)^{1.41} = 16.3$ and that $v_1 = 4 v_2$, we get $$W = 144 \left(\frac{114.5 \times 1 - 16.3 \times 4}{.41} + 114.5 \times 1 - 14.5 \times 4 \right) = 25,444.$$ ## Art. 4. Effect of Clearance: In Compression. It is not practicable to discharge all of the air that is trapped in the cylinder; there are some pockets about the valves that the piston cannot enter, and the piston must not be allowed to strike the head of the cylinder. This clearance can usually be determined by measuring the water that can be let into the cylinder in front of the piston when at the end of its stroke; but the construction of each compressor must be studied before this can be undertaken intelligently, and it is not done with equal ease in all machines. To formulate the effect of this clearance in the operation of the machine, Let $v = \text{volume of piston displacement } (= \text{area of piston} \times \text{length of stroke}),$ Let cv = clearance, c being a percentage. Then v + cv is the volume compressed each stroke. But the clearance volume cv will expand to a volume rcv as the piston recedes, so that the fresh air taken in at each stroke will be v + cv - rcv, and the volumetric efficiency will be $$E_v = \frac{v + cv - rcv}{v} = 1 + c(1 - r).$$ (10) When $E_v = 0$ $c = \frac{1}{r-1}$ and no air will be discharged. Theoretically (as the word is usually used) clearance does not cause a loss of work, but practically it does, insomuch as it requires a larger machine, with its greater friction, to do a given amount of effective work. Example 4a. A compressor cylinder is 12'' diam. \times 16'' stroke. The clearance is found to hold $1\frac{1}{4}$ pints of water $$=\frac{1.25}{8} \times 231 = 36$$ cubic inches; therefore $c = \frac{36}{113 \times 16}$ = 0.02. Then by Eq. (10) when r = 7 $$E = 1 + 0.02(1 - 7) = 88\%$$ Such a condition is not abnormal in small compressors, and the volumetric efficiency is further reduced by the heating of air during admission as considered in Art. 6. Art. 5. Effect of Clearance and Compression in Expansion Engines. Fig. 4 is an ideal indicator diagram illustrating the effect of clearance and compression in an expansion engine. In this diagram the area E shows the effective work, D the effect of clearance, B the effect of back pressure of the atmosphere and C the effect of compression on the return stroke. The study of effect of clearance in an expansion engine differs from the study of that in compression, due to the fact that the volume in the clearance space is exhausted into the atmosphere at the end of each stroke. Fig. 4. If the engine takes full pressure throughout the stroke the air (or steam) in the clearance is entirely wasted; but when the air is allowed to expand as illustrated in the diagram some useful work is gotten out of the air in the clearance during the expansion. The loss due to clearance in such engine is modified by the amount of compression allowed in the back stroke. If the compression $p_c = p_2$, the loss of work due to clearance will be nothing, but the effective work of the engine will be considerably reduced, as will be apparent by a study of a diagram modified to conform to the assumption. While the formula for work that includes the effect of clearance and compression will not be often used in practice its derivation is instructive and gives a clear insight into these effects. The symbols are placed on the diagram and will not need further definition. The effective work E will be gotten by subtracting from the whole area the separate areas B, C and D. From Art. 2, after making the proper substitutions for the volumes, there results Total area = $$l \left[\frac{p_2(c+k) - p_1(1+c)}{n-1} + p_2(c+k) \right]$$. Area $$B=lp_a,$$ Area $D=lp_2c,$ Area $C=l\Big[\frac{p_cc-p_a\left(b+c\right)}{n-1}-p_ab\Big].$ Subtracting the last three from the first and reducing their results: $$\frac{\text{Work}}{Al} = \frac{1}{n-1} \left[c \left(p_2 + p_a - p_c - p_1 \right) + n \left(p_2 k + p_a b - p_a \right) - (p_1 - p_a) \right]$$ = Mean effective pressure. The actual volume ratio before and after expansion is $$\frac{v_2}{v_1} = \frac{cv_1 + kv_1}{cv_1 + v_1} = \frac{c + k}{c + 1}.$$ This is the ratio with which to enter Table I to get r and t and from r the unknown pressure p_1 . Similarly for the compression curve the ratio of volumes is $\frac{c}{b}$, and p_c can be found as indicated above. #### Art. 6. Effect of Heating Air as it Enters Cylinders. When a compressor is in operation all the metal exposed to the compressed air becomes hot even though the water jacketing is of the best. The entering air comes in contact with the admission valves, cylinder head and walls and the piston head and piston rod, and is thereby heated to a very considerable degree. In being so heated the volume is increased in direct proportion to the absolute temperature (see Eq. (5)), since the pressure may be assumed constant and equal that of the atmosphere. Hence a volume of cool free air less than the cylinder volume will fill it when heated. This condition is expressed by the ratio $$\frac{v_a}{v_c} = \frac{t_a}{t_c} \quad \text{or} \quad v_a = v_c \, \frac{t_a}{t_c},$$ where v_c and t_c represent the cylinder volume and temperature. The volumetric efficiency as effected by the heating is $$E_v = \frac{v_a}{v_c} = \frac{t_a}{t_c}.$$ **Example 6a.** Suppose in Example 4a the outside free air temperature is 60° F. and in entering the temperature rises to 160° F., then $$\frac{t_a}{t_c} = \frac{460 + 60}{460 + 160} = 84 \text{ per cent.}$$ Then the final volumetric efficiency would be $88 \times 84 = 74\%$ nearly. The volumetric efficiency of a compressor may be further reduced by leaky valves and piston. In Arts. 4 and 6 it is made evident that the volumetric efficiency of an air compressor is a matter that cannot be neglected in any case where an installation is to be intelligently proportioned. It should be noted that the volumetric efficiency varies with the various makes and sizes of compressors and that the catalog volume rating is always based on the *piston displacement*. These facts lead to the conclusion that much of the uncertainty of computations in compressed-air problems and the conflicting data recorded is due to the failure to determine the actual amount of air involved either in terms of net volume and temperature or in pounds. Methods of determining volumetric efficiency of air compressors are given in Chapter III. The loss of work due to the air heating as it enters the compressor cylinder is in direct proportion to the loss of volumetric efficiency due to this cause. In Example 6a only 84% of the work done on the air is effective. By the same law any cooling of the air before entering the compressor effects a saving of power. See Art. 9. Art. 7. Change of Temperature in Compression or Expansion. Eq. (4) may be written $$p_1v_1 = ct_1; \ p_2v_2 = ct_2$$ and Eq. (5) may be factored thus, $$p_1 v_1 v_1^{n-1} = p_2 v_2 v_2^{n-1}.$$ Substituting we get $$ct_1v_1^{n-1}=ct_2v_2^{n-1}.$$ Whence $$t_2 = t_1 \left(\frac{v_1}{v_2}\right)^{n-1} \tag{11}$$ and $$t_2 = t_1 \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} = t_1 r^{\frac{n-1}{n}},$$ (11a) since from Eq. (5) $\frac{v_1}{v_2} = \left(\frac{p_2}{p_1}\right)^{\frac{1}{n}}$ It is possible to compute n from Eq. (11) by controlling the v_1 and v_2 and measured t_1 and t_2 . Table I, columns 5 and 6, is made up from Eq. (11a) and columns 3 and 4 from Eq. (5) as just written. **Example 7.** What would be the temperature of air at the end of stroke when r = 7 and initial temperature $= 70^{\circ} F$? Solution. Referring to Table I in line with r = 7 note that $$\frac{t_2}{t_1} = \begin{cases} 1.4758 \text{ when } n = 1.25 \\ \therefore t_2 = (460 + 70) \times 1.4758 - 460 = 322^{\circ} \text{ F.} \\ 1.7585 \text{ when } n = 1.41 \\ \therefore t_2 = (460 + 70) \times 1.7585 - 460 = 472^{\circ} \text{ F.} \end{cases}$$ From the same table the volume of one cubic foot of free air when compressed and *still hot* would be respectively 0.21 and 0.25, while when the compressed air is cooled back to 70° its volume would be 0.143. ### Art. 8.
Density at Given Temperature and Pressure. By Eq. (4) pv = 53.17 t for one pound, and the weight of one cubic foot $$= w = \frac{1}{v} = \frac{p}{53.17 t}.$$ (12) Note that p must be the absolute pressure in pounds per square foot, and t the absolute temperature. When gage pressures are used and ordinary Fahrenheit temperature the formula becomes $$w = \frac{144}{53.17} \left(\frac{p_g + p_a}{460 + F} \right)$$ = 2.708 \left(\frac{p_g + p_a}{460.6 + F} \right). (12a) Table III is made up from Eq. (12). #### Art. 9. Cooling Water Required. In isothermal changes, since pv is constant, evidently there is no change in the mechanical energy in the body of air as measured by the absolute pressure and using the term "mechanical energy" to distinguish from heat energy. Hence evidently all the work delivered to the air from outside must be abstracted from the air in some other form, and we find it in the heat absorbed by the cooling water. Therefore, $$\frac{pv\log_e r}{780} = (B.T.U's)$$ of work done on compressed air = 35.5 log r (B.T.U's) per pound of air compressed from temperature of 60° F. If the water is to have a rise of temperature T° (T being small, else the assumption of isothermal changes will not hold), then $$\frac{pv \log_e r}{780 T}$$ = Pounds of water required in same time. **Example 8a.** How many cubic feet of water per minute will be required to cool 1000 cubic feet of free air per minute, air compressed from $p_a = 14.2$ to $p_g = 90^{\circ}$ gage, initial temperature of air = 50° F. and rise in temperature of cooling water = 25°? Solution: $$\frac{144 \times 14.2 \times 1000 \times \log_{\epsilon} \left(\frac{90 + 14.2}{14.2}\right)}{780 \times 25 \times 62.5} = 24 \text{ cu. ft. per min.}$$ It is practically possible to attain nearly isothermal conditions by spraying cool water into the cylinder during compression. In such a case this article would enable the designer to compute the quantity of water necessary and therefrom the sizes of pipes, pumps, valves, etc. # Art. 10. Reheating and Cooling. In any two cases of change of state of a given weight of air, assuming the ratio of change in pressure to be the same, the work done (in compression or expansion) will be directly proportional to the volume, as will be evident by examination of the formulas for work. Also at any given pressure the volumes will be directly proportional to the absolute temperatures. Hence the work done either in compression or expansion (ratio of change in pressures being the same in each case) will be directly proportional to the absolute initial temperatures. Thus if the temperature of the air in the intake end of one compressor is 160° F. and, in another 50° F., the work done on equal weights of air in the two cases will be in the proportion of 460 + 150 to 460 + 50, or 1.2 to 1; that is, the work in the first case is 20% more than that in the second case. This is equally true, of course, for expansion. The facts above stated reveal a possible and quite practicable means of great economy of power in compressing air and in using compressed air. The opportunities for economy by cooling for compression are not as good as in heating before the application in a motor, but even in compression marked economy can be gotten at almost no cost by admitting air to the compressor from the coolest convenient source, and by the most thorough water-jacketing with the coolest water that can be conveniently obtained. In all properly designed compressor installations the air is supplied to the machine through a pipe from outside the building to avoid the warm air of the engine room. In winter the difference in temperature may exceed 100°, and this simple device would reduce the work of compression by about 20%. For the effect of intercoolers and interheaters see Art. 12 on compounding. By reheating before admitting air to a compressed-air engine of any kind the possibilities of effecting economy of power are greater than in cooling for compression, the reason being that heating devices are simpler and less costly than any means of cooling other than those cited above. The compressed air passing to an engine can be heated to any desired temperature; the only limit is that temperature that will destroy the lubrication. Suppose the normal temperature of the air in the pipe system is 60° F. and that this is heated to 300° F. before entering the air engine, then the power is increased 46%. Reheating has the further advantage that it makes possible a greater ratio of expansion without the temperature reaching freezing point. The devices for reheating are usually a coil or cluster of pipes through which the air passes while the pipe is exposed to the heat of combustion from outside. Ordinary steam boilers may be used, the air taking the place of the steam and water. Unwin suggests reheating the air by burning the fuel in the compressed air as suggested in the cut. Even when the details are worked out such a device would be simple and inexpensive. The theoretic advantages of such a device are that all the heat would go into the air, the gases of combustion (if solid or liquid fuel be used) would increase the volume, and the combustion occurring in compressed air would be very complete. The author has no knowledge of any such devices having been used in practice. The power efficiency of the fuel used in reheaters is very much greater than that of the fuel used in steam boilers. Unwin states that it is five or six times as much. The chief reason is that none of the heat is absorbed in evaporation as in a steam boiler. In many of the applications of compressed air reheating is impracticable, and efficiency is secondary to convenience—but in large fixed installations, such as mine pumps, reheating should be applied. ## Art. 11. Compounding. In steam-engine designs compounding is resorted to to economize power by saving steam, while in air compressors and compressed-air engines compounding is resorted to for the twofold purpose of economizing power and controlling temperature, both objects being accomplished by reducing the extreme change of temperature. The economic principles involved in compound steam engines and in compound air engines are quite different, the reasons underlying the latter being much more definite. The air is first compressed to a moderate ratio in the low-pressure cylinder, whence it is discharged into the "intercooler," where most of the heat developed in the first stage is absorbed and thereby the volume materially reduced, so that in the second stage there will be less volume to compress and a less injurious temperature. The changes occurring and the manner in which economy is effected in compression may be most easily understood by reference to Fig. 5, which represents ideal indicator diagrams from the two cylinders, superimposed one over the other, the scale being the same in each, the dividing line being kb. In this diagram, Fig. 5, abk is the compression line in the first-stage or low-pressure cylinder, cds is the compression line in the second-stage or high-pressure cylinder, bc is the reduction of volume in the intercooler, abf would be the pressure line if no intercooling occurred, The area cdfb is the work saved by the intercooler, ace would be the compression line for isothermal compression, aug would be the compression line for adiabatic compression. The diagram Fig. 5 is correctly proportioned for r=6. Fig. 6 is a diagram drawn in a manner similar to that used in Fig. 5 and is to illustrate the changes and economy effected by compounding with heating when compressed air is applied in an engine. It is assumed that the air is "preheated," that is, heated once before entering the high-pressure cylinder and again heated between the two cylinders. In this diagram, Fig. 6, se is the volume of compressed air at normal temperature, sf is the volume of compressed air after preheating, fc is the expansion line in the high-pressure cylinder, cb is the increase of volume in the interheater, by is the expansion line in low-pressure cylinder, ezq would be the adiabatic expansion line without any heating, efcz is work gained by preheating, cbyx is work gained by interheating. In no case is it economical to expand down to atmospheric pressure. Hence the diagram is shown cut off with pressure still above that of free air. The diagram Fig. 6 is proportioned for preheating and reheating 300° F. #### Art. 12. Proportions for Compounding. It is desirable that equal work be done in each stage of compounding. If this condition be imposed, Eq. (8) indicates that the r must be the same in each stage, for on the assumption of complete intercooling the product pv will be the same at the beginning of each stage. If then r_1 be the ratio of compression in the first stage, the pressure at end of first stage will be $r_1p_a = p_1$, and the pressure at end of second stage $= r_1p_1 = r_1^2p_a = p_2$, and similarly at end of third stage the pressure will be $p_3 = r_1^3 p_a$, or In two-stage work $$r_1 = \left(\frac{p_2}{p_a}\right)^{\frac{1}{2}} = r_2^{\frac{1}{2}}$$. In three-stage work $r_1 = \left(\frac{p_3}{p_a}\right)^{\frac{1}{3}} = r_3^{\frac{1}{3}}$. Let v_1 = free air intake per stroke in low-pressure cylinder or first stage, v_2 = piston displacement in second stage, v_3 = piston displacement in third stage, r_1 = ratio of compression in each cylinder. Then, assuming complete intercooling, $$v_2 = \frac{v_1}{r_1}$$ and $v_3 = \frac{v_2}{r_1} = \frac{v_1}{r_1^2}$, $\frac{v_2}{v_1} = \frac{1}{r_1}$ and $\frac{v_3}{v_1} = \frac{1}{r_1^2}$. or The length of stroke will be the same in each cylinder; therefore the volumes are in the ratio of the squares of diameters, or $$\frac{d_2^2}{d_1^2} = \frac{1}{r_1} \text{ and } \frac{d_3^2}{d_1^2} = \frac{1}{r_1^2}.$$ Hence $$d_2 = \frac{d_1}{r_1^{\frac{1}{2}}} \text{ and } d_3 = \frac{d_1}{r_1}.$$ (12b) If the intention to make the work equal in the
different cylinders be strictly carried out it will be necessary to make the first-stage cylinder enough larger to counteract the effect of volumetric efficiency. Thus if volumetric efficiency be 75%, the volume (or area) of the intake cylinder should be one-third larger. Note that the volumetric efficiency is chargeable entirely to the intake or low-pressure cylinder. Once the air is caught in that cylinder it must go on. **Example 12.** Proportion the cylinders of a compound two-stage compressor to deliver 300 cu. ft. of free air per minute at a gage pressure = 150. Free air pressure = 14.0, R.P.M. = 100, stroke 18", piston rod $1\frac{3}{4}$ " diameter, volumetric efficiency = 75%. Solution. From the above data the net intake must be 3 cu. ft. per revolution. Add to this the volume of one piston rod stroke (= .025 cu. ft.) and divide by 2. This gives the volume of one piston stroke 1.512. The volume of one foot of the cylinder will be $\frac{12}{18} \times 1.512 = 1.008$ cu. ft. From Table X the nearest cylinder is 14'' diam., the total ratio of compression $=\frac{150+14}{14}=11.71$, and the ratio in each stage is $$(11.71)^{\frac{1}{2}} = 3.7 = r_1$$, and by (12b) $$d_2 = \frac{d_1}{(r_1)^{\frac{1}{2}}} = \frac{14}{1.92} = 7.3''$$, say $7\frac{3}{8}''$, for the high-pressure cylinder. Now we must increase the low-pressure cylinder by one-third to allow for volumetric efficiency. The volume per foot will then be 1.344, which will require a cylinder about $15\frac{5}{8}$ " diameter. Note that the diameter of the high-pressure cylinder will not be affected by the volumetric efficiency. ### Art. 13. Work in Compound Compression. Assuming that the work is the same in each stage, Eq. (8) can be adapted to the case of multistage compression thus:— In two-stage work $$W = \frac{n}{n-1} p_a v_a \left(r_1^{\frac{n-1}{n}} - 1 \right) \times 2 \tag{13}$$ $$= \frac{n}{n-1} p_a v_a \left(r_2^{\frac{n-1}{2n}} - 1 \right) \times 2. \tag{13a}$$ In three-stage work $$W = \frac{n}{n-1} p_a v_a \left(r_1^{\frac{n-1}{n}} - 1 \right) \times 3 \tag{13b}$$ $$= \frac{n}{n-1} p_a v_a \left(r_3^{\frac{n-1}{3n}} - 1 \right) \times 3. \tag{13c}$$ Note that $r_2 = \frac{p_2}{p_a}$ and $r_3 = \frac{p_3}{p_a}$ and also that $p_a v_a = p_1 v_1 =$ p_2v_2 , etc., assuming complete intercooling. Laborious precision in computing the work done on or by compressed air is useless, for there are many uncertain and changing factors: n is always uncertain and changes with the amount and temperature of the jacket water, the volumetric efficiency, or actual amount of air compressed, is usually unknown, the value of p_a varies with the altitude, and r is dependent on p_a . #### Art. 14. Work under Variable Intake Pressure. There are some cases where air compressors operate on air in which the intake pressure varies and the delivery pressure is constant. This is true in case of exhaust pumps taking air out of some closed vessels and delivering it into the atmosphere. It is also the condition in the "return-air" pumping system in which one charge of air is alternately forced into a tank to drive the water out and then exhausted from the tank to admit water. For full mathematical discussion of this pump see Trans. Am. So. C. E., Vol. 54, p. 19. The following formulas and others more complex were first worked out to apply to that pumping system. In such cases it is necessary to determine the maximum rate of work in order to design the motive power. First assume the operation as being isothermal. Then in Eq. (1), viz. $$W = p_x v \log_e \frac{p_1}{p_x}$$ p_x is variable, while v and p_1 are constant. In this formula W becomes zero when p_x is zero and again when $p_x = p_1$, since $\log 1$ is zero. To find when the work is maximum, differentiate and equate to zero; thus differential of $v\left(p_x \log p_1 - p_x \log p_x\right) = v \left\lceil \log p_1 dp_x - \left(p_x \frac{dp_x}{p_x} + \log p_x dp_x\right) \right\rceil$ Equate this to zero and get $\log p_1 = 1 + \log p_x$, or $$\log \frac{p_1}{p_x} = 1$$, therefore $\frac{p_1}{p_x} = e = 2.72$. That is, when r = 2.72 the work is a maximum. When the temperature exponent n is to be considered the study must be made in Eq. (8), viz. $$W = \frac{n}{n-1} p_x v \left[\left(\frac{p_1}{p_x} \right)^{\frac{n-1}{n}} - 1 \right]. \tag{8}$$ Differentiating this with respect to p_x and equating to zero, the condition for maximum work becomes $\left(\frac{p_1}{n}\right)^{\frac{n-1}{n}} = n$. this in (8) and the reduced formula becomes $$W = n \ pxv. = \frac{p_1v}{n^{\frac{1}{n-1}}}$$ From the above expressions for maximum the following results: When n = 1.41 the maximum occurs when r = 3.26. When n = 1.25 the maximum occurs when r = 3.05. When n=1. the maximum occurs when r=2.72. In practice r = 3 will be a safe and convenient rule. Exercise 14a. Air is being exhausted out of a tank by an exhaust pump with capacity = 1 cu. ft. per stroke. At the beginning the pressure in the tank is that of the atmosphere = 14.7 lbs. per sq. in. Assume the pressure to drop by intervals of one pound and plot the curve of work with p_x as the horizontal ordinate and W as the vertical, using the formula $W = p_x v \log \frac{p_a}{p_x}.$ Exercise 14b. As in 14a plot the curve by Eq. (8) with n = 1.25. ## Art. 15. Exhaust Pumps. In designing exhaust pumps the following problems may arise. Given a closed tank and pipe system of volume V under pressure p_0 and an exhaust pump of stroke volume v, how many strokes will be necessary to bring the pressure down to p_m ? The analytic solution is as follows, assuming isothermal conditions in the volume V. The initial product of pressure by volume is p_0V . After the first stroke of the exhaust pump this air has expanded into the cylinder of the pump and pressure has dropped to p_1 under the law that pressure by volume is constant. Hence (V + v) $p_1 = p_0 V$, or $p_1 = \frac{p_0 V}{V + v}$ at end of first stroke, $$(V+v) p_2 = p_1 V$$, or $p_2 = \frac{p_1 V}{V+v} = p_0 \left(\frac{V}{V+v}\right)^2$ at end of second stroke, $$(V+v)$$ $p_3=p_2V$, or $p_3=p_2\frac{V}{V+v}=p_0\Big(\frac{V}{V+v}\Big)^3$ at end of third stroke, etc. Finally $$p_m = p_0 \left(\frac{V}{V+v}\right)^m$$ and $m = \frac{\log \frac{p_m}{p_0}}{\log \left(\frac{V}{V+v}\right)}$. (14) m is the required number of strokes. **Example 15a.** A closed tank containing 100 cu. ft. of air at atmospheric pressure (= 14.5 lbs. per sq. in.) is to be exhausted down to 5 bs. by a pump making 1 cu. ft. per stroke. How many strokes required? Solution. $$\frac{p_m}{p_0} = \frac{5}{14.5}$$ and $\frac{V}{V+v} = \frac{100}{101}$. $\log 5 = 0.69897$ $\log 100 = 2.00000$ $\log 14.5 = \underbrace{1.16136}_{\overline{1.53761}}$ $\log 101 = \underbrace{2.00432}_{\overline{1.99568}}$ These two logarithms may be written thus: $$-1 + 0.53761 = -0.46239$$ and $\frac{.46239}{.00432} = 107 = m$. If the volumetric efficiency of the machine be E, then the number of strokes would be $107 \div E$. The results found under Arts. 14 and 15 serve well to illustrate the curious mathematical gymnastics that compressed air is subject to, and should encourage the investigator who likes such work, and should put the designer on guard. ## Art. 16. Efficiency when Air is Used without Expansion. In many applications of compressed air convenience and safety are the prime requisites, so that power efficiency receives little attention at the place of application. This is so with such apparatus as rock drills, pneumatic hammers, air hoists and the like. The economy of such devices is so great in replacing human labor that the cost in power is little thought of. Further, the necessity of simplicity and portability in such apparatus would bar the complications needed to use the air expansively. There are other cases, however, notably in pumping engines and devices of various kinds, where the plant is fixed, the consumption of air considerable and the work continuous, where neglect to work the air expansively may not be justified. In any case the designer or purchaser of a compressed-air plant should know what is the sacrifice for simplicity or low first cost when the proposition is to use the air at full pressure throughout the stroke and then exhaust the cylinder full of compressed air. Let p be the absolute pressure on the driving side of the piston and p_a be that of the atmosphere on the side next the exhaust. Then the effective pressure is $p - p_a$ and the effective work is $(p - p_a) v$, while the least possible work required to produce this air is $pv \log_e r$. Hence the efficiency is $E = \frac{(p - p_a) v}{p v \log_e r}$. Dividing numerator and denominator by $p_a v$ this reduces to $$E = \frac{r-1}{r \log_e r}. (15)$$ This is the absolute limit to the efficiency when air is used without expansion and without reheating. It cannot be reached in practice. Table VI represents this formula. Note that the effi- ciency decreases as r increases. Hence it may be justifiable to use low-pressure air without expansion when it would not be if the air must be used at high pressure. Clearance in a machine of this kind is just that much compressed air wasted. If clearance be considered, Eq. (15) becomes $$E = \frac{r - 1}{(1 + c) \, r \log_e r} \tag{15a},$$ where c is the percentage of clearance. In some machines, if this loss were a visible leak, it would not be tolerated. # Art. 17. Variation of Atmospheric Pressure with Altitude. In most of the formulas relating to compressed-air operations the pressure p_a , or weight w_a , of free air is a factor. This factor varies slightly at any fixed place, as indicated by barometer readings, and it varies materially with varying elevations. To be precise in computations of work or of weights or volumes of air moved, the factors p_a and w_a should be determined for each experiment or test, but such precision is seldom warranted further than to get the value of p_a for the
particular locality for ordinary atmospheric conditions. This however should always be done. It is a simple matter and does not increase the labor of computation. In many plants in the elevated region p_a may be less than 14.0 lbs. per sq. in., and to assume it 14.7 would involve an error of more than 5%. Direct reading of a barometer is the easiest and usual way of getting atmospheric pressure, but barometers of the aneroid class should be used with caution. Some are found quite reliable, but others are not. In any case they should be checked by comparison with a mercurial barometer as frequently as possible. If m be the barometer reading in inches of mercury and F be the temperature (Fahrenheit), the pressure in pounds per sq. in. is $$p_a = \frac{14.794}{30} m \left[1 - .0001 (F - 32) \right]$$ = .4931 m \left[1 - .0001 (F - 32) \right]. (16) The information in Table II will usually obviate the need of using Eq. (16). In case the elevation is known and no barometer available the problem can be solved as follows: Let p_s = pressure of air at sea level, w_s = weight of air at sea level, p_x , w_x be like quantities for any other elevation. Then in any vertical prism of unit area and height dh we have or $$p_x + dp_x = p_x + w_x dh,$$ or $$dp_x = w_x dh.$$ But $$\frac{w_x}{w_s} = \frac{p_x}{p_s}; \text{ therefore } dp_x = \frac{w_s}{p_s} p_x dh,$$ or $$dh = \frac{p_s}{w_s} \frac{dp_x}{p_x}, \text{ and therefrom } h = \frac{p_s}{w_s} \times \log \frac{p_s}{p_a},$$ where p_a is the pressure at elevation h above sea level. Substitute for w_s its equivalent $$w_s = \frac{p_s}{53.17 t} \quad \text{and we get } \frac{h}{53.17 t} = \log \frac{p_s}{p_a}.$$ Whence $$\log_e p_a = \log_e p_s - \frac{h}{53.17 t}.$$ Making $p_s = 14.745$ and adopting to common logarithm and Fahrenheit temperatures, $$\log_{10} p_a = 1.16866 - \frac{h}{122.4 (T + 460)}.$$ (17) Table V is made up by formula 17. # CHAPTER II #### MEASUREMENT OF AIR #### Art. 18. General Discussion. Progress in the science of compressed-air production and application has evidently been hindered by a lack of accurate data as to the amount of compressed air produced and used. The custom is almost universal of basing computations on, and of recording results as based on, catalog rating of compressor volumes — that is, on piston displacement. The evil would not be so great if all compressors had about the same volumetric efficiency, but it is a fact that the volumetric efficiency varies from 60 per cent to 90 per cent, depending on the make, size, condition and speed of the machine; no wonder, then, that calculations often go wrong and results seem to be inconsistent. There are problems in compressed-air transmission and use for the solution of which accurate knowledge of the volume or weight of air passing is absolutely necessary. Chief among these are the determination of friction factors in air pipes and the efficiency of pumps, including air lifts. Purchasers may be imposed upon, and no doubt often are, in the purchase of compressors with abnormally low volumetric efficiencies. Contracts for important air-compressor installation should set a minimum limit for the volumetric efficiency, and the ordinary mechanical engineer should have knowledge and means sufficient to test the plant when installed. There is little difficulty in the measurement of air. The calculations are a little more technical, but the apparatus is as simple and the work much less disagreeable than in measurements of water. In many text-books theoretic formulas are presented for the flow of air at high pressures through orifices into the atmosphere. Such formulas are complicated by the necessity of considering change of volume and temperature, and even where the proper empirical coefficients are found the formulas are unwieldy. ## Art. 19. Apparatus for Measuring Air by Orifice. Present indications are that the standard method of determining flow of air will require the pressure to be reduced to less than one foot head of water in order that change of volume and temperature may be neglected and the formula simplified thereby. Experiments under such circumstances show coefficients even more constant than those for standard orifices for measuring water. The coefficients given in Art. 20 were determined at McGill University by methods and apparatus described first in Trans. Am. So. Mech. E., Vol. 27, Dec., 1905, and later in *Compressed Air*, Sept., 1906, p. 4187. Having the coefficients once determined, the necessary apparatus is simple and inexpensive. The essentials are shown in Fig. 7. A =Compressed-air pipe, B =Closed box or cylinder. T = Throttle, b = Baffle boards or screen, H = Thermometer, $C = \operatorname{Cork},$ O =Orifice in thin metal plate (Standard), U = Bent glass tube containing colored water, G =Scale of inches. The box B may be made of any convenient light material. The pressure is only a few ounces and the tendency to leak slight. The purpose of the throttle T is to control the pressure against which the compressor works. The appropriate orifice O can be determined by a preliminary computation, assuming i at say 5". See Eq. (18). In testing a compressor it should be run until every part is at its normal running temperature. By means of the throttle T the compressor can be worked under various pressures and speed and thereby its individual curves of volumetric efficiency obtained. #### Formula for Standard Orifice under Low Art. 20. Pressure. Let p_a = air pressure in lbs. per sq. in. inside the box, Q = weight of air passing per second, w_a = weight of a cubic foot of air in pounds, d = diameter of orifice in inches, i = pressure as read on water gage in inches t = absolute temperature Fahrenheit's scale, inside c =the experimental coefficient. Where changes of density and temperature can be neglected the theoretic velocity through the orifice is $v = \sqrt{2gh}$ where h is the head of air of uniform density that would produce the pressure head i. Hence $$h = \frac{i}{12} \times \frac{62.5}{w_a}$$; therefore $v = \sqrt{2g\frac{i}{12} \times \frac{62.5}{w_a}}$. But $Q = w_a \times av$ where a = area of orifice in sq. ft. $= \frac{\pi l^2}{4 \times 144}$ Inserting these values and putting w_a under the radical there results $$Q = \frac{\pi d^2}{4 \times 144} \sqrt{2} g \frac{i}{12} \frac{62.5 w_a^2}{w_a}.$$ $$w_a = \frac{p_a'}{53.17 t}.$$ But $Q = .0136d^2 \sqrt{\frac{i}{t} p_a'} = .1632 d^2 \sqrt{\frac{i}{t} p_a}$ where p_a is in lbs. per sq. in. The pressure due to i (= .036 i) should be included in p_a . If the work is at sea level and pressure i be neglected, $p_a = 14.7 \times 144$ and the formula becomes $$Q = .6299 \ d^2 \sqrt{\frac{i}{t}}, \tag{18a}$$ which is the formula published by McGill University. This is the theoretic formula. To it must be applied the experimental coefficient c as given in Table VIII. Note that c varies but little from 0.60, and the same c can be used in Eq. (18) and (18a). **Example 20a.** In a run with the apparatus shown in Fig. 7 the following was recorded: d = 2.32''; i = 4.6''; $T = 186^{\circ}$ F. inside drum, $T = 86^{\circ}$ F. in free air. Elevation 1200'. Find the weight and volume of free air passing. Solution. From Table II, interpolating for 86° in the line with 1200 elevation we get $w_a = .0700$ and p_a for free air = 14.1. Add the pressure due to $i = .036 \times 4.6$ and we get the corrected $p_a = 14.26$. In Table VIII the coefficient for d = 2.32 and i = 4.6 is 0.599. These numbers inserted in (18) give $$Q = .599 \times .1632 \times (2.32)^2 \sqrt{\frac{4.6}{646} \times 14.26}$$ = .1684 pound per second and the free air volume $$=\frac{.1684}{.0700}\times60=144.3$$ cu. ft. per minute. By Eq. (18a) Q = .1747. # Art. 21. Air Measurement in Tanks. The amount of air put into or taken out of a closed tank or system of tanks and pipes, of known volume, can be accurately determined by Eq. (3), viz., $$\frac{p_a v_a}{p_x v_x} = \frac{t_a}{t_x} \text{ or } v_a = \frac{p_x t_a}{p_a} \frac{v_x}{t_x}.$$ By this means the volume of air delivered into a closed system by a compressor can be very accurately determined. The process would be as follows: Determine the volumes of all tanks, pipes, etc., to be included in the closed system, open all to free air and observe the free-air temperature; then switch the delivery from the compressor into the closed system; count the strokes of the compressor until the pressure is as high as desired; then shut off the closed tank and note pressure and temperatures of each separate part of the volume. Then the formula above will give the volume of free air which compressed and heated would occupy the tanks. From this subtract the volume of free air originally in the tanks; the remainder will be what the compressor has delivered into the system. Note that the compressor should be running hot and at normal speed and pressure when the test is made for its volumetric efficiency. Usually the temperature changes will be considerable, but if the system is tight, time can be given for the temperature to come back to that of the atmosphere, thus saving the necessity of any temperature observations. Where a convenient closed-tank system is available this method is recommended. This method — that is, Eq. (3) as stated above — was used to determine the quantity of air passing the orifices in the experiments by which the coefficients were determined as given in Art. 20, Table-VII. **Example 21a.** A tank system consists of one receiver 3' diam. \times 12', one air pipe 6" \times 40', one 4" \times 4000' and a second receiver at end of pipe 2' diam. \times 8'. A compressor 12" \times 18" with $1\frac{1}{2}$ " piston rod puts the air from 1250 revolutions into the system, after which the pressure is 80 gage and temperature in first receiver 200°, while in other parts of the tank system it is 60°. Temperature of outside air being 50°, $p_a = 14.5$ per sq. in. Find volumetric
