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PREFACE

The advance in the application of scientific methods to

architectural and engineering problems has made increasing

demands upon the theoretical knowledge required by archi-

tects and engineers; it is the aim of the present book to

present in as simple a method as is consistent with accuracy,

the principles which underlie the design of machines and

structures from the standpoint of their strength.

The subjects commonly called respectively the Strength

of Materials and the Theory of Structures have much in

common; much of the subject matter contained in the

author's books upon the latter subject has, therefore, been

Incorporated, the same general method involving the use

and application of graphical methods in preference to purely

mathematical methods having been adopted in the other

branches of the subject. An attempt has been made to

present more clearly than is general the various theories as

to the cause of failure in materials and the effect of these

theories upon design.

Although the author hopes that the book will be especially

useful for students reading for the Assoc. M. Inst. C. E., and

University degree examinations in Engineering, he has

attempted to present the subject in sufficiently practical

form for it to be of greater assistance in practical design than

is the case with an ordinary class book; with this in view

many diagrams and tables have been incorporated for enabling

the formulae to be applied with a minimum of time and

trouble.

A large number of numerical examples are worked out and

further exercises are given ; the student is recommended to
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work for himself all such examples and to pay particular

attention to the assumptions which are made in deriving the

various formulae. Nearly all engineering formulae are only

approximately correct ; in the present branch of the subject

this is chiefly because there is no material known which

conforms exactly to the simple laws of elasticity upon which

the subject is based. We cannot condemn too strongly the

blind application to a particular practical problem of formulae

which were never intended to be so applied ; the unfor-

tunate distrust which practical engineers so often have to

" theory " is to some extent brought about by the fact that

the theories that they see employed are often inapplicable.

It is essential for us to acknowledge the limits of theoretical

methods and not to attempt to express our results to a greater

degree of accuracy than the nature of the problem will allow.

The author's thanks are due to Mr. J. H. Wardley,

A.M.I.C.E., for much assistance and valuable criticism in

the reading of the proofs; to ]\Ir. W. Mason, D.Sc, for the

photograph from which Fig. 24 was made ; and to the various

firms who have courteously assisted by supplying illustrations

and descriptions of the various testing machines and apparatus

with which their names are associated in the text. The

author's indebtedness should also be recorded to the many
text-books and periodicals that have been consulted and are

referred to in the various portions of the book.

The author will be grateful for the notification of clerical

and other errors that may be found in the book.

EwART S. Andrews.
Qoldsmitha* College,

New Cross, S.E.

May 1915.
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THE STRENGTH OF MATERIALS

Note.—Portions marked with an asterisk may be omitted on the

first reading.

CHAPTEE I

STRAIN, STRESS, AND ELASTICITY

Strain may be defined as the change in shape or form of

a body caused by the application of external forces.

Stress may be defined as the force between the molecules

of a body brought into play by the strain.

An elastic body is one in which for a given strain there

is always induced a definite stress, the stress and strain being

independent of the duration of the external force causing

them, and disappearing when such force is removed. A body

in which the strain does not disappear when the force is

removed is said to have a permanent set, and such body is

called a plastic body.

When an elastic body is in equilibrium, the resultant of

all the stresses over any given section of the body must

neutralise all the external forces acting over that section.

When the external forces are applied, the body becomes in

a state of strain, and such strain increases until the stresses

induced by it are sufficient to neutralise the external forces.

For a substance to be useful as a material of construction,

it must be elastic within the limits of the strain to which it

will be subjected. Most solid materials are elastic to some

extent, and after a certain strain is exceeded they become

plastic.

B
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Hooke's Law—enunciated by Hooke in 1676—states that

in an elastic body the strain is proportional to the stress.

Thus, according to this law, if it takes a certain weight to

stretch a rod a given amount, it will take twice that weight

to stretch the rod twice that amount ; if a certain weight

is required to make a beam deflect to a given extent, it

will take twice that weight to deflect the beam to twice that

extent.

<s^
E.x7ension
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Fig. 1.

RivcT under shear sTrqi/i

-Kinds of Strain.

Kinds of Strain and Stress.—^Strains may be divided

into three kinds, viz. (1) an extension; (2) a compression;

(3) a slide. Corresponding to these strains we have (1) tensile

stress; (2) compressive stress; (3) shear stress.

A body that is subjected to only one of these, is said to be

in a state of simple strain, while if it is subjected to more

than one, it is said to be in a state of complex strain.

Examples of simple strains are to be found in the cases of

a tie bar; a column with a central load; a rivet. The best
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example of a body under complex strain is that of a beam
in which, as we shall show later, there exist all the kinds of

strain.

Intensity of Stress.—Imagine a small area a situated

at a point X in the cross section of a body under strain, then

if S is the resultant of all the molecular forces across the

S
small area, - is called the intensity of stress at the point X.

In the case of bodies under complex strain, the intensity of

stress will be different at different points of the cross section,

while in a body subjected to a simple strain, the stress will

be the same over each point of the cross section, so that in

this case if A is the area of the whole cross section and P
is the whole force acting over the cross section, the intensity

p
of stress will be equal to . . In future, unless it is stated

to the contrary, we shall use the word " stress " to mean the

" intensity of stress."

Unital Strain.—The unital strain is the strain per unit

length of the material. In the case of extension and com-

23ression, the total strain is proportional to the original length

of the body. Thus, a rod 2 ft. long will stretch twice as

much as a rod 1 ft. long for the same load. In Fig. I, if

I is the unstrained length of the rods under tension and

compression and x the extension or compression, the unital

strain is j

.

In the case of slide strain, the angle but not the length of

the body is altered, and this angle /3 is a measure of the

unital strain. If the angle is small, as it alwaj^s will be in

practice with materials of construction, then it will be nearly

equal to j, where x and I are the quantities shown on the

figure.

Poisson's Ratio—Transverse Strain.—When a body

is extended or compressed, there is a transverse strain tend-

ing to prevent change of volume of the body. The amount
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of transverse strain bears a certain ratio to the longitudinal

strain.

rr^i . ^. transverse strain . ^

Ihis ratio = , .—,^—p-—. = -n varies from i to i for
longitudinal strain ' ^ *

most materials, and is called Poisson's ratio.

According to one school of elasticians, the value of this

ratio -q should be J, but experimental evidence does not quite

support this view, although it is ver}^ nearly true for some

materials. The ratio is very difficult to measure directly, its

value being best obtained by working backwards from the

elastic moduli in shear and tension in the manner which will

be explained later.

Stress-strain Diagrams.—If a material be tested in

tension or compression, and the strain at each stress be

measured, and such strains be plotted on a diagram against

the stresses, a diagram caUed the stress-strain diagram is

obtained. If a material obeys Hooke's Law, such diagram

will ^be a straight line. For most metals, the stress-strain

diagram will be a straight line until a certain point is

reached, called the elastic limit, after which the strain in

creases more quickly than the stress, until a point called the

yield "point is reached, when there is a sudden comparatively

large increase in strain. After the yield point is reached,

the metal becomes in a plastic state, and the strains go on

increasing rapidly until fracture occurs.

Fig. 2 shows the stress-strain diagram for a tension speci-

men of mild steel, such as is suitable for structural work.

The portion a b of the diagram is a straight line, and

represents the period over which the material obeys Hooke's

Law. At the point c, the yield point is reached, and the

strain then increases to such an extent that the first portion

of the diagram is re-drawn to a considerably smaller scale,

such portion being showni as ab^ c^. The strain then increases

in the form shown mitil the point d is reached, the curve

between c^ and d being approximately a parabola. When

the point d is reached, the maximum stress has been reached.
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and the specimen begins to pull out and thin down at one

section, and if the stress is sustained, fracture will then

occur. The portion d e, shown dotted, represents increase

of strain with apparent diminution of stress. This diminu-

tion is only apparent because the area of the specimen
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Fig. 2.—Stress-strain Diagram for Mild Steel.

beyond the point rapidly gets smaller, so that the load may
be decreased, and still keep the stress the same. In practice,

it is very difficult to diminish the load so as to keep pace

with the decrease in area, so that this last portion of the

curve is very seldom accurate, and has, moreover, little

practical importance in commercial testing because the
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maximum stress is always taken as that given at d (see

also p. 52).

The specimen draws down at the point of fracture in the

manner shown in the diagram. Before the test, it is cus-

tomary to make centre-punch marks at equal distances apart

along the length of the specimen. The distance apart of

these points after fracture of the specimen indicates the

distribution of the elongation at different points along the

length. Four such marks, a, h, c, d, are shown on the figure.

The greatest extension occurs at the point of fracture, so that

on a specimen short length, the percentage total extension

will be greater than on a longer specimen. We deal further

with this point on p. 55.

The stress-strain diagrams in compression and shear for

mild steel are very similar to that for tension. In compres-

sion it is difficult to get the whole diagram, because failure

occurs by buckling, except on very short lengths, where it is

very difficult to measure the strains, and in shear the test

is best made by torsion, because it is almost impossible to

eliminate the bending effect. Now, in torsion, the shear

stress is not uniform, so that the metal at the exterior of the

round bar reaches its yield point before the material in the

centre, and this has the effect of raising the apparent yield

point. We shall see later that the same occurs in testing for

compression or tension by means of beams.

The importance of the elastic limit has been overlooked to

a great extent by designers of machines and structures ; but

inasmuch as the theor}^ on which most of the formulae for

obtaining the strength of beams are based, assumes that the

stress is proportional to the strain, it must be remembered

that our calculations are true only so long as Hooke's Law is

true, so that the elastic limit of the material is a very impor-

tant quantity. We shall deal further with this question in

discussing working stresses (Chap. III.).

Confusion between Elastic Limit and Yield Point.—In

commercial testing, it is quite common to use no accurate
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means for measuring the strains (instruments for such

measurements are called extensometers , see pp. 371-379). The

load on the steelyard of the machine is run out until the

steelyard suddenly drops down on to its stops. The " steel-

yard-drop " happens when the yield point is reached, but

many people call this the elastic limit ; it is also sometimes

called the " apparent elastic limit." As will be seen from the

diagram, Fig. 2, there is no appreciable error made by this

confusion in tension testing, but in cross bending the differ-

ence is much more marked, and gives rise to confused ideas.

We shall deal further with this point on pp. 207-209.

The Elastic Constants or Moduli.—If a material is

truly elastic, i. e. if the strain is proportional to the stress,

then it follows that the intensity of stress is always a

certain number of times the unital strain, or that the

, . intensity of stress .
. . tvt . i • . , •

ratio 7—^1—:

—

-. is constant. Now this stress-strain
unitai strain

ratio is called a modulus. That for tension and compres-

sion is generally known as Young's modulus, and is given

the letter E ; that for shear is called the shear, or rigidity

modulus (G). There is an additional modulus called the hulk

or volume modulus (K), which represents the ratio between

the intensity of pressure or tension and the unital change in

volume on a cube of material subjected to pressure or tension

on all faces.

Young's modulus is the one with which we shall be most

concerned. Suppose that a tension member (a tie as it is

called) or a compression member (a strut), of length I and

cross-sectional area A is subjected to a pull or thrust P, and

that the extension or compression is x, Fig. 1. Then the

intensity of stress is -j, and the unital strain is y-

P X PZ
.*

. Young's modulus = E = -r ^ -r = *

—

^ A I Ax
Numerical Example.—A mild-steel tie bar, 12 ins. loyig

and of \\ ins. diameter, is subjected to a -pull of IS tons. If the

extension is '0094 in., find Young's modulus.
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Area of section of 1| ins. diam. = 1*767 sq. ins.

18
.-. Stress per sq. in. = ..^pr- = 10-19 tons per

' ' sq. in.

0004
Unital strain = .^ = 000783

.-. Young's modulus = ^-^^ = 13,000 tons per
^ -000783 sq. m.

The value of Young's modulus can be found from the

stress-strain diagram. Thus, in that for mild steel, Fig. 2,

E = -i

X

-r stressXow in the relation E = -

! , if the strain is equal to 1,
strain ^

i. e. if the bar is pulled to twice its original length, we have

that E = stress, and this accounts for the definition of

Young's modulus that some writers have given, viz. : Young's

modulus is the stress that is necessary to pull a bar to twice

its original length. Some students find this definition more

clear than the one previously given, but it must be remem-

bered that no material of construction will pull out to twice

its original length without fracture.

Relation between Elastic Constants.—For an elastic

material there will be certain relations between the elastic

moduli E, G, K, and Poisson's ratio — . These relations can

be found as follows

—

To first find a relation between E and K consider a cube

of unit side subjected to a pull ff, Fig. 3 (a).

Let the elongation along the axis be a, and let the trans-

verse contraction be b.

Then original volume of cube = 1

strained volume of cube = (1 + a) (1 — 6)-

= 1-26 + 62 a-a-2o/;-a62
= I -T- a — 2b (nearly)

because as the strains are ver}' small their product ma}' be

neglected.

.• . Increase in volume = (l + a — 2 6) — 1

= (a - 2 6)
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Now apply a pull to each side of the cube. There will now

be three pulls, each joroducing an increase of volume equal

nearly to {a — 2 6).

/I

D
>f)

Fig. 3.

Total increase in volume is nearly equal to 3 {a — 2 h)

2 b'
3a 1 -

a

AT ^ _ transverse strain _
a longitudinal strain



10 THE STRENGTH OF MATERIALS

.
•

. Increase in volume = 3 a ( 1 — 2r})

.'
. Since original volume = 1

increase in volume , . ^ . « /i « ^

^-.—J

—

-, = volume unital strain = Sail — 2'n)
ongmal volume

,, intensity of pull /^Now K = -T—I'S^

—

•— = '5

—

n—o~Tunital strain S a [l — z-q)

, ft tensile intensity of stress ^^ . , ,

and ' = ^—1^ r,-^—7

—

-. = Young s modulus
a unital tensile strain

= E
E

•*• ^ = 3(1 -2-r,)
^^^

Now find the relation between E and G as follows—
Suppose that two shearing forces of intensity s are applied

to the faces of a unit cube a b c d, Fig. 3 (6). Now consider

the equilibrium of the portion a d c, Fig. 3 (c). To balance

the forces s there must be a force pulling /, along the diagonal

A c, and the value of f,
must be V2 x s. Now the area over

which this force acts will be V2 since the cube is of unit

Y^2 s
side, so that there will be a tensile stress of - .— = s.

V2
Similarly considering the portion BCD, Fig. 3 {d) there

must be a compressing force /, along the diagonal b d, and

\/2 s
the compressive stress will be = , ^ s. Therefore we

see that : Two shear stresses on planes at right angles to each

other are equivalent to tensile and compressive stresses of in-

tensity equal to that of the shear stress at right angles to each

other, and at an angle of 45° to the shear stresses.

Now the cube will be deformed to the shape AiBjCiDi,

Fig. 3(e).

The unital shear strain is measured by the angle of distor-

tion 2 </). Since the strains are very small, this is practically

, ,
^ B Bo Z B Bo . . 1 \ A

equal to -^
^^ = —^ (since b c = 1) = 4 b B2.

2^ B C 2

Let the unital strain due to the tension along the diagonal

B D be a. Then there will also be a strain along this
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diagonal due to the transverse strain from the compression

stress in AC. This will be equal to r; x a. .'
. Total unital

tensile strain along diagonal = a (1 + ry). Then b Bj = unital

strain along diagonal x J b d, since b b^ is equal to d d^

V'2 a
.•

. B Bi = a (1 + ^) X O B = ^— (1 + -q).

Because the strains are in reality very small, b Bg b^ is

very nearly a right-angled triangle.

.'. b Bi = ^2 X B Bg

B Bt a {\ -\- 7})
or B Bo = —T^- = —^ ^

"
^ V2 2

-p. intensity of tensile stress _ ft _ ^
unital tensile strain a

, intensity of shear stress _ s

unital shear strain 4 b Bg
= G

Since we have proved that the tensile stress along the

diagonal is equal in intensity to the shear stress.

Therefore /, = aE=Gx4BB2
E _ 4BB.2 _ 4a (1 + 7;)

' ' G a 2a

^ = 2(l + >?) (2)• • G
Now we have already shown in (1) that

E
K 3(l-2.y)

From (2) rj = ^ - 12G

From (3) y = 1 E
2 6K

A _ 1 _
2G

1 E
2 6K

2VG^ 3k;
3

'

2

1 1 3

G"^ 3K ~ E
9 3 1

or ^^ = ^. + ,E G ^ Iv

(3)

(4)
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This expresses the relation between the constants in its

simplest form.

It will be noted that if ry = |, as some authorities state,

E
then ^ = 2-5; this may be taken as true if the value of G

for the material is not known.

Strains in different Directions.^—Suppose that the

stresses in a material acting normally to, i. e. at right angles

to, three planes at right angles to each other are /^, f,„ /..

Then the unital strain in the first direction is made up of

the direct strain due to /j. and the transverse strains due

to the other two.

.*. unital strain in first direction = 5, = 1^ — '

^^
"^

E E
/ yj (f

-L.
f )

unital strain in second direction = s„ = J. — -^
'''

E E

unital strain in third direction = 5, = (i — ^ ^1' 'y'

E E

Lateral Strain prevented in one Direction.—Now take

the case of a piece of material which is free to dilate or expand

in one direction, but is prevented from doing so in another

at right angles, a compression stress /^ being applied in the

third direction.

Let the z direction be that in which strain is prevented.

We then have

and let the .t direction be the one with the stress /^.

Then if /. is the stress caused in the z axis we have, since

i,j
= 0, because the material can expand freely in the y

direction

—

E s, ^ j, - q j.

* E ^, = - ^ (/. 4- /O

0=/.-r;/,.

.-.E^, = -^(1 + .^)/,; -Es, = JA^-T)
s. [l-v)
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This result is interesting as showing that the ordinary

definition of E only holds when lateral strain is not

prevented.

* Complex Stress.—Principal Stresses.—It can be

shown that Avhen a body is under a complex system of

stresses, such stresses will be the same as those due to the

combination of three simple tensile or compressive stresses in

planes at right angles to each other. Such simple stresses

are called the principal stresses.

Consider the case of a block of material subjected to pulls

P and Q, Fig. 4, in two directions at right angles, and let

Q

^

-B

Fig. 4.—Principal Stresses.

the pull ]jer square inch of the sectional area in each direction

be p and q, respectively, these being principal stresses.

Consider the stresses on a plane a b inclined at an angle

to the force P.

The stress p can be resolved perpendicularly and along

A B, i.e. normally and tangentially to a b.

Now consider 1 sq. in. of area perpendicular to p. The

corresponding area along a b will be
1

sin 0'

Now the component of p perpendicular to A b wiU be p
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sin 0, and the component along a b will be p cos 0, but

stress = component of force -^ area.

.•
. Normal or perpendicular component of stress p along a b

= p sin -—:—7 = p sin^^ sni ^

tangential or shear component of stress }j along a b

= V cos -^ . ,, = p sin cos
sm ^

Now considering stress q, its tangential component to a b

will be opposite in direction to that of p, and since in this

case the area is -.

—

j^^^^
— = -—- and the normal andsm (90 — 0) cos

tangential comj)onents of q are respectively q cos and q

sin 0, the normal comjoonent of stress will be q cos- 0, and the

tangential component of stress will be — g sin cos 0, since

in this case the tangential components are not in the same

direction.

.*
. Total normal component = /„ = p sin"^ -{- q cos^ . . (1)

Total tangential component ^ s = {p — q) sin cos . . (2)

Now the resultant of the stresses /„ and s, which we will call

/, will be given by a c.

i.e./ = V"/;^ + 52

^ V {p sin^~0^~Y^os^^~f'+'{p-qf sin^ 6* cos^

= V p^ (sin^ + sin2 cos^ 0) + q^ (cos^^m^T+cos^)

+ 2pq (cos^ sin^ — cos^ sin^ 0)

— V p^ sin^ ^ (cos^ + sin^ ^) + q^ cos^ ^ (sin^ +
cos2 ^) +

- V /?2 sin2 + q^ cos'^ ^ (3)

because cos'^ + sin^ ^ = 1.

The inclination a of this stress is given b}'

/„ p sin^ + Q cos^ d
tan a = ^^ =- ; -X--— zl

- ^
5 ip — q) sm 6^ cos f^

= ?L:^_^1^1^ + ^
(4,

[p—q) tan ^
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If
<f)

is the angle between a c and the direction of p,

Then cf,
^ {a - 0)

tan a - tan 6
tan> = tan {a - 0) =

i ^ ^an a . tan ^

PJ^^^JAJ _ tan e
_ {p — q) tan ^
~

.
, p tan^ 6 + q . ^

1 + f r^r—I . tan ^

_ p tan^ ^ + g — (P — g) t^iJ-^ ^
~

{p — q) tan ^ + tan {p tan^ ^ + g)

_ g (1 + tan^J) _ q
~

p tan ^ (I + tan^ $)~ p tan ^

= ^cote (5)
p

Unlike Stresses.—If the stresses are unlike, i.e., one

tension and one compression, we shall have by similar

reasoning

f„
= p sin^ ~ q sin^

s = [p -{- q) sin cos

It will be noted that for p =' q and ^ = 45° we have /„ ==

and s == p.

We have, therefore, a pure shear as equivalent to equal

tensile and compressive stresses at right angles to each

other, at 45° to the shear stress and equal in intensity to

the shear stress (cf. p. 10).

The Ellipse of Stress.—Draw circles of radius o x and

o Y, Fig. 5, equal to q and p respectively, and let o R be

drawn at angle ^ to o y.

Draw a radius o f to the larger circle at right angles to

o R and cutting the smaller circle in e.

Draw F H at right angles to o y, and e g at right angles to

F H, and join o G.

Now o H = o F cos (90 — 0) = p sin 6

and G H = E K = o E sin (90 — ^) = q cos

.
•

. o G = V o H^ + H G^ = V p^ sin^ + q^ cos^ 6

.• . by equation (3) o g =
/
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Now tan h O G = i^r = •
. /,

= cot ^ = tan
<f)

HG a cos U Q . ,= ^
. „ = ^ cot iOH 'p sin 6 p

.•
. / H o G = ^ and, since a =^ ~\- (fi, / g o b, = a.

Now the locus of the point G is an ellipse of major axis

2 p and minor axis 2 q, and such ellipse is called the Ellipse r
'

Stress.

We see, therefore, that by drawing a line o f from the

y 5LLIP3E OF STRESS.

R

F/^ G H

K/
A

/ :\
Y^-

/ v£^^^/
Y

\

-A.

k
V^

be

K
>

/•5- *^

M

Fig. 5.—Ellipse of Stress.

centre o, at right angles to a given direction to the outer

circle, and drawing f h horizontal to meet the ellipse of

stress in g, then o g gives the resultant stress on a jDlane

in the given direction, and the angle g o r = a gives the

angle between such resultant stress and the plane.

Numerical Example.—Suppose a square bar of 2 ins. side

and 4 ins. long is subjected to pulls of 10 and 12 tons respectively

in axial and transverse directions. Find the resultant stress on
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a plane inclined at 60 degrees to the axis, and find the inclination

of the stress to that plane.

In this case V = ^ =" 2'5 tons per square inch,

V and q

4

12
1*5 tons per 'square inch.

Then Fig. 5 shows the elhpse of stress drawn to scale.

Draw o L at 60° to o Y and draw o m at right angles to o l

to cut the outer circle in m ; drawing m n horizontal to meet

the ellipse of stress m n, then o n gives the resultant stress

fS.

Fig. 6.—Combined Normal and Shear Stress.

and / L o N gives its inclination to the plane, o n will be

found to be 2'29 tons per square inch, and / l o n to be 79°.

Now considering again the stresses p and q and the normal

and tangential stresses f„ and s at an inclination 9 to p we

see that p and q are the principal stresses corresponding to

the stresses /„ and s. Now in practice we often require to find

the magnitude and inclination of the principal stresses, because

one of these stresses will be that of maximum intensity of

stress. This is clear from the figure of the ellipse of stress,

since o Y is obviously the maximum radius vector of the

ellipse. We will now therefore find the principal stresses due

to a normal stress /„ and a shear or tangential stress s at right

angles to each other.
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* Combined Normal and Shear Stress.—To investi-

gate this problem Ave must first j^rove that a shear stress must

always be accompanied by an equal shear stress at right

angles to it. Take for example a unit cube, Fig. 6 (a), sub-

jected to shearing forces S along opposite sides. These forces

S form a couple, and the cube can be kept in equilibrium

only by another couple of equal moment and opposite sense,

which couple is given by shearing forces S^ at right angles to S.

Now consider the case of a complex system of stress con-

sisting of a normal stress / and a shear or tangential stress s.

Let p N, Fig. 6 (6), represent a portion of the plane on

which the stresses / and s act.

Let one of the planes of principal stress be represented by

p M, and let this principal stress be p. Then along m n there

acts a shear stress also of intensity s.

Then the resolved portions of the forces due to p and to the

stresses / and s must be equal in the directions p n and m n.

Therefore we have

/ . P N + 6- . M N = ;/J . P M COS (1)

also 5 . p N = /> . p M sin (2)

„
, , , P N M N

.
•

. Jb rom ( 1 ) / ' + s =^ p cos
^ ' ' PM p M ^

i. e. / cos 6 -}- s sin 6 = p cos

•
' • iV ~ f) cos 6 = s sin (3)

P N
From (2) s = p sin 6

^
' p M ^

.'
. s cos = p sin (4)

.*. Dividing (3) and (4) we have

P - / _ «

s p

p {p — f)
= s^

P" — p f
— s^ =^

-^=i(i±Vi+f) (5)
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The minus sign corresponds to the second principal stress q,

which will be in compression ; as we are concerned only with

the maximum stress, we will take the positive value, viz.—

•

^-K^+V^") (^)

The direction of the plane at which this stress occurs is

given by 6. This is found as follows

—

From (3) j) cos —
f cos = s sin 6

From (4) p sin ^ s cos 6

s cos 6
.'

. p =^

sin

S COS" u ! p. •
/I in\

.' . . ,,
— / cos = s sni 6 ( /

)

sm 6^ '

.'
. s (cos^ — sin- 0) =^

f sin cos

, sin 2 ^
.' . s cos 2 6 = f

—^—
or tan 2 ^ - ^-

(8)

This will give two values of 0, 90° apart, and so gives the

inclination of both planes of principal stress.

Maximum Shear Stress.—Returning to the consideration

of the principal stresses p and q, we saw that the tangential

component on a plane at angle to p was given by {p — q)

sin cos 6. (See p. 14, equation (2)). Now this will be a

maximum when sin cos ^ is a maximum, i.e. when — ^

—

is a maximum, or when = 45°. Therefore we see that the

maximum shear stress occurs at 45° to the principal stresses,

and is equal to ^^^—«— •

In the problem that we are considering, we have proved that

^ = K^ + a/i + ^) ^""^ ^^^^ ^ = 2 (^ " a/i +
^^'

2 ~ 2 V ^ /2
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.
•

. Maximum shear stress = ^ . i ^^^ (9)

OJ- = \/ J+^' "(10)\4
The latter form is more convenient because in the case when

/ = 0, the former gives an indeterminate result.

Numerical Example.—A steel bolt, 1 in. in diameter, is

subjected to a direct pull of 3000 lbs. and to a shearing force of

1 ton. Find the maximum tensile and shearing stresses in lbs.

per square inch, and the inclinations of the directions of the

stresses to the longitudinal axis of the bolt.

T ,1 . , 3000 3000
in this case / = . -

. ~^.t = --^^

.

area of 1 m. bolt '7854

= 3819 lb. per sq. in.

s = .>y^w = 2852 lb. per sq. in.

.
•

. Maximum tensile stress = p =^ ' i\ -\- ^J \ -\- ---

3819 /, .

/,'
. 4 X 28522\

{^-^^-^^)

= 5342 lb. per square inch.

Inclination of jmncipal plane to plane perpendicular to

axis is given by

, ^ . 2 5 2 X 2852

^^^^^^=J- 3819-

= 1-494

.-. 2^ = 56° 12' nearly

.-.^ = 28° 6'

.•
. Inclination to longitudinal axis = 90 — 28° 6'

= 61° 54'
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?Maximum shear stress = + s'

38192

A/
"^ + 28522

- 2852 y 1 + 4 >,-2852^

= 2852 V 1 + -448

= 2852 X 1-203

= 3428 lb. per square inch.

21

'i,

N s

i

A

JoC'

d

Fig. 7.

This stress will occur at 45° to the direction of principal

stress, i. e. at 61° 54' — 45° == 16° 54' with longitudinal axis,

or else at 90° to this, i. e. at 73° 6' with longitudinal axis.

* Combined Shear Stress and two Normal Stresses

at Rig-ht Angles to each other.

Next consider the case of a shear stress s combined with

normal stresses /^, f,,
at right angles to each other (Fig. 7).

Then resolving as before we have

/:,?N + 5MN =2^.PM cos (11)

/,/ N M + <5 P N = ;p . P M sin ^ (12)
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From (11) /., cos -\- s sin --- p cos

From (12) /, sin ~\- s cos = p sin

i. e. {p — f^) cos ^ = 5 sin ^ (13)

{p — f,) sinO =- s cos 6 (14)

We therefore have by multiplying and cancelling sin 6 cos 6

[p - U) iP - h.) - ^'

i.e. p^^-p (/. + /,) + /.,. /, = ^2 • (15)

Solving this quadratic we get

P = H(/' + /.") ± V1/.. + /,)— 4177/7^^)}

ih + fy)^ /(/.-/.)

2 ±V''^T^+'' ^'^^

* In this case as in the previous one we usually take the

positive sign.

To get the direction of the principal stresses we have from

(13) and (14)

{p - /^.) = s tan^ (IV)

ip-fy) =scote (18)

.*. subtracting (18) from (17)

(/. -fy)-^ (cot - tan 0).

__ ^ _, 2tan^ 2 _ 2
Now tan 2 ^ = i-tan ^

^ ZZT^a^O ~ ^"^ " *^^ ^

tan

i.e. ^ot0-t^n6 =
^^^^

• • ^'^
'^'' tan -2 6*

29
z.e. tan2^= , _ , (19)

\h I III

[p — q)
The maximum shear stress is as before equal to ^

—

•
. Maximum shear stress = ^J '"

.
— h 5^

Graphical Representation of Results.—The following



STRAIN, STRESS, AND ELASTICITY 23

graphical construction, due we believe to Professor R. H.

Smith, solves these equations.

Fig. 8.—Graphical Construction for Combined Stresses.

Set out o A, Fig. 8, to represent /;, to a convenient scale

and o B to represent fy to a convenient scale ; if /^ and fy are

opposite in sign they should be set out in opposite directions.
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Bisect A B in c and at B set up b d at right angles to o a

to represent the shear stress s ; then with centre c and c d

as radius draw a semicircle, cutting o a in f and e.

Then o f = ^ and o e = g.

If E comes on the other side of o, the stress is negative.

Join D F, then /d f b = 6, the angle of the principal stresses.

Also maximum shear stress = c e.

Proof,— b c = ^2^ = f^^'

C D = Vb C2 + B d2 = j(t_^ + 5^

.'. OF = OC + CF = OC+CD
(/. + /.)

,
Kh-h)

2

OE = OC — CE = OC — CD

\2

+ ^r-'^^r^ + s^ = p

CE = C D =

2- - V 4 "^^ -^

if — f )^

"

o ~ + 5^ = maximum shear stress.

Now /b c D = angle at centre = 2 d f b

, B D s 25

2

.
•

. From equation (19) b c d = 2 ^. .
*

. /d f b = ^.

Application to a Single Normal Stress.—In this case,

Fig. 9, B and o coincide so that oc = |oa = ^, and the

construction comes as shown.

This figure has been drawn for / = 3819 and 5 = 2852 as

in the numerical example of p. 20.

* Maximum Strain compared with Maximum Stress.

—In questions involving complex stresses it is necessary to

remember that the maximum strain does not occur on the

same plane as the maximum stress. There is some con-
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siderable divergence among elasticians (a term suggested by

Professor Karl Pearson, F.R.S.) as to whether the ultimate

criterion of strength of a material depends on the tensile

or compressive stress exceeding a certain value, or the shear

stress exceeding a certain value, or on the strain exceeding a

certain value. This is dealt with on pp. 42-48.

We have considered the cases of maximum tensile or

compressive and shear stresses. We will now consider the

question of maximum stress.

Fig. 9.

The given stresses are equivalent to simple stresses j), q

at right angles to each other; we will assume p to be

greater than q*

. . Strain in direction of p
P_vq
E E [t] = Poisson's ratio).

Simple stress in direction of p to cause same strain

= Equivalent direct stress p, = p — -q q

rjf
= 2(i + V^ + 7? 2 \

1-A 1 +
45'

7=

2 {{1 - V) +:(1 + v)^Jl + *f} (11)
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In the direction at right angles there will be an equivalent

stress equal to q — y p which comes equal to

/

/ )(l_,,)_(l-f-^)yia-4f| (12)

These formulae may also be derived from first princijiles

as follows.

Suppose a rectangular block a b c d receives two tensile

strains at right angles and a slide strain in the same plane.

Under the combined strain the block assumes the position

^,--^^- Ci

i ' c
' ^ ^

1 y^^
y

' y^
:Xe
'y^

ac

1^,
I / I

I

I '

I /

I /

I /

I'

B " "B, "iz
Fig. 10.—Combined Strains.

A Do Co B^. Then, if ab = .r, b c = y, and a c = r, and

Xi yi Ti are the strained lengths, and /Dj a d., = /?

-i' J'

Unital strain in direction .r = s^ = —
X

yx - y

y

_ 'I

.
•

. We have x\ ^ x (1 - -5,) (1)

(2)

(3)

yi = //(!- s.)

r^ = r (1 -h s,)

= rH\ -^s,:

Since squares of strains may be neglected.

(4)
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A B2 + C2 B2

= (A Bi + Bi B2)2 + A Di2

= (ABi + DiD2)2 + ADi^

Now A Bj = a^i = X (1 + Sx)

A Di = 2/1 = y (1 + 5,)

since ^ is small and therefore ^ x 5^ is of second order and

therefore negligible.

.-. ri2= {x(l+5.) +^2/}' + {2/(1 +^.)!'

= x'{\ + 2s^) + 2xy/3 + y^l +2s,),...{5)

neglecting all second powers of strains,

but r^ = x^ + y^

.-. rj^^ = r^ + 2x^8, + 2y''-s, + 2xy /3 (6)

.
•

. From (4)

r2 (1 + 2 s,) = r^ + 2 x^ s, + 2 y^ s, + 2 X y f3

or..= g)%.+ (f)%,+ ^2^^ (7)

Expressing this in terms of the angle we get

S0 = Sr cos^ 6 + s,, sin^ 0^/3 sin cos ^ (8)

Our next problem is to find the value of 6, for which the

resultant unital strain Sq is a maximum.

This occurs when ,-/ =
a $

i.e. when
s^ . 2 cos d (

— sin e) + Sy 2 sin a cos a + j8 (cos cos + sin [ — sin 6]) =
i. e. when — Sr sin 2 ^ + 5^^ sin 2$ + /3 cos 2^=0

sin 2e{s, - Sy) = ^ cos 2 6*

w
or tan 2$ = —^— ..(9)

This gives two values of at right angles, and so we see that

the directions of maximum strain are at right angles.

Now consider equation (8), reuniting and putting 1 = cos^

+ sin^ 0, we get

S0 (cos^ + sin^ 0) = s,. cos^ + Sy sin^ 6 + (3 sin $ cos $.
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Dividing by cos^ 6, we get

Se (1 + tan^ 0) = s^ -\- s,, tan^ -{- /S tan

or tan- 6 {s,j — Se) + /3 tan 6 + s^ ~ Se =

I.e. tan Q -— ^{s,-s^
—

For this to be real,

/32 must be not <C 4 (5y — 5^) {s^ — se)

Now as S0 increases, 4 {Sy — se) (5^. — Se) will increase, since

the latter expression is equal to 4 {so — s^) {se — s,j)

.
' . The greatest value 5^ can have is such as to make

)82 = 4 {s, — S9) {s^ — Se)

i. e. se'^ — Se {s^ + s,) + s^ Sy — ^ =

, e. ., = ^+_^_^V_|:-JE+F (10)

Now consider the first case for which we have worked out

the principal stress, viz. the combined stress due to a tensile

or compressive stress / and a shear stress s. (Note.—This

shear stress s must not be confused with the strains s„ etc.)

In this case if 5^ = strain due to stress /, the only strain in

direction y is the transverse strain due to s^, i.e. Sy = — -q s^

(negative because the transverse strain is compressive).

Considering only the positive value in equation (10)

. . se = —2
/ s

Now 5^ = p and (S = ^

Also Se = &, where p, is the equivalent principal

stress due to considering the maximum strain, E and G
being the Young's and shear moduli.

E~ 2E '^
2"S E^^'^^' G^

but|-2(l + ,;)



STRAIN, STRESS, AND ELASTICITY 29

Now rj is very nearly ^ for steel.

.
•

. taking this value, we get

^'-2(i+iV^+y) (12)

Comparing this with the corresponding equation (6)

(p. 19), from considering the stress we see clearly the

difference between the results from the two points of view.

Numerical Example.—Consider the same problem as

worked on p. 20.

In that case / = 3819 lbs. per square inch.

s = 2852 „

Pe
3819/3 ^-^Jl + i. X 28522\

2 U 4 V + 38192/

^f(| + |V3-23)

^2^^ (-75 + 2-246)

*

^^^^^ X 2-996

= 5722 lbs. per square inch.

To get the inclination at which the maximum strain occurs

return to equation (9) by which

tan 2 ^ = ^
S.r S,,

In this case we get

tan 20 =

s s

G G s . E
sAl + i) f{^+v) /(1 + V7).G

E

_ 5.2(1 + 7]) _ 2s

f{l + vr~ f

This is the same as in the case considering the principal

stress, and so has the value as given before.
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Similarly for normal stresses /^ and /„ at right angles we

have

"^ ~ E ~ E ,

^^ E E

/?
=
G

s. + s, = ^^ ^ ^^
it + /,)

s,- — s, =

E

(1 +V)
E (/. - /.)

Fig. 11.

.*. From equation (10)

, _ ^^ _ ih + h) (1 - v) . /(^-J..)i(i_+_i)' 4. i'
' E "2E - V 4E ' "^4G2

= ^^[{L + h) {l-v)± ^J{f.
- f.r (1 + v') + ~^-}

=
2 E !(/^ + /^) (1 - ^) ± (1 + ^) V{f.-f,)' + 4.s^\

Ve = \ {(/. + /,) (1 - >/) ± (1 + ^) V(/.^ W^TIT^J . . (13)

* Shear Strain equivalent to Two Direct Strains at

Right Angles.—We will now consider from first principles
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ill a similar manner the shear strain equivalent to two direct

strains at right angles to each other.

Let a rectangular block a b c d, Fig. 11, become strained

to the form a b^ c^ d^, the extensions being shown to a

greatly exaggerated scale, then we have

AB, = y {I + s,) (14)

A Bi = X (1 + S,r) (15)

.*. Neglecting squares of strains

A Cj^ = A Bi^ -f A Bj^

= X2 (1 + S,,)^ + 2/' (1 + 5,)2

= x^ -h y^ -h 2x^ s,,. -\-2ifs,, (16)

= (a'2 + 2/2)(l + 2 5,)

=. a;2 + 2/2 + 2 a;2 s. + ^y^-s, (17)

.
. A Ci2 - A E22 = 2 X'2 {S,, - 5,) (18)

Now A C^^ — A Eg^ = (a Ci + A Eg) (A C^ — A Eg)

= 2 A Eg . Ci Eg approx.

^ X [S,. S,i) t -t r\\
.•. Ci Eo = ^ '-' 19)

^ ** 2AE2

Further Eg Eg = c^ Eg tan 6 (very nearly ; strictly

X y {s,, — s„)

tan^- 8$) = CjEg^
X

.
*

, Eg Eg AE

but SO = 2 —
(
= —^.— approx.

)A Eg \ radms ^ ^ /

AEg^

{s, - Sy)xy

(l + 25,)(x2 + 2/')
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This will be a maximum when + "
is a minimum, i. e

y X

tan $ + cot ^ is a minimum.

sin
,
cos 6 sin^ d + cos^ S

tan + cot
cos 6^ ' sin sin 6^ cos 6

1 2

J sin 2 ^ sin 2

The minimum value of this = 2 when sin 2^ = 1, i.e.,

(9 = 45°.

.•
. Maximum shear strain occurs at 45° to direct strains.

CJ
^x S,i

•

• ' ~ Y{rv2s;)

= ' ^ ' (1-2 5,) approx.

= ^—^—^neglecting products of strains.

There will be an equal angular distortion on the other

diagonal.

.'
. Total angular distortion = shear strain = 28^ = {s^ — s,j).

.
•

. Equivalent maximum shear stress

= shear strain x ,G = (<s^ — s,,) G.

Now let the principal stresses be p and q
'

'

en s, =
' E ~ E

s,= E E

.-. {s. -^J- iv-- 9) (1 + -n)

E

•
•• {Sx- 5jG =Av--g)(l+r7)G

- ^^ ^^ because E - 2 G (1 -f q) (p. 11).

.*. Equivalent maximum shear stress = --

It will be noted that the equivalent and actual maximum
shear stresses come the same, whereas the equivalent and

actual principal stresses are different.
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Resilience.—The work done per unit volume of a material

in producing strain is called resilience. Consider the case of a

body subjected to a simple tensile strain. In going from the

point A to the point b. Fig. 12, very near to it, the average

stress acting is /. Therefore, if a b = x, the work done by

the force / in straining the material from the point a to the

point B will be equal to / x x. Now, if x is the increase in

unital strain and / is the intensity of stress, the volume of

material acted upon is unity. Now, a B is assumed to be

very small, and f x x is equal to the area of the shaded

portion of the stress-strain curve.

Fig 12.—Resilience.

Therefore, the resilience is equal to the area of the stress-

strain curve up to the point m,

i.e. resilience = area of A p m x

_ 1.— 2' ^ "^

Now, — = Young's modulus = E

resilience in tension ^ 2E

similarly in shear the resilience = ^^
where s is the shear stress.

Stresses and Strains due to Sudden or Dynamic
Loading.—If a load is applied suddenly to a structure,

D
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vibration will ensue, and the strain—and thus the stress

—

will reach twice the value which would occur if the load

were gradually applied.

This will be made clear from considering a diagram, Fig. 13

(1), where the force is plotted against the strain. We have

seen that, with gradual loading of an elastic body, the curve

representing the relation between the strain and the load in

direct stress is represented by a straight line a d, the area

below the line giving the work done up to a given point.

Fig. 13.—Sudden or Dynamic Loading.

Now let A G represent a force P ; then when the strain gets to

the point b, the work done by the force will be equal to the

area of the rectangle a b e g, whereas the work done in

straining the material is only equal to the area of the triangle

a B E, so that there is an amount of work equal to the area of

the triangle a e g still available for causing increased strain.

The strain therefore increases until the area of the triangle

E F D is equal to that of the triangle A e g. It is, clear that

AC = 2 A B, or that the strain—and thus the stress—is twice

that in the case of gradual loading.

If a force is suddenly reversed from — P to + P, then the
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total strain and stress will be the same as that due to a

sudden load of 2 P, and again when the strain reaches the

point B, Fig. 13 (2), there will be an amount of work repre-

sented by the area of the triangle a E g still available for

causing strain, which therefore continues to the point c.

Thus the maximum tensile strain will be equal to H l. If

the loading were gradual the strain would be h k, and as

H L = 3 H K, we see that a load suddenly reversed causes three

times the strain and stress which occur if such reversal takes

place slowly.

jc ,

'ratn

.

Fig. 14. Fig. 15.

In each of these cases the additional strain or stress which

occurs is equal to the amount of variation. Such additional

stress has been called the dyrw^mic increment, and we there-

fore see that the equivalent gradual stress due to a sudden or

dynamic stress
f,,

which varies by an amount v is given by

h + v.

strain and Stress due to Impact.—Suppose a weightW
falls from a height h on to a structure and let the deformation

or strain in the direction of h be x, Fig. 14. Then the work

done by the weight is equal to W {h + x). Now this Work is

absorbed in straining the structure. Consider first the case

in which the resulting strain is within the elastic limit. The
work done in such case is equal to the volume multiplied by
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the resilience. We have shown that in tension or compression

the resilience is equal to —-^ and therefore in this case we get

W (/i +0;) = ^ -pT
—^ "^

9i?-
Then if x is negligible

compared with h

we have W x 7i = ^ -ni

If the weight strikes with a velocity v,

^9

2E.Wv^ /EW
or

2?V -"V^V
We will consider resilience in bending and torsion when

dealing with beams and shafts.

Strain beyond Elastic Limit.—If the strain is beyond

the elastic limit, it follows, from the reasoning given on

p. 33, that the work done per unit volume in straining is

equal to the area below the stress-strain curve. If this area

is R, Fie;. 15, then we have R ^ W /^ or ^—° 2 g

From this the stress can be found.

Numerical Example.—A bar of \-inch diameter stretches

\ inch under a steady load of 1 ton. What stress would he

'produced in the bar by a weight of 150 lbs. which falls through

3 inches before commencing to stretch the rod—the rod being

initially unstressed and the value of E taken as 30 x 10^ lbs. per

square inch. {B.Sc. Lond.)

Area of bar J" diam. = -196 so[. in.

.-. Stress under load of one ton = .iq/:> tons per sq. in.

2240 „=
Tjge

lb. per sq. m.

. _ Stress _ 2240
•'

•
^^^^"^ ~ "E ~ -196 X 30 X 10«
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Now ^" = strain x original length

r. - • ^^ 4.1. ^ '196 X 30 X 10«
.*. Original lenefth = ?^~-.- = ^^.^ r.^ ^ Strain 2240 x 8

.'
. Volume = length x area of section.

_ -196 x 196 X 30 X 10«

8 X 2240

. = 64'33 cub. ins.

Work done by 150 lbs. in falling 3 inches

= 3 X 150 = 450 in. lbs.

64-33 X /2 = 450

/9(

^| 64-33

2E
r _ /900lE

900 X 30 X 106

64-33

= 20,480 lbs. per sq. in. Ans.*

Temperature Stresses.—Suppose a bar of length I is

heated t° F. and a is the coefficient of expansion. Then, un-

less prevented, the length of the bar will become I (1 x at),

i. e. the increase in length will he at I.

If the bar is rigidly fixed so that this expansion cannot take

place, then there will be in the bar a strain equal to at I, and

the unital strain will be -j— = at.

This strain will produce a compressive stress of a ^ x E,

where E is Young's modulus.

Now for mild steel a = -00000657 per degree Fahrenheit,

and E = 13,000 tons per square inch.

.-. The stress per °F. = '00000657 x 13,000

= -0854 tons per square inch.

Taking a range of temperature of 120° F., the stress due to

temperature = 120 x -0854 = 10*25 tons per square inch.

This is more than the safe stress for mild steel, so that the

importance of designing so that the expansion may take

place becomes quite evident.

* This problem could be solved if E were not given; it would be
found to cancel out.
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"^ Heterogeneous Bars under Direct Stress.—If a

bar, composed of two different materials—such as steel and

concrete, or steel and coj)per—firmly connected to each other,

be subjected to a pull or a thrust, the two materials must be

strained by equal amounts, and since the values of Young's

modulus for the two materials are different the stresses in the

two materials will be different.

Suppose one material has a cross-sectional area A and

Young's modulus E, the resulting stress being / ; and let the

corresponding quantities for the other material be A^, E^, Z^.

Then, if iinder a pull or thrust P the unital strain is a*, we

have

I
E

h
El

and P = A /

X =

X =

(1)

Ai/r

(2)

(3)

Fig 16.

A / and Aj ii being the loads carried by each of the materials.

E,/
Prom (1) and (2) /^ = Ej^x

.-. P = /(A-

E
El A,

)
E '

or / =
Afl^^tV

(4)

(5)

Now if a new bar is taken wholly of the first material of

such area A., that the stress under a load P is the same as

that in the compound bar, we have

P
A2

El A,
^

/

or A2 = A
(
1 -T- EA (6)



/A =—^ (8)

^ + EA
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This quantity Ag may be called the equivalent area of homo-

geneous material, and the consideration of this problem has

become in recent years much more important on account

of the progress made in reinforced concrete construction.

Returning to the general problem we see that

p

The load carried hj the first material then comes equal to

P

EA
and that carried by the second comes equal to

/iAi = --Va (9)

Since these are not the same there will be an adhesive

force tending to make one material slide relatively to the

other.

This adhesive stress may be computed as follows assuming

that the load is applied uniformly.

Load per sq. in. = —r

—

—r—
(A + Ai)

.
•

. Load actually distributed to area A

- A ^
(A + A,)

p
Load carried = t^ . (from 8)

EA
E

Difference = load carried by adhesion calling ^ =

_ P P.

A

'"'-, ,_A, A + Ai
^ + mA

_ p J m A A
""

(m A + A'l
~

Ai + A
_ P A A

i
(m - 1)

~ (A + Ai)XArrf wA)

_ /iAAi(m -^1)

(A + Aj)

m
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Numerical Example. — A reinforced concrete column

{Fig. 17) for which m = 15, is 20 inches square and has 4

1^" steel rods embedded in it. Find the load on the column

when the stress in the concrete is 450 lbs. per sq. in. and the

adhesive force.

T

Fig. 17,

TT
4 X ^ X 1-252 = 4-91 in.

4
In this case A

Ai = 20 X 20 - 4-91 = 395 nearly

.-. P

= 450 X 395 1 +
15 X 4-91

Adhesive force

395

210,870 lb. nearly

45 X 4-9 1 X 395 xU
400

(from 7]

= 33,940 lbs. nearly



CHAPTER II

THE BEHAVIOUR OF VARIOUS MATERIALS UNDER
TEST

Properties other than Elastic.—In addition to the

elastic properties of materials there are other strength

properties which are of very great importance in the

practical use of the materials.

Ductility is the property of a material which allows it to

be worked without cracking ; the strict use of the term refers

to the capacity for being drawn out which a ductile metal

possesses.

Malleability is the property which allows a material to be

hammered out and is very similar to ductility.

Brittleness is lack of ductility or malleability.

Hardness may be defined as the power of a material to

resist denting by another material. (For tests for hardness

see pp. 396-404.)

The above properties are all relative ones and vary with the

same material according to the treatment which it receives

;

thus by "tempering " a metal we harden it and by " anneal-

ing " it we soften it or render it more ductile, and some

metals are hardened by plunging them into water when

heated, whereas others are annealed by the same process.

With reference to ductility it is important to remember

that so long as a metal maintains its elasticity it has no

ductility, i.e.au metal which possesses ductility cannot exhibit

the fact until the yield point has been reached. In our

calculations for the strength of various details we shall base

41
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nearly all our formulae on the assumption that our material

is elastic and so we must not expect the formulae to hold

after the elastic Hmit has been reached. This is a point of

very great importance.

Apart from the convenience in the manufacture of articles

which ductility gives, it has considerable value from the point

of view of safety and strength, because a material does

not lose its strength when it first starts drawing out, and

the yield may either give us timely warning of excessive load-

ing or, in the case of steam boilers and like fluid-retaining

devices, the yielding may actually remove the excessive

pressure. As we shall see later, however, the effect of taking

a material beyond its yield point is to harden it.

The usual test for ductility is the elongation in fracture

by tension.

* The Cause of Failure of Materials under Stress.

—In recent years a very large amount of attention has been

given to the question of the cause of failure of materials

under test, and it is doubtful if the vital importance of this

problem has been fully realised by practical engineers. As we

shall see later, however, the choice of safe working stresses

really depends in a large measure upon the view taken as to

which of the various theories is correct. If we consider the

question carefully we shall see that failure cannot occur by

compression only ; if a material be prevented from escaping

laterally, no amount of compression can rupture it. Even a

fluid like water will resist a compression stress of very great

magnitude if the vessel containing it is strong enough to resist

failure by tension or shear. The late M. Armand Considere

showed experimentally that concrete could not be crushed

when given adequate lateral support, and he also proved that

the very brittle material glass could be bent cold without

fracture when placed in a liquid under great hydraulic pres-

sure. Marble has been bent without fracture by Professor

E. D. Adams of McGill University when placed in steel cylin-

ders and compressed, and Professor Ira H. Woolson crushed
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a cylinder of concrete encased in steel into the form shown

in Fig. 18, and yet when the encasing cylinder of steel was

removed the strength of the concrete was found to be not

appreciably different from that of concrete which had not

been similarly treated. The question therefore resolves itself

whether tension or shear is the cause of failure, and we have

reason to believe that in ductile materials such as mild steel

failure occurs by shear and in brittle materials such as

cement or concrete by tension. We will return to this after

considering the various theories of failure ; there are four

principal theories which we will consider.

1. Principal Stress or Rankine Theory.—^According to

Fig. 18.

this theory, which was adopted by the great Glasgow professor,

Rankine, the failure occurs when the maximum principal stress

exceeds a certain value. We have seen (p. 19) that for a

normal or direct stress / and shear stress s the principal stress

is given by the relation

/ ,
1 ,

or ?9 = -^ + 2 V/2 + 4^2 (16)

and the inclination of this stress to the normal stress and

to the shear stress is given by the relation tan 20 = —r.

This stress p is the simple normal stress (tension or com-

pression) equivalent in effect to the combined normal and

shear stresses.
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In the limiting case in Avhich the direct stress / is zero we

get p = s and tan 2 $ = infinite, i. e. = 45°, i. e. a shear

stress is equivalent to a normal stress of the same intensity

and is at 45° to it, or the shear and tensile strengths of the

material should be equal.

2. Principal Strain or St. Venant Theory.—According

to this theory, which was favoured by the great French elas-

tician after whom it is named, the failure occurs when the

maximum principal strain exceeds a certain value. We have

seen (p. 29) that for a normal stress / and a shear stress s

the equivalent principal stress is given by the relation

P>- L\a -yi) + a +-n)J} 4-
^^^\

2
j^(l->y) + (l +'/?)yi + y, j- (2)

and taking rj = I

/ f 3
,
5 / 4^1

^• = 2i4 + 4V^+fJ ^^^^

orp =
^J
+ g V/^ + 4^2 (36)

The inclination of this principal stress is the same as in the

previous case.

In the limiting case in which the direct stress / is zero we

5s .

get p ^ -, i.e. a stress shear is equivalent to a normal stress

of four-fifths of the shear stress, or the shear strength of a material

is four-fifths of the tensile strength.

3. Equivalent Shear Stress or Guest or Tresca

Theory.—According to this theory, which is associated with

the name of Mr. J. J. Guest, who was one of the first to

carry out careful experiments upon the subject, and is usually

attributed to Tresca, failure occurs by sliding of the particles

over each other, i. e. by shear. From p. 20 we get

Equivalent shear stress = . ' +52 ^4^

and acts at an angle of 45° to the normal stress.
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To compare a simple shear with a simple tension or

compression by this formula we put s = o and we get

Equivalent shear stress = ~

i. e. a shear stress is equivalent to a normal stress of twice its

magnitude or the shear strength of a material is one-half of its

tensile strength.

Fig. 19.—Navier's Theory.

It is interestmg to note that as shown on p. 32 the

equivalent shear stress comes the same whether worked from

the point of view of stress or of strain, and so there is logical

support for this theory.

4. Sliding with Internal Friction or Navier Theory.

—This theory deals with materials subjected to compressive

stresses and attempts to explain the fact that short cylinders
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of brittle material usually fail by sliding or shearing along

a line e f, Fig. 19, inclined at an angle from 55° to 65°, on

the ground that the particles are capable of exerting frictional

resistances.

Consider a short column a b c D of unit sectional area

subjected to an ultimate compressive force u,, which causes

failure, and consider the forces across a section E f, the

ultimate or breaking shear stress in the material being u,.

The force u,. acting along the section e f can be resolved

into shear and normal components ac, cb respectively, equal

to u, sin and u, cos 0.

If /x is the angle of friction for the material, the normal

component c b causes a frictional resistance equal to /x .c b,

i.e. /x .u cos 6.

Just before failure the shearing force acting upon E r =
u^ X area of section.

_ u, X normal section _ u,

cos cos

(because normal section is of unit area).

When therefore failure is about to take place

—

Total force causing failure = ac = tc^ sin equals

Total force resisting failure = au, cos -1 ^* ^ cos

i.e. u, (sin — ix cos 0) = '
^ ' cos Q

or n, = „ , .
-.'

r. ••••(!)
cos Q (sm B — \j. cos b)

Regarding w, and \}. as constant we now wish to find the

value of which will make u, as small as possible ; this value

of will be that at which failure will occur. ii will be as

small as possible when cos B (sui — ix cos 0) is as large as

possible.

Let y — cos (sin — /x cos 0)

sin 2 ^ , .= —IX cos-
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T-i . d y ^
I<or a maximum -7^ =

a 6

2 cos 2 ^ ^ . , ... ^
^. e. ^ —

fjL 2 cos 6^ (— sm 6') =

i. e. cos 2 -j- jx sin 2 6^ =
cos 2 ^

/A = ^.—^--7, = — cot 2 ^ . . (2)sm 2 ^
'

If ft = tan <^, ^ being the angle of friction, this gives

cot 20 = — tan </>

or 2 ^ - 90° + <^

or == 45° + (3)

In support of this theory experiments made by Bouton

(Washington University, 1891) may be quoted as follows

—

Material.
Number
of Tests.

Observed
Value of (f)

(degrees).

Observed
Value of e

(degrees).

4r +
^

55-3

53-4

61-7

58-6

58-5

Cast iron

„ (different kind)
Limestone
Asphalte paving
Milwaukee brick

24
24
4
3
4

20-6

16-9

33-4
27-3

27-0

54-8

55-0

62-2

59-7

58-2

Batio of shear to compressive strength on Navier theory.—
From equation (1) we have

Us = u, cos (sin — fx cos 0)

Now put in this a = tan (h = — cot 2.^ = v~^ ^^ sm 2

rp, . . Us . / . . , COS 2 (9
.^

I his gives = cos ^ sm ^ + -^—?r^cos^ Ur \ sm 2 (9

= cos

^ ( . ^ ,

(cos^ — sin^ 0) cos 0}
6' ] sm ^ + -^ 5-^

—

n -^ }
[ 2 sm cos

J

. r . ,
,

(cos2 - sin2 0)]
\ sm + ^ o-^—n }
[ 2 sm J

f
2 sin2 + cos2 - sm^ 0]

' ^

1

2^nl /
— cos

cos ^ / .
\ COS

2 sm ^ \ / 2 sm
- I cot ^ (4)

Taking 6^ = 60 for masonry, this would give

shear strength = '289 compressive strength,
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but the most recent experiments on shear strength of concrete

(see p. 79) indicate that this is too low. Shear tests are

very difficult to make without introducing bending, which

tends to give the shear strength too low.

An interesting theory which may be regarded as a

modification of Navier's theory is outlined by i\Ir. H.

Kempton Dj^son in a paper read before the Concrete Institute,

December 1914.

The first three theories have been very fully tested experi-

mentally in recent years by Messrs. Guest, Hancock, Scoble,

C. A. H. Smith, Mason and Turner,* and the result appears

to be that the shear stress theory is most reliable for ductile

materials while the strain theory is most reliable for brittle

materials.

Professor Ewing and ^Ir. Rosenhain have found by a

microscopic examination of the crystals of a ductile metal

under strain that beyond the yield point lines of slip are

developed in the crystals, thus proving that the failure or

yield is a slipping or shear one. Liider's lines (p. 54) are

also indications that in ductile metals the failure is by shear.

It is possible that ductility is a property of shear strength

;

if a material is weaker in shear than in tension the shear

causes the failure and slippage occurs before the tensile strength

is reached, thus giving rise to ductility. If the material

is relatively stronger in shear than in tension the material

breaks before slippage occurs and thus cannot exhibit ductility.

We will now consider the properties of various materials.

CAST IRON

We will deal with cast iron first because it is a brittle material

and behaves differently under test from most other metals.

The strength of cast iron varies considerably with its com-

position, but like all brittle metals it is relatively weak in

tension and strong in compression.

* These experiments will be found fully described and discussed in

various articles and letters in Engineering for 1909 and 1910.
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Fig. 20 shows the stress-strain diagrams for cast iron in

tension and compression, the resiiHs of the two tests being

plotted on one diagram.

It is clear from this diagram that the stress is never strictly

proportioned to the strain in tension ; this has an important

bearing upon the strength of cast-iron beams (see p. 209).

The compression diagram is not continued to failure as the

Fig. 20.—Stress-strain Curves for Cast Iron.

failure would take place by buckling and injure the instru-

ment for measuring the strain. When a cast-iron bar fails

in tension, it breaks off " short," i. e. it does not produce a

waist as indicated in Fig. 2 for mild steel.

When compression tests are made on cylinders which are so

short that buckUng effects are practically eliminated, the

failure takes place by sliding diagonally as indicated in

Fig. 21, and for shorter specimens still cracks sometimes

develop which split off the outside portion leaving two inverted

cones. Some observations on this kind of failure for concrete

E
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will be found on p. 69 and apply to cast iron. The diffi-

culty in testing cast iron in compression in very short

lengths is that it is so strong that difficulties arise as to the

strength of the testing machine.

The tensile strength of cast iron varies from about 7 to 15

tons per sq. in. in extreme cases, but more usually from 8 to 11

tons per sq. in. Figures for the compressire strength show

more variation ; this is probably due to the fact that the size

of the test piece, both as regards its length and breadth, affects

the result.

Fig. 21.—Compression Failure of Cast Iron,

The following results of tests made upon J in. cubes by

the American Foundrymen's Association show that specimens

cut from bars of small cross section give much higher results

than those from large.

Cross Section Crushing strength in tons per sq. m. for cubes cut from

of bar
from which

Cubes Middle First Second Third Fourth
were cut. half inch. half inch. half inch. half inch. half inch.

4x J 69-0 ___

1 X 1 44-5 49-8 — — —
Hx li 37-0 39-4 37-0 — —
2x2 32*2 38-9 34-6 — —
2ix 2i 31-9 35-4 32-3 31-9 —
3x3 28-6 32-5 30-1 28-7 —

3i X 3* 28-4 30-5 29-6 28-8 28-4

4x4 25-4 29-4 27-4 26-6 25-4
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Strength of Cast-Iron Beams.—Cast-iron when tested

in bending shows an apparently greater strength than when

tested in pure tension. This is due to the fact, as explained

in greater length on p. 209, that the ordinary formula for

beams is not strictly applicable for cast iron. The ratio of

calculated breaking stress from bending . „ , ^ i r- p

^—., , ^ , . is usually about 1*5 tor
tensile breakmg stress

rectangular sections of depth twice the breadth ; it increases

for round and square sections arranged diagonally and may
rise to 3 ; the ratio becomes nearly 1 for I sections with a

thin web.

The following figures give the mean of a large number of

tests made by Kirkaldy for the same kind of iron

—

Tensile breaking stress = 11 tons per sq. in.

Compression ,, =54 ,, „

Calculated bending ,, =17 „ „

The early writers often called the breaking stress calculated

from bending tests the " modulus of rupture," but the term

is not to be recommended ; bending breaking stress is better.

Effect of Temperature on Strength of Cast Iron.—
The strength of cast iron increases slightly as the temperature

is raised until about 900° F. is reached; it then diminishes

rapidly, until at 1100° F. the strength is reduced by nearly

50 per cent, and at 1400° E. by about 75 per cent.

Other properties of cast iron are tabulated on p. 83.

Malleable Cast Iron.—Cast iron is rendered malleable

by surrounding the casting with haematite or manganese

dioxide and exposing it to red heat for many hours, depend-

ing upon the size of the casting. The result of the process

is to dicarbonise the iron and render it similar to mild steel.

Some useful information on the subject, especially from the

point of view of strength, is given by Mr. C. H. Day in the

American Machinist of April 21, 1906.

The following results of tests of Mr. Ashcroft are quoted

from Vol. CXVII. Proc. I. C. E.
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Tons per sq. in.

Elongation,
^ on 10 in.

Breaking Stress. Elastic Limit. Young's Modulus.

11,620Tension . .

Compression

20-6

21-6

8-94 2-8

10,240 —

Bending . . 28-8 12,330 !
—

Torsion . . 26-8 — Rigidity Modulus.
4,120 —

Stanford, in Trans. Am. Soc. C. E., 1895, gives as the mean

result of forty-two tests in tension an elongation of 6" 61 per

cent, and an ultimate stress of 22 tons per sq. in.

Similar results are given by Mr. Day.

STEEL, WROUGHT IRON, AND OTHER DUCTILE
METALS

Real and Apparent Maximum Tensile Strength.

—

We have shown already, on p. 5, a stress-strain diagram

for mild steel in tension and pointed out that the last portion

D E of the diagram was usually inaccurate and of little com-

mercial importance. The diagram sloi)es back because the

load can be reduced as the area diminishes and the stress

still be sufficient to cause fracture. Now this diagram can

be corrected if its form is determined very carefully and the

areas at the various points are measured.

Taking any point a, Fig. 22, on the curve before the

specimen began to draw down, we find 6 c by the relation

ab X extended length

original length

tion that the volume keeps constant; so that

original area x original length

be This is based on the assump-

reduced area x extended length

ab X extended length

original length

ab X actual reduced area

original area
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The method cannot be used beyond the point at which the

waist begins to form.

Taking any point / beyond the point of drawing down,

(U

(!)

shrc^\n b G
Fig. 22.

d

^. csc^ r> 1 7 dfx actual area of bar , , , .

h 12. 22, we find a e = —^ ^-.—

^

: and by doing° origmai area "^ °

this for a number of points we get the corrected curve

c e e', then f e' gives the real maximum stress as opposed

to G D, which is the -apparent or commercial maximum
stress. It is very difficult to get points / accurately.
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It thus appears that the actual maximum stress at failure

is considerably more than usually measured. Upon the Guest
theory that failure occurs by shear, the tensile strength

should be twice the shear strength, but ordinary commercial
tests indicate that it is about 1J times ; it is probable that

if the true tensile strength were compared instead of the

apparent or commercial strength, the agreement would be
more in favour of the Guest theory.*

The common form of fracture of a ductile metal is shown
in Fig. 23 and consists of a kind of crater, the angle of the

sides being approximately 45°. This strengthens the theory

that failure is by sliding or shear.

Liider's Lines.—When a highly polished specimen or one

Fig. 23.—Tension Failure of Ductile Metal.

provided with a very thin layer of scale is tested in tension

or compression, lines at about 45° to the axis of the speci-

men and of spiral form in the case of round sections are

found to develop directly the yield point is reached. This

was first noticed by Liider and supports the theory that the

yield is really due to diagonal shearing.

Fig. 24 shows these lines for thin mild-steel tubes in com-

pression and were given in a paper by Mr. W. Mason, M.Sc,

of Liverpool University.

f

Percentage Increase in Length and Decrease in

Area.—The percentage elongation of the specimen and the

decrease in area are usually regarded as reUable tests of

ductility of the material, but it is clearly useless to specify

the percentage elongation unless the diameter and the

See a paper by Professor Carus Wilson, Proc. Roy. Soc. 1890.

t Proc. Inst. M.E. 1909.



Fig. 24.—Luder's Lines.
[To face page 54.
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original length are both specified, because most of the ex-

tension occurs in the centre portion where the specimen

draws down.

This question has been treated very fully by Professor

Unwin in Vol. CLV., Proc. Inst. C. E., and the following

figures are taken from his paper as indicative of the general

results

—

RoTHERHAM Steel Boiler Plate (area -5830 in.^)

Extension in inches in each half inch.

Number
from

Fracture

7 6 5 4 3 2 1 Frac-
ture

1 2

•19 |'13

3

•12

4

•12

5

•11

6 7 8 9

•10

10

•09Extension •07 •08 •10 •10 •11 •13 •18 •47 •11 •lO -09

Percentage elongation and different gauge lengths.

Gauge Length (inches)

% Elongation . . .

2 4

36^0

6 8 10

48^5 30^9 27-6 25^9

He suggests the formula

—

cVA% elongation = 100 {pi^ + h\

where A is the original area in sq. in.

I is the gauge length in inches

h and c are constants for a given material.

The following values of c and h are given by Professor

Unwin

—

Metal. c 6

18
10-6

9-7

•8

35

Mild steel

Gun metal (cast) . . .

Rolled brass ....
Rolled copper ....
Annealed copper . . .

70
8^3

101-6

84
125
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By the formula we can obtain the jorobable percentage

extension on any length of any other metal if that on two

specified lengths are known.

The percentage contraction in area is not so commonly

specified now as formerl}^ because the elongation is considered

as giving sufficient indication of the ductility.

Two Waists ix a Texsiox Specimen.—It happens very

occasionalh^ that two waists form in a tension specimen,

failure taking place at the one which draws down most

rapidh'. This will affect the elongation and the test should

be discarded.

Fracture xear one Shoulder of Specimen.—If fracture

occurs near one shoulder of the specimen (see Fig. 167) the

elongation will be less than normal owing to the effect of

the shoulder, and such a test should be discarded.

Effect of Abrupt Change of Section upon the

Tensile Strength.—The effect of an abrupt change of

section such as in a screw thread or a sharp-edge groove

does not have a ver}' marked effect upon the ultimate

tensile stress of a material Avhen tested in the ordinar}^ way
although it does affect the ductility. As we shall show later,

however (p. 91), it has considerable effect in tests by

repeated loading.

The sharpness of the groove will have a weakening effect,

but the presence of the larger area near it will have a

strengthening effect

.

Fig. 25 shows the results of some tests by Sir Benjamin

Baker * which are interesting ; the breaking stresses in

tons per sq. in. are given below each figure. a is an

ordinary tension specimen, h and c have saw cuts, at both

and one side respectively, d has semicircular notches and

e has a central hole with saw cuts at each side; after the

saw cuts were made the bars were heated and the cuts

closed, d is the strongest ; this would be expected, on

the shear theory, as the diagonal line is relatively larger;

* Proc. Inst. C. E., Vol. LXXXIV.
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b is weaker than d on account of the abrupt change of

section ; c is weaker still because the load is not central, and

in e the hole probably gives an accentuation of the effect of

the abrupt edges. Eor other results on the effects of holes

see Chap. XIV.

Effect of Overstrain.— If a ductile metal is loaded

beyond the j'ield point and the load removed, and the speci-

men is then loaded up again at once, it is found that the

new yield point is higher, but the elastic limit is slightly

lower. The overstrain also increases the ultimate or break-

ing tensile stress. This is shown in Fig. 26 (a) in which b

cc L d

^nV~7V~7^^

32.-50
Lji\!_i

-o

3l-^0

Fig. 25.

36 '30
L_J]

is the initial or primitive elastic limit, and a is the initial

yield point; at the point c the load is taken off and then

the specimen is loaded up almost immediate^; the new

elastic limit e is much lower than previously and the yield

point d higher. If some hours had been allowed to elapse

between taking off the load and reloading, the elastic limit

would nearly return to its previous value b but the yield

point would go higher still to the point g.

In Fig. 26 (6) is shown the effect of keeping the load on

for some time at the point c before increasing it further.

The curve in full lines shows the effect of keeping the load

jfixed for about ten minutes, and in dotted lines k I the effect

of keeping it for ten days.*

* For fuller information a paper by Professor Ewing, Proc. Roy.
Soc. 1880, should be consulted.
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This hardening effect of overstrain is well known in prac-

tical work. Copper wire becomes very brittle by bending it

backwards and forwards, and steel wire in the process of

drawing becomes very hard indeed.

K

?5
(

1 ^/
k f'^' I

^ ^""^ ^ ,^
c

'/'

20
c^y
^

^l/
/

b h

15

e

10

5

o 5 10 o 5
(h)

/o

Fig. 26.—Overstrain.

Recovery of Elastic Limit from Overstrain.—As in-

dicated above, the elastic limit slowly recovers its original

value after it has been allowed to rest for a few hours ; it

then will increase as the time of rest is extended and
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ultimately gets above its final value and gets near to its

new yield point.

Mr. Muir * has shown that the temperature of boiling water

gives an almost immediate recovery of the elastic limit to

near the new yield point which will be as high as if the

material had been allowed to rest for several days.

Hardening by Quenching.—The hardening effect of over-

strain is not the same as that effected by heating the metal

to a high temperature and quickly cooling by quenching.

This has the effect of making the metal very brittle, and

if)

Fig. 27.

there is practically no yield point, the specimen breaking

off short with practically no extension.

Mechanical Hysteresis .—If a specimen of ductile material

is loaded up beyond the elastic limit and the load is taken

off slowly and the strains noted for descending loads,

the stress-strain diagram for descending loads will be found

not to coincide with that for the ascending load, the two

curves forming a loop as indicated in Fig. 27 ; this, by

analogy with magnetic hysteresis, is called a mechanical

hysteresis loop. In experiments of this kind great care is

necessary to eliminate errors of the instrument on the return,

but many experimenters have found similar results well

within the elastic limit. Very careful experiments by

Mr. Bairstow, however, at the National Physical Labora-

tory,! suggest that this phenomenon does not occur unless

* Phil. Trans. Roy. Soc, 1889. t ^^id., vol. 210.
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the " natural " elastic limit is passed. These " natural
"

elastic limits are dealt with on p. 87.

Tensile Strength of Various Steels and Wrought
Iron.—Fig. 28 shows typical stress-strain diagrams for various

60

50

40

30

ZO

10

/a

k 1

/r»

^ ^
/ ^

^O^ ^^
^y/i

^^\ \

Extension per cent.

—

A Tool steel
(Unannealed).

B Crucible steel.

HO 30

C Medium steel.

D Mild steel.

E Wrought iron.

4o

Fig. 28,—Stress-strain Diagrams for various Steels and
Wrouffht Iron.

kinds of steels and wrought iron; the strength properties

depend to a large extent on the heat treatment and amount

of " working " in manufacture.
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Effect of Varying Amounts of Carbon on Strength.—
The effect of increasing the carbon in the steel is to increase

the strength at the expense of the ductility. The following

figures are taken from Harbord and Hall's Metallurgy of

Steel (Griffin) for normal steels.

Stresses in Tons per sq. in.

Percentage of Carbon. Breaking Stress. Elastic Limit.

•09 21 9-4

•16 29 13-0

•15 33 13-1

•34 35 11-9

•44 41 16-2

•65 54 18-0

•79 57 20^0
•94 62 .

21-9

The proportion of carbon does not have an appreciative

effect on the value of Young's modulus, nor does tempering

or other hardening process.

Alloyed Steels.—The following figures give mean values

for some examples of various alloyed steels.

Kind of Steel.

Tons per sq. in.

Breaking
stress.

Elastic
Limit.

Z Elongation.

Nickel
[•2 % C, 3-2 % M] 42 27 26 on 3 in.

Tungsten
[7-15 % C, -29 % Mn, -40 % W.]
Annealed
Unannealed

[•46 % C, -28 % Mn, 8-33 % W.]
Annealed
Unannealed

25-5

310

42-5

64-0

30-6

18
24

25-5

45-0

39-6 on 2 in.

33

32-6

2-57

Vanadium
[•20 % C, -27 % V, -48 % Mn] . 25-7

18

49

33-5 on 2 in.

Chromium
[•4 % C, 5 % Cr.]

Annealed
Hardened

55
32

24 on 2 in.

12
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" Quality Factor."—This term has been used by some

engineers for the result of adding the breaking stress to the

percentage elongation.

Stress-strain Diagrams for various Ductile Metals.

—Fig. 28a shows tjrpical stress-strain diagrams for a number

40

35

3C

c 25

o
20

15

10

O

.

^___ —-

/
y

/

/
/

/

//
//b c^^

/

/ ^
/ _D_

1/
// ^
//^
^

lO

Extension per cent.

—

A Aluminium Bronze.
B Hard Brass.
C Annealed Brass.

20 30 40

D Rolled Annealed Copper.
E Rolled Aluminium.

Fig. 28a.—Stress-strain Diagrams for various Metals.

of ductile metals. These must be regarded as only average

diagrams, because these metals vary in their elastic proper-

ties to a considerable extent, depending on the method of

working and upon their constitution in the case of alloys.

In most cases the early portion of the stress-strain diagram

is never quite straight, but there is usually a clearly defined

yield point.
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Effect of Temperature upon the Strength of Steel.

—The effect of temperature upon the ultimate strength of

steel is to first cause a slight diminution, then an increase

up to about 500° F., and finally a progressive diminution in

strength for temperatures beyond ; the elastic limit, however,

falls progressively as the temperature increases. This is

shown in Fig. 29, which represents the mean results of

60

50

40

^0

20

10

_-^ _ _<^ _

^N

H '

^oT
\
\A

<ao''?

x^

B"---

"^K,^^

•

2.00 4-00 600 SOO lOOO \Z0O |40C°

Fig. 29.—Temperature Effect on Strength of Mild Steel.

experiments on steel made at Watertown Arsenal, U.S.A., in

1888. Stresses are in 1000 lbs. per sq. in.

Curve A shows the variation of ultimate strength, and curve

B the variation in elastic limit.

For the effect of temperature upon the strength of various

other materials the reader is referred to Johnson's Materials

of Construction (Wiley & Sons).

Compressive Strength of Ductile Metals.—When a

ductile metal is tested by compression upon a short cylinder
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(Fig. 30a) (in long specimens the failure will always take place

by buckling ; and it is this which determines the safe stresses

in compression members), the cylinder reaches a yield point

which usually agrees very fairly well with that in tension and
then bulges out almost indefinitely, as indicated in Fig. 306,

to a slightly reduced scale, until it fails by cracking trans-

versely. It is not alwa3^s possible to cause breaking by com-

pression, because the flow becomes so great and the recorded

results of ultimate crushing or compression tests therefore

show considerable variation and are not of very great value.

To obtain anything like a reliable result we should always

(a)

Fiu. 30.

allow for the changed area in a similar manner to that

described for obtaining the true strength in tension.

Shear Strength of Metals.—It is not easy to obtain

a condition of true shear in testing. Fig. 31 (a) shows the

deformation in shearing on launching a piece out of a bar

or plate of ductile material. The lines across the bar indicate

lines initially parallel and the deformation is such as to

cause tensile and compressive stresses across the rectangles

shown in dotted lines. Alongside, in diagram {b), is shown

a sketch of an actual shear failure of a special phosphor

bronze taken from a paper by Mr. E. G. Izod.* The most

* Proc. I. M. E., 1906.
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accurate method of testing for shear is by torsion u^^on thin

tubes.

TIMBER

Timber is not an isotropic material, i.e. its strength

properties are not the same in all directions, and there is

considerable variation in the results of tests for the same

kind of timber. This is because the strength depends upon

the age of the timber, its dryness, the portion of the tree

from which it has been cut, and even upon the kind of soil

upon which it has been grown.

The strength of timber is greatest when the weight of

,:cr2^52S3^

-VV-

-^M-
-rs^

55
V

//ym0i^
^

(CV.)

iyv/. ^

Fig. 31.—Shear Failures.

moisture is about 5 per cent, of the total and decreases to

about half this when the timber is green or very wet.

The moisture is usually determined by taking shavings by

boring and weighing them before and after drying in an

oven at a temperature of about 212° E.

In scientific tests of timber, such as Bauschinger's tests,*

a standard moisture of about 15 per cent, is usually taken.

Average values of strengths of various kinds are tabulated

on p. 82.

Tensile Strength.—The tensile strength of timber is

very much greater when the pull is parallel to the grain

than when it is across it. Considerable trouble is experi-

* See Unwin's Testing of Materials (Longmans).
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encecl in gripping the specimen satisfactorily in a tension

test on account of the tendency to shear or crush the ends.

The stress-strain diagram for straight -grained timber for

tension parallel to the grain is practically straight up to

fracture.

Compressive Strength.—In the compression of short

cylinders or cubes of timber in a direction parallel to the

grain, the lateral swelling causes the wood to split up into

a number of strips or thin tubes which fail by budding,

Fig. 32.—Compression Failure of Timber

the line of failure usually following an inclined line as

indicated in Eig. 32.

Care must be taken that the ends are quite parallel, so

that the pressure is uniformly distributed.

When tested by crushing across the grain, the strength of

timber is less than when the pressure is parallel to the grain.

This strength is more one of hardness, i.e. resistance to

penetration, and Johnson regarded the ultimate strength in

this direction as that which gave 15 per cent, of indentation.

Shear Strength.—The shear strength of timber is, as we

would expect, very much less along the grain than across
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it, and in most bending tests of timber the initial failure is

really by shear along the grain rather than by tearing of the

fibres.

As shown m Chap. XVI. the maximum shear stress upon a

rectangular section of breadth h and depth d for a central

load W is

1-5W -75W
5 = 1"5 mean shear stress =

2,hd hd

from this the shear strength of timber along the grain can

be calculated indirectly by finding the load on a relatively

short beam which wiU split the timber lengthwise as opposed

to tearing the fibres.

The results of tests by Mr. Izod * by direct shear are

shown by the following table

—

Sheab Strength op Timber (Izod's Experiments).

{Stresses in lbs. per sq. in.)

Kind of
Wood.

Ultimate
Tensile
Strength.

Ultimate Shear Strength. " Crippling "

Stress across
Grain.

% Moisture.

Along Grain. Across Grain.

Pine .

Oak .

Deal .

Teak .

9,200
16,000
7,800

9,800

470
890
440

1,000

4,900
5,300
2,700
4,000

1,900

1,200
2,800

15-7

12-6

10-6

100

The " crippling stress " is the stress at which the timber

was found to shear through about three-fourths of its area

;

considerable increase of load, however, was required before

complete shear occurred.

Bending Strength.—Tests by bending form one of the

most satisfactory methods of testing timber. If the section

is rectangular, of breadth b and depth d and the span is I,

then we have for a breaking central load W as proved in

Chap. VII.

Breakmg stress = -^ -^ -^ = ^-^^

* Proc. I. M. E., 1906 (1).
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As we indicated on p. 51 this breaking stress is some-

times called the " modulus of rupture.'

Young's modulus may be calculated by finding the de-

flection S for a given safe load W bv the formula

6 = -

E =

4SEI
'

W P .

\\P
4:b(P .E

111 these bending tests it is a good plan to take a standard

>ize of beam, e.g. l" x V x 12".

Fig. 33.—Compression Faikire of Concrete Cube.

STONE, CONCRETE, CEMENT AND LIKE BRITTLE
MATERIALS

Compressive Strength.—When stone, concrete, cement

and like materials are tested in compression in the form of

cubes or short cylinders, fracture nearly always occurs by

splitting in diagonal planes in the manner indicated in Fig. 33.

This is commonly referred to as a " shear failure,'" the failure

being attributed to the shear stresses on the diagonal planes

at 45" to the axis. We have seen already (p. 10) that on

such planes there is a shear stress of equal intensity to the
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compressive stress. There are, however, strong reasons for

supposing that the fracture of brittle materials is due to

tension and the most careful experiments on cement and

concrete show that the shear strength is greater than the

tensile strength (cf. p. 79).

Tension Theory of Failure.—When a block of material

is compressed longitudinally it swells laterally, as shown in

dotted lines in Fig. 34a, the ratio between lateral swelling y

and the longitudinal compression x being Poisson's ratio [r]),

and one theory is that the [limit of compressive strength of

ir-y

Fig. 34.

the material is reached when the tensile strain y reaches the

limit of tensile strain for the material ; in the case of a block

in a testing machine, there is nearly always a very large

friction force F (Fig. 346) induced, which prevents the lateral

expansion and causes the block to bulge as indicated in

dotted lines, thus causing resultant stresses R in a diagonal

direction, which cause the apparent shear fracture and make
the specimen to appear stronger than it really is. It has

been kno^vn for many years that the measured compressive

strength of blocks depends upon the material placed between

the press head and the block. The following figures quoted

from Unwin's Testing of Materials are of interest in this

connection

—
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Crushing Load
Material. in tons on

4 in. cubes.

Material between cu1)e and preas head of i

Testing Machine.

Portland stone
1

57-7
52-6

450
33-5

Two millboards |

One lead plate |

One lead plate J in. smaller all round !

Three lead plates

Yorkshire grit 79-7

800

56-2
35-9

1

Two millboards
Cemented between two strong iron

plates with plaster of Paris

One lead plate

Three lead plates

The lead plates were '085 in. thick in each case, and the

fracture was longitudinal, as in Fig. 34a, in each case with

lead plates, and diagonal with the millboards. Professor

Unwin, in commenting upon this, says that the "lead falsifies

the result of the experiment," but we do not see why he

should not consider the lead as giving the more correct result

and the millboard figures as being false.

Professor Perry apparently takes the latter view, for he says

in Applied Mechanics (Cassell) :
" There is much published

information on the fracture by compression of blocks of

stone, cement and bricks. In almost every case care is taken

in loading the usually short specimens that friction at the

ends shall prevent the material sweUing laterally. When

sheet lead is inserted at the ends, it gives a small amount

of lateral freedom, and in everj'- case the breaking load is

lessened by its use, and therefore it is said to be wrong to

use lead. I consider all this published information to be

nearly valueless, except that there is some probability that

half the usually published ultimate compressive strength

for a cube is the true resistance to compression in the

material.*'

There is, of course, in the case of a pure compression, a

shear stress across a diagonal plane, and for materials like

mild steel, in which the shear strength is less than the com-

pressive strength, tliis shear stress probably causes the ultimate

failure, and thus determines the compressive strength.
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Batio between Tensile and Compressive Strength for Con-

crete.—The consideration of the transverse strain enables us

,
to calculate the ratio between the tensile and compressive

strength of the material upon this theory.

Let Uf = ultimate tensile strength of the material.

u, = ultimate compressive strength of the material.

E, = Young's modulus in tension at failure.

E, = Young's modulus in compression at failure.

r) = Poisson's ratio.

Then, compressive strain = x = ^^-

(1)

Ratio of tensile to compressive strength

-u:~~e: ^^^

Now this ratio, according to different authorities, varies

from one-eighth to one-twelfth, according to the usual method

of determining compressive stress, and depends on the age

of the concrete, the higher value occurring usually at ages of

three months and more, rj for concrete is not fully known,

and in the absence of further information we will assign to it

the value J, which is the theoretical value for a perfectly

elastic solid.

E< also has not been very fully determined, but Hatt, for a

1:2:4 mixture gives E< = 2*1 x 10" lb. per sq. in., which is

approximately equal to the value usually accepted for E,.

E,
For a rough consideration, therefore, we will take -^p = 1.

