

3CH00L
. ,:o-500ft

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
A DATABASE SYSTEM FOR MONITORING LABOR

COSTS IN A PUBLIC WORKS ENVIRONMENT

By

David Paul Dinwiddie

September 1987

Thesis Advisor: Norman R. Lyons

Approved for public release; distribution is unlimited.

T234163

UNCLASSIFIED
SECuR'Ty CiASS.fiCATiON OF Thi$ PAGf

REPORT DOCUMENTATION PAGE
la REPORT SECURITY ClASSiF 1CAT1ON

Unclassified
lb RESTRICTIVE MARKINGS

2a SECURITY Classification auTmORiTy

20 DEClASS'FiCAT.ON < DOWNGRADING SCHEDULE

3 DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited.

J ?ERFO»MiNG ORGAN'ZATiON REPORT NJMBER(S) S MONiTORiNG ORGANISATION REPORT NUV8ER(S)

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

60 OFFICE SYMBOL
(if applicable)

Code 54

7a NAME OF MONiTORiNG ORGANIZATION

Naval Postgraduate School

6< ADDRESS Gry Stttt and /IP Code)

Monterey, California 95945-5000

7b ADDRESS (C-fy. Sure and HP Code)

Monterey, California 95945-5000

}a NAME OF FuNDiNG. sponsoring
ORGANIZATION

8b OFFICE SYMBOL
(If apphcabJe)

9 PROCUREMENT INSTRUMENT lOEN TlF NATION NUMBER

8c AOORESS(Cify Srafe and Zif> Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TAS<
NO

WORK JNIT
ACCESSION NO

" "
T
.E imcludt Security Classification)

A DATABASE SYSTEM FOR MONITORING LABOR COSTS IN A PUBLIC WORKS ENVIRONMENT (u)

: PERSONA. AuTmOR(S)

Dinwiddie, David Paul

3j ->p
t OF REPORT

Master's Thesis
3D T'ME COVERED
FROM TO

14 DATE OF REPORT (Year Month Day)

1987 September
IS PAGE COoNT

120
'6 SuF^.f VENTARY NOTATION

COSAT, CODES
1 ElD GROUP SuB GROUP

18 SuBjECT TERMS (Continue on reverie if neceuary and identify by block number)

Database; dBASE; Public works; Labor; Civil Engineer;
Re imbursables; Decision Support; Cost allocation; Computer;
CEC

? £8S t RaC" (Continue on reverie if necessary and identify by blcxk number)

The Naval Postgraduate School Public Works Department must monitor labor hours
charged by employees to assist in managing the payroll and executing the budget.

Entering data into a local system, reconciling locally kept records with official
records, and transferring data to official systems is too expensive. This thesis
describes the design, analysis and implementation of a prototype system capable of
providing year-to-date labor information with sufficient detail and accuracy to

support the Public Works Officer in his budget execution endeavors. It also addresses
the problem of integrating the prototype with larger systems which currently require
manual input of the same data.

) DS"R'3U T GN AVAILABILITY OF ABSTRACT

§ -SC.ASSiFiEO'TjNL'MiTED D SAME AS RPT O QTiC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
:2a NAME OF RESPONSIBLE NO1V1OUAL
Prof. Norman R. Lyons

22b TELEPHONE (include Area Code)

(408) 646-2666
22c OFFICE SYMBOL
Code 54 Lb

DD FORM 1473.84MAR 83 APR ed't.on may be used until e«n*utted

ah other editions are obsolete

1

security classification of this page

UNCLASSIFIED

Approved for public release; distribution is unlimited

A Database System for Monitoring Labor
Costs in a Public Works Environment

by

David Paul Dinwiddie
Lieutenant, Civil Engineer Corps, United States Navy

B.S., Rose-Hulman Institute of Technology, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1987

ABSTRACT

The Naval Postgraduate School Public Works Department

must monitor labor hours charged by employees to assist in

managing the payroll and executing the budget. Entering data

into a local system, reconciling locally kept records with

official records, and transferring data to official systems

is too expensive. This thesis describes the design, analysis

and implementation of a prototype system capable of providing

year-to-date labor information with sufficient detail and

accuracy to support the Public Works Officer in his budget

execution endeavors. It also addresses the problem of

integrating the prototype with larger systems which currently

require manual input of the same data.

DS-7C,

THESIS DISCLAIMER

The reader is cautioned that computer programs developed

in this research may not have been exercised for all cases of

interest. While every effort has been made, within the time

available, to ensure that the programs are free of computa-

tional and logic errors, they cannot be considered validated.

Any application of these programs without additional

verification is at the risk of the user.

TABLE OF CONTENTS

I. INTRODUCTION 10

A. BACKGROUND 10

1. Funding Policy 10

2. Mission Areas 11

B. PURPOSE 15

C. RESEARCH QUESTIONS 15

D. METHODOLOGY 15

1. Problem Definition 15

2. Feasibility 16

3. Analysis 16

4. System Design 16

5. Detailed Design 16

6. Implementation and Testing 17

7. Conclusions 17

E. EXECUTIVE SUMMARY 17

II. PROBLEM DEFINITION 19

A. LABOR DATA INTEGRITY 19

1. Source Errors 19

2. Keypunch Errors 2

B. EXISTING CAPABILITIES 2

1. Base Engineering Support, Technical (BEST) . 2

2. Turbo Pascal System 21

3. AIMS System 22

4. LABORMON 22

C. PROBLEM STATEMENT 23

III. ANALYSIS 24

A. FEASIBILITY 24

1. Technical Feasibility 24

2. Economic Feasibility 24

3. Political Feasibility 25

B. ALTERNATIVES CONSIDERED 26

1. Formal Alteration of BEST 26

2. Stand-alone System 26

C. RECOMMENDED ALTERNATIVE 27

1. Stand-alone Advantages 27

2. Advantages as a BEST Standard 27

3. Advantages as an IDA Standard 28

D. LOGICAL MODEL OF SYSTEM 28

1. Data Flows 28

2. Major Inputs 28

3. Major Outputs 32

IV. DESIGN 34

A. DATA STRUCTURES 34

1. The Employee Relation 34

2. The Timecard (i.e. Labor Card) Relation . . 37

3. Jobs File 39

B. PROGRAM STRUCTURES 39

1. Control Structures 41

2. Data Entry Structures 41

3. Editing Structures 42

4. Report Generation Structures 4 3

5. Utility Modules 45

C. SOFTWARE SELECTION 46

1. High-Level System 4 6

2. Native Code Advantages 4 6

3. Integration 47

4. Maintenance 47

D. HARDWARE CONSTRAINTS 48

V. IMPLEMENTATION 49

A. USER ENVIRONMENT 49

B. SECURITY ISSUES 50

VI. CONCLUSION 51

A. EVALUATION OF PROTOTYPE 51

B. RECOMMENDATIONS FOR REFINEMENT 52

1. Responsibility for Maintenance 52

2. IDA Interface 52

3. Base Engineering Support, Technical 53

4. Labor Card Elimination 53

5. Timecard Integration 53

6. Historical Data 54

APPENDIX A — DATA DICTIONARY 55

APPENDIX B — USER'S MANUAL 58

APPENDIX C — SOURCE CODE 73

LIST OF REFERENCES 116

BIBLIOGRAPHY 117

INITIAL DISTRIBUTION LIST 118

LIST OF FIGURES

1.1 — Naval Postgraduate School Organization 12

1.2 — Public Works Department Organization 13

3.1 — A Top-Level Data Flow of the Previous System . . 29

3.2 — A Top-Level Data Flow of the New System 3

3.3 — A View of a Decomposed Data Flow of the New System 31

4.1 — Structure Chart 4

B.l — Main Menu 60

B.2 — The Add Labor Card Screen 60

B.3 — File Maintenance Menu 62

B.4 — Employee File Maintenance Menu 62

B.5 — Timecard File Maintenance Menu 64

B.6 — Job File Edit Screen 65

B.7 — Rate Adjustment Screen 68

B.8 — Backup Routines Menu 7

ACKNOWLEDGEMENTS

The author gratefully acknowledges the Triune God,

Father, Son and Holy Spirit who made possible my engagement

in this endeavor, the family of believers at Covenant

Presbyterian Church whose prayers supported this effort and

encouraged me to keep reasonable priorities and my lovely

wife Susan who played the role of "computer widow" during the

development of the prototype.

There were many people who helped in the development of

this project. Those deserving specific mention include

Public Works Officer LCDR Richard E. Burgoyne, Public Works

Data Processing Manager John T. Perry, Administrative Officer

Jeane Benton and Data Entry Clerk Ms. Cora Patricio who did

most of the testing of the prototype.

A great deal of background information was provided by

the NAVFAC BEST Project Manager Mr. Don A. Allen, Mr. Richard

W. McDermed of CESO, and the Naval Postgraduate School Deputy

Comptroller Mr. Robert Jay.

I. INTRODUCTION

A. BACKGROUND

1. Funding Policy

Current government funding policy which places

increasing fiscal responsibilities at lower levels of

management has brought not only increased flexibility to

middle managers, but also a requirement for more sophisti-

cated methods of decision support. To understand more fully

the implications of this flexibility, it is helpful to review

briefly the means by which local activities are funded.

Congress through the means of public laws (Appropria-

tion Acts) assigns funds to agencies for specific, previously

authorized programs. After these funds or appropriations are

released to agencies, the Office of Management and Budget

(OMB) apportions the funds to DoD and limits the obligations

which may be incurred during the fiscal year. Funds are then

allocated from DoD to the Comptroller of the Navy, from the

Comptroller of the Navy to CNO and from CNO to major

claimants for distribution to responsibility centers such as

Naval Postgraduate School. Responsibility centers are

authorized to incur obligations within a specified amount.

[Ref. l:pp. 1-4 to 1-11]

Operations and Maintenance, Navy (0&M,N) funds are

subdivided by the responsibility centers and given as

operating targets (OPTARS) to their cost centers. A cost

center is a subdivision of a responsibility center the

responsibility for which is generally assigned to one

Supervisor. A local management code (LMC) is a subdivision

of a cost center broken down by purpose or organization. At

Naval Postgraduate School, a significant source of funds flow

indirectly to the command through reimbursable jobs. A

reimbursable is a lateral flow of resources from other

10

Government activities to finance services provided by a host

in compliance with a host-tenant agreement between the

activities. The host identifies the source of funds used to

accomplish reimbursable work for the tenant with a four

character segment number (SEG)

.

2. Mission Areas

a. Naval Postgraduate School

The mission of the U.S. Naval Postgraduate School

is stated as follows:

To conduct, and direct the advanced education of commis-
sioned officers, and to provide such other technical and
professional instruction as may be prescribed to meet the
needs of the Naval Service; and in support of the forego-
ing, to foster and encourage a program of research in order
to sustain academic excellence. [Ref. 2:p. 6]

b. The Public Works Officer

In support of the school's mission, the Public

Works Officer (PWO) is responsible to the Assistant Director

of Military Operations (Fig. 1.1) for providing NPS as well

as various tenant commands with maintenance, utilities and

transportation support.

Partially because of provisions of the anti-

deficiency act prohibiting the over-expenditure of funds, the

PWO has staffed his organization (Fig. 1.2) with an Ad-

ministrative Officer (AO) who is tasked with administration,

coordination and direction of Public Works budget, finance

and organizational methods and procedures. The position

description of the Administration Officer identifies the AO

as being responsible for budget formulation and presentation

and for advising on the status and availability of funds as

well as the capability of the department to meet objectives

with available resources.

Resources available for support provided to Naval

Postgraduate School are constrained by the annual operating

targets. Resources available for those reimbursable services

provided to tenant commands are constrained by the amount of

11

DIRECTOR

OF

PROGRAMS

Note:

For

a

more

detailed

chart,

see

NAVPGSCOLINST

5400.2B
Cd
LU
—1
_l

o
en
\-

Ou

DEAN

OF

SCIENCE

AND

ENGINEERINGK
Z
LU
Q
Z
LU
1-

z
cr:

LU
Q.

1-

o
>
o

DEAN

OF

INFORMATION

AND

POLICY

SCIENCES

cc
LU
U
LL.
U_

o

cc

O

_i
CO
Z)

DIRECTOR

OF

MILITARY OPERATIONS

ASSISTANT

DIRECTOR

OF

MILITARY
OPERATIONS

Figure 1.1 Naval Postgraduate School Organization

12

IB
D

CD

Housing
Manager

-t-> k-

c ° Jr,

^ — ^r

c

c
c

cw l_ 1) u
"D

1_
3

CD
(T3

c

C

CD ^3

C

1— C
O

v/» at +j
U> r 03 i_

•-> m tr
(J

> r H—
*->

1 1

1

u.H—u </i O< ~ C
> A3

u

c

-§1

u
c _
<TJ O

'-UQ

+* vrt tg

<T3

a*

CM-

E°o
<

Figure 1.2 Public Works Department Organization

13

money provided by the tenant command to Public Works at the

beginning of the fiscal year.

It is of tantamount importance for the PWO to

know the dollar value of resources consumed to date by each

LMC and the value of resources charged to each SEG for

reimbursable jobs in the fiscal year to ensure that appro-

priate resources are maintained and managed efficiently, and

that reasonable policy decisions are made concerning the

priority assigned to reimbursable versus non-reimbursable

jobs.

c. Comptroller

The Naval Postgraduate School Comptroller is

tasked with monitoring the use of labor funds. The Comp-

troller keeps the official labor statistics, determines

policies such as that governing the assignment of appropriate

acceleration rates to be applied to various labor charges and

must account for any differences between hours reported on

labor distribution cards (i.e. those used to ensure that

particular appropriations are spent in areas for which they

were appropriated) and hours reported on time cards (i.e.

those used in processing the payroll) . The Comptroller also

must have access to valid information to effectively monitor

the execution of the labor budget. Although in theory the

Comptroller Office maintains the official labor figures, they

do so on WANG office equipment which currently lacks the

capability to transfer the data to the Authorized Accounting

Activity (AAA) at Naval Supply Center, Oakland. Therefore,

the actual timecards are mailed to Oakland where they are

keypunched for entry via card reader into a system known as

Integrated Disbursing and Accounting (IDA) . The WANG system

holds Memorandum Labor Records which while not official are

used to identify labor card data erroneously input into IDA

and to reconcile differences between time card and labor card

entries.

14

B. PURPOSE

The purpose of this thesis is to analyze, design and

implement a prototype system able to provide year-to-date

labor information with sufficient detail and accuracy to

enable the PWO to base policy decisions on the information

provided by the system. As a secondary objective, the thesis

will address the larger problem of integrating some of the

systems used by other entities to track the same data and

will recommend a course of action to be taken to eliminate

unnecessary redundancy of data input.

C. RESEARCH QUESTIONS

What data elements would have to be included in a labor
tracking system which would satisfy both Public Works
Department and Comptroller requirements?

How should these data elements be organized to minimize
insertion and deletion anomalies without sacrificing
acceptable retrieval times on Government-owned microcom-
puter equipment?

What is the impact of a Decision Support System on the
efficiency and effectiveness of the PWO?

What long term plans should be made to reduce data
redundancy?

Why have previous attempts to alleviate labor card
problems by computer systems been less than satisfactory?

What steps should be taken to minimize errors introduced
into the system?

What software should be utilized to enhance any future
attempts to integrate the various systems?

D. METHODOLOGY

1. Problem Definition

Interviews with key personnel from the Public Works

and Comptroller Departments were assembled, condensed and

reworded as a problem definition including a statement of

scope and objectives which was reviewed, edited and agreed

upon by each office. A simple prototype microcomputer system

using flexible fourth-generation software was promptly

introduced to assist with the proper identification of

requirements.

15

2. Feasibility

The feasibility of the proposed system was evaluated.

Previous attempts to automate the labor tracking function

were examined. Interviews were conducted to determine

shortcomings of the previous systems. Differences among the

various programs were highlighted to find possible causal

relationships and to illustrate the technical, economic and

political feasibility of the proposed system.

3. Analysis

The current systems used to track NPS labor spending

was analyzed in depth. A physical model of the present labor

tracking systems was made. From the physical model and some

additional information gleaned in interviews of personnel, a

more optimal logical model was derived. This logical model,

expressed by means of a data flow diagram and data dictio-

nary, was the foundation for design.

4. System Design

During system design, several high-level physical

alternative solutions were considered. This high-level

design was motivated by a search for a general method which

would provide a reasonable solution to the defined problem.

A system flow diagram with perceived costs and benefits of

each system was constructed.

5. Detailed Design

A structure chart and mini-specs were generated from

the system flow analysis. The prototype was improved module

by module as coding for each became complete. Testing of

completed modules was performed concurrently with development

of new modules. This was done to ensure that a complete

working system would result from this thesis research, even

if the entire requirement was not fully satisfied by the end

product.

16

6. Implementation and Testing

The most extensive testing of new modules was

performed by the Public Works Department Administration

Section, with reports and results being fed to the Public

Works Administrative Officer as well as Comptroller Person-

nel.

7. Conclusions

The thesis culminates with an evaluation and

description of the status of the developing system with

specific recommendations relative to its future refinement.

E. EXECUTIVE SUMMARY

Employees of the Public Works Department at NPS, the NPS

Comptroller and contract personnel in Oakland manually enter

employee, labor and job data into four independent computer

systems. This results in excessive labor effort not only to

enter redundant data, but also to reconcile discrepancies

among the various databases.

The PWO does not receive information from the Comptroller

in a manner timely enough to manage the Public Works payroll

budget as closely as he desires. As a result, the Public

Works Department uses data which they compile internally.

