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ABSTRACT
We present a data set of >1500 in situ O-Hf-U-Pb zircon isotope analyses that document 

the existence of a concealed Rodinian lithospheric keel beneath continental Zealandia. The 
new data reveal the presence of a distinct isotopic domain of Paleozoic–Mesozoic plutonic 
rocks that contain zircon characterized by anomalously low δ18O values (median = +4.1‰) 
and radiogenic εHf(t) (median = +6.1). The scale (>10,000 km2) and time span (>>250 m.y.) over 
which plutonic rocks with this anomalously low-δ18O signature were emplaced appear unique 
in a global context, especially for magmas generated and emplaced along a continental mar-
gin. Calculated crustal-residence ages (depleted mantle model, TDM) for this low-δ18O isotope 
domain range from 1300 to 500 Ma and are interpreted to represent melting of a Precambrian 
lithospheric keel that was formed and subsequently hydrothermally altered during Rodinian 
assembly and rifting. Recognition of a concealed Precambrian lithosphere beneath Zealandia 
and the uniqueness of the pervasive low-δ18O isotope domain link Zealandia to South China, 
providing a novel test of specific hypotheses of continental block arrangements within Rodinia.

INTRODUCTION
The Neoproterozoic amalgamation and sub-

sequent breakup of the Rodinia supercontinent 
were significant events in Earth’s history. How-
ever, despite consensus that Rodinia was assem-
bled at ca. 1300–900 Ma and rifted apart ca. 
800–600 Ma, debate continues as to the internal 
configuration of continent-sized blocks (e.g., Li 
et al., 1995, 2008; Cawood et al., 2013). Central 
to the Rodinia debate is the location of cratonic 
blocks to the east of the Australia–East Antarc-
tica margin, with arguments that the margin 
was adjacent to the western Canadian Lauren-
tian margin (Dalziel, 1991; Moores, 1991) or 
the western United States Laurentian margin 
(Karlstrom et al., 1999). Alternatively, it is also 
hypothesized that the South China block was 
positioned between Australia–East Antarctica 
and Laurentia (Li et al., 1999).

Recently recognized as a distinct continent, 
Zealandia—of which 94% is currently underwa-

ter—formed following Late Cretaceous breakup 
of the Gondwana supercontinent (Mortimer 
et al., 2017). Prior to its separation, the basement 
rocks of continental Zealandia were created 
by multiple episodes of terrane accretion and 
arc-related magmatism along the paleo-Pacific 
Gondwana margin from the Cambrian to Early 
Cretaceous (Mortimer, 2004). No Precambrian 
rocks are exposed onshore in New Zealand. The 
oldest basement rocks of Zealandia are divided 
into two provinces: the early Paleozoic Western 
province, comprising metasedimentary rocks 
and Paleozoic–Mesozoic intrusions, and the late 
Paleozoic–Mesozoic Eastern province, a series 
of plutonic-metasedimentary terranes accreted 
to the Gondwanan margin (Fig. 1) (Mortimer, 
2004). The Median batholith, a long-lived arc 
once part of the active Gondwanan margin, 
sutures the two provinces (Mortimer, 2004). The 
inferred eastern limit of Gondwanan Paleozoic 
upper- to mid-crustal metasedimentary rocks 

in Zealandia is well defined by linked major 
ductile shear zones, marking a major crustal 
boundary (Fig. 1B) (Allibone and Tulloch, 2004; 
Scott et al., 2011; Klepeis et al. 2019). Previ-
ous isotopic studies focused on this boundary 
demonstrate that Mesozoic Zealandia consisted 
of separate crustal blocks that are isotopically 
distinct (Schwartz et al., 2021). In this study, 
we present in situ O-Hf-U-Pb isotopic zircon 
data for Cambrian–Cretaceous plutonic rocks 
throughout Zealandia that enable us to deter-
mine the middle- to lower-crustal source(s) of 
these diverse isotopic domains through time. 
Our results reveal for the first time that conti-
nental Zealandia is underlain by a broad Pre-
cambrian lithospheric keel, which allows us to 
place Zealandia into the greater Rodinia super-
continent puzzle.

