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Walking on different grades becomes challenging on energetic and
muscular levels compared to level walking.While it is not possible
toeliminate thecostof raisingor lowering thecentreofmass (COM),
it could be possible to minimize the cost of distal joints with shoes
that offset downhill or uphill grades. We investigated the effects
of shoe outsole geometry in 10 participants walking at 1 m s−1

on downhill, level and uphill grades. Level shoes minimized
metabolic rate during level walking (Psecond-order effect < 0.001).
However, shoes that entirely offset the (overall) treadmill grade
did not minimize the metabolic rate of walking on grades:
shoes with a +3° (upward) inclination minimized metabolic rate
during downhill walking on a −6° grade, and shoes with a −3°
(downward) inclination minimized metabolic rate during uphill
walking on a +6° grade (Pinteraction effect = 0.023). Shoe inclination
influenced (distal) ankle joint parameters, including soleus
muscle activity, ankle moment and work rate, whereas treadmill
grade influenced (whole-body) ground reaction force and COM
work rate as well as (distal) ankle joint parameters including
tibialis anterior and plantarflexor muscle activity, ankle moment
and work rate. Similar modular footwear could be used to
minimize joint loads or assist with walking on rolling terrain.
1. Introduction
The optimal way to locomote depends on the situation, for
example, when walking up a grade, walking on uneven terrain
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or walking with new shoes. Humans are able to find the metabolically optimal locomotor pattern

during novel situations [1] when exposed to the broader energetic landscape, rather than only being
able to be metabolically economic during previously known gaits. Walking on level ground demands
little effort, but walking on slopes quickly becomes challenging on a metabolic [2–6] and muscular
level [7–10]. While it might not be possible to entirely eliminate the cost of raising or lowering the
centre of mass (COM) against or with gravity during downhill or uphill walking, investigating the
effects of whole-body and distal-limb mechanics on metabolic energy cost could inform new ways of
minimizing metabolic rate. For example, stairs are one possible way to reduce metabolic cost
compared to climbing an equivalent slope on a ramp surface [11]. Walking on stairs differs from
walking on a ramp since stairs allow horizontal foot placement but also require placing the feet in
specific positions.

Changes in metabolic rate during uphill and downhill walking come from changes in whole-body
mechanics [2–6,12]. Uphill walking leads to an increase in metabolic rate since the legs have to perform
more positive work [13] to move the COM upward against gravity. Downhill walking causes a decrease
in metabolic rate, but only up to approximately a −6° grade [2,4,6]. During downhill walking, the
muscles produce more eccentric work than during level or uphill walking [13] to prevent the COM from
accelerating downward. Negative mechanical work is less metabolically costly than positive mechanical
work [5] indicating that downhill walking is less metabolically costly than uphill walking. This
mechanical work is delivered by the muscles: when walking uphill, hip, knee and ankle extensor muscle
activities are increased during the stance phase [7,8] and serve to perform positive work. By contrast,
downhill walking causes an increase in the activity of knee extensors [7,9], which is required for limiting
forward velocity.

Distal manipulations, such as changes in shoe outsole geometry, can alter ankle biomechanics
and metabolic rate during human walking. Shoes with high heels have been shown to increase
the metabolic rate of walking by an amount that is proportional to heel height [14]. Walking
with shoes that are pointed upward, also called negative-heel shoes, increased the metabolic rate
compared to walking with normal shoes [15]. The influence of other geometric parameters of shoes
has also been investigated. For example, adding a curved surface with a radius of 30% of the leg
length to the bottom of a rigid boot minimized the metabolic rate of walking compared to a range of
tested radii [16].

A model of muscle energy expenditure [17] based on the Hill-type muscle model [18] suggests that
(i) metabolic cost is near maximal when contractile element lengths are at or below the optimal length
on the force–length curve, and (ii) metabolic cost decreases with longer contractile element lengths
[19,20]. Optimal muscle fascicle lengths and tendon stiffness values appear to be important for
providing the required power output from a muscle [21] and for minimizing metabolic cost during
human walking [22,23]. During level walking, altering shoe inclination could influence tendon
elongation and change the contractile element length (in lower leg muscles) away from the region that
minimizes metabolic rate. Conversely, altering the shoe inclination to offset uphill or downhill
walking grades could bring the plantarflexor muscle fascicle lengths back to the optimal region that
minimizes metabolic rate.

