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1. Summary
A set of simple stopping criteria is presented, which improve the
efficiency of iterative root finding by terminating the iterations
immediately when no further improvement of the roots is
possible. The criteria use only the function evaluations already
needed by the root finding procedure to which they are applied.
The improved efficiency is achieved by formulating the stopping
criteria in terms of fractional significant digits. Test results show
that the new stopping criteria reduce the iteration work load by
about one-third compared with the most efficient stopping criteria
currently available. This is achieved without compromising the
accuracy of the extracted roots.

2. Introduction
Stopping criteria for root finding procedures for nonlinear
functions fall into two categories: (1) those that rely on the user
to specify a tolerance within which the roots are needed and (2)
those that seek to terminate the iterations automatically when an
iterate has been reached whose accuracy cannot be improved.
Both categories are widely used (e.g. [1]). Category (1) is easy
to implement using stopping criteria such as |xi − xi−1| < e or
|xi − xi−1|/|xi−1| < e, where xi and xi−1 are successive iterates and
e is a user-supplied upper limit on the absolute or relative error.
The drawback of such stopping criteria is that they shift the
responsibility for providing accurate results from the program
developer to the user. Also, functions exist for which such
stopping criteria fail (see Donovan et al. [2]). Category (2) stopping
criteria avoid these limitations, but present a greater challenge to
the program developer. They are the subject of this paper.

Several category (2) stopping criteria already exist. They are
reviewed in §3. The new stopping criteria are then presented in
§§4, 5 and 6. Finally, the new and the old criteria are compared in
§7 in terms of efficiency and accuracy.
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3. Existing stopping criteria
3.1. Igarashi’s stopping criterion for polynomials
Igarashi [3] provides the following category (2) stopping criterion for finding the roots of the polynomial

p(z) = anzn + an−1zn−1 + · · · + a2z2 + a1z + a0 :

iterate zi is declared a root if
|A(zi) − B(zi)| ≥ min(|A(zi)|, |B(zi)|).

A(zi) and B(zi) are both equal to p(zi) but with p(zi) calculated in different ways: A(zi) = p(zi) with p(zi)
evaluated as usual by Horner’s method. B(zi) must be written as B(zi) = D(zi) − C(zi), where D(z) = zp′(z)
and C(z) = zp′(z) − p(z). Both polynomials D(z) and C(z) must be reduced analytically to their simplest
form and evaluated separately by Horner’s method before B(zi) = D(zi) − C(zi) is calculated. Analytical
reduction results in

D(z) = nanzn + (n − 1)an−1zn−1 + · · · + 2a2z2 + a1z = 0

and
C(z) = (n − 1)anzn + (n − 2)an−1zn−1 + · · · + a2z2 − a0.

Igarashi gives only an abbreviated explanation of how this works. Presumably, as A(zi) and B(zi)
approach zero, |A(zi) − B(zi)| will initially be smaller than either |A(zi)| or |B(zi)|, thus preventing the
stopping criterion from being satisfied. But, as |A(zi)| and |B(zi)| grow smaller, round-off errors will
dominate |A(zi) − B(zi)| before they dominate |A(zi)| and |B(zi)|, thus providing an opportunity for the
stopping criterion to be satisfied when |A(zi) − B(zi)| has lost all its significant digits.

If a third order iteration procedure, such as Laguerre’s method (e.g. Orchard [4]), is used, five function
evaluations are needed per iteration: p(zi), p′ (zi) and p′′(zi) are needed by the iteration procedure itself,
and D(zi) and C(zi) are needed by the stopping criterion. Thus, Igarashi’s stopping criterion adds two-
thirds to the work load per iteration. The criterion is included in the comparisons reported in §7.

3.2. Igarashi’s stopping criterion for nonlinear functions
Igarashi [5] provides a similar category (2) stopping criterion for general nonlinear functions, f (z): iterate
zi is declared a root if

|A(zi) − B(zi)| ≥ W min(|A(zi)|, |B(zi)|).
A(zi) and B(zi) are both equal to f (zi) but with f (zi) calculated in different ways: A(zi) = f (zi) with f (zi)
in its standard analytical formulation. B(zi) must be written as B(zi) = D(zi) − C(zi), where D(z) = zf ′(z)
and C(z) = zf ′(z) − f (z). Both functions D(z) and C(z) must be reduced analytically to their simplest form
before B(zi) = D(zi) − C(zi) is calculated. W must be equal to either 1.0 or 0.5 if f (z) is algebraic, and
W must be equal to 0.01 when f (z) is transcendental. It is not clear what value W should have if f (z)
has both algebraic and transcendental terms. Igarashi gives only an abbreviated explanation of how
this works. Presumably, the basic explanation is similar to the one proposed above for polynomials.
Igarashi also gives only an abbreviated explanation for the choice of W. W = 1.0 appears to be based
on the assumption that the evaluations of algebraic functions and polynomials incur similar round-off
errors, so the same stopping criterion can be used for both. But Igarashi also suggests that W = 0.5 can be
used instead to relax the stopping criterion to allow for errors in experimental data and/or the conversion
of experimental data from decimal to floating-point binary. Finally, Igarashi chooses W = 0.01 to further
relax the stopping criterion for transcendental functions in order to account for the truncation errors
incurred by the intrinsic transcendental functions used to evaluate A(zi), D(zi) and C(zi).

If a third order iteration procedure, such as Ostrowski’s method (e.g. Orchard [4]), is used, five
function evaluations are needed per iteration: f (zi), f ′ (zi) and f ′′(zi) are needed by the iteration procedure
itself, and D(zi) and C(zi) are needed by the stopping criterion. Thus, Igarashi’s stopping criterion adds
two-thirds to the work load per iteration. The criterion is included in the comparisons reported in §7.

3.3. Adams’ and Grant & Hitchins’ stopping criteria for polynomials
A category (2) stopping criterion for polynomial root finding was proposed by Adams [6]. It was
extended by Grant & Hitchins [7] to include polynomials with complex coefficients. Using the extended
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criterion, the iterate zi = xi + jyi is accepted as a root of the complex polynomial

p(z) = (an + jbn)zn + (an−1 + jbn−1)zn−1 + · · · + (a1 + jb1)z + a0 + jb0

if |c0| < εg0(1 + ε)5n and |d0| < εh0(1 + ε)5n. c0, d0, g0 and h0 derive from the recurrences:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cn = an

dn = bn

gn = 1
hn = 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ck = xick+1 − yidk+1 + ak
dk = yick+1 − xidk+1 + bk

gk = |xi|(gk+1 + |ck+1|) + |yi|(hk+1 + |dk+1|) + |ak| + 2|ck|
hk = |yi|(gk+1 + |ck+1|) + |xi|(hk+1 + |dk+1|) + |bk| + 2|dk|

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, k = n − 1, n − 2, . . . , 0.

ε = 2−t is the machine epsilon, i.e. t is the bit length of the floating-point significand, e.g. t = 53 for IEEE
double-precision. A rigorous derivation of this stopping criterion is given by Grant & Hitchins [7]. c0 +
jd0 is p(z) calculated by Horner’s method. εg0(1 + ε)5n and εh0(1 + ε)5n are error bounds on c0 and d0,
respectively, with allowances made for any additional rounding errors caused by the calculation of g0
and h0.

c0 and d0 are needed by both the iteration procedure itself and by the stopping criterion, whereas
g0 and h0 are needed by the stopping criterion only. Inspection of the above recurrences shows that the
calculation of g0 and h0 requires more than twice the work load of the calculation of c0 and d0. Thus, for a
third order iteration procedure (requiring both p(z), p′(z) and p′′(z)), Grant & Hitchins’ stopping criterion
adds more than two-thirds to the work load. The criterion is included in the comparisons reported in §7.

3.4. Garwick’s and Ward’s stopping criteria for nonlinear functions
Garwick [8] proposed the following very simple category (2) stopping criterion: zi is a root of the
nonlinear function f (z) if ei > ei−1 or ei−1 = 0, where ei = |zi − zi−1| and ei−1 = |zi−1 − zi−2|. zi−2, zi−1 and zi
are successive iterates. The criterion loosely states that a root has been found when the iteration increment
ei starts to increase. The precondition ei < e0 is required to ensure that convergence has started before the
stopping criterion is applied. e0 is a user-supplied ‘small’ number. Garwick’s criterion is based on the
assumption that once convergence has started, the rate of convergence does not decrease until a root has
been found.

