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There is a new associative learning paradox. The power of

associative learning for producing flexible behaviour in non-

human animals is downplayed or ignored by researchers in

animal cognition, whereas artificial intelligence research shows

that associative learning models can beat humans in chess. One

phenomenon in which associative learning often is ruled out as

an explanation for animal behaviour is flexible planning.

However, planning studies have been criticized and questions

have been raised regarding both methodological validity and

interpretations of results. Due to the power of associative

learning and the uncertainty of what causes planning

behaviour in non-human animals, I explored what associative

learning can do for planning. A previously published sequence

learning model which combines Pavlovian and instrumental

conditioning was used to simulate two planning studies,

namely Mulcahy & Call 2006 ‘Apes save tools for future use.’

Science 312, 1038–1040 and Kabadayi & Osvath 2017 ‘Ravens

parallel great apes in flexible planning for tool-use and

bartering.’ Science 357, 202–204. Simulations show that

behaviour matching current definitions of flexible planning can

emerge through associative learning. Through conditioned

reinforcement, the learning model gives rise to planning

behaviour by learning that a behaviour towards a current

stimulus will produce high value food at a later stage; it can

make decisions about future states not within current sensory

scope. The simulations tracked key patterns both between and

within studies. It is concluded that one cannot rule out that

these studies of flexible planning in apes and corvids can be

completely accounted for by associative learning. Future

empirical studies of flexible planning in non-human animals

can benefit from theoretical developments within artificial

intelligence and animal learning.
1. Introduction
To the amazement of the world, associative learning models used in

artificial intelligence (AI) research now achieve human level skills in

video games [1] and beat human masters in the Chinese board game
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Go [2], chess and shogi [3]. Despite the fact that associative learning within AI research is acknowledged for

producing human-like behaviour, associative learning is often either not mentioned (e.g. [4–8]), or perceived

as unwanted or of insufficient sophistication (e.g. [9–14]) to provide explanations for flexible behaviour in

non-human animals. It is an intriguing paradox that associative learning is acknowledged for producing

complex flexible behaviour within AI research, but is often dismissed and neglected as a model for flexible

behaviour in biological systems (both humans and non-human animals).

Whether the development of behaviour sequences in non-human animals can be understood in terms of

associative learning or not has far-reaching consequences for our understanding of the study of behaviour.

If behaviour perceived as advanced or complex, such as chimpanzee (Pan troglodytes) tool use, can develop

through associative processes, species differences can be sought in terms of genetic differences in behaviour

repertoires, exploratory tendencies such as curiosity, and motivational and attentional factors. If associative

processes do not suffice to account for how information is processed and memories are updated to generate

behaviour, then alternative mechanisms must be identified for us to understand how such behaviour

develops. Today researchers have very contrasting views on this issue. On the one side, some suggest

that associative processes, together with factors such as behaviour repertoire size and exploration are

powerful and can explain a great deal of how animals acquire behaviour (e.g. [15–19]). By contrast,

others emphasize alternative mechanisms and propose that animals have many different mechanisms

that solve different specific problems and that these mechanisms are fine-tuned by evolution (e.g.

[4,10,20]). Not all studies fall into these two categories and some studies test alternative explanations and

control for associative learning. However, it is common that such studies assume only the simplest forms

of associative learning. This is likely to result in false rejections of associative learning hypotheses. This is

because most vertebrates and invertebrates exhibit capacities for both instrumental and Pavlovian

learning [21,22], that together with specialized memories [23] make most animals capable of more

complex learning than what the simplest forms of associative learning allow.

The aim of this study was to explore if a learning model [19], similar to reinforcement learning used in

AI research, can help us understand the acquisition of planning behaviour in corvids and apes,

behaviours sometimes perceived as complex and human-like. It has been concluded that several

species plan flexibly for the future, not unlike humans (e.g. [24–28]). The idea is that this kind of

planning is an outcome of a flexible mental mechanism that can simulate, mentally, different future

states from current information. However, these claims have been contested based on at least two

different lines of arguments. First, researchers have raised doubts concerning birds’ general capacity to

plan because planning studies in birds typically involve caching specialists performing caching tasks,

such as scrub jays (Aphelocoma californica), Eurasian jays (Garrulus glandarius) and black-capped

chickadees (Poecile atricapillus) [27,29,30]. These results may be caused by specialized memory

repertoires (cf. [23]). The second reason for rejecting the idea that non-human animals plan flexibly is

that observed behaviour was not caused by human-like planning, but is best understood as results of

associative learning, and that methodological shortcomings render these studies equivocal [31–34].

Why would an associative learning model be useful for understanding future oriented behaviour?

Associative learning is well known for causing anticipatory behaviours, behaviours that can predict

later meaningful events without immediate benefits [22,35]. Furthermore, self control, often mentioned

as important for planning [28,36], can arise through associative learning [19]. It might be assumed

that self-control is not possible through associative learning because immediately rewarded behaviour

should always be preferred to non-rewarding behaviour. But, for many animals ‘wait’ or ‘stalk’ are

behaviours that can be reinforced when followed by later possibilities for rewards. For example,

predators learn stalking and waiting skills when they are young [37,38].