efficiency of the compressor. Solution. Volumes (from Table X): 1st receiver 84.84 cu. ft. 6'' pipe 7.84 4'' pipe 349.20 2nd receiver 25.12 382.16 Total 467.00 in tank system. Piston displacement in one revolution = 2.338 cu. ft. (piston rod deducted). By formula $v_a = \binom{p_x t_a}{p_a} \times \frac{v}{t_x}$ note that the quantity in parenthesis is constant and therefore a slide rule can be conveniently used, otherwise work by logarithms. | v_a in first receiver = $\frac{(80+14.5)(460+50)}{14.5} \times \frac{84.84}{460+200}$ | = 417.2 | |---|---------| | va in 6" pipe, 4" pipe and second receiver with tot | al | | volume 382.16 and $t = 60^{\circ} = \dots$ | 2447.1 | | Total | 2864.3 | | Original volume of free air | 467 | | Volume of free air added | 2397.3 | | $2397.3 \div 2.338 = 1028.$ | | Therefore the volumetric efficiency is $$E = 1028 \div 1250 = 82\%$$ #### CHAPTER III #### FRICTION IN AIR PIPES Art. 22. In the literature on compressed air many formulas can be found that are intended to give the friction in air pipes in some form. Some of these formulas are, by evidence on their face, unreliable, as for instance when no density factor appears; the origin of others cannot be traced and others are in inconvenient form. Tables claiming to give friction loss in air pipes are conflicting, and reliable experimental data relating to the subject are quite limited. In this article and the next are presented the derivation of rational formulas for friction in air pipes with full exposition of the assumptions on which they are based. The coefficients were gotten from the data collected in Appendix B. #### Art. 23. The Formula for Practice. The first investigation will be based on the assumption that volume, density and temperature remain constant throughout the pipe. Evidently these assumptions are never correct; for any decrease in pressure is accompanied by a corresponding increase in volume even if temperature is constant. (The assumption of constant temperature is always permissible.) However, it is believed that the error involved in these assumptions will be less than other unavoidable inaccuracies involved in such computations. Let f = lost pressure in pounds per sq. in., l = length of pipe in feet, d = diameter of pipe in inches, s =velocity of air in pipe in feet per second, r = ratio of compression in atmospheres, c =an empirical coefficient including all constants. Experiments have proved that fluid friction varies very nearly with the square of the velocity and directly with the density. Hence if k be the force in pounds necessary to force atmospheric air (r=1) over one square foot of surface at a velocity of one foot per second, then at any other velocity and ratio of compression the force will be $$F_1 = ks^2r,$$ and the force necessary to force the air over the whole interior of a pipe will be $$F = \frac{\pi d}{12} l \times krs^2,$$ and the work done per second, being force multiplied by distance, is Work = $$\frac{\pi dl}{12} \times krs^3$$. Now if the pressure at entrance to the pipe is f pounds per sq. in. greater than at the other end, the work per second due to this difference (neglecting work of expansion in air) is Work = $$f \frac{\pi d^2}{4} s$$. Equating these two expressions for work there results $$f \frac{\pi d^2}{4} s = \frac{\pi d}{12} lkrs^3,$$ $$f = \frac{4}{12} k \frac{l}{d} rs^2.$$ (19) or Now the volume of compressed air, v, passing through the pipe is, in cubic feet, $v = \frac{\pi d^2}{4 \times 144} \ s$ and the volume of free air, v_a , is rv. Therefore $v_a = \frac{\pi d^2}{4 \times 144} \times rs$ and $s^2 = \frac{(4 \times 144)^2 v_a^2}{\pi^2 d^4 r^2}.$ Insert this value of s² in Eq. (19) and reduce and there results $$f = \frac{4}{12} k \left(\frac{4 \times 144}{\pi} \right)^2 \frac{l}{d^5} \frac{v_a^2}{r},$$ $$f = c \frac{l}{d^5} \frac{v_a^2}{r},$$ (20) or where c is the experimental coefficient and includes all constants. From Eq. (20), $$d = \left(\frac{clv_a^2}{fr}\right)^{\frac{1}{b}}.$$ (21) From the data collected in Appendix B the following results were computed. In this r and s are mean results and c is the average of all the runs made on each pipe. | d | c | r | 8 | t | | |----|------|-------------|-----------|--------|--| | 1 | .092 | 2.4 to 8.0 | 29 to 70 | 60° F. | | | 1 | .076 | 1.5 to 10.2 | 35 to 100 | 100 | | | 1 | .084 | 1.3 to 10.8 | 10 to 50 | 80 | | | 2 | .080 | 2.0 to 10.6 | 5 to 28 | 80 | | | 3 | .072 | 4 | 12 to 100 | 60 | | | 4 | .066 | 7 | 28 | 35 | | | 5 | .057 | 5 | 30 | 86 | | | 6 | .066 | 4.5 | 33 | 70 | | | 8 | .061 | 4.5 | 20 | 70 | | | 12 | .047 | 7.5 | 20 | | | An examination of the data in Appendix B shows that the coefficient c is independent of r and of s. If it is affected by the temperature it cannot be detected in these data. In relation to the diameters c evidently increases as the diameter decreases. A plot of diameters and c on coördinate paper gives a straight line and reveals the relation c = .0866 - .0033 d as most nearly averaging the results. This gives the following values for c^* : Formulas (20) and (21) would be theoretically a little more accurate if v_a were expressed in terms of the actual weight of air passing. This would involve the observed free air pressure and temperature at the time considered. Such a * See Appendix C, page 122. modification renders the formula much more laborious and would probably add nothing to its value for practical purposes. Table IX and Plates 0, I, II, III, and IV are based on formula (20). ## Art. 24. Theoretically Correct Friction Formula. The theoretically correct formula for friction in air pipes must involve the work done in expansion while the pressure is dropping. Let p_1 and p_2 be the absolute pressures at entrance and discharge of the pipe respectively and let Q be the total weight of air passing per second. Then the total energy in the air at entrance is $$p_a v_a \log \frac{p_1}{p_a} + \frac{Q s_1^2}{2 g}$$ and at discharge the energy is $$p_a v_a \log \frac{p_2}{p_a} + \frac{Q s_2^2}{2 q}$$. The difference in these two values must have been absorbed in friction in the pipe. Hence, using the expression for work done in friction that was derived in Art. 23, we get $$\frac{\pi d}{12} lkrs^3 = p_a v_a \left(\log \frac{p_1}{p_a} - \log \frac{p_2}{p_a} \right) + \frac{Q}{2 g} (s_2^2 - s_1^2).$$ Numerical computations will show the last term, viz. $\frac{Q}{2g}(s_2^2 - s_1^2)$ is relatively so small that it can be neglected in any case in practice without appreciable error. Hence by a simple reduction we get $$\log_e \frac{p_1}{p_2} = \frac{\pi k}{12 p_a} \times \frac{dlrs^3}{v_a}$$ but $v_a = \frac{\pi d^2}{4 \times 144} rs$, which when substituted gives $$\log_e \frac{p_1}{p_2} = \frac{4 \times 144 \ k}{12 \ p_a} \times \frac{l}{d} s^2$$ or considering p_a as constant, $$\log_{10} \frac{p_1}{p_2} = c_1 \frac{l}{d} s^2$$ $$\log_{10} p_2 = \log_{10} p_1 - c_1 \frac{l}{d} s^2.$$ (22) or In Eq. (22) c_1 is the experimental coefficient and includes all constants. s is the velocity in the air pipe and varies slightly increasing as the pressure drops. All efforts so far have failed to get a formula in satisfactory shape that makes allowance for the variation in s. In working out c_1 from experimental data s should be the mean between the s_1 and s_2 , and when using the formula the s may be taken as about 5 per cent greater than s_1 . Note that in the solution of Eq. (22) common logarithms should be used for convenience, allowing the modulus, 2.3+, to go into the constant c_1 . The working formula may be put in a different and possibly a more convenient form, thus. In the expression $$\log_e \frac{p_1}{p_2} = \frac{\pi k}{12} \times \frac{dl}{p_a v_a} r s^3$$ substitute for s its value $$s = \frac{4 \times 144 \, v_a}{\pi d^2 r}$$ and reduce and we get $$\log p_2 = \log p_1 - c_2 \frac{l v_a^2}{p_a d^5 r^2}.$$ (23) Still another form is gotten thus. The whole weight of air passing is $v_a \times w_a = Q$, and by Eq. (12) $$Q = v_a \frac{p_a}{53.17 t}$$ and therefore $v_a = \frac{53.17 tQ}{p_a}$. $r_x = \frac{p_x}{p_a}$ and $w_a = \frac{p_a}{53.17 t}$. Also Substitute these in (23) and it reduces to $$\log p_2 = \log p_1 - c_2 \frac{t_a l}{w_a d^5} \left(\frac{Q}{p_x} \right)^2 \tag{24}$$ In ordinary practice $\frac{t_a}{w_a}$ may be taken as constant. If this be done Eq. (24) becomes $$\log p_2 = \log p_1 - c_3 \frac{l}{d^5} \left(\frac{Q}{p_x}\right)^2 \tag{24a}$$ If $t_a = 525$ and $w_a = .075$, then $c_3 = 7000 c_2$. In (24) and (24a) p_x varies between p_1 and p_2 . Careful computations by sections of a long pipe show p_x to vary as ordinates to a straight line. Modifying the formulas to allow for this variation renders them unmanageable. In working out the coefficient p_x may be taken as a mean between p_1 and p_2 , and in using the formula p may be taken as p_1 less half of the assumed loss of pressure. As before suggested, common logarithms should be used in all the equations of this article. Finally it should be said that extreme refinement in computing friction in air pipes is a waste of labor, for there are too many variables in practical conditions to warrant much effort at precision. A study of the data collected in Appendix B gives values for c_2 , Eq. (24), that, for pipes three to twelve inches diameter, conform closely to the expression $$c_2 = .0124 - .0004 d$$ which gives the following: $$d'' = 3$$ 4 5 6 8 10 12 $C_2 = .0112$.0108 .0104 .0100 .0092 .0084 .0080 $C_3 = 78.4$ 75.6 72.8 70.0 64.4 58.8 56.0 With these coefficients p_x in equations (24) and (24a) is to be taken in pounds per square inch. Equations (24) and (24a) are theoretically more correct than Eq. (20) and the coefficients of the former will not vary so much as those for the latter, but when the coefficients are correctly determined for Eq. (20) it is
much easier to compute and can be adapted to tabulation, while Eq. (24) cannot be tabulated in any simple way. **Example 24a.** Apply formulas (20) and (24) to find the pressure lost in 1000' of 4" pipe when transmitting 1200 cu. ft. free air per minute compressed to 150 gage when atmospheric conditions are $p_a = 14.0$, $w_a = .073$ and $t_a = 540$. Solution by Eq. (20): $$r = \frac{150 + 14}{14} = 11.71$$. By Table IX divide 23.44 by 11.71 and the result, 2 pounds, is the pressure lost per 1000'. Solution of Eq. (24): The coefficient for a 4" pipe is .0108, and $\log p_1 = \log (150 + 14) = 2.214844$. Then log $$p_2 = 2.214844 - .0108 \frac{.540}{.073} \times \frac{1000}{(4)^5} \left(\frac{1200}{60} \times \frac{.073}{164} \right)^2$$. The log of the last term is $\overline{3.791193}$ and its corresponding number is .006183. $$2.214844 - .006183 = 2.208661 = \log p_2.$$ $p_2 = 161.7 + \text{ and } p_1 - p_2 = 2.3.$ # Art. 25. Efficiency of Power Transmission by Compressed Air. In the study of propositions to transmit power by piping compressed air, persons unfamiliar with the technicalities of compressed air are apt to make the error of assuming that the loss of power is proportional to the loss of pressure, as is the case in transmitting power by piping water. Following is the mathematical presentment of the subject: p_1 = absolute air pressure at entrance to transmission pipe, p_2 = absolute air pressure at end of transmission pipe, v_1 = volume of compressed air entering pipe at pressure p_1 , v_2 = volume of compressed air discharged from pipe at pressure p_2 . Then crediting the air with all the energy it can develop in isothermal expansion, the energy at entrance is $p_1v_1 \log \frac{p_1}{p_a} = p_1v_1 \log r_1$, and at discharge the energy is $$p_2 v_2 \log \frac{p_2}{p_a} = p_2 v_2 \log r_2.$$ Whence Hence efficiency $$E = \frac{p_2 v_2 \log_e r_2}{p_1 v_1 \log_e r_1} = \frac{\log_e r_2}{\log_e r_1}$$. (25) Common logs may be used since the modulus cancels. The varying efficiencies are illustrated by the following tables. | $p_a = 14.5.$ | $p_1 = 145.$ | $r_1 = 10.$ | $\log r_1 = 1.000.$ | |---------------|--------------|-------------|---------------------| |---------------|--------------|-------------|---------------------| | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 135 | 130 | 125 | 120 | |--|-------|-------|-------|-------| | | 9.31 | 8.97 | 8.62 | 8.28 | | | .9689 | .9528 | .9355 | .9185 | | | .97 | .95 | .93 | .92 | The above examples illustrate the advantage in transmitting at high pressure. Of course the work cannot be fully recovered in either case without expanding down to atmospheric pressure, and to do this in practice heating would be necessary. It should be understood also that by reheating this efficiency can be exceeded. It should be noted also that the above does not apply in cases where the air is applied without expansion. In such cases the efficiency of transmission alone would be $$E = \frac{\left(p_{2} - p_{a}\right) v_{2}}{\left(p_{1} - p_{a}\right) v_{1}} = \frac{r_{1} \left(r_{2} - 1\right)}{r_{2} \left(r_{1} - 1\right)} \cdot$$ **Example 25a.** What diameter of pipe will transmit 5000 cu. ft. of free air per minute compressed to 100 lbs. gage, with a loss of 10 per cent of its energy in 2500 feet of pipe, assuming $p_a = 14.0$? Solution. $$r_1 = \frac{114}{14} = 8.15$$; then by Eq. (25) $\frac{\log r_2}{\log 8.15} = \frac{90}{100}$. Whence $\log r_2 = 0.8200$; $r_2 = 6.6$, and $6.6 \times 14 = 92.4$. f = 114 - 92.4 = 21.6 = loss of pressure. By Eq. (21), $$\log d = \frac{1}{5} \left[\log (.06 \times 2500) \times \left(\frac{5000}{60} \right)^2 - \log \left(21.6 \times \frac{8.15 + 6.6}{2} \right) \right]$$ = .7602, whence $d = 5.75''$. Otherwise go into Table IX with loss for 1000 ft. = $\frac{21.6}{2.5}$ = 8.64, and $8.64 \times r = 8.64 \times 7.37 = 63$, (7.37 being the mean r). Then opposite 5000 in the first column find nearest value to 63, which is 55 in the 6" column; showing the required pipe to be a little less than 6". # CHAPTER IV #### OTHER AIR COMPRESSORS # Art. 26. Hydraulic Air Compressors.—Displacement Type. Compressors of this type are of limited capacity and low efficiency, as will be shown. They are therefore of little practical importance. However, since they are frequently the subject of patents and special forms are on the market, their limitations are here shown for the benefit of those who may be interested. Omitting all reference to the special mechanisms by which the valves are operated, the scheme for such compressors is to admit water under pressure into a tank in which air has been trapped by the valve mechanisms. The entering water brings the air to a pressure equal to that of the water; after which the air is discharged to the receiver, or point of use. When the air is all out the tank is full of water, at which time the water discharge valves open, allowing the water to escape and free air to enter the tank again, after which the operation is repeated. Usually these operations are automatic. The efficiency of such compression is limited by the following conditions. Let P = pressure of water above atmosphere, or ordinary gage pressure, V = volume of the tank. Then $P + p_a$ = absolute pressure of air when compressed. The energy represented by one tank full of water is PV and by one tank full of free air when compressed to $P + p_a$ is $$p_a V \log_e \frac{P + p_a}{p_a} = p_a V \log_e r.$$ Therefore the limit of the efficiency is $$E = \frac{p_a V \log_e r}{PV} = \frac{p_a \log_e r}{P}.$$ But $P = p_1 - p_a$, where p_1 is the absolute pressure of the compressed air. Inserting this and dividing by p_a the expression becomes $$E = \frac{\log_e r}{r - 1} = \frac{\log_{10} r \times 2.3}{r - 1} \,. \tag{26}$$ Table VII is made up from formula (26). The practical necessity of low velocities for the water entering and leaving the tanks renders the capacity of such compressors low in addition to their low efficiency. Should the problem arise of designing a large compressor of this class an interesting problem would involve the time of filling and emptying the tank under the varying pressure and head. Since it is not likely to arise space is not given it. It is possible to increase the efficiency of this style of compressor by carrying air into the tank with the water by induced current or Sprengle pump action — a well-known principle in hydraulics. At the beginning of the action water is entering the tank under full head with no resistance, and certainly additional air could be taken in with the water. # Art. 27. Hydraulic Air Compressors.—Entanglement Type. A few compressors of this type have been built comparatively recently and have proven remarkably successful as regards efficiency and economy of operation, but they are limited to localities where a waterfall is available, and the first cost of installation is high. The principle involved is simply the reverse of the air-lift pump, and what theory can be applied will be found in Art. 33 on air-lift pumps. Fig. 8 illustrates the elements of a hydraulic air compressor. h is the effective water fall. H is the water head producing the pressure in the compressed air. t is a steel tube down which the water flows. S is a shaft in the rock to contain the tube t and allow the water to return. R is an air-tight hood or dome, either of metal or of natural rock, in which the air has time to separate from the water. A is the air pipe conducting the compressed air to point b is a number of small tubes open B at top and terminating in a throat or contraction, in the tube t. By a well-known hydraulic principle, when water flows freely down the tube t there will occur suction in the contraction. This draws air in through the tubes b, which air becomes entangled in the passing water in a myriad of small bubbles: these are swept down with the current and finally liberated under the dome R, whence the air pipe A conducts it away as compressed air. The variables involved practically defy algebraic manipulation, so that clear comprehension of the principles involved must be the guide to the proportions. Attention to the following facts is essential to an intelligent design of such a compressor. - 1. Air must be admitted freely—all that the water can entangle. - 2. The bubbles must be as small as possible. - 3. The velocity of the descending water in the tube tshould be eight or ten times as great as the relative ascending velocity of the bubble. The ascending velocity of the bubble relative to the water increases with the volume of the bubble, and therefore varies throughout the length of the tube, the volume of any one bubble being smaller at the bottom of the tube than at the top. For this reason it would be consistent to make the lower end of the tube t smaller than the top. Efficiencies as high as 80 per cent are claimed for some of these compressors, which is a result hardly to have been expected. The great advantage of this method of air compression lies in its low cost of operation and in its continuity. Mechanical compressors operated by the water power could be built for less first cost and probably with as high efficiency, but cost of operation would be much higher. ## Art. 28. Centrifugal Air Compressors. With the perfection of the steam turbine it has become practicable to deliver air at several atmospheres pressure through centrifugal machines. Such machines are not yet common, but doubtless in a few years they will become the standard machine where large volumes of air are needed at low and constant pressure. The simplicity, compactness and low first cost of such machines assure them a popularity. The theory of centrifugal fans or air compressors would involve matter not appropriate to the purpose of this volume and is therefore omitted. In testing centrifugal compressors or blowers the orifice measurement,
Art. 20, is the only practicable scheme. If the coefficients have not been determined for orifices sufficiently large to pass the volume of air, then more than one orifice can be placed in the orifice box. It is not necessary of course that these orifices all be of one size. The volume of air delivered and the efficiency of centrifugal fans and blowers is a matter little understood, seldom known, and often far from what is assumed or claimed. The remedy for this is to be found in intelligent use of the orifice, large and small; and for such purposes the determination of orifice coefficients such as shown in Table V should be extended to orifices all the way up to two feet in diameter in order to test very large ventilating fans. Some theoretic discussion of centrifugal fans can be found in Trans. Am. So. C. E., Vol. 51, p. 12. See also "Turbo Compressors," *Compressed Air*, June, 1909, p. 5364, and *Engineering Magazine*, Vol. 39, p. 237. # CHAPTER V #### SPECIAL APPLICATIONS OF COMPRESSED AIR In this chapter attention is given only to those applications of compressed air that involve technicalities — with which the designer or user may not be familiar, or by the discussion of which misuse of compressed air may be discouraged and a proper use encouraged. # Art. 29. The Return-Air System. In the effort to economize in the use of compressed air by working it expansively in a cylinder the designer meets two difficulties: first, the machine is much enlarged when proportioned for expansion; second, it is considerably more complicated; and third, unless reheating is applied the expansion is limited by danger of freezing. To avoid these difficulties it has been proposed to use the air at a high initial pressure, apply it in the engine without expansion, and exhaust it into a pipe, returning it to the intake of the compressor with say half of its initial pressure remaining. The diagram Fig. 9 will assist in comprehending the system. To illustrate the operation and theoretic advantages of the system assume the compressor to discharge air at 200 pounds pressure and receive it back through R at 100 pounds. Then the ratio of compression is only 2 and yet the effective pressure in the engine is 100 pounds. Evidently then with a ratio of compression and expansion of only 2 the trouble and loss due to heating are practically removed; and the efficiency in the engine even without a cut-off would be, by Eq. (15) 72 per cent. By the above discussion the advantages of the system are apparent, and where a compressor is to run a single machine, as for instance a pump, the advantage of this return-air system will surely outweigh the disadvantage of two pipes and the high pressure, but where one compressor installation is to serve various purposes such as rock drills, pumps, machine shops, etc., the system cannot be applied. There should be a receiver on each air pipe near the compressor. # Art. 30. The Return-Air Pumping System. Following the preceding article it is appropriate to mention the return-air pumping system. The economic principle involved is different from that of the return-air system in general. The scheme is illustrated in Fig. 10. It consists of two tanks near the source of water supply. Each tank is connected with the compressor by a single air pipe, but the air pipes pass through a switch whereby the connection with the discharge and intake of the compressor can be reversed, as is apparent on the diagram. In operation, the compressor discharges air into one tank, thereby forcing the water out while it is exhausting the air from the other tanks, thereby drawing the water in. The charge of air will adjust itself so that when one tank is emptied the other will be filled, at which time the switch will automatically reverse the operation. Fig. 10. The economic advantage of the system lies in the fact that the expansive energy in the air is not lost as in the ordinary displacement pump (Art. 31). The compressor takes in air at varying degrees of compression while it is exhausting the tank. The mathematical theory and derivation of formulas for proportioning this style of pump are quite complicated but interesting. Since the system is patented, further discussion would seem out of place. It will be found in Trans. Am. So. C. E., Vol. 54, p. 19. Art. 31. Simple Displacement Pump. First known as the Shone ejector pump. In this style of pump the tank is submerged so that when the air escapes it will fill by gravity. The operation is simply to force in air and drive the water out. When the tank is emptied of water, a float mechanism closes the compressed-air inlet and opens to the atmosphere an outlet through which the air escapes, allowing the tank to refill. Various mechanisms are in use to control the air valve automatically. The chief troubles are the unreliable nature of float mechanisms and the liability to freezing caused by the expansion of the escaping air. Some of the late designs seem reliable. The limit of efficiency of this pump is given by formula 15 and Table VI. The pump is well adapted to many cases where pumping is necessary under low lifts. In case of drainage of shallow mines and quarries, lifting sewerage, and the like, one compressor can operate a number of pumps placed where convenient; and each pump will automatically stop when the tank is uncovered and start again when the tank is again submerged. #### CHAPTER VI #### THE AIR-LIFT PUMP Art. 32. The air-lift pump was introduced in a practical way about 1891, though it had been known previously, as revealed by records of the Patent Office. The first effort at mathematical analysis appeared in the Journal of the Franklin Institute in July, 1895, with some notes on patent claims. In 1891 the United States Patent Office twice rejected an application for a patent to cover the pump on the ground that it was contrary to the law of physics and therefore would not work. Altogether the discovery of the air-lift pump served to show that at that late date all the tricks of air and water had not been found out. The air lift is an important addition to the resources of the hydraulic engineer. By it a greater quantity of water can be gotten out of a small deep well than by any other known means, and it is free from the vexatious and expensive depreciation and breaks incident to other deep well pumps. While the efficiency of the air lift is low it is, when properly proportioned, probably better than would be gotten by any other pump doing the same service. The industrial importance of this pump; the difficulty surrounding its theoretic analysis; the diversity in practice and results; the scarcity of literature on the subject; and the fact that no patent covers the air lift in its best form, seem to justify the author in giving it relatively more discussion than is given on some better understood applications of compressed air. ## Art. 33. Theory of the Air-lift Pump. An attempt at rational analysis of this pump reveals so many variables, and some of them uncontrollable, that there seems little hope that a satisfactory rational formula will ever be worked out. However, a study of the theory will reveal *tendencies* and better enable the experimenter to interpret results. In Fig. 11, P is the water discharge or reduction pipe with area a, open at both ends and dipped into the water. A is the air pipe through which air is forced into the pipe, P, under pressure necessary to overcome the head D. b is a bubble liberated in the water and having a volume O which increases as the bubble approaches the top of the pipe. The motive force operating the pump is the buoyancy of the bubble of air, but its buoyancy causes it to slip through the water with a relative velocity u. In one second of time a volume of water = au will have passed from above the bubble to below it and in so doing must have taken some absolute velocity s in passing the contracted section around the bubble. Equating the work done by the buoyancy of the bubble in ascending, to the kinetic energy given the water descending we have $$wOu = wau \, \frac{s^2}{2 \, g}$$ where $w =$ weight of water, or $$\frac{O}{a} = \frac{s^2}{2 \, g} \, . \tag{a}$$ $\frac{s^2}{2g}$ is the equivalent of the head h at top of the pipe which is necessary to produce s, therefore $h = \frac{O}{g}$. Suppose the volume of air, O, to be divided into an infinite number of small particles of air, then the volume of a particle divided by a would be zero and therefore s would be zero; but the sum of the volumes (=O) would reduce the specific gravity of the water, and to have a balance of pressure between the columns inside and outside the pipe the equation wO = wah must hold. Hence again $h = \frac{O}{a}$, showing that the head h depends only on the volume of air in the pipe and not on the manner of its subdivision. The slip, u, of the air relative to the water constitutes the chief loss of energy in the air lift. To find this apply the law of physics, that forces are proportional to the velocities they can produce in a given mass in a given time. The force of buoyancy wO' of the bubble causes in one second a downward velocity s in a weight of water wau. Therefore $$\frac{wO}{wau} = \frac{s}{g}.$$ Whence $u = \frac{O}{a} \frac{g}{s}$. But $\frac{O}{a} = \frac{s^2}{2g}$ as proved above. Therefore $$u = \frac{s}{2} = \sqrt{\frac{O}{a} \frac{g}{2}}.$$ (b) This shows that the slip varies with the square root of the volume of the bubble. It is therefore desirable to reduce the size of the bubbles by any means found possible. If $u = \frac{s}{2}$, then the bubble will occupy half the cross section of the pipe. This conclusion is modified by the effect of surface tension, which tends to contract the bubble into a sphere. The law and effect of this surface tension cannot be formulated nor can the volume of the bubbles be entirely controlled. Unfortunately, since the larger bubbles slip through the water faster than the small ones, they tend to
coalesce; and while the conclusions reached above may approximately exist about the lower end of an air lift, in the upper portion, where the air has about regained its free volume, no such decorous proceeding exists, but instead there is a succession of more or less violent rushes of air The losses of energy in the air lift are due chiefly to two causes: first, the slip of the bubbles, through the water, and second, the friction of the water on the sides of the pipe. As one of these decreases the other increases, for by and foamy water. reducing the velocity of the water the bubble remains longer in the pipe and has more time to slip. The best proportion for an air lift is that which makes the sum of these two losses a minimum. Only experiment can determine what this best proportion is. It will be affected somewhat by the average volume of the bubbles. As before said, any means of reducing this volume will improve the results. # Art. 34. Design of Air-lift Pumps. The variables involved in proportioning an air-lift pump are: — Q = volume of water to be lifted, h =effective lift from free water surface outside the discharge pipe, l = D + h =total length of water pipe above air inlet, D = Depth of submergence = depth at which air is liberated in water pipe measured from free water surface outside the discharge pipe. v_a = volume per second of free air forced into well, a =area of water pipe, A =area of air pipe, O = volume of the individual bubbles. The designer can control A, a, D+h and v_a but he has little control over O, and cannot foretell what D and Q will be until the pump is in and tested. When the pump is put in operation the free water surface in the well will always drop. What this drop will be depends first on the geology and second on the amount, Q, of water taken out. In very favorable conditions, as in cavernous limestone, very porous sandstone or gravel, the drop may be only a few feet, but in other cases it may be so much as to prove the well worthless. In any case it can be determined by noting the drop in the air pressure when the water begins flowing. If this drop is p pounds, the drop of water surface in the well is $2.3 \times p$ feet. Unless other and similar wells in the locality have been tested, the designer should not expect to get the best proportion with the first set of piping, and an inefficient set of piping should not be left in the well. The following suggestions for proportioning air lifts have proved safe in practice, but, of course, are subject to revision as further experimental data are obtained. (See Figs. 13 and 14.) Air Pipe. Since in the usually very limited space high velocities must be permitted we may allow a velocity of about 30 ft. per second in the air pipe. Submergence. The ratio $\frac{D}{D+h}$ is defined as the Submergence ratio. Experience seems to indicate that this should be not less than one-half; and about 60 per cent is a common rule of practice. Probably the efficiency will increase with the submergence. The cost of the extra depth of well necessary to get this submergence is the most serious handicap to the air-lift pump. Ratio $\frac{v_a}{Q}$. Let D = depth of submergence and h = effective lift = nD. Then the energy in the compressed air is $$p_a v_a \log_e \left(\frac{D+33.3}{33.3}\right)$$, $\frac{D+33.3}{33.3}$ being the ratio of compres- sion, = r, and the effective work in water lifted is $$wQh = 62.5 QnD.$$ If E be the efficiency of the system, then $$62.5 \times Q \times nD = E \times 2100 \, v_a \times 2.3 \, \log_{10} \, (r),$$ cubic foot units being used and common logs. Whence $$\frac{v_a}{Q} = \frac{1}{77.3} \frac{n}{E} \frac{D}{\log_{10} r}$$ (27) Several apparently well proportioned wells are on record, see Art. 37, in which D is from 350 to 500 feet, n about $\frac{2}{3}$ and E 40 to 50 per cent. Taking $n = \frac{2}{3}$ and E = 45 per cent, Eq. (27) reduces to $$\frac{v_a}{Q} = \frac{D}{50 \log_{10} r}.$$ (27a) From which the following table is computed. | h | D | l | $\frac{v_a}{Q}$ | h | D | ı | $\frac{v_a}{Q}$ | |------|-----|-------|-----------------|-----|-----|-----|-----------------| | | | 1.00 | 390 381 | 167 | 250 | 417 | 5.4 | | 6.6 | 10 | 16.6 | 1.8 | 200 | 300 | 500 | 6.1 | | 33. | 50 | 83.3 | 2.5 | 233 | 350 | 583 | 6.6 | | 66. | 100 | 166.0 | 3.4 | 267 | 400 | 667 | 7.2 | | 100. | 150 | 250.0 | 4.1 | 300 | 450 | 750 | 7.8 | | 133. | 200 | 333. | 4.8 | 333 | 500 | 833 | 8.4 | | | | | | 366 | 550 | 916 | 8.9 | This table is reproduced in the curve plate V. It should be used only with full recognition of the assumptions on which it is based, and with due regard to what follows about velocities in the water pipe. The table has been verified for h between 200 and 400 feet. For lower lifts it would be expected that a better efficiency could be obtained—the best data that can be found seem to indicate that such is the case. In consideration of this the dotted line on plate V may be a better guide than the full line. # Velocity in the Water Pipe. This is the factor that most affects the efficiency, but unfortunately, owing to the usual small area in the well, the velocity cannot always be kept within the limits desired. The complicated action and varying conditions in a well make the designer entirely dependent on the results of experience in fixing the allowable velocities in the discharge pipes. The velocity of the ascending column of mixed air and water should certainly be not less than twice the velocity at which the bubble would ascend in still water. This would probably put the most advantageous *least* velocity in any air lift at between five and ten feet, and this would occur where the air enters the discharge pipe. The velocity at any section of the pipe will be $$s = \frac{Q+v}{a},$$ where Q and v are the volumes of water and air respectively and a the effective area of the water pipe. s increases from bottom to top probably very nearly according to the formula $$s = v_a \left(1 - \frac{x}{l} \left[1 - \frac{1}{r} \right] \right) \tag{28}$$ where r = ratio of compression under running conditions, l = total length of discharge pipe above air inlet, x =distance down from top of discharge pipe to section where velocity is s. The formula (28) is based on the assumption that the volume of air varies as the ordinate to a straight line while ascending the pipe through length l. As the volume of each bubble increases in ascending the pipe, the velocity of the mixture of water and air should also increase in order to keep the sum of losses due to slip of bubble and friction of water a minimum; but for deep wells with the resultant great expansion of air the velocity in the upper part of the pipe will be greater than desired, especially if the discharge pipe be of uniform diameter. Hence it will be advantageous to increase the diameter of the discharge pipe as it ascends. The highest velocity (at top) probably should never exceed twenty feet per second if good efficiency is the controlling object. Good results have been gotten in deep wells with velocities about six feet at air inlet and about twenty feet at top. (See Art. 37.) Fig. 13 shows the proportions and conditions in an air lift at Missouri School of Mines. The flaring inlet on the bottom should never be omitted. Well-informed students of hydraulics will see the reason for this, and the arguments will not be given here. The numerous small perforations in the lower joint of the air pipe liberate the bubbles in small subdivisions and some advantage is certainly gotten thereby. No simpler or cheaper layout can be designed, and it has proved as effective as any. It is the author's opinion that nothing better has been found where submergence greater than 50 per cent can be had. ### Art. 35. The Air Lift as a Dredge Pump. The possibilities in the application of the air lift as a dredge pump do not seem to have been fully appreciated. This may be due to its being free from patents and therefore no one being financially interested in advocating its use. With compressed air available a very effective dredge can be rigged up at relatively very little cost and one that can be adapted to a greater variety of conditions than those in common use, as the following will show. #### Suggestions: Clamp the descending air pipe to the outside of the discharge pipe. Suspend the discharge pipe from a derrick and connect to the air supply with a flexible pipe (or hose). With such a rigging the lower end of the discharge pipe can be kept in contact with the material to be dredged by lowering from the derrick; the point of operation can be quickly changed within the reach of the derrick, and the dredge can operate in very limited space. In dredging operations the lift of the material above the water surface is usually small, hence a good submergence would be available. The depth from which dredging could be done is limited only by the weight of pipe that can be handled. ### Art. 36. Testing Wells with the Air Lift. The air lift affords the most satisfactory means yet found for testing wells, even if it is not to be permanently installed. Such a test will reveal, in addition to the yield of water, the position of the free water surface in the well at every stage of the pumping, this being shown by the gage pressures. However, some precautions are necessary in order properly to correct the gage readings for friction loss in the air pipe. The length of air pipe in the well and any necessary corrections to gage readings must be known. The following order of proceeding is recommended. At the start run the compressor very slowly and note the pressure p_1 at which the gage comes to a stand. This will indicate the submergence before pumping commences, since there will be practically no air friction and no water flowing at the point where air is discharged. Now suddenly speed up the compressor to its prescribed rate and again note the gage pressure p_2 before any discharge of water occurs.
