The
 IndustrialHyğiene nousselter

FEDERAL SECURITY AGENCY
Publice Healeh Seratio oul

INDUSTRIAL HYGIENE NEWSLETTER

Issued monthly by FEDERAL SECURITY AGENCY

Public Health Service Industrial Hygiene Division

PUBLICATIONS BOARD

Joseph E. Flanagan
Lewis J. Cralley
W. M. Gafafer Harry Heimann

MANAGING EDITOR
Catherine W. Beauchamp

ART DIRECTOR
Charles C. Shinn

STATE EDITORS

Arkansas-Roland E. Byrd
California-Herbert K. Abrams Los Angeles 'County-Melvin R. Plancey
Los Angeles City-A. M. Noyes
Colorado-P. W. Jacoe
Connecticut-Howard T. Walker
District of Columbia-F. H. Goldman
Florida-J. M. McDonald
Georgia-L. M. Petrie
Hawaii-F. A. Schramm
Idaho-A. L. Biladeau
Illinois-Kenneth M. Morse
Indiana-L. W. Spolyar
Iowa-C. L. Campbell
Kansas-William S. Johnson
Kentucky-N. E. Schell
Louisiana-W. H. Reinhart
Maryland-Wm. F. Reindollar
Massachusetts-Bernice Linde
Michigan-Bernard D. Bloomfield
Detroit-George M. Hama

Minnesota-G. S. Michaelsen
Mississippi-J. W. Dugger
Missouri-L. F. Garber
St. Louis-Alice C. Devers
Kansas City-John Magill
Montana-A. Wallach
New Jersey-Jane W. Voscek
New Hampshire-F. J. Vintinner
New Mexico-Carl R. Jensen
New York-May R. Mayers
North Carolina-John C. Lumsden
Ohio, Cleveland-Harold C. Cutter
Oklahoma-J. P. Smouse
Oregon-K. N. Flocke
Pennsylvania-Philip C. Hill
Philippines-Gregoria D. Dizon
Rhode Island-Joseph Wuraftic
South Carolina-W. G. Crosby
Texas-Martin C. Wukasch
Utah-George G. Richards
Washington-Norman Scott
West Virginia-Paul D. Halley
Wisconsin-Edward J. Otterson

FEATURES

Page
Massachusetts Occupational Medical Clinic Reviews Work 5
Comments on Use of Chemical Vapors and Ultraviolet Light for Control of

Statistical Control in Industrial Hygiene Laboratories 8
Baltimore Studies Dust Control in Seven Asphalt-Paving Plants _......... 9

Arsine Poisoning in the Smelting and Refining Industry 14

[^0]
VIRGINIA ASSEMBLY PASSES INDUSTRIAL HEALTH BILL

THE Virginia General Assembt? passed a bill authorizing the Bures of Industrial Hygiene to survey lewit hazards in industrial plants.

In the past, personnel of the Bureay have worked with industry only whet requested. Most of the industries hart welcomed the service, but a small fra. tion of plant operators have been hostilr. refusing entry to the engineers to sur vey their plants. This situation $\mathrm{pr}-$ cipitated the legislation, authorizir. entry to industrial plants within tir State and authorizing recommendatios for the control of toxic exposures inju rious to the worker.

The following act was passed bs the assembly :

1. The State Health Commissioner his duly authorized representative it the Bureau of Industrial Hygiene shit have the right of entry at reasonal. hours into any industrial or commerc: , establishment where persons are ell ployed, for the purpose of checking in: occupational disease and to take sul samples and tests as necessary to estiat lish the degree of hazard existing.
2. The State Health Commissiont: may recommend to the industry affeete! reasonable rules and regulations to cil trol occupational disease as defined tir $65-42$ and $65-43$ of the Code of 1950 .

As Virginia becomes increasingly in dustrialized and as new chemicals are introduced into use, the need will griw for some check on health hazards to the workers. Most manufacturers and workers have been found not to know the actual hezards involved in the mate rials being handled, although many are quite toxic. It is believed that th. studies made under the act will shom a need for further legislation to requir control of toxic materials.

All of the industrial states have industrial hygiene legislation, in most casrequiring the control of such material: as lead, mercury, and arsenic, carben
(Continued on page 5)
COVER PICTURE.-Lead burnins in a casting shop. An industrial hy. giene engineer has set up equipment to test the breathing zone of the worker for toxic fumes. See article on p. 1 . Photo by courtesy of TVA.

Field Headquarters of Industrial Hygiene Division, PHS, Holds Open House in Cincinnati

With an all day Open House attended by 170 visitors, the new field headquarters of the PHS Division of Industrial Hygiene in Cincinnati was introduced to industrial hygiene circles on September 14, 1950.
Looking forward to greater increased services by the division to the States, and management and labor, the field headquarters made the opening day into a full scale show of all its equipment and facilities, along with a number of special exhibits set up for the occasion.
The new headquarters occupy 30,000 square feet of space on the entire first floor of a building at 1014 Broadway in Cincinnati. The second floor is occupied by the environmental health center of the PHS, concerned largely with water pollution research problems and related subjects.
Allowing an expansion of all of the laboratory and engineering facilities that the division formerly housed in one of the buildings at the National Institutes of Health in Bethesda, the new station will also give the division room to bring together with the laboratory some of the work that had been done at the division's main office in downtown Washington.

All environmental investigations activities of the Division are now headed
out of the Field Headquarters Station. These comprise, at present, laboratory activities including toxicological research, analytical work, and industrial bacteriological research, and the engineering functions of the Division including field investigations, ionizing radiations control and atmospheric pollution control.

The division will now be able to move much faster in several of its current efforts, including the study of health hazards to the uranium miners and mill operators now in progress in Utah, Colorado, New Mexico and Arizona, as well as the study of health hazards to workers in chromate manufacturing now in progress. The laboratory will also assist in the air pollution study of the DetroitWindsor area being carried out by the International Joint Commission.

Assisting Dr. Lewis J. Cralley, chief of the new field headquarters, are Dr. L. T. Fairhall, head of the toxicology activities and C. D. Yaffe, as head of the engineering functions. The staff also includes chemists, bacteriologists, physicists and technicians.

All but one of the ten members of the advisory committee to the Public Health Service on industrial hygiene were present for the Open House, since the annual meeting of the committee was
scheduled for the following day.
Members of the Advisory Committee are: Nelson H. Cruikshank, Andrew Fletcher, Theodore Hatch, Dr. R. H. Hutcheson, Margaret W. Lucal R. N., Dr. Leo Price, Harry C. Read, Paul Scharrenberg, Dr. Harold A. Vonachen, and Vincent P. Ahearn.
Also in attendance were national figures in the field of industrial health and hygiene representing the Federal, State, and local governments, and industry and labor.
Of interest to many of the visitors were the new exposure chambers set up in a special section of the laboratory adjacent to the animal room, equipment used for the detection of ionizing radiation, a new power unit developed for the electrostatic precipitator and the special instruments used for analytical work, the spectrograph as well as the techniques used in bacteriological research were also of unusual interest to guests. Many visitors inquired about the availability of the laboratory for services, and it was explained to them that the laboratory is a national one and will be available to do special tasks for state governments on request through the division headquarters in Washington, as in previous years.

Hosts at the Open House were, left to right, J. J. Bloomfield, assistant chief, PHS, Division of Industrial Hygiene; L. J. Cralley, chief of the field station; and Dr. J. G. Townsend, chief of the division.

907160-50

Top left

Mr. H. H. Jones and Mr. R. E. Bales, engineers with the Division of Industrial Hygiene, PHS, explain the uses for the equipment.

Top right

Miss Winifred Devlin, Mrs. Gladys Dundore, and Mrs. Margaret Lucal stop for a chat in their rounds at the Open House. Miss Devlin is nursing consultant for the Division of Industrial Hygiene, PHS; Mrs. Dundore is executive secretary of the American Association of Industrial Nurses; and Mrs. Lucal is a nurse member of the advisory committee.

A visitor at Open House looks at a magnified section of a silicotic lung.

Physicians Study Infections Among Laboratory Workers

TTHE first comprehensive survey to be made in this country of the incidence of infection among laboratory and research workers is now being conducted with the assistance of a $\$ 3,200$ grant from the Division of Research Grants and Fellowships of the National Institutes of Health, Public Health Service.

Drs. S. E. Sulkin and R. M. Pike of Southwestern Medical College, University of Texas, who are conducting the survey, will send questionnaires to all governmental and private laboratories handling infectious agents. Some 15,000 questionnaires, requesting information on numbers and types of infections which have occurred in individual laboratories in the past 20 years, have been sent out.