The model used here is an associative learning model capable of learning optimal behaviour in a

complex world [19]. The model includes two different memories and a decision-making mechanism.

One memory stores the associative strength of performing behaviour B towards stimulus S, and the

other memory stores the estimated value of stimulus S. The model can learn behaviour sequences by

linking single behaviours together through conditioned reinforcement (secondary reinforcement). This

way, initially neutral stimuli that precede primary reinforcers can themselves become reinforcers,

thereby modifying previously unrewarded behaviour [39–41]. For example, a clicker trained rabbit

has heard clicks repeatedly prior to food rewards. For this rabbit, a click becomes rewarding in itself

and the rabbit will learn to perform behaviours that only result in the rabbit hearing a click [42]. The

model is further explained in the Material and methods section below.

Here I test the hypothesis that an associative learning model can account for results found in non-

human planning studies. The learning model was used to simulate the outcomes of two planning

studies, one with orangutans (Pongo pygmaeus) and bonobos (Pan paniscus) [24] and one with ravens
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(Corvus corax) [28]. The simulations were found to track key patterns within and between these studies. It

is concluded that one cannot rule out that studies of flexible planning in apes and corvids can be

accounted for by associative learning. Therefore, associative learning cannot only produce human-like

behaviour (e.g. [1,2]) but is a candidate explanation for observations of planning and self-control in

non-human animals.

2. Material and methods
Here I describe our learning model [19], the logic of the two different studies that were used for the

simulations, and details of the simulations.

2.1. A description of the model
An animal has a behaviour repertoire and it can use its behaviours to navigate in a world of detectable

environmental states. A behaviour takes the animal from one state to another. Each state, or stimuli, has a

primary reinforcement value that is genetically fixed. These values can be negative, neutral or positive,

and they guide learning so that behaviours favouring survival and reproduction are promoted. Animals

are assumed to make choices that maximize the total value, and expectations of the value of a future state

can develop [section 2.3. in 19]. The model can thus generate goal-directed behaviour (see [35, p. 32] for

another discussion of goal-directed behaviour and learning).

In short, the model describes the learning of sequences of behaviour towards stimuli through changes

in memory. It includes decision-making that takes memory into account to determine what behaviour

should be selected when a given stimulus is perceived. Take for instance learning a single behaviour,

such as when a dog learns to give its paw in response to the command ‘shake’. Lifting the paw is

the behaviour, the command ’shake’ and the reward are stimuli. The event sequence to be learned is:

command ‘shake’ ! lift paw ! reward, or

Scommand ‘shake0 ! Blift paw ! Sfood reward

The model collects information about the value of performing behaviours towards different stimuli

(or states), and information about the value of different stimuli (or being in specific states) [19].

Learning occurs through updates of two different kinds of memories. These memories correspond to

Pavlovian and instrumental learning and are updated after an event sequence like in the dog example,

or in general terms the event sequence S! B! S0. The first kind of memory is a stimulus–response

association. We used vS!B to denote the associative strength between stimulus S and behaviour B. In

functional terms, vS!B can be described as the estimated value of performing behaviour B when

perceiving stimulus S. The second memory stores the value of a stimulus. We used wS to denote this

stimulus value and it is updated according to the value of a subsequent stimulus. In other words, wS

is the conditioned reinforcement value of being in state S. These memories are updated according to

DvS!B ¼ av(uS0 þ wS0 � vS!B)

and DwS ¼ aw(uS0 þ wS0 � wS)

)
(2:1)

after experiencing the event sequence S! B! S0. The stimulus–response association vS!B is updated

according to uS0 a primary inborn fixed value of stimulus S0, and wS0 the conditioned reinforcement value

and the previously stored stimulus–response association vS!B. With conditioned reinforcement, the

value of performing behaviour B when perceiving stimulus S is the sum of the primary and conditioned

reinforcement value of stimulus S0. If only the first equation is used and w is excluded, then it represents

instrumental stimulus–response learning, that is an instrumental version of the classic Rescorla–Wagner

learning model [43,44]. The learning ratesav andaw determine the rate at which memory updates take place.

For the learning model to generate and select behaviour, a mechanism for decision-making is needed.