Then $p_2 - p_1 = p_f$ is the pressure lost in friction in the air pipe. When the well is in full flow the gage pressure p_3 indicates the submergence plus friction, or submergence pressure $p_3 = p_f$. The water head in feet may be taken as $2.3 \times p$. Then, knowing the length of air pipe, the distance down to water can be computed for conditions when not pumping and also while pumping. #### Art. 37. Data on Operating Air Lifts. In Figs. 13 and 14 are shown the controlling numerical data of two air lifts at Rolla, Mo. These pumps are perhaps unusual in the combination of high lift and good efficiency. The data may assist in designing other pumps under somewhat similar circumstances. The figures down the left side show the depth from surface. The lower standing-water surface is maintained while the pump is in operation; the upper where it is not working. The broken line on the right shows, by its ordinate, the varying velocities of mixed air and water as it ascends the pipe. The pump Fig. 13 delivers 120 gallons per minute with a ratio $\frac{\text{Free air}}{\text{Water}} = 6.0$. The submergence is 58 per cent and $$\frac{\text{Net energy in water lift}}{pv \log_e r} = 50 \text{ per cent.}$$ The pump Fig. 14 delivers 290 gallons per minute with a ratio $\frac{\text{Free air}}{\text{Water}} = 5.2$. Submergence = 64 per cent and efficiency = $\frac{\text{Net energy in water lift}}{pv \log_e r} = 45 \text{ per cent.}$ The volumes of air used in the above data are the actual volumes delivered by the compressor. The volumetric efficiencies of the compressors by careful tests proved to be about 72 per cent. #### CHAPTER VII #### EXAMPLES AND EXERCISES Art. 38. The following combined example includes a solution of many of the types of problems that arise in designing compressed-air plants. The student will find it well worth while to become familiar with every step and detail of the solutions, which are given more fully than would be necessary except for a first exercise. **Example 26.** An air-compressor plant is to be installed to operate a mine pump under the following specifications: - 1. Volume of water = 1500 gallons per minute. - 2. Net water lift = 430 feet. - 3. Length of water pipe = 1280 feet. - 4. Diameter of water pipe = 10 inches. - 5. Length of air pipe = 1160 feet. - 6. Atmospheric pressure = 14.0 pounds per sq. in. - 7. Atmospheric temperature 50° F. - 8. Loss in transmission through air line = 8 per cent of the $pv \log_e r$ at compressor. - 9. Mechanical efficiency of the pump = 90 per cent as revealed by the indicators on the air end and the known work delivered to the water. - 10. Average piston speed of pump = 200 feet per minute. - 11. Mechanical efficiency of the air compressor = 85 per cent as revealed by the indicator cards. - 12. R.P.M. of air compressor = 90 and volumetric efficiency = 82 per cent. - 13. In compression and expansion n = 1.25. Preliminary to the study of the problems involving the air we must determine: (a) Total pressure head against which the pump must work. By the methods taught in hydraulics the friction head in a pipe 10 inches in diameter, 1280 feet long, delivering 1500 gallons per minute, is about 20 feet. Therefore the total head = 450 feet. (b) Total work (W₁) delivered to the water in one minute. $W_1 = 1500 \times 8\frac{1}{3} \times 450 = 5,625,000 \text{ foot-pounds.}$ (c) Total work (W) required in air end of pump. By specification 9, $W = \frac{W_1}{.90} = 6,250,000$ ft.-lbs. = 190 horse power. For the purpose of comparison, two air plants will be designed; the first, designated d, as follows: (d) Compression single-stage to 80 pounds gage. No reheating. No expansion in air end of pump. Pump direct acting without fly wheels. Determine the following: (d1) Air pressure at pump and pressure lost in air pipe. By specification 8 and Eq. (25), $$\frac{92}{100} = \frac{\log \frac{p_2}{14}}{\log \frac{80+14}{14}}, \text{ or } \log \frac{p_2}{14} = .92 \log 6.72.$$ Whence, using common logs, $\log \frac{p_2}{14} = 0.76118$ and $$p_2 = 80.78.$$ Then lost pressure = $p_1 - p_2 = 94 - 80.78 = 13.22 = f$, and gage pressure at pump = 80 - 13.22 = 66.78. (d2) Ratio between areas of air and water cylinders in pump. The pressure due to 450 feet head = $450 \times .434 = 194.3$, say 195 pounds, per sq. in.; and since pressure by area must be equal on the two ends, $\frac{\text{area air end}}{\text{area water end}} = \frac{195}{66.78} = 3 \text{ nearly}$. (d3) Volume of compressed air used in the pump. Cubic feet per minute: Evidently from solution (d2) the volume of compressed air used in the pump will be three times that of the water pumped, or $v = \frac{1500}{7.48} \times 3 = 601.6$ cu. ft. per min. (d4) Diameters of air cylinder and of water cylinder. Since the piston speed is limited to 200 feet per min. (spec. 10) and the volume is 1500 gallons, we have, when all is reduced to inch units and letting a = area of water cylinder, $a \times 200 \times 12 = 1500 \times 231$. Whence a = 144 sq. in. which requires a diameter of about $13\frac{5}{3}$ inches. The area of air cylinder is by d_2 three times that of the water cylinder, which gives a diameter $23\frac{1}{2}$ inches for the air cylinder. (d5) Volume of free air. From d1, r at the pump = 5.76. Therefore $v_a = 601.6 \times 5.76 = 3465$ cu. ft. per min. (d6) Diameter of air pipe. The mean r in the air pipe is $\frac{5.76 + 6.72}{2} = 6.24$. Using this in Eq. (21) with c = .06, we get d = 5 inches. Or using plate III with $r \times 13.22 \div 1.160$ or $r \times \frac{13.22}{1.160}$ as vertical ordinate and 3465 as horizontal ordinate, the intersection falls near the 5-inch line. (d7) Horse power required in steam end of compressor. By table II the weight per foot of free air is .07422 pound per cu. ft. Total weight of air compressed = Q $Q = .07422 \times 3465 = 257$ pounds per min. In table I opposite r = 6.72 in column 9 find by interpolation .3736. Then Horse power = $2.57 \times .3736 \times (460 + 50) = 489.6$ in air end = $\frac{489.6}{.85} = 576$ in steam end. The second plant will be designated by the letter e and will be two-stage compression to 200 pounds gage at air compressor, will be reheated to 300° at the pump and used expansively in the pump; the expansion to be such that the temperature will be 32° at end of stroke. (e1) Air pressure at pump. Apply Eq. (25) as in d1. In this case r_1 (at the compressor) = 15.3 and r_2 (at the pump) = 12.3. Therefore pressure at the pump = $12.3 \times 14 = 172.3$ and the lost pressure = 214 - 172.3 = 41.7 = f. (e2) Point of cut-off in air end of pump = fraction of stroke during which air is admitted. By Eq. (11) viz. $\frac{t_2}{t_1} = \left(\frac{v_1}{v_2}\right)^{n-1}$, putting in numbers we get $\frac{492}{760} = \left(\frac{v_1}{v_2}\right)^{25}$ whence $\frac{v_1}{v_2} = .176$, which is the point of cut-off, and $v_2 = 5.68 \ v_1$. Or go into table I in column 5, find the ratio $\frac{760}{492} = 1.545$, and in same horizontal line in column 3 find .176. (e3) Volume of compressed hot air admitted to air end of pump. Apply Eq. (9) viz. Work = $$\frac{p_1v_1 - p_2v_2}{n-1} + p_1v_1 - p_av_2$$. In this we have Work = 6,250,000, $v_2 = 5.68 \ v_1$, $p_1 = 214$, n-1=.25, $p_a = 14$, and p_2 must be found by Eq. (11a), or it may be gotten from table I by noting that for a temperature ratio of 1.545 the pressure ratio is 8.8 and $\frac{1}{r} = .1136$, therefore $p_2 = .1136 \times 172.3 = 19.57$. This would give gage pressure = 5.57. Inserting these numerals in Eq. (9) we get $$6,250,000 = 144 \ v_1 \left(\frac{172.3 - 5.68 \times 19.57}{.25} + 172.3 - 14 \times 5.68 \right).$$ Whenever, $= 128.6 \text{ su, ft, per min}$ Whence $v_1 = 128.6$ cu. ft. per min. (e4) Diameter of air cylinder of pump when air and water pistons are direct connected. Since expansion ratio is 5.68 (see e2) and the volume before cut-off is 128.6, the total piston displacement is 128.6 \times 5.68 = 730.8 cu. ft. per min. When the air and water pistons are direct connected they must travel through equal distances, therefore the air piston travels through 200 ft. per min. (spec. 10). Then if a =area of piston in sq. ft. we have $$200 \ a = 730.8$$ and $a = 3.654 \ \text{sg. ft.}$ By table X the diameter is 26 inches nearly. (e5) Volume of cool compressed air used by pump, cu. ft. per min. By e3 the volume of hot compressed air is 128.6, and since under constant pressure volumes are proportional to absolute temperatures, we have $$\frac{v}{128.6} = \frac{510}{760}$$. Whence $v = 86.3$ cu. ft. per min. (e6) Volume of free air used. From e1 the ratio of compression at the pump is 12.3 and from e5 the volume of cool compressed air is 86.3, therefore the volume of free air is $86.3 \times 12.3 = 1061.6$. (e7) Diameter of air pipe. The r for Eq. (21) is $$\frac{12.3 + 15.3}{2} = 13.8$$. Applying Eq. (21) with coefficient c = .07 we have $$d = \left(\frac{.07 \times 1160 \times \left(\frac{1061.6}{60}\right)^2}{41.7 \times 13.8}\right)^{\frac{1}{5}} = 2.13 \text{ inches.}$$ (e8) Horse power required in steam end of compressor. By d7 the weight per cu. ft. of free air is .07422 and by e6 the volume of free air compressed is 1061.6. Therefore the total weight compressed is .07422 \times 1061.6 = 78.8 pounds per min., and the initial absolute temperature is 510. In the two-stage compression $r_2 = 15.3$, and assuming equal work in the two stages the $r_1 = \sqrt{15.3} = 3.91$ nearly. (See Art. 12.) Then going into Table I with r = 3.91 in column 9 find .2525. Hence horse power = .2525 \times 78.8 \times 510 = 101.5 for one stage, and for the two stages 101.5 \times 2 = 203, and (spec. 11) $\frac{203}{.85} = 238.8$ horse power in steam end. (e9) Diameter of air compressor cylinders, assuming 3-foot strokes and $2\frac{1}{2}$ -inch piston rods, equal work in the two cylinders and allowing for volumetric efficiency. By e6 the free air volume is 1061.6 and
(spec. 12) the volumetric efficiency = 82 per cent. Therefore the piston displacement = $\frac{1061.6}{.82}$ = 1294.6 cu. ft. per min. By spec. 12 the R.P.M. = 90. Therefore the displacement per revolution = 14.7, nearly, for the low-pressure cylinder. Add to this the volume of one piston rod length of 3 feet, which is $3 \times .0341 = 0.1023$. Whence the volume per revolution must be 14.8 or for one stroke 7.4. Whence the area = $\frac{7.4}{3}$ = 2.466 sq. ft. By Table X the diameter is $21\frac{1}{4}$ inches nearly for low-pressure cylinders. The high-pressure cylinder must take in the net volume of air compressed to r = 3.91 (see e8). Therefore the net volume per revolution $= \frac{1061.6}{90 \times 3.91} = 3.02$. Add one piston rod volume and get 3.12 per revolution or 1.56 per stroke and an area of 0.53 sq. ft. By Table X this requires a diameter of 10 inches nearly. (e10) Temperature of air at end of each compression stroke. In Table I the ratio of temperatures for r=3.91 is 1.313. Hence the higher temperature $=510\times1.313=669$ absolute =209 F. #### EXERCISES - τ . (a) Assuming isothermal conditions, how many revolutions of a compressor 16" stroke, 14" diameter, double acting, would bring the pressure up to 100 lbs. gage in a tank 4 feet diam. \times 12 feet length, atmospheric pressure = 14.5 per sq. in.? - (b) What would be the horse power of such a compressor running at 100 R.P.M.? - (c) What would be the horse power if the compression were adiabatic? - (d) What weight of air would be passed per minute when R.P.M. = 100 and $T = 60^{\circ}$ F.? - 2. The air end of a pump (operated by compressed air) is 20'' diam. by 30'' stroke, R.P.M. = 50, cut-off at $\frac{1}{4}$ stroke, free air pressure = 14.0, $T_a = 60^{\circ}$, compressed air delivered at 75 lbs. gage, $T = 60^{\circ}$ and n = 1.41. - (a) Find work done in horse power. - (b) Find weight handled per minute. - (c) Find temperature of exhaust (degrees F). - 3. With atmospheric pressure, $p_a = 14.7$, and $T_a = 50^{\circ}$, under perfect adiabatic compression, what would be the pressure (gage) and temperature (F.) when air is compressed to - (a) $\frac{1}{2}$ its original volume? - (b) $\frac{1}{4}$ its original volume? - (c) $\frac{1}{6}$ its original volume? - (d) $\frac{1}{8}$ its original volume? - (e) $\frac{1}{10}$ its original volume? - 4. With $p_a = 14.1$ and $T_a = 60^{\circ}$ what will be the pressure of a pound of air when its volume = 3 cu. ft.? - 5. What would be the theoretic horse power to compress 10 pounds of air per minute from $p_a = 14.3$ and $T_a = 60^{\circ}$ to 90 pounds gage? - (a) Compression isothermal. - (b) Compression adiabatic. - 6. Find the point of cut-off when air is admitted to a motor at 250° F. and expanded adiabatically until the temperature falls to 32° F. - 7. What is the weight of 1 cu. ft. of air when $p_a = 14.0$ and $T_a = -10^{\circ}$? - 8. A compressor cylinder is 20" diam. by 26" stroke double acting. Clearance = 0.8%, piston rod = 2", R.P.M. = 100, atmospheric pressure, $p_a = 14.3$, atmospheric temperature = $T_a = 60^{\circ}$ F., and gage pressure = 98 lbs. Determine the following: - (a) Compression isothermal. - 1a. Volume of free air compressed, cu. ft. per min. - 2a. Volume of compressed air, cu. ft. per min. - 3a. Work of compression, ft.-lbs. per min. - 4a. Lbs. of cooling water, $T_1 = 50^{\circ}$, $T_2 = 75^{\circ}$. - (b) n = 1.25 and air heated to 100° while entering. - 1b. Volume of free air compressed per min. - 2b. Volume of cool compressed air per min. - 3b. Work done in compression. - 4b. Temperature of air at discharge. - 9. The cylinder of a compressed-air motor is $18'' \times 24''$, the R.P.M. = 90, air pressure 100 pounds gage. In the motor the air is expanded to four times its original volume (cut-off at $\frac{1}{4}$), with n = 1.25. - (a). Determine the horse power and final temperature when initial $T = 60^{\circ}$ F. - (b). Determine the horse power and final temperature when initial $T = 212^{\circ}$ F. - 10. Observations on an air compressor show the intake temperature to be 60° F., the r=7 and the discharge temperature = 300 F. What is the n during compression? Hint. Use Eq. (11a) with n unknown. - II. In a compressed-air motor what percentage of power will be gained by heating the air before admission from 60° to 300° F.? - 12. If air is delivered into a motor at 60° F. and the exhaust temperature is not to fall below 32° F., what ratio of expansion can be allowed? What could be allowed if initial temperature were 300° ? What would be the ratio of work gotten in the two cases assuming n = 1.25? - 13. A compressed-air locomotive system is estimated to require 4000 cu. ft. per min. of free air compressed to 500 pounds gage in three stages with complete cooling between stages. Assume n=1.25, $p_a=14.5$, $T_a=60^\circ$, Vol. Eff. = 80 per cent, Mechanical Eff. = 85 per cent and R.P.M. = 60. Compute the volume of piston stroke in each of the three cylinders and the total horse power required of the steam end. 14. A compressor is guaranteed to deliver 4 cu. ft. of free air per revolution at a pressure of 116 (absolute). To test this the compressor is caused to deliver into a closed system consisting of a receiver, a pipe line and a tank. Observed conditions are as follows: | | Receiver. | Pipe. | Tank. | |--|---------------|---------------------------------------|--| | Pressures at start (ab.). Temperatures at start (F.). Pressures at end (ab.) Temperatures at end (F.) Volumes (cu. ft.). | 60.0
116.0 | 14.5
60.0
116.0
90.0
10.0 | 14.5
60.0
116.0
60.0
100.0 | How many revolutions of the compressor should produce . this effect? - 15. Find the discharge in pounds per minute through a standard orifice when d = 2'', i = 5'', $t = 600^{\circ}$ and $p_a = 14.0$. - 16. What diameter of orifice should be supplied to test the delivery of a compressor that is guaranteed to deliver 1000 cu. ft. per min. of free air? - 17. What is the efficiency of transmission when air pressure drops from 100 to 90 pounds (gage) in passing through a pipe system? - 18. A compressor must deliver 100 cu. ft. per min. of compressed air at a pressure = 90 pounds, gage, at the terminus of a pipe 3000 ft. long and 3" diameter. $p_a = 14.4$, $T_a = 60^{\circ}$ F. - (a) Assuming a Vol. Eff. = 75 per cent, what must be the piston displacement of the compressor? - (b) What pressure is lost in transmission? - (c) What horse power is necessary in steam end of compressor if n = 1.25 and the mechanical efficiency = 85 per cent? - (d) What would be the efficiency of the whole system if air is applied in the motor without expansion, the efficiency to be reckoned from steam engine to work done in motor? - 19. It is proposed to convey compressed air into a mine a distance of 5000'. The question arises: Which is better, a 3" or a 4" pipe? Compare the propositions financially, using the following data: Nominal capacity of the plant = 1000 cu. ft. free air per min., Vol. Eff. of compressor = 80 per cent, n=1.25 gage pressure at compressor = 100, weight of free air $w_a=.074$, $p_a=14.36$, weight of 3" pipe = 7.5 and of 4" pipe = 10.7 pounds per foot. Cost of pipe in place = 4 cents per pound. Cost of one horse power in form of $pv \log r$ for 10 hours per day for one year = \$150. Plant runs 24 hours per day. Rate of interest = 6 per cent. - 20. Air enters a 4" pipe with 60 feet velocity and 80 pounds gage pressure; the air pipe is 1500 feet long; $p_a = 14.7$. - (a) Find the efficiency of transmission. - (b) Find horse power delivered at end of pipe in form $pv \log r$ when $T = 60^{\circ}$ F. - (c) Find horse power delivered at end of pipe in form $P_q \times v$. - 21. An air pipe is to be 2000 feet long and must deliver 50 horse power at the end with a loss of 5 per cent of the $pv \log r$ as measured at compressor. The pressure at compressor is 75 pounds gage. $p_a = 14.7$. Find diameter of pipe. - 22. Modify 21 to read: 50 horse power . . . with loss of 5 per cent of the energy in form $P_g \times v$, where P_g is gage pressure, and find diameter of air pipe. - 23. In case 21 let pressure at compressor be 250 pounds gage and find diameter of air pipe. - 24. The air cylinder of a compressed-air pump is 20'' diam. by 30'' stroke. The machine is double acting and makes 50 R.P.M. The cut-off is to be so adjusted that the temperature of exhaust shall be 30° . $p_a = 14.5$ and the r at pump = 8. - (a) Find cut-off when initial temperature is 60° F. - (b) Find cut-off when initial temperature is 250° F. - (c) Find horse power in case (a). - (d) Find horse power in case (b). - (e) In case (a) find efficiency in applying the $pv \log r$ of cool air. - (f) In case (b) find efficiency in applying the $pv \log r$ of cool air. - (g) Find the volumes of free air used in cases (a) and (b). - 25. A compound mine pump is to receive air at 150 lbs. gage; this is to be reheated from 60° to 250° F., let into the H.P. cylinder of the pump and expanded until the temperature is 32°, then exhausted into an interheater where the temperature is again brought to 250°. It then goes into the L.P. cylinder and is expanded down to atmospheric pressure = 14.5, (ab.). - (a) Find point of cut-off in each cylinder, n = 1.25. - (b) If the air is compressed in two stages with n = 1.25, what will be the efficiency of the system, neglecting friction losses? - (c) How much free air will be required to operate the pump if it is to deliver 250 horse power, assuming the efficiency of the pump to be 80 per cent reckoned from the work in the air end? - (d) If the pump strokes be 60 per min. and 60'' long, fix diameters of air cylinders in case (c). - **26.** Compute the horse power of a motor
passing one pound of air per minute admitted at 200° F. and 116.0 pounds (ab.) r = 8, the air to be expanded until pressure drops to 29 pounds (ab.), r = 2. - 27. A pump to be operated by compressed air must deliver 1000 gallons of water per minute against a net head of 200' through 800' of 10" pipe. The pump is double acting, 30" stroke, 50 strokes per min. The air is reheated to 275° F. before entering the pump. The cut-off is so adjusted that with n=1.25 the temperature at exhaust = 36° F. Mec. Effi. of pump = 80%. Air pressure at compressor = 90 pounds gage, $p_a=14.4$. Length of air pipe = 2000'. Permissible loss in transmission = 7 per cent of the $pv \log r$ at compressor. Mec. Effi. of compressor=85 per cent. Vol. Effi. = 80 per cent. - (a) Proportion the cylinders of the pump. - (b) Determine the volume of free air used. - (c) Determine the diameter of air pipe. - 28. Compare the volume displacement of two air compressors, one at sea level and the other at 12,000 feet elevation; the compressors to handle the same weight of air. - 29. (a) An exhaust pump has an effective displacement of 3 cu. ft. per revolution. How many revolutions will reduce the pressure in a gas tank from 30 to 5 pounds absolute? Volume of tank = 400 cu. ft. when $p_a = 14.7$? - (b) If the pump is delivering the gas under a constant pressure of 30 pounds, what is the maximum rate of work done by the pump foot pounds per revolution? ## PLATES AND TABLES #### NOTES ON TABLE I. The table is the solution of formulas 11, 11a, 8a and 1a. When the weight of air passed and its initial temperature are known, the table covers all conditions including elevation above sea level, reheating, and compounding. In compounding, either compression or expansion, the same weight goes through each cylinder. Then knowing the initial t and the r for each cylinder, find from the table the work done in each cylinder and add. Usually the r and t are assumed the same for each cylinder — then take out the work for one stage and multiply by the number of stages. The table does not include friction in the machine nor the effect of clear- ance in expansion motors. The table is equally applicable to compression or expansion provided the correct r be taken in cases of expansion. Example. Air is received at such a pressure that r = 8. What should be the cut-off in order that the temperature drop from 60° to 32° F.? Expansion adiabatic. The ratio of temperatures is 1.057, which by linear interpolation corresponds to a volume ratio of .871 or cut-off at about $\frac{7}{8}$. What would be the pressure at exhaust? The two ratios above correspond to a $\frac{1}{r} = .825$. Therefore the final pressure is $.825 \times \text{initial pressure}$. To find the foot-pounds of work per pound of air compressed multiply the number opposite the r in column 7, 8 or 11 as the case may be by the absolute initial temperature, t. To find the weight compressed, go into Table II with known atmos- pheric conditions and the cubic feet capacity of the machine. To find the horse power per hundred pounds of air passed per minute, multiply the number opposite r in column 9, 10 or 12 as the case may be by the absolute lower temperature, t. ### TABLE I. GENERAL TABLE RELATING TO AIR COM-PRESSION AND EXPANSION | | | | F | RESS | MOI | AND E. | XPANSI | DIA | | | | |----------------------|---|--------------------|---------------|-------------------------|-------------------|----------------|--------------|---------|------------|--|----------------------------------| | ī | | | BY W | D | | | Work Fac | tor. | | Work F | | | | 1 | 1 | | Ratio | | Air Hea | ated by Co | | ion. | for Isoth | | | g | ter . | Rati | | Less | | | | | | Compres | ssion. | | ssic | Grea
Cool | Les | | peratu | | | | | | | 001 | | ores. | 000 | Grea
Volur | | Temp | | K = 53 | 17-11 | | Fac- | Direct of | r r | | m | to to Ain | Ten | | tures | | * | n-1 | tor pe | | J. Dr. | M | | 13 | SS | Chan | | solute. | | 1 / n | 1 -1 | Pound | - | log X | tor | | Jo | or Expansion
f Less to Gre
me — Air Co | gi- | T | | n-1 | r | n-1 | Minute | | or K for | ac s. r | | Ratio of Compression | tio of Less to | $\frac{v_2}{} = ($ | $\frac{1}{n}$ | to , | | Factor K | for one | - | <u>K</u> . | K= 53.17 loger
Factor K for
one pound. | H.P. Factor per
Lbs. per Min. | | Ra | Vo | v_1 | (1) | $\frac{t_2}{t_1} = (r)$ | , | pou | | acco De | 330 | Ha o | H.H | | | or Expansion. Ratio of Less to Greater Volume — Air Cool. | | 0.3 | | | | | | | × | K | | | | n = | n = | n = | n = | n=1.25 | n = 1.41 | n = | n = | | | | | | 1.25 | 1.41 | 1.25 | 1.41 | | | 1.25 | 1.41 | | 330 | | r | I | v_2 | v_2 | 12 | 12 | FtLbs. | FtLbs. | H.P. | H.P. | FtLbs. | H.P. | | 1 | r | v_1 | v_1 | t_1 | t_1 | TtLDS. | 101103. | | | | 4 | | 1 | | | T 000 | | T 600 | | 0.0 | _ | 0 | 0.6 | .0 | | I | 1.0000 | | 1.000 | 1.000 | | 0.0 | 0.0
5.140 | .0 | .0155 | 5.068 | .0153 | | I. | | .927 | ·935 | 1.019 | | 5.131
9.863 | 9.932 | | .0301 | 9.694 | .0293 | | 1 | 1 | .812 | | 1.054 | | | | 1 | | 13.950 | .0422 | | I. | 0 | .764 | .787 | 1.054 | | 14.329 | 14.450 | | | 17.890 | .0542 | | 1. | | | | 1.085 | | 22.465 | 22.827 | | | 21.559 | .0653 | | | 6 .6250 | | | 1.100 | | | 26.704 | | | 24.991 | .0757 | | | | | | 1.112 | | 29.775 | 30.417 | .0002 | | 28.214 | .0855 | | I. | 8 .5555 | | | 1.125 | | 33.178 | 33.985 | . 1005 | | 31.252 | .0947 | | | .9 .5263 | | | 1.137 | | 36.421 | 37.422 | - | | 34.127 | . 1034 | | | 0 .5000 | | | 1.149 | | 39.530 | 40.733 | | | 36.855 | .1117 | | | 1 .4762 | | | 1.160 | | 42.536 | 43.897 | | | 39.450 | .1196 | | 1 | 2 .4545 | | | 1.171 | 1 1 1 1 1 1 1 1 1 | | 46.988 | | | 41.912 | .1270 | | | 3 .4348 | | | | 1.273 | 48.199 | 49.970 | | | 44.287 | .1342 | | | 4 .4166 | | .537 | 1.191 | | 50.884 | 52.878 | | | 46.548 | .1411 | | 2 | . 4000 | - | 1 | 1.202 | 1 | | 55.676 | .1620 | . 1687 | 48.720 | . 1476 | | 2 | .6 .3846 | | | 1.211 | | | 58.402 | | | 50.805 | .1539 | | | .7 .3704 | | | 1.220 | | | 61.054 | .1771 | . 1850 | 52.811 | .1600 | | | .8 .3571 | | .481 | 1.229 | 1.348 | 60.800 | 63.651 | . 1843 | . 1929 | 54.745 | . 1659 | | | .9 .3448 | | | 1.237 | | | 66.175 | | | 56.612 | .1715 | | | .0 .3333 | | | 1.246 | | | 68.626 | .1979 | .2080 | 58.414 | .1770 | | | .1 .3226 | | .448 | 1.254 | 1.388 | 67.499 | 71.158 | . 2045 | .2156 | 60.157 | . 1823 | | | .2 .3125 | | .438 | 1.262 | 1.401 | 69.626 | 73.400 | | | 61.845 | .1874 | | | .3 .3030 | | | 1.270 | 1.414 | 71.700 | 75.686 | .2173 | | 63.481 | .1924 | | 3 | .4 .2941 | .376 | | 1.277 | | 73.720 | 77.936 | | | 65.087 | .1972 | | 3 | .5 .2857 | .367 | .411 | 1.285 | 1.438 | 75.688 | 80.131 | | | 66.610 | .2019 | | 3 | .6 .2778 | .359 | | 1.292 | 1.450 | | 82.307 | | | 68.108 | .2064 | | 3 | .7 .2703 | | | 1.299 | | | 84.411 | | | 69.564 | .2108 | | 3 | .7 .2703
.8 .2632 | 1 | | 1.306 | | | 86.496 | | | 70.982 | .2151 | | 3 | .9 .2502 | | 1 | 1.313 | | | 88.544 | - | | 72.364 | .2193 | | | .0 .2500 | | | 1.319 | | | 90.510 | .2574 | .2743 | 73.710 | .2234 | | | .1 .2439 | | | 1.326 | | | 92.472 | .2627 | .2802 | 75.023 | .2274 | | 4 | .2 .2381 | .317 | | 1.332 | | | 94.434 | 1 | | 76.304 | .2312 | | 4 | .3 .2326 | | | 1.339 | | | 96.346 | .2729 | | 77.555 | .2350 | | | .4 .2273 | | | 1.345 | | | 98.202 | .2779 | 2976 | 78.776 | .2387 | | | .5 .2222 | | | 1.351 | | | 100.012 | | | 79.972 | .2424 | | | .6 .2174 | | 1 00 | 1.357 | 1.557 | | 101.823 | | | 81.141 | .2459 | | 4 | .7 .2128 | | | | 1.566 | | 103.616 | .2922 | | 82.284 | .2494 | | 4 | .8 .2083 | . 285 | 328 | 1.368 | 1.570 | 97.966 | 105.371 | . 2900 | .3193 | 83.404 | .2528 | | - | | | | | | | | | | | | | I | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |---|------------|--------|-------|-------|------------|-------|---------|-------------------|--------|----------------|------------------|-------| | 1 | 4.9 | .2041 | . 280 | .324 | 1.374 | 1.586 | 99.481 | 107.109 | .3015 | .3246 | 84.500 | .2561 | | 1 | 5.0 | .2000 | .276 | .319 | 1.380 | 1.595 | 100.943 | 108.811 | | .3297 | 85.574 | .2593 | | 1 | 5.1 | .1961 | .272 | | | | 102.405 | 110.493 | 1 | .3348 | 86.627 | | | 1 | 5.2 | .1923 | .267 | | | | 103.841 | 112.157 | | .3398 | 87.660 | | | | 5·3
5·4 | .1887 | .263 | | | | 105.260 | 113.830 | | ·3449
·3498 | 88.673
89.666 | | | 1 | 5.5 | .1818 | .256 | | | | 108.013 | 117.010 | | .3546 | 90.642 | | | 1 | 5.6 | .1786 | | | | | 109.353 | 118.570 | | .3593 | 91.600 | | | ı | 5.7 | .1754 | .248 | .291 | 1.416 | 1.657 | 110.683 | 120.114 | | .3640 | 92.541 | | | 1 | 5.8 | .1722 | .245 | | | | 112.003 | 121.632 | 000 | .3686 | 93.466 | | | 1 | 5.9 | .1695 | .242 | | | | 113.305 | 123.150 | .3433 | | 94.375 | | | | 6.0
6.1 | . 1667 | .238 | | | | 114.581 | 124.640 | .3472 | .3822 | 95.271 | | | 1 | 6.2 | .1613 | .232 | | | | 117.080 | 127.576 | 3510 | .3866 | 96.147 | | | 1 | 6.3 | .1587 | .229 | | | | 118.303 | 129.030 | | .3910 | 97.863 | | | 1 | 6.4 | . 1562 | .226 | .268 | 1.449 | 1.713 | 119.573 | 130.466 | . 3622 | .3953 | 98.700 | | | 1 | 6.5 | .1538 | .223 | | | | 120.723 | 131.880 | . 3658 | .3997 | 99.524 | .3016 | | 1 | 6.6 | .1515 | .221 | | | | 121.920 | 133.300 | | | 100.336 | | | ı | 6.7 | .1492 | .219 | | | | 123.063 | 134.710 | | | 101.134 | | | 1 | 6.9 | .1471 | .216 | | | | 124.205 | 136.090 | | | 101.920 | | | 1 | 7.0 | .1428 | .211 | | | | 126.492 | 138.800 | | | 103.465 | | | 1 | 7.1 | .1408 | .208 | | | | 127.608 | 140.120 | .3867 | .4246 | 104.219 | .3158 | | 1 | 7.2 | .1389 | . 206 | | | | 128.708 | 141.430 | | | 104.963 | | | | 7.3 | .1370 | . 204 | | | | 129.789 | 142.710 | | .4327 | 105.696 | .3203 | | 1 | 7.4 | .1351 | .202 | | | | 130.878 | 143.979 | . 3966 | | 106.420 | | | ı | 7.5 | .1333 | .199 | | | | 131.941 | 145.239 | | | 107.133 | | | L | 7.6 | .1316 | .197 | | | | 132.995 | 146.489 | | | 107.837 |