Since most of this work is done manually, it lacks the

reporting flexibility and the data integrity necessary to

provide sufficient support to the PWO. Because of the

methodology employed in the current system, errors are

frequent and difficult to identify.

The goal of this thesis is to develop a labor cost

tracking system for the PWO which has sufficient flexibility

to be adjusted as additional user requirements evolve. The

prototype was implemented concurrently with the present

system and will continue to run concurrently with it until

complete confidence in the automated system is gained. The

cost of the system is under $3500. The Public Works Data

Processing Manager estimates direct local savings resulting

17

from the reduction of data entry redundancy to be at least

$7500 annually. It is difficult to quantify additional

savings which will result from more reliable payroll decision

support provided to the PWO. It is reasonable to conclude

that the system is likely to pay for itself in approximately

six months of implementation.

18

II. PROBLEM DEFINITION

A. LABOR DATA INTEGRITY

Since the purpose of this thesis is to provide the PWO a

tool for monitoring funds status by LMC and SEG, and since

this tool may be used to influence policy decisions, it is of

primary importance to insure the accuracy of the data entered

into the database. In this regard, due consideration must be

given to the types of errors which are most likely to occur

and to the means by which their occurrence could be

minimized.

1. Source Errors

More often than might be expected, incorrect Social

Security Numbers, Job Numbers or hours worked entries appear

on the labor cards turned in by employees. To expect an

entry clerk to check each entry of some eighty-five labor

cards submitted each day would be unreasonable. Ideally, if

the computer could have a set of rules which would allow it

to identify timecards which appear to be incorrect, many of

these errors could be caught. If each Social Security Number

was sought in a file of current employees and each Job Number

was sought in a file of current jobs, bogus SSN's and Job

Numbers could be identified and corrected prior to the

addition of the suspected record to the memorandum file.

This system would not be fail-safe in that if an

incorrect but currently active job number were entered, it

would not be rejected. If a valid SSN were entered, however,

a suspected error reading would be generated with the daily

report when the program would realize that greater than eight

regular hours had been entered for an employee on one day.

This system also promises to be helpful in identifying typing

errors on entry prior to any corruption of the database.

Preliminary experience with the prototype indicates that this

19

error-checking system is highly effective in increasing labor

card data integrity.

2. Keypunch Errors

Errors are currently introduced into the system when

employee labor card data is incorrectly keypunched. The

Public Works Data Processing Manager estimates at least two

man-days per month are required to find and correct errors

introduced by keypunching alone.

This type of error could be eliminated if the Public

Works memorandum records already existing in machine-readable

form were to be transmitted to Oakland. It would seem that

the most reasonable transfer could take place via telecom-

munications, but even transfer of magnetic media would

eliminate this type of error.

B. EXISTING CAPABILITIES

1. Base Engineering Support, Technical (BEST)

The Base Engineering Support, Technical (BEST) system

was installed to provide the Public Works Department with

information support in the areas of facilities maintenance,

utilities, transportation, and family housing. The main-

tenance function includes modules which assist the PWO in

evaluating the effectiveness of various cost centers. More

specifically, these modules indicate how a cost center or

even specific employees are performing with respect to

Engineered Performance Standards (EPS) . BEST also evaluates

the accuracy of cost estimates.

To provide these functions, BEST requires the entry

of actual job data in a format different from that used on

the labor cards. Hence, this information is entered into

BEST separately at the shops level.

BEST was not initially designed to support the PWO in

budget execution. The module which would make this possible

was not included in BEST'S initial development because a

similar function was to be included in the BASIS financial

20

information system expected to be operational in the mid

199 O's. Currently, the actual hours expended on a given job

or job category as per BEST is reported in a separate system

without significant error checking. No convenient mechanism

exists to allow legitimate comparisons between total effort

as per BEST and total effort as per the labor cards. The

level of confidence in the actual hours expended on a job as

per BEST must be significantly improved. The PWO would like

to integrate the BEST labor input with the labor card input

and thereby improve the integrity of the BEST system and

eliminate redundancy.

2. Turbo Pascal System

In June of 1986, a Public Works employee developed a

labor distribution and accounting system in Turbo Pascal for

an IBM-PC. The design of the data structures for the system

showed insight into the complexity of the problem. The

system established a text file for employees, labor cards and

jobs.

Although the system represented a significant

improvement over the completely manual system, it was

deficient in several key areas. The text files were

manipulated by the Wordstar word processing program. This

necessitated the training of entry clerks in the usage of

Wordstar. Input files had to be formatted in a strict

fashion. Stray characters caused frequent program

malfunctions. Because the files eventually grew to be large,

it was difficult to find and change entries, hence, duplicate

entries and omissions were common and usually progressed

through the system undetected. Because of the way the

databases were joined, the program took several hours to

generate the equivalent of a Fund Code Report. Documentation

of the program was sparse (only three pages) , and procedures

were cumbersome, making the code difficult to maintain,

especially after the employee left for another job.

21

3. AIMS System

The Comptroller Department maintains their memorandum

accounting records on a WANG computer using the AIMS software

package. AIMS is a relatively user-friendly off-the-shelf

database program. Transactions are entered into the AIMS

system when four Comptroller Department entry clerks copy

data from labor cards filled out by NPS employees assigned to

departments other than Public Works. The timecards are then

sent to Oakland for keypunching and entry into the IDA

system.

Each of the local records is deleted from the WANG

system when the record appears on the IDA Transaction

Listing. The reconciliation process is very time and labor

intensive and would be unnecessary if the transaction data

entered at the local level were transferred to the IDA system

in machine readable form. The current capabilities of the

WANG system preclude this alternative.

Although the AIMS system supports the Comptroller to

some degree, it provides no support for Public Works.

4. LABORMON

The LABORMON System was developed by thesis students

Donald H. Hildebrand, Jr. and Andrew Marafino, Jr. in early

1987. LABORMON is a system based on Lotus 1-2-3 spreadsheet

macros and templates which was designed to help lower-level

managers manage their payroll. It suffered from the fact

that 1-2-3 does not support the relational model. Hence, the

software could not support very sophisticated relations and

could not easily be altered to meet long-term Comptroller

requirements. The program employed very little error

checking, was never implemented and was abandoned by the

Comptroller Department because of an absence of top-

management interest and maintenance programming support.

22

C. PROBLEM STATEMENT

The Naval Postgraduate School Public Works Department

must monitor labor hours charged by employees to assist in

managing the payroll and executing the budget. The processes

of entering data into a local system, reconciling locally

kept records with official records, and transferring data to

official systems are too expensive.

The absence of significant error checking and an

unfriendly user interface is blamed in part for the errors

which are often introduced into the memorandum records.

These errors sometimes propagate into the official records

necessitating tedious activities of search and correction.

There is a lack of confidence in the accuracy of current

labor statistics as kept in the memorandum records which

limits the level of support the system is able to provide.

23

III. ANALYSIS

A. FEASIBILITY

1. Technical Feasibility

The technical feasibility of a computerized labor

tracking system is readily established by considering similar

applications. Accounting applications were some of the first

historically to be automated successfully. Indeed, at least

four automated systems exist now which attempt to perform the

labor tracking function. Each was designed by a user to do

the tracking function in addition to other specific functions

which varied by user. Each system was developed indepen-

dently to solve a particular need without much thought to

integration with other systems. The major shortcomings of

the present systems have already been discussed. None of

those shortcomings appear to be beyond the realm of what is

technologically possible. The absence of maintenance support

for programs previously developed can be corrected in the

present case by assigning maintenance responsibility for this

program to the Data Processing Manager in the Public Works

Department. The primary concern of this thesis is to improve

the integrity of the PWO memorandum accounts. Subsequent

actions should involve integrating the memorandum accounts

with the labor data input into the IDA system and with BEST.

Conversations with project managers for BEST and data

processing personnel in Oakland indicate that both systems

are capable of reading ASCII files via telecommunications.

Hence, the project is technically feasible.

2. Economic Feasibility

The Data Processing Manager for Public Works

estimates that monthly clerical effort in entering labor card

data into the computer system will save approximately 75

person-hours per month. At a cost of $10 per person-hour,

24

this represents a savings of $750 per month. The cost of a

Zenith-248, software, and modem at GSA prices is approxi-

mately $3500. The Public Works Department employs temporary

personnel to assist with clerical work. Hence, the system

will pay for itself in six months in clerical savings alone.

It is difficult to determine the dollar value which should be

assigned to the fact that the PWO will have more accurate

data on which to base policy decisions. As is often the case

in information systems, the chief benefits of this system may

well be intangible.

3. Political Feasibility

To be complete, political feasibility has to be

addressed at two levels. First, the political feasibility of

the module for Public Works memorandum accounts should be

examined. The political feasibility of a more ambitious

integration of programs is more difficult to ascertain, but

should be evaluated.

The political feasibility of developing a module for

Public Works memorandum accounts is established. The PWO

requested that such work be undertaken. The permanent

clerical staff is very supportive of the change. The only

possible political problem for the development of this system

is the possible objection of the Comptroller if he perceives

direct data entry from Public Works to the AAA as a threat to

a part of his mission. In that event, a requirement that the

information be channeled through the Comptroller's Office

rather than being sent directly to Oakland should calm any

Comptroller fears of Public Works encroachment.

The political feasibility of integrating the local

memorandum accounts system with the BEST system and the IDA

system is much less likely. The problems of assigning

responsibilities for maintaining the system, identifying

additional appropriate data elements to be included and

updating the system. There is no single individual or

25

command under the present structure which can take the

overall responsibility for implementing and maintaining such

a broad system which influences such a wide variety of people

and commands. Though it may be politically infeasible, a

single integrated or distributed database which could be

accessed by each entity having a need for access would be the

most efficient and cost-effective solution.

B. ALTERNATIVES CONSIDERED

1. Formal Alteration of BEST

Keep the present system and request that the Civil

Engineer Support Office (CESO) in Port Hueneme alter BEST to

more completely support the labor distribution function. The

advantage of this is that no direct investment is involved.

The disadvantage is that this action does nothing to help the

duplication of effort problem in the short term. It is also

questionable as to how responsive CESO would be to such a

request given that the integration of BEST into a larger

BASIS system which would include the financial functions is

not expected to be on-line until the mid 1990' s.

2. Stand-alone System

Develop a comprehensive single-user microcomputer

based prototype system which automates the keeping of Public

Works memorandum records for labor tracking purposes and

which can share data with BEST via floppy disk. Under this

alternative, arrangements could be made with Naval Finance

Center, Oakland to send the labor data via telephone modem in

standard ASCII format for use in data entry to IDA. This

would eliminate costs associated with shipping the labor

cards, keypunching the data and identifying discrepancies.

This system would utilize one of the Zenith-248's recently

acquired by Public Works. The cost of the system would be

extremely small (about $3500) and if the PWO finds the system

to meet his needs, a copy could be sent to CESO with a

26

request that future versions of the BEST system incorporate

the salient features of the prototype.

Since a subset of BEST is currently being sized down

to microcomputers for smaller installations which do not need

or cannot afford the larger Honeywell system, the prototype

functions might be integrated into the downsized system. If

the module was well received, additional integration with the

larger Honeywell-based BEST system would be justified.

C. RECOMMENDED ALTERNATIVE

Since the actual labor data is identical to that which is

needed by Public Works to create the local memorandum records

and the labor distribution report, alternative 2 is recom-

mended.

1. Stand-alone Advantages

Actual employee, labor card and jobs data should be

entered into a Zenith-248 directly from employee and job

records and each employee's daily labor distribution card.

The microcomputer could manipulate and transfer the data in

machine readable form to IDA for labor distribution purposes.

The source code would be relatively easy to maintain. Future

enhancements such as automatic generation of overtime

reports, other standard queries of the database and com-

munication with BEST to support statistical analysis using

Engineered Performance Standards could be added to the system

by the Public Works Data Processing Manager.

2. Advantages as a BEST Standard

Should a future version of this system be accepted as

a standard for BEST, most of the advantages above would

accrue. The disadvantage of the system being somewhat less

flexible would be more than compensated for by the trans-

parent integration of the data into the BEST database. The

system would then be standardized and available at all BEST

locations reducing the need for displaced Public Works

employees to learn new stand-alone procedures at every site.

27

3. Advantages as an IDA Standard

If this system were expanded to support Comptroller

requirements, its introduction to lower echelons of command

would be consistent with recent initiatives to make lower

level managers more responsible in managing the payroll.

This system has the potential to serve not just Public Works,

but other sub-activity groups also. Further research is

necessary, especially concerning the concept of audit trails

as well as specific additional information support which may

be required by other subactivity groups before this par-

ticular standard could be defended.

D. LOGICAL MODEL OF SYSTEM

1. Data Flows

Figure 3.1 illustrates the data flow of the system

used by Public Works prior to the introduction of this

prototype to maintain their local memorandum records.

Figure 3.2 shows the data flow of the new system as imple-

mented with this prototype. Figure 3.3 is the first

decomposition of the data flow of the new system. The system

has five major inputs and produces four major outputs.

2. Major Inputs

The major inputs include the job order information

from the public works accounting technicians, the completed

labor cards from the shops, civilian employee information

from the Civilian Personnel Office (CPO) and a transaction

listing and discrepancy report from the NPS Comptroller. A

more rigorous explanation of the processes of the new system

is found in the section covering program structure where each

module will be discussed in some detail. Additional details

can be gathered by examining the source code in Appendix C.

Job order information from the public works account-

ing technicians is generated whenever a new job order number

is authorized or whenever a completed job is closed out. A

copy of the new job authorization or closeout is sent to the

28

PublicWorks
Accounting
Technicians

Civilian

Personnel
Office

Monterey

JObOrder Information

Bi-weekly Labor Cards

Comptroller
NPS

Figure 3.1 A Top-Level
Data Flow of the Previous System

29

PublicWorks
Accounting
Technicians

Civilian

Personnel
Office

Monterey

Comptroller
NPS

Figure 3.2 A Top-Level
Data Flow of the New System

30

Public Works
Accounting
Technicians

T

PublicWorks
Shops

7

Job Order

Information

Completed

Labor

Sheets

Civilian

Personnel
Office

Monterey

Civilian Employee

Pay Data

Fund Code

Report

(machine readable)

Daily Labor

Report

I

Fund Code

Report

Fund Code

Report

Comptroller
Oakland PublicWorks

Officer

Comptroller
NPS

Figure 3.3 A Decomposed
Data Flow of the New System

31

to the entry clerk. This information is used to trigger the

entry or deletion of records to the jobs file.

A daily labor distribution card is filled out by or

for each wage grade Public Works employee. Entries into the

system from these cards include date worked, Social Security

number, and the number of regular and overtime hours charged

to each job worked that day.

Civilian employee data including notification of new

hires, promotions, pay adjustments and the like are reported

to the system from CPO. A copy of all official documents of

this nature is sent to the entry clerk.

The transaction listing and discrepancy reports are

reports which AAA in Oakland sends to the NPS Comptroller who

passes them on to Public Works. The transaction listing is

used to check for keypunch errors. The discrepancy report

indicates inconsistencies between the number of hours worked

as reported by the labor cards and the number of hours

reported on the timecards used to compute the payroll. This

report can help to locate source errors in the data.

3. Major Outputs

The major output of the Public Works Labor Tracking

System is the Fund Code Report. The Fund Code Report is a

series of three reports which sums regular hours, overtime

hours, total hours unaccelerated regular, overtime and total

charges per job and groups totals by LMC for all non-

reimbursable jobs. It also calculates accelerated charges

for reimbursable jobs and groups totals by LMC and by SEG.

Reimbursable charges against jobs associated with certain

LMC's are accelerated by a higher acceleration rate than

other reimbursable charges. The program allows for the

acceleration rates and the set of LMC's associated with the

higher rate to be changed.

The Fund Code Report is run every two weeks. It can

include hours and charges assessed between two arbitrary

32

dates for which labor card data is contained in the database.

This report is used by the PWO to set labor policy and by the

NPS Comptroller to monitor the memorandum labor accounts.

The Daily Labor Report is a brief echoing of the

day's labor card entries. An exception report is run prior

to the generation of the daily report to identify abnormal

entries for use in correcting any erroneous source data

before such data is promulgated. The daily report lists and

totals the day's hours and charges.

Other reports available include an alphabetical

employee listing and a listing of active jobs with associated

LMC's and SEG's.

33

IV. DESIGN

A. DATA STRUCTURES

The small number of data elements used in developing the

desired program are deceiving in that complex relationships

exist between many combinations of the elements. To

illustrate, a logical database will be constructed in which

all relations are normalized to Third Normal Form (3NF) and

inherent operational problems of a normalized form as well as

anomalies resulting from an unnormalized form will be

considered.

1. The Employee Relation

The employee relation is composed of various data

elements related to employees. The following attributes will

be considered initially:

SSN Social Security Number of employee

NAME Name of employee

REG_WAGE Regular hourly wage of employee

GRADE Paygrade/step of employee

WC Work Center to which employee is
assigned. (Aids in locating employee.)

CLOCKCODE Aids in locating employee.

Since there are no blank fields for any employee,

First Normal Form (INF) is achieved. Since SSN uniquely

identifies each record in the relation, and since each

attribute of the relation is fully functionally dependent on

SSN, Second Normal Form (2NF) is achieved. However, REG_WAGE

is functionally dependent on GRADE, hence, Third Normal Form

(3NF) is not achieved because of transitive dependence. To

achieve 3NF, the attributes would have to be decomposed into

two files as follows:

34

Employee file : Pay table file:

SSN GRADE
NAME REG WAGE
GRADE _
WC
CLOCKCODE

The problem becomes more complicated when we consider

the requirement to be able to produce a job history. Some

method of recording job history is required in this system

because of the dynamic nature of employee data compared to

the static nature of charges reported on a labor card.

