
TN 872 .16 L6

THE

Department of Conservation STATE OF INDIANA

W. A. GUTHRIE, Chairman. STANLEY COULTER. JOHN W. HOLTZMAN. RICHARD M. HOLMAN, Secretary.

PUBLICATION No. 8

RICHARD LIEBER, Director.

THE DEPARTMENT OF CONSERVATION DIVISION OF GEOLOGY

Petroleum and Natural Gas

A PRELIMINARY REPORT

By

W. N. LOGAN, Ph. D. STATE GEOLOGIST

1920

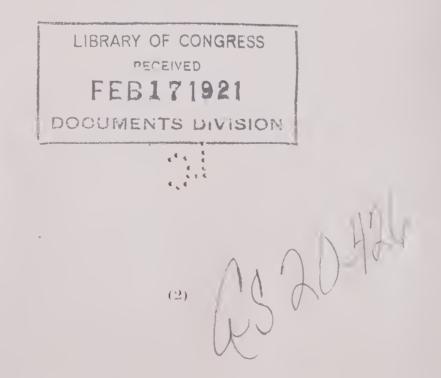
) ((((((())))))))

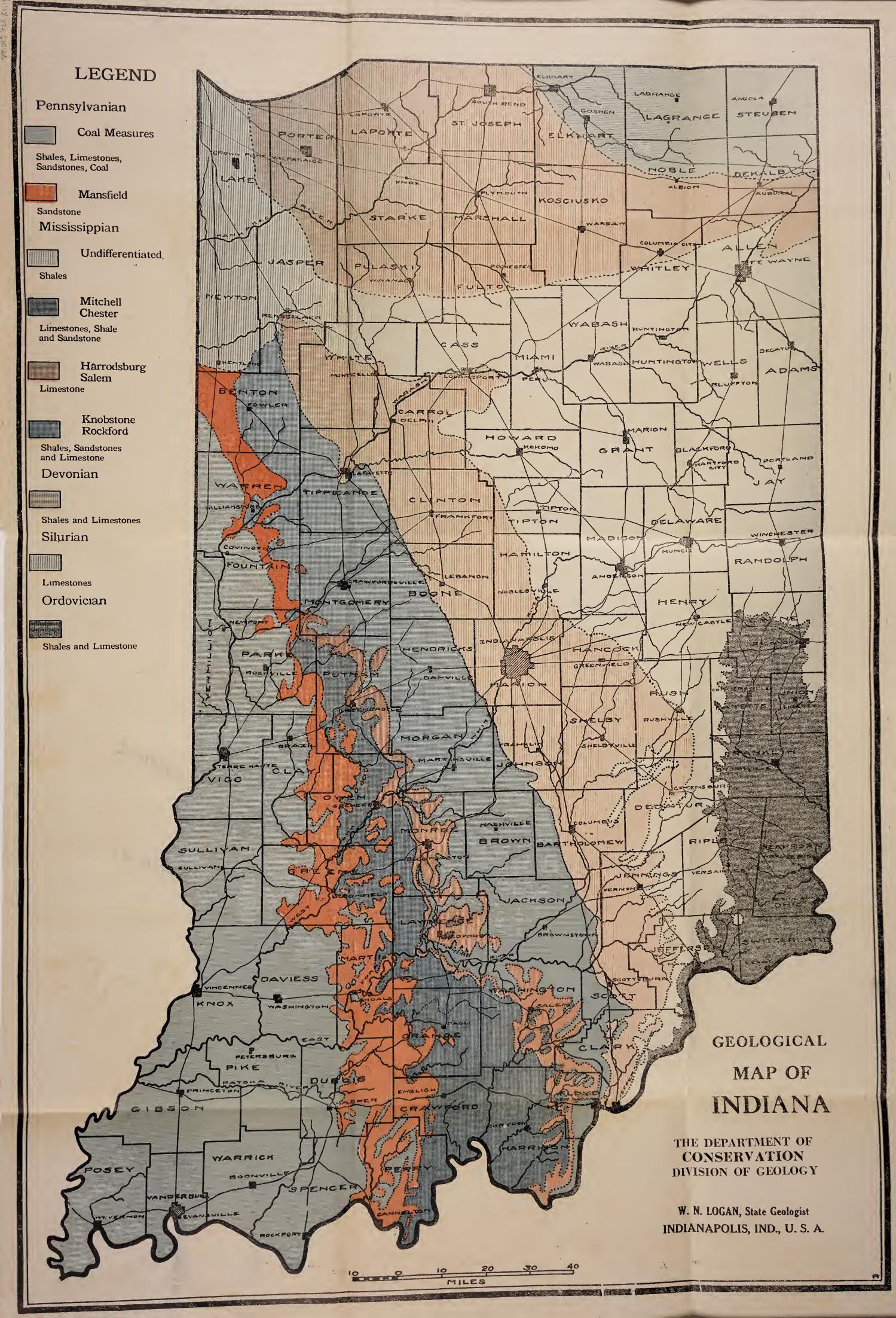
FORT WAYNE PRINTING COMPANY . CONTRACTORS FOR INDIANA STATE PRINTING AND BINDING FORT WAYNE, INDIANA 1920

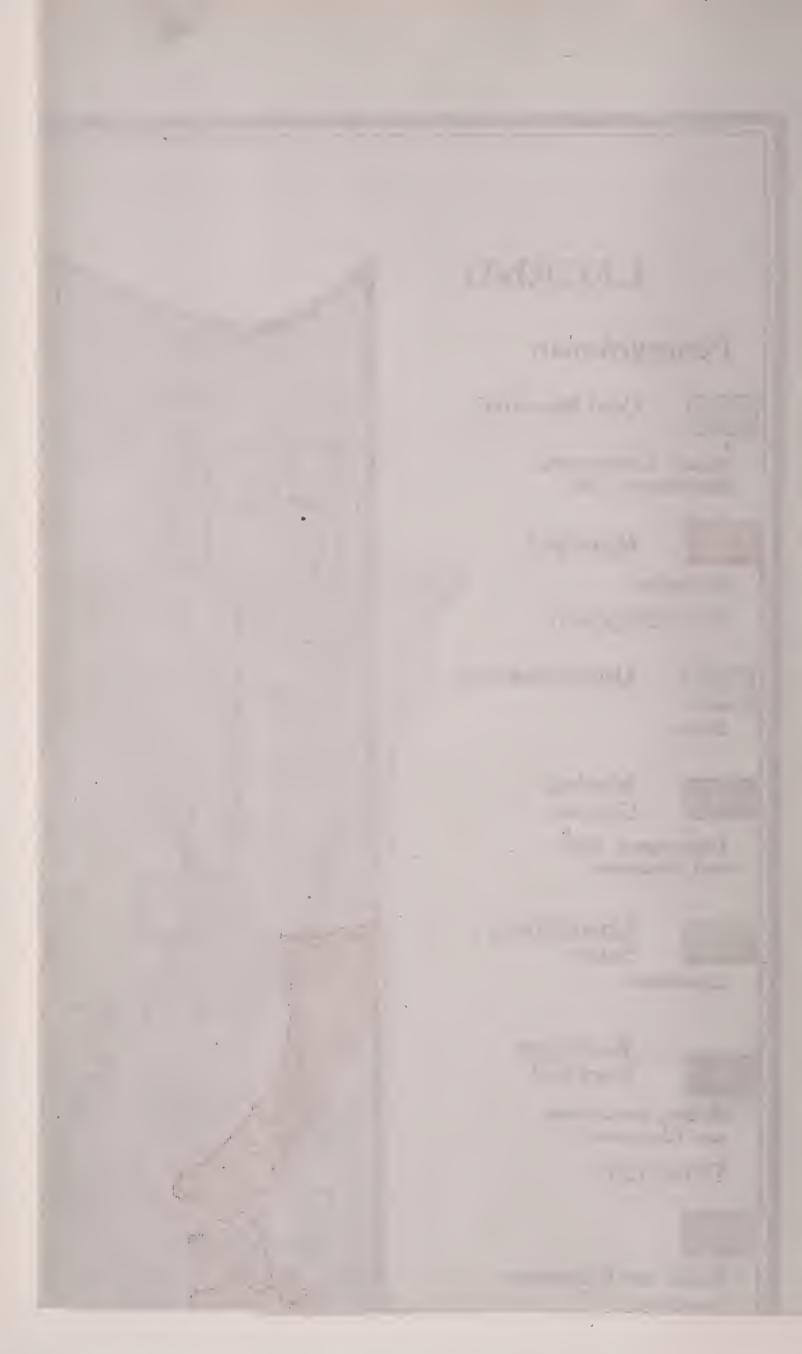
GEOLOGICAL CORPS

14

T1/2/1-. I 10 L 6


W. N. Logan, Ph. D., State Geologist.	Economic Geology
E. R. Cummings, Ph. D.	Stratigraphy and Paleontology
C. A. Malott, Ph. D	
S. S. Visher, Ph. D	Geography and Hydrology
J. R. Reeves	Laboratory Assistant and Draftsman
H. W. Legge	Preparator


Office Division


B. J.	Malott, A.	BAsst. Geolog	gist and Supervisor Nat. Gas
A. J.	Coleman		Curator of Museum
Alice	e O'Connor		Stenographer

Field Division, 1919

Ŵ. N. LoganO. H. HughesC. A. MalottWillis RichardsonS. S. VisherG. A. LeeP. B. StockdaleFred. CallJ. R. ReevesTed Jean

PREFACE

The petroleum and natural gas industry of Indiana bears such an important relation to the industrial development of the State that any reasonable expenditure of funds is warranted in the furtherance of its development. Much of the field work necessary in the preparation of this report was accomplished with very little expense to the State as it was done in connection with other geological work by the University of Indiana, but it serves as an example of what may be accomplished whenever adequate funds are available.

The following report on the petroleum and natural gas resources of Indiana was prepared as a portion of a more comprehensive publication on the Geology of the State but the size of the report and the demand for the information contained in it combine to make it desirable to issue it as a separate publication and to give it a wider distribution than may be demanded of the complete report.

The undersigned deems it his duty to call attention to the scientific value of this publication. All credit must go to the author, Dr. Logan, and his staff, for painstaking thoroughness in its preparation with the idea of publishing all available authentic material on Indiana's oil and gas resources.

The great amount of work accomplished by the Division of Geology with limited funds is largely due to the plan of co-operation with Indiana university whereby the Division has the use of laboratory and library facilities which cannot be duplicated, if duplication be at all desirable, except at great cost, and also the assistance without additional expense of trained specialists in the various divisions of Geological Science. The University, by this co-operation is contributing invaluable assistance in working out the economic geology of Indiana.

