ON THE MANNER

IN WHICH

ALGEBRAIC FUNCTIONS

OF THE PRINCIPAL VARIABLE,

ARE IN OERTAIN CASES

INTRODUCED INTO THE INTEGRALS

OF

LINEAR DIFFERENTIAL EQUATIONS

THAT HAVE CONSTANT COEFFICIENTS.

BY THE REV. EDWARD HINCKS, A.M. F.T.C.D. M.R.I.A.

Read 16th March, 1818.

LET V = 0; V being a linear function of $\varphi.x$, $\frac{d \cdot \varphi.x}{dx}$, $\frac{d^{\bullet} \cdot \varphi.x}{dx^{2}}$, $\frac{d^{\bullet} \cdot \varphi.x}{dx^{2}}$, $\frac{d^{\bullet} \cdot \varphi.x}{dx^{2}}$, $\frac{d^{\bullet} \cdot \varphi.x}{dx^{2}}$, and $\varphi.x$ being an unknown function of x, which it is the business of the integration to determine. This function is in its nature an exponential one. For, let α be any root of the equation $V = \varphi$; V being what V becomes, when the exponent of the characteristic d of each term is transported to the right of the suffixed VOL. XIII.

quantity, so as, for instance, to change any term $k \frac{d^r \phi x}{dx^r}$ into $k \frac{(d. \phi. x)^r}{dx^r}$, and of course $\phi.x$ or $\frac{d^{\phi. \phi. x}}{dx^{\phi}}$ into unity. $Bc^{\alpha x}$ will satisfy the given equation; B being any arbitrary constant, and c being the well known transcendental 2,718, &c. whose hyperbolic logarithm is unity. For, substitute this quantity for φx in the function V; any term of it, as k. $\frac{d^r \cdot \varphi \cdot x}{dx^r}$, will become k. $\frac{d^r \cdot Bc^{ax}}{dx^r} = k B c^{\alpha x} \alpha^r$; and the entire function V will therefore become $Bc \propto x \dot{V}_{\alpha}$; \dot{V}_{α} being what V becomes when for $\frac{d. \phi \cdot x}{dx}$ we write α , and being consequently, by the supposition, equal to nothing. This value of φ_{x} will therefore render equal to nothing $V_{z} = B c^{\alpha x} \dot{V}_{\alpha}$; and will consequently satisfy the given equation; and it will in like manner he satisfied by $Bc_{,\alpha'x} Bc_{,\alpha'x}$, &c. if $\alpha, \alpha',$ &c. be also roots of the equation, V = o, and B, B, &c. be other arbitrary constants. It appears then that the quantity ϕx should generally consist of *n* terms of the form $Bc^{\alpha x}$, and is therefore, as I said above, in its nature exponential. If any roots of the equation, $\dot{V} = o$, should be impossible, the impossibility may be removed by the following artifice. Let, for example, $\mathcal{C} \pm \lambda \sqrt{-1}$ be roots of the aforesaid equation. The corresponding parts of $\varphi . x$ will be $F c^{(c + \lambda \sqrt{-1})x} + F c^{(c - \lambda \sqrt{-1})x}$ Feign F and F to be respectively equal to $\frac{B-\dot{B}\sqrt{-1}}{2}$, and $\frac{B+\dot{B}\sqrt{-1}}{2}$, B and B being new

arbitraries; and the part of $\varphi.x$ just mentioned will become $\frac{Bc^{\delta x} \left\{ c^{\lambda x} \sqrt{\frac{1}{c}} \right\}}{2} + \frac{Bc^{\delta x} \left\{ c^{\lambda x} \sqrt{\frac{1}{c}} \right\}}{2\sqrt{1}}$

= Bc^{ξ_x} cos $\lambda x + Bc^{\xi_x}$ sin λx ; an expression delivered from the impossible form. But this is a mere artifice of analysis, and does not alter the nature of the function φ . x, which is still composed of quantities of the form Bc^{*x} , though concealed under a certain disguise. It is however well known that cases occur, in which quantities of the forms $Fc^{\infty x} \cdot x^r$, or Fx^r , F and F being arbitrary, form a part of the expression for φ .x; and, when we consider the heterogeneity of exponential and algebraic functions, it may be perhaps thought not altogether unworthy of our attention to examine in what manner this is brought about. I have endeavoured in the present paper to give a brief explanation of this difficulty, if such it shall be considered by any.