Usingmodular footwear as a new tool for altering treadmill gradewhile keeping the foot segment angle
constant (by offsetting the treadmill grade) could provide new insights into the relationships between
biomechanical changes and the resulting changes in metabolic rate. Studies on negative-heel shoes [15,24]
and shoes with different heel heights [25–27] have used footwear that is commonly available but differs
in more than one property (outsole geometry, hardness, etc.). Using commonly available footwear has the
advantage of being more ecologically valid but makes it difficult to attribute changes in metabolic rate
and biomechanics to a specific shoe parameter. Hence, the aim of this study was to investigate the
interaction effects of varying footwear outsole geometry and treadmill grade on metabolic rate, joint
mechanics, muscle activity, ground reaction forces (GRF) and COM mechanics in a controlled experiment
(all footwear and treadmill parameters were kept constant except the outsole geometry and treadmill
grade). We hypothesized that a shoe inclination of 0° (level shoes) would minimize the metabolic energy
rate during level walking. We also hypothesized that a shoe inclination that exactly offsets the treadmill
grade would minimize the metabolic rate during downhill and uphill walking because it would mimic
walking on stairs [11]. Since both experimental manipulations (footwear and treadmill) occurred in the
sagittal plane, we sought potential explanations in the sagittal plane biomechanical parameters.
Therefore, we focused mostly on ankle kinetics and muscle activation to explain the effects of footwear
changes [14,15,24–27] and on whole-body parameters (GRF and COM work rate) to explain the effects of
treadmill grade changes.



independent blocks do not affect
bending stiffness

modular blocks
for changing
shoe inclination
(rigid blocks to avoid
block height affecting
overall vertical hardness)

pouch with weights
for matching
total mass

(a) (b)

lead strips for matching
anterior–posterior
mass distribution

spaces between
blocks allow
the outsole
to bend

Figure 1. Modular outsole geometry shoe assembly. (a) By attaching wooden blocks of different heights on the sole, we were able
to change outsole geometry without altering bending stiffness or damping (blocks are only shown in the rear part of the shoe). We
placed thin lead strips under the forefoot or heel of the shoe to keep the anterior–posterior weight distribution constant across shoes
with different geometries. Finally, we attached a pouch with lead weights on top of the centre of the shoe to match the total
weight between shoe configurations. (b) The attachment of the blocks does not change the bending stiffness.
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2. Methods
2.1. Participants
We recruited 10 healthy male participants (age 24.9 ± 2.7 years, mass 75.7 ± 13.4 kg, height 173.2 ± 6.4 cm;
mean ± s.d.). Participants were free from injuries and neuromotor disorders. We tested a homogeneous
sample of male participants in order to limit the chances that differences in previous experience with
wearing high heels among participants would affect the results and to limit the number of shoe sizes
that we had to design for the testing population. The University of Nebraska Medical Center
Institutional Review Board approved the study. All participants provided written informed consent.

2.2. Modular footwear
We developed a modular shoe that allows for altering the inclination of the foot relative to the ground
without affecting other parameters, such as the amount of damping under different parts of the foot, and
the bending stiffness of different parts of the outsole (figure 1). We based our experimental shoes on a
conventional shoe that does not provide support and has an entirely level outsole (Chuck Taylor All-Star
Low Top, Converse, Boston, MA, USA). We used three shoe sizes to accommodate participants (9.5, 10
and 10.5 men’s US sizes). Outsole geometry was altered by attaching blocks with different heights to the
sole. In studies with high-heel shoes or negative-heel shoes in which the outsole is designed as a single
block [15,24,25,27], it is possible that the thicker parts of the outsoles have a greater bending stiffness and
lower vertical hardness, which can both affect walking biomechanics [28,29]. We chose a design with
separate blocks as opposed to single wedge-shaped outsoles to avoid differences in outsole stiffness due
to the outsole inclination. The blocks were made from rigid material (1.27 and 0.32 cm medium-density
fibreboard; compression tests with a clamp and digital caliper did not show deformation) to avoid having
different block heights result in differences in vertical hardness. Tests of the bending stiffness when
dorsiflexing the toe region showed an average stiffness of 0.0011 N m deg−1. Grip rubber was glued to the
bottom of each block to prevent slipping. To keep the anterior–posterior mass distribution constant, lead
weight strips were added under the toe or heel region of the insole depending on where heavier blocks
were placed. We also added lead weights in a pouch on top of the centre of the shoe to match the total
weight between all shoe configurations within each participant, and avoid that differences in total mass
would affect metabolic rate [30–32]. The pouch was tightened down with rubber bands to prevent
wobbling. The modular shoes, including the added weights, amounted to a mass of 1.1 kg per side.