RICHARD LIEBER,

Director of the Department of Conservation. Indianapolis, January, 1920.

TABLE OF CONTENTS

1	age
Chapter I. Introduction	10
Acknowledgements	13
Bibliography	13
Chapter II. Petroleum: Properties and Origin	14
Definition	14
Composition	14
Odor	14
Density	14
Boiling Point	14
Flashing Point	14
Specific Gravity	14
Petroleum Products	15
Origin of Petroleum and Natural Gas	15
Inorganic Theories	16
Chemical Theory	16
Volcanic Theory	16
Organic Theory	16
Chapter III. Natural Gas	19
Definition	19
Physical Properties	19
Gas Pressure	19
Chemical Properties	19
Composition	-19
Origin of Natural Gas	20
Gas Depletion	21
Chapter IV. Mode of Accumulation of Oil	26
Essential Conditions	26
Relation of Geological Structure to Oil Accumulation	27
Oil Sands	27
Geological Structure Favorable to Oil Accumulation	28
Anticline	28
Syncline	29
Dome	30
Monocline	30
Structural Terrace	31
Lens Structure	31
Fault Structure	$\underline{32}$
Joints	33
Igneous Intrusions	33

9

	age
Chapter V. Prospecting for Oil and Gas	-36
Equipment	36
Exploitation	38
Locating the Structure	39
Securing the Leases	-40
Locating the Wells	41
Drilling Methods	41
	43
Drive Pipe and Casing	- 43
Cost of Oil Wells	
Abandoning a Well	45
Shooting Oil Wells	45
Pumping Oil Wells	45
Oil Transportation	48
Oil Storage	48
(the sectory NI - Changer of Changes of Changes in Indiana	50
Chapter VI. General Geological Conditions in Indiana	51
Geological Section of Indiana Potsdam Sandstone	-51 - 50
	50
Lower Magnesian LimestoneSt. Peters Sandstone	50
Trenton Limestone	50
Cincinnatian Group	- 53
Silurian Strata	
Devonian Strata	53
Mississippian Strata	53
Knobstone	
Harrodsburg	
Salem	
Mitchell	
Chester	
Pennsylvanian Strata	
Pottsville	
Coal Measures	57
Merom Sandstone	57
Tertiary Strata	57
Pliocene	57
Quarternary Strata	57
Pleistocene	57
Recent	57
Structural Features	57
Cincinnati Geanticline	57
Northern Basin	58
Southwestern Basin	58
Mt. Carmel Fault	58 60
Rift	
Periods of Movement	
Effect of Topography	0_

.

-

	1
pter VII. County Reports	
Adams County	
Allen County	
Bartholomew County	
Benton County	
Blackford County	
Boone County	
Brown County	
Carroll County	
Cass County	
Clarke County	• • • • • • • • • • •
Clay County	
Clinton County	
Crawford County	
Daviess County	
Dearborn County	
Decatur County	
DeKalb County	
Delaware County	
Dubois County	
Elkhart County	
Fayette County	
Floyd County	
Fountain County	
Franklin County	
Fulton County	
Gibson County	
Grant County	
Greene County	
Hamilton County	
Hancock County	
Harrison County	
Hendricks County	
Henry County	
Howard County	
Huntington County	
Jackson County	
Jasper County	
Jay County	
Jefferson County	
Jennings County	
Johnson County	
Knox County	
Kosciusko County	
Lagrange County	
Lake County	
Laporte County	
Lawrence County	

F	age
Madison County	169
Marion County	172
Marshall County	173
Martin County	174
Miami County	176
Monroe County	178
Montgomery County	189
Morgan County	183
Newton County	183
Noble County	
Ohio County	
Orange County	
Owen County	
	189
Perry County	
Pike County	
Porter County	
Posey County	
Pulaski County	
Putnam County	
Randolph County	
Ripley County	
Rush County	
Scott County	
Shelby County	
Starke County	
St. Joseph County	
Steuben County	
Spencer County	
Sullivan County	
Switzerland County	241
Tipton County	242
Tippecanoe County	241
Union County	243
Vanderburg County	244
Vermillion County	246
Vigo County	247
Wabash County	254
Warren County	255
Warrick County	256
Washington County	257
Wayne County	258
Wells County	
White County	261
Whitley County	262

LIST OF ILLUSTRATIONS

FIG.	Ι	Page
1.	Geological Map of Indiana	2
2.	Cross Section of an Anticline	26
3.	Cross Section of an Anticline Containing Gas	27
4.	Cross Section of a Synchine	28
5.	Cross Section of a Salt Dome	-29
6.	Section of a Monocline	-30
7.	Diagramatic Section of a Structural Terrace	31
8.	Diagram of Lens Structure	-32
9.	Diagram of Fault Structure	33
10.	Diagram of Joint Structure	34
11.	Structure Produced by Igneous Intrusion	34
12.	Anticline Represented by Contours	36
13.	Cross Section of Same Anticline	36
14.	A Standard Derrick	38
15.	A Steel Frame Derrick	39
16.	Standard Drilling Outfit	40
17.	Drilling Tools	42
18.	String of Tools Used with Standard Drill	44
19.	Standard Pumping Jack	47
20.	Steel Pumping Jack	47
21.	View of an Oil Field in Indiana	46
22.	Broad Ripple Oil Well After Shooting	46
23.	Map Showing Oil and Gas Areas in Indiana	48
24.	Structural Map of Indiana, Contours on Trenton	49
25.	Public Road in Knobstone	52
26.	Quarry in Salem Limestone	54
27.	Cave in Mitchell Limestone	55
28.	An Outcrop of Mansfield Sandstone	56
29.	Map of Adams County	63
30.	Map of Blackford County	70
31.	Map of a Part of Daviess County	82
<u>32.</u> 55	Map of Delaware County	85
33. 34.	Map of Siberia Oil Field, Dubois County Map of Gibson County	$\frac{91}{97}$
34. 35.	Map of Grant County	118
-55. -36	Map of Hancock County	129
37.	Map of Henry County	
38.	Map of Portion of Jackson County	
39.	Map of Jasper County Oil Field	
40.	Map of Jay County	
41.	Map of Portions of Jennings and Jefferson Counties	
42.	Map of Portions of Lake and Newton Counties	
43.	Map of Wilder Oil Field, Laporte County	

	1	age
44.	Map of a Portion of Lawrence County	165
45.	Map of Madison County	168
46.	Map of Broad Ripple Field	171
47.	Structural Map of a Portion of Martin County	174
48.	Map of Loogootee Oil Field, Martin County	175
49.	Map of a Portion of Monroe County	179
50.	Structural Map of a Portion of Orange County	186
51.	Map of Structural Conditions Near Orangeville	187
52.	Petersburg Structure, Pike County	192
53.	Map of Union Oil Field, Pike-Gibson Counties	193
54.	Map of Bowman Oil Field, Pike County	194
55.	Map of Glenzen Terrace, Pike County	195
56.	Map of Structural Conditions Near Winslow	196
57.	Map of Francesville Oil Field, Pulaski County	216
58.	Map of State Farm Anticline, Putnam County	217
59.	Map of Randolph County	219
60.	Map of Sullivan County	228
61.	Map of Vigo County	247
62.	Map of Wells County	259
63.	Map of Indiana Showing Location of Wells	264

CHAPTER I.

INTRODUCTION

No industry is more dependent upon science than is the petroleum industry upon the science of geology. The petroleum and natural gas industry of Indiana is of so much importance to the industrial development of the State that it should be given every aid which this science can supply for the solution of its problems. Enormous sums of money have been expended and are still being expended in Indiana in "wild-cat" drilling and the greater part of this form of prospecting is being indulged in without reference to the presence or absence of geological conditions favorable to the accumulation of oil and gas. Very naturally such prospecting leads to enormous losses and few gains.

In the absence of any comprehensive discussion of the subject of petroleum and natural gas in Indiana available for distribution and in response to hundreds of inquiries for information on the subject reaching the office of the Division of Geology, this report has been prepared.

The report is preliminary to the preparation of a more comprehensive report to be issued later. It was not possible in the limited time and with the limited funds at our disposal to make the report more complete. The collected information has not been studied as thoroughly as it should have been and hence conclusions have not been drawn where, perhaps, a more careful study of the evidence would warrant. However, since the industry is changing rapidly through development in parts of the State and decline in others no report can be prepared which will not need revision in a few years. In view of this fact it seems best to present such information as we have been able to bring together with the hope that it may be of immediate assistance to those who have so urgently requested it.

Those who are seeking petroleum in Indiana would do well to bear in mind that the geologist does not use "divining rod" or "witching" methods in the location of oil. He studies the structural conditions of the strata to determine whether such structural conditions are favorable to the accumulation of oil. For the determination of structural conditions he must be able to examine exposures of the bed rock or durolith, the indurated solid portion of the earth underlying the loose mantle of clay, sand, and gravel called the regolith.

In certain parts of Indiana the durolith is completely concealed by a thick covering of glacial drift and unless deep well records are available the geologist is without means of determining the structural conditions. The majority of the reported oil seeps from this part of the state are only oil-like films of oxide of iron on water seeping from glacial sands and gravels. Surface indications are of little value in oil prospecting in such a region. To be of value in any region they must be correctly interpreted. In that portion of Indiana where the glacial covering is attenuated or in the non-glaciated portion the work of the geologist is not so hampered and wherever persistent hard layers of rock are present he is usually able to determine the structural conditions.

For the good of the petroleum industry in the future it is hoped that more money will be expended in securing favorable locations for wells and less expended on the drilling of wells that have been located without reference to the structural conditions. The money expended on one deep well will pay for securing the information and the publication of many thousands of copies of a report more comprehensive in its scope than the present one. Mistakes of location are expensive in more ways than one. Aside from the actual pecuniary loss in drilling the well, there is often a loss of confidence in the territory. For example, dry holes in sections one, two and three may condemn good territory in adjacent sections whereas if the structure had first been located the drilling of a single well on the structure might prove the territory.

It is important, therefore, that in all areas of the state where it is possible to determine the structural conditions this be done before any prospecting with the drill takes place.