This would give -'-=•
Uc 4

If, as Professor Perry suggests, the actual compressive

strength is about one-half that usually published, the above
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u 1
figure compared with published figures gives ~ = q, which

lie O

bears comparison with the figures usually given, agreeing

with the lower limit.

All of these points are of very great importance, and it

would be of great value if ver}^ careful experiments were

made to determine ?;, E^ and E, for the same mixture at the

same age, and to see how nearly true is the suggestion that

the compressive strength is given in terms of the tensile

strength by the above formula.

Another consideration which enters into the problem is

that tensile strengths as determined by the usual briquettes

are somewhat less than the actual tensile strengths, the

discrepancy being due to the variation in the distribution of

the tensile stress across the specimen (see p. 78). According

to various authorities the actual tensile strength is 1"5 to

1*75 the mean strength, and allowance for this would bring

u 11
the value of — from

^ ^ to ^ . , which agrees very well with
u, 12 14 ° "^

experimental values.

We have already dealt with Navier's theory for this

problem (p. 45).

Effect of Relative Height and Breadth of Com-
pression Specimens.—Very careful experiments in 1876 by

Professor Bauschinger upon sandstone prisms have shown

that the compressive strength of sandstone prisms decreases

slightly when the relative height to breadth is greater

than for a cube and increases when the relative height is

less.

Fig. 35 shows a curve expressing the results of Bauschinger's

tests and is a modified form of a similar curve given by

Professor Johnson,* and tends to support both the Navier

theory and the transverse tension theor}'' that we have just

given, because in one case we should have that the cube and

more dumpy specimens prevent the rupture along the line given

* The Materials of Construction (Wiley & Sons),
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by the theory, and in the other case the effect of the friction in

preventing the natural transverse swelling is greater with a

dumpy section than with a comparatively tall one.

I -5

O I

Eatio 5eight
Breadth

Fig. .35.—Effect of Height upon Strength of Sandstone Blocks in
Compression.

Bauschinger recommended the following formula to repre-

sent the results of these tests

—

u.
4A/ _^.V'k
p \ h

where u, = ultimate crushing stress

A = area of cross-section

p = perimeter of cross-section

h = height of specimen

a, b = constants.

Strength of Cube with Chamfered Edges.—Fig. 36

shows the results of Bauschinger' s tests upon chamfered

specimens, the part of the curves in full lines representing

the range over which the actual experiments were carried.
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The curve marked A is for comparison of the strength of

the chamfered block with a cub^ of the same size as the large

area, and the curve marked B is for comparison of the

strength of the chamfered block with that of a cube of the

same size as the small^area.

L

o

•0
/

\ /
•8 A —

'

7-

•f>

VXz^

A<

i

^-^^_

•A- /Va/ ^y^ ^ /
/ \yA

.?

•4 <A

u 13

-~~~-\Otr

O

^

"O•4 6 B
Compressed Surface -^ Total Area

-Compression Strength of Cube with Chamfered Edges.

"L

Fm. 36.-

Stress-Strain Diagram for Portland Cement and

Concrete in Compression.—The kind of concrete which

we will consider is composed of a mixture of Portland cement,

sand and broken stone or brick, gravel or like material which

is called "aggregate."
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The composition is usually referred to in the ratio of

volumes of cement : sand : aggregate, i.e. a 1:2:4; concrete

is one composed of 1 part cement, 2 parts sand and 4 parts

aggregate.

The stress-strain diagram for concrete in compression is

never quite straight so that there is no elastic limit, the

exact curve depending on the composition and on the time

after setting.

The curve shown in Fig. 37 is almost exactly a parabola.

20Q&

1500

i

in

500

•0004- 0006 oooe

Strain joer In.

Fig. 37.—Stress-strain Diagram for Concrete in Compression.

This curve is for a 1:3:6 concrete, 90 days old, which was
tested by Mr. R. H. Slocum, of the University of Illinois.

Some authorities assume that the curve is a parabola, but

in practice it is seldom that the curve comes so near to a

parabola as the above. The stress-strain curve is, however,

nearly always of a similar shape, the strains increasing more
quickly than the stresses. It is extremely important to

remember that with cement and concrete the relations between

stress and strain vary largely with the quality and pro-

portions of ingredients, and cannot be taken as almost

constant as in the case of steel. In tension a somewhat
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similar curve is obtained, but as ceraent and concrete are

practically never used in tension, much less work has been

done on its tensile properties.

Young's Modulus for Concrete.—In a material like

concrete Young's modulus E is not constant, so that ^\e

must give the stress at which the ratio is taken if it is to

have any real value.

The initial value of E is obtained b}' drawing a tangent to

the curve at the origin as indicated in the figure.

Fig. 38.

We then have initial E

Similarly final E

1200

•0004

1800

•0012

= 3 X 10^ lbs. per sq. in.

= To X 10^ lbs. per sq. in.

The usual value of E taken in reinforced concrete calcu-

lations is 2 X 10^ lbs. per sq. in.

Effect of Composition and Age upon the Compressive

Strength of Concrete.—The compressive strength of con-

crete is roughly proportional to the i^roportion of the cement

in the mortar. Fig. 38 shows a diagram plotted from the

results of experiments by ^Mr. G. W. Rafter, of Xew York.
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Clean, pure silica sand and Portland cement were used, and

the aggregate consisted of sandstone broken so as to pass

through a 2-inch ring, containing 37 per cent, of voids when

rammed.

The compressive strength increases with age, and Fig. 39

v^- 4CQO

I

Co

^i i>oocK

- C3

"^^ 2000

\
CO

.S 1000

I

I
f 2 3 ^

Fig. 39.

shows on a diagram the results of experiments made at the

Watertown Arsenal, U.S.A., in 1899.

Curve A is for a mixture of one part of cement, two j)arts

of sand, four parts of aggregate ; and curve B is for a mixtui-e

of 1:3:6. The figures given are for the same brand of

cement.

Tensile Strength of Portland Cement and Concrete.

•^The tensile strength of concrete is about -^^ of its com-

pressive strength, but it is not usual to allow for any
tension in the concrete in practice.

The standard method of testing the strength of neat cement
is, however, by tension, so that the tensile strength is of
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considerable importance. (For method and apparatus for

testing, see Chap. XIV.)

The British standard specification requires the following

strength of Portland cement.

Briquettes 1 sq. in. in section (see Fig. 190) must develop

at least the following strength

—

Neat cement.

After 7 days (1 in moist air, 6 in water) . . 400 lbs.

,, 28 ,, ,, ,, 27 ,, . . oOO ,,

Fig. 40.

The increase from 7 to 28 days shall be at least

—

25 % when 7-day test gives between 400 lbs. and 450 lbs.

20 0/ 450 „ 500 „

500 ,, 550 ,,

550 „ 600 „

600 lbs. or upwards.

1^0/J-" /O ?J J 5 5> 5 5

^^ /O 5 5 5 5 5 5 5 3

K 0/
<-' /O 5 5 3 5 3 J 3 3

One 'part cement and three parts sand.

After 7 days (1 in moist air, .6 in water) . . 150 lbs.

„ 28 „ „ „ 27 „ . . 250 „

Increase between 7 and 28 days must be 20 % for stresses

200-250 and 5 % less for each 50 lbs. increase, 5 %
being the minimum.

Variation of Stress in Briquette.—It can be shown that

the stress is not quite constant over the briquette, but varies

somewhat as indicated in Fig. 40; this means that the test

strengths are always a little less than their actual values.*

Strength of Concrete in Shear.—Early experimenters

found the shear strength of concrete to be from '12 to '2 of

* See also Chap. XIV.
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its compressive strength, but recent experiments suggest that

the shear strength is considerably greater than this and

depends upon the kind of aggregate (gravel, broken stone,

broken brick, etc.) used. The most exhaustive investigation

is that by Professor A. N. Talbot, who has also carried out

many valuable experiments on the strength of reinforced

concrete beams. The results of these experiments were pub-

lished in a Bulletin of the Engineering Department of the

University of Illinois.

Two different methods of testing were used; in the first

the shear strength was obtained by punching a* hole in a

concrete plate, and in the second by means of concrete beam

with the ends fixed. There was considerable variation in

the results, as will be seen from the following summary taken

from Engineering of June 6, 1907—

•

SuMMAHY OF Shear Tests. (Professor Talbot.)

rorm of

Specimen.

Plain plate

Recessed
block

Reinforced i

recessed '

block

Restrained
beam

Mo
C
o

1o

1

1-3-6
1

1-3-6 :

1-3-6

1-3-6
!

1-2-4

1-3-6

1-3-6

1-3-6

1-3-6

i
1-3-6

:

1-2-4
!

!
1-3-6

1-3-6

1-3-6
j

. 1-2-4
1

1-3-6
'

1-3-6

1-2-4

Method of
storing.

Strength.
Ratio of
Shear to

Compression.

Air
Water

Damp sand
Do.
Do.
Air

Water
Do.

Damp sand
Do.
Do.
Air

Damp sand
Do.
Do.
Do.
Do.
Do.

g \ Shear.

Compression.

Cube. ^Jl^"-
I

der.

lbs. per
sq. m.

9 679
7 729
4 905
1 968
5 1193
17 796
6 692*

5 879
4 1141
1 910
5 1257
4 1051
4 1821
1 1555
5 2145
4 1313
1 1020
6 1418

lbs. per
sq. in.

1230
1230
2428
1721
3210
1230
1230
1230
2428
1721
3210
1230
2428
1721
3210
2428
1721
3210

lbs. per
sq. in.

1322
1160
2430

1322

I

1160

j

2430

1322
': 1160
2430

: 1322
i 1160

I
2430

C-be. I CJ^-

0-55

0-59
0-37

0-56

0-37
0-65

0-56
0-71

0-47

0-53

0-39
0-86

0-75

0-90

0-67
0-54

0-59
0-44

0-68
0-83
0-49

0-86
0-78

0-52

1-38

1-39

0-88

1-00

0-88

0-58

* Specimens injured in removing the forms.
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The conclusions to which these Illinois exj)eriments lead

are that the resistance of concrete to shear is dej)endent on

the strength of the stone used, as well as on the strength of

the mortar ; and in the richer mixtures the stone appears to

exercise the greater influence. With hard limestone and

1-3-6 concrete sixty days old the shearing strength may be

expected to reach 1100 lbs. per sq. in.; and with 1-2-4-

mixture 1300 lbs. per sq. in. There is reason to believe that

if tests can be made with the load applied evenly over the

shearmg section, so as to obtain the true resistance to simple

shear, the results will be found to be higher than those already

obtained.

An important point brought out by Professor Talbot's

investigations was the influence which variations in the

constitution of the concrete have on the shearing strength.

The compressive strength of concrete is largely affected by

the strength of the cement, but the shearing strength is

influenced more by the strength of the aggregate. Eor this

reason it does not seem well to express the shearing strength

in terms of the compressive strength. The method has the

advantage, however, that an idea is gained of their relative

action.

If, as indicated by these experiments, the shear strength of

concrete is greater than the adhesion between concrete and

steel, then there is an advantage over plain bars for reinforce-

ment in those bars such as the twisted or indented bars

which cannot be withdrawn from the concrete without

shearing it.

Adhesion between Concrete and Steel.—It is absolutely

necessary in a reinforced concrete structure that there shall

be a good bond between the concrete and the steel, for the

latter will bear its share of the stress only so long as there is

no relative movement between the steel and the concrete.

If a concrete beam were cast with holes throughout its length

on the lower side and steel rods were inserted loosely into

these holes, the strength of the beam would be practically
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no greater with the rods than without, because relative move-

ment between the steel and concrete would be possible. A
concrete beam with the reinforcing bars loose is like a plate

girder without an}^ rivets. The adhesive strength for plain

bars can be found as follows : Let O be the perimeter of the

bar and I its length ; then if / is the safe adhesive stress, the

adhesive force T that can be carried is given by

F = Olf

f can be found experimentally by embedding a rod in concrete

and finding the force necessary to pull it out and dividing

the resulting stress by the factor of safety (usually taken as

about 6). Most authorities take a safe adhesive stress of

60 lbs. per sq. in.

Numerical Example.—Find the length in relation to the

diameter of a round bar that must he embedded in concrete in

order that the tensile stress of 16,000 lbs. per sq. in. will be reached

as soon as the safe adhesion stress of 60 lbs. per sq. in.

Let d = diameter of rod in inches.

Let I = length of rod in inches.

Then load to reach safe tensile stress

== P = stress X area

= 16000 X
4̂

Load to reach safe adhesive stress

= P = stress X length x perimeter

^ QO X I X 7rd

Trd^
If these are equal, 601 x -n-d ^ 16000 x .

16000 wd^
~ 60 X 4 ^7rd
= 61 d nearly

.
•

. the bar must be embedded for a length equal to 67

diameters. ^
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Strength of Tn^reER (Normal Values)

{Stresses in thousarhds of 'pounds per sq. in.)

•

Ultimate Strength. !

1

Kind of Timber.

Young's
Modulus
(millions
of lbs. per
sq. in.).

Weight
in lbs. ,

per 1

cu.ft.

Tensions
along
Grain.

Com-
pression
along
Grain.

Shear Shear
across along
Grain. Grain.

Bend-
ing.

Ash .... 8-14 6-8 2-4 •4--7 10-12 1-6 50 1

Beech . 9-18 4-6 — — 8-10 1-3 44 ,

Dantzig Fir 6-9 3-5 2-7 •4 4500 o 33 !

Elm . . . 6-12 5-8 3-5 •6--9 6-8 1-6 34 1

Oak. . . . 9-15 4-5-9 3-5-5 •6--9 7-10 1-7 58
Pitch Pine . . 8-12 4-6 4-9 •4 7-5 1-5 42

Red Pine . . 6-9 4-6 3 •4 4r-6 1-2 27
Teak . . . 12-14 12-14 4 1 12-16 2-4 49

Yellow Pine . 6-9 4-6 3-5 •4 4-8 1-7 32
1

Normal Crushing Strength of Cement, Stones, etc.

Material.

Brick (London stock) .

,, (Staffordshire blue)

Brickwork in Cement .

Cinder Concrete (1 : 2 : 4)
Granite
Gravel Concrete 1:2:4

1:3:6
Portland Cement .

Portland Stone ,

Sandstone ....
Slate

Weight in lbs.

per cu. ft.

Ultimate Crushing Strength.
(Thousands of lbs. per sq.in.)

115
140

100-150
97
170
120
130
90
145

135-145
175

2-5

7
1-25-2-5

1-8 after 28 days
12-20

2-4 after 28 days
1*8

,f ,5

7

5
5-10
10
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w ô 1

1 CO
o o
CO lO

'

Ui »0 O "* GO (N 00
03

c^ciJ, UN IS^^J. 1 1 12^ 1 1 I

1 1A 1 1

m
s

CO C<) 1—1 ^H 1—( 1—1 l-H

.

CO
&i) o o

1
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CHAPTER III

REPETITION OF STRESSES : WORKING STRESSES

Repetition or Variation of Stresses.—In the design

of machines and structures, we very often have to deal with

cases in which the stresses vary in amount from one time to

another ; such cases occur in nearly every machine part sub-

jected to rotary and reciprocatory movements and in struc-

tures which have to resist wind-pressures and rolling loads.

In recent years, a large amount of investigation has been

carried out on the strength of materials which are subjected

to alternating stresses. The stress required to cause rupture

in a material which is gradually increasingly stressed is called

the static breaking stress, and is the stress obtained in the

ordinary testing machines.

Fairbairn discovered in connection with some tests on

wrought-iron girders, that a girder can be ruptured by

repeatedly applying a load equal to about one-half of the

static breaking load.

The first exhaustive investigation on the subject was

conducted by Wohler on behalf of the Prussian Ministry

of Commerce, and was published in 1870. Wohler's experi-

ments extended over a period of twelve years, and had results

which at the time were very startling, and the importance of

which has only in comparatively recent years been appreciated

by engineers.

The general result of these and subsequent experiments

is to show that the stress necessary to rupture a material

84
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when such stress is repeated a very large number of times

is considerably less than the static stress.

In Wohler's experiments, which were carried out in tension,

bending and torsion, some of the variations were from zero

to a maximum in tension or compression and some were

for a complete reversal of stress.

In one form of Wohler's apparatus for testing by reversal

of stress in bending, the specimen was in the form of a

projecting beam or cantilever A (Fig. 41) clamped at the

end of a shaft E, mounted between bearings B. The shaft

was rotated by means of a belt surrounding a pulley C, and

5

c

B

A-^
_ .

E

L
Fig. 41.—^Wohler's Experiments.

the specimen was of circular section and loaded at the end by

a spring D, and in the rotation the compression and tension

sides changed places gradually, thus giving a gradual reversal

of stress. To balance the forces on the machine, a specimen

was mounted at each end of the shaft.

In another form of apparatus a beam was mounted upon

knife edges to one of which a spring was connected by levers.

The load was applied in the centre by a spring rod which

was lifted periodically by a crank upon a rotating shaft, thus

gradually applying the load and taking it off again.

Full accounts of the experiments will be found in Unwin's

Testing of the Materials of Construction. We will take some

examples of his results :

—
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For Krupp's Axle Steel

—

Statical breaking stress = 52 tons per sq. in.

Breaking stress from zero to maximum = 26"5 ,, ,, ,,

„ ,, for reversed stresses = 14*05 ,, ,, „

For Wrought-Iron

—

Statical breaking stress = 22*8 tons per. sq. in.

Breaking stress from zero to maximum = 1525 ,, ,, ,,

„ ,, for reversed stresses = 8*6 ,, ,, ,,

In the first case the range of stress is in one case 26* 5 and in

the case of reversal is — 14'05 to + 1405, i. e. 28*1, whereas

the corresponding figures in the second case are 15' 25 and

17-2.

Sir Benjamin Baker carried out similar experiments in this

country and obtained similar results.

For mild steel of static strength from 26' 8 to 28* 6 tons per

square inch, he obtained a breaking stress of 11" 6 tons per

square inch for reversal of stress.

Bauschinger carried out a large number qf experiments on

the same lines as those of Wohler, and extended them to a

larger number of materials.

For Bessemer Steel his results were

—

Static breaking stress = 28*6 tons per sq. in.

Breaking stress from zero to maximum = 15" 7 ,, ,, ,,

,, ,, for reversal stresses = 8*55 ,, ,, ,,

With regard to these breaking stresses for variations of

stress, it should be remembered that these are the least

stresses for which the specimen would break after a very

large number of repetitions.

In carrying out tests of this kind a number of specimens

are taken, and the range or amount of variation of stress is

altered for different specimens or sets of specimens, and when

the range comes below a certain value the specimen will not

break within the time over which the experiment lasts. The

results are expressed on a diagram in which the range of

stress is plotted against the number of repetitions required to
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cause fracture; or, in the case of variations from zero to a

maximum or of complete reversal of stress, the limit of stress

is plotted against the number of repetitions. Such a curve

is shown in Fig. 42. From such curves the apparent stress,

at which an infinite number of repetitions could be made
without fracture, is obtained, and this is taken as the least

breaking stress. The word "apparent" is used because no

record appears to exist of a number of repetitions more than

about fifty millions, and it has been suggested that perhaps

^

'$5

in
"^

Stal'ic 3tnsss

L/nuT for Conn^le^^e Re.{^ersa

20 ^O QO SO I00<

f^GboTit/ons (^Hunc/reJ thousanclsj

Fig. 42.—Repetitions of Stress.

lower stresses still would be obtained if the repetitions were

extended still more.

Bauschinger suggested that there was some relation between

the range of stress which a material would stand and the

elastic limit. This elastic limit was what he called the

" natural elastic limit," i.e. that obtained after the material

has been subjected to a few variations of stress. We thus get

the theory of natural elastic limits, which states that the range

of repetition of stress which a material can resist indefinitely

without failure is the range between the natural elastic limits

in tension and compression.
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Dr. Stanton and Mr. Bairstow published in Vol. CLXVI. of

Proc. Inst. C.E. an important paper on the subject, giving

the results of experiments conducted at the National Physical

Laboratory.

They used a machine in which the specimen formed part of

the piston-rod in a steam-engine mechanism; the specimen

thus was subjected to reversals of direct stress, and a

variation in the limiting stresses was obtained by varying

the relative dimensions of the mechanism.

This research had some important results, the principal ones

of which are

—

{a) An alteration of the rate of repetition from 60 to 800 per

minute has no marked effect on the results obtained.

{h) The range of stress which moderately high-carbon steels

can stand is comparatively greater than that for

low-carbon steel and wrought iron. This confirms

Wohler's opinion, and is contrary to the common

idea that a comparatively brittle material can with-

stand less variation than a ductile one.

(c) The limiting stress which iron and steel can bear depends

on the range of stress, and is almost independent of

the actual values between the limits i and f. This

means that a stress variation from, say, 7 tons per

square inch in tension to one of 5 tons per square

inch in compression has the same effect as one from

6 tons per square inch in tension to 6 tons per square

inch in compression.

Although the authors agree that more work must be done

before a definite statement can be made, their experiments go

to support Bauschinger's theory as to the elastic limits.

Effect of Rate of Repetition upon Results.—There

seems to be some unexplained difference in the results of

experiments upon the effect of speed upon the results.

Wohler's experiments were at 60 repetitions per minute, as

indicated above. Stanton and Bairstow found no appreciable
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effect of increasing to 800 per minute; Reynolds and Smith,*

however, employing the machine described in Chap. XIV.,

found that there is a progressive diminution in the resistance

against repetition for repetitions of 1300 per minute and

upwards ; Eden, Rose and Cunningham, f however, experi-

menting with short rotating beams with a uniform bending

moment over an appreciable length, found no such effect for

speeds of 1300 per minute.

The following summary of results, pp. 94, 95, taken from

the last-mentioned paper, gives a clear idea of the results of

the various experiments on the subject. The only explanation

of these contrary results appears to be in the difference in

the design of the machines ; at the high speeds it is possible

that some secondary influence had a marked effect upon

the results.

The Fatigue of Metals.—The phenomena described

above are often referred to as the "fatigue of metals";

the suggestion being that the stress causes a change in the

molecular structure of the metal and that the metal gets

fatigued after a time and so breaks down under a smaller

load. The bulk of the evidence, however, appears to be

against that view and in favour of the theory that ultimate

failure will occur only if the elastic limit is exceeded and

thus the effects of overstrain become accumulative.

Specimens cut out of pieces that have been fractured by

repetition of stress do not exhibit any weakening that the

fatigue idea suggests.

The subject is still full of difficulties from the point of

view of a satisfactory explanation of the results. For instance,

the effect of overstrain is to cause the material to become

brittle, and yet the more brittle kinds of steel (the high

carbon steels) show less effect than the mild steel.

One explanation, called Foster's Theory, is that the

mechanical hysteresis (p. 59) causes a very small permanent

* Phil. Trans. Roy. Soc, 1902.

t Proc. I.M.E., 1911.
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strain at each repetition and that the effect of these permanent

strains is cumulative so that ultimately the permanent strain

becomes sufficient to cause failure.

The appearance of the fracture in these experiments is

always different from that for ordinary static tensile tests;

that for mild steel being more like a hard steel. This is

probably due to the effect of overstrain upon the properties

of the metal.

c : c *

Carb en Feyoentaq e

Fig, 43.—Repetitions of Stress—Abrupt Change of Section.

Effect of Sudden Change of Section upon Results.—

The effects of sudden change of section have been investigated

by Dr. Stanton and ^Mr. Bairstow,* who obtained the results

shown in Fig. 43, in which the limiting stresses for failiure by

repeated loading are plotted against the carbon percentage.

The results may be summarised as follows.

1. The resistance of a screw-cut specimen varied from

67 to 70 per cent, of the maximum resistance of the corre-

spondmg material, the fracture always taking place at the

end of the thread.

2. The resistance of a specimen having a moderately

* See Engineering, April 19, 1907.
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rapid change of section varied from 65 to 72 per cent, of the

maximum resistance of the corresponding material.

3. The resistance of a specimen having a sudden change of

section varied from 47 to 52 per cent, of the maximum resist-

ance of the corresponding material. In this form of specimen

the low carbon material appears to realise a larger percentage

of the maximum resistance than the higher carbon materials

;

but it is worthy of notice that even under conditions which

are commonly supposed to be the most fatal to high carbon

steels—^^e. a sudden change of section—the actual resistance

of the 0'4 and 0*6 carbon steels is approximately 40 per cent,

greater than that of the iron.

Fig. 4:3a.—Repetitions of Stress—Abrupt Change of Section.

The above resistances are, of course, estimated per unit of

area, so that in calculating the strength of a screwed rod

under alternating stress it will be further necessary to take

into account the area at the bottom of the threads, so that

the total reduction in resistance may well be more than 50

per cent, of its maximum value.

In the case of screw-threads there is a further possible

source of weakness due to faulty machining in the cutting of

the screw. If the bottoms of the threads are not properly

curved, but left with a sharp angle, there can be no doubt

that risks of the development of a crack are very considerably

increased. It seems quite probable that failures of steam-

engine crosshead bolts, which have broken under* very low

ranges of stress, may be due to this cause.
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Cast Iron.—Ver}^ little work appears to have been done

on repetitions of stress for cast iron, but from a small number

of experiments by the author in reversal by bending the

same general result was obtained, the limiting breaking

stress in this case being nearly one-quarter of the static

stress.

Equivalent Stress Formulae.

—

Straight line Formula.

—If /,. is the greatest stress that can be applied for an

indefinite period for a range of stress r, and f, is the static

breaking stress of the material, the results of repeated

load experiments can be expressed approximately by the

relation

t, = f.-r

For a variation from zero to /„ i. e. r = /^ ; this gives /,, = ~

For a reversal /, to — /„ i.e. r = 2/,,; this gives /, = -^

Unwin's Formula.—Unwin has given a formula from

which the equivalent static stress for a given range of stress

can be found. This formula gives, when plotted, a curve

sometimes known as Gerher's 'parabola.

The formula is

fe = 2' + ^ ifT^^^^r'f])

where n is a constant depending on the nature of the material

.

For mild steel we may take n = 1'5.

Now if the variation is from zero to /,., then r =^
f.

Solving this equation we get fe^'^fs- For complete

reversal r = f,
— {— f^)

= 2fc

or, /. = J /s.

Relation between Repetition of Stress and Sudden

Loading.—The similarity between the results of experiments

on the variation of stresses and the reasoning given on p. 34
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with regard to sudden loading has led many authorities to

think that Wohler's experiments were really experiments on

sudden loading. The alternative point of view is that the

two questions are distinct, and that therefore separate allow-

ance should be made for each in the design of machines and

structures.

One of the first difficulties to overcome in reconciling the

questions is that strain is not proportional to stress beyond

the elastic limit, and that, therefore, beyond this point twice

the strain would not cause twice the stress (see Fig. 2).

There is, however, the fact that if a material is strained

beyond the yield point, the yield point will be found to have

been raised on a subsequent testing ; therefore, if this action

goes on indefinite^ with each repetition of stress, the yield

point will ultimately become so high that the dynamic

argument will apply up to the breaking point.

Although there are still many points which require to be

decided in this controversy^, for practical reasons we prefer

to allow for one or the other, but not both, in design. The

reason for this is as follows : Suppose that the safe working

stress for mild steel for a constant and gradual load is 7*5

tons per square inch. Then, on the dynamic theory the safe

stress for a reversing and sudden load is one-third of this,

i. e. 2*5 tons per square inch. If we now make a separate

allowance for the repetition of stresses, our working stress

would be vv X 2*5, or "8 ton per square inch. As there is no

question of impact in this, this seems an absurdly low working

stress, and experience shows that it is not necessary to make

the allowance for both points of view.

WORKING STRESSES

The Conflict between Theory and Practice.—An
engineer has been tersely described by a somewhat char-

acteristic American as " a man who can do for one dollar

what a fool can do for two." Although from an aesthetic
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SUMMARY OF RESULTS OF EXPERIMENTS
Quoted from Eden, Rose and Cunningham

Note.—The values for ** Range of Stress " causing fracture after 10®

alternations of stress in this Table are copied from the published accounts
of the experiments of Turner, Reynolds and Smith, and of Stanton and
Bairstow. The corresponding figures for the tests of Wohler, Baker, and

Experi-
menter.

Wohler*

Baker*

Rogerst

Eden, Rose
and

Cunning-
ham t

Turner§

Stanton
and

Bairstow||

Reynolds
and

Smithy

Type of
Endurance Test.

Material.

Rotating
Cantilever

Rotating
Cantilever

Rotating
Cantilever

Rotating Beam
Uniform

Bending Moment

Eixed cantilever

rotating deflection

Reciprocating
Weight

dhect tension and
compression

tension
ratio

j

Phoenix Iron
Homogeneous Iron

Vickers' Steel Axle.s

I

Firth's Tool Steel

Soft Steel

I Fine Drift Steel

|Ste«lC(0-32%C.)
I as rolled

Steel C annealed

J-in. bright-drawn
Wrought-Iron bar

;

^-in. bright-drawn
MHd-SteelrodA

I MUd Steel

Nickel Steel

compression

= 1-4

Reciprocating
Weight

direct tension and
compression

tension
ratio compression

= 115

Wrought Iron No. 2
Piston-rod Steel

Mild Steel annealed

Cast Steel annealed

Tensile Test Figures.

Tenacity.
Tons per

square inch.

21-3

28-1

27-7

55

27-7

54

29-3

26-5

33-8

35-7

27-3

48-0

250
43-8

25-8

48-0

Limit of

Elasticity.
Tons per

square inch.

16-7

71

26-5

250

l8^
361

13-4

19-6

* The Testing of Materials of Construction. Unwin.
•\ " Heat Treatment and Fatigue of Iron and Steel." Rogers. Journal

of Iron and Steel Institute, No. 1, 1905.

% For other metals see Proc. Univ. of Durham Phil. Soc, vol. iii. p.

251.

§ " The Strength of Steels in Compound Stress, and Endurance under
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UPON THE REPETITION OF STRESS.
on the endurance of metals {Proc. I, M. E., 1911).

Rogers have been estimated from stress-revolutions diagrams plotted from
the various published results.

The tenacity figures for the Reynolds and Smith tests are for short

Endurance Test Figures.

Range of Stress i

Speed. causing frac-
Alternations tiue after 10'' Eatio Ratio

of Stress alternations. Eange of Stress Range of Stress
per minute. Tons per

square inch.
Tenacity Limit of Elasticity

60-80 22-8 1-07
60-80 24-5 0-87
60-80 24 0-87
60-80 30-9 0-56 —
50-60 25 0-90
50-60 27-5 0-51 —
400 32 1-09 1-92
400

{ 250

27-7 105 3-9

\ 620 34-6 102 1-3

I 1,300

r 300

\ 600

[ 1,300

250

39 1-09 1-56

35-6 1-3 1-9

250 52-5 11 1-46

800 19-2 0-75 1-43
800 28-3 0-65 1-44

' 1,337 20-9 0-81

1,428 20-1 0-78
1,516 19-2 0-75
1,656 18-1 0-70
1,744 15-2 0-59
1,917 12-4 0-48

' 1,320 20-1 0-42
1,660 18-3 0-38 __
1,820

1,990

16-8 0-35

131 0-27

1

Repetitions of Stress." L. B. Turner, Engineering, 11th and 25th Aug.

. II

*' On the Resistance of Iron and Steel to Reversals of Direct Stress."
Stanton and Bairstow. Proc. Inst. Civil Engineers, 1906, vol. clxvi.

1[ " On a Throw Testing Machine for Reversals of Mean Stress." Professor
Osborne Reynolds and J. H. Smith. Phil. Trans. Royal Society, 1902.
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standpoint this seems to be a somewhat too mmidane de-

scription of the engineer's vocation, we must not forget that

the most scientific construction is the one which best fulfils

the conditions for the least cost.

There is in reality no conflict between theor}^ and practice

in designing ; each has its own place, and each is dependent

on the other. The theory will tell us what is the best design

as far as the economical arrangement of material goes. The

best-designed structure is one which would be about to

collapse at all sections at the same time ; or, in other words,

the various parts are so designed that the stresses in them

are equal. This is all that the theory sets out to do. Practice,

on the other hand, determines whether the theoretical design

is in reality the cheapest in the end. Questions of workman-

ship, cost of erection and upkeep have to be considered, and

it is only by balancing these with the theory that the really

scientific design is obtained.

In dealing with the theoretical side of design we must

never forget that, if we are to be guided by theory at all, we

should see that we use the best theory. The disdain for

theory that ultra-practical men often possess is largety due

to the fact that their theoretical knowledge is not sufficiently

comprehensive; they have not realised the conditions which

have to be fulfilled before a certain theory is applicable, and

so they probably use some formula for a case for which it was

never intended.

Another point to be remembered is that practical rules for

use in design are not necessarily sound because the machines

or structures resulting therefrom satisfactorily fulfil their

function. Such rules may make the design much heavier,

and therefore much more costly, than necessary. Our aim

in the theoretical investigations should be to eliminate as

many uncertainties as possible, and not to be merely content

with erecting something which will stand.

Commercial Aspect of Design.—If the word "scientific"

is used in its best sense, the commercial aspect differs very
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slightly from the scientific as23ect. There are certain points,

however, that we would like to deal with which point to

the necessity of considering the merely commercial aspects.

First, there is the question of the sizes of sections adopted.

Care should be taken that as much as possible is used of the

same section, and that such section should be easily obtain-

able. The cost of a given structure may be increased largely

because a section is specified which has to be rolled specially

—although sections figure in makers' catalogues they are

not always readily obtainable. In riveted work, too, much

additional cost is often involved by an unnecessarily irregular

pitch of the rivets, and fancy forms of cleated connections are

often shown which have no advantage over the simple forms.

The designer should avoid curved lines in structural steel-

work wherever possible in his design. It costs a lot to cut

plates to a curve, and there is generally no reason for them.

Some might urge that curved forms are more pleasing to the

eye, and some go as far as to put cast-iron rosettes on the

plates of plate-girders. But it is better to agree that no steel

structure is artistically beautiful, and that to attempt to

decorate it by curved gusset plates and rosettes is to make it

really more ugly, because it has cost more and is still an eye-

sore to the artist. There is, also, a theoretical objection to

curved members, viz. that the loading on such bars is eccentric,

and stresses are therefore much increased.

Where practice necessitates our putting theory aside some-

what, we should always keep this in mind in our calculations.

For instance, theoretically the centre-line of the rivets in

a T section should coincide . with the centroid line of the

section. In practice this is impossible, as the head of the

rivet could not then be closed. But we must remember in

designing that the load is eccentric and that due allowance

must be made for this.

We shall in this book be concerned only with the strength

of structural details and machine parts, but it may be pointed

out that in designing castings the pattern-maker must be
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considered and that ease in machining must be ke2:)t in mind ; in

fact, everything must be done Avhich will save needless expense.

Working Stresses and Factor of Safety.—The question

of the working stresses to adopt in practice is of the utmost

importance, and if our design is to be of any real value we

must have clear ideas as to such working stresses.

In dealing with working stresses we often speak of the

factor of safety. This ma}' be defined as the factor b}'

which the working stresses may be multiplied to give stresses

which will result in failure. This phrase is one which is often

used glibly without any real meaning ; and it has been sug-

gested that in many cases it would be better called the factor

of ignorance. If we design a structure with a factor of safety

of four, say, we certainly do not as a rule mean that the

structure could bear four times the load without failure. This

is because there are certain contingencies that we do not

allow for in our design. Our aim should be, however, to

make our calculations so that the factor of safety has as exact

a meaning as possible. This can be done only by choosing

our working stresses skilfully and by making allowance for as

many points as possible. For steel-work it is common to

adopt as a working stress in tension one-quarter of the

breaking stress in tension and to say therefore that the factor

of safety is 4. Man}' designers forget, however, to make the

due allowance for live or variable loads. The basing of the

factor of safety on the breaking stress is also open to a very

serious objection, viz. that the elastic limit of the material

is the point which really determines the safety of the struc-

ture. If the stresses are above the elastic limit, failure is

almost certain to ensue, especiall}' in the case of compression

members or struts. It would, therefore, be better to base the

working stresses on the elastic limit or the yield point, since

in pure tension the two points are close together, and the 3'ield

point is much easier to measure and specify for a definite

minimum value of such limit in the steel. The point com-

monl}^ urged against this method of procedure, viz. that the
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elastic limit is a much more variable quantity than the

breaking stress—seems to us to be one in favour of its adoption.

It is certain that stresses beyond the elastic limit are very

dangerous, and if this quantity is a variable one we ought to

know it for the material that we are using, and base our

working stresses on it accordingly. We would suggest that

the dead-load or static working stress should be taken as

one-half of the natural elastic limit.

The following tables of stresses may be used for obtaining

the usual working stresses adopted for dead loads in design :

—

Working Stress.

Material.
Dimensions of

Stresses.
Tension. Compression.

r 7
(bending)

1 ^
'^ (direct)

J (bending)

4
^ (direct)

4

Shear.

Mild steel *
. . . 7 5 tons per sq. in.

Wrought iron . 5 4 >J J5

Cast iron .
1
2 i 5J J>

Oak . . . .

Pine, yellow

16

3

13

6

r 600
J (bending)

500
'^ (direct)

35

5
(across grain)

3
(across grain)

cwt. per sq. in.

5) ;?

Cement concrete 1

1:2:4 . . j

60 60 lbs. per sq. in.

Granite .... — — tons per sq. ft.

Sandstone . . )

Yorkstone . . f

— 20 —
JJ J5

Limestone .
— 15 —

; J 5j

Brickwork in

cement mortar '5 8 -

(adhesion)

in lime mortar ,

'4

(adliesion)

* Many authorities allow J ton more for each of the stresses in mild
steel. We have already seen that according to one theory the working
shear stress for ductile metals should be half the tensile strength, viz.
3'75 tons per sq. in. for mild steel. This figure is not, however, in
common use.
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Allowance for "Live" Loads or Variable Loads.

—

There are two priiicijial methods of allowing for live loads

which are in effect the same.

(a) Equivalent Dead-load Method.—According to this

method the static stresses are used and the loads are in-

creased to give the equivalent dead load. The ways for

allowing this, are

—

(1) equivalent dead load = dead + 2 live load.

This may be called the dynamic formula.

(2) equivalent dead load

= w.

n r + yJ n^ r'^ + 4: (w —
-^J

2

where r is the variation of load, and w is maximum load,

n being a constant which may be taken as I'S for steel. This

formula is deduced from Unwin's formula for Wohler's

experiments.

For steel we get

1-5 r + J 2-25 r^ ^ 4.(w -
2)

w,. =
2

When the variation is from zero to a maximum, we have

r = w.

Then w, = 21 w.

(3) equivalent dead load = maximum load + variation.

(6) Variable Working Stress Method.—According to

this method the working stress is varied according to the

relative amounts of live and dead loads.

The common ways of allowing for this are

—

(1) Launhardt-Weyrauch method.

^^^ - . / /' minimum load \
Worknig stress = —^ 1 + o " •

1 ^° 1*5\ 2 X maximum load/

/ being the static or dead-load working stress.

(2) Dynamic method.

Working stress = rV

—

.—^ , / being as before.

total load
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Take as a simple numerical example the case of a member

of a roof truss in which the dead load is a tension of 5 tons,

and the wind on one side causes a tension of 2 tons and on

the other side a compression of 1 ton. The various methods

give the following results :

—

(a) (1) Equivalent dead load = 5 + 2 x2 = 9 tons.

3\2

2
1-5 X 3 + J 2-25 X 9 +4(^7

y^) 5> 5J

. 8-2 tons.

2

(3) J5 33
= 7 + 3 = 10 tons.

(b) (1) Working stress =

6/
7

(2) 5J 33
=

/
7/
9

Assuming the material to be mild steel.

[h) (1) gives working stress = 6 tons per square inch.

(2) ,5 5, = 5*4 ,, J, ,,

Taking the material as mild steel, the requisite number of

square inches in the sectional area of the tie are

—

9
(a) (1) = 1-28 square inch.

(2) 7 = 117

(3)
'^^ = 1-43

ib) (1) I
= 117

^^' 5-4
= 1-30

If consideration of variation of stresses be neglected alto-

gether, we should have—area = =1 square inch.



CHAPTER IV

RIVETED JOINTS ; THIN PIPES

Forms of Rivet Heads.— The most common forms

of rivet heads and their usual proportions are shown in

Figs. 44, 45.

For structural work the snap-headed rivets are most usual,

but countersunk rivets are used where necessary to prevent

CUP or SNAP HEAO

CONiCAL HEAD

PAN HEAD COUNTER SU'SK HEAO

Figs. 44, 45.—Forms of Rivet Heads.

projections from the surface of the plate. Snap-heads take a

length of rivet equal to about IJ times the diameter.

It is usual in practice to adopt a diameter of rivet when

cold equal to one-sixteenth of an inch less than the diameter

of the hole, but in all calculations the diameter of the rivet is

taken as being equal to that of the hole.

Forms of Joints.— (a) Lap Joints and Butt Joints.—
102
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In the lap joint the plates overlap as shown in Fig. 46. This

form of joint has the disadvantage that the line of pull is

such as to cause bending stresses, tending to distort the joint

as shown.

In the hutt joint the edges of the plate come flush, and

cover plates are placed on each side as shown, the thickness

of each cover plate being usually five-eighths that of the main

plates. In this form of joint the pull is central, so that there

are no bending stresses.

In the single cover joint, which is a cross between the lap

I
'

I

^^

IT

4-

%

I

LAP JOINT. BUTT JOINT.

Thickness of Cover

SINGLE COVER JOINT.

5 t
Thickness of Cover —

-

4

Fifi. 40.—Forms of Riveted Joints.

joint and the butt joint, there are bending stresses developed,

tending to distort the joint as shown.

It IS clear from the above that the butt joint should be

adopted wherever possible.

(6) Chain Riveting and Zig-zag or Staggered Rivet-

ing.—The different rows of rivets in a joint may be arranged

in chain form or zig-zag form, as shown in Figs. 47, 48. As

we shall see later, the zig-zag form is more economical, and

should be used whenever possible.

The essential feature of zig-zag riveting is that the rivets

in alternate rows are displaced laterally by half the distance

between the rivets, i. e. by half the pitch of the rivets. In
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the form shown the joint is in a tie bar of a bridge and the

rivets form a triangle ; it is common in boiler and like rivet-

ing to make the pitch of the outermost of three rows twice

that of the innermost row; the result is a special kind of

zig-zag riveting which Ave may call triangular riveting.

Methods by which a Riveted Joint may Fail.—

A

riveted joint may fail in any of the following ways :

—

o o o
o o o
o o o

o o

Fig. 47.—Chain Rivetine:. Fic 4S.—Zig-zag Riveting.

(1) By tearing of the plate.

(2) By shearing of the rivets.

(3) By crushing of the rivets-.

(4) B}' bursting through the edge of the plate.

(5) By shearing of the plate.

Fig. 49 shows these methods of failure.

(4) and (5) are allowed for by the following rule : The

minimum distance between the centre of a rivet and the

edge of the plate is 1 J (h where d is the diameter of the rivet.

If this rule is adhered to the joint will always fail first in

one of the ways (1), (2), (3).

The aim in designing a joint should be to make the force

necessary to cause failure in the various ways equal.

We will now consider the various ways of failure in detail,

taking in each case a strip of plate equal to the pitch of the

rivets.

(1) Tearing of the Plate,—In this case the width along
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which fracture will occur is {p — d), and as the thickness of

the plate is t, the area of fracture ^ {p — d)t.

VI

/.

/

S

P

/
z

^

'< ?

^^

DOUBLE Sfi£/^fi
,

P

-A

,p

5

Fig. 49.

P

(2v-

-A

Therefore, if /, is the safe tensile stress in the material, the

safe load which the joint can carry is equal to

V =tt{V-d)t (1)
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(2) Shearing of the Rivets.

Til the case of single shear, the area sheared ^

double ,,

4

2jr_a2
- 4

-

Therefore if /, is the safe shear stress on the rivet, the safe

forces on the joint as regards shear are respectively

P = * 4 J

(3) Crushing or Bearing of Rivets.—In this case the

crushing or bearing area is taken as the diameter of rivet

multiplied by the thickness of the plate, i.e.d x t. There-

fore, if /„ is the safe bearing stress on the rivet, the safe force

on the joint as regards bearing is equal to

V^j^^.d.t (3)

The values of j, and s may be taken as given in Chap. III.

For /,„ 10 tons per square inch may be taken for mild steel,

and 8 tons per square inch for wrought iron. These figures are

higher than for ordinary compression, and are obtained from

the results of experiments.

For structural work the strength of the joint as regards

bearing will often be less than as regards shear, because the

plates are often thin compared with the diameter of the

rivet.

Efficiency of Joint.—The efficiency of a joint is the

percentage ratio of the least strength of a joint to that of a

solid joint, i. e.

-p,^ . _ _ Least strength of joint

•^ ~ ^ ""
Strength of solid plate

Diameter of Rivets.—For the most economical joint the

* A Board of Trade rule states that this should be taken as ^ ,

4

and this rule is often though not universally adopted. This figure is

based upon the results of tests.
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diameter of the rivet should be such that the shear and

bearing strength are equal.

Unwin's Formula, which is in common use, gives

d = l'2Vt (A)

For single shear we have

shear strength = a -^^

bearing strength =^ dt .f^.

If these are equal

c^ = '^^Z" = 2-54^ (if f,^2s)

Thickness of Plate (inches).

Fig. 50.—Diameter of Rivets.

(D)

y'

y
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y

^y ^^-^

y ^ ^ ^-^ ^,^
yy ^^-^^^^^

,,.^-^ ^..^ ^ .

/ ^:^^—

^

y^ ^^^:^ ^^^^-^

^ ^^-^<^
.^

-^p^^^
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For double shear we shall have

2 7r6Z2

^ -s = dt /,.

d =
TT S

or on the Board of Trade rule

dtf,,
1-75 TT 6^2

\21t

32 t

TT . 1-75 5 7 TT

(B)

(C)
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These values are plotted in Fig. 50.

It is clear from this figure that for large thicknesses of plate

for single shear the theoretical value gives diameters of rivet

which are impossible in practice.

Numerical Examples.—(1) A tie bar in a bridge consists

of a flat bar of steel 9 inches wide by l^ inches thick. It is to

be spliced by a double butt joint. Determine the diameter of

the rivets and their number, and give sketches showing the proper

pitch and arrangement of the rivets. {B.Sc. Lond.)

According to Unwin's formula d = 1'2VT= 1'34 inches.

This is, however, rather high for practice, and so we will

adopt d =^ \ inch.

Assuming that the rivets are arranged in zig-zag fashion,

the strength of the joints against tearing through the outside

rivet is equal to 7 (9 — 1) . IJ = 70 tons.

Shear strength of each rivet = 5 . .^ • (1)^ = 7*85 tons.

.
•

. Number of rivets required for shear

=
^|g

= 8-93 = say 9.

Bearing strength of each rivet = 10 x 1 x IJ = 12*5 tons.

70
.-. Number of rivets required for bearing = ^^.r ^ ^^y ^•

9 rivets would thus be ample as regards bearing.

The joint would then be arranged as shown in Fig. 51, the

centre two rows being chain-riveted.

We will now consider the strength of this joint under various

ways of failure.

If the plate tears along the line A a, the force necessary to

reach the safe limit of stress is, as we have shown above,

70 tons.

Now suppose that the plate tore along B b, shearing off the

rivet in A A.

5
Then strength of line bb = 7(9-2)= 61'25 tons

Strength of one rivet = 7*85 tons.
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.
•

. Total strength against failure along b b

= 61-25 + 7-85 = 69-1 tons.

Now suppose plate tore along c c, shearing off the three

rivets.

5
Then strength of line cc = 7(9 — 3). = 52-5 tons.

Strength of three rivets = 23' 55,

.
•

. Total strength against failure along c c

= 52-5 + 23-55 = 76-05 tons.

D C B /^

Rit/eis I Diam

-1 1—

u

J—

u

tT^J L

i"rf;dCover P/oTo. L-3
Fig. 51.

Finally, suppose cover plates tore along d d, then strength

7= 7(9 - 3). 2. 73-5 tons.

From the above we see that the weakest section is along

B B.

mi nn ' p • • ^ Least strength of loint
Inen emciency 01 lomt = c^, .i—r.^— ,• v \

Ibtrength of sohd plate

691 69-1

9 X li X 7 78-8
87'8%.
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If instead of zig-zag riveting we had adopted chain riveting

with three rows of three rivets (9 in aU) the least strength

would be (9 - 3) IJ x 7 = o'2o tons.

52
' 5

.'. efficiencv of joint = _ , = 667 ^o-

If we had four rows of chain riveting with two rivets in

each row (8 in all), the least strength would be (9 — 2)1 J

X 7 = 6T2o tons.

.•. efficiencv of joint = ^^^ = 77*7 ^o-too

The above shows that the zig-zag riveting is considerably

more efficient than the chain riveting, and is therefore more

economical.

(2) Design a douhle-rivefed lap joint to connect two steel

plates J in. thick unth steel rivets, the tensile strength of the

plates before drilling being 30 tons per sq. in.; the shearing

strength of the rivets 24 tons per sq. in. : and the compressive

strength of the steel 43 tons per sq. in. Find the efficiency of the

joint. {A.M.I.C.E.)

For J in. plates Unwin's formula would give

d = 1"2 \ "5 = 'So in., say | in.

The joint is a double-riveted lap, therefore there will be two

rivets in single shear in a width of plate equal to the pitch.

.
•

. Strength against tearing per pitch

= /• {p-d)t

= 30(p-(/).^ = \o{p-d)..{\)

.
' . Strength against shearing per pitch

_ 2 - r/2

~ ' 4

24 .2-

28-9 tons.

II these are equal 15 ( p — „ )
= 289

28-9 _ 7

15 8

- 1-93 + -87 - 2-80,sav3ins.

•• ^^=
15 8
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The bearing stress for a force of 28*9 tons would be equal

28-9

q" X 9: X ^
33 tons per sq. in.

7 1
the bearing area of each rivet being q x -^ = *437 sq. in. .

This is less than the allowable value of 43 tons per sq. in.,

showing that a larger diameter of rivet might be used with

greater economy, but | in. diameter is in most cases more

suitable in practice.

The efficiency of joint in this case is equal to

28-9 _ 28-9 _
30 X 3 X i

~ "45~ ~ ^* ^ /^

The joint then comes as shown in Fig. 52.

^

t)

f
:i

Fig. 52.

(3) A steel-plate tie bar in a bridge is subject to a tension due

to dead load only 0/ 16 tons. The stress due to live load only

varies from 36 tons tension to 10 tons compression. The tie

bar is | in. thick and is to be joined to the side plate of a girder

by means of a % in. gusset plate and double-cover butt joint-

Select suitable working stresses and design the joint, arranging

the rivets so that the tie bar is weakened by only one rivet section.

{B.Sc. Lond.)

The maximum load in this case is 36 + 16 = 52 tons, and

the minimum load 16 — 10 ?= 6 tons.
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Using the Launhardt-Weyraiich formula, we have

„. , . ^, f /i ,

i^ii^- stress \
Working Stress = v r 1 + «° I'o \ 2 max. stress/

= l4(l + 104) = -™^/

This gives a tensile stress of 4*93, say 5 tons per sq. in.

;

a shear stress of 3"52^ say So tons per sq. in. ; and a bearing

stress of 7 tons per sq. in.

According to UnAvin's formula d = 1'2 V '15 = r04 in.,

but for practical reasons | in. would usually be adoi)ted.

We now require to find the necessary width of the tie bar.

Let this be w.

Then Iw —
^ ) t ^^ ^^^ equivalent cross-sectional area.

/ 7\ 3
.' .(w — -q) • A- 5 must be equal to the maximum pull

of 52 tons.

V 8/ 3x0
.-

. w =^ 13*89 + '875 = say 15 inches.

The strength of each rivet in double shear is equal to

2 7r nv
, .

, ^ , . 3-5 = 4-22 tons.
4 \8/

52
.' . Number of rivets required for shear = ,^^ = 12*3.

We will use 14, as they give the best arrangement.

The strength of each rivet in bearing is equal to

3 7-7.^-7^ 4-58 tons.
4 8

.• . 14 rivets will be ample for bearing.

The joint is then arranged as shown in Fig. 53. It is very

important in such joints that the centre line of the rivets

should coincide Avith the centre line of the tie bar, or else the

pull in the bar would be eccentric. In such joints, therefore,

the rivets should always be arranged symmetrically with

regard to the centre line of the tie bar.
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(4) Find the number of rivets necessary to the gusset plates,

etc., at the base of a steel stanchion to the stanchion proper, the

load carried being 150 tons. The diameter of the rivets is | in.

and the thickness of the plate J i'^-

The rivets usually have to be designed in such cases so that

they will carry the whole load, so that if the stanchion itself

Fig. 53.

does not bear on the base plate the rivets will distribute the

load satisfactorily.

The strength of each _ tt

rivet in single shear 4

The strength of each _ 7

rivet in bearing 8

v8
3-01 tons.

10 = 4-37 tons.

150
.'. Number of rivets necessary = „ , = 50 nearly.

Some Practical Considerations in Riveted Joints.

—Punching and Drilling of Rivet Holes.—It is quite

common in this country for specifications to state that rivet
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holes must be drilled out of the solid. Punching is known to

injure to some extent the material in the neighbourhood of

the hole, and is thus often objected to. The extent to which

punched holes weaken a structure such as a plate girder

compared with drilled holes does not appear to have been

satisfactorily determined, although such determination from

a practical point of view^ would seem to be absolutely neces-

sary, since there is an increase in cost entailed in drilling the

holes. In recent years punching machines and means for

obtaining an accurate pitch of the holes have been improved

considerably, and when we consider the increased cost of the

drilling, punching is preferable in many cases. In recent

years " gang " or multiple drilling machines have been

introduced which lessen the cost of drilling; one great ad-

vantage that drilling possesses is that the plates to be joined

can be clamped together and drilled right through, thus

ensuring accurate registering of the holes. A good com-

promise is to punch the hole i to J inch less than required,

and to reamer out to size, the damaged metal being thus

removed ; but this is considerably more expensive than plain

j)unching. A method of allowing for the damage of metal

due to punching which has been suggested, and which we

consider preferable, is to add J inch to the diameter of the

hole in calculating the tearing or tensile strength. This adds

very little to the size of the plate and saves in cost of pro-

duction. The point that should be very carefully seen to is

that the holes are accurately pitched, so that the holes will

register well when the parts are assembled, and will not

require excessive drifting as is the case when the spacing of

the holes is inaccurate. It is probable that many more

joints are unsatisfactory because the rivets do not fill the

holes, owing to the latter not registering accurate^, than

because the metal has been injured owing to punching the holes.

There is considerable friction between the plates in a

riveted joint, but this is not allowed for in calculations of

the strength.
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Pitch and Spacing of Rivets.—In order to prevent

moisture getting between the plates and causing bulging due

to rusting, or to prevent local buckling in the case of com-

pression members, it is common to stipulate that the pitch

of rivets shall not be greater than 6 ins., or sixteen times the

thickness of the thinnest plate. The designer should re-

member that pitches from 3 ins. upwards, increasing by half-

inches, should be used, and odd fractional pitches avoided,

except where absolutely necessary. As far as economically

possible, the same pitch should be used throughout, and in

many cases, for girder work, etc., 4 ins. is used unless special

conditions require a different pitch.

Working Strength of Steel Rivets

Diam.
Area in
sq. ins.

Strength
in single
shear at
5 tons

per sq. in.

Bearing Strength at 10 tons per sq. in.

of

Rivets
Thickness in ins. of plate.

in ins.
tV

3
8

7
4

9
To 1

1

1

'^

f •1104 •55 M7 1-41 1^64 1^87 211 234 2^59 2^81

* •1963 •98 1^56 1-87 2^18 2^50 2-81 3^12 343 375
•3068 153 1^95 2^34 2^72 3^12 3-51

1

3^90 4^30 4^68
3
•i

•4418 2-21 2^34 2^81 3^27 3^75 4-21 4^69 5^16 5^63

g •6013 301 2-72 3^27 3^82 4-37 4^91 5^46 6^02 6^56

1 •7854 3^93 312 375 4^37 5^00 5-62 6^25 6-87 7^50

Thin Pipes and Cylinders.—Suppose that a thin cylinder

of diameter d, Fig. 54, and thickness t, is subjected to a pressure

of intensity p. This pressure will tend to burst the pipe along

a longitudinal section, and the pressure on the ends will tend

to cause failure across the circumferential section x x. In

thick pipes the stress will vary across the section and is dealt

with in Chap. XVII.

Longitudinal Section.—Consider a length I of the pipe.

Then the radial pressure p at any point can be resolved into

a component o b parallel to any diameter under consideration

and a component a b normal to it. The resultant normal

force will be the same as the pressure acting over the

diameter.
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If /, is the tensile stress across the section, we have

.
•

. Force tending to burst pipe = p x area = p d I.

Force resisting bursting = /, x area.

= /, X 21 1 {It on each side).

, p d I

}) d
^ 2t

This stress ft is often called the hoop stress.

/^^'>!}>»>;".:/•'!irrr. iiv..',;. .',"/A7///,/»/ ,'.'- '-ns

^Tzz:

t
l^ / —>i

-^^

(1)

Fig. 54.—Stresses in Thin Pipes.

Circumferential Section.—If // is the tensile stress

across the section x x, we have

Force tending to cause failure = p x area of end.

Force resisting failure = // X area

= // X TT d t

(because the pipe is thin).
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• • A =P -4- - Trdt

= 1^ (2)

1
/<

Therefore the stress across a longitudinal section is twice

that across a circumferential section; for this reason longi-

tudinal joints of boilers are made stronger than circum-

ferential ones.

* Equivalent Stresses on Strain Theory.—On any small

cube of the material with sides parallel and normal to x x, there

will be a hoop stress /„ a longitudinal stress \ ft, and a radial

stress which is jj on the inside and o on the outside of the

tube and may generally be neglected.

.

'

. Strain in longitudinal direction = -U — 4V,

E V 2

7/, f 1

7
.

•
. Equivalent hoop stress = ^ ft

o

Similarly stress on circumferential section = '^ -\-
q f^

4

On the equivalent strain theory, therefore, the pressure on

the ends strengthens the pipe.

Numerical Exaiviple.—A holler 1 ft. Q ins. in diameter has

to sustain a pressure of 80 lbs. per sq. in. If the efficiency

of the joints is 70 per cent, and the safe stress is 4 tons per sq.

in., find the thickness that the boiler should have and the necessary

pitch of rivets on the longitudinal butt joint.

. _pd ^ 80 X 90_ _ 90

2 /
~ 2 X 4 x" 2240 ~ 224

Efficiency of joint = 70 per cent.
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rru- 1 ^ 1. ^ X 100 90 X 100
.'. Imckness must be—^^— — c^^. ^r. = "Svo in.

70 224 X 70
say f in.

Diameter of rivets = 12 V t = 1 in. nearly.

Efficiency = 70 per cent.

T , . p — d „
.'

. Intension — = "7

P
i.e. p — I = '1 p

.'. Sp = 1

p = 3" 3, say 3J ins.

TT

Strength of each rivet in shear = . x l'15d^ x 5

= 6'9 tons.

5
Strength of plate per pitch = 7 x 2*25 x

o

= 9-85 tons.

9*85
.• . Number of rivets required per j)itch = /,.q =2 (as whole

numbers only are possible).

. •
. A double row of rivets are required on each side of the

joint with a pitch of 3J ins.

Collapse of Thin Pipes under External Pressure.—
If thin pipes are subjected

to external pressure there

will be hoop compression

stresses which may be cal-

culated by the same formulae

as we have obtained for the

hoop tension due to internal

pressure. If there is any

inequality in the pipe bend-

ing stresses will be induced

which will cause failure by

collapse before the crushing strength of the material is

reached, this collapse being similar to the failure of columns

by buckling.

Fig. 55 shows some of the forms of collapse of such tubes.
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Fairbairn's Formula.—The first well-known experiments

on the subject were made about 1860 by Fairbairn. His

formula is

806,300^219

p = collapsing pressure in lbs. per sq. in.

d = diameter of tube in inches.

t = thickness ,, ,,

L = length of tube in feet.

Board of Trade Rule.—
Safe pressure =

j
. , for single-riveted lap-welded tubes.

= for welded or double-riveted butt-
(L + l)a jointed tubes.

Stewart's and Illinois Experiments.*—These recent

experiments were made with great care and proved that

except for tubes of length less than about 5 diameters the

collapsing pressure is practically independent of the length,

so that Fairbairn's and the Board of Trade Rules are not

applicable.

Fig. 56 shows the results of Professor Stewart's experiments

for 4 and 7 in. tubes ; it is clear from this that beyond a

certain thickness the collapsing pressure is practically pro-

portional to the thickness. The Illinois experiments confirmed

this.

The following formulae are given :

—

Very thin tubes
( 7 <C "03 j

—

Brass: ^ = 25,150,000 (-0 (Illinois)

Cold-drawn seamless steel : p = 50,200,000 ( -, ) (Illinois)

Stewart finds that the same formula holds for lap-welded

Bessemer steel tubes.

* Am. Soc. Mech. E. 1906 (Reid T. Stewart) ; Illinois University

Bulletin, 1906 (A. P. Carman and M. L. Carr).



120 THE STRENGTH OF MATERIALS

Tubes in which , "> 03

—

d

Brass : p = 93365 . - 2474 (Illinois)
d
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Fig. 56.—Collapse of Tubes. Stewart's Experiments.

Seamless cold-drawn steel: p = 95520^^ - 2090 (Illinois)

Lap-welded Bessemer steel: f = 83270 ^ - 1025 (Illinois)j

1386 (Stewart)-f86670
^

d



CHAPTER V

BENDING MOMENTS AND SHEARING FORCES

ON BEAMS

Definitions.—The shearing force at any point along the

span of a beam is the algebraic sum of all the perpendicular

components of the forces acting on the portion of the beam

to the right or to the left of that point.

The bending moment at any point along the span of a beam

is the algebraic sum of the moments about that point of all

the forces acting on the portion of the beam to the right or to

the left of that point.

As the beam is in equilibrium under the forces acting on it,

the algebraic sum of the forces at any point, and of the

moments of the forces about the point, acting on both sides

must be nothing; so that we shall get the same numerical

values for the shearing force and bending moment from

whichever side we consider them, but they will be opposite in

sign. We will, wherever convenient, consider the shearing

force and bending moment of the forces to the right of the

section, and we will take an upward shearing force and an

anti-clockwise bending moment as positive, the downward and

clockwise being taken as negative.

Bending Moment and Shearing Force Diagrams.—
If the bending moment and shearing force at every point of

the span be plotted against the span and the points thus

obtained be joined up, we shall get two diagrams called the

Bending Moment (B.M.) and Shear diagrams, and from these

diagrams the values of these quantities can be read off at

121
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any point of the span. We will consider the forms of these

diagrams for various kinds of loading and for various ways of

supporting the beam, but will only consider beams with fixed

loads. We will use Mp and S,. to represent respectively the

bending moment and shearing force at a point p.

B.M. AND SHEAR DIAGRAMS WITH FIXED LOADS

A. Cantilevers,* i.e. beams fixed at one end and free at

the other, the loads being all at right angles to the length

of the beam.

Case 1. Cantilever with One Isolated Load.—Let a

cantilever, fixed at the end b, Fig. 57, carry an isolated load

W at the point a, at distance I from b. Consider any point p

at distance x from a.

Then we have S,. = W.

This is constant throughout the span.

.*-. Shear diagram is a rectangle of height W.

Again M, = W x x

This is proportional to x.

.' . B.M. diagram is a triangle whose maximum ordinate is

W I, this being the bending moment at the point b.

Case 2. Cantilever with Two Isolated Loads.—Since

the B.M. and shear at any point are defined as the sum of

the moments and the forces to the left of that point, it

follows that the B.M. and shear diagrams for a number of

loads can be obtained by adding together the diagrams for

the separate loads. In the present case, in which we have

loads Wi and Wg at distances l^ and /g from the fixed end,

the diagrams are obtained by adding together the separate

diagrams as shown in Fig. 57 (2).

Case 3. Cantilever with Uniform Load.—Let a uni-

formly distributed load of w tons per foot run be carried by a

* According to our convention the shears and B.Ms, for all the cases

of cantilevers that we consider are negative. There is, however, no

need to give the sign, unless both positive and negative values occur in

the same beam.
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cantilever a b of span I. Consider a point p at distance x

from the free end a. Then

?<r-

t
WL

y/}i^//'^//.

Rending Moment

/so/ated Load

v

^1

w, \

V

^Z

z,

y//^!^^/M/^/y/777P7A

©
TTvi? isolated Loads

toOQCQCCpD

' fjarobola { 'X

Un ijorm L ooid

Uniform and isolated Loads

Fig. 57.—B.M. and Shear Diagrams for Cantilevers.

Sp = load on A p

= w X

This is proportional to x, and therefore the shear diagram is
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a triangle, the maximum shear occurring at the end b, and

being equal to wl or W, if W is the total load on the

cantilever.

Mj, = moment of load w x about P

X= W X X ^

w x^

2

This is proportional to x^, and therefore the B.M. diagram

will be a parabola with vertex at a. The maximum B.M.

will be equal to ^ or -^- and occurs at b.

Case 4. Cantilever with Isolated Load and Uniform

Load.—^In this case, as in Case 2, the shear and B.M. diagrams

are obtained by drawing the separate diagrams in accordance

with Cases 1 and 3, and then adding them together as shown

in the figure.

Case 5. Cantilever with Uniformly Increasing Load.

—Suppose a cantilever a b carries a load which increases in

intensity uniformly from the free end a to the fixed end b.

Fig. 58. This occurs in practice in the case of a vertical wall

or side of a tank subjected to water pressure.

Let the intensity of load at unit distance from Ahe w tons

per foot run, then the intensity at any point p at distance x

from A will be equal to w x. The intensity of load at b will

be w I, and the total load equal

w I , w l^ ^^r2xZ=2=W
S,. = total load to left of p

x w x^ ^
= wx X ^= -

2

.'. Shear diagram is a parabola with vertex at a^, the

maximum shear at b being equal to W.

M,, = moment of load to left of p

W X^ X w x^= —7^ X
3 6
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.'. B.M. diagram is a curve whose ordinates vary as x^,

such curve being called a parabola of the third order.

A S O4C) 3 O zO /

^p

Fig. 58.—B.M. and Shear Diagrams for Cantilevers {continued).

The maximum B.M. at b is equal to -- =^^
6 3

The diagrams then come as shown in Fig. 58.
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Case 6. Cantilever with Irregui^\r Load System.—
Graphical Method.—Suppose a number of loads 0,1, 1,2,

and so on, Fig. 58, act on a cantilever. To obtain the shear

and B.M. diagrams set down 0, 1 ; 1, 2 ; 2, 3, &c., do^vn a vector

line 0,5 to represent the forces to some convenient scale, and

take a pole p at some convenient distance p from the vector

line 0,5 and join p to each of the points to 5 on the vector

line.

Xow across the lines of the forces draw a g parallel to p o

;

across space 1 draw a h parallel to p 1 ; across space 2

draw h c parallel to p 2, and so on until the point / is

reached.

Then ah c d e f g i^ \h.Q B.M. diagram.

To obtain the shear diagram, project the pomts 0-5 on the

vector line across their corresponding spaces, the line through

the point being draT\7i right across the span, the stepped

figure thus obtained being the shear diagram.

Proof.—Consider any point p along the span, and produce

a b and 6 c to cut the corresponding ordinate p^ p.. of the link

polygon at b' and c respectively.

Xow consider the As a p^ b' and p 01.

They are similar, and as the bases of similar triangles are

proportional to their heights, we have

Pi b' _ « Pi

1)71 ~
p

.'
. p X -p-^b' = 0, I X ciT^

But 0. 1 a Pi = moment of force 0, 1 about p.

.•. p X PjL
6' =^ moment of force 0, 1 about p.

Similarly it follows that

p X b' c = moment of force 1, 2 about p,

and /; x c' P2 = moment of force 2, 3 about p.

.
•

. We see that /) x p^ p.2 = p (Pj b' —b'c — c p,)

= moment of all forces to left of P about r.

.'. Since p is a constant quality, it follows that the ordin-
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ates of the link polygon represent the bending moments at

the corresponding points of the beam.

Now consider the shear S at p. The t6tal force to the right

of P is 0, 1 + 1, 2 + 2, 3 = 0, 3, and this is obviously the

value given on the shear diagram.

Scales.—In all graphical constructions it is extremely

important to state clearly the scales to which the various

quantities are plotted, and to see that such scales are con-

venient for reading off.

Let the space scale be 1 in. = a: feet

and the load scale on the vector line 1 in. =2/ tons

and let the polar distance be f actual inches.

Then the scale to which the bending moments can be read

off is 1 in. = 2^ X X X y ft. tons.

p should thus be chosen so as to make this a convenient

round number.

To take a numerical example, suppose the space scale is

1 in. = 4 ft. and the load scale is 1 in. = 2 tons, then if j^

is taken as 2J ins. the B.M. scale will be 1 in. = 4 x 2 x 2J
= 20 ft. tons.

If p has been taken as 2 ins. the B.M. scale would have

come 1 in. == 16 ft. tons, which would not be nearly such a

convenient scale.

B. Simply Supported Beams.—^. e. beams simply

resting on two supports, the loading all being at right angles

to the length of the beam. Unless it is definitely stated to

the contrary, we will always take it that the supports are

at the ends of the beam.

In simply supported beams the forces acting are the loads

and the reactions at the supports, the sum of the reactions

being equal to the total load, and their values being obtained

by means of moments. As the ends are freely supported,

there can be no bending moment at either end.

We will now consider the following standard cases :

—

Case 1. Isolated Load in any Position.—Let a load W
be supported at a point c on a beam a b (Fig. 59) of span I,
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the distances of the point c from b and a being b and a

respectively.

Then to get the reaction R„ at b take moments round A.

Then R„ x Z = W x a

W X a
R„ =

Similarly R,

I

W X 6

I

Now consider a point p between b and c.

+ Wa
S,. = R„ =

I

®

w A
2

R

'////////.

y//////A

AW
2.

Sh&ar Diaqnani

Fig. 59.—Simply Supported Beams. Isolated Load.

.
•

. between B and c the shear diagram is a rectangle of

height = - ,

Now take a point p' between c and a.

S,, = R„ - W
w_«_w = w(^^ Wb

I

= -R.

•
. Shear between c and a is a rectangle of height

_-Wb
~

I
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In the case of the cantilever there was no need to dis-

tinguish between positive and negative shear because there

was no change in direction of the shear; but in the present

case there is a change in direction, and so we will use the

rule given on p. 121.

Now considering the bending moment,

Mp = R„ X a; =

This is proportional to x, and therefore the B.M. diagram

between b and c will be a triangle, the B.M. at c being equal

to —J— . If p were between c and a and at distance x' from

A we should have

Mr = R3 (^ - x') ~V^ {I - x' - b)

= nj - n, . x' - w I + w x' + w b

= x' (w -n,) -hWb -i{w - R,)

= n,.x' + wb-in,
Wbx'

Wbx'
I

+ Wb -Wb

This is proportional to x\ and therefore the B.M. diagram

between a and c is also a triangle, the whole diagram then

coming as shown in the figure.

Case 2. Isolated Load at Centre.—This is a special

case of the preceding one, in which « = 6 = -

W
Each reaction is now equal to -^- and the maximum

W X ^ X ^ W?

Case 3. Uniform Load over Whole Span.—Let a uni-

form load of w tons per ft. run cover the whole span a b, and

consider a point c at distance x from b.

K
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In this case the two reactions will, from symmetry, be equal,

and each have the value -^ or - -

Then ^^ — V^,,^ — w x — w {^ — x

This is a linear relation, therefore the shear diagram will

be a triangle as shown, having values ± %-^ at the ends and

changing sign at the centre.

rtr Torii, p>er Ft
pnoc^hancp

^ffi

a. »-*-

K.^^??^

Fig. 59o.—Simply Supported Beams. Uniform Load.

Wa

if

Now consider the bending moment.

X
M^. = R„ X a; — t^;.T X

Wlx WX^ _W , 2\^ "2 ~ 2 ^ 2^ ~ ^'

This depends on x^, and therefore the B.M. diagram will

be a parabola.

The maximum B.M. will occur at the centre

—

i. e. when

I

X =
2'
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Then maximum B.M. =
^ y^J ~

^ 2/ "" 2 ' 2 " 4/

w P- wP Wl2^4=8 ^^T"

Case 4. Uniform I^dad over Portion of Span.—Let a

uniform load of w tona per foot run and of length e d equal

to / be i^laced on a beam a B of span l, and let the centre c

of the load be at distance a and b respectively from a and b.

Then, if total load wl = W,

K,, = ~ and K, =

The shear between b and d will be constant, and will be

Wa
equal to ; between d and E the shear will decrease

uniformly until at e the shear will be equal to

R„-W = W«-W=^^* = -R„;

between e and a the shear will be constant and equal to

- Wb
J

, the shear diagram then coming as shown on the

figure.

The point k at which the shear is zero can be found as

follows. Let it be at distance x from the centre c of the

load.

Then S^ = R„ - w
(^

" ^) ^ ^

Wa wl
,

I.e. — ^ -[- 'W X ^
L 2

wl W a wl wla
">-^=

2 - ,, = 2 - T
•'• ^~

2
~ T " ^ V2 ~ L

The B.xM. diagram can be drawn by setting up a length

W/
^'2 ^'' '^ o > i- e. the bending moment at the centre of the

o

short span e d, then produce Cg f to o, making f o equal to
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Cg F and join g to Ej and Dg, and produce to meet the reaction

verticals in Ag and Bo. Join Ag Bg, and we then have the B.M.

diagram as shoAvn.

To prove that this gives the correct diagram, consider the

bending moment at a point at distance x from the centre of

the load.

Then M, = R, (6 - .r) -
| (|

- xj

Wa ,, , W/i Y n^= -^- (6 - ^-l - 21 (.2
- •^j W

Now, °^ = Al«
G C2 Eg Cg

GCoXAoQ WZ a Wa
Eg Cg 4

J^
2

Similarly g r = -^

.-. QR = ^ (6 — a

Q R X a W a ,,

Wa
,
Wa,,

.-. GH = GQ + QH = -^^~ + 2Y ^ ^^

W a / h — a

Wa /L+6-a\_Wa (6 + 6) _Wa6
2 V L / 2l l

. . J p h — X
Agam = —-^

^ GH b

h — X W a (6 — x)
.-. JP = — V— X GH = '

h L

, .JO o DoAgam = ^

G Cg Cg Dg
^

G Co X O D, W / 2
.-.JO = —^ =-7— X -s—

Cg Dg 4 Z

W /7

T 2
- ^
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Then since curve is a parabola

—

FC, — ON /0C2^^
F C2 \C2 D2

Wl
8 x^

Wl ~ l^

8 4

W Z _ _ W Z 4.x^ _ Wjr2
• • "8 ^^ ~ S ^ l^ ~ 21

Wl Wx^

.•.NP=PJ — JO + ON
Wa{b -x) W fl ^\ ,

WZ Wx^
L 2 V2 ; ' 8 2Z

Wa ,, , W fx^ P P Ix= --ib-x) --^. ^^-g-+^^---

W a ,, , W /x^ Ix l^

Wa., . W fP ; , 2
(0 — a;) — ;^ J— I X + X'^

L ' ' 2Z \4

Wa ,, , W /Z V= -IT (^ - ^) - 21 12 - ^;

Comparing this with (1) we see that N p gives the B.M. at

the given point.

We shall prove later (p. 149) that the B.M. is a maximum
at that point of the span where the shear is zero, and so the

vertical through k will give the maximum ordinate of the

B.M. diagram.

Alternative Construction.—The following alternative

construction is usually more accurate in practice. On a hori-

zontal base Ag B2, Fig. 60, set up Cg m equal to , ^. e. the
Ij

B.M. due to an isolated load W placed at c, the centre of the

load. Join m Ag, M B2, cutting the verticals through E.and d in n
and D respectively, and join n d. On Eg Do draw a parabola

W I
Eg Q D2 of height equal to -^ (the B.M. due to a uniform
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load on a span e d), then the B.M. diagram comes as shown

shaded. If it is desired to have the diagram on a straight

base, the parabola may be drawn on the inclined base n d as

indicated in dotted lines. The proof of this construction is

left as an exercise to the student.

Case 5. Irregular Load.—Graphical Construction.—
Let a number of loads Wi, Wg, W3, and W^, be placed knj-

where along a span ab. Number the spaces between the

loads and set down, 0, 1 ; 1,2; 2, 3 ; 3, 4, as a vertical vector

- I .
ooocooorrxTrr)

^ 8
Fig. 60.—^Alternative Construction for Uniform Load over

Portion of Span.

line to represent the loads to some convenient scale, and in

any position take a point p at convenient polar distance p

from the vector line, and join p 0, p 1, P 2, etc.

• Across space then draw a h parallel to p ; across space 1

draw h c parallel to p 1 and so on until e / is reached, this

being parallel to P 4.

Join a f, then the figure a, b, c, d, e, /, a, will give the B.M.

diagram for the given load system.

Now draw p x parallel to a /,/the closing link of the link

polygon then on the vector line, 4 :«: = R„ and xO = R^.

To draw the shear diagram, draw a horizontal line through
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X right across the span : this gives the base line for shear.

Now project the point horizontally across space ; project

point 1 across space 1 and so on, the stepped diagram thus

obtained being the shear diagram.

Proof.—Produce the links cb, d c, e d, f e back to meet the

vertical through a in b\ c\ d\ e\ and let the first link a b

Fig. 61.—Graphical Construction for Shear and B.M. Diagrams.

produced meet the last link e / in y. Then the point Y is

the point through which the resultant of the loads acts.

Now the triangles abb' and p 1 are similar.

. a 6' _ 0, 1

h ~ V
0, 1 X Zi Wi X ^1

.-. aV =
V P

moment of first load about a-
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q' *i 1 ^ 7 ' ' _ moment of second load about a
imi ar ^ c -

and so on

_ sum of moments of loads about a_ ^_
but R„ X L = sum of moments of loads about a

, R„ X L
.

•
. a e = —

P

Now consider As a e' f and a; 4 p ; they are similar :

a e' _ 4 X
• • IT ^^

. p X a e' T^.'
. 4:X = ^ = R^

L

Similarly a: = R^

Now consider any point r along the span.

S„ = R3 - W4

but the ordinate s of the shear diagram is equal to 3 x, and

therefore the stepped figure gives the correct shearing force at

any point.

Let the vertical through r cut the B.M. diagram in R^ Rg

and / e produced in eg-

Then by exactly similar reasoning as before

T5 moment of R„ about r
Ri e, = —

P

^ moment of W 4 about R
Kg 63 =

P
.

•

.
Rj R2 = R^ ^2 — 1^2 ^2

_ moment of R^ — moment of W 4 about r~
P

P
.

•

.
M„ = ^ X Rj R2

.
*

. The ordinate of the B.M. diagram represents the B.M.

at any point.
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Scales.— As in the case of the cantilever (p. 126), if

r' = .T feet is the space scale and V ^ y tons is the force

scale, and if the polar distance is p actual inches, then the

vertical ordinates of the B.M. diagram represent the bending

moment to a scale V^ = p x x x y it. tons.

Note.—In this construction the bending moment R^ Rg

is measured vertically and not at right angles to the closing

line a f.

Case 6. Irregular Load—Overhanging Ends.—The

Fig. 62.—Beam with Overhanging Ends—Graphical Construction.

construction just described is equally applicable to the case

where the ends are overhanging. Fig. 62 shows such a case.

Set out the loads down a vector line as before and take any

pole p. Now draw a b parallel to p across space 0, i.e.

between the support vertical and the first force line. Then

draw h c parallel to p 1 across sj^ace 1 and so on, the last link

e / being drawn between the last force line and the reaction

vertical. Joining a f we get the B.M. diagram as shown.

To get the shear diagram draw p 5 parallel to a /, then the

horizontal through gives the base line for the shear between
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A and B. The shears in the end spaces will be equal to the

end forces 0, 1 and 3, 4 respectively, as shown on the figure.

This graphical loading is applicable to all kinds of loading,

and any of the previous standard cases can be worked by its

means. In the case of a continuous load the latter should

be divided up into a number of small portions, and the load

in each portion treated as an isolated load acting down the

centre of such portion.

Parabola of
3''4 Order JB,

Fig, 63.—Simply supported Beam with Uniformly Increasing Load.

Case 7. Uniformly Increasing Load.—Suppose a beam

A B carries a load which increases in intensity uniformly from

the end b to the end a. Let the intensity of the load at unit

distance from b he w tons per ft. run ; then the intensit}^ at

any point p at distance x from b will be equal to w x (Fig. 63).

The intensity of the load at a will be equal to w I, and the

I w Z^

total load W will be equal to w I x ^ = -^
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The resultant load W acts through the centroid of the load

curve, i.e. at distance from a.

W

R. = -3

Then Sp = total load to right

_ W w x'^

~ 3
2~

This depends on x^ and therefore the shear curve is a parabola.

The point c^ is obtained as follows

—

S/ =
W w x^

~ 3 2

' x^ W wP
2~

3 2x3

x^
P

~ 3

X = "L = -577 I

V3
Mp = R3 X .T - 2

W .-r w x^

'

3

3 6

This depends on x^, and so the B.M. curve is a parabola of the

third order.

The maximum B.M. occurs at the point of zero shear (see

p. 149), i.e. when x = ,-

V3
. . Maximum B.M. = >— —

,

3V3 18V3
1 1 \

>,3V3 9V3/

_ 2W? _ 2WZa/3
~9\/3^ 27

= 128 WZ.

The B.M. and shear curves then come as shown in the figure.
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Case 8. Uniformly Loaded Beam with both Ends
Overhanging.^—Let a beam of span l be loaded with a uniform

load of w tons per foot run, and let it overhang a distance

X at each end, the distance between the supports being I.

The overhanging portions act as cantilevers, and the shear

and B.M. diagrams for such portions will be as shown. The

B.M. for the centre portion will be a parabola drawn on the

base shown dotted, the resulting curve being as shown cross-

hatched.

urfcns per Ft

nooooonoocYYTXTmoono.

JC

^^z^.

I

L

Shear

B.M.

X V

Vol

Fig. 63a.—^Uniformly Loaded Beam with Overhanging Ends.

If the load on the centre portion of the span were removed,

the B.M. diagram would consist of the two end parabolas

and the dotted line. This B.M. is opposite in direction to

that due to the centre portion, and therefore on replacing the

centre load and drawing the parabola, the resulting curve is

the difference between the two as shown.

To find the value of x to get the least resultant B.M. w^e

proceed as follows.

As X increases, the B.M. at the supports increases and the

resulting B.M. at the centre decreases, so that the least

B.M. will occur when the svipport B.M. is equal to the centre

B.M.
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The support B.M. = ^-^

The centre B.M, = ^f^ - ^^-

Tn , 1 , W X^ WP W X^
It these are equal —^r- = -^ ^-

Z o Z

„ wP-
.

•
. w x^ — —

ô

I

^ ~ 2 V"2

L I -\- 2x
J

I

1 2

. V2 2 + V2^+2

^2J^-V2)^2-V2 = -586
z

This gives the position at which the legs of a trestle table

should be placed to give the maximum strength to the latter.

Case 9. Uniformly Loaded Beam with One End
Overhanging.—A beam a b, Fig. 64, of span l is supported

at one end a and overhangs the support c at the other end

;

we wish to find, with a uniformly distributed load, the position

of the support c which will be most economical

—

i. e. give the

least bending moment.

If the length of the overhanging portion B c is /g ^^^ the

distance a c is l^, the B.M. diagram will be as shown shaded in

the figure ; the portion b^ d is a parabola tangential at b^ and

is the familiar diagram for a cantilever with a uniformly dis-

to I
tributed load ; the portion a G c^ is a parabola of height —^ ,

o

the usual one for a freely supj)orted span a c ; and a^ d is a

straight line.

The maximum positive B.M. will be given by kj, which
on (J Cl\

will be equal to — "^ q- since the B.M. between the point
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Ai and the point e of contraflexure will be the same as for

a freely supported beam of span a^ e, and the maximum
negative value is given by CiD. Our problem resolves itself

into find the position of c to make J k or c^ d the least

j)ossible.

Now, if 3"ou move the point c to the left, c^ d will increase

IC joer unit lenqTh

A

L

wiCj -a) ^

I

Fig. 64.

and K J will decrease, whereas if c moves to the right the

converse happens. If, therefore, c^ d = k j, movement of

c will increase one or the other, so that the least value of

either occurs when they are equal.

This gives
8 2

i.e. (/i
- af = 4/2'-

or [li — a) 21.-. (1)
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Again, by the property of the parabola

---("i^-f) (2)

This can be found by taking the B.M. at e for the span

Ai Ci ; also by similar As.

E F _ Aj E

Ci D Ai Ci

I.e. E F = -^ X 11- (3)

Combining (2) and (3) we get

or, a = -? (4)
h

Putting this result in (1) we get

n J~
^^ ^ ^2

i.e. l^^ -21^1^-1^^ ^0 (5)

The solution of this quadratic equation gives, taking the

positive root

—

... 1 + ^^ = ^^4-^2 _ L
J ^ 2-^^^ _ 3.^^^

^2 ^2 ^2

or, ?o = s—7TT *• 6. ?o = '293 L
^ 3414

In this case the maximum B.M. will be equal to

ivl^ _ w X (-293 L)^ wj.^

2 " 2 ~ 23-3

It will be of some interest to compare this result with that

which would occur if each end were overhung and the sup-

ports were placed so as to give the least B.M. for this condition.

In this case the best condition is given when the overhang

is '207 L. This gives a maximum B.M. equal to

w X (-207 L)2 w l2
2 = 46^6 ^PP^'°'^'

which is half that for the previous case.
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Steps in Shear Curves.—In practice it is impossible to

get absolutely sharp steps in shear diagrams, because the

load cannot be transmitted at a mathematical point, but

must be distributed over a short length. This has the effect

of slightly rounding off the corners of the shear diagram as

shown exaggerated in dotted lines on Fig. 65a.

Numerical Examples.—(1)^ freely supported beam of

20 ft. span carries a uniformly distributed load of 5 tons, and

isolated loads of 3 and 2 tons, at distances respectively of 4 and

5 ft. from the ends {see Fig. 65).

We have first to get the reactions R^ and R„.

Take moments round b.