ISOTOPIC FINGERPRINTING OF 
ZEALANDIA

Zircon is the foremost deep-time recorder 
of Earth’s history, preserving a rich archive of 
isotope information that informs on magma par-
entage and crust-mantle evolution (Valley et al., 
2005; Kemp et al., 2007). Unlike whole rocks, 
zircon is highly resistant to alteration and weath-
ering, (Hoskin and Schaltegger, 2003), provid-
ing a robust record of the U-Pb age and O-Hf 
isotope composition of the melts from which it 
crystallized. Importantly, the δ18O and Lu-Hf 
isotope composition of zircon is particularly 
sensitive in evaluating the interaction between 
crust and mantle reservoirs (Valley et al., 2005; 
Kemp et al., 2007). Mantle-like zircon has an 
δ18O composition of +5.3‰ ± 0.8‰;  deviation 
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of zircon δ18O values above +6.1‰ reflects 
supracrustal recycling processes, whereas low 
zircon δ18O values (<+4.5‰) require a source 
that has undergone high-temperature alteration 
or melting of source rocks that have interacted 
with fractionated meteoric waters at high paleo-
latitudes and/or paleo-elevations (Valley et al., 
2005; Bindeman, 2008). The εHf(t) composition 
of zircon can be used to assess the relative con-
tributions of primitive (mantle-derived) and con-
tinental crustal sources to magma petrogenesis 
and to calculate episodes of crustal extraction 
(Hf model age = TDM) from a depleted mantle 
source (Vervoort and Blichert-Toft, 1999; Kemp 
et al., 2007).

To test the evolving nature of Zealandia’s 
crustal architecture and the age and composition 
of the underlying lithosphere, we analyzed zir-
con from 169 samples that characterize the main 
episodes of plutonism in Zealandia’s Western 
province. This new data set includes >1500 oxy-
gen-isotope analyses (using secondary ion mass 
spectrometry) and >3550 Lu-Hf-U-Pb analy-
ses (collected simultaneously using split stream 
laser-ablation–inductively coupled plasma–mass 
spectrometry [U-Pb] and multi-collector–induc-
tively coupled plasma–mass spectrometry [Lu-
Hf]). A full description of sample preparation, 
analytical protocols, and results is provided in 
the Supplemental  Material1 and raw data for all 
zircon analyses from individual plutonic sam-
ples, sample IDs, and location information is 
provided in the Petlab database (https://pet.gns.
cri.nz/; Strong et al., 2016). To ensure analysis 
of a single domain representative of magmatic 
crystallization, all analyses were targeted to a 
single location of the zircon, guided by cath-
odoluminescence images (Fig. S1 in the Supple-
mental Material).

RECOGNITION OF A PERVASIVE 
LOW-δ18O ISOTOPE DOMAIN

Marked differences in δ18O in zircon from 
Zealandia plutonic rocks highlight distinct litho-
spheric domains (Figs. 1B and 2A). Almost all 
plutonic rocks emplaced east of the limit of 
Paleozoic metasedimentary rocks have consis-
tently low δ18O values (Figs. 1B and 2A), with 
most within ±1‰ of the median δ18O value of 
+4.1‰ (a range from −8.1‰ to +8.9‰). Plu-
tonic rocks are Carboniferous to Cretaceous, 
with whole-rock SiO2 from 50 to 77 wt%. Low 
intrasample δ18O variability for most granitoid 
samples (Fig. 2A) supports isotopic homogeni-
zation in high-temperature melt-rich systems 

1Supplemental Material. Detailed outline of 
analytical methods, raw data for all O-isotope and 
Lu-Hf-U-Pb isotope analyses for unknowns and 
standards, and sample location information. Please 
visit https://doi .org/10.1130/GEOL.S.14417615 
to access the supplemental material, and contact 
editing@geosociety.org with any questions.

Figure 1. (A) Modern 
tectonic setting of New 
Zealand (thin black out-
lines) and spatial extent 
of Zealandia. Study area is 
delineated by thick black 
outlines. (B) Simplified 
geological map outlining 
the extent of early Paleo-
zoic metasedimentary 
terranes and Phanerozoic 
plutonic rocks and their 
δ18O zircon compositions 
(pre-Cretaceous recon-
struction that addresses 
Cenozoic Alpine fault 
displacement). East-
ern isotope domain 
includes all plutonic rocks 
emplaced east of the limit 
of Gondwanan Paleozoic 
upper- to mid-crustal 
metasedimentary rocks. 
VSMOW—Vienna stan-
dard mean ocean water.
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in the lower crust and/or upper mantle (Binde-
man, 2008). To the west of the limit of Paleozoic 
metasedimentary rocks, Cambrian-Ordovician 
to Cretaceous plutonic rocks have δ18O values 
that range from −4.7‰ to +11.3‰ (median 
of +6.8‰; Figs. 1B and 2A) and whole-rock 
SiO2 values between 47 and 78 wt%. I-type plu-
tonic rocks from this western domain typically 
have mantle-like values (+5.3‰ ± 0.9‰) from 
melting of a sediment-modified mantle source 
and/or melting of subducted oceanic crust (i.e., 
Bolhar et  al., 2008; Schwartz et  al., 2021); 
conversely, S-type (peraluminous) and A-type 
(peralkaline) plutonic rocks have δ18O values 
>>+6.1‰, consistent with significant crustal 
recycling (Hiess et al., 2015). For all plutonic 
rocks, no correlation is observed between δ18O 
and fractionation indexes (i.e., SiO2, Zr/Hf; Fig. 
S2), indicating that variability in O-Hf isotope 
compositions is not controlled by fractional 
crystallization. This new data set documents a 
widespread and internally homogeneous eastern 
isotope domain (EID) of plutonic rocks with 
anomalously low δ18O values that extends for 
>10,000 km2 (Figs. 1B and 2A). This contrasts 
with plutonic rocks emplaced in the western 