The oil industry suffers from two classes of individuals, namely, from the purveyor of oil stock of the "blue sky" brand and from the activities of the fake oil expert. The laws of Indiana very wisely provide for the protection of its citizens against the dispenser of inferior foods. No one doubts that the abolition of the food inspection department would result in making the State the dumping ground for all sorts of foods of inferior quality. However, the average consumer of foods has some knowledge of their quality which knowledge is within itself a form of protection. But in the matter of oil stock, legislation affords inadequate protection and how many are qualified to judge of the value of oil stock?

Many States protect their citizens against the unscrupulous dealer in oil stocks. States without such protection naturally become the Meccas of jobbers in all sorts of oil stock of the "blue sky" brand. Some form of legislation is needed in Indiana to protect the novitious small investor from the machinations of the unscrupulous oil stock purveyor. Such legislation should not interfere with the legitimate attempts at the development of the oil industry in Indiana. It should not prevent the organization of local coöperative companies for the avowed purpose of developing prospective oil properties within the State. Nor should such companies be prevented under proper representations from offering the stock of such companies for sale. For in some parts of the State where it is impossible to determine the structural conditions and the only possible form of prospecting, that with the drill, is extremely hazardous, the expense of such testing should be widely distributed in order that the burden may not fall too heavily upon the few.

The purveyor of all oil stock should be required to furnish to the purchaser of such stock a sworn statement of the location of the oil property, the number of acres under lease, the state of development, and a certified copy of the report of the consulting geologist. The oil operator, the investor in oil stock, and the general public need protection from the quack, the manipulator of the "divining rod", the witch hazel switch and other devices for the location of oil pools. Novitious oil companies are known to have used the funds secured from the sale of oil stock to small investors to drill a well costing as much as ten or twelve thousand dollars on a location made by the manipulator of a "divining rod".

The success of the competently trained geologist in the location of geological structures favorable to the accumulation of oil and gas has induced a large number of unprepared or illy prepared individuals to assume the role of oil geologists. Its rewards have also induced many pseudo-scientists to enter the field. Such impostors do not find employment with reputable oil companies of experience, but they gull the public through the mushroom companies of limited experience in the oil industry, and at the same time tend to bring discredit upon the science.

There are two ways of obtaining protection for the public against the activities of such impostors. One is to educate the people to an understanding of the scientific principles of oil geology, a very difficult task. A more immediate and effective method of protection might be secured through legislation which would provide for the licensing of oil experts by the State and measures prohibiting the practice of the profession of oil geologist by persons not possessing the requisite amount of training in the science and practice of geology.

ACKNOWLEDGEMENTS

The writer acknowledges his indebtedness to those who have written on the subject of petroleum and natural gas in Indiana. The information contained in the reports of Blatchley and others has been freely drawn upon in the preparation of the county reports. The publications mentioned in the accompanying bibliography have been especially helpful. The reference figures in the text apply to the numerals in this list of publications.

In the field work the writer has had the assistance of the members of the field party of 1919, the names of the members of which are given under Geological Corps.

Especial mention should be made of the assistance and advice of Dr. E. R. Cumings, the field work of Dr. C. A. Malott who, assisted by Mr. P. B. Stockdale, collected data for structural maps of portions of Jennings, Orange and Pike Counties, prepared a structural map of the Bloomington Quadrangle and assisted in other ways. Mr. O. H. Hughes, a member of the field party of 1917 and 1919, collected the data for a structural map of a portion of Jackson County. Dr. S. S. Visher collected data and prepared the report on Sullivan County. Mr. J. R. Reeves, a member of the field party for 1917 and 1919, prepared the maps and charts and assisted in other ways. Mr. B. J. Malott collected data, read manuscript and corrected proof. Miss Alice O'Connor did the stenographic work.

BIBLIOGRAPHY

- 1. "The Natural Gas Field of Indiana." Dr. A. J. Phinney, Eleventh Ann. Rept. U. S. G. S. Pt. 1, 1890, pp. 617-742.
- 2. "Natural Gas and Petroleum." S. S. Gorby, Sixteenth Ann. Rept. Indiana Dept. of Geology and Natural Resources, 1888, pp. 189-301.
- 3. "Petroleum Industry in Indiana." W. S. Blatchley, Ann. Indiana Dept. of Geology Reports, 1896, pp. 27-96; 1903, pp. 79-210; 1906, pp. 429-558.
- 4. "The Princeton Petroleum Field of Indiana." R. S. Blatchley, Ann.
- ... Rept. of Indiana, Dept. of Geol. 1906, pp. 559-607.
- 5. Special Report on Oil and Gas, E. Haworth, Uni. Geol. Sur. of Kansas, Vol. IX, 1908.
- 6. "Oil and Gas Resources of Kansas." Bul. 3, R. C. Moore and W. P. Haynes, State Geol. Survey of Kansas, 1917.
- 7. "Oil Geology," Dorsey Hager.
- 8. "Petroleum Technology," Bacon and Hamor.
- 9. "Oil," etc. Bul. 33, Ill. Geol. Survey, 1915, Kay and Savage.
- 10. "Petroleum and Natural Gas." Mineral Resources of U. S. for various years.
- 11. "Oil and Gas in Louisiana," G. D. Harris, Bul. 429, U. S. G. S. 1910.

CHAPTER II.

PETROLEUM: ITS PROPERTIES AND ORIGIN

Definition. Petroleum or crude oil is a mixture of gaseous, liquid and solid hydrocarbons in which the liquid elements predominate, but in which the percentage of each element is not a fixed quantity, but varies in different oils. The solid hydrocarbons are in solution and consist of paraffin or asphaltum or in some oils of both. Those oils with asphaltum in solution are said to have an asphalt base and those containing paraffin to have a paraffin base. The paraffin oils predominate east of the Mississippi River and the asphalt oils west.

Composition. The chemical compounds of which petroleum is a mechanical mixture belong to a number of hydrocarbon series. They include the marsh gas series, C_nH_{2n+2} , ranging from CH₄ to C_{35} H₇₂. The first member is gaseous, the middle members liquid, and the last members are solid paraffins. The olefiant series, C_nH_{2n} , is represented by some of its members in small amounts. The Acetylene series, C_nH_{2n-2} , is represented in some petroleums. The fourth series is C_nH_{2n-4} . The fifth or benzine series, C_nH_{2n-6} , is represented in nearly all petroleums.

The elementary analyses of various petroleums indicate that the per cent of carbon varies from 83.5 to 86.6; the per cent of hydrogen from 12 to 14.8, and the per cent of oxygen from 0.1 to 6.9. These three elements make up the larger part of the oil, but nitrogen and sulphur occur in minute quantities usually.

Color. The color of petroleum varies with the sand or field. Pennsylvanian oils have a greenish color; the Kansas-Oklahoma oils have a yellowish tint; California oils are black; Indiana oils greenish black; some Kentucky oils are green by reflected light and red by transmitted light.

Odor. The odor of most petroleums is slight, but some oils have an odor resembling some of their products such as gasolene or kerosene.

Density. The specific gravity of petroleum varies from 0.77 in some light oils to 1 in the heavier oils. The average for the American petroleums is about 0.89. The oil from the Lima-Indiana field ranges in specific gravity from 0.816 to 0.86. The Terre Haute oil has a specific gravity of 0.879; the Jasper oil of 0.928.

Boiling Point. The temperature of boiling ranges from 180° F. in Pennsylvanian oils to 338° F. in some German oils. The point of solidification ranges from 82° F. to several degrees below zero.

The Flashing Point. The flashing point of petroleum varies from zero in some Italian oils to 338° F. in some African oils. The fuel value of the oil from the eastern Indiana field is 18,900 B. T. U.

Specific Gravity. The specific gravity of a substance is its weight compared with the same volume of water which is assumed to have a specific gravity of 1. Petroleum usually floats on water and has a specific

gravity less than that of water. The specific gravity of petroleum may be expressed as a decimal fraction, as .8588, or the Baumé scale may be, used for oils lighter than water, in which case it will be expressed in degrees. If the oil has a specific gravity equal to water its specific gravity as expressed on the Baumé scale is 10°.

In the determination of specific gravity of oils the hydrometer is used. This instrument consists of a glass column provided with the Baumé scale graduated in degrees from 10 to 100 and an expanded portion below the scale which contains mercury to sink the hydrometer to the point which registers its specific gravity if the temperature of the fluid is 60° F. For lower or higher temperatures, corrections must be made. The specific gravity may be calculated by adding 130 to the reading on the hydrometer and dividing 140 by the sum, as 140 = .8235 specific gravity.

40 + 130

The following table will show the relation between the Baumé scale and specific gravity and weight per gallon:

Degrees Baume.	Specific Gravity.	Pounds per Gallon	Degrees Baum	Specific Gravity	Pounds per Gallon	Degrees Baum	Specific Gravity	Pounds per Gallon
$ \begin{array}{c} 10 \\ 11 \\ 12 \\ 22 \end{array} $	$\begin{array}{c} 1.0000 \\ .9929 \\ .9859 \end{array}$		$\begin{array}{c} 32\\ 33\\ 34\\ \end{array}$.8641 .8588 .8536	$7.20 \\ 7.15 \\ 7.11$	$54\\55\\56$.7608 .7567 .7526	$8.34 \\ 6.30 \\ 6.27$
$ \begin{array}{r} 13 \\ 14 \\ 15 \\ 16 \\ \end{array} $.9790 .9722 .9655 .9589		$ \begin{array}{r} 35 \\ 26 \\ 37 \\ 38 \end{array} $.8484 .9433 .8383 .8333	$\begin{array}{c} 7.07 \\ 7.03 \\ 6.98 \\ 6.94 \end{array}$	$57 \\ 58 \\ 59 \\ 60$	$.7486 \\ .7446 \\ .7407 \\ .7368$	${\begin{array}{c} 6.24 \\ 6.20 \\ 6.17 \\ 6.14 \end{array}}$
$\begin{array}{c} 17\\18\\19\end{array}$	$ \begin{array}{r} .9523 \\ .9459 \\ .9395 \end{array} $	$7.93 \\ 7.88 \\ 7.83$	$\begin{array}{c} 39\\ 40\\ 41 \end{array}$	$.8284 \\ .8235 \\ .8187$	$\begin{array}{c} 6.90 \\ 6.86 \\ 6.82 \end{array}$	$\begin{array}{c} 61 \\ 62 \\ 63 \end{array}$.7329. .7290 .7253	$\begin{array}{c} 6.11\\ 6.07\\ 6.04\end{array}$
$20 \\ 21 \\ 22 \\ 23$.9333 .9271 .9210 .9150	7.78 7.72 ﷺ 7.67 7.62	$\begin{array}{c} 42\\ 43\\ 44\\ 45\end{array}$.8139 .8092 .8045 .8000	$\begin{array}{c} 6.78 \\ 6.74 \\ 6.70 \\ 6.66 \end{array}$	$ \begin{array}{r} 64 \\ 65 \\ 66 \\ 67 \end{array} $.7216 .7179 .7142 .7106	$\begin{array}{c} 6.01\ 5.98\ 5.95\ 5.92 \end{array}$
$\begin{array}{c} 24\\ 25\\ 26 \end{array}$.9090 .9032 .8974 2	7.57 7.53 7.48	$4.5 \\ 46 \\ 47 \\ 48$.7954 .7909 .7865	$6.00 \\ 6.63 \\ 6.59 \\ 6.55$.7070 .7035 .7000	$5.92 \\ 5.89 \\ 5.86 \\ 5.83$
27 28 29	.8917 .8860 ¥ .8805 ¥	7.43 7.38 7.34	49 50 51	.7821 .7777 .7734 .7002	$6.52 \\ 6.48 \\ 6.44 \\ 6.41$	$71 \\ 72 \\ 73 \\ 74$	$.6829 \\ .6666 \\ .6511$	$5.69 \\ 5.55 \\ 5.42$
$\frac{30}{31}$.8750 .8695	$\begin{array}{ccc} 7.29 \\ 7.24 \end{array}$	$\begin{array}{c} 52\\53\end{array}$	$.7692 \\ .7650$	$\begin{array}{c} 6.41 \\ 6.37 \end{array}$	$\frac{74}{75}$. 6363 . 6222	5.30 5.18