As it stands, Garwick’s stopping criterion is inadequate because the precondition ei < e0 places a limit
on the absolute error ei only, which is insufficient when roots with both large and small absolute values
are present. Ward [9] suggested the following stopping criterion, which helps to overcome that problem:

zi−1 is a root if ei > ei−1. Preconditions: (1) ei ≤ 10−7 if |zi−1| < 10−4

and (2) ei/|zi−1| ≤ 10−3 if |zi−1| ≥ 10−4.

Precondition (1) states that when |zi−1| is less than 10−4, convergence is deemed to have started when
the absolute distance between successive iterates is less than or equal to 10−7. Precondition (2) states that
when |zi−1| is greater than or equal to 10−4, convergence is deemed to have started when the relative
distance between successive iterates is less than or equal to 10−3.

Note that Ward’s stopping criterion requires only the function evaluations already needed by the
iteration procedure itself. On the other hand, Ward always requires at least one post-convergence
iteration to confirm that the best possible root has been found. Ward’s criterion is included in the
comparisons reported in §7.

3.5. Other stopping criteria
Vignes [10] developed a statistically based category (2) stopping criterion, which is part of the CADNA
software library (e.g. [11]). Vignes’ criterion has the advantage of providing accurate estimates of the
round-off errors incurred, but it also has the following drawbacks: (i) CADNA runs only on LINUX
and UNIX based operating systems, (ii) complex arithmetic is not supported, and (iii) ‘code which uses
CADNA runs at least three times slower than [without]’ (quote Jézéquel et al. [11]). These limitations are
deemed to make Vignes’ stopping criterion too restrictive and too slow to be included in the comparisons
in §7.

Brent [12] proposed a simple category (2) stopping criterion specifically for his widely used procedure
for finding the real roots of relatively badly behaved real, nonlinear functions. The robustness of Brent’s
procedure is achieved at the expense of convergence rate, which is typically less than quadratic. By
contrast, the new stopping criteria, outlined in this paper, are most useful when applied to iteration
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Table 1. Application of Garwick’s stopping criterion.

i zi ei = |zi − zi−1|
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 1.000000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1.218279 0.218279
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 1.241501 0.023222
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 1.241718 0.000217
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 1.241720 0.000002
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 1.241717 0.000003
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

procedures with high rates of convergence (at least quadratic but preferably cubic or higher). Brent’s
procedure is therefore deemed to be too slow to be included in the comparisons in §7.

4. The new stopping criteria
The new stopping criteria aim to maximize the efficiency of high order root finding procedures without
compromising the accuracy of the roots. This is achieved (i) by eliminating the need for function
evaluations that are not required by the iteration procedure itself and (ii) by immediately terminating
the iterations when no further improvement of the roots is possible. The idea behind the new stopping
criteria is outlined in Nikolajsen [13], but a satisfactory implementation has only recently been made
possible by the development of a procedure for high-accuracy calculation of fractional significant
digits [14].

A total of four new stopping criteria are needed, as outlined in §4.1 through 4.4. The first three provide
the efficiency improvements. The fourth catches roots that are too ill-conditioned, or whose convergence
rate is too slow, to invoke the first three. The four criteria are derived in §4 with the assumption that they
are being used to find non-zero, real roots z of real functions f (z). Section 5 shows how the criteria can be
readily adapted to finding zero roots. Section 6 shows how they can be applied in the complex domain.

As an introduction to the derivation of the new stopping criteria, the operation of Garwick’s criterion
is illustrated by the iteration sequence shown in table 1. Inspection of table 1 shows that the distance ei
between the iterates decreases steadily, indicating that convergence is underway. ei reaches a minimum at
e4 = 0.000002, then grows to e5 = 0.000003, indicating that both z4 and z5 lie in the area of indeterminacy
(AOI) of the root, so either can be declared a root. (Garwick’s criterion makes z5 the root but experience
shows that z4 is often the more accurate.) But if z4 and z5 are equally valid as a root, z3 must also be
equally valid because it lies between z4 and z5. In other words, z3 can be declared the root, and z4 and
z5 are redundant except as confirmation that z3 is a root. Thus, Garwick’s need for post-convergence
iterates z4 and z5 has increased the work load by two-thirds. The new stopping criteria will eliminate
this redundancy, as explained in §4.1.

Note also that Garwick’s stopping criterion puts no limit on the number of post-convergence iterations
needed. One possible scenario is z5 = 1.241719, leading to e5 = 0.000001, which is less than e4, so at least
one additional iterate, z6, would be needed. A z6-value of 1.241718 would then confirm that z3 = 1.241718
is a root. In other words, three iterations are needed to reach the root but Garwick requires three
additional iterations to confirm that the root has been reached.

4.1. Stopping criterion #1

zi is a root if s2
i /si−1 ≥ sm. Precondition : si−1 ≥ sm/q2

m.

Here, zi is the ith iterate in the iteration sequence generated by the iteration procedure to which the
stopping criterion is applied. si is the number of matching leading bits (MLBs) of the two successive
iterates zi−1 and zi. si−1 is defined similarly. si and si−1 can be calculated as outlined in Nikolajsen [14].
The calculation is demonstrated below.

Also in stopping criterion #1, sm is the length of the floating-point significand used, e.g. sm = 53 bits
and sm = 113 bits, respectively, for IEEE double-precision and quad-precision. qm is the order of the
iteration procedure to which the stopping criterion is applied, e.g. qm = 3 for Laguerre’s method and
Ostrowski’s method.
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Table 2. Convergence by stopping criteria #1 and #2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) iteration #2 (b) iteration #3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

z2 = 1 .0011 1101 1101 0011 0000 011b z3 = 1 .0011 1101 1110 0001 0011 100b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

z1 = 1 .0011 0111 1110 0001 0010 011b z2 = 1 .0011 1101 1101 0011 0000 011b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e2 = 0.0000 0101 1111 0001 1110 000b e3 = 0.0000 0000 0000 1110 0011 001b

s2 = 6 + not(.101 1111 0001 1110 000b) s3 = 13 + not(.1110 0011 001b)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s2 = 6.256893 s3 = 13.11230
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q3 ≡ s3/s2 = 2.095657
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s̃4 = q3s3 = s23/s2 = 27.47888

(c) alternative iteration #3 (d) iteration #4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

z3 = 1 .0011 1110 0101 0011 0000 010b z4 = 1 .0011 1110 0101 1011 0000 001b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

z2 = 1 .0011 1101 1101 0011 0000 011b z3 = 1 .0011 1110 0101 0011 0000 010b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e3 = 0.0000 0000 0111 111 1 1 1 1 1 1 1 1b e4 = 0.0000 0000 0000 0111 1 1 1 1 1 1 1b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s3 = 10 + not(.111 1111 1111 111b) s4 = 14 + not(.111 1111 111b)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s3 = 10.00000 s4 = 1.400000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q3 ≡ s3/s2 = 1.598237 q4 ≡ s4/s3 = 1.400000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s̃4 = q3s3 = s23/s2 = 15.98237 s̃5 = q4s4 = s24/s3 = 19.60000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stopping criterion #1 is explained with reference to table 2a,b. These examples use iterates z1, z2
and z3 from table 1 but written in binary notation with a significand-length of sm = 24 bits, as in IEEE
single-precision. Also shown are the corresponding iteration increments e2 = |z2 − z1| and e3 = |z3 − z2|.
A trailing ‘b’ designates a binary number.

s2 in table 2a is the number of MLBs of z1 and z2 following iteration #2. s2 is equal to the number of
leading zero bits of e2 (i.e. 6) plus a fraction produced by (i) removing the radix point and the leading
zeros from e2 to produce the bit-string 101 1111 0001 1110 000b, (ii) taking two’s complement of the bit-
string to get 010 0000 1110 0001 111b, and (iii) placing a radix point in front of the complement to produce
the binary fraction 0.010 0000 1110 0001 111b = 0.256893. This fraction is added to the number of leading
zeros of e2 to get s2 = 6 + 0.256893 = 6.256893, as shown in table 2a. s2 = 6.256893 states that z1 and z2
have 6.256893 leading bits in common. The not( ) function in table 2a is used as shorthand for the above
procedure for finding the fractional part of s2. A simple numerical procedure for calculating s is outlined
in Nikolajsen [14]. The code is available from the author on request.