2.3. Experimental conditions
We tested 15 combinations of three different treadmill grades (−6° downhill, level and +6° uphill) and
five shoe inclinations per treadmill condition (figure 2). The number of combinations was selected based
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Figure 2. Experimental conditions. (a) Definition of shoe and treadmill grades. The outsole angle was defined as the angle of the
shoe versus the bottom of blocks. Treadmill grade was defined as the grade of the treadmill versus the horizontal plane. The foot
segment angle was defined as the angle of the foot versus the horizontal plane. (b) We evaluated five different shoe inclinations at
three treadmill grades (shown on the vertical axis): downhill (−6°), level and uphill (6°). During downhill walking, we tested shoe
inclinations (shown as white angle indicators) ranging from: −3° to +12° (downward shoe inclinations are labelled negative,
upward shoe inclinations are labelled positive). During level walking, we tested shoe inclinations ranging from −7° to +7°.
During uphill walking, we tested shoe inclinations ranging from −12° to +3°. Coloured bands connect shoe inclinations that
were tested at multiple treadmill grades. The combination of the shoe inclinations and treadmill grades resulted in foot
segment angles (shown on the horizontal axis) ranging from −9° to 9°.
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on an analysis of the results from pilot tests to detect interaction effects. A larger number of footwear
conditions than treadmill grades was used because we expected that the effects of treadmill grade would
be larger than the effects of shoe inclination, which would be smaller and would therefore require a
greater number of data points. The shoe inclinations for each treadmill condition were approximately
centred around the inclination that offset the treadmill grade. Specifically, five shoe inclinations (−3°, 0°, 3°,
7° and 12°) were tested during (−6°) downhill walking, five shoe inclinations (−7°, −3°, 0°, 3° and 7°) were
tested during level walking and five shoe inclinations (−12°, −7°, −3°, 0° and 3°) were tested during (+6°)
uphill walking. Only the −3°, 0° and 3° shoe inclinations were tested at all treadmill grades. Shoe angles
that result in the toes pointing down on a level treadmill are given a negative sign and labelled as
‘downward’. Shoe angles that result in the toes pointing up on a level treadmill are given a positive sign
and labelled ‘upward’. One participant did not complete one of the conditions because one of the blocks
of the outsole detached.

2.4. Protocol
Participantswere instructed to fast forat least 6 hprior to theexperiment and to abstain fromcaffeineovernight
[33]. Before the experiment,wemeasured restingmetabolic rateduringa5 min standing trial. Participants then
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performed a 10 minwarm-up [34] to become habituatedwith the shoe construction and treadmill before data

collection. The treadmill speed was set at 1 m s−1 [35,36]. All testing conditions lasted 5 minutes and were
completed in a single session to avoid day-to-day variability and marker repositioning errors that would
affect metabolic rate and biomechanical measurements. The conditions (shoe inclination angles and
treadmill grades) were semi-randomized for each participant using a random order generating software,
and to minimize the number of shoe inclination angle changes, we tested each shoe inclination on all
applicable treadmill grades before changing to the next shoe inclination. The order of the conditions for
every second participant was the inverse of the order of the previous participant. As such, all conditions
were symmetrically distributed over the first and second halves of the protocol to avoid the effects of
metabolic drift on the results. We also allowed the participants at least 2 min of rest between conditions.

2.5. Measurements
We recorded oxygen consumption and carbon dioxide production using an indirect calorimetry system
(Cosmed, K5, Rome, Italy) during the entirety of each condition. We recorded three-dimensional kinematics
at a rate of 200 Hz using a 14-camera motion capture system (VICON Vero, Oxford Metrics, Yarnton, UK). A
total of 41 reflective markers were placed on anatomical landmarks and the shoes according to a modified
Helen Hayes marker set [37]. The foot segment was defined by using markers placed at the calcaneus
(lateral on the heel of the shoe, at furthest point from heel marker on rigid portion of counter), heel (on heel
counter at the same height as the toe, centrally when viewing from a posterior position along the long axis of
the shoe), first metatarsal (medially on shoe at a point approximating position of first metatarsal head), fifth
metatarsal (laterally on shoe at a point approximating position of fifth metatarsal head) and toe (at a point
approximating position of second metatarsal head on the dorsum of shoe). We recorded GRF at a frequency
of 2000 Hz using an instrumented split-belt treadmill (Bertec, Columbus, OH, USA). We recorded muscle
activation using a wireless electromyography (EMG) system (Trigno TM, Delsys, USA; 2000 Hz). Since the
footwear conditions were expected to primarily influence the ankle muscles [24–27] and the treadmill grades
were expected to influence all lower limb joints [7,8,10,38] and since both manipulations happen mostly in
the sagittal plane (i.e. we did not use shoe wedges that were tilted in the frontal plane), we chose to record
the muscle activation of the most accessible (major) flexor and extensor muscles of the ankle, knee and hip
joints: soleus, gastrocnemius medialis, tibialis anterior, vastus medialis, rectus femoris, biceps femoris and
gluteus maximus. Electrodes were positioned according to SENIAM guidelines [39]. Skin preparation prior
to attaching the electrodes included shaving hair from the recording site and wiping with an alcohol swab.
During the last minute of each condition, we recorded motion capture, GRF and EMG data for 30 s.

2.6. Data processing
We used the Brockway equation to calculate metabolic rate based on the rates of oxygen consumption
and carbon dioxide production [40]. We averaged the metabolic rate of the last 2 min of each
condition to reflect the steady-state metabolic rate. The net metabolic rate of walking was calculated
by subtracting the metabolic rate of the standing trial from that of each walking condition.