The demands of modern medicine require increased numbers of laboratory technicians to handle potent disease-
producing agents, both in diagnostic work and in research. As a result significant increases in laboratory infec tions have occurred, according to reports received by the Public Health Service.

Surg. Gen. Leonard A. Scheele says that the purpose of the tabulation is to determine how serious the problem is "Just how many laboratory infections occur where scientists are dealing with diseases such as tuberculosis, tularemia. epidemic typhus, encephalitis, and Q fever is unknown. A channel for reporting such infections has never been set up."

The National Advisory Health Council, at its June 1950 meeting, unanimously recommended that such a survey be made, after studying a request from a private laboratory for funds to set up safeguards for workers on a PHSfinanced project. The council felt that information on useful protective measures should be made available to all

Dr. J. G. Townsend, chief of the Division of Industrial Hygiene, PHS, and Brig. Gen. O. B. Schreuder, USAF (MC), discuss recent developments in the industrial hygiene field.

haboratories through a group study of the problem.

- Drs. Sulkin and Pike will present re-- ults of their survey to the American H'ublic Ilealth Association at its annual mureting in St. Louis, ()etober 30 to Noevember 3. The A. I. H. A. has arranged qu sperial symposium on protective measures against laborutory-acquired infecrions. and in addition to the report of the surrey, will hear discussions of laboratory infections in tuberculosis, brucellosis, and tularemin, mycotic disease, riral and rickettsial diseases, and of ätneral laboratory safeguards.

MASS. OCCUPATIONAL MEDICAL CLINIC REVIEWS WORK

The occupational Merlical Clinic, lanurhed at the Massachusetts General Hospital under the direction of Dr. Harriet I. Hardy, has recently reported on its activities to date. Dr. Hardy is also consultant to the Massachusetts Hirision of Cocupational Hygiene.

The clinic got under way in February 1:49. Whell funds were obtained from the Research Grants IDivision of the N:tional Institutes of Health, and the Massachusetts General Hospital. With the aim of availing itself of the facilitifs of a teaching and research hospital to study problems of etiology and pathogemesis in occupational diseases, the stalf. angmented by the cooperation of the terfhnical staff of the Massachusetts livision of Occupational Hygiene, attacked a variety of occupational disease slispects. I luring the first 6 months of "pe:ation. the cases under study were chiofly those believed to be caused by ctanide in the case-hardening industry, lead. dusts, tetryl, and thioglycolic acid (1). The work on tetryl and cyanide (has leeen published (2, 3).

IHring the next fiscal year the clinic staff continued to study in consultation with other physicians and in the inpatient and ont-patient facilities. A number of cuses of beryllium disease were observed. Most of them were ehronic cases in which the poisoning affercted varions body systens. Some of the workers had been emplosed forwerly in the fluorescent lamp inchstry.

Much work has been done in deter-
mining beryllium in urine and biological tissue by spectrographic methods: also, intensive restarch has been carried ont to study what effect, if any. new drugs, such as ACTH, may have on these sufferers. Of late, attention has been focused on one patient who, although working, does show evidence of this dispase contracted from exposure to small amounts of beryllium phosphors in neon sign manufacturing.

IAad is anotleer hazard which has claimed the attention of this study group. Sodium citrate is undergoing trial as a form of treatment and a method of hastening lead excretion. A report of this work is in process of preparation at this writing (h). Through collaboration with the Massachusetts Division of Occupational Hygiene, visits to plants using lead are made, and air and urinary lead and urinary coproporphyrin analyses are performed as routine preventive measures.

In the field of pnemmoronioses, five cases seen were cansed by silica dust and two probably by talc, while two are of debatable origin. Dust counts and X-ray diffraction study are relied on in arriving at the diagnosis. Also, relationship has been established with the Department of Physiology of the Harvard School of Public Health for the purpose of performing pulmonary function tests. X-ray diffraction work is done at the Massachusetts Institute of Technology, and the Division of occupational Hygiene engineers are often invited to lielp make plant visits and laboratory examinations.

In summary, 18 months of artivity in the field of occupational medicine have been devoted to the development of skill in uncovering current problems of diag. nosis in industrial toxicologs. The experience and unusual facilities of a teaching and researeh hospital like the Massachusetts General, with the cooperation of the fact-finding technieal staff of the Livision of Ocrupational Hygiene, provide a unique set-up for the study of new and well-known occupational diseases.

REFERENCES

(1) Various authors: Massachusetts Hovides extemsive health service to Workers. Industrial H!!!iene Nemsletter 10: 3.6 (Feb.) 1!!.!).
(2) Hardy, Harriet L., and Maloof, Clarence C.: Evidence of systemic effect of tetryl, with summary of available literature. Arch. Indust. Hyg. \& Ocrup. Med. 1: п-
(.3) Hards, Harriet L., Jeffries, W. M., Wasserman, M. M., and Waddell, W. K. : Thiocyanate effect following industrial ceanide exposure. New Eingland J. Mcd. 242: 96s-972 (June) 1950.
(6) The treatment of lead poisoning: (Clinical and laboratory data collected during the management of four cases with oral sodium citrate. (To be published.)

VIRGINIA ASSEMBLY-

(Continued from page 2)

tetrachloride. benzine, and other solvents, dusts containing free silica, new insecticides, and radionctive materials. Any material can be used if the proper safeguards are followed, as proved by experiences of the Atomic Energy Commission, but without these safeguards much trouble can result. The Lureau of Industrial Hygiene is staffed with experienced persomel who have specialized equipment that would not be practical for each industry to own for praluating hazards and checking ventilation. Also a library on industrial hygiene and occupational diseases is maintained.

Each year the State pays thonsands of dollars through the Industrial Commission as compensation to workers with occupational disease chaims. Under provisions of the new law, it will be possible to apprise industry of their hazards, and perhaps prevent these cases.
Whether all industries will take steps necessary to protect their personnel remains to be seen. In any case the law should prove a step toward the protection of workers in Virginia. If the recommendations of the State Health Department are followed voluntarily by industry, an appreciable reduction in the number of annual cases of ocenpational disease should result.-Virginia Health Bulletin, May 1950.

Comments on Use of Chemical Vapors and Ultraviolet Light for Control of Disease

At the present time acute respiratory diseases account for a very significant proportion of potentially preventable human illness and their effects represent a substantial economic loss to society. The probable relationship of many of these diseases to the airborne route of contagion has stimulated the development of techniques for aerial disinfection. These techniques include chemical vapors, ultraviolet light, and dust suppression measures.

It is regrettable that uncritical publicity in the public and semiscientific press during recent years has resulted in a premature, Nation-wide exploitation of certain chemical mists or vapors and ultraviolet light for the prevention of acute respiratory diseases in schools, office buildings, and other public places where people congregate (1).

The Division of Industrial Hygiene is frequently confronted with inquiries from the general pullic relative to the advisability of installing glycollizing equipment and ultraviolet lights in schools, plants, and other public buildings. Therefore, it is believed that a brief review of the present status of methods for the control of airborne contagion may be helpful to public officials who are confronted with problems in this field.

CHEMICAL VAPORS

There have been numerous scientific investigations on the efficacy of various chemical vapors, mists or aerosols for the disinfection of air in enclosed spaces. Among the substances investigated are the hypochlorites, lactic acid, iodine, formaldehyide, hexylresorcinol, and rertain glycols. Although it has been demonstrated that some of these substances exert bactericidal effects in the air, the majority are not adaptable for air disinfection because of their odor, irritant properties, and their deleterions effect on metal and other surfaces.

Propylene and triethylene glycol are more adaptable for general air-disinfec-

[^1]By Roy Schneiter, Ph. D.*

tion than any of the other germicidal substances, because of their high bactericidal potency, reasonable cost, and freedom from the undesirable characteristics enumerated above.

Under carefully controlled laboratory conditions, it has been demonstrated that concentrations of $0.25-0.5 \mathrm{mg}$. of propylene glycol or $0.01-0.005 \mathrm{mg}$. of triethylene glycol per liter of air exert a rapid lethal action against a wide variety of airborne infectious agents. The bacteria found to be susceptible to glycol vapors include pneumococci, types I, II, and III ; beta-hemolytic streptococci, groups \mathbf{A} and \mathbf{C}; alpha streptococci: staphylococel ; influenza bacilli; and members of the coliform group of bacteria. The viricidal effects of these vapors have been demonstrated against some of the viruses of influenza, meningopneumonitis and psittacosis.