 | ı | 7.8 | .1282 | .193 | | | | 135.063 | 148.976 | | | 100.539 | | | L | 7.9 | .1266 | .191 | | | | 136.001 | 150.217 | | | 109.896 | | | | 8.0 | .1250 | . 189 | | | | 137.110 | 151.427 | .4155 | .4589 | 110.565 | | | | 8.1 | .1236 | . 188 | | | | 138.111 | 152.633 | | | 111.225 | | | ı | 8.2 | .1220 | .186 | | | | 139.093 | 153.823 | | | 111.875 | | | | 8.3 | .1205 | . 184 | | | | 140.076 | 155.010 | .4245 | | 112.522 | | | | 8.5 | .1176 | .180 | -11 | - | | 142.017 | 157.348 | | | 113.788 | | | В | 8.6 | .1163 | .179 | | | | 142.974 | 158.508 | .4333 | | 114.410 | | | | 8.7 | .1149 | .177 | .215 | 1.541 | 1.873 | 143.931 | 159.658 | .4362 | .4838 | 115.023 | .3487 | | | 8.8 | .1136 | .176 | .214 | 1.545 | 1.879 | 144.862 | 160.800 | .4390 | .4873 | 115.633 | .3504 | | | 8.9 | .1124 | .174 | .212 | 1.548 | 1.885 | 145.780 | 161.927 | .4418 | .4906 | 116.233 | .3522 | | | 9.0 | .1111 | .172 | | | | 146.700 | 163.041 | | | 116.827 | | | | 9.1 | .1099 | .171 | | | | 147.627 | 164.147 | | | 117.415 | | | | 9.3 | .1072 | .168 | | | | 149.554 | 166.334 | | | 117.990 | | | | 9.4 | . 1064 | .167 | | 1 12 2 2 2 | | 150.312 | 167.431 | | | 119.138 | | | 1 | 9.5 | . 1058 | .165 | . 202 | 1.569 | .921 | 151.188 | 168.520 | .4582 | .5107 | 119.702 | .3627 | | | 9.6 | .1042 | . 164 | | | | 152.066 | The second second | | | 120.259 | | | | 9.7 | . 1031 | . 162 | | | | 52.944 | | | | 120.810 | | | | 9.8 | .1020 | .161 | | | | | | | | 121.355 | | | | 0.0 | .1000 | .159 | 2000 | C 100000 | | | The second second | | | 22.429 | | | | | 31300 | 1-39 | . 293 | 5051 | .930 | 22.472 | -13.109 | +/12 | 3200 | -2.429 | 3/10 | #### NOTES ON TABLE II. The purpose of this table is to determine the weight of air compressed by a machine of known cubic feet capacity. It is to be used in connection with Table I for determining power or work. The barometric readings and elevations are made out for a uniform temperature of 60°F, and are subject to slight errors but not enough to materially affect results. Table V gives more accurately the relation between elevation temperature and pressure. TABLE II. — WEIGHTS OF FREE AIR UNDER VARIOUS CONDITIONS | oproximate Baro-
metric Reading.
T = 60. | Atmospheric Pressure. | 10 10 | Weight | | Cubic Frature (1 | oot at (Fahr.) | liven | | Approximate Elevation. $T = 60^{\circ}$. | |--|-----------------------|--------|----------------------------|--------|------------------|----------------------------|----------------------------|----------------------------|---| | Approximate metric Reac $T=60$. | Atmosphe | - 20° | 000 | 20° | 40° | 60° | 80° | 10,00 | Approxin
tion. | | 30.52
30.32
30.12 | 15.0
14.9
14.8 | .09150 | .08753 | .08388 | .08054 | .07744 | .07458 | .07240
.07192
.07144 | -400 | | 29.91
29.71
29.50 | | .08965 | .08576 | .08219 | .07895 | .07640
.07589
.07536 | .07308 | .07047 | 00
200
400 | | 29.30
29.10
28.90 | 14.3 | .08781 | .08400 | .08050 | .07729 | .07484
.07432
.07380 | .07158 | .06902 | 600
800
1000 | | 28.69
28.49
28.28 | 14.1
14.0
13.9 | .08597 | .08224 | .07882 | .07567 | .07329
.07277
.07225 | .07008 | .06758 | 1200
1400
1600 | | 28.08
27.88
27.67 | 13.7 | .08412 | .08048 | .07713 | .07405 | .07173
.07120
.07068 | .06857 | .06612 | 1800
2000
2100 | | 27.47
27.27
27.06 | | .08228 | .07930
.07871
.07813 | .07544 | .07242 | .07016
.06965
.06913 | .06757
.06707
.06657 | .06468 | 2300
2500
2700 | | 26.86
26.66
26.45 | 13.1 | .08044 | .07695 | .07375 | .07080 | .06861
.06809
.06757 | .06557 | .06323 | 2900
3100
3300 | | 26.25
26.05
25.84 | 12.8 | .07860 | .07518 | .07206 | .06918 | .06705
.06652
.06600 | .06407 | | 3500
3700
4000 | | 25.64
25.44
25.23 | | .07676 | .07343 | .07038 | .06756 | .06549
.06497
.06445 | .06257 | .06033 | 4200
4400
4600 | 1 + 5 TABLE II. - Continued. | | | | | | Authorization | 3 3 3 | | 47. 15.15 | 201 2010 | |-------|--------|---------|---------|---------|---------------|---------|---------|-----------|----------| | 25.03 | 12.3 | .07553 | 07225 | 06025 | 06648 | .06393 | 06157 | .05937 | 4800 | | 24.83 | 12.2 | .07492 | | | | .06341 | | | 5000 | | 24.62 | 12.1 | | | | | .06289 | | | 5200 | | 24.02 | 14.1 | .07430 | .0/100 | .00012 | .00340 | .00209 | 100037 | .03040 | 3200 | | 24.42 | 12.0 | .07369 | .07040 | .06756 | .06486 | .06237 | .06007 | .05702 | 5400 | | 24.22 | 11.9 | .07307 | .06000 | .06600 | .06132 | .06185 | .05057 | .05744 | 5600 | | 24.01 | 11.8 | .07246 | | | | .06133 | | | 5800 | | 24.01 | 11.0 | .0/240 | .00932 | .00043 | | | 39 - 1 | | 3-00 | | 23.81 | 11.7 | .07184 | .06873 | .06587 | .06324 | .06081 | .05857 | .05647 | 6100 | | 23.60 | 11.6 | .07123 | | | | .06029 | | | 6300 | | 23.40 | 11.5 | | | | | .05977 | | | 6500 | | -5.1. | | 37.00 | 133 | | - | 3711 | 3131 | 333 | | | 23.20 | 11.4 | .07000 | .06693 | .06418 | .06161 | .05925 | .05707 | .05502 | 6800 | | 22.99 | 11.3 | .06038 | .06638 | .06362 | .06108 | .05873 | .05656 | .05454 | 7100 | | 22.79 | | .06877 | 06579 | .06305 | .06054 | .05821 | .05606 | .05406 | 7300 | | | | | 0.,, | | | | | | | | 22.59 | II.I | .06816 | .06520 | .06249 | .06000 | .05769 | .05556 | .05358 | 7600 | | 22.38 | 11.0 | .06754 | .06462 | .06193 | .05945 | .05717 | .05506 | .05310 | 7900 | | 22.18 | 10.9 | .06692 | | | .05891 | | .05456 | | 8100 | | | 11/1 | | | | 23/72 | 1 8 1 1 | 20.00 | 65.77 | | | 21.98 | 10.8 | .06632 | .06344 | .06080 | .05837 | .05613 | .05406 | .05213 | 8400 | | 21.77 | 10.7 | .06571 | .06285 | .06024 | .05783 | .05561 | .05356 | .05164 | 8600 | | 21.57 | 10.6 | .06510 | .06226 | .05968 | .05729 | .05509 | .05306 | .05116 | 8900 | | 1000 | | SWIE | | | less. | 100 | 7 1850 | | | | 21.37 | 10.5 | .06448 | .06168 | .05911 | .05675 | .05457 | .05256 | .05068 | 9100 | | 21.16 | 10.4 | | | | | .05405 | | .05020 | 9400 | | 20.96 | 10.3 | .06325 | .06050 | .05799 | .05567 | .05353 | .05156 | .04972 | 9600 | | | 38 7 | 1 | | - 337 | , | 3 | 18 3.8 | | 11 (12) | | 20.76 | 10.2 | .06263 | .05991 | .05743 | .05513 | .05301 | .05106 | .04923 | 9900 | | 20.55 | 10.1 | .06202 | | | | .05249 | | | | | 20.35 | 10.0 | .06141 | .05874 | .05630 | .05405 | .05198 | .05006 | .04827 | 10400 | | 1 | | | 0 - | - 1101 | | 12. | | | STESS! | | 20.15 | 9.9 | | | | | .05146 | | | | | 19.94 | | .06017 | | | .05297 | | | .04730 | | | 19.74 | 9.7 | .05956 | .05698 | .05461 | .05243 | .05041 | .04856 | .04682 | 11200 | | | 1 | .0 | | | | THE YOU | 0. | 1 | | | 19.53 | 9.6 | | | | | .04990 | | | | | 19.33 | | | | | | .04937 | | | | | 19.13 | 9.4 | .05772 | .05522 | .05292 | .05081 | .04886 | .04700 | .04538 | 12100 | | -0 | dieta- | | | -6- 6 | | 0 | | 0 | | | 18.93 | | | | | | .04834 | | | | | 18.72 | | | | | | .04782 | | | | | 18.52 | 9.1 | .05587 | .05345 | .05123 | .04918 | .04730 | .04555 | .04392 | 13000 | | 1 .8 | 0.0 | 05506 | 05286 | 05065 | 0186 | 016-8 | 04505 | 04244 | T 2 400 | | 18.31 | 9.0 | 1.05520 | 1.05200 | 1.05007 | .04004 | .04678 | 1.04505 | .04344 | 13400 | #### NOTE ON TABLE III. The table is designed to compute readily weights of compressed air by formula 12, Art. 8, viz., $w = \frac{p}{53.17 t}$. If p is given in pounds per square inch the formula becomes $w = \frac{144 \times p}{53.17 \times t}$. The value $\frac{p}{t}$ can most readily be obtained with the slide rule. ### TABLE III. - WEIGHTS OF COMPRESSED AIR Pounds per Cubic Foot. The Ratio $\frac{p}{t}$ is for absolute pressure in pounds per square inch and absolute temperature Fahrenheit. (See Note at foot of previous page.) | I | P | perature 1 | P | | p | l piev | p | | |---|---------------|------------|-------|----------------|----------------|--------|---------------|----------------------| | | $\frac{F}{t}$ | w | t | w | $\frac{r}{t}$ | w | $\frac{r}{t}$ | w | | 1 | .000 | 0.0000 | .255 | .6906 | .510 | 1.3813 | . 765 | 2.0718 | | 1 | .005 | .0135 | . 260 | .7041 | 515 | 1.3947 | .770 | 2.0853 | | 1 | .010 | .0271 | . 265 | .7177 | .520 | 1.4083 | .775 | 2.0988 | | 1 | .015 | .0406 | .270 | .7312 | .525 | 1.4219 | .780 | 2.1125 | | 1 | .020 | .0542 | .275 | .7447 | .530 | 1.4355 | .785 | 2.1260 | | | .025 | .0677 | .280 | .7583 | •535 | 1.4490 | .790 | 2.1395 | | | .030 | .0813 | .285 | .7719 | .540 | 1.4625 | .795 | 2.1530 | | 1 | .035 | .0948 | .290 | .7852 | .545 | 1.4760 | .800 | 2.1665 | | | .040 | . 1083 | .295 | .7989 | . 550 | 1.4895 | .805 | 2.1798 | | 1 | .045 | .1218 | .300 | .8125 | .555 | 1.5030 | .810 | 2.1950 | | 1 | .050 | .1354 | .305 | .8260 | .560 | 1.5166 | .815 | 2.2071 | | 1 | .055 | . 1489 | .310 | .8395 | .565 | 1.5312 | | 2.2207 | | 1 | .060 | . 1625 | .315 | .8531
.8666 | .570 | 1.5437 | .825 | 2.2343 | | 1 | .065 | .1760 | .320 | .8801 | · 575
· 580 | 1.5572 | .830 | 2.2480 | | 1 | .070 | | .325 | .8937 | .585 | 1.5707 | .840 | | | | .075 | .2031 | .330 | .9072 | .505 | 1.5043 | .845 | 2.2750 | | 1 | .085 | .2302 | .340 | .9208 | .595 | 1.6115 | .850 | 2.3020 | | 1 | .090 | .2437 | .345 | .9343 | .600 | 1.6250 | .855 | 2.3155 | | 1 | .095 | .2573 | .350 | .9478 | .605 | 1.6385 | .860 | 2.3290 | | 1 | .100 | .2708 | .355 | .9613 | .610 | 1.6520 | .865 | 2.3425 | | 1 | .105 | .2843 | .360 | .9749 | .615 | 1.6654 | .870 | 2.3561 | | 1 | .110 | .2979 | .365 | .9884 | .620 | 1.6792 | .875 | 2.3698 | | 1 | .115 | .3114 | .370 | 1.0020 | .625 | 1.6927 | .880 | 2.3833 | | 1 | .120 | .3250 | .375 | 1.0155 | .630 | 1.7062 | .885 | 2.3970 | | 1 | .125 | .3385 | .380 | 1.0290 | . 635 | 1.7198 | .890 | 2.4105 | | 1 | .130 | .3520 | .385 | 1.0425 | .640 | 1.7333 | .895 | 2.4240 | | 1 | .135 | .3656 | .390 | 1.0561 | .645 | 1.7468 | .900 | 2.4375 | | 1 | .140 | .3792 | -395 | 1.0697 | .650 | 1.7603 | .905 | 2.4510 | | 4 | .145 | .3927 | .400 | 1.0833 | .655 | 1.7739 | .910 | 2.4645 | | ١ | .150 | .4062 | .405 | 1.0968 | .660 |
1.7875 | .915 | 2.4780 | | | .155 | .4197 | .410 | 1.1103 | .665 | 1.8010 | .920 | 2.4917 | | 1 | .160 | •4333 | .415 | 1.1240 | .670 | 1.8145 | .925 | 2.5052 | | | . 165 | .4468 | .420 | 1.1375 | .675 | 1.8280 | .930 | 2.5187 | | | .170 | .4603 | .430 | 1.1510 | .685 | 1.8550 | .935 | 2 · 5323
2 · 5459 | | | .180 | .4875 | •435 | 1.1780 | .600 | 1.8680 | .945 | 2.5594 | | - | .185 | .5010 | .440 | 1.1917 | .695 | 1.8822 | .950 | 2.5730 | | - | .190 | .5145 | .445 | 1.2052 | .700 | 1.8959 | .955 | 2.5865 | | | . 195 | .5281 | .450 | 1.2177 | .705 | 1.9094 | .960 | 2.6000 | | 1 | .200 | .5416 | .455 | 1.2323 | .710 | 1.9229 | .965 | 2.6135 | | | .205 | .5551 | .460 | 1.2457 | .715 | 1.9365 | .970 | 2.6270 | | | .210 | .5687 | .465 | 1.2594 | .720 | 1.9500 | .975 | 2.6405 | | | .215 | .5822 | .470 | 1.2730 | .725 | 1.9635 | .980 | 2.6541 | | | .220 | .5958 | .475 | 1.2865 | .730 | 1.9770 | .985 | 2.6670 | | | .225 | .6094 | .480 | 1.3000 | .735 | 1.9905 | 990 | 2.6813 | | | .230 | .6229 | .485 | 1.3135 | .740 | 2.0042 | .995 | 2.6949 | | | .235 | .6364 | .490 | 1.3270 | .745 | 2.0177 | 1.000 | 2.7084 | | | .240 | .6499 | •495 | 1.3416 | .750 | 2.0312 | | | | | .245 | .6635 | .500 | I.3542 | • 755 | 2.0448 | | are ar | | | .250 | .6771 | .505 | 1.3677 | . 760 | 2.0582 | | | #### TABLE IV.*—SPECIAL TABLE RELATING TO STAGE COM-PRESSION FROM FREE AIR AT 14.7 POUNDS PRESSURE AND 62° TEMPERATURE. Compression adiabatic but cooled between stages. | - | | | | Sing | le Stage | | 7 | wo Stag | ge. | |---|-------------------|-------------------------|--|-----------------------------|-----------------------------------|---|--|--|--| | | Gage Pressure. | Ratio of Compression. | Weight of One Cubic
Foot at Tempera-
ture 62° F. | Mean Effective
Pressure. | Final Temperature,
Fahrenheit. | Horse Power to Compress One Cu. Ft. of Free Air per Minute. | Ratio of Compression
in Each Stage. | Final Temperature in
Each Stage, Fah-
renheit. | Horse Power to Compress One Cu. Ft. of
Free Air per Minute. | | | P_g | r | w | M.E.P. | T_1 | H.P. | \sqrt{r} | T_2 | H.P. | | | 5
10
15 | I.34
I.68
2.02 | .1020 | 4.50
8.30
11.51 | 108
144
177 | .0197
.0362
.0045 | | | | | | 20
25
30 | 2.36
2.70
3.04 | .1796
.2055
.2313 | 14.40
17.00
19.40 | 207
235
259 | .0628
.0742
.0845 | | | | | | 35
40
45 | 3.38
3.72
4.06 | .2572
.2831
.3090 | 21.65
23.60
25.50 | 280
303
321 | .0944
.1030
.1112 | | | | | | 50
55
60 | 4.40
4.74
5.08 | .3348
.3607
.3866 | 27.50
29.10
30.75 | 341
358
373 | .1195 | 2.10
2.17
2.25 | 180
189
196 | .1063 | | | 65
70
75 | 5.42
5.76
6.10 | .4124
.4383
.4642 | 32.30
33.80
35.18 | 392
405
420 | .1408
.1472
.1532 | 2.33
2.40
2.47 | 200
207
214 | .1235
.1286
.1329 | | | 80
85
90 | 6.44
6.78
7.12 | .4901
.5159
.5418 | 36.55
37.90
39.10 | 434
447
461 | .1590
.1650
.1705 | 2.54
2.60
2.67 | 222
227
233 | .1372
.1410
.1462 | | | 95
100
105 | 7.46
7.80
8.14 | .5676
·5935
.6194 | 40.35
41.65
42.30 | 473
485
497 | .1758
.1812
.1841 | 2.73
2.79
2.85 | 238
242
246 | .1500 | | | 110
115
120 | 8.48
8.82
9.16 | .6453
.6712
.6971 | 43.75
45.16
46.00 | 508
519
530 | .1908
.1965
.2008 | 2.90
2.99
3.02 | 251
256
259 | .1615
.1648
.1681 | | | 125
130
135 | 9.50
9.84
10.18 | .7230
.7488
.7747 | 47.05
47.80
48.85 | 540
550
560 | .2045
.2085
.2135 | 3.08
3.14
3.19 | 262
266
269 | .1710
.1740
.1775 | | | 140
145
150 | 10.52
10.86
11.20 | .8005
.8264
.8522 | 49.90
51.00
51.70 | 569
578
587 | .2176
.2220
.2255 | 3·24
3·29
3·35 | 272
276
280 | .1810
.1837
.1865 | ^{*} The table is limited to the special initial condition of air specified in the caption. The assumption of 14.7 as atmospheric pressure makes the weights and work a little in excess of average conditions. However, it is a valuable and very instructive table. ## PLATES AND TABLES TABLE IV (Continued). | | | | Т | wo Stag | Т | hree Sta | ge. | | |----------------------|-------------------------|---|--|--|---|--|--|---| | Gage Pressure. | Ratio of Compression. | Weight of One Cubic
Foot of Air at 62°F. | Ratio of Compression
in Each Stage. | Final Temperature in
Each Stage, Fah-
renheit. | Horse Power to Compress One Cu. Ft. of Pree Air per Minute. | Ratio of Compression
in Each Stage. | Final Temperature in
Each Stage, Fah-
renheit. | Horse Power to Compress One Cu. Ft. of Free Air per Minute. | | P_g | r | w | $(r)^{\frac{1}{2}}$ | T_2 | H.P. | $(r)^{\frac{1}{3}}$ | T_3 | Н.Р. | | 100
150
200 | 7.8
11.2
14.6 | .5936
.8522
1.1110 | 2.79
3.35
3.82 | 242
280
308 | .1542
.1865
.2110 | 1.98
2.24
2.44 | 176
200
215 | .1450
.1752
.1965 | | 250
300
350 | 18.0
21.4
24.8 | 1.3697
1.6285
1.8872 | 4.24
4.63
4.98 | 33 ²
353
370 | .2315
.2490
.2640 | 2.62
2.78
2.92 | 226
241
251 | .2140
.2295
.2418 | | 400
450
500 | 28.2
31.6
35.0 | 2.1459
2.4048
2.6634 | 5.31
5.61
5.91 | 386
399
412 | .2770
.2895
.2915 | 3.04
3.16
3.27 | 259
267
275 | ·2535
·2630
·2730 | | 550
600
650 | 38.4
41.8
45.2 | 2.9221
3.1810
3.4395 | | | | 3·37
3·47
3·56 | 281
287
292 | .2830
.2910
.2960 | | 700
750
800 | 48.6
52.0
55.4 | 3.6982
3.9570
4.2155 | | | | 3.64
3.73
3.80 | 297
302
307 | .3025
.3090
.3150 | | 850
900
950 | 58.8
62.2
65.6 | 4·4745
4·7330
4·9920 | | | | 3.83
3.96
4.03 | 312
316
320 | .3210
.3260
.3315 | | 1000
1050
1100 | 69.0
72.4
75.8 | 5.2510
5.5095
5.7684 | | | | 4.10
4.17
4.23 | 324
328
331 | .3360
.3400
.3445 | | 1150
1200
1250 | 79.2
82.6
86.0 | 6.0270
6.2855
6.5445 | | | | 4.29
4.36
4.41 | 334
337
341 | ·3490
·3525
·3570 | | 1300
1350
1400 | 89.4
92.8
96.2 | 6.8030
7.0620
7.3210 | | | | 4.47
4.52
4.58 | 344
347
350 | .3615
.3660
.3685 | | 1450
1500
1550 | 99.6
103.0
106.4 | 7·5795
7·8382
8·0965 | | | | 4.64
4.70
4.75 | 353
356
359 | .3710
.3740
.3780 | | 1600
1650
1700 | 109.8
113.2
116.6 | 8.3550
8.6140
8.8730 | | | | 4.79
4.83
4.87 | 361
363
365 | .3820
.3850
.3880 | | 1750
1800
1850 | 120.0
123.4
126.8 | 9.1320
9.3900
9.6485 | | | | 4.93
4.97
5.02 | 367
369
371 | .3915
.3940
.3965 | #### TABLE V. - VARYING PRESSURES WITH ELEVATIONS. Solution of formula 17, Art. 17, viz. $\log_{10} p_a = 1.16866 - 1.16866$ | | | | 122141 | |--------------------|--------------|--------------------|--------------| | Elevation in Feet. | Pressure | in Pounds per Squa | re Inch. | | Elevation in Feet. | Temp. 50° F. | Temp 35° F. | Temp. 20° F. | | 0 | 14.70 | 14.70 | 14.70 | | 1000 | 14.17 | 14.15 | 14.14 | | 2000 | 13.66 | 13.63 | 13.99 | | 3000 | 13.16 | 13.12 | 13.07 | | 4000 | 12.69 | 12.63 | 12.57 | | 5000 | 12.23 | 12.16 | 12.00 | | 5280 | 12.10 | 12.03 | 11.96 | | 6000 | 11.78 | 11.71 | 11.63 | | 7000 | 11.36 | 11.27 | 11.18 | | 8000 | 10.95 | 10.85 | 10.75 | | 9000 | 10.55 | 10.45 | 10.33 | | » 10000 | 10.17 | 10.06 | 9.94 | | 12500 | 9.28 | 9.15 | 9.02 | | 15000 | 8.46 | 8.32 | 8.18 | TABLE VI.* - HIGHEST LIMIT TO EFFICIENCY COMPRESSED AIR IS USED WITHOUT EXPANSION. ASSUMING ATMOSPHERIC PRESSURE = 14.5 POUNDS PER SQUARE INCH. | r | h | E | r | h | E | r | h | E | |------------|---|---|--|--
--|--|---|--| | I.2
I.4 | 6.66
13.3 | 91.4
84.9 | 5·2
5·4 | 140.0 | 49.0 | 9.2 | 273·3
280.0 | 40.2
39.9 | | 1.8 | 20.0 | 75.6 | 5.8 | 153.3 | 47.7 | 9.6 | 293 3 | 39.6 | | 2.2 | 40.0 | 69.2 | 6.2 | 173.3 | 46.0 | 10.25 | 308.3 | 39.0 | | 2.6 | 53.3 | 61.9 | 6.6 | 186.6 | 45.0 | 10.75 | 325.0 | 38.5
38.0
37.9 | | 3.0 | 66.6 | 60.7 | 7.0 | 200.0 | 44.0 | 11.25 | 341.6 | 37·7
37·4 | | 3.4 | 80.0 | 57.8
56.4 | 7.4 7.6 | 213.3 | 43. I
42.8 | 11.75 | 353·3
366.6 | 37.I
36.9 | | 3.8 | 93.3 | 55·2
54·1 | 8.0 | 226.6
233.3 | 42.4
42 0 | 12.25 | 375.0
383.3 | 36.7
36.4 | | 4.2 | 106.6 | 53.I
52.I | 8.2 | 240.0
246.6 | 41.7
41.4 | 12.75 | 391.6 | 36.2
36.0 | | 4.8 | 126.6 | 50.5 | 8.8 | 260.0 | 40.8 | 15.0 | 466.6 | 35.2
34.5
33.8 | | | 1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6 | 1.2 6.66 1.4 13.3 1.6 20.0 1.8 26.6 2.0 33.3 2.2 40.0 2.4 46.6 2.6 53.3 2.8 60.0 3.0 66.6 3.2 73.3 3.4 80.0 3.6 86.6 3.8 93.3 4.0 100.0 4.2 106.6 4.4 113.3 4.6 120.0 4.8 126.6 | 1.2 6.66 91.4 1.4 13.3 84.9 1.6 20.0 79.8 1.8 26.6 75.6 2.0 33.3 72.0 2.2 40.0 69.2 2.4 46.6 66.7 2.6 53.3 61.9 2.8 60.0 62.4 3.0 66.6 60.7 3.2 73.3 59.1 3.4 80.0 57.8 3.6 86.6 56.4 3.8 93.3 55.2 4.0 100.0 54.1 4.2 106.6 53.1 4.4 113.3 52.1 4.6 120.0 51.3 4.8 126.6 50.5 | 1.2 6.66 91.4 5.2 1.4 13.3 84.9 5.6 1.6 20.0 79.8 5.6 1.8 26.6 75.6 5.8 2.0 33.3 72.0 6.0 2.2 40.0 69.2 6.2 2.4 46.6 66.7 6.4 2.6 53.3 61.9 6.6 2.8 60.0 62.4 6.6 3.0 66.6 60.7 7.0 3.2 73.3 59.1 7.2 3.4 80.0 57.8 7.4 3.6 86.6 56.4 7.6 3.8 93.3 55.2 7.8 4.0 100.0 54.1 8.0 4.2 106.6 53.1 8.4 4.4 113.3 52.1 8.4 4.6 120.0 51.3 8.6 4.8 126.6 50.5 8.8 | 1.2 6.66 91.4 5.2 140.0 1.4 13.3 84.9 5.4 146.6 1.6 20.0 79.8 5.6 153.3 1.8 26.6 75.6 5.8 160.0 2.0 33.3 72.0 6.0 166.6 2.2 40.0 69.2 6.2 173.3 2.4 46.6 66.7 6.4 180.0 2.8 60.0 62.4 6.8 193.3 3.0 66.6 60.7 7.0 200.0 3.2 73.3 59.1 7.2 206.6 3.4 80.0 57.8 7.4 213.3 3.6 86.6 56.4 7.6 220.0 3.8 93.3 55.2 7.8 226.6 4.0 100.0 54.1 8.0 233.3 4.2 106.6 53.1 8.2 240.0 4.4 113.3 52.1 8.4 246.6 4.6 120.0 51.3 8.6 253.3 4.8 126.6 50.5 8.8 260.0 | 1.2 6.66 91.4 5.2 140.0 49.0 1.4 13.3 84.9 5.4 146.6 48.3 1.6 20.0 79.8 5.6 153.3 47.7 1.8 26.6 75.6 5.8 160.0 47.0 2.0 33.3 72.0 6.0 166.6 46.5 2.2 40.0 69.2 6.2 173.3 46.0 2.4 46.6 66.7 6.4 180.0 45.5 2.6 53.3 61.9 6.6 186.6 45.0 2.8 60.0 62.4 6.8 193.3 344.5 3.0 66.6 60.7 7.0 200.0 44.0 3.2 73.3 59.1 7.2 206.6 43.6 3.4 80.0 57.8 7.4 213.3 43.1 3.6 86.6 56.4 7.6 220.0 42.8 3.8 93.3 55.2 7.8
<td>1.2 6.66 91.4 5.2 140.0 49.0 9.2 1.4 13.3 84.9 5.4 146.6 48.3 9.4 1.6 20.0 79.8 5.6 153.3 47.7 9.6 1.8 26.6 75.6 5.8 160.0 47.0 9.8 2.0 33.3 72.0 6.0 166.6 46.5 10.0 2.2 40.0 69.2 6.2 173.3 46.0 10.25 2.4 46.6 66.7 6.4 180.0 45.5 10.50 2.8 60.0 62.4 6.8 193.3 44.5 11.00 3.0 66.6 60.7 7.0 200.0 44.0 11.25 3.2 73.3 59.1 7.2 206.6 43.6 11.50 3.4 80.0 57.8 7.4 213.3 43.1 11.75 3.6 86.6 56.4 7.6 220.0 42.8 <t< td=""><td>1.2 6.66 91.4 5.2 140.0 49.0 9.2 273.3 1.4 13.3 84.9 5.4 146.6 48.3 9.4 280.0 1.6 20.0 79.8 5.6 153.3 47.7 9.6 286.6 1.8 26.6 75.6 5.8 160.0 47.0 9.8 293.3 2.0 33.3 72.0 6.0 166.6 46.5 10.0 300.0 2.2 40.0 69.2 6.2 173.3 46.0 10.25 308.3 2.4 46.6 66.7 6.4 180.0 45.5 10.50 316.6 2.8 60.0 62.4 6.8 193.3 44.5 11.00 333.3 3.0 66.6 60.7 7.0 200.0 44.0 11.25 341.6 3.2 73.3 59.1 7.2 206.6 43.6 11.50 350.0 3.4 80.0 57.8 7.4</td></t<></td> | 1.2 6.66 91.4 5.2 140.0 49.0 9.2 1.4 13.3 84.9 5.4 146.6 48.3 9.4 1.6 20.0 79.8 5.6 153.3 47.7 9.6 1.8 26.6 75.6 5.8 160.0 47.0 9.8 2.0 33.3 72.0 6.0 166.6 46.5 10.0 2.2 40.0 69.2 6.2 173.3 46.0 10.25 2.4 46.6 66.7 6.4 180.0 45.5 10.50 2.8 60.0 62.4 6.8 193.3 44.5 11.00 3.0 66.6 60.7 7.0 200.0 44.0 11.25 3.2 73.3 59.1 7.2 206.6 43.6 11.50 3.4 80.0 57.8 7.4 213.3 43.1 11.75 3.6 86.6 56.4 7.6 220.0 42.8 <t< td=""><td>1.2 6.66 91.4 5.2 140.0 49.0 9.2 273.3 1.4 13.3 84.9 5.4 146.6 48.3 9.4 280.0 1.6 20.0 79.8 5.6 153.3 47.7 9.6 286.6 1.8 26.6 75.6 5.8 160.0 47.0 9.8 293.3 2.0 33.3 72.0 6.0 166.6 46.5 10.0 300.0 2.2 40.0 69.2 6.2 173.3 46.0 10.25 308.3 2.4 46.6 66.7 6.4 180.0 45.5 10.50 316.6 2.8 60.0 62.4 6.8 193.3 44.5 11.00 333.3 3.0 66.6 60.7 7.0 200.0 44.0 11.25 341.6 3.2 73.3 59.1 7.2 206.6 43.6 11.50 350.0 3.4 80.0 57.8 7.4</td></t<> | 1.2 6.66 91.4 5.2 140.0 49.0 9.2 273.3 1.4 13.3 84.9 5.4 146.6 48.3 9.4 280.0 1.6 20.0 79.8 5.6 153.3 47.7 9.6 286.6 1.8 26.6 75.6 5.8 160.0 47.0 9.8 293.3 2.0 33.3 72.0 6.0 166.6 46.5 10.0 300.0 2.2 40.0 69.2 6.2 173.3 46.0 10.25 308.3 2.4 46.6 66.7 6.4 180.0 45.5 10.50 316.6 2.8 60.0 62.4 6.8 193.3 44.5 11.00 333.3 3.0 66.6 60.7 7.0 200.0 44.0 11.25 341.6 3.2 73.3 59.1 7.2 206.6 43.6 11.50 350.0 3.4 80.0 57.8 7.4 | * This table reveals the limit of efficiency when air is applied without utilizing any of its expansive energy. The column headed r gives the ratio of compression, while that headed h gives the water head equivalent to a pressure given by the ratio r on the assumption that one atmosphere is a pressure of 14.5 pounds per square inch or a water head of 33.3 feet, this being more nearly the average condition than 14.7, which is so commonly taken. It should be understood that this efficiency cannot be reached in practice, - it being reduced by friction of air and machinery and by clearance in any form of engine. ## TABLE VII. — EFFICIENCY OF DIRECT HYDRAULIC AIR COMPRESSORS. Formula 26, Art. 25, viz. $E = \frac{2.3 \log_{10} r}{r - 1}$. | Water Hea | d. Gage Pressure. | Absolute Pressure | Atmospheres = r | Efficiency, | |---|---|--|------------------------|---------------------------------| | 0.0
33·3
66.6
100.0 | 0.0
14.5
29.0
43.5
58.0 | 14.5
29.0
43.5
58.0
72.5 | 1
2
3
4
5 | 1.00
.69
.55
.46 | | 166.6
200.0
233.3
266.0
300.0 | 72.5
87.0
101.5
116.0
130.5 | 87.0
101.5
116.0
130.5
145.0 | 6
7
8
9
10 | .36
.33
.30
.28
.26 | # TABLE VIII. — COEFFICIENT "c" FOR VARIOUS HEADS AND DIAMETERS. | d'' | i=1" | i=2'' | $i=_3$ " | i=4'' | i=5'' | |---|---|---|--|--|---| | $ \begin{array}{c} \frac{5}{16} \\ \frac{1}{2} \\ 1 \\ 1 \\ \frac{1}{2} \end{array} $ I I $\frac{1}{2}$ | 0.603
0.602
0.601
0.601 | 0.606
0.605
0.603
0.601
0.600 | 0.610
0.608
0.605
0.602
0.600 | 0.613
0.610
0.606
0.603
0.600 | 0,616
0.613
0.607
0.603
0.600 | | $ \begin{array}{c} 2\frac{1}{2} \\ 3 \\ 3\frac{1}{2} \\ 4 \\ 4\frac{1}{2} \end{array} $ | 0.599
0.599
0.599
0.598
0.598 | 0.599
0.598
0.597
0.597
0.596 | o. 599
o. 597
o. 596
o. 595
o. 596 | 0.598
0.596
0.595
0.595
0.594
0.593 | 0.598
0.596
0.594
0.593
0.592 | Table VIII gives the experimental coefficients for orifices for determining the weight of air passing by formula: Weight $$(Q) = 0.6299 cd^2 \sqrt{\frac{i}{t}}$$ Q = Weight of air passing in pounds per second. c =Experimental coefficient. d = Diameter of orifice in inches. i = Difference of pressure inside and outside of orifice in inches of water. t = Absolute temperature of air back of orifice. ### TABLE IX. - FRICTION IN AIR PIPES. | t of
r per | Divide the number corresponding to the diameter and volume
by the ratio of compression. The result is the loss in pounds per
square inch in 1000 feet of pipe. | | | | | | | | | | | | |---|--|---|---|--|--|---|---|---|--|--|--|--| | Cubic Feet of
Free Air per
Minute. | | | D | iameter | of Pipe | in Inche | s. | | | | | | | Cubi
F1 | 1/2 | 1 | I | 114 | 1 1/2 | 1 3 | 2 | 2 1/2 | 3 | | | | | 6
12
24
36
48
60
72
84
96
108
120
180
210 | 27.3
108.3 | 35.4
14.26
56.64
126.4
226.6 | .83
3.32
13.28
29.86
53.15
84.94
119.8
163.7 | .26
1.05
4.20
9.45
16.80
26.26
37.90
51.46
67.21
85.06 | 1.71
3.84
6.83
10.70
15.40
20.90
27.30
34.55
42.67
66.53
96.00
130.7 | . 78 1.75 3.12 4.87 7.03 9.55 12.48 15.80 19.50 30.47 43.87 59.71 | 1.60
2.50
3.62
4.91
6.41
8.12
10.00
15.66
22.54
30.70 | 1.17
1.59
2.07
2.62
3.25
5.06
7.28
9.91 | 1.85
2.67
3.63 | | | | | | 134 | 2 | 2 1/2 | 3 | 3 ½ | 4 | 41/2 | 5 | 6 | | | | | 240
270
300
330
350
390
420
480
510
540
570
600
660
600
720
780
840
900
960
1020
1080
1140
1200
1440
1560
1680 | 78.00
98.70
121.8 | 40.09
50.72
62.62
75.78
90.29
105.5
122.8 | 12.94
16.48
20.23
24.57
29.12
34.20
39.64
45.58
58.44
65.39
73.00
80.90
97.90
116.50 | 4.74
6.00
7.41
8.97
10.67
12.53
14.52
16.67
18.97
21.42
24.01
26.75
29.64
35.87
42.68
58.10
66.70
75.88
85.65
96.04
107.00 | 2.13
2.7c
3.33
4.8c
5.63
6.53
7.49
8.53
9.62
10.79
12.02
13.32
16.12
19.19
22.50
26.11
29.98
34.10
38.50
43.17
48.10
53.29
64.49
76.74
90.05 | 2.87
3.30
3.75
4.23
4.75
5.29
5.86
7.09
8.43
9.00
11.48
13.18
15.00
16.93
18.98
21.15
23.44
28.36
33.75
39.61
45.95 | 2.94
3.25
3.93
4.68
5.50
6.37
7.32
8.32
9.40
10.53
11.74
13.01
15.74
18.73
21.89
25.50 | 3.25
3.76
4.32
4.92
5.55
6.22
6.93
7.68
9.29
11.06
12.98
16.78 | 2.23
2.50
2.79
3.09
3.73
4.44
5.22
6.05 | | | | | HABBETA (Communica). | | | | | | | | | |---|--|-------|---|---|--|--|---|--| | Cubic Feet
of Free Air
per Minute. | | | Dia |
meter of | Pipe in In | ches | | | | Cubi
of F | 4 | 4 1/2 | 5 | 6 | . 8 | 10 | I 2 | | | 1800 1920 2040 2160 2280 2400 2520 2640 2780 2880 3300 3300 3600 3900 4200 4500 5100 5400 5700 6000 7200 7800 8400 9000 9600 10200 10800 11400 115000 13200 14400 15600 16800 16800 19200 20400 21000 22800 24000 | 52·73
60.00
67·74
75·94
84.60
93·74 | 33.30 | 17.82
19.66
22.20
24.89
27.65
30.72
33.87
40.66
44.78
48.00
58.08
69.13
94.09 | 6.95
7.90
8.92
10.00
11.14
12.35
13.61
14.94
16.33
17.78
32.60
37.81
43.41
49.39
55.76
62.51
69.62
77.18 | 1.65 1.87 2.12 2.37 2.64 2.93 3.23 3.55 3.88 4.22 4.58 5.54 6.59 7.74 8.97 10.30 11.72 13.23 14.83 16.53 18.31 22.16 26.37 30.95 35.90 41.20 46.88 52.92 59.36 66.11 73.25 | 0.96 1.06 1.16 1.27 1.38 1.50 1.81 2.16 2.53 2.94 3.37 3.84 4.36 5.41 6.00 7.26 8.64 10.10 11.76 13.50 15.36 17.34 19.44 21.66 24.00 29.04 34.56 40.56 47.40 54.00 61.43 69.36 77.75 86.64 96.00 | 0.87 1.02 1.18 1.36 1.54 1.74 1.95 2.18 2.41 2.92 3.47 4.73 5.40 6.17 6.97 7.81 8.70 9.64 11.67 13.89 16.30 18.90 21.70 24.70 27.87 31.25 34.82 38.58 | | This table represents the author's formula 20, Chap. IV., $$f = c \frac{l}{d^5} \frac{v_a^2}{r} \cdot$$ f = Loss of pressure in pounds per square inch. c = An experimental coefficient. l = Length of pipe in feet. d = Diameter of pipe in inches. $v_a = \text{Cubic feet of free air passing per second.}$ r = Ratio of compression from free air. ## TABLE X. — TABLE OF CONTENTS OF PIPES IN CUBIC FEET AND IN U. S. GALLON. | | | FEET | AND IN | U. S. | GALLON | ٧. | | |---|----------------|-------------|----------------|---------------|-----------------|----------------|----------------| | | Diam. | For 1 Foot | in Length. | | Diam. | For I Foot | in Length. | | Diam. | in Deci- | Cubic Feet. | 0 11 6 | Diam. | in Deci- | Cubic Feet. | 0 11 6 | | in | mals of | Also Area | Gallons of | in | mals of | Also Area | Gallons of | | Inches. | a Foot. | in Square | 231 Cubic | Inches. | a Foot. | in Square | 231 Cubic | | | | Feet. | Inches. | | 4 1 000. | Feet. | Inches. | | 1 | .0208 | .0003 | .0026 % | II. | .9167 | .6600 | 4.937 | | 16 | .0260 | .0005 | .0040 | 1 1 2 | .9375 | .6903 | 5.163 | | 8 | .0313 | .0008 | ₹.0057 | 2 | .9583 | .7213 | 5.395 | | 16 | .0365 | .0010 | .0078 | 34 | .9792 | .7530 | 5.633 | | 2 | .0417 | .0014 | .0102 | 12. | 1 Foot | . 7854 | 5.876 | | 16 | .0469 | .0017 | .0129 | 1/2 | 1.042 | .8523 | 6.375 | | 11 | .0521 | .0021 | ,.0159 | 13. | 1.083 | .9218 | 6.895 | | 16 | .0573 | .0026 | .0193 | 1 2 | 1.125 | 1.060 | 7 · 435 | | 13 | .0025 | .0031 | .0230 | 14. | 1.107 | | 7.997
8.578 | | 16 | .0729 | .0030 | .0312 | - | 1.250 | I.147
I.227 | 9.180 | | 5
16
38
7
16
12
9
16
13
14
13
14
13
15
15
16 | .0781 | .0048 | .0359 | 15. | 1.292 | 1.310 | 9.100 | | 1. | .0833 | .0055 | .0408 | 16. | 1.333 | 1.396 | 10.44 | | | .1042 | .0085 | .0638 | 1 1 2 | 1.375 | 1.485 | II.II | | 1 1 2 | .1250 | .0123 | .0918 | 17. | 1.417 | 1.576 | 11.79 | | 34 | .1458 | .0168 | .1250 | 1/2 | 1.458 | 1.670 | 12.50 | | 2. | .1667 | .0218 | .1632 | 18. | 1.500 | 1.767 | 13.22 | | 1 | .1875 | .0276 | .2066 | 1/2 | 1.542 | 1.867 | 13.97 | | 1 1/2 | .2083 | .0341 | .2550 | 19. | 1.583 | 1.969 | 14.73 | | 34 | .2292 | .0413 | .3085 | 1/2 | 1.625 | 2.074 | 15.52 | | 3. | .2500 | .0491 | .3673 | 20. | 1.666 | 2.182 | 16.32 | | 1 | .2708 | .0576 | .4310 | $\frac{1}{2}$ | 1.708 | 2.292 | 17.15 | | 1223 | .2917 | .0668 | .4998 | 21. | 1.750 | 2.405 | 17.99 | | | .3125 | .0767 | .5738 | 1/2 | 1.792 | 2.521 | 18.86 | | 4. | • 3333 | .0873 | .6528 | 22. | 1.833 | 2.640 | 19.75 | | 1 1 2 3 4 | .3542 | .1105 | .7370 | _ | 1.875 | 2.885 | 20.65 | | 3 | ·375°
·3958 | .1105 | .9205 | 23. | 1.958 | 3.012 | 21.53 | | 5. 4 | .4167 | .1364 | 1.020 | 24. | 2.000 | 3.142 | 23.50 | | | .4375 | .1503 | 1.124 | 25. | 2.083 | 3.409 | 25.50 | | 1 1 2 | .4583 | .1650 | 1.234 | 26. | 2.166 | 3.687 | 27.58 | | 3 | .4792 | .1803 | 1.349 | 27. | 2.250 | 3.976 | 29.74 | | 6. | .5000 | . 1963 | 1.469 | 28. | 2.333 | 4.276 | 31.99 | | 1 | .5208 | .2130 | 1.594 | 29. | 2.416 | 4.587 | 34.31 | | 1 1 2 | .5417 | .2305 | 1.724 | 30. | 2.500 | 4.909 | 36.72 | | 34 | .5625 | .2485 | 1.859 | 31. | 2.583 | 5.241 | 39.21 | | 7 | . 5833 | .2673 | 1.999 | 32. | 2.666 | 5.585 | 41.78 | | 1412234 | .6042 | .2868 | 2.144 | 33. | 2.750 | 5.940
6.305 | 44.43 | | 2 | .6250 | . 3068 | 2.295 | 34 | 2.833 | 0.305 | 47.17 | | 8. | .6458 | .3275 | 2.450 | 35. | 2.916 | 6.681 | 49.98 | | | .6667 | .3490 | 2.611 | 36. | 3.000 | 7.069 | 52.88 | | 1 | .6875 | .3713 | 2.777 | 37. | 3.083 | 7.468 7.876 | 55.86 | | 1
2
3
4 | .7003 | .3940 | 2.948
3.125 | 38. | 3.166 | 8.206 | 62.06 | | 9. | .7500 | .4175 | 3.125 | 39. | 3.250 | 8.728 | 65.29 | | | .7708 | .4668 | 3.492 | 41. | 3.416 | 0.168 | 68.58 | | 1 1 2 | .7917 | .4923 | 3.682 | 42. | 3.500 | 9.620 | 71.96 | | 3 | .8125 | .5185 | 3.879 | 43. | 3.583 | 10.084 | 75.43 | | 10. | .8333 | -5455 | 4.081 | 44. | 3.666 | 10.560 | 79.00 | | 1 | .8542 | -5730 | 4.286 | 45. | 3.750 | 11.044 | 82.62 | | 1 1 2 3 4 | .8750 | .6013 | 4.498 | 46. | 3.833 | 11.540 | 86.32 | | 4 | .8958 | .6303 | 4.714 | 47. | 3.916 | 12.048 | 90.12 | | | | | | 48. | 4.000 | 12.566 | 94.02 | ## TABLE XI - CYLINDRICAL VESSELS, TANKS, CISTERNS, Diameter in Feet and Inches, Area in Square Feet, and U. S. Gallons Capacity for One Foot in Depth. 1 gallon = 231 cubic inches = \frac{1}{7} \frac{4805}{2805} = 0.13368 \text{ cubic feet.} | 1 | gallon | - 231 (| . u Di | CIII | cnes = - | 7.4805 | | 2.13 | 308 cub | ic ieet. | |---------------------------|---------|-----------------|--------|------|----------|-----------------|-----|------|------------------|------------------| | Diam. | Area. | Gals. | Di | am. | Area. | Gals. | Dia | ım. | Area. | Gals. | | Ft. In. | Sq. Ft. | r Ft.
Depth. | Ft. | In. | Sq. Ft. | ı Ft.
Depth. | Ft. | In. | Sq. Ft. | ı Ft.