We used a decision-making mechanism that selects behavioural responses and causes some variation in

behaviour through exploration. This specifies the probability of behaviour B in state S as

Pr (S! B) ¼ exp (bvS!B)P
B0 exp (bvS!B0 )

, (2:2)

which includes a parameter b that regulates the amount of exploration. All behaviours are equally likely

to be selected if b ¼ 0 without taking estimated values into account. If b is large, then the behaviour with

the highest estimated value (v) will mainly be selected.
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Let us return to the dog for a practical example. The dog hears the command ‘shake’, stimulus S. If

the dog moves its paw upwards, that is performing behaviour B, it will receive the reward S0. The food

reward S0 has a primary inborn value u. When the dog receives this reward after having responded

correctly to the command ‘shake’, the stimulus–response memory vcommand ‘shake0!lift paw will increase

according to the top row in equation (2.1). In addition, the stimulus value w of the command ‘shake’

will be updated according to the bottom row of equation (2.1). This value w of command ’shake’ will

approach the value u of the food reward, and thereby gain reinforcing properties in its own right; it

has become a conditioned reinforcer. The conditioned reinforcer can pave the way for learning more

behaviours before moving the paw upwards. This can happen because behaviours that result in the

dog hearing the command ‘shake’ can be reinforced.

2.2. Simulating planning studies on great apes and ravens
The simulations of the planning experiments were based on detailed descriptions of the course of events

in the two studies where key events were identified. Key events included what behaviours were trained

before the tests and towards what objects, and what outcomes resulted from different choices during

pretraining and tests. It is important to identify details in these studies [24,28], because test phases

included a mix of rewarding and non-rewarding actions. Therefore, both stimulus–response (v) and

stimulus values (w) were expected to change throughout the tests.

To both make the simulations possible and realistic, it was assumed that the animals entered these

studies with some necessary everyday skills. It was assumed that the animals had, for example,

previously learned to hold objects, how to move between rooms and compartments, where different

things were located, and some basic skills regarding how to interact with the experimenters. The apes

were for instance ushered out of the test room after choices to later be allowed back into the test

room. By ignoring such everyday skills, the simulations and the behaviour descriptions were focused

on the unique behaviour sequences the animals had to learn as part of the experiments.

The two studies [24,28] share key features. Before testing started, animals were subjected to

pretraining. Here they learned to perform behaviours later scored as correct. Apart from the

pretraining of correct behaviours, the raven study [28] also included extinction training. During

extinction training, the ravens had the chance to learn that non-functional objects did not result in

rewards. The key events in both studies used for scoring correct vs. incorrect choices were forced

choice tests. Here the animals were forced to choose between one object they had previously learned

could result in a reward, versus other objects that could not be used for later rewards (distractor

objects). The ravens learned during extinction training that these distractor objects could not result in

rewards. After the forced choice both studies included a time delay of some time, after which the

animals were allowed to perform a behaviour using the previously chosen object. If an animal made a

correct choice before the delay, it could later use its chosen object to get a reward. If an animal made

an incorrect choice before the delay there were no opportunities for rewarding behaviours after the delay.

The simulations performed followed the pretraining phase and test phase of the studies. Comparisons

are made with chance levels of correct choices set by the two studies. Mulcahy & Call [24] expected the

apes to choose the correct by chance 25% of the times (one functional object and three distractor objects).

Kabadayi & Osvath [28] expected the ravens to by chance make 25% correct choices in experiments 1 and

2, and 20% correct choices in experiment 3 and 4 (one functional object and three distractor objects in

experiments 1 and 2, and 1 functional object, 1 small reward and three distractor objects in

experiments 3 and 4). See simulation scripts for exact descriptions (see electronic supplementary

material). To make it easier to follow the simulations here are in-depth descriptions of the two studies.

2.3. A description of Mulcahy and Call’s study on great apes
These tests were performed with orangutans and bonobos [24]. The study started with pretraining. Here

an animal was placed in a test room and trained on two different tool tasks to get a reward from an

apparatus. These functional tools will be referred to as functional objects. One task was to choose a

tube and insert this tube into an apparatus. The other task was to choose a hook and use this to reach

a bottle that could not be reached without having the hook. After pretraining, the animal was

subjected to a forced choice test between functional objects and three corresponding non-functional

objects (later referred to as distractor objects). But during this forced choice, access to the apparatus

containing a reward was blocked. After the choice was made, the animal was ushered away from the

test room into a waiting room. Objects not taken by the animal were now cleared from the test room.
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At this point, there was a delay. After the delay the animal was again allowed into the test room and

given access to the apparatus. If a functional object had been chosen in the forced choice test, the

animal could now use the object to get a reward, thereby exhibiting the behaviour it had learned

during pretraining.

This study included four tests that were slightly different. Tests varied with respect to what tool was

the functional object and the duration of delays. In addition, in the last test, the animals did not have to

use the tool to get a reward. Note that here, in experiment 4, two new individuals were used and they did

not take part in experiments 1, 2 or 3. This last part was of little importance here for reasons mentioned in

the Results section. The simulations followed the logic of the study, and here are the details of the key

events and delays used in the simulation:

Pretraining: Before tests, all subjects learned to use the functional tools. In two steps, a minimum of three

plus eight pretraining trials were allowed for the tube task and a minimum of five pretraining trials

were allowed for the hook task.

Experiment 1, tube condition: (1) Forced choice with functional tube and distractor objects (16 trials). (2)

After choice go to another room. (3) Wait 1 h. (4) Return and if functional tube had been chosen this

could be used to get a reward.