The glycol vapors are not chemical disinfectants in the ordinary sense. Their bactericidal action apparently depends on hygroscopic properties and their potency is at a maximum in a saturated concentration. The degree of saturation, rather than absolute concentration is the important factor. It should be borne in mind that the glycols are affected by many of the same factors which influence the activity of other germicidal agents and processes. They are most effective at relative humidities between 30 and 55 percent, and there is a progressive increase in the rate of bactericidal action as the atmospheric temperature is increased. Furthermore, the germicidal activity of the glycols is reduced in the presence of organic matter surh as dust, dirt, lint and nompermeable films.

Although extensive studies on the use of the glycols for the disinfection of the air in enclosed spaces such as multiple sleeping quarters, barracks and congested inclustrial plants have demonstrated that these compounds may effect some reduction in the incidence of respiratory infections, the results reported to date are not sufficiently conclusive to warrant the indiscriminate installation of glyoolizing equip-
ment for public use at the present time. There are a number of technical prob lems to be solved before this process is adequately perfected for general use. These include the development of d pendable methods for the raporizatimi. distribution, and control of glycol concentrations in the air.

ULTRAVIOLET LIGHT

The bactericidal action of ultrariolet light ($2,537 \AA$.) has been well estatr lished under carefully controlled ex. perimental conditions. Howerer, it should be borne in mind that the germicidal efficacy of ultraviolet light is influenced by many factors. Its effective. ness decreases rapidly with increasing humidities above 55 to 60 percent. Furthermore, ultraviolet light of sufficient intensity for the rapid killing of micrit organisms is injurious to both man and animals. Because of its limited porres of penetration its activity is greatly reduced in the presence of organic matter such as dust, dirt and oil films. Ultraviolet lamps of the type used for air disinfection may also produce ozone in objectionable concentrations, particlllarly when they are new.

Since direct radiation of sufficipnt intensity to kill microorganisms in air is also harmful to the eyes and expased skin of human beings, radiation must be restricted to upper air or to limited applications which do not entail human exposure. Otherwise it would he imperative for workers to wear protectire clothing, masks, and goggles.

During the war years extensive studies were conducted on the use of ultraviolet light for the control of airborne infections. Promising results were obtained in specialized situations where direct irradiation could be embployed such as in operating rooms. and in pediatric and contagious disease wards. Although studies with indire:t irradiation, namely, upper air and flowr irradiation, in multiple sleeping quarters and barracks, demonstrated semp reduction in the incidence of respira. tory infections, the results obtainm were not sufficiently conclusive to warrant the indiscriminate installation of
iltraviolet lights for general use. In iuch applications of indirect radiation he light intensity must be maintained it or below 5 ergs per $\mathrm{cm} .^{2}$ per second it the point of exposure in order to woid human injury. The excessive ime required to kill microorganisms at his intensity greatly reduces the efiectiveness of this process.

SUMMARY

In the adaption of new processes for ractical use, variable factors are frejuently encountered which may reduce the effectireness of the process below that demonstrated under carefully controlled experimental conditions. This has been particularly true in studies on the practical application of chemical vapmers and ultraviolet light for air disinfection. This is further reflected in the wartime studies on the control of respiratory infections in military barracks and other places with congested population. More favorable results rere obtained in such installations when concomitant measures for dust suppression were employed and in populations where there was the least opportunity for contact infection.
ludependent committees of the American Public Health Association and the Sational Research Council have reviewed the results of research studies in this field $(2,9,4)$. The reports of these committees provide a more complete review on the present status of methods for the control of airborne infertions. It is the consensus of these committees that the general use of ultraviolet irradiation or disinfectant vapors in schools, barracks, and in specialized industrial environments is not justified at the present time. Furthermore, they indicate that there is an imperative newd for further carefully controlled field sturlies to define the mechanisms of the spread of infections disease among these types of population.
In conclusion, it is admitted that lwith ultraviolet light and the glycol vapors exhibit pronounced bactericidal poope:ties, under carefully controlled experimental conditions. However, present knowledge is too limited to make any definite claims or predictions conarning their ability to reduce airborne infections. Present commercial cambaigns of exploitation raise the real danger that these methods may be dis-
credited and that the rational development of this important field of air sanitation may be discouraged.

REFERENCES

(1) Editor: Commercial exploitation of glycol vaporizers. Am. J. Pub. Health 39: 222-224 (February) 1949.
(2) American Public Health Association, Subcommittee for the Evaluation of Methods to Control Airborne Infections: The present status of the control of airborne infections. Am. J. Pub. Health 37: 13-22 (January) 1947.
(3) National Research Councll, Division of Medical Sciences, Committee on Sanitary Engineering: Recent studies on disinfections of air in military establishments. Am. J. Pub. Health 37: 189-198 (February) 1947.
(4) American Public Health Association, Subcommittee on Air Sanitation of the Committee on Research and Standards: Progress in the control of airborne infections. Am. J. Pub. Health Part 2, Yearbook 1949-1950, 40: 82-S8 (May) 1950.

TO NURSES IN INDUSTRY

By Heide L. Henriksen, R. N.*

Have you ever given thought to activities which under some circumstances are intolerable drudgery and in other situations, exhilarating, wanted experiences? For instance, one can go through the motions of walking, whether the path be a treadmill or the Appalachian Trail. The same physical capacities are employed, the same amount of calories are needed to sustain strength, the same number of hours may be devoted to the activity, but one's attitude toward his exercise can range from grim endurance to a highly satisfying sense of achievement.

Any job to which one goes day after day may also be an endurance contest or remain a stimulating, creative experience. And nursing is no excention. A nurse, like any other adult, needs to be a participant of a group, working toward a goal in which she can believe and have the opportunity of using her highest skills and endeavors.
"But," you may say, "my manage-

[^2]ment does not want me to do anything but take care of injuries or emergency sickness and, after all, they pay my salary." If your management took "No" for an answer from every hard-tosell customer, your firm would probably not have its present record of accomplishments. Your management knows its product and its good points, and can marshal many reasons why the purchaser will profit by investing in it. Nurses in industry, who like to work at improving the health of the employee group, at reducing lost time due to sickness, at helping maintain a safe work environment, at joining forces with other health agencies in the community through cooperative planning and referrals, first need to "know their product" and be able to describe it in direct convincing terms. Start with the immediate and the practical, but keep your eyes on your ultimate goal.Courtesy of Nursing in Industry, Ang. ust 1950 .

FOUNDATION HEAD DIES SUDDENLY

The death of John F. McMahon, managing director of the Industrial Hygiene Foundation, was a great shock to his many friends. The news came to Dr. J. G. Townsend September 15 during the meeting of the advisory committee. Most of the committee members had talked with Mr. McMahon the day before at the Open House for the Cincinnati Field Station, Division of Industrial Hygiene, PHS.

Dr. Townsend sent the following message to Mrs. McMahon :

The advisory committee to the Public Health Service on Industrial Hygiene, holding its annual meeting in Cincinnati today, learned with great sorrow of the sudden passing of your husband, who was so well known and deeply respected by all of us. Speaking for the Surgeon General of the Public Health Service, the Division of Industrial Hygiene of the Public Health Service and the advisory committee, which is composed of representatives of manarement, labor, the professions, the Government, may I express our most sincere sympathy. The entire field of industrial hygiene will suffer with you in your loss.
J. G. Townsend.

STATISTICAL CONTROL IN INDUSTRIAL HYGIENE LABORATORIES

By A. S. Landry
Department of Industrial Hygiene Inter-American Cooperative Public Health Service Lima, Peru

In the field of analytical chemistry there has been initiated, of recent date, a movement of tremendous importance relating to the evaluation of results by statistical methods.

The extent to which this concept has been utilized by chemists working in the field of industrial hygiene is not known, which explains the reason for this presentation. And since the results we obtain directly involve human life, we should be prepared to give the other members of our team, namely the engineers and doctors, a figure indicating the precision of our results.