R, x20-5xl0 + 3xl6 + 2x5
= 50 + 48 + 10 = 108

T>
108 . .

^

.-. R„ = 10 - 5-4 = 4-6 tons.

The shear diagram then comes as shown in the figure, the

amounts of the steps being equal to the isolated loads. The

point at which the shear is nothing is found as follows

—

Let it be at distance x from b. Then

S, = = R„ - 2 - i(; . X

= 46-2- ^^
20

= 2-6 - ^,

4

.-. ^ = 2-6
4

X = 10-4 feet.

The B.M. at this point will be a maximum, and will be

equal to
1 10-42

M X = R,. X 10-4 - 2 (10-4 - 5) - ^ . —^
= 47-84 - 10-8 - 13-52

- 23-52 ft. tons.

The B.M. diagram will consist of a parabola for the uni-

formly distributed load, the max. ordinate of which is equal
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5 X 20
to

8
= 12*5 ft. tons. The B.M. diagram for each of

the isolated loads will be a triangle, the respective heights

3 X 4 X 16 (.a t4. 4. , 2 X 5 X 15 „

being
^^

= 9'6 ft. tons, and ^a = '^ *^-

tons. Combining these three figures we get the B.M. diagram

.sTons 2Tons

^'Fb

4 -67

Fig. G5.

shown on the figure, and on scaling off the maximum ordinate

it will be found to be 23*5 tons.

Note.—In all constructions where diagrams are going to

be added together, such diagrams must of course be drawn

to the same scale.

(2) A girder oj 24 ft. span is supported at one end, and rests

on a column at a point 6 jt. from the other end. The girder

carries a uniformly distributed load of 6 tons and an isolated

load of 2 tons at the free end. Draw the shear and B.M . curves.
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/?

A,

6 Tons distributed
^Toons

P4 3Pf\^ .

E>

3.M.j^or Isolated Load

E> Mfor Unijorm Load C.

Combined B.M.
Fig. 65a.

To jfind the reactions take moments round a (Fig. 65a),

Then
18 R„ = 6 X 12 + 2 X 24 = 120

•"• "^" ""
18^ ^ ^^ ^^^^

.-. R^ = 8 - 6f = 11 tons.
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The shear at c will be = 2 tons. It then increases until the

point B is reached, when its value becomes equal to 35 tons.

It then suddenly changes sign to a value 3*17 tons and then

decreases uniformly to the end A, where the value comes 1'33.

The shear diagram then curves as shown in the figure, the

dotted lines indicating what occurs in practice owing to the

impossibility of getting the loads and reactions concentrated

on a mathematical point.

Considering first the B.M. for the isolated and uniform

loads separately, the B.M. curve due to the isolated load will

come as shown in the figure, the B.M. at b being equal to 6 x

2 = 12 ft. tons. Now, considering the uniform load, the

diagram for the portion b c will be a parabola with vertex

wP" 1 6^
at c, the ordinate b^ d at B^ being = = -^ x ^ = 4'5 ft.

tons. Then between b and a the B.M. curve due to this

overhanging load will be the straight line Aj d, as such over-

hanging load requires an isolated balancing load at a.

The B.M. curve for the portion a b will be a parabola of

wV^ 1 18^
central height = —^ = v x „- = 1012 ft. tons, the shaded

portion being the resulting curve for the central and over-

hanging portions of the uniform load. Combining these

diagrams we get the resulting B.M. curve as shown, the

max. B.M. occurring at B, and being equal to 165 ft. tons.

Relation between Load, Shear and B.M. Diagrams.

—Let A c' T>' B, Fig. 66, represent the load curve on a span a b.

Take any point p along the span, and consider a short

piece c D of the load, the centre of which is at distance x

from p.

Then the shear at p due to this piece of the load will be equal

to the area of the portion c d of the load curve. Therefore the

total shear S,. at p will be equal to the area of the load curve

up to that point.

But a sum curve * is such that its ordinate at any point

* See p. 162.
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represents the area of the primitive curve up to that point.

Therefore the shear curve is the sum curve of the load curve.

Suppose b' F E G a' is the sum curve of the load curve.

Now consider the B.M. at p.

Fig. 66.—Relation between Load, Shear and B.M. Diagrams.

The B.M. at p due to the portion c d of the load

= given portion of load x x.

Now if E and r are the corresponding points on the shear

curve, the difference of the ordinates at E and f gives the

load on the portion c d.

.
•

. Load on portion c d = e f^.

.
•

. B.M. at p due to portion c d = e f^ x a:.

.'
. Shaded portion e f Fg e^ represents the B.M. at p due

to the portion c d of the load.
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.• . Total B.M. at p = M,. = area of shear diagram up to p.

Thus the B.M. curve is the sum curve of the shear curve.

So that by drawing the sum curve B J H of the shear curve

we get the B.M. curve.

Scales.—If V ^ x tons per foot is the scale of the load

curve, and p-^ is the polar distance measured on the space

scale for obtaining the shear curve, then the scale of the

shear curve V "^ Pi ^ tons. If P2 is the polar distance from

which the B.M. curve is obtained, measured on the space

scale, the B.M. scale will be V^ = PiPi^ foot tons.

Point of Maximum B.M.—If the B.M. is a maximum, the

tangent to the curve at this maximum must be horizontal,

and therefore the corresponding ordinate on the shear diagram

must be zero in order for the line through the pole to be also

horizontal.

Thus we get the rule that the maximum B.M. occurs where

the shear is zero.

The base lines s s and m m of the shear and B.M. curves

depend on the manner in which the ends are fixed. If one

end is free, the shear and B.M. at this point are zero. If

one end is freely supported the shear at this point will be

equal to the reaction, and the B.M. will be zero.

The above relations are expressed mathematically as

follows : Let the load at any point at distance x from the

origin be F {x)

Then the shear at the point will be = / ¥ {x) d x -{- c^ and

the B.M. will be =yyF {x) d x + c^x -{- c^.

The integration constants c^ and Cg depend on the manner

in which the ends are fixed, and correspond to the base lines

above referred to.

A Template for Bending Moment Diagrams.—For

Various Cases of Uniformly Distributed Loads.—In

designing beams carrying uniform loads it is necessary in

order to draw the Bending Moment diagrams to draw para-

bolas ; the usual procedure is to draw the parabolas for the
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special arrangement of the loads and for the particular

manner in which the beams are supported, this involving

a good deal of geometrical construction. A temj^late can,

however, be used to serve for a large number of cases in

the following manner

—

On a base a b, Fig. 67—for convenience say 5 ins. long

—

Fig. 67.

draw by the usual construction a parabola a d c with vertex

at A, the height b c being for convenience equal to a b.

A template of the form a b c d can then be made, a 45°

set-square being a convenient form to cut it from. A pro-

jection is preferably j^rovided as shown to avoid a sharp point

which is liable to break off. By means of this template and

a suitable choice of scales, the Bending Moment (B.M.)

diagrams for a large number of cases can be then drawn as

follows

—
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Case 1. Cantilever fully Loaded.—Draw the span e f,

Fig. 68, to a suitable scale, so that e f is not larger than a b
;

erect a vertical at the fixed end f and place the template on

the paper with the point A coinciding with the free end e and

draw in the curve to the point g where it meets the vertical

through B. The B.M. diagram is then as shown shaded.

Scales.—If the intensity of the load is w lbs. per foot run, then

the B.M. scale will be the square of the space scale multiplied

by Take for instance the case where the space scale is

Fig. 68.

1 in. = 2 ft. and the load is 1000 lbs. per foot run ; then B.M
4 X 5 X 1000

scale is \" 10,000 ft. lbs.

Case 2. Simply-supported Beam fully Loaded.—In

this case, Fig. 69, we draw e^ f^ to represent the span and

we draw as before k vertical f^ g^ at one end; the template

is then placed on the paper with the point a coinciding with

the point e^ at the other end of the span and the curve is

drawn until the vertical is cut to the point G^. Now join

Gi Ej, the B.M. diagram then coming as shown shaded, the

Bending Moment at any point h being found by projecting

vertically and measuring the height x as shown.

The scales are obtained as previously described.
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E.

Fic. 69.

Fig. 70.
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Case 3. Uniformly-loaded Beam Overhanging the

Support at one End.—In this case, Fig. 70, we place the

template on the paper with the vertex of the parabola at the

overhanging end Fg and draw in the curve until we meet at

L the vertical through the other end Eg; then join l to the

other support point k, the shaded area giving the B.M.

diagram, the Bending Moment at any point being read off

by projecting vertically as explained in the previous case.

Fia. 71.

At points such as m where the B.M. diagram crosses itself,

the Bending Moment changes sign ; this of course corresponds

to a reversal of the tension and compression flanges of the

beam.

Case 4. Uniformly-loaded Beam Overhanging at

EACH End.—To obtain the B.M. diagram in this case with

the aid of the template, we place the template on the paper

with the vertex of the parabola coinciding with one end E3

(Fig. 71) and draw the curve until we meet the vertical through

the other end at q.
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Join Q to the mid-point r of the span, the line Q r cutting

the vertical through the support p at the point s. Einally

join s to the other support point N", the B.M. diagram then

coming as shown shaded in the figure.

Case 5. Uniformly-loaded CoNTrs'Uors Beam of Two
Equal Span's.—We can get the B.M. diagram in this case

with the aid of the template by placing it on the paper with

the vertex coinciding with the end support E4 and drawing

in the curve mitil it intersects at the point G3 the vertical

through the centre support G3 ; then by reversmg the template

and commencing the curve at the other outside support E5

we shall get the reversed curve going from G3 to E5 as shown

in Fig. 72.

Fig.

A length G3 t is then set down from G3 of length equal to

J G3 F4 and, by joining t to E5 and E4, we get the B.M. diagram

as shown shaded in the figure. The student should check

the correctness of this method after reading Chap. XV.

The scales are obtained as previously explained.

Numerical Exa^iple.—Take a continuous beam of two equal

spans each 16 ft. long, each span being covered by a load of

1500 lbs. per foot run.

Taking a linear scale of T' = 4 ft.. E4 F4 will be 4 ins.

Then the B.M. scale will be, as explained above,

42 X 5 w; 16 X 5 X 1500
1" = - \~ = = 60,000 ft. lbs.

If the distance Gq t be measured, it will be found to come



BENDING MOMENTS AND SHEARING FORCES 155

equal to '8 inch with a template of the dimensions suggested

in Fig. 67.

.-. Maximum B.M. = '8 x 60,000 = 48,000ft. lbs.

The B.M. at any other point u can be obtained by reading

off the vertical ordinate x to this scale.

In the case of a beam supported freely at one end and

securely fixed at the other, the B.M. diagram will come the

same as one-half of that shown in Fig. 72, the point E4 being

the freely-supported end and the point F4 the fixed end.

A number of other, cases might be given, but we think

that the above are sufficient to show that a template of this

kind would be of considerable assistance to draughtsmen for

obtaining the B.M. diagrams for a variety of cases.

In some respects the template would be more easy to make

if it were made of the shape a d c b. Fig. 67, because the con-

vex curve can be somewhat more readily shaped. If, instead

of the given dimensions for a b and B c, other values are taken,

the rule for scales must be correspondingly amended, bearing

A B^
in mind that B c should represent ^y— for the B.M. scale to

be equal to the square of the space scale when w ^ 1. If b c

has not this value, then the B.M. scale will vary in the inverse

ratio.

B.M. AND SHEAR DIAGRAMS FOR INCLINED LOADS

In all the cases that we have considered up to the present

all the loading has been at right angles to the length of the

beam. We will now consider some cases in which this is not

the case, and will take both horizontal beams with non-

vertical loads and sloping beams. The principal difference in

this case is that there will be thrust in the direction of the

beam, and we shall have a curve of thrust in addition to

the curves of shear and B.M.

The general rule is to resolve all forces, including the

reactions, along and perpendicular to the beam. From the

forces along the beam a curve of thrusts can be dra^vn, and
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from the forces perpendicular to the beam the curves of

shear and bending moment are drawn in the ordinary manner.

We will define the thrust at any point of a beam as the

sum of the components in the direction of the beam of all

the forces to the right of it, remembering that if the thrust

is negative it becomes a pull.

Thrust 0>iacjram

Fig. 73.—Beam with Inclined Loads.

Case 1. Horizontal Beam Freely Supported sub-

jected TO Inclined Loads.—Let a beam a b have inclined

forces Fi and F2 (Fig. 73) meeting the centre line in c and D.

Let the end a rest on a free support and let the end b be freely

supported, but prevented from longitudinal movement as

shown. If the resultant of F^ and Fg acted towards the end

A, then this end would have to be prevented from movement.
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Resolve the forces F^ and Fg into vertical and horizontal

components W^ Wg and Q^ Q2 respectively.

Then R„ will be inclined, the vertical component Wi, being

that found by considering the forces W^ W2 in the ordinary

way and the horizontal component Q^ being equal to Q^ + Qg.

The reaction R^ will be vertical, and will be obtained by

considering the forces W^ and Wg in the ordinary way.

If the resultant of F^ and Fg were found it would pass

through the intersection of R^ and R^, since three forces in

equilibrium must pass through a point.

The shear and B.M. diagrams are then found in the usual

way for weights W^ and Wg, and are as shown.

The thrust diagram is obtained by plotting up at each

point the value of the thrust, and this comes as shown. The

same method applies for any number of loads, two having

been chosen to give simplicity of figure.

Case 2. Inclined Beam with Vertical Loads.—Re-

actions Parallel.—Let an inclined beam a b (Fig. 74) be

supported freely at a and pin-jointed at b. Then if it be

subjected to vertical forces F^ and Fg at c and d, the reaction

at A, and therefore also that at b, must be vertical, their

values being found in the ordinary manner.

Now resolve the weights and reactions along and per-

pendicular to the beam, obtaining weights W^, W^, W2, Wa?

and thrusts Q3, Q^, Q2, Q.,-

Then the B.M. diagram can be drawn either on a sloping

base A B or the projected horizontal base A^ b^.

M„ = W« X D b

1
D B R„

.
•

. Wb X D B = Rh Zi

.
' . We see that for a sloping beam with vertical reactions

the B.M. diagram is the same as for a horizontal beam of the

same span as the horizontally projected length of the sloping

beam.
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The B.M. at a point p, for example, is obtained by drawing

a vertical through it, a b representing the B.M.

The shear and thrust diagrams are obtained as shown, and
will be easily followed from the figure.

Fig. 74.—Inclined Beam with Lower End freely supported.

Case 3. Inclined Beam with Vertical Loads—Top

Reaction Horizontal.—In this case the resultant load must

first be found. Let this resultant act down the line x x

(Fig. 75). The reaction R^, at B must be horizontal, so draw

B X horizontal, then if this meets the line x x, R,v must also
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pass through x, so that by joining a x we get the direction

of R,. The values of R, and R^, are then found by a triangle

of forces a, b, c.

Now resolve the weights and reactions as before along and

perpendicular to a b. The perpendicular components will be

Thrust Oiaaram

Fig. 75.—Inclined Beam with Top End freely supported.

the same as before, and so the B.M. and shear diagrams will

be the same as in the previous case (Fig. 74).

The thrusts will be different, and will be as shown on the

figure, which will be clearly followed.

Case 4. Sloping Cantilever.—This is worked in a similar

manner. Consider, for example, a uniform load of intensity

m; on a cantilever of length I at an inclination (Fig. 76). The
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B.M. curve will be a parabola. Its maximum ordinate will be

iv I cos 6
rt J

because the total weight will be w I, and it acts at

a distance ^ from the abutment. The shear diagram

CiT

Fig. 76.

will be a sloping straight line, the maximum shear being w I

cos 6; the thrust diagram will also be a sloping straight line,

the maximum thrust being w I sin 0.



CHAPTER VI

GEOMETRICAL PROPERTIES OF SECTIONS—AREA,

CENTROID, MOMENT OF INERTIA, AND RADIUS

OF GYRATION

Before considering the relation between the Bending

Moment and the stresses in a beam, we will consider some

geometrical properties of sections which, as we shall find

later, are involved in that relation.

The Determination of Areas. — (a) Mathematical

Method.—If F [x) represents a function of x and the graph

of the function be drawn, then the area between graph and

the axis of x is given by the expression

A =y'F{x)dx

In practice, in the determination of areas, this method may-

become practically unworkable if the equation of the curve

cannot be simply expressed or if the integration cannot be

performed. When these conditions occur we have to rely

on the planimeter or on the following.

(b) Graphical Method.—If a curve be plotted on a hori-

zontal base and a new curve be drawn, such that its ordinate

at any point represents the area of the given curve up to that

point, the new curve is called the Sum curve or Integral

curve of the given curve, which is called the Primiitive curve.

The sum curve can be obtained graphically as follows : Let

A c D, Fig. 77, be any primitive curve on a straight base A B.

Divide a b into any number of parts, not necessarily equal (but

for convenience of working they are generally taken as equal).

These so-called base elements should be taken so small that
M 161
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the portion of the curve above them may be taken as a straight

line. About 1 cm. or '4 in. will usually be a suitable size and

in most cases a smaller element 11 will come at the end. Find

the mid-points, 1, 2, 3, etc., of each of the base elements and

let the verticals through these mid-points meet the curve in

1 a, 2 a, 3 a, etc. Now project the points on to a vertical

line A E, thus obtaining the points I b, 2 b, Z b, etc., and join

such points to a pole p on a b produced and at some con-

venient distance p from a. Across space 1 then draw a d

Fig. 77.—Sum Curve Construction.

parallel to p 1 6 ; d e across space 2 parallel to p 2 6, and so on,

until the point n is reached. Then the curve a d e . . . n is

the sum curve of the given curve, and to some scale b ?i

represents the area of the whole curve.

Proof.—Consider one of the elements, say 4, and draw / o

horizontally.

Now ilf,g,o is similar to the A p, 4 6, a

^o_46, A
*

/ o
~ P A

but FA = p and 4 6, A = 4, 4 a

/ o X 4, 4 a area of element 4 of curve
go

p p
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^. ., , , area of element 3 of curve ,

Similarlv j q = and so on

.
' . Ordinate through g^go+fq-{-...

area of first four elements of curve-
^

.
•

. The curve a d e . . . ?^ is the sum curve required.

Then ii b n he measured on the vertical scale and p be

measured on the horizontal scale, the area of the whole curve

will be equal to ^^ x b n.

It is obviously advisable to make p some convenient round

number of units.

The sum curve obtained by this method may have the same

A

/}•

r
cL___ <

, J

1 J

a
' 1

r-1

•

^
i * 1 I i i i

/
\

'
' 1

'
•(

'
]

'
\ 1 f

}
'

1

B

B'

Fig. 78.

operation performed on it, and thus the second sum curve of

the primitive curve is obtained, and so on.

If the operation be performed on a rectangle, the sum curve

will obviously come a sloping straight line, and if the sum
curve of a sloping straight line be drawn, it will be found to

be a parabola. In the case in which it is required to apply

this construction to a curve which is not on a straight

base, the curve is first brought to a straight base as

follows

—

Suppose A cB d, Fig. 78, is a closed curve. Draw verticals

through A B to meet a horizontal base a' b'. Divide the curve

into a number of segments by vertical lines at short distances
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apart, and set up from the base a b lengths a^, h^^, etc., equal
to the vertical portions a, h, etc., on the curve. Joining up
the points thus obtained we get the corresponding curve
a' Ci b', on a straight base.

(c) Simpson's Rule.—Divide the base into an even number
of equal parts (each equal to c) and measure all the corre-

sponding ordinates.

Then area of curve is equal to

twice sum of four times sum of _ sum of first \
"^ odd ordinates and last ordinatesJ3 (even ordinates

Fig. 79.

J AT

-First Moment of an Area.

X

{d) Parmontier's Rule.—Divide up base and measure

ordinates as above, then area of curve is equal to

Op sum of odd _ ^ f/ second _ first

ordinates 6(^\ordinate ordinate

last _ preceding yi
ordinate ordinate /J

First Moment of an Area.—Let a small element of area

a of any figure be situated at the point p. Fig. 79, and let x x

be any straight line or axis. Then if p n is drawn j^erpen-

dicular to x x, a x P N is the first moment of the element of

area about the given line. Now, if the whole figure is divided

up into elements of area such as a, and the moments of each

element be taken about x x and the whole of these moments
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be added together, the resulting sum is called the first moment

of the area.

.

'

. The first moment of the whole area is the sum of

quantities such as a x P N. This is expressed symbolically as

follows

—

First moment of whole area = 'X {a x p n).

Now the centroid or the first moment centre of an area is

defined as the point at which the whole area can be con-

sidered concentrated, in order that its moment about any

given line will be equal to the first moment of the area about

the same line.

Thus if c is the centroid of the area, and c J is drawn

perpendicular to x x, and the area of the whole figure is A,

we have

A + cj = :S(a.PN)

.
•

. c J = —^^—T -'

A

This will not determine the exact position of c, but only its

distance from the given line x x. If the exact position of the

centroid is required we must also take moments about some

other line, not parallel to x x, then the distance from the two

lines will determine its position.

In connection with the centroid it should be noted that

the position of the centroid depends solely on the shape of

the figure, and not on the position of the axes about which

moments are taken. As in the case of forces, we have positive

and negative moments in areas, the moment being positive

when the given element of area is above or to the right of the

given axis, and negative when it is below or to the left.

First Moment about Line through Centroid.—Now
consider the first moment of an area about a line c c, Fig. 80,

through the centroid. The moments of elements of area above

the line such as that at P will be positive, and the moments
of elements of area below the line such as that at p' will be

negative.

Now in this case c J is zero, and therefore A x c j will also



166 THE STRENGTH OF :\IATERIALS

be zero, and therefore we have the rule that the first moment
of any area about a line tlirough its centroid is zero.

PosiTio:?^ OF Centroid with Axes of Symmetry.—Suppose

an area has an axis of s}Tnmetry Y Y, Fig. 81. Then this line

y

Fig. 81.

di^^des the area into two exactly similar halves so that

corresponding to each element of area at p having a positive
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moment about Y y we have an equal element at p' having an

equal negative moment about y y so that the total moment of

the area about Y Y is zero, or Y Y passes through the centroid.

If the figure has another axis of symmetry x x, the centroid

also lies on this line, or we have the rule that the centroid of a

figure is at the intersection of two axes of symmetry.

For the determination of the position of the centroid for

various cases see p. 175-189.

It should be noted that the centroid of an area is the same

as the centre of gravity of a template of the same shape as the

area.

Second Moments or Moments of Inertia.— The

rforce(/) ^

product of a 4
"^^^^ (^) I by the square of its distance r from a

[volume {v)j fforce ^

given point or axis is called the second moment of the -
^^^^

about the given line or axis. [volume

j

Now, in considering rotating bodies the second moment of

the mass has to be considered, and this quantity has been

given the name of the moment of inertia. In the application

of the second moment to the strength of materials we shall

have nothing to do with inertia, but the term moment of inertia

has been generally adopted, and so we shall use it; but we

must remember that it is really a borrowed term and quite

an unsuitable one.

Application to Areas.—If an element of area a is situated

at the point p, Fig. 82, and p n is drawn perpendicular to a line

X X, then the second moment of this element of area about the

line X X is equal to a x p n^. If, as in the case of the first

moment, we divide the whole area up into elements and take

the second moment of each, we see that the second moment of

the whole area about x x is the sum of the second moments of

the elements. The letter I is always used to denote the

second moment, the line x x, about which the moments are

taken, being indicated by writing it I^^.

Thus we see I^^ = S (a x p n^).
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In the same way, considering the line y y, we have

Now suppose K is such a point that the whole area can be

considered concentrated there so as to give the same second

moments about x x and Y Y as the second moment of the

area about these lines.

Then A x K q2 = I,,

and A X K R- = I,,.

Then the x^oint k by analogy might be called the secondroid

Fig. 82.—Second Moment or Moment of Inertia of an Area.

of the area with regard to the axes x x and Y Y. The point

of importance ^vith regard to the secondroid is that its position

depends on the j)osition of the lines about which the moments

are taken, whereas the position of the centroid does not.

RADIUS OF GYRATION

Now. the distances of the secondroid from the lines x x and
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Y Y are called the second moment radii or radii of gyration

about the given lines, and are written k^,. and k,j respectively.

.'. We have

A y^,2 = I,.^ = 2 (a X p n2)

or k,. = ,, ^

A kj" = I,, - S (a X P m2)

or k, = y "2-

Now, in practice it is nearly always the second moment

about a line through the centroid that is required, and this is

obtained as follows

—

Given the Second Moment or Moment of Inertia of

AN Area about a given Line, to find it about a Parallel

Line through the Centroid.

Suppose we know I^x-

Now, I,^ = 2 (a X P n2)

= :S [a X (p s + s N)2] = :s [a X (P S + d,,)^]

= :S [a . (P S2 + 2 P S . 6^, + ^,2)]

= :S (a . P S2) + ^ (a . 2 P S . 6?,) + S (a . ^/)

Of the terms on the right-hand side

S (a X P s)2 = I^.^ (which is required)

2 (a . 2 p s . d,) = 2 d^, 2 a . p s

= 2 d,. (first moment of area about line c^ c^

through centroid)

= 2 d_, X

=
^ (a . d/) = d/ 5 a

= d_,^ (area of whole figure)

= d/.A
.

•
. We have I^^ = I,^ + A d/

or I„ = I,^ - A ^,2

Similarly I,.,. = I,.,. — A d,/

* The Momental Ellipse or Ellipse of Inertia.—The

principal axes of a section are defined as two axes at right
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angles through the centroid, such that the sum of quantities

such as a X p M, p N, or the 'product moment as it is called, is

equal to zero.

In the case of sections with an axis of symmetry, such axis

determines one of the principal axes.

Let X X and Y Y, Fig. 83, be the principal axes of a section

and let k^ and k„ be the radii of gyration about the two axes.

With o as centre draw an ellipse, o x being equal to ky and o Y

Fig. 83.—Momental Ellipse of Ellipse of Inertia.

being equal to k,.. Then this ellipse is called the momental

ellipse or ellipse of inertia.

To obtain the radius of gyration k._ about a line z z passing

through o at an angle ^ to x x, draw 2; z a tangent to the

ellipse parallel to z z, and draw o Q perpendicular to it.

Then o q^ = k.

for I,^ = 2 a . p r2

= 2 a (P S — S R)2

= 2 a (P S — N t)2

= 2 tt (1/ COS 6 — X sin O)"^

= -%a.x^ sin2 + 2ay^ cos^ ^ - 2 2 a; ?/ sin ^ cos ^

= sin2 e^a.x^ + cos2 O^ay^ -2sinecos01xy
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Now, 2 X y is the product moment, and as x x and Y Y are

the principal axes, this is zero.

.• . I,, - sin2 e^{a.x^) + cos2 e^(a 2/2)

= I^^ sin^ $ + I,^ cos^

.-. Ak,^ == A h^ sin2 + Ak/ cos^

k.} = A;/ sin^ $ 4- h,^ cos^

and therefore from the properties of the ellipse o Q is equal to k,.

A rather more convenient construction (see Fig. 84) is to

draw a circle with radius k^ and draw o d at right angles

to z z to meet the circle in d. Draw d e horizontally to

meet the ellipse in e, then o e = A;-. If many values are

not required, the ellipse need not be drawn at all, but instead

draw a second circle with radius k,, ; then draw F e vertically

to meet d e in e, thus fixing the point e.

To find the principal axes in the case where there is no axis

of symmetry, the procedure is as follows

—

(a) By graphical methods or by calculation first find the

value of the product moment and the radii of gyration about

any two axes through the centroid at right angles.
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Let the product moment be A p'^ and the radii of gyration

k_r and k„.

Then the angle of inclination B of the principal axes to k^ or

k„ are given by the relation

{b) By graphical methods or by calculation find the second

moments of the given figure about lines x x and Y Y at right

angles to each other and passing through the centroid and

find it also about a third line z z at 45° to the other two.

Then if is the inclination of the principal axes to x x and y y

tan 2 ^ = L^+l^-^J^.

CoxDiTiox THAT Peodijct Momext IS Zero.—It can be

shown that the condition that the product moment about two

lines is zero is that such lines form conjugate diameters of the

momental ellipse.

A numerical example on the momental ellipse will be found

on p. 242.

Second Moments about any Two Lines through

the Centroid at Right Angles.—A property of the second

moments of a figure that is sometimes useful is that the sum

of the second moments of an area, about two lines at right

angles through the centroid, is equal to the sum of the second

moments about any other pair of lines at right angles through

the centroid.

Second Moment or Moment of Inertia of Figure

about an Axis perpendicular to its Plane.—The second

moment or moment of inertia of an area about an axis o

perpendicular to its plane is called the polar second moment

or moment of inertia, and is equal to 2 a . p o^.

Let any two axes x x and y y at right angles be drawn

through o, and let perpendiculars p x, p m be drawn to these

axes, Fig. 85.
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Then p o'-^ = p n^ 4- n o^

= PN^ + P M^

.
•

. 2 a . P O^ --= :^ ft . P N^ + ^ a . P M^

= l\x + Ivv

Fig. 85.—Polar Moment of Inertia.

Therefore wc have the following rule

—

The polar second moment, or moment of inertia, about an

axis perpendicular to the plane of any area, is equal to the

Fig. 80.

sums of the second niojiicnls about any two linos at right

angles, drawn through the axis in the plane of the area.

The Determination of Gentroids, Moments of

Inertia, and Radii of Gyration.—(a) Mathematical.—
Consider the curve of a function y = V (x).
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Then considering a strip of width d x parallel to the axis of

X, Fig. 86
Area of curve = / F {x) d x

First moment of area about o y = / F (x) dx x x

Second moment of area about o y = / F (x) dx x x^

Consider, for example, the parabola y- = 4:a x, and take the

area between the curve and the axis of x, Fig. 87.

Y 2

Fig. 87.

Area of curve = fy dx = / 2 a^ x^

B

= 2 a^J'x^dx = \ 2a^- .

dx

2 ....

„ x-^

a^ B-

Now 2 «' b' = H

Area of curve = ^ b H. Fig. 87.

First moment about o Y = fx y dx ^J 2ah x^-dx

2ah / x^dx ^ 2 «K ; x^

4 2
^ah B^ = ^ b^h
o o

-1 B H 6
.

•
. distance of centroid from o Y == ^V——: = c B

o' B H O
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Second moment about o y = Cx^ y dx = f2 oh xr^ d

x

= 2 a^J x^ dx = 2aKl x^
7 _

4 , : 23=
^ a^ B^ =

^, B^ H

•
^2_tB^h

|BH
or k^ = Vf B.

If the second moment is required about the base x z, we

proceed as follows

—

T 2 3
lov - ;^

b3 H

I,, =. I,, -k.d^
232 9b2-
-^ H B 3 • B H . 25

I.\z ^ Ice + A. »]_2,6 „
,

8 3

= 7^^ -25^^ +75^^

^ fl50 - 126 + 561 „ 80

\ 525 ^ ^^ 525
H B'* -I ,.7^-^ h = H B'

16
105''^^

A list of values of second moments, etc., for common figures

will be found on p. 185.

It often happens in practice that the mathematical method

is unworkable, in which case the following graphical methods

are necessary.

(6) Gbaphical.— First and Second Moment Curve

Method.—(1) Centroid.—Suppose we have any area p r q s, Fig.

88, and any two parallel lines x x and y y, at distance h apart.

Draw a thin strip of the area parallel to x x and of thickness

t and let its centre line be p Q. From one of the ends of this

centre line, say Q, draw a perpendicular Q m to Y Y and from

the other end draw p N perpendicular to x x.

Join M N and let it cut p q in q^ and produce m q to cut

x X in L.
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Then the As p n q^, m n l are similar.

p Qi _ NJ. _ P Q
P N ~ M L ~ h

PQi

Multipljdng through by t we have

p Qi X ^ = P Q X ^ X PN _ area of strip p Q x p n
h h

A^^^-P^ 4.- - £ ^ • First moment of strip about XX,,,Area oi portion p q^ of strip = ,
^

(1)

Fig. 88.—Graphical Determination of Centroid and Moment of

Inertia, etc.

Now divide the whole area up into strips and join up all

the points corresponding to Q^, thus obtaining the First

Moment Curve R Q^ s.

Then the area to the left-hand side of the first moment

curve Avill be the sum of the areas of portions of strips such as

p Qj. Call this the First Moment Area (A^). Then we have

Sum of first moments of strips about x x
Ai =

First moment of whole area

h
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.
*

. First moment of whole area = A^ ^

, .
,

„ , . 1 p First moment about x x
or distance oi eentroid irom x x = '^

area oi figure

= -i^ (2)

Draw any vertical line f b to cut x x in r and y y in b, and

through F draw any inclined line, on which set out f a equal on

some scale to A, and f a^ equal to A^. Join a B and draw

a^ c parallel to it, then the eentroid lies on a line through c

parallel to x x or Y Y.

^ C F F tti

For — = —

±

F B Fa
C F _ Ai

•

'

• h ~ A
A.h

or c F = ~\~
A

And this by relation (2) above gives the distance of the eentroid'

from x X.

(2) Second Moment.—^If the second moment is required

about the line x x draw q^ m^ perpendicular to Y Y and join

Ml N, cutting p Q in Q2 and let m^ q^ produced cut x x in l^.

Then the As p n q^, m^ n l^ are similar.

• ^^2 ^ J^ Li ^ PQi
*

* P N Mj Li h

P Qi X P N
.-.PQ, =^^^

Multiply through by t, then we have

P Ql X i X P N
P Q2 X ^ =

h

T, , 1 ,, , ,
area of strip p q x p n

±>ut we have seen that p Qi x ^ = f

p Q2 X i

area of strip p q x p n^

second moment of strip p Q about X N
.*. Area of portion p Q.2 of strip = —7-2 . .(o)

Now repeat this construction for each of the strips and join

up all the points corresponding to Q2, thus obtaining the

second moment curve R Q2 s.

N
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Then the area to the left-hand side of the second moment

curve will be the sum of the areas of portions of strips such as

p Q2. Call this the second moment area (Ag). Then we have

. _ Sum of second moments of strips about x x

.-. Ix. = A2A2 (4)

Some care is required in determining which area to read as

A^ or Ag. It does not matter whether the verticals are drawn

downward from p or from Q, but when the moments are re-

quired about one of the lines, say x x, read, for the first

moment area, the area on that side of the first moment curve

from which the perpendiculars are drawn to x x, and in

drawing the second moment curve draw from the first moment

points, such as Qj, perpendiculars to the other line y y, again

reading the area to the side from which the perpendiculars

were drawn to x x.

Now, on the line f a set out f a^^ equal to Ag on the same

scale to which the other areas were drawn, and join a^ b,

drawing ag d parallel to it.

On D F describe a semicircle, and draw a line c e parallel

to X X to meet it in e.

Then c e will be equal to k, the radius of gyration about c c.

Proof—
F D _ F ^2 _ ^2

Now

F B F «! Ax

F D
li X Ag

Jl X Ixx

A .CF
k/

A X CF CF
h

F D F E

F E FC

• • F D . F C F E^

.*
. F D =r

FE2
CF

.*. F E = kr
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Now F E^ = F C^ + C E^

.
•

. k,^ = c E^ + d_r^

. •
. c e2 - yfc,2

_ ^2

But we have already shown that

k} = k/ - d/

.
•

. c E = A;,,

Numerical Example.—Graphical Determination of Radius

of Gyration of Rail Section about Centroid.

x^./lrea of HalfSecfJoni.
' = •ici-/8-Sti.ln I

7

Sum Curve o/-|-J.-\-L'?_r^
Halj Rail 4 T^i 1 V

Fig. 89.—Rail Section.

Fig. 89 shows the graphical determination of the radius of

gyration about the centroid parallel to the base of a British

Standard 85 lb. flat rail section.

Since the section is symmetrical about a vertical centre line,

the first and second moment curves need be drawn only for

half the section, this simplifying the construction considerably.

The lines x x and Y Y are taken as the horizontal lines, touching

the section at top and bottom.
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The areas A, Aj, Ag are next found b}^ planimeter or by sum-

curve construction. (To avoid complication of figures, the

sum curves for the first and second moment curves are

omitted.) The first and second moment areas are to the left

of the curves.

When multij)lied by two, because only half the section was

considered, we get

A = 8*36 sq. ins. A^ = 4'02 sq. ins. Ag = 305 sq. ins.

To the side of the figure a vertical r b is drawn between the

X X and Y Y lines, and the points a, a^, a^ obtained as shown.

X D C X
Fig. 90.—^IMoment of Inertia of Rectangle.

Then by joining a b and drawing a^ c parallel, we get the

point c, c F giving the distance of the centroid from x x ; and

by joining a^ B and drawing a^ d parallel, we get the point d.

On D F a semicircle is drawn, and c e is dra^\ii horizontal

to meet the semicircle in e.

Then c e = k, which on measuring will be found to be

1-91 ins.

This construction should be gone through as an exercise.

Application of above Method to Case of Rectangle.—
Let A B c D, Fig. 90, be a rectangle of base h and height h, and

take the lines x x and y y through c d and b a respectively.

Then the first moment curve will be the diagonal bed, Avhile
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the second moment curve will come a parabola b f d, so

that

A,
''^

A.

2

bh

d.. =
A 2 bh

Fig. 91.—Mohr's Construction for Moment of Inertia.

.-.I., = I,, - Ad/
_bh^ _ bh.h^ _bh^
~ 3" 4 ~ T2

Alternative Graphical Construction—Mohr's Method.
—The following graphical method for obtaining the second

moment about the centroid is in some cases more convenient

in use than the one previously given. Divide the area, Fig. 91

,
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into a number of small strips of equal breadth, parallel to

the direction about which moments are taken, and draw the

centre line of each of said strips. Then if the strips are suffi-

ciently small (we have only taken a few strips in the figure to

avoid complication) the lengths of these centre lines represent

the areas of the separate strips. Xow. on a vector line, to

some scale, set out 0, 1, 1, 2, ... 6. 7 to represent the area of each

strip, and take a pole p at distance = ^ total area 0, 7 from

this vector line. Then anj'where across space draw and

produce a line a k parallel to 0. p ; across space 1 draw a b

parallel to p 1 ; across space 2, b c parallel to p 2, and so on

until the point g is reached. Then draw the la?>t link g'h

parallel to the last line p 7 to meet a 7i in h.

Then the line c c through the centroid passes through h,

and if a is the area of the shaded area, and A is the area of the

figure,

I- of figure = A >: a.

Proof.—Consider one of the elemental areas, say 0, 1, and

produce a b to meet the horizontal through k in b^. Then, by

the law of the link and vector polygon construction, treating

the areas of the elements as forces,

1

polar distance
b'h = moment of first for'ce about c c

= 0, 1 X .r

1

^ ^to1:al area

= 0. 1 < X

Area of .la b'

0.

h

1

_ 1
2

X X

b' h X .

2x2
r

2 A
second moment of element about c c

, , 11^ second moment of fisure about c c
.

•
. Area of shaded figure = a = r-^

?'. e. A a = second moment of ficfure about c c. •
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The proof that Ji determines the centroid is based upon the

fact that in the hnk and vector polygon construction the

meet of the first and last links determines the resultant, and

in this case the centroid is where the resultant of the separate

areas considered as forces act.

* Equivalent Centroid and Second Moment of

Heterogeneous Sections.—Suppose that the cross section

of a beam is composed of two materials for which Young's

modulus is not the same, and let Young's modulus for one

material B be m times Young's modulus for the second

material C. Then in the case of direct stress we have seen

that the material B behaves as if it were replaced by m times

its area of the material C. In the case of a beam the same

relation holds, so that we may replace the material B by an

area m times as wide, the width being taken parallel to the

line about which moments are taken.

Then if A is the area of material B, and A^ that of material

C, the equivalent area of homogeneous material C is given by

A2 = Ai + m A

To obtain the distance d of the equivalent centroid from a

line X X, take first moments of the separate areas about x x

and let them be M and M^ respectively.

Then equivalent first moment of the second material is

M2 = Ml + m M
Ml + mM
Aj + w A

To obtain the equivalent second moment about a line x x,

take the separate second moments about x x and let them be

I and Ii respectively, then the equivalent second moment of

the second material is given by

I2 = Ii + m I

We shaU give numerical examples and further explanation

of this when dealing with flitched beams and reinforced

beams.
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The above reasoning ma}' be shown graphicall}" as

follows

—

Let A B c D (Fig. 92) represent any area which has em-

bedded in it two bars x and y of different material. For

considering the moments about any line such as D B shown

dotted, make a strip e r of the same depth as x, and of area

equal to {m — I) area of x and also a strip G h of area equal to

{m — 1) area of Y.

Then the equivalent first and second moments of the

heterogeneous section about the given line will be the same as

a homogeneous section of form aefbghcd.
We take e r = (?7z — 1) area of x because the bar already

occupies an area equal to its area, so that equivalent area

of second material = [{m — 1) -i- I] area of x = m x area

of X.

Calculation of Moment of Inertia and Radii o!

Gyration of Sections used in Constructional Work.—
The moments of inertia of sections composed of sections of

known moment of inertia are found by adding up the moments

of the separate parts, or subtracting when the area consists of

the difference of known areas.
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Y
2

L— b
^

.©
t

X
r

X

Fig. 93.—Properties of Common Figures.

For the properties of British Standard Steel Sections, see

Appendix.
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The following examples should make the method of calcula-

tion clear for any such case. See Figs. 93 and 94.

f

1

h
c

-1 <
1

c

V

-at-

O

I

— 2_

10'

^^

3-5

•©

•475 •4 75'

X

-iz
•375

5

/2i'

Y

4i'

^'

10'

X

Y

Fig. 94.—^Moments of Inertia, etc.
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(1) Box or I Section.—These are geometrically equi-

valent as far as the line c c is concerned, because if the box

section be cut in half vertically and the two halves be turned

back to back, we get the I section.

Then I„, = b^'-ib-lh){h-2tf

(2) Hollow Circular Section.

When the thickness of metal is small and equal to t, this

approximates to I„ = ^^^

(3) Channel Section (neglecting inclination of sides and

rounded corners).—Consider the section shown in Fig. 94 (3).

Area = A = 35 x 475 + 505 x 375 + 35 x 475

= 5*219 sq. ins.

To obtain distance d^ of centroid from x x take first moments

about X X. Then

A X d,

An^ 3-5
,
505 x -375 x 375

,

3-5 x '475 x 35
= 3*5 X -475 X ^ H ^ ^ 2

= 2-910 + -363 + 2-910 = 6183

• ^" = 5T2Y9 ^ 1185 ins.

Second moment about x x = I^^

_ -475 X 3- 53 5-05 X -3753 -475 x 35^

-
^

+
3 +3

= 6-775 + -089 + 6-775 = 13-639 in. units.

= 13-639 - (5-219 x 11852)

= 13-639 - 7-323 = 6-316 in. units.

/ I
.-. ^ = ^/ = 1010 nis.

\ A

(4) Cast-iron Beam Section.

Area = A = 2 x IJ + 7 x 1 + 6 x li = 19 sq. ins.
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Moments round base

A d,. = 3 X 9-25 + 7 X 5 + 9 X -75

= 27-75 + 35 + 6-75 = 69-5 in. units.

.
•

. d^. = ^^- = 3-658 ins.

- 6 X 3 - 6583 _ 5 X 2-1583 2 x 6-342^ _ 1 x 4-892^
.

•

. Ice - 3 3
+

3 3

= 219-95 in. units.

(5) Built-up Mild Steel Column Section.—Composed

of two 10 X 3J X 28*21 channels and four 12 in. x \ in.

plates. Required to find k^ and ICy. From the Table of Stand-

ard Sections we obtain the following information concerning

the Channel Sections

—

Area of each 8-296 sq. ins.

I about centroid parallel to x x = 117-9 in. units

1 ,, ,, ,, y Y = O 194: ,, ,,

Distance of centroid from web = -933 in.

.-. Total area of section= (4 x 12 x i)
-f- (2 x 8-296)= 40-592 sq. ins.

Moment of Inertia about X X.

2 channels, 117-9 each = 235'8

2 pairs of 12 x | in. plates about centroid =~ ^— = 2-0

K X d^ for two pairs of plates = 2 x 12 x 5-5^ =726-1

Total . . . . . . = 963-9 in. units

7
/ 963-9 . „. .

•*'^'==V4ir592==^'^^''''-

Moment of Inertia about Y Y.

4 X - X 12^
4 plates 12 X J about centroid = ~~ := 288-0

2 channels about centroid = 2x8194 =16-4

A X ^2 for each channel = 2 x 8-296 x 3-1832 = 168-5

Total = 472-9

4729
^^ ^ V 40-592 ^ ^'^^ "^^*
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(6) Built-up Beam Section.—Composed of two 14 in. x

6 in. 46 lb. I beams and four 14 in, x f in. plates (Fig. 95).

Required I^^.

From the Standard Section Tables we obtain the following

information concerning the I beams

—

Area of each = 1353

•.XX 5 > 5 >
= 440-5

Mean thickness of each flange = 698 in.

a

Fig. 95.

I^^ OF WHOLE Section (not attow^no for Rivets).-

Ivx of two I beams -= 2 x 440o = 881

' X 14 /5\
I of two pairs of plates about centroid ~ -—-— x ( -

)

12 \4/
4-8

A d^ for two pairs of plates = 4x 14x — x 7 62o- = 2035

Total 2020 8

AixowANCE FOR RivETS (ucglcct I of each rivet -hole about

its centroid).

Area of each hole = (2 x -^- -f '698)4 = 1TU4
o o

Dist. of centroid from xx = 7276

.-. I,, = 4 X 1-704 7-276- = 3608

. . Xett I,, = 2920-8 - 3608 = 2560
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(7) Built-up Sections—Approximate Method.—The

moment of inertia of built-up sections can be found approxim-

ately by adding the moment of inertia of the I beams or

channels to A d? for the plates, d being taken as the distance

from the centre of one set of plates to x x and the nett area

of the plates being taken for A.

Taking the section of the previous example, we then get

I^^ as follows

—

I„ of two I beams = 2 x 440-5 = 881

kd^ for plates = 4 x
^

(^14 - 2 x ^^ x 7-52 ^ 1875

Total approximate I^^ = 2756 in. units

I



CHAPTER VII

STRESSES IN BEAMS

We have seen in a previous chapter how the bending

moment and shearing force at different points along a beam,

loaded in various manners, can be found ; our next problem

is to find the relations between these quantities and the stresses

occurring in the beam.

We shall get a good preliminary idea of the stresses occurring

in beams b}^ considering a model devised by Professor Perr3\

Suppose that a beam fixed at one en(J carries a weight, W
(Fig. 96), at the other end, and that it is cut through at a

certain section. Then the right-hand portion can be kept in

equilibrium by attaching a rope to the top and passing over

a pullej^ a weight W being attached to the other end of the

rope, and by placing a block B at the lower portion of the

section and a chain a at the upper portion. Then the pull in

the rope overcomes the shearing force ; and the block b carries

a compressive force c, and the chain a carries a tensile force T.

Since these are the onh' horizontal forces, they must be equal

and opposite, and thus form a couple. Then the moment of

this couple nuist be equal and opposite to the couple, due to

the loading, which we have called the bending moment.

In the actual beam, owing to the deflection which takes

place, the material on one side of the beam will be stretched,

and the material on the other side will be compressed, so that

at some point between the two sides the material will not be

strained at all, and the axis in the section of the beam at which

192
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no strain occurs is called the neutral axis (N.A.). We see,

therefore, that : The neutral axis is the line in the section

of a beam along which no strain^ and therefore no stress,

occurs.

In an elevation of a beam there is also a line of no strain or

stress, which may also be termed a neutral axis. These two

axes are really the traces of a neutral surface.

If we kno^ the manner in which the strain varies from the

neutral axis to the outer sides of the beam, from a knowledge

of the relation between stress and strain we can find the

stresses at different points across the beam, remembering that

the total compressive stress must be equal to the total tensile

Te n

Fig. 96.—Stresses in Beams.

stress, and the moment of their couple must be equal to the

bending moment. The moment of the couple due to the

stresses is often called the moment of resistance.

Assumptions in Ordinary Beam Theory.—We will first

make the following assumptions with regard to the bending

of beams, and from such assumptions we will deduce a relation

between the maximum stresses, due to bending at any cross

section and the bending moment

—

o
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(a) That for the material the stress is proportional to the

strain, and that Young's modulus (E) is equal for

tension and compression.

(6) That a cross section of the beam which is plane before

bending remains plane after bending,

(c) That the original radius of curvature of the beam is very

great compared with the cross-sectional dimensions of

the beam.

We will also for the present restrict our investigation to the

case of simple bending, ^. e. that in which the following con-

ditions hold

—

(1) There is no resultant thrust or pull across the cross

section of the beam.

(2) The section of the beam is symmetrical about an axis

through the centroid of the cross section parallel to

the plane in which bending occurs.

To get a clear idea of the stresses in beams it is absolute^

necessary to have a clear idea of the assumptions involved in

formulating any particular theory, and of the effect of such

assumptions on the results.

Let A B, Fig. 97, represent the cross section of a beam which

has been bent (the amount of bending having been exagger-

ated). Before bending, the line a b had the position of a^ b^

so that B Bi represents the maximum tensile strain, and a a^

the maximum compression strain. From our assumption (6),

called Bernoulli's assumption, a^ b^ and a b are both straight

lines. The neutral axis then passes through c, the point of

no strain, and it follows from the above assumptions that the

strains are proportional to the distances from the N.A. From

assumption (a) it foUows that the diagram of intensity of

stress is also a sloping straight line, Ag Bg, the portions Bg c

and Cg A being continuous, because Young's modulus is equal

in tension and compression.

It is clear that the maximum stresses in compression and
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tension occur at the points A and b, and let these be /,. and ft

respectively, d, and dt being the distance A c and B c

.

Position of Neutral Axis.—Now consider an element of

area a at a point p at distance p n from the N.A.

Then the stress at the points p is equal to Pj Pg

Tension Cross -section Diagram of
Intensity of Stress

Fig. 97.—Stresses in Beams.

But
Pj^ C AC d,

fc
Pi P2 = J X Pi C

= -^^ X P N
d.

.
•

. Stress carried by the element — a xH x P N

.'
. Total stress carried by section above N.A. = ]Sax^XPN

fr

= ^ 2 a X p N
dr

= , X first moment of area above N.A. about N.A.
dr

Similarly if an element of area at a point p^ be considered,

we see that

I
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Total stress carried by section below N.A.

= 3^ X first moment of area below N.A. about N.A.

But we have seen that the total tension T must be equal to

the total compression C, and it follows from assumptions

(a) (h) that

d,. d,

.'. we see that the first moment of the areas above and below

the N.A. about the N.A. are equal and opposite in sign.

Therefore, the total first moment of the whole area about the

N.A. is zero. But we have seen that the first moment of an

area is zero about a line through the centroid.

Therefore, i7i simple bending with the given assumptions, the

neutral axis passes through the centroid.

The Moment of Resistance (M.R.)—We have proved

that the stress carried on an element a of area about a point

p is equal to a x j.' x p n

The moment of this stress about the N.A.

= stress X P N

= a X ,' X pn2
d,

.
' . Total moment of all the stresses over the cross section

= 2 a . ^' X P n2
a,

' = ^' :S (a X P n2)

^ J (second moment of ^^hole area about the N.A.)
a,.

d.

But the total moment of all the stresses is the moment of

the couple w^hich we have called the moment of resistance.

.*. we see that M.R. = , or '

d, a,

I
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The moment of resistance must, as has already been shown,

be equal to the bending moment, which we will call M.

.-. M ^y^or V (1)

It will be seen that I, d, and dt depend merely on the shapeII
of the cross section, and -,- and -,- are called the compression

U/Q (hi,

modulus and tension modulus respectively of the section, and

are written Z, and Z<.

Thus our relation becomes

M = /,Z, =/,Z, (2)

In practice we usually want to know /<, and ft which give the

maximum stresses across the section, and so we will write the

result as

/,. = ! (3)

M
f'-% (*^

In the case where the section is symmetrical about the N.A.,

d^ is equal to dt, so that Z^ and Z^ are equal. In this case,

therefore, /, = ft, and we may write the relation as

' Z

For values of section moduli for British Standard Beam
Sections, see Appendix.

Unit Section Modulus ; Beam Factor.—If instead of

taking the section modulus as Z we took -v and called it the

" unit section modulus," the quantity would be rather more

useful and probably more easy to conceive to those who find

difficulty in purely mathematical conceptions.

We should then have
Z I A;^

Unit compression section modulus = z, = -^ "=
a ^ "^

~d~

„ tension „ ,,
= Zt = -j

z, and Zi then become lengths
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Example- I

Examble 5

6 M. on each qirJer

Fig. 98.—Examples of Beams.
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Section b. This is composed of two triangles.

•.1 = 2 X ^^,h in this case being the height of the triangle.

_ 2 X 2-828 X 1-4143
'

12

d = 1-414

7 _ 2 X 2-828 X 1-4JL43 _ 2;82^'

1-414x12 ~ 3

= -943 in. units.

Section c.

T _^ _^ x_2-26^

64 ~ 64

"

d = 113

64 X 113

= 1*13 in. units.

Section d.

2 X 43 2 X
^ ~ 12

•8 X 2-53

12

= 10-67 - 208 == 8-59

d = r
. ^ 8-59

= 4-29 in. units.

Section e. This is composed of three rectangles.

T =
•'75 X 23 2-5 X -43 -75 X 23

12 "^ 12 "^ 12

= -5 + -013 + -5

= 1013

d = V
-

. Z = r013 in. units.

We see, therefore, that the order of the sections, from

strongest to weakest, is d, a, c, e,b.

t
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We may take it, as a rule, that the strongest beam for a

given area of cross section is that which has a depth as great

as is practicalljr possible, and which has as much as possible

of the metal at the outer portions of the beam.

(2) A girder of 20 ft. span carries a uniformly distributed

load of 10 tons, and a central load of 4 tons. Find a suitable

British standard beam section for the girder if the maximum
stress is to be 7 tons per sq. in.

Its maximum B.M. due to the uniform load will be equal to

WZ
-g (see Eigs. 59, 59a, Cases 2 and 3)

10 X 20 X 12 . ,= X m. tons

= 300 in. tons.

The maximum B.M. due to the central load = -—

^

4

^ 4 X 20 X 12~
4

= 240 in. tons.

These both occur at the same point, so that the maximum
B.M. due to both loads = 540 in. tons.

Now M - / Z

2. e. 540 = 7 Z

.-. Z -= = 77"14 in. units.

On referring to the table of standard sections (Appendix),

we see that the section having the nearest modulus to this is

a 14 X 6 X 57 lb. section for which Z = 76' 12, and we will

adopt this section as being suihciently strong.

(3) A tank which weighs J ton and measures 10' x 6' x 3'

is filled with water, and carried on three girders placed length-

wise, so that each girder takes an equal weight. If the girders

are &' x 3'' x 12 lb. Standard Beams find the maximum stress

in each. {A.M.I.C.E. Altered slightly.)
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Weight of water in tank = 10 X 6 X 3 X 62-5
tons

2240

= 5-02 tons.

.
•

. Total weight carried by girders = 5*02 + '5 = 5*52 tons

i,r ' T^i^r u • ^ ^'52 10 X 12
.'. Maximum B.M. on each girder = —^- x

o o

= 27-6 in. tons.

Z for a 6" x 3" x 12 lb. beam is 6*736 in. units

i
27-6 ...

.
•

. / = 7r--o^ =41 tons per sq. m.
' 6-736 ^ ^ mi

Compression

Ih-nsion

Cost Iron £>earn

fliichea E>Qam

.

Fig. 99.

(4) A cast-iron beam is the shape of an inverted T, 9 ins. deep

over all, width of flange 6 ins., thickness of web and flange 1 in.

If its length is 12 ft. find what weight at the centre will cause a

tensile stress of 1 ton per sq. in. in the flange. What would the

maximum compressive stress then be ? {A.M.I.C.E.)

First find the centroid and second moment of the section.

(See Fig. 99.)

Area of section = A = 9 x 1 + 5 x 1 = 14 sq. in.

9 1
1st Moment about base = A fZ = (9 x 1) x ^ + 2 (2J x 1) x

^

- 40-5 + 2-5 = 43

•'• ^ = 1^ = 3-07 ins.
14
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2nd Moment about base
1 X 93 2 X 21 X 13

~
'

~ 3 + 3

= 243 + 1-67 = 244-67

.
•

. 2nd Moment about parallel line through centroid

= 1, = 1, - A (P

= 244-67 - 14 X 3-072

= 244-67 - 13207

= 112-6 in. units.

.-.z.
112-6 112-6

9 - 3-07 5-93

= 18-99 in. units.

Z, == -^—r = 36-67 in. units.

.
•

. Safe B.M. in tension = /, x Z^

= 36-67 in. tons.

Neglecting weight of beam itself, if central load is W, the

4
maximum B.M. is

. •
. Maximum B.M. = ^ ^ = W x 122^1 2 _ gg ^ j^. tons.

4 4

^^j 36-67 1-02 tons.

' • ^' 36

f X d 1 X 593
The compression stress —-^-^—

' = —qTat— ~ -^"^^ ^^^^ P^^ ®^- ^^-

(5) A pitched beam consists of two timbers, each 9 ins. thick and

16 ins. deep, and a steel plate placed symmetrically between them,

the steel plate being 8 ins. deep and | in. thick. If E for timber is

1,500,000 lbs. per sq. in. and for steel 30,000,000 lbs. sq. per in.,

find the maximum tensile stress in the steel plate when the maximum

tensile stress in the timber is 1000 lbs. per sq. in.

Determine also for the same intensity of stress in the timber the

percentage increase of load the flitched beam will carry as com-

pared with the two timbers when not reinforced with the steel

plate. {B.Sc. Lond.)

Using the notation given on p. 183, we see that

_ 30,000,000 _™-
1,500,000

-^^ (seei-ig. JJ).
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.*. The steel plate is equivalent to a timber 20 times as

wide, i. e. a timber 15 x 8 ins.

.
•

. For the equivalent section of timber for the whole

flitched beam Ig

_ 2 X 9 X 163 (15 - I)
83~

12
"^ "

12

= 6,144 + 608

= 6,752 in. units. .

For the timber beam not reinforced I = 6,144.

When the stress in the timber at the outside of the section

is 1000 lbs. per sq. in,, that 4 ins. below the N.A., i. e. at the

maximum depth of the equivalent timber plate, will be

4
^ X 1000 = 500 lbs. per sq. m.
o

But steel carries 20 times the stress in the timber for the

strain.

.'. Stress in steel = 20 x 500 = 10,000 lbs. per sq. in.

For the flitch beam the equivalent modulus is

6752

8
844 in. units.

S4.4. V 1000
.-. Safe B.M. in ft. lbs. = »^^ J^^ = 70^333

6 144
For the plain timber beam Z = ~~— = 768 in. units

o

.-.Safe B.M. in ft. lbs. = ^^^
^J^^^^ = 64,000

.'. Increased B.M. carried by flitched beam = 6,333

.-. % increase = ^^000 ^ ^^^ "" ^^
'^ "/^

We shall have further numerical examples on the stresses in

beams at various points in the book.

Approximate Value of Modulus of I Sections.—In

practice girders are usually made of I section, because the

most economical section is that in which as much as possible

of the metal is placed in the edges or flanges. In this case an

approximate formula for the modulus of the section can be

found as follows : Let d (Fig. 100) be the distance between the

I
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centre of flanges of the section, the thickness of the flanges

being t. Then if b is the breadth of the flanges, and t-^ the

thickness of the web, we have

I = B (D + tf (B - y (D - tf
(1)

.-. 12 I= B(D3+ 3D2^+3D^2_^^3)_(B_y (d3_3d2^_^3p^2_^3)

= B (6 J)H + ^3) _!_
^^ (j)3 _ 3 J) 2^ + 3 J) ^2 _ ^3)

Now if t is small compared with d, f^ and t^ are negligible,

Combression Fl^nac

^
t

h—^B

.-^Web

D

3

FUnc?C

,

ension nanci

FiQ. 100.

Npw Z = I _ 21

2

21

(3)

since i is small compared with d.

1 — nearly
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...z=.t{-'+'.-('-l')}('-3

= ^[6^t-^^''+hi>-3tt,-tt, + ^'^f} ..(4)

= |6 B if + ^1 (d — ^) I to a first approximation,

neglecting all remaining terms containing t^ oi tti.

Now B X ^ = area of one flange = A
and ^1 (d — ^) = area of the web = a

=K^+S ('>

Therefore we get the following rule : The modulus of an I

section beam is approximately equal to the depth between the

centres of the flanges multiplied by the area of one flange plus

one-sixth of the area of the web.

Discrepancies between Theoretical and Actual

Strengths of Beams.—Many practical men have expressed

considerable surprise that in testing beams the actual and theo-

retical breaking strengths do not agree. A number of beams

are tested, and a tension test is also made from the same

material, and it is found that the load which, on the ordinary

bending theory should cause the breaking stress in the beam,

does not cause fracture, theamount of additional load depending

on the shape of the cross section. This was the origin of the

old " beam paradox," it being thought that the material must

be stronger in bending than in tension. In fact, for cast-

iron beams, an old erroneous theory which, for a rectangular

beam, made M = — .
— instead of -—^ agrees con-

siderably better with the breaking test than the modern

theory.

Now this discrepancy in the case of ductile metals is due to

the fact that the ordinary bending theory is not applicable to

breaking stresses, and no one who appreciated the value of

I
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the assumptions made in obtaining such theory would expect

the theoretical and actual breaking strengths to agree. This

is because the stress is not proportional to strain after the

elastic limit is reached.

Some experimenters who have measured the deflections of

beams have stated that for mild steel the stresses at the elastic

limit do not agree, but that is due to a confusion between the

elastic limit and the yield point, and to the fact that the

deflections were not measured with sufficient accuracy. In

Chap. I we saw that for a tension test of mild steel the

elastic limit and yield point were quite close to each other;

but in bending this is not the case, the yield point occurring at

a considerably later point than the elastic limit. Considerable

error, therefore, arises if the yield point in bending be taken

instead of the elastic limit. If the latter be carefully measured

it will be found that the stresses in tension and bending at

the elastic limit agree very closely. This point is proved,

incidentally, in the Andrews-Pearson paper on Stresses in Crane

Hooks, referred to in Chap. XIX. The reason for the yield

point coming some distance after the elastic limit in bending is

that only the material at the extreme edges has been stressed

up to the yield point, and the whole section will not yield until

the material nearer the centre has become stressed up to the

yield point.

We see, therefore, that there is no discrepancy between theory

and tests so long as the conditions laid down in formulating

the theory are fulfilled. If those conditions do not hold

beyond a certain point, then, after that point, we must get a

new theory if we wish to calculate the stresses.

These so-called discrepancies between theoretical and actual

strengths of beams point to the desirability of choosing the

working stresses for ductile metals in terms of the stress at the

elastic limit, and not of the breaking stress—as we pointed out

in Chap. III.—because if the working stress in a beam is,

say, one-half of the stress at the elastic limit in tension, then

twice the load on the beam will cause the elastic limit in the
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beam ; if, however, the workmg stress be taken as one-fourth

of the breaking stress in tension, four times the load will not

cause failure, the exact load to do this being more, and

depending on the shape of the section.

Cast-Iron Beams.—The discrepancy in the case of cast-

iron beams is due to the fact that the stress-strain diagram is

not a straight line except for very low stresses and that for

given strain the stress is appreciably less in tension than in

ConobressioK7.

Tension.

Fig. 101.

compression. The result of this is that the stress diagram

becomes more like that shown in Fig. 101 ; the neutral axis

becomes raised above the centroid and the diagram is curved.

In this figure the actual stress is shown about one-half of the

calculated stress. This effect will be most marked in sections

such as rounds or diagonal squares with a large amount of

metal in the web; it is least in I sections with the com-

pression flange smaller than the tensile, i. e. the discrepancy

between theory and practice is least in a well-designed section.

* Diagonal Square Sections.—It is an interesting fact

that we can obtain as follows the apparently paradoxical

I
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result that by cutting away part of a beam of diagonal square

section we increase it strength.

Referring to Fig. 101a and the table on p. 185

1^ , of whole section =
(V 2)4. 12

_ ^
~48

.'. Z of whole section = .o -=~ o = o^48 2 24

A

Fig. 101a.

2d^
1^ ^ of two triangles removed = 2 x ^^ (about their own

centroids) + 2 .
cZ^

(^ ^ " V)' ^*° ^^^^^ ^^ ^'^^'^

.*. 1 01 remammg section — aq ~ q ~ '^d'^yn — o )

2^2

48 t

Z of remaining section

I6d^ D2.48/, 4:dY]

D^ f

48 (D -2(Z) [^ 3d4
16 (Z* 24 cZ2

D^

4rf\2)

3d;/

Z of remaining section

Z of original section

D
f _ 16^* _24cZ2

B-2d\ 3d* d2
1 - id\^]

3d) f
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Now let - = X
D

ai..,{'-^*-"-('-r
,,

-^^^ {1 - 24 a:2 + 64 a:^ - 48 x^}
( 1 — 2 cc)

'

= 1 + 2 :r - 20 a:2 + 24 ^3

= (1 - 2a;)(l + 4 a; - 12 x'^)

= (1 - 2 a;)2 (1 + 6 x)

d X
This is a maximum when -y^ =

ax
i. e. 2 - 40 a: + 72 ^2 =
^. e. 1 - 20 a; + 36 ^2 =

i.e. (1 - 18 a;) (1 -2 x) =

From this x = ^ or J and the maximum is for x = ^s

because clearly x = ^ reduces the section to zero. From this

we see that the strongest section is obtained by removing

one-eighteenth of the depth from the top and bottom, i. e. one-

ninth of the depth in all.

When ^ = To

8\2 4 256 , .^„ ,

Therefore the section f of the depth of the original section

appears to have a strength 1'053 times as much, i.e. about

5*3 % increase. The additional strength is, however, only

apparent, because when failure starts at the edges we arrive

at the stronger section.

We do not know of any accurate tests that have been made
to find to what extent this result holds in the actual beam.

In a cast-iron beam of the original section under test a small

crack will start on the tension side which will have the effect

of cutting off one edge only. A complete study of this

problem on a modified theory for cast-iron beams will be

found in a paper by Mr. Clark in Proc. Inst. C.E. (1901-2).
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* Influence of Shearing Force on Stresses in Beams.
—It must be remembered, that up to the present we have

considered only the tensile and compression stresses due to the

bending moment. Besides these stresses there are tangential

stresses due to the shearing force. The resultant stress at any

internal point of the beam is the resultant or principal stress

/^

ComJDression

i

'

\ /
i ^ /

1

i

/
7

i \
/

:

i „ ...
^^

/ "^^--

Ihnsion ^
S.M. and Shear StrGSse'S 'RGSultanf'

Fig. 102.—Principal Stresses in Beams.

Oowbressior?

Tension
^

Fig. 102a.

of the tangential and direct stresses, which resultant is fo.und

as sho\\Ti in Chap. I. We shall deal in a subsequent chapter

with the distribution of the shearing stresses across the

section of the beam, but for the present we will assume that

the shear stress is a maximum at the centroid and diminishes

to zero at the extremities. Fig. 102 shows diagrammatically

the shear and direct stresses across the cross section of the

beam and also the resultant stresses which, as will be seen,
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are parallel to the centre line of the beam at the extremities

and are perpendicular to it at the centroid.

If the principal stresses at various depths be found for a

number of cross sections at various points along the span., and

the directions of principal stress be joined up by a curve, we

get a number of lines showing the manner in which the direc-

tions of principal stresses vary from one point to another.

Such curves will be found in Rankine's Applied Mechanics, and

are of the form shown in Fig. 102a.

In practice it will be found that, except for very short beams

Strain Diaaram

carrying heavy loads, the maximum tensile or compressive

stress due to bending moment is usuaUy greater than the

maximum shear stress, so that the consideration of stress due

to bending moment is, as a rule, considerably more important

than that of the shear stresses.

* Moment of Resistance in General Case.—To follow

the correct theory of beams it is not necessary to make any of

the assumptions previously given, and we wiU now find the

moment of resistance in the most general case. To investigate

this, we must suppose that we know by experimental or other

means the shape after distortion which is taken up by a cross

I
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section of the beam which was originally plane. We must also

know the relation between stress and strain for the material of

which the beam is composed.

Let A B, Fig. 103, represent the elevation of a cross section

of a beam which after bending is strained to the shape d c e.

Then from the stress-strain curve and from the shape of the

cross section draw a curve of stress d' c e'. This is obtained as

foUows : let a 6 be any ordinate of the strain diagram ; then

from the stress-strain curve find the stress corresponding to

this strain, and multiply the stress by the breadth of the beam

at the given point, and plot this equal to a' h' to some con-

venient scale
;

joining up points such as h' we get the stress

diagram.

Now let the area of the stress diagrams be Q and T and their

centroids G^ and G2. Then, of course, in simple bending Q and

T will be equal, and if q is the perpendicular distance between

the centroids, the moment of resistance will be equal to T x g

or Q X g.

If the reader fully follows this general method with regard

to the stresses in beams, he should not have the difficulty

commonly experienced in following the more particular

theories.



CHAPTER VIII

STRESSES IN BEAMS

—

(continued)

* REINFORCED CONCRETE BEAMS

There are many formulae for the strength of reinforced

concrete beams, such formulae being deduced from certain

assumptions with reference to the distribution of stress in the

bent beam.

We will consider three methods of calculating the stresses in

reinforced concrete beams, working in each case the case of a

rectangular section, this being most common, and in all three

we will make the following assumptions

—

(1) That a section of the beam which is plane before bending

remains plane after bending. (Bernoulli's assumption (see

p. 194).)

(2) That the beam is subjected to pure bending, i. e. that

the total compressive stress is equal to the total tensile

stress.

Standard Notation.—Throughout the treatment we will

adopt the following notation (see Fig. 104).

Young's modulus for steel or other metal E,

Young's modulus for concrete E^.

t = Tensile stress per sq. in. in reinforcement.

t, = ,, ,, ,, concrete,

c = Compressive stress per sq. in. in concrete.

At = Area of cross section of reinforcement.

Ac = ,, ,, „ concrete.

b = Breadth of beam.
215
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df = Total depth of beam.

d = Depth of beam to centre of reinforcement.

n = Depth from compressive edge to neutral axis (N.A.).

(^d— n) — ,, ,, centre of reinforcement to neutral axis.

n-i = Ratio y.

r = Proportional area of reinforcement to area above

XXt,

it
bd

1, = Equivalent moment of Inertia of section.

-* b >-

..1 >\

nV

fu

^
L_.0 ^__

'f

79

Fig. 104.—Notation for Reinforced Concrete Beams.

First Method—Ordinary Bending Theory.—The first

method which we will consider is one which is not much used in

practice because it gives safe loads which are lower than tests

show to be necessary. It is, however, the general method

applicable to beams formed of two elastic materials, and serves

as a useful and instructive introduction to the subject.

According to this method, we assume that the reinforced

beam behaves exactly as an ordinary homogeneous beam with

the reinforcement replaced by a narrow strip m times the area

of the reinforcement, and at constant distance from the N.A.

We showed how to find the centroid, moment of inertia, and

radius of gyration of such an equivalent homogeneous section

on p. 183.

In the general case, let'7^^(^ig. 105) be the distance to the
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neutral axis (equivalent centroid), and I^. the equivalent mo-

ment of inertia about the centroid.

Then*..=M(^;:=^) (1)

c =

t =

Mn

mM{d — n)

(2)

(3)

where M is the bending moment.

d

N

t

n. d

W

Fig. 105.—Reinforced Concrete Beams. Method 1.

In the case of the rectangular beam we then get the following

results

—

Equivalent area of section ^ h dt + {m — \) A., (4)

As explained on p. 184, it is (m — 1) A^, because when we

take away the reinforcement and replace it by m times its

area of concrete, we have first to fill up the hole in which the

reinforcement was, and this takes once A^, so that remaining

additional area = (w — 1) A^.

Take moments round the top, then we have

n [h dt -^ {m — \) A,
1
=

-f
'^ + (m- l)A,d

''2'- +(m- 1)A,^
n = ,—

,

bd, + {m - I) A
This fixes the position of the neutral axis.

(5)
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Taking second moments about the neutral axis, we have

I = ^f + ^-i^^- + (m - 1) A, (d - «r- (6)

In this formula we neglect the second moment of reinforce-

ment about its own axis.

Numerical Exa]viple.—Take the case of a beam 6 ins. wide

and 12 ins. deep, the centre of the reinforcement being 2 ins. from

the bottom and the area of reinforcement = 1*44 {see Fig. 106).

Fig. 106.

Taking m = 15, we get

_ 6 X 144 + 2 X 14 X 1-44 X 10
^ ~ 2(72 + 14 X 1-44)

= 6-87 ins.

,'. {d-n) =^12 - 6-87 = 5-13

I = Lx (6:87)3 6_x (5-13)3
^.^^ ^ 3.^3,

3 3

= 626 + 270 + 197 = 1093 nearly.

.
•

. Taking a safe stress of 100 lbs. per sq. in. in tension for the

concrete,

Safe B.M. = ^^^^{^f^ ^ ^ '^^ ^*- ^^'•

100 X 6-87
Then t, = comp. stress in concrete — ^ ,„

15 X 100 X 3-13
Then t = Tensile stress in steel =

513

= 134 lb./in.2

- = 915 lb./in.2
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It will be seen that we have taken t^ — 100, which is higher

than usually allowed for concrete in tension ; but if the con-

crete cracked the steel would still hold, and so we are justified

in using a higher stress.

The above example shows that on this method of calculation

the beam is not very economical, as the steel is very little

stressed and the concrete has only a small stress in compression.

For this reason it is usual in practice to neglect the tensile

stresses in the concrete, that is to say that it does not matter if

the concrete does crack. Practice shows that such cracks, if

present, do not matter so long as the adhesion between steel

and concrete is good, and the tensile stress in the steel and the

compressive stress in the concrete are within safe limits.

We should like in this connection to point out that to neglect

the tensile stresses in the concrete does not, as some writers

state, increase the factor of safety. We shall see later that

neglecting such stresses we get a much larger safe B.M. on the

beam, and thus reduce the factor of safety.

Strength of Same Beam not Reinforced.—To serve as

a useful comparison we will find the strength of a 12''' x Q'^

concrete beam without reinforcement.

M X 6 M
If not reinforced, t =

6 X 123 144

12

In this case we must take safe t^ = 50 Ib./in.^

.
•

. Safe B.M. = ^"^ ^^^^^ = 600 ft. lbs.

Therefore, calculating by our first method, the reinforced

beam is roughly three times as strong. It would cost roughly

twice as much, so that we see there is 50 % saved.

Second Method—Straight-line, No-tension Method.

—This method we name as above, because the additional as-

sumptions are indicated by such name.

We will now make the following additional assumptions

—

(a) All the tensile stress is carried by the reinforcement.
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(6) For the concrete the stress is proportional to the strain

(c) The area of reinforcement is so small that we may assume

the stress constant over it.

Fig. 107 shows the section, strain diagram, and stress

diagram.

We will first give the usual treatment which is based upon

argument from first principles.

In accordance with our first assumption a vertical plane

section becomes an inclined plane section a.' b', the neutral

axis (N.A.) being at the point c.

Neutral /fxi's

—^ #-

rt

1

Fig. 107.—Reinforced Concrete Beams. Method 2.

What we first require to determine is the position of the

N.A.

Now A A.' and d d' represent the maximum strains in the

concrete and the steel respectively, and since the line a' b' is

assumed straight, these strains are proportional to their

distances from the neutral axis.

. We have
max. strain in concrete n

max. strain in steel

but max. strain in concrete

{d~n]

c

(7)

and max. strain in steel = ^
n _ c E,

•

"
•

(^ -"ti)
~

t
' E,

.
• . nt = mc{d — 7i)

m c

(8)



STRESSES IN BEAMS 221

, ntd-n =
m c

_t_

m c

n=- f (9)

d

1 + mc

This determines the distance from the N.A. when both c

and t are known ; but this will not always be the case. If the

reinforcing bars are of given size, then t will depend on that

size, and to determine the position of the neutral axis, we

proceed as follows : The stress diagram shows the distribution

of stress in the cross section. Since we have assumed the

stress proportional to the strain, the stress diagram for the

concrete will be a triangle. It will be seen therefore that the

mean compressive stress is -^, and since the compression area

is b n, we see that the total compressive stress is ^ cb n.

As the stress in the steel is assumed uniform, we get that

the total tensile stress in the steel is t A^, and if the beam is

subjected to pure bending these must be equal.

.-. tA, = ~ cbn (10)

c 2 A,
I.e. - = -,- .

t on

Comparing this with equation (8) we get

2 A, n
b n m{d — n)

.'.bn^ = 2mA,{d-n) (11)

.-. bn^ = 2mAyd — 2'mA^n
.'

. b 71^ + 2 m A, . n — 2 m A., d = 0.

The real solution of the quadratic equation gives

»-6^{-^W(^ + ^a)} (-)
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Since all the quantities in this expression are given, this

fixes the position of the neutral axis.

We may write this

n _mA, r / ~2hd_ A
d bd iV ^ mA, J

i.e.
n
d ^ ''-

= r mu 1+^ -

r m
= Wm^ r^ + 2 mr — in r

For m = 15. This gives

r =

•007

•010

•015

•020

n
d ^ ''^

•365

•417

•483

•530

1

(13)

These values are plotted on Fig. 108.

Moment of Resistance.—We can now find comparatively

simply the moment of resistance. The resultant compression

acts at the centre of gravity of its triangle.

Therefore the distance between the resultant compressions

and tensions is d — q-

.•. If C and T represent these resultant compressions and

tensions, we have that the moment of the couple due to the

resisting stresses, which is called the moment of resistance,

is given by

MR ^c(d - ^^

= ^c69^((^-|) (14)

or, MR = T(d - !?

= ^A,(cZ-|) (15)

And this moment of resistance must be equal to the maximum

bending moment for the loading.
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Fig. 108.—Rectangular Reinforced Concrete Beams.
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Numerical Example.—Take the same section as worked by

the previous jormula {see Fig. 106) ; and take c = 500 lbs.

per in.

2

Then equation (12) gives

_ 1-44 X 15 f /,"72 X 6 X 10 ,)""-
6 W^+ 1-44 X 15 ~^i

= 5*61 inches.

cZ - 71 = 10 - 5-61 = 4-39 inches.

Then M.R. or safe B.M. considering the concrete is equal to

500 X 6 -^^1 f. on ,

2^ „.l . „—2 X 0-61 4-39 + „5'61 m. lbs.

= "^'^- X 5-61 X 8-13 = 5,700 ft. lbs. nearly.

Comparing this with the safe B.M. by the first method we see

that the present is more than three times as much.

Stress in steel is then equal to y-^---

A, (^ - 3

5700 X 12 _^„ „ . ,

= 1-44 X 8-13 = ^'^^^^'-P"'^^'^

Assuming a span of 10 ft., the max. B.M. if the load is

W X 10
uniformly distributed is „ ft. lbs.

W X 10
••• ^—"^-^ = 5700 .-. W - 4560 lbs.

This includes the weight of the beam, which is roughly

10 X 12 X 6 ic,r. lU r.-A 11

TXi X 150 lbs. = 7oO lbs.
144

.
•

. Safe load uniformly distributed = 4,560 — 750

= 3,810 lbs.

It will be seen from the stress in the steel that the area of

reinforcement is more than it need have been. By combining

equations (9) and (10) we could have found the value of A, to

give the stress in the steel, say 16,000 lbs. per sq. in., when the

compressive stress in the concrete is 500 lbs. per sq. in.
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The above formula gives results which are in fairly good

agreement with tests, and is the one most largely used in

practice.

Alternative Treatment for Straight-line, No-Ten-
sion Method.—The following treatment follows more nearly

the ordinary method of dealing with beams than the above,

but it is not nearly so often used in this country. We shall,

however, find it very useful in the case of beams other than

rectangular ones with tension reinforcement only and so we

give it here; its xalue has been scarcely sufficiently ap-

FiG. 109.
«

predated. Fig. 109 shows the section of the beam and

also the equivalent section.

We find the position of the neutral axis for the equivalent

section by the rule given on p. 196 that the total first moment

of the cross section of the beam about the N.A. is zero.

71
.' . b n X j^

= 1st moment of compression area about N.A.

— mAt{d — %) = 1st moment of equivalent tension area

about N.A.

b n^
•'• 2^ mA,{d — n) =0 (15)

OT bn^ -i-2 7nA,n -2m A, d = [cf . p. 221] . . (12)

This is the same relation as before.

Q

I
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Equivalent moment of Inertia of the section

= Ik = o + m A^ {d — n)^

Iv 71= o + o {d — n) [from 15 above]

h 71^ [ J 71

^ 2 V^-3

Now M = ^ ^^ (15a)
71

^ '

[compare ordinary bending formula p 197]

=^cb7i^ld— „
j

' ~2n

-lcnb(d-'^') (10)

This agrees exactly with our previous result.

Considering the stress on the reinforcement

(156)M =
m {d - 71)

c t

71 7n {d - 71)

71 1
"'

d
~

t '

1
7n c

as before.

This is used if A^ is not given.

Case in which Stresses are given and Area of Steel

has to be found.

In the case we have n^ ^
1+ '

w c

Suppose for instance t ^ 16,000 and c -^ 600 and ?n = 15

1 ' _ ^^ _ .Oft
^1
~

16,000 ~ 25
"^ 600 X 15

.-. n = -36 cZ.
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Then from equation 10 we can calculate the necessary area

of reinforcement by the relation

K _ch n

K en. 600 X -36 ^.^^^^
' ' hd 2t 2 X 16,000

'

In this case the moments of resistance given by equations

(14) and (15) will be equal and

^. -^ 600 6 X -36 ^(6^ - -12 d)
M.R. =

2

.-. SafeB.M. = 95 6^^2

The coefficient 95 is called the resistance modulus and

can be plotted in very convenient form as in Fig. 109. These

curves may be likened to the tables of section moduli for steel

sections.

Numerical Example.—A reinforced concrete beam is

required to carry a bending moment of 240,000 in. lbs. Design

the section for stresses c = 600, t = 16,000, assuming that the

breadth of the beam is 10 inches.

By equation {U) d = ^ ^^-^

240,000

M 95 X 10

= 15*9 inches.

.-. A- ^ -00675
a

A, = -00675 X 15-9 x 10

= 1*07 sq. inches.

Adopt 2 — J"' bars [giving an area 1-2].

Third Method—General No-terision Method.—In this

method we will, as before, assume that all the tensile stress is

taken by the steel, but we will assume that the stress-strain

curve for concrete is not straight but some other curve.
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In this way we get the stress diagram, Fig. 110, from the

strain diagram.

Suppose that its area = k . c . ii and that its centroid is at

distance y from the top.

Then, as in equations (8), (9) we get

{d — n) m .c
n —

. n
d

1 + mc

/. »~

A

n

d
,

d- r.

cL,

------- -•-'-

r

Fig. 110.—Reinforced Concrete Beams. Methods.

Now, since the total compressive stress must be equal to the

total tensile stress, we have

tAj = khnc (16)

{d — n) m A^

k n

.
•

. kh 11^ ^ m A^{d — n)

.'
. k b 71^ -{- m Aj 71 — m Aj d

A^m ( ^ ^

4:dkb '\

'' ^ 2X6W ^ + m A, ~ ^/

or.
d

r TTi (

2l\ r m J

(H)

(18)

(19)

Then moment of resistance

= M.R. =tA,{d-y) for tension (20)

= kb 71 c {d — y) for compression . . (21)
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Numerical Example with Stress-strain Curve Para-

bola.—Take the section that we have worked for the

previous formulae. (See Fig. 106.)

If the stress-strain curve is a parabola tangential at the

compression edge we have

2

3ri

» frko mTTon cr^/^'firk'n 'w — ^ j / 1 1

.

6
. tilt; glVCll OCOulUll fi — jj

1
A / X 1 1 ;? 1 ,AA

2.-3.6
,3

= 5-12"

.-. d -n = 10 - 5-12 = 4-88

Safe M.R. for concrete

= 1 X 6 X 5-12 X 500 (4-88 -f 3-20) in. lbs.

= 3 X
j2

X 5'12 X 500 X 8-08 ft. lbs.

}

=: 6,900 ft. lbs. nearly

Then stress in reinforcement

6,900 X 12 H TOAiu=
' = r44->^^ir8 = ^'^^^ ^^'- P^^ ^^- ^^-

It will be seen that this method gives higher values still for

the safe bending moments. The stress-strain curve for con-

crete, although nearly parabolic, would not have the vertex of

the parabola at a stress of 500 lbs. per sq. in.

From the above we think that it should be clear that there

is not much difficulty in finding the stress in reinforced concrete

beams so long as we know accurately the properties of the

concrete, and are clear as to what assumptions we are making.

Reinforced Concrete T Beams.—Reinforced concrete

floors usually consist of reinforced slabs with reinforced

beams at definite intervals in a longitudinal direction, the

whole being monolithic. Fig. Ill shows a section of such a

floor, which may be regarded as a number of T beams. The
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reinforcing bars a in a transverse direction in the slabs

are arranged as shown to take the tension at the top

where the bending moment reverses, due to the slabs being

continuous.

It is usual to take the effective breadth of the flanges of the

T beams as less than B—J to | B—because the concrete be-

tween the beams acts as a short beam in a direction at right

angles, and so the centre portion is comparatively highly

stressed for this reason.

We will now consider the stress in the beam, adopting the

no-tension, straight-line method.

Case 1. If d, > n we get the same rules as given in method

(2) for rectangular beams, 6, being substituted for h.

Fig. 111.

Case 2. If 6?^ <[ ?^ we proceed as follows

—

As before we have from a consideration of the strain diagram

{d — n) m c •

n =

n =

t

d

m c

Now consider the total stress diagram, Fig. 112, i.e. hori-

zontal lengths of compression figure = compressive stress per

sq. in. X breadth of beam.

Now total compressive stress on the section

= C = area (k d h — h f g)

c 6, n (6, — b,)XX
- "2~~

2 ^ w

C
21

6s n
{b. -b,)x^\

n J

But C = T = ^ A,
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{bs -b,.)x^\
. ^ A^ = ^\b,n

n

231

(22)

2 A.c _
{b,n — -~ — -

I n J

2 A^m {d — n)
n =

\
b,n — {bs -b,)x^]

n J

n^ 0, n — ^-" '-—'
] = 2 A^m{d — n)

nih, n + 2d, {b, - b,) + ^ {h, .