Experiment 2, tube condition: (1) Forced choice with functional tube and distractor objects (12 trials). (2)

After choice go to another room. (3) Wait 14 h. (4) Return and if functional tube had been chosen this

could be used to get a reward.

Experiment 3, hook condition: (1) Forced choice with functional hook and distractor objects (16 trials). (2)

After choice go to another room. (3) Wait 1 h. (4) Return and if functional hook had been chosen this

could be used to get a reward.

Experiment 4, hook condition: (1) Forced choice with functional hook and distractor objects (16 trials). (2)

After choice go to another room. (3) Wait 1 h. (4) Return and if functional hook had been chosen a

reward was received without using the hook.

The behaviour sequences to learn were the following:

Tube condition: Stube! Btake tube! Sapparatus! Buse tube! Sreward

Hook condition: Shook! Btake hook! Sapparatus! Buse hook! Sreward

In both conditions, the apes were never rewarded for choosing the distractor objects, or:

Distractors: Sdistractor! Btake distractor! Sno reward

2.4. A description of Kabadayi & Osvath’s study on ravens
These tests were performed with ravens [28]. This study started with pretraining. Here an animal was placed

in a test room and trained on two different tool tasks to get a reward from an apparatus. As above, functional

tools will be referred to as functional objects. One task was to put a stone in an apparatus to get a reward. The

other task was to take a bottle cap (called token) and give it to a human. In contrast with the study on apes,

before the tests started the ravens were also allowed extinction trials. Here an animal was allowed to interact

with the objects that would be present during the forced choice tests, but that could never be used to get

rewards (later referred to as distractor objects). After pretraining, the animal was subjected to a forced

choice test between a functional object and three distractor objects. After a choice was made, the animal

was not allowed to use the functional object for some time. In other words, no reward could be collected

immediately after the choice test (with the exception of experiment 4). At this point, there was a delay.

After the delay, the animal was allowed to use its chosen object. If a functional object had been chosen in

the forced choice test, the animal could now use that object to get a reward, thereby exhibiting the

behaviour it had learned during pretraining.

This study also included four tests that were slightly different. Tests varied with respect to the number of

trials, the duration of delays, and in the last test, the animals did not have to wait before using a functional

object to get a reward. It should be noted that in this study, two different rewards were used. One high value

reward was used in pretraining and in all experiments. And in experiments 3 and 4, a known reward of little

value was used in the forced choice situation alongside the functional tool and the distractor objects.

Note that the experiments were not performed in the same order as they were numbered in the

published study. I have chosen to present the tests in the temporal order in which they were performed
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(1,3,2,4). The simulations followed the logic of the study, and here are the details of the key events used in the

simulation: the key events before and during the experiments were:

Pretraining: Before tests, all subjects learned to use the functional tools. In two steps, a minimum of three

plus five pretraining trials were allowed for the tool task and 35 pretraining trials were allowed for the

token task.

Extinction trials: In this phase, subjects were allowed to manipulate distractor objects for 5 min without

receiving any rewards.

Experiment 1: (1) Forced choice with functional object and distractor objects. 14 trials in tool condition

and 12 � 3 trials in token condition. (2) Wait 15 min. (3) Chosen object can be used again, and if

the stone or token had been chosen it could be used to get a reward.

Experiment 3: (1) Forced choice with functional object, small reward and distractor objects. 14 trials in

tool condition and 14 trials in token condition. (2) Wait 15 min. (3) Chosen object can be used

again, and if the stone or token had been chosen it could be used to get a reward.

Experiment 2: (1) Forced choice with functional object and distractor objects. 6 trials in tool condition and

6 trials in token condition. (2) Wait 17 h. (3) Chosen object can be used again, and if the stone or token

had been chosen it could be used to get a reward.

Experiment 4: (1) Forced choice with functional object, small reward, and distractor objects. 14 trials in

tool condition and 14 trials in token condition. (2). If the stone or token had been chosen it could

be used to get a reward.

The behaviour sequences to learn were the following:

Tool condition: Stool! Btake tool! Sapparatus! Buse tool! Sreward

Token condition: Stoken! Btake token! Shuman! Bgive token! Sreward

The ravens were also taught during an extinction phase that it was never rewarding choosing or using

distractor objects. This was also the case during all tests, or:

Distractors: Sdistractor! Btake distractor! Sno reward

In the self-control phases of the study, the ravens had the opportunity to choose a small reward that was

presented alongside the functional object (tool or token) and the distractor objects. Therefore, in

experiments 3 and 4, these behaviour sequences were also possible:

Tool condition: Sdog kibble! Btake small reward! Ssmall reward

Token condition: Sdog kibble! Btake small reward! Ssmall reward

2.5. Illustration of memory updates during pretraining
To illustrate how these behaviour sequences are affected by learning, here is an example of memory

updates for pretraining in the raven study. The behaviour sequence that developed during pretraining

can be described as Stool! Btake tool! Sapparatus! Buse tool! Sreward where the value of inserting the

stone into the apparatus increased, so that vSapparatus ! Buse tool
� 0. As the model also includes

conditioned reinforcement, the value of the stone itself is updated according to the value of the

following stimulus, the large reward. With repeated experiences, the stimulus value (w) of Sreward will

cause the stimulus value of Stool to grow. As shown in our description of this model [19], with

enough experiences the value of the tool will approximate the value of the large reward. By contrast,

the extinction trials with repeated unrewarded experiences of the three distractor objects can be

described as Sdistractor! Bpick distractor! Sno reward. This event sequence will cause a reduction in both

the associative strength of choosing a distractor vSdistractor ! Bpick distractor
and the conditioned reinforcement

value (wdistractor) of the distractor. When the first test starts with a forced choice, the ravens’ behaviour

was influenced by the pretraining with both the stone and the distractors.

2.6. Simulation details
The model above was incorporated in a Python program where learning occurred according to the

detailed procedures of the two studies, as defined above, to get estimates of probabilities of choosing

the different stimuli, and v- and w-values, throughout the studies. Two kinds of simulations were run.
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First simulations with the full model were run, and then simulations without stimulus values (w), that is

only allowing our version of stimulus–response learning using only the first row in equation (2.1)

together with decision-making (equation (2.2)). This was done to explore differences between our

model that includes conditioned reinforcement [19] and a version of stimulus–response learning alone

[43,44]. That version of stimulus–response learning is identical to the classic Rescorla–Wagner

learning rule but in [19] we considered it in terms of an instrumental instead of a Pavlovian setting.

To account for delays, one time step per minute was included in the simulation at times of delay.

During these time steps, only a background stimulus was experienced. This is not very important for

the sake of memory updates because both stimulus–response and stimulus value memories are long-

term memories. That animals remember stimulus–response associations and stimulus values for a

very long time was not mentioned in either of the simulated studies [19].

The same learning parameters were used in all simulations. All behaviours started with an initial

stimulus–response value v ¼ 1, both v- and w-values were updated with learning rate a ¼ 0.2, exploration

was set to b ¼ 1, and rewards were set to u ¼ 6 apart from the low value rewards in experiments 3 and 4

in Kabadayi & Osvath [28] that were set to u ¼ 2. Behaviour cost for all behaviours was 0.1 apart from

passive responses that were set to 0 (see information for all behaviours and stimulus elements included in

simulations in the electronic supplementary material). All simulations were run for 500 subjects and the

number of trials followed approximately that of the experiments. That the number of trials did not

perfectly match the empirical studies was due to the probabilistic nature of the decision-making equation.

The lack of information of initial values of the animals makes exact quantitative comparisons difficult.

Although both the ravens and the apes had rich backgrounds, previously learned behaviour was ignored

and initial values were assumed to be the same for distractor objects and functional objects. To be

conservative, all associative strengths between behaviours and stimuli were assumed to be equal at the

start of the simulations. Kabadayi & Osvath [28] did not calibrate the preferences of ravens with respect to

the value of the two different food rewards, so there is no quantitative information about the differences

between the rewards available. They stated in the method that the high quality food reward was both

larger and more attractive. Exact information about the amount of extinction was lacking from the raven

study, therefore it was assumed that the ravens had five extinction experiences with the distractors.

The behaviours and stimulus elements used in the simulations were as follows:

2.6.1. Behaviours

Mulcahy & Call Tube: take tube, use tube, take distractor, being passive

Mulcahy & Call Hook: take hook, use hook, take distractor, being passive

Kabadayi & Osvath Tool: take tool, use tool, take distractor, being passive, take small reward

Kabadayi & Osvath Token: take token, use token, take distractor, being passive, take small reward

2.6.2. Stimulus elements

Mulcahy & Call Tube: background, tube, tube task, distractor, reward

Mulcahy & Call Hook: background, hook, hook task, distractor, reward

Kabadayi & Osvath Tool: background, tool, apparatus, distractor, reward, small reward

Kabadayi & Osvath Token: background, token, human, distractor, reward, small reward

2.7. Data from the empirical studies
To compare the simulation results with the empirical data from the two studies [24,28], averages were

calculated from the available data in the two respective studies (see figures in Results). This resulted in

the average proportion of correct and incorrect choices in the forced choice tests. Note that experiment 4

in the ape study did not involve any correct behaviour using the tool upon returning to the apparatus

after the delay, making this experiment difficult to interpret. In addition, data on choices for experiment