By this I do not mean an extensive mathematical consideration which could be calculated only by a statistician from the results obtained on a suitably large number of control samples-bit rather by means of a relatively simple and socalled "control chart" as described by Clarke (1).
"In this [an analysis by runs]," to quote Clarke, "the successive observations are plotted on a graph in which the abscissa represents sequence in time of the observations, and the ordinate, the numerical value of the observations. A line is drawn parallel to the abscissa,
which represents the aremage or experted value of the quantity. In the general case, when the process producing the unit to be measured is under statistical control, the successive points on the graph are observed to vary in a random manner about the average. If, however, one observes a succession of seven points, either above or below the line, or a succession of seven trending either upwards or downwards, the statistical mathematicians have proved this to be an indication of the entrance into the causal system of a new assignable cause, and the observation of such a run, as it is called, is a signal to stop the precess and look for the source of trouble."
"What has just been described is a control chart. If we add to the graph two other lines parallel to the abscissa, one above and one below the average line, to enclose between them all those points that are in statistical control, then we have an obvious means of determining at a glance whether the process we are measuring is in control. If the points remain between the control limits and show no tendency to runs, it is assumed that the process is under statistical control in the sense that all causes of variation are random, and by their nature, not subject to control."

In our laboratory, I have initiated the use of this "control chart" along

several lines. namely: The determination of free silica by my combined dell. ical-petrographic method. the detemi: nation of urinary lead by a spectroplow tometric dithizone methool, as well as in: the polarographic determination of leal and zine in atmospheric samples.

This has been accomplished by thr preparation of synthetic samples whire approsinuate the actual samples as closely as possible in composition and treatment. The data obtained by the various members of the departmentare plotted as illustrated in the areompuraing figure. It may be noted that thes control samples should be determinel frequently and especially just before undertaking a series of actual sample

Further, the control Iimits of the twin lines that eaclose all points have lueth taken to be "plus or minus once the standard deviation and plus or minutwice the standard deviation"-in this manner, therefore, we are able to indicate the relative precision of our results. This is a methorl which we hereby recommend to other wokers in the field of industrial hygiene.
(1) Clarke, Beverly L.: Statisticu! methods in the chemical indusirs Chem. \& Eng. Netre 27 : 1426-1t2 May 16) 1949.

Qualifications for Industrial Nurses Published by AAIN

Two brochures on the desirable qualifications for industrial nurses have larin prepared by the American Association of Industrial Nurses. They are eir titled Qualifications of an Industrinl Nurse and Recommended Qurlifications for Industrial Nurses Workin! Withowt Nursing Supervision.

The growing recognition of the itwportance of industrial health and the increasing need for professioual stambards for nurses in industry motivated the Association to publish this material. Employers of industrial nurses as well as those concerned with nurses edncation should find these brochures valuible. Single copies can be purchased a: 10 cents per copy, or 5 cents per copy in quantities over 2.5. They may be otr tained from the American Assomiation of Industrial Nurses, Inc., bint Madis? Avenue, New York 21, N. Y.

Baltimore Studies Dust Control in Seven Asphalt-Paving Plants

DURING the 1949 operating season, the Bureau of Industrial Hygiene of the Baltimore City Health I Pepartment studied seven Baltimore plants that manufacture asphalt paving materials. The purpose of the study was to evaluate the effectiveness of dust supression methods installed at the beginning of the year when an accelerated production schedule was instituted. A concerted effort with rarying degrees of success was made in the plants to meet the following two major objectives:

1. Maintaining a minimum exposure of workers to free silica dust at operations within the plant.
2. Alleviating pollution of the atmosphere with dust.

Aderguate health protection for the workers against inhalation of dust was successfully accomplished either by totally enclosing dusty operations or ventilating dust-producing machinery. Considerable progress was made in improving the collection of the outdoor atmospheric contaminants and an effective method was demonstrated notwithstanding some of the inherent disadrantages of the collector. The two problems with their various influencing factors are discussed in more detail.

Interior Dust Control

Crystalline-free silica is a major constituent of sand. The inhalation of this dust may result in silicosis depending upon the number of years of exposire and the concentration of the particles in the air. Since there is no known cure for this disease, it is important to control the quality of the air breathed in by the workers. Weighing and mixing of the heated materials is attended by dispersion of large quantities of dust where workers are constantly stationed. Removal of the dust from these sources was attained in a practical manner by installing exhaust ventilation hoods at these two operations. Other locations (in descending order of importance to health) needing anclosures and usually exhaust ventilation are the screening room, the drier discharge and the top and bottom of the conveying elevator.

The results of these improvements in the working environment had a very favorable reaction on the plant owners and their workers. In a few instances, minor alterations in exhaust hood design would make the machinery more accessible for cleaning and repairing. These few changes are contemplated since the basic idea of dust removal from its origin proved to be worthwhile. There is little doubt that with the elimination of abrasive action of the dust from these locations, the life of the equipment will be lengthened.

Atmospheric Pollution

The extent of the contamination of the atmosphere found outside the seven paving plants under study is unlikely to be detrimental to health. but it may cause discomfort. The nuisance character of the tinely dispersed material results largely in property damage and irate neighbors. The degree of the nuisance and attending complaints is dependent upon:

1. Efficiency of the dust-collecting equipment.
2. Population density of the neighborhood surrounding the plant (high, medium, and sparse classification).
3. Physical properties of the materials processed. These factors together with the cost of dust collection were evaluated.

Prior to 1949 the majority of the plants used cyclone dust collectors. The inability of these collectors to retain fine dust was evidenced by numerous complaints even though the volume and type of work did not approach the production schedule of $3 \mathbf{3 7}, 000$ tons for the seven plants during the year 1949 . Five of the plants are now equipped with commercial collectors, depending upon either wet or dry centrifugal action for dust separation. The sixth plant fabricated its own system utilizing a water and steam scrubbing principle while the remaining plant employed a settling chamber on the drier, and a commercial filtering unit on the cooler dust-laden air from the mixers, weighing hoppers, and the screens.

Comparison of the experience with,
and performances of these collectors, together with other pertinent data follow.

Wet Centrifugal Collectors

One of the two plants using a wet centrifugal collector is located in an area of high population density, while the other one is in an area of medium population density. In 1949 no complaints were received against either plant, although their production was 33.3 percent of the total of the seven plants. In 1948. 12 complaints were received when cyclone collectors alone were in use. The new equipment is capable of collecting very fine materials such as stone dust used in bituminous concrete having particle sizes down to 1 micron ($0.006 H^{4}$ inch). The cost of the equipment, installation, and maintenance averaged $\$ 0.18$ per ton of material produced. The water used by two of these collectors in one plant is estimated to have cost less than $\$ 300$ per year. However, the systems required extensive repairs and were inoperative at the close of the season. The manufacturer of the collectors is confident that with certain modifications the equipment will have a longer life under the severe conditions imposed by the heavy production schedule calle. for in Baltimore.

Dry Centrifugal Collectors

Two of the three plants using dry centrifugal collectors are located in areas of high population density, while the third is in an area of medium population density. Altogether in 1949, 27 complaints and 1 retition signed by 90 persons were received. Twenty-one of the complaints and the petition were against one plant using a large quantity of stone dust over a period of several weeks. In 1948, 11 complaints were reg. istered against these 3 plants. During the past year their production was responsible for 38.6 percent of the total proluction of the seven plants. It is doubt ful if these dry centrifugal collectors are satisfactory on paving dust of sizes lower than 2.; microns (0.(N)1 inch). Particles of this size approach the respirable range and cause widespread complaints since they are distributed over a large area. Larger particles are likely to settle on or near plant property, depending upon stack height and atmosipheric conditions. A redeeming feature of this type of collector is
the relative long-life expectancy. One plant has been using this system for 3 years without appreciable maintenance. The arerage cost of the equipment, installation, and maintenance based upon the production in 1949 was $\$ 0.19$ per ton of product.

Water and Steam Scrubber

The plant which fabricated its own water and steam scrubbing collector at a cost of $\$ 0.07$ per ton of material produced in 1949 is located in an area of medium population density. Three complaints were received in 1949 as against two in 1948 when a cyclone separator was in use. The new water and steam scrubbing collector is more susceptible to excessive wear than the commercial wet centrifugal collector. Since data on the performance characteristics of the water and steam scrubbing collector are not available most plants should be discouraged against attempting to construct their own dust separating systems.

Cloth Filter and Settling Chamber

The one plant employing the two collecting systems, a cloth filter and a settling chamber, is located in a sparsely populated area. No complaints were received in 1949 and only one was recorded in 1948. A dust-settling chamber connected to the drier exhaust appears to function satisfactorily when sand and crushed rock are handled. Observations were not made on the drying of stone dust since this material is yet to be handled in this plant. Dust from operations within the plant is collected quite effectively with a cloth filtering unit which will retain particles less than 1 micron in size. Since cloth does not become unstable until used at elevated temperatures of about $180^{\circ} \mathrm{F}$. the filtering unit should last for several years. However, the equipment and installation cost was $\$ 0.30$ per ton of material produced in 1949 by this plant.