Suppose an employee earns $10 per hour on Monday, but has his

wage increased to $11 per hour on Tuesday. Suppose further

that this employee charged eight hours to a job on Monday and

eight hours to the same job on Tuesday.

The labor tracking system, when queried about the

employee's wage on Tuesday should show $11, but when queried

about the employee's total charges to the particular job in

question should indicate $168, $80 of which was charged on

Monday and $88 of which was charged on Tuesday. The question

of the manner in which a date field should be properly stored

while keeping the data files in Third Normal Form is somewhat

problematic from a practical point of view.

Assume that DATE is included in the list of entities

to be tracked. REG_WAGE is now dependent on GRADE as well as

the new element DATE. This forces the key to the Employee

file to become DATE + SSN. NAME is now no longer fully

functionally dependent on the key (assuming that people don't

change their names) . Thus, further decomposition is

necessary to normalize the database structure. The func-

tional dependency among the basic data elements is illus-

trated below:

SSN -> NAME
DATE + SSN -> GRADE
DATE + GRADE -> WAGE

GRADE is functionally dependent on DATE and SSN

because GRADE can vary with time and worker to worker. WAGE

35

is functionally dependent on DATE and GRADE because federal

pay tables change with time as new legislation is introduced.

After decomposition, the normalized files should resemble the

following: (keys are underlined)

Employee file: Grade file: Pay file:

SSN SSN DATE
NAHE PATE GT^ABE
WC GRADE REG WAGE
CLOCKCODE ~

The practical problem of performing a retrieval under

such a normalized form works against the user requirement for

a quick and responsive system. Suppose labor card data

exists for a given date which is to be linked to other files

to retrieve the employee's regular wage (REG_WAGE) for that

date. Using SSN and DATE from the labor card to key the

Grade file, the appropriate GRADE can be found. Using DATE

and GRADE to key the Pay file, REG_WAGE can be determined.

Thus, two retrievals would be required to answer the query.

The seek time required to perform such functions on a

microcomputer may preclude the use of this level of decom-

position in practical implementations having large volumes of

data and a large incidence of this kind of query. Another

problem of the above structure is that it requires one Grade

file record for each employee for every day of the year on

which that employee worked.

Furthermore, the Public Works Department is not

concerned about entering the entire pay table each time a

change occurs for their small number of employees. Neither

are they generally interested in assembling a complete job

history by date for each employee. For these reasons, the

employee data structure used in the prototype system is

simplified to encourage acceptance by Public Works as a

workable memorandum system.

If this system is to be refined to become a standard,

it is strongly recommended that the 3NF data structure which

36

includes DATE be implemented. The pay tables could be

distributed via floppy diskette or on a Government on-line

bulletin board to preclude each activity from having to enter

the complete federal pay scales each time they change. If

pay increases are across the board percentage increases and

the activity had possession of dBASE-III PLUS, the activity

could update a pay scale file quite easily using dBASE's

"REPLACE" statement. A restructuring of the database

structures could be implemented which would have little

effect on the interface or workings of the prototype model.

The physical data structure implemented on the

prototype is illustrated below:

Employee File:

SSN
HEME
GRADE
REG WAGE
WC ~
CLOCKCODE

The anomaly associated with this form is that the

regular wage (REG_WAGE) associated with a given GRADE is lost

if the only Public Works employee having that GRADE is

promoted or terminated. This anomaly is of little concern to

Public Works as they have fewer employees than there are

grades and have no real desire to reflect this relationship

in their system. It was deemed in the best interest of

Public Works to relinquish the absence of this anomaly for

better system performance.

2. The Timecard (i.e. Labor Card) Relation

The labor card relation must contain the information

reported on the daily labor card including employee SSN, job

order numbers, regular hours worked on each job, overtime

hours worked on each job, and the date. Each employee can

charge hours to one or to many job numbers. The total of all

regular hours charged per day cannot exceed eight. In the

logical model, the relation resembles the following:

37

Timecard File:

DATE

JO"ENO (Job Number)
REG HRS (Reg hours charged this DATE by SSN to JOBNO)
OTHRS (Overtime hours)

The physical model differs from the logical model in

that the LMC, SEG, REG_WAGE, and OT_WAGE fields are added to

each record. This violation of normalization is justified in

the prototype in part because the design of the employee

relation does not include a job history as previously

discussed. The history is kept in the timecard file so that

employee wage changes and terminations do not affect queries

involving jobs worked at the previous wage or by the former

employee.

Because overtime wage is not simply 1.5 times regular

wage in all cases, and because an employee's overtime wage

can vary drastically as a result of a temporary detail to

another job, the program determines the appropriate overtime

wage for the date the labor card was entered and saves it to

the timecard file. The other reason these fields are

included in defiance of normalization rules concerns the

unacceptable speed at which dBASE-III PLUS (even when

compiled with Clipper) executes a join command on large

databases. For each record of the first of two databases to

be joined, the program sequentially retrieves each record of

the other database as part of the process. Hence, if the

first database has M records and the second has N, the

performance is on the order of M times N. This system, were

it to use joins to bring all relevant data into one file,

would use two separate joins. With E records in the employee

file, T records in the timecard file and J records in the

jobs file, the performance would deteriorate to a sluggish

order of the sum of E times T and T times J.

Conversely, with these fields permanently in the

timecard file, no joins are necessary. Since the employee

38

and job files are indexed and must be queried to verify the

validity of data input, it is much easier and less time

consuming to program the join routine as part of the data

input routine. Thus, wage rates and LMC's are added to the

timecard file during input although this process is trans-

parent to the user. This scheme also enables the built-in

dBASE report generator to be used as an ad hoc query tool as

most relevant data is in one file with no need for further

file manipulation. It also allows indexes using the SEG or

LMC attributes to be engaged in a more straightforward

manner. (i.e. No index is required on a field in a database

linked by a SET RELATION command.) Disadvantages of this

approach include an increase in the required amount of

secondary storage space and the introduction of contradictory

information in the timecard SEG and LMC fields if a change is

made in the Jobs file.

3. Jobs File

The Jobs file is consulted during labor card entry to

ensure that a current job order exists for the job number

being entered, and to identify the associated LMC and SEG.

Thus, the file structure is as follows:

Jobs File:

JOBNO

SEG

B. PROGRAM STRUCTURES

The prototype was assembled in a modular structure

with extensive parameter passing to support a low degree of

coupling between highly cohesive modules to facilitate

further program refinement and maintenance. Figure 4.1

illustrates the inter-module relationship. Each module is

briefly described by function below.

Additional details can be ascertained from examining the

commented source code included as Appendix C.

39

Figure 4.1 Structure Chart

40

1. Control Structures

It was determined that the new system would have to

be easy to use to be accepted. Thus, an entirely menu-driven

system was conceived. The control structure to support this

philosophy uses a program module to control each full-screen

menu by displaying menu choices, obtaining user preferences

and calling appropriate submodules. Full-screen menus are

used to select from among various functions. In contrast,

line menus which generally appear on screen line 23 are used

to obtain information relative to a particular intra-module

function and are generated by the module corresponding to the

function being performed.

Modules which generate full-screen menus include

MAINMENU which generates the opening menu and FILEMENU which

generates the submenu for editing files. BACKUP generates

the submenu for backing up and restoring the database files

and also absorbs the code for the backup functions because of

its brevity. Other modules although they do not generate

full-screen menus, operate as basic control modules by

coordinating submodules in the execution of more complicated

functions. These modules include TIMEADD2 which coordinates

the entry of labor data and FCREP which coordinates the

generation of the three Fund Code Reports.

2. Data Entry Structures

Because the majority of human time with the computer

labor tracking system is spent entering labor card data, much

thought was invested in designing the labor card entry

modules to assist in early error detection and to be pleasant

to use.

TIMEADD2 generates the entry screen, displays a line

menu which allows the user to enter a date, Social Security

Number or job number and accepts and checks the date of the

labor data to be entered. TAENTEMP ensures that the Social

41

Security Number entered on the labor card corresponds to one

in the EMPLOYEE file and fetches the corresponding regular

wage rate.

After a valid Social Security Number has been

entered, TAENTJOB is called to verify the presence of the job

number in the JOBS file and to fetch the corresponding LMC

and SEG.

3. Editing Structures

The employee file undergoes changes when an employee

is added, deleted or experiences a change in pay. The

EMPEDIT module provides a convenient mechanism to find a

particular employee record, to skip sequentially through the

file in either direction, to make changes to information

stored in the file, to add new records to the file, and to

delete and recall individual employee records. To accomplish

its function, EMPEDIT calls EMPDISP which displays employee

database values on the screen and EMPDISPM which displays

memory values on the screen. Requested changes are made in

memory and the user asked for confirmation prior to saving

changes to the database to increase system integrity.

The jobs file is edited in much the same way by the

JOBEDIT, JOBDISP and JOBDISPM modules. JOBEDIT has a trap

which prohibits the user from entering two records having the

same job number.

Similar functions are performed in the timecard

database by the TIMEDIT, TIMDISP and TIMDISPM functions

except that the addition of new records is not allowed. Adds

should be performed via the TIMEADD2 module where more

extensive error checking exists. Since timecard has a

compound key, TIMEADD2 prompts for each portion of the key

element by element to facilitate the location of a particular

timecard record. Individual records can be accessed this way

to correct errors prior to the princing of the daily report.

42

4. Report Generation Structures

The prototype system produces two major types of

reports. Reports which primarily reflect database records

will be identified as lists. Reports which consist primarily

of information derived from one or more records in the

database will be identified as derived reports.

The DAILY module produces a list which echoes labor

card data corresponding to a particular day and generates an

exception report of daily labor entries in which errors are

suspected. The exception report is derived by sequentially

visiting each record in the employee file and summing the

regular and overtime hours charged on the date in question by

each employee. A suspicious circumstance is identified if

any of the following conditions are met:

The employee is a white-collar (GS) employee whose total
regular hours charged differs from the number of regular
hours in the pay period.

A GS employee charges overtime hours.

A blue-collar (WG) employee charges more or less than
eight regular hours.

A WG employee charges more than two overtime hours.

When a suspicious circumstance is identified, the

employee's name, Social Security Number, Grade, Work Center,

and the total regular and overtime hours charged on that

particular date is listed in the exception report. A listing

in the exception report does not necessarily indicate that

there is an error in the data. There are times for instance

that GS employees work overtime. The exception report will

identify employees for which no labor card was received as

well as employees whose labor card data was inadvertently

entered twice or who entered an incorrect number of regular

hours. The report prints key information from which the

labor card can be easily accessed and corrected by the

TIMEDIT module. The Work Center is printed to facilitate

contact with the employee for correction of errors made on

the card.

43

The FCREP module is the control module which

coordinates the generation of three derived reports for use

by management. The first displays the total number of

dollars charged to each non-reimbursable job and indicates

total charges to each LMC. It calculates straight costs

(i.e. no acceleration is added as these costs are used in

managing to payroll at the PWO level)

.

The second report, generated by the REBYSEG module,

shows the labor dollars charged to reimbursable jobs and

indicates total charges to each SEG. These costs are

accelerated. For reimbursable jobs having an LMC of F1C1 or

F1F1, the acceleration factor is slightly higher than for

reimbursable jobs assigned other LMC's. The acceleration

amount added to a job is determined by totaling the hours an

employee worked on the job and multiplying this sum by the

employee's regular wage rate times the appropriate accelera-

tion factor. Acceleration factors are determined by the NPS

Comptroller and vary with time. As a result, the program

allows the user to enter the current acceleration factors and

identify the LMC's to which the higher factor applies without

changing the source code.

The third report, generated by REBYLMC, reports the

same accelerated labor charges for reimbursable jobs as the

second report but delivers the total charges assigned to each

LMC. This report is of more interest to the NPS Comptroller

as it provides information useful in determining new

acceleration rates.

Lists are generated by the LOCDUP, EMPLIST, and

JOBLIST modules. LOCDUP searches the employee and jobs

databases for duplicate entries and prints any duplicates

found. LOCDUP is especially useful if some data is trans-

ferred from another machine-readable medium, as in the case

of the Public Works Pascal Labor Tracking System.

44

EMPLIST produces an alphabetical listing of all

Public Works Employees with their Social Security Numbers,

regular and overtime wages, work centers, and clockcodes.

The overtime wage is calculated as 1.5 times the regular wage

for WG employees and the lesser of 1.5 times the regular wage

or the maximum GS overtime rate for GS employees. As the

maximum payable overtime to GS employees varies with time,

this quantity is stored in a memory file and can be changed

from the terminal by the user without changing program source

code.

JOBLIST produces an alphabetical listing of all

active jobs and their associated LMC's and SEG's. This list

is distributed to the clerical staff for their convenience.

5. Utility Modules

Utility modules include BACKUP which facilitates the

backup of the three databases, CLEANUP which removes all

deleted records from each of the databases and rebuilds all

the indexes and four procedures used to simplify the screen

handling of all modules. The MAKEFILE module creates an

ASCII file appropriate for modem transfer of data.

The L2 3MENU procedure receives a character variable,

a set of possible responses and a prompt string. It centers

the prompt string on line 2 3 of the screen, receives keyboard

input of one character, verifies that the character received

from the keyboard is contained in the set of valid characters

and returns the choice character to the calling module.

The MSG procedure receives an integer line number and

a character string. It centers the character string on the

line corresponding to the integer line number and rings the

bell.

The PAINTBOX procedure draws a box as wide as the

screen from the line given by the "top" input to the line

given by the "bottom" input and centers a string passed to

"title" at the top of the box.

45

The SAYGET procedure facilitates the writing of short

input routines. Often, the program needs to get a short

string or number from the user. This procedure eliminates

the need for calculating screen coordinates for quick

interactions in which data must be input by the user.

C. SOFTWARE SELECTION

The software selected for implementing this system was

the dBASE-III PLUS database package by Ashton-Tate and the

Clipper dBASE compiler by Nantucket. Some reasons for these

selections will be discussed below.

1. Hiqh-Level System

The original requirements for the system were largely

unknown. The PWO had an idea of some of the requirements,

but readily admitted that one of the purposes of developing

the prototype was to clarify his needs. Further, it is

unlikely that a module which satisfies the needs at Monterey

will necessarily be a standard which would meet needs at

other activities as successfully without some alteration.

Therefore, the software must be flexible enough that the very

data structures can be changed with a minimal amount of

effort. The whole prototyping methodology depends on the

flexibility of fourth-generation languages. dBASE-III PLUS

offers a high-level flexible database environment which meets

this need of a prototyping environment.

2. Native Code Advantages

The Clipper compiler for dBASE allows execution

speeds over twice that of interpreted dBASE. In performing

the labor card entry function in which six index files are

open and three are frequently updated, the execution was

significantly better when the source code was compiled.

As source dBASE code compiled with Clipper and linked

with PLink 86 (included in the Clipper package) results in

executable native code, multiple copies of the compiled code

could be distributed freely to users without regard for

46

royalties or user licenses. This advantage would be

particularly attractive if a refined version of this

prototype were to become a standard or to be used by other

Public Works Departments.

3

.

Integration

A concern in this era of software proliferation is

the ability of a system to be integrated with other systems.

Much integration of necessity is reverse-engineered after two

stand-alone systems have been developed. Ashton-Tate is

working on a version of dBASE which while being entirely

compatible with the current version is being designed for

compatibility with Standard Query Language (SQL) , the

standard database language for larger systems. Given the

size of Ashton-Tate and the current popularity of dBASE among

microcomputer users, it is reasonable to assume that software

to support the integration of dBASE with other systems will

become more capable and more readily available. Clipper-

compiled dBASE programs can also be made to run on many local

area networks (LAN's). This alternative may solve the

problems of an activity too large to process all its labor

data on one stand-alone system but too small to justify the

purchase of a mini-computer.

4. Maintenance

The demise of many programs developed for microcom-

puters is directly related to the availability of programmers

and analysts capable of maintaining the code. The popularity

of dBASE ensures availability of maintenance programmers and

tools well into the future. Indeed, the Public Works Data

Processing Manager is capable of maintaining, refining and

enhancing this prototype as requirements change.

47

D. HARDWARE CONSTRAINTS

This program was designed to run on a Zenith-248 personal

computer with a 20 MB hard disk drive. This system provides

sufficient storage to easily hold NPS Public Works labor data

for a year. In a larger command, a greater storage capacity

and/or more frequent backup of data from the timecard file

may be necessary to insure proper operation of the program.

The "Limitations" section of the User's Guide, included as

Appendix B, discusses storage requirements for the various

files.

48

V. TMPT.FMTCNTATTON

A. USER ENVIRONMENT

The Public Works Personnel Management System will operate

at the Public Works Office in Hermann Hall. On a daily

basis, an entry clerk will enters into the database system

the number of hours each employee spent on each job. This

information is based on employee labor cards. It is expected

that no more that 3 50 records will be entered each day into

the timecard file.

Every two weeks fund code reports are generated which

compute the number of hours and total labor costs charged to

each cost category. A report is run daily which echoes the

day's timecard data.

The employee file remains relatively static. Edits will

be performed on the employee file when an employee experi-

ences a pay change or transfers to or from the department.

The file is expected to contain approximately 150 entries at

any one time.

The job order file is somewhat more active. Each time a

new job order enters the system, the appropriate LMC and SEG

will be entered into the jobs file. At the beginning of the

new fiscal year, all previous year job orders will be closed

out and new job orders entered. Records corresponding to job

orders which are closed out during the fiscal year should be

removed from the file at close out. The jobs file is

expected to contain approximately 1000 cross references.

Because of the large daily input of data to the timecard

file, the retrieval activity will be significantly lower than

the update activity.