4 were not available in the text, therefore data from [24, fig. S2] was used for that data point. It is

unfortunate to mix data this way but I chose this in favour of leaving data from experiment 4 out.
3. Results
Overall, the simulations matched the results of both the raven and the great ape study. The simulations

show how two factors together can contribute to the future directed behaviour exhibited by the great
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Figure 1. Results from empirical (dots) and simulation (lines) data showing the proportion of correct responses to functional objects,
and for the raven study the simulated proportion of responses to small rewards (dashed lines). Bonobos and orangutans are in the
top panel and ravens in the bottom panel. For the apes, choosing the tube was correct in experiments 1 and 2 (left line), and
choosing a hook was the correct choice in experiments 3 and 4 (right line). Note that the X-axis of the top panel is broken,
because experiment 4 was done with new individuals that only experienced pretraining prior to the experiment. For the ravens,
the correct choice in the first half of the experiment was a tool (left line). A token was the correct choice in the second part
of the experiment (right line). Horizontal lines are expected chance levels of correct choices during test phases (i.e. tube, hook,
tool and token, respectively). Empirical data are averages of data from the end of each respective phase in the two studies
[24,28]. Bonobo and raven graphics were downloaded from openclipart.org.
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apes and ravens. First, conditioned reinforcement values of functional objects, established through

pretraining and extinction, were capable of driving initial correct choices. This is shown in figure 1

where the proportion of correct choices is shown. Second, correct choices were rewarded throughout
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the studies, apart from experiment 4 in the ape experiment [24]. That the use of functional objects was

rewarding throughout was sufficient for driving performance well above chance levels (figure 1). In

the raven study, rewards delivered during the experiment account well for the near perfect

performance in the two final parts of that study.

The fit was good between the empirical tests (shown as filled circles in figure 1) and simulations in

that functional objects were more likely to be chosen than the distractor objects. The simulations also

followed the general trends in that performance increased in the great ape study during experiments 1

and 2 and that performance was reduced in experiment 3. Although the simulations underestimated

the performance in the tool condition of the raven study, the simulations followed closely the pattern

in that performance was high in experiment 1, decreased in experiment 3 to reach nearly perfect

performance in experiment 4. One reason for the simulation to have a lower success rate in the tool

condition could be that the ravens were well trained and had rich backgrounds that are helpful in test

situations. These birds were raised by humans and interact regularly with humans. They are also

familiar with many different objects, experimental set-ups and rewards. By contrast, the simulations

started assuming no previous knowledge. There was a close match between the simulations and the

empirical data for the token condition, but the reduction in performance during experiment 3 was

greater in the empirical data.

The simulations also captured that the great apes exhibited an overall lower success rate than the

ravens did. At least two factors could have contributed to this difference. The apes experienced less

pretraining than the ravens and, in contrast to the ravens, the apes were not allowed extinction

training with the distractor objects prior to testing. This is shown in figure 1 where the probability of

choosing the correct object is much higher at the start of experiment 1 in the raven study as compared

with the ape study. That a lot of pretraining trials (35 in the token condition) combined with

extinction trials can result in high performance in the forced choices is most clearly shown in the

token condition of the raven study. Here the simulation tracked the observed high success rate closely.

Pretraining and extinction training did not only influence the likelihood of making correct decisions.

Simulations reveal how pretraining and extinction also affect the proportion of choosing the incorrect

objects, such as small rewards (figure 1). The effect of pretraining and extinction was most pronounced

in the token condition of the raven study where the simulation suggests that the likelihood that the

ravens should choose the small rewards over the functional objects was close to zero. The large amount

of rewarding experiences with the functional objects (tool and token) resulted in large conditioned

reinforcement values for these objects (figure 2). The simulations corroborated the pattern that ravens

did not choose small rewards instead of functional objects, and that self-control is expected to emerge

from associative learning.

The growth of stimulus–response values and stimulus values are shown in the top panel of figure 2.

Note that experiment 4 in the great ape study matches the simulations the least. Here two new apes

were allowed to get the reward without using the previously functional tool and they returned with a

correct tool 2 of 16 times, lower than in the simulation. This difference between empirical test and

simulation could be reduced by increasing the cost of the behaviour. Increasing the cost of a behaviour

that does not lead to a reward will lead to a reduction in performing the behaviour. But it is unclear

what to expect from the animals in this situation when the apes face a situation with a less clear

connection between a tool and a reward. And two of the four apes never attempted to solve the

problem. To conclude, it is difficult to judge the precision and meaning of that data point (see [32, p. 922]).

The simulations also show the differences between associative learning models of different

complexity. The limits of our version of stimulus–response learning [43,44] become obvious when

compared with simulations using our learning model that incorporates both Pavlovian and

instrumental learning [19]. In stimulus–response learning alone, behaviour sequences where a

behaviour is not immediately followed by a reward cannot be learned (figure 2). For behaviour

sequences to develop, stimuli more than one step before the reward need to become rewarding

through conditioned reinforcement. When a previously neutral stimulus acquires a positive w-value,

that is it becomes rewarding, it can drive the acquisition of positive v-values for behaviours that do

not result in immediate rewards (top panel in figure 2). When comparing our model that can learn

sequences of behaviour with the instrumental version of the Rescorla–Wagner model, it is clear that

the probability of choosing the correct stimulus will not increase if only stimulus–response learning is

allowed (figure 2). In addition, as v-values are only updated by the immediate reinforcer in stimulus–

response learning, this also has the consequence that the small reward will be chosen in favour of the

token and the tool, as the token and the tool cannot become valuable stimuli. This is shown in figure