Moving now to table 2b, the number of MLBs can be seen to have increased to s3 = 13.11230 following
completion of iteration #3. With s2 = 6.256893 and s3 = 13.11230, the rate at which MLBs are being gained
is q3 = s3/s2 = 2.095657. This is by definition the effective convergence rate following completion of
iteration #3. q3 = 2.095657 shows that the convergence rate is slightly higher than quadratic. Experience
shows that when the rate of convergence is rapid enough to invoke stopping criterion #1, it is also rapid
enough so that it does not diminish until the AOI of the root has been reached. Thus, with the number
of MLBs already increasing by a factor q3 = 2.095657 per iteration, the number of MLBs after the next
iteration (#4) cannot be less than s̃4 = q3s3 = s2

3/s2 = 27.47888. But that exceeds the length of the floating-
point significand used (sm = 24), so in practice, z3 and z4 will either have sm = 24 leading bits in common
or, more likely, they will both be located within the AOI of the root. In either case, no further improvement
is possible, so iteration #4 can be omitted and z3 can be declared a root. Thus, only the two consecutive
converging iterations, shown in table 2a,b, are needed before stopping criterion #1 is invoked.

All the z-values of table 2a,b are taken from table 1, so stopping criterion #1 has identified iterate z3
from table 1 as the root without requiring any of the post-convergence iterations needed by Garwick’s
method.

The precondition, si−1 ≥ sm/q2
m, is empirical and based on the almost self-evident assumption that

the convergence rate qi ≡ si/si−1 is unlikely to exceed the order qm of the iteration procedure used.
The resulting inequality, si/si−1 ≤ qm, together with the stopping criterion itself, s2

i /si−1 ≥ sm, lead to the
precondition si−1 ≥ sm/q2

m.
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Assuming that the stopping criterion is being applied to a third order root finder implemented in

IEEE double-precision, then precondition s2
i /si−1 ≥ sm and stopping criterion si−1 ≥ sm/q2

m can be solved
for si−1 and si to get si−1 ≥ sm/q2

m = 53/32 � 5.89 MLBs � 1.8 decimal digits and si ≥ sm/qm = 53/3 �
17.7 MLBs � 5.3 decimal digits. In other words, the minimum requirement for stopping criterion #1 to
be invoked is that iterates zi−2 and zi−1 have at least 1.8 decimal digits in common and zi−1 and zi have
at least 5.3 decimal digits in common. These are surprisingly small numbers, considering that they imply
that zi is a root which cannot be improved further: either zi will have sm = 53 correct bits �15.9 correct
decimal digits or, more likely, zi will be in the AOI of the root.

4.2. Stopping criterion #2

zi+1 is a root if s2
i /si−1 > si+1. Preconditions : si−1 ≥ sm/q2

m and si − si−1 ≥ sm/q2
m.

Stopping criterion #2 is needed when the convergence rate is not quite fast enough to trigger stopping
criterion #1. The criterion is explained with reference to table 2a,c,d, with table 2b ignored. The
explanation assumes familiarity with the explanation for stopping criterion #1. As shown in table 2a,c,
z1 and z2 have s2 = 6.256893 MLBs, and z2 and z3 have s3 = 10.00000 MLBs. Thus, assuming that
convergence has started, z3 and z4 will have at least s̃4 = q3/s3 = 15.98237 MLBs as shown (unless the AOI
has been reached). This is less than sm = 24, so z3 cannot be declared a root based on stopping criterion
#1. Table 2d shows that z4 and z5 (not calculated) will have a minimum of s̃5 = q4/s4 = 19.60000 MLBs
(unless the AOI is reached). This is also less than sm = 24, so stopping criterion #1 cannot confirm that z4
is a root either. However, the actual number of MLBs of z3 and z4 is s4 = 14.00000, which is smaller than
s̃4 = 15.98237, which is the minimum number of MLBs that z3 and z4 should have in common given the
convergence rate of q3 = 1.598237. The only possible explanation is that the AOI has been reached, thus
z4 must be a root. This conclusion is based on the observation that when the convergence has become
so rapid that stop criterion #2 can be invoked, it does not diminish until the AOI of the root has been
reached. The AOI having been reached is also reflected by the rate of convergence diminishing from
q3 = 1.598237 to q4 = 1.400000. q3 > q4 is easily expanded and generalized into s2

i /si−1 > si+1, which is
stopping criterion #2.

Both preconditions for stopping criterion #2 are empirical. Precondition si−1 ≥ sm/q2
m is the same as

for stopping criterion #1 and is based on the same considerations. The additional precondition si − si−1 ≥
sm/q2

m is needed to compensate for the fact that the stopping criterion itself makes no contribution
to ensuring that convergence is underway and sufficiently rapid to allow the stopping criterion to be
applied safely. Solving the two preconditions for si results in si ≥ 2 · sm/q2

m. Thus, using a third order root
finder implemented in IEEE double-precision results in si−1 ≥ sm/q2

m = 53/32 � 5.89 MLBs � 1.8 decimal
digits and si ≥ 2 · sm/q2

m � 11.8 MLBs � 3.5 decimal digits. In other words, the minimum requirement for
stopping criterion #2 to be invoked is that iterates zi−2 and zi−1 have at least 1.8 decimal digits in common
and zi−1 and zi have at least 3.5 decimal digits in common. This is even less demanding than for stopping
criterion #1 but it is accompanied by the demand for an additional iteration to find zi+1.

4.3. Stopping criterion #3
Stopping criterion #3 is designed to catch roots extracted in a single iteration. This happens regularly
in practice and is too fast for stopping criteria #1 and #2 to be invoked. Stopping criterion #3 must be
divided into the following two sub-criteria.

4.3.1. Stopping criterion #3.1

z1 is a root if (1) s1 ≥ sm/2 and z0 �= 0 or (2) s1 ≥ sm and z0 = 0.

Stopping criterion #3.1 states that the first iterate z1 can be declared a root if it has as least sm/2 leading
bits in common with the start value z0, provided that z0 is non-zero. If z0 is zero, the stricter condition
s1 ≥ sm applies.

Condition s1 ≥ sm/2 ensures that z0 and z1 have at least sm/2 MLBs, so z1 and z2 will have at least
2 · (sm/2) = sm MLBs (unless both are in the AOI). Thus, both z1 and z2 are converged iterates. z1 can
therefore be declared the root and z2 need not be calculated.
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Condition s1 ≥ sm/2 is insufficient when the start value z0 is zero. As an example, consider a double-

precision iteration toward the root 10−8, starting from z0 = 0. If the first iterate is z1 = 2−27 � 7.45 × 10−9

then, in accordance with Nikolajsen [14], s1 = − log2(z1) = 27, so s1 ≥ sm/2 is satisfied (since sm = 53 for
double-precision), so z1 = 7.45 × 10−9 will wrongly be declared the root. This can happen only when
the start value z0 is zero, in which case the number of MLBs of z0 and z1 becomes s1 = − log2(z1). It
can therefore be avoided by disallowing zero start values. An alternative option, adopted here, is to
switch to condition s1 ≥ sm when z0 is zero. s1 ≥ sm will always correctly indicate a root since it cannot
be satisfied unless iterate z1 is exactly equal to start value z0 (sm being the bit length of the floating-point
significand used).

4.3.2. Stopping criterion #3.2

zi is a root if (1) si − si−1 ≥ sm/2 or if (2) si − si−1 ≥ sm/4 and si+1 − si < si − si−1 · i ≥ 2 required.

Part (1) of stopping criterion #3.2 states that when convergence is so rapid that the number of MLBs
gained in a single iteration (#i) is greater than or equal to half the number of bits of the floating-point
significand then iterate zi cannot be improved further and can be declared a root. Such rapid convergence
is easily fast enough to ensure that it will not diminish until the AOI has been reached. Therefore, if
iteration #(i + 1) is carried out, it will also produce a gain of at least sm/2 MLBs, unless the AOI is reached.
zi andzi+1 will therefore have at least 2 · (sm/2) = sm MLBs, which is the maximum possible, or they will
both reside in the AOI. zi and zi+1 will therefore both be converged iterates, so zi can be declared a root
and zi+1 need not be calculated. No preconditions are needed because a gain of sm/2 MLBs in a single
iteration is so large that it leaves no doubt that convergence has started.