49

B. SECURITY ISSUES

Much of the data in the employee file is protected by the

Privacy Act and should be treated as sensitive information.

Current procedure calls for the computer to be kept in the

Public Works Office which is locked during non-business

hours. A person familiar with dBASE or with how the labor

system worked could compromise the file with little diffi-

culty. As the previous system also provided hardcopy

readouts of personal data, the security of the data is not

considered to be more seriously threatened now than

previously. If it is desired to make the employee file more

secure, software such as that included in Borland's Superkey

can be used to encrypt the file when the computer is left

alone and to unscramble the file prior to use. In the case

of Naval Postgraduate School where the employee file can

easily fit onto a floppy diskette, the file could be

transferred to floppy diskette after use and stored in a more

secure location.

50

VI. CONCLUSION

A. EVALUATION OF PROTOTYPE

The prototype currently tracks memorandum labor data for

the Naval Postgraduate School Public Works Department,

operating as a stand-alone system. The data entry clerks

have enthusiastically welcomed the system as its extensive

error-checking capabilities have detected from 2 to 3

input errors daily. When caught at this early stage, they

are much less harmful as they can be quickly and easily

corrected before the records are introduced to the official

accounting system. The clerks have noticed that data entry

is accomplished significantly faster as they can rely more on

the computer to validate unusual job numbers, a tedious

process formerly done manually. The user interface has also

been well received, especially the labor card entry interface

which allows multiple job orders to be assigned to one Social

Security Number without requiring re-entry of the SSN.

The prototype if properly refined has the potential to

meet other specific requirements of the NPS Comptroller,

thereby replacing the AIMS system currently used for

Comptroller memorandum accounts. Other lower-level managers

could use the prototype to assist with their own payroll

management.

The purpose of this thesis was to implement a prototype

system capable of providing sufficient support to the PWO to

make good policy decisions regarding payroll management in

his department and to recommend a course of action leading to

the eventual elimination of unnecessary redundancy in other

systems. The stand-alone prototype has met the first part of

the purpose. The recommendations included in the following

section identify ways to eliminate redundant data entry.

51

B. RECOMMENDATIONS FOR REFINEMENT

1. Responsibility for Maintenance

Although the prototype system meets all stand-alone

user requirements as currently defined and has been working

without incident for a number of weeks, it would be foolhardy

to expect the program to be maintenance-free. The major

factor leading to the previous systems falling into disuse is

the absence of maintenance programming performed on these

systems.

Recommendation: The Data Processing Manager within

the Public Works Department should be tasked with and held

responsible for maintenance of, future refinement of and

additions to the Labor Distribution Tracking System.

2. IDA Interface

Although the prototype has not yet successfully

transferred labor card data to Oakland, a module has been

included which produces an ASCII text file of the labor card

information. Future versions of the program should include

formatting the data into the appropriate ZNX format, once

that format is defined, to facilitate the transfer of data

into IDA.

Recommendation: The Public Works Data Processing

Manager should Coordinate with NSC Oakland to identify the

correct file format for direct transfer of labor distribution

data from the local system to IDA. Establish calling

procedures and communications protocols to be used.

Investigate the Xmodem protocol for file transfer at 2400

baud. Eliminate the need for keypunching of labor cards.

Coordinate actions with the NPS Comptroller who is respon-

sible for the accurate posting of the official records.

The NPS Comptroller should coordinate with the PWO to

obtain information on the Labor Tracking System to evaluate

its potential for use in his department. If suitable, the

new system should be used to transfer labor card data for

52

departments other than Public Works directly to Oakland via

telephone modem. If major changes are required to support

Comptroller functions, he should contact a technical

representative for WANG and investigate the possibility of

transferring labor card data from the current AIMS system.

3. Base Engineering Support. Technical

As the problem of managing to payroll is not unique

to the NPS Public Works Officer, it seems reasonable to

evaluate the system for possible distribution to other Public

Works Departments and ultimately be incorporated as a BEST

standard.

Recommendation: The Civil Engineering Support Office

(CESO) in Port Hueneme should consider distributing this

labor tracking system, either as a stand-alone support tool

or as a prototype for a future version of BEST. Given that

job estimates are already tracked in BEST, the benefits of

having hard historical data to which corresponding estimates

can be compared would appear to be a significant improvement

in the type of support which BEST provides Public Works

Officers.

4. Labor Card Elimination

Recommendation: After standard operating procedures

relative to the successful electronic transfer of labor card

data to Oakland are established, eliminate costly labor

cards. Labor data could be input directly to a computer, on

inexpensive forms designed for that purpose or on the

timecards used to report hour for payroll purposes.

5. Timecard Integration

The system used to determine hours worked for pay is

entirely separate from the system used to report the

distribution of labor effort until the data is compared

within IDA.

Recommendation: Investigate the requirements for two

separate systems for reporting hours worked on jobs.

53

Determine whether accounting security would be compromised by

integrating both systems at a lower level. Develop a system

in which the employee only has to report his hourly charges

once. Ensure that sufficient audit trails exist to thwart

any threats of larceny or embezzlement.

6. Historical Data

Despite the successes of the prototype, there remain

some functions which would be better performed if several of

the databases had the capability of storing information as a

function of date intervals. A date interval consists of all

the dates between a "from date" and a "to date". Given the

date as part of a composite key, the system would find the

record corresponding to the rest of the key and having a date

interval containing the desired date. For example, if the

employee file could efficiently store a wage history of each

employee, it would be unnecessary to store the regular wage

and the overtime wage of each employee in the timecard file.

Since acceleration rates and the maximum allowable GS

overtime rate can change with time, it would be beneficial to

store these values in a database file which made use of date

intervals. The same is true of the jobs file. The implemen-

tation of this would result in a pseudo third normal form.

It would not be 3NF because the same record could be accessed

by many different key values, however, to decompose the file

to 3NF would result in a record for each day of the year.

This would seem wasteful in light of the fact that the

information stored by the files in question rarely changes

more than three times a year.

Recommendation: Determine if any research has been

done on normalized form containing intervals. Redesign the

data structures of the prototype system to conform to the

pseudo third normal form resulting from the introduction of a

date interval as part of a key.

54

APPENDIX A — DATA DICTIONARY

DATABASE DATA DICTIONARY

FIELD NAME

ARCHIVED

CLOCKCODE

DATE

GRADE

REGHRS

REG WAGE

DATA FILE
OCCURRENCES

TIMECARD

EMPLOYEE

TIMECARD

EMPLOYEE

JOBNO TIMECARD
JOBS

LMC TIMECARD
JOBS

NAME EMPLOYEE

OTHRS TIMECARD

OT WAGE TIMECARD

SEG

TIMECARD

EMPLOYEE
TIMECARD

TIMECARD
JOBS

DESCRIPTION

Boolean field which indicates
whether record has been backed
up

A number assigned to employees
to assist in locating them

The date on which labor charges
were made

The civilian paygrade of an
employee

The job number

Local Management Code

Name of employee

Number of overtime hours worked
on a given date

The overtime wage in effect for
a particular employee on the
date of the labor card

Number of regular hours worked
on a given date

The regular wage in effect for
a particular employee on the
date of the labor card.

Segment Number

55

FIELD NAME

SSN

DATA FILE
OCCURRENCES

EMPLOYEE
TIMECARD

DESCRIPTION

Social Security Number

WKCENTER EMPLOYEE Work Center

DATA STRUCTURES

Select area: 1, Database in Use: C: employee. dbf
Master index file: C: employee. ntx Key: SSN

Index file: C : empname . ntx Key: NAME

Structure for database: C: employee. dbf
Number of data records: 13 8

Date of last update : 08/18/87
DecField Field Name Type Width

1 NAME Character 25
2 SSN Character 9

3 GRADE Character 8

4 REG WAGE Numeric 6

5 WKCENTER Character 2

6 CLOCKCODE Character 8
** Total ** 59

Select area: 2, Database in Use: C: timecard.dbf
Master index file: C: timecard.ntx

Key: DTOC(DATE) + SSN + JOBNO
Index file: C: report. ntx Key: LMC + JOBNO
Index file: C: report2 .ntx Key: SEG + JOBNO

Structure for database: C: timecard.dbf
Number of data records: 1407
Date of last update : 08/18/87

DecField Field Name Type Width
1 DATE Date 8

2 SSN Character 9

3 JOBNO Character 6
4 REGHRS Numeric 6

5 OTHRS Numeric 6
6 REG WAGE Numeric 6

7 OT WAGE Numeric 6

8 LMC Character 4

9 SEG Character 4

10 ARCHIVED Logical 1
** Total ** 57

56

Select area: 3, Database in Use: C:jobs.dbf
Master index file: C:jobs.ntx Key: JOBNO

Structure for database: C:jobs.dbf
Number of data records: 1009
Date of last update : 08/18/87
Field Field Name Type Width Dec

1 JOBNO Character 6

2 LMC Character 4

3 SEG Character 4
** Total ** 15

MEMORY FILE STRUCTURES

TIMEMEM.MEM TYPE

HIACLMC C

FILENAME C

DESCRIPTION

HIACRATE

LASTDATE

N

String of LMC's to which the higher
acceleration rate applies separated by
spaces

Name of daily timecard
transferred to Oakland

file to be

Higher of two acceleration rates
applied to reimbursable charges to jobs
having LMC's contained in HIACLMC

Most recent date of records added to
the TIMECARD file

LOACRATE N

MAXGSOT N

Lower acceleration rate applied to
reimbursable charges to jobs having
LMC's which differ from those in
HIACLMC

The maximum dollar value which GS
employees can be paid while working
overtime

57

APPENDIX B — USER'S MANUAL

LIMITATIONS

This program was written for execution on a Zenith-248
with at least a 20MB hard disk. The following data file and
program file storage requirements (in megabytes) are design
requirements for Naval Postgraduate School in Monterey,
California. Data file requirements for other locations can
be estimated by applying ratios on the file storage
requirements given below:

Maximum records Storage (MB)
Program files (EXE,FRM) N/A .165

Data files (DBF)
TIMECARD.DBF
JOBS . DBF
EMPLOYEE . DBF

Index files (NTX)
TIMECARD.NTX
REPORT2 . NTX
REPORT . NTX
JOBS . NTX
EMPNAME . NTX
EMPLOYEE . NTX

Backup files, sort work area

40,000 2.290
1,200 0.018

150 0.009

40,000 2.213
40,000 1.368
40,000 1.281
1,200 0.035

150 0.012
150 0.008

7.399
X2

14.798

Thus, the system has ample room to function
Monterey on the Z-248 with a 20MB drive.

properly at

STARTUP

To install the labor tracking system, copy the following
files to your hard disk:

MAINMENU.EXE
CARDLIST.FRM
EMPLOYEE . DBF
TIMECARD.DBF
JOBS . DBF
TIMEMEM.MEM

This can normally be accomplished by placing the program
diskette into disk drive A: and typing copy a:*.* c: at the

58

"A>" prompt. Once all program files have been copied to the
labor system directory in your hard drive, type "MAINMENU"
<RETURN> at the "C>" prompt. Index files will be generated
as needed by the program.

BEGINNING A NEW FISCAL YEAR

All job numbers change at the beginning of a new fiscal
year. It is therefore suggested that a Fund Code Report be
run for the previous fiscal year and that all timecard data
for the fiscal year be backed up. When it is desired to
clear the previous year's data from the system, the following
procedures should be followed:

1. From the operating system, delete the following files:

TIMECARD. NTX
REP0RT2.NTX
REPORT . NTX
JOBS . NTX

2. Copy the following files from the system diskette to the
hard disk:

TIMECARD. DBF
JOBS . DBF

Procedure 1 clears the index files for all records but
employee records. Procedure 2 replaces the data base files
with empty structures.

FUNCTION DESCRIPTIONS

To clarify descriptions of functions in this manual, each
function will be identified by name and assigned a location
code consisting of a series of characters separated by
periods corresponding to the menu choices which must be
selected to execute the function. For example, function "Add
Daily Timecard Data" is assigned location code "menul" to
indicate that the function is executed by selecting 1 from
the main menu. Function "List Employee Data" is assigned
location code "menul. 4" to indicate that the function can be
executed by selecting 1 at the main menu then 4 at the next
menu level. This system provides the facility to readily
access the documentation for a given function via either
referring to the index which lists the pages on which each
function is discussed or by noting the keystrokes used to
arrive at a menu in question. This system of documentation
is attractive to users and easy for systems developers to
maintain.

59

menu — Main Menu

MAIN MENU

1. Add Daily Timecard Data
2. View/Edit Employee and Job Order Data
3. Run Daily Labor Summary
4. Generate Fund Code Report
5. Locate Duplicate Records
6. Remove Deleted Records
7. Create File for Modem Transfer
8. Make Data File Backups

0. EXIT

select —= -—_^^^_^-

—

1——

1

Figure B.l — Main Menu

menul — function Add Timecard Data

This function brings the display of Figure B.2 to the
screen.

ADD LABOR CARD DATA

Date 07/18/87
SSN

Job Order Number
Enter regular hours worked
Enter overtime hours worked

0.00
0.00

<D>ate, <S>sn, <J>ob, <Q>uit

Figure B.2 — The Add Labor Card Screen

menul. d — function Change Timecard Date

Upon selection of "D" , the cursor moves to the "Date"
field on the screen and accepts a new legal date for timecard
entry. Once a date is entered, it is carried over to each

60

new entry until changed again with this function. This
allows entry of all timecards of a given date with only one
date entry. If the program is exited and re-started, the
default date will be the one most recently entered prior to
the exiting of the program.

menul.s — function Enter Timecard SSN

This function initiates the entry of a timecard into the
system. Upon selection of "S", the cursor moves to the "SSN"
field on the screen and accepts a nine-digit social security
number. The program then checks the employee file to verify
that the number entered is indeed the social security number
of one of the employees. If the number is verified, the
cursor moves to the "Job Order Number" field and executes the
menul.j function. If the SSN is not found in the employee
file, the message "SSN not listed in employee file." appears
on line 22 of the screen.

menul.j — function Enter Timecard Job Number

This function was introduced to preclude the entry clerk
from having to type the same social security number for each
job number listed on the timecard. If upon selection of "J",
a validated Social Security number appears in the "SSN"
field, the cursor moves to the "Job Order Number" field and
accepts a job order number. The program then checks the jobs
file to validate the number. If the number is found, the
cursor moves sequentially to the "Enter regular hours worked"
and "Enter overtime hours worked" fields to accept the number
of hours charged by this employee to this job. If the
program cannot find the job order number in the jobs file,
the message "This job order is not in the jobs file." appears
on line 22 of the screen. A menu then appears on line 23
which prompts the user to "<R>e-enter job number, <A>bandon
entry." If a user attempts to enter a job number before
entering a valid SSN, the message, "You must have a validated
SSN before invoking this." appears on line 22 of the screen.

menul.q — Returns program control to main menu.

menu2 — function View/Edit Employee and Job Order Data

This function brings the display of Figure B.3 to the
screen.

61

FILE MAINTENANCE

1. Edit Employee Records
2. Edit Timecard Data
3. Edit Job Order Data
4. List Employee Data
5. List Job Order Data
6. Change Max GS OT and Acceleration Rates

0. EXIT

select — - 1

Figure B.3 — File Maintenance Menu

menu2 . 1 — function Edit Employee Records

This function brings the display of Figure B.4 to the screen

E M P L OYEE FILE M A I N T E N A N C E

EMPLOYEE NAME DOE, JOHN
SOCIAL SECURITY NUMBER
GRADE GS 4/1
REGULAR WAGE 6.3 5

WORK CENTER SH
CLOCKCODE A06541

D09342673

<F>ind <S>kip ack <C>hange <A>dd <D>elete <U>ndelete <E>xit

Figure B.4 — Employee File Maintenance Menu

menu2 . 1 . f — function Find Employee to View/Edit

Pressing "F" causes the program to request the Social
Security Number (SSN) of the desired employee. If a partial
number is input (e. g. 3 <CR>) , the record having the lowest

62

number matching the first digit (s) entered will appear on the
screen. If a complete SSN is entered, the corresponding
record will appear. If the SSN is not found in the employee
file, the number followed by the words "not found" will
appear on line 22.

menu2.1.s — Skip to subsequent employee record and display.

If the last record of the file is shown when this command is
given, the first record in the file will be displayed.

menu2.1.b — Move back to previous record and display.

If the first record of the file is shown when this command is
given, the last record in the file will be displayed.

menu2 . 1 . c — function Change Employee Data

This command allows the user to make changes to the
employee data by moving the cursor from field to field and
accepting user input from the keyboard. After all fields
have been entered, the program prompts "<S>ave, <A>bort"

.

Pressing "S" causes the changes as they appear on the screen
to be entered in the database. Pressing "A" aborts the
change and returns the database values to the screen.

menu2.1.a — function Add Employee Data

This function adds an employee to the employee file.
Upon pressing the "A", the program clears each field
displayed on the screen and accepts new field values from the
keyboard. After appropriate data has been entered into each
field, the program prompts the user to "<S>ave, <A>bort."
Pressing "S" results in adding the new record to the employee
file. Pressing "A" aborts the operation and causes the
screen to display an actual database record.

menu2.1.d — function Delete Employee

This function marks an employee record for deletion.
This record will remain in the database until it is packed.
(See menu6 for more information.) Records so deleted will be
indicated by the word "DELETED" appearing above the display
frame to the right.

menu2.1.u — function Undelete Employee

This function restores a deleted employee record to an
undeleted status.

