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We suggest the main principals and functional units of the
parallel chemical computer, namely, (i) a generator (which is a
network of coupled oscillators) of oscillatory dynamic modes,
(ii) a unit which is able to recognize these modes (a ‘reader’) and
(iii) a decision-making unit, which analyses the current mode,
compares it with the external signal and sends a command to
the mode generator to switch it to the other dynamical regime.
Three main methods of the functioning of the reader unit are
suggested and tested computationally: (a) the polychronization
method, which explores the differences between the phases
of the generator oscillators; (b) the amplitude method which
detects clusters of the generator and (c) the resonance method
which is based on the resonances between the frequencies of the
generator modes and the internal frequencies of the damped
oscillations of the reader cells. Pro and contra of these methods
have been analysed.

1. Introduction

An enormous number of works have been devoted to the study of
the principles of the brain functioning. Recently, a new direction
has been crystallized out, which is born at the intersection of the
theory of dynamical systems and neural networks [1]. Coupling
of the brain dynamics and brain connectivity (connectome) leads
to the so-called ‘dynome” which can shed light on the brain
architecture, functional organization of neuro-circuits and roles of
different connections in a neural network [2].

It was demonstrated theoretically that the initially homoge-
neous medium of oscillators can be self-structured to perform
certain functions [3,4]. This self-organization occurs, for example,
due to changes in synaptic weights (plasticity). Buzsaki [3] offers
general theories for the brain functioning. He focuses on the fact
that there should be a ‘reading’ system in the brain, a system
which reads information from a special part of neural network.
The latter can be conventionally called ‘central pattern generator”
(CPG) [5], but this CPG is not necessarily linked to locomotion.
Buzsaki believes that the ‘reader” sends a signal further to an
integrator that collects information about the external objects. In
general, several CPGs and several ‘readers’ can coexist and work
together.

© 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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Figure 1. The hierarchical network of coupled oscillators which represents basic blocks of the ‘chemical computer’. Pulse-coupled spike
oscillators 1-4 (circles) constitute the central pattern generator (CPG). Excitable cells of block A (from 1to N, in squares) are elements that
analyse dynamical modes of the CPG. The DM is the decision-making unit. External signal S is analysed by the DM unit. The CPG oscillators
are connected to all A cells by unidirectional excitatory pulses. Links between the CPG oscillators and only the first A cell are drawn, to
make the scheme readable.

Such a view on the architecture of the brain is similar to our approach to developing a ‘chemical
computer’, a system of coupled chemical oscillators that can perform such functions as signal (=image)
recognition and decision-making or an adaptive and smart response to external stimuli. As a chemical
oscillator, we use the Belousov-Zhabotinsky (BZ) reaction [6,7] in our laboratory experiments. The BZ
reaction is a catalysed oxidation of malonic acid by bromate in an acidic environment. As a cell (or
reactor) for the BZ reaction, we explore usual macro-reactors (continuously stirred tank reactors (CSTR)
[8]) or micro-reactors which are water microdroplets (around 100 pm in diameter) in the oil phase [9]. The
dynamics of the BZ reaction is similar to the dynamics of spiking neurons. We explore the BZ reaction
both in the oscillatory mode and at the excitable stationary states. Sometimes we use a term ‘chemical
neuron’ for microdroplets with the BZ reaction inside.

To construct a network of the BZ cells similar (in some sense) to the neuronal network, we invented
pulse coupling between the BZ cells with time delay [10,11] instead of habitual diffusive coupling. A few
almost identical BZ oscillators with either inhibitory or excitatory pulsatile coupling with time delay can
produce a lot of different dynamical modes [12,13]. Like in biology, we call this network of oscillators the
CPG. Following Buzsaki’s idea about a ‘reader’, there should be some analysing block (a group of other
BZ elements) that can distinguish between different modes of the CPG and send a corresponding signal
to the other, let us say, logical or decision-making block of our chemical computer.

Schematically, a block-scheme of the chemical computer is presented in figure 1. Pulse-coupled
oscillators 1, 2, 3 and 4 (in circles) generate different modes of the CPG. When we take into account
permutations of the CPG oscillators, then each mode (except one completely symmetrical mode) splits
into sub-modes. Each CPG oscillator sends excitatory pulses to each of the N excitable elements of the
analysing block A. Block (or unit) A can work in different ways, for example, only one excitable cell or
a set of special cells from block A should be excited by the corresponding sub-mode for which they are
tuned. All other elements of block A should remain in the steady state (i.e. be inactive). Block A, in turn,
sends information about the state of the CPG to the next ‘decision-making’ (DM) block (or unit). External
signal S is also recorded by the DM block. Comparing signal S and the signal from block A, the DM unit
should make a decision what to do with the current mode of the CPG. One of the possible results of this
decision can be a switch from the current CPG mode to the other one. The DM block should consist, in
general, of coupled oscillators or excitable cells as well. A feedback from the CPG via the ‘reader” and
the DM units back to the CPG should create conditions for adaptive and smart behavior of the entire
‘chemical computer’. Logical functions can be employed in this feedback. Note that logic gates were
created recently with the aid of the BZ droplets [14,15].