Conclusions

1. Mixers and screening rooms should be either ventilated or totally enclosed.
2. Dust from dumping fine materials from trucks or hot storage bins should be kept at a minimum by performing this intermittent work in an enclosure on the outside.
3. To avoid a repetition of the preva-
lence of complaints from handling finely divided materials, those plants in areas of high population density should install a commercial wet type dust collector, and even the plants in areas of medium population density should consider the installation of such equipment.

California Reports More OD Cases Among Agricultural Workers

TTWEL'E percent of all the occupational diseases reported in California in 1949 affected workers in agriculture. Between 1948 and 1949 the rate of reported occupational disease increased among agricultural workers from 4.8 to 5.4 per thousand workers, while among workers in manufacturing industries the rate decreased from 7.8 to 6.3 . The increased rate of occupational disability in agriculture in California during 1949 parallels the increased use of agricultural chemicals.

During the year the Bureau of Adult Health received reports of 300 cases of illness in workers exposed to these chemicals. Agriculture, and the closely allied food-processing industry, accounted for 20 percent of the 1949 reports. These figures do not record the total incidence of industrial disability in this important industry, since only an estimated 45 percent of the workers in agriculture are covered by Workmen's Compensation.

During 1949 a total of 12,536 diseases attributable to occupational exposure were reported. Fatalities during this period numbered 105. A third of the persons disabled by industrial illness were absent from work 1 day or more. Half of the cases reported were occupational dermatitis, with poison oak the principal agent causing skin disease.

While new occupational diseases arpeared, resulting from agricultural chemicals, beryllium, and other relatively new agents, the older occupational diseases continued to take their toll. For example, 90 cases of lead prisoning occurred during the year, and 68 cases of carbon monoxide poison-ing.-Occupational Health Bulletin, [1949 Annual Report]. Bureau of Adult Health, California Department of Public Health.

NATIONAL SMOKE ABATEMENT WEEK OBSERVED WIDELY

National Smoke Abatement Week, the last week in October, was celebrated this year for the second time. It sat increasing concern in various parts of the Nation by growing numbers of per ple and organizations with the entire problem of cleaner and healthier air.

Charles N. Howison, chairman of the Smoke Abatement Committee, said: "The main purpose of National Smoke Abatement Week is to focus attention upon the need for control of air pullotion from all its various sources. including smoke, soot, fly-ash, noxious fumes and gases; and to serre as a starting point for year-round smoke abatement and air pollution control activity by public officials, in the schonls, in the factories, by railroads, apartments and homes, and by civic organizations."

Mr. Howison said further: "While air pollution, including smoke. is a serious economic and health problem in many industrial areas, unnecessary smoke also represents wasted fuel. which is a drain on the industrial re sources of these communities and our Nation. Since our highly industrialized economy requires the consumption of large quantities of all types of fuels. our Nation cannot afford to waste these fuels through inefficient combustind and firing methods. In other wirds. victory begins at home, and one war we can all help to speed the day of rictory and peace in this period of natival emergency, is to prevent the wasting of our national (fuel) resources."

W ANTED : IN OREGON INDUSTRIAL HYGIENE ENGINEER

Minimum of 2 years' experience in industrial hygiene engineering. (irad uate engineer preferably with supplemental graduate training in industrial hygiene engineering. Salary: $\{3.20$ to start, advancing to $\$ 4.06$) plus trarel expenses. Civil Service status, vacation and sick leave.

To apply. write to: A. T. Johnsul. Personnel Director, Oregon State Board of Health, 1022 Southwest Elerenth Avenue, Portland 5, Oreg.

Studies of Health Hazards in Industry

METALLIC POISONS

There are certain dusts in industry which have a systemic effect upon the human body. Chief among such dusts are those of the heavy metals group, notably, lead, mercury, radium, and others. The Public Health Service has investigated several such dusts and one of these, lead, will be discussed at this time.

The toxic effects of lead on the human organism have been reported in very early writings, and the medical literature is replete with observations on this type of poisoning. That the early writers were keen observers is attested by the fact that little of importance has since been added to our snowledge of the clinical picture of lead prisoning. However, as a result of clinical research, considerable valuable data are available on the action of lead upon body tissues and therapeutic methods for the treatment of plumbism. In addition, studies of the health of workers in the lead trades have contributed information on this subject.
In the past, many severe lead poisoning cases were described but such cases are seldom seen today. Whenever early signs of lead poisoning appear, prompt medical attention is usually given. A steady decrease in cases of fatal poisoning from lead and also in the milder forms of such poisoning has resulted from a more widespread appreciation of the potential hazards of exposure to lead or its compounds and to the use of medical and engineering control procedures. Substitution of machine methods for hand labor has also aided in reducing the incidence of lead poisoning.
A review of the literature in recent rears, however, indicates that lead poisoning has not disappeared, even though its incidence has lessened. For example, lead poisoning was found among typesetters in the United States in 1936 ; among solderers, metal finishers, and welders in automobile body plants in 1938 ; and among glass workers in 1940. In that year, also, lead poisoning occurred among workers cutting structural steel painted with leadcontaining paints.
When lead enters the body through

By J. J. Bloomfield

This article is one of a group of lectures which Mr. Bloomfield gave to a class of physicians in Rio de Janeiro, Brazil. In view of the constant demand for basic material on industrial hygiene techniques and for practical help in this field, a number of these lectures are bcing printed in the Industrial Hygiene Newsletter.
This is the third in the series. In the first article, which appeared in the September issue, Mr. Bloomfield discussed types of plant surveys, illustrating with the Public Health Service study of mercurialism in the hatters' fur-cutting industry. The second article covered the classification of environmental exposures. The next one in the series will be on the subject of pneu-moconiosis-producing dusts.
any portal and is taken into the tissues, lead absorption has taken place. Persons not employed in lead industries are constantly absorbing lead by ingesting small amounts present in foods and are also inhaling minimal quantities of lead present in the atmosphere. When absorbed lead causes subjective symptoms with objective findings, then lead poisoning or lead intoxication may be said to be taking place.

In spite of all the work done, very little is known of the biochemistry of this type of poisoning. We know very little about what goes on between active lead absorption and the onset of clinical symptoms of lead poisoning. About all we know is that deposition of lead occurs to some extent in the bones and that the person may show some anemia. Much more extensive investigation must be made of these phenomena, and more precise methods of measurement must be devised, before a satisfactory explanation is obtained.

In industry, lead enters the body chiefly through the respiratory organs,
to a lesser extent through the digestive tract, and very rarely by absorption through the skin. A notable exception to the absorption route is tetraethyl lead and its related organic compounds.

Primary Production of Lead

The only ore of commercial importance is galena, lead sulfide (PbS). The ore is mined, crushed, and separated from waste rock by flotation techniques and from other sulfides by selective flotation methods, thus producing a concentrate which often contains 90 percent lead sulfide. The concentrate is roasted to remove most of the sulfur after the addition of sand, granulated slag, pyrite, and recovered flue dust from early smelting operations. This produces a sinter which is mixed with coke, limestone, scrap iron or waste and placed in a blast furnace from which molten lead and slag are tapped.

This crude lead may contain some gold and silver, copper, antimony, and bismuth. In the refining of the crude product, these valuable metals are separated by adding zinc to the molten lead. The silver and gold collect in a crust, and this is skimmed off. The lead is heated again to drive off traces of impurities and is then cast into pigs.

Control of Hazards

In all of the production jobs the principal hazard occurs during occasional clean-out work. General warm air in the concentrator and smelter is controlled to a large extent by proper veatilation. Exhaust ducts and hoods are provided wherever possible, and excess dust is dampened. The walls of the furnace must be scraped occasionalls to remove accretions. Fine dust is re covered in bag houses, where the bags are shaken mechanically to recover the lead dust. This is moistened and reused as part of the charge to the sintering machines or roasting furnace. Men engaged in clean-out work should wear approved respirators and should work for only short periods.

Smelting and Refining

The hazards in these operations are no different from those in the primary
production and refining operations. The operations are designed for the recovery of scrap lead or its alloys.

Consumption and Use

In a normal year about $\mathbf{2 3 0 , 0 0 0}$ tons of lead are used in its compounds, and 486,000 tons are used as the metal, or a total of approximately $\mathbf{7 0 0 , 0 0 0}$ tons per year are consumed in the United States. The storage battery industry is the largest single user of lead products.
The principal lead compounds and the lead itself are made by a few large basic manufacturers. These then are sold to many intermediate manufacturers who make the products used by the ultimate consumer.