- 5,)| = 2 A,m {d - n)
V ft J

i.e.b^n^ + 2n [A, m + d, {b, - b,\ =^2 A,md ^ [b,- b,) d,^ (23)

A'

4

^4— •*"
I /

-* AjC-

TV

/9

Fig. 112.—^Reinforced T Beams.

From this quadratic the value of n can be found.

Then if the centroid of the compressive stress-strain curve

area is at distance a from the centre of reinforcement

Safe B.M. = C x «

Let the centroid of the compressive stress-strain diagram be

at distance y from the top.

Now this centroid is the same as the centre of pressure on a

similar body subjected to fluid pressure, the N.A. being the

water line. In this case it is easily shown that

2nd Mt. of area above N.A. about top.
y

1st Mt. of area above N.A. about top.

b,n^ {b, — b,.) x^
~3~ "^

3

6., n^ {bs — b,) x^ * *

'

'~Y "^ "~2
(24)

This enables us to find a.
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Many \vriters neglect the rib, i.e. neglect the portion f e h

of the stress diagram, and others further assume y = '4: d,

(the extreme limits between which y must lie are ' and ~\.

This avoids the quadratic equation and makes the calculation

much easier.

We may put h,. = in equation (23)

A

A' d

f
jd

TV

/9

Fig. 112a.

We then get at once

n
2 m A, ^ + hs ds^

2 {m A, + b, dS

a then becomes equal to d —o ( n /^ 3 \ 2 n — ds

Considering compression we have

Safe bending moment = C . a

(25)

=
I j^ d,

(2" - '^4
{d - i- (l^ -^f-)] (26)

2 n I 3\2n — ds /J ^ '

Alternative Treatment.—Applying the method of the
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equivalent section we have (Fig. 113) a much simpler

treatment.

Moment of equivalent section about N.A. =

n'
i.e. 6.,^ — (6, — h,)

{n - d,f m A^{d — n)

This gives the same quadratic as equation (23)

I = ^|! _ (b^^MilLSzd^ + mAAd-n)K... (27)

neglecting the rib we should have

N

u

t^

H

d.-'TV

Fig. 113.—^Reinforced Concrete T Beams.

This gives as before

n = 2 m At ^ -\-h, d^

2 {b, ds + m A,)

Having found I^ we have as before

cl
Safe B.M. = — for concrete

n

m {d — n)
for reinforcement
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XuMERiCAL Example of T Beam.—Take the T beam of

section shown in Fig. 114. In this case we Avill not assume the

area of reinforcement (A,) to be given, but will calculate it so

as to give

c = 600 lbs. -per sq. in.

t = 6000 lbs. per sq. in.

m = 15

d

m c

15

Then we have n =
1 +

1 +
6000

= 5-4 ins.

15 + 600

-^ ^ »^

1

/' 3

— /o' —
'

Fig. 114.

.
•. From equation (22)

16,000A, = ^00/5.4^^g_38xl:9:|
2, I 5*4 J

.'. A^ = 4'38 sq. ins.

.•. Adopt, say, 3 bars If'^' diameter.

Then working by the equivalent moment of Inertia

I, = 15 X 4-49 X 9-62 + 48 x \^ - ^^ /<i'9'

= 8,641

.-. Safe B.M. = ^^^ ^,^'^^^ = 960,000 in. lbs.
5'4

For other cases of reinforced concrete beams the reader is
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referred to the author's Elementary Principles of Reinforced

Concrete Construction (Scott Greenwood & Son, London).

COMBINED BENDING AND DIRECT STRESSES

If the loadmg on a beam is such as to cause a direct stress

in addition to bending stresses, then the resultant stresses

across the section will be obtained by adding together the

separate stresses. Let b d, Fig. 115, represent the elevation

of a section of a beam, c being the centroid of the section

Fig. 115.

whose area is A and whose compression and tensile moduli

are Z,. and Z^, d being the compression side and b the tension

side.

Then, if the direct force is a thrust Q, there will be a uniform

compression stress of -^ over the section. If the bending

moment is equal to M, the maximum compression and tensile

M M
stresses due to bending are equal respectively to ^y and ^

.

Therefore we have

Resultant maximum compressive stress = /, = ^ + ^ . . (1)

Resultant maximum tensile stress = /^ = ^ — ^ . . (2)

The distribution of the combined stresses across the section
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is then as shown in Fig. 115, fh representing the maximum
compressive stress, and g e the maximum tensile stress. The

neutral axis then is at the point n, where the stress is zero.

If the direct force is a pull T instead of a thrust Q, we have

Resultant maximum tensile stress = f.

Resultant maximum compressive stress

T M

M T
''

Z,. A ^
'

Stresses obtained from Line of Pressure.—If the

resultant force across the cross section is R, Fig. 116, and the

Q

B

^ 7

D ^^

^^r

' Lmt

Fig. 116.

line of pressure cuts d b produced in l, the load point, then

resolving R along and perpendicular to the cross section we get

a shearing force S and a thrust Q.

In this case M = QxcL = Qxa;
and if c D ^ d, and c b = d,

I _ AF
d, dc

1 _ AF
dt df

where k is the radius of gyration about a line through the

centroid parallel to the neutral axis.

.-. We have from equations (1) and (2)

we have Z.=:

/c
Q ,

Q .x d,

A~^ AF"
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= 1(^ + ^0 (')

, ^ Q, .xd, _ Q
''~ AF A

Q^fxd, \

= AKk- -^ ^^^

Or if the resultant normal component is a pull T, equations

(3) and (4) become

A = xfi+#) (7)AV Ic^

A = ^f#-i) (8)

Position of the Neutral Axis.—The position of the

neutral axis n can be found as follows

—

Let it be at distance y from c.

Then stress due to bending = j

_ Q^^
AF

At this point the stress due to bending is exactly equal to

the direct stress,

Q^xy ^ Q
• • A^2- A
or a;?/ = P <

k^

The following numerical examples will make the question of

combined direct and bending stresses clear ; further examples

will occur in the course of the book.

Numerical Examples.— (1) A tension rod is a flat bar 8

inches wide and 1 inch thick : owing to bad fitting, the line of pull,

instead of passing along the geometrical axis of the bar, lies i of an

inch to one side of it, in the plane ivhich bisects the thickness of

the rod. Determine the maximum and minimum stresses set up

in this bar in a section at right aiigles to the line of pull when the

pull is 36 tons.
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Show by a sketch the actual distribution of the stress across the

section. {B.Sc. Loud.)

In this case the direct stress = -. = „—, =4-5 tons per sq .in.A 8 X 1 1 M

The B.M. is equal to T x x, and the second moment is equal to

1_)^ 83 _ 128

12 " 3

,, _ I _ 128 1 _ 16

••^"~A~ 3 ^8~3

= 4-5(l+^x4xfg)

3= 4*5 X 1 , ,^
= 5*344 tons jjer sq. in.

T /xd,

-Mm-'
13= — 4"5 X 1 /-

"= ~ 3'6o6 tons per sq. in.

The distribution of the stress is then as shown in Fig. 117.

(2) A hollow circular column has a projecting bracket on which

a load of 1 ton rests. The centre of this load is 2 feet from the

centre of the column. External diameter of column is 10 inches,

and thickness 1 inch. What is the maximum compression

stress? [A.M.I.C.E.)

In this case A -
^

(10=^ - 8^) = 28*28

I = J^ (10* - 8*) = 289-8 in. units
64 '

,., 289" 8 1/i o-
• •

^^" = 28-28 = ^^^ ^^

. / _ Q /^i ,

^' ^'•'

1 / 24 X 5
+

28-28 V 10-25
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9" -L

56Tons.

^

,4
3-6561

®

B

5-344-

i 56 Tons

'^''^^^©

3-33

a.5Tons

Fig. 117.—Combined Bending and Direct Stress.
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12-7

, _Qfxdt

= '379 ton per sq. in.
28-28

The distance of the N.A. from the centre of the section is

then given by 2/ = —

= -427 m.
24

The distribution of stresses is then as shown in Fig. 117.

(3) A built-up crane jib is in the form of a curved girder^ and a

Jiorizontal section near the base is a hollow rectangle. The out-

side dimensions of this rectangle are 54 and 36 inches, and the

larger and shorter sides are 1 inch and 2 inches thick respectively.

Find the maximum tensile and compressive stresses induced in

the material when a load of 25 tons is suspended from the end of

the crane, the horizontal distance of the load from the centre of

the section being 50 feet. Show by a sketch how the intensity

of stress varies across the section. {B.Sc. Lond.)

It will be noted that in this question no means are given to

connect the plates of the rectangle, such means being necessarj^

in practice.

Proceeding as in the previous example, we see that

A = 2 (72) + 1 (100) - 244 sq. ins.

. 36 X 543 34 X 503

^ ~ 12 12

.^ = il^« = 484-5

25 / 600 X 27

118,200

244 V 484-5

25
== ^.. X 34-5 = 3*62 tons per sq. in.

244

Fig. 116 shows the manner in which the stresses are dis-

tributed.
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* BEAMS WITH OBLIQUE LOADING

In obtaining our formulae for the stresses in beams, we

assumed that " the section of the beam is symmetrical about

an axis through the centroid of the cross section parallel to

the plane in which bending occurs."

We saw in dealing with moments of inertia, or second

moments, that an axis of symmetry is called a principal axis

of the section. Our assumption, therefore, is equivalent to

saying that one of the principal axes lies in the plane of loading

of the beam.

When such is not the case the loading is said to be oblique

and we proceed as follows or in the alternative method given

on p. 244. Draw the momental ellipse for the beam, x x and

Y Y (Fig. 118) being the principal axes, and let z z be the trace

of the plane of loading. Then the neutral axis will be the

diameter of the ellipse conjugate to the plane of loading. The

plane of bending will be at right angles to the neutral axis.

This is proved as follows

—

Consider an element of area at the point p of a section

(Fig. 118), and let p n and p m be drawn perpendicular to the

plane of loading and neutral axis respectively. Then the

intensity of stress at p is proportional to p m, the distance

from the neutral axis, so that if c is a constant we may write

/p = c X P M.

.
•

. The moment of the load over the area about z z is equal

to
/i. X a X P N = C X a X P M X P N.

Now since z z is the plane of loading, the moment of all the

stresses over the section about z z must be zero, since the

couple to the stresses must also be in plane z z.

.•.2/pXaXPN=0
i.e. 2 c X a X P M X P N =

^. e. 2 a . p M X P N =

But S a . p M . p N is what we have previously called the pro-

duct moment, and it can be shown that if the product moment
of an area about two lines is equal to zero, such lines must be

conjugate diameters of an ellipse.

R
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Therefore to find the neutral axis draw a chord the diameter

conjugate to z z. To do this draw a chord parallel to z z and

bisect it and join c to the point of bisection.

Xow suppose the radius of gjTation about the N.A. is ^,, ,.,

Fig. 118.—Stresses due to Oblique Loading.

and dc and dt are the distances from the extreme points of the

section to the compression and tension sides respectivel}'.

Then the moduli are
\h ^ T

~d^.
" ~ X

dt dt
Z,
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Then the maximum compression and tension stresses are

obtained by the relations

/=-
''

Z,,

^' " z,

Numerical Example.—A 5'' x 3"" x i'' unequal angle section

is loaded on the small side with the long leg downward. Find

the safe bending moment for a stress of 7 tons per square inch.

From the tables of standard sections we see that for this

section the maximum and minimum values of the radius of

gyration are 1*69 and '65 inches, the principal axes being

at 19i° to the vertical line z z, which is the trace of the plane

of loading.

The momental ellipse is now drawn (to twice the scale in

Fig. 118), the major axis being equal to twice ^,,,, and the

minor axis equal to twice k,j,j.

By the construction previously given we get the diameter of

the ellipse conjugate to z z. This gives the neutral axis. To

obtain k^.^ draw a tangent to the ellipse parallel to the N.A.

and draw a line from c perpendicular to this axis. This will

be found to be "88 inch. Now measure the distances d,- df

from the neutral axis to the extreme fibres of the section and

these will be found to be 1*80 and 1*83 inches respectively.

The area of the section is 3" 75 sq. ins. Therefore we see

^ 3-75 X -882
Z,. = tTqa = 1 dI m. units

^ 3-75 X -882
.

Ztf = = 1 59 m. units
i'oo

.
' . If safe stress =

f,-
=

ft
= ^ tons per square inch

Safe B.M. - 7 x 159 = 1113in.tons (1)

If we had taken the N.A. at right angles to the plane of

loading, as in the case of a symmetrical beam, we should have

had k = 1-60, cZ, = 1*73, and d, = 327.
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This would give Z,. = ^'^A^^^p^' = 5-46 in. units

y 3-75 X 1-602
A = 0.07 — ^'^^ ^^' units

.•
. Safe B.M. = 7 x 2-94 = 20;58 in. tons (2)

(In finding the safe B.M. we, of course, consider only the

least modulus if the working stresses are the same in tension

and compression.)

We see from comparing results (I) and (2) that a very large

error is made by failing to find the true neutral axis. This

error is very commonly made by practical designers.

A similar allowance should be made for symmetrical sections

where one of the principal axes does not coincide with the

plane of loading. Such cases occur in practice in plate girders

where the wind is blowing on one side while the load is crossing,

and in sloping bridges where the cross girders are placed with

their flanges at the same inclination as the main girders.

* Alternative Treatment for Oblique Loading*.—In

some cases it is much simpler to proceed by what is known as

the " principle of superposition.''

Let X be the angle of inclination of the plane of loading to

the principal axis and let x, y be the co-ordinates referred to

the principal axes of the point at which the stress is required.

Then / =^1^ + McosX.^
^^^

We shall show later that this comes to a simple result in a

common case.

Let N N (Fig. 119) be the neutral axis and let n be the

perpendicular distance of a point P from it ; then /^,
= stress

at p = m .n where m is a constant.

Then M sin X = component of M about xx = "%
f .a .y

= '^m .ny a {!)

but w^ps =PR — SR = PR — QT=i/ cos a — a: sin a

.
•

. M sin k = m cos a 2 y^a — m sin a% xy . a (2)

hut^ X y . a = product moment about principal axes =
.

•
. M sin A = m cos a 2 2/^ a = m cos a I^^ (3\
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Similarly M cos \ = component of M about y y

= '^
f a .X

= S mnx . a

= %m {y cos a — X sin a) x . a

= m cos a^xy a — m sin a^x"^ a

Fig. 119.—Oblique Loading of Beams.

= o — m sin a I,^.

= — m sin a I^y

Dividing (3) by (4)

tan X = -
-^-^t'^-i-

J.
~ lyv tan A,

z. e. cot a = ^J

(4)
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This enables us to calculate the position of the neutral axis.

T^ ,^. 1 ... M sin X — M cos X
From (3) and (4) m = ^ — = -x •

i^x cos a 1,^. sm a

.'
. f = m n = m [y cos a — a' sin a)

= my cos a — mx sin a

_ M sin X y cos a / — M cos X x sin a

I^x cos a \ I^j. sin a

M sin A. . 1/ ,
M cos X .x ,»,

=—i~- + ~i-— ('^
-XX •-VT

Numerical Exa]viple.—Take, for instance, the obliquely

loaded column shown in Fig. 120. Loads of 30 and 40 tons

respectively are transmitted at a and B, the resultant of which is

a load of 70 tons acting at d.

The following are the properties of the section

—

A = 28-59 sq. ins.

k^^ = 4*45 ins.

k^^ = 3' 39 ins.

Measurement gives z o x = A = 110"4°

4 X 5*5
M sin A. = 70 X o D sin A = 70 x e o = 70 x —_—

= 220 in. tons

(This is the same as 40 x o b)

M cos A. = 70 X o D cos X = - 70 x d e = 70 x v x 2-72

= — 81*6 in. tons

(This is the same as 30 x o a)

The maximum stress occurs at the top left-hand corner for

which y = 5'5, X = — 6 ins.

,,,,., , 220 X 5-5
,

81-6 x 6
.

•

.
Max. bendmg stress = / = 28-59~^^4^2 + 28o9 x 3392

= 214 -f 1-49

= 3'63 tons per sq. in,

70
Direct stress = ^^^^^ = 245 tons per sq. in.

.-. combined stress = 608 tons per sq. in.
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Simplified Result in Special Case.—In the case, as the

above, where the oblique loading is caused by two bending

moments in the principal axes, M sin X and M cos X will be

the separate bending moments in the two axes and we thus

get the following rule

—

/0^x3iK^^'2//f.

Calculate the stresses at any point for each bending moment

separately about the corresponding neutral axes ; then the total

stress for the two bending moments will be the sum of the separate

stresses.



CHAPTER IX

DEFLECTIONS OF BEAMS

We have found the relation which exists between the

stresses in a beam and the bending moment; we now want

to find the relation between the deflections and the bending

moment.

Let c c^ Fig. 121, represent a short length of the centroid

line of a beam, the original curvature of which was negligible,

and which has become bent to a radius of curvature R. This

radius R is that which agrees with the very short length c c',

and is not the same all along the beam. If the assumptions

that we previously made with regard to the stresses in beams

still hold, B r and a e are straight lines after bending, and they

meet at o, the centre of curvature of c c'. Draw b' f' parallel

to A E. Now consider the segments b b' c' and c c' o.

Since $ is very small —.—, = -

^ B c CO

B b' b' c' d
or J

= = ^^ (1)

But A b' represents the length of a b before bending occurs

B b' increase in length
" ' A b' original length

But A b' = c c'

= strain in a b

B b' /
,* We have —, = strain in ab = ~, where / is the

c c E .

stress along a B.

248
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.*. Putting this in equation (1) we have

/ _ ^
E ~ R

E
R

249

or 4
d

But we have already shown that

d

M
or

M =

/

d

.
•

. combining these results we have

J _ M _ E
cf
~

I
~ R

(2)

(3)

Fig. 121.

This is the complete relation between the stresses in beams,

the bending moment, and the radius of curvature. In practice

we do not so much want to know the radius of curvature at

various points of a beam, but we require the deflection, and

so we will next find the relation between radius of curvature

and deflection, and then find the deflections for various kinds

of loading.

Our investigation now divides itself into two parts according

as we consider it from the graphical or the mathematical

standpoint, and we will deal with it in this order.
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INVESTIGATION FROM GRAPHICAL STANDPOINT*

Preliminary Note on Curvature.—Let a b (Fig. 122)

represent any curve, and let p p^ be points on it at a short

distance s apart. Draw tangents p Q, p^ q^ to meet any base

line making angles and 0-^ with it. and draw lines perpen-

dicular to the tangents, then the point of intersection of these

perpendiculars is the centre of curvature of the short arc p Pj.

Fig. 122.

Then the angle subtended by p p^ at the centre will be

equal to {0 — 6-^).

.
•

. if R is the radius of curvature R x (^ — ^j) = s.

s
R =

e - 0^

or
^

- 0^ _ 1

R

1 .

Then - is called the curvature at the given point, or rather
R

A A

the curvature is the value which ~ approaches as 5

gets smaller and smaller.

Mohr's Theorem. — Now imagine a b to be a cable

loaded vertically in any manner, and let the load between

* The reader may take either the mathematical or the graphical

reasoning. Each is complete in itself.
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/ the points p, p^ be equal to w. Then it follows from

Sthe laws of graphic statics that the cable takes up the

shape of the link polygon, for the load system on it,

(drawn with a polar distance equal to the horizontal pull

in the cable.

Now let the tension in the cable at the points P, p^ be T, T^.

Then the horizontal components of these tensions must be

equal, since there is no horizontal force on the cable ; let this

horizontal component be H; the difference between the

vertical components of the tensions must be equal to w, the

load between the points.

.
•

. We have H = T cos ^ = T^ cos 6^

w; = Ti sin ^1 - T sin

H sin 6^ H sin
i.e.w= ^ ^cos Oi cos 6

= H (tan ^1 - tan 0)

Now if ^1 and are small, as they will be when considering

beams, we may say tan O^ = ^^ and tan 0=^0
.'. We have w = H {0^ - 0)

w _ H (^1 - 0)

' ' s s

_ H

B>it - = load per unit length of the cable = say p.

H

-R = S (4'

Now return to the case of the beam

1^_ M
R ~ EI
1 M

From equation (3) ^ = ^ j (5)

The quantity E x I depends solely on the shape and

material of the beam, and is called the " flexural rigidity."

Then if this flexural rigidity is constant throughout the span, by
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comparing statement A and equations (4) and (5) we see that

:

A loaded beam takes up the same shape as an imaginary cable of

the same span which is loaded with the bending moment curve on

the beam, and subjected to a horizontal pull equal to the flexural

rigidity (EI).

This is Mohr's Theorem, and the deflected form of the

beam is called the elastic line of the beam. We see, therefore,

that to obtain the elastic line of a beam our procedure is as

follows

—

(1) Draw the bending moment curve for the beam.

(2) Divide this curve up into narrow vertical strips, and set

down mid-ordinates on a vector line, and take a polar distance

equal to the flexural rigidity (EI).

(3) Draw the link polygon for this vector polygon, and

reduce it to a horizontal base, then this link polygon gives the

elastic line to a scale which we shall determine later.

For the present we will assume that the section of the beam

is uniform along its length, or rather that the flexural rigidity

is constant. We shall see later how to proceed when such is

not the case.

Standard Gases of Deflections. — In certain special

cases we can calculate the maximum deflections by reasoning

based on Mohr's Theorem, and we will deal with such cases

now (Fig. 123).

(1) Simply Supported Beam with Central Load W.—
Let AB represent a simply supported beam of span I with a

central load W.

Then adb is the B.M. diagram, the maximum ordinate

being equal to - . Let A^ c^ B^ be the elastic line of the beam

;

then, according to Mohr's Theorem, the shape of this elastic

line is the same as that of an imaginary cable of the same span

loaded with the B.M. curve and subjected to a horizontal pull

equal to the flexural rigidity.

Now consider the stability of one half of this cable. It is

kept in equilibrium by three forces : the horizontal pull H
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at the point c^ ; the resultant load P on half the cable ; and

the tension T at the point A^.

Take moments about the point Ai, then we have

H X 8 - P X ?/

'
' H

In this case P = area of one-half of B.M. diagram

_l I Wl _ WJ^~ 2 ' 2 ^ "4 ' ~ 16

y = distance of centroid of shaded triangle from a

)^P

^^ 1 ^^
T^—

j[
""""^

ITP'1

Fig. 123.—Deflections of simply supported Beams.

I

~ 3

H = EI
WP "I

• ^ " 16^ 3. EI
WP

~ 48 E 1

(2) Simply Supported Beam with Uniform Load.—Let

AB represent a simply supported beam of span I, with a

uniformly distributed load W.
The B.M. diagram is a parabola, the height being equal to

Wl
'^-. Then considering the stability of half the imaginary

cable, we have as before

8 =-
P X «/

H
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In this case P = area of one-half of B.M. diagram

12 W Z _ WJ2
~ 2 ' 3 8 ~ 24

51

H = EI
. WZ2 51 5WP

•

24 ' 16 E I 384 E 1

•(3) Cantilever with ax Isolated Load not at Free

End.—Let a cantilever of sj)an l (Fig. 124) carr3'ing a load W
at a pomt at distance I from the fixed end a.

Then the B.M. diagram is a triangle, a d being equal to

W /, Ai B^ represents the elastic line of the beam and the

imaginary cable. In this case we must imagine the load as

acting upwards.

The cable is horizontal at a^.

Take moments round b^, then we have as before

H X S = P X 2/

. . P xy
. . 6 == jj-^

In this case P == area of B.M. curve a c d

Wl.l WP
2 2

I

2/ = L-3

H = EI

• ^ ^^^' (t
I \

In this case it should be noted that the portion of the beam

beyond the load is straight.

(4) Cantilever ^\^TH an Isolated Load at Free End.—
This is the same as the previous case when Z = l.

WP / L
.

' . o = 2EIV 3

Wl3
3EI
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(5) Cantilever with Uniform Load from Fixed End

TO A Point before the Free End.—Let a b be a cantilever

on span L, and let a load W be uniformly distributed from a to

a point c, I being the length of a c.

Then as before

8 = H
In this case P = area of B.M. curve a c d

2
I = W?2

6

Fig. 124.—Deflections of Cantilevers.

y L — I

H = EI
WZ2 I^-46EI

(6) Cantilever with Uniform Load over Whole
Length.—This is the same as the previous case when ^ = l.

8=E^(L6EI
Wl2 3l

* 4

Wl^
6EI 4 8E

I

* (7) Simply supported Beam with Isolated Load

ANYWHERE.—The reasoning in this case is somewhat long, but

should not otherwise present any great difficulties.
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The first important point to notice is that the maximum
deflection will not occur under the load, so that, as it is the

maximum deflection that we nearly always require, it is of

very little use to find the deflection directly under the load as

is commonly done.

We have seen that the ordinate of the bending moment

curve or link polygon of a beam is a maximum where the shear

is zero, so that treating the B.M. curve as a load on the beam,

the deflection will be a maximum where the shear due to this

load is zero.

Let a loadW be placed at a point c on a beam A b of span I,

Fig. 125, c being at distances a, b from A and B. Then a e B

W ab
is the B.M. diagram, c e being equal to —

j
—

. The total

load represented by this B.M. diagram treated as a load will

x.t- .
Wa6 I Wab

be equal to the area of the A a e b = , x o ^ ~ 2 *

It acts at the centroid G of the A.
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2
The vertical through this point g is at distance

:;^
r c

o

from c, F being the mid-point of the beam, so that the

distance of this centroid from the end b is equal to

, ,
2 / / \ lb (l + b)

^ + 3 V2 - ^) = 3 + 3 = ^3—
.

•
. The reaction at a due to this imaginary load is equal to

Total load {I + b) _ W ab {I + b)

1 ^ 3 ~ Tf ' 3

Now let the deflection be a maximum at the point d at

distance x from A.

Then the shear at this point is zero.

i.e. R, - I . K H =

Wab fl + b\ X Wbx
2/ V 3 / 2 I

a {I
+ b)

3
^

or ^ ^ V 3— ^^^

The maximum deflection S is then obtained by considering

the stability of the portion a-^ d of the imaginary cable.

Then we have as before 8
P-2/

H
In this case P = area a k h

y =

H =

8 =

Wbx X Wbx^
I 2

Wb.a{l + b)

Ql
2
3^^

21

Wab{l + b)

6Z

2 la {I + b)

3 V 3

EI
Wab{l + b) 2 jail + b) 1

6/ 3V 3 EI
W6 (a(l + b)Y
3EIZ I 3 J
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This can be put into somewhat simpler form for use by

putting
al. Then h = {\ - a)La

Then^ _ W(l -a) ^al {2 - a) l^
~ 3EI \ 3 j

^3~El(^-"M 3" /

if' (cfnafi^

Fig. 126.—Deflections of Beams.

* (8) Beam uniformly loaded from one End to the

Centre.

The B.M. diagram for this loading is given by the curve

D T G E (Fig. 126), the curve D t g being a parabola tangential

to the line e g.

We have first to find where this maximum deflection will

occur. We do this by the rule that the Maximum Bending

Moment in a beam occurs at the point where the shear is zero.

We will treat the diagram d g e therefore as the load on the

beam.

If E G be produced to h, the curve d t g will be a parabola
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tangential at G, and it is most convenient in the present j)ro-

blem to consider the B.M. diagram as made up of the difference

between the triangle D h e and the parabolic segment d g h.

The first step is to find the imaginary reaction R^, at e. To

do this we consider the area of the triangle as a force Pg acting

down its centre of gravity, which is at distance -^ from d.

Then Pg = area ofADHE = Jdh.de =

The area of the parabolic segment will be considered as an

upwardly acting force p^ passing through its centre of gravity

which will be at distance - from d.
o

Then P^ = area dtgh =Jhd.dk
_ wl^ I _wP
~ 3^>r8 * 2 ^ 48

To get the imaginary reaction R^. at e, take moments

about D.

Then

.-. R

p,
I

"3
pi-

= 1^. .1

'e
^

3

Pi

8

48

w
8 X 48

IwP
384 (1)

Suppose that the maximum defiection occurs at a point

N at distance x from the centre.

Then the imaginary shearing force S at this point =
Shear at n = R^ — area n q e + area Q t G

384 8 2 "^2 '3

_1 wP wl fP J
^\ wx^

~ 384 16U "^
' ^ "^

y ^ G~

7 wP wP wP X wlx^ wx^
384 64 16 16 ' 6

wP W X^ W P X wl x^
^ 384 "^ "6 l6 16"
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If this = 0, we have on dividmg through by . and re-

arranging the terms,

64: x^ - 24: xH - 24: xl' - P =0

'^(jf-^'(jf-^'&^' = '> (^>

This is a cubic equation that cannot be solved by direct

methods.

We must proceed by trial as follows

—

If X = 0. left-hand side, which we will call y = — I

If a- = l y ^ 064 - 24 - 24 - 1 = - 1-576

If .1- = -05 y = 008 - 06 - 12 - 1 = - -252

If X =04 y = 0041 - 038 - 96 - 1 = - 006

If the values of y are plotted against .v it will be found that

y = for X = '0406 approximately, and for all practical

purposes we may take x =04.
Having determined the point of maximum deflection, we

have next to calculate the value of the deflection S at this

point

.

We first find the imaginary Bending Moment ^M^ at the

point X

M^ = Re (9 -r x) -}- moment of section Q t g

— Moment of A q ^' e

""384 -^ ^*^
'

" ~ 2 ^ 3 ^ " 4

Wl .-AJs ^^^ ^'^^
-Q-- X 04 I X ^ X ^

= wl^ ;-00964 - -00001 - 00328;

= -00637 ivl^

M, 00637 wl^ '..,
•••^ = Ei=—EX- ^^^

As an interesting comparison, let us suppose that the ^^ hole

load were spread right over the span.

5 W P
Then 8 = ^„-, ^ ^ , according to the \\ell-known formula.

384 EI °
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In this case W = ^

5m;^4 _ -00651 wl"^
''' ~ 768 El ~" EI '" ^^

We see therefore that we shall only make a slight error^-

which is practically negligible considering the necessary devia-

tions from theoretical conditions which occur in practice—if

we treat for deflection purposes the present case as being the

same as for the same load spread over the whole span, re-

membering that the maximum deflection occurs at '54: I from

the unloaded end.

Graphical Construction for any Loading.—Let a c b

be the B.M. curve for any given load system. Divide the

base into a convenient number of equal parts and let e be

the length of each base segment. The number is such that

each piece of the B.M. diagram is approximately a rectangle.

Now set down the mid ordinates of each section diminished

in the ratio - on a vector line. These ordinates are diminished
n

in order to keep the vector diagram of a workable size.

Now let the space scale be V = x feet, and let the B.M.

scale be V = y foot tons. Then considering any section of

the B.M. diagram, say 2, 3, the area of this section is e x mid

ordinate. Therefore, on given scales, one inch in height of

mid ordinate, since the area of each segment is proportional

to the height of the mid ordinate, represents e x x x y square

ft. tons. Since each portion of the vector line is — of the
n

ordinates, the portion 2, 3 of the vector line represents the

area of its corresponding section of the B.M. diagram to a

scale V = n X e X X X y square ft. tons. Now calculate

the length of E I on this scale. This will be too large for

EI
practical use, so take a pole p at distance— , where r is some

convenient whole number. With this pole p, draw the link

polygon a' c' b\ then this is the elastic line of the beam for
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the given loading, or, more strictly speaking, a' c' b', when

reduced to a horizontal base, would give the elastic line.

The scale to which the deflections are to be read is then

obtained as follows

—

If the polar distance were taken equal to E I, the deflections

would be to the space scale 1^' = x feet, but as the polar dis-

. EI X
tance is , the deflections will be to a scale V =— feet. The

r r

following numerical example should clear up the difficulty

as to scale

—

Fig. 127.—Graphical Construction for Deflections.

Numerical Example.—^ 16'' x 6'' x 62 lb. rolled steel

joist of 24 ft. span carries a uniformly distributed load {in-

cluding its own weight) of 8 tons, and also an isolated load of

5 tons, at a point 6 ft. from the left-hand support. Find the

maximum deflection (Fig. 128).

In this case E = 12,500 tons per sq. inch.

I =- 725-7 inch units.

12,500 X 725-7
EI

144
= 62,980 sq. ft. tons.

First draw the B.M. diagrams for each of the loads, taking

as linear scale, say V = 4 ft., and for the B.M. scale, say

V = 20 ft. tons. Now divide the B.M. diagram into a con-

venient number of equal parts, say 12, and draw the mid
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ordinate of each part, treating these as force lines, then set

these ordinates down a vector line, 0, 1, 2, etc. . . 12 to a

reduced scale, say one-fourth for convenience.

Then 1 in. down the vector line represents
4 X 4 X 20

160 sq. ft. tons, because each base element is J in.

62,980

160
E I on this scale 373-9 ins.

Majc.Defn.^ '^^

Fig. 128.—Example on Deflections.

393'

7

This is obviously not convenient, so take —^x—

48

6'$6ins.

Then 1 in. on the link polygon represents „^ in. deflection.

The maximum ordinate of the link polygon will be found to

be '58 in.

.'. Maximum deflection = '58 x "8 = '46 in.

Allowance for Deviation of Cross Section. — The

cases up to the present have all been on the assumption that

the section is constant, or rather that the Moment of Inertia,

I, is the same all along the span. If such is not the case, the

deflection can be found accurately by first altering the B.M.

curve to make up for the variation in the section as follows

—

Suppose ABC (Fig. 129) is the B.M. curve on any beam
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A D B, and suppose that I„ is the maximum moment of inertia

or second moment of the section, this occurring at the point

D. Then take any point along the beam at which B.M. is x Y

X Y X I
and moment of inertia I^ and find x y^ so that x y^ ==—

^
"•

Do this for a number of points along the span, and join up

the points thus obtained, and we get the corrected B.M. curve

from which the deflections can be found by the construc-

tion given above. The value I,| is taken in obtaining the

expression E I for this construction.

Deflections of Girders of Uniform Strength and

Constant Depth.—If the cross section of a beam varies so

that the maximum stresses are constant along the span,

r --^Correofed B.M- C6(rve.

then the modulus of the section must vary in the same way

M .

as the B.M., and so the ratio y is constant. If the depth of

M
the girder is also constant, then the ratio -j- will also be

constant.

The corrected B.M. diagram will in this case be a rectangle,

and the deflection can be found by Mohr's theorem as

follows

—

As in the several previous cases we have

F.y
S = EI

In this case P will be equal to —^ and V =-7 since the curve

is a rectangle.

,
Ml2
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W L
In case of uniform loading M = -g—

• 64 E I

Wl
In case of a central load M = —r-

4

• ?i - ^^'
• 32 E I

Another simple proof of this relation will be found on p. 272.

Further numerical examples will be found at the conclusion

of this chapter.

DEFLECTIONS FROM MATHEMATICAL STANDPOINT
M 1

From equation (3) -p, ^ = t^

Now when R is great, as it will be in this case, we have

1 _ d^y

, d^y M
• dx'-~^l

'M d X

ET
'^idx

.
-~- = slope of beam = / -

r r
y = deflection of beam = / / -

EI
Now consider the following standard cases (see Figs. 123,

124).

(1) Simply Supported Beam with Central Load W.

—

Consider a point Q at distance x from the centre of the beam.

ThenM = ^ (^-^

W/^ \ ^Ix Wa;2 ,

^ ?r— X
2\2 J 4 4/

W I x'^ W X
8 12

— + Ci a: + c
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The slope is zero when x = .-. Cy = 0, and the deflection

is zero when X = I

±2 •

WP
' ' 32

WP
^

96 +^^ = ^

C2 =
- W
48

P

Then maximum deflection. occurs when x =

Then S = C2

EI
WP*

~ 48 EI

(2) Simply Supported Beam with Uniform Load.—
Taking a point as before at distance x from the centre, we

have

. M==f(J-.)-|(l-.>

- ^f^^ -~ 2 Vi '

/ ,^ , wP X wx^ ,Mdx ^ —g
6~ ^^

+ Cg

as before c^ =

wP x^ w x^
^ "16 2^

= when x =

• _ _u)P wP
•

"
•
~ ^2 - g4 3g4

" ^
I 384 J

384

Then the maximum deflection occurs when x =
c. 5wP 5 W P

8 = EI ~ 384 EI 384 EI

* The minus sign indicates only that the deflection is downward, and

need not be employed in calculations.
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(3) Cantilever with an Isolated Load not at Free

End.—Take a point q at distance x from load.

M = - Wx
.-. Slope X EI = fMdx

Wx^
2

When x = — I, slope =
-WP

— WP
.

•
. E I X slope under load =

^
—

Mdx

Wx^ WPx
6 "^ 2 +^V X ^j

When X = — I, deflection =

_ WJ3 _ WJ^ _ - WZ^
•'• ^2 - g 2 ~ 3

.
•

. Deflection under load, where a: =
c, /-WZ3\ 1

r r
deflection = / /

_ ^2 _ X.EI V 3 /EI
Deflection at free end

= deflection under load + slope under load (l — I)

_ /-WJ3 WZ2 ^ 1

~1"^ 2"^''~^^J EI
W /Z2^ _P\
Ell 2 6j

W Z2 / _ I
2 E I V 3

or neglecting the minus sign, which indicates only that the

deflection is downward, we get

W /2 / IMaximum deflection = 8 = o-^ftt \'^ ~ ^

(4) Cantilever with Isolated Load at Free End.—
This is obtained by putting Z = l in the above case.
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(5) Cantilever with Uniform Load from Fixed End
to a point before Free End.

In this case M = —

.-. Slope X EI =^yM(lx

w x^
,= - g- + c,

When X = — I, slope =

c, =
6

w PE I X slope under load = —^
b

E I X deflection -= //M d x

_ wx'^ wP X
~ ~ 24 + '""6~ + ""2

When X == I, deflection =
_wl^ wl^ _ ~ wl"^

•*• ^2- 24~~ 6 ~~8^
E I X deflection under load, when a: =

- C2 - g-
E I X deflection at free end

— wl^^ —Q~ + slope under load x E I x (l — Z)

o

~ -8 +^^~^^ "6

-_WP fL _ 11
2 Is 12/

wPf _l
6 V 4

- w /V /

= -6"A^-4
Neglecting — sign Ave have

WlV _ I

6 E I V 4
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(6) Cantilever with Uniform Load over Whole

Length.—This is the same as the previous case when I = l.

• • ^-6"Eir 4/

~ 8 EI

(7) Simply Supported Beam with Isolated Load

anywhere.—Let a load W be placed at a point c on a beam

A B, Fig. 130, of span I, and let it be at distance a I from the

end A, the distance from the end b being (1 — a) I.

Then R3 = —^— = W a ^

R.=WJ-l-^I^^ = W(l-a)
I

/^^^

^.

®
a i

C
(/ -a.)L

'B

R,

Fig. 130.

Consider a point at distance x from a between a and c.

Then M^ = R, a; = W (1 - a) x

.•.Elg = W(l-a)a; (1)

.^j^^^Wd-a):.^^
ax 2

E 1 2/ = ^—g—^— + Ci a; + C2 (3)

Now consider a point at distance x^ from a between c

and B.

Then M^^ = R, x^ - W {x^ - al)

= W (1 - a)X-^ -W X^ + W al

^Wal -WaX^

E I -7—^, ^Wal -WaX^
a Xjf

(4)
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.-.EI ^^^^ Wa Lr, - Wa"^^' + C3 (o)

EI?/- ^2 g + C3 .Ti + C4 . . . . (6)

In equation (3) when .t = 0, ^ =
.-. C2 =

In equation (6) when x = I, y ^
WaP W a ^3

2 6
f Co / + c. = 0.3 i' -r ^4

- W a ^3

••• C4 = ^ C3Z (0

These two equations representing the elastic line on either

side of the load have the same slope and the same ordinate

when
X = Xi — al

.
•

. putting in these values in equations (2) and (0) and equating

we have

W (1 - a) a'-P ,^, , Wa3Z2—5^

—

^— -i- Cl = ^^ ag /g 2~" + ^3

Ci = -2 + C3 (8)

Putting in value x = x-^ = a Zin equations (3) and (6) and

equating we have

W(l-a)a3Z3 Wa3Z3 W a* Z3

Q
+CiaZ = 2— ^ g— +C3aZ + C

C^ a Z = g h C3 a Z ^ C3 I

Wa3/2 Wa/^ ,

Ci a = ^ 3 r C3 (a — i)

Wa3/, Wa/2 / WaoZ-X,

3 3 ' V^ 2

Wa3J2 ^ Wa/2 _ Wa3Z2 W a^ /^

3 3 2 "^ 2

^

V3 ' 6 2y'

-WaZ2
g-- (2 - 3a + a^)

-^^'"^'(1 -a) (2 -a) (9)
6
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.
•

. equation (3) becomes

E I2, = Wg-")^^ _ W aP X
(1 _ „) (2 - a) (10)

Assume a^ ^j then the maximum deflection occurs between

A and c. ?/ is a maximum when v^ =

z. e. when ^^ ^ ^— (1 — a) (2 — a) =

, „ l^a{2 - a)
I. e. when x"^ == ^-^

i.e. ^ = I Jr ^^
~3 (11)

Putting this value in equation (10) we have

°'^^ = 3Vl"|—3— I
(12)

The deflection under the load is obtained by putting x = al

in (10).

rru i?T W (1 - a) a3 Z^ W a^ P
^,Then Ely = —^ ^ -^— (1 - a) (2 - a)

^^-^^7--)[a-2-a]

_ Wa^(L:^)
•
-^

3 EI ^^^^

Deflection of Girder of Uniform Strength with

Parallel Flanges.—If the section of a girder varies along

M
its length so that the stress is constant, then -^ is constant,

Li

M
so that if the depth is also constant -^ is also constant.

Assuming also that E is also constant we have

P = p ,- = constant.
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E I
.

•
. Wherever ^ is constant, the beam bends to an arc of

a circle. •

Let Fig. 131 represent a beam bent to an arc of a circle.

(N.B.—The beam is shown vertical instead of horizontal for

convenience of figure.)

Then, if is the centre of the circle and c d the deflection

of the beam, we have from the property of the circle

c D (c o + o d) = a c2

Fig . 131.

As c D is very small we may write

8 2R -

8R

P
4

Now -p =
M
EI

.-. 8 =
MP
8 EI

This result agrees with that obtained on p. 264 by reasoning

from Mohr's Theorem.

* Resilience of Bending-.—The work done in bending a

beam to a given stress may be obtained as follows

—

The work done by a couple in moving through an angle is

equal to the product of the moment of the couple into the
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angle turned through. Therefore, if a short portion of a

beam subjected to a bending movement M is bent to a slope

8 i, the work done in bending is ^ ?
because M gradually

increases from to M.

. . Total work done in bending over whole beam

= P= • 2

JNow ,

a X

1 1

~R' '•^- R^

.'. P :^J 2R^^

but^:
M

"EI

.-. P -= /2EI^^^

1

rate of change of slope

// the B.M. is constant, and the section is rectangular, then

2^1J 2EI
o

But M2 = S^
d^

•

2 . E . ri2

"

hh^ , hNow I = ^2 . ^ = 2

. p ~ E'

6E

4 /

2 /

.V

hh^

12

X L

Where V is the volume of the beam.

P /2
.'. Resilience = ,, = /„

V 6E

// the load is central and the section is rectangular.—Consider

one-half of the beam, then x is the distance from the abutment
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TIT W X

p rw d Xf2 y 2 E I
o

L

/w^ .T^ d X
~J 8EI

o

~ 192 E 1

96 E 1 2

A- ^r . . WL /I
JNow M at centre = - .— = ,

4 d

•
•

6. EI.^2

_ f ][L
~ 6 E '

<^^

As before I = -r^, d =

P =

Resilience =

12' 2

/2 46 /i3 L
6E' 12/^2

^^ V
18 E
P _ /2

V ~ 18E

Numerical Examples ox Deflections, etc.

(1) A girder lias a span of 120 feet, and has to support a

uniformly distributed load of 1^ tons per foot run. What depth

must the girder have in the centre if the maximum deflection

is not to exceed ytdu ^/ ^^^ span ? The maximum stress in the

flanges is not to exceed 6J tons per sq. in. and E is 12,000 tons

per sq. in. {B.Sc. Lond.)

This question is not quite clear, because if the depth is not

the same throughout, we cannot calculate the deflection

until we kno\^' the Ava}^ it varies.
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We will assume the depth constant

—

^ ,^ W / 11 X 120 X 120 „^ ^JNow at centre M = -^- == -^ 5 it. tons
o o

= 27,000 m. tons.

M
.

•
. If maximum stress = 6J tons per sq. in. since / =

L̂i

ry 27,000. ..

Z — —-^.— ni. units.

5 W L^
^^^^ ^ = 384EI

1,200 10

12 _ 5 X 150 X 120 X 120 x 120
•'•

10
~

384 X 12,0001 ^ ''

.-. I = 405,000 in. units.

Now jj = -^ where D = depth.

2j: _ 2 X 405,000 X 6-5
.

•'• ^ ~ Z " 27,000
'''^•

= 30x6;5 _ jg.^g ^^

This is a greater depth than would be usually adopted in

practice for a solid web girder.

(2) A cast-iron water pipe, 10 inches external diameter and

J inch thick, rests on supports 40 feet apart. Calculate the

maximum stress in the outer fibre of the material when empty

and when full of water, also the corresponding deflections.

{AJI.LC.E.)

-r
TT (D* - d^) IT (104 - 94)

In this case
64 64

= 168-8 in. units.

Z^\= ^— = 33-76 in. units.
d 5

Volume of pipe =
^
(lOO — 81 j x -rj^ = 4-14 cub. feet.

Volume of water = ^ • tt^ x 40 =- 17*67 cub. feet.
4 144
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.*. Weight of pipe = w ^ ^ ^..^ ^ '832 ton.° ^ ^
2,240

Weight 01 water = w. = Tr^.r^ = "492 ton.® ^
2,240

.'. W = w; + 1^1 = 1324 tons (about)

.
•

. Max. stress when empty
M -832 X 40 X 12 , ,„ ,

^Z= 8x33-76 = 1-48 tons per sq. in.

Max. stress when full = —^^r = 2' 35 tons per sq. in.

Taking E as 8000 tons per sq. in.

5 WL^
8 when empty = -334^^!

_ 5 X -832 X 4 X 40 x 40 x 12 x 12 x 12~
384 X 168-8 X 8000

= -89 inch.

8 when full = ^^^^r = 141 inches.

(3) A pole 7nade of mild steel tube, 6 inches diameter and J inch

thick, is firmly fixed in the ground, the top being 10 feet above

the ground level. A horizontal pull of 2000 lbs. is applied at a

point 6 feet from the ground. Find the deflection at the top.

E = 13,500 tons per square inch. {B.Sc. Lond.)

In this case I = —^

—

^. = n. - -

64 64

= 32* 9 in. units.

This is the same as Case (2).

In this case ^ = 6 ft. L = 10 ft.

W = 2000 lbs. = f^i^.^ ton.
2,240

. _ 2000 6 X 6 X 12 X 12 x 8 x 12
• • ° ~ 2,240

^
13,500 X 32-9'x'2"

= 5 inch, nearly.

(4) What is the least internal radius to which a bar of steel
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4 inches wide by f inch thick can he bent so that the maximum

stress will not exceed 5 tons per square inch ? E = 13,000 tons

per square inch. (A.M.I.C.E.)

The general formula for bending is/ME
d ~

I ~ R

. i _ E
' ' d R
^ d^

or K = —7-

In this case d = distance from N.A. to extreme fibre,

3 .

3 13,000

= 488 inches.

= 40-7 feet.

It should be noted that the width of the bar is not necessary

in this problem

.

The result is the radius of the centre line.

(5) A cast-iron beam, has a rectangular cross section, the thick-

ness being 1 inch and the depth of the section 2 inches. It is

found that a load of 10 cwt. placed in the centre of a 3Q-inch span

deflects this beam by '11 inch. Through what height would a

weight of J cwt. have to fall on to the centre of the same span to

produce a deflection of "30 inch ? {B.Sc. Lond.)

It takes 10 cwt. to produce a deflection of "11 inch.

10 X "30
.'. It would take — yz. to produce a deflection of '30

inch.

Now the work done in deflecting a bar when loaded in the

centre = J W S,

.*. Work done to produce '30 inch deflection

1 10 X -30 ^^ .= ^ . —7Y— X 30 m. cwt.
" *

J. 1

= -341 ft. cwt.
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If h is the height from which the J cwt. falls, work done by it

=
9 (^ + T9 )

^^' ^^^-^ because we shall take h as the height

above the unstrained position of the beam.

These two amounts of work must be the same,

have K^^'S)-^^
h = -682 ^2 ^^0*'

= 8-18 - -30 inches

= 7*88 inches.



CHAPTER X

COLUMNS, STANCHIONS AND STRUTS

The question of strength of columns of compression mem-

bers is of very great importance, and has formed a field of

discussion and investigation for many years. Interest in the

subject has recently been aroused by the regrettable failure

of the Quebec Bridge, and within the next few years many
investigators will probably direct their energy towards giving

us further information in this direction. Although the

subject certainly presents difficulties, much of the confusion

which is in the minds of many designers is undoubtedly due

to insufficient grasp of the meaning of the various formulae

in use. We will endeavour to make this subject quite

clear by approaching it in the following manner, which was

suggested by the author in 1908.

In the design of a tie-bar we use a constant working stress,

that is to say, the stress does not depend on the shape or the

length of the tie ; but in struts or compression members

the working stress depends on the shape and the length and

the manner in which the ends are fixed. The quantity which

determines the working stress, and thus the strength of a

pin-jointed strut, column, or stanchion is equal to

Length of column _
Least radius of gyration about centroid

This quantity we will call the Buckling Factor of the strut.

For struts with ends fixed in other ways the buckling factor

is obtained by dividing the equivalent length of the strut by

the least radius of gyration. We will show later how the

equivalent length is obtained.

279
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Slenderness ratio.—Some writers use this term in place of

buckling factor. The slenderness ratio

Length

Least radius of gj^ration about centroid

but does not take into account the method of fixing the ends,

and so is not the same as the buckling factor. Two struts of

the same material and having the same buckling factor may

carry the same stress, no matter how their ends are fixed

:

this is not the case for two columns with the same slenderness

ratio.

The reason w^hy a variable working stress has to be used

is that struts fail by buckling and not b}^ crushing, unless

their length is extremely small. If for some reason the

centre line of a strut is not quite straight or the load comes

out of centre, there are bending stresses caused in the material,

and the distortion due to these bending stresses tends to

increase the eccentricity, and failure may ultimately occur

due to this reason.

Strut Formulae. — A large number of formulae, some

theoretical and some empirical, have been proposed for ob-

taining the w^orking stress in compression in terms of the

buckling factor of the strut and of the crushing strength of

the material. Before these formulae can logically be compared

we must be careful to see that they are for the same crushing

strength, and for the same manner of fixing the ends of the

strut. We will consider the following :

—

(a) Euler's Formula.—This formula is intended for long

struts in which the direct stress is negligible compared with

the buckling stress. It is usually given in the following

form

—

^EI
^ "

L'^

where P = the breaking load (not the working load)

E = Young's modulus.

I = least moment of inertia.

L = length of pin-jointed strut.
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We will now put it into more convenient use for practice

as follows

—

P , ,. ^ 7r2EAA;2
.*. -r = breaking stress = — * t^t—A ^ AL2

_ 7r2 E _ 7r2 E
~ /L\2 ~:f

Adopting a factor of safety of 5, we get

xxT 1 •
i / breaking stress tt^E

Working stress = /,, = J' = -—

^

^ 5 5c^

For mild steel, E = 13,000 tons per sq. in.

, TT^E 25,600^
•
'.

/j> = -^2, "^ 2— tons per sq. m.

For wrought iron, E = 12,500

24,600
• ' Ji'

~'

Similarily for cast iron /^,
=

For timber /^,
=

12,000

1,600

Proof of Euler's Formula.— The proof of Euler's

formula is found by many students to be somewhat difficult

to follow, as it involves the solution of a differential equation.

Suppose that a column in some way or other becomes de-

flected as shown in Fig. 132 (1) . Then there are bending stresses

induced in it, and the strut will exert a force P on the supports

tending to straighten itself. Now, if the load on the strut

is less than P, the strut will straighten, and so is safe ; but

if the load is greater than P, the strut will continue to deflect,

and will ultimately break. When the load is equal to P,

the strut is in unstable equilibrium, and so P is called the

critical or buckling, or crippling load.

Consider a point a on the strut.
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The B.M. at A = M, = -Pa:.*
.Now, if R is the radius of curvature,

J^ _6Z2^_ M _ - Pa;

R ~ dy^~Wl~ EI

• ' dj^^ ~ET • ^ = say - m2 . a: (1)

assuming that I is constant, or that the strut is of uniform

section.

\ Z 5 4-5

-JC-

1

Fig. 132.—Methods of Fixing Ends of Columns.

The general solution of this differential equation is

X — A cos m ?/ + B sin my , (2)

* The negative sign occurs because we take anti-clockwise moments
to the right as positive, and x in the figure is, on the usual convention,

negative. If the figure be turned round so that the column is horizontal

and has a downward deflection it will be seen that according to the rule

given on p. 121, M.^ is positive and x is negative. Fx therefore is

negative, and to make the moment positive we must write M^ = — Pa;.

If we had drawn the column buckled in the other direction, M,^ would

have been negative and x positive, so that we still would have

M., = - Pa;.
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where A and B are constants, which are obtained as follows

—

When y = -^ and -^^— , a: =^2 2

„ . mL , -r, . mL .^.
.

•
. = A cos -^ \- B sm -^r- (3)

^ . — mL
, ^ . — mL ,.,= A cos—^ h B sm—^— (4)

. mL -r, . wL= A cos —^ — 13 sm —^

.
•

. B must =
.

• . a; = A cos my (5)

When 2/ = 0, a; is infinite, .
*

. A is not zero

.p . mL ^
.

•
. II A cos —^ =

A

mL , ^
cos —^ must =

A

The general solution for this condition is that ,

mL _ wtt

•
•

•
w^ =

-L2-

• • EI~ L2

P = —L^ (6)

The lowest value of P is given by n = 1, and as this is the

most important for us, we write the result as

^--^ (7)

It should be noted that P is independent of the quantity x,

so that the force necessary to keep the strut deflected at large

radius of curvature is the same as that to keep it at a small

radius, and so if the load is the least amount greater than P
the strut will go on deflecting, and so break.

Use of Euler's Formula.—It must be remembered that

in this formula we have not taken into account the direct
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compression stress on the strut. If the safe stress given by

Euler's formula is greater than the safe compressive stress

for very short lengths of the material, then obviously we should

not use Euler's result. Thus, if Euler for mild steel gives
//,

greater than 6 tons per sq. in. we should use 6 tons per sq. in.

Another way of using it is as follows

—

Safe load = -- ,^-

5 i^

_p_2EI

.-. I required = ^ -^

A required = P

We have thus the least area and moment of inertia that

the section must have and can so choose a suitable section

from tables.

Method of Fixing Ends— Equivalent Length of

Strut.—In the above working we have considered the ends

as pin-jointed. If the ends are fixed in any other way we

must take as the length of the strut the length of the equi-

valent pin-jointed strut; this we will call the equivalent

length of the strut.

Now consider the following methods of fixing the ends (see

Fig. 132).

(1) Pin Joints at Each End.—This is the standard case.

(2) Both Ends Fixed in Position and Direction.—In

this case the buckled form is as shown in the figure, and b c

is the equivalent length, i.e. a pin-jointed strut of length

B c is as strong as the fixed strut.

.
*

. in this case equivalent length of strut = „-

Buckling factor = c = ^ ,

(3) Both Ends Fixed in Direction only.—The buckled

form in this case is as shown in the figure. On comparing
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with Case 1, it will be seen that the portion b c is equivalent

to one-half the strut in Case 1, and so in this case,

L
since B c = A

Li

equivalent length of strut = L
L
I

. Buckling factor == c

(4) One End Fixed in Direction and Position, other

End Pin-jointed.—It will be clear from the figure that in

this case

2 L
equivalent length of strut = —̂ —

2L
•

. Buckling factor = c =
Zk

(5) One End Fixed in Direction and Position, other

End Free.—In this case

equivalent length of strut = 2 L
2L
k

.

'

. Buckling factor c =

Summary of Values of Buckling Factors

Case 1. Case 2. Case 3. Case 4. Case 5.

Buckling factor

= c

L
k

L
2k

L
k

2L
dk

2L
k

These values should be used in Euler's and the other

formulae involving the buckling factor.

{b) Rankine's Formula.—This formula is sometimes

called the Gordon-Rankine formula, and is of the form

1 + a . c^

/.=
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Where

/, = safe compressive stress for very short lengths of the

material

a = a constant depending on the material

c == buckling factor of the strut

ii,
= working stress per sq. in. for the strut.

The following values of a may be taken according to

different authorities

—

Mild steel a = kftf^ to 7.7^K7^, /, = 6 tons per sq. in.

Wrought iron a = ^^^ to
-g^^^, /„ =4 „ „ „

Cast iron « = 2500 *%"io' ^'^ ^ " " "

Timber a =
^qoo' ^' ^ *^ " " "

In each case we prefer to use the higher value of the constant a.

There is a very large amount of variation in the values of

the constants as given by various authorities, and in com-

paring the above with those given by others, the reader

should be careful to compare the safe stresses given with the

above figures with the safe stresses given b}^ others, because

the value of /^ also varies in the various forms of the formula

and thus, although the constants may be different, the re-

sulting safe stress may be nearly the same. Care must also

be taken to see whether pin-jointed or fixed ends are taken as

the standard case.

Construction of Rankine's Formula.—Rankine's formula

may be looked upon as a corrected form of Euler's.

If c is very small, i. e. if the strut is very short, the term

a c^ is negligible, and so we get
f^,
= /,.

This is, of course, the result which we ought to obtain.

If c is great, ^. e. if the strut is very long, the term a c^ will

be so great that 1 may be neglected in comparison with it,

and so we get
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This will give the same result as Euler if

a 5

. .„ 1 TT^E 25,600 , ^„„
^. e. if - = -^-r = v,

— = 4,267
a Djc o

Although some writers state that constants obtained in

this manner agree with experimental results, the constants

are not usually calculated theoretically in this way, but are

obtained from experiments.

It is believed that the figures recommended above will

agree well with the best practice.

It is interesting to note that in one form of Rankine's formula,

giving the breaking or crippling stress, viz.

p /

^ + Hi)
/ is the stress at the elastic limit.

In an earlier chapter we pointed out the desirability of

obtaining the working stresses from elastic limit, i.e. basing

the factor of safety on the elastic limit.

An interesting and important paper by Mr. C. P. Buchanan,

in Engineering News, December 26, 1907—published after the

Quebec Bridge disaster—gives the results of tests on full-

size built-up columns such as are actually used in bridge

practice. The tests extend over a period of fourteen years,

and show that even for the short columns the buckling or

crippling stress is not more than 90 per cent, of the tensile

yield point (see p. 4).

We thus see that in columns as actually used in practice,

the buckling stress is certainly not more than the elastic

limit stress, and so the only reasonable factor of safety is that

based on the elastic limit.

(c) Straight Line Formula.—These empirical formulae

are used principally in America, and give very good approxi-

mations for rough working. They are of the form

= /, (1 - e . c)
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Where
f^,
and /, are as before

e = a constant depending on the material.

The following values of e may be taken

—

For mild steel e = -0053

,, wrought iron e = "OOoS

,, cast iron e = "008

„ timber e = -0083

As in Rankine's formula the values of constants vary con-

siderably according to different authorities.

{d) Johnson's Parabolic Formula. — This is also an

empirical'formula devised to agree with Euler for long lengths,

and to agree with the ordinar}^ compression strength for short

lengths. It is of the form

= /.(!-?• c^)

(/ is a constant of such value as to make the curve of
/,,

plotted against c tangential to Euler, and the curve is used

up to the point where it meets the Euler curve.

The following values may be taken for g
—

For mild steel g = -000057

„ wrought iron g = -000039

,, cast iron g = 00016

(e) Gordon's Formula.—This formula is often confused

with Rankine's, and was used largely for some time, but it

is now quickly going out of use in favour of the Rankine

formula. This is probably due to the fact that designers are

now more used to making calculations involving the radius of

gyration, a quantity which practical men have usually looked

upon with suspicion. Now that tables are published giving

k for most sections, it is as easy to use as the diameter d.

Gordon's formula is of the form

, L _.
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Where /,., /^„ and L have their usual meaning.

j is constant depending on the material and on the shape of

the section,

d is the least diameter or breadth of the section.

The objection to this formula as compared with Rankine's

lies in the fact that one has to use different constants for

different shapes of section for the same material. Otherwise

it is very similar to Rankine's.

The following values for j may be taken, f, being the same

as in Rankine

—

Shape of Section.

j

Mild Steel.
, ^frwf,^* 1

^^^* ^°^' Timber.

Solid circle

Hollow circle ....

L, T, H, etc. ....

Built-up sections . . .

Rectangle (solid) . . .

1

370

1

600

1

300

1

400

1

500

1

500

1

800

1

400

1

550

1

700

1

110

1

180

1

90

1

120

1

125

1

200

1

100

1

160

(/) Fidler's Formula.—The reader is referred to Fidler's

Bridge Construction for a very complete analysis of the strut

problem.

The formula which Mr. Fidler obtains gives the breaking

stress, and is

Minimum breaking stress = / + B + V(7^KF^2 m f B
m

Where / = ultimate pure compressive strength of material

ER = Euler's breaking stress

m — a constant of average value 1'2.

u
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The following values of
f,,,

the safe stress in tons per sq. in.

for struts, are suggested by Fidler and are used by some

authorities

—

L
k

Mild Steel. Wrought Iron. Cast Iron. i

Pin ends. Fixed ends. Pin ends. ' Pixed ends.
1

Pin ends. Fixed ends. 1

20 5-20 5-29 3-92 3-99 8^07 8-65

40 4-76 5-09 3-64 3-89 5-68 7-56
!

60 4-02 4-83 3-17 3-73 3-35 6-10

80 3-15 4-45 2-60 3-48 1-96 4-68

100 2-40 4-00 2-03 317 1^29 3-35

120 1-83 3-46 1-57 2-82 •93 2-37

140 1-42 2-96 1-24 2^48 •70 1-78

160 1-13 2-51 •98 2-14 •56 r40
180 •91 213 •80 1-84 •43 114

Lilly's Formula.—Professor Lilly of Dublin has devised

formulae for columns which allow for secondary flexure or

wrinkling in the column,* and may be regarded as a modifica-

tion or correction of Rankine's formula.

It is of the form

1 + w . - + ac^
V

Where tn is a constant depending on the shape of section

t is the thickness of the metal in the section

a is -^-^. (Compare p. 287.)

7)1

5N/,.

E '
the values of N being given for some

sections in Fig. 132a.

Use of Strut Formulae.—Fig. 133 shows curves of
f,,

for

mild steel for various values of the buckling factor according

to the first four formulae. It is advisable to draw such a

curve to a good scale, choosing one of the formulae—say

* See Engineering, January 10, 1908, or a more complete paper and

bibliography in Proc. Am. Soc. C.E. Vol. LXXVI (1913); also The

Design of Plate Girders and Columns (Chapman & Hall, Ltd.).
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Rankine—with a =
np,crr\\ such curve can then be used

whenever the value of /^, is required.

N. 50

iV. 60

iV^. 120

N.IQ

Fig. 132a.—Lilly's Column Formula.

It will be remembered that /^, gives the safe stress per sq.

in. for struts with central loads. If the loads are eccentric we
must proceed as described later.

Then if A = area of section of strut,

Safe load = P, = /^^ . A.

If, as often occurs in practice, we are given the load but
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have not designed the section, so that we do not know the

buckling factor, we can often get a rough idea by taking a

trial value of ^ equal to about f /,, i. e. 4 tons per sq. in. for

steel, and finding the area requisite for this stress. This will

give us an idea of the area required, and we can choose a

section with roughly this area, and see by finding its buckling

factor what is the safe load on it.

ISO

Buckling Factor = C-

Fig. 133.—Curves for various Column or Strut Formulae.

(Mild Steel)

Many of the leading constructional steelwork firms publish

tables of safe loads on various struts. Having previously

checked one or two to see that these firms work with similar

formulae, we can choose a suitable section for our case, and

then apply our formula and see if such section is satisfactory.

REINFORCED CONCRETE COLUMNS

Short Columns Centrally Loaded.—We have shown on

p. 38 that the safe load in a column in which buckling is
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negligible (the length being less than 15 times the least

diameter, and the notation being modified) is given by

P = c (A, + m A,)

Gross-binding of Reinforcement.—In addition to the

longitudinal reinforcementj some force of binding is necessary

to keep the bars at the requisite distance apart. This is due

to the following reason

—

Suppose that a reinforced column with bars a b, c d,.

Fig. 133a, be compressed; then, quite apart from any buckling

u

R \ C

B I D

^"T

Fig. 133a.

of the whole column, the column will bulge out somewhat

as shown, and the reinforcing bars will buckle because the

value of ^ or the buckling factor for them will be large. If

we bind the reinforcing bars together, as shown diagrammati-

cally, so that they cannot buckle, the column will not bulge

to anything like the same extent, and so will be considerably

strengthened. From a large number of experiments M.

Considere found that the best results are obtained when

spiral coils are placed round the reinforcing bars at distances

apart equal to i to ~o of the diameter of the coil.
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M. Considere suggested the following allowance for the coils

in the strength of the column

—

Let A/, be the equivalent area of longitudinal reinforce-

volume of metal in coils \

length of column

Then safe load = c (A, + m A, + 2 4 m A')

Long Columns Centrally Loaded.—Some authorities

use Euler's formula apj)lied to the homogeneous section,

viz.

—

IT'

. ,, . , ., / . A volume of metal m coils

\

ment of the spiral coils [i.e. A,, = , ,, ,, ,^
\ length 01 column /

Safe stress =
fj,

^E
25 c

c being the buckling factor. In obtaining c the radius of

gyration of the equivalent homogeneous section (see p. 183)

is used,

"i:

where A = A^ -f- m A,.

I^. = equivalent second moment
= L + (m — 1) A, r^ for section shown in Fig. 133a.

Y being the moment of the section apart from the reinforce-

ment,

I^, = ^- (- [m — 1) A, r^ for circle

b h^= --— -f (m — 1) A, r^ for rectangle

Then safe load =
fj,

x (A, + m A,)

Rankine's formula can also be used in the form

_ _ 500

^ 8000

Braced Columns, Struts, and Stanchions.—Struts

are often formed of roUed sections such as beams and channels

braced together by diagonal bracing or plates. The strut

that failed in the Quebec Bridge was a braced strut, and the

report of the Commission states that there is not yet sufficient
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information for the design of such struts for very heavy

loads.* For ordinary comparatively light work, however,

. ^-N

X

y-^.

Y

—

D

---^

^ 5-

Y

^^^^

-* P

Î

v^-^ ^^
i>

o

o

a—

o

o

o

o

o

o

s

Fig. 134.—Columns with Open Webs.

braced struts such as shown in Fig. 134 are commonly used

but the diagonal bracing should preferably have one rivet

* See Illinois University Bulletin, No. 44, G. Talbot and Moore, for

an experimental investigation of the subject.
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passing through the two diagonal bows as in the top of Fig.

135 instead of two rivets as shown. The unbraced length

of one of the beams or channels must be such that the load

per sq. in. on them is not more than the safe stress for them
considered as struts. We can get an idea of the maximum
unbraced length as follows

—

Let c = buckling factor of whole strut

,, ki = least radius of gyration of one channel or beam

,, P = total load carried b}^ strut

,, 2 A = total area of strut

,, S = maximum unbraced length of channel or beam.

Then, using Euler's Formula, ^^-v-
= '^ = ^

Each channel or beam carries ^ load

stress
5S2 ~ S2

B _ B yfci^

•
• C2 ~ S^

.
•

. S = k-^c

r. ' Equivalent length of strut L
yjT Since c = =

'

Least radius of gryation of whole strut k

S _h,
L k

L k
.'

. ^ = least number of panels = r-

_ Least radius of gryation of whole strut

Least radius of gyration of channel or beam

As a rule a spacing of 2 to 3 times the breadth B or 30° to

45° inclination of the diagonals will be found to be satisfactory,

and in practice would be adopted, unless the calculation

required them to be less.

The strength of the strut in this case is calculated as if the

section consisted of the two channels or beams held at the

requisite distance apart. See worked Example No. 4.

Relative Values of Different Bracings.—Professor H. F.
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Moore, of Illinois University,* has given the results shown in

Fig. 135 of the " flexual efficiency " of various forms of bracing.

This flexual efficiency is the ratio of the calculated fibre stress

to that obtained by measuring the strain, the calculation

being made on the assumption that the braced section behaves

as an integral one. The tests were made by ordinary cross

bending and not as columns, but the comparative results

may be taken as representing the relative values of the different

ICO

^^
^

—
w /^ '/Tk yv' /?- /O

N\
:mm>f^' \^

60

'^t^^m
"""

,'^
^^^ ^_

1 ^^
4U -— ^^a ^^ _^ ^ ^- --^

.

mam] "^

i
> 4\- «? Ii IC) r> (4

Stress in thousands of pounds per sq. in.

Fig. 135.—Efficiency of Bracing.

kinds of bracing for column purposes. Particular attention

is directed to the great advantage that single diagonal bracing

with single rivets (the third from the top) has over that with

the separate rivets (bottom) in which heavy secondary stresses

occur.

Least Radius of Gyration.—The least radius of gyration

will be about or at right angles to an axis of symmetry if

there be one, so that in this case we need only calculate k for

* See a paper h»y Professor A. H. Basquin, Proc. Western Society of

Engineers, 1914, on " The Design of Columns." This is one of the best

papers which have been published on the subject.
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the axis of symmetry and at right angles to it. If there is

no such axis we should proceed as indicated on p. 172.

Examples on Struts, etc., with Central Loads.—The

following numerical examples should make the question of

the design of struts, etc., clear.

(1) A 10'' X C X 42 Standard I beam of mild steel is used

as a stanchion, the length being 16 ft. and one end being fixed

and one end pin-jointed. Find the safe load for it to carry.

From the table of standard sections we see

A = 12-35 sq. ins.

Least k = 1"36

T, , ,. „ , equivalent length 2L
.'. UucKilins; lactor = c = -

^ «^ = or° l\5o 6 k

2 X 16 X 12 o^ o 1. +== Q ^ 1 .QA = 94-2 about
6 X 1 OO

.•. Safe stress =
f,,
= 0^02" ^^sing Rankine's formula

1 + —^ 6000

= 2"43 tons per sq. in.
1 + 1-47

.-. Safe load = 12-35 x 2-43 = 30 tons.

(2) A solid cast-iron column, 6 inches in diameter and 15 feet

long, is fixed at the lower end and carries a load at its free upper

end. Calculate the load the column will safely carry, assuming

a reasonable factor of safety. {B.Sc. Lond.)

In this case k = .
=1-5''

4

Equivalent length = 2 L = 30

_ equivalent length _ 30 X^12
•'• ^

^
k~ ~ V5

= 240
7

.-. Safe stress per sq. m. = /,,
=

240">r240
^ ^ 1,800

_ 7__"
1 + 32

= -212 ton per sq. in.
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.-. Safe load = '212 x - 4"^ = 6 tons.
4

According to Enler /,, = ^ ^ — o

7r2 E _ 12,000

5 c^ c^

12,000_ _
240 X 240

.-. Safe load = -'- = 5-88 tons.
4

(3) A steel rolled joist is used as a strut with built-in ends,

the length of the strut being 15 feet. Find, from the data given

below, the cross section of the joist, if it has to support a com-

pressive load of 40 tons with a factor of safety o/ 4.

(a) The total depth of the cross section of the joist is twice the

width of the flanges, and the thickness of metal is to be

f of the width of the flanges,

{b) The crushing strength of a short strut of this quality of

steel is 24 tons per square inch.

(c) The constant in Bankine formula is ^^ ^^^. {B.Sc.

Loud.)

In this problem we must first find the breaking stress from

the formula. In this case we do not use the equivalent length

of the strut because the constant is given for fixed ends.

^ . . . 24
x^x^^cirvj-iig i3UJ.COO -

^ 36,000 V A;/

• Sflfp 'stress ^

A

breaking stress 6

Now let = area of section

1 /Ly
36,000 VA:/

and let B = breadth of flange

then 2B = depth of beam

B
8
= thickness of metal.

Then A ^2B^xB^B(,^_ 2B\
8 )

B2 7 B2 15 B2
~ 4 "^

32 ~ 32
•4687 B2
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The least radius of gyration will be about an axis perpen-

dicular to the flanges.

-r B B3 7B /B\3
Then I=4-12+4^r2-U; '

B* 7 B*— 4- — 02111 B*- 48 + 12 X 2,048 " ^^^^^ ^

3_I _ 02111 B^^
' • " " A " -4687 B^ ^^^

^

.-. Safe stress = ^?= '

A
~

15 X 12 X 15 X 12
"^

36,000 X 045 B2

40 6

•4687 B2 1
,

9
1 +

45 B2

1 + ^4TbO = 40--^^^^^^

= -15 X -4687 B2

.-. B*(-15 X -4687 X -45) - -45 B2 - 9 -
316B4 - 45B2 - 900 =

The solution of this quadratic gives

B2 = 18-2 nearly

say B = 4J

.
•

. Adopt a joist 10'' x 5'' with metal ^" thick.

We could work this problem roughly by the given rule, as

follows

—

Take /,
= ^ X 6 = 4

.-. A = . = 10 sq. ms

15 B2
• 32

= 10

B2
10 X 32 64

~ 15 "3

B = -^- = 4-62, say 5''

V3
(4) A steel column in a bridge-truss has pin-jointed ends and

is 26 feet long. It consists of two standardW x S^' X 28-21 lb.
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channels 'placed 4J inches apart. Find a safe load for the section.

(See Fig. 134.)

On looking up the tables, we see that for a 10'' x 3J" x 28-21

lb. channel,

A = 8-296

"'max. = O I I

^min. ^^ *Jy4:

Dist. of C. G. from edge = P = -933

Then for whole strut

k,,. = 3-77

= 3-1832 + -9942

.
•

. k,, = 3-33

Length _ 26 x 12
c =

Least radius of gyration 3*33

93-6

• / ^ 6
• • '^ 93-6 X 93-6

"^ 6000

2-46

= 2-44

. Safe load = 2-44 x area

= 2-44 X 2 X 8-296

= 40-4 say 40 tons.

STRUTS WITH ECCENTRIC LOADING

Simple Approximate Method.—If the thrust in the

strut is out of the centre, i.e. where there is bending

moment as well as direct thrust on the strut, we cannot use

the same rules for design as in the ordinary case.

In such case we may obtain approximate results by pro-

ceeding as follows

—

Let the load P be at distance e from the centroid of the

cross section, then M = P . e (Fig. 136).

Case 1. Very Short Struts.—If the length is less than
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10 times the least diameter of the strut, the stresses are

obtained as shown on p. 237.

i. e. /, A ^Z.

f,

M P
Z, A

In this case /,.

V Vx
" K^ Z,.

P P . e . d,

~ A "^ Ak''

A V^ ^ k^ )

P
•'• A ed.

ZPlufr.o IZy^a

Y

Ccniroia L

D

Cff^—* -<+

B F

Fig. 136.—Columns with Eccentric Loads,

This gives the safe load P for a compressive stress /,. This

ease is fully dealt with in Chap. VIII.

Case 2, Struts Longer than 10 J)iameters.—In this

case we must make some allowance for buckling tendencies,

and ^\'e may proceed as follows

—

As in the previous case we have

Combined compressive stress = . (l + , 2 j

Now in this case this compressive stress should not be more
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than the safe stress x>er sq. in. obtained by considering the

buckling formulae,

A , ,
ed,.

' Safe central load on strut
i.e. Safe eccentric load on strut = 7———

^

(1 + i
where e = eccentricity of load

dr = distance from centroid to edge of section nearest

load

k = radius of gyration about axis perpendicular to the

plane containing the centroid and the load.

This formula may be put into a form which is sometimes

more useful as follows

—

Let P^ be the central load, which is equivalent to the

eccentric load P.

Then Px = P (1 + p'

In this formula e should be taken as the effective eccentricity,

/M
i.e.

(
p where M is the Bending Moment on the column), the

value of e shown on the drawings is only true when the

column is free at the top. For other cases see articles by

the author in the Architect's and Builder's Journal, March 3

and 31, 1915.

P
Then p may be called the eccentricity factor for the strut.

In using this formula it should be noted that it is Avorked

on the assumption that the buckling will take place in the

plane of the figure, and so the value of k for the strut in this

direction should be used in finding the safe central load.

If the safe eccentric load according to this formula comes

more than the safe central load for the least value of k (this
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can of course only occur when the least value of k is about

the axis d b), the lower value should be used.

Stanchions -with Web and Flange Connections.—
The loads on stanchions are often communicated from girders

connected by cleats, etc., to the web or flange of the stanchion.

If such connections come on one side only, or if the loads

communicated from the two sides are not equal, the load will

not be central, and allowance for the eccentricity should be

made.

Numerical Example.—A mild steel stanchion 30 feet long

and with ends fixed has the section shown in Fig. 136. Find

the safe central load and also the safe loads communicated at

the points b and c.

In this case A = 40*59 sq. ins.

^xx ^^ 4'o7 ,, ,,

fCyy = o'41 ,, ,,

.*. Buckling factor = c = ^^ = „ ^—.^ = 52-8* 2k 2 X 3*41

*** ~
1 I

^^:3 X 52-8 " 1-464
~

6000

.-. Safe central load = 40-59 x 4'10 = 166 tons nearly.

Load at c— e = 225 + 575 = 2-725

.-. 4 = 6''

ed,. 2-725 x 6

P 3-412
1-41

1 (KCK

.
•

. Safe eccentric load at c = ,~
,

, -. , == 69 tons nearly.
1 + 1 41 "^

Load at B.—We must now first calculate ^ as if k^^ were

30 X 12
minimum radius of gyration, i. e. c = „ v „_ = 36-9.&j ' 2 X 4-87

•
f , ^ ^— = 4-89

• • '" 36- X 36 -9

"^ 6000
X = 6"

d,. = 6"

X (Z, _ 6 X 6 , _^.

•'*
T2 ~ 4-872
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c, n ^ •
T J ^ 4-89 X 40-59

.
•

. bate eccentric load at b = 7 ^ ko
~

_ 4-89^ X 40-59~
2-52

= 77-7 tons nearly.

In this case the eccentricity factors for c and b are 2-41

and = 2-14 respectively.

A rough rule sometimes adopted is to use 2J and IJ as

eccentricity factors for flange and web connections respec-

tively, but such rule is not reliable. It is more nearly true

for I beams used as stanchions than for built-up sections.

Alternative Approximate Method.—Where the bending

stress is large compared with the direct stress it seems reason-

able to allow that instead of the previous treatment we shall

subtract the bending stress from the value of /, used in the

strut formula.

The compressive bending stress for an effective eccentricity

'

. using the Rankine formula we shall have

, P e d,

i =^ = ~ ~^^
'"A 1 + ac2

P / ,
, c,

^
ed,.

AV ' ¥^

Cast-iron Struts Eccentrically Loaded.—In dealing

with cast-iron struts with eccentric loads it must be remem-
bered that they will probably fail by tension.

The safe load P from the tension standpoint

X dt ,
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when /, is the safe tensile stress, and this should be compared

with the safe load from the compression standpoint, and the

lower value adopted.

* Modified Euler Theory for Eccentric Loading.—
In this case we have, Fig. 137,

or putting

Fig . 137.—Eccent ric Loading of Columns

P (e + x) = M = - Elf"
dy^

•*•
d'-x

dy'~

m =

_ P
(

EI^

/P
\ E I

X + e)

d^-x

dy'~
— m {x + e)

'
'^j

The general solution of this is

(a- 4- e) = A cos my -\- 3 cos m y

* Cf. p. 282, equation (1).

(1)
=
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Since x = for y ^ ± ^, B = as before

.
• . (x + e) = A cos my (2)

.
•
^ when .X' = 0, e = A cos ^^

. m L
.'. A = e sec ^

m L
.

•
. X = e sec —^— . cos my — e

= e (sec —^ . cos my — 1
j (3)

At point o where y = eccentricity = x„ + e = e^

/ m L ,\ ,
m L= e ( sec —

^

I
j
+ e = e sec -„ -

='^"^2^7© •••'^^

where f^
"^ ~\

.
•

. stress at o = .
I
1 + -\-o~A\ F

= (putting ^ = c) A. (l + '^f sec ^ ^g (6)

Now let = r^ ^ '— and call it the Eulerian angle.
2 Ve ^

Then, stress at o =/,.(! + ,2 ^^^ ^ ) C^)

Values of sec 6 are given in the table on p. 308, taken from

Professor Basquin's paper * previously referred to.

c. c. J 1 ^ Safe central load
.

•
. bate eccentric load = — —

^

1 + ^-^ sec

This can only be used by trial if the load is not given.

* Proc. Western Society of Engineers, 1914.
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Buckling Factor c.

50 60 70 80 90 100 110 120 130 140

5 105 ]L-08 Ml 1-15 1-20 1-25 1-32 1-40 1-60 1-62

6 1-07 LIO 114 M8 1-24 1-31 1-40 1-51 1-63 1-82

7 1-08 111 1-16 1-22 1-29 1-38 1-50 1-64 1-83 2-08

8 109 ]L-14 M9 1-26 1-35 1-46 1-60 1-79 205 2-41

9 1-10 :L-15 1-22 1-30 1-41 1-54 1-72 1-97 2-32 2-85

10 1-12 1-17 1-25 1-34 1-47 1-63 1-86 2-18 2-65 3-46 '

11 M3 L-19 1-28 1-39 1-54 1-74 2-02 2-44 3-12 4-38

12 M4 ]L'21 1-31 1-43 1-61 1-85 2-22 2-56 3-74 5-88 i

13 M5 1-23 1-34 1-49 1-69 1-98 2-42 3-16 4-63 8-69

14 1-17 :L-25 1-37 1-54 1-77 2-12 2-68 3-69 602 16-4

^15 1-18 :
1-28 1-41 1-60 1-87 2-29 2-99 4-40 8-46 172,

1

§16 M9 1-30 1-45 1-66 1-97 2-47 3-38 5-43 14-4

o 17 1-21 1-32 1-49 1-72 2-09 2-69 3-87 704 39-0

U 18 1-22 1-35 1-53 1-79 2-21 2-95 4-51 9-86

g.19 1-24 L-37 1-57 1-87 2-36 3-25 5-39 16-4

1^0 1-25 1-40 1-62 1-95 2-51 3-62 6-65 47-4
0)

f^21 1-27 1-43 1-66 2-04 2-69 407 8-63

-§22 1-28 L-45 1-71 2-13 2-90 4-65 12-3

§23 1-30 1-48 1-77 2-24 3-13 5-40 20-9

(§24 1-31 1-51 1-82 2-35 3-40 6-41 65-9

Si 26

1-33 1-54 1-88 2-47 3-73 7-87

1-35 1-57 1-94 2-61 4-10 10-1

§27 1-37 1-61 2-00 2-76 4-57 13-8

^28
^29

1-38 1-64 2-08 2-93 5-15 22-9

1-40 1-68 2-15 311 5-84 57-3

30 1-42 1-72 2-23 3-32 6-79

31 1-44 1-75 2-32 3-56 8-04

05 32 1-46 1-79 2-41 3-83 9-86

2 33 1-48 1-84 2-51 4-14 12-7

3q34 1-50 L-88 2-61 4-50 17-3

^35 1-52 L-92 2-73 4-93 28-7

^ 36 1-54 1-97 2-83 5-43 68-7 Table of Eulerian Secants 1

§)37
g38

1-56

1-59

2-02

2-07

2-98

313
6-02

6-80
sec (^V4)

^39
^40

1-61 2-13 3-29 7-73 E = 30,000,000.

1-63 2-18 3-46 9-07

41 1
1-66 2-24 3-66 10-8

7

42 ' 1-68 2-31 3-87 13-3 jVIultipliers of ,
„' 1

43 1-71 2-37 4-11 17-2 fC-

44 1-74 2-44 4-38 24-6 in Expression for

45 1-76 2-51 4-68 430 Maximum Stress.

46 1-79 2-59 503 172

47 1-82 2-67 5-42

48 1-85 2-76 5-88

49 1-88 2-85 6-42

50 1-91 2-95 7-06
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Numerical Examples.—(1) Take the same case as dealt with

on p. 304 for the load atB.

We found load = 77' 7 tons = -

—

.^ ' lbs. per sq. in.

= 4,300 lbs. per sq. in. nearly

.
•

. sec = 1*03 about

The effect of this upon the result is negligible.

(2) Find the stress produced in the column of question (4),

p. 300, if the load is 1'' out of centre, in the weak direction,

^ P 40x2,240 ip^cAnii.Here -r = —^ ^
' — = 10,800 lbs. per sq. m.A 8-296 ^ ^

c = 93*6 .*. sec = 1*6 approx. (from table)

1 X 1-6 X 5-75^
.-. stress = 10,800 (1 + 3.332

= 10,800 (1-83)

= 19,800 lbs. per sq. in. nearly

= 8'8 tons per sq. in.

The approximate method would have given

stress = 10,800 (l + ^^^3!^) = 10,800 x 1-52

= 16,400 lbs. per sq. in. nearly

= 7'3 tons per sq. in.

Johnson's Formula for Eccentric Loading.—This

formula, due to Professor Johnson, is obtained by adding the

additional eccentricity due to the deflection and is

maximum stress in column = x "^

WT~2 (^)

P P 1<^^__
A . ,,_PL2FA

^^^
10 EPA

Pfl+-- '^'

I ^ V^ 10 E A k^

"• lOE

A I kHl- ^ ^'

(9)
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A somewhat more correct but similar formula can be ob-
tained by regarding the bending moment as uniform; this

gives a deflection (see p. 264) = ^ = |^' =
WE^A^B

f, e c

"SE"

. effective eccentricity = 8 + e-=e(l+ '-^")

V 8 E/

. I 1- ^ P(8 + e) d.
. . bendmg stress = ^ .!. '

AF V" ' 8E

- j^ (approx.)

af(i-/^-;

/, d. e

^ ^^
8 E

Total stress = direct stress + bending stress

=: f
t

f,^d,e

^ ^^ 8E

b{i /''^^J (1^)

8E,

Professor Morley * obtained the same result by the expansion

, . 0'\ 5e\ 610''
sec^ = l + 2,+^ + -gj-+ ...