isotope domain (WID), which have mantle and 
crustal δ18O values and almost no plutonic rocks 
with δ18O zircon values <4.5‰.

Insights into the source(s) for the low-δ18O 
EID come from considering zircon Hf isotope 
compositions. Plutonic rocks from the low-δ18O 
EID have more radiogenic εHf(t) values (median 
εHf(t) = +6.1) and are tightly clustered com-
pared to those emplaced in the WID (median 
εHf(t) = +1.9, broad range of values) (Fig. 2B). 
Coupled O-Hf zircon isotope compositions 
indicate that plutonic rock compositions from 
the low-δ18O EID were controlled by melting 
of a relatively isotopically homogeneous mafic 
lower-crustal source (radiogenic εHf(t) values) 
that had experienced high-temperature hydro-
thermal alteration (responsible for the low-δ18O 
signature). Plutonic rock compositions from the 
WID are controlled by melting of a mafic lower-
crust and/or mantle source mixed with variable 
amounts of a metasedimentary source.

Magmas and zircon with δ18O values lower 
than mantle are relatively rare in the geologi-
cal record. Where present, they are primarily 
related to voluminous magmatism and elevated 
heat flux associated with hotspot and rift envi-

ronments (Wang et al., 2011; Troch et al., 2020). 
Conversely, they are rarely reported from mag-
mas emplaced within arc settings (Muñoz et al., 
2012). Mesozoic plutonic rocks with low δ18O 
(<<+4.5‰) have previously been reported in 
Fiordland, New Zealand (Bolhar et al., 2008; 
Schwartz et  al., 2021), and attributed to an 
underthrust low-δ18O source of unknown age. 
Our analysis of Cambrian-Ordovician and Car-
boniferous plutonic rocks with a low-δ18O sig-
nature demonstrates that a source for these rocks 
is at least Cambrian and likely older.

To assess the age of the lower-crustal 
source(s) in the EID, we calculated crustal res-
idence ages (TDM) (Fig. 3). A broad range of 
model ages is observed for low-δ18O plutonic 
rocks of the EID, with most TDM ages between 
ca. 1300 and 500 Ma (Fig. 3). For WID plutonic 
rocks, TDM ages range from >>2000 to 500 Ma 
(Fig. 3). We suggest that the TDM age range and 
radiogenic εHf(t) values for the EID are indica-
tive of a primitive lithospheric mafic source 
produced by melting of the depleted mantle at 
different periods between 1300 and 500 Ma. The 
isotopically homogeneous low δ18O zircon val-
ues of the EID imply widespread high-temper-
ature hydrothermal alteration of this primitive 
mafic source.

UNVEILING THE RODINIAN 
LITHOSPHERIC KEEL OF ZEALANDIA

We propose that Phanerozoic plutonic rocks 
emplaced within the low-δ18O EID of Zealandia 
were produced by partial melting of a hydrother-
mally altered Precambrian lower-crustal mafic 
source. This accounts for calculated crustal resi-
dence ages between ca. 1300 and 500 Ma, radio-
genic εHf(t), and low δ18O zircon values (Fig. 2; 
Figs. S3 and S4). A three-stage process is evoked 
to explain the formation and subsequent alteration 
of the lower-crustal Precambrian source. In the 
first stage, melting of depleted mantle between ca. 
1300 and 900 Ma produced mafic melts that pon-
ded at the base of the crust. Magmatism during 
this period occurred along an active oceanic arc 
margin prior to final suturing and accretion of the 
Rodinia supercontinent (Fig. 4A) (Li et al., 2008). 
During the second stage, melting of depleted 
mantle between ca. 800 and 500 Ma produced 
additional mafic melts that also ponded in the 
lower crust. Mantle melting during this period 
was associated with Rodinian rifting events in 
response to a mantle superplume focused beneath 
Australia–East Antarctica and Western Lauren-
tia (Fig. 4B) (Li et al., 1999, 2008). In the final 
stage, widespread hydrothermal alteration of 
the lower-crustal mafic material was synchro-
nous with Rodinian rifting (800–500 Ma) due 
to high-temperature water-magma interaction 
during plume-driven magmatism (Wang et al., 
2011). This would have been enough to impart 
the low-δ18O signature (Wang et al., 2011). How-
ever, the involvement of glacier-derived waters 