The ‘chemical computer’ described above and the principals of its functioning are completely different
from the features of the Hopfield networks [16] and from the principals of ‘computing with chemical
waves’ [14,17,18]. In our case, the dynamic modes of the CPG and switching between them are the
essential part of an entire computer. Switching between the CPG modes is akin to heteroclinic computing
[19,20]. We are working with relatively small circuits and believe that the principals of their functioning
are quite instructive and can be applied to larger networks [21].

In the present work, we investigate computationally different methods of functioning the analysing
block A that should differentiate between different modes of the CPG. Any oscillatory pattern
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Figure 2. Regular modes in a network of four pulse-coupled oscillators: (a) IP, (b) '3 + 7, (c) IPAP or AP(2,3 4 1,4), (d) AP, (e) 1 + 1+2,,
() splay (walk). The time intervals of all panels are 400 s.

(including CPG modes) can be characterized by the phases, amplitudes and frequencies of oscillations.
Correspondingly we develop three methods that are based (a) on the phase differences between the CPG
oscillators, (b) on the aggregated amplitudes of the oscillators in clusters, and (c) on resonances.

We use four oscillators with pulsatile all-to-all coupling as a CPG and analyse different (five) regular
(R) modes found in this system (see figure 2) [12,13]. The first of these five R-modes is the symmetrical
in-phase (IP) mode shown in figure 24, when all four oscillators are in-phase. There are no sub-modes
for the IP mode. In figure 2b, we present the so-called ‘3 + 1" mode (or triplet-singlet), when one cluster
consists of three in-phase oscillators and the fourth oscillator, which is almost anti-phase (AP) to those
three. There are four sub-modes of the ‘3 + 1" mode. The AP mode (which is another two-cluster mode),
when two clusters of two IP oscillators oscillate AP, is exhibited by two sub-modes in figure 2c,d. There
are three AP sub-modes obtained by permutation. These sub-modes have identical dynamics, but the
reader unit should be able to recognize them. The 2+141" mode (three-cluster mode or doublet-
singlet-singlet), where two oscillators are in-phase, while the phases of other two oscillators are shifted
in time approximately by T/3 and 2T/3 (or —T/3), where T is the global period of this mode, is shown
in figure 2e. Experimentally this mode was found only recently [22,23]. In [22], this mode is called the
minimum chimera. Finally, a splay (S) mode, when the phases of all oscillators are shifted in time by
T/4, is shown in figure 2f. For the S mode, each oscillator can be considered as a ‘cluster” of one (singlet).
If permutations are taken into account, there are twelve ‘2 + 1+ 1" modes and six S modes. There are 26
modes in total.

R-modes are found in such quadruped gates as walk (four-beat gait, when four legs move
alternatively with a quarter period phase shift between legs), pace (a lateral, two-beat gait) or bound
(when front legs move in-phase and back legs move in-phase and front and back pairs of legs move AP),
trot (a diagonal, two-beat gait) and pronk (when all four legs move in-phase) [24-26]. Block A should
inform the DM unit about each of these modes without mistakes.

The rest of this paper is organized as follows. In §2, we describe our equations and methods. In §3, we
describe three different methods for identification of the different dynamical modes. In §4, we discuss
our results.

2. Material and methods

To simulate the BZ reaction in all oscillatory cells of the CPG and in the excitable cells of the analysing
block A (A cells), we explore our previous four-variable model [27]:

d

d—: = —kixy + koy — 2k3x2 + kax(co — z)/(co — z + cmin) — kox =G(x,y, 2), (2.1)
dy

— = —kixy — kay + kopvz — ko(y — yo) = F(x,y,z,v), (2.2)

dt
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Figure 3. A typical dependence of the largest eigenvalues A on y, for the linearized system (2.1—(2.4). Bold curves are Re(A), while
dashed curve is Im(A). h = 0.3 M. All other parameters of system (2.1)—-(2.4) are in the text.