2 as the incorrect choice of small rewards increases across trials when only our version of stimulus–
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response learning is allowed (marked with R–W in figure 2). Stimulus–response learning alone could

not account for the results in neither the raven nor the ape study.
4. Discussion
Simulations of the two planning studies on ravens and great apes suggest that behaviour previously claimed

to have been generated by flexible planning [24,28] can be accounted for by associative learning. As shown

in artificial intelligence research and animal behaviour research, these models of associative learning are

powerful in generating flexible behaviour sequences [1,19,45]. Therefore, the conclusion drawn in both

the raven and great ape studies [24,28], that ravens and apes solve these problems by a specific flexible

mechanism, has little support. Simulations performed here support critics that interpreted these results

as consequences of associative learning [33,34]. If future studies aim at distinguishing associative

processes from other kinds of mental mechanisms, they would benefit from improved experimental

design including proper controls taking advantage of state-of-the-art learning models.

It was interesting to note that the simulations captured the difference between the study on ravens [28]

and great apes [24]. This suggests that the simulations captured well the effects of pretraining-, extinction

phases and rewards throughout the studies. High conditioned reinforcement values (w-values) for the

correct objects (tool and token) and low values for the distractor objects were established before the first

tests (figure 2). This was especially obvious in the token part of the raven experiment where the ravens

were subjected to 35 pretraining trials where the behaviour sequence Stoken! Btake token! Shuman! Bgive

token! Sreward was consistently rewarded (lower panel, figure 1).
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Another important factor for the positive results in the raven and great ape studies was that choosing

the correct objects were rewarded throughout the tests. This maintained high v- and w-values for correct

behaviours and correct objects, respectively. This also explains why the ravens neglected the small

reward when presented together with the functional objects (figure 1). The functional objects led to

rewards repeatedly throughout the study so they had acquired high stimulus values. As long as these

values are higher than the value of the small reward, these functional objects will be chosen most of

the time. However, with only stimulus–response learning—only allowing the updates of v-values as

in the Rescorla–Wagner model—the small reward will be chosen because this model lacks

conditioned reinforcement (figure 2). If one wants to avoid learning during tests, there are benefits

with carrying out tests under extinction, as for instance in outcome revaluation studies (e.g. [46,47]).

This way tests can reveal the consequences of prior experimental manipulations.

The results support the idea that self-control emerged through associative learning. We have previously

shown how animals can, through associative learning, acquire self-control, given they are provided enough

information and experiences [19, §2.3]. Kabadayi & Osvath [28] did not define self-control, but in a previous

study [48] they defined it as ‘[ . . . ] the suppression of immediate drives in favour of delayed rewards’. This

functional view of self-control fits many descriptions of behaviour in the animal behaviour literature.

Observations of animals learning to reject small rewards when expecting large rewards, or in other

words reject unprofitable prey when profitable prey are abundant, come from for instance fish (bluegill

sunfish Lepomis macrochirus, [49]), crustaceans (shore crabs, Carcinus maenas, [50], and birds (great tits

Parus major, [51] and redshanks Tringa totanus, [52]). These kinds of studies have to a large degree been

ignored in studies where self-control is often studied as a separate kind of mental mechanism and not

something that is subject to learning (e.g. [6,28,48]). Instead, in the light of these simulations, previous

studies of self-control within animal cognition research (as e.g. [48]) may best be understood as being

caused by learning including conditioned reinforcement [31].

Theoretically, self-control can develop in more than one way. Self-control can emerge through the

acquisition of high conditioned reinforcement values for the functional objects. The functional object

becomes more valuable than a small reward. But self-control can also emerge if for example ‘wait’ is

considered as a behaviour in its own right. In this case, self-control can emerge through an increased

v-value for ‘wait’ in the presence of a particular stimulus. Self-control in hunting cats might emerge

through high v-values for waiting when subjected to a prey that is far away. More research is needed

to better understand how different aspects of learning mechanisms interact to give rise to patterns of

self-control. Genetic predispositions are likely to play a large role and interact with stimulus–response

associations and stimulus values.

Another important result was that the difference between the ravens’ performance in experiment 3 and

experiment 4 was captured by the simulations. The reason for the perfect performance in experiment 4 in

both the raven study and the simulation was that the delay between choice and behaviour resulting in

reward was omitted. Instead, there was an opportunity to use the object to collect a reward right after the

forced choice. For this reason, every trial led potentially directly to rewards whereas choosing the correct

object in experiment 3 was only rewarded after the delay. Or in other words, in experiments 1–3, the

ravens could only get a reward every second time they chose the correct object, whereas in experiment 4

they got rewards every time and immediately after having chosen and used the functional item.