Petroleum Products. The various products obtained from crude petroleum are kerosene, gasolene, benzene, naphtha, rhigolene, vaseline, paraffin, lubricating oil, petroleum butter, formolit, asphalt, oil coke, gas carbon, special illuminating oils such as mineral sperm and astral oil.

Origin of Petroleum and Natural Gas.

The close association of petroleum and natural gas points to a common origin. The hydrocarbons which form them are identical or closely related. The gases given off by petroleum are similar to those of natural gas, which may be converted into liquid by increase of pressure at low temperature, as may be the gas given off by petroleum. Natural gas is commonly present in petroleum, and they often exist together, though natural gas may exist alone.

The theories of the origin of oil and gas fall into two classes: the inorganic and the organic.

•

Inorganic Theories. A chemical theory was suggested by Humbolt and further elaborated by Berthelot¹ and Mendeleeff². This theory assumes that the interior of the earth contains metallic iron and carbides of iron; that the high interior heat of the earth converts water into steam, which attacks the carbides of iron, producing hydrocarbons which are forced toward the surface by the expanding power of steam. According to this theory the hydrocarbons formed should be predominately of the acetylene series, but they are predominately of the methane series; they should be associated with igneous rather than sedimentary rocks.

Another inorganic theory is the volcanic theory of Costé³ which assumes that oil and gas are the result of volcanic action. Costé asserts that animal remains are not intombed in the rocks and that vegetable remains decompose into carbonaceous matter and further distillation of carbonaceous matter has not taken place in nature; that gaseous, liquid, and solid hydrocarbons are the result of volcanic activity, because oil and gas are under great pressure which must be volcanic; heated oil and gas exists in some fields; oil and gas occur in folded and fissured regions parallel with great orogenic movements; oil and gas and bitumens are never indigenous to the strata in which they are found and that the density of rocks precludes the possibility of anything except volcanic pressure forcing oil and gas through them. Many of these assertions do not accord with the observed facts. The almost complete restriction of oil and gas to sedimentary rocks placed at great distance from volcanic activity and the decrease in pressure in wells are not in harmony with this theory.

Organic Theory. This theory assumes that oil and gas have been generated from animal and vegetable matter by a slow process of distillation. Many accumulated geological facts may be enumerated in support of this theory, such as: The close association of rocks containing organic matter to those containing oil and gas; drops of oil have been found in decaying plant remains; natural gas, a constituent of both oil and gas, is generated from vegetable matter buried in porous beds; it is present in coal as are other hydrocarbons of petroleum; such gases as carbon dioxide, hydrogen, marsh gas and nitrogen are formed during the decay of sea weeds. Hydrocarbons analgous to those in natural gas, petroleum and asphalt have been derived from either plant or animal remains. Natural petroleum has optical properties similar to those of organic compounds which inorganically synthesized oil does not possess.

The presence of oil in shales from which as much as twenty-five gallons per ton have been extracted has strengthened the belief that the organic matter of shales is the source of petroleum. It is assumed that the bituminous matter is the form of a solid, organic gum, kerogen, which may be converted into liquid hydrocarbons by the application of heat. McCoy¹ placed an oil shale under pressure and secured liquid hydrocarbons from it and asserts that liquid hydrocarbons can be formed from solid bituminous material at ordinary temperatures and under pressures of

¹Berthelot, E. M. P. Annales Chem. Phys., Vol. I, 1866, p. 481.

²Mendeleeff, D. Der Deutch. Chem. Gesell, 1877, p. 229.

⁸Costé, E. Am. Inst. Min. Eng., Vol. XX, p. 504, 1914.

5,000 to 6,000 pounds, such as exist at the depth of oil bearing horizons; and that the only place where such compounds would be formed are in areas of differential movement.

Kemp has recently called attention to the presence of asphaltum in the beach sands of Florida and the possibility of the origin of petroleum from the marine and terrestrial organisms in buried coastal sands.

The optical behavior of petroleum under polarized light is said to be due to the presence of cholesterol, which may be derived from animal fats and phytosterol, which is also a constituent of vegetable oils, facts strongly supporting the organic theory of the origin of petroleum. In fact, the weight of evidence at the present time seems to favor the organic theory. The remains of land plants and animals may have contributed in a minor way to the accumulations of petroleum, but marine organisms were probably the greater contributors of the original compounds from which the petroleum was extracted through long periods of time at possibly only ordinary rock pressures and at moderately low temperatures.

				0.4.4	Abandoned	
COUNTIES		1906-1910		1910-1914 Completed—Dry		
1.1	Completed	-			$\frac{1915}{866}$	
Adams		13	20	1		
Blackford		28	22	5	1389	
Cass		2	•••••	•••••		
Daviess	. 2	0	10	2		
Delaware	. 297	75	125	28	1320	
Dubois	. 5	4	5	1		
Gibson	. 96	28	30	2	5	
Grant	. 480	42	11	2	4141	
Hamilton			0	0		
Harrison			2	0		
Huntington	. 206	9	0	0	891	
Jay		112	100	17	554	
Knox	. 4	3	19	17	12	
Madison	11	3	3	3	87	
Marion			0	0	15	
Martin	2	1	2	1	·····	
Miami	1	1	3	3	49	
Pike	280	63	116	25	3	
Pulaski		3				
Randolph	59	18	33	0	213	
Shelby			4	0		
Sullivan	0	3	758	271	1	
Vigo	0	2	7	2		
Wabash			1	0	16	
Warrick		3	1	1		
Wells		71	35	2	3950	
Miscellaneous	100	91	30	15		
miscenaneous		0.00				

OIL WELLS IN INDIANA

¹McCoy, Alex. W. Journal of Geol., Vol. XXVII, 4 p. 252.

²Kemp, J. F. Econ. Geol., Vol. XIV, 4 p. 302.

÷ .

Wells

PETROLEUM PRODUCTION IN INDIANA

Date +	Barrels	Value
1889	33,375	31,414
1890	63,496	55,403
1891	136,634	$91,\!545$
1892	698,068	388,300
1893	2,335,293	1,494,588
1894	3,688,666	2,654,840
1895	4,386,132	4,780,884
1896	4,680,732	2,954,411
1897	4,122,356	1,880,412
1898	3,730,907	2,214,322
1899	3,848,182	3,363,738
1900	4,874,392	4,693,983
1901	5,757,086	4,822,826
1902	7,880,896	6,526,622
1903	9,186,411	10,474,127
1904	11,339,124	12,235,574
1905	10,964,247	9,404,909
1906	7,673,477	6,770,066
1907	5,128,037	4,536,930
1908	3,283,629	3,203,883
1909	2,296,086	1,997,610
1910	2,159,725	1,568,475
1911	1,695,289	1,228,835
1912	970,009	885,975
1913	956,095	1,279,226
1914	1,335,456	$1,\!548,\!042$
1915	875,758	813,365
1916	769,036	1,207,565
1917	759,432	1,470,548
1918		

(Compiled from Mineral Resources of the United States.)

.

s

CHAPTER III.

NATURAL GAS

Definition: Natural gas is a mixture of hydrocarbons (chiefly) which are gaseous at ordinary atmospheric temperatures. The principal hydrocarbon is marsh gas (CH_4) , methane or fire damp. Natural gas also contains small quantities of ethane (C_2H_4) , Olefine (C_2H_6) , Carbon dioxide (CO_2) , Carbon monoxide (CO), Oxygen (O), Nitrogen (N), Hydrogen (H), Helium (He), Neon (Ne) and Hydrogen sulphide (H_2S) . However, not all natural gases contain all of these gases.

Physical Properties. Natural gas is colorless and usually odorless, though the presence of such gases as hydrogen sulphide may produce a perceptible odor. It is usually inflammable though some natural gases contain so much nitrogen as to be non-combustible. It burns with a luminous flame and deposits carbon when the flame is brought in contact with objects of lower temperature. It readily mixes with air and forms an explosive mixture.

Gas Pressure. Natural gas as it occurs in the earth is usually under pressure which ranges as high as 2,000 pounds per square inch. This pressure is commonly called "rock pressure" and decreases as the gas becomes exhausted. The pressure is probably due to the expansive force of the confined gas.

Chemical Properties. The maximum amount of the various constituents found in natural gas is: Marsh gas, 98.40%; Ethane, 14.60%; Olifinant, .39%; Carbon dioxide, 1.6%; Carbon monoxide (CO), 2.5%; Oxygen (O), 3.46%; Nitrogen (N), 85.83%; Hydrogen (H), 11.51%; Helium (He), 1.84%; and Hydrogen sulphide (H₂S), .20\%.