% = 2kgx(co — z)/(co — z + Cmin) — kopvz — k10z = P(x, 2, v) (2.3)
and % =2k1xy + koy + k3x? — kopvz — kizv — kov = W(x, y, 2, v), (2.4)

where x is the concentration of activator, [HBrO;], y = [Br~] (inhibitor), z = [oxidized state of the catalyst],
v=[BrMA] (bromomalonic acid), cyp is the total concentration of the catalyst (oxidized +reduced
states), cmin < co; k1 =Kjh, ko = k/2h2A, and ky =kjhA, A = [NaBrO3]=0.25M, h=[H"], [MA]=0.1M,
co=1mM, kg=5x10"*s71, k} =2 x 10°M~2s71, k, =2M~3s71, k3=3000M~1s7}, K, =42M~2s7},
k9p =20M! Sfl, k1o = k’lO[MA], k/lO =0.05M"1 Sil, k13 =0.004 571, Cmin = (3krk10C0)1/2/kred,
kr=2x108M~1s71, kg =5x 10°M~1s~1. Parameters & and Yo are used to tune the state of the BZ
oscillator.

For the CPG oscillators, we use inhibitory pulse coupling with time delay. In this case, equation (2.2)
in model (2.1)-(2.4) is modified as follows:

dvy:
Gt = FGizv) + 3 [Cian x Pl T, AD], 25)

where i=1,2,3,4and j=1, 2, 3, 4; Cjp, is the coupling strength, which can be interpreted as the rate
(M/s) of injection of inhibitor. Rectangular function P(x;,t,At) switches t seconds after a sharp spike of
Xj from 0 to 1 and then switches back to 0 after a time Af (=5s in our case). Function P(xj,T,At) simulates,
for example, a pulse injection of a solution of inhibitor (Br™) into the reactor or a flash of light that
produces inhibitor inside a reactor. During one pulse, the concentration of inhibitor in the cell increases
by CinnAt. All CPG oscillators are identical, 7 =0.3M and yp =0. In §3.3, we use h =0.29 M to fulfil the
resonance conditions better.

Between the CPG oscillators and A cells we use unidirectional excitatory pulse coupling with time
delay. In this case, modification of equation (2.2) in model (2.1)—(2.4) and introduction of the fifth variable
[Ag] (silver ions) with the corresponding differential equation look as follows [27]:

d
% =F(xm, YmsZm, V) — kdiff[Agm]}/m (2.6)
and dl ]
A
D2 = 37 ICex x P, i, AD] = kst Aginly, 27)

wherem=1,2,3, ..., N (numbering of A cells); i=1, 2, 3, 4 (numbering of the CPG oscillators), t;, is the
time delay between a spike in the ith oscillator and the pulsed perturbation of the mth A cell. Silver ions
react with bromide ions very quickly (with the diffusion-controlled rate constant kg = 108 M—1s71),
thus reducing y,, in the mth cell. All A cells are in the excitable steady state, which is established by
non-zero parameter yo.

The value of yy should be as large as is needed to suppress oscillations (i.e. to move the system below
the Hopf bifurcation). The parameters of the Hopf bifurcation are found by linear stability analysis of
system (2.1)—(2.4) (see figure 3). At chosen parameters of the system, the value of 1y corresponding to the
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Table 1. The dependences of the steady-state yss and the minimum amplitude (™™ of a single excitatory incoming pulse on y,. -
The amplitude (™" should be large enough to generate a spike in an excitable BZ cell described by equations (2.1)—(2.4) plus (2.6)

and (2.7) under the condition that the duration of the pulse At =>5s. At chosen parameters and h =03 M, yoH =1.3331mM and
Yss™ = 8.58 1tM. Data of column ‘(yss — yss™) /(Cex™™ At)’ are calculated from the values of columns ‘yss’ and ‘Co ™.

(exmin (M 571) (J/SS - ySSH)/((exminAt)
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Hopf bifurcation is equal to yo' (=1.3331m). At yy > yo, the oscillations are suppressed. The difference
between the steady-state (SS) value yss (which is a function of ) and the critical value yssH (=8.58 uM),
at which the SS becomes unstable (the Hopf bifurcation at yp = yOH) determines the minimum amplitude
Cex™™ of the incoming excitatory pulse that triggers a spike in the A cell at a given yo. In table 1, we
present the data for yss and Cex™™ as a function of yo. The most right column demonstrates that the
difference (yss — yssH) is almost equal to the injected concentration of activator ([Ag*]), Cex™M AL, per
single pulse, if yo is far enough from yot (more than 20%). To establish different levels of excitability
in different A cells, yo(m) can assume (in general) different values in different mth cells.
In some cases, A cells can be connected by inhibitory pulses to suppress unwanted cells which start
oscillating. In this case, equation (2.6) is modified as follows:
Y B,y 2 ) — KAl + 3 G x P, 7, AD) @9)
n#£m

Pulsatile periodic external signals are generated by function P(5(t),t,At), where
S(t) = H(sin(wt) — 0.99). (2.9)

H(x) is the Heaviside step function. The value of v (which is small) is not important in this case,
because only period (=2m/w) and the width of the pulses (=At) make sense for periodic perturbation.