Part (2) of the stopping criterion deals with occasions when convergence is rapid enough so that
between sm/4 and sm/2 MLBs are gained in a single iteration (#i), in other words, sm/4 < si − si−1 < sm/2,
in which case part (1) of the stopping criterion is not satisfied. Experience shows that a gain of at least
sm/4 MLBs in a single iteration is sufficient to ensure that the rate of convergence does not diminish until
the AOI has been reached. So if the rate of convergence does diminish, i.e. if si+1 − si < si − si−1, then
both zi and zi+1 must reside in the AOI of the root. zi can therefore be declared a root and zi+1 need not
be calculated.

With stopping criterion #3.2 in place, stopping criterion #3.1 looks almost redundant, being invoked
only in the small number of cases when the start value hits a root. However, neither stopping criterion
#1, #2 nor #3.2 will identify such a root, so several redundant iterations will be required before the root
is eventually identified by stopping criterion #4 (described next).

4.4. Stopping criterion #4

zi+1 is a root if si+2 ≤ si+1. Preconditions: si−1 ≥ b, si ≥ b and si+1 ≥ si. b = 8 is recommended.

Stopping criterion #4 acts as a safety net designed to catch roots which are too ill-conditioned, or whose
convergence rate is too slow, to invoke the previous stopping criteria. Stopping criterion #4 is wholly
empirical and is a combination of the following two sub-criteria:

Sub-criterion #1: zi+1 is a root if si−1 ≥ b, si ≥ si−1, si+1 ≥ si, and si+2 ≤ si+1. This loosely states that once
convergence has started and has been sustained over at least two consecutive iterations (as reflected
by si−1 ≥ b, si ≥ si−1 and si+1 ≥ si) then a failure to gain additional MLBs in the following iteration (as
reflected by si+2 ≤ si+1) indicates that the AOI has been reached, so a root can be declared.

Sub-criterion #2: zi+1 is a root if si−1 ≥ b, si ≥ b, si+1 ≥ b, si ≤ si−1, si+1 ≥ si and si+2 ≤ si+1. This is based
on the observation that once at least b MLBs have been achieved in three consecutive iterations then
alternate loss and gain of MLBs over the same three iterations indicates that no additional MLBs can be
extracted, so a root can be declared.

Inspection of the two sub-criteria shows that they are identical except for si ≥ si−1 in the first and
si ≤ si−1 in the second. They can therefore be merged into a single criterion (i.e. stopping criterion #4)
with no restriction on the relative values of si and si−1. Note also that when the sub-criteria are merged,
condition si+1 ≥ b in sub-criterion #2 becomes redundant.

Stopping criterion #4 works on the same basic principle as Ward’s criterion, discussed in §3. Like
Ward’s, it requires at least one and possibly several post-convergence iterations with the final calculated
iterate being zi+2, which is needed to determine si+2. Thus, at least zi+2 and zi+1 (and possibly several
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additional previous iterates) will be in the AOI of the root. zi+1 is chosen as the root because experience
shows that it is often slightly more accurate than zi+2.

Note that preconditions si−1 ≥ b and si ≥ b (with b = 8) are stricter than precondition si−1 ≥ sm/q2
m �

5.89 for stopping criteria #1 and #2. This is necessary because, unlike stopping criteria #1 and #2, stopping
criterion #4 (si+2 ≤ si+1) does not in itself contribute to ensuring that convergence has started.

b must be kept as small as possible because roots with less than b significant leading bits will be missed
by stopping criterion #4. The suggested b-value of 8 is the smallest that prevents premature termination
for all the test cases run in §7. With b = 8, roots with less than 8 · log102 � 2.4 significant decimal digits
will be missed. (Inspection of Ward’s criterion shows that it will miss roots with less than 3 significant
decimal digits.) Although roots with less than 2.4 significant decimal digits are relatively rare in most
applications, their existence does leave room for further improvement of stopping criterion #4. Still, it is
remarkable that a stopping criterion as simple as #4 exists, which has not been observed to miss a root
when b = 8.

4.5. General remark
The same iteration formula must be used to calculate all the s-values required in all the stopping criteria
presented in §4. Otherwise, one of the stopping criteria may be invoked prematurely by a change in
convergence rate caused by a switch of iteration formula.

5. Zero roots
It has so far been assumed that a non-zero, real root is being approached. When the approach is toward
a zero root, si (the number of leading bits that zi has in common with zi−1) must be replaced by soi
(the number of leading bits that zi has in common with zero, i.e. the number of leading zero bits of zi).
This is because, on approach to a zero root, it is the size of zi’s exponent that indicates its proximity to
zero, whereas, the number of MLBs of zi and zi−1’s significands is of little interest. In practice, it is not
always possible to distinguish between an iteration sequence that approaches a near-zero root and one
that approaches a zero root, so both si and soi must be calculated. A near-zero root is then indicated if the
si sequence satisfies one of the stopping criteria of §4. And a zero root is indicated if soi satisfies one of
the stopping criteria. The calculation procedure for soi is outlined in Nikolajsen [14].

One exception is stopping criterion #2, which should not be used to identify zero roots. Consider, for
example, an iteration sequence starting at z0 = 1.000000 × 100 and approaching the single-precision root
z = 5.555555 × 10−6. The iterates will typically show strong growth in soi as they move quickly down
through the decimal exponents from 0 to −6. But as exponent −6 is reached, the growth in soi will stall
and be replaced by growth in si as the significand approaches 5.555555. However, the growth in soi can
on rare occasions be so strong that it invokes stopping criterion #2 prematurely, falsely indicating that
the root is zero.

An alternative way of finding a zero root is simply to use a zero start value. If a zero root exists,
the iterates will be so close to zero that stopping criterion #3 will likely be invoked within one or two
iterations. But that only works when deflation is used, i.e. for polynomials. If root suppression is used
(as with matrices and general nonlinear functions) a zero start value, coinciding with a zero root already
extracted, will likely cause a floating-point exception, unless another zero root exists.

6. Complex roots
The stopping criteria in §4 can also be used to terminate the iterations toward a complex root z = x + jy.
A procedure for calculating Si (the number of MLBs for complex iterates) is outlined in appendix A.

It is tempting to try to avoid using Si by using si instead to check the real and imaginary iterations
streams, xi and yi, separately for convergence. But experience shows that can go wrong in rare instances,
for example, when the complex iterates zi make a move almost parallel to the x-axis, resulting in yi � yi−1,
followed by a move almost parallel to the y-axis, resulting in xi+1 � xi, before convergence has been
completed. Inspection of stopping criteria #1 and #3 shows that they can be invoked prematurely by
the resulting si sequences. This cannot be avoided by requiring simultaneous completion of convergence
for both streams because (i) the two streams often do not complete their converge simultaneously and
(ii) the stopping criteria are optimized to the extent that if completion of convergence is not accepted
immediately when it occurs, it may not be triggered by subsequent iterations.
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A review of appendix A will confirm that Si sequences do not invoke any of the stopping criteria

prematurely in the situation described above, so it can be used instead. But Si is not sufficient: soi
(as defined in §5) is also needed to check the yi and xi streams individually for convergence to zero,
i.e. to check if zi is approaching a real or an imaginary root. If the soi sequence for the yi stream invokes a
stopping criterion (indicating that a real root is being approached), then yi and all subsequent y-iterates
must be zeroed. Otherwise, the following iterations may provide additional, redundant improvements
of yi, at the expense of little or no improvement in xi. At best, this delays convergence. At worst, the
temporary lack of improvement in xi can result in the Si sequence stalling temporarily, thereby triggering
one of the stopping criteria prematurely. The same applies on approach to an imaginary root.

The approach of a complex iteration sequence zi = xi + jyi to a real root may also manifest itself by
|xi| + |yi| = |xi| to within floating-point accuracy. In that case, zi = xi + jyi should be replaced by zi = xi.
Otherwise, experience shows that yi may continue to approach zero monotonically for many redundant
iterations after xi has converged. The approach to an imaginary root should be treated similarly.