The composition of natural gases from various fields is given below for comparison with the analysis of a gas from Muncie:

State.	Methane (CH4)	Ethane (C ₂ H ₆)	Olefine (C2 H4)	Carbon D.oxide	Carbon Monoxide (CO)	Oxigen	Nitrogen	Hydrogen	Helium	Hydroge i Silphide (H2 S)	Location.
Indiana Illinois. Ohio. Kansas. Kansas.	$\begin{array}{c} 92.67 \\ 73.81 \\ 92.61 \\ 94.40 \\ 14.85 \end{array}$.25	. 25 . 81 . 26	.45 		$\begin{array}{r} 2.53\\ 21.92\\ 3.61\\ 5.08\\ 82.70\end{array}$	2.35 2.18 tr.	. 183 1.84	. 15 	Muncie. Pittsfield. Findlay. Iola. Dexter.

COMPOSITION OF NATURAL GASES

Origin of Natural Gas. Since natural gas is closely associated with petroleum they are thought to have a common origin. They often occur together, though one may occur without the presence of the other. Nearly all petroleums contain at least small quantities of natural gas. Since natural gas is free to move independent of the movement of water it may accumulate in a different reservoir though having a common origin with petroleum. For instance, it may accumulate, in fact does accumulate, in glacial sands and gravels at a horizon far from its point of origin.

The principal constituent of most natural gases is marsh gas (CH_4) . This gas also accumulates in marshes where decaying organic matter is surrounded with porous sands. This gas is also found in coal beds and is one of the constituents of petroleum. These facts argue for an organic origin for natural gas and for a common origin with petroleum.

	No.		Wells,		Wells,	Productive	
Year	Producers	Value		Gas	~ .	Dry	Wells
1886	•	\$300,000	(Est.	Amt.		Displaced)
1887		600,000	6.6	6.6	66	6.6	
1888	******	1,320,000	66	66	6.6	66	
1889	•••••	2,075,702	66	6.6	6.6	66	
1890	93	2,302,500		••••		•••••	435
1891	93	3,942,500					305
1892	159	4,716,000					570
1893		5,718,000					
1894		$5,\!437,\!000$					
1895		5,203,200					
1896	•	5,043,635					
1897	452	5,009,208		419		66	2,881
1898	533	5,060,969		706		111	3,325
1899	571	6,680,370		838		109	3,909
1900	670	7,254,539		861		156	4,546
1901	656	6,954,566		985		208	4,572
1902	929	7,081,344		1,331		205	5,820
1903	924	6,098,364		895		242	5,514
1904	846	4,342,409		706		153	4,684
1905	740	3,094,134		252		74	3,650
1906	578	1,750,715		159		46	3,523
1907	687	1,572,605		185		56	3,386
1908	823	1,312,507		187		41	3,223
1909	1,010	1,616,903		190		70	2,938
191 0	1,027	1,473,403		. 69		33	2,955
1911	1,094	1,192,418		110		32	2,744
191 2	1,140	1,014,295		96		39	2,547
191 3	1,100	843,047		69		24	2,370
1914	1,029	755,407		68		19	2,224
1915	999	695,380		65		11	2,063
1916	995	503,373		43		14	1,967
1917	941	453,000		42		17	1,830
	(Compiled from	n Mineral B	esoure	pag of	the T		

PRODUCTION OF NATURAL GAS IN INDIANA

(Compiled from Mineral Resources of the United States)

NATURAL GAS IN INDIANA

		Pressure in Lbs			
COUNTIES	Depth of Well	1910	1914		
Adams			(1912) -6		
Bartholomew		50 - 250	80-15	50	
Blackford		1-10	0- 2	20	
Clark		27	(1912)		
Daviess			25- 4	0	
Martin		0-60		•	
Decatur		0-315	5-35	50	
Delaware	*	0-70	0- 6	5 0	
Franklin		60	(1913)		
Grant	·	2-50	0- 5	0	
Hamilton	•	15 - 180	0-23	80	
Hancock	. 700-1,100	0-100	6-8	30	
Harrison	. 320- 764 (1911)	60-110	0. 5	0	
Henry	. 800-1,200	0-90	4-10	0	
Howard	. 800-1,100	0-220	30-16	0	
Jay	. 900-1,600	0-40	0-4	0	
Jefferson	. 1,360	10	(1911) 2	0	
Madison	. 800-1,200	0-190	0-10	0	
Miami	. 900-1,000	0-40			
Marion					
Ripley	. 880-1,050	40	70-30	0	
Pike	.1,000-1,400	125-500	50-22	5	
Randolph	. 900-1,300	0-180	1-12	5	
Rush	. 700-1,400	20 - 325	15-32	5	
Shelby	. 650-1,020	1 - 375	20-30	0	
Spencer		410	(1912)		
Sullivan	. 698- 795	200	50-18	5	
Tipton	. 750-1,100	10-230	3-10	0	
Wayne	. 800-1,150	50 - 240	4	5	

GAS DEPLETION

An examination of the pressure of gas in the wells of Indiana shows that the gas is being rapidly depleted. The pressure recorded in some of the wells in 1910 was 250 pounds per square inch and in 1914 the same wells showed a pressure of only 150 pounds.

The following methods of computing gas depletion are given by the Treasury Department of the United States¹:

"Details of production or the performance record of the well or property. —As a general rule the demand on a natural gas property is a variable factor. In certain fields, however, the demand from some wells has from the beginning, or for considerable periods, been greater than the supply, so that the amount of gas marketed per well may, as in the case of oil, show a regular decline, which will be indicative of the total amount that the well may be expected to produce, and also the rate of production. Even where the demand does not greatly exceed the supply, the amount and

¹Manual for the Oil and Gas Industry, U. S. Treasury Dept., 1919.

rate of past production may in certain cases throw light on the future of the well or property.

"Decline in open-flow capacity.—Where data are available the decline in open-flow capacity indicates in a general way the rate of exhaustion of the gas field. The relationship is not at all close and varies from field to field and from well to well. Also for most gas wells accurate data on decline in open-flow capacity are not available. Nevertheless it is probable that for certain properties this method will have value, for with rare exceptions the production of gas from a well leads to a decline in its capacity, and the fraction produced is roughly proportional to the decline.

"Comparison with life history of similar wells or properties, particularly those now exhausted or nearing exhaustion.—Where no other data are available the rate of depletion of a gas well or property may be approximated by comparison with a neighboring well or property that has reached a later stage in life. Particularly is this applicable in a district where many gas wells have become exhausted. For example, in a region where wells produce from 8 to 12 years, or an average of 10 years, a 10 per cent deduction will be a rough approximation of depletion.

"Size of reservoir and pressure of gas, or the pore-space method. For some properties the pore-space method may be best for estimating underground supplies of natural gas and for a good many it will furnish additional evidence of value. The method would be ideal if the average percentage of pore-space, the extent and thickness of the sand, and the pressure of the gas could be accurately ascertained. In computing the reserves of an individual property by this method the migratory character of gas must be considered and the production and behavior of adjacent properties taken into account. The factors that make the method difficult to apply are difficulty of accurately ascertaining the thickness of pay, limits of pool, percentage of pore-space, the effect of encroaching water and oil, and the quantity of gas remaining when commercial production is no longer possible.

"Take, for example, a pool where there is no encroachment by water. Suppose that the pore-space is 25 per cent, the thickness of the pay 20 feet, and the extent of the pool 10 square miles, or roughly 280,000,000 square feet. The volume of the reservoir would be 1,400,000,000 cubic feet, and the amount of gas in the sand could be readily computed by taking into account the closed pressure of the wells.

"Other indications of depletion.—Additional evidence of decreasing supply of natural gas in the ground is commonly observable in the behavior of the wells and the provision that must be made for transporting the gas to market. Observations on minute pressure show more or less progressive change as the wells become older and an increasing amount of gas is drawn from the ground. Line pressures and pressures at compressing stations are also likely to show a progressive change in the same direction. The appearance of water or oil in a gas well or in neighboring gas wells may be a very significant symptom of the approaching termination of the life of the well. The clogging of gas wells by paraffin, salt, or other deposits may demand modification of depletion estimates.

Closed-Pressure Method

"Because of its general applicability, the closed-pressure method is by far the best method of estimating the depletion of gas properties.

"Unfortunately, accurate closed-pressure data have not been kept for all properties or perhaps even for the majority of properties; but the rock pressure in most pools is known or is ascertained with a fair degree of accuracy, and the information drawn from the pressure decline is, with the exception of a few fields, not subject to profound modification, because of factors whose value can not be appraised. The basis of this method is Boyle's law. According to this law of physics, if gas is pumped into a vessel until the pressure is 200 pounds and then is drawn off until the pressure is 100 pounds, the size of the vessel remaining fixed, and ignoring for the moment atmospheric pressure, it may be concluded that one-half of the gas has been drawn out of the vessel. If an underground gas reservoir of fixed dimensions is tapped by wells and the pressure is found to be a thousand pounds, and then if the gas is drawn off through the wells until the gas pressure in the pool is lowered to 100 pounds, we may infer that about nine-tenths of the supply of gas has been exhausted.

"'Unit Cost' as applied to natural gas.—Although, as a rule, the number of cubic feet of gas under a tract cannot be satisfactorily estimated and the quantity that will be marketed is even less definite, the "unit cost method" can be used by regarding pounds of closed pressure as units, for the actual quantity of gas underground commonly varies with the decline in pressure and the relative quantity at the beginning and end of the tax year and at the time of abandonment, is, in the lack of better information, usable for tax purposes.

"Corrections and refinements of closed-pressure method.—Several corrections and more or less important refinements are made in applying this method to the computation of depletion, and it should be borne in mind that it does not afford data on the amount of gas originally in the pool or at any later specified time, but only the fraction of the gas that has been removed from its natural reservoir does not remain fixed but becomes smaller as the gas is drawn and water or oil advances into a part of the space formerly occupied by the gas. The pressure is thus prevented from declining at a rate proportionate to the amount of gas drawn from the pool. The correction on account of water or oil encroachment is difficult to make, because of the lack of data to determine the extent of the encroachment. However, in a good many pools, after a study of the distribution of wells that have been "drowned out" and the history of water troubles in similar nearby pools, it is possible to make allowance for water or oil encroachment which will more or less closely approximate the facts.

"Another refinement applicable to the computation of depletion of natural gas by the closed-pressure method is based upon the fact that even where there is no encroachment of water or oil the depletion is not precisely represented by the gauge readings, though the errors are generally so small that they may be ignored. For example, where the pressure declines from 1,000 to 500 pounds, the gas is not exactly half gone, for the reason the pressures referred to are gauge readings and to each should be added the pressure of the atmosphere—for most fields about 14.4 pounds to the square inch. The fraction remaining in the ground then becomes 514.4.