3. Results
3.1. Time delays

Our first method of the recognition of the modes is based on the phase shifts between different oscillators
of the CPG and on the polychronization hypothesis [28,29], which states that two pulses from two
neurons that generate spikes at different moments of time can come to the third neuron synchronously if
time delays Atq between these two spikes and the difference in the distances between the third neuron
and each of these two, A, are related as Al/Atq=1v, where v is the speed of pulse propagation along
axons. Therefore, two conditions should be fulfilled for the satisfactory functioning of the first method:
(i) the A cells are tuned in such a way that only four pulses simultaneously coming to the cell can generate
a spike in it, (ii) time delays t4?) between the moment of spike of the ith CPG oscillator and the moment
of pulse arrival to the mth A cell are chosen (or tuned) in such a way that all four pulses from the CPG
oscillators come simultaneously only to a single A cell that corresponds to the appropriate dynamical
mode of the CPG. These ideas remind the methods of computing in networks of spiking neurons with
different time delays for different information paths [30].



Table 2. Time delays 74 for perturbing pulses from the ith CPG oscillator to all A cells. Time shift = is an arbitrary and small value n
(=01T).

(PG mode A cell 73" 749 7@ 74
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As an example, consider the AP mode, when oscillators 1 and 3 are in-phase (the first cluster) and
oscillators 2 and 4 are in-phase as well (the second cluster) and the two clusters oscillate AP with
the global period T. Let us select time delays between the CPG oscillators and an arbitrary A cell as
follows: tgM =15, 14@ =15 + T/2, 14® =15, 7q® = 15 + T/2, where time 7, is a small arbitrary value (for
example, s =0.1T). In this case, all four pulses generated by four spikes in the CPG come to the selected
A cell simultaneously and induce a spike.

As we mentioned above, there are 26 different modes of the CPG if we take into account permutations.
Accordingly, we should have at least 26 A cells, if each cell is responsible for only one mode, or,
alternatively, 26 unique combinations of A cells that should indicate the certain modes.

Is it possible to find such a unique set of time delays that only one A cell is excited by a certain
sub-mode of the CPG? We answer this question positively and present table 2 with the appropriate sets
of time delays for each dynamical sub-mode. All A cells (from 1 to 26) are tuned to the corresponding
sub-mode of the CPG due to appropriate sets of 4. Time delays 74 are determined by the global
period T and phase shifts between clusters. All A cells have the same threshold of excitability which is
determined by 1. In our simulations, we take 1o = 4.0 mM, though other values can be used as well. For
the value of yy used, the total amplitude of four simultaneous pulses (=the sum of four), Cex™" should
exceed 4.03uM s~ ! (see line 6 in table 1), while the sum of three simultaneous pulses should be less than
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Figure 4. Detection of the AP(1,3 4 2,4) mode of the CPG by A cell at Cipy =7 x 107> M, T =15, yp = 4mM, Cex =13 x 107 M,
and 4" = g% = 1, 4® = 4™ = 7, + T/2. (a) Spikes of the CPG oscillators (bold lines) and a single spike of the A cell (dotted
line); numbers above spikes are indexes of oscillators. Vertical grey line (between spikes of the 1,3 oscillators and the spike in the A cell)
mark the moment of time when all four pulses come to the A cell. Vertical arrows in (b) mark the same events. (b) The dynamics of
inhibitor y in the A cell.

4.03 uM s~ 1. Therefore, for a single unidirectional pulse from the CPG cells to A cells, we use the coupling
strength Cex =1.3 uM s~ which is larger than 4.03/4 uM s~! and smaller than 4.03/3uM s~ 1.

In table 2, we introduce new notations such as ‘(n,m+k|l)’, ‘(n,m,l+k)" or ‘(nm+I+k)’. In these
notations, such combinations as ‘n,m,I” or ‘n,m’ mean triplet and doublet, respectively, where indices
of oscillators (n, m, k and [) can assume any different integers from 1 to 4. Sign(s) ‘plus’ in these
notations means a combination of two or three clusters (like doublet 4 two singlets) separated in time
by some phase shift. Notations of the types (1,3 +2,4) (with commas) and 2+ 1+ 1" (without comma)
are different: in the first case, we explore the indexes of the oscillators, while in the second case we use
the number of oscillators in different clusters.

For the asymmetrical two-cluster modes ‘(n,m,] +k)’, the difference between appropriate time delays
74" is equal to T/2.2, while for the symmetrical AP mode, the difference between appropriate time
delays 74 is equal to T /2.

Simulations of all modes with time delays presented in table 2 confirm that only one A cell is activated
in response to a current dynamical mode of the CPG. An example of the detecting of the AP mode
(1,3+42,4) by the A cell is shown in figure 4. Time delays used for this case are shown in table 2 (the
second A cell). As is seen in figure 44, the second A cell generates a spike (dotted line) after receiving
four pulses marked by a grey vertical bar. Only this A cell receives four pulses simultaneously. No other
A cell is active.