Taking first the two terms as an approximation

sec ^ . /
'

' ^ I + ^ L
2 \E 8 E

.*. Equation (7) becomes

Total stress = /., |l + ^^' (l + g'-^)j

* Theory of Structures (Longmans).



CHAPTER XI

TORSION AND TWISTING OF SHAFTS

We have seen that in a beam the bending moment is resisted

by a complex series of stresses in tension and compression

which vary in intensity at different points in the depth of

the beam. In the case of shafts we have twisting moment in

place of the bending moment and the stresses are pure shear

stresses which vary in intensity at different distances from the

centre of the shaft.

Stresses in a Shaft Coupling.—-As an introduction to

Fig. 138.—Stresses in Coupling Bolts.

the subject consider the case of the stresses in the bolts of

the flange coupling shown in Fig. 138.

Suppose that a twisting moment or torque T is being trans-

mitted through the coupling from the shaft A to shaft B.

The shaft b has a resistance to its motion which produces a

reverse torque numerically equal to T and the effect of these

opposite torques upon the coupling is a tendency to shear the

bolts. Suppose that the bolts are at the same distance from
311
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the centre and are so small that the shear stress over them may
be regarded as constant and that they are equal in area and

equally stressed.

Then S = shearing force on each bolt

.'
. Taking moments about the axis of the shaft we have

Resisting Torque = -^. x r

.•.we have T = (1)

or if n is the number of bolts

T = "i-^"^'-- '
(2)

If the shaft is transmitting a horse-power, H.P., and is

rotating at N revolutions per minute, the work done per

revolution is 2 tt T so that the work done per minute is 2 tt N T

, ^ H.P. X 33,000 „^ „we have 1 =
^r ^-r ^^- l^^s.

H.P. X 33,000 X 12 . ,,=
2^N "" "'^ '^)

In calculations upon the strength of shafting it is always

desirable to work in in. lbs., and taking the unit of 1000 lbs.

as a " kip " we can work in in. kips to save writing a number

of O's and thus running the risk of error in dealing with large

numbers.

In the case of the shaft coupling that we have considered it

should be pointed out that we have made a great assumption

in regarding the bolts as being equally stressed, because if,

say, three of them are loose fits and the fourth is a good fit, the

fourth one will carry all the load ; the same point holds with

ordinary riveted joints. In practice, however, a number of

bolts are always used and each is always regarded as carrying
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its proportion of the load, and the best way to meet the

difficulty seems to be to have the workmanship as good as

possible.

General Case of Torque on Groups of Bolts or

Rivets.—Suppose that we have any number of bolts or rivets

of different areas and at different radii from the axis o about

which a twisting action may be considered as taking place ; in

Fig. 139 we have shown three such bolts. Then if we imagine

a slight rotational movement of one part of the joint or

coupling about the point o relatively to the other it will be

Fig. 139.

seen that the movements of the centres of the bolts will be

proportional to their radii r^, r^, r^, etc., and therefore the strain

and consequently the stress on any bolt is proportional to its

distance from the a:»is.

Let <s„ be the shear stress at unit distance from the axis and

let Aj, Ag, Ag, etc., be the areas of the various bolts.

We then have, if Si, s^, and s^, etc., are the shear stresses on

the various bolts and S^, Sg, S3, etc., the forces

^1 = s, ri

^2 ^^ "^'t ^2

<^3 "= <5(( T^
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^

we have

'otal Torque == T = Si r^ - S2 ^2 ^ S3 r. - . . .

= s^ Ai rj ^ 5, A2 ro - <S3 A3 r, -^
.

^ <S„ ^1 /*! -7- 5„ ^1-2 /"o" "^ S^ ^3 7*3" — .

= «„ ;Ai r/^ + A, r,3 + A3 r,2 -^ . .

= -^^ 2 A, /• 2 (4)

But 2 Ai /-i"
is the polar moment of inertia of the group

of bolts, etc. = I,.

T
•••

"5" = T (5)

Numerical Examples o>' Couplings axd Joints.—(1)

Find the diameter of holts necessary in a coupling which transmits

120 H.P. at 75 revolutions per minute. The diameter of the

circle of the holt centres is lOJ inches (i. e. r = o"25 inches) and

the coupling has 6 holts. The stress allowed is 2J tons per sq. in.

In this case from equation (3)

120 X 33,000 X 12
1 = —c^ 1-r^ iri • lbs.

2 IT X 75

= 100,000 in. lbs. nearly.

Also from equation (2)

T = '. X o'zi^ m. tons
4

6x2-5x7rX6Z2x2,240 ^ ^^ . „= — —

.

x5-25m.lbs.
4

= 139,000 d~ in. lbs. nearly.

, _ 100,000
•'• ~ 139,000

, /i6o,oo() ^^

.

,

^ = Vr3970'00 =
'^^^^^-^^"^^^^''

.
•

. Adopt bolts Y ^^ diameter.

(2) ExA3iPLE OF Cleat.—We ivill now take the case shown in

Fig. 140 of the cleat given in the Handbook of Messrs. Dorman,

Long d; Co., Ltd., for a 16 in. hy 6 in. standard I beam with a

minimum span of 18 ft., the rivets being of f in. diameter.

The safe uniformly distributed load given for this span and



TORSION AND TWISTING OF SHAFTS 315

beam is 25 tons, so that the reaction at each end will be

25
^ = 12-5 tons, and half of this will be carried by each angle.

or the load P will be 6-25 tons.

<^--4->
- 2i'-^Z^

McVi

625

Fig. 140.

First find the position of the centre of gravity of the rivets.

It is clearly on the horizontal line through the rivet 3, and its

distance from the line 1, 3, 5 is obtained by moments thus

—

5 ^ = 2 X 21

^ 4-5 ^ .

1. e. a = -zr = 9 m.
5



316 THE STRENGTH OF MATERIALS

Then we tabulate the dimensions as follows

—

No. of Rivet. r r2

1

2
3
4
5

4-58

2-62

-90

2-62

4-58

21-06
6-88

-81

6-88

21-06

2 7-2 = 56-69

Pa; _ 6^25 X 3^5
•*• * ~ 2>2 - 56^69

= -348 ton.

The moment load will be a maximum on rivets 1 and 5

because they are farthest from x, and will be equal to

Tg = -348 X 4-58 = 1-59 tons.

The direct loadW on these rivets
6-25

= 1-25 tons.

Therefore resultant load = R5 = 2*20 tons. [See Fig. 140.]

Now bearing area of a |-in. rivet in a |-in. plate

9_3 3
~4 ^ 8 32

sq. m.

2-20 X 32
Bearing stress on rivet = ^ = 7'82 tons per gq. in.

Area of a |-in. rivet in section ^ -r x \~^] = '442
.4

2-20
.

•
. Shear stress on rivet = ^^rj^ = 4-98 tons per sq. in.

The above calculation shows that the rivets are stressed just

about up to what is commonly taken as a safe working stress for

rivets in shear, viz. 5 tons per sq. in. The importance of

allowing for the eccentricity of the stress wiU be clear from

this example, because the resultant maximum stress on the

rivets comes to nearly twice the value which would have been

found if the eccentricity had not been taken into account.

Torsion of a Circular Shaft.—Suppose that a circular

shaft of length I and diameter d is subjected to a twisting
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moment or torque T (Fig. 141). To preserve the equilibrium

of the shaft, equal and opposite torques must act at the two

ends and each normal section of the shaft will be subjected to

strains which will allow a slight twisting motion of such section

without causing it to bend or warp out of its plane.

We will therefore make the following assumptions in

developing our theory of torsion

—

(1) That plane normal sections of the shaft remain plane after

twisting.

(2) That stress is proportional to strain, i. e. all the stresses

are within the elastic limit.

A line a b on the circumference of the shaft initially parallel

to the axis becomes bent to the form A b' as a result of the

Fig. 141.—Torsion.

ajoplication of the torque, the end a being regarded for

convenience as fixed. Then B b' may be called the arc of

torsion and it subtends at the centre o an angle called the

angle of torsion. This angle of torsion may be regarded as a

torsional deflection.

If we imagine the shaft divided up into a number of very

small equal slices it follows that since each slice is exactly

like every other slice the angle of twist in each sHce wiU be

equal, and if we regard each slice for convenience as of unit

length we have

Angle of twist per unit length of shaft =
I

Now consider the slice contained between sections x x and

Y Y, Fig. 142, the thickness x being regarded as very small,

and consider a square abed of side x at distance r from the
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centre. In our figure 6 c is appreciably curved, but that is

onlv because we cannot draw the fio^ure clearly without making

X of appreciable size.

The result of the twisting action is to make abed take up

the form a h' c' d, this being the typical form (cf. Fig. 1) indi-

cating pure shear strain, and the initial shear strain /? is given

by the relation

X

Y

-^

JU^

X -^

Y
Fig. U2.—Torsion of Shafts.

Shear stress — shear modulus x unital shear strain

= y3G

X
G (1)

Xow the angle hob' — angle of twist in length x

= angle of twist per unit length x x

_6x_
I

and bb' = ar c = radius x angle = —

^

rOx .G
xl

rOG
I

.
•

. In (1) shear stress

(2)
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This gives the important result that : The shear stress at

any point in a shaft is proportional to the distance of that point

from the centre.

The shear stress is therefore the same at all points on circles

concentric with the shaft and the variation of shear stress

is indicated by the triangle o eg, the stress at the extreme

fibre being s and that at any other radius r being equal to

, _s r

^ ^ R
Now consider a very small element of area a at a point

p in the section at distance r from the centre, the area being so

small that the stress over it is constant.

r OG
Then from (2) stress on element = —v-

•
. Force on element = S = stress x area

rOG
= -r-

•

"

.
*

. Moment about o of force on element

= S X r

rOG= -^~.a.r

G „

= -r "'
.

' . Total moment about the axis of all the forces on the

section

= Sum of separate moments

= > —, - . ar^

6 G sr\= —-.— ^ ar^ because 0, G, and I are constant

P
= —j~ X Polar moment of Inertia of section

^GI,.

I

But the total moment about the axis of all the forces on

the section must be equal to the twisting moment, so that

we get

T = -^4^"
(3)



320 THE STRENGTH OF :NL\TERL.\LS

From (2) we get ^^^^i = t^

and from (3) we get — = ^^
I, I

By combining these results we obtain the following com-

plete relation for torsion which should be compared with the

corresponding relation on p. 249 for the bending of beams.

stress T ^G^^ = ip=i~ <*>

In practical calculations we are usually concerned with the

maximum shear stress -s

5 T
.-. we write

t?
— y

T R ...

J
(o)

By analogy with the method of dealing with the section

modulus of a beam we call -^ the jjoJar modulus Z .

TWe thus get -s = ^

otT = f^Z (6)

Gases in which the Formulae are Applicable.—These

formulae are based upon the assumption that plane sections

remain plane after twisting and this is true only for circular

sections (soUd and hollow) ; for shafts of other section the

approximate formulae given on p. 333 may be used.

Solid Ciectxab Sectio>'.—This is of course by far the

most common case of shafting which occiu^, and in this case

. Z =

= -196.5 03 (7

32

77 D^ _ D _ - D3

32 2 ~ 16

'
16
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Hollow Circular Sectiox.—In this case, Fig. 143 {a),

Z, =

i. e.T =

16 Di

16 Di
(8)

When the metal is Yerj thin, Fig. 143 (6), we have

Fig. 143.

I^ =
I
D* _ (D _ ^j4

j and if t is so smaU that squares

and higher powers of jt may be neglected we may -^Tite

(D - ^)4 = D* - 4D3^

_ - BH

I^, - D2 f

*• e- Z,, =
J)

2

5 7rD2i
(9)

Alternative Derivation of Formula for Solid Shaft.—
The formulae (7) can also be derived as follows, and although

we recommend the previous method as the more satisfactory
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"we find by experience that some students find the alternative

method more easy to follow. It is similar to the method wliich

we have ahead}' used for beams in some cases (see pp. 220-222).

Consider a very small sector a o b, Fig. 144, of the circle, so

small that we may consider a o b as being practically a very

narrow triangle. Set up a D, B c, to represent the maximum
shear stress s and complete the pjTamid a b c d o as sho\^Tti.

Then if this pyramid be considered as di\'ided up into

a number of slices as indicated, the volume of each shce

= area of piece of sector x stress on it = load on each

Fig. 144.

piece of sector; the volume of pyramid therefore re-

jDresents the whole load acting on the sector, and to find the

moment about the point o of the force on the sector we

regard the volume of the pjTamid as acting at the centre of

gravity of the p^Tamid which is at distance --. - from o.

Now the volume of a pyramid = J area of base x height

ab

= g Ra

A D X O A

1R 5aR2
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3R
Moment about o = Volume x

4

3 4

5 a R^

2
Now in the whole section there will be — of these sectors,

a •

because the whole circumference subtends an angle 2 tt at the

centre.

.*. Total moment about o of all the forces on the

5aR3 2 7r

section = —-.— X —
4 a

~ 2 ~ 16

But this total moment must be equal to the torque T

. rp _ SttW
'

16

This agrees with our previous result (equation (7)).

Horse-Power Transmitted by Shafting.

We have seen on p. 312 that

^ H.P. X 33,000 X 12 . „
T = ^^ m. lbs.

H.P. X 33,000 X 12 . ^= —c.—TVT— cti^at. m. tons.
2 TT N X 2,240

.
•

, putting this into equation (7) we have

sjjrW _ H.P. X 33,000 X 12

16 ~ 2 TT N
H.P. X 33,000 X 12 X 16

D3 =
27r2N<S

^/H P
This gives D == 523 ^ ^— for s in tons per in.^

VHP= 68'4 a/ q^^

—
* for s in lbs. per in.^

In using this formula it should be remembered that N is to

be in revolutions per minute, the resulting diameter being in

inches.
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Taking s = 7,500 lbs. per sq. in. this gives

ND = 3-5 J

This is a very convenient formula for use. In practice s is

often taken rather less than 7,500 lbs. per sq. in., the table

given on p. 335 being often used; this is based upon s == 6,800

and is arranged to give round numbers for the 10 in. shaft.

Calculation of Angle of Twist.

From equation (3)

G Ij,

This, of course, will be in radians.

For solid shafts this gives

= -^—^. radians (10)

= -Q7p4 degrees (11)

Comparison between Solid and Hollow Shafts.—Sup-

pose that we have two shafts—one solid and of diameter D,

and the other hollow and of external diameter D and internal

diameter^.

Then I^, for solid shaft = ^^

Then I,, for hollow shaft = ^ JD* - (^^^^

_ TT 15D4
""

32 '

16

For the solid shaft we have

^1 " 16

and for the hollow shaft we have

^2 - 16 ^ 32 • 2

15 7^^
" ^ ^ 16 16

^2 _ 15
••

Ti 16
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The hollow shaft will therefore transmit }f of the torque

of the solid shaft and therefore |;? of the horse-power.

The area of the hollow shaft will be v ( D^ — , )
= —~—

>

4 \ 4 / 4

7rD2
and of the solid shaft it will be —-— ; so that the area, and

4

therefore the weight per given length of the hollow shaft, is

f of the corresponding value for the solid shaft.

Summing up our results, therefore, we may say that " the

hollow shaft has a weight of J that of the solid shaft and

transmits yf of the horse-power; so that weight for weight

15 4
the hollow shaft will be .^ x ^ , ^. e. li times as efficient as

lb o

the solid shaft; the angle of torsion or torsional deflection

will, however, be greater for the hollow shaft. This illustra-

tion brings out the fact that we can easily see from a considera-

tion of the stress diagram that the material at the centre of a

shaft is not used so effectively as that at the outside. This

result agrees with that which we found for beams (p. 201).

Numerical Examples on Circular Shafting.—(1) Find

diameter of wrought-iron shaft to transmit 90 H.P. at 130 revolu-

tions per minute if the working stress is to be 5000 lbs. per sq. in.

In this case H.P. = 90, N = 130, and s = 5000

.'. Working from the general formulae, which are much
easier to remember than the particular one, we have

T --

5 X TT D3 5000 TT D3
16 16

also T =
90 X 33,000 X 12

2 TT X 130

• F)3 -
16 X 90 X 33,000 x 12

5000 TT X 2 TT x 130

= 44*45 ins.^

.-. D == ^44-45

= 3-54 ins.

Adopt 3J ins. diameter.
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(2) A steel shaft 4 in. in diameter is running at 130 revolutions

per minute and is found to have a twist or " spring "
of 9 degrees

measured upon a length of 30 feet. What horse-power is being

transmitted, taking G = 12 x 10^ lbs. per sq. in., and what is

the maximum stress in the shaft ?

Our general formula is

js _T_ _ GO
R l,~~ I

In our case we are given the following

—

K-Z, 1, _ g^- - -32- -^-^

^ = ^° =w '^^^^^' = ^ *

I = 30 ft. = 360 ins. ; G = 12 x 10^ lbs. per sq. in.

^ G ^ L 12 X 106 X TT ^ 2 7r2 X 105 . „
.'. I = —j—^ = — „„^ ^^— X Stt = —^z, in. lbs.

/ 360 X 20 15

, ^ ^ H.P. X 33,000 X 12
but T =

H.P. =

27rN

2 TT X N X 2 TT^ X 105

33,000 X 12 X 15

4 TT^ X 130 X 102

33 X 12 X 15

= 271

To test whether the stress is within safe limits we write

G<9R
s =

I

_ 12 X 10« ^
360 ^ 20

^

= 10,500 lbs. per sq. in. nearly.

(3) What diameter of hollow shaft would you use to transmit

5000 H.F. at 60 revolutions per minute if the maximum torque

is IJ times the mean and the safe shear stress is 7,500 lbs. per

sq. in. Take the internal diameter as half the external.
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J ... . H.P. X 33,000 X 12 . „
In this case mean torque = ^—-^^ m. lbs.^ 27rN

5000 X 33,000 X 12 , „=
iy ^7,^ m. lbs.
2 7r X 60

Tvr ^ + T,
1-5 X 5000 x 33,000 x 12 . ,^Max. torque = T = ^ ^ m.lbs

T>, . rp _ ^ '^

r' "
V 2) J 7,500 TT 15 D3^''^^-

16D =T6~'~16~
r)3 _ 1;^ X 5000 X 33,000 x 12 x 256

2 TT X 60 X 7,500 TT X 15

This gives D = 17'9 inches.

Adopt 18 inches external diameter .

* Combined Bending and Torsion.—In a large number

of cases in practice shafts are subjected to bending as well as

torsional stresses; a common example occurs in the case of

a crank shaft and also in the bending stresses caused by the

weight of the shafts themselves or by pulleys carried between

the points of support.

Fig. 145 illustrates the action in an overhung crank shaft

The driving force p is applied at the point a at the crank pin

and causes a twisting moment equal to p . a b = p r about the

axis B c. In the vertical plane we have the couple formed of

p at A and p at b in an opposite direction ; to preserve

equilibrium at B an equal and opposite force p must act which

in the horizontal plane of B c combines with the reactionary

force p at c. B c may therefore be regarded as a cantilever

subjected to a bending moment equal to p x b c = p /. It

is usual to assume the cantilever as extending to the centre

of the bearing for the purpose of calculating the bending

moment ; it is difficult to obtain a much more accurate result

until we know the distribution of the pressures upon the bear-

ing. Our procedure for the calculation of the combined

stresses is as follows

—

First find the maximum bending moment M and the

twisting moment T acting at any point along the length of
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the shaft and calculate the corresponding maximum tensile,

compressive and shear forces contributed by the bending

moment and twisting moment respectively. If the shear

stress contributed from the consideration of the shaft as a

beam is at all appreciable we should add this stress to the

maximum shear stress given by the torsion. Let / and s be

the maximum bending and shear stresses, then, as explained

on p. 44, we have three alternative formulae to apply, one of

which gives the resultant shear stress and the other two the

resultant tensile stress.

Th(

(1)

Fig.

3y are

Rankine's formula

—

Equivalent tensile stress

St. Venant's formula

—

Equivalent tensile stress

145.

2^4

(2)

4s2\

+
,2

(3) Guest's formula

—

Equivalent shear stress 1 +

= s ^l +

4^2
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Equivalent Bending and Twisting Moments.—It is

common to express these formulae in terms of equivalent

bending or twisting moments.

Now the polar modulus of a solid or hollow circular section

is twice the ordinary or bending modulus of the same section.

For the solid circle Z,, = -.,-— and Z = ^^
lb 3Z

.'.we shall have

_M _ T _ T
^ ~ Z' ^ ~Z^ ~2Z
s T

• •

/
~ 2M

.
•

. taking Rankine's formula we have, if Mj, is the equivalent

B.M.
M, _ M /^ , /^ ^

T2^

IP.
Equivalent tensile stress = ^^ = -^ (l +^/l +

..M. = |(l + ^1+|;) (4a)

''
2
|(m + VM^ + T^) (46)

St. Venant's formula would give

or = g- + g VW^pT^ (56)

• Guest's formula will give

T M /~ T2
Equivalent shear stress = -^ = ^-^ /i j_

M / T2

or = VMM^T2 (66)

For ductile materials, such as steel, formulae (6) are recom-

mended for use in design, the safe shear stress being used for
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determining the necessary value of the polar modulus Z^„

to carry the twisting moment.

For brittle materials, such as cast iron, formulae (4) or (5)

should be used, the St. Venant formula being recommended

as the more reliable of the two ; the safe tensile stress should

be taken in this case.

There has been considerable confusion with these formulae

because Rankine's formula is often given as an equivalent

twisting moment and has been compared with Guest's formula

for the same working stress; the point to keep in mind is

that if Rankine's formula is used the safe tensile stress and

bending modulus should be taken, but if Guest's formula is

adopted the safe shear stress and polar modulus shoukl be

used.

Numerical Example.—What must be the diameter of a

solid shaft to transmit a twisting moment of 160 ft. tons and a

bending moment of 40 ft. tons, the tensile stress being limited

to 4 tons per sq. in. ? What diameter would you use if the shear

stress is limited to 3 tons per sq. in.

Let D be the diameter of the shaft.

Then s
T

~7rD3
16

16 T

/

IVI

7rD3

32 M

-U'

32

4 '^ 4

3
•

• 4

4s^
+ /2 ^

^/l +
4 X (1()T)2

(32M)2

Vi +

^1 + \40/

= •75 + 4VI7 = 5-9
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,5-9/ 5-9 32 X 40 X 12
.

•
. Max. stress = 4 = —7,-^ = -^^ x tv^2 2 ttD'*

-r.„
5-9 X 32 X 40 X 12 ^ ^.„ ,

D^ = 5 = 3,600 nearly,
O TT

D — 15*3 inches about.

/160\^2
Equivalent shear stress = <5 ( a/1+V40

_ 16 X 40 X 12 X 4-12

16 X 40 X 12 X 4-12
D3 =

37r

D = 15 inches about.

Shafts with Axial Pull or Thrust.—If in adition to the

torsional stresses (and bending stresses if they occur) there

P Q
exists an axial pull (P) or thrust Q we add -. or . to the bend-

ing stress to get the value of / to use in the formulae. In the

case of end thrust acting, when the direct stress is taken as

a criterion, the resultant direct stress should not exceed the

safe stress upon the shaft considered as a column, and the

design should be treated similarly to that of a column with an

eccentric load (p. 301). In the case of steel shafts, which are

most common, we suggest that a double test should be applied

;

the shaft should be designed to carry the equivalent direct

stress as a compressive stress on a column and also by the

Guest formula, the diameter chosen being the greater of the

two results.

Torsional Resilience.—As we have already explained in

connection with resilience in bending, the work done bj^ a

couple is equal to the product of the couple into the angle

turned through.

If, therefore, the angle turned through is 0, the work done

T6
by the couple which increases gradually from to T is -^ •

R" I ~l,
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.
•

.
Work stored in shaft = ^ =

c^' i^ • ?>. -r>
= ~ ''

ta

2

21, .sH
(1G D2

For a solid shaft -r^'l = , ^D- lb

the volume of the shaft = —j— .1 = Y
4

. 2jy_v
• • D2 4

i.e. Work stored in solid shaft = -7 ^^ • V4G
52

.
•

. Resilience = work stored in unit volume = -r-^ .... (2)4G ^
'

2
If we take G = E (cf . p. 12) this gives

o
5^2

Resilience = -^^^- (3)

For a hollow shaft of external diameter D and internal

diameter D^

2I,Z _ TT (D4 - D,4) . I _ ^ (D2 4- D^2)
(
D2 _ 1)^2) Z

D2 ~ 16 D2
~

16 D2

and V = '^(5i^-»A^
4

2 I, Z /D2 + Di2\ V
• • D2 ^ p2 y • 4

.-. Resilience = ^^^ |l +
(^J^^^

(4)

In the limiting case of a very thin tube j} approaches 1

and we have
^2

Resilience = -^-p (5)

Torsion of Non-Circular Shafts.—As we have akeady

indicated on p. 320, the ordinary theory of torsion is true only

for circular sections because in other sections the sections
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originally plane become bent out of the plane upon twisting.

The following cases have been worked out fully by St.

Venant, who has giVen the following approximate formulae

—

Section.
Relation of Maximum

Stress to Twisting
Moment.

T

T = 5 . -208 S3

T~
H

B

Any symmetrical sec-

tion not containing re-

entrant angles.

T = sBH2

3 + 1-
H
B

T 5 A*

40 \, . y

Angles of Torsion in
Degrees.

_292TZ((^2^D2)
GD3#

410 TZ

205 TJ (B2+H2)

G B3"H3

40I,,TZ

A^G

Where A = area of section

ly = j)olar moment of Inertia

y = distance of farthest edge
from centre of shaft

Numerical Example.—A square steel shaft is required for

transmitting power to a SO-ton overhead travelling crane. The load

is lifted at a rate of 40 ft. per minute. Taking the mechanical
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efficiency of the crane gearing as 35 %, calculate the necessary

size of shaft to run at 160 revolutions per minute. The twist

must not exceed 1° in a length equal to 30 times the side of the

square. Take G = 13 x 10^ lbs. per sq. in.

Work per minute to lift weight = 30 x 40 ft. tons.

If rj of crane = 35 %.
w w V. r 1 • . 30 X 40 X 100
Work to be supplied per minute = ^
.'.If revolutions per minute = 160

r^ 30 X 40 X 100 ,. , ^Torque = ,^ ^ rrrAft. tons = T^
3t) X 2 TT X 160

I =

3-42 ft. tons.

410 X 3-42 X 2,240 x 12 x 30 S

13 X 10« . S*

^.3 _ 410 X 3-42 X 2,240 x 12 x 30

13 X 10«

S = 4J inches (sa}^).

Fig. 146.

Effect of Keyways upon the Torsion of a Circular

Shaft.—Professor H. F. ^Nloore of Illinois University has

given the following results of experimental investigations

upon shafts with kej'wa}^ grooves cut in them.

Strength of cut shaft _ '26 lid
Strength of uncut shaft D D

Angle of torsion of cut shaft _ ,

* 4

6

,
'7

d

Angle of torsion of uncut shaft D D
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CHAPTER XII

SPRINGS

Springs may be regarded as devices for storing up energy

in the form of resilience and are used either as a storage for

energy, as in clocks, phonographs, etc., or else are used in

order to absorb excess energy which would otherwise do

damage, buffer and carriage springs being very common
examples.

The best form of spring will be that which will absorb the

greatest amount of energy for a given stress, and in the case

of springs placed upon trains it should be remembered that

the kinetic energy of the spring itself will add to the energy

that has to be absorbed. Failure to appreciate this fact has

led many people to suggest that railway collisions could be

prevented by the use of heavy springs placed in front, whereas

the weight of spring necessary to do this would be so great

that its advantage would be lost.

Since all elastic bodies have resilience, all forms such as

ties, struts, beams and shafts are strictly springs, but in ordi-

nary form they are too stiff to be of use. The j)rincipal

forms of springs may be divided into torsion springs and

bending springs.

We can consider the relative values of tensile, bending and

torsion springs by comparing the relative resiliences. For a

beam of uniform strength loaded at the centre such as occurs

in a leaf spring we have

/2
Resilience = ir^6E
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For tension we have

Resilience = ^-^
2 E

For torsion we have

Resilience = -.-^ = ^-^7
4 (jT o hi

4
Taking 5 = ^ / this would give

Resilience = ^^-4^5E

or, on the Guest theory, if <s = ^ we shall have

Resilience =
32 E

The pure tension spring, therefore, which is practically

never used in practice, is the most economical, and the relative

economy of the torsion and bending springs depends upon

the view taken as to the relative safe stresses for the two

cases.

Time of Vibration of a Spring.—The vibration of a

spring follows the laws of simple harmonic motion, so that

the following general formula will enable the time of vibra-

tion to be obtained.

Time of complete vibration

= ^ _ 2 TT /
Weight of spring

^ _ ^ ^^^
y g X Force to cause unit deflection

.
•

. number of complete vibrations per second == -
z

TORSION SPRINGS

Close-Coiled Helical Springs.—If a helical spring is so

closely coiled that each turn is practically a plane, the stresses

upon the material will be almost pure torsion. The twisting

moment. Fig. 147, will be W R and the spring will be equiva-

lent to a shaft of diameter d and of length I equal to the total

length of wire in the spring, ^. e. if n are the number of turns,

I =. 2 TT R ?^ (approx.) ; the torque applied to this equivalent

shaft will be W R as indicated.
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By our general torsion formnla we have

s _T _Gf

2
/T nvR

•*• ^ " GI,, " Gjd^
32

32nVR
~ GVci^

(2)

LUILUIL

turns

Jlllliin

L = 27rR^^

d

Fig. 147.—Close-coiled Helical Springs.

Now consider a very short length a of the spring and

suppose that 6 is the angle of torsion of this short length;

then due to this angle the weight W will go down by an

amount R ^ as indicated in Fig. 147. This is true for every
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short length and the separate deflections due to each piece

add together giving a total deflection

. ^ , 32WI12; .„ .

=^"G7y (^^^

If n is the number of turns we have I = 2 -n-Jln

_ 64jT Kn W R2

= Gd^ "^ (^^)

-Gd^ -^ (*^>

.
•

. the load W to cause a deflection 8 is given by

W=7rf|3-.8 (5a)
64 R^ ?i

^

Grl^
= 8T5^-^ (3^)

We might have obtained our result as follows from the con-

sideration of the torsional resilience (p. 331)

—

Torsional resilience = -. ^4G
.

•
. Work absorbed = ^-p x volume = Work done by weight

_ W8
2

. _ 16W R ^ _ Trd^l
^ ~ Tvd^ ' ^ ~ 4

W8 _ 162 w^ R2 . TT (^2 /

•'•"2 "
TT^d^ 4G.4

_ 16 W^ R^ I~
TT # G

, 32WR2?
6 = 7>ivm— as beiore.

Time of Vibration.—Putting 8 = 1 in equation (5) we

get the force to cause unit deflection ; this can then be put

into equation (1) to find the time of swing, remembering that

if all the other dimensions are in inch units, g (the gravity

acceleration) must be also reduced to inch units.
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Numerical Examples on Closely Coiled Springs.—(1)

A closely wound helical spring is formed of 30 coils of |- in.

round wire, the mean diameter of the coil being 4 ins. What

axial load will produce a shear stress of 9 tons per sq. in., and

if G is 4,700 tons per sq. in., wlmt will he the extension of the

spring under the load ?

s y ird^
T = Wx2= ,,

1(3

1\3

^^^ ~ 16

9 TTW = Wo a A tons
32 X 64

lbs.
_ 9 7r X 2,240
" 32 X 64

= 30-9 lbs.

_ 64 \VW n
^ = ' Gd^

64 X 30-9 X 30 X 8 X 256 , , _ .=
4,700-x 2,240 ^ \}21L2111

Before this extension occurred the spring would have

ceased to be closely wound if the load were such as to stretch

the spring, and the spring would have been fully closed if

the load were such as to compress the spring.

(2) // a closely wound helical spring made of wire J in. in

diameter has 10 coils, each 4 ins. mean diameter, find the fre-

quency of the free vibrations when it carries a load of 15 lbs.

{taking G = 12 x 10® lbs. per sq. in.).

\ ^ X Force to cause unit displacement

Putting 8 = 1 in equation {oh) we have

Force to cause unit displacement =jjpv3

(i)* X 12 X 106 Qi^^i,
8 X 43 X 10

Frequency =

/ — 9 - ^ /, seconds
" \ 32 X 12 X 9-156

1 _ 1 / 32 x~12 X 9156
t 27r\ "15

= 2 43 per second.
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It should be noted that in the above calculation we have

neglected the weight of the spring itself, so that the result

can only be regarded as approximate.

Weight of Springs.—A cubic inch of steel weighs about

•284 lb.

= -284 X

.'. Weight of spring = "284 x volume

7V_dH

4

TV d? irT> n
4

= -284 X

= '^ d'^T> n very nearly.

Safe Loads on Circular Springs.—The following are

the highest safe torsion stresses upon steel spring wire found

by experiments by Mr. Wilson Hartnell

—

Diameter of Wire.

1
2

Safe stress in lbs.

per sq. inch.
Safe Load on Spring

(lbs.)

70,000

60,000

50,000

429

D
1,240

D
2,450

D

D = mean diameter of spring in inches.

we have W

From the formula T

2 X '\^Qs(P

WD
2

D from which the values in the

third column of the table are obtained.

Restriction on Use of FoRMUL.g]:.—When ine springs

are used so that when stressed they are shorter than when

unloaded {i. e. if the load were to act upwards in Fig. 147),

it should be remembered that the spring may become shut

before the safe load has been reached ; this does not diminish

its strength, but impairs its value as a spring.
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Alignment Charts for Close-coiled Circular Springs.

DIAMETER OF SPRING

\«A ll I I I' M l I . I . I1 . .I I

^
-

I I
I t I

. — -; ;C 00 -o

/ \
ALLOWABLE WORKING STRESS

5» >

Sj5 /

Jo /

?" /

</> /

r o p o c S 5 5 —

i I i i i

DIAMETER OF WIRE
l
-" l-

I
' ' ' / ' ' ' L '—

T

/

I

I

t

I

LOAD ON SPRING POUNDS
§ I

MIII .1 I . Lhl 'l I
I

|| m/ ||[|| | I I . I h ll. M I . |.|i|i
I

'

I
'
|l|.'|ii . 'l

5^0 0000000 o o 00 — CO <"

J-O COOQOOOO O w

Fig. 148.

—Figs. 148, 149 show alignment charts * for the strength and

* For an explanation of the principle of these charts see a booklet

by the author on Alignment Charts, published by Messrs. Chapman
and Hall, Ltd. [Price 1/3 net.]
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deflection of round wire helical springs, taken from an article

by Mr. F. Fitchett in Machinery for January 14, 1915.

o ooooooo
P ' 1 1 r I I I I

I
1 1 1 1 I

I
I 1 1

1

1 1 1 1 1
1 I ' I X.

§$gg s ss s g
l
" ' >' I

LOAD ON SPRING. POUNDS

DEFLECTION pF SPRIN9. INCHES
.|... I t ,\.\.i. V t I I.I .1.1

^ V« 9> O QC tC
w wo>^«<cr:

I I I I I ' I ' I
—'

—

v
if ^*

DIAMETER QF WIRE
I /

/ I

DIAMETER OF SPRING
±T-

COEFFICIENT OF /

RIGIDITY '

I I '
I

t ! I

I
.

I I t i/ l I I I I II iIi m I I )

ro u u '^ u< 9k
|
" 't t t I'l'l'l ' M

a> ^ OB « — — — —~7i'^o — >o ^^i^en

ai 00 P !^ '^ -* /

r i'i'i ' " I
"""

"- '^ oc *J ^ tn ^oo o o o o o

NUMBER OF COILS
iii|ii I I W iiiii I I 1

I I I 1 t I

-r (C off ^J * (ji ^I
I

FiG.^ 149.

To use the charts we proceed as follows : Suppose, for

instance, mean diameter of coil = 3 in., diameter wire = f in.,
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safe stress = 60,000 lbs. per sq. in. On Fig. 148 connect

" diameter of spring " to " safe working stress '' and note

the intersection on the dotted axis. Connect this point of

axis through " diameter of wire " on to " safe load," which

will give the result required, viz. 415 lbs. approximately.

The chart can be used similarly to find anj^ one of the four

quantities if the other three are given.

To use the deflection chart of Fig. 149 take, for example,

a load of 16 lbs., J in. diameter wire, 2i in. diameter of spring

consisting of 20 coils, using G = 10,000,000 lbs. per sq. in.

Connect " number of coils " to " coefficient of rigidity '' and

note intersection on the right-hand intersection or " support

line. Then join " diameter of wire " to " diameter of spring
"

and note intersection on centre support. Join these two

intersections to meet the right-hand support and connect the

point thus obtained to " load on spring '' and produce to the

'' deflection " which gives 1 inch approx.

Springs of Square Section Wire.—If our spring is like

that shown in Fig. 147 with the exception that the wire is

square instead of round in section, the length of each side

being S, Ave can proceed as follows

—

410 T /

From p. 333 = r^(^^ (degrees)

711T/ , ,. -

= G S*
(^^^^1^^"^)

andT = s -208 S3

WD
Now T = W R = ^

„, s X -208 S3 -416 5 S3 .,.

••• ^^ = D" =-^- ^^^

2

711R X WR;
G S*

GS^
1-78 WD2/
"GS* •• ^^^

8 = R^ =



puttiiig I

8
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r787rWD3 n

GS*
5-6WD3 7i

GS*
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(3)

Taking the same safe stresses as for round wire we get

from formula (1) the following formulae for the safe loads

on square wire springs

—

Side of Square (in.) Safe Load in lbs.

455

D
1316

D
2660

I)

Comparison of Square Section and Circular Section

Springs.—The volume of the square spring = S^ Z = V

T B
. Work absorbed = -^

208 s S 3 7;^!IT I

GS*"^^"

7-11 X -208 5 S3 Z
X

2

•208_5_S3
2"~"

G"
154 ^2

GS^

154

Resilience = - —^

—

G
154 <§2

G

This is less than for a solid circular spring, the ratio of

25
circular to square resilience being 7—^ = 1 •62 . Also for a spring

of given diameter the load carried is greater for a circular

section than for a square section of the same area.



d

T. 1128
• t; 4 X -208
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For the circular section we have

rj. s X ird^ 8 d

for square T = 208 s S^ = 208 5 S x area

T _ d
'•

T. ~ 4 X -208 8

K — - = S-, /. e. if the areas are equal as suggested
4

1128 S

= 1-36.

Weight for iveight, therefore, a closely coiled circular section

helical spring of given diameter is 136 times as strong and will

absorb 162 tirnes as much energy as one of square section of

the same diameter.

Open-Coiled Helical Springs.—In the case of open-

coiled helical springs the stress is principally a torsioned one,

so that we wiU deal with it here although there is also bending

stress.

Referring to Fig. 150. let the centre line of the spring at

any point be inclined at an angle a to the horizontal ; then

the normal section plane x x of the wire will be at an angle

a to the vertical load W. The load W has a moment W R
about the line centre o of the section and this moment has

a component o « = W R cos a which is a moment in the plane

X X and causes a t^visting action, and a component a 6 = W R
sin a which is a moment normal to the plane x x and causes

a bending action.

.-. T = WR cosal

M = WRsina/

It is not altogether easy to follow this resolution into a twist-

ing and a bending moment at first, parth* because it is not

very easy to give a very clear diagram with the forces acting

in different planes, but a Little consideration of the problem

will probably remove the difficulty.
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The angle of torsion in the plane x x will be given by

.'. Work done against torsional stress = -^ = 901
W2 R2 C0S2 a I

'

- ~^GX ^
^

Fig. 150.—Open-coiled Springs.

The bending moment is constant, so that (see p. 264)

Work done against bending stress

_ W2 R2 sin2 a I

2EI

2EI

(3)
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.
•

. Total work done against stress

W2 R2 I /cos2 a sin2 a\
= 2 Ul, + ElJ (^)

But total work done against stress = Work done by

weight = 2

•^-^^^^Kov + ti") (^)

Taking a solid circular section we have 2 I = I^, =

. 32 W R2 Z /cos2 a
, 2 sin2 a'

_ 32 W R2 /

(and taking ^ = 2*5

32WR2Z
2 ^ Q • 2 ^ .AN= —/T' -74 (COS^ a + '8 Sni^ a) (6)

=
ri ^4 (COS'^ a + '8 sni- a)

= G.# <1- 2'™'") (')

The movement due to tAvisting per unit length of the coil

will be equal to R 6.,, where (9,, is the angle of torsion, and takes

place in the -plsme x x. This is equivalent to a movement

d e vertically and a horizontal movement e /.

.-. S,, = R^,, cos a . ..(8)

^ / = R 0, sin a (9)

This movement e f tends to increase the number of the

turns of wire.

The bending deflection upon a unit length will be equal to

R ^B, where 6'„ is the angular change in the centre line of the

beam. This movement takes place in the plane y y and will

tend to unwind the coil ; it has a vertical component g h,

which is the part of the deflection contributed by the bend-
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ing and a horizontal component h j which is an unwinding

tendency and opposes the winding-up strain ef.

.'
. 8„ = R, 0,^ . sin a

h j = — R (9„ cos a

TNow 0^ = ^ J- per unit length

M
^„ = =^j per unit length because the bending moment is

constant.*

.
•

. per unit length

T n X- o , cs
R T cos a

,
RMsina

denection = o^ + \ = ^ t H ^cTt
—

_ W^R2 cos2^ W R2 sin^ a
~ ~"

GI,, ^ EI

The deflection will be the same for each unit of length

—

This agrees with our equation (5) obtained in a different

manner.

Angular winding-up movement per unit length

_ e / — hj
~ R
= 6^ sin a — ^,5 cos a

,^_ _, , sin a COS a sin a cos aW R
GI„ EI

Total winding-up movement

= /3 = W R ? sin a cos « f p ^ ~ -^ -r

32 W R ? sin a cos a
/-^ _ 2 G\ ,^^.

7r#G V E
for a solid circular section

_ 32 WR Z sin a cos a G _ 2~
5 TT # G" ^^ E ~ 5

* See p. 249, and note in Fig. 121 that 9 =^ = 4 ^f C C is unity

.-. e= 1- ^.
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This is a maximum for a = 45"^,

If }) is the i)itch of the coil and n is the number of turns

/ __ n^/ p'- - -MV^

Comparison of Close-coiled and Open-Coiled

Springs.—Comparing result (7) with ecj^uation (36), p. 33*J,

for the close-coiled spring, we have

8 for open-coiled spring
, , ^ • o x

. .. , ^ .
^ ^ (1 — 2 sm- a) =

8 for close-coiled spring
in

roi

^^^

98

^
^.N
N

96

\
\
\

"OJ \
II

\
\

c
JO
"a

B ' \-

\
o
2
S

: \
2.0 30 "WO JO

e (degrees)

Fig. 151.—Correcting Coefificients for Open-coiled Springs.

m may then be regarded as a correction coefficient, values of

which are given in Fig. 151 for various values of a.

Stresses in Wire.—The stresses in the wire can be found

by calculating the separate bending and shear stresses and

combining them in the manner described to find the equiva-

lent simple direct or shear stress.

The twisting and bending strains both cause a tendency
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for the free end of the coil to turn about the vertical axis v v,

thus altering the effective number of coils.

BENDING SPRINGS

Leaf or Plate Springs.—If we consider a leaf or plate

spring of the type shown in Fig. 153 and note that the plates

are bent to the same radius so that they contact only at their

edges, we see that each plate may be regarded as supported

at its point of contact with the one below it, the load trans-

W
mitted at its overhanging end being -^ . (See also Fig. 152.)

The B.M. diagram for each plate comes therefore as shown.

In order that the spring may close practically fiat, the

curvature of each plate must remain constant after bending,

i.e. the radius of each plate after bending must be the same.

1 M
But from p. 249 ^ = ^^^ R EI

M .

.
•

. Since E is constant ^ is constant.

Between b and b', the B.M. is constant so that the section

is constant, but for A B and a' b' the B.M. varies in the

triangular manner shown, so that the section must vary

so as to keep ^ constant.

This can be done by making the ends triangular in plan,

the thickness being constant.

Then at any point at distance x from a

12

M = ^\^

M _ 6 6 X rf3

•'•
I ~ Wa:

and ^ = 7, by similar As

M 6c?3
.

•
. T =1X7 7/ = constant

I WZ
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Fig. 152.—Stresses in Plate Springs.

Another way would be to keep the ends square and to vary

the thickness as indicated.

Then I ^
*jf

, M = 'Y



M
For -p to be constant d/
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and if the lap were
I

^^— "'•• ~ r

contoured so that the relation held, the necessary conditions

would be satisfied.

Now suppose that there are n plates and that all but the

top one are cut longitudinally through the centre and placed

as shown in Fig. 152 they would make up the diamond-shaped

Fig. 153.—Plate Springs.

figure shown. The deflection, i. e. the upward vertical

movement from its initial curved position, for such a single

jDlate, which bends to a circular one will be very nearly equal

MP
to 8EI

Now I
?i b d^
"12"

3MJ2
~^2Ew6#

A A
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For a centrally loaded beam M = —^

'
' SEnbd^ ^^

In a test of such a spring it will be found that the friction

between the plates will cause the deflection to be less than this

with an increasing load and to be more as the load is reduced.

It is common to test such springs by loading them until

the plate is flat; we then have 8 = 8,„ and we get from

equation (1) the following value for the test or proof load W^

Stress in Plates.—The stress in the plates will be con-

stant along their length because their depth as well as their

moment of inertia is constant.

•••/ = M d

I ^ 2

Wl d

. nb d^
^' 12

3W?

' 2

~ 2nbd'' ^^^

Derivation of Deflection from Resilience.—The

formula for deflection may be derived from the resilience as

follows

—

42

Resilience (see p. 273) = J^

.*. Total work done in stressing = y!^ x vol.

- ^-- Id —"" 6E •^'^-
2

JWS _ f^lndb ^

•*•
2 ~ 12 E

dWUHn'^db
~ In^b^ d^ xl2E
^ 3W^ P
~ I6nbd^ . E

.*. d = c,T->- 1. Ti as beiore.
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Numerical Example.—A lamiyiated plate spring of 40

inches span has 12 plates, each -375 inch thick and 3*40 inches

wide. Calculate the deflection when carrying a central load of

4 tons, taking E = 11,600 tons per sq. in.

By formula (2) we have

3WP
8 = S^nbd^

3 X 4 X 40 X 40 X 40

8 X 11,600 X 12 X 3-40 x -3753

= 3-84 inches.

Fig. 154.—Piston Rings.

Piston Rings.—Springs in the form of split-rings are

placed around pistons in oil, gas and steam engines to prevent

escape of the working fluid past the piston, and such rings

should be designed so as to give as constant a pressure as

possible all round the cylinder. The necessary variation in

thickness has been investigated by Professor Robinson in

the following manner.

Let T>, Fig. 154, be the point of maximum thickness to

at the centre of the ring which was initially circular on the

outside and is sprung into position so that it is still circular

on the outside.

Consider a length a B of the ring, the thickness of the

ring at the point b being te and the breadth throughout
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being b. ^ is the angle which the arc b D subtends at the

centre.

Let R be the radius of the spring when bent and let R„

be the radius at b when in the unstrained condition indicated

in dotted lines.

If }) is the pressure per sq. in. we have
B

p = 7^ . A B (chord) . b = 2 pb R cos
.^ (1)

and the bending moment at p is equal to

Fig. 155.—Piston Rings.

By a modification of Fig. 121, p. 249, assuming a small

initial radius of curvature R„ we shall get

\R lij EI
as a first approximation.

I _ 1

R R, EI

2 pb Fx.^ cos^-^

E bte^

12

24 p . R2 cos2
2

Ete'
(3)
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At the point d, ^ = and te = t^

]. _ J. _ 24y R2
• • R R„

~ E ^ 3 (*)

Now R„ and R have to be the same in each position

24 25R2cos2|- .. _^.^ 2 _ 24 2? R^
•'• El? ~ Ee

If, therefore, the pressure 'p is to be constant

te^ 2 ^

1} = ^^^
2

•••| == V'°''l ^^^

Fig. 156 shows vahies of te in terms of f^ for the various

values of 6.

Neglecting the additional stress due to the curvature of

the bar (see ChajD. XIX.) we have at the point d

^ I ^VR R„

2

E L / 1 1
•'• ^ 2 \R R,112/

^•^•r-r;=^e7: (')

Putting this result in (4) we get

I
= l2pf-^ (7)

.-. ^. = rVt^ <^'

To find the necessary initial radius we have

i- = i - ^
. (9)

R„ R E^, ^^^

Numerical Example.—Taking E == 16 x 10^ lbs. per sq.

in. and the working stress 4000 Ihs. per sq. in., find the necessary

thickness and original external diameter for a cast-iron piston

ring for a cylinder 20 inches in diameter, the necessary pressure

being 3 lbs. per sq. in.
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From equation (8)

^„ = 10 X
12 X 3

4000
= "95 in. nearl3^

This is less than is usually used in practice.

/so

/60

140

(20

IOC

3g

GO

"KP

20

. . .

. V- 1

•2 olo '8 O '^

Values of f^ — t^^.

Fig. 156.—Thickness of Piston Rings for Uniforni Pressure.

Unwin and Mellanby * give total depth of all packing

ngs

* Elements of Machine Design (Longmans), Part II (1912).
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= , ^ + '6 in. for steam engines
15

=
-f-- + 2*4 ins. for gas and oil engines

= ^7^ for petrol engines.

Taking, therefore, a steam engine with rings we should have

= -64 in.

From equation (9)11 2 X 4000
• R, R 16 X 10« X -95

•1900

= -09947

R„ = 10053
.*. original diameter = 20*11 nearly.

Ring" of Uniform Thickness.—If the ring is of the same

thickness t throughout, R will be constant, but R^ should vary

in accordance with the following treatment

—

We have as before in equation (3)

, , 24 ^ R2 cos^ ^
R ~ K ""

El3

, , 24 2? R^ cos^ -^

•'•R, ^ R El3

•K^ ^''^
, (10)

E ^3 _ 24 2? r2 1-

For given values of t and f, R^ can be found by this formula

for different angular positions, and it will be found that the

curve for the initial shape of the ring differs considerably

from a circle, so that rings made by cutting out parts from

circular rings and springing into position will not give a

uniform pressure.
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* Plane Spiral Springs.—Consider a short length a b

(Fig. 157) of a plane spiral spring, the free end of which is

pulled with a force W.
Then the bending moment acting on this short length

Fig. 157.—Flat Spiral Springs.

.
•

. If 8 ^ is the change in angle between the tangents at

the two ends

^0 ==^ (seep. 250)

Ss
W.r X EI

Total chano;e in ansle

= ^-2 M 3 5 W
EI EI

if E and I are constant as is usual.

.r 8 s



SPRINGS 361

% X S s = 1st moment of spring constant about x x

= length of spring x r (approx.)

= Ir

. Wlr
EI (1)

If the spring is wound up to produce a tensile force W at

the end, the torque T which must be applied to the shaft

will be equal to W r.

Also 6 will be the angle turned through by the shaft, so

that work stored up in spring

2 E I
^^

If the breadth of the spring is b and its thickness t,

_ bj^

6

6M 6M
.

•
. Bending stress = / =

bt'

The maximum B.M. occurs at the point and is approxi-

mately equal to 2 Wr.

12 Wr

•

12 r

Putting this result in (2) we have

144 r2 . ^

/2 bH"^ .1

/2 J2 li IWork stored = j-i .—«—fr^rr144 r^ . 2 E I

b t^
288 E . ^-

24 E
/2

Resilience = ^. „
24 E

Pbtl

X volume

24 E
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This is relatively small because the material is not used very

economicalh^ parts of the spring being much more highly

stressed than others.

Close-coiled Helical Springs under Bending Stress.

—If instead of subjecting a close-coiled helical spring to an

axial load we subject it to a twisting action tending to unwind

or wind up the spring, the whole spring will be subjected to

a bending moment equal to the torque T applied.

Therefore, if we neglect the effect of the curvature of the

wire upon the stresses in it, we shall have, if 6 is the angle

by which the spring winds up or unwinds

—

T f) T^ I

Work stored = -^ =
o^Fl" ^^^^ ^' ^^"^^

• • ^ - E"i

Circular Section.— For a round wire of diameter d,

d^
I =

64

and / • -oq" = 1

i.e./
32 T

Work stored =

Resilience =

77 d^

32 . 32 . 2 E Trd^

P .T-d^l _ P X volume

32 E
~

8E

8E
Tl 64 T Z

radians
,

" ~ E I 7T d^.E

1,168 TZ ,— —I decrees.

Rectangular Section.—If the depth of the section is b

b t^

and the thickness is f , I = -, ^^

and T = Lipl
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Work stored =

12 TZ
E673

688T^Z

E h t^^

radians

degrees.

Resilience =

2EI
/2 62 ^4 .1

2 X 36. E.bt^

fnti f
6E ~ 6E
P

12

X volume

6E

SuMMAHY OE Resilience oe Vauious Types of Spring.

Type of Spring.

Pure tension

Pure torsion on close-coiled helical spring (circular shaft)

„ „ „ „ „ (square shaft)

Plate spring

Plane spiral spring

Close-coiled helical springs with twisting action causing
bending stresses—

•

Circular section .

Rectangular section.

Resilience.

2E

4G
154 s^

~G

P
6E

_£_
24 E

8E

P
6E



CHAPTER XIII

THE TESTING OF MATERIALS

Testing Machines.—In most types of testing machines

the loads are applied through a system of levers and are so

arranged that the levers are connected to one end of the

specimen (or in the case of bending tests to the supports), and

that a force is exerted by an hydraulic ram or screw gear to

the other end, the lever system " floating " when the force

exerted is equal to that applied to the levers. In this way

additional weights can be put on to the levers without causing

a shock in the specimen, because such additional weight does

not come on to the specimen until the hydraulic ram or screw

gear is operated further. We will describe some of the most

common types of testing machines.

WICKSTEED-BUCKTON SiNGLE LeVER VERTICAL TESTING

Machine.—This type of testing machine, a photograph of

which is shown in Fig. 158, was designed by Mr. J. H. Wick-

steed, and is manufactured by Messrs. Joshua Buckton & Co.,

of Leeds. The form shown in the photograph is belt driven,

the power being transmitted by toothed gearing to the screw

at the base of the machine, but hydraulic rams are commonly

employed to exert the necessary test force. This particular

machine has a capacity of 30 tons, machines of this tj-pe being

obtainable for capacities ranging from 5 to 100 tons, and can

be employed for tests in tension, compression, bending, shear

and torsion.

Fig. 159 shows diagrammaticaUy the action of the machine,

an hydraulic ram drive being shown.

364
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A horizontal lever A, Figs. 158, 159, is provided with a

knife-edge b resting upon a strong vertical frame v; a jockey-

weight w is movable along this lever and carries a vernier

R by means of which the position of the weight can be read

off upon a scale q.

A second knife-edge c, carried by the lever, engages a link

o connected to a cross-head. When operating for tension,

one end of the specimen e is gripped in this cross-head, the

s

ZD

r^
7

irnr
H K

L m-.
z^

, <

G G

r 1

Fig. 159.

Sf^ecimen

other end being gripped in a cross-head l connected by rods

G to an hydraulic ram F.

If the resultant of the jockey-weight w and the lever A is

W and acts at a distance y from the knife-edge B, we have by

moments
V .X = W 2/

X

The scale Q is graduated so as to read off values of P direct,

because W and x are of fixed value.

Stops s are provided for the lever a, which normally rests
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on the lower one ; as the pressure in the ram is increased the

force exerted upon the specimen gradually increases until it

reaches the value P, Avhereupon the lever rises and '"'

floats
"

between the two stops.

A lower cross-head j is suspended from the cross-head H by

rods K and is used for compression and bending tests. The

diagram on the right-hand side of Fig. 159 shows how the force

is applied in the case of a compression test. In a bending

test the arrangement is similar, but the test-beam is placed on

supports on the cross-head J and a load point or points is or are

connected to the cross-head L.

The jockey-weight w is adjusted along the lever A by a

screw which runs through the latter and is driven from a shaft

Fig. 160.—Werder Testing Machine.

O operated by a hand-wheel u or by power from a counter-

shaft X.

Werder Horizontal Single Lever IVIachine.— This

machine is used to a great extent on the Continent, and is

shown in diagrammatic form in Fig. 160. The lever a is of bell-

crank type and the two knife-edges B c are close together so

that the leverage is great and comparatively small weights w
can be employed. The knife-edge B is carried by the hydraulic

ram F, and the force p is transmitted to the specimen through

a cranked lever D. It is quite clear from this diagram that as

the s^^ecimen stretches the load would go off it if the ram did

not follow, i.e. if the pressure Avere not maintained in the

cylinder. When, as is common, this pressure is generated by

a small hand-pump, the operator goes on pumping until the

lever floats between the stops s.

Compound Lever Machines.—Riehle Type.—Fig. 161

shows a vertical type of compound lever testing machine,



Fig. 161.—Riehle Testing Machine.

[To jace paye 366.
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made b}^ Riehle Bros., of Philadelphia, U.S.A., and used

largely in America.

The steelyard a is connected by a link with lever b, which is

in turn connected with a lever c, which presses upwards upon

the table or platen d. A cross-head E is operated by screws

F, and according as the specimen is placed above or below this

cross-head the test will be made in tension or compression.

The machine shown is power driven by toothed gearing from

an electric motor.

These machines are controlled automatically by an electric

contact device. At the outer end of the beam a are two

contacts so arranged that when the beam reaches its highest

position contact is made; this completes the circuit of an

-S^ n ^^ G
. ^rz D <^

1 1 _
\

'^^
) 1 9

Sf:>€cimen.

I _c
1

1
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'
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Fig. 162.—Greenwood and Batley Compound Lever Testing Machine.

electro-magnet which puts into gear with the driving

mechanism the screw for moving the jockey-weight along

the beam, but the movement of the jockey-weight can only

follow up the extensions because contact is again broken as

soon as the extension is more than is necessary to maintain

the balance. Means are provided for varying the speed at

which the weight is run out. An autographic recorder G is

provided (see p. 379).

Greenwood and Batley Horizontal Type.—This type

of machine is made by Messrs. Greenwood and Batley, and

was used by Professor Kennedy in the many researches which

he carried out while at University College, London, this being

one of the first testing machines installed in a college laboratory.

The steelyard lever a, Fig. 162, has a knife-edge B and acts

on a knife-edge c of a bell-crank lever d, which is pivoted upon

a knife-edge e and is acted upon by a knife-edge F connected
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to a cross-head connected to the specimen. The other end

of the specimen is carried by a cross-head operated by an

hydraulic ram G.

The usual leverage of the compound lever is 100 : 1 ; the

jockey-weight w is generally moved along the steelyard, which

carries a graduated scale, by means of a chain by a hand-

wheel.

WiCKSTEED-BucKTON HORIZONTAL Type.— This type is

shown diagrammatically in Fig. 163 and by a photograph in

Fig. 164. The steelyard lever a acts through a link c upon

a bell-crank lever D, which connects by shafts shoT^n diagram-

matically by G with the specimen. A massive carriage frame

Fig. 163.—Wicksteed-Buckton Compound Lever Testing Machine.

J is connected to the hydraulic ram r and carries a number

of notches, into any of which can be fitted a cross-

head K by which the other end of the specimen is carried.

According to the position of the cross-head k, the specimen

will be tested in tension or compression. This machine is very

convenient for general testing on account of the ease with

which it can be adjusted for different lengths of specimen and

forms of test.

Smaller Testing" Machines.—There are a large number

of smaller testing machines in use, from which ver}' good results

may be obtained in cases in which it is not essential for the

specimens to be large ones. The student should remember

that a great deal can be learnt with very simple apparatus.

Fig. 165 shows a machine, designed by Professors Dixon and

Hummel and manufactured by Messrs. W. and T. Avery, Ltd.

;
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it has an automatic load-indicating device in the form of

two dished plates connected by a patented flexible metallic

diaphragm; the space between the plates is filled with a

non-elastic fluid and the pressure is recorded upon a sensitive

gauge which is graduated to give the load on the specimen.

The gauge can be tested by means of a small plunger which can

be loaded with weights supplied with the machine to produce

pressures corresponding to the total capacity of the machine.

The machine shown has a capacity of 10,000 lbs. and the

force is applied by a capstan acting through worm and wheel

gearing to a central screw. This gear can be thrown out for

quick return and the screw operated direct bythe handle shown.

Calibration of Testing Machines.—To ensure accurate

results in the use of testing machines they should be calibrated

periodically ; the vertical type of machine possesses advantage

in this respect because a heavy weight can be hung on direct.

The first test is for zero error. This is effected by moving

the jockey-weight carefully to the zero mark and seeing if

the lever floats ; if it does not we can correct for this by an

adjustment of the vernier on the jockey-weight by moving

the latter until the lever floats and then moving the vernier

until it reads zero.

The next point that we may test is the value of the jockey-

weight. This can be effected without removing it from the

machine in the machines shown in Figs. 158, 163, by finding the

floating position and then moving the jockey-weight a carefully

measured distance I along the lever ; then at a distance z from

the fulcrum suspend weights w until the lever floats again.

iv z
Then weight of jockey-weight = W = -y-.

V

To test for the accuracy of the knife-edge distance x we may
proceed as follows : Hang a heavy weight Wi from the

shackles of the machine and note the distance u that the

jockey-weight has to move to balance it;

then X = — 1 -
w

BB
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Another imjoortant test is for sensitiveness, by whicli is meant

the amount by which the load may vary without causing the

lever to come against its stops. This may be tested at zero

in vertical machines by placing the jockey-weight at zero and

hanging small weights on to the shackles until the lever ceases

to " float "
; this should be repeated for larger loads and should

also be tried by taking weights off as well as by putting them on.

Grips and Forms of Test-Piece in Tension.—^'^lien

tests are made on flat bars, as is very common for rolled

sections, wedge grips are generally' emj)loyed. Fig. 166 (a)

shows one form of wedge grip. \Yedges A, pro^-ided with

serrations to grip into the specimen, are driven into a tapered

(«)

Fig. 166.

central passage through a block secured to the cross-head of

the machine.

In Fig. 166 (6) is sho^vn a grip suitable for a turned specimen

provided with a collar. The collar bears against a washer c

provided with a spherical end which bears against a tapered

bush D, which engages in a similarly tapered central hole in

the block B. This construction tends to keep the pull truty

axial; a point of great importance. The ends of the speci-

mens are very often screw-threaded, in which case they just

screw into the blocks b.

The British Engineering Standard Committee have specified

the following rules, see Fig. 167, as to gauge length (cf. p. 55).

(a) Flat Bars.—Gauge length = 8'"
;
parallel for 9''.

If the thickness is greater than J in., maximum width

= IJ ins.



Fig. 165.—Dixon and Hununel's Testing Machine.

[To face page 370.
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If the thickness is between f and J in., maximum width

— 2 ins.

If the thickness is less than f in., maximum width = 2J ins.

(6) Turned Sections.—Gauge length = 8 d; parallel for 9 d.

(c) Turned Specimens from Forgings.—
Area J in.

;
gauge length = 2 ins.

Area J in.
;
gauge length = 3 ins.

Area | in.
;
gauge length = 3J ins.

Extensometers.—Extensometers are instruments for

measuring the elastic strains of materials in tension or com-

pression. In the types in most common use the strains are

^
P

— at

8JL

(b)

(c)

Fig. 167.

^

~V

magnified by an arrangement of levers and are measured by

micrometer or by an indicator passing over a scale. We will

describe a few of the most common types ; for other types

a reference may be made to a paper by Mr. J. Morrow, in

Proc. Inst. M. E. for 1904.

An interesting report on the accuracy of various types

of extensometers is given in the Report of the British Associa-

tion for 1896. In these tests, different observers had bars of

the same material sent for test. The results show very good

agreement, some of the nearest results to the mean being

obtained by instruments of very simple form.

Goodman's Extensometer.—This extensometer is of very

simple form and was designed by Professor Goodman, of
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Leeds. It consists of two forked clips, a, b, Fig. 168, which

carry pointed screws engaging in centre-punch marks in the

specimen and are connected to rods c which join at their ends

and carry a scale D on a projecting piece.

Two light rods e, f form a fixed triangle, and the vertical

rod E projects and has a small groove at its end which forms

a bearing for a knife-edge carried by the pointer P. A second

knife-edge on the latter rests upon a second vertical rod H

Fig. 168.—Goodman's Extensometer.

depending from the upper clip A. A small screw is pro-

vided for bringing the pointer exactly to zero at the beginning

of a test. The strain of the specimen causes the rod H to

move slightly relatively to the rod e, this movement being

magnified 100 times by the pointer lever.

This and most other extensometers should be taken off the

specimen as soon as the yield point is reached.

Kennedy's Extensometer.—This extensometer was de-

signed by Sir A. B. W Kennedy when professor at University

College, London, and was one of the first lever extensometers.

The instrument is for use in horizontal testing machines and
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Fig. 169.—Kennedy's Extensometer.

comprises two clips a^, Ag, Fig. 169, which carry triangular

frames B^, Bg, which slide over and support each other.
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The clips are as usual provided with pointed screws for

engaging centre-punch marks in the specimen, lock-nuts being

provided on the screws. As the specimen stretches, the

frames slide relatively to each other, and a pointer-lever c

which carries pins resting in depressions in each frame is thus

caused to move over a scale d carried on an adjustable arm

c

Vj^m^

©B
i^m^^j H

c. J. r. Co. £-w.

Fig. 170.—Ewing's Extensometer.

E. To give an adjustment for zero, the depression in the front

frame is formed in a plate r which can be adjusted by a fine-

pitch screw.

Ewing's Extensometer.—This instrument was designed

by Sir J. A. Ewing when professor at Cambridge.

The principle involved is illustrated diagrammatically in

Fig. 170. There are two clips B and c each attached to the

test-piece A by the points of two set-screws. The slip b has
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a projection b' ending in a round point P which engages with

a conical hole in c ; when the bar extends this rounded point

serves as a fulcrum for the clip c, and hence a point Q, equally-

distant on the other side, moves, relatively to the clip B,

through a distance equal to twice the extension. This dis-

tance is measured by means of a microscope attached to the clip

B . The microscope forms a prolongation of the clip B and the

motion of the point Q is brought into the field of view by means

of a hanging rod r. The rod R is free to slide on a guide in

the chp B, and carries a mark on which the microscope is

sighted. The displacement is read by means of a micrometer

scale in the eye-piece of the microscope. The pieces B and b'

are jointed to one another in such a way that the bar may twist

a little, as it is sometimes liable to do during a test, without

affecting the reading c. But the joint between B and b' forms

a rigid connection so far as angular movement in the plane

of the paper is concerned. This feature is essential to the

action of the instrument : it is only then that P serves as a

fixed fulcrum in the tilting of c by extension on the part of

the specimen.

Fig 171 is an illustration of the usual form of the complete

instrument. The clips b and c in this standard pattern are

set at 8 ins. apart.

The object sighted is one side of a wire stretched horizontally

across a hole in the rod b and illuminated by means of a small

mirror behind. The distances cp and CQ are in this instance

equal, with the effect that the movement of the sighted mark
is double the extension of the test-piece. The length of the

microscope is adjusted so as to give a constant magnification.

This adjustment should be tested with the extensometer

mounted on the specimen, and if necessary the length of

the microscope tube can be altered by moving out or in the

portion carrying the eye-piece. A complete revolution of the

screw L, which has a pitch of -V of an inch, should cause a

displacement of the mark through 50 divisions of the eye-piece

scale, and when^this is the case the eye-piece is at the proper
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distance from the objective. Readings are taken to tenths
of a scale division, so that this displacement, which would also

be given by ^i^ of an inch extension of the test-piece,

corresponds to 500 units. Each unit then means ^,. ;.,,,. inch

in the extension of the test-piece.

A small extensometer based upon the same principle is

used for measuring the compressive strain in short cylinders.

Fig. 171.—Ewing's Extensometer.

Dabwin's Extensometer.—This instrument has been

designed by Mr. Horace Darwin, F.R.S., and is characterised

by simplicity and solidity of construction, which make it

suitable for heavy use. Another feature is that if the specimen

should break unexpectedly when the extensometer is affixed

little damage will result.

The instrument is made in two separate pieces each of which

is separately attached to the test-piece m, Fig. 172, by hard

steel conical points P, P and p', p'. The steel rods carrying

these points are mounted in] slides and after being driven

__
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gently into the centre-punch mark in the test-piece are

clamped in position by the milled heads r, r. Both parts of

the instrument should be capable of rotating quite freely about

the points, but there must be no backlash.

The lower piece carries a micrometer screw fitted with a

hardened steel point x and a divided head H. It also carries

a vertical arm B at the top of which is a hardened steel knife-

Fig. 172.—^Darwin's Extensometer.

edge. The upper and lower pieces work together about this

knife-edge. A nickel-plated flexible steel tongue a forming a

continuation of the upper piece is carried over the micrometer

point X. This tongue acts as a lever magnifying the extension

of the specimen, so that the movement of the steel tongue to or

away from the steel point x is five times the actual extension

of the specimen.

To take a reading with the extensometer the thin steel

tongue A is caused to vibrate and the divided head then turned

till the point x just touches the hard steel knife-edge on the
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tongue as it vibrates to and fro. This has proved to be a most

delicate method of setting the micrometer screw, and the

noise produced and the fact that the vibrations are quickly

damped out indicate to yoVo mm. the instant when the screw

is touching the tongue. After the load is applied a second

reading is taken in a similar manner and the difference in the

readings gives directly the extension of the test-piece.

If the test-piece is of small diameter the spring does not

vibrate in so satisfactory a manner; the cause of this is the

flexibility of the test-piece, the instrument itself vibrating as

well as the spring. Still, very delicate readings can be taken

by simply deflecting the spring with the finger and noting

the contact as it passes the point. No damage can be done

by advancing the micrometer screw too far forward ; all that

happens is that the point passes the knife-edge on one side or

the other.

In the usual form, the gauge length is 100 mm. ; it may

be pointed out that over the elastic portion of the test for

which extensometers are used, the gauge length is not a matter

of importance.

Unwin's Extensometer.—This extensometer, designed by

Professor Unwin, is shown in Fig. 173, and makes its measure-

ment by a micrometer acting in conjunction with two spirit-

levels.

Two clips a, b, are secured to the test-bar by pointed set-

screws, c, d, and carry sensitive spirit-levels g. The lower clip

is first set level by means of an adjusting screw e ;
the upper

clip is then levelled by the micrometer screw /, on the graduated

head of which readings are taken. When placed midway

between the two edges of the specimen the extensometer gives

the mean strain, but if placed to one side or the other by

adjustment of the screws in the clips, the strain at any point

in the width can be found in the case of eccentric loading.

Morrow's Mirror Extensometer.—A simple extenso-

meter enabling great magnification of the strain to be obtained

is that designed by Mr. J. Morrow. Clamping screws a, b,
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Fig. 174, pass through rings c, d, to the latter of which a vertical

strip is rigidly attached, a pointed rod e acting as a distance

piece. Between the ring c and the strip r is placed a small

diamond-shaped prism h which carries a mirror m, a light spring

clip s maintaining the requisite pressure between the prism

and the ring c and strip f. A second mirror isr is attached to

Fig. 173.—^Unwin's Extensometer.

the strip f and any change in length of the specimen will

cause the mirror m to rotate relatively to the mirror isr. By
observing the images of a scale in both mirrors, we obtain the

strain by the difference of the two readings.

Autographic Recorders.— Many testing machines are

provided with mechanism for drawing the stress-strain (or

more accurately the load extension) diagram automatically as

the test proceeds. One of the earliest mechanisms of this

kind was one used by Professor Kennedy upon a horizontal
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compound lever machine. The movements of a pointer upon a

piece of smoked glass were obtained in one direction by the

actual extensions of the bar, and the movement represent-

ing the stress was obtained by multiplying up the strain in a

^

P;
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Fig. 174.—Morrow's Extensometer.

J^

longer bar coaxial with the test-bar, this longer bar being

always stressed within the elastic limit and the load therefore

being proportional to the extension.

WiCKSTEED-BucKTON RECORDER.—This autographic re-

corder is fitted to the Buckton machines and is shown on the





Yia. 175.—Wicksteed-Buckton Autographic Recorder.

[To face page 381.



THE TESTING OF MATERIALS 381

extreme right-hand side of Fig. 158, and also to larger scale

in Fig. 175. The record sheet is placed on a drum, around

which passes a string which goes through a tube t and passes

between pulleys upon the cross-heads between which the

specimen is gripped. As the specimen becomes strained the

distance between these cross-heads varies and this motion is

communicated to the drum so that the rotation of the drum is

proportional to the strain. The stress is measured by first

putting the jockey-weight w near its extreme position and

preventing the lever a from coming down upon its stop by

means of a spring s connected up to the pencil carriage. As

the specimen becomes stressed, spring s is proportionally re-

lieved from load and thus shortens in length by an amount pro-

portional to the load appHed to the specimen. The upward

movement of the pencil is therefore proportional to the load,

and the combined movement of drum and pencil traces out a

load-extension curve which is generally—^though not quite

accurately—called the stress-strain diagram.

TorsionTestingMachines.—Single lever testingmachines

are often provided with an attachment for enabling testing

by torsion to be carried out. Torsion tests to failure can be

made upon comparatively small machines.

Fig. 176 shows diagrammatically the form of testing machine

used by Professor Kennedy; most other machines are based

upon the same principle. A graduated lever a is counter-

weighted to balance about a knife-edge B coaxial with the

specimen x, which usually has the form shown in Fig. 167 (6)

with the exception that the ends are not screw-threaded.

A jockey-weight \v runs along the lever and the specimen is

clamped in a chuck which is connected to the lever at the

pomt c. The other end of the specimen is secured by a

chuck carried by a worm-wheel d which is operated through

a Avorm from a handle e to apply the necessary torque. The

jockey-weight is placed so as to exert a given torque, and

the handle e is turned until the lever " floats " between the

stops s.
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Professor Thurston's Torsion Machine.— In this

machine, Figs. 177, 178, the specimen is a short one with

square ends, one of which is carried by a jaw rotated by worm

gear, the other being carried by a jaw connected to a weighted

pendulum, the angular movement of which determines the

torque applied.

X~

^

Fig. 17G.—Torsion Testing Machine.

An autographic diagram is obtained by securing a pencil

to the pendulum in such a manner that the pencil moves

parallel to the axis of the specimen as the pendulum swings

outwards. A cylinder carrying a paper strip is secured to

the jaw carried by the worm-wheel. The paper thus rotates

by an amount equal to the angle of torsion, and the pencil

moves at right angles by an amount which is a measure of the

torque applied.
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A templet of the form shown in Fig. 178 is employed to

obtain a standard size of specimen.

Avery's Reverse Torsion IMachine.—Fig. 179 shows two

views of a torsion machine, patented by Messrs. Avery, by

means of which a torque can be applied in either direction.

Fig. 177.—Thurston's Torsion Testing Machine.

The specimen x is gripped between special three-jaw chucks

g, g', and the torque is applied from a hand-wheel i through a

worm-wheel h mounted upon an adjustable standard a*. The

torque is thus communicated to a lever / and thence through a

supplementary lever k and rod I to the steelyard b, upon which

the usual jockey d is mounted.
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The main torsion lever / is fulcrummed on ball-bearings /^.

Passing through the centre of this bearing is a spindle e of cruci-

form section to which the chuck g is attached. This spindle

is connected with the lever / by means of rollers e^ whereby

it has limited longitudinal movement through the lever, but

cannot revolve therein. This longitudinal distance is to allow

Iflb
Fig. 178.

of adjustment due to the shortening of specimens undergoing

tests, the collar e^ on the spindle e preventing the withdrawal

or extended movement of the spindle. The main lever / is

provided with knife-edges p and /^ through Avhich connection

is made to the supplementary lever k ; this lever k is w ithin

the main lever / and has a ball-bearing fulcrum k^ on a bracket

a^. It is suspended by means of the link m from the knife-

edge /2 of the main lever, and at its opposite end it is connected

with the knife-edge of the main lever P by a link m^. The links

m and m^ connect with the lever k through Imife-edges k^ and

P. Between the knife-edge P and the ball-bearing k^ is

another knife-edge n which forms the connection from the

levers / and k to the steelyard b by means of the rod Z. The
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lever / is counterbalanced by the adjustable weight /*, and the

lever ^ by a similarly arranged weight k^.

Assuming the torque to be applied as indicated by the arrow

y, it lowers the end of the lever / which is in contact with the

^>ci

^1

---------

Fig. 179.—Avery's Reverse Torsion Machine.

lever k ; the point of greatest depression in contact with the

lever k will be the knife-edge /^ which through the link m^ and

knife-edge k^ lowers this end of the lever k, about its fulcrum k^,

so that this movement of the lever k lowers the knife-edge n,

thereby exerting a downward pull on the connecting rod I and

raising the free end of the steelyard b.

cc
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If the torque is a^oplied in the direction indicated by the

arrow z the end of the lever / which is in contact with the lever

Ic is raised and the knife-edge /^ also raised ; this upward move-

ment of ths knife-edge /^ raises the link m dependent there-

from and also the knife-edge k^ of the supplementary lever A:,

causing the lever Ic to move about its fulcrum 1^ as before.

The knife-edge n is again depressed by this movement of the

lever and exerts as before a downward pull on the connecting

rod. By this arrangement, in whichever direction the tor-

sional stress is applied to the main lever /, the resultant

direction of force on the connecting rod I is the same.

Professor Lilly's Reverse Torsion LIachine.—This

reverse torsion machine, patented by Professor Lilly of

Dublin, is a very simple machine for obtaining autographic

diagrams in torsion and is particularly of value when working

within the elastic limit.

A circular table a. Fig. 180, is fixed to any convenient bench

or stool, and has through its centre a hollow steel cylinder B.

In the central part of the cylinder is placed the specimen c to

be tested, one end being secured to it by the key at d and the

other end passing through the adjustable bearing E ; it is

secured to the lever g H i by the key at F. The lever consists

of a solid shank h, which is rigidly connected to the spring i

;

the weight G with its connecting arm forms part of the solid

shank, and is for the purpose of balancing the lever. Fixed

to the spring i at J is a light arm k, at the end of which is an

adjustable spring Q carrying the recording pencil l. This

pencil is adjusted to slide along the straight edge N which

forms part of the frame s. A circular drum m revolves on its

outer edge o on the table A, and is connected by adjustable

pivot bearings to the frame s which is connected by adjustable

pivot bearings R to the arms of the solid shank h.

The manner of carrying out a torsion test with the machine

is as follows : The specimen c to be tested is placed in

position in the cylinder B, and secured to it by driving up 'the

key at d ; the lever G h i is now placed in position on the top
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end of the specimen c and secured to it by driving up the key

at F. A sheet of squared paper is fixed on the drum m, which

o
H

>

P5

o
M
(D

O

o
00

is then put in position on the table a, and the pivot bearings

adjusted; the pencil l is now placed in the central position
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on the drum and in contact with the straight edge n by adjust-

ing the arm k and the spring q. The torsion test on the

specimen is carried out by applying a pull or push to the handle

p; the pencil L then automatically graphs the stress-strain

diagrams on the squared paper. The movement of the pencil

L along the straight edge n is proportional to the push

or pull on the handle p and gives to scale the magnitude

of the torsional or twisting moment ; this may be shown as

follows

—

Regarding the spring i as a cantilever with a load at the free

(l ij

end, the value of y and -—- at the point J is proportional to the

force applied at p. Calling the length of the arm z, the deflec-

d u
tion of the pencil end is y ~ z ^^ which is proportional to the

applied force. The roll of the drum m under the pencil is

proportional to the angle of torsion of the specimen. The

pencil graphs the combination of these two movements at

right angles to one another, and the resulting stress-strain

diagrams are thus obtained to rectangular co-ordinates.

To calibrate the machine a known. pull is applied to the

handle p by means of a spring or otherwise, and the dis-

tance traversed by the pencil along the straight edge gives

to scale on the squared paper the magnitude of the apphed

twisting moment. The scale of the angle of torsion is obtained

by observing the number of turns of the drum during one

complete revolution on the circular table.

For examples of diagrams taken with this machme the

reader is referred to a paper in Froc. Inst. C. E. Ireland,

Vol. 41.

Professor Coker's Combined Bending and Torsion

Machine.*—This machine has been devised by Professor Coker

for experiments upon combined bending and torsion.

The various parts are supported in a built-up frame con-

sisting of two planished steel shafts, a, Fig. 181, secured in

* Phil. Mag., April 1909.
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cast-iron cross frames b, mounted on four standards, one

of which latter is adjustable in height to secure steadiness

on an uneven floor. U23on the steel shafts are two castings c, D,

each of which has a cylindrical bearing E encircling one of the

shafts and resting with a flat face F in line contact with the

other shaft, and secured in j)osition by a cross-bar G threaded

on studs. This connection is perfect!}^ rigid, since it removes

all degrees of freedom, and it is readily released by simply

turning back one of the cross-bar nuts, leaving the casting

free to slide into a new position. It also has the advantage

Fig. 181.—Coker's Combined Bending- and Torsion Machine.

that no accurate fitting is required for the supporting frame.

The casting c carrying the worm-wheel gear w has trunnion

bearings h at right angles to and intersecting the axis of the

specimen. The bearings are fitted with friction rollers, and

when the machine is used simply for torsion the worm-wheel

is kept in a vertical position by an arm i keyed to the bearing

H and locked in position by a thumb-screw. A weight J

attached by an arm to the second bearing balances the pivoted

casting in all positions.

The weigh-levers are supported from a vertical standard

K of the frame d by a wire l, terminating in a thin plate M
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with a keyhole slot encircling the spindle N. Formerly a

roller bearing was used for this spindle, but this is an un-

necessary rejBnement, as the friction is extremely small and

can be easily taken into account. The casting supported

in this way has three levers, p, q, and r, the first two of

which are for the application of twisting moments s, and the

third R, in the line of the specimen, is for applying a bending

moment.

All the loading levers are provided with knife-edges of

circular form, made by turning an ordinary Whitworth nut

down to form a disk with a V-shaped edge. These disks

carry rings t with wdde-angled V-shaped recesses on the inner

sides, and light rods v screwed into these rings carry the

weights. This arrangement of knife-edge is very easy to

adjust accurately, and when bending and twisting stresses

are applied simultaneously the rolling line contact adjusts

itself to the bending and twisting of the specimen. The

bending of the specimen causes a change in the effective

arm of the bending levers, which is generally negligible, but

a correction may be necessary wdth a very long specimen.

For if a is the length of the lever-arm, and h is the radius of

the circular knife-edge, an angular deviation of amount

will cause a change of a — {a cos ^ + 6 sin 0) in the lever-

arm, and this is zero when ^ = and also when a = a

cos ^ -f 6 sin ^.

In the machine described a is 10 inches and h is 0*5 inch,

and the angles ^ = and 6 = 515° both correspond to an

effective length of 10 inches. The maximum correction be-

tween these values is easily shown to be at an angle given

by the equation b cos = a sin 6, in the present case 29°

approximately, for which value the correction is 0*12 per

cent. In the majority of tests the angular change at the

ends rarely exceeds 5°, and the correction is therefore so very

small as to be practical!}^ negligible.

The worm-wheel w and the casting v for the weigh-levers

are bored out to receive the ends of the specimen, and are
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provided with fixed keys which slide in corresponding key-

ways cut in the specimen. When tubes are subjected to stress

they are provided with solid ends secured by transverse pins,

thereby avoiding brazed joints, since these latter are trouble-

some owing to the state of the metal being altered by the

brazing. The end of the specimen projecting through the

worm-wheel is fitted with a lever x for applying bending

moment, and both levers for bending may be loaded in-

dependently or by a cross-bar suspended from stirrups as

shown.

CaPiefomelgr

Fig. 182.—Simple Torsion Meter.

Torsion Meters.—The elastic angular strain in torsion

requires less magnification than the elastic longitudinal strain

in tension, and so comparatively simple apparatus can be

used.

Fig. 182 shows a simple apparatus made by Mr. A. Macklow-

Smith. Two arms a, b, connected together by an extensible

sleeve, are secured by pointed screws to the specimen. The arm

A carries a cathetometer or telescope and the arm B carries

an ivory scale upon which the angle of torsion is read.

Professor Coker's Torsion Meter.*—This apparatus,

* Phil. Mag., April 1909.
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which can be used also for measuring the strain in combined

bending and torsion, consists of a graduated circle A, Fig. 183,

mounted on the specimen b by three screws c in the chuck-

plate D. A sleeve e provided with three screws grips the

specimen at a fixed distance away from the first set. The

spacing of these two main pieces on the specimen is effected

by a clamp, not sho^Mi in the figure, which grips the double

ones P, G, and maintains them at the correct distance apart

until the set -screws are adjusted.

Fig. 183.—Coker's Torsion Meter.

The clamp is afterwards removed, leaving the plane of the

graduated circle perpendicular to the axis of the specimen and

the sleeve correctly set and ready to receive the reading

microscope H.

The vernier plate carries a sliding tube i, on which a wire j

is mounted, and the movement of the latter due to bending

or twist is measured by a scale in the eye-piece K, the divisions

of which are calibrated by reference to the graduated circle.

It is found convenient to have the microscope-tube pivoted

about an axis perpendicular to its central line at L, so that

any slight difference due to imperfect centring can be adjusted
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by the screw m to make the calibration value agree for a series

of specimens.

Torsion Dynamometers (or torsiometers as they are

sometimes called) are instruments for indicating the horse-

power being transmitted by a shaft rotating at a known

speed by measuring the angle of torsion over a given length.

They are often provided with autographic record devices.

The horse-power is derived by a combination of formula (3),

p. 312, and formula (11), p. 324.

Repetition Stress Machines.—We described on p. 85 one

of the forms of machine used for rotating beams by Wohler

in his experiments in repetition of stress. Similar machines

are in use in many engineering laboratories ; in most cases

the spring is replaced by a weight which has a spherical socket

resting on a spherical bearing fixed to the end of the specimen.

By this arrangement the weight remains free from oscillation

as the specimen sags under load.