Depth. | | 1 | . 785 | 5.89 | 5 | 5 | 23.04 | 172.38 | 17 | 6 | 240.53 | 1799.3 | | II | .922 | | 5 | 5 | 23.76 | 177.72 | 17 | 9 | 247.45 | 1851.1 | | I 2 | 1.069 | 8.00 | 5 | 7 8 | 24.48 | 183.15 | 18 | | 254.47 | 1903.6 | | I 3 | 1.227 | 9.18 | 5 | 8 | 25.22 | 188.66 | 18 | 3 6 | 261.59 | 1956.8 | | 1 4 | 1.396 | | 5 | 9 | 25.97 | 194.25 | 18 | | 268.80 | 2010.8 | | I 5
I 6 | 1.576 | 11.79 | 5 | 10 | 26.73 | 199.92 | 18 | 9 | 276.12 | 2065.5 | | | 1.767 | 13.22 | 5 6 | II | 27.49 | 205.67 | 19 | RUT | 283.53 | 2120.9 | | I 7 | 1.969 | 14.73 | | 631 | 28.27 | 211.51 | 19 | 3 6 | 291.04 | 2177.1 | | | 2.182 | 16.32 | 6 | 3 | 30.68 | 229.50 | 19 | | 298.65 | 2234.0 | | 1 9 | 2.405 | 17.99 | 6 | | 33.18 | 248.23 | 19 | 9 | 306.35 | 2291.7 | | I 10 | 2.640 | 19.75 | 6 | 9 | 35.78 | 267.69 | 20 | • | 314.16 | 2350.1 | | I II
2 | 2.885 | 21.58 | 7 | | 38.48 | 287.88 | 20 | 3 | 322.06 | 2409.2 | | | 3.142 | 23.50 | 7 | 3 | 41.28 | 308.81 | 20 | | 330.06
338.16 | 2469.1 | | 2 I
2 2 | 3.409 | 25.50 | 7 | | | 352.88 | 21 | 9 | 346.36 | 2529.6
2591.0 | | | 3.976 | 27.58 | 7 8 | 9 | 47.17 | 376.01 | 21 | 2 | 354.66 | 2653.0 | | | | 29.74 | 8 | 2 | 53.46 | 399.88 | 21 | 3 | 363.05 | 2715.8 | | | 4.276 | 31.99 | 8 | 3 | 56.75 | 424.48 | 21 | 9 | 371.54 | | | 2 5 2 6 | 4.909 | 36.72 | 8 | 9 | 60.13 | 449.82 | 22 | 9 | 380.13 | 2779·3
2843.6 | | | 5.241 | 39.21 | 9 | 9 | 63.62 | 475.89 | 22 | 2 | 388.82 | 2908.6 | | 2 7 2 8 | 5.585 | 41.78 | 9 | 2 | 67.20 | 502.70 | 22 | 3 | 397.61 | 2974.3 | | 2 9 | 5.940 | 44.43 | 9 | 3 | 70.88 | 530.24 | 22 | 9 | 406.49 | 3040.8 | | 2 10 | 6.305 | 47.16 | 9 | 9 | 74.66 | 558.51 | 23 | 9 | 415.48 | 3108.0 | | 2 11 | 6.681 | 49.98 | 10 | , 9 | 78.54 | 587.52 | 23 | 2 | 424.56 | 3175.9 | | 3 | 7.069 | 52.88 | 10 | 3 | 82.52 | 617.26 | 23 | 3 | 433.74 | 3244.6 | | 3 1 | 7.467 | 55.86 | 10 | 3 | 86.59 | 647.74 | 23 | 9 | 443.01 | 3314.0 | | 3 2 | 7.876 | 58.92 | 10 | 9 | 90.76 | 678.95 | 24 | , | 452.39 | 3384.1 | | 3 3 | 8.296 | 62.06 | II | , | 95.03 | 710.90 | 24 | 3 | 461.86 | 3455.0 | | 3 4 | 8.727 | 65.28 | II | 3 | 99.40 | 743.58 | 24 | 3 | 471.44 | 3526.6 | | 3 5 | 9.168 | 68.58 | II | 3 | 103.87 | 776.99 | 24 | 9 | 481.11 | 3598.9 | | 3 5 3 6 | 9.621 | 71.97 | II | 9 | 108.43 | 811.14 | 25 | | 490.87 | 3672.0 | | 3 7 8 | 10.085 | 75.44 | 12 | | 113.10 | 846.03 | 25 | 3 | 500.74 | 3745.8 | | 3 8 | 10.559 | 78.99 | 12 | 3 6 | 117.86 | 881.65 | 25 | 6 | 510.71 | 3820.3 | | 3 3 4 3 5 3 6 3 7 3 8 3 9 | 11.045 | 82.62 | 12 | 6 | 122.72 | 918.00 | 25 | 9 | 520.77 | 3895.6 | | 3 10 | 11.541 | 86.33 | 12 | 9 | 127.68 | 955.09 | 26 | | 530.93 | 3971.6 | | | 12.048 | 90.13 | 13 | | 132.73 | 992.91 | 26 | 3 6 | 541.19 | 4048.4 | | 4 | 12.566 | 94.00 | 13 | 3 | 137.89 | 1031.5 | 26 | | 551.55 | 4125.9 | | 4 I | 13.095 | 97.96 | 13 | 100 | 143.14 | 1070.8 | 26 | 9 | 562.00 | 4204.I | | 4 2 | 13.635 | 102.00 | 13 | 9 | 148.49 | 1110.8 | 27 | | 572.56 | 4283.0 | | 4 3 | 14.186 | 106.12 | 14 | | 153.94 | 1151.5 | 27 | 3 | 583.21 | 4362.7 | | 4 4 | | 110.32 | 14 | 3 | 159.48 | 1193.0 | 27 | | 593.96 | 4443.1 | | 4 5 4 6 | 15.321 | 114.61 | 14 | 6 | 165.13 | 1235.3 | 27 | 9 | 604.81 | 4524.3 | | | 15.90 | 118.97 | 14 | 9 | 170.87 | 1278.2 | 28 | | 615.75 | 4606.2 | | 4 7 4 8 | 16.50 | 123.42 | 15 | | 176.71 | 1321.9 | 28 | 3 | 626.80 | 4688.8 | | | 17.10 | 127.95 | 15 | 3 | 182.65 | 1366.4 | 28 | | 637.94 | 4772.1 | | 4 9 | 17.72 | 132.56 | 15 | | 188.69 | 1411.5 | | 9 | 660.18 | 4856.2 | | 4 10 | 18.35 | 137.25 | 15 | 9 | 194.83 | 1457.4 | 29 | 2 | 660.52 | 4941.0 | | 4 11 | 18.99 | 142.02 | 16 | 2 | 201.06 | 1504.1 | 29 | 3 | 682 40 | 5026.6 | | 5
5 I | 19.63 | 151.82 | 16 | 3 | 207.39 | 1551.4 | 29 | | 683.49 | 5112.9
5199.9 | | | 20.29 | 156.83 | 16 | 9 | 220.35 | 1599.5 | 30 | 9 | 706.86 | 5199.9 | | 5 2
5 3
5 4 | 21.65 | 161.93 | 17 | 9 | 226.98 | 1697.9 | 30 | |
,50.50 | 3201.1 | | 5 4 | 22.34 | 167.12 | | 3 | 233.71 | 1748.2 | | | PERMIT | | | 7 4 | ,1- | 1 | | . 7 | 17.1 16 | | - | - | | | ## TABLE XII.—STANDARD DIMENSIONS OF WROUGHT-IRON WELDED PIPE. (National Tube Works.) | Nominal
Inside
Diameter | Actual
Outside
Diameter. | Actual
Inside
Diameter. | Interna | l Area. | External Area. | | | |--|---|-------------------------------|---|---|---|---|--| | Ins. 181443812234 12 12 12 3 3 4 4 5 6 7 8 9 10 11 12 13 4 15 17 19 1 23 | Ins405 .540 .675 .840 I.050 I.315 I.660 I.900 2.375 2.875 3.500 4.500 5.563 6.625 7.625 8.625 9.625 II.75 III.75 II.75 II.75 II.75 II.75 III.75 II | Ins | \$\text{Sq: In.}\$ \times 0.57\$ \times 1.04\$ \times 1.091\$ \times 3.34\$ \times 5.33\$ \times 6.61\$ \times 4.496\$ \times 2.036\$ \times 3.356\$ \times 4.780\$ \times 9.887\$ \times 7.383\$ \times 9.887\$ \times 12.730\$ \times 15.961\$ \times 9.86 \times 2.8.890\$ \times 3.8.738\$ \times 50.027\$ \times 2.730\$ \times 7.8.823\$ \times 50.027\$ \times 2.730\$ \times 1.37.887\$ \times 1.37.887\$ \times 1.59.485\$ \times 1.37.487\$ \times 1.45.485\$ \times 1.45.485\$ \times 1.45.485\$ | Sq. Ft0004 .0007 .0013 .0021 .0037 .0060 .0104 .0141 .0233 .0332 .0513 .0689 .0884 .1108 .1388 .2006 .2690 .3474 .4356 .5474 .6600 .7854 .9577 1.1075 1.2685 1.6229 2.0211 2.4629 | Sq. In 1288 . 2290 . 3578 . 554 . 866 1. 358 2. 164 2. 835 4. 430 6. 492 9. 621 12. 566 15. 904 19. 635 24. 301 34. 472 45. 664 58. 426 72. 760 90. 763 108. 434 127. 677 153. 938 176. 715 201. 062 254. 470 314. 159 380. 134 | Sq. Ft0009 .0016 .0025 .0038 .0060 .0094 .0150 .0197 .0308 .0451 .0668 .0875 .1104 .1364 .1364 .1364 .3171 .4057 .5053 .6303 .7530 .8867 1.0690 1.2272 1.3963 1.7671 2.1817 2.6398 3.1416 | | ## TABLE XIII. - HYPERBOLIC LOGARITHMS. | N. | Loga-
rithm. | N. | Loga-
rithm. | N. | Loga-
rithm. | N. | Loga-
rithm. | |------|-----------------|------|------------------|------|-----------------|------|-----------------| | 1.01 | .00995 | 1.57 | .45108 | 2.13 | .75612 | 2.60 | .98954 | | 1.02 | .01980 | 1.58 | .45742 | 2.14 | .76081 | 2.70 | .99325 | | 1.03 | .02956 | 1.59 | .46373 | 2.15 | .76547 | 2.71 | .99695 | | 1.04 | .03922 | 1.60 | .47000 | 2.16 | .77011 | 2.72 | 1.00063 | | 1.05 | .04879 | 1.61 | .47623 | 2.17 | .77473 | 2.73 | 1.00430 | | 1.06 | .05827 | 1.62 | .48243 | 2.18 | .77932 | 2.74 | 1.00796 | | 1.07 | .06766 | 1.63 | .48858 | 2.19 | .78390 | 2.75 | 1.01160 | | 1.08 | .07696 | 1.64 | .49470 | 2.20 | .78846 | 2.76 | 1.01523 | | 1.09 | .08618 | 1.65 | .50078 | 2.21 | .79299 | 2.77 | 1.01885 | | 1.10 | .09531 | 1.66 | .50681 | 2.22 | •79751 | 2.78 | 1.02245 | | I.II | .10436 | 1.67 | .51282 | 2.23 | .80200 | 2.79 | 1.02604 | | 1.12 | .11333 | 1.68 | .51879 | 2.24 | .80648 | 2.80 | 1.02962 | | 1.13 | .12222 | | .52473 | 2.25 | .81093 | 2.82 | 1.03318 | | 1.14 | .13103 | 1.70 | .53063 | 2.27 | .81536 | 2.83 | 1.03674 | | 1.15 | .13977 | 1.72 | .53649 | 2.28 | .82418 | 2.84 | 1.04028 | | 1.17 | .15700 | 1.73 | .54232 | 2.20 | .82855 | 2.85 | 1.04380 | | 1.18 | .16551 | 1.74 | .55389 | 2.30 | .83291 | 2.86 | 1.05082 | | 1.10 | .17395 | 1.75 | .55962 | 2.31 | .83725 | 2.87 | 1.05431 | | 1.20 | .18232 | 1.76 | .56531 | 2.32 | .84157 | 2.88 | 1.05779 | | 1.21 | .19062 | 1.77 | .57098 | 2.33 | .84587 | 2.80 | 1.06126 | | 1.22 | .19885 | 1.78 | .57661 | 2.34 | .85015 | 2.00 | 1.06471 | | 1.23 | .20701 | 1.79 | .58222 | 2.35 | .85442 | 2.91 | 1.06815 | | 1.24 | .21511 | 1.80 | .58779 | 2.36 | .85866 | 2.02 | 1.07158 | | 1.25 | .22314 | 1.81 | | 2.37 | .86289 | 2.93 | 1.07500 | | 1.26 | .23111 | 1.82 | ·59333
·59884 | 2.38 | .86710 | 2.94 | 1.07841 | | 1.27 | .23902 | 1.83 | .60432 | 2.39 | .87129 | 2.95 | 1.08181 | | 1.28 | .24686 | 1.84 | .60977 | 2.40 | .87547 | 2.96 | 1.08519 | | 1.29 | .25464 | 1.85 | .61519 | 2.41 | .87063 | 2.97 | 1.08856 | | 1.30 | .26236 | 1.86 | .62058 | 2.42 | .88377 | 2.98 | 1.09192 | | 1.31 | .27003 | 1.87 | .62594 | 2.43 | .88789 | 2.99 | 1.09527 | | 1.32 | .27763 | 1.88 | .63127 | 2.44 | .89200 | 3.00 | 1.09861 | | 1.33 | .28518 | 1.89 | .63658 | 2.45 | .89609 | 3.01 | 1.10194 | | 1.34 | .29267 | 1.90 | .64185 | 2.46 | .90016 | 3.02 | 1.10526 | | 1.35 | .30010 | 1.91 | .64710 | 2.47 | .90422 | 3.03 | 1.10856 | | 1.36 | .30748 | 1.92 | .65233 | 2.48 | .90826 | 3.04 | 1.11186 | | 1.37 | .31481 | 1.93 | .65752 | 2.49 | .91228 | 3.05 | 1.11514 | | 1.30 | .32200 | 1.94 | .66783 | 2.50 | .92028 | 3.07 | 1.11041 | | 1.40 | .33647 | 1.96 | .67294 | 2.52 | .92426 | 3.08 | 1.12103 | | 1.41 | .34359 | 1.97 | .67803 | 2.53 | .92822 | 3.09 | 1.12817 | | 1.42 | .35066 | 1.98 | .68310 | 2.54 | .93216 | 3.10 | 1.13140 | | 1.43 | .35767 | 1.00 | .68813 | 2.55 | .93609 | 3.11 | 1.13462 | | 1.44 | .36464 | 2.00 | .69315 | 2.56 | .94001 | 3.12 | 1.13783 | | 1.45 | .37156 | 2.01 | .69813 | 2.57 | .94391 | 3.13 | 1.14103 | | 1.46 | .37844 | 2.02 | . 70310 | 2.58 | .94779 | 3.14 | 1.14422 | | 1.47 | .38526 | 2.03 | .70804 | 2.59 | .95166 | 3.15 | 1.14740 | | 1.48 | .39204 | 2.04 | .71295 | 2.60 | .95551 | 3.16 | 1.15057 | | 1.49 | . 39878 | 2.05 | .71784 | 2.61 | .95935 | 3.17 | 1.15373 | | 1.50 | .40547 | 2.06 | .72271 | 2.62 | .96317 | 3.18 | 1.15688 | | 1.51 | .41211 | 2.07 | .72755 | 2.63 | .96698 | 3.19 | 1.16002 | | 1.52 | .41871 | 2.08 | .73237 | 2.64 | .97078 | 3.20 | 1.16315 | | 1.53 | .42527 | 2.09 | .73716 | 2.65 | .97454 | 3.21 | 1.16627 | | 1.54 | .43178 | 2.10 | .74194 | 2.66 | .97833 | 3.22 | 1.16938 | | 1.55 | .43825 | 2.11 | .74669 | 2.67 | .98208 | 3.23 | 1.17248 | | 1.56 | .44469 | 2.12 | .75142 | 2.68 | .98582 | 3.24 | 1.17557 | TABLE XIII. Continued. - HYPERBOLIC LOGARITHMS. | Γ | N. | Loga- | N. | Loga- | N. | Loga- | N. | Loga- | |----|--------------|---------|------|---------|--------------|---------|--------------|---------| | _ | | | | | | | | | | | 3.25 | 1 17865 | 3.81 | 1.33763 | 4.37 | 1.47476 | 4.93 | 1.59534 | | | 3.26 | 1.18173 | 3.82 | 1.34025 | 4.38 | 1.47705 | 4.94 | 1.59737 | | | 3.27 | 1.18479 | 3.84 | 1.34286 | 4.40 | 1.47933 | 4.95 | 1.59939 | | | 3.28 | 1 19089 | 3.85 | 1.34547 | 4.41 | 1.48387 | 4.97 | 1.60342 | | | 3.30 | 1.19392 | 3.86 | 1.35067 | 4.42 | 1.48614 | 4.98 | 1.60543 | | | 3.31 | 1.19695 | 3.87 | 1.35325 | 4.43 | 1.48840 | 4.99 | 1.60744 | | | 3.32 | 1.19996 | 3.88 | 1.35584 | 4.44 | 1.49065 | 5.00 | 1.60944 | | | 3.33 | 1.20297 | 3.89 | 1.35841 | 4.45 | 1.49290 | 5.01 | 1.61144 | | | 3.34 | 1.20597 | 3.90 | 1.36093 | 4.46 | 1.49515 | 5.02 | 1.61343 | | 1. | 3.35 | 1.20896 | 3.91 | 1.36354 | 4.47 | 1.49739 | 5.03 | 1.61542 | | 1. | 3.36 | 1.21194 | 3.92 | 1.36609 | 4.48 | 1.49962 | 5.04 | 1.61741 | | 1 | 3.37 |
1.21491 | 3.93 | 1.36864 | 4.49 | 1.50185 | 5.05 | 1.61939 | | | 3.38 | 1.21788 | 3.94 | 1.37118 | 4.50 | 1.50408 | 5.06 | 1.62137 | | | 3.39 | 1.22083 | 3.95 | 1.37371 | 4.51
4.52 | 1.50630 | 5.07 | 1.62334 | | | 3.40 | 1.22378 | 3.96 | 1.37624 | 4.53 | 1.51072 | 5.00 | 1.62728 | | | 3.41 | 1.220/1 | 3.98 | 1.38128 | 4.54 | 1.51293 | 5.10 | 1.62924 | | | 3.42 | 1.23256 | 3.99 | 1.38379 | 4.55 | 1.51513 | 5.11 | 1.63120 | | | 3.44 | 1.23547 | 4.00 | 1.38629 | 4.56 | 1.51732 | 5.12 | 1.63315 | | | 3.45 | 1.23837 | 4.01 | 1.38879 | 4.57 | 1.51951 | 5.13 | 1.63511 | | | 3.46 | 1.24127 | 4.02 | 1.39128 | 4.58 | 1.52170 | 5.14 | 1.63705 | | | 3.47 | 1.24415 | 4.03 | 1.39377 | 4.59 | 1.52388 | 5.15 | 1.63900 | | | 3.48 | 1.24703 | 4.04 | 1.39624 | 4.60 | 1.52606 | 5.16 | 1.64094 | | | 3.49 | 1.24990 | 4.05 | 1.39872 | 4.61 | 1.52823 | 5.17 | 1.64287 | | | 3.50 | 1.25276 | 4.06 | 1.40118 | 4.62 | 1.53039 | 5.18 | 1.64481 | | | 3.51 | 1.25562 | 4.07 | 1.40364 | 4.63 | 1.53256 | 5.19 | 1.64673 | | | 3.52 | 1.25846 | 4.08 | 1.40610 | 4.64 | 1.53471 | 5.20 | 1.64866 | | | 3.53 | 1.26130 | 4.09 | 1.40854 | 4.65 | 1.53687 | 5.21 | 1.65058 | | | 3.54 | 1.26412 | 4.10 | 1.41099 | 4.67 | 1.53902 | 5.22 | 1.65441 | | | 3.55 | 1.26695 | 4.11 | 1.41585 | 4.68 | 1.54330 | 5.24 | 1.65632 | | | 3.56 | 1.27257 | 4.13 | 1.41828 | 4.60 | 1.54543 | 5.25 | 1.65823 | | | 3.57
3.58 | 1.27536 | 4.14 | 1.42070 | 4.70 | 1.54756 | 5.26 | 1.66013 | | 1 | 3.59 | 1.27815 | 4.15 | 1.42311 | 4.71 | 1.54969 | 5.27 | 1.66203 | | | 3.60 | 1.28093 | 4.16 | 1.42552 | 4.72 | 1.55181 | 5.28 | 1.66393 | | 1 | 3.61 | 1.28371 | 4.17 | 1.42792 | 4.73 | 1.55393 | 5.29 | 1.66582 | | 1 | 3.62 | 1.28647 | 4.18 | 1.43031 | 4.74 | 1.55604 | 5.30 | 1.66771 | | 1 | 3.63 | 1.28923 | 4.19 | 1.43270 | 4.75 | 1.55814 | 5.31 | 1.66959 | | 1 | 3.64 | 1.29198 | 4.20 | 1.43508 | 4.76 | 1.56025 | 5.32 | 1.67147 | | | 3.65 | 1.29473 | 4.21 | 1.43746 | 4.77 | 1.56235 | 5.33 | 1.67335 | | | 3.66 | 1.29746 | 4.22 | 1.43984 | 4.78 | 1.56444 | 5.34 | 1.67523 | | Т | 3.67 | 1.30019 | 4.23 | 1.44220 | 4.79 | 1.56862 | 5.35
5.36 | 1.67710 | | | 3.68 | 1.30291 | 4.24 | 1.44450 | 4.81 | 1.57070 | 5.37 | 1.68083 | | 1 | 3.69 | 1.30833 | 4.26 | 1.44092 | 4.82 | 1.57277 | 5.38 | 1.68260 | | | 3.71 | 1.31103 | 4.27 | 1.45161 | 4.83 | 1.57485 | 5.39 | 1.68455 | | | 3.72 | 1.31372 | 4.28 | 1.45395 | 4.84 | 1.57691 | 5.40 | 1.68640 | | | 3.73 | 1.31641 | 4.29 | 1.45629 | 4.85 | 1.57898 | 5.41 | 1.68825 | | 1 | 3.74 | 1.31909 | 4.30 | 1.45861 | 4.86 | 1.58104 | 5.42 | 1.69010 | | | 3.75 | 1.32176 | 4.31 | 1.46094 | 4.87 | 1.58309 | 5.43 | 1.69194 | | | 3.76 | 1.32442 | 4.32 | 1.46326 | 4.88 | 1.58515 | 5.44 | 1.69378 | | | 3.77 | 1.32707 | 4.33 | 1.46557 | 4.89 | 1.58719 | 5.45 | 1.69562 | | | 3.78 | 1.32972 | 4.34 | 1.46787 | 4.90 | 1.58924 | 5.46 | 1.69745 | | | 3.79
3.80 | 1.33237 | 4.35 | 1.47018 | 4.91 | 1.59127 | 5.47 | 1.70111 | | L | 3.00 | 1.33500 | 4.36 | 1.47247 | 1 4.92 | 1.59331 | 3.40 | 1./0111 | TABLE XIII Continued. - HYPERBOLIC LOGARITHMS. | N: rithm. nithm. N: rithm. N: nithm. <th< th=""><th>993-
107-
107-
107-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-</th></th<> | 993-
107-
107-
107-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109-
109- |
--|--| | 5.50 1.70475 6.00 1.80171 6.62 1.89010 7.18 1.9 5.51 1.70656 6.07 1.80336 6.63 1.89160 7.19 1.9 5.52 1.70838 6.08 1.80500 6.64 1.89311 7.20 1.9 5.53 1.71019 6.09 1.80865 6.65 1.89462 7.21 1.9 5.54 1.71199 6.10 1.80829 6.66 1.89612 7.22 1.9 5.55 1.71380 6.11 1.80993 6.67 1.89762 7.23 1.9 5.56 1.71560 6.12 1.81150 6.68 1.89612 7.24 1.9 5.57 1.71400 6.13 1.81319 6.69 1.90061 7.25 1.9 5.59 1.72088 6.15 1.81645 6.71 1.90211 7.26 1.9 5.61 1.72453 6.16 1.81808 6.72 1.99590 7.28 1.9 | 7130
7269
7408
7547
7685
7824
7962
8100
8238
8513
8650
8787
8924
9061
9198 | | 5.50 1.70475 6.06 1.80171 6.62 1.89010 7.18 1.9 5.51 1.70656 6.07 1.80336 6.63 1.89160 7.19 1.9 5.52 1.70838 6.08 1.80500 6.64 1.89311 7.20 1.9 5.53 1.71190 6.10 1.80829 6.66 1.89462 7.21 1.9 5.54 1.71190 6.10 1.80829 6.66 1.89762 7.22 1.9 5.55 1.71380 6.11 1.80993 6.67 1.89762 7.23 1.9 5.55 1.71500 6.12 1.81516 6.68 1.89012 7.24 1.9 5.57 1.7140 6.13 1.81319 6.69 1.90001 7.25 1.9 5.59 1.72098 6.15 1.81645 6.71 1.90211 7.26 1.9 5.60 1.72277 6.16 1.81808 6.72 1.90509 7.28 1.9 | 7130
7269
7408
7547
7685
7824
7962
8100
8238
8513
8650
8787
8924
9061
9198 | | 5.51 1.70656 6.07 1.80336 6.63 1.89160 7.19 1.9 5.52 1.70838 6.08 1.80500 6.64 1.89311 7.20 1.9 5.53 1.71019 6.09 1.80665 6.65 1.89462 7.21 1.9 5.54 1.71199 6.10 1.80693 6.66 1.89612 7.22 1.9 5.55 1.71360 6.11 1.80993 6.67 1.89762 7.23 1.9 5.56 1.71560 6.12 1.81156 6.68 1.89012 7.24 1.9 5.57 1.71740 6.14 1.81482 6.70 1.90611 7.25 1.9 5.59 1.72008 6.15 1.81645 6.71 1.90360 7.27 1.9 5.60 1.72277 6.16 1.81808 6.72 1.90509 7.28 1.9 5.61 1.72455 6.17 1.81970 6.73 1.90509 7.28 1.9 | 7269
7408
7547
7685
7824
7962
8100
8238
8376
8513
8650
8787
8924
9061
9198 | | 5.52 1.70838 6.08 1.80500 6.64 1.89311 7.20 1.9 5.53 1.71019 6.09 1.80655 6.65 1.89462 7.21 1.9 5.54 1.71190 6.10 1.80829 6.66 1.89622 7.22 1.9 5.55 1.71380 6.11 1.80993 6.67 1.89762 7.23 1.9 5.56 1.71560 6.12 1.81156 6.68 1.89702 7.24 1.9 5.57 1.71740 6.13 1.81319 6.69 1.90061 7.25 1.9 5.58 1.71910 6.14 1.81482 6.70 1.90211 7.26 1.9 5.50 1.72297 6.16 1.81808 6.71 1.90360 7.27 1.9 5.61 1.72455 6.17 1.81970 6.73 1.90509 7.28 1.9 5.62 1.72633 6.18 1.82132 6.74 1.90806 7.30 1.9 | 7408
7547
7685
7824
7962
8100
8238
8376
8513
8650
8787
8924
9061
9198 | | 5.53 1.71019 6.09 1.80665 6.65 1.89462 7.21 1.9 5.54 1.71199 6.10 1.80829 6.66 1.89612 7.22 1.9 5.55 1.71380 6.11 1.80993 6.67 1.89762 7.23 1.9 5.55 1.71740 6.13 1.81319 6.69 1.90061 7.25 1.9 5.58 1.71919 6.14 1.81482 6.70 1.90211 7.26 1.9 5.59 1.72098 6.15 1.81645 6.71 1.90360 7.27 1.9 5.60 1.72455 6.17 1.81970 6.73 1.90599 7.28 1.9 5.61 1.72455 6.17 1.81970 6.73 1.90658 7.29 1.9 5.62 1.72633 6.18 1.82132 6.74 1.90806 7.30 1.9 5.63 1.72811 6.19 1.82294 6.75 1.90954 7.31 1.9 | 7547
7685
7824
7962
8100
8238
8376
8513
8650
8787
8924
9961
9198 |
 5.54 1.71199 6.10 1.80829 6.66 1.89762 7.22 1.9 5.55 1.71380 6.11 1.80993 6.67 1.89762 7.23 1.9 5.56 1.71560 6.12 1.8156 6.68 1.89912 7.24 1.9 5.57 1.7140 6.13 1.81319 6.69 1.90060 7.25 1.9 5.58 1.71919 6.14 1.81482 6.70 1.90211 7.26 1.9 5.59 1.72098 6.15 1.81645 6.71 1.90360 7.27 1.9 5.60 1.72455 6.16 1.81808 6.72 1.90599 7.28 1.9 5.61 1.72455 6.17 1.81970 6.73 1.90599 7.28 1.9 5.62 1.72633 6.18 1.82132 6.74 1.90806 7.31 1.9 5.63 1.72811 6.19 1.82432 6.74 1.90806 7.31 1.9 | 7685
7824
7962
8100
8238
8376
8513
8650
8787
8924
9061
9198 | | 5.55 1.71386 6.11 1.80993 6.67 1.89762 7.23 1.9 5.56 1.71560 6.12 1.81156 6.68 1.89912 7.24 1.9 5.57 1.71740 6.13 1.81319 6.69 1.90061 7.25 1.9 5.58 1.71919 6.14 1.81482 6.70 1.90211 7.26 1.9 5.59 1.72088 6.15 1.81645 6.71 1.90360 7.27 1.9 5.60 1.72455 6.16 1.81808 6.72 1.90509 7.28 1.9 5.61 1.72453 6.18 1.82132 6.74 1.90505 7.29 1.9 5.62 1.72633 6.18 1.82132 6.74 1.90058 7.29 1.9 5.63 1.72811 6.19 1.82294 6.75 1.90058 7.29 1.9 5.64 1.72988 6.20 1.82477 6.78 1.91250 7.31 1.9 | 7824
7962
8100
8238
8376
8513
8650
8787
8924
9061
9198 | | 5.50 1.71560 6.12 1.8156 6.68 1.89912 7.24 1.9 5.57 1.71740 6.13 1.81319 6.69 1.90061 7.25 1.9 5.58 1.71910 6.14 1.81482 6.70 1.90211 7.26 1.9 5.59 1.72098 6.15 1.81645 6.71 1.90360 7.27 1.9 5.60 1.72277 6.16 1.81808 6.72 1.90509 7.28 1.9 5.61 1.72455 6.17 1.81970 6.73 1.90509 7.28 1.9 5.62 1.72633 6.18 1.82132 6.74 1.90806 7.30 1.9 5.63 1.72811 6.19 1.82294 6.75 1.90954 7.31 1.9 5.64 1.73268 6.20 1.82455 6.76 1.91102 7.32 1.9 5.65 1.73166 6.21 1.82777 6.78 1.91398 7.34 1.9 | 7962
8100
8238
8376
8513
8650
8787
8924
9061
9198 | | 5.57 1.71740 6.13 1.81319 6.69 1.90061 7.25 1.9 5.58 1.71919 6.14 1.81482 6.70 1.90211 7.26 1.9 5.59 1.72098 6.15 1.81645 6.71 1.90360 7.27 1.9 5.60 1.72455 6.17 1.81970 6.73 1.90599 7.28 1.9 5.61 1.72455 6.17 1.81970 6.73 1.9058 7.29 1.9 5.62 1.72633 6.18 1.82132 6.74 1.90806 7.30 1.9 5.63 1.72811 6.19 1.82294 6.75 1.90954 7.31 1.9 5.64 1.72988 6.20 1.82455 6.76 1.91102 7.32 1.9 5.65 1.73166 6.21 1.82777 6.78 1.91398 7.34 1.9 5.66 1.73509 6.24 1.83098 6.80 1.91692 7.35 1.9 | 8100
8238
8376
8513
8650
8787
8924
9061
9198 | | 5.58 1.71919 6.14 1.81482 6.70 1.90211 7.26 1.9 5.59 1.72098 6.15 1.81645 6.71 1.90360 7.27 1.9 5.60 1.72277 6.16 1.81808 6.72 1.90509 7.28 1.9 5.61 1.72455 6.17 1.81970 6.73 1.90508 7.29 1.9 5.62 1.72633 6.18 1.82132 6.74 1.90806 7.30 1.9 5.63 1.72811 6.19 1.82294 6.75 1.90954 7.31 1.9 5.64 1.72988 6.20 1.82455 6.76 1.91102 7.32 1.9 5.65 1.73166 6.21 1.82616 6.77 1.91250 7.33 1.9 5.67 1.73519 6.22 1.8277 6.79 1.91545 7.35 1.9 5.67 1.73595 6.24 1.83098 6.80 1.91545 7.35 1.9 | 8238
8376
8513
8650
8787
8924
9061
9198 | | 5.59 1.72998 6.15 1.81645 6.71 1.90360 7.27 1.95 5.60 1.72277 6.16 1.81808 6.72 1.90599 7.28 1.9 5.61 1.72455 6.17 1.81970 6.73 1.90568 7.29 1.9 5.62 1.72633 6.18 1.82132 6.74 1.90806 7.30 1.9 5.63 1.72811 6.19 1.82294 6.75 1.90954 7.31 1.9 5.64 1.72988 6.20 1.82455 6.76 1.91102 7.32 1.9 5.65 1.73166 6.21 1.82616 6.77 1.91250 7.33 1.9 5.66 1.73342 6.22 1.8277 6.78 1.91398 7.34 1.9 5.67 1.73519 6.23 1.82937 6.79 1.91545 7.35 1.9 5.68 1.73605 6.24 1.83298 6.81 1.91692 7.36 1.9 | 8376
8513
8650
8787
8924
9061
9198 | | 5.60 1.72277 6.16 1.81808 6.72 1.90509 7.28 1.95 5.61 1.72455 6.17 1.81970 6.73 1.90508 7.29 1.95 5.62 1.72633 6.18 1.82132 6.74 1.90806 7.30 1.95 5.63 1.72811 6.19 1.82294 6.75 1.90954 7.31 1.95 5.64 1.72988 6.20 1.82455 6.76 1.91102 7.32 1.96 5.65 1.73166 6.21 1.82616 6.77 1.91250 7.33 1.96 5.66 1.73342 6.22 1.82777 6.78 1.91398 7.34 1.96 5.67 1.73519 6.23 1.82937 6.79 1.91545 7.35 1.90 5.68 1.73871 6.23 1.83298 6.80 1.91692 7.36 1.90 5.69 1.73871 6.25 1.83258 6.81 1.91839 7.37 1.90 | 8513
8650
8787
8924
9061
9198 | | 5.61 1.72455 6.17 1.81970 6.73 1.90658 7.29 1.95 5.62 1.72633 6.18 1.82132 6.74 1.90866 7.30 1.95 5.63 1.72811 6.19 1.82294 6.75 1.90954 7.31 1.90 5.64 1.72988 6.20 1.82455 6.76 1.91102 7.32 1.90 5.65 1.73166 6.21 1.82616 6.77 1.91250 7.33 1.90 5.66 1.73342 6.22 1.82777 6.78 1.91398 7.34 1.90 5.67 1.73510 6.23 1.82937 6.79 1.91545 7.35 1.90 5.68 1.73871 6.23 1.82937 6.79 1.91545 7.35 1.90 5.69 1.73871 6.25 1.83288 6.81 1.91839 7.37 1.90 5.70 1.74047 6.26 1.83418 6.82 1.91986 7.38 1.90 | 8650
8787
8924
9061
9198 | | 5.62 1.72633 6.18 1.82132 6.74 1.90806 7.30 1.95 5.63 1.72811 6.19 1.82294 6.75 1.90954 7.31 1.95 5.64 1.72988 6.20 1.82455 6.76 1.91102 7.32 1.95 5.65 1.73342 6.21 1.82616 6.77 1.91250 7.33 1.90 5.66 1.73519 6.23 1.82937 6.79 1.91545 7.35 1.90 5.69 1.73871 6.25 1.83298 6.80 1.91545 7.35 1.90 5.69 1.73871 6.25 1.83298 6.80 1.91639 7.37 1.90 5.70 1.74047 6.26 1.83418 6.82 1.91839 7.37 1.90 5.71 1.74222 6.27 1.83578 6.81 1.92132 7.39 2.00 5.72 1.74397 6.29 1.83896 6.85 1.92279 7.40 2.00 | 8787
8924
9061
9198
9334 | | 5.63 1.72811 6.19 1.82294 6.75 1.90954 7.31 1.9 5.64 1.72988 6.20 1.82455 6.76 1.91102 7.32 1.9 5.65 1.73166 6.21 1.82616 6.77 1.91250 7.33 1.9 5.67 1.73519 6.23 1.82937 6.79 1.91398 7.34 1.9 5.68 1.73695 6.24 1.83098 6.80 1.91692 7.36 1.9 5.69 1.73871 6.25 1.83288 6.81 1.91639 7.37 1.9 5.70 1.74047 6.26 1.83418 6.82 1.91986 7.38 1.9 5.71 1.74222 6.27 1.83578 6.83 1.92132 7.39 2.0 5.72 1.74397 6.28 1.83737 6.84 1.92279 7.40 2.0 5.73 1.74572 6.29 1.83896 6.85 1.92275 7.41 2.0 | 8924
9061
9198
9334 | | 5.64 1.72988 6.20 1.82455 6.76 1.91102 7.32 1.96 5.65 1.73166 6.21 1.82616 6.77 1.91250 7.33 1.96 5.66 1.73342 6.22 1.82777 6.78 1.91398 7.34 1.96 5.68 1.73519 6.23 1.82937 6.79 1.91545 7.35 1.90 5.68 1.73605 6.24 1.83908 6.80 1.91692 7.36 1.90 5.69 1.73871 6.25 1.83258 6.81 1.91692 7.36 1.90 5.70 1.74047 6.26 1.83418 6.82 1.91986 7.38 1.90 5.71 1.74222 6.27 1.83578 6.83 1.92132 7.39 2.00 5.72 1.74397 6.28 1.83737 6.84 1.92279 7.40 2.00 5.73 1.74572 6.29 1.83896 6.85 1.92275 7.41 2.00 | 9061
9198
9334 | | 5.65 1.73166 6.21 1.82016 6.77 1.91250 7.33 1.90 5.66 1.73342 6.22 1.82777 6.78 1.91398 7.34 1.91 5.67 1.73519 6.23 1.82937 6.79 1.91545 7.35 1.90 5.69 1.73871 6.25 1.83288 6.81 1.91839 7.37 1.90 5.70 1.74047 6.26 1.83418 6.82 1.91839 7.37 1.90 5.71 1.74222 6.27 1.83578 6.81 1.92132 7.39 2.00 5.72 1.74397 6.28 1.83737 6.84 1.92279 7.40 2.00 5.74 1.74746 6.30 1.84055 6.86 1.92275 7.41 2.00 5.75 1.74920 6.31 1.84214 6.87 1.92716 7.43 2.00 5.76 1.7504 6.32 1.84353 6.89 1.93007 7.45 2.00 < | 9198
9334 | | 5.66 1.73342 6.22 1.82777 6.78 1.91398 7.34 1.9 5.67 1.73519 6.23 1.82937 6.79 1.91545 7.35 1.9 5.68 1.73695 6.24 1.83098 6.80 1.91692 7.35 1.9 5.69 1.73871 6.25 1.83258 6.81 1.91839 7.37 1.9 5.70 1.74047 6.26 1.83418 6.82 1.91986 7.38 1.9 5.71 1.74222 6.27 1.83578 6.81 1.92132 7.39 2.0 5.72 1.74397 6.28 1.83737 6.84 1.92279 7.40 2.0 5.73 1.74746 6.30 1.84055 6.86 1.92275 7.41 2.0 5.75 1.74920 6.31 1.84214 6.87 1.92716 7.43 2.0 5.76 1.7504 6.32 1.84372 6.88 1.92862 7.44 2.0 | 9334 | | 5.67 1.73519 6.23 1.82337 6.79 1.91345 7.35 1.96 5.68 1.73695 6.24 1.83098 6.80 1.91692 7.36 1.99 5.69 1.73871 6.25 1.83258 6.81 1.91839 7.37 1.99 5.70 1.74047 6.26 1.83418 6.82 1.91839 7.37 1.90 5.71 1.74222 6.27 1.83578 6.83 1.92132 7.39 2.00 5.72 1.74397 6.28 1.83737 6.84 1.92279 7.40 2.00 5.73 1.74572 6.29 1.83896 6.85 1.92425 7.41 2.00 5.74 1.74746 6.30 1.84055 6.86 1.92571 7.42 2.00 5.75 1.74920 6.31 1.84214 6.87 1.92716 7.43 2.00 5.76 1.75094 6.32 1.84372 6.88 1.92802 7.44 2.00 | | | 5.68 1.73695 6.24 1.83698 6.80 1.91692 7.36 1.96 5.69 1.73871 6.25 1.83258 6.81 1.91839 7.37 1.96 5.70 1.74047 6.26 1.83418 6.82 1.9186 7.38 1.96 5.71 1.74222 6.27 1.83578 6.83 1.92132 7.39 2.06 5.72 1.74397 6.28 1.83737 6.84 1.92279 7.40 2.06 5.73 1.74572 6.29 1.83896 6.85 1.92279 7.41 2.06 5.74 1.74746 6.30 1.84055 6.86 1.92571 7.42 2.06 5.75 1.75094 6.32 1.84214 6.87 1.92716 7.43 2.06 5.76 1.75094 6.32 1.84530 6.89 1.93007 7.45 2.06 5.78 1.75440 6.34 1.84688 6.90 1.93152 7.46 2.06 < | | | 5.69 1.73871 6.25 1.83258 6.81 1.91839 7.37 1.96 5.70 1.74047 6.26 1.83418 6.82 1.91986 7.38 1.91 5.71 1.74222 6.27 1.83578 6.83 1.92132 7.39 2.06 5.72 1.74397 6.28 1.83737 6.84 1.92279 7.40 2.06 5.73 1.74572 6.29 1.83896 6.85 1.92425 7.41 2.06 5.74 1.74746 6.30 1.84055 6.86 1.92571 7.42 2.06 5.75 1.75094 6.31 1.84214 6.87 1.92716 7.43 2.06 5.76 1.75094 6.32 1.84372 6.88 1.92862 7.44 2.06 5.78 1.75440 6.34 1.84688 6.90 1.93152 7.46 2.06 5.79 1.75613 6.35 1.84845 6.91 1.93297 7.47 2.0 < | | | 5.70 1.74047 6.26 1.83418 6.82 1.91986 7.38 1.92 5.71 1.74222 6.27 1.83578 6.83 1.92132 7.39 2.00 5.72 1.74397 6.28 1.83737 6.84 1.92279 7.40 2.00 5.73 1.74572 6.29 1.83896 6.85 1.92279 7.41 2.00 5.74 1.74746 6.30 1.84955 6.86 1.92571 7.42 2.00 5.75 1.74920 6.31 1.84214 6.87 1.92716 7.43 2.00 5.76 1.75904 6.32 1.84372 6.88 1.92862 7.44 2.00 5.77 1.75267 6.33 1.84530 6.89 1.93007 7.45 2.00 5.79 1.75613 6.35 1.84845 6.91 1.93297 7.47 2.00 5.80 1.75786 6.36 1.85003 6.92 1.93442 7.48 2.0 < | | | 5.71 1.74222 6.27 1.83578 6.83 1.92132 7.39 2.06 5.72 1.74397 6.28 1.83737 6.84 1.92279 7.40 2.06 5.73 1.74572 6.29 1.83896 6.85 1.92425 7.41 2.06 5.74 1.74746 6.30 1.84055 6.86 1.92571 7.42 2.06 5.75 1.74920 6.31 1.84214 6.87 1.92716 7.43 2.06 5.76 1.75204 6.32 1.84272 6.88 1.92862 7.44 2.06 5.77 1.75267 6.33 1.84530 6.89 1.93007 7.45 2.06 5.78 1.75440 6.34 1.84688 6.90 1.93152 7.46 2.06 5.80 1.75786 6.35 1.8503 6.91 1.93297 7.47 2.06 5.81 1.75958 6.37 1.85100 6.93 1.93586 7.49 2.06 5.82 1.76130 6.38 1.85337 6.94 1.93730 7.50 2.06 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 5.73 1.74572 6.29 1.83896 6.85 1.92425 7.41 2.06 5.74 1.74746 6.30 1.84055 6.86 1.92571 7.42 2.06 5.75 1.74920 6.31 1.84214 6.87 1.92716 7.43 2.06 5.76 1.75094 6.32 1.84372 6.88 1.92862 7.44 2.06 5.77 1.75267 6.33 1.84530 6.89 1.93007 7.45 2.06 5.78 1.75440 6.34 1.84688 6.90 1.93152 7.46 2.06 5.79 1.75613 6.35 1.84845 6.91 1.93297 7.47 2.0 5.80 1.75786 6.36 1.85003 6.92 1.93442 7.48 2.0 5.81 1.75958 6.37 1.85160
6.93 1.93586 7.49 2.0 5.82 1.76130 6.38 1.85317 6.94 1.93730 7.55 2.0 | | | 5.74 1.74746 6.30 1.84055 6.86 1.92571 7.42 2.06 5.75 1.74920 6.31 1.84214 6.87 1.92716 7.43 2.06 5.76 1.75094 6.32 1.84372 6.88 1.92862 7.44 2.06 5.77 1.75267 6.33 1.84530 6.89 1.93007 7.45 2.06 5.78 1.75440 6.34 1.84688 6.90 1.93152 7.46 2.06 5.79 1.75613 6.35 1.84845 6.91 1.93297 7.47 2.06 5.80 1.75786 6.36 1.85003 6.92 1.93442 7.48 2.06 5.81 1.75958 6.37 1.85160 6.93 1.93586 7.49 2.06 5.82 1.76130 6.38 1.85317 6.94 1.93730 7.50 2.06 | | | 5.75 1.74920 6.31 1.84214 6.87 1.92716 7.43 2.00 5.76 1.75094 6.32 1.84372 6.88 1.92862 7.44 2.00 5.77 1.75267 6.33 1.84530 6.89 1.93007 7.45 2.00 5.78 1.75643 6.34 1.84688 6.90 1.93152 7.46 2.00 5.79 1.75613 6.35 1.84845 6.91 1.93297 7.47 2.00 5.80 1.75786 6.36 1.85003 6.92 1.93442 7.48 2.00 5.81 1.75958 6.37 1.85160 6.93 1.93586 7.49 2.00 5.82 1.76130 6.38 1.85317 6.94 1.93730 7.50 2.00 | | | 5.76 1.75094 6.32 1.84372 6.88 1.92862 7.44 2.06 5.77 1.75267 6.33 1.84530 6.89 1.93007 7.45 2.06 5.78 1.75440 6.34 1.84688 6.90 1.93152 7.46 2.06 5.79 1.75613 6.35 1.84845 6.91 1.93207 7.47 2.06 5.80 1.75786 6.36 1.85003 6.92 1.93442 7.48 2.06 5.81 1.75958 6.37 1.85160 6.93 1.93586 7.49 2.06 5.82 1.76130 6.38 1.85317 6.94 1.93730 7.50 2.06 | | | 5.77 1.75267 6.33 1.84530 6.89 1.93007 7.45 2.06 5.78 1.75440 6.34 1.84688 6.90 1.93152 7.46 2.06 5.79 1.75613 6.35 1.84845 6.91 1.93297 7.47 2.06 5.80 1.75786 6.36 1.85003 6.92 1.93442 7.48 2.06 5.81 1.75958 6.37 1.85160 6.93 1.93586 7.49 2.06 5.82 1.76130 6.38 1.85317 6.94 1.93730 7.50 2.06 | 2687 | | 5.78 1.75440 6.34 1.84688 6.90 1.93152 7.46 2.06 5.79 1.75786 6.35 1.84845 6.91 1.93297 7.47 2.0 5.80 1.75786 6.36 1.85003 6.92 1.93442 7.48 2.0 5.81 1.75958 6.37 1.85160 6.93 1.93586 7.49 2.0 5.82 1.76130 6.38 1.85317 6.94 1.93730 7.50 2.0 | | | 5.79 1.75613 6.35 1.84845 6.91 1.93297 7.47 2.0 5.80 1.75786 6.36 1.85003 6.92 1.93442 7.48 2.0 5.81 1.75958 6.37 1.85160 6.93 1.93586 7.49 2.0 5.82 1.76130 6.38 1.85317 6.94 1.93730 7.50 2.0 | | | 5.80 1.75786 6.36 1.85003 6.92 1.93442 7.48 2.0 5.81 1.75958 6.37 1.85160 6.93 1.93586 7.49 2.0 5.82 1.76130 6.38 1.85317 6.94 1.93730 7.50 2.0 | | | 5.81 1.75958 6.37 1.85160 6.93 1.93586 7.49 2.0 5.82 1.76130 6.38 1.85317 6.94 1.93730 7.50 2.0 | | | 5.82 1.76130 6.38 1.85317 6.94 1.93730 7.50 2.01 | | | 5.83 1.76302 6.30 1.85473 6.05 1.93874 7.51 2.00 | | | | | | 5.84 1.76473 6.40 1.85630 6.96 1.94018 7.52 2.0 | 1757 | | | 1890 | | | 2022 | | | 2155 | | | 2287 | | | 2419 | | 5.90 1.77495 6.46 1.86563 7.02 1.94876 7.58 2.00 | 2551 | | 5.91 1.77665 6.47 1.86718 7.03 1.95019 7.59 2.02 | 2683 | | 5.92 1.77834 6.48 1.86872 7.04 1.95161 7.60 2.02 | 2815 | | | 2946 | | | 3078 | | 5.95 1.78339 6.51 1.87334 7.07 1.95586 7.63 2.0 | 3209 | | 5.96 1.78507 6.52 1.87487 7.08 1.95727 7.64 2.03 | 3340 | | 5.97 1.78675 6.53 1.87641 7.09 1.95869 7.65 2.03 | 3471 | | 5.98 1.78842 6.54 1.87794 7.10 1.96009 7.66 2.00 | | | | 3732 | | | 3862 | | | 3992 | | 6.02 1.70500 6.58 1 88403 7.14 1.96571 7.70 2.00 | | | 6.03 1.79675 6.59 1.88555 7.15 1.96711 7.71 2.0 | 1122 | | 6.04 1.79840 6.60 1 88707 7.16 1.96851 7.72 2.0 | 1252 | TABLE XIII. Continued. — HYPERBOLIC LOGARITHMS. | N. | Loga-
rithm. | N. | Loga-