1014.4

"Account should also be taken of the pressure at which wells are abandoned in the field or district.

"If wells can not be operated with profit after the pressure has declined to 25 pounds gauge reading (39.4 pounds absolute), then the percentage of recoverable gas remaining when the pressure has declined from 1,000 to 500 pounds gauge reading is not one-half or even the fraction 514.4 but

475.

1014.4

975. The difference in the fraction where pressures of several hundred pounds are involved is not great and scarcely worth considering in view of the other errors which are certain to affect the result. However, after the pressure has declined to a low figure, the matter of correcting the fraction becomes of considerable importance. Thus, if the pressure of abandonment is 4 pounds gauge reading and during the year the average closed pressure of a pool has declined from 10 pounds to 5 pounds gauge reading, five-sixths instead of one-half of the recoverable gas has been withdrawn.

"Still another refinement that has, as a rule, more theoretical than practical value may be worthy of consideration in certain instances. This arises out of the fact that gases do not expand precisely as the pressure decreases, and that even if the size of the natural reservoir remains fixed the pressure does not decline in exact proportion to the amount of gas removed. The difference amounts to only a few per cent and is greatest for high pressure. In the decline from 1,000 to 500 pounds per square inch the gas expands several per cent more than would be calculated by a strict application of the law and in a decline from 1,500 pounds to 1,000 pounds the departure is still greater. The correction varies from field to field because of the different constitution of the gases, though since most natural gases consist largely of methane the variations on account of differences in gases are not great.

"A fourth detail of refinement arises out of the fact that on the average more gas is marketed for 50 pounds of decline in pressure after the pressure has reached 100 pounds or less than an equal decline while the pressure is high, as, for example, 1,000 pounds per square inch. Also the expense of marketing gas after the pressure has become low is greater than when it was high, largely because of the necessity of installing compressors to push the gas through the pipe lines to the consumers. These two considerations have a tendency to balance each other and, with certain exceptions, will not be of sufficient importance to warrant to apply the corrections.

Method of Gauging

"In using the closed-pressure method of estimating depletion, the method of gauging is of vital importance and in many fields is not carried out with sufficient care. Care should be taken to make sure that the gauge is accurate, testing it before and after attaching it to the well. If it must be transported far or is subject to much jolting in transportation, a gauge tester should be taken along and used at the well.

"Care should also be taken to empty the well of oil and water by pumping, blowing or siphoning before attaching the gauge, for any liquid in the hole will lower the closed pressure reading.

"The well should be closed long enough to allow pressure to build up to its maximum. The length of time necessary for this purpose varies a great deal from field to field and well to well. The well should remain closed until the pressure will not build up more than 1 per cent in 10 minutes. Ordinarily, 24 hours will be sufficient for this purpose, but for some wells several days or even a longer period will be required, owing to the slowness of equalization of pressure in the sand."

1

1

CHAPTER IV

MODE OF ACCUMULATION

Experience in oil fields has taught that oil may accumulate under certain conditions in either synclines or anticlines. In the absence of water in synclines oil may move downward under the influence of gravitation to the bottom of the syncline. (See Fig. 4.) Of course it is not known whether the oil has migrated downward from the limbs of the syncline or the roof of the porous layer or been moved upward by capillarity to the bottom of the syncline from underlying beds of oil bearing shales, though it is doubtful that the latter would produce sufficient concentration. The essential conditions for oil accumulations are: First, a source of the oil

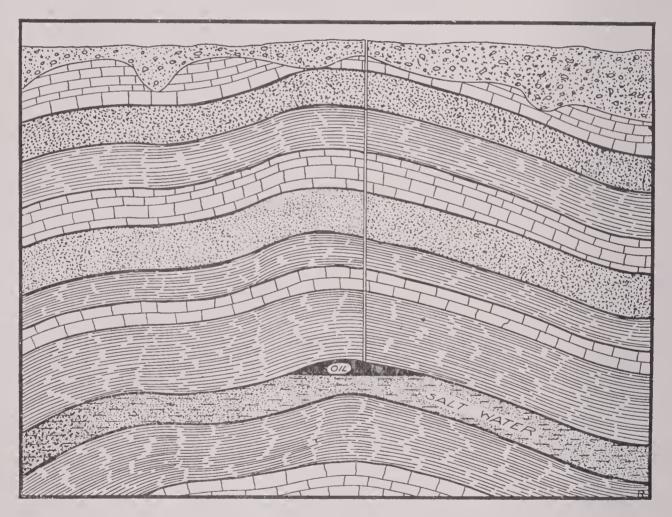


Fig. 2. A diagramatic cross section of an anticline showing the mode of occurrence of oil when no gas is present.

which may be a bituminous rock probably at no great distance from the point of accumulation. Second, a porous bed of rock which acts as a reservoir. This porous bed must be contained between impervious layers of rock. Third, the presence of flextures in the reservoir. In the absence of water in the reservoir the oil will collect in the downward folds (synclines), but if water is present no oil collects in the synclines but only in the anticlinal or upward folds as the oil advances to the highest point occupied by the water which would be in the upper part of the anticline. From this point it would be impossible for the oil to advance as its progress is checked by the impervious roof layer which dips down below the level occupied by the oil.

Relation of Geological Structure to Oil and Gas Accumulation. Oil and gas are widely distributed in the rocks of the earth as is evident from their presence in rocks, in mines, in seeps, the water of springs and deep wells. But accumulations of oil and gas of economic importance are far less widely distributed since special geological conditions are necessary to the concentration of oil and gas in economic quantities. Oil and gas generated in some bituminous beds, rise under the agencies of migration and reach a porous bed as widely distributed particles, and are therefore, valueless, from an economic standpoint. The concentration of oil and gas

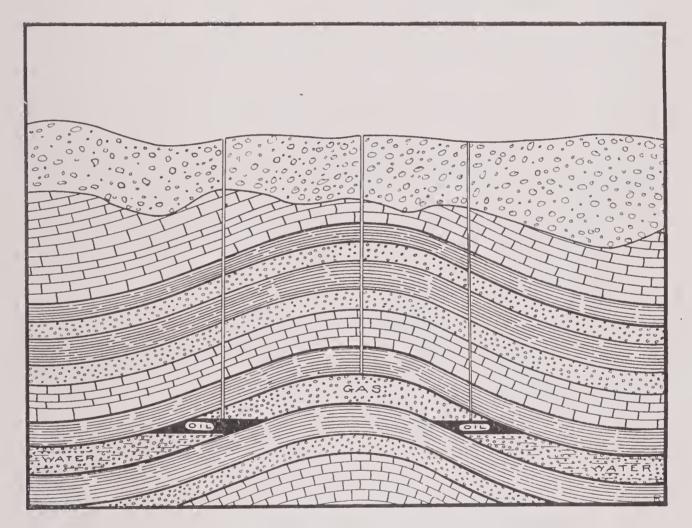


Fig. 3. A diagramatic cross section of an anticline, the most abundant type of oil bearing structure. In this anticline water, oil and gas are present arranged in the order of their specific gravities. The removal of the gas will permit the oil and water to rise higher toward the apex of the structure.

can be brought about if certain geological structures are present in the porous bed containing the oil and the gas. The presence or absence of such concentrating structures may, in most cases, be determined by the geologist so that a knowledge of geology is fundamental to the development of the oil industry.

Oil Sands. The rock in which the oil and gas accumulates is commonly termed the "oil sand" though it is often not a true sand but a porous rock

such as limestone. More commonly the oil accumulates in a porous sand, sandstone, or conglomerate, less commonly in porous limestone and very rarely in fissures in shales or in the cavities in igneous rocks. The quantity of oil possible in an oil sand will depend upon the degree of porosity of the sand which in turn depends upon the size and arrangement of the sand grains in the case of a true sand and on the size of the cavities in the case of a porous limestone. The pore space in compacted but uncemented sands ranges as high as 25 per cent, in sandstones to 15 per cent and in conglomerates to as high as 32 per cent. The amount of pore-space produced by the size and the arrangement of the grains may be reduced by deposition of cement in the pores.

Geological Structures Favorable to the Accumulation of Oil. There are certain structural conditions which are favorable to the accumulation of oil and gas. Such conditions may exist without the presence of oil or gas,

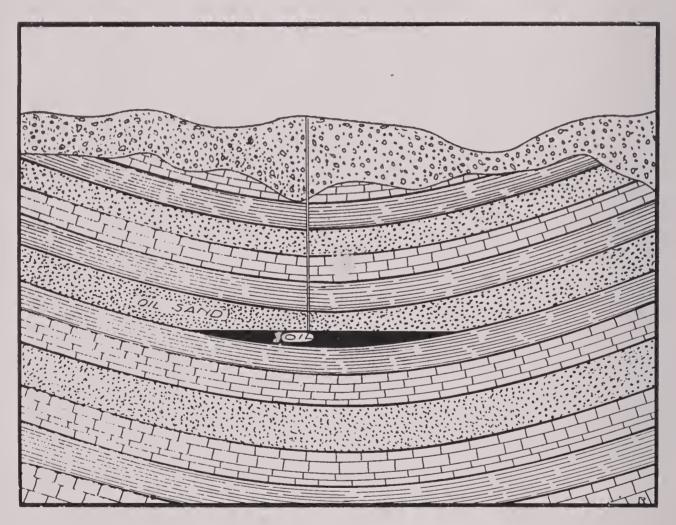


Fig. 4. A diagram to show possible mode of accumulation of oil in a syncline. The sand is a dry sand, that is it does not contain any water. Since the oil is free to move under the action of gravity it will sink to the lowest portion of the porous layer.

but so far as is known, accumulations of oil or gas do not occur without the presence of such favorable structural conditions. Among the more favorable structures for the accumulation of oil and gas are: The anticline, monocline, structural terrace, dome, fault, joints, lenses, igneous intrusions, and synclines.

The Anticline. The anticline is an upward bend or fold in the rock strata which forms a trap which prevents the escape of the oil or gas when they have once penetrated it. The essential conditions for the accumulation of petroleum in an anticline is the presence in the fold of a porous layer of rock enclosed between two layers of impervious rock. For example, a layer of porous sandstone between two layers of shale. The presence of water in the porous layer is also essential. If no gas is present, the oil will accumulate in the highest portion of the porous layer. (See figure 2.) The oil being of lighter specific gravity collects in the upper part of the porous layer above the water. If gas be present, the three will arrange themselves in order of their specific gravities. (See figure 3.) The pressure of the gas in this case forces the oil and the water to the limbs of the anticline. With the escape of the gas the oil and the water would tend to rise in the porous layer and arrange themselves in order of their specific gravities.