Professor J. H. Smith's Machine.—In this machine, which

is shown in Fig. 184, the variation of stress is caused by the

variation of the longitudinal component of the centrifugal

force of the rotating weights e.

The specimen which is to be tested connects the two pieces

c and B. The upper piece is of circular cross section, and has

a locking arrangement consisting of a cap and set screws.

The lower piece b is of circular section in the upper bearing l,

and of square section in the lower bearing m.

The two pieces c and b are supported by the frame-

work F of the machine; and the specimen is inserted with-

out straining it by first locking it to the piece b, then by

locking c to the specimen and afterwards locking c to the

frame.

The piece b has a bearing n at right angles to its length

in which a spindle revolves; there are two plates k, k, and

weights E, e, rigidly attached to this spindle.

The rotating spindle is driven by means of a pair of pieces

in contact, one, a crank pin diametrically opposite to e, on
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one of the rotating plates K, and one a radial slot on a plate

connected with either another unit or to a shaft rotating in

fixed bearings. By this arrangement the driving force is not

transmitted to the specimen.

The component of the centrifugal force exerted by the

Fig. 18-i.—Smith's Stress Repetition Machine.

rotating weights e, e, produces an alternating stress in tlie

specimen.

The spring h, and tightening device j, enable the operator

to put any desired amount of tension or compression in

the specimen. This spring may be replaced by weights and

levers or by an hydraulic cylinder. The lead rings or springs

at G, G, act as buffers and receive the blow when the specimen

breaks.
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The complete machine consists of one or more units together

with the necessary balancing rotating masses which may be

either parts of other units or parts connected to a revolving

shaft mounted on the framework.

See also Professor Arnold's machine, p. 399.



CHAPTER XIV

THE TESTIIS'G OF MATERIALS {cOTltd.)

Impact, Ductility, and Hardness Testing.—As we

have indicated on p. 54, the elongation under a tensile test is

commonly taken as a measure of the ductilit}-, but experience

shows that this is not sufficient in all cases, and in recent years

a number of simple machines have been devised for carrying

out tests upon small specimens.

Cold and hot bending tests are commonly specified by the

various authorities and purchasers of steel and iron, giving the

angle through which the specimen must bend without cracking.

In the specification for structural steel issued by the British

Standards Committee, for instance, there is a clause that test-

pieces must without fracture withstand being doubled over

until the sides are parallel and the internal radius is not greater

than IJ times the thickness of the test -piece, the latter being

not less than IJ inches wide.

Tests of this kind have the advantage that they can be

made in the workshop without special apparatus, but the

disadvantage that the results are rather negative.

Captain Sankeys Hand Bendi>'g Machixe.—In this

machine, patented by Captain Sankey, a j)iece of metal is

bent backwards and forwards through a fixed angle until it

is broken ; the bending moment being measured by the

deflection of a spring and recorded upon a paper drum.

The standard angle is 9H°, i.e. 16 radians, so that the work

done to make a complete bend is obtained b}' multiplying the

bending moment b}' 16.

396
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At one corner of the base of the machine there is a grip A

for securing one end of a flat steel spring b . The other end of

the spring is fitted with a special grip c for holding one end

of the test-piece d. The other end of the test-piece is fixed

into a handle E, about 3 feet long, by means of which it is

Fig. 185.—Sankey's Hand Bending Testing Machine.

bent backwards and forwards through the standard angle.

A graduated arc F is provided to show this standard angle.

Alongside of the spring, and fixed to the bed-plate, there is a

horizontal drum g, to carry the recording paper, and the

pencil H has a horizontal motion actuated by the motion of

the grip c and conveyed by the steel Avires l and m and the

multiplying pulley n, the wires being kept taut by a weight.

The zero line is in the middle of the paper, and the pencil H
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moves in one direction when the bending is from right to left

and in the opposite direction when it is from left to right. The
drum has a ratchet wheel K, with a detent (not shown)

worked by the motion of the pencil carrier. The result of

the combined motion of the pencil and of the drum is to

produce an autographic diagram such as shown. Obviously,

the greater the stiffness of the test-piece the more the flat

spring B will have to be bent before its resistance is equal

to the resistance to bending of the test-piece. Hence the

motion of the pencil is proportional to the bending moment
required to bend the test-piece.

In operation, the test-piece is properly secured in the handle

E by means of the set screw ; it is then inserted into the grip

c, and the free length (1| inches) is adjusted by means of a

gauge provided for the purpose, after which the grip c is

tightened. The handle is slowly pulled towards the left until

the specimen is felt to be " yielding "—this action can be

distinctly felt, and this bend is known as the " yield bend."

Without altering the pressure on the handle, the record

cyHnder is now rotated two teeth by working the detent by

hand, and the first bend is completed by making the mark on

the handle coincide with the pointer indicating the " standard
"

angle. The bending is then reversed, and the test-piece is

bent until the mark on the handle coincides with the second

pointer. The bending is again reversed, and so on until the

specimen breaks. The point at which the test-piece breaks

should be noted in decimals of one bend, which are marked on

the graduated arc.

The machine is cahbrated by fixing the handle end of the

lever in the jaws and applying a known force by means of

a spring-balance and comparing the record made on the strip

with the actual moment appHed. If there is any discrepancy

between the two results, the spring is adjusted until such

discrepancy disappears. The number of bends which a give^

material can endure before fracture is a measure of the

ductihty, and experiment shows that this is approximately
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proportional to the percentage elongation multiplied by the

percentage reduction in area in a standard tensile test.

The following empirical results have been found from

experiment to be approximately true

—

Yield-point stress in tons per sq. in.

_ First bending moment in lb. ft.~
r55

Ultimate tensile stress in tons -per sq. in.

_ Longest line in lb. ft.^
r55

Fig. 186.—Arnold's Testing Machine.

The energy required to cause rupture is equal to 1'6 multi-

plied by the number of bends, multiplied by the mean range

of bending moment in lb. ft.

Professor Arnold's Reverse Bending Machine.—In

this machine, which may also be regarded as a repetition of

stress machine, a bar a, Fig. 186, f in. in diameter, is firmly

held in a clamp b and passes through a slot in a slide c which

is reciprocated by a shaft d running at a standard speed of

650 revolutions per minute. The distance between line of

contact of the slot with the specimen and the point where the
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latter enters the clamp is 3 inches and the slot is adjusted to

cause a deflection of | in. in the specimen on each side. The

number of bends which the sj^ecimen endures before fracture

is taken as a measure of the capacity of the material to resist

failure by shock.

Repeated Impact Testing Machine. — The machine

shown in Fig. 187 is made by the Cambridge Scientific Instru-

ment Co., Ltd., and is a modification of a machine described

by Messrs. Seaton and Jude * and used by Dr. Stanton j of

the National Physical Laboratory.

.-1

--1

,z:L
«i -r--

J s

-^
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M

Fig. 187,—Repeated Impact Testing Machine.

The machine is fitted with a cone-pulley a, so that it can be

driven by a belt from a hne shaft or small electric motor. One

end of the spindle driven by this cone-pulley carries a crank b

which is connected to the lifting rod c. This lifting rod is

supported on a roller d, at some point in its length, so that the

circular motion imparted to the rod at the crank end causes

it to rock and shde on the roller. Thus an oval path, shown

in dotted lines, is traced by the free end of the lifting rod. At

this end the rod is bent at right angles so that on the upstroke

it engages with and hfts up the hammer head e. This hammer

head is fixed to the rod f, which is hinged at the end g.

Having reached the top of its path, the lifting rod c moves

* Froc. I. Mech. E., 1904. t Proc. I. Mech. E., 1908.





Fig. 188.—Impact Testin.o- Machine.

[To face page 401.
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forward and disengages the hammer, which then falls freely

on to the specimen h under test.

This cycle is repeated from 70 to 100 times a minute. The

height through which the hammer falls can be varied by moving

ing the roller d along a scale m which is calibrated to read

directly the vertical height through which the hammer falls.

Adjustment can be made by this means up to a maximum of

3J inches (90 mm.).

The specimen h is usually about J^' (12 mm.) in diameter,

with a groove turned in it at its centre to ensure its fracture

at this point in its length. It is supported on knife-edges 4
J''

(114 mm.) apart, the hammer striking it midway betw^een these

knife-edges. The knife-edges are cut slightly hollow, and a

finger spring holds one end of the specimen in place. The

other end is held in a chuck which is hinged in such a manner

that it does not take any portion of the hammer blow, all of

which comes on the knife-edges.

The specimen remains stationary whilst the blow is struck,

but between the blows it is turned through an angle of

180°.

A revolution counter to register the number of blows struck

is fixed to the bed plate of the instrument. When fracture

occurs, the specimen falls away, and the hammer head

continues to fall, first tripping an electric switch, and finally

coming to rest on a steel stop-pin h.

Izod's Impact Testing Machine.—This machine, which

is made by Messrs. Avery, tests the impact-resisting qualities

of a material by measuring the energy absorbed from a pendu-

lum which breaks a projecting notched specimen as it swings

past it.

The specimen is 2 inches long,
-f^ inch thick and f inch broad,

and has a notch cut in it by means of a templet ; it is held in

the \ace shown at the base of the machine. Fig. 188, and the

pendulum is then released from a fixed height by means of a

trigger. The energy required to fracture the specimen takes

some of the swing out of the pendulum, and the height to which
DD
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the latter swings on the other side is indicated by the pointer

passing over the scale at the top of the specimen. The scale

is graduated to give the energy directly in foot pounds. A
brittle material will not absorb much of the energy, whereas

a tough material will absorb a good deal.

Inasmuch as the base is not absolutely rigid, the results of

tests in this machine are relative rather than absolute, but

it gives very useful results in practice and has the advantage

that the tests can be made in a very short time.

The same machine can be adapted for testing hardness by

impact. A strong cast-iron anvil is provided in which a

specimen 1 inch in diameter and 1 inch long is placed. The

pendulum strikes a loose plunger which carries a hardened

steel ball; this ball is placed in contact with the specimen

prior to the impact, which causes an indentation in the

specimen. The diameter of this indentation is taken as a

measure of the hardness as in the Brinell machine next to

be described.

Brinell's Hardness Testing Machine.—In this machine

a hardened steel ball is pressed with a predetermined force

against the plate whose hardness is required. The diameter

of the resulting curved depression is then found and from this

the " hardness number " is obtained in the manner described

below.

Fig. 189 shows the Brinell machine made by Messrs. J. W.

Jackman «fe Co., Ltd. The specimen is placed upon the top

• of the stand, which is then adjusted by the hand-wheel to

bring the specimen into contact with the hardened steel ball

(10 mm. diameter) which projects from the conical end of the

plunger of the machine. The upper portion of the machine

comprises a small fluid-operated testing-machine, oil being the

working fluid. By means of a small projecting pump-handle

the pressure of the fluid is increased until the cross-piece

" floats," the pressure being indicated on the dial. Weights

are provided with the machine, which make the floating occur

at a force of 500 to 3000 kg. (increasing 500 kg. at a time).
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Fig. 189.—Brinell Hardness Testing Machine.

[To face page 402.
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The pressure depends only on the weight applied and not

upon the accuracy of the gauge.

If P is the load, D the diameter of the ball and d that of the

impression, the quantity

H =
D _ V D2 - d^

D

is called the Brinell Hardness Number. The following table

gives values.

BRINELL'S HARDNESS NUMBERS (for load 3000 kg.)

Diameter of Steel Ball =10 mm.

Diameter Diameter Diameter Diameter
of Hard- of Hard- of Hard- of Hard-

Ball Im- ness Ball Im-
j

ness Ball Im- ness Ball Im- ness
pression Number pression Number pression Number pression Number

mm. mm. mm. mm.

2-0 946 3-25 351 4-50 179 5-75 105
2-05 898 3-30 340 4-55 174 5-80 103
2-10 857 3-35 332 4-60 170 5-85 101
215 817 3-40 321 4-65 166 5-90 99
2-20 782 3-45 311 4-70 163 5-95 97
2-25 744 3-50 302 4-75 159 6-0 95
2-30 713 3-55 293 4-80 156 6-05 94
2-35 683 3-60 286 4-85 153 6-10 92
2-40 652 3-65 277 4-90 149 6-15 90
2-45 627 3-70 269 4-95 146 6-20 89
2-50 600 3-75 262 5-0 143 6-25 87
2-55 578 3-80 255 5-05 140 6-30 86
2-60 555 3-85 248 5-10 137 6-35 84
2-65 532 3-90 241 5-15 134 6-40 82
2-70 512 3-95 235 5-20 131 6-45 81
2-75 495 4-0 228 5-25 128 6-50 80
2-80 477 4-05 223 5-30 126 6-55 79
2-85 460 4-10 217 5-35 124 6-60 77
2-90 444 4-15 212 5-40 121 6-65 76
2-95 430 4-20 207 5-45 118 6-70 74
30 418 4-25 202 5-50 116 6-75 73
3-05 402 4-30 196 5-55 114 6-80 71-5
3- 10 387 4-35 192 5-60 112 6-85 70
315 375 4-40 187 5-65

, 109 6-90 69
3-20 364 4-45 183 5-70

1

107 6-95 68

For other test loads, the hardness numbers are proportional
to those in the table.

Within certain limits the Brinell Hardness Number of a
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material gives a very fair indication of its tensile strength.

Thus for steels with a hardness number less than 175, the

ultimate tensile stress in tons per sq. in. is obtained approxi-

mately by multiplying the hardness number by -23.

TESTING CEMENT AND CONCRETE

Tension Tests.—The form of briquette in accordance

with the Specification of the British Engineering Standards

Committee is shown in Fig. 190, the cross-section being 1 sq. in.

at the weakest point. We have given on p. 78 the require-

FiG. 190.—Cement Briquette.

ments as to tensile strength in accordance with this specifica-

tion. As the strength obtained under test is found to depend

upon the rate of loading, being higher for quick loading, the

above specification stipulates that the loading shall be at a

rate of 500 pounds per minute.

A simple form of lever machine, made by W. H. Bailey

& Co., is illustrated in Fig. 191. The specimen is gripped in

the shackles and the load is applied by allowing shot to fall

into the bucket, the leverage being such that the tension

applied is fifty times the weight of the shot. The shot-hopper

is provided with a valve, the operating arm of which passes

over the lever, so that when the specimen breaks the supply

of shot is automatically cut off. The shot is then weighed, a
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spring-balance being often used which gives readings equal to

fifty times the weight of the shot, thus giving the breaking

stress direct.

A rather more accurate form of machine, made by the same

firm, is shown in Fig. 192. In this machine water is allowed

to run slowly into a long graduated can placed at the end of

the lever. The supply of water is cut off when fracture occurs

Fig. 191.—Cement Testing Machine (Tension).

and a gauge glass placed outside the can is provided with a

scale graduated to enable the breaking stress to be read off

direct.

In another common form of testing machine a jockey-weight

is moved automatically along a lever arm by means of a weight

controlled by an adjustable dashpot which enables the rate

of loading to be varied. On the fracture of the specimen the

weight becomes stationary and the breaking stress is read off

on a scale attached to the lever.

Compression Tests.—Compression tests are not usually
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specified for pure cement, although they are becoming more

common. For concrete in reinforced concrete works, however,

compression tests are nearly always required.

A common specification is that cubes, the area of each side

being 50 sq. cm., of 3 parts sand to 1 part cement by weight

Fig. 192.—Cement Testing Machine (Tension).

shall develop at 28 days at least 10 times the standard tensile

strength (^. e. 2000 lbs. per sq. in.).

The following test results for the concrete cubes (with area
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of each side 50 sq. cm.) are recommended by the Concrete

Institute.

Proportion by Volume. Crushing Strength in lbs.

per sq. in.

Cement Sand Coarse
Material

28 days after
mixing

120 days after
mixing

1

1-2

1-5

2

2
2
2
2

4
4
4
4

1600
1800
2000
2200

2400
2600
2800
3000

Fig. 193.—Compression Tension Press for Cement, etc.

A common form of special machine for crushing tests of

cement, concrete, etc., is shown in Fig. 193. The cube is first

fixed by means of the upper hand-wheel and the side-press
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screw is then operated to compress the operating fluid (oil

or glycerine). The crushing pressure is recorded by the

pressure gauge which is constructed so as to maintain its

reading after fracture has occurred.

Specific Gravity, Fineness, Soundness, and Setting

Tests for Portland Cement.

Specific Gravity.—According to the British Standard

Specification, the specific gravity of Portland cement shall not

be less than 3* 15 when fresh or 3* 10 after 28 days from grinding.

• There is considerable doubt as to the value of this test;

some very useful information on this and other matters in

cement testing will be found in a paper on " Common Fallacies

in Cement Testing," read by Mr. W. L. Gadd, F.I.C., before

the Concrete Institute, December 11, 1913. A chemical

analysis appears to be a much more reliable test.

Fineness.—The fineness test is applied bymeans of standard

sieves. In the British Standard Specification not more than

18 % residue is allowed for a sieve of square mesh with 180

wires, each '002 in. in diameter, per inch, and not more than

3 % for a 76 mesh with wire '0044 in. in diameter.

Le Chatelier Soundness Test.—This test is conducted

with a piece of split brass tube a, Fig. 194, 30 mm. internal

diameter and 30 mm. long, the thickness of metal being J mm.

Pointers b b are attached to the tube, the length from their

points to the centre of the tube being 165 mm.

This tube is used as a mould, and is filled with wet cement,

one end being placed previously on a piece of glass ; the other

end is then covered with a weighted piece of glass and the

whole is placed in water at a temperature from 58° to 60° F.

and left for 24 hours. The distance between the pointers is

then measured and the mould is then placed in water which

is heated to boihng point and maintained in that condition

for 6 hours. The British Standard Specification stipulates

that after boiling the increase in the distance apart of the

pointers shall not be greater than 6 mm.
Setting Tests.—Setting tests are often made by finding
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the time before a standard weighted needle fails to make
an impression in the cement. The Standard Specification

requires that before any sample is submitted to setting test

it shall be spread out for a depth of 3 inches for 24 hours in a

temperature from 58 to 64° F., and that the setting time shall

not be less than 2 hours nor more than 7 hours. Mr. Gadd in

B' B

Fig. 194.—Chatelier Cement Test.

the paper referred to above has shown that this spreading

for the purpose of aeration leads to very variable results,

depending largely on the locality and humidity.

The Thermal Method of Testing Materials.—It was

apparently first noticed by Magnus that changes of stress

are accompanied by a change of temperature ; when a body

is stretched its temperature lowers very slightly, and when

it is compressed or squeezed its temperature rises. By
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means of a thermopile and a very delicate galvanometer,

therefore, the changes of temperature at various points of a

structure, and therefore the stresses, can be determined. Care

should be taken to distinguish the phenomenon under con-

sideration from the well-known heating that occurs at the

yield point in tension experiments ; this is very much greater

in magnitude and is reverse in sign, the elastic tension being

accompanied by a fall in temperature.

Lord Kelvin has deduced the following formula to deal

with the problem

—

AT. Ta ^^T=-js^-^^
In this formula

A T = change in temperature.

T = mean absolute temperature.

J = the mechanical equivalent of heat.

a — coefficient of expansion of material.

d = density of material.

S = specific heat of material.

A 2? = change of stress.

In centigrade units for a temperature of about 20° C. this

formula gives for steel

A T = - -000012 A p

Corresponding to a stress change of 20,000 lbs. per sq. in.,

therefore, we have a temperature change of only '24° C.

The extreme delicacy of the method makes it suitable for

use only under circumstances in which great care is taken

to exclude draughts.

This subject is dealt with in detail by Professor Coker in his

Cantor Lectures before the Society of Arts 1913. In this

paper the results of thermal tests upon a channel section were

given, and there was a marked departure from the straight-

line relation in the stress diagram, this being accounted for by

the asymmetry of the section. Other experimental resuhs

were quoted which showed that the tensile yield point as

determined by the thermal method agree very closely with that
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found by extensometer. In the curve of temperature plotted

against load, there is a sharp cusp at the yield point because

the temperature then rapidly rises instead of falling. In

these experiments, the observed results have to be corrected

for cooling eSects . Although of very great interest, the method

seems rather too delicate for very extended application.

The Optical Method of Testing Materials.—Sir David

Brewster discovered a hundred years ago that when plane

polarised light is sent through a piece of glass under stress, an

effect is produced upon the light which is detected by the

appearance of colour bands when viewed through an analyser.

The optical aspects of the subject are beyond our present

scope, but the reader will be able to study these from the

bibliography given below. The mathematical problems in-

volved were dealt with by Clerk Maxwell and others, and in

recent years particular attention has been given to the applica-

tion of the method to the.determination of stresses in various

machine and structural details by Professors Alexander, Filon

and Coker.

If a beam of plane-polarised light is passed through a speci-

men of transparent material, such as glass or xylonite, and

Nicol's prisms in the polariser and analyser are set with their

principal planes at right angles so as to cut off the light, no

effect is produced if there is no stress in the material, but if

there is any stress, a colour effect is produced, and regions of

zero stress or equal and opposite principal stresses, such as the

neutral axis of a beam, can be detected by a dark patch or

line. If the material is elastic, the colour produced will be a

measure of the difference of the principal stresses at any point.

The stress corresponding to a given colour is determined

numerically by experiment by uniformly loading a small

specimen until the colour produced is the same as at any

particular point of the model under consideration where the

stress is required. In cases where one of the principal stresses

is negligibly small, the stress thus obtained can be taken as

equal to the greater principal stress required.
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In Professor Coker's experiments very successful results

have been obtained with models of various structional and

machine details cut out of sheet xylonite.

Fig. 195 * shows the results of his experiments upon a tie-bar

eccentrically loaded ; the resulting curves of stress agree very

well with the theoretrical straight-line variation, with the

so

Fig. 195.—Stresses in Eccentrically Loaded Tie-bar.

exception of that at the highest load, in which the material

begins to yield at the edges and the straight line bends over as

shown. In this case the test-piece showed residual stress at

this edge after the load had been removed.

In experiments upon models of standard cement briquettes

Professor Coker found t that the maximum stress was about

1*75 times the mean stress (cf. p. 78).

* Engineering, January 6, 1911.

t Ibid., December 13, 1912.
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Fig. 196 "^ shows the results of the experiments by the

same investigator upon the distribution of stresses in

Fig. 196.—Effect of Holes on Stress in Beams,

rectangular beams with holes cut through them. In the

upper specimen a hole is in the centre and in the lower one

holes are formed half way between each edge and the neutral

axis. In this case it wiU be noted that the maximum stress

* Engineering, March 3, 1912.
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does not occur at the outermost fibre, but at the outer edge

of each hole.

Professor Coker and Mr. W. A. Scoble, B.Sc.,* have also

experimented upon the stresses in tie-bars with holes in them

, ...,.., T-p width of plate
such as occur m riveted lomts. it c = -,• -^ y ^—r-

"^ diameter of hole

and f is the mean stress over the whole width of plate, they

find that their results for one central hole may be expressed

by the formula

maximum stress _ 3 c

mean stress c + 1

Also if a is the radius of the hole, the longitudinal stress at

a distance r from the centre of the hole on a normal section of

the plate is expressed by the formula

/, 2+^:+
3 a*

where p is the stress at a long distance from the hole ; while

there is also a radial stress given by

It will be noted that at the edge of the hole /,. = 3p, i.e.

three times the stress some distance from the hole.

The following results were obtained wdth a strij) 1 in. wide

and '186 in. thick, the load being 100 lbs.

Diameter of

Central Hole
(inches)

1

i

Stresses in lbs. per sq. in.

P mean , maximum

549
547
568
570
613

584
620
724
868
1035

1470
1560
1770
1850
2040

* Engineering, March 28, 1913; Society of Arts Journal, January 16,

1914.
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CHAPTER XV

FIXED AND CONTINUOUS BEAMS

If the ends of a beam are fixed in a given direction so that

they are not able to take up the inclination due to free bending,

or if a beam rests on more than two supports, the B.M. and

shear diagrams will be different from the cases of simply

supported beams that we have considered up to the present.

In the first case the beam is said to be iixed, built-in, or

encastre, and in the second it is said to be continuous.

We will consider how the shear and B.M. diagrams can be

found for such beams, and will point out their advantages and

disadvantages compared with simply supported beams.

FIXED BEAMS

If the ends of a beam are fixed in a horizontal direction,

then the beam when bent takes up some form such as a b c

(Fig. 197). If the ends were free it would assume the dotted

Fig. 197.—Fixed Beams.

form a' b &, and to get it back to the form a b c, negative

bending moments, shown diagrammatically as due to forces

Fj, Fg, have to be imposed upon it. The ends of the beams will

therefore be subjected to bending moments which will be

negative because they cause curvature in an opposite direction

416
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to that due to the load. This change in sign of the bending

moment means that the tension and compression sides of the

beam are reversed. We will consider the cases of fixed beams

both from the graphical and the mathematical standpoint, as

we did in the case of the deflections of beams.

INVESTIGATION FROM GRAPHICAL STANDPOINT

According to Mohr's Theorem, the deflected form of a beam

is the same as that of an imaginary cable of the same span

loaded with the bending moment curve of the beam, and

subjected to a horizontal pull equal to the flexural rigidity

(E I) . If the ends of a beam are fixed in a horizontal direction,

the first and last links of the hnk polygon determining the

elastic line will be parallel ; this means to say that the first and

last points on the vector line on which the elemental areas of

the bending movement curve are set down must coincide.

But this is equivalent to saying that the total area of the

bending moment curve for the fixed beam must be zero.

This enables us to enunciate the following rule

—

// the ends of a beam are fixed in a horizontal direction at the

same level, and the section of the beam is constant along its length,

there will be negative bending moments induced, and the area of

the negative bending moment diagram will be equal to that due

to the load for the beam if considered freely supported.

We will speak of the negative bending moment diagram

as the " end B.M. diagram," and that for the beam freely

supported as the " free B.M. diagram."

The problem now divides itself into two cases : (a) That in

which the loading is symmetrical. (6) That in which the

loading is irregular or asymmetrical.

Symmetrical Loading.—If the loading is symmetrical,

then the beam looks the same from whichever side it is viewed,

and so the end bending moments will be equal, and their

value can be found by dividing the area of the free B.M.

diagram by the span. This will be made more clear by

considering the following cases

—

EE
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(1) Uniform Load on Fixed Beam.—Let a uniform load

of intensit}- w cover a span a b (Fig. 198) of length /. The free

B.M. curve is in this case a parabola a c b, with maximum

IV l~
ordinate -^•

o

Therefore, since the area of a parabola is two-thirds of the

Fig. 198.—Fixed Beam with Uniform Load.

area of the circumscribing rectangle, area of free B.M. curve

2 , w P w P
= 3' ''-J- --12

End B.M. = wP
12

J

IV P

IV P
12

Then setting u^^ a e and b f equal to , ^ and joining e f we

get the end B.M. diagram, and the effective B.M. curve is

the difference as sho^Ti shaded. At the points G and h the

B.M. is zero, and these points are called the points of contra-

flexure, the curvature of the elastic line changing sign at these

points.
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Suppose the point g is at distance x from the centre of the

beam, then the ordinate of the parabola must be equal to -,^
XjLI

10 /P o\. w P
1-e. 2 1^4 ^'j -

12

w X-

X'

IV P
24

12

I

X =
2V3

Distance of g from e = ^ — x
2 ^ 2 2V3

= -211 Z

Shear Diagram.—With symmetrical loading the shear

diagram will be the same as for the simply supported beam.

This is because the shear at any point of a beam is equal to

the slope of the B.M. curve at that point, and the slope of the

B.M. is not altered in the case of symmetrical loading because

the base line of the diagram is merely shifted vertically.

Deflection.—The deflection at the centre can be found as

before by considering the stability of the imaginary cable a^ Bj^.

Considering the stability of the left-hand half of the cable,

then taking moments about a^, we have

E I X 8 = P ^1 - P ^,

= P (2/i - ^2)

In this case P = area of one-half of the free B.M. curve,

2 I wP wP
~ 3 2 8 "

~ ^24^

Vi
51

~ 16

2/2

I

~4

EI X 8
wl^ /5l l\ wP
24" Ue "iJ

~ 384

.-. 8
wP WP

~ 384EI ""
384 EI
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It will be noted that this is one-J&fth of the deflection for a

freely supported beam with the same loading.

(2) Isolated Central Load on a Eixed Beam.—In this

case the area of the free B.M. curve
1, WJ
2^ ^4 ~ 8

.-. End B.M. =
8

Z = Wl

Fig. 199.—Fixed Beam with Central Load.

The B.M. and shear diagrams are as shown in Fig. 199, the

points of contraflexure being at J and J span.

Deflection.—As in the previous case we have

E I X 8 - P (2/1
- 2/2)

Wl I Wl^
In this case P =

8 16

Ui

EI.8 =

8 =

I

3

/

WP
16

Wl
192 EI

4

WP
192
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This is one-fourth of the deflection for a freely supported

beam with the same loading.

* Asymmetrical Loading.—In this case the end B.M.s

will not be equal, and in this case, in addition to the condition

that the areas of the end B.M. diagram and free B.M. diagram

must be equal, we have the further condition that their centres

of gravity must fall on the same vertical line.

This can be proved as follows : Considering the imaginary

cable and taking moments about one end, the tension at the

Fig. 200.—General Case of Fixed Beams.

other end passes through the point so that its moment is zero.

Therefore the moment of the B.M. diagrams about this point

must be zero. Since the areas of these diagrams are equal,

their centres of gravity must be at the same distance from the

given point.

Let a span a b, Fig. 200, of length /, be subjected to any

irregular load system which produces a free B.M. curve AcdB,
and let the centre of gravity of that diagram lie upon the

vertical line G G. Suppose the end B.M.s are M, and M,„ and

A a and b b are set up equal to these end B.M.s, then the

trapezium a a 6 b is the end B.M. diagram, and the conditions

that have to be satisfied are that the area of the trapezium
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shall be equal to the area of the curve a c d b, and that its

centre of gravit}^ shall lie upon the line g g. Join a b, thus

dividing the trapezium into two triangles, and draw verticals

X X and y y at distances equal to from a and b. The centres

of gravity of the triangles a a b, b « 6 lie on the lines x x and

Y Y respective^, and our problem resolves itself into dividing

the total area of the curve a c fZ b (which area we will denote by

a) into two areas acting down the lines x x and Y y. This is

effected bj^ treating the areas as vertical forces, and setting

down a vector line 0, 1, to represent the area a. Taking any

convenient pole p, we then join p and 1 p and draw x g, g y

across the verticals x x, g G, Y y parallel to p, 1 p respectivel}',

and joinxy; then drawing p 2 parallel to xy, 1, 2 gives us

the area which must act down the vertical y y, and 2, that

down X X.

Then M, x ^ = area of triangle a a b = 2,

• M =2,0x2

Similarly M„ = ' ,

This enables the B.M. diagram to be drawn.

Shear Diagram.—In this case as the end B.M.s are not

equal the shear diagram will not be the same as for a freely

supported beam, but the base line will be shifted. Since the

shear at any point is the slope of the B.M. curve, the base line

of the shear curve will be shifted downwards by an amount

" ' " " because this is the change in slope of the base line
t

of the B.M. diagram between the freely supported and the

fixed beam. If in the figure ac e d b represents the shear

diagram for a freely supported beam with the given loading,

then the effect of building-in the ends of this diagram is to

]M — M
lower its base line by an amount a a' = b b' = ^ '

,
^ ", thus

giving the diagram a' c e' d b'.
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Special Gases.— 1. Fixed Beam with Uniformly In-

creasing' Load.—Let a beam ab of span I be subjected

to a load of uniformly increasing intensity, the intensity at

unit distance from b being w tons per ft. run, the total load

being W. Then, as shown on p. 139 for a freely supported

W 2 W
beam, R„ =

,^ , R^ = — and the free B.M. diagram is a para

bola of the 3rd order, the maximum B.M. being equal to

•128 WZ and occurring at a distance '577 I from b. Then

the area of this free B.M. diagram is equal to -r^- and its

centre of gravity occurs at a distance ^ from b. This can

be proved mathematically as follows

—

Area of B.M. curve = / M d x

/

'w P X 10 x^\ ,

"6 6 )
'^ ^

w P x'^ w x*

;~I2 "2T + ^_

The area = when x =^ 0. .
' .- c =

_wl^ _wl^ _wl^ _^P
•• ^^^^ -

12 24 " 24 ~ 12

First mt. of B.M. curve about vertical through b = jM.xdx

I

fw P X^ IV X^\ -.

V 6 ~ Q^ '^"^

I

/

wP X^ w x^

f8 30 + ^\

Moment = when x = 0. .* . c^ =

-r^. . , wl^ wP wl^
'. 1^ irst moment = ,„ — „^ = .^

18 30 4o



424 THE STRENGTH OF IVIATERIALS

1st moment
. . Distance of centroid from vertical throngrh b

area

wl^ wl^

45 24

24 Z 8Z

45 15

This fixes the Hne g g, and the areas that must be considered

W P W l^
as actmg up x x and y y respectively are thus ^ and -^

\YP 31
since the total area -^^ acts at distance ^ „ from y y.

.
•

. Taking moments about y Y we have-

Area actmg down x x x 7^ = -tt. x , ^
6 iZ ID

. ^. , WP I WP
.

•
. Area actmg down x x = ^„ -^ v. = >./^

bi) 6 ZO

„ WZ2 2 WZM — V — =
20 Z 10

,, WZ2 2 WlM — - V =
30 Z 15

The resulting B.M. diagram then comes as shown shaded in

Fig. 201.

The amount of shifting of the base line for shear will be

wz wn w 7W
^TT.
— , K -^ Z = ^^ SO that the shears at the ends are - ^ „

_ 10 15 J SO 10

3 W
and ^ respectively, the shear curve for the fixed beam then

coming as shown.

2. Non-central Isolated Load.—The following construc-

tiori can be used for this case : Let a b, Fig. 202, represent

a fixed beam of span Z carrying an isolated load W at a point

p, the distances of which from a and b are a and b respectively.

First draw the "free bending moment" diagram adb,

i. e. set up p D = —, — , and join d to a and B. Project d

horizontally to meet the vertical through the support b at

E and join e a.
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Then pf = Reverse or end bending moment at b = M^;

and F D = reverse or end bending moment at A = M,.

Fig. 201.—Fixed Beam with Uniformly Increasing Load.

Therefore set up b h = r p and a G^ = f d and join g^ h,

the complete bending moment diagram then coming out as

shown shaded. This may be done by projecting f horizontally

and drawing d g^ parallel to F a.
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Proof.—To prove this construction ^\c must obtain values

for the reverse bending moments for this case. Referring to

Fig. 203, it will be remembered that in fixed beams the con-

Jl ./J

Fig. 202.—^Fixed Beam with Isolated Load.

ditions to be satisfied are that the " free '' and " end " bending

moment diagrams a b d and a G^ H b respectively must be

equal and op^iosite in area, and must have their centroids upon

the same vertical line.

Fig. 203.—^Fixed Beam with Isolated Load.

The first condition gives us

—^^^——- = area of A a d b = i a b . r ])

I .Wab Wab
1

2
• (1)
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The end bending moment diagram a Gj. h b may be con-

sidered as divided up into two triangles a g^ B, b g^ h, whose

centroids act in the " third Unes " x x and y y respectively.

We have next to calculate the position of the centroid g of

the free bending moment diagram. According to the ordinary

rule, the centroid g will be one-third of the way up the median

line c D.

1 1 fl,

•*• ^ " 6 ^^ ~6 3V2 ""y ~3

Regarding the areas of the triangles ag^b, bg^h, adb
as concentrated in the lines x x, y y, and g g respectively,

we have by taking moments about the line x x

Area ofAADB xa; = area of A b g^ h x
ô

i. e. from (1), —^— . .t = | M,, ? x ^

M,J2 ^Wab _Wab a
• 6 ~ 2 '^ ~ '2' 3

_ w an
~ 6

• M = ^^^
• •

-^'-Ljj 72

Similarly, M^ = „

—

As a check (M, + M„) = '^f ^ + ^|^
Wa6. ,, Wab , Wab= —^ (a 4- 6) = ^2 '^=

I

(M, -f MJ I Wab
(as in (I)).

Wab
Now, smce —-.— = p d

„ _PD X a. PD X 6
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but in Fig. 202, by similar As

P F AP a

B E AB ~ r

P F
B E

I

.a p D . a

Similarly, e h = d f = —,

" = M,

Position of Load for !MAxiMr^r Reverse Bending
Moment.-—The position of the load for a maximum value of

the reverse or the end bending moment M, is obtained by

putting -^' = and noting that a = {I — b),

dh " - ^

W d{ah^) _

i^ dh

i.e. ^fP =

do
2 6 Z - 3 62 =

I. e, = o • or

Taking the first value, which is clearly the maximum, then

M _^3V3y _4WJ _ W|
P ~ 27 ~ 6-75

Therefore the maximum reverse bending moment for an

Wl
isolated load is equal to w;^^, and occurs when the load is at

one-third of the span.

!MAXoir>E Positive or Intermediate Bending Moment.—
Referring to Fig. 202, the maximum intermediate bendmg

moment occurs at the load point p and is equal to D J.

.
•

. Maximum intermediate bending moment
= !Mp = D J = P D — J p

Wab
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Now, remembering that {a + b) = I

JP=PF + FJ

= M3 + (M.-MjJ

= M„.'; + ^^*

_ Wtt^6 a W.ab'b

= Waft
^^, _^ j,^

~
^ \ Z2

= —y^— .2 ah

_ 2 . W g^ 6^

To get the maximum vahie of this for any position of the

load put ", - =

'• '• ~l^' \ d^ /
" ^

d.a^a^ -2al -\- a")
I.e. J =

da
i.e. 2a?-^ - 6ft^Z + 4a3 _
i. c. Z^ ~ 3 a ^ + 2 a'-^ -

(^ - a) (Z - 2a) =
I .

I.e. a — ^, or I.

Taking the former value, which is the only one possible, wc

have

Therefore the maximum intermediate bending moment

W I
occurs when the load is at the centre and is equal to -^— .

o
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Graphical Method of finding g g.—If the nature of the

loading is such that the position of the hne g g cannot be

calculated without difficulty we may proceed as follows :

Divide the free B.M. diagram acb up into a number of

vertical strips, not necessarily equal, and draw vertical force

lines through the centres of these strips and set down the

ordinates on a vector line, and wdth any pole draw a link

polygon. The point Avhere the first and last links meet will

be a point on the line G G. This is the same method as

adopted in finding the centroid of a figure by Mohr's method

(Chap. LX). The area of the B.M. diagram can be found

by sum-curve construction, and the problem completed as

indicated with reference to Fig. 200.

INVESTIGATION FROM MATHEMATICAL STANDPOINT

As we have previously seen
r M

Slope of beam = / -^ ^ ^ ^

If the end of the beam is built-in this slope must come zero

at the two ends.

Consider the following special cases

—

(1) Uniform Load on Fixed Beam.—Taking the in-

tensity of load as w and the centre of the beam as origin, theh

considering a point at distance x from the centre, for the

freely supported beam we have

M,. = |(^' - x^) (See p. 266.)

Let the effect of the building-in be to cause an end B.M. = M^

Then for the fixed beam M., =
^ (4

" ^') " ^^

Slope -= / -p,
-J-

d X

1 (w P" X w x"^

EIV 8 6

Slope is when x = 0. .
•

. c = 0.

Also slope must be when ^ = 9

- M,, X -f c
j
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.-.
'

48 i'"
I
'. c. M, X

2

wP
16

w P
~ 24"

wP
~~

12

wP
48

•

To obtain the deflection we integrate again, and we get

deflection =//EI^^^
1

~EI
/i^; P x^

\ 16

w x^

24

M, a;2

2
+ Ci^

1

"~EI
Z!/; P x^

V 16

w x^ w P x^

24
+ Ci^

1

~ EI
/i/; P x^

V 48

w x^ \

24 +^V

This is when x
I

~ 2

•*•
192

wP
384 + ^1

~ 384""

= ^

.'. When .T = 0, deflection = =ri\E I

""
384 E I

.-. Maximum deflection ^
3^-^-^ ^ ^ 3^^^ ^

The B.M. and shear diagrams are then as shown on Fig. 198.

(2) Isolated Central Load.—Taking as before a span I

and the centre as the origin, if the load is W, for a freely

supported beam we have

^'" ""
2 \2— ^.

.'.If the end B.M. due to fixing the ends is M,, we have

for the fixed beam

M. = ^ (2^ - a;W M.
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/M

When X ^ O,«slope = 0. .
•

. Cg = 0.

When X = x, slope also =- in this case.

He have : = -^ -~ M, ^
V 8 16 ' 2/ "" E I

X

I W/2M . - =: -
' 2 16

M ^^^
8

To get the deflection we integrate again, then

deflection = / / t^i j d x

1 /Wlx^ Wx^ M. a;2

This is when x =
^

EIV 8 12 2

_ J^/Wl .t2 _ W^
~EI\ 16 12

I

+ c,

+ C3

WJ3 _ WP -

64 96 + ^3 - ^

' ^3 ^- 192

c.
When X = 0, deflection -^ --tE I

W /
.". Maximum deflection =

192 E I

* (3) Fixed Beam with Uniformly Increasing Load.—
Let a span a b of length I have a uniformly increasing load, of

zero intensity at the point B, and let the intensity of load at

iHiit distance from B be i:; units per ft. run. Then taking the

end B as origin, we have in the case of the freely supported

beam

,^ wl'^x w x^M'= 6—6
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Now let M, and M„ be the end B.M.s, then the negative

B.M. at distance x from b is equal to

.
*

. for the fixed beam

/M
=Frj • d X

_ 1 I'l^Z^a;^ wx^ /M^j-MAa;2 ^~ EI 1 12 ~ 24 ~ ^-^"^
"" V I J 2 + ^^/ •

•
^^'

When X = 0, slope = 0. .
•

. c^ = 0.

Also when x = l, slope =

• • 12 24 ^^^^'^~ 2Z
~^

2 2' ~ 24

.-. M. +M3 = '^j2' (^)

To get another relation between M, and M^, consider the

deflection

;

then deflection = / / =nrj d x

_ 1 \wl^^^ wx^ M,x^ (M, - M,\ ^ , 1 .ON

~EI\ 36 120" 2 V I y-e"^^^/ "^^^

Deflection = when x = 0. . '. C5 = 0.

Also deflection = when a; = Z

36 120 2 V Z / 6

- M., Z^ _ M,j2 M„J2 ^ ^^^Z5 _ w; Z5

2 6 ^ 6 ~ 120 36

M, Z2 M, j2 ^ ^wl^
•'•

6 "^ 3 ""360

.-. M. +2M,= ^^^^ (4)

FF
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.

•

. Combining (3) and (4) Ave get

^ _ 1 W P IV P
"

"~ "60^
12

~ 30 ~ 15

• ' ^ ^-
12 30 ~ 10

The B.M. diagram then comes as shown in Fig. 201. In all

the above cases we have assumed that the beam is of constant

cross section along its length. If such is not the case, the end

B.M.s can be found by taking the corrected B.M. diagram

as explained in the chapter on the deflections of beams.

Advantages and Disadvantages of Fixed Beams.—
We have seen that, in the examples that have been considered,

a fixed beam is stronger than the corresponding freely sup-

ported beam, and that the fixed beam has smaller deflections

and is thus more rigid. In most cases, moreover, the maximum
B.M. occurs at the abutments, Avhere the beam can be strength-

ened -wdthout adding materially to the bending moments and

thus increasing the stresses. In the freely supported beam,

on the other hand, the maximum B.M. occurs at the centre.

Avhere an addition of weight to strengthen the section would

add materially to the B.M. The reason Avhy such beams are

not more commonly adopted is because, in fixing in the ends

securely, the tangents at each end to the beam must be

absolutely horizontal, and any deviation from this will alter

the stresses, and any difference of level at the two ends due

to unequal settlement would cause considerable stresses in

the beam. There is also considerable stress due to change in

temperature if the beam is securely built-in to the masonry,

and all these points make the actual stresses in any practical

case somewhat uncertain, so that many designers do not use

this type of beam. All the above objections can be obviated

by cutting the beam through at the points of contraflexure

and resting the centre portion on the two end portions. This

is the principle of the cantilever girder construction and for
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large spans is very economical. This is shown diagrammatic

-

ally in Fig. 204, in which a fixed beam a b is shown divided

at the points of inflexion c and d and the centre portion is

represented as hanging from the end portions. The B.M. in

the centre portion will be the same as for a freely supported

beam of span I loaded in the given manner. The B.M. for

the cantilever portions will be the same as for cantilevers of

span Zj loaded with the given loading and also with loads at

the ends equal to the reactions at the ends of the centre

portions. In the figure, uniform loading is shown, and in

such case these reactions are each equal to -^

.

It will be

Fig. 204.

found that the resulting B.M. and shear curves obtained in

this way will be the same as shown in Fig. 198. The deflec-

tions can also be found by adding together the deflections at

the centre of the centre portion and at the end of one of the

cantilever portions.

Fixed Beam with Ends not at same Level.—Suppose

that a fixed beam a b. Fig. 205, has its ends at a different

level, then apart from the loading on the beam, the deflected

form of the beam will be as shown in the figure, the point of

contraflexure being at the centre point c.

The deflection 6 e of the portion a c, assuming the beam
divided at c, will be equivalent to that due to a weight P
hanging downwards at c, but for a cantilever with load at end

WZ3
8 =

3 EI
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In this case we have

eh =

. P -

Z\3

3EI
24 EI X eb

P

12^1 X cf

12EI X <Z

End B lourer End /^ lou/er.

Fig. 205.—Beams with Ends fixed at different Levels.

The B.M. diagram due to this is a triangle c a^ d, a^ d being

equal to P x ^-

.*. Ai D = 12EIxc^ 6EIcZ
11 Z2

Similarly the portion c B is as if it had a load P at its end

acting upward, the B.M. diagram for this portion being c b^ e,

Bj E being equal to a^ d.

Therefore, this diagram must be combined wdth the ordinary

diagram for a fixed beam if the ends are at different levels, the
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figure showing the effects for the case in which b is lower than

A, and also that in which a is lower than b.

The condition that the end B.M. diagram must be equal in

area to the free B.M. diagram still holds in this case, but their

centroids are not on the same vertical line because there is a

resultant deflection at one end.

It can be shown by considering the stability of the imaginary

cable of Mohr's Theorem, that E I x (Z = area of B.M.

curve X horizontal distance (g) between the centroids of the

free and end B.M. curves.

u) Z

i.e.'El X d = -^- X I X g

_ 12 E I X <Z

Now, if M^ and M^ are the end B.M.s, the end B.M.

diagram is a trapezium.

I Z /2 M3 + M,
•

*
• ^ 2 3 V M3 + M,

_ I (M, - M,)

6Tm;+mj

_ 12 E I«^

Now, in the figure M^ — M^ = 2 a^ d

M, - M„ 6 E I ^
A, D

P

This gives the same result as the previous reasoning.

Beams with Cleat Connections, etc.—In building work

the girders are usually connected to the stanchions or columns

by means of cleat connections, which, owing to their rigidity,

make it doubtful whether the girder will act as a freely sup-

ported beam, although their strength is almost invariably

calculated as such. Neither is an ordinary cleat sufficiently

rigid for the girders to be considered as fixed at their ends.

The actual B.M. diagram for such beams will be somewhere
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between that for a freely supported beam and a fixed beam.

It has been suggested that these beams should be treated as

" half fixed," that is, that the end B.M.s should, in the case

of uniform loading, be taken as ^ . The B.M. diagram then

comes as shown in Fig. 206. It will be noted that the maxi-

w P-mum B.M. in this case is still ^ as in the fixed beam, but

such B.M. now occurs in the centre.

t Fig. 206.

In beams where the tensile and compressive strengths of the

material are different, as in cast iron and reinforced concrete

beams, it must be carefully remembered that at the ends the

tension side is at the top, and so the additional strength must

be placed at the top at these ends.

It must also be carefully remembered that in all the cases

we have assumed that the cross section of the beam is constant

along its length, and the results obtained will iiot be true if

such is not the case.

CONTINUOUS BEAMS

If a beam is continuous over a number of supports a, b, c,

the deflected form of the beam has to take some shape such as

a^
Fig. 207.

shown in Fig. 207, the curvature changing in direction at the

points a, h, c, d. As in the case of fixed beams, this change in
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the curvature means that a negative bending moment occurs

at the supports, such bending moment being called in future

the " support B.M."

Consider first the case of a continuous girder, a, b, c, Fig. 208,

of two equal spans, each of length I, subjected to a uniform

cr)crTTTyrrrrrrtrirnrcnrn_

^url

B.M.Diaarcim on 'strai(^hf oase

Fir;. 208.—Uniformly Loaded Continuous Beam of two equal Spans. .

load of w tons per foot run, the supports a, B, and c being on

the same level, and the beam being of uniform cross section.

Now imagine the centre support removed, then there would be

a central deflection 8, given by

5 w; (2 Z)*

~ 384 E I

Now, if the centre support be replaced, the pressure R„ on
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it must be such that as a central load it causes an upward

deflection equal to 8

R X (2 Z)3

48 EI
n X {2lf _5w{2 /)*

• 48 E I ~ 384 E I

®=
8 =4

5W
or if W is the load on one span, R = - t—

.
•

. Since R^ = R,. from sj^mmetry, and R , + R,, -f R, = 2 W,
3 W _ 3jW

" "
8

W
In the ordinary case of two separate spans R, = R^ = -^

.
•

. Support B.M. diagram wiU be as if there were an upward

W
force of ^ acting at a and c. This causes at b a B.M.

= -^ X t = so that the negative B.M. at b = ^ =
o o o o

and the B.M. diagram for the continuous beam then comes

as shown in Fig. 208.

As the reactions are ^wl Sit a and c, the shear diagram will

have an ordinate equal to 1 1^ Z at these points ; the shear then

decreases uniformly from c to b until it has a value — ^wl
at B. It then increases to -j- ^wl, since 'R^ = fwl, and then

decreases to — ^wl again at a, the shear diagram then coming

as shown in the figure.

The points of contraflexure g, h, where the B.M. is zero,

occur at distances . from b.
4

This can be shown as follows

—

Let H be at distance x from c.

Then negative B.M. due to support B.M. = = "oo o

•J/1 / cr ID 'X,

positive B.M. for freely supported beam = —^ ^
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These must be equal, so that

w Ix wlx to x^

8
~ "2"

2

X I I 3Z
• • 2 ~ 2 8

"" 8'

.*. X
3Z

4

.
•

. distance from b = I 1- = t
4 4

If the B.M. diagram be reduced to a horizontal base, the

lower diagram shown on the figure will be obtained.

The maximum intermediate B.M.s will occur at distances

3 I
- from c and a.
8

^, .„ , , , wl 31 w /31Y wl 31
They will be equal ^^ -j- - ^ ~ 2 ' \Y) ~ "8~ '

8

72 ^1 _ A _ 1^ Vl6 128 64

^ 9wJ^ ^ 9WZ
" 128 ~ 128

* Two Equal Uniformly Loaded Spans with Sup-
ports not on same Level.—Now consider the case in which

the centre support B is at different level from a and c, and let

B be at distance h below A c (Fig. 209).

As before, if the support b is removed, there will be a central

deflection S = 004^ Vpj"

The reaction at b is now only sufficient to cause an upward

deflection equal to 8 — ^.

3K, (2 I)

^ ~ 48E I

^' ^ irtf ^^ ~ ^^

_ 48_EI / _h
(2Q3 ^V 8
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^ _48EI 5m;J2j)*/ h
' '

-^"
{2 If ^ 384 EI V 8

= 4 (1- J (1)

_ 5wl 5 h w

I

~ T 4T~

•• ^'^^^•= 8+ 88

^"^ ^-^/l_") (2)2 8 V 8

.•. Reasoning as before, negative B.M. at b dne to the

second portion of R^ or R,

_ If Z^ / 5h

^.e.M„=.-/(l-") (^)

.'. the B.M. curve will be somewhat as shown shaded, the

position of d depending on the value of -

Now consider the following special values of /*.

If h = 0, M,, = as in the previous case.
o

If j^ = M„ = 0, and the B.M. diagram is the same as for
o

two simply supported beams.

If h = S, M.,
=

''J'-
(1-5)=

-J''

This is the same as we should have obtained for a simjoly

supported beam of span 2 /.

Now let h = ^
5

i/j 72 1*1 72

Then M„ = „ (1 + 3) = ^ . This is the same as if the

supports A and c were removed and the beam were two

cantilevers b a and b c. The free deflection at the ends is

wl^ 3
then = o -c^ T5 ^^^ ^^is ^ill ^® found to be equal to - 8.
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38
Now h must lie between 8 and

443

for the beam to act as

a continuous beam, therefore take points e, e' on the vertical

Fig. 209.—Continuous Beam with three Supports
not on same Level,

through B, such that b e' = b e = ^ , then the closing line

of the B.M. diagram for the continuous beam with the supports

at different levels must lie between a e c and a e' c.

The following example on this problem is interesting

—

A continuous beam of uniform section and two equal spans I

has a uniform load of intensity w, and the supports a b c are
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initially level. The support columns are, however, equally

elastic, the force necessary to cause V7iit compression being e.

Find the central reaction and B.JI.

5 IV (2 /)"*

If the centre column is removed, 3 = ^o .V. 4-
384 E i

T> /9 7x3

The upward deflection due to R^, = S^ = ~vo ^i^-~

Then 8 — 8^ = difference in level between final posijtions of

A, B, and c. Now let R3 = if Z -f 2 /, 2 / being the additional

reaction due to the beam being continuous, then

R. = R.- = ^' - /

.
•

. Sink of central column =

Sink of end columns

e

w I

'2
-

'

e

Difference = S — S^ = ( ^^ -f 3 /

1 /3 R3 ;f-ivl
1 /S R«~ — tv
e

; ? )
= S - 8^

R.

_ 5w]^ _ R„ P
~ 24 E I 6 EI

P 3 \ DWl^ . wl
6EI'2e/ 24 EI' e

5 IV l^ . IV I

.'
. R« = 24 EI e

J3 _^ 3

6EI ' 2e

= IV I
24 EI e

I P
I 6 E
5 . 6EI

= IV I \

I ' 2eJ

[5 ,
6En

J 4 ' eP I

I - ^M
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Reasoning as before, we then get

M„= 2

5 6E^
4~^ eP

1 +
9EI - 1

It will of course be noted that if the piers had been of the

same material and of areas proportional to the reactions, the

amount of sinking due to their elasticity would have been

equal, and the B.M. diagram therefore would remain as shown

in Fig. 208.

* The Theorem of Three Moments.—We will now find

the relation which must exist between the support bending

moments and the loading for a continuous beam of any number

of spans, the supports all being on the same level.

Let A B and b c be any two consecutive spans of length l^

and ^2 of a continuous beam of any number of spans, and let

A e B, B / c (Fig. 210) be the free B.M. diagrams for the loading

on these spans. Let G^ and G2 be the centroids of these free

B.M. diagrams, and let them be at distances y-^, y<^ respectively

from A and c, the areas of the diagrams being respectively

Si and Sg. Then, if M^, M3, M^ are the support moments at

A, B, and c respectively, Cla'peyroni's Theorem of Three Moments

states that

M, ?i + 2 M3 {h + h) + MJ2 = 6 1
^y^ + ^f^)

We can prove this with the aid of Mohr's Theorem* as follows :

Let a! b' c' be the deflected form or elastic line of the beam,

then if the beam is of the same material throughout, and of

constant cross section, the elastic line is of the same shape as

that of an imaginary cable loaded with the B.M. diagrams and

subjected to a horizontal pull equal to E X I. Now the

* See p. 252.
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tangent to the imaginary cable is common at the point b'.

Let such tangent be at angle 6 to the line a' b', and let the

perpendicular from a' on to it be of length ii\, the tension in

such cable at b' being T„ ; then considering the stability of

the imaginary cable we have by taking the span a b and taking

moments round a'

Tb' ^ Vi = moment of B.M. diagram about a'

= Sji/i — moment of support B.M. diagram about a'

Mc

e .^ h <K
Ma

^^f^^p:'^=-^-^

Pn
/I

\

B c
'-^'^

/ 7
*-/2^

h 6^

^ ^.B' %^--*^ -»^
£-/o,

^^^"^

r//c Line

c

Fig. 210.—Theorem of Three Moments.

= Si2/i-M,^'x J
Ar /

- /
-

^*^«2 3

(1)

because the support B.M. diagram can be di\-ided with two

triangles of area ^-^ and ^—^^, the distances of their centroids

from a' being respectively -^ and ^ \ Xow p^ = I^ sin 0, and

T -

EI
cos

, E I being the horizontal pull in the cable.
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m E I Zi sm
•

, T„, X ;Pi
= ^-. = E I Zi tan ^

cos

.•.EItan^=%i^-^A_^i (2)

Now by considering the second span, as is the same for

both spans and E I is constant, we get

EItan^ = -(S^f
-^^'^-2M^)

(3)

The — sign is used because the moments are taken in

opposite directions.

Then, combining equations (2) and (3) we get

?! 6 6 V ^2 ^ ^

or M, Zi + 2 M, {I, + Z2) + M, l, = 6 (^"^-^^^^ +
^f

^^) • • • • (4)

TA^5 z<s the general formula applicable for all loadings.

If the loading is uniform over each sj)an and of different

intensities Wi and W2, we get

c _ ^ 7
w^l^^ _ IL\ l^

Similarly

^1-2

3
1

• 8 12

2

.
•

. In this case we have

M, /i + 2 M, {l^ + I,) + M, I, = ^ {w^ l^^ + 2^'2 ^2') . . • • (5)

If the load is of the same intensity w on the two spans we get

M. Z, + 2 M„ (Zi_+ I,) + M, Zo ^ ^ {I,' + Z^-^) (6)
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* Reactions and Shear Diagrams.—As in the case of

fixed beams, the shear diagrams for continuous beams will

have their base Unes shifted, due to the change in slope of the

B.M. curve.

Consider any support, say b, and let r^ be the reaction at b

due to the span ^^ if the separate spans were simply supported,

Ri being the corresponding quantity for the continuous beam.

Then change in slope of B.M. curve = " T" '

T5 ,
M„- M,

.-. Ri = ri+-^^^ ^

Similarly if r^, R2 are corresponding quantities for the

span Zg

. ,
M, -M.

^2

. . Total reaction at

Then R^^ and Rg give the ordinates of the shear diagrams on

either side of b. This will be made clearer in the following

numerical example

—

A continuous girder, a b c d [Fig. 211), consists of three spans,

20, 10 and 15 ft. long, and the first span carries 20 tons, the

second 15 tons, and the third 10 tons, uniformly distributed.

Draw the BM. and shear diagrams.

First draw the B.M. diagrams as if the separate spans were

freely supported.

Now take the first two spans, then by the theorem of three

moments

M. X 20 + 2 M, X 30 + M, X 10 =
^ j^^

. 20^ +
J^

. lo4

But the end a is freely supported. .
•

. M, =

.
•

. We get 60 M, + 10 M, = ^^' (s +
J^)

or 6 M„ + M, = 237-5 (1)

Now consider the next two spans. Then we have

M, X 10 + 2 M, X 25 + M, X 15 =
^ | J^

. 10^ +
J^

. 15^1
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The end d being freely supported, we have

10 M, + 50 M, = ^^ |l2 + isj

or M„ + 5 M, = 93-75 (2)

Solving the two simultaneous equations (1) and (2) we get

M, = 37-75

M, = 11-20

.'. Putting up these values we get the B.M. diagram as

shown in the figure.

2.0 Tons

B
ao

1 5 Tons

/O'

3. M. Diagram (Figs.

lO Tons
D

15

Ft Tons)

'i-a\

Shear UiaciramfFiq'^ inlons)

Fig. 211.—Continuous Beam of Three Spans.

To get the shear diagram we first calculate the reactions as

follows

—

M„ _ 20 _ 37-75
" 2 20

K
2 ^

li

8-11 tons

Rb ==5^ + -™ + ^1 + ^^^ == 11-89 + 10-15 = 22-04 tons

^ 15 26-55
,
10

,

11-20 , o^ , .. -.
^^ = 2 - -10" + 2 + 15" = ^'^^ + ^'^^

K = 10 _ 11-20

2 15

= 10-59 tons

= 4-26 tons

Total 45-00 tons

GG
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The shear diagram then comes as shown in the figure, the

continuity of the beam altering only the base lines, and not

the form of the curves.

If there are more than three spans, consecutive spans are

taken two together, and a series of equations obtained by the

theorem of three moments. Further numerical examples will

be found at the end of the chapter.

* Continuous Beams with Fixed Ends.—If the end

of a continuous beam is fixed, the end B.M. is obtained by

imagining a beam to exist beyond the fixed end of the same

c_ g
f7 21-

r 2

o i
S 3 8 ^

O IQ 75 O

/C /O lO lO 10 /o

^ J- J^ -3l. O

j£ -£ ^ ^ O
33 ££ 3S 38

f7s JIJzS 7I¥q TfYZI A^Ui ^
O /o^ /o'f- ro4- fo^ 704- f
f?7 ^\is ZT^I ^Tj3 ~I[^ ^^63 ^^
Jok- fo4- /o4^ /of- /^ /of I04 /a4 fof- /(H /of- /o4~

FiG. 212.—B.M. and Reactions on Uniformly Loaded Continuous
Beams of Equal Spans.

length, and loaded in the same manner as the last beam. This

is because the fixing of ends makes the beam horizontal at

such ends, and this occurs at the centre of a continuous beam

symmetrically loaded. An example of this will be found in

the worked examples at the end of the chapter.

Equal Spans with constant Uniform Load.—In prac-

tice the spans (Z) are often equal, and the uniform load {w)

per foot run constant, the extreme ends being freely sup-

ported. A diagram is shown in Fig. 212, from which the

support B.M.s and reactions can readily be obtained for any

number of spans up to six.

Above the span Hnes are the support moment coefficients,

which have to be multiplied by w P.
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Below the span lines are the reaction coefficients, which have

to be multiplied by w I.

From these the B.M. and shear diagrams can be readily

drawn. The student should check these by working them

through by means of the theorem of three moments.

* GRAPHICAL TREATMENT OF CONTINUOUS BEAMS

In dealing with a considerable number of spans with

irregular loading, the application of the theorem of three

moments becomes a somewhat laborious process. Although

the following general graphical method is somewhat involved

and takes considerable time to explain, it is interesting and

useful, and shows to what extent the graphical method of

reasoning can be pursued.

Consider the imaginary cable of Mohr's Theorem which

gives the elastic line of a beam. It is a link polygon for

the bending moments, drawn with a polar distance equal

to E X I.

Now the slope and position of the first and last links of a link

polygon are quite independent of the exact distribution of the

forces, provided that they have the same resultant in magnitude

and direction.

As we shall see later, we shall be able to obtain the support

moments if we know the support tangents to the elastic line.

Let A B (Fig. 213) represent a span of length ? of a continuous

beam, and let A c B represent the free B.M. curve for the

loading on it, A a and b b being the support moments, M^ and

Mj,. If the centroid of the curve a c b is g, then the vertical

G G is called the centroid vertical, and if the support B.M. curve

be divided into two triangles a a b and b a 6, the areas of such

triangles act down the right and left hand third lines x x and

Y Y. Now replace the actual B.M. curve for purposes of

finding the elastic line by single forces acting down and up

the lines g G, x x, Y Y.
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On a vector line,

set down 1,2= area of free B.M. curve a c b = S

,, ,, 0, 1 = area of triangle a a b = S^

>5 jj 2, 3 = ,, ,, abB = S„

Then with pole p at polar distance (/;) = E I if A^d is drawn

parallel toOT,dh to If, hg to 2 f and ^ b^ to 3 p, cZ h and h g

are called the mid links, and a^ d and g b^ give the support

tangents.

Fig. 213.—Continuous Beams—Graphical Treatment.

Now in our problem Ave do not know the position of the

points and 3, and we see that these would be known if the

mid links were found, so that our j^roblem now reduces to

that of finding these mid links.

On both sides of the centroid vertical g g draw lines at

distance p, and set down lengths l^, 2^ equal to 1, 2 and join

them across, intersecting on the centroid vertical. These

lines are called the cross lines.

Now draw any vertical u u, then clearly the intercepts made

by the vertical on the mid links and cross lines are equal.
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From this it follows that if a point on one mid link is known,

a point vertically below it on the other mid link can be found.

Again, let the right-hand mid link of this span meet the

left-hand mid link of the next span in a point j, Fig. 214, on

a vertical line q q.

Fig. 214.—Continuous Beams—^Fixed Points.

They are similar

Then consider the triangles g j k, f 2 3.

j k _ x-^

p X j k = 2, 3 X X;^

= Xj^ X area 6 as
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Similarly considering the triangle on the other side of Q Q

we should have

Where Zg is the length of the next span.

Further, x-^^ -\~ X2 = k (li + h)

h
• • ^1 ~ 3

x<, -
3

.
•

. Q Q is at a distance = -^ from y y, and is thus called an

inverted third line.

Determination of "Fixed Points."—Let ab c (Fig. 214)

represent two consecutive spans of a continuous beam, and

let the third lines be drawn as shown.

Suppose that we know that the right-hand mid link of the

span A B passes through a fixed point r. Let this mid link

cut the inverted third line q q in J and the third line y Y in l,

then L b' must be a support tangent. Produce l b' to meet

the first third line of the span b c in l', then j l' is the left-

hand mid link; and then join fb' and produce it to meet

J l' in f', then f' will be a fixed point on the mid links of the

second span. This is shown as follows

—

Let the vertical through f' be at distances z-^, 23 from the

third lines.

Then the triangles f' j n, f' k' l' are similar.

• • k'l' 22
^^

and triangles b' k' l', b' k l are similar.

(2)
k' 1/ I2

further, the triangles f l k, f j n are similar.

- , (3)JN /2
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Multiplying together
(1), (2) and (3), we get

1 X r
^2 12 h

. ^1 ~ ih _ h /2

^2 hh
also Z^ -T ^2

h + h
3

.-. Zi - 1Z2 = ~Z2 + ^h
.

-^2 + ih _^l/2
^2 ~hfl

= 1 + ^^^2

•'
' ^2 — 1~T~^JIjT ~ constant.

h / 2 + ^2 /I

.
•

. r' is a fixed point.

In this way a number of fixed points right along the various

spans can be found as hereinafter further explained.

A fixed point is found at the terminal spans, as follows

—

Case 1. Freely Supported End.—The end B.M. here

must be zero, therefore support tangent and mid link must be

collinear, so that a' is the first fixed point.

Case 2. Built-in or Fixed End.—Support tangent is

horizontal, so that first fixed point is where horizontal through

a' cuts the first third line.

Graphical Construction for any Given Case.—We
are now in a position to set out the construction for obtaining

the B.M. diagram, which is as follows

—

Draw the free B.M. diagrams and the third lines, the

inverted third lines and the centroid verticals. Fig. 215

shows a continuous beam of three spans, one end being freely

supported and the other fixed, x x representing the left-hand

third lines, Y Y the right-hand third lines, q q the inverted

third lines, G G the centroid verticals.

Now draw the cross lines at the bottom of the paper, such

lines being obtained by setting down the areas S^, Sg, etc.,

of the free B.M. curves on vertical lines at each side of the

centroid verticals at distances representing the value of E I
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reduced in some convenient ratio, the scale of E I being the

same as that of the areas. If the support moments only are

required and not the deflections, and E I is the same for each

span, E I need not be calculated, any convenient polar distance

being taken.

P, P^, and Pg are the intersections of the cross lines.

Now find the fixed points. The end a is fixed, so that f is

the first fixed point ; now set down r r' equal to the intercept

/ /i on the cross lines and draw any line r' J^ to the inverted

third line, cutting y Y in l
;
join L b' and produce to meet the

third line x^ x^ in l^ ; then the intersection of l^ j^ and e' b'

gives the fixed point Fj^ on the second span. This is repeated

as shown, and the points f^', Fg, Fg' found.

^ow start the other end d. This is freely supported,

therefore, as we have seen before, d' is the first fixed point Hg.

By means of the cross lines, we then get the corresponding

fixed point Hg', and by repeating the same construction as

for the points F, we get a number of other fixed points,

Hj', H^, h', h. The mid links and support tangents are now
drawn in, and there will be two checks on the accuracy of

the construction, viz.

—

(a) Mid links must meet on centroid verticals.

[b) When adjacent mid links are joined, they must pass

through points of support.

Now, from the points 1, 2, etc., on the cross lines, draw

parallels to the mid links, and obtain the poles r, r^, Rg and

then draw parallels to the support tangents, thus obtaining

the points 0, 3, etc. Then

and so on, the support moments then being set up and the

true B.M. curve for the continuous beam thus being found.

Another interesting graphical method of finding the support

moments in a continuous beam has been devised by Professor

Claxton Eidler, and will be found in his book on Bridge

Construction.
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Advantages and Disadvantages of Continuous
Beams.—It will be seen by considering the B.M. diagrams

for continuous beams that the maximum B.M. is less than

that which would occur if a number of separate simply

supported beams were placed across the same supports (ex-

cept in the case of two uniformly loaded equal spans, when
it is the same), and that such maximum B.M. occurs at the

abutments. The principal disadvantages are

—

(a) It is not easy to ensure all the supports remaining at

exactly the same level.

(6) The method of calculation of the stresses assumes that

the beam is of uniform cross section throughout, this

condition not being an economical one. Experimental

investigations in Germany have shown that if the

beam is not of uniform cross section, the method

described may still be employed without great error,

(c) In the case of rolling loads, which occur frequently in

bridge design, the • calculations are much more

difficult than in the case of separate spans.

Beams Fixed at one End and Freely Supported at

the Other.—If a beam is fixed at one end and freely sup-

ported at the other, the B.M. and shear diagrams will be the

same as for the half of a continuous beam of two equal spans

of the same span as the given beam, and loaded in the same

manner.

This is because fixing the end of a beam makes such end

horizontal, and this is what happens at the central support

of a continuous beam with two equal spans loaded in the

same manner. The consideration of the following two

standard cases should make this clear.

(a) Beam Fixed at one End and Freely Supported at

THE Other, Subjected to a Uniform Load.—The

B.M. and shear diagrams in this case are the same

as for one span of the first case of continuous beams

that we have considered, and will therefore be as

shown in Fig. 216.
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(6) Beam Fixed at one End and Freely Supported at

THE Other, Subjected to a Central Load.—Let

the central load be W and the span I.

Then, if b is the fixed end, a the freely supported end, and
a' the imaginary freely supported end existing beyond the

fixed end, we have, by the Theorem of Three Moments,

MJ + 2M,(? + Z) + M,Z = 6|^ix|x2^^ + ^x|x^^
Now M, = M,, =

.-. 2M,..2? = 6
W Z3 W ^3^

. M.

IQl

16

16 Z J

}

Fi€t. 216. Fig. 217.

Beams Fixed at one End and Supported at the Other,

The B.M. diagram then comes as shown in Fig. 217.

To get the shear diagram we first work out the reactions.

j^ _ W , M, - M„

.
' . R,.

~ 2^
I

W
2

3WZ
IQl

5W
16

11 W
16

The shear diagram then comes as shown in the figure.
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(c) to find the maximum deflection for a uniformly

Loaded Beam fixed at one End and Supported

AT the Other.

The bending moment diagram for this case is as shown

shaded in Fig. 218. The curve b d c is a parabola of height -^

where iv is the load per unit length of the beam, this being the

B.M. diagram for the downward miiform load on the canti-

FiG. 218.—Deflections of Beams.

lever, and a j is equal to
3 ic P

! J B being a straight line ; this

3 ic I

being the B.M. diagram for the reaction at b, which is ^—
8

Our first problem is to find the point n at which the deflec-

tion has its maximum value. Consider the position Aj^n of

the imaginar}^ cable. The forces acting on it are a horizontal

tension equal to e i at n and an equal horizontal tension at

the point a^, since the beam must be horizontal at the fixed

end a; also an upward vertical force equal to the negative
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area cjb, and a downward vertical force equal to the positive

area d f g.

If these forces are in equilibrium, since the horizontal forces

are equal and opposite, the vertical forces are also equal and

opposite, so that we get the following rule

—

The maximum deflection will occur at the point where the area

D F G ^5 equal to the area d J c.

This is the same as saying that the area a h g J is equal to

the area a h f c.

Now, if H B = X and a b = Z

HG_AJ
^

_a;AJ
—y—

.
*

. H G y-

X I I

Area a h g J = -^ (a J + g h)

V '- X I -I ,
X

A J 1 +
.2 ^" V Z

{I - x) {I + x ) SwP
'2~~

I ' 8

3wl
16

(P -x^) (1)

Also Area a h f c == Area a b d c — Area f h b

1 1= ;^AC.AB — „ FH.HB

Iwl^ 1 W X^
^ 3~2 ""

3 ~T~

If (1) = (2)

(2)

^^ (l^ - ^') =^
I (^' - ^') •

Factorising, we get

^^Q^ {I + x)(l- X) =^~{l- ^) (l' + l^ + ^^')

w
. . dividing through by ^ (^ — ^) ^^^ multiplying across

we get

9?2 + 9?a: = 8Z2 + 8Za: + 8x2

i.e. Sx^ -Ix -l^ = (3)
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The general solution of this quadratic equation is

X ^
_ I (1 ± V33)

16

The negative value is inadmissible

.•.. = L(L+/33)^.^2 nearly.

.
•

. The maximum deflection occurs at a distance = '422 1 from

the simply supported end.

We now proceed to find the maximum deflection S by con-

sidering the stability of the portion n Bj of the imaginary

cable. The forces acting on it are a tension at B, the horizontal

tension E I at n, and the area of the bending moment diagram

B F G.

By taking moments about the point b^, we eliminate the

tension at this point and get E I x 8 = moment about B^ of

area b F G.

Now, this area is made up of the difference between the

A B H G and the parabola b h f.

X

T

__ I
x^ S wl^ _ 3w x^l

The area of the A = jGH.BH = J.^.Aj.a;

M • 8 16
2 X

The centroid of the A is at distance -^ from b

, p ^ , , Zwx^l2x w x^ I
.'

. moment oi A about b, — —^tt^
— . -^ = --;:

—

lb 3 8

The area of the parabola = J f h . b H

_ I w x^ _ w x^

The centroid of the jDarabola is at distance — ~ from b.

zv X 3 X
.

•
. moment of parabola about B, = —7, . -^

o 4

w x^
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.* . moment about b^ of area b f g

w x^l w x^

E I X 8 = -j^ (Z - a;)

putting X = '422 I

^ T ^ w X -4223 P (-578 I)
.

• . EI X S = ^—^^
^

o

= -00543 w Z*

, -00543 w l^

•*• ^^—Eir~
putting wl = total load = W

. -00543 W P
^
=

EI

_ WP
184 EI

For a uniformly loaded beam, simply supported at each

5 W Z^
end, we should get 8 = „- . t^ j , while for one similarly loaded,

WP
but fixed at each end- we should get 8 = ttttttTtj so that^ 384 E I

we see that, in the case under consideration the deflection is

between these two values. This is, of course, what one would

expect.

The same method may be applied to the case of an isolated

central load W on a beam similar fixed. In this case the

maximum deflection = >_ and occurs at ^7^ from the
48 VS E I a/S

simply supported end.

We will conclude this chapter with a further number of

worked examples of fixed and continuous beams.

Worked Examples.— (1) A beam of 20 ft. span is built-in

at one end and is supported at a point 5 feet from the other end.

Draw the B.M. and shear diagrams for a uniform load of J ton

per foot run.
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Let AB (Fig. 219) be the beam, fixed at the end a and

supported at the point c.

The portion b c of the beam acts as a cantilever, and there-

fore the B.M. at c = M,
1 5x5
^ X ^ = 625 ft. tons.

To find the B.M. at a, we imagine a span a c' exactly similar

to A c to exist within the wall.

Fig. 219.

Then, by the Theorem of Three Moments, we have

M, X 15 4- 2 M, (15 + 15) + M, . 15 = ^ (15^ + 15^)
o

But M,. = M, - 6-25

.-. 60 M, + 30 X 6-25 - ^(2 x 15^)
o

.-. 4M, + 12-5 = ^f4
1 ^12

... 4M, - , - 12 5
4

= 56-25 - 12-5 =43-75

.
. M, = 10-94 ft. tons nearly.

The B.M. diagram is then as shown in the figure. To get

the reaction at c we proceed exactly as in the case of con-

tinuous beams
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. ^ 1 15
,
M, - M^ 1 5 M, -M,

I.e. J:^, - 2 . 2 "^ '""'15 '^2'2 "^ 5

= 3-75 - -31 + 1-25 + 1-25

= 3-44 + 2-5

= 5*94 tons.

The shear diagram then comes as shown in the figure.

(2) A roiled joist is firmly built-in at one end, and the other

end rests freely on the top of a cast-iron column. The span of

the joist is 16 feet, and it carries a single load of 10 tons, 12 feet

Fig. 220.—Example of Beam Fixed at one End and Supported
at Other.

from the column ends. Determine the reaction on the column,

and draw the B.M. and shear diagrams. {B.Sc. Lond.)

Let A B represent the beam, fixed at the end a, the load

being at the point c (Fig. 220).

Then the free B.M. diagram is a triangle a d b, c d being

equal to

30 ft. tons.
Wa& 10 X 12 X 4

I 16

Then area of B.M. diagram

=
J X 30 X 16 - 240 sq. ft. tons.

The centroid g of the B.M. diagram occurs at a distance

HH
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J E c from E the centre of the beam, i. e. at a distance 9J ft.

from A.

Then, imagming a span exactly similar to ab to exist

beyond the fixed end, we have, by the Theorem of Three

Moments

16 M3 + 2 M. (16 + 16) + 16 M, = 6
{^^\l^''

+ ^^'}
M3, = M, =

.. T^ 6 X 2 X 240 X 28 ^ ^,^64 M, = — ^ = 7 X 240
16 X 3

M = 7 X 240 _ 210

64 " 8

= 26-25 ft. tons.

The reaction on the end b for a freely supported beam

= ^B = —T^— = 2*5 tons.
Id

.
'. In this case R^ = r^ H

-~~

= 2-5 +

I

- 26-25

16

= 2-5 - 1-64

= *86 tons.

(3) A continuous girder consists of two unequal spans of

100 ft. and 120 ft. respectively. The girder is 300 ft. long and

overhangs the end supports at each end, and is loaded as shown

{Fig. 221). Draw the B.M. and shear diagrams and show the

points of inflexion and magnitude of the supporting forces.

{B.Sc. Lond.)

In this case the end pieces A B, d e act as cantilevers.

,, 40 X IJ X 40 , ^^^ J., .

.•
. M„ = ^ = 1,200 ft. tons.

40x2x40
^1^600 ft. tons.
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The free B.M. curve for span b c is a parabola with maximun'

,. ^ li X 100 X 100 , ^_^ „^ ^ordinate = -^ ~ = 1,875 ft. tons.

The free B.M. curve for span c d is a parabola with maxi-

,. , 2 X 120 X 120 o^AA^^ ^mum ordmate = = 3,600 ft. tons.

lit^ns l^cr Ft. run ^*"^M ^'trun

nnmoononnoOnnOOOOOOO
^

40-»- lOC

B.M. Dioqram

12.0

Shear l^loaram

Fig. 221.

Da

—> <- 40 ->

Then applying the Theorem of Three Moments we have

100 M„ + 2 M, (100 + 120) + 120 M, = i
(1J X 100^ + 2 x 120^)

.-. 120,000 + 440 Mo + 192,000 = 375,000 + 864,000

440 M, = 927,000

M, = 2,107 ft. tons nearly.
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We now proceed to the determination of the reactions,

o - 1 V <in V 1
1 M,.-M, 1 1 M„-M,

= 30 + 30 + 75 - 9-07

- 60 + 65-93 = 125-93 tons

M, - M„
Re = ^ X 100 X 1^ + ^^^^J" + ; X 2 X 120 + ^2^

= 75 + 9-07 + 120 + 4-22

= 84-07 + 124-22 = 208-29 „

R., = i X 2 X 120 +
^'i7/'^ + ^ X 2 X 40 + ^" ~^^

= 120 - 4-22 + 40 + 40

= 115-78 + 80 = 195-78 „

Total .. 530 tons

The shear diagrams then come as shown on the figure, and

the points g h k l are the points of inflection.

(4) A continuous beam of total length L has three spans and is

uniformly loaded. Find the most economical arrangement of the

spans.

It follows from symmetry that in the best arrangement the

two end spans will be equal. Let the epd spans be of length /j

and the centre span of length I2 (Fig. 222).

Then L = 1^ + 21^

Now by the Theorem of Three Moments

wMJi + 2 M,. {I, + I,) + MJ2 = : (^1' + ^2')
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From symmetfy M,. = M„

also M^ =

We now require to find the relation between l^ and I2 to

make M„ a minimum, and then see if M,, is greater than

the intermediate B.M.s : if so, this relation will give us the

most economical arrangement.

M = ^
" (2 ^1 + 3 l^)

Now ?2 = L - 2 ?i

(3 L - 6 ?i + 2 Zi)

This will be a maximum when ,
,-" =

a l-^

i. e. when (3 L - 4 ^i) (- 21 l^^ + 24 /^ L - 6 L^)

+ 4 (L3 - 6 L2 ?i + 12 Ij^L - 1 l^^) ==

i. e. 56 l^^ - 111 L Zi2 + 72 ^^ L^ - 14 L^ =

The solution of this equation will be found to be l^ = -35 L,

such solution being found by plotting.

Thus we see that the least value of the support moments
occurs when the end spans are each "35 L and the centre -3 L.

In this case the intermediate B.M.s are less than the support

moments, so that this gives the most economical arrangement.



CHAPTER XVI

* DISTRIBUTION OF SHEAR STRESSES IN BEAMS

When a beam is deflected there is a horizontal * shearing

stress at every point of the beam, resisting the shding of one

layer over the other. We have already shown (p. 10) that in

an elastic material a shear stress must always be accompanied

by a shear stress of equal intensity at right angles to it ; in

the case of the beam we see that the horizontal and vertical

shearing stresses at any point of a beam are equal. Now the

total shearing force over any vertical cross section of a beam

must be equal to the shearing force, obtained, as in previous

chapters, by considering the forces on the beam; but the

intensity of stress will not be the same across the section, so

that by dividing the shearing force S by the area of the cross

section A, as is commonly done, we do not get the maximum
shear stress.

The existence of the horizontal shearing stress can be seen

clearly from the following diagrammatic representation.

Fig. 223 (a) shows a short beam deflected under some loading.

Now imagine the beam to be replaced by a number of plates

placed one above the other. They then take the form shown

at (b) on the figure, the plates sliding one over the other as

shown. The second case will not be nearly as strong as the

first case, and it is clear that in case (a) there must be stresses

tending to make one layer slide over the other.

* We will assume through this investigation that the beam is

horizontal. If it is not, the words "parallel to the axis of the beam"
and " perpendicular to the axis of the beam" should be substituted

for "horizontal" and "vertical."

470
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We will now obtain an expression for finding the shearing

stress at any point of a beam, and will consider later certain

special cases.

®

®
Fig. 223.—HorizontarShear in Beams.

Fig. 224.—Distribution of Shear.

General Case.—Let ab, a^Bi (Fig. 224), be two cross

sections of a beam at a short distance x apart, and let the

cross section of such beam be symmetrical about a vertical

axis, and let the loading be wholly transverse. Then E c g and

EiCiGi, as we have previously seen, give the intensities of
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transverse stress at any point. Now consider the portion of

the section ab above any line d d. Consider an element of

area a at a point p at distance p x from the neutral axis.

Then we have by the theory of bending that the intensity

of stress at p = /^
=

j
, where M is the B.M. at the

point and I the second moment of the section.

.•
. Force on element a = /^ x a = "

^ . a

. . Total force on area above d d = 2 j . a

M= ^ X first moment of area above d d about N.A.

= J X a.y (1)

Where a is the area above d d and y the distance of its centroid

from the N.A.

Similarly taking the section a^ b^ and taking the force above

a line Di Di we have
M

Total force on area above d^ d^ = Fj^ = -p
- x a^ y^

Now, if X is small, and the beam has no abrupt change in

cross section, we may put a = a^, y = y-^, and I = Ii

. ...F-F, = <^^i>^ (2)

Now this difference in transverse force is the shearing force

which has to be carried along the line d d^. We will write this

^ _^ ^ (M - Ml) a^y^x
^ X I

M — M
Then, if x is very small ^ is the rate of increase or

decrease of the B.M., and this we have shown to be equal to

the shearing force S at the given point.

.-. We have ^ - ^^ = ^^ ""^y^^
(3)
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Now the area over which this shearing force acts is equal to

B^D X T) B = -D T> X X = X X b.

.
' . Mean shearing stress along d dD = F

b X

= S X a.y .. x

bx .1

Sj, = S .a.y
1.6

• (4)

We can express this in terms of the mean stress m = -^ over

the whole section as follows

—

_S . a .y
^" ~ AVkH

a.y ,_,

We may call j~ the shear coefficient.

It will be noted that a x y increases up to the neutral axis

and then decreases, because the first moment of the area below

the N.A. is negative.

We thus see that the shear stress is a maximum at the neutral

axis.

It must be remembered that 5^ gives only the mean shear

stress along d d. This stress is not uniform along d d, but

for sections which are narrow at the neutral axis, the sections

used in practice generally falling under this head, the maximum
shear along the neutral axis will be not much greater than

the value of s^ at the neutral axis as given by the above

result. For sections like the square and the circle the maxi-

mum shear along d d will be from 5-10 % greater than the

mean shear, while for sections such as an oblate ellipse or a

broad rectangle the difference may amount to as much as

25 %. It is beyond our present scope to go further into the

question as to the variation of shear stress along d d, but

we should remember that such stress is not uniform; the

maximum stress for various cases has been worked out by

St. Venant.
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Consider the following special cases (Figs. 225, 226).

(1) Rectangular Section.—Mean shear along a line at

distance x from N.A. of a rectangle of height h and breadth b

_ _ ^ -y- -5. - w . -p-^-

In this case a -x]b

y = X +
l/h

k^ =
12

2V2
X = + x

fxeclarkjle

Parabola

Cinclt

Fig. 225.

s.

m .[^ — xjh . ^[^^^ X

12

6 m ( . — x^

= 6 m (

J
-

^,

_ 3m /, _4:X^
~ 2 \ 'W.