One exception to the above is that Si should not be used with stopping criterion #4. Rare instances
have been encountered where the first few iterates have been so closely spaced that Si has invoked
stopping criterion #4 before convergence has started. Inspection of the raw data suggests that these
iterates are close because they are struggling to break free from the attraction of a nearby root that
has already been found and suppressed, but whose accuracy is insufficient for the suppression to
fully eliminate its attraction. Experience shows that this type of premature triggering of stopping
criterion #4 by Si can be avoided by using si instead for the xi and yi iteration streams separately and
requiring stopping criterion #4 to be triggered for both before a root is declared. Triggering need not
be simultaneous. One reason why this works is that, before convergence has started, the chance of
the xi and yi iteration streams both inadvertently satisfying stopping criterion #4 is exceedingly small.
Also, the requirement to use Si instead of si, as outlined above, does not apply to stopping criterion #4:
inspection of that criterion shows that, unlike stopping criteria #1 and #3, it cannot be invoked by isolated
occurrences of yi � yi−1 and xi+1 � xi.

7. Comparison of stopping criteria
The new stopping criteria, outlined in §4, are compared numerically with those of Ward, Igarashi and
Grant & Hitchins, which are reviewed in §3. For short, the criteria will be named JLN, Ward, Iga and
G&H, respectively.

The stopping criteria are compared in terms of efficiency and accuracy. Efficiency is measured simply
in terms of the number of function evaluations required before a root is declared. Accuracy is measured
in terms of the number of fractional significant digits (FSDs) of the extracted roots relative to the exact
roots whenever these are available. When they are not, other similar accuracy measurements will be used
as specified in each case.

All the results are based on IEEE quad-precision calculations. All the calculations were repeated in
double-precision. The double-precision results led to the same general conclusions as the quad-precision
results. Single-precision testing was omitted as being of little practical interest, given the current state of
the art in computer hardware.

7.1. Numerical implementation
The stopping criteria are all embedded in the same versions of Laguerre’s and Ostrowski’s methods, both
of which are third order methods described for example in Orchard [4].

Laguerre’s method is used for matrix eigenvalue extraction and polynomial root finding. Ostrowski’s
method is used for general nonlinear functions. Deflation is used for polynomials and root suppression is
used for matrices and general nonlinear functions to prevent repeated convergence to the same root. Both
Laguerre and Ostrowski lend themselves to the same efficient root suppression procedure, as outlined
for example in Nikolajsen [13]. The simplicity and reliability of Laguerre and Ostrowski allow the focus
of the comparisons to remain on the stopping criteria. Using the same iteration procedures throughout
also ensures that identical iteration streams are generated regardless of which set of stopping criteria is
used. Thus, the stopping criteria affect the results only by deciding which iterate in the iteration stream
is declared a root.

In practice, the stopping criteria do have a small effect on the iteration streams for the following
reasons. (i) When different iterates are declared the root, root suppression and deflation give rise to small
differences in the remaining function, and thus in the size of the remaining roots, and thus possibly in



10

rsos.royalsocietypublishing.org
R.Soc.opensci.1:140206

.................................................
35

30

25

20

15

10

5

0

3500

3000

2500

2000

1500

1000

500

0

no
. F

SD
s 

of
 s

um
 o

f 
ei

ge
nv

al
ue

s

to
ta

l n
o.

 d
et

er
m

in
an

t e
va

lu
at

io
ns

Ward
Ward and JLN

JLN

matrix order
500 0100 150 200 250

matrix order
50 100 150 200 250

(b)(a)

Figure 1. Dense, randommatrices.

the number of iterations needed to extract them. (ii) The start value for each iteration is chosen as the root
just found (when deflation is used) and as a non-converged iterate toward a previous root (when root
suppression is used). This can likewise result in small differences in the remaining iterations streams, and
thus possibly in the number of iterations needed to find the remaining roots. But, as will be seen, the test
conclusions are so unambiguous that they are unaffected by a tolerance of plus or minus a few iterations.

For matrix eigenvalue extraction, only JLN’s and Ward’s criteria are applicable and will be compared.
For polynomial root extraction, both JLN, Ward, Iga and G&H are applicable and will be compared. For
non-polynomial root extraction, JLN, Ward and Iga are applicable and will be compared.

The JLN stopping criteria are implemented using the continuous FSD formulation given in Nikolajsen
[14]. The criteria are applied in the following order of descending efficiency: #3, #1, #2 and #4. The
order of application affects the percentage usage of the criteria because two criteria are often satisfied
simultaneously.

Ward’s stopping criterion ei > ei−1 is replaced by ei ≥ ei−1 because ei > ei−1 fails to activate when
ei approaches zero monotonically and then remains equal to zero. For complex root finding, Ward’s
criterion is applied to the real and imaginary iteration streams separately because Ward was found in
one instance to be triggered prematurely when applied directly to the complex iteration stream.

G&H’s stopping criterion is supplemented by the following criterion: zi+1 is a root if zi+1 = zi. Without
this, G&H does not get invoked when the start value by chance hits a root.

7.2. Matrix eigenvalue extraction
Figure 1a shows the total number of determinant evaluations needed to find all the eigenvalues of dense,
random, non-symmetrical matrices of orders 5 through 250 using JLN’s and Ward’s stopping criteria. The
same random matrices are used for both. The matrices are reduced to upper Hessenberg form to allow
the eigenvalues to be extracted by Laguerre’s method, as outlined in Nikolajsen [13]. When a complex
eigenvalue is found, its complex conjugate is also declared an eigenvalue.

Figure 1b shows the corresponding accuracy of Ward and JLN, expressed in terms of the number of
FSDs of the sum of eigenvalues relative to the matrix trace. The sum of eigenvalues is used because the
exact eigenvalues are unknown. This is considered to be acceptable here because the matrix elements
are all in the range −1 to 1, resulting in similar sized eigenvalues, so no single eigenvalue will dominate
the sum. The JLN and Ward lines in figure 1b almost coincide. Thus, JLN and Ward provide practically
the same accuracy for the random matrices used here. The average number of FSDs achieved across the
entire graph is 31.8 with both JLN and Ward out of a maximum possible 34. The small overall slope of the
graphs in figure 1b indicates that the matrix order has little effect on accuracy. This confirms the common
observation that random matrices, of the type used here, are very well-conditioned. The jitter in all the
graphs in figure 1 confirms that the matrices are not all exactly equally well-conditioned.

The total number of eigenvalues extracted is 5 + 6 + · · · + 250 = 31 365 and the total number
of determinant evaluations is 375 447 with Ward and 238 416 with JLN. Thus, the average number of
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Figure 2. Dense, random Hessenberg matrices.

determinant evaluations per eigenvalue is 375 447/31 365 = 11.97 with Ward and 238 416/31 365 = 7.60
with JLN. JLN therefore reduces the number of determinant evaluations per eigenvalue by an average
of 4.37 or 4.37/11.97 = 36.5% without compromising the accuracy of the results. The relatively low level
of jitter in figure 1a confirms that these averages do not hide any major discrepancies in the number of
determinant evaluations needed to extract the eigenvalues of each matrix.

The percentage usage of JLN stopping criteria #1, #2, #3 and #4 is 69.3%, 0%, 30.7% and 0%,
respectively. In other words, Laguerre’s method converges so fast for these types of matrices that a
stopping criterion as demanding as #3 gets invoked for 30.7% of the eigenvalues, whereas the two slowest
and least demanding criteria (#2 and #4) do not get invoked at all.

Figure 2 shows the same type of results as figure 1 but for more ill-conditioned matrices, i.e. random
lower Hessenberg matrices with 2 × 2 bulges along the diagonal, which allow the exact eigenvalues to be
calculated a priori. The matrices are reduced to upper Hessenberg form before eigensolution. The accuracy
is shown in figure 2b in terms of the number of FSDs of the least accurate eigenvalue of each matrix
relative to its exact counterpart. The ill-conditioning causes the graphs to terminate at matrix order 172,
at which point the accuracy becomes so poor that the least accurate eigenvalue can no longer be matched
unambiguously with its exact counterpart. This is reflected in the graphs in figure 2b approaching zero.
Note also the greater overall slopes in figure 2a, compared with figure 1a, due to the larger number of
iterations needed to find the eigenvalues.

The JLN and Ward lines in figure 2b almost coincide. Thus, JLN and Ward provide practically
the same accuracy for the matrices used here. The average number of FSDs achieved for the least
accurate eigenvalue of each matrix is 21.7 with both JLN and Ward out of a maximum possible 34. The
steep overall slopes in figure 2b reflect a rapid deterioration in the accuracy of the eigenvalues with
increasing matrix order. The strong accompanying jitter suggests a significant variation in the level of
ill-conditioning of the matrices.