CONTROL OF THE LEAD HAZARD IN STORAGE BATTERY INDUSTRY

We will consider this industry because it is the largest user of lead and the most important from the standpoint of lead absorption hazards.

The production process in the lead storage battery industry may be summarized as follows: Lead or lead-antimony ingots are melted and cast into grids and miscellaneous parts. The lead oxides are mixed with sulfuric acid to form a paste which is spread on the grid to form plates. These are often double plates which are dried and then finished by removing the center strip of metal and cleaning the edges of excess paste. The plates are then assembled in positive and negative groups and "burned" (welded) together with a connecting strap. One positive and one negative group are then interleaved, and separators are placed between the plates. During the manufarture of SLI batteries, these combined groups or elements are assembled and sealed in the container, which is then filled with electrolyte. The forming process which converts the raw oxides into active materials may follow pasting (plate forming), group burning (group forming), or the assembling of the battery (case forming).
The U. S. I'ublic Health Service has condurted two large-scale field studies of this industry. In the first study, from June 192s to November 1930, a field office was established in a storage battery plant to transoribe the case records of all applications for compensation for lead poisoning. The occurrence
of cases was related to the atmospheric lead concentration prevailing in the departments in which the cases were contracted. Eighty-five recipients of compensation and 25 nonaffected workers were given medical and hematologic examinations, and a hematologic study was made of about 500 lead exposed workers.

The incidence of plumbism was roughly proportional to:

1. Duration of exposure in months.
2. Atmospheric lead concentration.
3. Lead concentration times duration of exposure.

The results of this study, indicating the number of compensable cases of plumbism per 100 men per month in 3 departments with sproified atmospheric lead concentrations, showed that the incidence of plumbism was highest in the mixing department where the atmospheric lead concentration averaged 120 mg . per $10 \mathrm{~m} .{ }^{3}$ of air ; next highest among pasters who were exposed to an average of 50 mg . per $10 \mathrm{~m}^{3}$; lower among burners who breathed air contaminated by 5.7 mg . per $10 \mathrm{~m} .^{3}$; and lowest among casters whose exposure averaged 1.2 mg . per $10 \mathrm{~m} .{ }^{3}$

In 1936-37-38, the I.. S. Public Health Service conducted its second large-seale study of this industry at the request of the National Battery Manufacturers' Association.

In 1936, a preliminary study was made in 26 storage battery plants emploving about 6,000 workers and producing more than 10 million batteries annually. This study covered more than 10 percent of the estimated 200 storage-battery plants functioning at that time, and covered about 50 percent of the workers in the industry. The data obtained in this study were used to select 13 plants for detailed engineering studies. and. from this latter group, 6 plants were selected for detailed medical studies. The engineering phase was complete. The lead exposure of each occupation was determined, and the efficiency of control measures was also determined.

These data then were used with the medical findings to evaluate the physiologic effect of the enviromment. Seven hundred sixty-six workers were examined. Blood specimens from each worker were divided for hematologic studies, chemical analysis of lead con-
tent, and the Kahn test. A urine sample taken at the time of examination was subjected to the usual chemical and miczoscopic tests in the field laboratory and the remainder was sent to Washington where the chemical analyses of blood and urine were carried out.

No cases of disabling plumbism were seen. Nine men, all expospd to atmospheric lead concentrations in excess of 1.5 mg . Pb per $10 \mathrm{~m}^{3}$ of air, were diagnosed as cases of incipient plumbism. All had a lead line and otter symptoms of phombism, and all had abnormally high reticulocyte, stipple cell, aml polychromatophilia values. Their blowl and urinary lead concentrations were consistently high. Diagnosis of lead absorption was made for 168 men who were less affected than those with incipient plumbism, but presented a combination of signs, symptoms, and aht normal laboratory findings indicative of early plumbism.

Cases of early plumbism, includin: both incipient plumbism and lead at, sorption, were classified in terms of the atmospheric lead concentratims associated with their occupations. Individual lead exposure values were cat: culated by an engineer after carelul consideration of the worker's entire oscupational history. Thus rlassified. the percentage of workers with eary plumbism increased with increasing atmospheric lead concentration. Fiww: than 4 perectit of the men exposed to less than $0.75 \mathrm{mg} . \mathrm{Pb}$ per $10 \mathrm{~m} .{ }^{\text {a }}$ of air and 54 percent of the workers exposed to more than $3 \mathrm{mg} . \mathrm{Pb}$ per $10 \mathrm{~m} .{ }^{3}$ of air were diagnosed as cases of early plumbism.

General Considerations

From the two studies of the storage battery industry conducted by the C . S. Public Health Service and from the work of other investigators, cortain general statements can be made with rt gard to this type of industrial prisoning.

Safe human lead exposure, whether in industry or elsewhere, may be definet as a degree of exposure which, while resulting in lead absorption, does wot produce any injurious effects upon the human organism. For present purposes, however, it is necessary to defime safe industrial lead exposure in much more specific and practical terms. Ans such definition at present is empirical.
somewhat tentative, and limiteil in its ap'ication. Nevertheless, practical exbrience amb systematic investigation halve damonstrated that certain levels of ocropational lead exposure and absorption are compatible with normal hoalthy existence and activity. and that any ill offects resulting from such leud \uparrow rpsinre and absorption are so tenuous alnd vague as to be purely speculative in charatetゃr. There are good reasons for the belief that present standards will to acreptahle in practice for a long time to come.

As defined by air analysis. 1.5 mg. of lead in 10 cubic meters of air, as measured by standard methods. will prevent cases of disabling loud intoxication among workers who work regularly in such expmiures, and even cases of questionable or mild intoxication should be ratre.

Ifad intoxication occurs rarely, if at all. and only in its mildest manifestations among regularly employed industrial workers, if the mean urinary lead concentration of representative groups of such workmen is kept below 0.10 mg . per liter and if the exposure is controlled so uniformly that individual results are generally below 0.15 mg . per liter and very rarely in excess of 0.20 mg. per liter.

With regard to blood levels, it may be said that mean blood lead concentrations as high as 0.07 mg . per 100 grams of whole blood are compatible with comflete health and well-being.

In the case of "stippled" erythrocytes, as determined by standard methods, fhis value has been set most commonty
 or. as often expressed, at 10 to 12 "stippleal" erythrocytes per 50 microscopic titelds.

In the final analysis, a diagnosis of le:ad puisoning is arrived at on the basis If : (1) The facts with respect to the leat exposure, (2) the clinical picture of the illness as revealed by the patient's history and symptoms, and by the physician's careful physical examination. and (3) the results of laboratory procedures that confirm the potentially h:izardous character of the patient's exjnsure to lead compounds. Lead intoxiration may exist without any of the physical signs, such as pallor, weakness, alodominal pain and colic, paralysis, and so on. However, one cannot ignore these various signs.

In the Public Health Service study of lead storage battery industry, the laboratory tests vielded far more significant results than any of the classic symptoms mentioned above. For example, the prevalence of albuminuria among the lead-affected group was twice as great as among nonaffected workers. It would serm that this simple test should be used in conjunction with the hematologic ones in detecting early changes among lead-exposed workers. More recently, the Scandinavian literature indicated that the amonnt of porphyrin in urine is a much more reliable test for early detection of lead poisoning than the basophilic agregation test or stippled cell counts.

On the basis of the Public Health Service studies, it does not seem appropriate to designate certain critical valles for blood urinary lead concentrations as having diagnostic significunce. Instead, it appears that the more the blood-lead or urinary-lead values of an individual deviate from the range of values of unexposed people, the greater is the likelihood that such an individual will be found to have other evidence of lead-induced bodily changes.

Recovery from lead poisoning is usually complete, leaving no partial or complete disability. In the uncomplicated gastroenteric type, regardless of the severity of the colic, spontaneous recovery occurs in a few weeks, the colic usually subsiding in one week to ten days. An ample diet and a generous supply of liquids, particularly milk, is advantageous.

Ieleading of a putient is still a moot question. Some clinicians believe in eliminating that portion of the lead which may be readily available for rapid excretion in order to shorten the period of convalescence and disability. Other investigators do not believe in deleading on the assmmption that the recurrence of lead poisoning without further lead exposure is rare after the complate subsidence of the episode of intoxication. It is their contention that the excessive quantities of lead are eliminated spontaneously from the body.

In summing up this subject, we now know a great deal about lead poisoning and lead ahsorption, and we have demonstrated time and agrain that expert mediaral supervision of workmen, as well
as careful and frequent study and control of their enviromment, can eliminate the danger from exposure to lead and its compounds.