We filteredmarker positions andGRFwith a fourth-order low-pass Butterworth filterwith a 6 Hz cut-off
frequency [35,41].We calculated the foot segment angle, joint angles, jointmoments and powers of the right
leg using three-dimensional kinematic analyses and inverse dynamic analyses (Visual3D, C-Motion,
Germantown, MD, USA). We estimated body segment mass distribution based on Dempster [42],
whereby foot segment mass was adjusted to account for shoe mass. We calculated whole-body COM
acceleration based on the body mass and the total GRF of both legs. We calculated COM velocity
by integrating the COM acceleration over time [43]. Next, we calculated the product of COM velocity
and the individual leg GRF to obtain the right leg COM power [44]. We filtered EMG signals with a
50–400 Hz band-pass filter [45–47]. Then, we rectified EMG signals and applied a moving root mean
square with a centred window of 100 ms. We visually inspected EMG signals and removed 95 signals
from individual muscles on specific trials that had artefacts (9% of all EMG data).

We segmented each time series based on heel strike detection (using the GRF) and calculated the
representative profile per stride by taking the median of all strides. Metabolic rate, GRF, joint
moments and powers were normalized to body mass. We normalized each muscle activity to the
maximum value across the stride during walking in the condition with level shoes on level treadmill.
We calculated the mean angle of the foot segment with respect to the horizontal plane (figure 2a)
during the foot flat phase approximately from 20 to 35% of the stride cycle [48]. This angle was then
subtracted from the condition with level shoes at each treadmill grade such that the shoe inclination
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for level shoes is reported as zero degrees. This foot segment angle that was measured during realistic

loading conditions was used as an independent parameter in further analyses together with our
second independent parameter, treadmill grade. We reported the stride averages of positive or
negative forces and moments. We reported joint and COM mechanics by integrating joint and COM
powers over stride time and dividing by stride time. We chose to report joint and COM mechanics as
work rates (W) instead of work (J) so that they had comparable units to those of metabolic rate and to
avoid the potential for changes in step frequency to confound the mechanical work results. We also
calculated the stride average of each EMG signal.
 .org/journal/rsos
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2.7. Statistical analyses
We reported all dependent variables usingmeans and standard error across participants for each condition.
To examinewhether shoes that offset treadmill grade optimizemetabolic rate and other dependent variables
during downhill, level and uphill walking we analysed the changes in all dependent variables versus ‘foot
segment angle’ and ‘treadmill grade’ as independent variables. Since shoe inclinations are measured as
deviations in shoe segment angles from the conditions with level shoes, a foot segment-angle of zero
indicates a shoe inclination that offsets the treadmill grade. To determine the effects and interaction
effects of foot segment angle and treadmill grade on metabolic rate and biomechanical variables, we used
linear mixed-effects model analyses with participant number as random effect [49,50]. For each
parameter, we started by evaluating the following model:

Dependent variable = c0 þ c1 � foot segment angleþ c2 � foot segment angle2

þ c3 � treadmill gradeþ c4 � treadmill grade2

þ c5 foot segment angle � treadmill grade ð2:1Þ

Where c0 is the constant intercept termand terms c1 to c5 are coefficients for the independentvariables. Since
we hypothesized that shoes that offset the treadmill grade could minimize metabolic rate and this could be
related to minimizing other biomechanical variables, the initial model includes a first- and second-order
term of foot segment angle to fit U-shaped trends. We also included a first- and second-order treadmill
grade term since metabolic rate follows a U-shaped trend versus treadmill grade [2]. We included an
interaction term to evaluate whether an optimal foot segment angle changes for different treadmill grades.