The cases alluded to, in which quantities of either of the abovementioned forms are included in $\varphi .x$ are those, in which any root of the equation, $\dot{V} = o$, is equal to nothing, or in which two or more roots of this equation are equal to each other. First, I shall suppose it to have a root; not actually equal to nothing, but evanescent, and represented by $h \partial a$, h being a finite coefficient. The corresponding term of $\varphi .x$ will be

 $Bc^{hx.\delta\alpha} = B. \{ 1 + hx. \delta\alpha + h^2 x^2. \frac{\delta\alpha^2}{1.2} + \&c. \},$ which ultimately is reduced to its first term. It appears then that a single root of the equation, $\dot{V} = o$, being equal to nothing will in-R 2 troduce into $\varphi .x$ an arbitrary term independent of x. We have next to consider the case of two roots being equal to zero; but as this is included in the more general case of two roots being equal to each other, I shall proceed to this last; and suppose that the equation, $\dot{V} = o$, has two roots represented by $\alpha + h \partial \alpha$ and $\alpha + h' \partial \alpha$, which are of course ultimately equal to each other. The terms of $\varphi .x$ corresponding to these roots are $Bc [\alpha + h \partial \alpha] x$ and $\dot{B}c [\alpha + h' \partial \alpha] x$; which being developed according to the powers of the indefinitely small variation $\partial \alpha$, and added together give $(B + \dot{B})c^{\alpha x} + (Bh + \dot{B}h')c^{\alpha x} x \partial \alpha + (Bh^{\alpha} + \dot{B}h'^{\alpha}) c^{\alpha x} \alpha^{2} \frac{\partial \alpha^{2}}{h - h'} + \dot{B}c^{\alpha}$. In fact, this condition will be fulfilled, if we make $B = \frac{A' - Ah'}{b - h'}$ and $\dot{B} = \frac{Ah - A}{b - h'}$. Substituting these values for

B and \dot{B} in the function (1), we have $Ac^{\alpha x} + A'c^{\alpha x} x + A'c^{\alpha x} x + A'c^{\alpha x} (h + h') x^2 \cdot \frac{\delta \alpha}{1 \cdot 2} + \&c$. which is ultimately reduced to its two first terms. By pursuing a similar analysis it will readily appear, that if there be *i* roots indefinitely near to α , and represented by $\alpha + h \delta \alpha$, $\alpha + h' \delta \alpha$, $\alpha + h' \delta \alpha$, &c; and if we develope the *i* terms, introduced by them into $\varphi.x$, of the form $Be^{[\alpha + h\delta \alpha], x}$ according to the powers of $\delta \alpha$; we may equate the coefficients of $c^{\alpha x}$, $c^{\alpha x} x \delta \alpha$, $c^{\alpha x} x^2 \delta \alpha^2$, $c^{\alpha x} x^{(i-1)} \delta a^{(i-1)}$, to

i new arbitrary constants represented by A, $\frac{A'}{\delta \alpha}$, $\frac{A''}{\delta \alpha^2}$, \dots , $\frac{A'''}{\delta \alpha^{(i-1)}}$; the remainder of the development of $c^{h\delta\alpha}$, $c^{h'\delta\alpha}$ &c. will ultimately disappear, leaving the *i* terms $A c^{\alpha x}$, $A'c^{\alpha x}$. x, $A'' c^{\alpha x}$. x^2 $A''' c^{\alpha x}$. x^3 , \dots , A''' &c $\alpha x x^{(i-1)}$, as part of the expression of $\varphi.x$.

It appears then that the form of the function $\varphi .x$ is in its nature, as I stated in the beginning of this paper, *exponential*; and that the algebraic functions, that occur in it in certain cases, are no more than the remains, or, if I may use the expression, the skeletons of exponential ones; the rest of which have disappeared, in consequence of the evanescent factors, by which they were multiplied.