rithm. | N. | Loga-
rithm. | N. | Loga-
rithm. | |------|-----------------|--------------|-----------------|------|-----------------|------|-----------------| | 7.73 | 2.04511 | 8.30 | 2.11626 | 8.87 | 2.18267 | 9.44 | 2.24496 | | 7.74 | 2.04640 | 8.31 | 2.11746 | 8.88 | 2.18380 | 9.45 | 2.24601 | | 7.75 | 2.04769 | 8.32 | 2.11866 | 8.89 | 2.18493 | 9.46 | 2.24707 | | 7.76 | 2.04898 | 8.33 | 2.11986 | 8.90 | 2.18605 | 9.47 | 2.24813 | | 7.77 | 2.05027 | 8.34 | 2.12106 | 8.91 | 2.18717 | 9.48 | 2.24918 | | 7.78 | 2.05156 | 8.35 | 2.12226 | 8.92 | 2.18830 | 9.49 | 2.25024 | | 7.70 | 2.05284 | 8.36 | 2.12346 | 8.93 | 2.18942 | 9.50 | 2.25129 | | 7.80 | 2.05412 | 8.37 | 2.12465 | 8.94 | 2.19054 | 9.51 | 2.25234 | | 7.81 | 2.05540 | 8.38 | 2.12585 | 8.95 | 2.19165 | 9.52 | 2.25339 | | 7.82 | 2.05668 | 8.39 | 2.12704 | 8.96 | 2.19277 | 9.53 | 2.25444 | | 7.83 | 2.05796 | 8.40 | 2,12823 | 8.97 | 2.19389 | 9.54 | 2.25549 | | 7.84 | 2.05924 | 8.41 | 2.12942 | 8.98 | 2.19500 | 9.55 | 2.25654 | | 7.85 | 2.06051 | 8.42 | 2.13061 | 8.99 | 2.19611 | 9.56 | 2.25759 | | 7.86 | 2.06179 | 8.43 | 2.13180 | 9.00 | 2.19722 | 9.57 | 2.25863 | | 7.87 | 2.06306 | 8.44 | 2.13298 | 9.01 | 2.19834 | 9.58 | 2.25968 | | 7.88 | 2.06433 | 8.45 | 2.13417 | 9.02 | 2.19944 | 9.59 | 2.26072 | | 7.89 | 2.06560 | 8.46 | 2.13535 | 9.03 | 2.20055 | 9.60 | 2.26176 | | 7.90 | 2.06686 | 8.47 | 2.13653 | 9.04 | 2.20166 | 9.61 | 2.26280 | | 7.91 | 2.06813 | 8.48 | 2.13771 2.13889 | 9.05 | 2.20276 | 9.62 | 2.26384 | | 7.92 | 2.06939 | 8.49 | | 9.06 | 2.20387 | 9.63 | 2.26488 | | 7.93 | 2.07065 | 8.50 | 2.14007 | 9.07 | 2.20497 | 9.64 | 2.26592 | | 7.94 | 2.07191 | 8.51 | 2.14124 | 9.08 | 2.20607 | 9.65 | 2.26696 | | 7.95 | 2.07317 | 8.52 | 2.14242 | 9.09 | 2.20717 | 9.66 | 2.26799 | | 7.96 | 2.07443 | 8.53 | 2.14359 | 9.10 | 2.20827 | 9.67 | 2.26903 | | 7.97 | 2.07568 | 8.54 | 2.14476 | 9.11 | 2.20937 | 9.69 | 2.27006 | | 7.98 | 2.07694 | 8.55
8.56 | 2.14593 | 9.12 | 2.21047 | 9.70 | 2.27109 | | 8.00 | 2.07019 | 8.57 | 2.14/10 | 0.14 | 2.21266 | 9.71 | 2.27316 | | 8.01 | 2.08069 | 8.58 | 2.14027 | 9.14 | 2.21200 | | 2.27419 | | 8.02 | 2.08194 | 8.59 | 2.15060 | 9.15 | 2.21485 | 9.72 | 2.27521 | | 8.03 | 2.08318 | 8.60 | 2.15176 | 9.17 | 2.21504 | 9.73 | 2.27624 | | 8.04 | 2.08443 | 8.61 | 2.15292 | 9.18 | 2.21703 | 9.75 | 2.27727 | | 8.05 | 2.08567 | 8.62 | 2.15409 | 9.19 | 2.21812 | 9.76 | 2.27829 | | 8.06 | 2.08691 | 8.63 | 2.15524 | 9.20 | 2.21920 | 9.77 | 2.27932 | | 8.07 | 2.08815 | 8.64 | 2.15640 | 9.21 | 2.22020 | 9.78 | 2.28034 | | 8.08 | 2.08939 | 8.65 | 2.15756 | 9.22 | 2.22138 | 9.79 | 2.28136 | | 8.00 | 2.09063 | 8.66 | 2.15871 | 9.23 | 2.22246 | 0.80 | 2.28238 | | 8.10 | 2.09186 | 8.67 | 2.15987 | 9.24 | 2.22351 | 9.81 | 2.28340 | | 8.11 | 2.09310 | 8.68 | 2.16102 | 9.25 | 2.22462 | 9.82 | 2.28442 | | 8.12 | 2.09433 | 8.69 | 2.16217 | 9.26 | 2.22570 | 9.83 | 2.28544 | | 8.13 | 2.09556 | 8.70 | 2.16332 | 9.27 | 2.22678 | 9.84 | 2.28646 | | 8.14 | 2.09679 | 8.71 | 2.16447 | 9.28 | 2.22786 | 9.85 | 2.28747 | | 8.15 | 2.09802 | 8.72 | 2.16562 | 9.29 | 2.22894 | 9.86 | 2.28849 | | 8.16 | 2.09924 | 8.73 | 2.16677 | 9.30 | 2.23001 | 9.87 | 2.28950 | | 8.17 | 2.10047 | 8.74 | 2.16791 | 9.31 | 2.23109 | 9.88 | 2.29051 | | 8.18 | 2.10169 | 8.75 | 2.16905 | 9.32 | 2.23216 | 9.89 | 2.29152 | | 8.19 | 2.10291 | 8.76 | 2.17020 | 9.33 | 2.23323 | 9.90 | 2.29253 | | 8.20 | 2.10413 | 8.77 | 2.17134 | 9.34 | 2.23431 | 9.91 | 2.29354 | | 8.21 | 2.10535 | 8.78 | 2.17248 | 9.35 | 2.23538 | 9.92 | 2.29455 | | 8.22 | 2.10657 | 8.79 | 2.17361 | 9.36 | 2.23645 | 9.93 | 2.29556 | | 8.23 | 2.10779 | 8.80 | 2.17475 | 9.37 | 2.23751 | 9.94 | 2.29657 | | 8.24 | 2.10900 | 8.81 | 2.17589 | 9.38 | 2.23858 | 9.95 | 2.29757 | | 8.25 | 2.11021 | 8.82 | 2.17702 | 9.39 | 2.23965 | 9.96 | 2.29858 | | 8.26 | 2.11142 | 8.83 | 2.17816 | 9.40 | 2.24071 | 9.97 | 2.29958 | | 8.27 | 2.11263 | 8.84 | 2.17929 | 9.41 | 2.24177 | 9.98 | 2.30058 | | 8.28 | 2.11384 | 8.85 | 2.18042 | 9.42 | 2.24284 | 9.99 | 2.30158 | | 8.29 | 2.11505 | 8.86 | 2.18155 | 9.43 | 2.24390 | | | | No. | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | |-----|------|------------|-------------|-------------|------------------------|------------------------|-------------|-------------|-----------------|-------------|---------------------|--| | 100 | 00 | 000 | 043
475 | 087
518 | 130 | 173
604 | 217
647 | 260
689 | 303
732 | 346
775 | 389
817 | | | 102 | | 860 | 903 | 945 | 988 | *030 | *072 | *115 | *157 | *199 | *242 | 44 43 42 | | 103 | 1 | 284
703 | 326
745 | 368
787 | 410
828 | 45 ²
870 | 494
912 | 536
953 | 578
995 | 620
*036 | 662
*078 | 1 4.4 4.3 4.2
2 8.8 8.6 8.4
3 13.2 12.9 12.6 | | 105 | 1 | 119 | 160 | 202 | 243 | 284 | 325 | 366 | 407 | 449 | 490 | 4 17.6 17.2 16.8 | | 100 | | 531
938 | 572
979 | 612
*019 | 653
*o60 | 694
*100 | 735
*141 | 776
*181 | 816
*222 | 857
*262 | 898
*302 | 5 22.0 21.5 21.0
6 26.4 25.8 25.2
7 30.8 30.1 29.4
8 35.2 34.4 33.6 | | 108 | 03 | 342 | 383 | 423 | 463 | 503 | 543 | 583 | 623 | 663 | 703 | 8 35.2 34.4 33.6
9 39.6 38.7 37.8 | | 100 | | 743
139 | 782
179 | 822 | 86 ₂
258 | 902 | 94I
336 | 981
376 | *021
415 | *060
454 | *100
493 | | | III | | 532 | 571 | 610 | 650 | 689 | 727 | 766 | 805 | 844 | 883 | | | 112 | | 922
308 | 961 | 999
385 | | *077 | *115 | *154 | *192 | *23I
614 | *269
652 | 41 40 39
1 4.1 4.0 3.9
2 8.2 8.0 7.8 | | 114 | | 690 | 346
729 | 767 | 423
805 | 461
843 | 500
881 | 538
918 | 576
956 | | *032 | 3 12.3 12.0 11.7 | | 115 | | - 1 | 108 | 145 | 183 | 221 | 258 | 296 | 333 | 371 | 408 | 4 16.4 16.0 15.6
5 20.5 20.0 19.5
6 24.6 24.0 23.4 | | 117 | 1 | 446
819 | 483
856 | 521
893 | 558
930 | 595
967 | 633
*004 | 670
*041 | 707
*078 | 744 | 781
*151 | 6 24.6 24.0 23.4
7 28.7 28.0 27.3
8 32.8 32.0 31.2 | | 118 | | 188 | 225 | 262 | 298 | 335 | 372 | 408 | 445 | 482 | 518
882 | 9 36.9 36.0 35.1 | | 110 | | 555
918 | 591
954 | 628
990 | 664
*027 | 700
*063 | 737
*099 | 773
*135 | 809
*171 | *207 | *243 | | | 121 | | 279 | 314 | 350 | 386 | 422 | 458 | 493 | 529 | 565 | 600 | 38 37 36 | | 122 | | 636 | 672
*026 | 707
*061 | 743
*006 | 778
*132 | 814
*167 | | 88 ₄ | 920 | 955
*307 | I 3.8 3.7 3.6
2 7.6 7.4 7.2 | | 124 | | 342 | 377 | 412 | 447 | 482 | 517 | 552 | 587 | 621 | 656 | 3 11.4 11.1 10.8 | | 125 | | 691
037 | 726 | 760
106 | 795 | 830 | 864 | | 934 | 968 | *003 | 5 19.0 18.5 18.0 | | 127 | 1 | 380 | 415 | 449 | 483 | 517 | 551 | 585 | 619 | 653 |
687 | 7 26.6 25.9 25.2
8 30.4 29.6 28.8 | | 128 | | 721 | 755 | 789
126 | 823 | 857 | 890 | | 958 | | *025
361 | 9 34.2 33.3 32.4 | | 130 | | 394 | 093 | 461 | 494 | 528 | 561 | 100 | 1 | | 694 | | | 131 | 1 | 727 | 760 | 793 | 826 | | 1 | 926 | 959 | 992 | *024 | 35 34 33 | | 133 | | o57
385 | 090 | 450 | 156 | | - | 1 . | 613 | | 35 ² 678 | 1 3.5 3.4 3.3
2 7.0 6.8 6.6
3 10.5 10.2 9.9 | | 134 | 1 | 710 | 743 | 775 | 808 | 840 | 872 | 905 | 937 | 969 | *001 | 4 14.0 13.6 13.2 | | 135 | - 1 | o33 | | | | - | 1 . | 1 | - | | 322
640 | 5 17.5 17.0 16.5
6 21.0 20.4 19.8
7 24.5 23.8 23.1 | | 137 | 7 | 672 | 704 | 735 | 767 | 799 | 830 | 862 | 893 | 925 | 956 | 7 24.5 23.8 23.1
8 28.0 27.2 26.4
9 31.5 30.6 29.7 | | 138 | 14 | 988
301 | | *051
364 | | *114 | | - | 1 | 0, | 1 | | | 140 | | 613 | 644 | 675 | 706 | 737 | 768 | 799 | 829 | 860 | 891 | | | 141 | 1 | 922 | 100 | 983 | | 1 | - | *106 | | 1 200 | | 32 31 30
1 3.2 3.1 3.0
2 6.4 6.2 6.0 | | 143 | 15 | 534 | 564 | 594 | 625 | | 685 | 715 | 746 | 776 | | 3 9.6 9.3 9.0 | | 144 | 1 . | 836 | 866 | 1 " | 1 | 957 | 987 | *017 | | | 1 - | 4 12.8 12.4 12.0
5 16.0 15.5 15.0
6 19.2 18.6 18.0 | | 145 | 5 16 | 137
435 | | | 524 | 554 | 584 | 613 | | | | 6 19.2 18.6 18.0
7 22.4 21.7 21.0
8 25.6 24.8 24.0 | | 147 | 7 | 732 | 761 | 791 | 820 | 850 | 879 | 900 | 938 | 967 | 997 | 9 28.8 27.9 27.0 | | 148 | 17 | 319 | 1 0 | 085 | | | | 493 | | | 1 - | | | - | | 5-9 | 1 340 | 1 3/1 | 1 | 100 | | 1 | 1 | 1 33- | 1 | | | No | | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | |-------------------|------|-------------------------|-------------------|--------------------|--------------------------|-------------------|--------------------|--------------------|-------------------------|--------------------|--------------------|---| | 150 | | 609
898 | 638
926 | 667
955 | 696
984 | 725
*013 | 754
*041 | 782
*070 | 811
*099 | 840
*127 | 869
*156 | | | 153 | | 184 | 498 | 24I
526 | 270
554 | 298
583 | 327
611 | 355
639 | 384
667 | 412
696 | 724 | 29 28
1 2.9 2.8
2 5.8 5.6
3 8.7 8.4 | | 154 | | 752 | 780
061 | 808 | 837 | 865 | 893 | 92I
20I | 949
229 | 977
257 | *005 | 4 11.0 11.2 | | 157 | | 312
590
866 | 340
618
893 | 368
645
921 | 396
673
948 | 424
700
976 | 451
728
*003 | 479
756
*030 | 507
783
*058 | 535
811
*085 | 562
838
*112 | 5 14.5 14.0
6 17.4 16.8
7 20.3 19.6
8 23.2 22.4 | | 150
160
161 | 20 | 140
412
683 | 167
439
710 | 194
466 | 222
493
763 | 249
520
790 | 276
548
817 | 3°3
575
844 | 330
602
871 | 358
629
898 | 385
656
925 | 9 26.1 25.2 | | 163 | 21 | 952
219 | 978
245 | 737
*005
272 | *032 | *059
325 | *085
352 | *112
378 | *139
405 | *165
431 | *192
458 | 27 26
1 2.7 2.6
2 5.4 5.2
3 8.1 7.8 | | 165 | | 484
748
011 | 511
775
037 | 537
801
063 | 564
827
089 | 590
854
115 | 617
880
141 | 643
906
167 | 932
194 | 696
958
220 | 722
985
246 | 4 10.8 10.4
5 13.5 13.0
6 16.2 15.6 | | 168 | 3 | 272
531 | 298
557 | 324
583 | 35°
608 | 376
634 | 401
660 | 427
686 | 453 | 479
737 | 5°5
763 | 7 18.9 18.2
8 21.6 20.8
9 24.3 23.4 | | 170 | 23 | 789
045
300 | 814
070
325 | 840
096
350 | 866
121
376 | 891
147
401 | 917
172
426 | 943
198
452 | 963
223
477 | 994
249
502 | *019
274
528 | | | 173 | 3 | 553
805 | 578
830 | 603
855 | 629
880 | 654
905 | 679
930 | 704
955 | 7 ² 9
980 | 754
*005 | 779
*030 | 25
1 2.5
2 5.0
3 7.5 | | 175 | 5 | 304
551 | 080
329
576 | 353
601 | 378
625 | 155
403
650 | 180
428
674 | 204
452
699 | 229
477
724 | 254
502
748 | 279
527
773 | 4 10.0
5 12.5
6 15.0 | | 178 | 3 25 | 797
042
285 | 822
066
310 | 846
091
334 | 871
115
358 | 895
139
382 | 920
164
406 | 944
188
431 | 969
212
455 | 993
237
479 | *018
261
503 | 7 17.5
8 20.0
9 22.5 | | 180 | | 5 ² 7
768 | 551
792 | 575
816 | 600
840 | 624
864 | 648
888 | 672
912 | 696
935 | 720
959 | 744
983 | 24 23 | | 183 | 3 | 007
245
482 | 269
505 | 055
293
529 | 979
316
553
788 | 340
576
811 | 364
600 | 387
623 | 174
411
647 | 198
435
670 | 458
694 | 1 2.4 2.3
2 4.8 4.6
3 7.2 6.9
4 9.6 9.2 | | 18 | 7 27 | 717
951
184 | 741
975
207 | 764
998
231 | *02I
254 | *045 | 834
*068
300 | 858
*091
323 | 881
*114
346 | 905
*138
370 | 928
*161
393 | 5 12.0 11.5
6 14.4 13.8
7 16.8 16.1
8 19.2 18.4
9 21.6 20.7 | | 186 | 3 | 416
646
875 | 439
669
898 | 462
692
921 | 485
715
944 | 508
738
967 | 531
761
989 | 554
784
*012 | 577
807
*035 | 830
*058 | 623
852
*081 | | | 19: | 2 | 330
556 | 353
578 | 375
601 | 398
623 | 194
421
646 | 217
443
668 | 466
691 | 262
488
713 | 285
511
735 | 307
533
758 | 22 21
1 2.2 2.1
2 4.4 4.2
3 6.6 6.3 | | 19 | 5 29 | 780
003
226 | 803
026
248 | 825
048
270 | 847
070
292 | 870
092
314 | 892
115
336 | 914
137
358 | 937
159
380 | 959
181
403 | 981
203
425 | 4 8.8 8.4
5 11.0 10.5
6 13.2 12.6 | | 19 | 7 | 447
667 | 469 688 | 491 | 513
732 | 535
754 | 557
776 | 579
798 | 820 | 623 | 863 | 7 15.4 14.7
8 17.6 16.8
9 19.8 18.9 | | 19 | | 885 | 907 | 929 | 951 | 973 | 994 | *016 | *038 | *060 | *081 | | | No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | |-------------------|-----------------------------|--------------------|------------------------|--------------------|--------------------|--------------------|---|--------------------------------|--------------------|--------------------|--| | 200
201 | 30 103
320 | 125
341 | 146
363 | 168
384 | 190 | 211 | 233
449 | 255
471 | 276
492 | 298
514 | | | 202
203
204 | 535
750
963 | 557
771
984 | 578
792
*006 | 814
*027 | 835
*048 | 643
856
*069 | 664
878
*091 | 685
899
*112 | 707
920
*133 | 728
942
*154 | 1 22 21
1 2.2 2.1
2 4.4 4.2
3 6.6 6.3 | | 205
206
207 | 31 175
387
597 | 197
408
618 | 429
639 | 239
450
660 | 260
471
681 | 281
492
702 | 302
513
723 | 3 ² 3
534
744 | 345
555
765 | 366
576
785 | 4 8.8 8.4
5 11.0 10.5
6 13.2 12.6 | | 208
209
210 | 806
32 015
222 | 035 | 848
056
263 | 869
077
284 | 890
098
305 | 911 | 931 | 952
160
366 | 973
181
387 | 994
201
408 | 7 15.4 14.7
8 17.6 16.8
9 19.8 18.9 | | 2II
2I2 | 428
634 | 243
449
654 | 469 | 490
695 | 510
715 | 325
531
736 | 346
55 ²
75 ⁶ | 572
777
980 | 593
797 | 613 | 1 20
1 2.0 | | 213
214
215 | 838
33 041
244 | 858
062
264 | 879
082
284 | 899
102
304 | 919
122
325 | 940
143
345 | 960
163
365 | 183 | *001
203
405 | *02I
224
425 | 2 4.0
3 6.0
4 8.0
5 10.0
6 12.0 | | 216
217
218 | 445
646
846 | 465
666
866 | 486
686
885 | 506
706
905 | 526
726
925 | 546
746
945 | 566
766
965 | 586
786
985 | 606
806
*005 | 626
826
*025 | 6 12.0
7 14.0
8 16.0
9 18.0 | | 219
220 | 34 044
242 | 064
262 | 084 | 104
301 | 124
321 | 143
341 | 163
361 | 183
380 | 203 | 223
420
616 | | | 22I
222
223 | 439
635
830 | 459
655
850 | 479
674
869 | 498
694
889 | 518
713
908 | 537
733
928 | 557
753
947 | 577
772
967 | 596
792
986 | 811
*005 | 1 1.9
2 3.8
3 5.7 | | 224
225
226 | 35 025
218
411 | 044
238
430 | 257
449 | 083
276
468 | 295
488 | 315
507 | 334
526 | 353
545 | 180
372
564 | 199
392
583 | 4 7.6
5 9.5
6 11.4 | | 227
228
229 | 603
793
984 | 622
813
*003 | 641
832
*021 | 660
851
*040 | 679
870
*059 | 698
889
*078 | 717
908
*097 | 736
927
*116 | 755
946
*135 | 774
965
*154 | 7 13.3
8 15.2
9 17.1 | | 230
231
232 | 36 173
361
549 | 192
380
568 | 211
399
586 | 229
418
605 | 248
436
624 | 267
455
642 | 286
474
661 | 305
493
680 | 324
511
698 | 342
530
717 | 1 18
1 1.8 | | 233
234 | 736
922 | 754
940 | 773
959 | 791
977
162 | 810
996
181 | 829
*014 | 847
*033
218 | 866
*051
236 | 884
*070
254 | 903
*088 | 3 5.4
4 7.2 | | 235
236
237 | 37 107
291
475
658 | 310
493 | 328
511 | 346
530 | 365
548 | 383
566 | 401
585 | 420
603 | 438
621 | 273
457
639 | 5 9.0
6 10.8
7 12.6
8 14.4
9 16.2 | | 238
239
240 | 840
38 021 | 676
858
039 | 876
957 | 712
894
975 | 731
912
993 | 749
931
112 | 767
949
130 | 785
967
148 | 803
985
166 | 822
*003
184 | | | 24I
242
243 | 382
561 | 399
578 | 238
417
596 | 256
435
614 | 274
453
632 | 292
471
650 | 310
489
668 | 328
507
686 | 346
525
703 | 364
543
721 | 1 17
1 1.7
2 3.4
3 5.1 | | 244
245 | 739 | 757 934 | 775
95 ² | 792
970 | 987 | 828
*005
182 | 846
*023 | 863
*041 |
881
*058 | 899
*076 | 4 6.8
5 8.5
6 10.2 | | 246
247
248 | 39 094
270
445 | 287
463 | 305
480 | 146
322
498 | 164
340
515 | 358
533 | 375
55° | 393
568 | 235
410
585 | 252
428
602 | 7 11.9
8 13.6
9 15.3 | | 249 | 620 | 637 | 655 | 672 | 690 | 707 | 724 | 742 | 759 | 777 | | | No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | |--------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------------------------|---------------------------|---------------------------|---| | 250
251
252 | 39 794
967
40 140 | 811
985
157 | 829
*002
175 | 846
*019
192 | 863
*037
209 | 881
*054
226 | 898
*071
243 | 915
*088
261 | 933
*106
278 | 950
*123
295 | 18 | | 253
254
255 | 312
483
654
824 | 329
500
671 | 346
518
688
858 | 364
535
705 | 381,
552
722 | 398
569
739 | 415
586
756
926 | 43 ²
603
773 | 449
620
790 | 466
637
807 | 1 1.8
2 3.6
3 5.4
4 7.2
5 9.0 | | 256
257
258
259 | 993
41 162
330 | 841
*010
179
347 | *027
196 | 875
*044
212
380 | 892
*061
229
397 | 909
*078
246
414 | *095
263
430 | 943
*III
280 | 960
*128
296
464 | 976
*145
313
481 | 6 10.8
7 12.6
8 14.4
9 16.2 | | 260
261
262 | 497
664
830 | 514
631
847 | 531
697
863 | 547
714
880 | 564
731
896 | 581
747
913 | 597
764
929 | 614
780
946 | 631
797
963 | 647
814
979 | 17 | | 263
264
265 | 996
42 160
325 | *012
177
341 | *029
193
357 | *045
210
374 | *062
226
390 | *078
243
406 | *095
259
423 | *111
275
439 | *127
292
455 | *144
308
472 | 1 1.7
2 3.4
3 5.1
4 6.8
5 8.5
6 10.2 | | 266
267
268
260 | 488
651
813
975 | 504
667
830
991 | 521
684
846
*008 | 537
700
862
*024 | 553
716
878
*040 | 570
732
894
*056 | 586
749
911
*072 | 602
765
927
*088 | 619
781
943
*104 | 635
797
959
*120 | 6 10.2
7 11.9
8 13.6
9 15.3 | | 270
271
272 | 43 136
297
457 | 152
313
473 | 169
329
489 | 185
345
505 | 201
361
521 | 217
377
537 | 233
393
553 | 249
409
569 | 265
425
584 | 281
441
600 | 16 | | 273
274
275 | 616
775
933 | 632
791
949 | 648
807
965 | 664
823
981 | 680
838
996 | 696
854
*012 | 712
870
*028 | 727
886
*044 | 743
902
*059 | 759
917
*075 | 2 3.2
3 4.8
4 6.4
5 8.0 | | 276
277
278
279 | 248
404
560 | 264
420
576 | 279
436
592 | 295
451
607 | 311
467
623 | 326
483
638 | 185
342
498
654 | 358
514
669 | 373
529
685 | 389
545
700 | 6 9.6
7 11.2
8 12.8
9 14.4 | | 280
281
282 | 716
871
45 025 | 731
886
040 | 747
902
056 | 762
917
071 | 778
932
086 | 793
948
102 | 809
963
117 | 824
979
133 | 840
994
148 | 855
*010
163 | 15
1 1.5 | | 283
284
285 | 179
332
484 | 194
347
500 | 209
362
515 | 225
378
530 | 393
545 | 255
408
561 | 271
423
576 | 286
439
591 | 301
454
606 | 317
469
621 | 2 3.0
3 4.5
4 6.0
5 7.5
6 9.0 | | 286
287
288 | 637
788
939 | 652
803
954 | 667
818
969 | 682
834
984 | 697
849
*000 | 712
864
*015 | 728
879
*030 | 743
894
*045 | 758
909
*060 | 773
924
*075 | 7 10.5
8 12.0
9 13.5 | | 289
290
291
202 | 46 090
240
389
538 | 105
255
404 | 270
419
568 | 135
285
434
583 | 300
449
598 | 165
315
464
613 | 180
330
479
627 | 195
345
494
642 | 359
509
657 | 225
374
523
672 | 14
1 1.4
2 2.8 | | 293
294
295 | 687
835
982 | 553
702
850 | 716
864
*012 | 503
731
879
*026 | 746
894
*041 | 761
909
*056 | 776
923
*070 | 790
938
*085 | 805
953
*100 | 820
967
*114 | 2 2.8
3 4.2
4 5.6
5 7.0
6 8.4 | | 296
297
298 | 47 129
276
422 | 144
290
436 | 159
3°5
451 | 173
319
465 | 188
334
480 | 202
349
494 | 217
363
509 | 232
378
524 | 246
392
538 | 261
407
553 | 7 9.8
8 11.2
9 12.6 | | 299 | 567 | 582 | 596 | 611 | 625 | 640 | 654 | 669 | 683 | 698 | I H Tab | | No. | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Pp. P | ts. | |------------|---------------|-----------------------|-------------------|-------------|-------------|-------------|-------------------------|-------------|-------------|-------------|-------------------|-----| | 300 | 47 712
857 | 727
871 | 74I
885 | 756 | 770 | 784 | 799 | 813
958 | 828 | 842
986 | | | | 301 | 48 001 | 015 | 029 | 900 | 914
058 | 929 | 943
087 | 101 | 972
116 | 130 | | | | 303
304 | 144 | 159
302 | 173
316 | 187 | 344 | 216
359 | 230
373 | 244
387 | 259
401 | 273
416 | | | | 305 | 430 | 444 | 458 | 473 | 487 | 501 | 515 | 530 | 544 | 558 | 1 1 | 5 | | 306 | 572
714 | 586
728 | 601
742 | 615
756 | 629
770 | 643
785 | 657
799 | 671
813 | 686 | 700
841 | 3 4 | 5 | | 308 | 855 | 869
*010 | 883
*024 | 897
*038 | 911
*052 | 926
*066 | 940
*080 | 954
*094 | 968 | 982 | 5 7 | .0 | | 310 | 996
49 136 | 150 | 164 | 178 | 192 | 206 | 220 | 234 | 248 | 262 | 7 10 | . 5 | | 311 | 276 | 290
429 | 304
443 | 318 | 332
471 | 346 | 360
499 | 374
513 | 388
527 | 402
541 | 9 13 | | | 313 | 554 | 568 | 582 | 596 | 610 | 624 | 638 | 651 | 665 | 679 | | | | 314 | 693 | 707
845 | 721 | 734 872 | 748
886 | 762 | 776 | 790 | 803 | 817
955 | 1 | | | 316 | 969 | 982 | 996 | *010 | *024
161 | *037 | *051
188 | *065 | *079 | *092 | ı ı | 4 | | 318 | 50 100 | 256 | 133 | 284 | 297 | 311 | 325 | 338 | 352
488 | 365 | 3 4 | .8 | | 319
320 | 379
515 | 393
529 | 406
542 | 420
556 | 433
569 | 447
583 | 461
596 | 474
610 | 4S8
623 | 501
637 | 4 5
5 7
6 8 | .6 | | 321 | 651 | 664 | 678 | 691 | 705 | 718 | 732 | 745 | 759 | 772 | 7 9 | .0 | | 322 | 786 | 799 934 | 813
947 | 961 | 974 | 853
987 | 866
*001 | 880
*014 | 893
*028 | 907
*04I | 9 12 | | | 324 | 51 055 | 068 | 081 | 095 | 108 | 121 | 135 | 148 | 162 | 175 | | | | 325
326 | 188 | 335 | 215
348 | 362 | 375 | 255
388 | 402 | 282 | 295
428 | 308 | | | | 327 | 455
587 | 468 | 481 | 495 | 508 | 521 | 534 | 548
680 | 561 | 574 | II | 3 | | 328 | 720 | 733 | 746 | 759 | 772 | 786 | 799 | 812 | 693
825 | 706 | 3 3 | .6 | | 330 | 851
983 | 865 | 878
*009 | 891
*022 | 904 | 917 | 930 | 943 | 957
*oS8 | 970 | 4 5 | .5 | | 331
332 | 52 114 | 996 | 140 | 153 | *035 | 179 | 192 | 205 | 218 | 231 | 7 9 | .I | | 333 | 244
375 | ²⁵⁷
388 | 270
40I | 284 | 297
427 | 310 | 3 ² 3
453 | 336 | 349
479 | 362 | | .7 | | 335 | 504 | 517 | 530 | 543 | 556 | 569 | 582 | 595 | 608 | 621 | | | | 336 | 634
763 | 776 | 660
789 | 802 | 686 | 699 | 711 | 724
853 | 737
866 | 750 | | | | 338 | 892 | 905 | 917 | 930 | 943 | 956 | 969 | 982 | 994 | *007 | | 2 | | 339 | 53 020 | 033 | 173 | o58
186 | 199 | 084 | 097 | 237 | 250 | 263 | 2 2 | .4 | | 341 | 275 | 288 | 301 | 314 | 326 | 339 | 352 | 364 | 377 | 390 | 5 5 | .8 | | 342
343 | 403
529 | 415
542 | 428
555
681 | 567 | 453
580 | 466
593 | 479
605 | 491
618 | 504 | 517 643 | 7 8 | .4 | | 344 | 656 | 668 | 807 | 820 | 706 | 719 | 73 ²
857 | 744 870 | 757
882 | 769 | | .6 | | 346 | 908 | 920 | 933 | 945 | 958 | 970 | 983 | 995 | *008 | *020 | | | | 347 | 54 °33
158 | 045 | 183 | 195 | 083 | 095 | 108 | 120 | 133 | 145 | | | | 349 | 283 | 295 | 307 | 320 | 332 | 345 | 357 | 370 | 382 | 394 | | | | 1 | | | | | | 3 | | 9) | , , , | | | | ٦ | |-----|-------------------|----------------------|-------------------------------|-------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---|---| | | No. | 0 | 1 | 2 | 3 | 4 | 500 | 6. | 7: | 8 | 0, | Pp. Pta | | | | 350
351
352 | 54 407
531
654 | 419
543
667 | 43 ²
555
679 | 444
568
691 | 456
580
704 | 469
593
716 | 481
605
728 | 494
617
741 | 506
630
753 | 518
642
765 | | | | | 353
354
355 | 777
900
55 023 | 790
913
035 | 802
925
047 | 814
937
060 | 827
949
072 | 839
962
984 | 851
974
096 | 864
986
108 | 876
998
121 | 888
*011 | 13 | | | | 356
357
358 | 145
267
388 | 157
279
400 | 169
291
413 | 182
303
425 | 194
315
437 | 206
328
449 | 218
340
461 | 230
352
473 | 242
364
485 | 255
376
497 | 1 1.3
2 2.6
3 3.9
4 5.2
5 6.5
6 7.8 | | | | 359
360
361 | 509
630
751 | 5 ²²
642
763 | 534
654
775 | 546
666
787 | 558
678
799 | 570
691
811 | 582
703
823 | 594
715
835 | 606
727
847 | 618
739
859 | 6 7.8
7 9.1
8 10.4
9 11.7 | | | 100 | 362
363
364 | 871
991
56 110 | 883
*003
122 | 895
*015
134 | 907
*027
146 | 919
*038
158 | 931
*050
170 | 943
*062
182 |
955
*074
194 | 967
*086
205 | 979
*098
217 | | | | | 365
366
367 | 229
348
467 | 241
360
478 | 253
372
490 | 265
384
502 | 277
396
514 | 289
407
526 | 301
419
538 | 312
431
549 | 324
443
561 | 336
455
573 | I 1.2
2 2.4 | | | | 368
369
370 | 585
703
820 | 597
714
832 | 608
726
844 | 620
738
855 | 632
750
867 | 644
761
879 | 656
773
891 | 667
785
902 | 679
797
914 | 691
808
926 | 2 2.4
3 3.6
4 4.8
5 6.0
6 7.2 | | | | 371
372
373 | 937
57 054
171 | 949
066
183 | 961
078
194 | 972
089
206 | 984
101
217 | 996
113
229 | *008
124
241 | *019
136
252 | *031
148
264 | *043
159
276 | 6 7.2
7 8.4
8 9.6
9 10.8 | | | | 374
375
376 | 287
403
519 | 299
415
530 | 310
426
542 | 322
438
553 | 334
449
565 | 345
461
576 | 357
473
588 | 368
484
600 | 380
496
611 | 392
507
623 | | | | | 377
378
379 | 634
749
864 | 646
761
875 | 657
772
887 | 669
784
898 | 680
795
910 | 692
807
921 | 7°3
818
933 | 715
830
944 | 726
841
955 | 738
852
967 | I I.I
2 2.2
3 3.3 | | | | 380
381
382 | 978
58 092
206 | 990
104
218 | *001
115
229 | *013
127
240 | *024
138
252 | *035
149
263 | *047
161
274 | *058
172
286 | *070
184
297 | *081
195
309 | 2 2.2
3 3.3
4 4.4
5 5.5
6 6.6
7 7.7
8 8.8 | | | | 383
384
385 | . 433
546 | 331
444
557 | 343
456
569 | 354
467
580 | 365
478
591 | 377
490
602 | 388
501
614 | 399
512
625 | 524
636 | 535
647 | 9 9.9 | | | | 386
387
388 | 659
771
883 | 670
782
894 | 681
794
906 | 692
805
917 | 704
816
928 | 715
827
939 | 726
838
950 | 737
850
961 | 749
861
973 | 760
872
984 | 10 | | | 9 | 389
390
391 | 995
59 106
218 | *006
118
229 | *017
129
240 | *028
140
251 | *040
151
262 | *051
162
273 | *062
173
284 | *073
184
295 | *084
195
306 | *095
207
318 | 1 1.0
2 2.0
3 3.0
4 4.0
5 5.0
6 6.0 | | | | 392
393
394 | 329
439
550 | 340
450
561 | 351
461
572 | 362
472
583 | 373
483
594 | 384
494
605 | 395
506
616 | 406
517
627 | 417
528
638 | 539
649 | 5 5.0
6 6.0
7 7.0
8 8.0
9 9.0 | | | | 395
396
397 | 660
770
879 | 671
780
890 | 682
791
901 | 693
802
912 | 704
813
923 | 715
824
934 | 726
835
945 | 737
846
956 | 748
857
966 | 759
868
977 | | | | | 398
399 | 988
60 097 | 999 | *010 | *021
130 | *032
141 | *043
152 | *054
163 | *065
173 | *076
184 | *086
195 | | | | - | | 1 | , '' | 2 6 6 | | 0 | | | 165 | | | |------------|------------|-------|------------|------------|------------------------|-------------|------------|-------------|------------|-------------|-------------------------| | No. | ر و ز | 3 | 2 | 3. | 4. | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | | 400 | 60 206 | | 228 | 239 | 249 | 260 | 271 | 282 | 293 | 304 | | | 401 | 314
423 | | 336
444 | 347
455 | 35 ⁸
466 | 369
477 | 379
487 | 390
498 | 40I
509 | 412
520 | | | 403 | 531
638 | | 552
660 | 563
670 | 574
681 | 584
692 | 595
703 | 606
713 | 617
724 | 627 | | | 405 | 746 | 756 | 767 | 778 | 788 | 799 | 810 | 821 | 831 | 735
842 | | | 406 | 853
959 | | 874
981 | 885 | 895
*002 | 906
*013 | 917 | 927
*034 | 938 | 949
*055 | | | 408 | 61 066 | 077 | 087 | 098 | 109 | 119 | 130 | 140 | 151 | 162 | I I.I | | 409 | 172 | | 300 | 310 | 215
321 | 225
331 | 236
342 | 247
352 | 257
363 | 268
374 | 2 2.2
3 3.3 | | 411 | 384 | 395 | 405 | 416 | 426 | 437 | 448 | 458 | 469 | 479 | 4 4·4
5 5·5
6 6.6 | | 412 | 49°
595 | 1 | 511 | 521
627 | 532
637 | 542
648 | 553
658 | 563 | 574
679 | 584 | 7 7.7 8 8.8 | | 414 | 700 | 711 | 721 | 731 | 742 | 752 | 763
868 | 773 | 784
888 | 794 | 9 9.9 | | 415 | 900 | | 930 | 836 | 847
951 | 857
962 | 972 | 878
982 | 993 | 899
*003 | | | 417 | 62 014 | | 034 | 045 | 055 | 066 | 180 | 086 | 097 | 107 | | | 419 | 221 | 232 | 138 | 252 | 159
263 | 170
273 | 284 | 294 | 304 | 315 | | | 420 | 325 | 1 000 | 346 | 356 | 366 | 377
480 | 387 | 397 | 408 | 418 | | | 422 | 531 | 542 | 552 | 562 | 572 | 583 | 593 | 603 | 613 | 624 | 1 1.0 | | 423 | 737 | | 655
757 | 665 | 675
778 | 685 | 696 | 706 | 716 | 726 | 2 2.0
3 3.0
4 4.0 | | 425
426 | 839 | 849 | 859 | 870 | 880
982 | 890 | 900 | 910 | 921 | 931 | 4 4.0
5 5.0
6 6.0 | | 427 | 63 043 | 1 | 961 | 972 | 083 | 992 | 104 | 114 | 124 | *033 | 7 7.0 | | 428 | 144 | | 165 | 175 | 185 | 195 | 306 | 215 | 225
327 | 236 | 9 9.0 | | 430 | 34 | 357 | 367 | 377 | 287 | 397 | 407 | 417 | 428 | 438 | | | 431 | 448
548 | | 468
568 | 478 | 488 | 498
599 | 508 | 518 | 528 | 538 | | | 433 | 649 | 659 | 669 | 679 | 689 | 699 | 709 | 719 | 729 | 739 | | | 434 | 749
849 | | 769 869 | 779 879 | 789 | 799 | 809 | 819 | 829 | 839 | | | 436 | 949 | 959 | 969 | 979 | 988 | 998 | *008 | *018 | *028 | *038 | 1 0.0
2 1.8 | | 437 | 64 04 | | 068 | 078 | 088 | 197 | 108 | 118 | 128 | 137
237 | 3 2.7 4 3.6 | | 439 | 34. | | 266
365 | 276
375 | 286
385 | 296
395 | 306 | 316 | 326
424 | 335
434 | 5 4.5 | | 441 | 44 | 1 454 | 464 | 473 | 483 | 493 | 503 | 513 | 523 | 532 | 7 6.3
8 7.2
9 8.1 | | 442 | 54: | | 562
660 | 572
670 | 582
680 | 591
680 | 601 | 700 | 621 | 631
729 | 910.1 | | 444 | 73 | 3 748 | 758 | 768 | 777 | 787 | 797 | 807 | 816 | 826 | | | 445 | 93 | | 856 | 865 | | 885 | 895 | 904
*002 | 914 | 924
*02I | | | 447 | 65 03 | 040 | 050 | 060 | 070 | 079 | 089 | 099 | 108 | 118 | | | 448 | 12 | | 147 | | | | | 196 | 302 | 312 | | | | | 1 | 1 | | | | | 1 | | | | | No. | o | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | |--|---|---|---|---|---|---|---|---|---|---|--| | 450
451
452
453
454
455 | 65 321
418
514
610
706
801 | 331
427
523
619
715
811 | 341
437
533
629
725
820 | 35°
447
543
639
734
83° | 360
456
552
648
744
839 | 369
466
562
658
753
849 | 379
475
571
667
763
858 | 389
485
581
677
772
868 | 398
495
591
686
782
877 | 408
504
600
696
792
887 | | | 456
457
458
459
460
461
462
463 | 896
992
66 087
181
276
370
464
558 | 906
*001
096
191
285
380
474
567 | 916
*011
106
200
295
389
483
577 | 925
*020
115
210
304
398
492
586 | 935
*030
124
219
314
408
502
596 | 944
*039
134
229
323
417
511
605 | 954
*049
143
238
332
427
521
614 | 963
*058
153
247
342
436
530
624 | 973
*068
162
257
351
445
539
633 | 982
*077
172
266
361
455
549
642 | 10
1 1.0
2 2.0
3 3.0
4 4.0
5 5.0
6 6.0
7 7.0
8 8.0 | | 464
465
466
467
468
469
470 | 652
745
839
932
67 025
117
210 | 661
755
848
941
034
127
219 | 671
764
857
950
043
136
228 | 680
773
867
960
052
145
237 | 689
783
876
969
062
154
247 | 699
792
885
978
071
164
256 | 708
801
894
987
080
173
265 | 717
811
904
997
089
182
274 | 727
820
913
*006
099
191
284 | 736
829
922
*015
108
201
293 | 8 8.0 9 9.0 | | 471
472
473
474
475
476
477
478 | 302
394
486
578
669
761
852
943 | 311
403
495
587
679
770
861
952 | 321
413
504
596
688
779
870
961 | 33°
422
514
605
697
788
879
97° | 339
431
523
614
706
797
888
979 | 348
440
532
624
715
806
897
988 | 357
449
541
633
724
815
906
997 | 367
459
550
642
733
825
916
*006 | 376
468
560
651
742
834
925
*015 | 385
477
569
660
752
843
934
*024 | 9
1 0.9
2 1.8
3 2.7
4 3.6
5 4.5
6 5.4
7 6.3
8 7.2
9 8.1 | | 479
480
481
482
483
484
485 | 68 034
124
215
305
395
485
574 | 043
133
224
314
404
494
583 | 052
142
233
323
413
502
592 | 061
151
242
332
422
511
601 | 070
160
251
341
431
520
610 | 079
169
260
350
440
529
619 | 088
178
269
359
449
538
628 | 097
187
278
368
458
547
637 | 106
196
287
377
467
556
646 | 205
296
386
476
565
655 | 1.8 | | 486
487
488
489
490
491
492 | 664
753
842
931
69 020
108 |
673
762
851
940
028
117
205 | 681
771
860
949
037
126
214 | 690
780
869
958
046
135
223 | 699
789
878
966
055
144
232 | 708
797
886
975
064
152
241 | 717
806
895
984
073
161
249 | 726
815
904
993
082
170
258 | 735
824
913
*002
090
179