Starting from this model, we could test a number of specific hypotheses regarding the landscapes of
metabolic rate and other biomechanical variables in one single analysis. The p-value associated with c0
will inform us whether a variable has an intercept that is consistently different (or not) from zero across
participants. For example, if the p-value for c0 for metabolic rate is different from zero, it indicates that the
best fitting statistical model has a metabolic rate that is different from zero for walking with level shoes
on a level treadmill grade. The p-value associated with c1 will inform us whether a variable follows a
non-horizontal trend versus foot segment angle, or in the case that the trend is consistently parabolic, it
will inform us whether the location of the minimum is different from a foot segment angle of zero. The
p-value associated with c2 will inform us whether a variable follows a parabolic trend versus foot
segment angle. The p-value associated with c3 will inform us whether a variable follows a non-horizontal
trend versus treadmill grade and whether the location of the minimum is different from a level treadmill
grade. The p-value associated with c4 will inform us whether a variable follows a parabolic trend versus
treadmill grade. The p-value associated with c5 will inform us whether the trend of a variable versus foot
segment angle is different at treadmill grades. The landscape shape of the dependent variables would be
different depending on which coefficients in the statistical model are not significantly different from zero
(figure 3). To avoid overfitting and to adapt the model for dependent variables that have linear trends,
we removed terms that did not significantly contribute using backward stepwise elimination similar to
other studies [51,52]. If the resulting trend showed a minimum versus the foot segment angle and/or
treadmill grade, the location of the minima was obtained by calculating the minimum of the equation
from the linear mixed-effects model (with coefficients shown in electronic supplementary material, table
S1) at the different treadmill grades and shoe angles. To obtain a sense of the inter-subject variability of
the location of the minima, we fitted the terms of the linear mixed-effects model that were statistically
significant on each individual participant and calculated the location of the individual minima. To
facilitate the interpretation of the meaning of the significant coefficients (positive or negative interaction
coefficients), we evaluated the formula resulting from the linear mixed-effects model analysis over the
tested range of foot segment angles at each treadmill grade and plotted the results as lines in the scatter
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plots. As such, the results of the statistical analysis can be understood from the figures; for example, if the
coefficient for a second-order term was not significant, then the results were plotted as straight lines, or
when there was a significant interaction effect, this effect could be understood by analysing the
differences in the slope or the location of the minima. All statistical analyses were performed in Matlab
(MathWorks, Natick, MA, USA) and the significance threshold was set at 0.05.
3. Results
3.1. Metabolic rate
We found significant effects of c2 (square of foot segment angle, p = 0.013; electronic supplementarymaterial,
table S1; figure 4a) on metabolic rate indicating that the effect of the foot segment angle on metabolic rate
at each treadmill grade followed a parabolic trend. There was a significant effect of c3 (treadmill grade,
p < 0.001; electronic supplementary material, table S1; figure 4b) and of c4 (the square of treadmill grade,
p < 0.001; electronic supplementary material, table S1; figure 4b). This shows that the effect of the
treadmill grade on metabolic rate followed a U-shaped trend that was not centred at a 0° treadmill grade.
The first order of foot segment angle did not show a significant effect in the first iteration of the linear
mixed-effects model analysis ( p = 0.318) and was therefore removed. Supplementary residual analyses
confirmed that the inclusion of the square of foot segment angle improved the fits of the individual
participant data, whereas the first order of foot segment angle did not improve the fits. The resulting
trends show that during walking on a level treadmill, shoes that result in a level foot segment angle
minimized metabolic rate. We found a significant interaction effect of c5 (foot segment angle and
treadmill grade, p = 0.023; electronic supplementary material, table S1) on metabolic rate. As a result of
this interaction effect, shoes that result in a level foot segment angle did not minimize metabolic rate at
all treadmill grades. A +3° (upward) outsole minimized metabolic rate during walking on a −6°
(downhill) treadmill. A −3° (downward) outsole minimized metabolic rate during walking on a +6°
(uphill) treadmill. The combinations of outsole angle and the resulting foot segment angle that
minimized metabolic rate at each treadmill grade are shown with pictograms in figure 4a.
3.2. GRF and COM mechanics
Positive COM work rate (figure 5b) and average propulsive GRF (electronic supplementary material,
figure S4B) follow a rising parabolic trend versus c3 (treadmill grade, p < 0.001; electronic supplementary
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material, table S1). Increases in c3 (treadmill grade) from downhill (negative) to level or from level to uphill
(positive) led to decreasing magnitudes of average braking GRF (p < 0.001; electronic supplementary
material, table S1 and figure S4D) and decreasing magnitudes of negative COM work rate (p < 0.001;
electronic supplementary material, table S1 and figure S4F). In summary, greater uphill treadmill grades
resulted to more propulsion and less braking.