63

menu2.1.e — returns control to main menu.

menu2.2 — function Edit Timecard Records

This function utilizes the display screen of Figure B.5

TIMECARD FILE MAINTENANCE

DATE 06/01/87
SOCIAL SECURITY NUMBER 004609985
JOB NUMBER 7FFC00
REGULAR HOURS 1.00
OVERTIME HOURS 0.00
REGULAR WAGE 10.81
OVERTIME WAGE 16.22
LMC F1C1
SEG#

<F>ind <S>kip ack <C>hange <D>elete <U>ndelete <E>xit

Figure B.5 Timecard File Maintenance Menu

menu2.2.f — function Find Timecard Record to View/Edit

Pressing "F" causes the program to request the date of
the timecard to find. After the date is entered, the program
prompts for the Social Security Number (SSN) of the desired
timecard. If a partial SSN is input (e. g. 3 <CR>) , the
first record of the date entered having a SSN matching the
first digit (s) entered will appear on the screen. If a
complete SSN is entered, the corresponding record will
appear. If the date/SSN pair is not found in the timecard
file, the words "Timecard not found." will appear on line 22.

menu2.2.s — Skip to subsequent timecard record and display.

If the last record of the file is shown when this command is
given, the first record in the file will be displayed.

menu2.2.b — Move back to previous record and display.

If the first record in the file is displayed when this
function is executed, the last record in the file will be
displayed after execution.

64

menu2 . 2 . c — function Change Timecard Data

This command allows the user to make changes to the
timecard data by moving the cursor from field to field and
accepting user input from the keyboard. After all fields
have been entered, the program prompts "<S>ave, <A>bort".
Pressing "S" causes the changes as they appear on the screen
to be entered in the database. Pressing "A" aborts the
change and returns the database values to the screen.

menu2.2.d — function Delete Timecard

This function marks a timecard record for deletion. This
record will remain in the database until it is packed. (See
menu6 for more information.) Records so deleted will be
indicated by the word "DELETED" appearing above the display
frame to the right.

menu2.2.u — function Undelete Timecard

This function restores a deleted timecard record to an
undeleted status.

menu2.2.e — returns control to main menu.

menu2 . 3 — function Edit Job Order Data

This function utilizes the following display screen:

JOB FILE MAINTENANCE

JOB NUMBER 7AALSL
LMC F1C1
SEG

<F>ind <S>kip ack <C>hange <A>dd <D>elete <U>ndelete <E>xit

Figure B.6 — Job File Edit Screen

65

menu2 . 3 . f — function Find Job Number to View/Edit

Pressing "F" causes the program to request the Job Order
Number of the desired job order. If a partial number is
input (e. g. 7 <CR>) , the first record having a job number
matching the first digit (s) entered will appear on the
screen. If a complete job number is entered, the
corresponding record will appear. If the job number is not
found in the jobs file, the number followed by the words "not
found." will appear on line 22.

menu2 . 3 . s — Skip to subsequent employee record and display.

If the last record of the file is shown when this command
is given, the first record in the file will be displayed.

menu2.3.b — Move back to previous record and display.

If the first record of the file is shown when this
command is given, the last record in the file will be
displayed.

menu2 . 3 . c — function Change Segment or LMC

This command allows the user to make changes to the LMC
or segment number assigned to a job order number. After the
new LMC has been entered, the program prompts "<S>ave,
<A>bort" . Pressing "S" causes the job record to be entered
into the database as it appears on the screen. Pressing "A"
aborts the change and displays the original database values.

menu2.3.a — function Add Job Order

This function adds a new job order to the jobs file.
Upon pressing the "A", the program clears the Job Number and
LMC fields displayed on the screen and accepts new field
values from the keyboard. After appropriate data has been
entered into each field, the program prompts the user to
"<S>ave, <A>bort." Pressing "S" results in adding the new
record to the jobs file. Pressing "A" aborts the operation
and causes the screen to display an actual database record.

menu2.3.d — function Delete Job Order

This function marks a job order record for deletion.
This record will remain in the database until it is packed.
(See menu6 for more information.) Records so deleted will be
indicated by the word "DELETED" appearing above the display
frame to the right.

66

menu2.3.u — function Undelete Job Order

This function restores a deleted employee record to an
undeleted status.

menu2.3.e — returns control to main menu.

menu2 . 4 — function List Employee Data

Upon selection of this item, a menu on line 2 3 prompts,
"Select device: <P>rinter, <S>creen, <A>bort"

menu2.4.p — function List Employee Data to Printer.

This selection sends the report "Employee Data" to the
printer.

menu2.4.s — function List Employee Data to Screen.

This selection sends the report "Employee Data" to the
screen.

menu2 . 4 . a — returns to menu2

menu2.5 — List Job Order Data

Upon selection of this item, a menu on line 2 3 prompts,
"Select device: <P>rinter, <S>creen, <A>bort"

menu2.5.p — function List Job Order Data to Printer.

This selection sends a cross reference of job number to
LMC and segment number to the printer.

menu2.5.s — function List Job Order Data to Screen.

This selection sends a cross reference of job number to
LMC and segment number to the screen.

menu2 . 5

.

a — returns to menu2

menu2.6 — function Change Maximum GS Overtime Rate

This selection causes the prompts to appear on the screen
as shown in Figure B.7. The current rates are displayed and
new rates are accepted as input from the keyboard. The new
rates are saved in a memory file upon exiting from the
program and are automatically retrieved each time the program
is run.

67

Enter maximum GS overtime rate: 17.78
Enter high reimbursable acceleration percentage: 30.9
Enter low reimbursable acceleration percentage: 28.1

Enter LMC's to which the high acceleration percentage
applies: F1F1 F1C1

Figure B.7 — Rate Adjustment Screen

menu 3 — function Run Daily Labor Summary

Upon making this selection, the program prompts for
confirmation on line 23 with "Run Daily Labor Summary?
(Y/N)" . Responding with "N" to this prompt returns control
to the main menu. Confirming this function with a "Y"
response causes the program to request a date for which the
Daily Labor Summary is to run by prompting on line 22 with
"Enter date of daily report:". Upon entry of a valid date,
the program prompts "Enter number of hours GS employees
should report today:" The user responds with a <enter> if GS
employees did not turn in their bi-weekly labor cards on the
date appearing on line 22. If GS employees did turn in labor
cards on that date, the user should enter the number of
regular GS hours which should be reported for that time
period (typically 80) . The program then requests the user to
"Select device: <P>rinter, <S>creen, <A>bort:". This refers
to the output device for the listing of suspicious records.

It is convenient for the user to obtain a hardcopy
listing of "suspicious" records so that any input errors on
the labor cards may be corrected prior to the printing of the
daily report. To determine "suspicious" records, the program
goes through all records of the employee file and sums the
number of regular hours charged by each employee for the day
in question. The "suspicious" list contains all WG employees
who charged other than eight regular hours (including those
who did not turn in a card and thereby charged zero) or more
than two overtime hours on the day in question. GS employees
are listed if they charged a different number of regular
hours than that expected from GS employees for the date in
question. GS employees also make the list if they charged
any overtime during the pay period.

menu4 — function Generate Fund Code Report

Upon selection of this function, the program asks for
confirmation by prompting "Generate Fund Code Report? (Y/N)

"

on line 23. Answering "N" here will return control to the

68

main menu. Answering "Y" will result in the program
requesting for the first and last dates to be included in the
report as follows:

Enter first date to be included: 07/05/87
Enter last date to be included: 07/18/87

The default last date is the timecard date of the record
most recently added to the timecard database. The default
first date is the date 13 days before the last date. Any
valid date can be entered into these fields, however. If,
for instance, fiscal-year-to-date totals are desired in the
report, the first day of the fiscal year can be entered into
the first date field and today's date can be entered into the
last date field. The intent is to keep the present year's
data in the database and to provide a means by which analysis
of any number of arbitrary periods can be performed.

After valid first and last dates have been entered, the
program prompts "Select device: <P>rinter, <S>creen,
<A>bort". This allows the user to select the output device
or to return to the main menu.

menu 5 — function Locate Duplicate Records

When executing this function, the program searches the
employee and jobs files to find employee records having the
same SSN or job records having the same job number. A
printer must be connected and turned on for this function to
work properly. Duplicate records are then printed out at the
printer. It is strongly suggested that duplicate records be
immediately corrected or deleted using the "edit function"
for the appropriate database.

menu 6 — function Remove Deleted Records, Rebuild Indexes

This function "cleans up" the employee, timecard and jobs
database files. A "pack" is performed which physically
removes from each database all records marked for deletion.
Whether or not any records are deleted, each index is
rebuilt. This is valuable if records do not appear to be
correctly sorted or omitted in various reports. Untimely
losses of power to the system can corrupt index files. This
function assumes the database file is not corrupted and
rebuilds the index files. If a database file is corrupted,
it is recommended that the corrupted records be deleted from
dBASE by the system administrator and that this function be
used to rebuild indexes.

69

menu7 — function Create File for Modem Transfer

This function creates an ASCII text file containing
employee Social Security numbers, job numbers, regular hours
worked, and overtime hours worked for each timecard file
record of a certain date. Upon selection of this function,
the program prompts for the date and generates the output
file in the current directory. The output file is named
interactively by the user. The default name is
"0UTFILE1.TXT". If no records corresponding to the entered
date exist, a message stating this will appear on the screen.
If an output file is named which exists, the program will
request that a different name be given to the output file.

menus — function Backup Data Files

The intent of this function is to assist in making
routine backups of data files to floppy diskette as
procedural and as painless as possible. More development on
this module would be necessary for it to be a general purpose
facility capable of diagnosing and correcting corrupted
databases. Upon execution of this function the screen of
Figure B.8 is displayed.

B A C K U P ROUT I N E S

1. Backup Employee Data
2. Backup Timecard Data
3. Backup Job Data
4. Restore Employee Data
5. Restore Timecard Data
6. Restore Job Data

0. EXIT

select

Figure B.8 Backup Routines Menu

menus . 1 — function Backup Employee Data

Upon selection of this function, the program gives the
following instructions:

Please insert employee backup diskette into drive A. .

.

<C>ontinue, <A>bort

70

If using this function for the first time, any formatted
diskette will do. The assumption is that the number of
employees being tracked by this system is small enough so
that the file can fit on a single floppy disk. Thus, the
program will overwrite an older "EMPLOYEE. DBF" file if found
on the archive diskette. When a backup of the employee file
is performed, the entire file is copied to diskette.

menuS.l.c — commands the employee database file to be copied
to the diskette in drive a:

menuS.l.a — returns program control to "Backup Routines",
menus

.

menu8 . 2 — function Backup Timecard Data

Upon selection of this function the following
instructions appear on the screen:

Please insert a formatted diskette into drive A. .

.

<C>ontinue, <A>bort

It is assumed that because of the large size of the
database, that only a fraction of the data contained therein
would fit on a floppy diskette. Thus, the program will copy
to drive a: only those records which have not been previously
backed up. It remains the user's responsibility to ensure
that backups are done with sufficient frequency to preclude
the possibility of exceeding the capacity of a floppy disk
with the records to be backed up.

menu8 . 3 — function Backup Job Order Data

Same as function menus . 1 except that Job Order Data is
being backed up instead of employee data. See menus . 1 for
more specifics.

menu8.4 — function Restore Employee Data

If the Employee Database is damaged or corrupted so
severely that restoring a previously backed up database is
deemed to be the best method of recovery, select this
function and place the backup employee data diskette into
drive a: at the prompt and press "C" to continue. ("A"
aborts.

)

71

USER MANUAL INDEX

Backup Data Files 7

Daily Labor Summary 68
Employee records

adding 63
deleting 63
editing 63
finding 62
listing of 67
restoring deleted 63

Fiscal year
beginning a new 59

Fund Code Report 68
Job order records 66

listing of 67
Limitations 58
Locate Duplicate Records 69
Main Menu 60
Modem Transfer 70
Overtime rate

changing GS maximum 67
Rebuild Indexes 69
Remove Deleted Records 69
Startup 58
Timecard records

daily entry 60
maintenance 64

72

APPENDIX C — SOURCE CODE

* Program.

.

* Author. .

.

* Date
* Notes. . .

.

*

MAINMENU.PRG
DAVID P. DINWIDDIE
05/20/87

SET TALK OFF
SET BELL OFF
SET SAFETY OFF
SET STATUS OFF
SET ESCAPE OFF
SET CONFIRM OFF
SET PROCEDURE TO TIMEPROC

RESTORE FROM TIMEMEM ADDITIVE

STORE * • TO mconfirm

DO WHILE .T.

* Display menu options, centered on the screen.
* draw menu border and print heading
CLEAR
§ 2, TO 18,79 DOUBLE
§ 3,32 SAY [MAIN MENU]
§ 4,1 TO 4,78 DOUBLE

display detail lines
7,27 SAY [1. Add Daily Timecard Data]
8,27 SAY [2. View/Edit Employee and Job Order Data]
9,27 SAY [3. Run Daily Labor Summary]

§ 10,27 SAY [4. Generate Fund Code Report]
@ 11,27 SAY [5. Locate Duplicate Records]
§ 12,27 SAY [6. Remove Deleted Records]
§ 13,27 SAY [7. Create File for Modem Transfer]
@ 14,27 SAY [8. Make Data File Backups]
@ 16, 27 SAY '0. EXIT 1

STORE TO selectnum
§ 18,3 3 SAY " select "

@ 18,42 GET selectnum PICTURE "9" RANGE 0,8
READ

DO CASE

73

CASE selectnum =
SET BELL ON
SET TALK ON
RELEASE selectnum, mconfirm
SAVE TO TIMEMEM
CLEAR ALL
RETURN

CASE selectnum = 1
* DO Perform timecard append
DO DATAOPEN
DO TIMEADD2
CLOSE DATABASES

CASE selectnum = 2

* DO Perform File Maintenance
DO DATAOPEN
DO FILEMENU
CLOSE DATABASES

CASE selectnum = 3

* DO Run Daily Labor Summary
DO L23MENU WITH mconfirm, 'YN'/'Run Daily"+;
" Labor Summary? (Y/N)

"

IF mconfirm = ' Y'
DO DATAOPEN
DO DAILY
CLOSE DATABASES

ENDIF

CASE selectnum = 4
* DO Generate Fund Code Report
DO L23MENU WITH mconfirm, 'YN 1

,;
"Generate Fund Code Report? (Y/N)

"

IF mconfirm = •
Y'

DO DATAOPEN
DO FCREP
CLOSE DATABASES

ENDIF

CASE selectnum = 5
* Locate duplicate records
DO L23MENU WITH mconfirm, 'YN',;
"Locate Duplicate Records? (Y/N)"
IF mconfirm = 'Y'

DO DATAOPEN
DO LOCDUP
CLOSE DATABASES

ENDIF

74

CASE selectnum = 6
* Cleanup
DO L23MENU WITH mconfirm, 'YN' , "Remove "+;
"Deleted Records and Reindex? (Y/N)

"

IF mconfirm = 'Y'
DO DATAOPEN
DO CLEANUP
CLOSE DATABASES

ENDIF

CASE selectnum = 7
* DO Make transfer file
DO MAKEFILE

CASE selectnum = 8

DO L23MENU WITH mconfirm, 'YN',;
"Execute Backup Routine? (Y/N)

"

IF mconfirm = '

Y

1

DO DATAOPEN
DO BACKUP
CLOSE DATABASES

ENDIF
ENDCASE

ENDDO T
RETURN
* EOF: MAINMENU.PRG

75

********************************** TIMEPROC. PRG

* Procedure File..: TIMEPROC. PRG
* Author : DAVID P. DINWIDDIE
* Date : 07/20/87

PROCEDURE BACKUP
STORE • • TO mconfirm

DO WHILE .T.

* Display menu options, centered on the screen.
* draw menu border and print heading
CLEAR
@ 2, TO 16,79 DOUBLE
@ 3,26 SAY [BACKUP ROUTINES]
@ 4,1 TO 4,78 DOUBLE
* display detail lines
§ 7,28 SAY [1. Backup Employee Data]
@ 8,28 SAY [2. Backup Timecard Data]
§ 9,28 SAY [3. Backup Job Data]
§ 10,28 SAY [4. Restore Employee Data]
@ 11,28 SAY [5. Restore Timecard Data]
@ 12,28 SAY [6. Restore Job Data]
§ 14, 28 SAY '0. EXIT'
STORE TO selectnum
@ 16,3 3 SAY " select "

§ 16,42 GET selectnum PICTURE "9" RANGE 0,6
READ

DO CASE
CASE selectnum =

RETURN

CASE selectnum = 1
* DO Backup Employee Data
DO MSG WITH 22, "Please insert employee "+;
"backup diskette into drive A..."
DO L23MENU WITH mconfirm, 'AC',;
"<C>ontinue, <A>bort"
IF mconfirm = '

C

CLEAR
DO MSG WITH 13, "Performing file backup. "+;
"Please wait. .

.

"

SELECT A
COPY TO A: EMPLOYEE

ENDIF

CASE selectnum = 2

76

* DO Backup Timecard Data
DO MSG WITH 22, "Please insert a formatted "+;
"diskette into drive A..."
DO L2 3MENU WITH mconfirm, 'AC',;
"<C>ontinue, <A>bort"
IF mconfirm = '

C

CLEAR
DO MSG WITH 13, "Performing file backup. "+;
"Please wait. .

.

"

SELECT B
USE TIMECARD
COPY TO A: TIMECARD FOR .NOT. ARCHIVED
REPLACE ALL ARCHIVED WITH .T. FOR;
.NOT. ARCHIVED
USE A: TIMECARD
REPLACE ALL ARCHIVED WITH .T.
CLOSE DATABASES
DO DATAOPEN

ENDIF

CASE selectnum = 3

* DO Backup Job Data
DO MSG WITH 22, "Please insert jobs "+;
"backup diskette into drive A..."
DO L2 3MENU WITH mconfirm, 'AC 1

,

;

"<C>ontinue, <A>bort"
IF mconfirm = 'C

CLEAR
DO MSG WITH 13, "Performing file backup. "+;
"Please wait. .