Note that the frequency of spikes induced in the A cell is two times smaller than the frequency of
the AP mode in the CPG, which induces these spikes by sending the pulses. In figure 4b, we illustrate
and explain this phenomenon. After a spike in the A cell, the concentration of inhibitor, y, first decreases
(down to almost zero), then becomes larger (up to 0.2mM), and then slowly decreases again. At the
moment when the next four pulses come to the A cell simultaneously (marked by the arrows in figure 4b),
y is still large enough for the A cell to become excited. For the task of mode recognition, the fact that
different A cells may have different frequencies of spiking activity is not important because we just have
to know which A cell is in the oscillatory state. But if one wants to have the same frequencies of the CPG
and the A cell, the parameters of the A cell should be changed, for example, cg can be decreased or/and
[MA] and & can be increased.

In real laboratory experiments, periods of all “identical’ CPG oscillators are slightly different (by a few
per cent) [23]. Therefore, we decided to check how a small frequency dispersion of the CPG oscillators
affects the response of the A cells. In general, the effect of noise or dispersion of some parameters on the
dynamics of the network of coupled oscillators [20] is not within the scope of the present work. We just
show that this problem is important demonstrating an example of the functioning of the A cell tuned to
detect the IP mode under the condition of frequency dispersion.

To have the CPG oscillators with slightly different natural periods T¢;, we explore slightly different
parameters h; (i=1, 2, 3, 4): specifically 1 =ho+¢, hp=ho+¢e/2, h3=hyg—¢ and hy=ho—¢/2 at
hp=0.3M and ¢ =0.01 M. Natural period Ty of the BZ oscillator (equations (2.1)—(2.4)) almost linearly
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Table 3. The response of the A cell tuned for the detection of the IP mode at different Cex and the durations of the excitatory pulses At n
under the condition of frequency dispersion related to the differences in h (¢ = 0.01 M) of the (PG oscillators. Parameters of the (PG
couplingare Gippy =2 x 107> Ms™', 7 =30s.
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depends on h, To=ah+b, where a= —693.56sM~! and b=353s [12,23]. Such dispersion in Ty, leads : a
(for example, for the IP mode) to the fact that ‘synchronous’ spikes are not completely synchronous and : =
there are some small time intervals between them, which are around 1-2s at the averaged Tp=144s. : §

For the sharp spikes and the standard duration of the pulses At =5s, even such small asynchrony of the
‘synchronous’ spikes leads to the fact that the total amplitude of four pulses is not enough to activate the
A cell (see the first line in table 3), which would be activated in the case of completely identical oscillators.

To find a possible way to solve the issue, we changed the values of Cex and At of the excitatory
pulses. The result is shown in table 3. As is seen, to activate the A cell, two variants are possible; they
are to increase At at constant Cex (=1.3uM sfl) or to increase Cey at At=>5s under the condition that
the product Cex At exceeds some critical value. Note that the product Cex At is the amount of the injected
activator. It is even possible to find such small At and such large Cex that the activation of the A cell
occurs (see the last line of table 3) at the same Cex At as in the first row of table 3 when the A cell was not
activated at At=>5s.

Theory of polychronization [29] works well for two pulses which come to a neuron synchronously.
Probability of the event that three or even four pulses come to a neuron synchronously is small and
decreases with the number of pulses, especially if neurons are scattered in the space randomly. For the
IP, AP and even 3Cl modes of the CPG consisting of four oscillators, this probability being small does
not reach zero. However, this probability can be equal to zero for the S mode if, as we supposed at the
beginning of this section, the speed v of pulse propagation along axons is constant and all axons can be
considered as straight segments. Indeed, let us try to find a geometrical point O which is distant from the
four vertices V; of the pyramid at distances I, [ +vt, [ 4+ 2vt, and | + 3vt, where t = T/4. The geometric
place of points (locus) which are distant from two arbitrary vertices at distances I and [+ vt are the
intersection of two spheres with radii  and I + vz, respectively. Obviously, this locus is a circumference,
which is a one-dimensional line. The same is true for the other two vertices of the pyramid. A searched
point O should be an intersection of these two circumferences. But two lines may have no mutual points
in the three-dimensional space. Therefore, a searched point (i.e. the A cell tuned to detect S modes) may
not exist geometrically.

To resolve this problem in future experiments, it would be necessary to introduce intermediate
excitable cells (interneurons), which transform the path between CPG oscillators and A cells from the
straight to curved line, thus enlarging the distance between the CPG oscillators and A cells and increasing
time delays.