We found no isolated effects of c1 (foot segment angle) on average positive and negative GRFs, and
COM work rates, but we did find significant interaction effects of c5 (foot segment angle and treadmill
grade) on average braking GRF ( p = 0.032; electronic supplementary material, table S1) and on positive
COM work rate ( p = 0.015; electronic supplementary material, table S1). During downhill walking,
smaller negative (downward) and greater positive (upward) foot segment angles led to decreasing
positive COM work rate (figure 5a) and increasing magnitudes of average braking GRF (electronic
supplementary material, figure S4C). During uphill walking, smaller negative (downward) and greater
positive (upward) foot segment angles led to decreasing positive COM work rate (figure 5a) and
decreasing magnitudes of average braking GRF (electronic supplementary material, figure S4C). In
summary, we found interaction effects of c5 (foot segment angle and treadmill grade) on braking GRF
and positive COM work rate that were similar to the interaction effect on metabolic rate.
3.3. Ankle mechanics and muscle activation
We found a U-shaped trend in average soleus EMG versus c2 (square of foot segment angle, p = 0.002;
electronic supplementary material, table S1; figure 6a). The c1 (foot segment angle) and the c5 (foot
segment angle and treadmill grade) did not have significant effects on soleus EMG, which indicates that a
foot segment angle of 0° minimized soleus EMG for downhill, level and uphill walking. Evaluating the
statistical model without eliminating the non-significant terms showed that the individual minima varied
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with an s.e.m. of 1.1, 0.9 and 0.7 for downhill, level and uphill walking, respectively. Smaller negative
(downward) and greater positive (upward) foot segment angles led to increasing average plantarflexion
moment (p < 0.001; electronic supplementary material, table S1 and figure S1A), increasing positive ankle
work rate ( p = 0.001; electronic supplementary material, table S1 and figure S1E), increasing magnitudes
of negative ankle work rate ( p = 0.049; electronic supplementary material, table S1 and figure S1G) and
increasing average tibialis anterior EMG (p < 0.001; electronic supplementary material, table S1 and figure
S1 K). Smaller negative (downward) and greater positive (upward) foot segment angles led to decreasing
magnitudes of average dorsiflexion moment (p < 0.001; electronic supplementary material, table S1 and
figure S1C). In summary, a level foot segment angle minimized soleus EMG and more upward foot
segment angles led to increases in most ankle parameters.
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Increases in c3 (treadmill grade) from downhill (negative) to level or from level to uphill (positive)
led to increasing positive ankle work rate ( p = 0.001; electronic supplementary material, table S1
and figure S1F) and increasing average gastrocnemius medialis EMG ( p < 0.001; electronic
supplementary material, table S1 and figure S1 J). Increases in c3 (treadmill grade) from downhill
(negative) to level or from level to uphill (positive) led to decreasing average plantarflexion moment
( p < 0.001; electronic supplementary material, table S1 and figure S1B) and decreasing magnitudes of
negative ankle work rate ( p < 0.001; electronic supplementary material, table S1 and figure S1H).
We found U-shaped trends in average soleus EMG ( p < 0.001; electronic supplementary material,
table S1; figure 6b) and average tibialis anterior EMG ( p < 0.001; electronic supplementary material,
table S1 and figure S1 L) versus c3 (treadmill grade) with respective minima at downhill treadmill
grades of −3° and −2°.
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4. Discussion

The aim of the present study was to investigate the interaction effects of varying footwear outsole geometry
and treadmill grade on metabolic rate, joint mechanics, muscle activity, GRF and COMmechanics. During
level walking, we found that a shoe inclination of 0° minimized metabolic rate (figure 4a). Remarkably, we
found that a −3° foot segment angle (obtained with a 3° upward shoe) minimized metabolic rate during
walking on a −6° downhill grade. A +3° foot segment angle (obtained with a −3° downward shoe)
minimized metabolic rate during walking on a +6° uphill grade. Thus, a shoe inclination that partially
offsets uphill or downhill grades can minimize metabolic rate during walking.

The minima for the positive COM work rate and propulsive GRF were very close to the treadmill
grade (−6° downhill) that minimized metabolic rate (figure 5b; electronic supplementary material,
figure S4B). Both the mechanical work rate and force variables could indeed be responsible for the
changes in metabolic rate because energy consumption at the muscle fibre level is dependent on the
fibre work force [17]. Concentric muscle work is four times more expensive than eccentric muscle
work [5], which could explain why the positive COM work rate and propulsive GRF are closely
related to the metabolically optimal treadmill grade. The metabolically optimal treadmill grade was
similar to the optimal grade from other studies [5,6], which supports the validity of our experiment.

The reductions in negative COM work rate and braking GRF due to increases in treadmill grade from
downhill (negative) to level or from level to uphill (positive) for all shoe inclinations that were tested on
all three treadmill grades are consistent with those from other studies [13,53–57]. The increases in positive
COM work rate are in line with a study from Franz et al. [13] and the increases in propulsion GRF are in
agreement with a number of studies [13,53–57]. We found that increases in treadmill grade from downhill
(negative) to level or from level to uphill (positive) also led to increasing dorsiflexion moments, positive
ankle work rate, tibialis anterior and plantarflexor muscle activations. These results appear to be
consistent with studies that found increased positive ankle work rate [58–60], tibialis anterior [10,38]
and plantarflexor muscle activations [7,8,10,38] during uphill walking. Additionally, we found that
uphill walking decreased magnitudes of negative ankle work rate similar to other studies [58–60].