This depends on x^, so that the curve showing the mean

shear stress at various depths will be a parabola. The

maximum value of s,. occurs when a: = 0, ^. e. at the neutral
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axis. This gives 5<, = —^ — 1*5 m. Thus we see that in a

rectangular beam the maximum shear stress occurs at the

centre, and is equal to 1*5 times the shearing force divided

by the area of the section.

(2) Circular Section.—This case is not quite so simple as

the previous case, but we can find the shear stress at the N.A.

simply as follows

—

In this case we have
7rD2

2D

6 =D
ttD^ 2D
8 • Stt

.
•

. 5„ . = m
D2
16

4 w

.D

= 1-33 m

So that the mean shear stress along the N.A. is 1J times the

mean shear stress over the whole section.

In this case it is interesting to note that the maximum shear

stress along the N.A. is 1*45 m.

(3) Pipe Section.—Let a thin pipe be of mean diameter

D and thickness t (Fig. 226).

Then a = —^
D

y ^ ÎT

D2
^ ~ 8

6=2^
ttD^ D

.
•

. 5v A
= 'W* X -:^ = 2 m

^ X 2*
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So that the mean stress shear along the N.A. is twice the

mean shear stress over the whole section.

(4) I Section.—To calculate the proportion of the shearing

force carried by the flanges and web, respectively.

Take a beam of I section of breadth h and height h, and
let the thickness of the flanges and the web be t and w,

respectively.

First consider a horizontal line p p in the flange at distance

X from the top edge (Fig. 226).

i^ Pi

P-h7--f—?4^

uy

T
-?,

B

\K
Ml

Fig. 226.

Then mean shear along p p = m . ^^g ;

s,. = m .b X {h — x)"
6 F 2

—
9 y^ 2 V ^ ^ ) (1)

This depends on x^, so that the curve showing the variation

of stress is a parabola.

When X = t, i. e. at the junction of web and flange,

St = 2^2 (^ ^ - ^') (2)

Now consider a horizontal line Pj^ p^ in the web at distance

x^ from the top.

Then mean shear along pj p^ — -' '—
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In this case

ay = first moment of area above p^ p^ about N.A

_b t {h — t)
^ ^ ,_ ^^

\h /^ ^ ,

^1 — ^

+ w{x,-t)\^^-[t+^-^)

_b t {h — t) w {Xi — t) (h — x^ — t)-
2

+ 2~'

also b = w in general expression for shear stress.

'n 9 1,2

m fbt{h — t) (% — t) (h — x^ — t)

2 k^ I w w

_ m , mt (h — t) {b — w) .ox-
2 p (^ ^1 - ^-1

)
+ -^2k^w « ^^^

The second term of this expression is constant for all values

of x-^^ and the first term is the shear stress which would occur

if the fianges extended down to p^ p^.

We thus see that the diagram of distribution stress is

obtained as follows

—

First draw a parabola a k d, the centre ordinate J K of

h
which is obtained by putting a; = ^ in equation (1).

I.e. JK =
2PV2 47 8 F

At the points b and c corresponding to the inside edges

of the flanges set out g e and h f equal to the expression

o r.2 ^^^ re-draw the portion g k h of the

parabola between the points e and f, then the curve

A G E L F H D givcs the shear stress at the various depths

of the cross section.

Then total shear carried by web is equal to area of piece

B E L F c of curve multiplied by width of web.

Now take the case in which ^ = v^ and w — ^ and b =^ ^,
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this being about the proportions for a rolled steel joist, then

BG =s,= ^^^^ {h t - f")

_ m /h^ h^ \
^ 2k^ VlO ~ 100/

_ m 9 ^^
""

2 A:2
• 100

_ m /h^ 9 h^\ __ m 16 h^ _ m 4 A^
•"

• ^ ^ ""
2 F [J

-
100 j

~ 2k^ • loo ~ 2l2 • "25"

also
mt{h-t){h -w)

also GE - ^^^~

_ m h 9h 9h 20
~ 2 F • rd • 10 * 2¥ ^ 7j

_ m Slh^
~ 2T2 • 100'

_ m 9 h^ m 81 h^
''' ^^^ 2k^' 100

'^
2 F • Too

m 9h^
2 k^ ' 10

.
•

. Area of curve belfc =BcfBE +^mk

_ 4^ m /9h^
, §^^ (A)" 5 • 2 P VTO ^ 75 y •

• • • ^
^

Now m this case i = -j^ yo

= ^ _ ?i* (thy L~ 24 20 • V 5 j • 12

= -0417 h* - -0192 h^

= 0225 h^

The area of the section = b h — {b — w) {h — 2 t)

__
7^2 _ 9^ 4^~
2 20 • 5

= •14^2

r. k^= ^=-?l^f = '1608^'
A T4/j2

Returning to equation (4) we get area of curve belfc
4 m A r9 y^2 8 ^2

+
10 F I 10 ' 75
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" 10 X -leosl^

'

, 4 X 1007
^^^•^^-1-608
= 2-505 m^ (5)

.
•

. Shear carried by web = 2*505 mil x width of web

= 2-505 mh X
^^

= -1262 mh^ (6)

Now area of whole section = • 14 ^^

.'. Total shear S on section = "W/i^ x m
Shear carried by web _ • 1252 _ r.^ ^ o/•*•

Tot^rshear O^ ~ /°*

It is commonly assumed in practice that in plate and box

girders the whole of the shear is carried by the web, and the

above calculation shows that in an I beam, in which the

flanges are larger in proportion to the depth than in most

plate and box girders, this is true within 10 %.
It must, however, be remembered that in girders built up

of joists and plates, such as the comparatively shallow and

heavy girders used in buildings, this assumption will not be

so nearly true.

Shear Stresses in Reinforced Concrete Beams.—^The

usual treatment is as follows

—

Consider two vertical sections of a reinforced concrete beam

made at points ab a short distance x apart (Fig. 227), the

section not changing appreciably from a to b. At the point

A, the total stresses due to the bending moment are C and T,

and at b they are C and T' ; then if the corresponding bending

moments are B and B', we see that

T = C = ?
a

a

...T-T'=^^ ~ (1)

Adhesion Stress due to Shear. — But T — T' is the
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difference in the pulls in the reinforcement at the two points

;

that is, it is the force which tends to pull the reinforcement

out of the concrete.

T -^r
X

adhesive or shear force per unit length

X . a

B

T

a>

X.

T'

^JS

a.

Fig. 22:

but
B -B'

X
the rate of change of the bending moment

shearing force = S

the adhesive stress per sq. in. and

the total perimeter of the reinforcement,

and if /„

O
we have

/„ X O = adhesive stress per unit length = T - T'

X

/„
= s

O .a
(2)
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In the case of rectangular beams with tension reinforce-

ment only or with double reinforcement where the top re-

inforcement is placed at J depth of N.A. a = (d — ^
. our formula becomes /„ =—; -^ (3)

ou -

This deals Avith what is known as the horizontal shear as

regards the adhesion between steel and tension.

Shear Stress in Concrete.-—In addition to this we have

/ >
^=!*S^

/
^
V\

1

/
/

\
n \

\
\

1

\
d. \

\

\

*

/

/ CL < ^ >
/

\

ccb
/

/

/

/
\ \

i/y//////} v//f/////////
/

Fig. 228.

to consider the shear stress in the concrete itself, w^hich will

be constant from the reinforcement to the N.A. and will

then vary towards the top as indicated in Fig. 228.

The difference of pulls T — T' is distributed over a hori-

zontal rectangular area one side of which is x and the other

side of which is b, the breadth of the beam.

.
•

. If 5 is the shear stress we shall have

s xb X X = T ~-T

but T - T' == ^'^ (from (1))

(B - B')
s =

X . a .b
(4)

II



482 THE STRENGTH OF IVIATERIALS

But as before we may put—-— = shearing force S
X

S

a

and for reactangular beams as above

S
,9 =

b d
n

(5)

(6)

GRAPHICAL TREATMENT FOR FINDING DISTRIBUTION
OF SHEAR STRESS ON A CROSS SECTION

Consider the section, composed of joists and plates, shown

in Fig. 229. The first step is to " mass the section up " about

p \Q ft
,-—

;

1^'^L^ .-' iri _j'

/I'
'1

1
A

IS B \
-^ c-

1

1

1

JC

«- ^
1

1

1 ^ ^

r
Fig. 229.

a vertical centre line : this is done by drawing horizontal lines

across the joists, and adding on each side of the centre joist the

corresponding horizontal ordinate of the outside joists. This

gives the section shown in the figure {i.e.a d = ah -]-hc -{- c d).

Consider any line p p. We have shown that the mean shear

stress along p p = <s, m
Ic^h'

Now a . y = first moment of area above p p about neutral

axis X X. Draw the first moment curve of the section above x x

about the line x x, as explained on p. 176. As the section is

symmetrical about a vertical axis, we need draw the curve

for one half of the area only, x q c being such curve.
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Then a x y = 2 area J x Q n x h,

.*. Mean shear along p Pi = ^„- .
• =

Now find the sum-curve j r s of the first moment curve,

taking the polar distance p = , .

Then n e. x ^^ = area of first moment curve above p p

N R X A^2

'h
= area j x q n

.*. Mean shear along p p = ^-p . ~j. — X h

2 N R= m .
—

J
—

But 6=pp = 2np

.
•

. Mean shear along p p = m .^ NP

Then the maximum shear stress, which occurs at the neutral

. . c s.

axis, IS m .

c B

Note.—Fig. 229 is diagrammatic only and is not drawn to

scale. The student should work this case as an example,

taking the plates 20'' x i'' and W x 6'' beams. For

accuracy the drawing should be done to a large scale.

Deflection of a Beam due to Shear.—In considering

the deflections of beams up to the present we have dealt

only with the deflection due to the bending moment. We
will now see to what extent the deflection due to shear is

comparable with that due to the bending moment.

Let c c (Fig. 230) represent a short length x of the centre

line of a beam subjected to a shearing stress s.

Then the shear causes the line c c to take the position c c^,

the slope being a.

Then if G is the shear modulus, we have o- = ^

The deflection c c^ of the short length of beam is equal to

X X cr, as o- is small.
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Deflection of short length x of beam =

.
•

. Total deflection due to shear = ]S

X X s

X X s

G
a 11

Now we have shown that s = m . j-^^ where m S
, S being

he shearing force at the point, and A the area of the section.

ft fj

If the section is uniform along its length, r-^^ will be

constant and equal to, say, /?.

s
i

c C

cr

C-.

""" — ~.
,

y s

M M,

P P,

y tm T^ t-

r;

— .^^ r

c <^/

Fig. 230.

. •
. We have : deflection due to shear

Fig. 231.

/5 .S
2 X ,

AG

A.G

%x.S

But 2 . a; S = area of shear curve up to given point

= B.M. at point

= M

.
•

. Deflection due to shear = /x = -^^ . M

Now consider the following special cases

—

(1) Isolated Central Load.

(3 Wl
Deflection at centre = />t = -^-p . —

^

(i:
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As we have previously shown, the deflection 8 in this case

due to B.M. is equal to .^ ^-i x^ 48 E I

•*•
a
~ AG • 4 • 48 EI
_ 12E ^I
~ G • A Z2

E 5
Taking^ = ^ and noting that I = A A;^

1=30^^1-' (2)

(2) Continuous Loading.

In this case //, = ^'-^^ • o

5 W Z3

384 E I

/x _48j8 E I
''' S~ 5 • G • A>

Taking ^ = o as before,

^ = 24/3.^' (3)

For rectangular section jS = 1'5 and k^ = y^, h being the

depth of the beam.

.-. (2) becomes^ = 3-75 (y)'

(3) becomes^ ^ ^
( I

It follows from this that if y = ^^, the deflection due to

shear is 3* 75 per cent, and 3 per cent, respectively of that due

to B.M. in the two cases.

We see, therefore, that for solid rectangular beams in which

the span is more than 10 times the depth, the deflection due

to shear is negligible.

It must, however, be remembered that for rolled joists,
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plate girders, and the like, the deflection due to shear will be

quite appreciable for sections which are deep compared with

their span. Bridge engineers often state that the deflection

of a bridge is more than the calculated deflection. Part of

this difference may be due to the giving in the riveted con-

nections, but certainly the measured deflection would agree

better with the calculated deflection if the latter included the

shear deflection. It has been suggested that this could be

remedied by taking E about 10,000 tons per sq. in. instead

of 12,500 in the ordinary deflection formula.

It should also be noted that we have taken only the strain

due to the maximum shear stress, neglecting the fact that it

is variable. This gives results a little too high, but is better

than taking the mean shear stress.

Distortion of Gross Section of Beam due to Shear,

etc.—In finding an expression for the relation between the

stresses and the B.M. on a beam, we made use of Bernoulli's

assumption that the cross section remains plane after bending.

The two causes tending to distort the cross section are

(1) shear stress, (2) differences in lateral compression due to

extension in fibres.

Consider two cross sections of a beam at distance x (Fig. 231)

apart, and let the B.M. at the sections be M and M^ respec-

tively, and consider points p and p^ at distance y from the

centre line, the section being the same at the two points.

Then stress at p = -y" , at p^ = — -i
—

T ^ 1
. ^ . ^ M?/ ^ Ml?/

.'
. Lrateral compression strani at p = 77 -nrj^ ^'^ ^i =^ "^

-c« j

stress
because longitudinal strain, = '—:^— and lateral or transverse

strain = 7; x longitudinal strain.

.
•

. Difference in lateral compression strain = ^j . (M^ — M) y

.'.On a short length d y of the section, the difference in

lateral compression = p' p^" = J/j . (M^ — M.).y.dy
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.•
. a = slope of p Pi = ^^ = -g'j •

--'—^ • 2/ • ^ 2/

but we have shown that when x is ven^ small

^—^ = the shearing force S
X

j7
J .^ .y..dy

To find the total change in angle between any section and

the line originally parallel to the centre line, we must add

all the elementary changes in angle.

S
Total change =

: = Eiy^ .dy

2EI
m . Tjy^

'' 2EF

because m
• S

A

Now we have previously shown that due to the shear there

is a change of angle equal to -p—-7 Vf

.
•

. Total change due to both causes

_m ( ay ,

rjy^

k^\hG ' 2E
_ m / ay r] y^ G
^ GkA b'^ 2E

^ 0" 1 771 / a tj ij \

putting E = and v = a
^-^^^ comes to ^-r^ ( -, - "^

90 )

From this relation the slope at any portion of the section

can be found, and the distorted form of the cross section can

be obtained. Our present scope prevents us from dealing

with this interesting problem further, but what we have given

should serve as an indication of the method in which the

problem may be attacked.



CHAPTER XVII

* FLAT PLATES AND SLABS

In the beams that have been considered up to the present

there is a support along two edges only, that is the support

is at most along two parallel lines; when a plate or slab is

supported upon more than two straight edges we have to

consider the strengthening effect of the side supports, and for

this purpose slab formulae are required.

CIRCULAR PLATES AND SLABS

Slab Coefficients.—In many problems it is convenient

to use slab coefficients to compare the bending moments in

a slab supported on its edges with the corresponding cases

in which the slab is supported on two edges only as in the

ordinary beam. We then have

/? = slab coefficient

B.M. on slab
~ B.M. on corresponding beam resting upon two edges

Bach's Theory.—Bach obtains formulae in a very simple

manner by assuming the supporting pressure imiformly dis-

tributed along the edge of the plate or slab and calculating

the bending moment over various sections. In the use of

these results it should be remembered that they give the

mean bending stress across what corresponds to the breadth

of the beam, but that they do not give the absolute maximum.

A similar point occurs in considering shear stresses in beams

(see p. 473).

We will take the following standard cases.

A. Circular Slabs supported on the Outside Edge.

—

488
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(1) Uniformly Distributed Load W.—The reaction pressure

W W
per unit length will be P = ^

-n ^ o

—

t>- Then considering
TT U Z TT Jtv

w
the forces in one half of the slab we have a load ^ acting

downwards at G^ (Fig. 232), the " load-centre " or centroid of

W
the semi-circular area and a resultant reaction = -^ acting

at the " reaction-centre " G„ or centroid of the semi-circular

arc.

W
onocxiooooooooo

Fig. 232.—Circular Slab supported at the Edge with Uniform Load.

.
•

. Taking moments about x x we have

W
Bending moment on x x = M^ = -^ . o G^, — Wg o G^

2

4R

(OG„- OG,)

^^. , 2 R
o C}^ = ^— and o Gj, =

O TT TT

. O G, - O G,

WR

w; TT R2 . R

R / 4\ _ 2 R
^ ~ SJ ~ 3 tt"

or, if w is the load intensity of load

—

3
(1)
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The mean stress on x x = / = -^^ = .g^ = ^-^^

. ••/ = ",?' (2)

If the slab were freely supported at y and y we should have

the reaction acting at y and the load at g, .

- -288 W R

.•
. Slab coefficient = /3 = ^^ -^ 288 W R

= -368

(2) Central Load on Radius r.—In" this case as before we

have
^ W
B.M. on X X (Fig. 233) = M, = -^ (o g,. - o gJ

_ W/2 R _ 4r
2 \ TT 3 TT

-'=s-t;r('-ia i«

In the limiting case where r = we have the point load for

which

'='j i»)

In this case if the supports were at y y we should have

_WR/ ir
~ 2 V 37rR

2(1-^^''-

^=T'-4?^^ ^^^

\ SttR.

= "636 for the point load when r =
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B. Circular Slab supported on a Circular Pillar.

(1) Uniformly Distributed Load W.—In this case the

tension and compression edges will be on opposite sides of

those in the previous case, the present one being the equivalent

of the uniformly loaded cantilever.

OOOf)CY:CYYTrT^

w

Supported at edge ; central load. Supported at centre ; uniform load.

Fig. 233. Fig. 234.

Circular Slabs.

By moments as before about x x (Fig. 234) we have

W W

_ W /4R _ 2 r

2 ^Stt

_ WR/2 _ r

If the load is w per unit area, W ^ wttVJ^

'2 r
.'. M. =wW

(7)

(8)

In the limiting case of r = 0, which corresponds to a point

support, this gives
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Taking the corresponding beam we should have G^ acting

on the edge of the supporting circle

/3
=

WR
(5-

77 r

TT 2R
2 r

3 R
2 irr

3
~

2R

There is no slab coefficient corresponding to ;• = 0, or rather

it would be more correct to saj' that it will be 1 in this case

. /_ 6M _22rR-^
• • ^ ~2R.r^ ~ /2 i^)

(2) Load Distributed uniformly along the Edge.—
This case is the same as case A (2) with the loads and reactions

reversed.

C. Oval Plate supported on Edge (Fig. 235).

—

Load

Uniform.—In this case we can obtain an approximate solution

by assuming that the jioints G^ and g^ will be the same for

Mj as for a circle of radius ^ and for M,, as for a circle of

radius
2
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6 TT

6 M, W 6

Wl

This gives M^ =
O TT

^'
It^ Tvlt^

O TT

Similarly /, = -^ =
^^^,

If we put W = —^— we have

M -^fill"
•" ~ 24

M,= wb P
24

Corresponding to these we have

/.

w b^

h

It will be noted that the stress is greatest across the short

axis. This should not be used for ovals with Z ]> 2 6 which

should be treated as ordinary beams of span b, giving

M =
8̂

Another way of dealing with this problem is as follows :

If I is so great that the effect of the edges is negHgible, we have

ID b t

for the short span of a unit width B.M. = —^ and Z = -„

* • ^" ~ 8 6 ~
i^

For the circle, we have by Grashof 's theory (table on p. 495)

_3dw'R^ _39wb^ _-3wb^
'' - 32 i^

- 1:287^ ~ ~^^ approx.

.
•

. We may make up an empirical formula

which is correct for the extreme values b — I and r =
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Grashof's Theory. — Grashof investigated the strains

in flat plates by an investigation of the deflected form and

adopted the stress equivalent to the maximum strain as the

criterion of the resultant stress (see p. 44), the result being

different from that obtained by means of the calculation of

the principal stresses.

The derivation of the formulae is too complicated for our

present scope, so that we will give the results only and refer

the reader to Professor Morlej-'s Strength of Materials (Long-

mans) for the mathematical deduction of the formulae.

SQUARE AND RECTANGULAR SLABS

Square and rectangular slabs are of importance in several

cases in practical design, particular^ in reinforced concrete

construction and in tanks and valve-chest covers.

Rigorous methematical methods cannot be applied to these

cases, so that we have to fall back on approximate methods of

which the two following are the most common. These hold

for uniformly distributed loads onh\

Grashof-Rankine Theory. — These formulae for slabs

supported on their edges are obtained by the following reason-

ing and should not be confused with the rigorous Grashof

treatment for circular slabfe.

Consider two narrow central strips (Fig. 236) of width x

parallel to the axes x x and y y, thus forming one strip

passing over the other so that the two strips must have the

same deflection. The whole slab is considered as divided up

into strips at right angles to each other, the strips passing

one over the other. The load w per unit area may then be

considered as divided up into two portions Wi, w,, carried

respectively on the long and short spans.

For the long span we have 8 = ^q-j-U t (1)

,, short span we have S = ''

^ (2)
oo4 hi i
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w,, l^

496

These must be equal .*.

also iVi, -^ Wi = w

i.e. Will + ,
4
j = w

Wt = w

1 +

Y

vC-

"^

Y

Fig. 236.—Grashof-Rankine Theory of Rectangular Slabs.

.'. M^ = B.M. on short section, i.e. B.M. on long span.

'w, P- w P

1 +
(3)

Similarly w,,
w

1 +

M, = B.M. on short section, i.e. B.M. on long span.

_ w,, b^ _ IV b^

1 +
6*

'. For long span, i. e. short axis

—

B.M. on slab _ ^ b^

^' ~ B.M. on corresponding beam ^* + 6*

For short span, i. e. long section

I* + h*'

(4)

(6)
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Some confusion is likely to arise if we do not clearly keep in

mind the fact that if we are considering the stresses across the

long section we take the B.M. on the short span,

/•
I M I n n 1 1 1 1 m 1 1 1 1 1 1 1 1 1

1

1 1 1 1 1 n H I 1 1 1 1 n 1 1 1 1 1 1 1 1 n 1 1 m •<?

-a

I

t

I

v<
ii:

.1:.

W // L2 (3 /.'9 (£ /£ 1.7

Length -^ Breadth.

Fig. 237.

V'l:

a.^
m 19 zo zi

As a check we may remember that the greater B.M. always

comes on the short span.

I

b

Slab Coefficients

Short Section Long Section
and Long Span and Short Span

Pi pb

1 •500 •500

1-25 •291 •709

1-5 •164 •836

1-75 •096 •904

2 •059 •941

KK
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Intermediate values may be obtained from Fig. 237.

In comparing this theory ^^ith Bachs it should be remem-

bered that the present gives the maximum stress, whereas

Bach's gives the mean stress across any section.

Xu^iERiCAL Exa:mple.—^4 rectangular slab 18 ft. long and

12 ft. wids carries a uniformly distributed load of 200 lbs. per

sq. ft. What B.M. should it be designed for across the loyig and

short section respectively ?

In this case W = 200 x 18 x 12

.'. B.M. on long span, neglecting slab action

_ WJ_ _ (200 X 18 X 12) X (18 x 12)
~ 8 ~ 8

= 1,166,400 in. lbs.

B.M. on short span, neglecting slab action

Wb (200 X 18 X 12) X (12 x 12)

8

= 777,600 in.

8

lbs.

From our table for
6
= !•- ^ = -164, and (i, = •836

. . B.M . on long span = -164 X 1,166,400

B.M. on short span

= 191.000 in. lb<. nearly

= -836 X 777,600

= 650.000 in. lbs. nearly

.
•

. On short span if / = 16,000 for a metal slab we have for

short span

16.000 .
^^ X 12 = 650.000
D

_ 6.50.000
~ 576,000

= 113

t = \ TT3 = H" nearly.

The other span would require a smaller thickness.

In metal slabs the modulus of section is probably the same

in both directions, but in reinforced concrete slabs the modulus

generally varies.
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Bach's Theory =—The pressure is taken as uniform along

the edges.

(1) Diagonal Section.—Assuming that the diagonal sec-

tions are the weakest because tests indicate that failure often

occurs diagonally, consider the bending moment about the

line AC (Fig. 238).

Let p be the pressure per unit length along the supports

Fig. 238.—Bach's Theory of Rectangular Slabs.

and let W be the total uniformly distributed load and w its

intensity per unit area.

Then V
W

(i;
2 (Z + 6)

The supporting forces or reactions may be taken as a force

equal to "p b acting at Y and one equal to pi acting at x ; the

W
load on the A a b c = ^ and acts at the centroid G of the A.

The perpendicular distance of x and Y from a c are each ^

and the perpendicular distance of G from a c is ^
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.
•

. Taking moments about A c we have

Bendmg moment = M^,^2 2 2*3

a fW _W^
2 12^ 3 /

Wa
12

(2)

But a X A c = 2 area of A a b c = Z 6.

lb
.' . a = —

>

AC

.. M =^^^^
''

12 AC

W/6
12 ^/l^ + 62

(3)

Neglecting the support on the short side we should have

•

^ M,^^^ (4)

To get a reasonable comparison between M^^ and M^. we

ought to compare the B.M.s on the same length because, of

course, a c is greater than Y Y.

M M
.

•
. B.M. per unit length along a c for slab = —^ = --=^^

WZ6
i2 (Z2 + 62)

(5)

W6 wb"^
B.M. per unit length along Y Y for beam = -^,- = —g-

Diagonal slab coefficient

- f^^^ - 12 (^2 _|_ 62) • 8^ 3 (^2 + 62)

2

3(1 +(f^

(6
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p has the following values

—

501

I Diagonal
b Slab Coefficient.

1 •333

1-25 •407
1-5 •461

1-75 •502

2 •533

To use these figures we find
8

and treat that when

multiplied by /? as the mean B.M. per unit length along the

diagonal.

Numerical Example.—Take the same case as worked out

on p. 498, and adopting a stress of 16,000 lbs. per sq. in. find the

necessary thickness of a rectangular metal slab, comparing the

results by the two formulce.

On Bach's Theory

—

—^ = Q
= 3,600 ft. lbs. per foot width

o o

= 3,600 in. lbs. per inch width.

.'. B.M. per inch length on diagonal = '461 x 3,600

= 1,660 in. lbs. nearly.

M / ^ = 16,000 X 1 X ^^

' ' 6 ~ 6

2 _ 6 X 1,660 = -62
16,000

t = •\/-62 = -79 in. nearly, say y^

(2) Sections Parallel to Sides.—The following modifica-

tion of Bach's treatment is more suitable for reinforced

concrete slabs where the reinforcement is parallel to the edges.

We can consider in a similar manner the strength of the

section x x (Fig. 239).

The reactions on the sides will have reactions at the mid-

points equal to ^ at d and E and pb &tY. The load acts at

the point r.
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Therefore, taking moments about the hne x x we have

pi I ^ I \N I

2 4 ' ^ 2 2 4

WZ= |'(26+/)

_ W Z (2 6-fJ) _ W I

~ 8 (r+ 6) 8

Wbl
S{1 ^b)

Y

±

B

(7)

Fig. 239.—Rectangular Slab : Modified Bach Treatment.

Neglecting side support on long side, we should have

WJ
8

b 1

M.

.*. Slab coefficient for x x = ^/ == ,—
, 7

=
7l+b ^^l (8)

Similarly, if we consider the strength of the section y Y we

should get

Slab coefficient for y y = yS^ = 7 7 = z (^)

^ +7
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These results can be tabulated as follows

—
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I

b

Slab Coefficients.

Short Section
and Long Span

pi

Long Section
and Short Span

1 •500 •500

1-25 •444 •556

1-5 •400 •600

1-75 •364 •636

2 •333 •667

It follows from this that the B.M. comes the same on the

two spans, so that the long span is the weaker as the breadth

is less. Experiments do not bear this out.

Numerical Example.—Taking the previous case we shall

have /3i = -400, ft = •600

.-. B.M. on long span = -4 x 1,166,400

= 466,600 in. lbs.

B.M. on short span = "6 x 777,600

= 466,600 in. lbs.

iMf = 466,600
6

466,600

on long span 16,000 x

P = 1-22
384,000

t = V'l'22 = 1| ins, nearly.

This agrees fairly well with the Rankine value, although it

is deduced from a different span. It is interesting to note

that although Bach worked upon the diagonal as being the

weakest section the above treatment requires a greater

thickness.

Variation of Bending" Moment.—To obtain an idea of

the variation of the Bending moment in this case consider a

portion a b u u (Fig. 240) of the slab. Then the load on

I

W
2{l + h)

the shaded area =^

As before, we have p
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. We have at x a force p h and at d and e a force ^^, and

W:r
at F a downward force

I

.
•

. Taking moments about u u Ave have

M,=phx +2'P^
.^

= Wx
21

b X x^
2 {I + b)

"^
2 {I + 6)"~ 2l[

Wr
{bl + xl -x{l + b)}

2l{l + b)

^^ fhJ -h X
_^bx{l-x)

27(^ + 5)^ ^^ ~ 2l{l +b)

Y

d

U D A

2

Y

Fig. 240.

putting X = ^ this gives

(10)

M^ = oi^j—TTx = o /7 , rx ^s beiore, thus checkmer
8 Z (/; + 6) 8 (? + 6)

' ^

W6
^" = 21(1+6) i^^-^'> • (11)

A diagram showing the variation of M^ with y would come

a parabola with vertex at the centre, similar to the ordinary

B.M. diagram for a simply supported beam. For a corre-

sponding consideration for the other span we should get

Wl
Mj, = 6/h(f I ;.\ 1^ ^ "" ^^\ which would also be a parabola.
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We may therefore assume that the stress will vary across a

section approximately in the form of a parabola, so that the

maximum stress will be 1"5 times the mean stress ; this would

require the thickness at the centre to be \/l'5 = 1"22, say 1"25

times the thickness given by the ordinary treatment of Bach's

Theory.

In our example this would make t for diagonal consideration

= "96, which agrees quite well with the Grashof-R-ankine theory.

Variations of Bach's Theory.—There is reason to believe

that the pressure in rectangular slabs is greater at the centres

of the supporting edges than at the corners; we will there-

fore consider two variations in pressure.

Variation I.

—

Pressure varies according to a Parabola.—
We will now therefore assume the pressure to vary in the

form of a parabola as shown in Fig. 24L We will take, as

before, the total pressure on each side proportional to its

length, so that the total pressure on each long side

= V ^ WZ
' 2 [l + b)

and that on each short side

^P = W6
' 2 (I + b)

The pressure at the centre of each side is therefore 1*5 ^3,

p being the value given in equation (1). The resultant pres-

sure along A B will act at the point y, while that on the half

sides A X, B X will be at the centroids of the parabolas, i. e.

31 ,,- irora X.
Id

Therefore, taking moments about x x we have

M =P ^+?J^ ^-"^ ^
* 2 ^ 2 ' 16 2*4
Wbl 3WZ2 Wl

4 (/ + 6) ' 32 (? + b)

Wl
[2b + ^^-{l + b)}

S{1 + b)

8ir+T)r 4j
^^^^
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Neglecting side support, we have as before

M =WJ

.
•

. Slab coefficient for x x = ^/
[l + b)

I

1 -
4 6

1 +
/

(13)

Fig. 241.—^Rectangular Slab with Parabolic

Distribution of Edge Pressure.

Similarly, we get for y Y by reversing I and b

b
I

Slab coefficient for y Y = (5i,
=

I + b

I _ 1

b 4

1 + .^

(14)
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These results can be tabulated as follows

—
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I

b

Slab Coefficients.

Short Section
and Long Span

|3/

Long Section
and Short Span

^6

I—" •375 •375

1-25 306 •444

1-5 •250 •500

1-75 •205 •545

2 •167 •583

4-

Fig. 242.—Rectangular Slab with Triangular

Distribution of Edge Pressure.

Variation II.

—

Pressure varies according to a Triangle.—
In this case we will assume the pressures to be even more

concentrated at the centres than in the previous case, and

assume the pressure distribution shown in Fig. 242.

As before, we take total pressure on each long side = P,. =

^^m , 7v and that on each short side = P, = 0/7 , i.\
2{l + h) 2 {I + b)
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Taking the side pressures as acting as the centroids of the

triangles, we get

W I

2 4
M — P - -]-

—'^ -^ • 2 2 '6

'Whl Wl^
4 (r+ b)

"^ 12 {I + b)

Wl U. 2 1

S{l + b)\^^ 3

8

(l + b)

Wl
S{1 + b)\ 3

.
•

. Slab coefficient for x x = F/

(15)

b - I

I + b

lJ
Similarly, by reversing I and b, slab coefficient for y y

I _ 1

b 3

(16)

= r, =
/

(17)

+ 1

These results can be tabulated as follows-

I

b

Slab Coefficients.

Short Section
and Long Span

Pi

Long Section
and Short Span

P"

1 •333 •333

1-25 •259 •407

1-5 •200 •467

1-75 •151 •515

2 •111 •555

Numerical Example.— J'aH?i^ the parabolic variation,

calculate the thickness of the slab previously considered.

We have, neglecting slab action

—

B.M. on long span = 1,166,400 in. lbs.

B.M. on short span = 777,600 in. lbs.
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For I = 1-5, 13, = -250, B, - 500

.-. M, = 388,800 ill. lbs.

M.^ = 291,600 in. lbs.

.-. Short span 16,000 x ^^
^ = 388,800

16,000x1^2x12^^^33^^^^

388,800 _
16,000 X 24

t = Vl'Ol = 1 in. nearly.

Rectangular Slabs Clamped on their Edges.—An
approximate treatment commonly adopted in practice for

W I W6
this case is to regard the B.M.s at the edges to be - and -y^-

respectively, multipHed by the slab coefficient derived for

supported ends ; those at the centre to be — and reduced
24 24

in the same ratio. In cases where the load may be on only a

part of the slab the B.M.s at the centre are usually taken as

the same as for the edges.



CHAPTER XVIII

* THICK PIPES

We have considered already the strength of a thm pipe and

obtained simple formulae by assuming that the stress was

constant throughout the length and thickness of the pipe.

WHien a pipe is not very thin compared -^ith its diameter

we have to allow for the variation of stress across the section.

Lame's Theory.—Let a pipe be of internal radius r

(Fig. 243) and external radius R and let it be under pressure

either from the inside or from the outside.

Xow consider an imaginary thin ring of thickness 8 x and

internal radius x. This rmg will be subjected to a radial

pressure p on the inside which hj considerations of sj'mmetry

must be the same all round, and on the outside it will be

subjected to a radial pressure which will differ sUghtly from

y and which we ma}' call ;p -^ hp. This assumes that the

tube is subjected to pressure on the outside ; if it is on the

inside the same formulae hold with appropriate change of sign

as explained later.

We may therefore apply to this imaginary hoop the same

treatment as for a thin pipe, the circumferential stress, or

hoop stress, being /.

Considering a unit length of pipe we have

Force tending to cause collapse of ring

= {p -{- Sp) X 2 {x + S X)

Force resisting collapse of ring =^ 2 f 8 x ^ p x .2 x

These must be equal

510
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.
•

. dividing by 2 and neglecting the product, S p .Sx,oi two

very small quantities we have

p.x-{-x.Sp-\-pSx ^ f Sx + p . X

.' . {f
— p) h X = X h

p

(/ - ^) = T^

Fig. 243.—Stresses in Thick Pipes.

In the limit when the increments are infinitely small this

gives

if-p) = ''ff w
This is one relation between / and p.

Now let us assume that the strains along the length of the

pipe will be such that a plane section before subjection to

pressure remains plane after subjection to pressure, i.e. that

Jongitudinal strain is constant.

i. e. '^J^ + "^-J
= constant (2)
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because both / and p will cause transverse strains in the

direction of the length of the pij)e, and they will have the

same sign.

. . Since -q and E are constant, if our stresses are within the

elastic limit we may write

f + p — constant = 2 a (say)

•••
f = {2a-p) (3)

Put this value in (1) and we get

2o X d pa — 2 p =^ , -

ax

2a = 2p +
='^J (4)

Cu tX) (aj JO

= x( 2 2> + 1 \ = 2ax

.
•

. d {px^) = 2 ax . dx (5)

Integrating we get

p x^ = a x^ +6
where 6 is a constant

-'• P -CL + ^2
••• (6)

but / = 2 a - 2> (by 3)

i.e. f =^a --^ (7)

by calculating a and h in any particular case we can find

formula for p and /.

Special Gases.— (1) Pressure Inside = pi\ Pressure

Outside =
i. e. p = Pi for X = r

p = for a; = R

••.^. = « + J W

b
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Put this value in (8), then

^-^ (9)

.
•

. Hoop stress at inside — /,• is obtained b}^ putting

a; = r in (7)

I.e. /. =a---2

_ fi r^ Pi R2- - R2^ir^2 - R2 _ ^2

~
R2-r2 ^^^^

The negative sign indicates that the stress is a tension.

Hoop stress at outside = fo = a — p^

= -
(R2 _ r^)

~
(R2~_r72)

This is also a tensile stress and is clearly less than /,, so that

with internal pressure the maximum stress occurs on the

inside.

At any intermediate radius x

,

h

— Pj
^^

_L P' "^^ ^^

~ ~ (R2""^2j + (R2 _ ^2) ^,2

- ^'-^^ r5!_i\ n.N
(R2 _^2) \^2 -^j U'^;

It should be noted from equation (11) that no matter how
LL
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great the thickness of the tube may be the hoop stress is

always greater than the internal pressure, so that for any

given material there is a certain maximum pressure which

must not be exceeded.

It should also be noted that the assumption of the constancy

of longitudinal strain holds only while the stress is within the

elastic limit.

Numerical Examples.—(1) A cast-steel cylinder 2 ft. in

external diameter and 3 inches thick is subjected to an internal

pressure of 2 tons per s(l- in. Where and of what magnitude

is the m^aximum stress ?

The maximum stress is on the inside and is given by the

formula

p (R2 + r^)

ti (R2 -

2(242

r2)

f- 182)

(242 _ 182)

'7

2 X 62 (16 +^)
62(16 -9)

7*14 tons per sq. in.

(2) Plot a curve showing the maximum stress in terms of the

internal pressure in a tube whose ratio of external to internal

radius varies from TIO to 4.

_ p, (R2 + r2)

U (R2_r2)

/, _ R2 + ^2

'

Pi R2 - r

?)•

R^2

r

+ 1

This gives the following values-

R
r

MO 1-20 1-30 1-5 2 00 2-50 300 3-50 400

f'

Pi
10-52 5-55 3-90 2-60 1-67 1-38 1-25 118 113
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If- = 110,^^-^ = 110,
r r

10.

T) V f
.

' . The thin pipe formula / = ^~~- would srive — = 10, so
t p

that the thin pipe formula would be about 5 % in error.

The above figures give the curve shown in Fig. 244. These

results should be compared with Example 2, p. 521.

10

9

8

7

6

S

4

3

Z

1 I

\
"^

\^

1

Valuea of R -^ r

z-5 3'0 3-5 4o

Fig. 244.—Variation of Hoop Stress for various ratios of External
to Internal Radii of Pipes with Internal Pressure.

Curves of Variation of Radial and Hoop Stress for

Internal Pressure for R == 2 r.

T3 ^. ,^, b RV2 4r4 4r2By equation (9) ^- = ^,—^ = 37^ =^
By equation (10) ^ = - ^2

Pi Pi PiX^
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1 4 ^2

~ 3
"^

3 .1-2

-sKx) 3~3rv.i-7 /

/

h
= ^-7^

L (1 4/rYl li.fr

These results are plotted in Fig. 245 and show clearly the

variation of the stresses across the section.

10

•47

1 t

\

\
\
\

\
\

... . N
\
\
\,\
k,\"^

-
'^^^

1-17

ro7

•67

K

b7 >
1 + 1-8 10

Values of 2 4- r

Fig. 245.—Variation of Stress in a Thick Pipe with
Internal Pressure.

Maximum Shear Stress.—The stresses / and p are the

principal stresses in the material and, as we showed on p. ID

the maximum shear stress will be equal to

s = ^-^ = ^,, (from (6) and (7))
^ X"

p, R^r2_
~ (R2 - r2).T2

The maximum shear stress will occur Allien x has its least

value, i. e. at the inside edge where x — r

(15)
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Max. shear stress = p^B,^

(R2 - r2)

Maximum Stress equivalent to Strain.

a strain in the circumferential direction equal to —

^

.
*

. Total circumferential strain = 4^ — %^E E
.

•
. Equivalent stress = Total strain x E

= fe = f-VP
b (1 + 7})

(16)

There will be

IP

= a{l -rj)
x"

(17)

This gives a maximum equivalent stress at the inside of

p, (R2 + ^2)

fe (R2 - r2)

/RM-^2
'^

1112 _ ^y'i -P2 _ ^2 + vj (18)

putting y} = \ this gives

/. = - Vi
R2 + r^ 1)

R2 _ ^2 + 4j

NuMERiCAL Example.—Take the case of a tube with internal

radius 4 in. and external radius 12 in. and take p = 10,000.

This case was given by Professor C. A. M. Smith,* and we

have added the equivalent stresses.

This gives 6 = 180,000, a = - 1,250.

The results may then be tabulated as follows

—

Radius.

Maximum Stresses.

I
1 Hoop Tension

Compression. Hoop Tension. Shear. equivalent to
P / s Strain.

4 10,000 12,500 11,250

...

15,000
5 5,950 8,450 7,200 10,950

6 3,750 6,250 5,000 8,750

7 2,420 4,920 3,670 7,420

8 1,560 4,060 2,810 6,560

9 970 3,470 2,220 5,970
10 550 3,050 1,800 5,550
11 240 2,740 1,490 5,240

12 1

1

2,500 1,250 5,000

* Engineering, September 2, 1910.
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Formula for Thickness of Pipe in Terms of Internal

Diameter and Pressure.—On the maximum stress theory we
have, if ft is the safe tensile stress,

_ p, (R^ + r^)
'' R"2-r2

.ft R2 + r2

1. e.

U + Vi

ft - Vi

R
r

r + t

R!» -
2R2
2r2

U±Vi
U Vi

t ft + Vi

r r y ft — Vi

t Ift+Vi 1

--'{^'ikr')
tt+Vi il

ft - Vi

On the Maximum Strain Theory we have

, /R2 + r2 \

h
Vi

V

A + (1
--

-n) Vi

A - (1 + >?) p,

//. + (1-- v) Vi

A- (1 v) Vi

.'. t ^ r

t =r -\

If q = -3

t = r

v

t

^ R^ + r^
~ R2 - 7-2

_ R2

(V!:^

r

+ (1

(19)

If -. = i

-(!+>?) V,

4/7+3y.\

A - 1-3 p,

- 1

- 1

-
' KV 3 /!

3 /, + 2 p,

4p,
- 1

..(19a)

..(196)

..(19c)
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Fig. 246 shows a chart reproduced from Machinery,

January 14, 1915, for determining the necessary thickness of

a cyHnder or pipe in accordance with Formula 19.

In using the chart to determine the constant, the horizontal

line through the proper pressure value is located, and the

curve starting from the desired value of the stress is next

found; this curve is then followed to the point where it

intersects the horizontal pressure line, after which the vertical

line is followed to the bottom of the chart to determine the

constant. This constant multiplied by the inside radius r of

the cylinder gives the required thickness of the cylinder

wall.

Case 2.—Outside Pressure = %, Inside Pressure =

In this case p = p^ when x = R
and p ^ when x — r

b

I.e.

Po = a + ^^

= ,
b

a ==
b

r2

Po =

P» - P"^''''
(20)

J^ _ 1 \ (R2 - r^)

R2 rV

a = ^Jt^:^ (21)
(R2 - r2)

Hoop Stress at Inside.

At inside, where x = r, fi = a
b

(R2 _ ^2) + (J^2 _ ^2)

2 Po R /Qnv

(R2 -r2)
• ^^"^^
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1

STRESS

IN

CYLINDER

WALL

IN

POUNDS

PER

SQUARE

INCH.

PRESSURE

IN

CYLINDER

IN

POUNDS

PER

SQUARE

INCH.

—1

—

\a
/ JA<

/ ^^
1

_4/ 1A
yV\

.A
X

^^^
^ >

.
^

/ A ^^^^.^^ -/^ '>^
-=i

li^1!
/ y^^i^ ^-J^

1 >--r-'

1
\ / / X 1 /I

^ J
1

j-^>^^'

// V A\a-:a.A i JX^
ll\U'l±^X'-X^^\yA,

\

\ \ 1 / ^^ \>^"!
i

1
1 // /// YXy^ ^-^ li--f^

\ 1 1//// /y^y\^^X ^M 1 ! ^i,^

^Ihf/l/y/ '/
/ A/

^
^y

'illll//'// .
/

yy
/

i
i/////7// /' / /

^ ^X^
\ ///////;/ / /\ /

/
^

X^r"

/ //// \/ / ^/i

\ /////(/ /fi A .^ -^
\ ///// /\/Y \x ^^

^^

'/////// / ^^
^

III//////X yV _^ .^H^fT
1

11//////y /
y^ ^-

"^
i _

llli///

r-

V<yy
1—

i

^ ^^
1 1

i
w//y\>^ ^i^^'^n^ ^ ———-

'

r
_^

——

i \

S ^ ^ <>t,<>i ^. ^. ^. ^. '^. "^ '-'. '-''. ® ^. R ^. *"•. =°. °°. ^. ^. '^. '-

0* 0* s' © 0" 1-

chinery

Fig. 246.—Diagram for Thick Tubes.
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Hoop Stress at Outside.

At the outside, where x = R, hoop stress = /„

_ _ b- ct ^2

-^^^' + ''^
(23)

In this case the maximum hoop stress, which is compressive

throughout, also occurs on the inside and is greater than the

radial pressure ; irrespective of the thickness of the pipe, the

external pressure may never be more than half the safe

compressive stress on the material.

Putting in the values of a and b in the general formula for

this case we have at a radius x

_ p„ R2 p„ R2 r^

^ ^
(R2 - r2)

-
'(lR'2'372y ^2

P"^^ A-fYj (24)
(R2 - r2) I \x

' = iBp^, ! - ©} «
Numerical Examples.— (1) A cast-steel cylinder 2 ft.

internal diameter and 3 in. thick is subjected to an external

pressure of 2 tons per sq. in. Where and of what magnitude

is the maximum stress? {Compare Example 1, p. 614.) The

maximum stress occurs on the inside and is given by the formula

- 2 po R' _ 4 X 24^ _ 4 X 42 X 6^

I' -
(1^2 „ ^2)

- 242 - 182 ~ 62(16 - 9)

4 X 16= —
^
— = 9' 14 tons per sq. in.

(2) Plot a curve showing the maximum stress in terms of the

external pressure in a tube whose ratio of external to internal

radius varies from 110 to 4.

2^^

p,
~ R2 - 7-2

~
f-Ry'
r
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This gives the following values

—

R
r

110
1

1-20 1-30 loO

3-60

2 00 2-50 3-CO 3-50

218

4 00

1

11-52 6-55 4-93 2-67 2-38 2-25 213

R R
For = MO we have ^ = MO

r R — ^

•. t = R
ir

IZ —

10

—

8 —
1

.

6

-
1

\

a \
•1-4 \ 1

\
o 'x,^
«Q ^^^^

3 . _^

^^
n \'5

Values of R 4-r

zo rs 30 35 40

Fig. 247.—Variation of Hoop Stress for various ratios of External
to Internal Radii of Pipes with External Pressure.

The thin pipe formula would give

= 11

SO that the thin pij)e formula would be about 5 % in error.

The above results gives the curve shown in Fig. 247, which

should be compared with that shown in Fig. 244 for internal

pressure.
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Curves of Variation of Radial and Hoop Stress for

External Pressure for R = 2 r.

h _ _ R^r^ _ _ iL^
r2 - 3

By equation (20)
Vo R2

. £
*

' Vo

R2 4

R2 - r^ 3

'^1Vo

vo ^
"8

^ ^

,/
^

•6

•1-

/
/

/
/

/

/
'3

P^ -2-

o

^

/

/

> /
1-4 1-8

Vbl

•S7

Z'oy

Z-27

S5.

02

ft

2-47 I

VO
rfo7

Values olx-^r

Fig. 248.—^Variation of Stress in a Thick Pipe with External Pressure.

4 4r2
~

3 3^2

_4/ /ryi

1
Vo
= («-|.)-2^-

4 4r2
~ 3 ^ 3 a;2

(26)

=J{'+(iT) ™
These give the curves shown in Fig. 248, which should be

compared with Fig. 245,
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Strengthening Thick Pipes for Internal Pressure by

Initial Compression.

We have seen that the maximum hoop stress is always

greater than the internal pressure, so that if we are to be able

to make pipes sustain very high pressures we must devise

some method of reducing the hoop stresses. This may be

effected by bringing the metal of the tube into a state of

initial compression.

In the early days guns were cast around chills to cause the

metal to solidify immediately on the inside and so come into

compression when the remainder of the metal contracted

upon cooling.

Another method, now commonly adopted, is to wind strong

steel wire under heavy tension on the outside of a tube, thus

bringing it into compression which will balance to some

extent the pressure caused inside the gun by the explosion.

A further method is to shrink an outer tube on to an inner

one ; this puts initial tension stresses into the outer tube and

initial compression stresses into the inner tube. The effect

of the shrinking is shown in Fig. 249. The top diagram

indicates the distribution of the hoop stresses across the

section for a solid tube ; the shrinkage stresses are shown in

the central diagram ; these being obtained by applying the

condition that the radial pressures of the junction are equal

and opposite.

The combined stresses are shownin the bottom diagram, from

which it is seen that the maximum tensile stress is very much

reduced and that the tensile stresses are more nearly constant.

Necessary Difference in Radius for Shrinkage.—
For the outer and inner tubes, the same general formulae will

hold, but the constants will be different.

i.e. For the outer tube we have

p = a, + ^ (1)

f =a.-k (2)
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For the inner tube

V ^(^i+ ~2 (3)

ens/on

Shr/'nnaqe
Stresses

I M I
I

I i
I

I I I M
I

Combress/on

I

Stresses

y/Uulhide Tuhe'^nsidc TuLe\^

R

-^

-H

Fig. 249.—Shrinkage. Stresses in Compound Tube.

f ^ Cli
-

x"
(4)
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We must have the same value of p for the junction where

• n A. ^" — 1
^'

i. e. {a,. — a^) r^ = (6, — 6,.) (5)

Next consider the circumferential strains at the junction.

For the outer tube we have

Unital circumferential strain = != -\-^^ (6)

Similarly for inner tube

Unital circumferential strain = — (^ + ~f j . . .(7)

The value of y is the same in each case, and in (6) / is as in

(2) and in (7) as in (4).

.*. Increase in circumference of outer tube

2 7rri

4(-'j + >7PE

Decrease in circumference of inner tube

.". Difference in circumference of two tubes before heating

and shrinking on

.
•

. Corresponding difference in radius

_ difference in circumference

2 r= (from (5)) -^ (a, - aj

2
i.e. Proportional difference in radius = -p, (a^ — a^). . . . (8)

This will probably be made more clear by the following

numerical example.
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Numerical Example.—A compound mild-steel cylinder con-

sists of a tube 6 ins. in external radius and 4*5 internal radius

shrunk on to another tube which has an internal radius of 3 ins.

If the radial compression at the common surface is 4000 lbs.

per sq. in. after shrinking find the circumferential stress at the

inner and outer surfaces and at the common surface, and find

also the original difference in radius necessary to effect the given

radial pressure at the junction.

Outer tube.

p = for X ^ 6

- 4000 for X - 4-5

. n — _L -^

4h / 4 1 \
4000=..+ 3j^=^(,-^--3,)6.

324 X 4000
bo = -

a„ = —

7

36,000

X

Inner tube.

7

Interior hoop stress {x = 4*5)

_ _ 36,000 _ 324 X 4000~ 7"
7

'^ 81

= 14,286 lbs, per sq. in. (tension) .

Exterior hoop stress {x = 6)

- _ 36,000 _ 324 X 4000 JL
~ ~^7

"
7 ^36

= 10,286 lbs, per sq. in. (tension) .

p = for X =^ 3

= 4000 for X = 4-5

.-. = a, +
g

.-. a, = —

4:b
4000 = a, + ^

_ 4 6. _ 6, _ _ 5 b^

81 9^ 81

,,= _400^2iAl._ 64,800
o

a, = 7,200
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.'. Interior hoop stress {x = 3)

= 14.400 lbs, per sq. in. (compression).

Exterior hoop stress (.r = 45)

= 7.2W - : - ^-iii)

= 10,400 lbs, per sq. in. (compression).

Taking E = 30 x 10^ lbs. per sq. in. and v; = J. the cir-

cumferential strain at 4J ins. radius in the outer cylinder

_ 14,286 , 4000
~ 30 X 10« "^4 X 30 X W

^^,^,.,^ 1000

Circumferential compressive strain at 4J ins. radius in the

iiuier cvlinder

_ 10,400 _ 4000
~ 30 10^ 30 X 10«

= ^103467 - 3,-^^-^e

.•
. original difference in diameter = 9 (0004762 -^ •0<X)3467)

= 00741 in. nearly.



CHAPTER XIX

"^ CURVED BEAMS

We have seen in Chapter VII that the ordinary formulae

for beams hold only for cases in which the beam is initially

practically straight. To obtain relations between the stresses

and the bending moment in the general case we may proceed

as follows

—

Let A B D E (Fig. 250) represent a short piece of a curved

beam, o being the centre of curvature and a e and b d being

sections normal to the centre line c &. Then, obviously, the

material at E D will not require the same total strain to pro-

duce a given unital strain and thus stress as the material in

AB will, because its original length is less, and, as a result,

the neutral axis will not pass through the centroid.

While still making the assumption that stress and strain

are proportional, and also Bernoulli's assumption that a

section originally plane remains plane after bending, we can

find a more accurate theory of bending of curved beams, as

follov/s

—

Let the portion a b d e take up the position a^^ b^ d^ e^ after

bending. Consider an element of area a situated at a point p

at distance y from the centroid line c & and consider a fibre p q

of the material enclosing the area a.

After strain the fibre p Q takes up the position f^ q^ at

distance y^ from the strained centroid line c^ c^'

Then unital strain in p q = Pi Qi - p Q
PQ

MM 529
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And if fy is the stress at the point p

/" _ Pi Qi - P Q _ Pi Qi

E PQ PQ

^EPQ

Similarly unital strain along c c' = Ci c/ — c c

c c'

and if /„ is the stress at the centroid, we get similarly

u
E

(1)

(2)

Fig. 250.—Stresses in Curved Beams.

Dividing (1) by (2), we get

/ 1 + 4
Pl Ql X c c __ E
Ci C/ X P Q ~

"

fo

^ "^E

Pi Qi _ Vi + Ri _ 1 , ^1

Ci c/ Ri Ri
But

C Ci R 1

PQ 2/ + R . y

^R
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Also since !l and i^ are extremely small, we may write

il_E ^ A _ /„ f,

, ,
/o V' E + E

1 + yy

.-. We get 5! = 1 - ^ + ^' (3)

1 + ^^R
1 + .a

E E ^ y
l + R

1 _ ^1.

= [y _L ^ ^1

^R
_^_ y

]y Rj R
E ^ t/

1 + -^ R

E ''y^ y

(4)

/. - /o + ^^^ ^'
(5)

1 + ^
^R

Then the load across the whole cross section is ^ f,j
. a and

in the case of pure bending this is zero.

.-. We have 2^ . a =

-^fyi y

= 2 /. . a + S '-^^ ^
1 + ^^R

But ^ /„ a = /„ :§ a =: /„ A
2/1 2/

.-./„= -^2^1-^. a (6)

1+R
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The moment of the force on the given element about

c c' —
f,j

. a ,y and the sum of these moments is equal to

the moment of resistance and thus equal to the bending

moment M
.

•
. We have M = 2 /,.?/. a

2/1 y
^ VR R/= :S /„ a . w + :S

'^—^-— . a y

^R
But ^f„ay = f„%a.y— f„ X first moment of area about

centroid = /„ x =
.

•
. We have

j^_ _^vRl ?V_^„
(7)

(+i)
This is the most general case and is true for the assumption

given.

Now consider the following special cases

—

(1) Ordinary Straig-ht Beam ; R infinite, R^ very

GREAT.

In this case /„ = . 2 ,-
*

E
Then Isl =^ ^ ^.y^y ex.

y^ is practically equal to y

_EI
- Ri

E II

and from equation (5) /y = + -p

_ E X 2/
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' ' ^1 y

y

This is the result we have previously obtained.

(2) Winkler's Formula.—Winkler drew attention to the

error of applying the ordinary bending formulae to chain

links, etc., where the original curvature is appreciable, and

improved such formulae as follows

—

He takes y\ = y-

Then equation (5) becomes

1 1

/. = /.+^^^^^ ^
1 + ^
^R

= A^+E(^-iV/T^, (8)
.Ri r; > + R

Then from equation (6)

'" A VRi R/ V?/ + R

I/ + R
R.i/2

Now let kh'^ = %, ^
.y + R

where h is defined by the above relation, and may be called the

link radius. It corresponds to the radius of gyration in the

ordinary case.

„, Ah'' ^f y"-
.-.We see ^ = :S —^-^R \2/ + R

^ 2/R

2/ + R

_y \ _ _Ah^
y ^-r)-"-- R2

E /I l\Ah^Th-/ =1.(^-1)A • VRi R/ R
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.•.Wehave/.,=^jJ':(^^-^) (9)

From equation (7)

M = :s
^^^ ^

1 1

1 -^y
R

2/-tt

ER(i--i^2 y'^

Ri r; R + 2/

Ri R/ " R + 2/

= E-^Ki-K) • •<^*^)

returning to equation (8) we see

R VRi R/ ' \R Ri; 2/ + R

^ M M^ / R_y
R. A^ A^2- VR +2// ^^

General Graphical Solution.—Let Fig. 251 represent

the section a d b e of a beam, and o the centre of curvature

of the centre line d e, the beam being, of course, curved in

the plane of bending.

Now consider a very narrow strip P Q of the half section at

distance y from c D. Join p o, cutting c d in s and draw s R

parallel to Q c to cut p q in r.

^, p R R s yThen ^

p Q Q o R + 2/

Repeating this construction for a number of strips such

as p Q, and joining up the points obtained, we get a curve

A R D Ri B which is one-half of a curve called the link rigidity

curve. In a symmetrical section, which is the most common,

the two halves will be identical.

* This is the stress due to bending only; in the case of hooks we
have to add the direct stress over the whole section.
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Then the area of this link rigidity curve

= - A,* = -^ y
R+2/

535

Fig. 261.—Curved Beams, etc.

•A„ =

Now let -*- =

R2

area of half link rigidity curve

area of half section

= L i. e. A /^2 _ A X L X R2

* The area is negative because the area of the portion d b^ b is greater

than that of a p d . a,, represents the excess of the former area over

the latter, i. e. area a r d Rj b — area a p d Pj^ d.



536 THE STRENGTH OF MATERIALS

Now put these values in the equation (11) for stress. Then

we have

'" ~ R. A + A.L;R2(R + y)

' ^MM y _
A \R "^ R L (R + y)

^ M
f y IAR\' "^L(R+7)J '

Then if d, and dt are the distances from the hne D E to the

extreme compression and tension fibres respectively, assum-

ing the inside to be in tension and the outside to be in

compression, we have

Maximum compressive stress

_ /
_ M

f d, 1

Maximum tensile stress = ft = ir^^l r~-/^~—yr ~ 1
< • • (1^)A R \^Li (R — dt) I

Position of Neutral Axis.—The value of y to make /, =
gives the distance y,, of the neutral axis from d e.

' '• L (R + 2/.)

"

Vo = — L R — L t/„

LR R
1 + L , R2

This enables us to find the position of the neutral axis.

Alternative Formula.—The stress formula on Winkler's

assumption that yi = y can be put in a number of alternative

forms.

Suppose, for instance, that the neutral axis is at distance y^

below the centroid line c c-^ (Fig. 250). Then total strain at

p Q = Pi Qi — p Q will be proportional to {y + y„) the distance

from the N.A.

.
•

. We write P^ Q^ — p q = m (?/ + y„).

Moreover, p q = (?/ + R) x /e o d



CURVED BEAMS 537

h _ JPiQi - P„9 _ (y + y.) m
E P Q (?/ + R) * /e O D

/.

^ • V T^{ where ti is a constant
(2/ + ^)

(2/ + I^)
(13)

Fig. 252.

Since 2 /„ . a =

Eii y + y

^ + R =

1. e. y.

y «

^"+R
a

.V +1/ + R

(14)
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Again, taking moments about the neutral axis we have

Zj y y -^ Bo J

. / = M (y + y,.)

' i»+«{2'i^"}-
Resal's Construction.—^According to this construction

we proceed as before and find the link rigidity curve.

The line n n passing through the centroid g of the curve

A R Ri B r/ r' is then found by graphical or other methods,

and the moment of inertia I^ of the link rigidity curve is then

found about the line n n.

In practice it is sufficient to apply the construction to

one half only.

Then N N is the neutral axis line and

_MR {y + y„)
^'!~

I, '(y + R) ^''^

The rule for the line n n passing through the centroid of

the link rigidity curve is

2/o

%a^y

Now aj
a X R Q a

R
.R

+ y

yo

^ <^y

_Z/R + y

ja^ +y
This is the relation required by equation (14)

Inn = S "1 (2/ + yo?

/inN i MR (1/ + yo)
.•

. In equation (16) /, = i^Tj^I^y
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This formula looks simpler, but it involves the determination

of i/o and I^, which are rather more troublesome than the

calculations in the previous method.

SPECIAL CASES

(1) Rectangular Section.—If the section is a rectangular

T

-;-y

dv

-jt

Fig. 253.

one of breadth h and depth d, we may proceed by mathematical

analysis as follows

—

A, = - b y
R"T^

dy

= -b

- b

/ 1 - R
n + y

dy

y-n log. {y + R)

2n + d

+ 2

J d

2

-bid -n log.

7 / 7 T-> 1 2 R -(- cZ

b{ - d -\-R log, 2^ _

2n-d
d

d

. L = K
bd

- ... 2R + d R,R
d

1 + A2R
1 - R

- 1
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= |{log,.ll

_Rr /^~ d\ V2R

_d

2R)-log„(l
J VI _i.
2R/J ^

d^ , rf5 (^6 d-'

A.
2R

(^ IR '

1 /^
12 VR

2(2R)2 ' 3(2R)'' 4(2R)4 ' 5(2R)5 ' 6(2R)^ 7(2R)'

_ d-^ _ ^3 d^_ _ rfs _ rfs _ d-'

"'2(2R)2~3(2R)3 4(2R)^~o(2R)5 6(2R)^ 7(2R)-

12 VR; ^ 80 VR/ "^ 448 VR/ /

2 l.fd\^ . 1 /^\^
r> +

80 VR +
448 (if-

(2) Circular Section.

Fig. 254.

A, = - h y dy
t-{^y

+ r

-r -r

-r + r

"Rhdy

"^kbdy

-r

+ r

R + 2/

R-fi/

h dy ..

-f r

The second term / h dy = area of circle = ttt-

}-

(1)

* See, for instance, C. Smith's Treatise on Algebra (Macmillan), p. 383.
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R

+ 9

,

r h dy _ -p /"2 r cos d {r sin 0)

1/ R+^~ y R+TsiiT^^

+

= 2r2R/ C0S2 ^ ^ ^

R + r sin 61
(2)

_ cos2 e _ (l-sin^^) _ 1 __^( • 0_ I^sin ^

R4-rsin6' R+ r sin ^
~ R+ rsin(9 r\ R + r sin ^

1 sin ^ R / sin

R + r sin

1

r

sin ^

R + r sin r

R2\ 1

+

r VR + ^ sin

R/, R
R + r sin

r^/ R + r sin

y
• cos^ OdO
R + r sin ^

+ 2

sin^ R2

R2\ _d^
r^ / R» + r sin

(3)

+

sin OdO
r

+

+
'B.dO

(4)

+

Now - f4^^ ^^ + fRdO
^2

cosO

2

+

R^- = 0+^-f..(4a)

A • f d^ rAgain / ^ , . ^ = /^ y R + r sm (9 /
__ dO^

K + 2 r sm . cos
^^

do sec^ n (^ ^

R + 2 r tan ^ . cos^
^ R sec^ ^ + 2 r tan ^-

seC
/

dO ( put tan ^ = it, then

R(l + tan2 j +2rtan2 du = Jsec^ s
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du

2

R

2

R

du

du
J R (1 + «2) +%ru ^J R + 2 r M + R m2

J {
'

d u

u + ^) +(l
R2

2^

R -(.'-£)
(5)

This is of the form
/d X

/ dO
R ^ rsin^ R /:

+ 13' P

tan

tan
X — a

U -r R

\ ^ R2

— B
WTien ^ = '1. tan = 1 = w

^ = — ^ tan;^ = — 1=2^
z, z

1 -
R2'

cZ^

R + r sin ^

x/R2-r
tan-^

1 R
r . \

I' r'-

M ^ ~ R2-

tan
R

V^ ~ R2'

/..n-_^L
VR2 - r2 I VR2 - 4- tan 1 _AilJL.\

\/R2 - 7-2]

(6)
, _a /R +r

, ^ , /R - rl

The portion inside the bracket is of the form

tan'^ y + tan"^

* See Lamb's Infinitesimal Oulculus (Camb. Uiiiv. Press), p. 172.
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If tan a = -, cot a = ?/ = tan
( ^ —

y
^

V2y

.'
. tan~^ ?/ = — — a = ^— tan"^^2 2 y

.'
. tan~^ y + tan"^ = t^

(6) becomes /
dO

+

R + r sin ^ VR^ — ^2

w

2

_ 5^^^ ^"^ n^ -r
r^jR+rsine r^ VR^ —

TT VR2 - 7-2

r^

+ 2

/.x J /^ X
r Gos^ede Rtt TrVR^-r^

.'. from (4) and (4a) / --^-- ^—^ = --

„

--o
^

'
^ ^^ R + r sm (9 r^ r^

+ r

m "^' ^
(2) R f^^ =27rR2-27rR VR^ - ^'

^ J^ + y

In (1) A, = 2 TT R2 - 2 TT R VR^ - r^ - ir r^

2 R2 2 R /7RV
= .r^i-^---7(7T-l-l}----(^)

I r^ r

Correction Coefficients for Ordinary Beam Form-
ulae.^—-If the bending moment on an ordinary beam is M,

we have for a rectangular section the bending stress

, _ 6M
' ~ hd''

and for a circular section of diameter d

_ 32 M
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Let /,, /o be the correct stresses at inside and outside

respectively of the curve, then we may write

/.
= " /

2-0

1-8

re V .

\

X ^ C'l rele

\\

inside.

\\\
\\
V\

•*3 \^ s

<»

1 I-a

o

/<^^
/

f ?eciro'pgi e ^^
:::;::;;-

o —
Con

Values of It^ cZ

2*5 5*5 4*5

Fig. 255.—Correcting Coefficients at Inside.

where a and ^ are correcting coefficients by which the

stresses calculated in the ordinary manner should be multiplied

to give the corrected values.
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The following values of a and ^ have been calculated—

-

•75

1

2
3
4
5

Circular Section. Rectangular Section.

1

a

•62

•70

•84

•89

•91

•93

a /3

211
1-62

123
114
110
1^08

1-92

1-52

1-20

112
1-09

107

•65

•73

•85

•90

•92

•95
j

These figures are plotted in Figs. 255, 256.

10

'90

o '80

00.

1 70
p
a

•60

_ - -;:::
—

^^-—

-

^^

—

_^-^--^"^

Re cYa na\ 3, ,^--^-^

t ^ -^

VAy
}'/

//
//
//-^{"irok i.

y
/^
/

//
/

1 1 5 2. Z 5 %J 3•5 ^ 1. 4•5 5

Values of E. -^ tZ.

Fig. 256.—Correcting Coefficients at Outside.

The nearness of the curves for the two sections shows that

the same coefficients may be used as a first approximation"

for other sections.

^ Andrews-Pearson Formula.—In this theory,* published

* A Theory of the Stresses in Crane and Coupling Hooks, Draper's
Company Research Memoirs, Technical Series 1 (Dulan & Co., Lon-
don). For other experimental investigations see " Maximum Stresses
in Crane Hooks," by Professor Goodman, Proc. Inst. C. E., Vol. CLXVII
(1906-7); "An Investigation of Strength of Crane Hooks," American
Machinist, Vol. 32, October 30, 1909.
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in Um)4 by the author and Professor Karl Pearson, F.R.S.,

a correction is made for the fact that owing to lateral strain

it is not quite correct to say that y = y^

The resulting formula is

^r\
where

A 71 =

Ay,

' R
1 + 1

R

1 -^ ^
R
i/\i-'j

For simplification of resuJts we write

73 = 7i - 72

For a rectangular section we have

_ R
<Y

2R \v _ / 2 R .^>

_ R )7 2R + t^y-^ /2R -d.^-^\
^^^ ~

(1 ->7)c/\^ 2R y
'' 2R / '

Then A y, = ^
R

A somewhat similar graphical construction can be employed

to that in the Winkler formula, but still greater care has to

be taken to ensure accuracy.

These formulae are extremely troublesome to use and require

the utmost care to avoid arithmetical error, and the additional

accuracy over the Winkler formula is so small that it is

doubtful if the revised formula is worth the additional trouble

and risk of error. This point is dealt with very fully by

Professor Morley in Engineering, September 11 and 25, 1914.

The Strength of Rings and Chain Links.—In deter-

mining the stresses in a ring or link we have, in addition to
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the problem of finding the stresses in a curved member, that

of finding the bending moment at any point.

Approximate Theory of Circular Ring. — We will

calculate the manner in which the bending moment varies in

a ring in which the effect of the curvature on such variation

is negligible. By designing the ring for the bending moment

thus obtained, allowance for the curvature effect upon the

stress by the correction coefficients given in Figs. 255, 256, we

shall obtain a very fair approximation to the stresses.

Consider a radial section intersecting the centre line at c

^^\
/ ^ x^'"'^r-\ \ \
/ ' /^ WX \ \
I ' /^ \ ^ \

{'• I \
]

•

1
\ 1 \

\ ' \
V \ \ ) ']
\ ^ ^'"~"
X N ,^ /

-^
Fig. 257.—Circular Rings.

(Fig. 257). The stresses in each quadrant will be similar by

symmetry.

The bending of the link must be such that the sections

o E, o B remain parallel to their original positions.

But the angular change due to bending is given by the/M̂̂ d s (see p. 360)

/m d s

J EI ^^we have (1)

Now the B.M. on the section

o c = M, = B.M. at B - ''
• ^ c

w
2

Rsin^ (2)
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M„ - Y R sin ^ ] . R d! (9_.yM..^y-^M^
EI

EI M„ . R ^ + ^ R2 cos ^

/MT.Y-_^^^WR^^_^^| ^ 1= -[M,R(;i-0)+ "o (o-i)y X

M„R TT W R2\ 1

2 2 ; EI

If this - 0, M3 - ^^ - -318 W R (3)
TT

W R
.•

. M, = M, - -\p - W R (-318 - -5)
CI

= - -182 WR ..(4)

The point of zero bending moment is given by putting

M, =0
.•

. in equation (2) -318 W R - '5 W R sin ^ =.

sin B = —p- = '636
•5

i.e,. 6 = 39" 5 degrees approximately.

W sin ^ W
The direct stress at b = ; at c = — . ; and at E = ^.

The mean shear stress at B

W ^ Wcos^ . ^^ „= -^ ; at c = ^ . - and at L =
2

' 2A

Numerical Example.—Find the safe load upon a mild steel

ring of 4 inches mean diameter formed of round rod 1 inch in

diameter. We will take the safe tensile stress in the material

as 7 tons per sq. in.

Let the safe load be W
Then M, = 318 W R = 636 W
.

•
. By ordinary bending formula

"^~32^' = -636 W
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In our case , = 2
a

.'
. from the table on p. 545 a = 1-23

.-. -636 W X 1-23 =
^^

•'• ^ = 32 X -636" X 1-23 = '^L^^^^^^J-

Considering the section at E and taking this value of W
we have

Direct stress = ^^ ^ rrxn = '^^ *on per sq. in. approx.

M, = -182 WR = -364 W
, .. , 7 X M, 7 X -364 . ^^bending stress = —j^—- = —^636~~ ^ approx.

.*
. total stress = 4*00 + '56 = 4'56 tons per sq. in.

Chain Links with Straight Sides.—We can apply as

follows the same approximate theory to the determination

of the stresses in a chain link composed of semi-circular ends

and straight sides. Considering one quarter of the link as

before, we have that the angular change due to bending

between the points B and e (Fig. 258) must be zero.

Between f and B we have as before

Angular change = / ^j^^'^{m
^_wr^\ 1

im„. . - 'EI

The bending moment will be constant over the straight

part of the link.

.
*

. Angular change between E and f = ^^ . ^

WR
and M^ = M, = M« - ^- as before

, /.. R^ WR2 M,L\
/. wehave^M..-^ 2^" + ^ )

Rtt WR2 . M.. L\ J^
EI

,,^ Rtt WR2 M„L WRL\ 1

2 2 ' 2 4 y • EI
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If this is zero,

WR(R +
M. =

ttR -h L
W R /2 R -f L
2 Vtt R + L

Fig. 258.—Oval Chain Links.

_ WR f2R ^ L _ 1
~ 2 I TT R -^ L ^'

WR/2R--R, WR^, 2--
""2 WR+L

(5)

WR^ 11416 \

2 VttR+L;" 2 VttR+L/ 2 WR+L/"^^
If L = these formulae reduce to the same result as in the

previous case.

Experiments on Chain Links.—The strength of chain

links has been investigated ver}' thoroughh^ by Professors

G. A. Goodenough and L. E. Moore,* who give a very complete

theoretical treatment of the subject.

* University of Illinois Bulletin, Xo. 18.
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Their summary and conclusions are as follows

—

1. The experiments on steel rings confirm the theoretical

analysis employed in the calculation of stresses.

2. The experiments on various chain links confirm the

analysis and show that the pressure may be taken as uniform

over the arc of contact.

3. A load on the link produces an average intensity of

stress K -. in the cross section of the link containing the minor
2 A ^

axis, and with an open link of usual proportions the maximum
tensile stress is four times this value.

4. The introduction of a stud in the link equalises the

stresses throughout the link, reduces the maximum tensile

stresses about 20 per cent, and reduces the excessive com-

pression stress at the end of the link about 50 per cent.

5. The stud-link chain of equal dimensions will, within the

elastic limit, bear from 20 to 25 per cent, more load than the

open-link chain, but the ultimate strength of the stud link

is probably less than that of the open link.

6. In the formulae for the safe loading of chains given by

the leading authorities on machine design, the maximum
stress to which the link is subjected seems to be under-

estimated and the constants are such as to give stresses from

30,000 to 40,000 lbs. per sq. in. for full load.

7. The following formulae are applicable to chains of the

usual form P = 0'4:d^ s for open links

'P = 5 d^ s ,, stud „

where P = safe load, d = diameter of stock and s the maxi-

mum permissible tensile stress.



CHAPTER XX
* ROTATING DRUMS, DISKS AND SHAFTS

Thin Rotating Drum or Ring.—If a thin drum or ring

of radius r (Fig. 259) rotates T^ith a velocity v, there will be

acting on each unit length of the rhig a centripetal pressme

p equal to , where iv is weight of unit length of the ring.
1/

Thus pressure p will cause a hoop stress / and on any dia-

FiG. 259.—Thin Rotating Cylinder.

metral section the resulting force tending to cause bursting

of the ring will be equal to p d, as in the case of thin pipes

dealt with on p. 115. The force resisting bursting will be equal

to / X 2 A w^here A is the cross-sectional area of the ring.

We have, therefore, / x 2 A = p d = '— =

, _ 2. w V- _ ic V
''' f ^ YglK ~ gA

'
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Since w is the weight per unit length of the ring, we have,

if p is the weight per unit vohime of the material, w ^ p K,

since the volume of a unit length of the ring is 1 x A

•

f = P^
9

If p is the weight in lbs. per cu. in. of the material, v is in

feet per sec. and g = 32'2 feet per second per second, we have,

bringing everything to inch units

, p ?;2 X 12 X 12 12 p v2

^
=^ ~3F2'^12" ^ "32^ ^^'- P^" '^- ^^•

= f^approx. for cast iron.

= qTk approx. for mild steel.

This stress is often called the centrifugal stress.

Numerical Example.—At what peripheral speed may a

thin mild-steel ring be rotated if the centrifugal stress is not to

exceed 16,000 lbs. per sq. in. ?

We then have

16,000 = ^
v^ = 9-5 X 16,000

V = x/9*5 X 16,000 = 390 feet per sec. approx.

Revolving Disk.—The consideration of the stresses in a

revolving disk bears considerable resemblance to that of the

stresses in a thick pipe, but it presents greater difficulty. If

the disk is uniform in breadth and such breadth is compara-

tively small we may proceed as follows

—

Considering, as in the case of Lame's theory (p. 510), an

elemental ring at radius x of thickness 8 x (Fig. 260) and of

unit breadth, we have a resultant centrifugal tension on the

section given by

-ij,
w v^ J 2wv^±,= ~ — . a =
9/ 9
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If the angular velocity = o), i; = o) x

2 9

Jb,. = . 6 X since iv = p h x
9

For convenience we will write -- ^ a
9

.-. F. = 2qo>^x-Sx (1)

Then by the same reasoning as in Lame's theor}^ we shall

have

Force tending to cause bursting of ring

= F, + {p + Sp).2{x + S x)

Force resisting bursting of ring ^2fSx + p.2x

Fig. 260.

These must be equal

•
' • -^ + iv + ^P) (^ + S x') ^ j Sx + px

neglecting products of small quantities

F
(V + p X + p S X + X ^ p = f S X + p X

F
.

• . if
— p)Sx=xSp+

2

=^ + g -2 x^^ (by (1))
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.
•

. In the limit f
= p + ^/- + ^ co^ .t^ (3)

Next consider the strains. If the radius x increases to

{x + u), the circumference increases from 2 tt a; to 2 tt {x + u)

.
' . increase in circumference = 2 tt u

.
•

. Unital circumferential strain = ^ = -
Z TT X X

Also the thickness of the ring increases from 8a:;toSa: + Su
o IJ u U

.'
. Unital radial strain = ^— = -,— in the limit.

ox dx
Now the principal stresses acting in an element of this ring

are / and p
.

•
. (as shown on p. 25)

Unital circumferential strain ^ ^ [f
— r] p)

Unital radial strain = ^ {p — v f)

i-e. -^ == ^ (/ -'V2?) (4)

§-:=e(p-''/) (5)

.
•

. solving these two simultaneous equations we have

E fu . 7] du

^-,-r^-)a" + fS <^)

Putting these results in (3) we have

E /u 7] du
(1 - rj^) \X "^ ~d^
_ E /rj U du\ x'E / 7] U rj d u d^ u

{I — r)^)\ X dx) \ — y]'^\ x^ X dx d x^

+ g w^ x"^

E
i. e. multiplying through by t,

^

U , ridu 7] U , du 7]U , 7]d u xd^u {\ — rr-) „„
X dx X dx X dx dx^ E
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To solve this differential equation we write it

x^ d^u , xdu (1—772)

Now assume u = C x^

= X^.6CX+X.3CX^-CX^+ ^^ ^^ . g 0)2 x3

Equation (9) will be solved if C = - ^^~~f2 ^ "^^
.... (10)

This equation is of the"! kind dealt with in Forsyth's

Differential Equations (Macmillan), §§ 38, 39.

The '' complementary function " is

x^ d^ u X du _
d x^ d X

d^u 1 du '^ _ ci
'

' d x^ X d X x^

d^u d /u\ _
'

' d x"^ d X \x/

Integrating, we have

-J
1- - = constant = Cj (11)ax X

To integrate again, write it

X a u ^-j

_ + w =r (Ji a:

dx ^

1. e. --^

—

- = Ci .T

dx
C a;2

.
•

. integrating u x = — \- C2

, •••I = ^' + & (12)

.
•

. putting this in (11)

4j* _ Ci _ C2 ,,0

dx~ 2 x^
^
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We also have from " particular integral '' u = C x^

- = C X2
X

t^ = 3 C a;2
a X

.

'

. adding the complementary and particular integral we

have

^ = C a;2 + ^^ + %X 2 x^

(1 - v^) q 0)2 ^^
, Ci C2 ,..s=

8E + T + ^ ^^^^

du _ 3(1— 7)^) q 0)2 x^
, Ci _ C2 /, K\

.dx~ 8E "^2 0:2 ^ ^

Special Cases.—(1) External radius R, internal radius r.

We must have 2? = at the inside and outside

.
•

. p = for a; — R and a; = r

.
*

. at inside in equation (7)

o — -^ /rju du
~

1 — rj^\ r dr

E r (1 -r}^)qo,^r^ , C^rj 0^7}

r
'•^' ^ -

(1 - ^2) \ ^g-E -^ + 2 +

_ 3(l-ry2)go,2^2 Ci _ C2\

8E "^2 r2j

i.e.5(l+>;)-jMl-.)=^^-^^^^^3+,) ..(16)

Similarly at outside where a; = R we shall have

^
(1 - 77) (r2 - R2) . 8 E

(1 + r)){3 +r;)ga)2R2r2

8E
Putting this in (16) and simplifying

(17)

^^_ (1 - r,) {S + r,) q o>^ (R^ + r^)
^jgj

4 E



558 THE STRENGTH OF MATERIALS

Now put these values into the equations (6), (14) and (15)

for /

- (r=:^2) 1^

-
8 E + 2 (^ + ^^ + x^

^^ - ^^

3 77 (1 — rf) q la^ X^\

8E /

+ (3 + ';) -/- - 3 , x^}

Similarly to obtain p we use equations (7), (14) and (15)

and take the given values of the constants.

E ^riu dn\
^ {I -yj^)\x ^ dxf

-{l-r,')\- 8 E + 2 (1 + ^) - :.2
(1 - V)

_ 3^1 - 7y2) qj^^" 8E f

R2r
(3+^)- 2 -3 a:

X

p w2 (3 + 7?) f-^ R^r^ ^

It is clear from equation (19) that the greatest hoop tension

occurs at the inside where x — r

9

and if r is very small

••• /-.v. = ^ "
{(3 +v)^' + a-l)r'} (21)

_ p w2 R2 (3 + ^)
/max. - -4^ " — l^^J
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(2) Disk without central hole.—If the disk is a solid one of

radius R, ^ = for a; = R and u the circumferential strain

must be for x =
.'. from equation (14) Cg =
.'. Equations (14) and (15) become

u _ (1 - rf)qio^x''- Ci

x~
~

8E +2 ^^"^^

du 3 (1 — 7)^) q iJi^ x^
,
C, ,^.-

di=-- 8E- + 2 (24)

.
•

. Since p = for x = H, equation (7) becomes

E f7?Ci 7y(l -7?^)go>2R^ Ci 3{l -yj^)qu>^U^ '\

(1_^2)\ 2 "SE" ' "^2 8E j

t. e. J (1 + ^) = ^^^^^ g co^ R2 (3 + ,7)

(1 -r;)(3+>?)go>^R^ ,^..
^1 - ~ 4E ^ ^

.
• .^Equation (6) becomes

^ f _ (1 - rjf q oi^X^ (1 -^) (3 + r]) g (o^ R2
'''{i-7]^)\ 8E

"^
8E

_ 3 ry (1 - 7/2) g (o^ a;
^

(1 - ry) (3 + 7?) g (o^ R^l
8E '

"'"'^
"8E

^

j

= ^f 1(3 + .7) R2 - (1 + 3 r;) a;-^}

=^ 1(3 + >?) R^ - (1 + 3 r;) a:2j (26)

Similarly equation (7) becomes

P = ''^g {B + v) Cii' - ^') (26)

Each of these is a maximum at the centre where x ^ 0,

where we have

Lax. = Z^Huax. = Sj- (3 + ^) (27)

This is exactly one half the value given by equation (22)

for a disk with a very small hole, so that on this theory a disk

has its strength reduced by one half by having a hole made
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through it. For this reason the De Laval turbine drums are

made without a central hole.

If V is the peripheral speed at the outside we have r = w R

.-. Equation (27) gives / = ^- (3 -f v) ^ti^h is ^^-—^ of

the stress in a thin drum of the same external radius (of.

p. 553).

Taking , = 1, i^+2) = g
NuMEEiCAL Example.—At wlmt peripheral speed may a

narrow mild-steel disk he rotated so th<it the maximum tensile

stress sh-all not exceed 16;000 Ihs. per sq. in. (a) // it h^s a small

hole in th-e centre, (6) if it is quite solid ?

(a) By equation (22)

16,000 = ^'. (3-25)
4:g

~ 9-5 ^ 4

., 9-5 X 16,000 X 4
}'- ^=.

3-25

9-5 X 16,000 X 4 ,o^^ .
^7^.; = 432 feet per sec. approx.

(6) by equation (27)

16,000 = ^J' . 3-25

.'. r- = 432 V2 = 612 feet per sec. approx.

Rotating Disk of Uniform Strength.—A problem which

is of interest in turbine design is that of finding the shape of

a disk which will have the same stress throughout. ^Ye have

seen already that the maximum stress occiu-s at the centre so

that the disk ought to be broader at the centre than at the

edge.

Referring to Fig. 261 and considering the elemental ring of

breadth b at radius x increasing to (6 -r S b) at radius {x + h x)

we have the principal stresses each equal to / which does not

vary radiaUy.
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Force tending to burst ring = F, + 2 / {x + Sx) {b + Sb)

.
•

. If these are equal, neglecting products of small quantities

we have

¥,. + 2fxb+2fbSx-{-2fxSb=2fbx + 2fbSx

¥, + 2fx8b =
Sb^

wv^
NowFe = ^^ .2x =

gx
j,{h+'-iY a; . 0)2 x^

2 ph hx . (n^ x^

9

Fig. 261.—Disks of Uniform Strength.

.
*

. Dividing hj 2 x f

pb (M^

fg
in the limit

.x^x -\- hb =

pb 0)^
, db r.'^^ , ^ _j- =

J g ax
p w^

JC2

The solution of this is 6 = C e a' 2~f

At the centre where x =
b ^C = b.