REFERENCES

American I'ublic Health Association: Occupational Lead Exposure and Lead I'oisoning. A Report prepared by the committee on Lead I'oisoning of the Industrial Hygiene Section of the American I'ublic Health Association. 179) Broadway, New York 19, New York. 1943.

Cantarow, Abraham, and Trumper, Max: Lead loisoning. Williams and Wilkins Company, Baltimore, Maryland, 1344.

Dreessen, W. C., Edwards, T. I.. Reinhart, IV. H., Page, R. T., Webster, S. H., Armstrong, D. W., and Sayers, R. R. : The control of the lead hazard in the storage battery industry. Pub. Health Bull. No. 262. Government Printing Office, Washington, D. C., 1941.

Fairhall, I. T. : Inorganic industrial hazards. Phyxiol. Rec., Vol. 25 (January) 1945.

Fairhall, L. T.: 'Toxicology of the heary metals. J. Ind. State Med. Assoc. 41: 917-921 (September) 1948.

Russell, A. E., Jones, R. R., Bloomtfleld, J. J.. Britten, R. H., and Thompson, L. IR. : Lead poisoning in a storage battery plant. Pub. Health Bull. No. 20. Government I'rinting Office, Washington, D. C., 1033.

Filipino Physician Studies Industrial Hygiene at Pittsburgh

Ir. Emmanuel T. Gatchalian of the Philippines received a fellowship from the Public Health Service under the I'hilippine Rehabilitation Act and, after a summer of firld work in the United States, has entered the School of Public Health of the University of Pittsburgh. He will major in industrial hygiene and public health administration.

As a senior student and a younc graduate, Dr. Gatchalian served in the Remedios C'harity Clinic of the C'atholic Women's League from 194: to 194., during the Japanese occupation. Among the patients were sick American interneas from the Santo Tomas (amp, who were allowed to be transferred to the clinic-hospital.

ARSINE POISONING IN THE SMELTING AND REFINING INDUSTRY*

ABSTRACT

SIX deaths and several cases of acute poisoning due to arsine occurred during the early part of 1949. As a result, the industrial medical and hygiene profession has been alerted to the danger of arsine poisoning in the smelting and refining industry. Arsenic-bearing dross produced in the lead refining process was implicatel in these cases. The Division of Industrial Hygiene of the Illinois State Department of Public Health investigated two fatal cases occurring in Illinois and studied the manufacturing processes involved, the chemistry of the arsine evolution and measures for the elimination and control of this apparently overlooked hazard of the industry.

Medical literature contains many reports of arsine poisoning, but evidently the first instances of arsine poisoning, involving the use of aluminum for the removal of arsenic and antimony in the refining of lead, are the cases in Indiana reported by Spolyar and Harger (Arch. Ind. Hyg. and Occup. Med. 1: 419 1950), and those reported by Nau (Southern Med. J., April 1948).

Intentional or accidental wetting of the arsenical dross caused this material to evolve arsine and hydrogen with considerable production of heat. Workmen engaged in shoveling the dross or spraying hot ingots with cooling water later developed the symptoms associated with arsine poisoning. Lethal effects and red blood cell destruction were not prevented by administration of BAL.

Previous reports of arsine poisoning in industry indicate that the most frequent cause is the cleaning out of tanks and tank cars that have contained mineral acids, either hydrochloric or sulfuric. The action of acids on arsenicbearing metals has been responsible for most of the reported cases. The wet-

[^3]By Kenneth M. Morse ${ }^{1}$ and Alfred N. Setterlind

ting of tin dross with water was involvel in 30 cases with 12 deaths in the period 1923-41, inclusive. However, prior to 1948 , apparently no cases involving the lead refining process were recorded.

The lethal action of arsine is believed to be due to (a) hemolysis of red blood cells with liberation of toxic arsenic compounds; (b) blockage of the kidney tubules by the products of hemoglobin breakdown; and (c) decreased oxygen carrying capacity of the blood. After inhalation of the gas, red cell destruction appears in from 6 to 36 hours; the early symptoms are those of anoxemia, while later ones are due to the effort of the body to excrete the debris of red cells which clog the liver and kidneys. First symptoms include headache and nausea, followed in 4 to 6 hours by passage of dark or bloody urine. Jaundice appears in 24 to 48 hours and anemia occurs with loss of red cells, which may fall below $2,000,000$. Suppression of urine follows. In the cases reported here, total suppression of urine appeare 15 days before death in one case, and 2 days after exposure in the other.

In the two fatal cases investigated by the authors, manifestations of poisoning included vomiting, nausea, abdominal cramps, rapid destruction of red cells, leucocytosis, and anuria. The workmen in these cases were engaged in removing, manually, dross formed on top of a kettle containing molten lead in which aluminum had been mixed. The dross was transferred into ingot molds suspended over troughs of cooling water. To speed up chilling, the men sprayed the ingots with water, a not uncommon practice in this plant.

Case Descriptions

Case No. 1, a man 25 years old, was exposed on one day and returned to work the following day. The second day's work did not involve an arsine exposure. Returning from work the second day, the patient complained of abdominal cramps, nausea, and gener-
alized pains. The patient was anuric from the time he returned home from work. After treatments by the family physician which provided no relief, the patient was hospitalized on the fuurtb day after exposure. At this time the plant physician examined the patient and found him confused and disoriented. Red blood count was $1,500,000$; bemeglobin 51 percent. Lead poisoning was suspected; however. relatively fer stippled red cells were found. Treatment included intravenous fluids, calcium gluconate, and several doses of BAL. Continuous gastric lavage was initiated the sixth day following expor sure. Death occurred on the serenth day following exposure.

Case No. 2, a 44-year-old man, did not return to work the day after exposure. The evening of the third day following exposure the patient was hospitalized. Marked hemolytic anemia was indicated by laboratory tests: Red cell count 2,500,000; hemoglobin 10 grams: white cell count 16,600 . The patient was completely anuric. Analysis of blomd showed 0.024 milligram arsenic per 114 grams and 0.055 milligram lead per 100 grams. The patient was drowsy, disoriented. and uremic ; anuria continuel until about a week before death : a small amount of urine was excreted during the last week. The patient expired on the twenty-fourth day following esposure.

Processes Investigated

In order to find means of elimination and control of the hazard, the proces of lead refining with aluminum was itvestigated. The principle of this refining process is that aluminum added to a molten lead-arsenic-antimons-tin allor combines with the arsenic and antimons in fixed proportions, which rise to the surface as a dross. In practice. 1 part of aluminum is added to 4 parts remorable impurities, the metal to be treated being maintained at $1,200^{\circ}-1.300^{\circ} \mathrm{F}$. and stirred rapidly. Cooling is then allowed to occur to permit the dross t" rise to the surface, after which the temperature is brought up to $700^{\circ}-9(1)^{2}$ F. to aid in skimming. The dross at this point is known as "wet dross" due to it:
silvery appearance and spongy consistency. This may be cast into ingots to facilitate handling; the product is comparatively dust free and solidifies on cooling. An alternate process consists in the addition of sawdust on the reheating phase of the cycle to produce a granular, black, dusty dross-the socalled sawdust concentrate. Part of the lead contained in the dross ingots is recovered by sweating out the occluded metal in a liquating furnace; the final dross contains about 50 percent lead.
Tests for arsine carried out during plant operations of the ingoting process showed (a) that wetting of the dross caused a strong arsine reaction; (b) that under normal operations arsine would not be present in the breathing zone of the worker, unless a driving rain, deliberate wetting, or other means of introducing water was in effect; (c) that the development of arsine from the dross could be detected on very humid days directly over the dross ingots; and that (d) some alteration in processing was necessary to produce a dross, or so treat it, that it would not react with water to form arsine.

Measurements of arsine concentrations developed within 3 feet of the sprayed dross ingots in the breathing zone of the workers gave values of from 70 to 300 parts per million parts of air. Concentrations of 1.0 to 2.1 parts per million existed 30 feet from the ingots. The American Conference of Governmental Industrial Hygienists' maximum allowable concentration for arsine is 0.05 part per million.

Studies of gas production from "wet dross" and "sawdust concentrate" showed that no stibine was formed: Evolution of gas starts more quickly and proceeds at a greater rate in the case of the "wet dross" as compared to that made by the sawdust process. The latter, however, maintains its peak rate for a longer period of time. Liquating the "wet dross" was found to be relatively ineffective as a means of reducing arsine hazard.