To investigatewhy level shoesminimizedmetabolic rate duringwalking on a level treadmill, we started
byanalysing data from the anklemuscles and the joint kinetics sincewe expected the footwearmanipulation
to mostly effect the ankle joint. The energetics model from Umberger et al. [17], which is based on muscle
studies [19,20], predicts that when contractile elements are longer than the optimal length, the estimated
metabolic rate is multiplied by a force–length-dependent coefficient that is lower than one resulting in a
lower metabolic rate. If we assume that shoes that result in upward foot segment angles would lead to
longer plantarflexor contractile element lengths, then if all other parameters remain constant, based on
the energetics model from Umberger et al. [17], we would expect lower metabolic rate values in
conditions with upward foot segment angles. In contrast with this hypothesis, we found increasing
metabolic rates in conditions with greater upward foot segment angles. Knowing whether upward
shoe conditions led to longer contractile elements lengths would require additional measurements
(e.g. ultrasonography). It is also likely that other parameters that affect metabolic rate of muscles were
induced, such as contractile element force, velocity and muscle activation. As a matter of fact, we found
that soleus muscle activity showed a U-shaped trend with a minimum that aligned with a foot segment
angle of 0°, which minimized metabolic rate (figure 6a). A musculoskeletal simulation from Dorn et al.
[61] suggests that the soleus consumes the greatest amount of metabolic energy from all muscles during
level walking, which could explain the similar U-shaped relationship in metabolic rate found in our study
between soleus muscle activity and foot segment angles. It could also be that the U-shaped landscape in
metabolic rate is the net result of the summation of metabolic energy consumptions in muscles that have
increasing trends with smaller negative (downward) and greater positive (upward) foot segment angles,
and other muscles that have decreasing trends with smaller negative (downward) and greater positive
(upward) foot segment angles. In our results, we did indeed find variables that increased with smaller
negative (downward) and greater positive (upward) foot segment angles, such as average plantarflexion
moment (electronic supplementary material, figure S1A), as well as variables that decrease with smaller
negative (downward) and greater positive (upward) foot segment angles, such as average dorsiflexion
moment (electronic supplementary material, figure S1C) and a number of knee variables (electronic
supplementary material, figure S3A,G and I).

Most changes in ankle moments, work rates andmuscle activations (figure 6; electronic supplementary
material, figure S1) appear to be consistent with prior studies. Panizzolo et al. [41] examined changes in
kinematic and kinetic parameters in response to stepping with different parts of the foot on a small
bump. Similar to our study, they found increasing plantarflexion moment, increasing plantarflexion work
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rate and decreasingmagnitudes of dorsiflexionmoment when stepping on a bumpwith the forefoot, which

results in a foot angle similar to our upward shoe conditions. Simonsen et al. [27] and Stefanyshyn et al. [25]
also found higher plantarflexion moments in level shoes compared to high-heeled (i.e. downward) shoes. It
is hypothesized from a previous study [25] that this could be due to a longer moment arm of the Achilles
tendon in level shoes compared to high-heeled shoes allowing the plantarflexors to apply higher
moments. We found increasing tibialis anterior activation with smaller negative (downward) and greater
positive (upward) foot segment angles. Inspection of time-series plots shows that this occurred during
the swing phase and could have been due to an increased need for toe clearance. Curiously, we found no
significant effect of foot segment angle on gastrocnemius medialis muscle activity. Similarly, Stefanyshyn
et al. [25] did not find an effect of heel height on gastrocnemius medialis muscle activity, whereas other
studies did find differences in gastrocnemius medialis muscle activity in high-heel and negative-heel
shoes compared to level shoes [24,26]. Additionally, more downward foot segment angles led to a
decrease in the plantarflexion moment (electronic supplementary material, figure S1A) but also to
a decrease in knee flexion moment (electronic supplementary material, figure S3C). As such, this does not
explain the lack of reduction in the activation of the gastrocnemius medialis because this muscle is a
biarticular muscle that performs plantarflexion and knee flexion. The absence of a significant effect of foot
segment angle in our study could be due to the fact that the modular shoes were designed not to affect
bending stiffness, which is different from most high-heel or low-heel shoes.

Contrary to our expectations, we did not find a shoe that exactly offsets the treadmill grade
minimizes the metabolic rate for uphill and downhill human walking. A −3° foot segment angle
minimized metabolic rate during downhill walking and a 3° foot segment angle minimized metabolic
rate during uphill walking. We found interaction effects on the biomechanical parameters that
followed a similar direction to that of the interaction effect on metabolic rate. More downward
foot segment angles reduced the positive COM work rate during downhill walking, whereas more
upward foot segment angles reduced the positive COM work during uphill walking (figure 5a).
Analyses of the time series that were used for the calculation of COM power indicated that this
interaction effect is a result of changes in the perpendicular GRF and perpendicular COM velocity
during the rebound phase. Slightly downward foot segment angles could help avoid excessive
rebounding of the COM during downhill walking and vice versa for uphill walking. The second
interaction effect involves a positive knee work rate with more downward foot segment angles,
leading to a reduced positive knee work rate during downhill walking, whereas more upward foot
segment angles reduced the positive knee work rate during uphill walking (figure 7). The minimum
positive knee work rate during downhill walking appears to be related to a reduction in the extension
velocity (possibly related to the COM power effect) and the minimum positive knee work rate during
uphill walking seems to be due to a reduction in the extension moment. Taken together, these
interaction effects between foot segment angle and treadmill grade on the positive COM work rate
and positive knee work rate could explain why a more downward foot segment angle minimized
metabolic rate during downhill walking, and why a more upward foot segment angle minimized
metabolic rate during uphill walking.