The total number of eigenvalues extracted is 6 + 8 + · · · + 172 = 7476 and the total number of
determinant evaluations is 138 549 with Ward and 95 496 with JLN. Thus, the average number of
determinant evaluations per eigenvalue is 138 549/7476 = 18.53 with Ward and 95 496/7476 = 12.77 with
JLN. Thus, JLN reduces the number of determinant evaluations per eigenvalue by an average of 5.76 or
5.76/18.53 = 31.1% without compromising the accuracy of the results. This is a larger absolute savings
but a smaller percentage savings compared with the matrices of figure 1. The percentage savings is
smaller only because the number of function evaluations per eigenvalue is larger.

The percentage usages of JLN stopping criteria #1, #2, #3 and #4 are 71.6%, 10.6%, 16.7% and 1.0%,
respectively. Thus, the ill-conditioning has forced down the use of stopping criterion #3 and created a
demand for stopping criteria #2 and #4, which were not used at all for the matrices of figure 1.

Thus, the advantage in efficiency of JLN over Ward has been demonstrated for both well-conditioned
and ill-conditioned matrices. The almost equal accuracy of JLN and Ward, and the superior efficiency
of JLN, extends over all the test cases run, which include a total of approximately 97 227 eigenvalue
extractions for approximately 829 matrices of different sizes and different levels of ill-conditioning.
Results are shown in the electronic supplementary material.
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Testing with very ill-conditioned matrices was omitted. With such matrices, one has to be thankful

just to be able to extract the eigenvalues, let alone doing so with high efficiency.

7.3. Polynomial root finding
Jenkins & Traub [15] suggest that stopping criteria for polynomial root finding be tested on the following
type of polynomials:

p(z) = b(z − r)(z + r)(z − 1) = b(z3 − z2 − r2z + r2),

with both r and b numerically large and small. The purpose is to check whether termination problems
are caused by numerically large and/or small roots and numerically large and/or small polynomial
coefficients. In the current test series, large variations in both r and b are effected by using polynomials
of the type

p1(z) =
±n/4∏
r=±1

(z ± (2r + j2r)),

where n is increased in integer multiples of 4 from 8 to 256. The roots with the numerically largest and
smallest moduli are 264 + j264 � 1.8 × 1019 + j1.8 × 1019 and 2−64 + j2−64 � 5.4 × 10−20 + j5.4 × 10−20.
The corresponding numerically largest and smallest real and imaginary parts of the polynomial
coefficients are approximately 3.3 × 10635 and 8.4 × 10−637.

Jenkins & Traub [15] also suggest testing the stopping criteria on Wilkinson-type polynomials:

p(z) =
n∏

r=1

(z − r),

with n small enough to ensure exact representation of all the polynomial coefficients at the precision level
used. The objective is to test whether the extreme ill-conditioning of such polynomials cause termination
problems. In the current tests, this is extended into the complex domain by using the following similarly
ill-conditioned polynomials:

p2(z) =
n∏

r=1

(z − (r + j · r)).

Finally, Jenkins & Traub [15] suggest that stopping criteria based on round-off error analysis should be
tested on polynomials of the type

p(z) =
n∏

r=1

(z − 10−r),

with n small enough to avoid underflow of the polynomial coefficient. In the current test series, the p1(z)
polynomials, defined above, are used for this purpose.

The polynomial coefficients for both p1(z) and p2(z) are calculated numerically based on the known
exact roots, whereafter, the approximate roots are extracted. The coefficients are automatically scaled as
they are calculated to delay overflow and underflow and thus maximize the range of calculable roots.

7.3.1. Polynomials of type p1(z)

Figure 3a shows the total number of function evaluations needed to find all the roots of polynomials of
type p1(z) (defined above) of degree 8 through 250 using JLN’s, Ward’s, Igarashi’s and Grant & Hitchins’
stopping criteria. Figure 3b shows the accuracy of the least accurate root of each polynomial in terms of
the number of FSDs relative to the corresponding exact root.

Note that G&H only manages to find the roots of polynomials up to degree 56, at which point the
accuracy becomes so poor that the least accurate root can no longer be matched unambiguously with
its exact counterpart. This is caused by G&H’s tendency to terminate the iterations prematurely, one or
two iterations before the most accurate root has been found. Each time one of the premature roots is
deflated out, the remaining polynomial loses accuracy, leading to a chain reaction of root deterioration.
The steepness of the G&H line in figure 3b indicates how quickly this happens. The current formulation
of G&H’s stopping criterion is therefore considered to be unacceptable for practical purposes.

Figure 3b shows that Ward, Iga and JLN retain almost equal, high accuracy throughout. But the high
accuracy of Iga is deceptive. Inspection of the raw data shows that the sawtooth shape of the Iga line in
figure 3a is caused by intermittent failures to trigger when a root has been found. Each failure allows the
number of iterations to grow until the root finder eventually stops automatically when a preset limit of
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Figure 3. Polynomials of type p1(z).

64 iterations has been reached. The failures are distributed across almost the entire range of polynomial
degrees, as evidenced by the sustained sawtooth shape of the Iga line in figure 3a. Each failure to trigger
is of course also a failure to confirm that the final 64th iterate is a root. Iga fails for 70 of the 7808 roots
found in figure 3, which is a failure rate of less than 1%. Nevertheless, the resulting loss of confidence is
deemed to make Igarashi’s stopping criterion unacceptable in its current formulation.

That leaves Ward and JLN as the only acceptable category (2) stopping criteria for the polynomials
tested here. Ward and JLN achieve average FSD values of 32.9 and 32.8, respectively, for the least accurate
root of each polynomial tested, making them equally accurate for all practical purposes. But JLN achieves
this with 35.5% fewer function evaluations than Ward.

The percentage usages of JLN stopping criteria #1, #2, #3 and #4 are 46.3%, 0%, 53.7% and 0%
respectively, i.e. the fastest and most demanding criterion (#3) gets invoked for more than half the
roots, whereas the slowest and least demanding (#2 and #4) do not get invoked at all. This, once
more, demonstrates the remarkable convergence speed of Laguerre’s method and the ability of the JLN
stopping criteria to take advantage of it.

7.3.2. Polynomials of type p2(z)

Figure 4 shows the same type of results as figure 3 but for polynomials of type p2(z). The ill-conditioning
of these polynomials causes the graphs to terminate at polynomial degree 82, at which point the accuracy
becomes so poor that the least accurate root can no longer be matched unambiguously with its exact
counterpart. Ward, Iga and JLN manage to identify all the roots up to polynomial degree 82 with almost
equal accuracy. But Iga’s accuracy is again deceptive since Iga fails to terminate the iterations for four
roots out of the total of 5 + 6 + · · · + 82 = 3393. The number of iterations for each of the missed roots
reaches 64 before the iterations are stopped by the root finder. Three of the misses show up as peaks in
figure 4a. G&H only manages to match the accuracy of Ward and JLN up to a polynomial degree of 21
and fails completely at degree 38. These results support the decision in the previous section to reject Iga
and G&H.

Thus, Ward and JLN are again the only acceptable category (2) stopping criteria. Ward and JLN
achieve average FSD values of 18.9 and 18.6, respectively, for the least accurate root of each polynomial
tested, making them equally accurate for all practical purposes.

The total number of function evaluations is 66 942 with Ward and 42 096 with JLN; thus, the average
number of function evaluations per root is 66 942/3393 = 19.73 with Ward and 42 096/3393 = 12.41 with
JLN. JLN therefore reduces the number of function evaluations per eigenvalue by an average of 7.32 or
7.32/19.73 = 37.1%.

The percentage usages of JLN stopping criteria #1, #2, #3 and #4 are 74.3%, 0.5%, 25.1% and 0%,
respectively. Thus, almost all the roots get identified by the two most efficient stopping criteria, #1 and
#3. But #2 is now needed and the use of #3 has been forced down from more than one-half to about
one-quarter of the roots compared with the polynomials of type p1(z). Still, the extreme ill-conditioning
of p2(z)-type polynomials manifests itself not so much by increased difficulty in calculating the roots but
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Figure 4. Polynomials of type p2(z).

3000 35

30

25

20

15

10

5

0

2500

2000

1500

1000

500

0

JLN

Ward

JLN

Ward

m
in

im
um

 n
o.