3.2. Detection of clusters by amplitude

The second method for mode recognition is based on the summation of the excitatory pulses from
the CPG oscillators by A cells assuming that the pulse generated by a spike of the CPG oscillator
reaches A cell (to which the oscillator is connected) immediately (without delay) or with the same (or
almost the same) time delays for all CPG oscillators and A cells. There are three different types of
summations for pulses from four CPG oscillators: (i) summation of all four pulses (as in the previous
case but without taking into account time delays), (ii) summation of three pulses from any triplet
of the four CPG oscillators and (iii) summation of two pulses from any doublet (pairs) of the four
CPG oscillators.



Table 4. Summation of simultaneous pulses-spikes from all four CPG oscillators under the condition that the thresholds of four A cells
are equal to ‘4 pulses, ‘3 pulses, 2 pulses’ and ‘1 pulse; respectively.

CPG mode 4P 3P 2P 1P Number of active A cells
IP (1C1) + + + + 4
‘1+3” (2Cl) - + + + 3
AP (2C1) - - + + 2
1+1+2 - - + + 2
3ChH
Splay (4Cl) - - - + 1

Table 5. Summation of simultaneous pulses-spikes from all four groups of three CPG oscillators under the condition that the thresholds
of all four A cells of this type are equal to ‘three pulses’. A cell ‘k,,m" accepts pulses from oscillators &, / and m, respectively.

CPG mode A cell A cell A cell A cell Number of
(1,2,3) (1,3,4) (2,3,4) (1,2,4) active A cells
IP + + + + 4
1,2,3+4 + - - - 1
1,2,4+3 - - . T ]
1,3,4+2 - + — - 1
2,3,4+1 - - + - 1
S and 2CIl modes - - - - 0

For case (i), such a summation makes sense if the thresholds of excitability of A cells are different.
Specifically, the first, second and third A cells should be excitable only for four, three (or more) and
two (or more) simultaneous pulses, respectively. The fourth A cell should have the minimum threshold
that can be overcome by only one pulse. The thresholds of these cells can be named 4P, 3P, 2P and 1P,
respectively. Such different values of thresholds can be achieved by using different values of yp: yo!) =
8 mM, yo(z) =6mM, yo(S) =4mM, y0(4) =2mM) (see also data from table 1). For case (ii), the thresholds
of all A cells are the same and correspond to three pulses (3P), while for case (iii), the thresholds of all A
cells are the same and correspond to two pulses (2P).

The responses of all A cells described above are presented in table 4 for case (i), in table 5 for case (ii),
and in table 6 for case (iii). Signs ‘+’ and ‘—’ in these tables mean that spikes are or are not generated,
respectively, in a corresponding A cell. As is seen from table 4, summation of four pulses by four A cells
with different levels of excitability can determine the IP mode (by four active A cells), the 2CI mode of
the type "1+ 3’ (by three active A cells) and the S mode (by one active A cell). The AP mode and the 3Cl
mode of the type ‘1 + 1+ 2" look identical (two active A cells in both cases), which is a drawback of this
method. The other drawback is the fact that any permutations of the ‘143" mode (four permutations)
or the S mode (six permutations) (see also table 2 for all permutations) cannot be distinguished.

Summation of three pulses in case (ii) can help us to distinguish between all four permutations in the
"1+ 3" mode. As is seen in table 5, different ‘1 + 3" modes activate different A cells (one A cell per each
1+ 3" mode).

Summation of two pulses from all pairs of four CPG oscillators in case (iii) is very effective, as is
seen in table 6. The AP mode generates two active A cell, while the 3Cl modes generates only one active
A cell. In addition, all permutations inside the AP and 3Cl modes activate different sets of active A
cells. Six permutations of 12 for the 1+ 142’ (3CI) mode can also be recorded. But permutations that
are different by the sequence of singlet spiking like, for example, ‘1+3+2,4" and '3+ 1+ 2,4 cannot
be distinguished.

Different permutations of the S mode cannot be distinguished by the ‘amplitude” method. ‘“Time delay’
method should be used in this case.
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Table 6. Summation of simultaneous pulses-spikes from all pairs of oscillators of the CPG under the condition that the threshold of all
six A cells is equal to “two pulses’. A cell ‘ij" accepts pulses from oscillators i and .