A possible limitation of our study is that the weight of our modular shoes (approx. 1.1 kg) is higher
than normal shoes, which typically range from 0.3 to 0.5 kg. Although we matched the total weight and
the front–back weight distribution, there might have been differences in moment of inertia due to the
mass being either closer or further from the centre of the shoe in different footwear conditions. The
additional shoe material could also have reduced sensory perception and impaired stability during
downhill or uphill walking. We designed outsoles that were segmented in separate blocks to avoid
altering sole bending stiffness. This construction is different from normal outsoles. However, none of
the participants commented that it was difficult to walk or to maintain balance. Although the
participants walked comfortably with different shoes, lower and perhaps different metabolic rate
landscapes could have resulted if participants were given a longer habituation time (e.g. multiple
days). While we avoided fatigue confounding the results by randomizing the conditions such that
every condition was situated in the beginning and the end of the protocol, it is also possible that
different results could have been found if the protocol was divided into shorter sessions with a lower
number of conditions. The maximum downward shoe inclination that we tested appears to be within
the range of moderate high-heeled shoes. The range of shoe inclinations that were tested per treadmill
grade (15° from most downward to most upward) was higher than the range of treadmill grades
(12°). Despite the considerable range of tested shoe inclinations, the effects of shoe inclination were
relatively shallow and outweighed by the effects of the treadmill grade. There was also high
variability in the individual trends (electronic supplementary material, figure S7) similar to studies
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with exoskeletons and prostheses [62–64]. This interindividual variability is probably a combination of
real differences in optimal footwear for each individual and trial-to-trial variability from noisy
metabolic rate measurements. A potential application of modular footwear would be to optimize
footwear parameters in individual (impaired or unimpaired) participants using human-in-the-loop
protocols [64,65] in which the footwear changes are prescribed by a gradient descent algorithm. It is
possible that different results might have been found if we had used less sensitive statistical analyses
(e.g. repeated-measures ANOVA) or if we had tested a larger number of participants or a larger range
of shoe inclinations. While the number of participants and the range of shoe inclinations have been
adequate to reject the null hypothesis for five of the six coefficients in our statistical model for
metabolic rate ( p-values≤ 0.023), we have no certainty as to whether the non-significant effect of the
first order of foot segment angle on metabolic rate ( p = 0.318) is related to our sample size (n = 10). On
the other hand, the finding that metabolic rate remains relatively constant over a range of downward
and upward shoe inclinations appears to demonstrate how the foot and ankle are capable to adapt to
uneven terrain without a large metabolic penalty [66].

Because of the large number of conditions being tested and the changes in metabolic rate and muscle
activity that were found, we expect that the dataset provided by this study can be useful for testing and
validating musculoskeletal simulations to estimate the metabolic rate of locomotion. The results of our
study could inform designs of shoes for walking on rolling terrain (i.e. natural slopes gently rising
above and falling below the terrain grade). Since humans typically require more time and have a
higher metabolic rate during the uphill portions of terrain with uphill and downhill grades, it could
be advantageous to use shoes with a slight downward shoe inclination that is closer to optimal
during these uphill portions. This could partially explain why most existing shoes have a small heel
to toe drop (a typical offset of 1 cm over a shoe length of 28 cm corresponds to a downward shoe
inclination of −2°). However, most existing shoes are probably not designed for only uphill walking
and there are other considerations in the design of shoes than minimizing metabolic rate (e.g. injury
prevention, comfort and traction). It could also be possible to design shoes that allow changing the
inclination depending on the grade of the terrain to avoid repetitive overstretching of the calf muscles,
similar to the heel lift on snow shoes or alpine touring skis. Finally, a future experiment could benefit
from developing a more lightweight outsole (e.g. through 3D printing) as this would not require as
much added mass to keep the total mass and mass distribution constant. These modular shoes could
be further used as a research instrument to optimize parameters other than metabolic rate, such as
minimizing joint loading to prevent injuries.
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5. Conclusion

Shoes that are in between level shoes and shoes that entirely offset the treadmill grade minimized the
metabolic rate of downhill and uphill human walking. We found that optimal shoe inclinations are
primarily related to trends in soleus muscle activity, and interaction effects in positive COM work rate
and positive knee work rate could explain why different foot segment angles were optimal at different
treadmill grades. Finally, we found that the optimal treadmill grade was about the same as the
treadmill grade that minimizes positive COM work rate and propulsive GRFs. The results from this
study could be used to tailor modular footwear to optimize metabolic rate and different parameters
such as minimizing joint loads for preventing injuries or assisting with walking on rolling terrain.
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