 F
SD

s

to
ta

l n
o.

 f
un

ct
io

n 
ev

al
ua

tio
ns

polynomial degree
100 020 30 40 50 60 70 80 90

polynomial degree
10 20 30 40 50 60 70 80 90

(b)(a)

Figure 5. Polynomials of type [p2(z)]2.

rather by the rapid deterioration in the accuracy of the calculated roots. This ill-conditioning normally
limits the polynomial degree, at which all the roots can be calculated, to about 40 for quad-precision
calculations. Here, it is extended to 82 by cognizant scaling the polynomial coefficients at each stage of
their calculation.

In conclusion, the polynomial tests reported in §7.3.1 and §7.3.2 lead to the same conclusions as the
matrix tests of §7.2: JLN’s and Ward’s stopping criteria provide equally accurate results but JLN reduces
the number of function evaluations by roughly one third. Igarashi’s and G&H’s stopping criteria are
unsafe and must be rejected in their current formulations.

7.3.3. Polynomials of type [p2(z)]2

In the previous polynomial examples, convergence is so rapid that stopping criteria #2 and #4 have
hardly been used. Their use is demonstrated here by calculating the roots of polynomial type [p2(z)]2. All
the roots are double roots and the single root Laguerre formula is used to slow the convergence rate to
linear for half the roots in order force stopping #2 and #4 into action. The results are shown in figure 5.
(Iga and G&H have been omitted because they have already been declared unacceptable.)

The percentage usage of JLN stopping criteria #1, #2, #3 and #4 changes from 74.3%, 0.5%, 25.1%
and 0%, respectively, for p2(z)-type polynomials to 47.5%, 18.5%, 14.8% and 19.2% for [p2(z)]2-type
polynomials. The 19.2% usage of stopping criterion #4 is still surprisingly low. The raw data suggest
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the following explanation. The lower accuracy of double roots accelerates the loss of accuracy of the
deflated polynomials. As a result, the double roots still to be extracted gradually lose accuracy and split
apart to become single roots, whose convergence rate is much greater. As a result, the faster stopping
criteria, #1, #2 and #3, gradually take over from #4. This is also reflected in figure 5a by the progressive
levelling off of both the Ward and the JLN lines as the number of function evaluations per root drops due
to the greater speed of convergence of the emerging single roots.

A corresponding reduction might be expected in the maximum polynomial degree at which all the
roots can be matched unambiguously to their exact counterparts. But comparison of figures 5b and 4b
shows that this remains at 82. The reason appears to be that, once the double roots have split, any further
deterioration in their accuracy is greatly reduced because they have become single roots that can be
extracted with twice the number of MLBs. Of course, the first roots extracted will still be double roots,
so the maximum accuracy cannot exceed half the single root accuracy, as also indicated by comparing
figures 5b and 4b.

The coincidence of the JLN and Ward graphs in figure 5b again confirms that both are equally accurate.
The exception is the blip in the Ward graph at polynomial degree 52. The raw data suggest that this is
due to a small variation in the linear rate at which MLBs are gained when the first of a pair of double
roots is extracted by the single root Laguerre formula. In this particular case, a very slow constant gain
of 1.8 bits per iteration is interrupted by a premature loss of 0.6 bits, which triggers Ward’s stopping
criterion prematurely, reducing the number of correct decimal digits of the 21st root from 12.5 to 11.7
(also reducing the number of function evaluations, as shown in figure 5a). As this small error propagates
through the subsequent deflations, it gradually reduces the accuracy of the subsequent roots to the point
where the number of correct decimal digits of the poorest root drops from 8.8 to 6.1, as indicated in
figure 5b. This could be avoided by putting a lower limit on the loss needed to trigger Ward, but that
would reintroduce the problem which was solved in §7.1 by replacing ei > ei−1 by ei ≥ ei−1.

JLN stopping criterion #4 avoids this failure only by chance, i.e. because tiny differences between
the iterates (caused by faster termination of previous roots) happen to produce a Laguerre iteration
sequence that does not include a tiny premature loss of digits. This potential problem could be avoided
by replacing si+2 ≤ si+1 by si+2 ≤ si+1 − 1 in stopping criterion #4. But that would lead to triggering
difficulties in many other cases. The conclusion is that neither JLN stopping criterion #4 nor Ward is fail-
safe at extremely slow convergence rates that can occur when the single root Laguerre formula is applied
to a double root. But this is unlikely to happen in practice, when a sustained linear rate of convergence
would be used to trigger a switch to the double-root Laguerre formula.

The total number of function evaluations is 39 288 with Ward and 34 905 with JLN. The total number
of roots found is 8 + 12 + 16 + · · · + 84 = 920. Thus, the average number of function evaluations per root
is 39 288/920 = 42.70 with Ward and 34 905/920 = 37.94 with JLN. Thus, JLN reduces the number of
function evaluations per eigenvalue by an average of 4.76, compared with 7.32 for p2(z). In other words,
the advantage of JLN over Ward, in terms of efficiency, is reduced from 37.1% for p2(z)-type polynomials
to 4.76/42.70 = 11.1% for [p2(z)]2-type polynomials. The main reason is the more frequent need for JLN
stopping criterion #4, whose efficiency is no better than Ward’s. The reduced advantage of JLN is also
evident from the closer proximity between Ward and JLN in figure 5a compared with figure 4a.

Polynomials with several other distributions of known roots were also tested, as were polynomials
with random roots, for a total of approximately 739 polynomials of different degrees and levels of ill-
conditioning with a total of approximately 60 227 roots. All the tests confirm the findings of this and the
previous sections. Results are shown in the electronic supplementary material.

7.4. Root finding for general nonlinear functions
Igarashi’s, Ward’s and JLN’s stopping criteria are implemented in a general nonlinear root finder based
on Ostrowski’s square root iteration formula in the complex domain (e.g. [4]). (‘Igarashi’ now refers to the
criterion outlined in §3.2 with W = 0.01 for transcendental functions and W = 0.5 or W = 1.0 for algebraic
functions.)

Results are presented for the following sample functions:

f1(z) = sin z,

f2(z) = 2
(

1
tanh z

− 1
tan z

)
+

(
1

sinh z
− 1

sin z

)

and f3(z) = −1 + (cosh z − 96z−3 sinh z) cos z + 96z−3(cosh z − 48z−3 sinh z) sin z.
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Figure 6. Average number of function evaluations per root.

f1 is so simple that its exact roots are known. f2(z) = 0 is one of two purely transcendental frequency
equations for a beam with three equal-length spans on four pinned supports [16]. f3(z) = 0 is the
frequency equation for lateral vibration of a beam with flexible, pinned supports at each end [17].

Igarashi prescribes the use of W = 0.01 for purely transcendental functions like f1 and f2 but does
not make it clear which W-value should be used for functions like f3, which has both algebraic and
transcendental terms. A preliminary value of W = 0.01 is used for f3 because it is the least stringent and
therefore the most likely to trigger Igarashi. This is an attempt to avoid Igarashi’s failures to stop when a
root has been found, as experienced earlier for both matrices and polynomials.

Two hundred and fifty roots are extracted for both f1, f2 and f3. The average number of function
evaluations per root are shown in figure 6. JLN’s criteria can again be seen to be the most efficient,
improving the efficiency by an average of 29.3% and 50.5% compared with Ward and Iga, respectively.

In terms of accuracy, Iga, Ward and JLN provide the exact same values for all 250 roots of both f1,
f2 and f3. Inspection of the raw data shows that this is because (1) neither Iga, Ward nor JLN terminate
the iterations until convergence has been completed and (2) in all cases, the first converged iterate and
all subsequent iterates are exactly equal. No attempt was made to explain (2): the workings of the root
solvers are beyond the scope of this paper. The important conclusion here is that all three sets of stopping
criteria provide equal accuracy. Igarashi’s previous failures to stop are not encountered with functions
f1, f2 and f3.

Purely algebraic, non-polynomial functions are not common in practice but, for completeness, the
roots of the following such functions are found:

f4(z) = p1(z) − z5/2 =
±n/4∏
r=±1

(z ± (2r + j2r)) − z5/2.

p1(z) is the polynomial tested in §7.3.1. The subtraction of z5/2 is used as a simple means of making f4
non-polynomial without introducing discontinuities in the f4-derivatives needed by Ostrowski. f4 has n
roots, one for each of the n intersections between p1(z) and z5/2.