CPG A cell A cell A cell A cell A cell A cell | Number
mode (1,2) (1,3) (1,4) (2.3) 2.4) (.4) of active

A cells
1P + + + + + +
‘1,2,3+4 + + -
‘1,2,4+3° + - + - -
‘1,3,4+2° - + + +
2,3,4+1° - - - + + +
1,2+3,4 + - - - - +
1,3+2,4 - +
1,4+2,3 - - + + - -
‘1+2+3,4° - - - - -
‘1+3+2,4° - - - - + -
2+3+1,4° - - + - - -
‘1+4+2,3° - - - + - -
2+4+1,3 - + - - - -
3+4+1,2° + - - - - -
Splay - - - - - -

=)}

+ [

1
1
1
O|= === = =[N W W W W

3.3. Resonances

Time intervals between successive spikes of the CPG, A (or lag A), strongly depend on the dynamical
mode of the CPG. For the IP, AP and S modes, A is equal approximately to To, To/2 and To/4,
respectively. In addition, lag A is dependent on the coupling strength Cj,, and time delay ¢ [12,13].
In some sense, the CPG can be considered as a ‘frequency transformer’ or ‘frequency generator’. We can
use this feature to construct special A cells that could respond resonantly on special frequencies.

This method is based on the dynamics of a stable focus steady state (SS) that can respond to a
relatively large perturbation in a threshold manner (excitable state). The dynamics of system (2.1)—(2.4)
in response to a small perturbation of the SS is described by the following equation (for variable y, for
example):

Y — Yss = Yini cos(wpt) exp(2.3Re(1)t), (3.1)

where yip; is the initial value of y immediately after a small pulsed perturbation, wg =Im(2), Im(%) and
Re(%) are imaginary and real parts of the largest eigenvalue A of the linearized system (2.1)-(2.4) (see
figure 3), Re(1) < 0. A typical dynamics of system (2.1)—(2.4) in response to such small perturbation of the
stable focus is shown in figure 5a,b.

If the pulsatile periodic external signal Cex x P(S,7,At) (see equation (3.1)) has the frequency w which
is close to wp, a resonance should be observed, i.e. a spike should be generated at a relatively small
amplitude Cex (but larger than some critical value Cex™) after a series of pulsed perturbations. In
figure 5c,d, the dynamics of the excitable A cell at Cex < Cex is exhibited. As is seen, the system departs
from the SS at initial pulses, but then reaches some stable trajectory around the SS, which is similar
(in some sense) to attractor. In figure 5e,f, when Cex < Cex, the trajectory of the system in the phase
space leaves the basin of attraction of the SS, and a high-amplitude spike is generated. After this spike,
the system tries to return to the SS, but periodic perturbation will generate the next spike after several
periods of the external signal.

The value of Cex™ strongly depends on @ and parameters of the system, i.e. on the proximity of the
system to the Hopf bifurcation and on the ratio Im()/Re(%). Typical dependences of the Cex on w for
three different values of wg [=Im(%)] and at approximately constant Im(i)/Re(A) (=21.6) is presented
in figure 6. As expected (because these curves are analogous to the Arnold tongue), each curve has the
minimum of Cex™ at w = wy. In addition, local minima are observed in figure 6 at w = 2wq (for curves 1
and 2) and w Z wg/2 and w = wy /3 (for curve 3).

To use three A cells to detect IP, AP and S modes, respectively, we should tune the response curves
of the A cells to the frequencies of these modes of the CPG. The A cells with the response curves 1, 2
and 3 shown in figure 6 are already tuned to the frequencies wo("’) =2nan/Ty,, where m=n=1 for the
IP mode, m=n=2 for the AP mode and m =3 and n=4 for the S mode, T}, is the global period of the
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Figure 5. Kinetics of the excitable A cell (a,¢.e) and the corresponding phase portraits (b,d,f) at (a,b) initial small perturbation and
at periodic pulsatile perturbation Ce, x P(S,7,At), (¢.d) for oy < Co™ and (gf) for Co > G, Periodic pulses P = P(S,z,At) are
shown in panels (ce) (right axis); S = H(sin(cwt)—0.99), H(x) is the Heaviside function. Parameters of the system (2.1)-(2.4),(2.6),(2.7):
h= 0371757 M, yo = 17743 mM, @ = 00525, Cex = (a,0) 0, (¢,d) 13 x 10~  Ms™, (e,f) 1.65 x 1078 Ms™"; xiy = (a,b) 1.2xs5;
(c—F) Xs5; X5 = 2.3055 X 1077 M; yiny = yss = 8.68402 x 1078 M; zjyi = zs = 114411 x 107 M; vipy = vgs = 5.270125 x 10~* M;
Im(X) = 0.0538 s~; Im(A)/Re(A) = —22.2.