267 | 744
833
922
*011
099
188
276 | 1 0.8
2 1.6
3 2.4
4 3.2
5 4.0
6 4.8
7 5.6
8 6.4
9 7.2 | | 493
494
495
496
497
498
499 | 285
373
461
548
636
723
810 | 294
381
469
557
644
732
819 | 302
390
478
566
653
740
827 | 311
399
487
574
662
749
836 | 320
408
496
583
671
758
845 | 329
417
504
592
679
767
854 | 338
425
513
601
688
775
862 | 346
434
522
609
697
784
871 | 355
443
531
618
705
793
880 | 364
45 ²
539
627
714
801
888 | | | No. | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | |-------------------|----------------------|-------------------|-------------------------------|--------------------------|---|-------------------|--------------------|-------------------|------------------------|---|----------------------------------| | 500
501 | 69 897
984 | 906
992 | 914 | 923 | 93 2
*018 | 940
*027 | 949
*o36 | 958 | 966 | 975
*o62 | | | 502
503 | 70 070 | 079 | 088 | 096 | 105 | 200 | 209 | 131 | 140 | 234 | | | 504
505 | 243
329 | 252
338 | 260
346 | 269
355 | 278
364 | 286
372 | 295
381 | 303 | 312 | 321
406 | | | 506
507
508 | 415
501
586 | 424
509
595 | 43 ²
518
603 | 441
526
612 | 449
535
621 | 458
544
629 | 467
552
638 | 475
561
646 | 484
569
655 | 49 ²
57 ⁸
66 ₃ | 19 | | 509
510 | 672
757 | 680
766 | 689
774 | 697
783 | 706
791 | 714 | 723
808 | 731
817 | 740 | 749
834 | 1 0.9
2 1.8
3 2.7
4 3.6 | | 511
512
513 | 927
71 012 | 935 | 859
944
029 | 868
952
937 | 876
961
046 | 885
969
054 | 893
978
963 | 902
986
071 | 910
995
979 | 919
*003
088 | 5 4.5
6 5.4
7 6.3 | | 514 | 096 | 105 | 113 | 122 | 130 | 139 | 147 | 155 | 164 | 172
257 | 8 7.2
9 8.1 | | 516
517 | 265
349 | 273
357 | 282
366 | 290
374 | 299
383 | 3º7
391 | 315
399 | 324
408 | 33 ²
416 | 34I
425 | | | 518
519
520 | 433
517
600 | 44I
525
609 | 450
533
617 | 458
542
625 | 466
550
634 | 475
559
642 | 483
567
650 | 492
575
659 | 500
584
667 | 508
592
675 | | | 521
522
523 | 684
767
850 | 692
775
858 | 700
784
867 | 709
792
875 | 717
800
883 | 725
809
892 | 734
817
900 | 742
825
908 | 750
834
917 | 759
842
925 | 8
0.8
2 1.6 | | 524
525
526 | 933 | 94I
024 | 950
032 | 958
041 | 966
049 | 975
057 | 983
066 | 991
974 | 999
082 | *008 | 3 2.4
4 3.2
5 4.0
6 4.8 | | 527
528 | 099
181
263 | 189
272 | 115
198
280
362 | 206
288 | 132
214
296 | 140
222
304 | 148
230
313 | 156
239
321 | 165
247
329 | 255
337 | 7 5.6
8 6.4
9 7.2 | | 529
530
531 | 346
428
509 | 354
436
518 | 444
526 | 37°
45°
534 | 378
460
542 | 387
469
550 | 395
477
558 | 485
567 | 411
493
575 | 501
583 | | | 532
533
534 | 591
673
754 | 599
681
762 | 689
770 | 616
697
779
860 | 705
787
868 | 713
795
876 | 640
722
803 | 730
811 | 656
738
819 | 665
746
827 | | | 535
536
537 | 835
916
997 | *006 | 933
*014 | 941 | 949 | 957
*038 | 884
965
*046 | 973
*054 | 900
981
*062 | 908
989
*070 | 7
1 0.7
2 1.4
3 2.1 | | 538
539
540 | 73 078
159
239 | 086
167
247 | 094
175
255 | 183
263 | 111
191
272 | 119
199
280 | 127
207
288 | 135
215
296 | 143
223
304 | 231
312 | 4 2.8
5 3.5
6 4.2 | | 541
542
543 | 320
400
480 | 328 | 336
416
496 | 344
424 | 35 ²
43 ²
51 ² | 360
440
520 | 368
448
528 | 376
456
536 | 384
464
544 | | 7 4.9
8 5.6
9 6.3 | | 544
545 | 560 | 568 | 576
656 | 584 | 592 | 600 | 608 | 616 | 624
703 | 632 | | | 545
546
547 | 719 | 727 | 735 | 743 | 75I
830 | 759 | 767
846 | 775 | 783
862 | 791 | | | 548
549 | 878
957 | 886 | 894
973 | 902 | 910 | | 926 | | 941 | 949 | | | No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | |-------------------|-------------------------------------|-------------------|---------------------|-------------------------------|---------------------------------|--------------------|--------------------|--------------------|-------------------------------|---------------------|--| | 550
551 | 74 036 | 044 | 052 | 060 | o68
147 | 076
155 | 084 | 092 | 099 | 107 | | | 552
553
554 | 273
351 | 202
280
359 | 210
288
367 | 218
296
374 | 304
382 | 233
312
390 | 320
398 | 327
406 | 257
335
414 | 265
343
421 | | | 555
556
557 | 507
586 | 437
515
593 | 445
523
601 | 531
609 | 461
539
617 | 547
624 | 476
554
632 | 484
562
640 | 492
570
648 | 500
578
656 | | | 558
559
560 | 663
741
819 | 671
749
827 | 679
757
834 | 687
764
842 | 695
772
850 | 702
780
858 | 710
788
865 | 718
796
873 | 726
803
881 | 733
811
889 | | | 561
562
563 | 896
974 | 904
981
059 | 912
989
066 | 920
997
074 | 9 ² 7
*005
082 | 935
*012
089 | 943 | 950
*028 | 958
*035 | 966
*043 | 8 | | 564
565 | 75 051 128 | 136 | 143 | 151
228 | 159
236 | 166
243 | 097
174
251 | 182 | 113
189
266 | 197
274 | 1 0.8
2 1.6
3 2.4
4 3.2
5 4.0
6 4.8 | | 566
567
568 | 282
358
435 | 289
366
442 | 297
374
450 | 305
381
458 | 312
389
465 | 320
397
473 | 328
404
481 | 335
412
488 | 343
420
496 | 351
427
504 | 7 5.6
8 6.4 | | 569
570
571 | 511
587
664 | 519
595
671 | 526
603
679 | 534
610
686 | 542
618
694 | 549
626
702 | 557
633
709 | 565
641
717 | 57 ²
648
724 | 580
656
732 | 9 7.2 | | 572
573
574 | 740
815
891 | 747
823
899 | 755
831
906 | 7 ⁶²
838
914 | 770
846
921 | 778
853
929 | 785
861
937 | 793
868
944 | 800
876
952 | 808
884
959 | | | 575
576
577 | 967
76 042
118 | 974
050
125 | 982
957
133 | 989
065
140 | 997
072
148 | *005
080 | *012
087
163 | *020
095
170 | *027
103
178 | *035
110
185 | | | 578
579
580 | 193
268 | 200 | 208
283
358 | 215 | 223 | 305 | 238
313
388 | 245
320 | 253
328 | 260
335 | | | 581
582 | | 425
500 | 433
507 | 365
440
515 | 373
448
522 | 380
455
530 | 462
537 | 395
470
545 | 403
477
552 | 485
559 | 7
1 0.7
2 1.4
3 2.1 | | 583
584
585 | 716 | 649
723 | 582
656
730 | 589
664
738 | 597
671
745 | 604
678
753 | 612
686
760 | 619
693
768 | 626
701
775 | 634
708
782 | 4 2.8
5 3.5
6 4.2 | | 586
587
588 | 938 | 871 | 805
879
953 | 812
886
960 | 819
893
967 | 827
901
975 | 834
908
982 | 842
916
989 | 923
997 | 856
930
*004 | 7 4.9
8 5.6
9 6.3 | | 589
590
591 | 085 | 093 | 026
100
173 | 034
107
181 | 041
115
188 | 048
122
195 | 056
129
203 | 063
137
210 | 070
144
217 | 078
.151
.225 | | | 592
593
594 | 305 | 313 | 247
320
393 | 254
327
401 | 262
335
408 | 269
342
415 | 276
349
422 | 283
357
430 | 291
364
437 | 298
371
444 | | | 595
596
597 | 45 ²
5 ² 5 | 459
532 | 466
539
612 | 474
546
619 | 481
554
627 | 488
561
634 | 495
568
641 | 503
576
648 | 510
583
656 | 517
590
663 | | | 598
599 | 670 | 677 | 68 ₅ 757 | 692
764 | 699
772 | 706 | 714
786 | 721
793 | 728
801 | 735
808 | | | No. | 0 | ı | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | |------------|------------|------------|----------------|------------|-------------|------------|------------|------------|--------------------|---------------------|-------------------------| | | | | | | | 0.0 | | | | | | | 600 | 77 815 887 | 822 | 830 | 837 | 916 | 851
924 | 859 | 866
938 | 873
945 | 880
952 | | | 602 | 960 | 967 | 974 | 981 | 988 | 996 | *003 | *010 | *017 | *025 | | | 603 | 78 032 | 039 | 046 | 053 | 061 | 068 | 075 | 082 | 089 | 097 | | | 605 | 176 | 183 | 190 | 197 | 204 | 211 | 219 | 226 | 233 | 240 | | | 606 | 247
319 | 254
326 | 333 | 269
340 | 276
347 | 283
355 | 362 | 297
369 | 305
376 | 383 | | | 608 | 390 | 398 | 405 | 412 | 419 | 426 | 433 | 440 | 447 | 455 | 1 0.8 | | 609 | 462
533 | 469 | 476
547 | 483
554 | 490
561 | 497
569 | 504
576 | 512
583 | 519
590 | 526
597 | 3 2.4 | | 611 | 604 | 682 | 618 | 625 | 633 | 640 | 647 | 654 | 661 | 668 | 4 3.2
5 4.0
6 4.8 | | 613 | 675
746 | 753 | 760 | 696
767 | 704
774 | 711 781 | 789 | 725
796 | 732
803 | 739
810 | 7 5.6 8 6.4 | | 614 | 817
888 |
824 | 831 | 838 | 845 | 852 | 859 | 866 | 873 | 880 | 9 7.2 | | 615 | 958 | 895
965 | 902
972 | 909
979 | 986 | 923
993 | 930 | 937 | *014 | 951
*021 | | | 617 | 79 029 | 106 | 043 | 050 | 057 | 064 | 071 | 078 | 085 | 162 | | | 619 | 169 | 176 | 183 | 190 | 197 | 204 | 211 | 218 | 225 | 232 | | | 620 | 309 | 316 | ²⁵³ | 330 | 337 | 274
344 | 351 | 288
358 | ²⁹⁵ 365 | 302 | | | 622 | 379 | 386 | 393 | 400 | 407 | 414 | 421 | 428 | 435 | 442 | 1 0.7 | | 623
524 | 449
518 | 456
525 | 463
532 | 47°
539 | 477
546 | 484
553 | 560 | 498 | 505 | 511 | 3 2.1 | | 625 | 588 | 595 | 602 | 609 | 616 | 623 | 630 | 637 | 644 | 650 | 4 2.8
5 3.5
6 4.2 | | 626 | 657 | 734 | 741 | 678
748 | 685 | 761 | 699 | 706 | 713 | 720 | 7 4.9 8 5.6 | | 628 | 796 | 803 | 810 | 817
886 | 824 | 831 | 837 | 844 | 851 | 858 | 9 6.3 | | 630 | 865
934 | 941 | 879
948 | 955 | 893.
962 | 900 | 906 | 913 | 920 | 927 | - A W | | 631 | 80 003 | 010 | 017 | 024 | 030 | 037 | 044 | 051 | 058 | 065 | | | 632 | 072 | 079 | 154 | 161 | 099 | 175 | 113 | 188 | 195 | 134 | | | 634 | 209 | 216 | 223 | 229 | 236
305 | 243
312 | 250
318 | 257
325 | 332 | 339 | | | 635 | 277
346 | 353 | 359 | 366 | 373 | 380 | 387 | 393 | 400 | 407 | 1 0.6 | | 637 | 414 | 421 | 428 | 434 502 | 44I
500 | 448
516 | 455
523 | 462
530 | 468
536 | 475 543 | 2 I.2
3 I.8 | | 639 | 550 | 557 | 564 | 570 | 577 | 584 | 591 | 598 | 604 | 611 | 4 2.4
5 3.0
6 3.6 | | 640 | 618 | 625 | 632 | 638 | 645 | 652 | 726 | 733 | 740 | 679 | 7 4.2 8 4.8 | | 642 | 754
821 | 760 | 767 | 774 | 781 | 787 | 794 | 801 | 808 | 814 | 9 5.4 | | 643 | 821 | 828 | 835 | 841 | 848
916 | 855 | 862 | 868 | 875 | 88 ₂ 949 | | | 645 | 956 | 963 | 969 | 976 | 983 | 990 | 996 | *003 | *010 | *017 | | | 646 | 81 023 | 030 | 037 | 043 | 050 | 057 | 064 | 070 | 077 | 084 | 1 | | 648 | 158 | 164 | 171 | 178 | 184 | 191 | 198 | 204 | 211 | 218 | | | 649 | 224 | 231 | 238 | 245 | 251 | 258 | 265 | 271 | 278 | 205 | | | 1 | | | | | | | | | | 0 | | | |--------------------|------------|-------------------------|------------------------|-------------------------|------------------------|------------|------------|------------------------|-------------------|------------|-------------------|----------------------------------| | | No. | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | | | 650 | 81 291 | 298 | 305 | 311 | 318
385 | 325 | 331 | 338 | 345 | 351 | 12 | | | 651
652 | 35 ³
425 | 365
431 | 371
438 | 37 ⁸
445 | 451 | 391 | 398
465 | 405
471 | 411 478 | 418 485 | 7 -1 | | | 653
654 | 491
558 | 498
564 | 505
571 | 511
578 | 518
584 | 525
591 | 531
598 | 538
604 | 544
611 | 551
617 | | | | 655
656 | 624
690 | 631 | 637 | 710 | 651
717 | 657
723 | 664
730 | 671 | 677
743 | 684 | | | | 657
658 | 757
823 | 763
829 | 770
836 | 776
842 | 783
849 | 790
856 | 796
862 | 737
803
869 | 809
875 | 750
816
882 | | | | 659 | 889 | 895 | 902 | 908 | 915 | 921 | 928 | 935 | 941 | 948 | | | | 660
661 | 954
82 020 | 961 | 968 | 974 | 981
046 | 987
053 | 994
060 | *000 | *007 | *014 | | | | 662 | 086 | 092 | 099 | 105 | 112 | 119 | 125 | 132 | 138 | 145 | 1 7 | | | 664 | 217
282 | 223 | 230 | 236 | 243
308 | 249 | 256 | 263 | 269 | 276 | I 0.7
2 I.4
3 2.1 | | | 666 | 347 | 354 | 295
360 | 302
367 | 373 | 315 | 32I
387 | 328
393 | 334 | 341
406 | 3 2.1
4 2.8
5 3.5
6 4.2 | | | 668 | 413 | 419 | 426 | 432 | 439
504 | 445 | 45 ²
517 | 458
523 | 465 | 471
536 | 7 4.9
8 5.6 | | | 669
670 | 543
607 | 549
614 | 556
620 | 562 | 569 | 575
640 | 582
646 | 588
653 | 595
659 | 601
666 | 9 6.3 | | | 671
672 | 672 | 679 | 68 ₅ | 692 | 698
763 | 705
769 | 711
776 | 718
782 | 724
789 | 730 | | | | 673 | 737
802 | 743
808 | 814 | 756
821 | 827 | 834 | 840 | 847 | 853 | 795
860 | | | | 674 | 866
930 | 8 ₇₂
937 | 879
943 | 885
950 | 892
956 | 898
963 | 969 | 911 | 918
982 | 924
988 | | | | 676 | 995 | *001 | *008 | *014 | *020 | *027 | *033 | *040 | *046 | *052 | | | | 678
679 | 123 | 129 | 136 | 142 | 149 | 155 | 161 | 168 | 174 | 181 | 7 1 | | | 680 | 251 | 257 | 264 | 270 | 276 | 283 | 289 | 296 | 302 | 308 | 16 | | | 681
682 | 315
378 | 321 385 | 3 ² 7
391 | 334
398 | 340
404 | 347
410 | 353 | 359
423 | 366
429 | 372
436 | I 0.6
2 I.2 | | | 683
684 | 442
506 | 448
512 | 455 | 461
525 | 467
531 | 474
537 | 480
544 | 487 | 493
556 | 499
563 | 3 I.8
4 2.4
5 3.0
6 3.6 | | | 685
686 | 569 | 575 | 582 | 588 | 594
658 | 664 | 670 | 613 | 620 | 626 | 7 4.2 | | - | 687 | 632 | 702 | 708 | 715 | 721 | 727 | 734 | 740 | 746 | 753 | 8 4.8 9 5.4 | | - | 688 | 759
822 | 765
828 | 771
835 | 778 | 784
847 | 79°
853 | 797
860 | 866 | 809 | 816 | | | | 690
691 | 88 ₅
948 | 954 | 897 | 904 | 973 | 916 | 923
985 | 929 | 935 | 942
*004 | | | | 692
693 | 84 011 073 | 017 | 023 | 029 | 036 | 042 | 048 | 055 | 061 | 067 | - | | | 694 | 136 | 142 | 148 | 155 | 161 | 167 | 173 | 180 | 186 | 192 | | | | 695 | 198
261 | 205 267 | 211 273 | 217 280 | 223 | 230 | 236 | 305 | 248
311 | 255
317 | | | THE REAL PROPERTY. | 697
698 | 3 ² 3
386 | 330 | 336 | 342 | 348 | 354 | 361 | 367 | 373 | 379 | | | - | 699 | 448 | 454 | 460 | 466 | 473 | 479 | 485 | 491 | 497 | 504 | | | Too St St St St St St St | No. | 0 | ı | 2 | 3 . | 4 | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | |--|-------------------|---------|-----|-----|------|------|------------|-----|------------|--------------|-----|----------| | 701 | | | | | | | | | | | | | | 702 | | | 516 | | | | | | 553
615 | 559 | 566 | | | 704 | | 634 | | 646 | | 658 | 665 | | | | 689 | | | 705 | | | | | | | | | 739 | | | | | 707 | 705 | 819 | 825 | 831 | 837 | 844 | 850 | 856 | 862 | 868 | 874 | | | 708 85 033 009 016 022 028 034 040 040 052 058 709 709 065 071 077 083 089 095 101 107 114 120 21 71 1181 1381 1381 144 150 156 163 169 175 181 24 25 211 217 224 230 236 242 25 211 217 224 230 236 242 25 211 217 224 230 236 242 25 251 27 278 285 291 297 303 64 28 5 61 431 437 443 449 455 461 467 473 479 485 717 476 4491 4497 553 556 522 528 588 594 600 666 667 717 757 763 769 | | 042 | | | // | | - | | | | | | | Ti0 | 708 | 85 003 | 009 | 016 | 022 | 028 | 034 | 040 | 046 | 052 | 058 | I 0.7 | | 712 | | | | | | | 156 | | | | | 3 2.1 | | 713 309 315 321 327 333 339 345 352 358 364 425 9 6.3 714 370 376 382 388 394 400 406 412 418 425 9 6.3 715 431 437 443 449 455 461 467 473 479 485 716 491 497 503 509 516 522 528 534 540 540 606 717 552 558 564 570 576 582 588 594 600 606 718 612 618 625 631 637 643 649 655 661 667 719 673 679 685 691 697 703 709 715 721 727 720 733 739 745 751 757 763 769 775 781 788 721 794 800 806 812 818 824 830 836 842 848 722 854 860 866 872 878 884 890 896 902 908 723 914 920 926 932 938 944 950 956 902 908 724 974 980 986 902 908 804 804 800 806 812 818 124 130 136 141 147 727 153 159 165 171 177 183 189 195 201 207 88 4.3 728 213 219 225 231 237 243 249 255 261 267 728 213 219 225 231 237 243 249 255 261 267 728 213 219 225 231 237 243 249 255 261 267 728 213 219 225 231 237 243 249 255 261 267 728 213 219 225 231 237 243 249 255 261 267 733 33 303 334 332 338 344 350 356 362 368 374 380 386 731 392 398 404 410 415 421 427 433 439 445 457 463 469 475 481 487 493 499 504 733 510 516 522 528 534 540 546 552 558 564 570 576 581 587 593 599 605 611 617 623 629 635 641 646 652 658 664 670 676 682 738 866 812 817 823 829 835 841 847 853 859 452 20 929 935 941 947 953 958 964 970 976 738 866 812 817 823 829 835 841 847 853 859 42 20 929 935 941 947 953 958 964 970 976 741 982 988 994 999 8005 8011 8017 802 803 99 455 201 207 874 1 116 122 128 134 140 146
151 17 17 17 180 180 192 198 204 210 744 157 163 169 175 181 186 192 198 204 210 744 157 141 157 163 169 175 181 186 192 198 204 210 744 157 141 157 163 169 175 181 186 192 198 204 210 174 744 157 163 169 175 181 186 192 198 204 210 174 744 157 163 169 175 181 186 192 198 204 210 174 744 157 163 169 175 181 186 192 198 204 210 174 744 157 163 169 175 181 186 192 198 204 210 174 744 157 163 169 175 181 186 192 198 204 210 174 744 157 163 169 175 181 186 192 198 204 210 174 744 157 163 169 175 181 186 192 198 204 210 174 744 157 163 169 175 181 186 192 198 204 210 174 744 157 163 169 175 181 186 192 198 204 210 100 100 100 100 100 100 100 100 100 | | | 193 | 199 | | 211 | 217 | | | 236 | | 5 3.5 | | 715 | | | | 321 | 327 | | | | | | | 7 4.9 | | 716 | | | | 382 | | | | | 412 | | | 9 6.3 | | 718 | | | 497 | | | | 522 | 528 | | | 546 | | | 719 673 679 685 691 697 703 709 715 721 727 728 214 924 926 932 938 944 950 956 962 968 1.2 18 124 130 136 141 147 727 728 213 219 225 231 237 243 249 255 261 267 272 273 279 285 291 297 303 308 314 320 326 332 338 344 350 356 362 368 374 380 386 3 | The second second | | | | | | | | | | | | | 721 794 800 806 812 818 824 830 836 842 848 722 854 860 866 872 878 884 890 896 992 998 902 998 998 992 998 998 992 998 998 992 998 860 992 998 804 900 906 992 998 804 900 906 902 998 804 900 906 902 908 806 992 998 804 900 906 902 908 804 900 906 908 1 0.6 1 0.6 1 | 719 | | | 685 | | | 703 | 709 | 715 | 721 | 727 | | | 722 854 860 866 872 878 884 890 896 902 908 1 0.6 21.2 2.723 914 920 926 932 938 944 950 956 962 968 21.2 2.724 724 974 980 986 992 998 *co4 *co10 *co16 *co22 *co28 088 4 2.4 2.72 *co28 o88 4 2.4 2.0 7co 66 022 co28 064 070 076 082 088 4 2.4 3.4 3.2 3.2 2.5 2.2 2.2 < | | | | | | | 1 - | | | | | | | 724 974 980 986 992 998 *oo4 *o10 *o16 *o22 *o28 3 1.8 2.7 725 86 o34 o40 o46 o52 o58 o64 o70 o76 o82 o88 5 3.0 o726 o94 100 106 112 118 124 130 136 141 147 6 3.6 727 153 159 165 171 177 183 189 195 201 207 4.2 4 4.8 74 4.2 4 4.8 74 4.2 4 4.8 74 4.8 74 4.8 4.8 74 729 273 279 285 291 297 303 308 314 320 326 730 332 338 344 350 356 362 368 374 380 386 731 392 384 457 463 469 <t< th=""><th>722</th><th></th><th>860</th><th>866</th><th>872</th><th>878</th><th></th><th>890</th><th>896</th><th>902</th><th>908</th><th></th></t<> | 722 | | 860 | 866 | 872 | 878 | | 890 | 896 | 902 | 908 | | | 727 | | | - | 1 | | | 1 | | | | | 2 I.2 | | 727 | 725 | 86 034 | 040 | 046 | 052 | 058 | 064 | 070 | 076 | 082 | 088 | 5 3.0 | | 728 213 216 225 231 237 243 249 255 261 267 9 5.4 729 273 279 285 291 297 303 308 314 320 326 730 332 338 344 350 356 362 368 374 380 386 731 392 398 404 410 415 421 427 433 439 445 732 451 457 463 469 475 481 487 493 499 504 733 510 516 522 528 534 540 556 552 558 564 734 570 576 581 587 593 599 605 611 617 623 735 629 635 641 646 652 658 664 670 676 682 | | 43 (44) | | | - | - | | - | | | | 7 1.2 | | 730 | 728 | 213 | 219 | 225 | 231 | 237 | 243 | 249 | 255 | 261 | 267 | 9 5.4 | | 731 392 398 404 410 415 421 427 433 439 445 732 451 457 463 469 475 481 487 493 499 504 733 510 516 522 528 534 540 546 552 558 564 734 570 576 581 587 593 599 605 611 617 623 735 629 635 641 646 652 658 664 670 676 682 736 688 694 700 705 711 717 723 729 735 741 1 0.5 737 747 753 759 764 770 776 782 788 794 800 2 1.0 3 1.5 738 806 812 817 823 828 888 894 900 90 | | | | | | | | | 1.525 | | | | | 733 510 516 522 528 534 540 546 552 558 564 734 570 576 581 587 593 599 605 611 617 623 735 629 635 641 646 652 658 664 670 676 682 736 688 694 700 705 711 717 723 729 735 741 737 747 753 759 764 770 776 782 788 794 800 738 806 812 817 823 829 835 841 847 853 859 739 864 870 876 882 888 894 900 906 911 917 52 740 923 929 935 941 947 953 958 964 970 976 741 982 988 994 999 805 801 807 802 802 742 87 940 946 952 958 964 970 976 743 999 105 111 116 122 128 134 140 146 151 744 157 163 169 175 181 186 192 198 204 210 745 216 221 227 233 239 245 251 256 262 268 | 731 | 392 | 398 | 404 | 410 | 415 | 421 | 427 | 433 | 439 | 445 | | | 734 570 576 581 587 593 599 605 611 617 623 735 629 635 641 646 652 658 664 670 676 682 736 688 694 700 705 711 717 723 729 735 741 737 747 753 759 764 770 776 782 788 794 800 21 1.0 738 806 812 817 823 829 835 841 847 853 859 3 1.5 42.0 740 923 929 935 941 947 953 958 964 970 976 73.5 741 982 988 994 999 805 801 801 801 802 802 803 802 803 803 803 804 807 802 803 804 807 802 803 8 | | | 100 | | | | | | 000 | | | | | 736 | 734 | 570 | 576 | 581 | 587 | 593 | 599 | 605 | 611 | 617 | 623 | | | 737 747 753 759 764 770 776 782 788 794 800 2 1.0 738 806 812 817 823 829 835 841 847 853 859 3 1.5 739 864 870 876 882 888 894 900 906 911 917 5 2.5 740 923 929 935 941 947 953 958 964 970 976 6 3.0 741 982 988 994 999 *005 *011 *017 *023 *029 *035 8 4.0 982 988 994 999 *005 *011 *017 *023 *029 *035 8 4.0 982 988 994 999 *005 *011 *017 *023 *029 *035 8 4.0 982 981 9105 111 116 122 128 134 140 146 151 744 157 163 169 175 181 186 192 198 204 210 745 216 221 227 233 239 245 251 256 262 268 | | | | | | 1000 | 120 | | | | | 5 | | 739 864 870 876 882 888 894 900 906 911 917 5 2.5 740 923 929 935 941 947 953 958 964 970 976 7 3.5 8 4.0 982 988 994 999 \$\(\circ{8}{2}\) \(\circ{9}{2}\) \(\circ{8}{2}\) \(\circ{1}{2}\) \(\circ{1}\) \(1 | 737 | 747 | | | 764 | 770 | 776 | 782 | 788 | 794 | 800 | 2 1.0 | | 740 923 929 935 941 947 953 958 970 970 970 7 3.5 970 970 970 970 970 970 970 970 970 970 | | | | | | | | 1 | | The state of | 1 | 4 2.0 | | 742 87 040 046 052 058 064 070 075 081 087 093 9 4.5 743 099 105 111 116 122 128 134 140 146 151 744 157 163 169 175 181 186 192 198 204 210 745 216 221 227 233 239 245 251 256 262 268 | 740 | 923 | 929 | 935 | | | 953 | 958 | | 970 | 976 | 7 3.5 | | 743 | | | | | | _ | No. of the | | | | | | | 745 216 221 227 233 239 245 251 256 262 268 | 743 | 099 | 105 | III | 116 | 122 | 128 | 134 | | 146 | 151 | | | | | | - | | 12.5 | 100 | | | 1 | | 268 | | | 746 | 746 | 274 | 280 | 286 | 291 | 297 | 303 | 309 | 315 | | 326 | | | 748 390 396 402 408 413 419 425 431 437 442 | | 390 | | | | G056 | | 425 | 1,003190 | 10000 | | | | 749 448 454 460 466 471 477 483 489 495 500 | | 448 | | | | | | 483 | | | | | | No. | 0 | ı | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | |--------------------------|-----------------------------|--------------------------|--------------------------|--------------------------------|--|---------------------------|---------------------------|---------------------------|-------------------------------|---------------------------|--| | 750
751
752 | 87 506
564
622 | 512
570
628 | 518
576
633 | 5 ² 3
581
639 | 5 ²⁹
5 ⁸ 7
645 | 535
593
651 | 541
599
656 | 547
604
662 | 55 ²
610
668 | 558
616
674 | | | 753
754
755 | 679
737
795 | 685
743
800 | 691
749
806 | 697
754
812 | 703
760
818 | 708
766
823 | 714
772
829 | 720
777
835 | 726
783
841 | 731
789
846 | | | 756
757
758 | 852
910
967 | 858
915
973 | 864
921
978 | 869
927
984 | 875
933
990 | 881
938
996 | 887
944
*001 | 892
950
*007 | 898
955
*013 | 904
961
*018 | | | 759
760
761
762 | 88 024
081
138
195 | 030
087
144
201 | 036
093
150
207 | 041
098
156
213 | 047
104
161
218 | 053
110
167
224 | 058
116
173
230 | 064
121
178
235 | 070
127
184
241 | 076
133
190
247 | | | 763
764
765 | 252
309
366 | 258
315
372 | 264
321
377 | 270
326
383 | 275
332
389 |
281
338
395 | 287
343
400 | 292
349
406 | 298
355
412 | 304
360
417 | 6
2 1.2
3 1.8
4 2.4
5 3.0
6 3.6 | | 766
767
768
769 | 423
480
536
593 | 429
485
542
598 | 434
491
547
604 | 440
497
553
610 | 502
559
615 | 451
508
564
621 | 457
513
570
627 | 463
519
576
632 | 468
525
581
638 | 474
530
587
643 | 5 3.0
6 3.6
7 4.2
8 4.8
9 5.4 | | 770
771
772 | 649
705
762 | 655
711
767 | 660
717
773 | 666
722
779 | 672
728
784 | 677
734
790 | 68 ₃ 739 795 | 689
745
801 | 694
750
807 | 700
756
812 | | | 773
774
775
776 | 818
874
930
986 | 824
880
936
992 | 829
885
941
997 | 835
891
947
*003 | 840
897
953
*009 | 902
958
*014 | 852
908
964
*020 | 857
913
969
*025 | 863
919
975
*031 | 868
925
981
*037 | | | 777
778
779 | 89 042
098
154 | 048
104
159 | 997
053
109
165 | 059
115
170 | 064
120
176 | 070
126
182 | 076
131
187 | 081
137
193 | 087
143
198 | 092
148
204 | | | 780
781
782 | 209
265
321 | 215
271
326 | 22I
276
332 | 226
282
337 | 232
287
343 | 237
293
348 | 243
298
354 | 248
304
360 | 254
310
365 | 260
315
371 | 5
1 0.5
2 1.0
3 1.5 | | 783
784
785
786 | 376
432
487
542 | 382
437
492
548 | 387
443
498
553 | 393
448
504
559 | 398
454
509
564 | 404
459
515 | 409
465
520 | 415
470
526
581 | 421
476
531
586 | 426
481
537
592 | 4 2.0
5 2.5
6 3.0
7 3.5
8 4.0 | | 787
788
789 | 597
653
708 | 603
658 | 609
664
719 | 614
669
724 | 620
675
730 | 570
625
680
735 | 575
631
686
741 | 636
691
746 | 642
697 | 647
702
757 | 9 4.5 | | 790
791
792 | 763
818
873 | 768
823
878 | 774
829
883 | 779
834
889 | 785
840
894 | 790
845
900 | 796
851
905
960 | 801
856
911
966 | 807
862
916 | 812
867
922 | | | 793
794
795
796 | 927
982
90 037
001 | 933
988
042
097 | 938
993
048
102 | 944
998
053
108 | 949
*004
059
113 | 955
*009
064
119 | *015
069
124 | *020
075
129 | 971
*026
080
135 | 977
*031
086
140 | | | 797
798
799 | 146
200
255 | 151
206
260 | 157
211
266 | 162
217
271 | 168
222
276 | 173
227
282 | 179
233
287 | 184
238
293 | 189
244
298 | 195
249
304 | | | No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | |---|---|---|--|--|---|--|---|--|---|--|---| | 800
801
802
803
804
805
806
807
808
810
811
812
813
814
815
816
817
818
820
821
822
823
824
825
826
827
828
829
831 | 90 309 363 417 472 526 580 634 687 741 795 849 902 956 91 009 062 116 169 222 275 328 381 434 487 540 593 645 698 751 803 855 698 960 | 314
369
423
477
531
585
639
693
747
800
854
907
961
014
068
121
174
228
334
337
440
492
545
598
651
703
756
888
861
913
905 | 320
374
428
482
536
590
644
698
752
806
859
913
966
020
073
126
180
233
286
339
345
445
498
551
603
605
679
761
886
886
799
761
886
799
761
886
799
761
886
799
761
886
799
761
886
761
761
761
761
761
761
761
761
761
76 | 325
380
434
488
542
596
650
703
757
811
865
972
025
078
132
185
238
291
450
503
344
4397
450
669
660
714
766
819
871 | 331
385
439
493
547
601
655
709
763
816
870
924
137
190
243
297
350
403
455
508
561
614
666
719
772
824
876
929
981 | 336
390
445
499
553
660
714
768
822
875
929
982
036
089
142
1966
249
302
355
408
461
514
566
672
724
777
829
882
982
984
986 | 342
396
450
5588
612
6666
720
773
827
881
148
201
254
307
360
413
466
519
572
624
677
730
782
834
887 | 347
401
455
509
563
617
779
832
886
940
993
304
100
153
206
259
312
365
418
471
524
577
630
682
735
787
840
892
994
997 | 352
407
461
515
569
623
784
838
891
945
905
2105
318
371
424
477
529
582
687
740
793
845
687
795
900
2000
2000
2000
2000
2000
2000
200 | 358
412
466
520
574
628
682
736
789
843
897
100
164
217
270
323
376
429
482
535
587
640
693
745
798
850
903
995
995
995 | 6 0.6
2 1.2
3 1.8
4 2.4
5 3.0
6 7.8
4.2
8 4.8
9 5.4 | | 829
830 | 855
908 | 808
861
913 | 866
918 | 871
924 | 824
876
929 | 934 | 939 | 840
892
944 | 845
897
950 | 850
903
955 | 5.0.50
3.1.50
4.2.50
3.0
5.2.50
3.0
7.3.5
8.4.0
9.4.5 | | No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | |--------------------------|---|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|---------------------------|--------------------------|--------------------------|---------------------------|--| | 850
851
852 | 92 942
993
93 0 44 | 947
998
049 | 952
*003
054 | 957
*008
059 | 962
*013
064 | 967
*018
069 | 973
*024
975 | 978
*029
080 | 983
*034
085 | 988
*039
090 | | | 853
854
855 | 095
146
197 | 100
151
202 | 105
156
207 | 110
161
212 | 115
166
217 | 120
171
222 | 125
176
227 | 131
181
232 | 136
186
237
288 | 141
192
242 | | | 856
857
858
859 | 247
298
349 | 252
303
354
404 | 258
308
359
400 | 263
313
364
414 | 268
318
369
420 | 273
323
374
425 | 278
328
379
430 | 283
334
384
435 | 339
389
440 | 293
344
394
445 | 1 0.6 | | 860
861
862 | 399
450
500
551 | 455
505
556 | 460
510
561 | 465
515
566 | 470
520
571 | 475
526
576 | 480
531
581 | 485
536
586 | 490
541
591 | 495
546
596 | 2 1.2
3 1.8
4 2.4
5 3.0
6 3.6 | | 863
864
865 | 601
651
702 | 606
,656
707 | 611
661
712 | 616
666
717 | 621
671
722 | 626
676
727 | 631
682
732 | 636
687
737 | 641
692
742 | 646
697
747 | 7 4.2
8 4.8
9 5.4 | | 866
867
868 | 75 ²
80 ²
85 ² | 757
807
857 | 762
812
862 | 767
817
867 | 772
822
872 | 777
827
877 | 782
832
882 | 787
837
887 | 792
842
892 | 797
847
897
| | | 869
870
871
872 | 902
952
94 002
052 | 907
957
007
057 | 912
962
012
062 | 917
967
017
067 | 922
972
022
072 | 927
977
927
927 | 932
982
032
082 | 937
987
937
986 | 942
992
042
091 | 947
997
*047
096 | 5 | | 873
874
875 | 101 | 106
156
206 | 111
161
211 | 116
166
216 | 121
171
221 | 126
176
226 | 131
181
231 | 136
186
236 | 141
191
240 | 146
196
245 | 1 0.5
2 1.0
3 1.5
4 2.0
5 2.5
6 3.0 | | 876
877
878 | 300
349 | ²⁵⁵ 305 354 | 260
310
359 | 265
315
364 | 320
369 | 275
325
374 | 280
330
379 | 285
335
384 | 340
389 | 295
345
394 | 6 3.0
7 3.5
8 4.0
9 4.5 | | 879
880
881
882 | 399
448
498
547 | 453
503
552 | 409
458
507
557 | 414
463
512
562 | 419
468
517
567 | 424
473
522
571 | 429
478
527
576 | 433
483
532
581 | 438
488
537
586 | 443
493
542
591 | | | 883
884
885 | 596
645
694 | 601
650
699 | 606
655
704 | 611
660
709 | 616
665
714 | 621
670
719 | 626
675
724 | 630
680
729 | 635
685
734 | 640
689
738 | | | 886
887
888 | 743
792
841 | 748
797
846 | 753
802
851 | 758
807
856 | 763
812
861 | 768
817
866 | 773
822
871 | 778
827
876 | 783
832
880 | 787
836
885 | 1 0.4
2 0.8
3 1.2
4 1.6 | | 889
890
891 | 890
939
988 | 895
944
993 | 900
949
998 | 905
954
*002 | 959
*007 | 915
963
*012
061 | 919
968
*017
066 | 924
973
*022 | 929
978
*027 | 934
983
*032
080 | 5 2.0
6 2.4
7 2.8
8 3.2
9 3.6 | | 892
893
894
895 | 95 036
085
134
182 | 041
090
139
187 | 046
095
143
192 | 100
148
197 | 056
105
153
202 | 109 | 114 163 211 | 071
119
168
216 | 075
124
173
221 | 129
177
226 | | | 896
897
898 | 231
279
328 | 236
284
332 | 240
289
337 | 245
294
342 | 250
299
347 | 255
303
352 | 260
308
357 | 265
313
361 | 270
318
366 | 274
323
371 | | | 899 | 376 | 381 | 386 | 390 | 395 | 400 | 405 | 410 | 415 | 419 | | | | THE TAXABLE | | | 777 | | | | | | | | |------------|------------------------|------------|------------------------|-------------------------|-------------|-------------|------------|------------|-------------|-------------|----------------------------------| | No. | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Pp. Pts. | | 900 | 95 424 | 429 | 434 | 439 | 444 | 448 | 453 | 458 | 463 | 468 | | | 901
902 | 472
521 | 477
525 | 482
530 | 487
535 | 492
540 | 497
545 | 550 | 506 | 511
559 | 516
564 | | | 903 | 569
617 | 574