The results are shown in figure 7 for n = 8, 12, 16, . . . 80, with W = 1.0 used for Igarashi. f4 turns out
to be quite a challenge for Ostrowski’s method, which fails to find the nth root for n = 28, 44, 60 and 68,
regardless of which set of stopping criteria is used. The four peaks in figure 7a are due to the additional
iterations carried out in the fruitless search for the final root. The three topmost data points of each peak
are the peak values for Iga, Ward and JLN, in the order shown for n = 68.

The exact roots are unknown, so figure 7b gives the relative accuracy of the stopping criteria in terms
of log10|( f4)|max, i.e. the logarithm of the largest absolute f4-value at the roots. The exact f4-values at the
roots are of course zero. Any log10|( f4)|max-value less than −34 is set to −34 (the smallest achievable in
quad-precision).

As shown in figure 7b, the accuracy of all three sets of stopping criteria is virtually the same except
for (i) the tiny dip in the Iga line at n = 28, (ii) the huge dips in the Iga line at n = 72 and 80, and (iii) the
huge dip in the Ward line at n = 80. These dips do not signal any momentary improvement in accuracy.
Rather, they occur for the following reasons:

(1) when Igarashi is applied, Ostrowski is only able to find 21 roots for n = 28, 32 roots for n = 72,
and 35 roots for n = 80,

(2) when Ward is applied, Ostrowski is only able to find 35 roots for n = 80, and
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Figure 7. Nonlinear functions of type f4(z).

(3) when so few of the n roots are found, log10|( f4)|max becomes unrepresentatively small. This
is because the roots are found roughly in ascending order of modulus, and the size of each
log10|( f4)|-value is roughly proportional to the modulus of the corresponding root, so when only
the small-modulus roots are found, the large log10|( f4)|-values are missing.

These problems appear to be related to relatively weak global convergence properties of Ostrowski’s
method. They are therefore beyond the scope of this paper and will not be pursued. It is also not clear
why these problems are not encountered when JLN’s stopping criteria are applied.

Inspection of the raw data shows that Iga fails to stop, when a root has been found, on a total of 25
occasions: once, twice, three times, 10 times and 11 times for n = 28, 60, 64 and 72, respectively. With
W = 0.5 instead of 1.0, the total number of failures grows to 32. As before, the iterations are stopped
automatically by the root finder, so the failures do not affect the apparent accuracy of Iga. But, as
before, these failures are deemed to be unacceptable, thus disqualifying Igarashi’s stopping criterion
in its current form.

The average number of function evaluations per root is 12.391 with Ward and 9.070 with JLN for all
the root extractions related to figure 7. Thus, in this case, JLN reduces the number of function evaluations
per root by an average of 26.8% compared with Ward.

8. Summary
A new set of stopping criteria for iterative root finding and eigenvalue extraction has been presented,
which terminates the iterations immediately when no further improvement of the results is possible. The
new criteria, called JLN, have been tested numerically against the existing stopping criteria of Igarashi
[3,5], Grant & Hitchins [7] and Ward [9]. The test results were as follows:

(1) Grant & Hitchins tended to trigger prematurely, leading to multiple failures. Igarashi
occasionally failed to trigger, leading to multiple redundant iterations and uncertainty as to
whether a root had been found. Both were therefore rejected in their current formulations.

(2) Ward and JLN were the only criteria that did not fail. Both provided the maximum possible
accuracy of the results but JLN did so more efficiently, reducing the number of function
evaluations by one-third without any deterioration in the accuracy of the results.

(3) Ward’s criterion is by far the simplest and most easily implemented. So when simplicity is
more important than efficiency, Ward’s criterion is preferable. JLN’s criteria are preferable in
all other cases.

The range of testing reported here is of necessity limited and must be regarded as preliminary. But it
is considered to be sufficiently convincing to warrant further consideration of the JLN stopping criteria
when high efficiency is desired.

A numerical implementation of the JLN stopping criteria is available from the author on request.
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Figure 8. Snapshot of complex iterates zi−1 and zi .

Appendix A. Matching leading bits for complex iterates
The number of matching leading bits (MLBs) of the complex iterates zi−1 = xi−1 + jyi−1 and zi = xi + jyi

is called Si. It is derived from the modulus |ei| =
√

(xi − xi−1)2 + (yi − yi−1)2 of the complex iteration
increment ei = zi − zi−1 = (xi − xi−1) + j(yi − yi−1) in the same way that si is derived from the increment
|ei| = |xi − xi−1| of the real iterates xi and xi−1 (see §4.1 and Nikolajsen [14]).

Figure 8 shows an example of corresponding values of |zi−1| =
√

x2
i−1 + y2

i−1, |zi| =
√

x2
i + y2

i and

|ei| =
√

(xi − xi−1)2 + (yi − yi−1)2. Rotation of |ei| about zi−1 demonstrates graphically that the same value
of |ei| can result from differences in both length and direction of zi−1 and zi, confirming that Si will reflect
the differences in both modulus and argument of zi−1 and zi.

Just like |ei| = |xi − xi−1| must be corrected when xi and xi−1 reside in different octaves, so the

complex-based increment |ei| =
√

(xi − xi−1)2 + (yi − yi−1)2 must be corrected when it intersects an octave
boundary. For complex numbers, an octave is defined as the annulus in the complex plane bounded by
the circles |z| = 2k−1 and |z| = 2k, where k is an integer. This is a direct extension of the octave definition in
Nikolajsen [14] for real numbers. In figure 8, octaves 1 and 2 are separated by the circle |z| = 2exponent|zi−1|.
With the octave boundary thus defined, zi−1 is located in octave 1 as shown. For simplicity, zi−1 and zi
are ordered such that |zi−1| ≥ |zi|. (Si is unaffected by this ordering.) Thus, since zi is closer to the origin,
it will be located either in the same octave as zi−1 or in a lower octave. If zi−1 and zi are neither in the
same octave nor in adjacent octaves then they are so widely spaced that they have no MLBs in common,
resulting in Si = 0 (see Nikolajsen [14]). Thus, for Si to be non-zero, zi must be located either in octave 1
(zi−1’s octave) or in octave 2 (the next lower octave).

If line segment |ei| = zi−1zi intersects the octave boundary |z| = 2exponent|zi−1| then |ei| must be adjusted
to compensate for the fact that the distance between adjacent floating-point significand values in octave
1 is twice as large as in octave 2 (see Nikolajsen [14]). This is illustrated in figure 8 by assuming that point
zi is located first at z̃i, then at ẑi, and finally at z̄i. If zi = z̃i then line segment |ei| = zi−1zi does not intersect
the octave boundary, so no correction of ei is needed. If zi = ẑi, |ei| = zi−1ẑi intersects the boundary circle at
point a, so |ei| must be replaced by |ei| + aẑi. If zi = z̄i, |ei| = zi−1z̄i intersects the boundary circle at points
a and b, so |ei| must be replaced by |ei| + ab.

The length of the required line segment, aẑi or ab, can be found in the usual way based on the
coordinates of points a and ẑi or points a and b. The coordinates of points a and b are the solutions to
the simultaneous equations for the line through points zi−1 and z̄ or ẑi, and the boundary circle. If zi = z̄i,
the parametric line equation becomes

{
x = xi−1 + t(x̄i − xi−1)

y = yi−1 + t(ȳi − yi−1)

}
. (A 1)
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The circle equation is always

|z|2 = x2 + y2 = 22·exponent|zi−1|. (A 2)

a and b’s coordinates (x,y) can be found by substituting equation (A 1) into equation (A 2) to find
parameter t, then substituting t back into equation (A 1). The calculations are analogous when zi = ẑi.

If equations (A 1) and (A 2) have no solution (or one solution only) then line segment zi−1zi does not
intersect |z| = 2exponent|zi−1|, so no |ei| adjustment is needed. If there are two solutions then zi’s octave
can be identified as follows: if zi−1zi > zi−1b then zi is located in zi−1’s octave and |ei| must be replaced
by |ei|+ab. Otherwise, if zi−1zi > zi−1a then zi is located in octave 2, so |ei| must be replaced by ei + aẑi.
A numerical implementation is available from the author on request.

This procedure can be readily extended to finding the number of MLBs of two multi-dimensional
iterates zi−1 = (z1, z2, . . . , zn)i−1 and zi = (z1, z2, . . . , zn)i. But the resulting Si-values will be dominated
by the larger components of z, so the procedure should only be used when z is truly a vector whose
magnitude and direction are sought. If z is an array of equally important numbers then the number of
MLBs should be calculated for each component individually.
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