.\b = boe g' 2}'

oo
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The thickness at the outside is given by
-P .'^^ .H2

If therefore b^ is given we can calculate b., by
p . u>-^

bj^e' ^^/
R-i

/

.
•

. At any radius ^ =b^e £7-2/

Whirling of Rotating Shafts; Critical Speeds.—If

a shaft rotates at a high speed, the lack of mathematically

exact balancing results in an eccentricity of load which causes

Fig. 262.—Whirling of Centrally Loaded Shaft.

centrifugal forces to be induced and these centrifugal forces

will cause deflections which increase the eccentricity to be

increased ; this increased eccentricity causes further deflection

and so on, the deflection increasing indefinitely and giving rise

to whirling at certain speeds called critical speeds.

In certain cases the whirling speed is the same as the natural

frequency of transverse vibration of the shaft.

The centrifugal forces may be regarded as having a neutralis-

ing effect upon the elastic forces tending to return the shaft

to its natural shape, so that when whirhng occurs the effective

stiffness of the shaft is reduced to zero.

Flexible Shaft loaded at Centre.—Referring to Fig. 262

let a shaft a b of length I be loaded at the centre with a disk

of weightW and let the shaft be provided with flexible bearings
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which do not interfere with the natural deflection of the shaft.

Then if 8 is the deflection caused by the centrifugal force and

e is the eccentricity of the load, i.e. the distance from the

centre of the shaft to the centre of gravity of the load, the

effective eccentricity is (S + e). If the angular velocity is w

.
•

. Centrifugal force = F = —

^

9

Ai .
F^' T? 48EI8

^^^^=48EI '•'^-
' p '

48EI8 Wco^,
, ,

/48EI W(o2^ Wco^e
l^ 9 y 9

W 0)2 e 48 E I
.8 =

9 ' l^ 9

4:SElg -w^WP ^^^

From this equation it is clear that 8 will become indefinitely

great if 48 E I (/ - w^W Z^ =

^.6. if.= Z^^LX (2)

This value of w gives the critical speed.

For mild steel E = 30 x 10^ lbs. per sq. in. and g =
32*2 X 12 ins. per sec. per sec. ; if therefore W is in lbs. and

I and I in inch units

48 X 30 X 106 X 32-2 x 12 .

1

WP
= 746,000. / radians per sec (3)

74,600 X 60 /nr
2 TT MWP

= •711 X W^L revolutions per minute (4)

For a round shaft of diameter d inches we have I
ird^

64
•158 X 10^ d-^

n = j-^=^^—
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Working from the transverse vibration we have, as on p. 337,

^ = 2 77 /

'

Weight
^ g X force to cause unit displacement

48 E I

.

•
. Force = W

.-. t = 2-
V48EI^

for unit deflection

Frequency

1 1

't

= o-a/—^-^ per second
2-V WZ3 ^

-^n J^^^V^T minute.
77 X 60 \ WZ^

Fig. 263.

This,, for the given value of E, is exactly the same result as

is obtained in equation (4) above.

If the critical speed is exceeded either by providing guides

which prevent the excessive deflection or by speedmg up so

quickly that the inertia of the shaft prevents the dangerous

deflections from developing, the shaft will '" settle down "

and nui smoothly in a deflected form (Fig. 263), the weight

rotating about an axis which gradually approaches its centre

of gravity as the speed increases. This fact is made use of in

the flexible shaft of the De Laval turbine.

If t-j is the critical velocity we may put in equation (1)
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i. e. 8 = W P 0..2 -WP 0.2 o.;2

(u2 — O)
2
•e (5)

This gets numerically less as o) increases, so that as the

speed increases more and more the shaft tends to straighten out.

If the shaft is horizontal and the weight is perfectly balanced,

W P
and there is an initial deflection S„ = j^ ^ y , this will give rise

to a centrifugal force which causes an additional deflection 8^

...r = Wo>2
8.)

g

FP
^""^ ^1^48 EI

Fig. 264.—Whirling of Unloaded Shaft.

48EI8i Wo)2 . , W(o2 .

P 9 g

'48 EI Wo)^ _ Wco^

9 ^
~

9

, /48EI Wo)^ W(o2 ,
I.e. Oj —^ =

. do

Woj2 ^ 48 EI Wo.2

9 P 9
W 0)2 Z3 8,

~
48 E I ^ - 0.2 w ^3 (6)

This, as one would expect, gives the same result as before

"with e = 8„.

Unloaded Shaft.—In this case we obtain at certain critical

speeds a condition of insta?jility which is very similar to that

which occurs in a loaded column.

Suppose that the shaft of length I is initially straight and

that due to some cause it becomes deflected so that at some

point p (Fig. 264) at distance x from a convenient origin, say

the centre point c, the deflection is y.
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If w is the weight per unit length of the shaft this deflection

will cause at the point p a load equal to per unit length.

But since the B.M. diagram is the second integral of the

load diagram (p. 149) we shall have

dyM. _ ww^y
dx^ g

Moreover, .pr^ = ^-^EI d x^

w ui^ y d^ y
''' EI> ^ dx^

2

putting -^ J-
== m*j we get the differential equation

»'2'=rf.^ w
The general solution of this is

2/ = A coshm X + B sinh mx -\- C cos m x -{- D sinm x . . (2)

Ends freely supported.—If the ends are freely supported, the

deflection and B.M. are each zero at each end.

.
•

. 2/
= when x = — ^ and x = + ^

-,%, = when .r = — ^ and x = ^dx^ Z ^

d v
also the slope -^ = when .r =

Cv X

7nl ^ . , ml ^ ml ^ . ml
.-. = A cosh -^ + Bsmh- 2" +C cos - -2- + D sm

—

^
^ ml ^ . ^ rnl

, ri ml -^^ . ml
= A cosh -o^ + B smh ^^ + C cos^ + D sm ^

^ ml 1
ml ^ ^ ^^c "^ ^

Now cosh Y = cosh — ^ ;
cos ^ = cos — ^

ml . , ml . ml ^\r.'^^smh - 2 = - ^1^^ 2^ '
^^^ ""

2 ^ ~ sm
2

D a nd B each =

.
•

. A cosh '2 + C cos 2 =0 (^)
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.
•

. our equation becomes

y = A cosh m X -\- C cos m x

,-r d cosh X . , d cos xNow —^
= smh X ; —^ = — sni x

Cb X Cv X

d sinh X , d sin x—
-^

= cosn X ; —^ = cos x
Cb X Cv X

CJ tJ
.

' . -7-^ = Am^ cosh m X — Cm^ cos m

x

dx^

.-.putting X = + ^OT - -

.' .0 = Am^ cosh ;-- — C m^ cos—
2 2

i. e. A cosh -^ — C cos -— = (4)
2 2

.•
. Comparing this with (3) we see that A must =

.' .y = C cos m x

Further, C cos -~- =

ml TV ,— = 2 rtc.

Taking the lowest vahie

l^""m (w 0)2 YJ
EIi7

o) = ^ A / ^ radians per second
l^ \ w

.
•

. If ?i is the number of revohitions per minute

Itt n IT n • 30 (D

30 TT /EI a 1 •
•

'
•
^

72
"
A/ ^^ revolutions per mmute (5)

If the shaft is of diameter d inches and I is in inches

Taking E =- 30 x 10^ lbs. per sq. in.

g = 322 X 12 ins. per sec. per sec.
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tc = -f_ X -28 lb.
4

, 4-8 X 106 f/ ,^,we have n = (6)

9 — "^ — 4. —
The higher critical speeds -v^ill occur for m = *" "

, " , "

,

^ JU ^

etc., giving values of n multiplied by 4, 9, 16, etc.

Both ends fixed-.—In this case ,^ = for x — + in
dx ~ 2

addition to the condition that v = for x =
2

.•
. B and D are each equal to as before

and A cosh ^^ -f- C cos -^ =
2 2

when .r = -
,
—" = m A suih ~-^ — m C sin - =

2' dx 2 2

I d y . . ^ ml ^ . 7?i Z^ — ni A sum — — ^n n oi^-.

2

«. e. A sum ^ — C sm -- =

. m I

' ' C . , m I
suih —

m Z

A ""^
2

Also from (3) 7^ = — —

,

cosh

, ml , -, ml
.• . — tan = tann

iu ^

3 TT

The solution of this gives w Z = 474 = " aj^prox.

Taking the approximate value, this will give the first critical

speed about nine times that in the case of the freely supported

shaft.

Dunkerley's Empirical Formulae.—Professor Dunker-

ley,* who was one of the first investigators of the theoretical

* Phil. Trans. Roy. Soc. 1895, Liverpool Engineering Society, 1894-5.
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and actual whirling speeds of shafts, has given the following

empirical formulae which agreed very well with his experiments.

Let oji be the critical angular velocity for a given unloaded

shaft; let o)^ be the critical angular velocity of the same

shaft carrying a wheel at any position, neglecting the mass of

the shaft. Then the critical velocity w^ of the loaded shaft

will be given by

or if Uo, n^, n^ are the corresponding number of revolutions

per minute

Tio^ n-^^ n^

If a second load be keyed at another position, the critical

angular velocity of which is wg with the first load removed

neglecting the weight of the shaft, then

(Oi (Oo 0)r

or m general — = ?,—

For further information on this subject, the reader may
refer to Professor Dunkerley's paper and to Stodola's Steam

Turbines (Constable)

.





EXERCISES

CHAPTER I

1. A tie rod in a roof structure has to stand a total pull of 40 tons. If

the stress in the material is to be not greater than 5 tons per sq. in., find

a suitable diameter. Ans. 3| ins. diam.

2. Taking the shearing strength of mild steel to be 20 tons per sq. in.,

calculate the force necessary to punch a f in. hole in a f in. plate. Find
also the stress in the punch. Ans. 29*4 tons ; 66' 7 tons per sq. in.

3. A bar of mild steel fin. diam. and 10 ins. long stretches '00816 in. when
carrying a load of 5 tons. Calculate Young's modulus (E) in lbs. per sq. in.

Ans. 30 X 10^ lbs. per sq. in.

4. If E is 29,000,000 lbs. per sq. in. for wrought iron, what decrease in

length of a column 20 ft. high and 12 sq. ins. sectional area takes place

when carrying a load of 36 tons ? Ans. '0556 in.

5. What load in lbs. is hung on an iron wire 50 ft. long and *! in. diameter

to make it stretch -^o- in. ? Ans. "076 lb.

6. Plot a stress-strain diagram for the following test of a specimen from

a mild-steel boiler plate

—

Load lbs 4,000

•0009

8,000

•0020

"

12,000

•0033

16,000 20,000 24,000 28,000

Extension ins. .

.

•0044 •OOSe ^0070
1

•0082

Load lbs 30,000 34,000 36,000

1

40,000 44,000 48,000 52,000

Extension ins. .

.

•0103 •016 •7 •19 ^30 -47 •75

Load lbs 56,000

1-3

59,780 54,900 g^ ,
/Luads-1" = 10,000 lbs.

ocaies
(^Extensions—up to yield

Extension ins. .

.

25 2^9
point 500 times full size.

Beyond = 4 times do.

Orig. dimens. Length = 10 ins., width = 1*753 ins., thickness = '64 in.

Final „ „ = 12-9 ins. „ = 1*472 ins. „ = '482 in.

Find stress at elastic limit, maximum stress. Young's modulus, and per-

centage extension and reduction of area.

57]
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7. In a plate girder the maximum intensity of stress at right angles

to the vertical cross section of the web is 5 tons per sq. in., and the in-

tensity of shearing stress is 2 tons per sq. in. Find the position of

the planes of principal stress at that point and their intensities.

(A.M.I.C.E.)

Ans. 19° 20' aTid 70° 40' to vertical ; 5" 7 and 0*7 tons per sq. in.

8. The limit of elasticity of a W.I. bar was found to be 20,000 lbs. per

sq. in., the strain at that point being 0*0006; what was the resilience of

the material? (A.M.I.C.E.) Ans. 6 in. Ihs.

9. Two rods, one of copper and the other of steel, are fixed at their

top ends, 24 ins. from one another, and hang vertically downwards. They
are connected at their bottom ends by a horizontal cross-bar, and on this

bar is to be placed a weight of 2000 lbs. If each rod is 18 ins. long, and

if the diameter of the copper rod is 1 in. and of the steel rod f in., find

where the weight must be placed so that the cross-bar may remain hori-

zontal. E for copper = 16 X 10^ lbs. per sq. in. ; for steel = 29 X 10^

lbs. per sq. in. (B.Sc. Lond.) Ans. 11*9 ins. from the steel rod.

10. A load of 560 lbs. falls through ^ in. on to a stop at the lower end of

a vertical bar 10 ft. long and 1 sq. in. in section. If E = 13,000 tons

per sq. in., find the stresses produced in the bar.

Ans. 5*45 tons per sq. in.

11. A bar of iron is at the same time under a direct pull of 5000 lbs. per

sq. in., and a shearing stress of 3,500 lbs. per sq. in. What will be the

resultant tensile stress in the material ? Ans. 6,800 lbs. per sq. in.

12. In Question 11, find the resultant tensile stress from the strain

consideration. Ans. 7,250 lbs. per sq. in.

13. Find whether, in the problem of Questions 11 and 12, on the as-

sumption that the shear strength of the material is 4 of the tensile strength,

the resultant shear stress is more serious than the resultant tensile stress

or strain.

Ans. Res. shear stress = 4,300 lbs. per sq. in. Not so serious.

14. Steel rails are welded together and are unstressed at a temperature

of 60° F. They are prevented from buckling and cannot expand or con-

tract. Find the stresses when the temperature is : (1) 20° F., (2) 120° F.,

taking steel as expanding '0012 of its length for a temperature change of

180° F. E = 30 X 106 lbs. per sq. in. If the elastic limit is 40,000° F.,

at what temperature ould it be reached ? (A.M.I.C.E.)

Ans. 8000, 12,000 lbs. per sq. in. ; 260° F.

15. If the stress p at a point on one plane is inclined at an angle of

60° to that plane and on a plane at right angles to the former the stress is

a simple shear, find the principal stresses at the point and their direction.

-4n5.
1
(l ± \/|) ; tan2e= y
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CHAPTER III

1. In a roof truss a certain tie lias in it a pull of 3*05 tons due to the

dead weight alone. When the wind is on the left of the truss it alone

causes a pull of 5*5 tons in the same tie, and when it is on the right side

it causes a compression of 1*2 tons. Work out what you would consider

a satisfactory section for the tie if it is made of mild steel.

Ans. 3 ins. x f in. flat.

2. Estimate the dead load equivalent to a tensile dead load of 15 tons

and a live load of 20 tons ; if the strain is not to exceed '001, find the area

of section required, E being 13,500 tons per sq. in.

Ans. 55 tons ; 4"07 sq. ins.

3. A 3-girder bridge to carry a double line of rails has an effective span

of 38 ft. 6 ins. Find a suitable working stress assuming that the weight

of the girders is 5^^ of the weight to be carried ; that the flooring weighs

7 cwt. per ft. run of the whole width of the bridge ; that the permanent
way, etc., weighs 160 lbs. per foot run for each line of rails; and the live

load is 40 cwt. per foot run per line of rail. Ans. 5 tons per sq. in.

4. What load, suddenly applied, will produce in a mild steel bar an
extension of -^ of an inch ? The bar is 5 ft. long and 1| sq. ins. in section.

Take E = 13,000 tons per sq. in. Ans. 4*06 tons.

CHAPTER IV

1. Two lengths of a flat steel tie bar, which has to carry a load of 50 tons,

are connected together by a double butt joint. The thickness of the plate

is I in. Find the diameter and the number of rivets required, and the

necessary width of the bar for both chain and zigzag riveting. What is

the efficiency of each and the working bearing pressure ? Make a dimen-

sioned sketch of the joint.

Ans. I in. rivets, 12 and 10| in^. wide ; 75 per cent, and 87 per cent. ;

9*2 tons per sq. in.

2. A diagonal tie in a lattice girder has to carry a load of 15|^ tons and
is I in. thick. Using f in. rivets, find the necessary width of tie and
calculate the number of rivets required (in single shear) and sketch the

arrangement. Aiis. 5J ins. wide, 7 rivets.

3. Plates 1 in. thick are connected by a treble riveted butt joint, the

pitch in outside rows being twice that in the others, and d = lin. Taking

shear resistance in double shear = 1*75 times that in single shear, determine

p for equal shear and tearing resistance. Find also the efficiency.

Ans. 61 i7is. ; 85 per cent.

4. For equal strengths in tension and shear calculate the pitch for a
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butt joint, given the following data: Plates 1 in. thick; rivets 1| ins.

diam. ; two rows of rivets on each side of joint
; f,

= 54,000 ; /< = 65,000

lbs. per sq. in. Ans. 5g- ins.

5. A steel boiler 4 ft. in diameter, and subject to a pressure of 200 lbs.

per sq. in., is \ in. thick. Find the intensity of tlie circumferential and
longitudinal stresses, the efficiency of the joints being 75 per cent.

Ans. 12,800; 6,400 Ihs. per sq. in.

6. Find a suitable thickness of plate and design a double riveted lap

joint (longitudinal) for a cylindrical drum 5 ft. in diameter, subjected to

an internal gauge pressure of 250 lbs. per sq. in. Take a working stress

of 5 tons per sq. in. (A.M.I.C.E.)

Ans. Plates 1 in. thick ; rivets 1^- ins. diameter ; 3J ins. pitch.

7. Calculate the thickness of shell of a boiler 4 ft. 6 ins. in diameter to

resist a pressure of 150 lbs. per sq. in. Assume an efficiency of riveted

joints of 70 per cent, and take the working stress as 6 tons per sq. in.

(A.M.I.C.E.) Ans. -^^ in.

8. Determine the stresses across the longitudinal and transverse sections

of the plates of a boiler drum 3 ft. in diameter and J in. thick, subject to a

steam pressure of 200 lbs. per sq. in., assuming that the drum is long and
that it has no longitudinal seam. Ans. 7,200 ; 3,600 lbs. per sq. in.

CHAPTER V

1. A cantilever whose weight may be neglected carries isolated loads

of 2 tons and ^ ton at distances of 5 ft. and 8 ft. respectively from its built-

in end, the cantilever being 10 ft. long. Sketch shear and B.M. diagrams.

Ans. Max. B.M. = 14 ft. tons ; shear = 2|- tons.

2. A certain joist used as a cantilever weighs 18 lbs. per foot, and the

max. B.M. which it can carry is 63"56 in. tons. Find how long the span

may be for the cantilever to be able to safely sustain its own weight.

Ans. 36-3 ft.

3. A beam of 12 ft. span carries loads of 3 and 4 tons at distances of

5 and 8 ft. from the left-hand support. Draw the shear and B.M. curves.

Ans. Max. B.M. = 15*66 ft. tons ; reaction, 3"91 and 3*09 tons.

4. A beam of 25 ft. span carries a load of ^ ton per foot run, and an

isolated load of 6 tons at a distance of 4 ft. from the left-hand support.

Find the maxihium bending moment, and sketch the shear and B.M.

curves. Ans. Max B.M. = 25*2 ft. tons.

5. A beam of 40 ft. span carries a uniformly distributed load of 20 tons

;

at points 11 ft. 3 ins. from each end isolated loads of 11 tons are carried,

and between these points and each end additional loads of 4*5 tons are

uniforml}" distributed. Draw the B.M. diagram.

Ans. Max. B.M. = 250 ft. tons nearly.
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6. A beam 25 ft. long is anchored down at one end and rests over a

support 6 ft. from the other end. It carries a load of 15 tons at the free

end, and a uniform load of 5 cwt. per foot run. Sketch the shear and

bending moment curves. Ans. Max. B.M.— 94*5 ft. tons.

7. A beam 34 ft. long overhangs one support by 6 ft. and carries a load

of 10 tons uniformly distributed. In addition it carries a load of 3 tons

at the overhanging end and a load of 12 tons uniformly distributed along

a length of 12 ft. commencing from the other end. Find the maximum
bending moment on the beam. Ans. 62*2 ft. tons.

8. A beam is laid horizontally upon two supports which are 12 ft. apart,

and projects at each end 6 ft. beyond the support. A load of 2 tons is

carried upon each of the projecting ends, and 1 ton at the centre of the

span. What is the B.M. at the centre and at each support ? Sketch the

B.M. diagram. (A.M.I.C.E.) Ans. 9 ft. tons ; 12 ft. tons.

9. A plate girder is built of depth = J^ span. The maximum per-

missible B.M. in ft. tons in such girder is roughly given by formula :

B.M. = 7 X area of flange in inches X depth in feet. Find the maximum
span for such a girder to carry its own weight : {a) neglecting its web

altogether; (6) taking its web as half the sectional area of one flange.

Neglect all angles, rivets, and stiffeners. Take steel as weighing 490 lbs.

per cub. ft. Ans. {a) 1,536 ft. ; (b) 1,229 ft.

10. A beam of 20 ft. span carries a uniform load of 5 cwt. per ft. run and

an additional load of 9 tons spread over 12 ft. starting from the right-hand

end. Draw the B.M. and shear diagrams.

Ans. Max. B.M. 38*7 ; Reactions 8*8 and 5-2 tons.

CHAPTER VI

1. Find the moment of inertia about the centroid of an I beam 8 ins.

deep, the width of flanges being 5 ins. The flanges are '575 in. and the

w^eb '35 in. thick. Ans. 89' 1 in. units.

2. A stanchion section consists of two standard channels 11 ins. X S^ ins.

placed back to back at 6^ ins. apart and two 14 ins. X ^ in. plates riveted

to each flange. Find the least radius of gyration. Ans. 4*12 ins.

3. Find the radius of gyration of a hollow cylindrical column with an

external diameter of 12 ins. and a thickness of 1 in. ; also of a solid square

column 4 ins. hj 4 ins. Ans. 3*90 ins. ; 1*15 ins.

4. A cast-iron girder has an upper flange 4 ins. by 1 in. ; a lower flange

8 ins. by 1|- ins. and a web 6 ins. by 1 in. Find its moment of inertia and

radius of gyration about an axis through the centroid parallel to the

flanges. Ans. 195 ins.'^ ; 2*98 ins.

5. A channel section has a base of 10 ins. ; sides 3 ins. ; the thickness of
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metal being f in. Find the position of the centroid and the moment of

inertia about a line through the centroid parallel to the base.

Ans. '726 in. from hase ; 6*62 ins.^.

6. A column is built up of two I beams 10 ins. deep and with flanges

5 ins. wide, the centres of the beams being 10 ins. apart. The area of each

is 8*82 sq. ins., and the greatest and least moments of inertia are 145"7 and
9" 78 in. units respectively. Riveted at the top of each pair is a plate

12 ins. wide. Xeglecting the rivets, find the thickness of the plate if the

greatest and least moments of inertia are the same. Ans. yV in.

7. A column is built up of two channel sections 12 x 82^ X i^ in., with

a plate ^ in. thick riveted to the flanges at top and bottom. Find the

distance x apart that the channels must be for the moments of inertia to

be equal about the two axes of symmetry, the width of the plates being

ic + 7J ins. Ans. 9f iiis.

CHAPTER VII

1. A 20 in. X 7J in. joist is supported at both ends. The weight per

foot of this section is 89 lbs., and the moment of inertia = 1,646 ins.*.

Find the distributed load in a 25 ft. span which vnll cause a max. flange

stress of 7 tons per sq. in. Ans. 29*7 tons net.

2. The moment of inertia of a 12 in. X 5 in. X 32 lb. joist is 221 ins.*.

Two such joists are placed side by side, and support a water-tank which

weighs 1 ton when empty. Eflective span = 15 ft. What is the weight

of the water in the tank when the stress in the extreme fibres of the joist

is 6*5 tons per sq. in. ? Ans. 19*8 tons.

3. Two 6 X 3 X ^ in. "fs are used back to back as a girder on which a

light crane runs. Compare the safe load which such a beam would carry

with that of a joist of same span, depth, width, and thickness of metal.

Ans. Joist 5*36 times as good.

4. Find the bending moment which may be resisted by a cast-iron pipe

6 ins. external and 4^ ins. internal diameter when the greatest intensity

of stress due to bending is 1,500 lbs. per sq. in. Ans. 21,750 in. lbs.

5. A rolled-steel joist 16 ins. deep, with flanges 6 ins. wide and 1 in. thick

(the web being | in. thick), is used to support a uniformly distributed load

of 2 tons per ft. run. If the span is 12 ft. 6 ins., what is the maximum
stress in the lower flange ? (A.M.I.C.E.) Ans. 4^'^ tons jjer sq. in.

6. Find what diameter of axle should be employed if the wheels are

4 feet 9 ins. apart and the loads on them are 7 and 3 tons respectively, the

axle boxes projecting 9 ins. beyond the wheels. Draw the B.M. diagram.

Ans. Max. B.M. = 58'68 in. tons ; diameter = 5 ins.

7. A gallery is carried by two 9 in. x 3 in. timber cantilevers, each 5 ft.

long. What distributed load may the gallery carry if the safe stress is

10 cwt. per sq. in, Ans. 27 cwt.
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8. Either of the following sections is available for a beam which is

required to be as strong as possible : (a) Circular, 2 ins. diam. ; (6) rect-

angular, 2 ins. deep, 1"178 ins. wide. Which would you use ? (A.M.I.C.E.)

Ans. Circular.

9. A cast-iron beam section is 20 ins. deep ; top flange 4 ins. x 1 in.

;

bottom flange, 16 ins. X 1| ins. ; web, 1 in. Find the safe distributed

load which a cast-iron girder of the above section, and of 20 ft. span,

could safely carry. Take the safe stresses as 1 ton/in.^ in tension, and

4 tons/in.^ in compression. Ans. 10*6 tons net ; 11*9 tons gross.

10. Find the bending stress in a locomotive coupling-rod 8 ft. long,

2 ins. broad and 4| ins. deep. It runs at 200 revolutions per minute, the

crank radius being 11 ins. • Ans. 2*6 tons per sq. in.

CHAPTER VIII

1. A tie bar 9 ins. wide and 1|^ ins. thick is curved in the plane of its

width. If there is a total tensile load on the bar of 30 tons, and if the

mean line of pull passes 3 ins. to one side of the geometrical axis at the

middle of the bar, find the maximum and minimum stresses at the centre

section of the bar. (A.M.I.C.E.)

Ans. 6f tons per sq. in. tension ; 2f tons per sq. in. compression.

2. An upright timber post 12 ins. in diameter supports a vertical load

of 18 tons, 3 ins. from the vertical axis of the post. Determine the maxi-

mum and minimum stresses on a normal cross section and show by a

diagram how the intensity of stress varies across the section.

Ans. '477 and, '159 ton per sq. in.

3. A cast-iron post 12 ins. in external diameter and 10 ins. internal

diameter carries an axial load of 40 tons and also an eccentric load of 5 tons,

parallel to the axis at an eccentricity of 12 ins. Find the maximum stress.

Ans. 1*98 tons per sq. in.

4. A short wooden pillar is 20 ins. high, and rectangular in cross section,

the thickness of the section is 6 ins., and the width 12 ins. Two vertical

loads act on the top of the pillar, both loads act in the middle of the thick-

ness, one of them, W^, acts at a point 1|- ins. on one side of the centre, and

the other, Wg, acts at a point 2| ins. on the other side of the centre. If the

stress over the base of the pillar is everywhere compressive and varies

uniformly, its intensity being twice as great at the 6 in. edge near the line

of action of W2 as it is at the 6 in. edge near the line of action of Wj, what

is the ratio of W^ to Wj ? (B.Sc. Lond.) Ans. 13:11.

5. A reinforced concrete beam, 8 ins. X 11 ins. deep, has four ^ in.

bars, with centres at 1 in. from the bottom. Calculate for a span of 12 ft.

the safe load (a) on the modified beam formulae; (6) on the no-tension,

straight-line formulae. Take t = 15,000, c = 100, t, = 500, m = 15.

Ans. (a) 1,205 lbs. ; (6) 3,920 lbs., including weight of beam.

PP
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6. A reinforced concrete T beam has a flange 4 ft. X 3| in., the width of

web being 10 ins. If the centre of reinforcement is 15 ins. below the top,

calculate its necessary area, using the above figures. Ans. 7"94 sq. ins.

7. Find the relation between the depth of slab and effective depth of

a T beam in terms of the stresses and reinforcement for the neutral axis to

curve at the bottom of the slab. . d,\ 2 r t

d / c

8. A T beam is required to carry a B.M. of 320,000 in. lbs. The deptli

to centre of reinforcement is 16 ins., and the depth of slab is 4 ins. If

c = 600 and t — 16,000, what area of reinforcement and effective breadth

of slab would you use ? Ans. 1'39 sq. ins. ; 12| ins.

9. A reinforced concrete floor is 9 ins. thick, the centre of the reinforce-

ment being 2 ins. from the bottom edge. If c = 600, t = 15,000, and

m = 15, calculate the reinforcement necessary, and the load can that be

safely carried. Ans. "63 sq. in. per ft. width ; 386 lbs. per sq. ft.

10. A beam of rectangular section of breadth one half the depth is bent by
a couple in a plane at 45° to the axes of the section. Find the safe B.M.

in terms of those about the principal axes. ^ 9a. /^ 7 \ /

^

CHAPTER IX

1. If two precisely similar beams of rectangular section, one of cast iron

and the other of wrought iron, w^ere laid across the same span and loaded

with the same load (within the elastic limit), what would be the relative

deflections of the two beams? (A.M.I.C.E.)

Ans. As E,. : E„ = about 8 : 13.

2. A beam is of 20 ft. span and tlie movement of inertia of its section

is 300 in. units ; what will be the central deflection for a uniformly dis-

tributed load of 16 tons ? (A.M.I.C.E.) Ans. -72 i7i.

3. A beam of cast iron, 1 in. broad and 2 ins. deep, is tested upon supports
'

3 ft. apart, and shows a deflection of ^ in. under a central load of 1 ton.

Calculate the modulus E. (A.M.I.C.E.) Aiis. 5,832 tons per sq. in.

4. Suppose that three beams or planks, A, B, and C, of the same material

are laid side by side across a span L = 100 ins., and a load W = 600 lbs.

is laid across them at the centre of the span so that they all bend together.

The beams are all 6 ins. wide, but two are 3 ins. and one 6 ins. deep. What
will be the load carried by each beam, and what will be the extreme fibre

stress in each ? (A.M.I.C.E.)

Ans. 480 lbs., 60 lbs. ; 1,333 lbs. per sq. in., 667 lbs. per sq. in.

5. Calculate the least radius to which a 1 in. round bar of wrought iron

[E = 28 X 10^ lbs. per sq. in.l may be bent, in order that the skin stress
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may not exceed 15 tons per sq. in. What is then the moment of resistance

of the section? (A.M.I.C.E.) Ans. 34-7 ft. ; 1-47 in. tons.

6. A beam of uniformly rectangular section is supported freely at the

ends and carries a uniformly distributed load. Find the ratio of depth to

span so that when the maximum stress at the centre section due to bending

is 4 tons per sq. in,, the deflection at the centre is ^^^ of the span.

E = 12,000 tons per sq. in. (B.Sc. Lond.) Ans. Span = 24 X depth.

7. Find the greatest deflection in inches of a rectangular wooden beam
carrying a load of 2 tons at the centre of a span of 20 ft., with a limiting

intensity of stress of 1000 lbs. per sq. in. The depth of the beam is 14 ins.

Calculate the breadth. E = 6000 tons per sq. in. (A.M.I.C.E.)

Ans. ^ in. nearly ; 8'2 ins. wide.

8. A 16 in. X 6 in. x 62 lb. R.S.J, carries a load of 12 tons at quarter

span, the span being 24 ft. Find graphically the maximum deflection and

compare that calculated for the same beam with the load at the centre.

(I for this section = 725*7 in. units, E = 12,500 tons/in.^)

Ans. '46 in. ; "66 in. at centre.

9. A simply-supported beam of uniform section and 30 ft. span is found

to deflect 6 ins. under its own weight. Find the slope of the beam at the

supports and also the slope which would arise if the same deflection were

caused by a central load instead of a uniform one. Ans. '0533 ; '05.

10. A vertical post, 24 ft. in height, supports at its upper end a horizontal

arm projecting 6 ft. from the post. Find the horizontal and vertical

displacements of the free end of the horizontal arm when a load of 6000 lbs.

is suspended from it. E for post and arm = 28 X 10^ lbs. per sq. in.

;

I for post = 412, for arm = 360 (inch units). Neglect direct compression

of the post. (B.Sc. Lond.) Ans. Horizontal 1*55; vertical '85 in.

11. A cantilever of circular section is of constant diameter from the

fixed end to the middle, and of half that diameter from the middle to the

free end. Estimate the deflection at the free end due to a weight W there.

OQ WJ 73

Ans.
" — , where I is that at fixed end.
24 E I

12. A timber beam 30 ft. long and 12 ins. square in cross section rests

on a support at each end. If a load of 1 ton is placed in the centre of the

beam, find the work done in deflecting it. Ans. 705*6 in. lbs.

CHAPTER X

1. A cast-iron column has its ends securely built in. It is 12 ins. in

external diameter, and 18 ft. long. What total load could you place on

it if the factor of safety is 10, and the thickness of metal If ins. ? The

constant for the Gordon formula is ^u- (B.Sc. Lond.) Ans. 163 tons.

2. A mild steel strut, rectangular in cross section, the breadth being
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four times its thickness, is 9 ft. long, and has pin ends. Determine the

cross section for 24 tons, and a factor of safety of 5. Use Rankine's

formula, and take /,, = 67,000 lbs. per sq. in., and the constant ^^j^-^.

(B.Sc. Lond.)

3. Which would carry the heavier load for jBxed ends : {a) a solid mild-

steel column 9 ins. diam.
; (6) a built-up mild-steel stanchion consisting

of two 14x61 beams, at 8| ins. centres, with two 16 x |- in. plates each

side ? Length in each case 14 ft. A7is. The built-up one.

4. Discuss the formula of Gordon and Rankine in connection with the

buckling of struts of moderate lengths, and state its limiting conditions.

Four wrought-iron struts, rigidly held at the ends, all of section 1 in. X 1 in.,

and of lengths 15'0, 30'0, 60*0, and 90'0 ins. respectively, are found to

buckle under loads of 15'9, 11*3, 7*7, and 4'35 tons. Test whether these

satisfy the formula quoted, and, if so, find average values of the two

empirical constants involved. (B.Sc. Lond.)

5. A stanchion for a workshop has to carry a small stanchion 10 ft. long

from the roof which carries 5 tons, and also the girder for a 15-ton crane.

If the centre line of the roof load and crane girder are 13 ins. apart, design

a suitable section for the stanchion.

Ans. Two 10 ins. X 5 ins. X 30 I beams 13 ins. apart.

6. A hollow cylindrical steel strut has to be designed for the following

conditions. Length 6 ft., axial load 12 tons, ratio of internal to external

diameter == '8, factor of safety, 10. Determine the necessary external

diameter of the strut and thickness of the metal if the ends are securely

fixed in. Use Rankine's formula, taking/ = 21 tons per sq. in., constant

for rounded ends = y-V^ Ans. 4^ ins. diam. ; | in. thick.

7. A steel column is built up of two 10 X 3| ins. X 28'21 lbs. channel

sections placed 4| ins. apart, and two 12 X I in. plates at each end. If the

ends are pin-jointed, what would you consider a safe load on a length of

22 ft. ? Ans. 122 tons.

8. What would be the safe load on the column of Question 7 if the load

were 3 ins. out of centre ? Ans. 48*8 tons.

9. Find what thickness a hollow circular cast-iron column should have

for an axial load of 60 tons, the factor of safety being 8. The column is

20 ft. long and is securely fixed at each end. Ans. 2 ins.

CHAPTER XI

1. A shaft 3 ins. in diameter, running at 250 revolutions per minute,

transmits 50 H.P. Find the maximum stress and the twist of the shaft

in degrees in a length of 100 ft. Take G = 12 X 10« lbs. per sq. in.

Ans. 2,380 lbs. per sq. in. ; 28*5^
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2. A turbine is connected to a dynamo placed vertically above it by a

shaft, 2 ft. in diameter, made of steel plate | in. thick. Calculate the

diameter of solid shaft required to transmit the same power at the same
speed with the same maximum stress due to twist. Find the relative

weights. (A.M.I.C.E.) Ans. ISSQ i7is. diameter ; -304:1.

3. If a rod J in. in diameter and 20 ins. long is fixed at one end and

the other end is twisted through an angle of 15° relatively to it, what is

the unital strain in the outer fibres of the rod ? Ans. '00164.

4. A bar of iron, ^ in. diameter, is twisted to destruction. Calculate

what twisting movement is required for this purpose assuming that the

shearing stress becomes uniform over the whole section and equals in the

limit 19 tons per sq. in. (A.M.I.C.E.) Ans. '622 in. tons.

5. Through what angle will a 2| inch steel shaft be twisted if it is 80 ft.

long and the twisting movement is 19,000 in. lbs. ? Ans. 23° nearly,

6. If the end of a rod 1 in. in diameter is twisted by the turning effort

of a force of 80 lbs. acting at the end of a 12 in. lever, find the force which,

when applied to the end of the same lever, would twist equally a rod of

the same material, but of 1| ins. diameter and half the length.

Ans. 810 lbs.

7. A bar of mild steel 1 in. in diameter twists through an angle of

2*2 degrees in a 20 in. length when subjected to a torque of 2,200 in. lbs.

An exactly similar bar of the same material deflects "03 in. when loaded

at the centre of a 20 in. simply-supported span with a load of 264 lbs.

Calculate the value of Young's Modulus, Rigidity Modulus, Bulk Modulus

and Poisson's Ratio. (B.Sc. Lond.)

Ans. E = 29*88, G = 11*67, K = 32*62 million 'pounds per sq. in.

n = *28.

8. A shaft which runs at 135 revolutions per minute transmits 50 H.P.

and is subjected to a bending moment equal to *75 of the twisting moment.
What diameter of shaft is necessary on the principal stress theory ?

Ans. 2|- ins.

CHAPTER XII

1. A steel wire |- in. in diameter is coiled into a spiral spring 5 ins.

mean diameter. What weight could such a spring carry to produce a

maximum stress in the wire of 5 tons per sq. in. ? (A.M.I.C.E.)

Ans. 5*45 tons.

2. Find the pull required to cause a deflection of 1 in. in a closely-

wound helical spring of 2*5 in. mean diameter made of 120 turns of

J inch round wire, taking G = 12 X 10^ lbs. per sq. in. Ans. 3-| lbs.

3. A helical'spring of 3 ins. diameter is composed of 20 turns of steel

wire '258 in. diameter. If a load of 25 lbs. is hung on it what will the

deflection and maximum stress ? Ans. 3*18 ins. ; 5,560 lbs. per sq. in.
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4. A laminated spring composed of 20 plates each f in. thick and 2*95

ins. wide has a span of 3 ft. Find the deflection under a load of 5 tons

if E is 12,000 tons per sq. in. Ans. 2'37 ins.

5. How many plates f inch thick and 3 ins. broad, the largest being

30 ins. long, are required in a leaf spring whose maximum stress is to

be 30,000 lbs. per sq. in. with a load of 1 ton ? Ans. 8.

6. A steel clock spring J in. wide and -^ in. thick is wound on a spindle

fff in. in diameter. If the safe stress is 48,000 lbs. per sq. in. what is the

maximum moment available for driving the clock ?

Ans. 2 i/i. lbs. approx.

CHAPTER XV

1. A girder 100 ft. long is supported at each end and in the middle,

and carries a uniform load of 2 tons per ft. run. Draw the B.M. and

shear diagrams, and find the pressure on each support. (A.M.I.C.E.)

Alls. Max. B.M. 625 ft. tons.; reaction 37*5; 125; 37'5 tons.

2. A continuous girder consists of four spans, the two outer spans

are each 20 ft. long, and the two inner spans are each 4(> ft. long; the

girder carries a uniformly distributed load of H tons per ft. run. Find

(a) The reactions at each of the piers; (b) The bending moment and shear

at each of the piers ; (c) The position of the points of zero bending moment.

Sketch complete bending moment and shear diagrams for the girder.

(B.Sc. Lond.)

3. A balk of timber, 30 ft. long, rests on two end supports, and is

supported also by a prop which acts at a point 12 ft. from the left-hand

end. If the balk of timber carries (including its own weight) a load of

2 cwt. per ft. run, and if the tops of the three supports are level, determine

the reactions at the three supports, and the bending moment at the point

at which the prop is applied. Draw complete l^ending moment and shear

diagram. (B.Sc. Lond.)

4. A horizontal girder of uniform section 25 ft. lonL' is firmly fixed

at one end, and supported by a column at 18 ft, from the fixed end. The

girder carries a uniform load of 2 tons per ft. run of its length, and, in

addition, a concentrated load of 30 tons at 14 ft. from the fixed end.

When unloaded, the girder just touches, but does not exert any pressure

on the supporting colimin. Find the pressure on the column, and draw

bending moment and shearing force diagrams for the girder. (B.Sc.

Lond.)

5. A beam of 20 ft, span is built in at one end a, and is freely supported

at other end b. It carries a imiform load of h ton per ft. run, and a central

isolated load of 10 tons. Draw the bending moment diagram, first finding

the bending at end a, and show where the maximum intermediate bending

moment occurs. Draw also the shear diagram.
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6. A continued girder of 2 spans, 20 ft. and 10 ft., has an overhang

of 5 ft. from the smaller span. It carries a uniformly distributed load

of ^ ton per ft. run, and an isolated load of 1| tons at the free end (d).

Find the support moments, and draw the shear and B.M. diagrams.

Determine whether this arrangement is stronger than that in which the

support c comes below the point d.

Arts. Max. B.M. 16*77 ft. tons ; not so strong.

7. A beam of span I is fixed horizontally at both ends. Two equal

loads W are placed at equal distance h from the ends of the beam. Prove

that the greatest deflection of the beam is equal to—-—- (3 Z — 4 A), and^ ^
24 E I

^ ^

that the bending moment at the centre of the beam is equal to —-

—

V

(B.Sc. Lond.)

8. A beam of 20 ft. span is fixed at the end and carries a uniformly-

distributed load of 1 ton per ft. run from one abutment to the centre.

Find the end B.M.s. Ans. 10-4, 22*9 ft. tons.

9. In a continuous beam of three spans, the centre span is 72 ft. and
the end spans 36 ft. each. A dead load of ^ ton per ft. run covers the

whole span. Determine the support moments when a live load of 1 ton

per ft. run covers (a) the first span
; (6) the first two spans; (c) the whole

beam. Ans. (a) 243, 162; (6) 567, 486; (c) 547 ft. tons.

CHAPTER XVI

1. A C.I. beam has the following section: top flange, 4 x 1-| ins.;

web, 12 X If ins. ; bottom flange, 12x2 ins. The centroid of the

section is 5*5 ins. from the base of the bottom flange, and the moment
of inertia of the section about a line through its centroid, at right angles

to the depth, is 1200 ins.*. Draw a curve showing the intensity of shear

at all points of the section, and find the ratio of maximum to mean shear

stress. What proportion of shearing force is carried by the web ? (B.Sc.

Lond.

)

2. Find the greatest intensity of shear stress at a section of an I beam
at which the total shear is 15 tons; the overall depth is 8 ins. ; flanges,

6 ins. X -61 in.; web, -44 in. thick; I = 111-6 in.^. (B.Sc. Lond.)

3. Find the ratio of the maximum to the mean shear stress on the

section of a cast-iron beam of the following dimensions : Top flange,

2 X ^ ins.; bottom flange, 6x1^ ins.; web, 7x1 ins. Aiis. 2'46.

4. A beam of uniform rectangular section, 6 ins. broad by 12 ins. deep,

is supported at the ends, and has a span of 12 feet. It carries a uniformly

distributed load of 20 tons. At a point in the cross section, 4 feet from
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one end and 3 ins. vertically above the neutral axis, calculate the maximum
intensity of compressive stress. Ans. I'll tons per sq. in.

5. An I beam, 20 ins. deep, has flanges l^ ins. wide and 1 in.

thick, and a web If in. thick. Tlie greatest moment of inertia is 1,650

in. units and the total shear over the section is 80 tons. Show by a

diagram the intensity of shear stress at all points of the section.

(A.M.I.C.E.) Ans. Stress at N.A. — 8'44 tons per sq. in.

6. Allowing a bending stress of 1,500 lbs. per sq. in. and a shearing

stress with the grain of 120 lbs. per sq. in., what uniform load can be

carried by a timber beam 12 ins. deep, 3 ins. wide and of 12 ft. span ?

Ans. 5,760 lbs.

7. A plate girder 4 ft. deep over the 3|ins. X 3|ins. X |in. angles has

at each flange one plate 16 ins. x ^ in., the web being | in. thick. Find

the distribution of shear stress on a section at which the shearing force is

44 tons.

Ans. Stress at N.A. = I'Ql ; at junction of angle and web = 1*25;

just above = "481; at bottom of flange of angle = "348; just above = '014;

junction of angle and plate = '049 ton per sq. in.

CHAPTER XVII

1. Show on the Bach Theory that the maximum central concentrated

load that can be carried by a circular plate of given thickness is independent

of the radius of the plate.

2. What must be the thickness of a mild steel plate covering an opening

4 ft. square if the load is 200 lbs. per sq. ft. and the safe stress is 16,000 lbs.

per sq. in. ? Ans. '70 on the Bach Theory.

3. Prove that on the Bach Theory the uniform load that a square

plate of given thickness can carry is independent of the size of the plate.

4. A rectangular reinforced concrete slab 10 ft. by 15 ft. has to carry a

load of 300 lbs. per sq. ft. including its own weight. For what bending

moment would you design the reinforcement in each direction ?

Ans. 560,000 and 162,000 in. lbs. [Ranhine).

5. A cylinder end is 12 ins. in diameter and | in. thick. Compare the

maximum stresses on the Bach and Grashof theories if the steam pressure

is 100 lbs. per sq. in., the end being taken as freely supported.

Ans. 6,400 lbs. per sq. in. {Bach), 7,800 lbs. per sq. in. {Grashof).

CHAPTER XVIII

1. A solid steel gun has an inside diameter of 7'5 ins. and a thickness

of r75 ins. What is the greatest tensile stress carried by an explosion

pressure of 10,000 lbs. per sq. in. ? Ans. 27,300 lbs. per sq. in.
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2. What should be the external diameter of a gun whose internal diameter

is 3|- ins., if the explosion causes a pressure of 15,000 lbs. per sq. in. and the

allowable stress is 30,000 lbs. per sq. in. ? Ans. 5'63 ins.

3. A solid gun has an external diameter of 12 ins. and an internal diameter

of 6 ins. What inside pressure ^^dll cause a hoop tension of 30,000 lbs.

per sq. in. ? Ans. 18,000 lbs. per sq. in.

4. Find the safe internal pressure for an hydraulic press cylinder of

external diameter 7 ins. and internal diameter 5 ins., the maximum safe

stress being 3,000 lbs. per sq. in. Ans. 973 Ihs. per sq. in.

5. An hydraulic press has an external diameter of 16 ins. and an internal

diameter of 8 ins. If the pressure is 3 tons per sq. in., find the principal

stresses at the external and internal circumference.

Ans. External 0, 2 {tens.); internal 3 {comp.) 5 {tens.) tons per sq. in.

6. Find the equivalent tensile hoop stresses in the problem of the above

question if Poisson's ratio is — Ans. 5*86; 2 tons per sq. in.

7. Find the necessary thickness of a pipe of 8 ins. internal diameter

subjected to an internal pressure of 520 lbs. per sq. in. Adopt the maximum
strain theory taking tj = ^ and maximum tensile stress 10,000 lbs. per

sq. in. Ans. '22 in.

8. A tube whose internal and external radii are 2 and 3 ins. is hooped

so as to cause an initial hoop compression on the inside of 18,000 lbs. per

sq. in. What will be the tensile stress at the inside if the explosion causes

a pressure of 25,000 lbs. per sq. in. ? Ans. 29,000 lbs. per sq. in.

CHAPTERS XIX AND XX

1. Show that for a curved beam of rectangular section of depth d the

deviation of the neutral axis from the centre is given approximately by

, R being the radius of curvature of the centre line.
12 sx

2. A rectangular bar 1 in. wide and 2 ins. deep is bent to a radius of

4 ins. and is used as a hook. Find the maximum stress caused by a load

of 1,000 lbs. acting through the centre of curvature of the bar.

Ans. 7,700 lbs. per sq. in.

3. Find the maximum bending moments upon a chain link made of

f in. circular stock, the link being 5 ins. deep and 3 ins. broad. Treat the

ends as circular and the sides as straight. The load carried is 3,000 lbs.

Ans. 1,.300 in. lbs. ; 387 in. lbs.

4. Find the stress due to centrifugal force in the rim of a cast-iron

flywheel 8 ft. in diameter running at 160 revolutions per minute.

Ans. 437 lbs. per sq. in.
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5. A steel shaft is of 13*4 in. diameter and is 98 ft. long. Find its

critical speed when unloaded. Ans. 46 revolutions per minute.

6. Find the angular velocity at which whirling will start in an unloaded

steel shaft 3 ins. in diameter and 11 ft. long. Ans. 75 radians per second.

7. Find the whirling speed of a shaft carrying a central load of 1,170 lbs.

between swivelled bearings 7 ft. apart. The shaft is 3-J- ins. in diameter.

Ans. 725 revolutions per minute.



APPENDIX.

The following Tables give the properties of the British Standard

Sections which are usually listed by makers.
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BRITISH STANDARD SECTIONS.* (See Fig. A.)

Properties of British Standard I Beams.

Size \Vt.

per
1

foot r

Thickness

1

1

1

II
i

Moments of

Inertia

i

Section

Moduli
Radii of
(jyration

H. B.
1 I

1

1

I

/

ins.

T X XX vv
j

XX YY
1

XX
i

1

"1

ins.

YY

inches. lb. ins.
1

I

sq. ins.
^

ins. ins. ins. ins. ins.

3.x i| 4 •16 •248 i-i8 1-66 •124 I'll •165 I-I9 •325

3x3, 8| •20 •332 2-50 379 1-26 2-53 •841 1-23 710

4 X i| 5 •17 •240 1-47 3-67 •194 1-84 •222 1-58 •363

4x3;
1

9* •22 •336 2 -80 7-53 1-28 376 •854 1*64 •677

4|x if| 6| •18 ..23 1-91
'

677 •263 2-85 •300 1-88 •371

5 X 3 1

1

•22 •376 3-24
1

13-6 I "46 5*45 •974 2-05 •672

5 X 4i 18 •29 •448 5-29 227 5-66 9-08 2-51 2-07 1-03

6x3 12 •26 •348 3-53 20*2 I '34 674 •892 2*40 •616

6 X 4| 20 'Zl •431 5*88 347 5*41 11-6 2*40 2-43 •959

6x5 25 •41 •520 7-35 43*6 9-II 14-5 3*64 2*44 rii

7x4 16 '^-':> •387 471 39-2 3*41 I I -2 171 2-89 •851

8x4 18 •28 •402 5-30 557 3'57 13-9 179 3*24 •821

8x5 28 •35 •575 8-24 89-4 10-3 22'3 4-IO 3-29 1*12

8x6 35 •44 •597 10-3 II

I

17-9 27-6 5-98 3-28 1-32

9x4 21 •30 •460 6-i8 8i-i 4'20 i8-o 2*IO 3-62 •824

9x7 58 •55 •924 17T 230 46-3 51-1 13-2 3-67 1-65

10 X 5 30 •36 •552 8-82 146 978 29'I 3-91 4 "06 1-05

10 X 6 42 •40 •736 12-4 212 22*9 42-3 7-64 4-14 1-36

10 X 8 70 •60 •970 20'6 345 71-6 69*0 17-9 4-09 1-87

12x5 32 •35 •550 9-41 220 974 367 3-90 4-84 I -02

12x6 44 •40 •717 12*9 315 22 '3 52-6 7 "42 4*94 1-31

12x6 54 •50 •883 15-9 376 28-3 62-6 9 -43* 4-86 1-33

14x6 46 •40 •698 13*5 441 21 "6 62-9 7 -20 571 1-26

14x6 57 •50 •873 i6-8 553

"

27-9 76-2 9"3i 5-64 1-29

15 X 5 42 •42 •647 12-4 428 II -o 57-1 478 5-89 •983

15x6 59 •50 •880 17-3 629 28-2 83-9 9-40 6 '02 1-28

16 X 6 62 *55 •847 1 8-2 726 27-1 907 9*02 6-31 1-22

18 X 7 75

1

'55 •928 22*1 1
1
50 46-6 128 ^ys 7-22 I '45

20 X 7I 89
' -Go i-oi 26*2 1671 62-6 167 167 7 '99 1-55

24 X r\ 100 1
-60

1

lro7 29-4 2655 66-9 221 17-8 9-50 1-51

• Published by permission of the Engineeniig Standards Committee. The Tables of British

Standard I Beams, Channels, and Zed Bars are reprinted from Report No. 6 as issued by the Committee.
Additional calculations have been inserted in the Tables of British Standard Unequal Angles, Equal
Angles, and Tee Bars for thicknesses other than those calculated by the Coir'»iittee, such calculations

having been taken by permission from the Pocket Companion issued by Messrs. Dorman, Long & Co., Ltd.
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Properties of British Standard Channels.

Size

Standard
Thicknesses Weight

per
foot

Area

c

H

5

Moments of
Inertia

Section
Moduli

Radii of

Gyration

A X B
t T

1

About
XX

About
YY

About
XX

About
YY

About
XX

ins.

About
YY

ins. ins. ins. lbs. sq. ins. ins. ins. ins. ins. ins. ins.

15x4 •525 •630 41-94 12-334 •935 377-0 14-55 50-27 4-748 5-53 1-09

12x4 •525 •625 36-47 10727 I -03

1

218-2 13-65 36-36 4*599 4-51 I-13

I2X3i •500 •600 32-88 9-671 -867 190-7 8-922 31-79 3-389 4*44 -960

12x3^ •375 •500 26'IO 7-675 -860 158-6 7-572 26-44 2-868 4*55 993

11x3-2 •475 •575 29-82 8-771 •896 148-6 8-421 27-02 3-234 4-12 -980

10x4 •475 •575 30-16 8-871 I-I02 1307 12-02 26-14 4*147 3*84 I-16

10 X il •475 •575 28-21 8-296 933 117-9 8-194 23-59 3-192 3'77 *994

10x3^ •375 •500 23-55 6-925 •933 102-6 7-187 20-52 2 -800 3*85 I -02

9x3! •450 •550 25*39 7-469 -971 88-07 7-660 19-57 3-029 3*43 I -01

9x35 •375 •500 22-27 6-550 •976 79-90 6-963 17-76 2-759 3*49 1-03

9x3 •375 •437 19-37 5-696 •754 65-18 4-021 14-48 1-790 3*38 -840

8x3* •425 •525 22-72 6-682 I -Oil 63-76 7-067 15-94 2-839 3-09 1-03

8x3 •375 •500 I9-3C 5 '67 5 •844 53*43 4-329 13-36 2-008 3*07 'S73

7x3! •400 •500 20-23 5 "950 I -061 44-55 6-498 12-73 2-664 274 1*04

IX-:, •375 •475 17-56 5-166 -874 37-63 4-017 10-75 1-889 2-70 -882

6x3i •375 •475 17-9 5-266 1-119 29-66 5-907 9-885 2-481 2-36 1-06

6x3 •312 •437 14-49
1

4-261 -938 24-01 3-503 8-003 1-699 2-37 -907

Properties of British Standard Zed Bars.

Size

Standard
Thicknesses

Area
Weight

per

foot

Moments of Inertia Section Moduli
c~ in

c -a
<

1

"2

-5.2

4-1 >^A X B
/ T About

XX
About
YY

About
XX

About
YY

ins. ins. ins. sq. ins. lbs. ins. ins. ins. ins. ins.

10 X 3^ *475 •575 8-283 28-16 117-865 12-876 23-573 3-947 14 -839

9x3! -450 -550 7-449 25-33 87-889 12-418 19-531 3-792 i6i *843

8x31 -425 -525 6-670 22-68 63729 12*024 15-932 3-657 i9i -845

7x31 •400 -500 5-948 20-22 44-609 ii-6i8 12-745 3-521 23 -840

6X3^ •375 ;475 5-258 17-88 29-660 11-134 9-887 3-361 28i •821

5x3 •350 ^-450 4-169 14-17 16-145 6-578 6-458 2-328 29i -698
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Properties of British Standard Unequal Angles.

Size and Weight Dimensions Moments of

Inertia

Section

Moduli
-

Thickness
Area per 01 u.

>>

foot

J P About About About About <yXX Y Y XX

ins.

YY J °

ins. sq. ins. lb. ins. ins. ins. ins. ins. ins.

1 y^ }k^ i 5'o 17-00 2-50 -764 25-1 4-28 5-58 1-56 I4| -74

5) ?»

5
s 6'i72 20-98 2-55 •814 30-55 5-15 6-86 1-92 I4i -74

M ?1 1 7-313 24-86 2-60 •862 35-68 5-95 8-II 2-26 14 •73

6i X 4| X 1

2 5-248 17-84 2-08 1-09 22 "1 8-75 5-02 2-57 25 '97

11 11

5
8 6-482 22-04 2-13 I-14 27*09 10-60 6-20 3-15 25 -96

11 11

3
4 7-686 26-13 2-i8 I-19 31-66 12 -32 Ty:> 3-72 25 •96

6| X 3i X 3
8 3-610 12-27 2-22 -741 15-7 3-27 y(^i I-18 16^ '75

ii 11
J.
2 4-750 16-15 2-28 •792 20-4 4-20 4-83 1-55 16^ •75

j» 'J

5
s 5-860 19-92 2*33 -841 24-83 5-06 5-95 1-90 16 •74

6 X 4 X 3
s 3-610 12-27 I-9I •923 13-2 4-73 3-23 1-54 23i -87

11 j»

1

2 4-750 16-15 1-96 •974 17-1 6-10 4-23 2-02 23i •86

11 ii

5 5-860 19-92 2 -02 I -02 20-8 7-36 5-23 2-47 23I •86

6 X 3| X 3, 3-424 11-64 2-01 ll-':> 12-6 3-22 3-16 1-18 19 •76

" n
1 4-502 15-31 2-06 •823 16-4 4-14 4-16 1-55 19 •75

1' ?j

5
8 5-549 18-87 2-II •872 19-88 4-97 5-II 1-89 18^ •75

5! >' 3i X 3
S 3-236 1 I -00 1-80 -807 9-93 3-15 2-68 1-17 22 •76

M -5 \ 4-252 14-46 1-85 -857 12-80 4-05 3-51 i'53 22 •75

;5 11

5
8 5-236 17-80 1-90 -905 15-6 4-86 4 jj 1-87 21^ •75

5i X 3 X 3. 3-050 10-37 1-90 -662 9-45 2-02 2-62 •86 17 -64

J? ?>

1
2 4-003 13-61 1-95 -711 12-2 2-58 3 "44 1-13 16^ -64

?? V
5
8 4-925 16-74 2-00 -759 14-7 3-08 4-20 XV \b\ •63

5 X 4 X 3
8 3-236 II -oo 1-51 i-oi 7-96 4-53 2-28 1-52 32 -85

» 5? 4 4-252 14-46 1-56 1-06 10-3 5-82 2-99 1-98 32 •84

« 11

5
8 5-236 17-80 I -60 i-ii 12-4 7-OI 3-66 2-43 32 -83

5 X 3^ X 3
8 3-050 10-37 1-59 -848 7-64 3-09 2-24 I-I7 25^ •75

» 5>

1

2 4-003 13-61 1-64 •897 9-86 3-96 2-93 1-52 25i •75

)5 M
5
8 4-925 16-74 1-69 -944 II-9 4-75 3-60 1-86 25 •74

5 X 3 X Vb 2-402 8-17 1-66 •667 6-14 1-68 1-84 •72 20 •65

5) 5>

3
8 2-859

!
9-72 1-68 -693 7-24 1-97 2-i8 -85 i9i •65

)) V
1
2 3"749 12-75 742 9*33 2-51 2-85 i-ii 19^ •64

J: 35

5
8 4-609 15-67

1

1-78 •789 11-25 3-00 3-49 1-36 19 -64

590



Appendix,

Unequal Angles {continued).

Size and

Thickness

4^ X

ins.

1>\ X

4 X J 2

4 X X -\ 13

32 X

Z\ X 2;

8

\

2

5.

8

X 16

X 2.^ X

X 2

Area

I

I

{Weight

i

per

foot

sq. in.

2 "402

2-S59

3749

4*609

2'246

2'67i

3 '499

4-295

2*091

2-485

3-251

3-985

I '934

2*298

3-001

3*673

1-799

2*111

2-752

1-312

1*921

2^ X

2 X

)» 2 2-499

X I 1*187

?)

3
6 ^'733

55

1
2 2*249

2 X 1

4 1*063

55 I'e 1*309

V s 1*547

li X 1% -622

51

1

4 •814

55 I'fi
•997

lb.

8-17

9-72

12*75

15*67

7*64

9*o8

11*90

14*61

7*11

8*45

11*05

13-55

6-58

7-8i

10-20

12*49

6-05

7-18

9-36

4-46

O DO

8*50

4*04

5-89

7-65

3-6i

4-45

5*26

2*11

2*77

3-39

Dimensions

ins.

-36

-39

-44

-48

*i6

ins.

*866

*89i

-940

•987

-915

Moments of

Inertia

About
X X

1*19 •941

1*24 •990

1-28 1*04

1*24 •746

1*27 *77i

1*31 *8i9

1*36 *865

1*04 *792

1*07 *8i9

I*II -867

1*16 -912

1*12 *627

1*15 *652

1-20 -699

•895 *648

-945 -6,7

•992 -744

-976 -482

1*03, •532

1*07 *578

'774 -527

•799 •552

•823 •575

•627 •381

-653 •407

*678 -431

ins.

4*22

5-69

7*31

8*8r

3-46

4*08

5-23

6-28

3*31

3-89

4-98

5-96

2*27

2*67

3-40

4*05

2*15

2*52

3-20

1*14

I -62

2-05

I -06

1*50

1-89

636

-770

•895

-240

•308

•369

About
Y Y

ms.

2*55

3*00

3-84

4*61

2*47

2*90

371

4-44

1*59

1-87

2*37

2*83

1-53

1*80

2*28

2*71

•910

I -06

1-34

*7i6

1*02

1-28

'373

*525

*656

•359

•433

•502

*ii5

'1 46

-174

Section

Moduli

About
X X

ins.

1-54

1-83

2-39

2-92

1*22

1-45

1-89

2*31

1*20

1-42

1-85

2-26

*92

1*10

1*42

i-73

-90

I -07

-39

-54

-79

1*02

•52

•76

-98

'37

*45

-53

•17

•23

About
Y Y

*97

1-15

1*5

1*83

-96

1*13

1*48

1-80

•71

•84

I -09

1*33

•69

-83

1*07

1-30

-49

•57

•74

*39

-57

'73

-25

-36

-46

•24

•30

•35

•10

*i3

•16

c
•—

{/I

o f

302

3oh

30

30

37

37

37

3H
28^

28^

28^

28

35i

3Sh

35i

35

26|

26

26

34

34

33h

23*

23

22.^

32

3ii

31I

28^

28

28

'-5.2

ft: 2

»^
QJ <^

J °

ins.

*74

-74

*74

•74

*72

*72

•71

•71

-64

-64

*63

63

*62

*62

•61

*6i

•54

*53

*53

•52

-52

•52

*43

*42

-42

•42

•42

•42

•32

591



Appendix.

British Standard Equal Angles.

Sizes Area
Weight
per foot

T
J

1

!

1

Section

Modulus
about X X

Least
Radius of

Gyration

ins. sq. ins. lb. ins. ins.

1

ins.

I

ins.

8 X 8 X i 775 26-35 2-15 47'4 8-IO 1-58

8 X 8 X 5. 9-61 32-67 2-20
1

58-2 10-03 ^'11

8 X 8 X 3
4 11-44 38-89 2-25 68-5 11-91 1-56

6 X 6 X
I'S"

5-06 17-21 1-64 17*3 3*97 I-18

6 X 6 X 5
S 7-II 24-18 1-71 23-8 5-55 I-18

6 X 6 X 3
4 8-44 28-70 1-76 27-8 6-56 I-I7

5 X 5 X 3
S 3-6i 12*27 1-37 8-51 2-24 '98

5 X 5 X 1 475 16-15 1-42 I i-o 3-07 •98

5 X 5 X 5
S 5-86 19-92 1-47 13-4 3-80 -98

4ix 4ix 3
S'

3'24 I I -oo 1 -22 6-14 1-87 -88

4|x 45 X 1

2 4-25 14-46 1-29 7-92 2-47 -87

45 X 45 X 5.

S 5-24 17-80 I '34 9-56 3-03 '^1

4 X 4 X 3
S

2-86 972 1-12 4-26 1-48 78

4 X 4 X 1 375 12-75 I-I7 5-46 1-93
:

'17

4 X 4 X 5
S 4-6i 15-67 I -22 6-56 2-36 •77

35 X 3^x
"t'«

2*09 7-II •97 2-39 '95 -68

3ix 3ix 3
&

2-48 8-45 I "OO 2-80 1*12 •68

35 X 3^x 1

2 3-25 11-05 1-05 3'57 1-46
:

-68

35 X 3l X 5
S 3-98 i3'55 1-09 4-27 177 -68

3 X 3 X 1

4 1-44 4-90 •827 I-2I •56 •59

3 X 3 X 3
8 2'II 7-18 •877 1-72 -81 •58

3 X 3 X 1

2 275 9-36 -924 2-19 1-05 •58

3 X 3 X 5 3-36 11-43 •970 2-59 1-28 -58

l\ X 2^ ><:
1

4-
I-I9 4-04 703 677 •38

,

•48

2^ X l\ X
t''«

1-46 4-98 •728 -822 •46
,

•48

2^X 2^X 3
8 173 5-89 752 -962 '55 •48

2| X 2^ X 1 2-25 7-65 799 I-2I -71 •48

2^X 2\ X 16 •809 275 •616 •378 •23 •44

2f X 2} X 1

4 I '06 3-6i •643 •489 •30 •44

2^X 2|X IB i'3i 4-45 -668 •592 •^:>7 •43

2r X 2|X 3
S i'55 5-26 •692 •686 •44 •43

592



Appendix.

British Standard Equal Angles (continued).

Sizes Area
WViifht

per

foot
J I.XX

Section

Modulus
about X X

Least
Radius of
Gyration

ins. sq. ins. lb. in. in. in. in.

2 X 2 X i« 715 2-43 •554 •260 -18 •39

2 X 2 X 1

4 -938 3*19 •581 •336 •24 •39

2 X 2 X tV I-I5 3-92 •605 •401 •29 •38

2 X 2 X 3
s

1-36 4-62 •629 •467 •34 •38

ifx i|x .'5

.1«
•622 2-II •495 •172 •U •34

ijx i^x 1
4 -814 2-77 •520 •220 •]8 •34

i|x if X 5
16 •997 3*39 •544 •264 •22 •34

I^X I^ X IG •526 179 •434 •105 •10 •29

[*X I^X 1

4
•686 2-33 -458 •134 •13 •29

i|x 4x "16 •839 2-85 -482 •159 •16 -29

I4-X IjX 16 •433 1-47 •371 •058 •07 •24

I^X \\ X 1

4 •561 1-91 •396 •073 -C9 •23

British Standard Tees.

SizfS Area Weight
per foot J

Moments of
Inertia

Section Moduli Radii of Gyration

XX YY

ins.

XX YY XX YY

ins. sq ins. lb. ins. ins. ins. ins. ins. ins.

6 X 4 X 3
s 3-634 12-36 -915 4-70 6*34 1-52 2-II I-I4 1-32

6 X 4 X 1
2 4-771 l6-22 -968 6-07 8-62 2-00 2-87 I-13 1-34

6 X 4 X 5
s 5-878 19-99 I -02 7*35 10-91 2-47 3-64 I -

1 2 1-36

6 X 3 X 8
3-260 II -08 •633 2 -06 6*39 -87 2-13 -795 1-40

6 X 3 X \ 4-272 14-53 •684 2-63 8-65 I-14 2-88 -785 1-42

6 X 3 X 5
S 5-256 17-87 •732 3*14 10-94 1-39 3-65 'ir:> 1-44

5 X 4 X 8 3-257 11-07 -998 4'47 3-69 1-49 1-48 I-I7 I -06

5 X 4 X 1 4-268 14-51 1-05 5*77 5-02 1-96 2-01 I-I6 1-08

5 X 3 X 3
8 2-875 9-78 •691 1-97 3*71 -85 1-49 -828 1-14

5 X 3 X 1

2 3762 12-79 -741 2-52 5-03 i-ii 2-01 -818 1-16

4 X 4 X 3
8 2-872 9-77 l-II 4-19 1-90 1-45 •95 I-2I -814

4 X 4 X 1

2 3758 12-78 i-i6 5-40 2-59 1-90 1-29 I -20 •830

4 X 3 X 5. 2-498 8-49 •767 1-86 1-91 •83 -96 -863 -875

4 X 3 X h 3-262 11-08 -816 2-30 2-60 1-08 1-30 -851 -893

QQ 593



Appendix.

British Standard Tees (confiniied).

Sizes

1

Area
j

Weight
per 1

foot
]

J

Moments of

Inertia
Section Moduli Radii of Gyratioa

1

XX YY XX YY XX YY

:ti3. sq. ins. lbs. ins. I'lS. 1 05. ins. ins. ins sns.

3i X 3| X f 2-496 8*49 -98 2*79 1*28 no 'IZ 1*05 •717

3? X 3^ X ^ 3-259 11*08 1*04 3-54 1-75 1-44 I'OO 1*04 •733

3 X3 xf 2*121 7*21 •868 1*70 *8i6 *8o -54 •897 •620

3 X3 x^ 2*760 9-38 *9i8 2*16 i*ii 1*04 •74 *886 *636

3 X2|xf 1*929 6*56 •695 i-oi •814 -56 •54 •725 650

3 X2^X^ 2*506 8*52 •742 1-28 1*12
'l?i •74 •713 •665

2^ X 2^ X ^ I-I97 4-07 •697 •677 *302 •38 •24 -752 *502

2^ X 2| X -T% 1-474 5*01 •724 •832 •387 •46 •31 •747 *5I2

2^ X 2|x f 1*742 5*92 •750 -959 •473 -55 •38 •742 •521

2ix 2^X^ 1*071 3-64 •638 *488 *224 -30 •20 675 •457

2^X2^X1 1-554 5-28 *689 *685 •349 •44 31 *664 •474

2 X 2 X J •947 3*22 •579 'lyi •157 •24 •16 -597 -407

2 X2 xf 1*367 4*64 •628 •469 •246 •34 25- •5S6 •424

1^X2 X J •820 2*79 *648 •307 •068 -23 *o9 •612 *288

I4X2 X-,% 1*003 3-41 •674 •369 *oS8 *28 •12 607 •296

ifx i|x^ *820 2*79 -519 *22I •107 •18 •12 •520 •361

i|xi|Xi% -999 3-40 •544 •265 •137 •22 *i6 515 •370

i^x iix^% -531 1*81 -435 *io6 *048 •ID *o6 •447 •301

I^X T^X^ *692

1

2-35

1

•460 •135 *o67 -.3 *o9 •442 •312

.^94



MATHEMATICAL TABLES 595

Angle
Chord. Sine.

1

Tangent. Co-tangent.

1

Cosine.

i

De-
grees

Radians.

0^ X 1 1-414 1^5708 90'

1
•>

3

0175
•0349

•0524

•0698

•017

•035

•052

•070

•0175

•0349

•0523

•0698

•0175

•0349

0524
•0699

57-2900
28-6363
19-0811
14-3007

-9998

-9994

j

-9986

-9976

1-402

1-389
1-377

1-364

1"5533
1-5359

1-5184
1-5010

89
88
87
86

5 •0873 •087 •0872 •0875 11-4301
i

-9962 1-351 1-4835 85

6

7

8

9

•1047

•1222

•1396

•1571

•105

•122

•140

•157

•1045

•1219

•1392

•1564

•1051

•1228

•1405

•1584

9-5144
8-1443
7-1154
6-3138

-9945

,
-9925

•9903

-9877

1-338
1-325

1-312

1-299

1-4661
1-4486
1-4312

1-4137

84
83
82
81

10 •1745 •174 •1736 •1763 5-6713 •9848 1-286 1-3963 80

11
12
13
li

•1920
•2094

•2269

•2443

•192

•209

•226

•244

•1908

•2079

•2250

•2419

•1944

•2126

•2309

•2493

5-1446
4-7046
4-3315
4-0108

-9816

-9781

-9744

-9703

1-272

1-259

1-245

1-231

1-3788

1-3614
1-3439
1-3265

79
78
77
76

15 •2618 •261 •2588 •2679 3-7321 •9659 1-218 1-3090 75

16

17
18
19

•2793

•2967

•3142

•3316

•278

•296

•313

•330

•2756

•2924

•3090

•3256

•2867

•3057

•3249

•3443

3-4874
3-2709
3-0777
2^9042

-9613

-9563

-9511

•9455

1-204
1-190

1-176

1-161

1-2915
1-2741

1-2566

1-2392

74
73
72
71-

20 •3491 •347 •3420 •3640 2^7475 •9397 1-147 1-2217 70

21

22

23
24

•3665

•3840

•4014
•4189

•364

•382

•399

•416

•3584

•3746

•3907

•4067

•3839

•4040

•4245

•4452

2-6051

2-4751
2-3559

2-2460

1

•9336

-9272

-9205

•9135

1-133
1-118

1-104
1-089

1-2043

1-1868

1-1694
1-1519

69

68

67
66

25 •4363 •433 •4226 •4663 2-1445 •9063 1-075 1-1345 65

26
27
28

29

•4538

•4n2
•4887

•5061

•450

•467

•484

•501

•4384

•4540

•4695

•4848

•4877
•5095

•5317

•5543

2-0503
1-9626
1-8807

1-8040

•8988

•8910

•8829

•8746

1-060

1-045
1-030

1-015

1-1170
1-0996
1-0821
1-0647

64
63
62
61

30 •5236 •518 •5000 •5774 1-7321 •8660 1-000 1-0472 60

31
32
33
34

•5411

•5585

•5760

•5934

•534

•551

•568

•585

•5150

•5299

•5446

•5592

•6009

•6249

•6494

•6745

1-6643
1-6003

1-5399
1-4826

•8572

•8480
•8387

•8290

•985

•970

•954

•939 '

1-0297
1-0123
-9948

-9774

59
58

57
56

35 •6109 •601 •5736 •7002 1-4281 •8192 •923 -9599 55

36
37
38
39

6283
•6458

•6632

•6807

•618

•635

•651

•668

•5878

•6018

•6157

•6293

•7265

•7536

•7813

•8098

1-3764
1-3270
1-2799

1-2349

•8090

•7986

•7880

•7771

•908

•892

•877

•861

-9425

•9250

•9076

-8901

54
53
52

51

40 •6981 •684 •6428 •8391 1-1918 •7660 •845 -8727 50

41
42
43
44

•7156

•7330
•7505

•7679

•700

•717

•733

•749

•6561

•6691

•6820

•6947

•8693

•9004
•9325

•9657

1-1504
1-1106
1-0724
1-0355

•7547

•7431

•7314

•7193

•829

•813

•797

•781

•8552

•8378

•8203

•8029

49
48
47
46

45- •7854 •765 •7071 1-0000 1-0000 •7071 •765 •7854 45

Cosine Co-tangent Tangent Sine Chord Radians Degrees

Ang'le



596 MATHEMATICAL TABLES

Logarithms

1 2 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9

10

11

12

13

14

UCKXJ 0043 0086

I

0128 0170
0212 0253 0294 0334 0374

4 9 13 17
4 8 12 16

21

20
26 30 34 38
24 28 32 37

0411 0453 0492 0531 0569
0607 0645

1

0682 0719
4 8 12 15

0755 4 7 11 15
19

19
23 27 31 35
22 26 30 33

0792

1139

0828 0864 0899 0934 0969 1

1004 1038 1072 1106
Is 7 11 14

1
3 7 10 14

18

17
21 25 28 32
20 24 27 31

1173 1206 1239 1271

1303 1335 1367 1399 1430
3 7 10 13
3 7 10 12

16

16
20 23 26 30
19 22 25 29

14G1 1492 1523 1553
1584

1
1614 1644 1673 1703 1732

3 6 9 12
3 6 9 12

15
15

18 21 24 28
17 20 23 26

15

16

1761 1790 1818 1847 1875

1

1903

1931 1959 1987 2014
3 6 9 11

3 5 8 11
14
14

.

.

17 20 23 26
16 19 22 25

•2011 2068 2095 2122 2148 1

2175
1
2201 2227 2253 2279

3 5 8 11

3 5 8 10
14
13

16 19 22 24
15 18 21 23

17

18

2301

2553

2330 2355 2380 2405
1
2430

1
2455 2480 2504 2529

3 5 8 10
2 5 7 10

13
12

15 18 20 23
15 17 19 22

2577
I

2601 2625 2648
f

1
2672 2695 2718 2742 2765

2 5 7 9

2 5 7 9

12
1
14 16 19 21

11 14 16 18 21

19

20

2788 2810 2833 2856 2878
1

1
2900 2923 2945 2967 2989

2 4 7 9 11
2 4 6 8 11

13 16 18 20
13 15 17 19

3010 3032 3054 3075 3096
1
3118 3139 3160 3181 3201 2 4 6 8 11 1 13 15 17 19

21
22
23
2i

3222 3243 3263
3424 3444 3464
3617 3636 ' 3655
3802 3820 3838

3284
3483
3674
3856

3304
J
3324

3502 3522
3692

I
3711

3874
1
3892

3345
3541
3729
3909

3365
3560
3747
392-7

3385
3579
3766
3945
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Abrupt change of section, 56, 90
Adams's experiments on marble,

42
Adhesion between concrete and

steel, 80
Alignment charts for springs, 342
Aluminium, 62
Andrews-Pearson formula for

curved beams, 545
Areas

—

mathematical determination,

161

Parmontier's rule, 164
Simpson's rule, 164
sum curves, 162
table of various sections, 185

Arnold's testing machine, 399
Autographic recorders, 379
Avery's reverse torsion machine,

385

Bach on plates and slabs, 488-509
Bairstow, 59, 88
Baker, B.

—

abrupt change of section ex-

periments, 56
repetitions of stress, 86

Basquin, 307
Bauschinger on strength of stone,

72
Beam factor, 197

Beams. See Bending moments;
deflections ; inclined beams

;

shear; stresses, bending.

Bending moments

—

cantilevers, 122-127
continuous beams, 430-458
fixed beams, 414-438, 458
simply supported beams, 127-

160
Bernoulli's assumption, 194
Bolts, coupling, 311

Brinell hardness test, 402

Buckton testing machines, 364,

368, 381

Built-in beams, 416-438, 458
Bouton experiments on compres-

sion, 47
Bracing of columns, 294
Brass, 62, 83
Brittleness, 41

Bronze, 62, 83
Buchanan on columns, 287
Buckling factor, 279
Bulk modulus, 7

Cantilevers, 122-127
Cast iron, 49, 209, 305
Centroid, 165
Chain links, 546-551
Cleat, stresses in rivets, 315
Coker

—

thermal and optical testing,

409, 411

torsion testing, 388
Collapsing pressure for pipes,

118
Columns

—

centrally loaded, 279-301
eccentrically loaded, 301-310

Compressive strength, see various

materials.

Concrete

—

compressive strength, 69-77, 82

reinforced, 215-235, 292, 479
shear strength, 78
tensile strength, 77

Considere, 42
Continuous beams, 438-458
Critical speed of shafts, 562-569
Curvature of beams, 250
Curved beams

—

Andrews-Pearson formula, 545
correction coefficients, 543
general conditions of strain, 529
Resal's construction, 538

601
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Ctirved beams {continued)—
rings and chain links, 546
Winkler's formula, 533

Cylinders, see Pipes.

Darwin's extensometer, 376
Deflections

—

beams, simply supported and
cantilever, 248-278

fixed beams, 419, 420, 460
shear, due to, 483

Diagonal square beam section,

210
Disks, rotating, 552-562
Distribution of shear stress in

beams, 470-487
Dixon and Hummel testing

machine, 368
Drums, rotating, 552
Ductility, 41

Dunkerley on whirling of shafts,

568
Dynamic stress and strain, 33
Dyson on internal friction, 47

Eden on stress repetition, 89
Elastic bodies, 1

Elastic moduli, 7

relation between, 8

Ellipse

—

of inertia, 169
of stress, 15

Elongation and gauge length, 54
Encastre beams, 416^38, 458
Euler's column formula, 280, 306
Ewing's extensometer, 374

Failure, cause of, 42
Fairbaim, 84, 119
Fatigue of metals, 89
Fidler column formula, 289
Filon on optical testing, 415
Fitchett, F., on springs, 343
Fixed beams, 416-438, 458
Flitched beams, 203
Foster on stress rej)etition, 89

Gadd on cement tests, 408
Glass, 83
Goodenough on chain links, 551

Goodman extensometer, 371
Gordon column formula, 288
Grashof on plates and slabs, 494

Greenwood and Batley testing
machine, 367

Grips for test-pieces, 370
Guest theory of stress, 44, 328

Hardness, 41, 402
Hartnell, W., on springs, 341
Heterogeneous sections

—

direct stress, 38
geometrical properties, 183

Hooke's Law, 2
Horse-power of shafting, 323, 335
Hysteresis, mechanical, 59, 89

Illinois experiments, 119, 297, 551
Impact, strain and stress due to, 35
Impact testing, 400
Inclined beams, 155-160
Inertia, moment of, 169-191
Internal friction in materials, 45
Izod

—

exjjeriments on shear, 64, 67
impact testing machine, 401

Johnson

—

column formula, 288
eccentric loading, 309

Kennedy's extensometer, 372
Keyways in shafting, 334

Lame's theory for thick pipes, 510
Lilly-
column formula, 290
torsion testing machine, 386

Live loads, 100
Liider's Lines, 54

Macklow-Smith torsion meter, 392
Malleability, 41

Malleable cast iron, 51

Modulus

—

elastic, 7

section, 197
Mohr, 181, 252
Moment of inertia, 167-191

Moment of resistance, 196, 213, 222
Momental ellipse, 167

Moore, 297, 334, 551
Morley, 3

on columns, 310
on curved beams, 545
on slabs, 494

Muir on overstrain, !59



INDEX 603

Navier internal friction theory, 45
Non-circular shafts, 333

Oblique loading on beams, 241
Overstrain, 57

Permanent set, 1

Perry, 70, 192
Pipes and cylinders

—

collapse of, 118
initial pressure in, 524
Lame's theory, 510
shear stresses in, 51

6

thick, 510-538
thin, 115

Piston rings, 355
Plastic bodies, 1

Plates

—

Bach theory, 488^93, 499-509
circular, 488
Grashof and Rankine, 494
oval, 492
square and rectangular, 494

Poisson's ratio, 3
Polar moment of inertia, 173
Portland cement, strength of, 68-

79, 404
Principal stresses, 13

Quality factor, 62

Radius of gyration,' 169-191
Rankine

—

column formula, 285
combined stress theory, 43,

320
slab formula, 494
stress lines, 213

Reinforced concrete

—

beams, 215-235
columns, 292
shear in beams, 479

Repetition of stress, 84
Resal's construction, 538
Resilience

—

definition, 33
in bending, 272
in torsion, 331
summary for various springs,

363
Rigidity modulus, 7
Rings, 546
Riveted joints, 102-115

Rotating drums and disks, 550-
562

Rotating shafts, 562-569

St. Venant, 44, 328, 333
Sankey bending machine, 396
Scoble on optical testing, 404
Secondroid, 168
Section modulus, 197
Shaft coupling, stresses in, 311

Shafting, stresses in, 316-335
Shear

—

diagrams for cantilevers, 122-

127
diagrams for simply supported

beams, 127-160
diagrams, steps in, 144
strain and stress, 3

stress and strain equivalent to

complex stresses, 19, 30
stress in beams, 470

Shrinkage stresses in pipes, 525
Slabs, see Plates.

Slate, 83
Slenderness ratio, 279
Smith, C. A. M., 48, 517
Smith, J. H., repetition testing

machine, 392
Smith, R. H., construction for

combined stresses, 23
Springs

—

closed-coiled helical, 337, 362
leaf on plate, 351
open-coiled helical, 346
piston rings, 355
plane spiral, 360
summary, 363
time of vibration, 337

Stanchions, see Columns.
Stewart on collapse of pipes,

119
Stone, compressive strength, 68,

82
Straight line column formula, 287
Strain

—

definition and kinds, 1-3

in different directions, 12

maximum strain equivalent to

combined strains, 25
transverse, 3

Stress

—

bending, 192-247
cause of failure under, 42
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Stress (continued)—
combined bending and direct,

235-240, 328
complex, 13
definitions and kinds, 1-3

dynamic, 33
ellipse of, 15
impact, 35
principal, 13, 19

repetition of, 84
shear, 3, 212
shear in beams, 470
temperature, 37
working, 93-100

Stress-strain diagrams, 5, 49, 53,

60, 62, 65
Struts, see Columns.
Sum curve, 162
Superposition, principle of, 244

T beams, reinforced concrete, 229
Temperature stresses, 37

effect on strength, 63
Tensile strength, real and appar-

ent, 52
of materials, see various ma-

terials.

Testing

—

calibration of machines, 369
cement and concrete, 404
extensometers, 371-380
grips and forms of test- pieces,

370
impact, hardness and ductility,

396
machines (general), 364-369

Testing (contimied)—
optical, 411
thermal, 409
torsion machines, 382-393

Theorem of three moments, 445
Thick pipes, see Pipes.

Thurston testing machine, 383-
386

Timber, 65, 82
Torsion, 311-335
Turbine shaft, settling down, 564
Twisting, 311-335

Unit section modulus, 197
Unital strain, 3
Unwin

—

elongation formula, 55
extensometer, 379
on piston rings, 359
on stone cubes, 70

Waist in tensile fracture, 54, 56
Werder testing machine, 366
Whirling of shafts, 562-569
Wicksteed-Buckton testing-ma-

chines, 364, 368, 381

Winkler's formula for curved
beams, 533

Wohjer's experiments, 84
Woo

J
son experiments on concrete,

43
Working stresses, 93-99
Wrought iron, 82

Yield point, 4
Young's Modulus, 7
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