.

"

SELECT C
COPY TO A: JOBS

ENDIF

CASE selectnum = 4

* DO Restore Employee Data
DO MSG WITH 22, "Please insert employee "+;

"backup diskette into drive A..."
DO L2 3MENU WITH mconfirm, 'AC',;
"<C>ontinue, <A>bort"
IF mconfirm = *C'

CLEAR
DO MSG WITH 13, "Performing file "+;

"retrieval. Please wait..."

SELECT A
USE
SELECT D
USE A: EMPLOYEE
COPY TO EMPLOYEE
DELETE FILE EMPLOYEE. NTX

77

DELETE FILE EMPNAME.NTX
USE
DO DATAOPEN

ENDIF

CASE selectnum = 5
* DO Restore Timecard Data
DO MSG WITH 22, "Please insert archive "+;
"diskette into drive A..."
DO L23MENU WITH mconfirm, "AC,;
"<C>ontinue, <A>bort"
IF mconfirm = • C 1

CLEAR
DO MSG WITH 13, "Performing file "+;
"retrieval. Please wait..."
SELECT D
USE A: TIMECARD
REPLACE ALL ARCHIVED WITH .T.
USE
SELECT B
APPEND FROM A: TIMECARD

ENDIF

CASE selectnum = 6
* DO Restore Job Data
DO MSG WITH 22, "Please insert archive "+;
"diskette into drive A..."
DO L23MENU WITH mconfirm, 'AC',;
"<C>ontinue, <A>bort"
IF mconfirm = •

C

CLEAR
DO MSG WITH 13, "Performing file "+;
"retrieval. Please wait..."
SELECT C
USE
SELECT D
USE A: JOBS
COPY TO JOBS
DELETE FILE JOBS.NTX
USE
DO DATAOPEN

ENDIF
ENDCASE

ENDDO T
RETURN
* EOF: BACKUP. PRG

* CLEANUP. PRG
* July 6, 1987

78

PROCEDURE CLEANUP

CLOSE DATABASES
RUN DEL *.NTX
CLEAR
? "Cleaning Employee File"
SELECT A
USE EMPLOYEE
DELETE ALL FOR SSN = '

PACK
? "Cleaning Timecard File"
SELECT B
USE TIMECARD
DELETE ALL FOR JOBNO = '

PACK

? "Cleaning Job Order File"
SELECT C
USE JOBS
DELETE ALL FOR JOBNO = ' •

PACK
DO DATAOPEN
RETURN

* eof cleanup. prg

79

* daily. prg
* 7/17/87
PROCEDURE DAILY
STORE * ' TO device
STORE LASTDATE TO TODAY

@ 22,0
@ 22,27 SAY "Enter date of daily report: ";

GET TODAY PICTURE '99/99/99'
READ
STORE DTOC (TODAY) TO CTODAY
STORE "LABOR HOURS ; CHARGED &CTODAY" TO PERIOD
STORE TO gshours

DO SAYGET WITH 22, "Enter number of hours GS "+;
"employees should report today: " ,

gshours, '999.99'

DO L23MENU WITH device, ' PSA' , "Select device: "+;
"<P>rinter, <S>creen, <A>bort: "

IF device = 'A'
RETURN

ENDIF
IF device = 'P'

? "Please be sure printer is on..."
WAIT
SET PRINT ON

ENDIF
7

? "Discrepancy Report for " + CTODAY
IF gshours <>

? "GS employees were to enter "+STR (gshours, 6, 2) +;
" hours today."

ELSE
? "GS employees were not to be entered today."

ENDIF
7

? "The following totals appear suspicious."
7

? " NAME SSN "+;
"GRADE WC REG OT"
SELECT A
GO TOP
DO WHILE .NOT. EOF (

)

IF SUBSTR(GRADE, 1,1) = 'G'

STORE .F. TO Iswg
ELSE

STORE .T. TO Iswg
ENDIF

80

SELECT B
STORE CTODAY + EMPLOYEE -> SSN TO MCOMPARE
STORE TO MREG, MOT
SEEK MCOMPARE
DO WHILE DATE = TODAY .AND. SSN = EMPLOYEE -> SSN

MREG = MREG + REGHRS
MOT = MOT + OTHRS
SKIP

ENDDO

IF (MREG <> 8 .AND. ISWG) .OR. (MOT > 2) .OR.;
(MOT > .AND. .NOT. ISWG) .OR.;
((MREG <> gshours) .AND. .NOT. ISWG)

? A -> NAME, A -> SSN, A -> GRADE,;
A -> WKCENTER, MREG, MOT

ENDIF

SELECT A
SKIP

ENDDO
IF device = '

P'

EJECT
ENDIF
SET PRINT OFF

SELECT B
7

?

7

7

DO L23MENU WITH device, "SPA" , "SELECT OUTPUT DEVICE "+;
"FOR DAILY REPORT: <S>creen, <P>rinter OR <A>bort"
CLEAR
IF device = 'A'

RETURN
ENDIF

SEEK ctoday
IF FOUND ()

IF device = 'S'

report form CARDLIST while date = TODAY HEADING PERIOD
7

7

7

STORE ' ' TO wait_subst
§ 23,0
§ 23,0 SAY 'Press any key to continue... 1

;

GET wait_subst
READ

81

ELSE
report form CARDLIST while date = TODAY HEADING ;

PERIOD TO PRINT
ENDIF

ELSE
? "No entries dated "+ctoday+;
" were found in the database."
WAIT

ENDIF
RETURN
* EOF DAILY. PRG

82

* dataopen.PRG
PROCEDURE DATAOPEN
select a
USE EMPLOYEE
IF .NOT. FILE('EMPLOYEE. NTX

'

)

? "Indexing employee file on SSN..."
INDEX ON SSN TO EMPLOYEE

ENDIF
IF .NOT. FILE(' EMPNAME . NTX

'

)

? "Indexing employee file on name..."
INDEX ON NAME TO EMPNAME

ENDIF
SET INDEX TO EMPLOYEE, EMPNAME

select b
use timecard
IF .NOT. FILE ('TIMECARD. NTX')

? "Creating timecard index TIMECARD. NTX. ..

"

INDEX ON DTOC(DATE) + SSN + JOBNO TO TIMECARD
ENDIF
IF .NOT. FILE('REPORT. NTX')

? "Creating timecard index REPORT. NTX. ..

"

INDEX ON LMC + JOBNO TO REPORT
ENDIF
IF .NOT. FILE(' REPORT2 . NTX

'

)

? "Creating timecard index REPORT2 . NTX . .
.

"

INDEX ON SEG + JOBNO TO REPORT2
ENDIF
SET INDEX TO timecard, report, report2

select c
USE JOBS
IF .NOT. FILE('JOBS. NTX')

? "Creating jobs file index..."
INDEX ON JOBNO TO JOBS

ENDIF
SET INDEX TO JOBS
RETURN
* EOF DATAOPEN

83

* empdisp.prg
PROCEDURE EMPDISP
IF DELETED ()

@ 4, 50 SAY "DELETED"
ELSE

@ 4, 50 SAY " "

ENDIF

@ 10, 24 SAY "EMPLOYEE NAME ";

GET NAME PICTURE '!!! 1 !! i !!!!!!!!!!!!!!!!!! '

@ 11, 24 SAY "SOCIAL SECURITY NUMBER ";

GET SSN PICTURE '999999999'
@ 12, 24 SAY "GRADE " GET GRADE PICTURE '!!!!!!!!'
§ 13, 24 SAY "REGULAR WAGE "

;

GET REG_WAGE PICTURE '999.99'
@ 14, 24 SAY "WORK CENTER "

;

GET WKCENTER PICTURE ' !
!

'

@ 15, 2 4 SAY "CLOCKCODE ";

GET CLOCKCODE

RETURN

* EOF EMPDISP.PRG

* empdispm.prg
PROCEDURE EMPDISPM
IF DELETED ()

@ 4, 50 SAY "DELETED"
ELSE

§ 4, 50 SAY " "

ENDIF

@ 10, 24 SAY "EMPLOYEE NAME ";

GET m_NAME PICTURE 'I!!!!!!!!!!!!!!!!!!!!!!!!'
§ 11, 24 SAY "SOCIAL SECURITY NUMBER "

;

GET m_SSN PICTURE '999999999'
§ 12, 24 SAY "GRADE "

;

GET m_GRADE PICTURE '!!!!!!!!'
§13, 24 SAY "REGULAR WAGE "

;

GET m_REG_WAGE PICTURE '999.99'
@ 14, 24 SAY "WORK CENTER ";

GET m_WKCENTER PICTURE ' !
!

'

@ 15, 24 SAY "CLOCKCODE " GET m_CLOCKCOD

RETURN

* EOF EMPDISPM.PRG

84

* empedit.prg
PROCEDURE EMPEDIT
CLEAR
SELECT A
GO TOP
command = '

'

opcomm = •
'

DO PAINTBOX WITH 5 , 21 , "E M P L O Y E E "+;
"FILE MAINTENANCE"
DO WHILE command <> 'E'

DO EMPDISP
CLEAR GETS
DO L2 3MENU WITH command, ' FSBCADUE

' ,

;

'<F>ind, <S>kip, ack, <C>hange, ' + ;

'<A>dd, <D>elete, <U>ndelete, <E>xit •

DO CASE

CASE command = 'F 1

key = * '

DO SAYGET WITH 23, 'Enter employee + ;

•SSN to find: 1

, key, '999999999'
READ
key = TRIM (key)
SEEK key
IF EOF()

DO MSG WITH 22, ' &key not found.'
GO BOTTOM

ENDIF

CASE command = '
S

•

IF (EOF() .AND. BOF())
DO MSG WITH 22, 'There are no •+;

•records in the file.'
ELSE

IF EOF()
GO TOP

ELSE
SKIP

ENDIF
IF EOF()

GO TOP
ENDIF

ENDIF

85

CASE command = 'B'
IF (EOF() .AND. BOF())

DO MSG WITH 22, 'There are no
'records in the file.'

ELSE
IF BOF()

GO BOTTOM
ENDIF
SKIP -1
IF BOF()

GO BOTTOM
ENDIF

ENDIF

' + ;

CASE command =

m_clockcod
m_grade
m_name
m_ssn
m_wkcenter
m_reg_wage

C
clockcode
grade
name
ssn
wkcenter
reg_wage

DO EMPDISPM
READ
DO L23MENU WITH Opcomm, SA' "<S>ave / <A>bort"

IF Opcomm = 'S'
REPLACE Clockcode
REPLACE Grade
REPLACE Name
REPLACE Ssn
REPLACE Wkcenter
REPLACE Reg_wage

ENDIF

WITH m_clockcod
WITH m_grade
WITH m_name
WITH m_ssn
WITH m_wkcenter
WITH m_reg_wage

CASE command = 'A'
m_clockcod = SPACE

(

8)
m_grade = SPACE

(

8)
m_name = SPACE

(

25)
m_ssn = SPACE

(

9)
m_wkcenter = SPACE

(

2)
m_reg_wage s 000.00

DO EMPDISPM
READ

DO L23MENU WITH Opcomm, 'SA', "<S>ave, <A>bort"

86

IF Opcomm = 'S'
APPEND BLANK
REPLACE Clockcode
REPLACE Grade
REPLACE Name
REPLACE Ssn
REPLACE Wkcenter
REPLACE Reg_wage

ENDIF

WITH m_clockcod
WITH m_grade
WITH m_name
WITH m_ssn
WITH m_wkcenter
WITH m_reg_wage

CASE command
DELETE

= »D

CASE command
RECALL

= 'U

ENDCASE
ENDDO
* eof empedit.prg

87

* emplist.prg
* 7/18/87
PROCEDURE EMPLIST
STORE ' ' TO devout
STORE 1 TO pagenum
DO L23MENU WITH devout, ' SPA' , "Select device: "+;
"<P>rinter, <S>creen, <A>bort"
DO CASE
CASE devout = 'P'

STORE 58 TO MAXLINES
SET PRINT ON

CASE devout = 'S'
STORE 23 TO MAXLINES
SET PRINT OFF

CASE devout = 'A 1

RETURN

ENDCASE

SELECT A
SET INDEX TO EMPNAME, EMPLOYEE
7

?
•?
•

•

? " LIST OF EMPLOYEES AS OF " +

;

DTOC(DATE())+" PAGE "+STR (pagenum)
7

? " NAME SSN "+;
" WAGE OVER GRADE WC CLOCKCODE"
7

STORE 7 TO LINECOUNT
GO TOP
DO WHILE .NOT. EOF (

)

IF SUBSTR(GRADE ,1,1) = "G 1 .AND.;
1.5*REG_WAGE > MAXGSOT

STORE MAXGSOT TO OT_WAGE
ELSE

STORE INT(150*REG_WAGE + .5)/100.00 TO OT_WAGE
ENDIF
STORE STR(OT_WAGE,6,2) TO MOT_WAGE

88

STORE STR(REG_WAGE,6,2) TO MREG_WAGE
? ' '+NAME,SSN,MREG_WAGE,MOT_WAGE+;
' ' , GRADE , WKCENTER , CLOCKCODE
LINECOUNT = LINECOUNT + 1

IF LINECOUNT > MAXLINES
pagenum = pagenum + 1

IF DEVOUT = 'S'
WAIT
LINECOUNT = 1

ELSE
EJECT
7

7

? " LIST OF EMPLOYEES "+;
"AS OF " + DTOC(DATE())+" "+;
"PAGE "+STR (pagenum)
7

? " NAME "+;
"SSN WAGE OVER GRADE WC "+;
"CLOCKCODE"
7

LINECOUNT = 8

ENDIF
ENDIF
SKIP

ENDDO
IF DEVOUT = 'P 1

EJECT
ENDIF
SET INDEX TO EMPLOYEE, EMPNAME
SET PRINT OFF
RETURN
* EOF EMPLIST.PRG

89

* FCREP
* 7/16/87
PROCEDURE FCREP

STORE ' • TO device
STORE 1 TO pagenum
STORE LASTDATE - 13 TO FROMDATE

STORE LASTDATE TO TODATE

@ 20,0
§ 20,27 SAY "Enter first date to be included:"
@ 20,60 GET FROMDATE PICTURE •99/99/99'
@ 21,0
§ 21,27 SAY "Enter last date to be included:"
@ 21,59 GET TODATE PICTURE '99/99/99'
READ
STORE DTOC(FROMDATE) TO CFROMDAT
STORE DTOC (TODATE) TO CTODAT
STORE "NON-REIMBURSABLE CHARGES"*;
" &CFROMDAT TO &CTODAT" TO PERIOD

STORE 0.00 TO MTORGHR
STORE 0.00 TO MTORGCO
STORE 0.00 TO MTOOTHR
STORE 0.00 TO MTOOTCO

STORE ' ' TO devout
DO L23MENU WITH devout ,» SPA ', "Select device:"+;
" <P>rinter, <S>creen, <A>bort"
DO CASE
CASE devout = 'P'

STORE 58 TO MAXLINES
SET PRINT ON

CASE devout = 'S'

STORE 23 TO MAXLINES
SET PRINT OFF

CASE devout = 'A'
RETURN

ENDCASE

SELECT B
SET INDEX TO REPORT

->
•

90

? " "+PERIOD+" "+;
"Page "+STR(pagenum, 2)

? " JOB NUMBER REGULAR REGULAR OVERTIME "+;
"OVERTIME TOTAL TOTAL"
? " HOURS CHARGES HOURS "+;
"CHARGES HOURS CHARGES"

STORE 10 TO LINECOUNT
GO TOP

DO WHILE .NOT. EOF (

)

STORE LMC TO MLMC
STORE 0.00 TO MFCRGHR
STORE 0.00 TO MFCRGCO
STORE 0.00 TO MFCOTHR
STORE 0.00 TO MFCOTCO

DO WHILE LMC=MLMC
STORE JOBNO TO MJOBNO
STORE 0.00 TO MJOBRGHR, MJOBRGCO, MJOBOTHR,

;

MJOBOTCO

DO WHILE JOBNO=MJOBNO
IF DATE >= FROMDATE .AND. ;

DATE <= TODATE.AND. SEG = " "

MJOBRGHR = MJOBRGHR + REGHRS
MJOBRGCO = MJOBRGCO + ;

INT (100*REGHRS*REG_WAGE+ . 5) /100

MJOBOTHR = MJOBOTHR + OTHRS
MJOBOTCO = MJOBOTCO +;

INT (100*OT_WAGE*OTHRS+ . 5) /100
ENDIF

SKIP
ENDDO

IF MJOBRGCO+MJOBOTCO > 0.00
? " "+MJOBNO, STR (MJOBRGHR , 8, 2) ,

;

STR(MJOBRGCO,9,2) , STR (MJOBOTHR, 7 , 2) , ;

STR(MJOBOTCO,8,2) , STR(MJOBRGHR+MJOBOTHR, 9 , 2) ,

;

STR (MJOBRGCO+MJOBOTCO ,10,2)

linecount = linecount + 1

IF LINECOUNT > MAXLINES
pagenum = pagenum + 1

IF DEVOUT = 'S'

91

WAIT
LINECOUNT =

ELSE
EJECT
7

->

7

? "

ii

7

"+PERIOD+;
Page "+ STR (pagenum, 2)

JOB NUMBER REGULAR REGULAR '

"OVERTIME OVERTIME TOTAL TOTAL"
? " HOURS CHARGES
"HOURS CHARGES HOURS CHARGES"
7

LINECOUNT =10
ENDIF

ENDIF
ENDIF

"+;

MFCRGHR = MFCRGHR + MJOBRGHR
MFCRGCO = MFCRGCO + MJOBRGCO
MFCOTHR = MFCOTHR + MJOBOTHR
MFCOTCO = MFCOTCO + MJOBOTCO

ENDDO

IF MFCRGCO+MFCOTCO > 0.00

? TOTAL '+MLMC, STR (MFCRGHR, 8 , 2) ,

;

STRCMFCRGCO^^) , STR (MFCOTHR, 7 , 2) , ;

STR(MFCOTCO,8,2) ,STR(MFCRGHR+MFCOTHR,

9

, 2) ,

;

STR (MFCRGCO+MFCOTCO ,10,2)
7 »*************************************"+;
•"•••••A***********************************"
7

LINECOUNT = LINECOUNT + 3

IF LINECOUNT > MAXLINES
pagenum = pagenum + 1

IF DEVOUT = 'S'

WAIT
LINECOUNT = 1

ELSE
EJECT
7

7

"+PERIOD+" Page "+;

92

STR(pagenum,2)
7

? " JOB NUMBER REGULAR REGULAR "+;

"OVERTIME OVERTIME TOTAL TOTAL"
? " HOURS CHARGES "+;
"HOURS CHARGES HOURS CHARGES"
7

LINECOUNT =10
ENDIF

ENDIF
ENDIF

MTORGHR = MTORGHR + MFCRGHR
MTORGCO = MTORGCO + MFCRGCO
MTOOTHR = MTOOTHR + MFCOTHR
MTOOTCO = MTOOTCO + MFCOTCO

ENDDO (WHILE NOT EOF}
7

? " ** GRAND TOTALS **"
7
7 ii ii

?? STR(MTORGHR,8,2) , STR (MTORGCO, 9 , 2) , STR(MTOOTHR, 7 , 2) ,

;

STR (MTOOTCO ,8,2), STR (MTORGHR+MTOOTHR ,9,2),;
STR (MTORGCO+MTOOTCO ,10,2)

IF DEVOUT = 'S'
WAIT

ELSE
EJECT

ENDIF
DO REBYSEG
DO REBYLMC
RETURN

* EOP FCREP

93

PROCEDURE FILEMENU
* Date : 05/07/87
STORE ' • TO devout
DO WHILE .T.