Investigation of conditions required for arsine evolution brought out that hydrolysis of aluminum arsenide is probably not the cause of arsine formation. It was found that mixtures of finely powdered lead and aluminum evolve hydrogen in contact with water. It was demonstrated that aluminum metal dispersed into lead, whether in
the molten state or by mechanical mixing of finely ground powder will produce hydrogen when brought into contact with water; should an arsenic compound be present, arsine will also be produced.

Recommendations

A practical method was developed for stabilizing dross so that it would not react with water. This consists in roasting sawdust treated dross at $1,800^{\circ}$ F. for 1 hour, with riffling. A dustier dross is produced, but the increased lead hazard can be controlled by ventilation.

It is recommended that (1) all sources of water be removed from the aluminum treatment area; (2) that the "sawdust concentrate" method should be employed in the process; (3) that all dross should be immediately roasted for at least 1 hour, or longer, until the dross is not capable of forming arsine when wetted. In the event that the material cannot at times be processed, it should be stored in metal containers, which will preclude wetting under any condition; (4) exhaust ventilation should be provided for the aluminum treatment kettle and for the skimming operation; (5) workers should be instructed on the hazards of the work and to report any discoloration of urine or feeling of nausea immediately; and (6) periodic blood tests for red and white cell count should be conducted on all workers engaged in the process.

Bolivian Industrial Hygiene Team Studies Tin Mining Industry

Approximately one-fourth of the 2,400 workers in a large Bolivian tin mine showed symptoms of silicosis during a recent exhaustive study of the industry, an official Bolivian report has disclosed.

Dr. Guillermo Guerra, chief of the Department of Industrial Hygiene and Safety of the National Bureau of Social Security of Bolivia, said in his report on the study that he was recommending many changes in the processes in the tin mines, improvements in ventilation methods, more frequent and complete physical examinations of the workers, better housekeeping methods in the mines and plants, and more protective clothing for the workers.

This environmental study of the San José tin mine in Bolivia has been recognized already as one of the most comprehensive ever made in a South American mine. It was carried out by engineers and physicians of the young Bolivian Industrial Health and Safety Department and was generally patterned after the early mining studies made by the Public Health Service in this country.
It is gratifying to observe the excellent progress being made toward improving industrial health in Bolivia.

This is one of the dustiest operations in the Bolivian tin mines. Workers on this job are now required to wear respiratory protection from gases and dusts.

GOOD AND BAD PRACTICES IN SAFE EYE WEAR*

By Hedwig S. Kuhn, M. D.

THE Joint Committee ${ }^{1}$ is receiving increasing evidence that substandard safety pye wear is being used in numerous plants throughout the country. This fuct has been brought to the attention of the committee by its members in travel and visits to many plants, in conferences with various sections of the National Safety Council, and by individual safety groups in the United States.

Irotective eye equipment must be standard; it must be designed to meet specific hazards: it must be made according to accepted specifications and possess a stated quality of material. Otherwise such equipment cannot and does not properly protect and serve the interest of the employee and the employer. A special and very representative group worked out minimum recommended practices as published by the National Safety Council, July 1947.

It has been found in the main that small plants without benefit of safety personnel or professional eye consultants have too often been influenced by nonprofessional factors in choosing safety eye wear. They have not been fully aware of the importance of strictly adhering to the standards and practices formulated by experts in the field.

It is frequently difficult to get the cooperation of employees in observing the safety rules, and occasionally an employee may express a liking for a type of eye wear which is not always approved merchandise. Here the safety man, in order to protect the employee with something he will wear, occasionally yields. This is bad practice as it cancels out prestige of authorit y, general safety rules, and carries by word of moutli to other plants, producing unrest.

Unsafe protective eye equipment

[^4]sometimes gets into a plant because an outside personal contact (friend or relative) may want to introduce merchandise of an inferior quality which management and/or the safety man may not even realize is inferior or how extremely detrimental such a purchase can be. Economic pressure anl false economy also influence procurement of protective ese wear. Persons responsible for sufety programs should not be forced by management to purchase materials solely on the basis of price. if this means obtaining substandard equipment.

The man responsible for safety in industry is the key to a successful and ethical program utilizing protective ese wear. When his responsibility for sperifying safety requirements is subordinated to other factors, or he permits dilution of his responsibility for safety requirements, the basic principles for safeguarding employees are tragically jeopardized.

The Joint Committee would like to ask every professional eye man who has any relationship to industry whatsoever, to support, to urge, to police (if necessary) management's insistence on the use of standard quality protective eye wear, as the support so given to safety, ethics, and plant procedures is of tremendous value. It will help the National Safety Council, the ethical optical companies and those manufacturers of industrial safets equipment also handing standard safety eye wear to demonstrate conclusively to management and/or to their customers that quality merchandise is essential ; that the profession stands behind its use, and that insistence on standards is not merely a commercial sales argument.

AVAILABLE PUBLICATIONS

The following publications are arailable for free distribution: "Science in the Control of Water-borne Wastes" and "Industrial Application of Audiology". They may be obtained from the Industrial Hygiene Foundation, $4+00$ Fifth Avenue, Pittsburgh 13, Pa.
"We Need to le Cnified" and "AAINA Thumb Nail Sketch". They may be obtained from the American Association of Industrial Nurses, Inc., 6.)t Madison Arenue, New York 21, N. Y.
"Your Guide to Safety as a Food Store Eroployee"; "Your Guide tu Sufety as a Crane Operator": and "Your Guide to Safety as a SalesmanDriver" may be obtained. from the Association of Casualty and Surery Companies, 60 John Street, New York : N. Y.

RECOMMENDED READING

Committee of the American Nures Association and the National Organization for Public Health Nursing oa Nursing in Medical Care Plans: Guide for the Inclusion of Nursing Servicu in Medical Care Plans. 1950. 31 pp . (Processed.)

Cralley, Lewis J.: Atmospheric Polution Control in Petroleum Refinerie. Lectures Presented at the Insertics Training Course in Air Pollution. February 6-8, 1950 . University of Michigan School of Public Health, Anu Arbor, 1950. Pp. 97-100.

Employers' New Requirements: Sick Pay, Health Benefits, [and] Life Insurance. Analysis 72. Research Institute of America, Inc., 292 Madison Are.. New York 17, N. Y. (April) 1950. 47 pp.
[Knapp, Margaret]: Cancer Nursing. a Manual for Public Health Nuses. National Cancer Institute and Ner York State Department of Health, 1950. 88 pp. Copies may be obtained at $\$ 1$ each from Health Publication: Institute, Inc., 216 North Darson It., Raleigh, N. C.

Sitgreaves, Rosedith, and May, Irving: Potential Sources of Error in Blood Lead Determinations Due io Different Methods of Blood Sampling. Arch. Ind. Hyg. \& Occup. Med. I: 467-470 (April) 1950. Reprints are available from the Division of Industria Hygiene, PHS, Washington 25, D. C.

U. S. GOVERMMENT PRINTIMG OFFICE: : 8050

[^0]: This publication is free to persons engaged in industrial hygiene in governmental agencies (Federal, State, or Local). For sale by Superintendent of Documents, Government Printing Office, Washington 25, D. C. Rates-\$1 a year (Domestic) ; $\$ 1.25$ (Foreign).

 Statements made in this publication by authors who are not members of the Division of Industrial Hygiene do not necessarily represent the viewpoint of the USPHS.
 Ary information printed in this publication may be reprinted without permission from the USPHS. Acknowledgment would be appreciated.
 The printing of this publication has been approved by the Director of the Bureau of the Budget March 3, $19: 18$

[^1]: *Dr Schneiter is a bacteriologist with the Division of Industrial Hygiene, PHS.

[^2]: *Miss Henriksen is a Nursing Consultant with the Division of Industrial Health, Minnesota Department of Health.

[^3]: - Presented at the 1950 meeting of the American Conference of Governmental Industrial Hygienists. The complete article has been printed in Archives of Industrial Hygiene and Occupational Medicine, Aug. 1950.
 ${ }^{1}$ Mr. Morse is Chief and Mr. Setterlind, Chief Chemist, of the Division of Industrial Hygiene, Illinois Department of Public Health.

[^4]: - Reprinted from Transactions, American Academy of Ophthalmology and Otolaryngolog!y, March-April, 1950.
 ${ }^{1}$ Members of the Joint Committee on Occupational Ophthalmology represent the seetion on Ophthalmology of the American Modical Association and the American Academy of Opthalmology and Otolaryrgoloze.