A

B

Figure 2. (A) Individual δ18O values of zircon from Zealandia plutonic rocks from the eastern 
and western isotope domains. Black symbols are δ18O zircon values from plutonic rocks of 
the South China block (Fu et al., 2013). VSMOW—Vienna standard mean ocean water. (B) Indi-
vidual zircon εHf(t) values for Zealandia plutonic rocks. Median δ18O and εHf(t) for each domain is 
represented by colored vertical bar; line thickness represents 1σ uncertainty (±0.15‰ for δ18O; 
±0.7 for εHf(t)). Analyses interpreted as metamorphic and inherited (based on spot U-Pb age) 
are not plotted. Samples (n = 169) analyzed in this study are supplemented with 61 additional 
δ18O and εHf(t) values from Hiess et al. (2015), van der Meer et al. (2018), Schwartz et al. (2021).
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along Rodinia rifting zones contributing to the 
low-δ18O signature of the source cannot be ruled 
out (Zheng et al., 2004). In either case, the O-Hf 
isotope composition of Paleozoic–Mesozoic plu-
tonic rocks in the low-δ18O EID is directly tied to 
melting of this hydrothermally altered low-δ18O 
mafic Rodinian keel.

The spatial extent of the Rodinian keel 
beyond the EID is difficult to establish. In the 
WID, any low-δ18O signature is obscured by 
magmas contaminated by Phanerozoic conti-
nental crust. The lack of Phanerozoic plutonic 
rocks with low δ18O values along the formerly 
contiguous Gondwana margin of southeastern 
Australia and Antarctica (Fig. 4C) (Kemp et al., 
2007; Yakymchuk et al., 2013) suggests either 
that these segments of Gondwana are not under-
lain by the same Rodinian lithospheric keel as 
Zealandia or that that any low-δ18O isotopic 
signal is also obscured by crustal contamina-
tion. Mantle xenoliths from the Waitaha domain 
(Fig. 4C) within Zealandia’s Eastern province 
have Re-Os melt extraction ages that support 
an underlying Paleoproterozoic cratonic mantle 
(McCoy-West et al., 2013) but not a crustal keel 
of Rodinian age as revealed in this study.

ZEALANDIA IN RODINIA 
CONFIGURATION MODELS

The continent of Zealandia was once adja-
cent to western Tasmania in the Cambrian 
(Münker and Crawford, 2000). Our data, for 
the first time, also permit a Precambrian corre-
lation to Tasmania and consequently Australia–
East Antarctica. We suggest that Zealandia was 

part of (or proximal to) the Proterozoic micro-
continental block VanDieland (which includes 
Tasmania) (Fioretti et al., 2005; Li et al., 2008; 
Cayley, 2011); the location of Zealandia in this 
context has implications for the position of 
South China (Fig. 4). In fact, the position of 
the South China block within Rodinia is contro-
versial, with two main models proposed: (1) the 
South China block occupied an external position 
along a convergent margin adjacent to Western 
Australia and northern India (Karlstrom et al., 
1999; Wang et al., 2017; Cawood et al., 2018), 
or (2) the South China block was located in the 
center of Rodinia between eastern Australia and 
Laurentia (Li et al., 1995, 1999, 2008). One of 
the pieces of evidence linking the South China 
block with northwestern India is the correla-
tion of diverse Precambrian rocks from both 
blocks with anomalously low δ18O values and 
the lack of any rocks with low δ18O values in 
Australia–East Antarctica (Wang et al., 2017). 
The low-δ18O EID in Zealandia, inherited from 
a low-δ18O Precambrian mafic source, provides 
an alternative solution (Fig. 4) and a possible 
link to the South China block. Along with the 
VanDieland microcontinent, Zealandia may be 
the “linkage” terrane between East Gondwana, 
the South China block, and Laurentia.
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