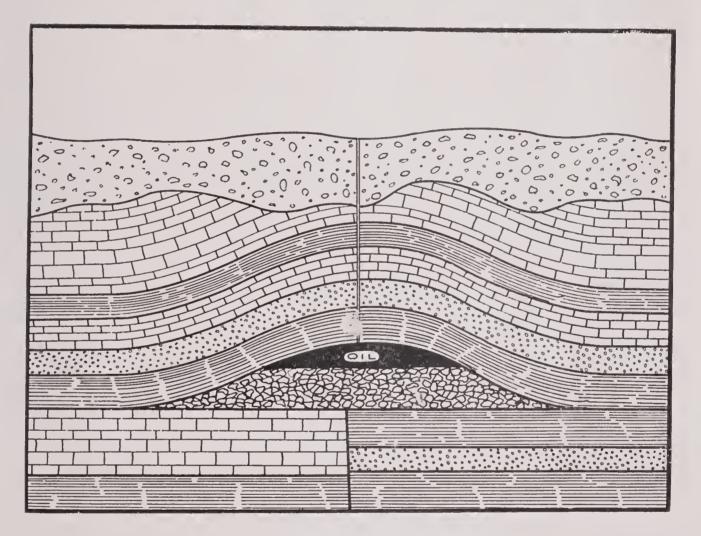


Fig. 5. A diagramatic cross section of a salt dome structure favorable to the accumulation of oil. Soluble salts carried by ascending solutions are deposited under strata which are forced upward forming a dome. Oil passing upward along the fault plane accumulates in the porous deposit formed by the salts.

Syncline. The presence of oil in downward folds of rocks called synclines, occurs under certain conditions. (See figure 4.) If no water is present in the porous layer, the oil under the influence of gravitation may be carried down to the bottom of the syncline and there remain, held in by impervious layers of rock above and below. Oil is obtained from synclines in Pennsylvania and Ohio. No oil has been obtained from such structures in Indiana. No dry oil reservoirs have been found as yet.

The Dome. The dome or salt dome is an anticlinal structure produced by accumulation of minerals under strata along the plane of a subsurface or a sealed fault. (See figure 5). Such structures are common in the Gulf Coastal Plain in the states of Louisiana and Texas. According to Harris¹ these domes are produced by water carrying minerals such as salt, gypsum, lime carbonate and magnesium carbonate in solution ascending along a fault plane to a point beneath the surface where the minerals were deposited through the evaporation of the water. The accumulation of the mineral matter elevates the super-incumbent beds and the oil accumulates in porous beds of limestone or in sands overlying or tilted up against the salt core. Topographically these domes may form conspicuous mounds on the flat prairies of the coast. Continual erosion of

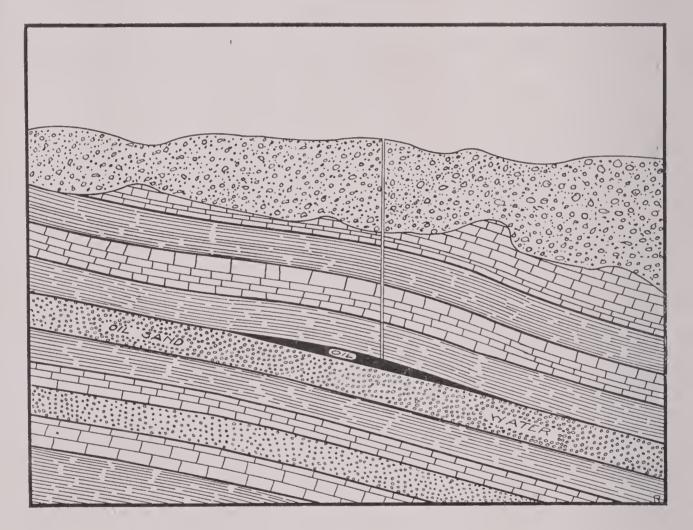


Fig. 6. A diagramatic cross section of a monocline showing a possible mode of oil accumulation. A slight irregularity in the direction of dip in the shale layer above the oil sand produces a condition which is favorable to the accumulation of oil. This irregularity may or may not express itself at the surface.

the surface of the mound as the salt accumulates may bring deep seated beds of rock 900 feet or more nearer the surface than their normal position for that area. Numerous faults are produced by the doming and the oil and gas pass to the porous beds along these faults. A number of domes may be distributed along a major fault.

The Monocline. Rock strata are often inclined in only one direction and form a monocline. That is they may pass from one horizontal posi-

'Harris, G. D. Bul. La. Geol. Sur. No. 7, 1908 p. 75 et seq.

tion to another horizontal position or from one inclined position to another inclined position without reversing the direction of dip of the strata.⁴ Under certain conditions monoclines afford favorable conditions for the accumulation of oil. (See figure 6.) The inclination of the beds is here greatly exaggerated and gives the impression of reversal of dip. Lenses of sand or sandstone enclosed in shales in monoclines furnish favorable conditions for oil concentration.

The Structural Terrace. The structural terrace may be called a flattened monocline. The strata which are inclined pass to a horizontal position or from a greater to less degree of inclination and then back to the same

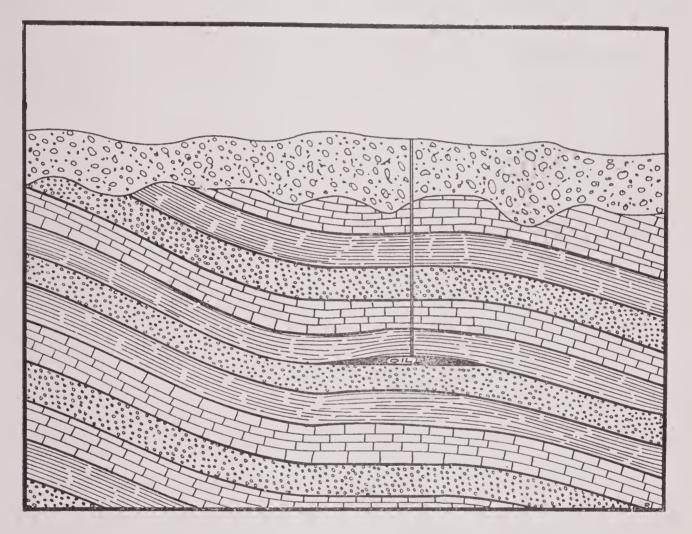


Fig. 7. A diagramatic cross section of a structural terrace. Showing possible mode of accumulation of oil in the flattened portion of the structure when water is present in the oil bearing stratum.

degree of inclination first assumed. (See figure 7.) In the horizontal portion the trap is formed and the oil accumulates if water be present in the porous layer. The structural terrace occurs in the Mississippian area of Indiana in probably more than one locality. There is one at least in Orange County and one in Martin County. Noses and shoulders which are modifications of the terrace occur in Jackson and Jennings Counties. In the latter one has produced some gas, though the drilling was not done in the most favorable spot and was done without reference to the structure.

Lens Structure. Lenses of porus sand or sandstones inclosed in bituminous shales may afford conditions favorable to the accumulation of oil and gas. (See figure 8.) The lenses may lie in a horizontal position or be inclined and still furnish the proper conditions for accumulation. Since such structures do not express themselves in any way at the surface and prospecting with the drill is the only method of determining the presence, size, or shape of the structures, the geologist can locate the position and probable extent of the enclosing shale bed, but cannot indicate the position of the lenses. Sandstones or sands with convex upper surfaces due to unconformable relation with overlying beds or to lenticular shape; or standstones with higher porosity in some parts than in others furnish adequate conditions for oil and gas accumulation when they are confined in impervious layers of rock. It is probable that such conditions exist in the Mississippian and Pennsylvanian strata of southwestern Indiana and that they are responsible for some of the oil and gas accumulations.

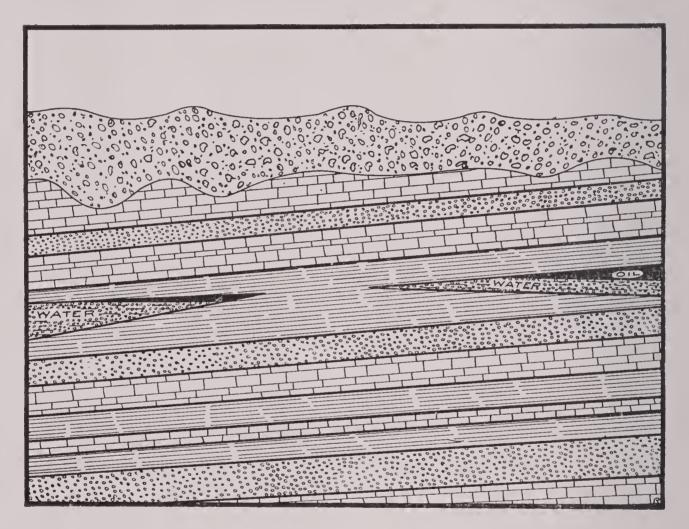


Fig. 8. A diagram showing a possible mode of accumulation of oil in lenses of sand enclosed in beds of shale. Such a structure may exist in the southwestern oil field in Indiana.

Fault Structure. The occurrence of oil in connection with sealed faults is an established fact. The oil migrates upward along the fault plane until it reaches a porous bed so situated as to form a trap. (Figure 9.) Beds of bituminous shale and beds of standstone may be displaced in such a way as to throw shale bed against shale bed, thus sealing the fault. If a porous bed lying between impervious beds is faulted, in such a way as to form a trap, the accumulation of oil may result. In the case of a fault cutting a rising oil and gas bearing sand the fault may seal the sand in such a way as to prevent the upward movement of the oil and the gas and cause it to accumulate. The fault is sealed by bringing the broken end of the sand layer against a shale layer. Since prospecting is more hazardous in connection with faults than anticlinal folds, little testing of the former has taken place. Structures of this type may occur in connection with the Mount Carmel fault in Indiana, but no tests have been made to determine whether they exist and are productive. There is little doubt that the fault is sealed because Knobstone shale has been faulted against Knobstone shale and sandstone layers are confined below.

Joints. Oil has been known to accumulate in joints under certain conditions. The conditions are such that the joint virtually acts as the porous layer and must occupy a position between impervious layers and be so situated as to form a trap. (Figure 10.) The joint layer of rock in this case forms the reservoir. Such rocks are necessarily hard rocks, unyielding under pressure, and not exposed to the agents of cementation. Oil is found in joint cracks in some fields in California and in Colorado. Structures of this type are not known to occur in Indiana.