200

0.04 0.05 0.08 0.12 0.16 0.24
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Figure 6. Resonance responses of three A cells on external periodic pulsatile signal Cex x P(w) with frequency  and amplitude Ce.
Three reqular modes, IP, AP and splay, can be detected by three A cells with the response curves 1,2 and 3, respectively. If Gy < (o, the
A cell remains in the vicinity of the steady state. Parameters of the A cells and corresponding eigenvalues of the linearized system (2.1)—
(2.4): /M = (curve 1) 0.3588, (curve 2) 0.4966, (curve 3) 0.8623; yo/M = (1) 0.001697, (2) 0.002567, (3) 0.005429; Im(%) = (1) 0.05053,
(2) 0.09044, (3) 0.24571; Im(X)/Re(X.) = (1) 21.55, (2) 21.56, (3) 21.74. Axis ‘e is logarithmic.

corresponding mode obtained at the following parameters of the CPG: h=0.3M, Cjpp =2 x 10°Ms~1
and t =40s for the IP mode; 1 =0.3M, Cipp, =2 x 107> Ms~! and 7 =15 for the AP mode; h =0.29M,
Cinh =107*Ms~! and t = 60s for the S mode. For these modes, wy(!) = 0.0506 s, wy® = 0.0962 s~ and
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wo® =0.2349 571, Note that frequencies wo™ are very close (almost equal) to the values of Im()) and to
the frequency of the minima of the corresponding curves in figure 6.

In our computer experiment, all three A cells (A1 for the IP mode, A2 for the AP mode and A3 for the
S mode) receive excitatory pulses from four oscillators of the CPG immediately after the spikes in these
cells. The amplitudes Cex™ of these pulses are selected in the following way. For the A1 cell (which is
intended to detect the IP mode), Cex(l) is just slightly larger than the minimum value Cex“"/4 for curve 1
at wo(l) =~0.05s7!, but smaller than Cey" /4 of the other curves at the same w; Cex(l) ~6nMs~ L. For the
A2 cell (AP mode), Cex(z) is larger than the minimum value Cex"/2 for curve 2 at a)()(z) ~0.095s71, but
smaller than Cex“"/2 of the other curves at the same w; the value of Cex(z) =25nM s~ ! works well. For the
A3 cell (S mode), Cex® > Cex for curve 3 at wp® = 0.23s71, but smaller than Cex" of the other curves
at the same frequency; Cex(3) =29nM s~ L. Simulations demonstrate that only one A cell responds to the
corresponding mode.

The values of the resonance frequencies o™ and the minimum values of Ce™ at wo™ can be
tuned in a broad range just varying such parameters as yp and/or h for the A cell: the larger the ratio
Im(%)/Re(A), the smaller the minimum value of Cex® and the more pronounced is the resonance. The
frequencies of the responding A cells depend on the amplitudes Cex™): the larger the Cey ™, the larger
the frequency, which varies in our case in the range (0.2-0.5) wo.

4. Discussion

Between external signals S and the ‘heart” of the neural network, the CPG, we place two subsystems,
the analysing unit (a ‘reader’) and the decision-making (DM) unit. These two subsystems separate an
environment (which is S) and a responsive specimen (which is the CPG). We think that such architecture
of the neural network (which includes feedbacks) promotes a smart (or adaptive) behavior of the
entire organism (neural network). Our architecture can be considered as development of the ideas for
heteroclinic computing [19,20,31-33].

We suggested three general methods for mode recognition: ‘time delays’, the amplitude method
for cluster identification and the resonance method. All these methods can be combined and work
together compensating some drawbacks of the other methods or fulfilling different tasks. For example,
the resonance method can determine patterns with different frequencies using just a few A cells, but
cannot distinguish patterns of permutation or patterns with close frequencies like, for example, AP and
‘341" modes. On the other hand, the amplitude method requires more A cells. In the most sensitive
version of this method, when A cells are tuned to detect doublets, two A cells are responding to a
single AP mode, three A cells are responding to the triplet-singlet modes, and all six A cells respond
to the IP mode. If the DM unit is built in such a way that it can recognize different modes by an
appropriate combination of activated A cells, then no additional improvements of the A block are
required. But if the DM unit works properly only in the case when only one specific A cell is activated,
then we should add an additional ‘filter” or additional layer of A cells to resolve the issue. Obviously,
it can be done in many ways, including implementation of additional inhibitory coupling between
A cells or addition of other A cells in the next layer that collect signals from the A cells in the first
layer. This is mostly due to an engineering problem that could be resolved after constructing the
DM unit.

The methods of mode recognition suggested in the present work can be easily extended for the CPG
consisting of five, six or more oscillators. The functional organization of large circuits can be based on
the existing knowledge of small circuits [2]. Since we considered very general physical methods of mode
recognition, the analogous principals of the ‘reading system” might be found in the brain.

To construct the first chemical computer we are planning to develop the DM unit in the nearest future.
Logic elements or even fuzzy logic [34] should be employed inside this block, especially if we take into
account that the logic gate was developed recently using the BZ cells [14,15]. Experimental verification
of the A unit in cooperation with the chemical CPG unit is in progress.

Data accessibility. Mathematical codes (The FlexPDE scripts) supporting the results for each method described in this
study are available as electronic supplementary material: S1-S5.
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