* Display menu options, centered on the screen
* draw menu border and print heading
CLEAR
@ 2, TO 16,79 DOUBLE
@ 3,25 SAY [FILE MAINTENANCE]
@ 4,1 TO 4,78 DOUBLE
* display detail lines
@ 7,27 SAY [1. Edit Employee Records]
@ 8,27 SAY [2. Edit Timecard Data]
@ 9,27 SAY [3. Edit Job Order Data]
@ 10,27 SAY [4. List Employee Data]
@ 11,27 SAY [5. List Job Order Data]
@ 12,27 SAY [6. Change Max GS OT and]+;
[Acceleration Rates]
@ 14, 27 SAY '0. EXIT'
STORE TO selectnum
§ 16,33 SAY " select "

@ 16,42 GET selectnum PICTURE "9" RANGE 0,6
READ

DO CASE
CASE selectnum =

RETURN

CASE selectnum = 1
* DO Employee Record Data
do empedit

CASE selectnum = 2
* DO Timecard Data
do timEDIT

CASE selectnum = 3

* DO Fund Code Data
do jobedit

CASE selectnum = 4

* DO LIST EMPLOYEES
DO EMPLIST

CASE selectnum = 5
* DO LIST JOBS
DO JOBLIST

94

CASE selectnum = 6

CLEAR
hiaclmc = hiaclmc + SPACE (80)
DO SAYGET WITH 10, "Enter maximum GS overtime"+;
" rate: ",maxgsot, '999.99 •

DO SAYGET WITH 11, "Enter high reimbursable "+;
"acceleration percentage :

" , hiacrate , '99.9'
DO SAYGET WITH 12, "Enter low reimbursable "+;
"acceleration percentage: ", loacrate, '99.9'
DO MSG WITH 13, "Enter LMC ' s to which the high"+;

" acceleration percentage applies:"
DO SAYGET WITH 14, ',;
hiaclmc ,'!!!! 1 !!!!'+;
mmi i i i i

J
i i i i i i i i i i i i i i i !l»i 1 •

!
1

'

READ
hiaclmc = TRIM (hiaclmc)

ENDCASE

ENDDO T
RETURN
* EOP FILEMENU

* JOBDISP.PRG
PROCEDURE JOBDISP
IF DELETED ()

§ 4, 50 SAY "DELETED"
ELSE

@ 4, 50 SAY " "

ENDIF

@ 13, 29 SAY "JOB NUMBER ";

GET JOBNO PICTURE • 9 ! ! ! !
!

•

§14, 29 SAY "LMC" GET LMC PICTURE 'l!!! 1

@ 15, 29 SAY "SEG#" GET SEG PICTURE '•!!!'

RETURN

* EOF JOBDISP.PRG

95

* JOBDISPM.PRG
PROCEDURE JOBDISPM
IF DELETED ()

§ 4, 50 SAY "DELETED"
ELSE

@ 4, 50 SAY " "

ENDIF

@ 13, 29 SAY "JOB NUMBER ";

GET m_JOBNO PICTURE • 9 ! ! ! ! !
•

@ 14, 29SAY "LMC" GET m_LMC PICTURE '!!!!'
@ 15, 29 SAY "SEG#" GET m_SEG PICTURE '!•!!'

RETURN

* EOF JOBDISPM.PRG

96

* JOBEDIT.PRG
PROCEDURE JOBEDIT
CLEAR
SELECT C
GO TOP
command = * '

Opcomm = •

DO PAINTBOX WITH 6, 19, "J O B F I L E"+;
" MAINTENANCE"
DO WHILE command <> 'E'

DO JOBDISP
CLEAR GETS
DO L23MENU WITH command, FSBCADUE

'

,
• <F>ind, '+;

'<S>kip, ack, <C>hange, <A>dd, <D>elete, '+;

'<U>ndelete, <E>xit '

DO CASE

CASE command = 'F'

key = ' '

DO SAYGET WITH 23, 'Enter job number •+;

•to find:
'
,key, '9! ! ! !

!

READ
key = TRIM (key)
SEEK key
IF EOF()

DO MSG WITH 22, • &key not found. 1

GO BOTTOM
ENDIF

CASE command = '
S

IF (EOF() .AND. BOF())
DO MSG WITH 22, 'There are no records + ;

' in the file.

'

ELSE
IF EOF()

GO TOP
ELSE

SKIP
ENDIF
IF EOF()

GO TOP
ENDIF

ENDIF

97

CASE command = 'B'

IF (EOF() .AND. BOF())
DO MSG WITH 22, 'There are no records •+;
• in the file.

•

ELSE
IF BOF()

GO BOTTOM
ENDIF
SKIP -1
IF BOF()

GO BOTTOM
ENDIF

ENDIF

CASE command = •

C

m_lmc = lmc
m_seg = seg
§ 14, 29 SAY "LMC" GET m_LMC PICTURE '!!!!'
@ 15, 29 SAY "SEG#" GET m_SEG PICTURE »!!!!'
READ
DO L23MENU WITH Opcomm, 'SA', "<S>ave, <A>bort"
IF Opcomm = 'S'

REPLACE LMC WITH m_lmc, SEG with m_seg
ENDIF

CASE command = 'A'

m_jobno = SPACE (6)
m_lmc = SPACE (4)
m_seg = SPACE (4)
DO JOBDISPM
READ
DO L23MENU WITH Opcomm, 'SA', "<S>ave, <A>bort"
IF Opcomm = '

S

'

SEEK m_jobno
IF FOUND ()

DO MSG WITH 22, 'This job number '+;

'is already in the file.'
ELSE

APPEND BLANK
REPLACE JOBNO WITH m_jobno,

;

LMC WITH m_lmc, SEG with m_seg
ENDIF

ENDIF
CASE command = 'D'

DELETE
CASE command = 'U'

RECALL
ENDCASE

ENDDO
* eof jobedit.prg

98

* joblist.prg
* 7/18/87
PROCEDURE JOBLIST
STORE ' ' TO devout
DO L23MENU WITH devout , ' SPA », "Select device:"+;
11 <P>rinter, <S>creen, <A>bort"
DO CASE
CASE devout = 'P'

STORE 58 TO MAXLINES
SET PRINT ON

CASE devout = 'S'
STORE 2 3 TO MAXLINES
SET PRINT OFF

CASE devout = 'A 1

RETURN
ENDCASE
SELECT C
7

7

?

7

? " LIST OF ACTIVE "+;
"JOBS AS OF " + DTOC(DATE())
7

? " JOB NUMBER LMC SEG#"
7

STORE 7 TO LINECOUNT
GO TOP
DO WHILE .NOT. EOF (

)

? ' '+JOBNO+ 1 '+LMC+ 1 »+SEG
LINECOUNT = LINECOUNT + 1

IF LINECOUNT > MAXLINES
IF DEVOUT = 'S'

WAIT
LINECOUNT = 1

ELSE
EJECT
7

7

7

7

LINECOUNT = 5

ENDIF
ENDIF
SKIP

ENDDO
SELECT B
SET PRINT OFF
RETURN
* EOF JOBLIST.PRG

99

* L23MENU
* 05/06/87
PROCEDURE L2 3MENU
PARAMETERS choice, possible, prompt
badans = .T.

@ 23, 1 SAY space(77)
DO WHILE badans

§ 23, (78-LEN (prompt))/2 SAY prompt;
GET choice PICTURE •

!

'

READ
IF choice $ possible

STORE .F. TO badans
ENDIF

ENDDO
* — clear message line
§22, 1 SAY space (77)
RETURN
* EOP L23MENU

100

* LOCDUP.PRG
* Duplication Check
* July 6, 1987
PROCEDURE LOCDUP

CLEAR
? "Be sure your printer is on."
WAIT
SET PRINT ON

? "Checking for duplicates in employee file..."
SELECT A
GO TOP
DO WHILE .NOT. EOF (

)

Compare = SSN
SKIP
IF SSN = Compare

* — skip back one record
SKIP -1
* — and list identical records
LIST SSN, NAME WHILE SSN = Compare OFF

ENDIF
ENDDO (while not eof)

? "Checking for duplicates in job order file..."
SELECT C
GO TOP
DO WHILE .NOT. EOF (

)

Compare = JOBNO
SKIP
IF JOBNO = Compare

* — skip back one record
SKIP -1
* — and list identical records
? " JOB NO LMC SEG#"
LIST JOBNO, LMC, SEG WHILE JOBNO = Compare OFF

ENDIF
ENDDO (while not eof)

SET PRINT OFF
RETURN
*EOP LOCDUP.PRG

101

* MAKEFILE
* 8/26/87
PROCEDURE MAKEFILE
SELECT B
USE TIMECARD INDEX TIMECARD
STORE LASTDATE TO MAKEDATE
STORE "OUTFILEl.TXT" TO OUTFILE
CLEAR
DO SAYGET WITH 12 /'Enter date: " , ;

MAKEDATE, "99/99/99"
READ
SEEK DTOC (MAKEDATE)
IF FOUND ()

DO SAYGET WITH 13 /'Enter name of output file: ",;
OUTFILE, "MM!!!!.!!!"
READ
IF .NOT. FILE (OUTFILE)

COPY TO &OUTFILE FIELDS SSN, JOBNO, REGHRS , OTHRS

;

WHILE DATE = MAKEDATE SDF
? "File created successfully."

ELSE
? "This file already exists. Please "+;

"name the file differently."
ENDIF

ELSE
? "No records exist for the requested date."

ENDIF
CLOSE DATABASES
WAIT
RETURN
* EOP MAKEFILE

* MSG
* 05/06/87
PROCEDURE MSG
PARAMETERS linenum, msgtxt
SET BELL ON
? CHR(7)
SET BELL OFF
@ linenum, 1 SAY space (77)
@ linenum, (80-LEN (msgtxt))/2 SAY msgtxt
RETURN

102

* PAINTBOX
* 05/06/87
PROCEDURE PAINTBOX
PARAMETERS top, bottom, title
CLEAR
6 top, TO bottom, 79 DOUBLE
@ top+1, (80-LEN(title))/2 SAY title
§ top+2, 1 TO top+2,78 DOUBLE
RETURN
* EOP PAINTBOX

* REBYLMC
* 8/13/87
PROCEDURE REBYLMC

STORE 1 TO pagenum
STORE "TOTAL ACCELERATED REIMBURSABLE CHARGES "+;
" BY LMC &CFROMDAT TO &CTODAT" TO PERIOD

STORE 0.00 TO MTORGHR
STORE 0.00 TO MTORGCO
STORE 0.00 TO MTOOTHR
STORE 0.00 TO MTOOTCO

SET INDEX TO REPORT

7

•

? PERIOD+" Page "+STR (pagenum, 2)
7

? " LMC REGULAR REGULAR OVERTIME "+;
" OVERTIME TOTAL TOTAL"
? " HOURS CHARGES HOURS "+;
"CHARGES HOURS CHARGES"
7

STORE 10 TO LINECOUNT
GO TOP

DO WHILE .NOT. EOF (

)

STORE LMC TO MLMC
STORE 0.00 TO MFCRGHR
STORE 0.00 TO MFCRGCO
STORE 0.00 TO MFCOTHR
STORE 0.00 TO MFCOTCO

103

DO WHILE LMC=MLMC
IF LMC $ HIACLMC

STORE HIACRATE TO ACCRATE
ELSE

STORE LOACRATE TO ACCRATE
ENDIF
STORE JOBNO TO MJOBNO
STORE 0.00 TO MJOBRGHR, MJOBRGCO, MJOBOTHR, MJOBOTCO

DO WHILE JOBNO=MJOBNO
IF DATE >= FROMDATE .AND.;
DATE <= TODATE .AND. SEG <> " "

MJOBRGHR = MJOBRGHR + REGHRS
MNEWRGCO = INT(100*REGHRS*REG_WAGE+.5)/100
MACCELCO = INT (MNEWRGCO*ACCRATE+. 5) /100
MJOBRGCO = MJOBRGCO + MNEWRGCO + MACCELCO

MJOBOTHR
MNEWOTCO
MOTREGCO
MACCELOT
MJOBOTCO

ENDIF

MJOBOTHR + OTHRS
INT (100*OT_WAGE*OTHRS+ . 5) /100
INT (100*REG_WAGE*OTHRS+ . 5) /100
INT (MOTREGCO*ACCRATE+ . 5) / 10
MJOBOTCO + MNEWOTCO + MACCELOT

SKIP
ENDDO

MFCRGHR = MFCRGHR + MJOBRGHR
MFCRGCO = MFCRGCO + MJOBRGCO
MFCOTHR = MFCOTHR + MJOBOTHR
MFCOTCO = MFCOTCO + MJOBOTCO

ENDDO

IF MFCRGCO+MFCOTCO > 0.00

? ' TOTAL '+MLMC, STR (MFCRGHR, 8 , 2) ,

;

STR(MFCRGCO,9,2) , STR (MFCOTHR, 7 , 2) ,

;

STR (MFCOTCO ,8,2), STR (MFCRGHR+MFCOTHR ,9,2),;
STR (MFCRGCO+MFCOTCO ,10,2)
?

