Lesson 6:
Modeling the Web as a graph

Unit 1:
Reviewing basic terms from graph theory

Rene Pickhardt

Introduction to Web Science Part 2
Emerging Web Properties
Completing this unit you should

• Be familiar with a set theoretic way of denoting a graph

• Know at least 4 different types of graphs

• Have practiced your abilities in reading and writing mathematical formulas
Let’s approach graph based models like text

1. Descriptive modeling
 - Understand the topology
 - Look at distributions of occurrence
 - Find measures to quantify what we have seen

2. Linear algebra
 - Maybe useful for predictions

3. Generative modeling
 - Find a process to generate the descriptive model
Definition of a graph

• A Graph $G(V, E)$ consists of two sets
 – V the set of vertices or nodes
 – $E \subseteq V \times V$ the set of edges
 – V is usually finite, thus is E

• A Graph is called undirected if:
 – $\forall e = (v, u) \in E \exists e' \in E : e' = (u, v)$
 – How it this expressed as a sentence?
Definition of a labeled graph

- A graph is called **labeled** if it is a **vertex-labeled** graph or an **edge-labeled** graph.

- A Graph $G(V, E)$ is called
 - **vertex-labeled** if there is a labeling function $l : V \rightarrow L$ with L a set of labels.
 - **edge-labeled** if the labeling function has the edges as a domain i.e.: $l : E \rightarrow L$

- Can you think of some examples?
Definition of weighted graphs

- A **weighted** Graph is an edge-labeled graph with a **labeling function** $\omega : E \rightarrow \mathbb{R}$ such that every label is a real number.

- The following choices for L are pretty common
 - $L = \mathbb{N}$
 - $L = \{0, 1\}$
 - $L = \{-1, 1\}$
Definition of a graph

- A Graph $G(V, E)$ is called if and only if

 - Property 1
 - $\exists U_1, U_2 \subset V$
 - $V = U_1 \cup U_2$
 - $U_1 \cap U_2 = \emptyset$

 - Property 2

 $\forall e = (u, v) \in E : u \in U_1 \land v \in U_2 \lor v \in U_1 \land u \in U_2$
Definition of a bipartite graph

- A Graph \(G(V, E) \) is called bipartite if and only if

 - Vertices have a disjoint split
 - \(\exists U_1, U_2 \subseteq V \)
 - \(V = U_1 \cup U_2 \)
 - \(U_1 \cap U_2 = \emptyset \)

 - Such that all edges cross the disjoint sets

\[
\forall e = (u, v) \in E : u \in U_1 \land v \in U_2 \lor v \in U_1 \land u \in U_2
\]
Thank you for your attention!

Contact:
Rene Pickhardt
Institute for Web Science and Technologies
Universität Koblenz-Landau
rpickhardt@uni-koblenz.de