One similarity between our learning model and some reinforcement learning models in AI is that

these mechanisms allow agents and animals to identify world states that are valuable, and what

behaviours are productive in these valuable states. In an operational sense, these learning models

generate planning when a behaviour (put in apparatus or give to human) towards a stimulus (stone

or token) will produce high value food at a later stage. This happens despite the fact that the food (or

another rewarding stimulus) is absent. Osvath & Kabadayi [53], in a reply to critics [33], defined

flexible planning as ‘making decisions about futures outside one’s current sensory scope in domains

for which one is not predisposed’. Irrespective of whether models come from AI [54] or animal

behaviour [19], when conditioned reinforcement is included in learning models, planning behaviours

that match this definition will emerge through the clever interplay of stimulus–response values and

stimulus values. The key is that currently available stimuli can provide information about what

behaviours should be performed to enter future valuable states. However, these learning models

cannot simulate different outcomes mentally, they cannot travel mentally in time, nor reorganize

information internally. To paraphrase Roberts [55], non-human animals can be ‘stuck in time’, while

still exhibiting planning behaviour.

Mulcahy & Call [24] attempted to rule out instrumental conditioning as an explanation for the

behaviour of the apes by performing experiment 4. This phase was similar to experiment 3, but the
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apes were not rewarded for using the functional tool. Instead of an ape entering the room with a

functional tool that could be used to get a reward (as in experiment 3), an ape entered the room and

found a reward if it had carried the functional tool to the test room from the waiting room. It was

argued that if the apes performed better in the other experiments than in this one, it would suggest

that the apes planned flexibly. Mulcahy & Call concluded their results ‘represent a genuine case of

future planning’. A devil’s advocate could identify differences between experiments 3 and 4,

rendering learning a more likely explanation. In experiment 3, the apes were explicitly rewarded for

using the tool. This results in a high conditioned reinforcement value for the tool and a high

stimulus–response value for using the tool on the apparatus. In experiment 4, however, Mulcahy &

Call point out that there was a longer time between picking the tool up in the waiting room, carrying

the tool to the test room, to subsequently get a reward without using the tool. Perhaps the low

performance in experiment 4 was caused by the unclear connection between the tool and the reward,

as the delay inhibits the acquisition of picking up the tool to later receive a reward. Proper control

conditions are important to enable the rejection of hypotheses unambiguously (e.g. recent discussions

in [56,57]). Our learning model can be used in future research to analyse such behavioural differences

caused by variation in learning contingencies.

The simulations show that the ape study [24] and raven study [28] can be understood through

associative learning. However, results from experiments with caching specialists [58,59], probably

dependent upon genetic specializations [27,29,30], are currently beyond the scope of our learning model.

Caching behaviour and feeding behaviour involve different motivational states in animals [60].

Motivational states can be regarded as internal stimuli and readily integrated in an associative learning

model, which would result in increased flexibility in terms of making foraging and caching decisions.

Our model does not include different motivational states in its current state, but we have given

examples of how genetic predispositions can be integrated with the model [19, table 2]. One possible

solution would be to introduce context-dependence, so that exploration is different for different external

stimuli and/or for different internal states. Importantly, when making assumptions about more flexible

mental mechanisms, the higher costs of exploration that are incurred by increased flexibility need to be

taken into account (see [19, §3.3]). We expect that evolution has fine-tuned genetic predispositions that

together with associative learning generate productive and species-specific behaviours.

Another important point for future studies is that when animals learn about consequences of

behaviour, and stimulus–response values and stimulus values are updated, these are long-term

memories (e.g. [61–63], see also [40]). A raven trained to give tokens to a human does not simply

forget how to do this one day later. Behaviourally, the tool condition of the raven study is identical to

when dog owners teach furry friends to ‘clean up’ by putting toys in a designated basket. Instead of

the raven being rewarded for putting a stone in an apparatus, a dog gets a reward for putting a toy

in a basket. Such long-term memories that are updated through associative learning are very different

from the short-term memory of arbitrary stimuli [23].

In conclusion, the development of associative learning models is impressive in AI research and

models have proven powerful in generating complex behaviour. One can ask why these powerful

models are not more widely applied to non-human animal behaviour and why these models are

underestimated as a cause of flexible behaviour in non-human animals. This is especially relevant

given that research in animal cognition where non-human animals are claimed to have insights,

exhibit causal reasoning, and the plan is criticized on a regular basis for suffering from grand claims

based on a weak methodology (e.g. [31,64–70]). One way to solve this associative learning paradox is

by integrating the fields of AI, animal learning, and animal cognition [71]. To understand mechanisms

generating behaviour, formal bottom-up associative models are likely to be more illuminating than

verbal top-down ‘higher-order’ cognitive models. For instance, because the latter models are more

difficult to reject and they cannot be implemented in simulations or used when building robots. To

sum up, it is concluded that one cannot rule out that flexible planning in apes and corvids, and

probably many other species, emerges through associative learning.
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