LINECOUNT = LINECOUNT + 2

IF LINECOUNT > MAXLINES
pagenum = pagenum + 1

IF DEVOUT = 'S'
WAIT
LINECOUNT = 1

ELSE
EJECT

104

7

7

? PERIOD+" Page "+STR(pagenum, 2)
7

? " LMC REGULAR REGULAR "+;
"OVERTIME OVERTIME TOTAL TOTAL"
? " HOURS CHARGES "+;
" HOURS CHARGES HOURS CHARGES"
7

LINECOUNT = 10
ENDIF

ENDIF
ENDIF

MTORGHR = MTORGHR + MFCRGHR
MTORGCO = MTORGCO + MFCRGCO
MTOOTHR = MTOOTHR + MFCOTHR
MTOOTCO = MTOOTCO + MFCOTCO

ENDDO {WHILE NOT EOF}
7

? " ** GRAND TOTALS **"
7
-? ii ii

?? STR (MTORGHR, 8, 2) , STR (MTORGCO, 9 , 2) , STR (MTOOTHR, 7 , 2) ,

;

STR (MTOOTCO ,8,2), STR (MTORGHR+MTOOTHR, 9,2),;
STR (MTORGCO+MTOOTCO ,10,2)

IF DEVOUT = "S 1

WAIT
ELSE

EJECT
SET PRINT OFF

ENDIF
SET INDEX TO TIMECARD, REPORT, REPORT2
RETURN

105

* REBYSEG
* 8/13/87
PROCEDURE REBYSEG

STORE 1 TO pagenum
STORE "ACCELERATED REIMBURSABLE CHARGES"+;
" BY SEG# &CFROMDAT TO &CTODAT" TO PERIOD

STORE 0.00 TO MTORGHR
STORE 0.00 TO MTORGCO
STORE 0.00 TO MTOOTHR
STORE 0.00 TO MTOOTCO

SET INDEX TO REPORT2

7

7

7

7

? "

7

"+PERIOD+" Page "+STR (pagenum, 2)

REGULAR REGULAR OVERTIME
"OVERTIME
7 ii

"CHARGES

JOB NUMBER
TOTAL

HOURS

TOTAL"
HOURS CHARGES HOURS
CHARGES"

"+;

"+;

STORE 10 TO LINECOUNT
GO TOP

DO WHILE .NOT. EOF (

)

STORE SEG TO MSEG
STORE 0.00 TO MFCRGHR
STORE 0.00 TO MFCRGCO
STORE 0.00 TO MFCOTHR
STORE 0.00 TO MFCOTCO

DO WHILE SEG=MSEG
STORE JOBNO TO MJOBNO
STORE 0.00 TO MJOBRGHR,MJOBRGCO,MJOBOTHR,

;

MJOBOTCO

DO WHILE JOBNO=MJOBNO
IF DATE >= FROMDATE .AND.;
DATE <= TODATE .AND. SEG <> " "

IF LMC $ HIACLMC
STORE HIACRATE TO ACCRATE

ELSE
STORE LOACRATE TO ACCRATE

ENDIF

106

MJOBRGHR = MJOBRGHR + REGHRS
MNEWRGCO = INT(100*REGHRS*REG_WAGE+.5)/100
MACCELCO = INT(MNEWRGCO*ACCRATE+.5)/100
MJOBRGCO = MJOBRGCO + MNEWRGCO + MACCELCO

MJOBOTHR
MNEWOTCO
MOTREGCO
MACCELOT
MJOBOTCO

ENDIF

MJOBOTHR + OTHRS
INT (100*OT_WAGE*OTHRS+ . 5) /100
INT (100*REG_WAGE*OTHRS+ . 5)

/100
INT(MOTREGCO*ACCRATE+.5)/100
MJOBOTCO + MNEWOTCO + MACCELOT

SKIP
ENDDO

IF MJOBRGCO+MJOBOTCO > 0.00
? " "+MJOBNO, STR (MJOBRGHR, 8, 2) ,

;

STR (MJOBRGCO, 9, 2) , STR(MJOBOTHR, 7 , 2) , ;

STR (MJOBOTCO , 8 , 2

)

, STR (MJOBRGHR+MJOBOTHR ,9,2),
STR (MJOBRGCO+MJOBOTCO ,10,2)

linecount = linecount + 1

IF LINECOUNT > MAXLINES
pagenum = pagenum + 1

IF DEVOUT = 'S'

WAIT
LINECOUNT = 1

ELSE
EJECT
?
->
•

•

7

? " "+PERIOD+"
9

? " JOB NUMBER R
"OVERTIME
-? ii
•

OVERTIME
1

11 HOURS CHARGES

LINECOUNT == 10
ENDIF

ENDIF i

ENDIF
MFCRGHR = MFCRGHR + MJOBRGHR
MFCRGCO = MFCRGCO + MJOBRGCO
MFCOTHR = MFCOTHR + MJOBOTHR
MFCOTCO

punnn
= MFCOTCO + MJOBOTCO

£jJN UU\J

IF MFCRGCO+MFCOTCO > .00

Page "+STR (pagenum, 2)

3ULAR REGULAR "+;
TOTAL TOTAL"

OURS CHARGES "+;
HOURS CHARGES"

107

? ' TOTAL '+MSEG, STR(MFCRGHR,

8

, 2) ,

;

STR(MFCRGCO,9,2) , STR(MFCOTHR, 7 , 2) ,

;

STR (MFCOTCO ,8,2), STR (MFCRGHR+MFCOTHR ,9,2),;
STR (MFCRGCO+MFCOTCO ,10,2)
? ••*************************************»+;
•I***"

LINECOUNT = LINECOUNT + 3

IF LINECOUNT > MAXLINES
pagenum = pagenum + 1

IF DEVOUT = 'S'
WAIT
LINECOUNT = 1

ELSE
EJECT

?

? " "+PERIOD+" Page "+STR (pagenum, 2)
7

? " JOB NUMBER REGULAR REGULAR "+;
"OVERTIME OVERTIME TOTAL TOTAL"
? " HOURS CHARGES "+;
" HOURS CHARGES HOURS CHARGES"
7

LINECOUNT = 10
ENDIF

ENDIF
ENDIF
MTORGHR = MTORGHR + MFCRGHR
MTORGCO = MTORGCO + MFCRGCO
MTOOTHR = MTOOTHR + MFCOTHR
MTOOTCO = MTOOTCO + MFCOTCO

ENDDO {WHILE NOT EOF}
7

? " ** GRAND TOTALS **"

7
7 ii it

?? STR(MTORGHR,8,2) , STR (MTORGCO, 9 , 2) , STR (MTOOTHR, 7 , 2)
STR (MTOOTCO ,8,2), STR (MTORGHR+MTOOTHR ,9,2),;
STR (MTORGCO+MTOOTCO ,10,2)
IF DEVOUT = 'S'

WAIT
ELSE

EJECT
ENDIF
SET INDEX TO TIMECARD, REPORT, REPORT2
RETURN
* EOP REBYSEG

108

* SAYGET
* 05/06/87
PROCEDURE SAYGET
PARAMETERS 1 ineno , saythis , getthis , template
§ 1 ineno, 1 SAY space (77)
@ 1 ineno, (79-LEN (saythis) -LEN(template))/2 SAY ;

saythis GET getthis PICTURE template
RETURN
* EOP SAYGET

PROCEDURE TAENTEMP
STORE space (9) to M_ssn
DO SAYGET WITH 11, 'SSN', M_ssn, '999999999'
READ
SELECT A
FIND "&M_ssn"
* — macro substitution in quotes to accept blank
* — without bombing
IF EOF()

DO MSG WITH 22, "SSN not listed in employee file."
STORE .F. TO ssn_ok

ELSE
STORE reg_wage TO m_reg_wage
IF SUBSTR(A->GRADE,1,1) = 'G' .AND.;
INT(m_reg_wage * 150 + .5)/100.00 > Maxgsot

STORE Maxgsot to m_otwage
ELSE

STORE INT(m_reg_wage * 150 + .5)/100.00 ;

to m_ot_wage
ENDIF
STORE .T. TO ssn_ok
DO TAENTJOB

ENDIF
SELECT B
RETURN
* eof taentemp

109

PROCEDURE TAENTJOB
STORE " " TO command2
STORE " " TO command3
STORE " " to M_jobno
STORE TO M_reghrs
STORE TO M_othrs
STORE .F. TO jobdone
DO WHILE .NOT. jobdone

DO SAYGET WITH 12 , "Job Order Number" ,

;

M_jobno,"! MM!"
READ
SELECT C
FIND "&M_jobno"
IF EOF() && i.e. number not in job file

SELECT B
DO MSG with 22, "This job order is"+;
" not in the jobs file."
DO L23MENU WITH command2 , "AR" ,

;

"<R>e-enter job number, <A>bandon entry "

IF command2 = 'A'

STORE .T. TO jobdone
ENDIF

ELSE && JO in file so get lmc and seg
STORE LMC TO M_lmc
STORE SEG TO M_seg
SELECT B
DO SAYGET WITH 13 , "Enter regular hours worked" ,

;

M_reghrs, "999.99"
DO SAYGET WITH 14, "Enter overtime "+;
"hours worked", M_othrs, "999.99"
READ
DO L23MENU WITH command 3 , "SCA",;
"<S>ave, <C>hange, <A>bandon"
DO CASE
CASE command3 = '

S

•

APPEND BLANK
REPLACE reghrs WITH M_reghrs ,

;

othrs WITH M_othrs, date with M_date, jobno;
with M_jobno, reg_wage with M_reg_wage, lmc;
with M_lmc,ssn with M_ssn, ot_wage with;
M_ot_wage, seg with M_seg
STORE .T. to jobdone

CASE command3 = 'A'
* — exit loop
STORE .T. to jobdone

ENDCASE
ENDIF {JO not in file}

ENDDO
RETURN
* EOF TAENTJOB

110

PROCEDURE TIMDISP
IF DELETED ()

§ 4, 50 SAY "DELETED"
ELSE

@ 4, 50 SAY " "

ENDIF

@ 10, 24 SAY "DATE "
;

GET DATE PICTURE '99/99/99'
@ 11, 24 SAY "SOCIAL SECURITY NUMBER "

;

GET SSN PICTURE '999999999'
@ 12, 24 SAY "JOB NUMBER ";

GET JOBNO PICTURE ' 9 ! ! ! !
!

'

§13, 24 SAY "REGULAR HOURS ";

GET REGHRS PICTURE '999.99'
@ 14, 24 SAY "OVERTIME HOURS ";

GET OTHRS PICTURE '999.99'
@ 15, 24 SAY "REGULAR WAGE ";

GET REG_WAGE PICTURE '999.99'
@ 16, 24 SAY "OVERTIME WAGE ";

GET OT_WAGE PICTURE '999.99'
@ 17, 24 SAY "LMC "

;

GET LMC PICTURE '!!!!'
@ 18, 24 SAY "SEG# ";

GET SEG PICTURE '!!!!'

RETURN

* EOF TIMDISP. PRG

111

PROCEDURE TIMDISPM
IF DELETED ()

@ 4, 50 SAY "DELETED"
ELSE

@ 4, 50 SAY " "

ENDIF

§ 10, 24 SAY "DATE "
;

GET m_DATE PICTURE '99/99/99'
@ 11, 24 SAY "SOCIAL SECURITY NUMBER ";

GET m_SSN PICTURE '999999999'
@ 12, 24 SAY "JOB NUMBER "

;

GET m_JOBNO PICTURE ' 9 ! ! ! ! !
'

@ 13, 24 SAY "REGULAR HOURS ";

GET m_REGHRS PICTURE '999.99'
@ 14, 24 SAY "OVERTIME HOURS ";

GET m_OTHRS PICTURE '999.99'
@ 15, 24 SAY "REGULAR WAGE ";

GET m_REG_WAGE PICTURE '999.99'
@ 16, 24 SAY "OVERTIME WAGE ";

GET m_OT_WAGE PICTURE '999.99'
@ 17, 24 SAY "LMC "

;

GET m_LMC PICTURE '!!!!'
§ 18, 24 SAY "SEG# ";

GET m_SEG PICTURE '!!!!'

RETURN

* EOF TIMDISPM. PRG

PROCEDURE TIMEADD2

* — initialize everything
STORE LASTDATE to M_date
STORE " " to M_ssn
STORE " " to M_jobno
STORE to M_reghrs
STORE to M_othrs
STORE to M_reg_wage
STORE to M_ot_wage
STORE 'E' to command
STORE .F. to ssn_ok
STORE .F. to job_ok

DO PAINTBOX WITH 5, 17, "A D D L A B O R"+;
" CARD DATA"
@ 10,3 3 SAY "Date";
GET M_date PICTURE "99/99/99"
§ 11,3 3 SAY 'SSN'

;

112

GET M_ssn PICTURE ' 999999999

•

§ 12,28 SAY "Job Order Number";
GET M_jobno PICTURE "!!!!!!"
@ 13,23 SAY "Enter regular hours worked";
GET M_reghrs PICTURE "999.99"
@ 14,23 SAY "Enter overtime hours worked";
GET M_othrs PICTURE "999.99"
CLEAR GETS

SET CONFIRM OFF
SELECT B

DO WHILE command <> 'Q'

DO L2 3MENU WITH command, ' DSJQ
• ,

;

"<D>ate, <S>sn, <J>ob, <Q>uit"
DO CASE

CASE command = 'D'

DO SAYGET WITH 10, "Date", M_date, "99/99/99"

CASE command = 'S'
* — enter all timecard data
DO TAENTEMP

CASE command = 'J' .AND. ssn_ok
* — enter job order and hours worked
DO TAENTJOB

CASE command = 'J' .AND. .NOT. ssn_ok
DO MSG WITH 22, "You must have a "+;
"validated SSN before invoking this."

ENDCASE
ENDDO (while command <> 'Q'}
STORE M_date TO LASTDATE
RETURN
* EOF TIMEADD2

113

PROCEDURE TIMEDIT
CLEAR
SELECT B
GO TOP
command = '

'

Opcomm = '

DO PAINTBOX WITH 5, 21, "TIME CAR D"+;
" FILE MAINTENANCE"
DO WHILE command <> 'E 1

DO TIMDISP
CLEAR GETS
DO L23MENU WITH command, ' FSBCDUE

•

,
• <F>ind, •+;

'<S>kip, ack, <C>hange, <D>elete, <U>ndelete, •+;
' <E>xit'

DO CASE

CASE command = 'F'

STORE DTOC(DATE()) TO keydate
DO SAYGET WITH 23, 'Enter date of time'+;
• card to find: ', keydate, '99/99/99'
READ

key = ' '

DO SAYGET WITH 23, 'Enter employee SSN:
' ,

;

key, '999999999'
READ
key = TRIM (key)
key = keydate + key
SEEK key
IF EOF()

DO MSG WITH 22, 'Timecard not found.'
GO BOTTOM

ENDIF

CASE command = '
S

'

IF (EOF() .AND. BOF())
DO MSG WITH 22, 'There are no records •+;

' in the file.

'

ELSE
IF EOF()

GO TOP
ELSE

SKIP
ENDIF
IF EOF()

GO TOP
ENDIF

ENDIF

114

CASE command = 'B'
IF (EOF() .AND. BOF()]

1

DO MSG WITH 22, 'There are no records '+;
1 in the file.

•

ELSE
IF BOF()

BOTTOM
ENDIF
SKIP -1
IF BOF()

GO BOTTOM
ENDIF

ENDIF

CASE command = 'C
m_jobno = Jobno
m_lmc = Lmc
m_seg = Seg
m_ssn = Ssn
m_date = Date
m_ot_wage = Ot_wage
m_othrs = Othrs
m_reg_wage = Reg_wage
m reghrs = Reghrs
DO TIMDISPM
READ
DO L23MENU WITH Opcomm, 'SA', "<S>ave, <A>bort"
IF Opcomm = ' S'

REPLACE Jobno WITH m jobno
REPLACE Lmc WITH m_lmc
REPLACE Seg WITH m_seg
REPLACE Ssn WITH m ssn
REPLACE Date WITH m_date
REPLACE Ot wage WITH m ot wage
REPLACE Othrs WITH m_othrs
REPLACE Reg_wage WITH m_reg_wage
REPLACE Reghrs WITH m_reghrs

ENDIF
CASE command = 'D'

DELETE

CASE command = 'U'
RECALL

ENDCASE
ENDDO
RETURN
* EOP TIMEDIT

* EOF TIMEPROC.PRG

115

LIST OF REFERENCES

1. Naval Postgraduate School Course Catalog , Naval
Postgraduate School, Monterey, California, Academic Year
1987.

2. Budget Guidance Manual . NAVCOMPT Instruction 7102.2,
27 April 1983.

116

BIBLIOGRAPHY

Bohl, Marilyn, Information Processing , Science Research
Associates, Chicago, 1984.

Burns, R. N. and Dennis, A. R. , "Selecting the Appropriate
Application Development Methodology", Data Base . Vol. 17, No.
1, Fall 1985, pp. 19-23.

Carrabis, Joseph-David, dBASE III PLUS: The Complete
Reference , Osborne McGraw-Hill, Berkeley, 1987.

Castro, Luis A. , Hanson, Jay, and Rettig, Tom, Advanced
Programmer's Guide . Ashton-Tate, Culver City, California,
1985.

Davis, William S., Systems Analysis and Design . Addison-
Wesley, Reading, Massachusetts, 1983.

Good, Michael D. , Whiteside, John A. , Wixon, Dennis R. , and
Jones, Sandra J., "Building a User-Derived Interface",
Communications of the Association for Computing Machinery ,

Vol. 27, No. 10, October 1984, pp. 1032-1043.

International Business Machines Corporation, "Business
Systems Planning Information Systems Planning Guide",
International Business Machines Corporation, Armonk, New
York, 1984.

Kroenke, David M. , Database Processing . Science Research
Associates, Chicago, 1983.

Martin, James, Application Development Without Programmers ,

Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1982.

Page-Jones, Meilir, The Practical Guide to Structured Systems
Design . Yourdon Press, Englewood Cliffs, New Jersey, 1980.

Yourdon, Edward, Managing the Structured Techniques . Yourdon
Press, New York, 1986.

117

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93943-5002

Chief of Naval Operations 1

Director, Information Systems (OP-945)
Navy Department
Washington, D.C. 20350-2000

Naval Facilities Engineering Command 1

Program Manager, Public Works Centers (15)
200 Stovall Street
Alexandria, Virginia 22332-2300

Naval Facilities Engineering Command 1

Director, Facilities Division (Code 100)
200 Stovall Street
Alexandria, Virginia 22332-2300

Naval Construction Battalion Center 1

Director, Civil Engineer Support Office (Code 15)
Port Hueneme, CA 9 3 043

Norman R. Lyons 1

Administrative Sciences Department (Code 54LB)
Naval Postgraduate School
Monterey, California 93943-5000

Taracad R. Sivasankaran 1

Administrative Sciences Department (Code 54SJ)
Naval Postgraduate School
Monterey, California 93943-5000

Public Works Officer, Code 43 1

Naval Postgraduate School
Monterey, California 93943

118

10. Comptroller, Code 002
Naval Postgraduate School
Monterey, California 93943

11. David P. Dinwiddie, LT, CEC, USNR
Naval Construction Battalion Center
Director, Civil Engineer Support Office (Code 15)
Port Hueneme, CA 9 3 043

119

1 8 7^6 7

Thesis
D57649 Dinwiddie
c.l A database system for

monitoring labor costs
in a Public Works en-
vironment

.

23

12

SEP +2 6
-

12 3 5 3 3 9
w apr «n 3809P

Thesis

D57649

c.l

Dinwiddie

A database system foi

monitoring labor costs

in a Public Works en-

vironment.

thesD57649

A database system for monitoring labor c

3 2768 000 74978 2
DUDLEY KNOX LIBRARY