622 | 578
626 | 583
631 | 588
636 | 593
641 | 598
646 | 602
650 | 607
655 | 612
660 | | | 905 | 665 | 670 | 674 | 679 | 684 | 689 | 694 | 698 | 703 | 708 | | | 906 | 713
761 | 718 766 | 722 | 727 775 | 732
780 | 737
785 | 742
789 | 746 794 | 751
799 | 756
804 | | | 908 | 809
856 | 813 | 818 | 823 | 828 | 832 | 837 | 842 | 847 | 852
899 | | | 910 | 904 | 909 | 914 | 918 | 923 | 928 | 933 | 938 | 942 | 947 | | | 911 | 95 ²
999 | 957 | 961 | 966 | 971 | 976
*023 | 980 | 985 | 990
*038 | 995
*042 | | | 913 | 96 047 | 052 | 057 | 061 | 066 | 071 | 076 | 080 | 085 | 090 | I 0.5
2 I.0 | | 915 | 142 | 147 | 152 | 156 | 161 | 166 | 171 | 175 | 180 | 185 | 3 1.5 | | 916 | 190
237 | 194
242 | 199 | 204 | 256 | 213 261 | 218 | 223 | 227 275 | 232 | 4 2.0
5 2.5
6 3.0
7 3.5 | | 918 | 284
332 | 289
336 | 294
34I | 298
346 | 303 | 308 | 313
360 | 317
365 | 322
369 | 327
374 | 7 3.5
8 4.0
9 4.5 | | 920 | 379 | 384 | 388 | 393 | 398 | 402 | 407 | 412 | 417 | 421 | | | 921
922 | 426°
473 | 43I
478 | 435 483 | 440 | 445 492 | 450 | 454
501 | 459
506 | 464 | 468 | | | 923 | 520
567 | 525
572 | 530 | 534
581 | 539
586 | 544 | 548
595 | 553 | 558 | 562 | | | 925 | 614 | 619 | 624 | 628
675 | 633 | 638 | 642 | 647
694 | 652 | 656
703 | | | 927 | 708 | 713 | 717 | 722 | 727 | 731 | 736 | 741 | 745 | 750 | | | 928 | 755
802 | 759
806 | 764
811 | 769
816 | 774
820 | 778
825 | 783
830 | 788
834 | 792
839 | 797
844 | | | 930
931 | 848
895 | 853 | 858 | 862 | 867 | 872
918 | 876
923 | 881
928 | 886
932 | 890
937 | 4 | | 932 | 942 | 946 | 951 | 956 | 960 | 965 | 970 | 974 | 979 | 984 | I 0.4
2 0.8
3 1.2 | | 933 | 988
97 °35 | 993 | 997
044 | *002
049 | *007
053 | *011 | *016 | *021 | *025
072 | *030
077 | 4 I.6
5 2.0 | | 935 | 081 | 086 | 090 | 095 | 100 | 104 | 109 | 114 | 118 | 169 | 6 2.4
7 2.8
8 3.2 | | 937
938 | 174 | 179 | 183 | 188 | 192 | 197 | 202 | 206
253 | 211 | 216 | 9 3.6 | | 939 | 267 | 271 | 276 | 280 | 285 | 290 | 294 | 299 | 304 | 308 | | | 940
941 | 313
359 | 317
364 | 322
368 | 3 ² 7
373 | 33I
377 | 336
382 | 340
387 | 345
391 | 350
396 | 354 | | | 942
943 | 405
451 | 410
456 | 414 | 419 | 424
470 | 428
474 | 433
479 | 437
483 | 442
488 | 447 | | | 944 | 497 | 502 | 506 | 511 | 516 | 520 | 525 | 529 | 534 | 539 | | | 945
946 | 543
589 | 548
594 | 55 ²
598 | 557 603 | 562 | 566 | 571
617 | 575
621 | 580
626 | 585 | | | 947 948 | 635 | 640 | 644 | 649 | 653 | 658 | 663
708 | 713 | 672
717 | 676
722 | | | 949 | 727 | 731 | 736 | 740 | 745 | 749 | 754 | 759 | 763 | 768 | | | - | No. | 0 | ı | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Rp. Pts | 1 | |---|------------|---------------|------------|------------------------------------|------------------------|------------|-------------|------------|-------------|------------|------------|----------------------------------|---| | | 950 | 97 772
818 | 777 | 782 | 786 | 791
836 | 795 | 800 | 804 | 809 | 813 | | | | | 951
952 | 818 | 823
868 | 8 ₂₇
8 ₇₃ | 832
877 | 882 | 841 886 | 845 | 850
896 | 855 | 859
905 | | 1 | | | 953
954 | 909
955 | 914 | 918 | 923
968 | 928
973 | 932 | 937 | 941 | 946 | 950
996 | | | | 1 | 955 | 98 000 | 005 | 009 | 014 | 019 | 023 | 028 | 032 | 037 | 041 | | 1 | | ı | 956
957 | 046 | 050 | 055 | 105 | 064 | 068 | 073 | 078 | 082 | 087 | | 1 | | 1 | 958 | 137 | 141 | 146 | 150 | 155 | 159 | 164 | 168 | 173 | 177 | | | | I | 959
960 | 182 | 186 | 191
236 | 195
241 | 200 | 204 | 209 | 214 259 | 218 263 | 223
268 | THE ST | | | I | 961
962 | 272
318 | 277
322 | 28 ₁
32 ₇ | 286
331 | 290
336 | 295
340 | 299
345 | 304 | 308 | 313
358 | a Thomas | | | 1 | 963 | 363 | 367 | 372 | 376 | 381 | 385 | 390 | 394 | 399 | 403 | 1 0.5 | 1 | | | 964 | 408
453 | 412 | 417 | 421 | 426 | 430 | 435 | 439 | 444 | 448 | 3 1.5 | 1 | | 1 | 966 | 498 | 502 | 507 | 511 | 516 | 520 | 525 | 529 | 534 | 538 | 3 1.5
4 2.0
5 2.5
6 3.0 | | | 1 | 967 | 543
588 | 547
592 | 55 ²
597 | 556
601 | 561 | 565 | 570 | 574 | 579
623 | 583
628 | 7 3.5 | 1 | | 1 | 969
970 | 632 | 637
682 | 641 | 646 | 650 | 655 | 659
704 | 664
709 | 668 | 673 | 9 4.5 | 1 | | | 971 | 722 | 726 | 731 | 735
780 | 740 | 744 | 749 | 753 | 758 | 762 | | 1 | | ı | 972
973 | 767
811 | 771
816 | 776
820 | 780
825 | 784 | 789
834 | 793
838 | 798
843 | 802 | 807 | | 1 | | 1 | 974 | 856 | 860 | 865 | 869 | 874 | 878 | 883 | 887 | 892 | 896 | | | | | 975
976 | 900 | 905 | 909 | 914 958 | 918 | 923 | 927
972 | 932 | 936 | 941 985 | | 1 | | - | 977 | 989 | 994 | 998 | *003 | *007 | *012
056 | *016 | *021
065 | *025 | *029 | | | | 1 | 978
979 | 99 034 078 | 038 | 043 | 047 | 052 | 100 | 105 | 109 | 114 | 074 | 1 | | | ١ | 980
981 | 123 | 127
171 | 131 | 136 | 140 | 145 | 149 | 154 | 158 | 162 | 4 | | | 1 | 982 | 211 | 216 | 220 | 224 | 229 | 233 | 238 | 242 | 247 | 251 | 1 0.4 | | | 1 | 983
984 | 255
300 | 260
304 | 264
308 | 269
313 | 273
317 | 277
322 | 282
326 | 286 | 335 | 295
339 | 3 1.2
4 1.6
5 2.0
6 2.4 | | | 1 | 985 | 344 | 348 | 352 | 357 | 36I | 366 | 370 | 374 | 379 | 383 | 7 2.8 | 1 | | 1 | 986
987 | 388 | 392
436 | 396
441 | 401 | 405 | 410 | 414 458 | 419 463 | 423 467 | 427
47I | 8 3.2 9 3.6 | 1 | | 1 | 988 | 476 | 480 | 484 | 489 | 493 | 498 | 502 | 506 | 511 | 515 | | | | ١ | 989 | 520
564 | 524
568 | 528
572 | 533
577 | 537
581 | 542
585 | 546 | 550 | 555
599 | 559 | | 1 | | 1 | 991
992 | 651 | 612 | 616 | 621 | 625 | 629 | 634 | 638 | 642 | 647 | | 1 | | | 993 | 695 | 699 | 704 | 708 | 712 | 717 | 721 | 726 | 730 | 734 | | 1 | | | 994
995 | 739
782 | 743
787 | 747
791 | 75 ²
795 | 756
800 | 760
804 | 765
808 | 769 | 774 | 778
822 | | 1 | | | 996 | 826
870 | 830 | 835
878 | 839
883 | 843
887 | 848
891 | 852
896 | 856 | 861
904 | 865
909 | | | | | 997
998 | 913 | 874
917 | 922 | 926 | 930 | 935 | 939 | 944 | 948 | 952 | 18 | 1 | | 1 | 999 | 957 | 961 | 965 | 970 | 974 | 978. | 983 | 987 | 991 | 996 | | - | # APPENDIX A The following notes and tables relating to drill capacities and losses due to valves, elbows and tees are taken from the Ingersoll-Rand catalog. #### DRILL CAPACITY TABLES The following tables are to determine the amount of free air required to operate rock drills at various altitudes with air at given pressures. The tables have been compiled from a review of a wide experience and from tests run on drills of various sizes. They are intended for fair conditions in ordinary hard rock, but owing to varying conditions it is impossible to make any guarantee without a full knowledge of existing
conditions. In soft material where the actual time of drilling is short, more drills can be run with a given sized compressor than when working in hard material, when the drills would be working continuously for a longer period, thereby increasing the chance of all the drills operating at the same time. In tunnel work, where the rock is hard, it has been the experience that more rapid progress has been made when the drills were operated under a high air pressure, and that it has been found profitable to provide compressor capacity in excess of the requirements by about 25 per cent. There is also a distinct advantage in having a compressor of large capacity, in that it saves the trouble and expense of moving the compressor as the work progresses, and will not interfere with the progress of the work by crowding the tunnel. No allowance has been made in the tables for loss due to leaky pipes, or for transmission loss due to friction, but the capacities given are merely the displacement required, so that when selecting a compressor for the work required these matters must be taken into account. Table I gives cubic feet of free air required to operate one drill of a given size and under a given pressure. Table II gives multiplication factors for altitudes and number of drills by which the air consumption of one drill must be multiplied in order to give the total amount of air. TABLE I. — CUBIC FEET OF FREE AIR REQUIRED TO RUN ONE DRILL OF THE SIZE AND AT THE PRESSURE STATED BELOW | Pressure, | | | SIZE | AND | CYI | INDI | ER D | IAME | TER | OF I | DRIL | C | | |------------|----------|----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | e Press | A35 | A32 | В | C | D | D | D | E | F | F | G | Н | Н9 | | Gage
Po | 2" | 21" | 21" | 23" | 3'' | 31" | 3 3 " | 31" | 31/1 | 35/1 | 43" | 5" | 5111 | | 60 | 50 | 60 | 68 | 82 | 90 | 95 | 97 | 100 | 108 | 113 | 130 | 150 | 164 | | 70
80 | 56
63 | 68 | 77
86 | 93 | 102 | 108 | 110 | 113
127 | 124 | 129
143 | 164 | 170
190 | 181
207 | | 90 | 70
77 | 84
92 | 95
104 | 115
126 | 126
138 | 133
146 | 136
149 | 141
154 | 152
166 | 159
174 | 182
199 | 210
240 | 230
252 | TABLE II.—MULTIPLIERS TO DETERMINE CAPACITY OF COMPRESSOR REQUIRED TO OPERATE | | 1 | | | | |--------------------------|--------|--------------|-------------|---| | | | 70 | | 33.2
34.2
35.52
36.52
37.52
39.84
41.83
42.83
42.83
47.47 | | | 34 | - | | | | | | 09 | | 4634
4634
4634
4638
8738 | | I | | | | 29
30
30
30
30
30
30
30
30
30
30
30
30
30 | | E | 100 | 20 | | 4 6 6 6 9 4 4 6 4 6 6 6 6 6 6 6 6 6 6 6 | | LEVEL | | 113 | | 33.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3 | | - | 450 | 75.74 | | 4000
4000
6000
6000
6000
6000
6000
6000 | | SEA | | 40 | | | | | 3,3 | | | 322222222222 | | WITH | | 30 | | 864 49 48 88 88 88 88 88 88 88 88 88 88 88 88 | | MI | | 77.50 | 4 | 115.
116.
118.
118.
118.
119.
120.
120. | | | | | | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | | 国 | | 25 | | 19.27 | | AR | | | | | | AP. | 700 | 20 | | 7.7.
252.
252.
344.
344.
444.
690.
690.
690.
690.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7.
7. | | COMPARED | LLS | the state of | | 11222222224444777300 | | | DRILLS | 10 | RS | 52 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | E E | A | 15 | IE | 3.3.2.2.1.1.1.1.0.0.9.9 | | ALTITUDES | OF | | MULTIPLIERS | | | IT | R | 12 | LT | 8.1
8.34
8.34
8.34
8.91
9.92
9.96
0.21
1.1
1.58 | | II | IBE | | MU | 88883333333 | | | NUMBER | 10 | | 7.1
7.3
7.60
7.81
8.31
8.52
8.52
8.73
9.16
9.37
9.37 | | AT | Z | - | | 7.7.7.8888886666 | | | | | | 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 6 | | 000011111000000 | | RI | | 00 | | 6.0
6.18
6.42
6.6
6.6
6.6
6.84
7.70
7.70
7.70
8.70
8.70
8.70
8.70
8.70 | | D | | | | 42764886487
4278488666666666666666666666666666666666 | | X | 1 | 7 | | 427.61.846.861.47 | | S | | | | 86 44 4 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | H | ex- | 9 | | 4400000000000 | | 20 | | 5 | A.Y | .1
.22
.339
.339
.04
.04
.17
.239
.86 | | 2 | | | | 444444446666 | | | | 4 | A | 40000000000000000000000000000000000000 | | | | | | 7788
8888
8989
8979
8979
8979
8979
8979 | | 0 | TO N | က | | | | FROM 1 TO 70 ROCK DRILLS | | 2 | ZE. | 858
852
110
100
100
100
100
100
100
100
100
10 | | | - | | 2 | 1.07 1.88 2.18 1.10 1.98 2.1 1.10 1.98 2.1 1.10 1.98 2.1 1.10 1.98 2.1 1.10 1.20 2.10 3.10 3.20 2.20 3.1 3.20 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 2.30 3.1 1.30 3.30 3.30 3.30 3.30 3.30 3. | | | | - | | 901112022 | | | .16 | ea Leve | S | 000000000000000000000000000000000000000 | | | | вроуе | Ft | 1000
22000
33000
44000
5000
5000
12000
12000
12000 | | | | abutitl. | V | 777 | to operate these drills air at a gage pressure of 80 pounds per square inch. From Table I we find, when operating the drills at 80 pounds gage pressure at sea level, that one 5-inch "H" drill requires 190 cubic feet of free air per minute. EXAMPLE. — Required the amount of free air necessary to operate thirty 5-inch "H" drills at 9000 feet altitude, using From Table II we also find that the factor for 30 drills at 9000 ft. altitude is 20.38; multiplying 190 cubic feet by 20.38 gives 3872 cubic teet free air per minute, which is the displacement of a compressor for the above outfit under average conditions, to which must be added pipe line losses, such as friction and leakage. # GLOBE VALVES, TEES AND ELBOWS The reduction of pressure produced by globe valves is the same as that caused by the following additional lengths of straight pipe, as calculated by the formula: ``` Additional length of pipe = \frac{114 \times \text{diameter of pipe}}{1 + \sqrt{600}} 1 + (36 \div diameter) Diameter of pipe 1 11 2\frac{1}{2} 3 inches 31 4 5 Additional length \ 2 4 10 13 16 20 28 36 10 12 15 18 20 22 24 44 53 70 88 115 143 162 181 200 ``` The reduction of pressure produced by elbows and tees is equal to two-thirds of that caused by globe valves. The following are the additional lengths of straight pipe to be taken into account for elbows and tees. For globe valves multiply by $\frac{3}{2}$. ``` Diameter of pipe 7 1 11 2 21 3 31 5 6 inches Additional length 3 5 7 9 . 11 19 24 feet 13 10 12 15 18 20 22 24 inches 120 134 feet 47 59 77 96 108 30 ``` These additional lengths of pipe for globe valves, elbows and tees must be added in each case to the actual lengths of straight pipe. Thus a 6-inch pipe, 500 feet long, with 1 globe valve, 2 elbows and 3 tees, would be equivalent to a straight pipe $500 + 36 + (2 \times 24) + (3 \times 24) = 656$ feet long. #### APPENDIX B In the following tables are collected all the reliable data that the author has been able to find relative to friction in air pipes. In these tables the significance of the symbols is as follows: No = Reference number of the experiment. p_1 = Absolute pressure at first station on the pipe = pounds per square inch. p_2 = Absolute pressure at second station on the pipe = pounds per square inch. $p_m = \frac{p_1 + p_2}{2}$ = mean pressure in pipe between stations. $f = p_1 - p_2 =$ pressure lost between stations = pounds per square inch. r =Mean ratio of compression between stations. v_a = Cubic feet of free air passing per second. v_m = Cubic feet of compressed air passing per second. s =Velocity of air in pipe = feet per second. Q =Weight in pounds of air passing per second. d = Diameter of pipe in inches. l =Length of pipe in feet. $c = \text{Coefficient in formula (20), Art. 23, } viz., f = c \frac{l}{d^5} \frac{v_a^2}{r}$. # DATA ON FRICTION IN AIR PIPES | | | $\begin{cases} d = 11.811'' \\ 1 = 5.4141' \end{cases}$ | | d = 11.811'' | l = 14446' | | $\begin{cases} l = 2813l \\ d = 11.811 \\ l = 10958' \end{cases}$ | | 11 1 | $T = 70^{\circ} F$ | | | |------------------|------------------------------------|---|----------------------|--------------|------------|--------|---|-------------|-------|--------------------|-------|---------| | S | .811" | .0375
.0540
.0506 | .0376 | .0747 | .0689 | .0360 | .0280 | ن | .0634 | .0580 | .0664 | 1000. | | 3 | 90. $d = 11.811''$ | 10.07
10.21
8.22 | 5.94
4.85
7.49 | 4.99 | 8.22 | 6.71 | 8.22 | TUNNEL | 2.67 | 1.48 | 2.69 | 1.10 | | Ø | GUTTERMUTH & REIDLER, PARIS, 1890. | 28.44
27.03
19.13 | 13.45 | 10.85 | 18.14 | 16.08 | 20.73 | GOTHARD | 19.32 | 15.57 | 37.14 | 20.00 | | n.a. | EIDLER, I | 24.64
20.60
14.57 | 10.40
8.49 | 8.26 | 13.21 | 12.25 | 15.79 | R AT ST. | 6.53 | 5.26 | 7.06 | 00.2 | | 2 | H & RI | 5.49
6.59
7.49 | 7.60
8.78
7.75 | 8.04 | 8.27 | 7.29 | 6.92 | STOCKALPER | 5.35 | 3.49 | 4.68 | 200 | | $v_{\mathbf{a}}$ | TTERMUT | 135.26
135.70
109.30 | 79.03 | 66.38 | 109.30 | 89.26 | | BY STOC | 33.07 | 18.36 | 33.07 | 00.00 | | f | BY | 20.45
27.12
14.13 | 3.97 | 2.35 | 5.11 |
1.66 | | EXPERIMENTS | 6.29 | 2.79 | 3.63 | 7 | | I m | EXPERIMENTS | 91.87
96.58
109.98 | 111.57 | 118.16 | 116.31 | 107.08 | 101.72 | EXPE | 79.67 | 55.05 | 75.31 | 000 | | p_2 | EX | 77.17
78.79
100.55 | 107.02 | 116.86 | 113.19 | 105.84 | 100.55
107.16 | | 77.03 | 53.65 | 73.50 | 110 | | p_1 | | 106.57
114.37
119.44 | 116.13 | 119.44 | 119.44 | 108.34 | 102.90 | | 83.32 | 56.45 | 60 71 | 1 20 00 | | N. | No. | + 3 53 1 | ++ | | 9 10 | +111 | +13 | | 100 | 100 | 4 70 | | The experiments marked + seem abnormal as compared to all other experiments, DATA ON FRICTION IN AIR PIPES (Continued) | | | - 11 | 1 | T = 86° F. | | | | | | | | | | | | | | |-----------------------|--------------------------|-------|-------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 0 | | .0516 | .0478 | .0486 | .0604 | .0537 | .0563 | .0557 | .0599 | .0738 | .0543 | .0623 | .0563 | 2090 | 0621 | .0408 | .0623 | | 0 | ENU, 1879 | 0.343 | 0.84 | 1.32 | 1.34 | 1.22 | 1.01 | 1.27 | 1.16 | 0.65 | 0.50 | 0.97 | 0.64 | 1.05 | 0.81 | 1.77 | 1.25 | | 8 | AT LEVANT DU FLENU, 1879 | 6.70 | 16.99 | 28.01 | 30.35 | 29.69 | 25.14 | 34.03 | 32.52 | 18.55 | 13.59 | 30.42 | 11.98 | 20.53 | 16.19 | 40.32 | 39.71 | | 1.m | AT LEVA | 0.88 | 2.23 | 3.71 | 4.01 | 3.92 | 3.32 | 4.50 | 4.33 | 2.45 | 1.93 | 4.11 | 1.58 | 2.71 | 2.14 | 5.60 | 5.24 | | 7 | DEVILLEZ | 5.36 | 5.48 | 4.88 | 4.57 | 4.28 | 4.32 | 3.90 | 3.68 | 7.71 | 3.57 | 3.25 | 5.42 | 5.20 | 5.06 | 4.25 | 3.19 | | va | BY | 4.72 | 11.54 | 18.11 | 18.34 | 16.79 | 13.83 | 17.53 | 15.94 | 18.90 | 6.88 | 13.36 | 8.57 | 14.09 | 10.82 | 23.81 | 16.73 | | f | EXPERIMENTS | 0.24 | 1.39 | 3.63 | 4.95 | 3.95 | 2.88 | 4.90 | 4.60 | 1.75 | 08.0 | 3.73 | 98.0 | 2.59 | 1.60 | 7.41 | 6.07 | | bm d | EXP | 78.48 | 75.91 | 71.85 | 67.28 | 62.96 | 61.25 | 57.31 | 54.13 | 53.40 | 52.33 | 58.88 | 79.52 | 76.38 | 74.40 | 62.49 | 46.90 | | p_2 | | 78.34 | 75.21 | 70.13 | 64.80 | 86.09 | 59.81 | 54.86 | 51.83 | 52.52 | 51.93 | 57.02 | 60.64 | 80.77 | 73.60 | 58.78 | 43.86 | | <i>p</i> ₁ | | 78.60 | 26.60 | 73.66 | 69.75 | 64.93 | 65.69 | 59.76 | 56.45 | 54.27 | 52.73 | 50.74 | 79.95 | 77.67 | 75.20 | 66.19 | 49.94 | | | No. | 1 | 7 | က | 4 | 20 | 9 | 1 | ∞ | +6 | 10 | 11 | 12 | 13 | 14 | +15 | 16 | DATA ON FRICTION IN AIR PIPES (Continued) | | | | d = 3.937 | = 981' | $T = 36^{\circ} \text{F}.$ | | *, | | | | | | | | d = 2.874'' | l = 564' | $T=62^{\circ}$ F | | | |-------|-------------|-------|-----------|---------|-----------------------------|--------|--------|---------|--------|--------|--------|--------|-------------|-------|-------------|----------|------------------|-------|-------| | C | | .0498 | .0538 | .0824 | .0588 | .0704 | .0545 | * 6920. | .0605 | 6920. | .0820 | .0751 | 6281 | .0654 | .0723 | 9220 | .0681 | .0742 | 0755 | | 0 | 1, 1892 | 1.39 | 1.28 | 1.19 | 1.38 | 1.28 | 1.39 | 1.18 | 1.23 | 1.23 | 1.19 | 1.23 | FLENU, 1879 | 1.12 | 0.38 | 0.83 | 1.28 | 0.17 | 0 60 | | S | OFFENBACH, | 30.71 | 28.39 | | | | | | | | | | VANT DU | 67.95 | 25.67 | 60.59 | 107.2 | 12.61 | 57 86 | | vm | AT | 2.96 | 2.39 | 2.20 | 2.55 | 2.36 | 2.57 | 2.18 | 2.43 | 2.25 | 2.19 | 2.28 | Z AT LEVANT | 3.06 | 1.57 | 2.73 | 4.83 | 0.57 | 69 6 | | 7 | CLORENS | 5.86 | 6.62 | 6.73 | 6.77 | 6.78 | 6.77 | 6.77 | 6.80 | 6.80 | 92.9 | 6.71 | DEVILLEZ | 4.79 | 3.15 | 3.99 | 3.48 | 3.81 | 3 09 | | va | IENTS BY | 17.34 | 15.98 | 14.81 | 17.27 | 16.01 | 17.41 | 14.75 | 16.52 | 15.30 | 14.81 | 15.29 | BY | 14.65 | 4.95 | 10.89 | 16.83 | 2.17 | 7 09 | | f | EXPERIMENTS | 2.72 | 3.12 | | | | | | | | | | EXPERIMENTS | 8.44 | 1.19 | 6.64 | 15.92 | 0.264 | 4 51 | | I m | | 98.14 | 98.20 | | | | | | | | | | EX | | 62.92 | | | | | | p_2 | | 96.78 | 96.65 | 97.39 | 98.21 | 98.49 | 98.40 | 98.12 | 98.40 | 98.49 | 97.93 | 97.48 | | 66.12 | 62.33 | 55.30 | 43.27 | 56.18 | 49 14 | | p_1 | | 99.50 | 99.78 | 100.001 | 100.90 | 101.25 | 100.93 | 100.61 | 100.93 | 101.24 | 100.69 | 100.20 | | 74.56 | 63.52 | 61.96 | 59.12 | 56.44 | 46 56 | | | No. | - | 07 | 3 | 4 | 20 | 9 | 2 | 00 | 6 | 10 | 11 | | - | 67 | 3 | 4 | 2 | 9 | # APPENDIX C During 1910 and 1911, an extensive series of experiments were made at Missouri School of Mines to determine the laws of friction of air in pipes under three inches in diameter; the chief object being to determine the coefficient "c" in the formula $f = c \frac{l}{d^5} \frac{v_a^2}{r}$. (See Art. 23.) The general scheme is illustrated in Fig. 15, in which the parts are lettered as follows: Fig. 15. Diagram Illustrating Assembled Apparatus. a, is the compressed-air supply pipe. b, a receiver of about 25 cubic feet capacity. c, a thermometer set in receiver. d and d, points of attachment of differential gauge. f and f, lengths of straight pipe going to and from the group of fittings. e, the pressure gauge. g, the group of fittings — varied in different experiments. h, the throttle valve to control pressure. I, the orifice drum for measuring air, with the attachments as in Fig. 7. On each set of fittings there were made ten or twelve runs with varying pressures and quantities of air in order to show the relation of f to $\frac{v_a^2}{r}$ over as wide a field as possible. The data of each run was worked up and recorded in tabular form. Three of these tables, relating to 1-inch pipe and fittings, are shown herewith as example. It should be recorded that in the series of runs and checks some puzzling inconsistencies developed, but not more noticeable than appears in the data from European experiments on larger pipe. (See Appendix B.) In these tables the symbols are as follows: z = Head, in inches of mercury, in differential gauge. f =Lost pressure in pounds per square inch. p_2 = Gauge pressure at entrance to pipe. r_m = Mean ratio of compression in pipe. i =Water head, in inches, in U tube on orifice drum. T_c = Temperature (centigrade) in drum. d_o = Diameter, in inches, of orifice in drum. v_a = Volume of free air passing (cubic feet per second). S = Velocity of compressed air in pipe (feet per second). f' = Value of f when corrected for temperature. EXPERIMENTS AT MISSOURI SCHOOL OF MINES - 1911 TABLE III. — ACTUAL DIAMETER OF PIPE = 1.07". LENGTH PIPE = 80". Fittings: 2 elbows, 13 nipples (reamed ends). | | J | 1.30
1.30
1.30
1.35
1.16
1.36
1.36
1.36
1.36
1.36
1.36
1.36 | |------|--------------------|---| | | S | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | | | $\frac{va^2}{r_m}$ |
1886
1866
1866
1866
1867
1867
1867
1867
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868
1868 | | | d," | 2,1 | | | T_e | 13.50
13.50
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00 | | | , | | | | Tm. | 22.2.4.4.4.0.0.0.8.8.0.0.0.1.1.1.0.1.1.1.1.1.1.1.1 | | | 72 | 2.2.2.4.4.4.6.0.8.2.2.2.2.4.4.4.6.0.8.2.2.2.2.4.4.4.6.0.8.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2 | | | p_2 | 22222222222222222222222222222222222222 | | | J | 28.1.1.2.2.4.4.4.4.2.1.1.3.2.1.1.3.2.1.1.3.2.1.1.3.3.3.3.3 | | | (Hg) | 50.5 (H ₂ O)
7.0
7.0
7.0
1.3
1.3
1.5
1.5
1.9
1.9
1.9
1.9
1.8
2.3
2.3
2.3
1.4
1.4 | | 27.0 | No. | 12
22
4 4 3 3 4 4 4 3 1 1 1 1 1 1 1 1 1 1 1 1 | EXPERIMENTS AT MISSOURI SCHOOL OF MINES—1911 TABLE IV. — ACTUAL DIAMETER OF PIPE = 1.07". LENGTH PIPE = 80'. Fittings: 10 elbows, 9 nipples (unreamed ends). | | , | 28.55.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 | |--|---------|---| | | S |
45.08
88.22
11.12
12.24
14.12
14.12
14.12
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13
14.13 | | | r.m. | 0.197
0.321
0.618
0.236
0.079
0.071
0.075
0.075
0.089
0.089
0.029
0.029
0.029
0.029 | | 2). | ",°p | 6,22222222222222 | | amen end | T_{o} | 22222222222222222222222222222222222222 | | pies (unie | į | 16 74 4 17 14 17 24 47 24 28 28 28 28 28 28 28 28 28 28 28 28 28 | | rittings. 10 chows, a nippies (unleamed chas). | r | 2.2.2.4.4.4.6.0.8.8.7.2.2.8.8.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9 | | igs. 10 cib | 7.2 | 3572444400088889991111
85054444000888889991111 | | T. I. U.I.I. | p_2 | 22422222222222222222222222222222222222 | | | 1 | 28.7.20.4.0.20.1.1.2.0.2.0.2.2.2.2.2.2.2.2.2.2.2. | | | (Hg) | 47.47.62.001.47.72.62.02.02.02.02.02.02.02.02.02.02.02.02.02 | | | No. | 10047000011254735778 | EXPERIMENTS AT MISSOURI SCHOOL OF MINES—1911 TABLE V. -- ACTUAL DIAMETER OF PIPE = 1.07". LENGTH PIPE = 80'. Fittings: 4 globe valves, 2 elbows, 5 nipples (unreamed ends). | J. | 23.24.00.00.00.00.00.00.00.00.00.00.00.00.00 | |----------------------------|---| | S | 41.707
1007
1007
1007
1007
1007
1007
1007 | | $\frac{v_{\alpha}^2}{r_m}$ | 0.189
0.442
0.642
0.053
0.053
0.035
0.045
0.043
0.043
0.043
0.043
0.043
0.045
0.045 | | d _o " | 25. | | T_{σ} | 0.00
10.0
10.0
10.0
10.0
11.0
11.0
11.0 | | .3 | 247.048.247.147.147.247.
888.8948.18998.27902448 | | 1988 |
2.2.36
2.2.936
2.2.936
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01
2.0.01 | | 72 | 2.2.2.4.4.4.0.7.7.2.2.2.4.4.4.0.2.2.2.2.2.2.4.4.4.0.2.2.2.2 | | p_2 | 128444444444444444444444444444444444444 | | 1 | 10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35
10.35 | | (gH) | 2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.03
2.03 | | No. | 12842978 00112842978 | On platting the values of f and $\frac{v_a^2}{r}$ as corresponding coordinates, it becomes apparent that they are related to each other in all cases as ordinates to a straight line; which could have been anticipated from the established laws of fluid frictions. This is shown on Plate VI. From this plate we get the following three equations: $$80.0 K + 2 e + 5 u + 4 g = 18.3,$$ $80.0 K + 10 e + 9 u = 11.8,$ $80.0 K + 2 e + 13 m = 6.8,$ in which $$K\frac{v_a^2}{r}$$ = resistance due to one foot of pipe; $$e^{\frac{v_a^2}{r}}$$ = resistance due to one elbow; $$m\frac{{v_a}^2}{r}$$ = resistance due to one extra ferrule or joint with ends reamed; $$u\frac{v_a^2}{r}$$ = resistance due to one extra ferrule or joint with ends unreamed; $$g\frac{v_a^2}{r}$$ = resistance due to one globe valve. So by attaching other lengths or fittings we get other equations and by simple algebra can find the numerical value of each symbol. Then $$Kl\frac{{v_a}^2}{r} = c\frac{l}{d^5}\frac{{V_a}^2}{r}$$ or $c = d^5K$. Also the length of pipe giving friction equal to that of one elbow is $\frac{e}{k}$, and so with other fittings. These experiments covered standard galvanized pipes of 2, $1\frac{1}{2}$, 1, $\frac{3}{4}$, and $\frac{1}{2}$ inch diameter. With each size pipe, runs were made to find friction loss in ordinary elbows, 45° elbows, globe valves, return bends, unreamed joints, and reamed joints. For each combination, data was taken for platting twelve to eighteen points, altogether about eight hundred. The results as a whole are satisfactory for the 2-, $1\frac{1}{2}$ -, and 1-inch pipes. For the $\frac{3}{4}$ - and $\frac{1}{2}$ -inch pipes, especially the $\frac{1}{2}$ -inch pipe, the results were so irregular, erratic, and conflicting that the results finally recorded cannot be accepted as final. In the light of these results, it is not probable that a satisfactory coefficient will ever be gotten for pipes under 1 inch; the reason being that in pipes of such small diameter, irregularities have relatively much greater effect than in larger pipes, and the probability of obstructions lodging in such pipes is relatively greater. In the ½-inch pipe and fitting, unreamed joints were found at which four-tenths of the area was obstructed, and this with a knife edge. No doubt consistent results could have been gotten by using only pipes that had been "plugged and reamed," and selected filling, but these results would not have been a safe guide for practice unless such preparation of the pipe be specified. The results of these researches are embodied in Plate VII. They show the averages of such data as seem worthy of consideration. The data for pipes exceeding 2 inches diameter are taken from the matter recorded in Appendix B. Verification of these by the use of the sensitive differential gauge is desirable. Table IX and Plates 0 to IV of this volume were worked out with coefficients differing slightly from those here recommended, but the errors are probably well within those ordinarily effecting results in practice. Until the results of further research are available, the author recommends the use, in practice, of the coefficients taken from the curve AB, Plate VII. In the series of experiments referred to, the results worked out for the resistance of fittings were more erratic than those for straight pipes. Hence no clain is made for precision or finality in the results here presented. However, two important conclusions are reached. One is that the resistance of globe valves has heretofore been underestimated, and the importance of reaming small pipe has not been appreciated. TABLE OF LENGTHS OF PIPE IN FEET THAT GIVE RESISTANCE EQUAL THAT OF VARIOUS FITTINGS | Diameter of Pipe. | 90° Elbows. | Unreamed
Joints,
Two
Ends. | Reamed Joints,
Two Ends. | Return
Bends. | Globe
Valves. | |-------------------------|----------------------------------|----------------------------------|---------------------------------|----------------------------------|--------------------------------------| | $1 \\ 1 \\ 1 \\ 2 \\ 2$ | 10.0
7.0
5.0
4.0
3.5 | 2 to 4 | 1.0
1.0
1.0
1.0
1.0 | 10.0
7.0
5.0
4.0
3.5 | 20.0
25.0
40.0
45.0
47.0 | A series of runs were made on 50-foot lengths of rubberlined armored hose such as is used to connect with compressed-air tools. The scheme was the same as that described for pipes and fittings; and the range of $\frac{v_a^2}{r}$ was the same. The average results are here given. This includes the resistance in a 50-foot length with the metallic end couplings. In these end connections a considerable contraction occurs. For the half-inch hose the end couplings are quarter-inch. The excessive resistance in the half-inch hose may have been due to these end contractions or to some other obstruction. It is a further illustration of the fact that reliable coefficients cannot be gotten for pipes of halfinch diameter and less. | Diameter of hose in inches | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | $\frac{3}{4}$ | 1 | $1\frac{1}{2}$ | |------------------------------|---|------------------------|-----------------------|-----------------------| | Resistance in 50-foot joints | $950.0 \frac{v_a^2}{r}$ | $20.0 \frac{v_a^2}{r}$ | $4.5 \frac{v_a^2}{r}$ | $2.6 \frac{v_a^2}{r}$ |