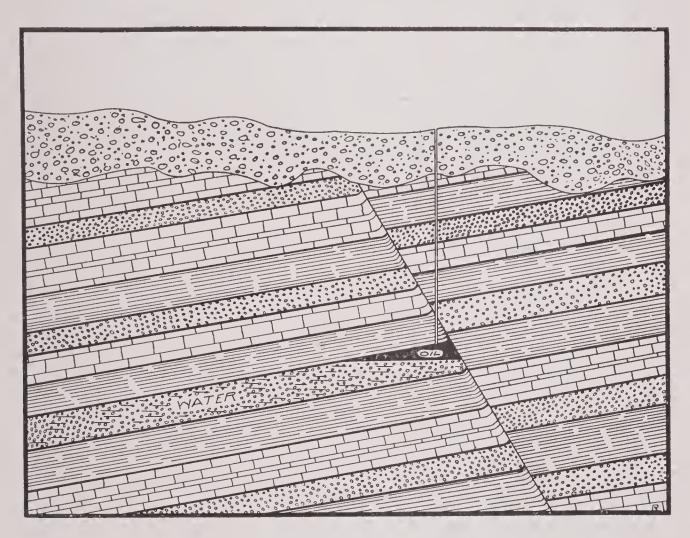


Fig. 9. A diagram to show the mode of accumulation of oil on the upthrow side of a fault. A porous layer has been faulted against an impervious layer of shale in such a way as to seal the fault and produce a collecting ground for the oil near the fault line.

Igneous Intrusions.¹ 'The vertical or nearly vertical intrusion of igneous rocks into sedimentary strata which contain beds of bituminous rocks may result in the accumulation of oil near the intrusion. (Figure 11.) The injection of the igneous rock causes an upturning of the sedimentary beds on the sides of the igneous core. The sealing of the end of the upturned

¹Clapp, Econ. Geol. VII, 1912, 364.

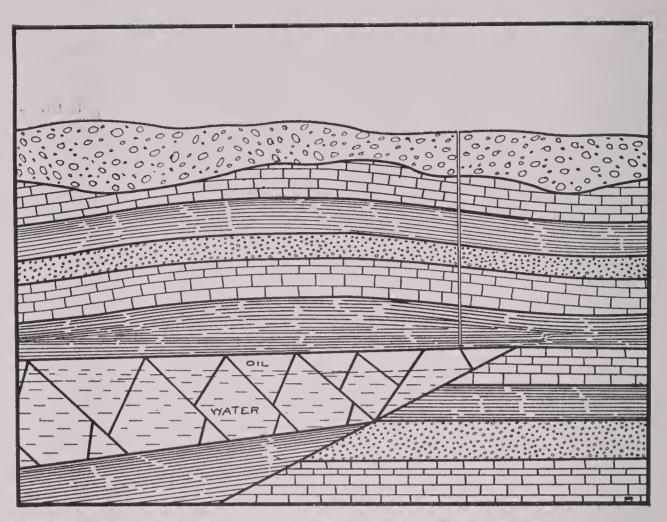


Fig. 10. A diagram to show possible method of accumulation of oil in the joints of rocks. This type of structure is not common.

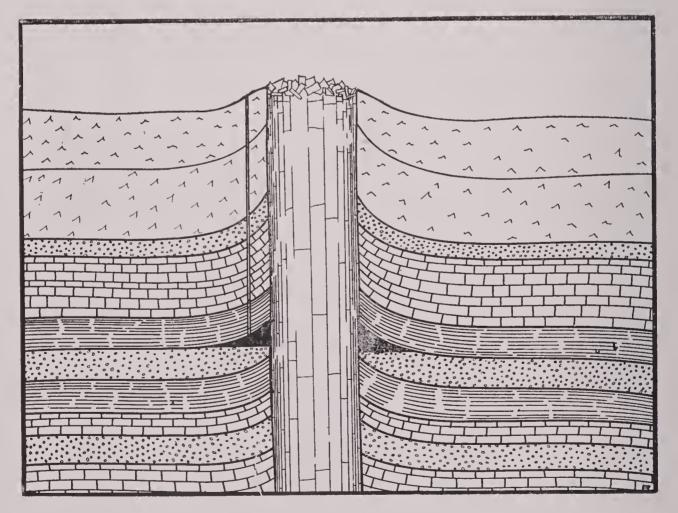


Fig. 11. A diagram to show possible accumulation of oil in a structure produced by an igneous intrusion. The oil sand in this case may be either of sedimentary or igneous origin. The igneous rock may be either primarily porous like cellular basalt or it may receive its porosity by alteration subsequent to its intrusion.

34

oil and gas reservoir provides conditions favorable to the accumulation of oil and gas.

The sealing may be done by the igneous rock or by hydrothermal action of the porous bed, rendering it impervious. Oil seeps may reach the surface from the oil pools along fault planes produced during the upward bending of the beds. Structures of this type do not occur in Indiana as vulcanism has not expressed itself in the State.

The geological structures favorable to the accumulation of oil and gas which may be encountered in Indiana are anticlinal, monoclinal, terrace, fault and lens structures. Oil bearing synclines are not likely to be present because of the abundance of water in the porous beds of rock. The other types of occurrence are associated with special conditions which do not exist in Indiana.

CHAPTER V.

PROSPECTING FOR OIL AND GAS

The best equipment that an oil prospector can have is a thorough training in the science of Geology. He must have a knowledge of the geological conditions of the field in which he is prospecting. This must include a knowledge of the nature of the rocks, not merely at the surface but to a considerable depth. This information he may obtain from surface outcrops, railroad cuts, stream courses, excavations, well records and geological reports.

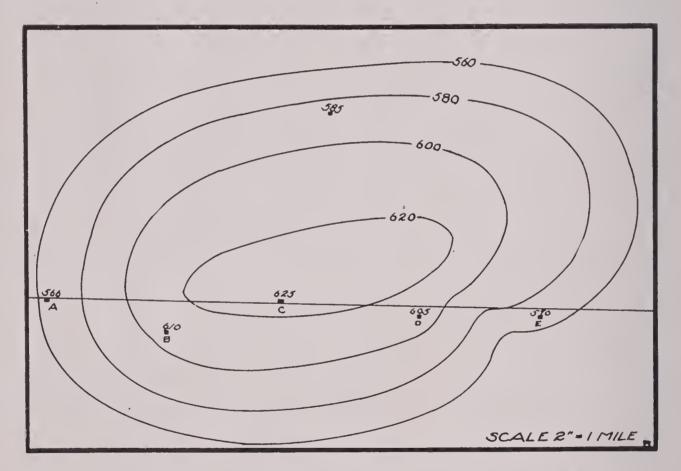


Fig. 12. Diagram of an anticline represented by contours drawn on the surface of a bed of coal. Contour interval twenty feet. Position of the bed of coal determined by well records.

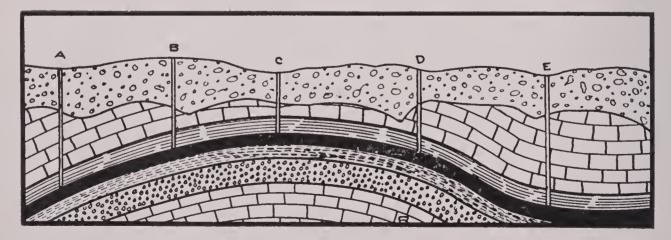


Fig. 13. A cross section of the above anticline along the line A. B. C. D.E.

He will need to have a knowledge of the age of the rocks since the occurrence of oil and gas in the oldest rocks of the earth has not been recorded. He will need to know that oil and gas are not found in igneous and metamorphic rocks, but are confined to sedimentary rocks. He will need to know further that certain kinds of sedimentary rocks are not likely to contain oil and gas. He will learn to look with favor upon rocks containing organic matter or rocks associated with rocks containing organic matter, evidence of which will be found in fossils, lignite, and prevailing dark colors. He will look with disfavor upon rocks with prevailing red or yellow color, because the oxidized condition of the iron compounds points to the absence of organic matter.

A knowledge of the structure of the rocks is essential because of its bearing on the accumulation of oil and gas. They accumulate in beds of porous rocks. If the rocks are dry the oil will accumulate in the lower part of the porous bed and the gas in the upper part, if water is present they will be arranged in the order of their specific gravities, with the gas at the top and the water at the bottom. It is obvious that if the porous rock were of uniform thickness and horizontal in position that there would be no concentration of oil and gas. At best there would be only a film of oil on the water. In other words, there must be irregularities of certain kinds either in the bedding or in the structure which will permit the concentration of the oil and gas at one point. And so the prospector must be able to recognize such structures as anticlines, monoclines, synclines, terraces, and faults.

If the anticline is small it may be determined frequently by direct observation. If the anticline is broad, or the degree of inclination is slight, other means of determination must be used. In some instances the structure may be determined by locating upon the map the strike and the dip of the strata. The succession of the rocks should be carefully determined then a layer of relatively hard rock which is continuous over a large area should be selected and the strike and the dip of this bed at many points be recorded on a map. By this means reverse dips will be indicated and the nature of the structure determined.

The determination of the structure is often more difficult because of the slight degree of dip or because it may be difficult to find a layer that is continuous over large areas and which may be relied upon as a key formation. In regions where the structure is sufficiently pronounced and where there are established elevations (bench marks) for comparison, the aneroid barometer may be used and the structure be worked upon the key rock. The key rock may be a bed of coal, (figure 12) or a layer of any persistent rock such as limestone or sandstone. The elevations of the key rock above sea level should be determined for the various parts of the area, and upon a map representing this area, the points of equal elevation should be joined. By drawing lines through points of equal elevation for each ten or twenty feet of difference in elevation, the shape and the size of the structure may be exhibited. The elevations of the key rock may be determined at its outcrops by using a plane table and a telescopic alidade and stadia. In the absence of bench marks, they may be set by using plane table and stadia. The outcrops may then be located with aneroid barometer by checking frequently on the established bench marks. **Exploitation.** The development of the oil and gas industry began with the drilling of the first well by Colonel Drake, on Oil Creek in Pennsylvania in 1859. Great progress has been made since that date in both methods and machinery. Haphazard methods by untrained men in small companies having little capital have given way to scientific methods practiced by trained experts in power companies of large capital. No industry responds more readily to careful scientific methods than the oil and gas industry, for this reason the wise company employes trained men in each

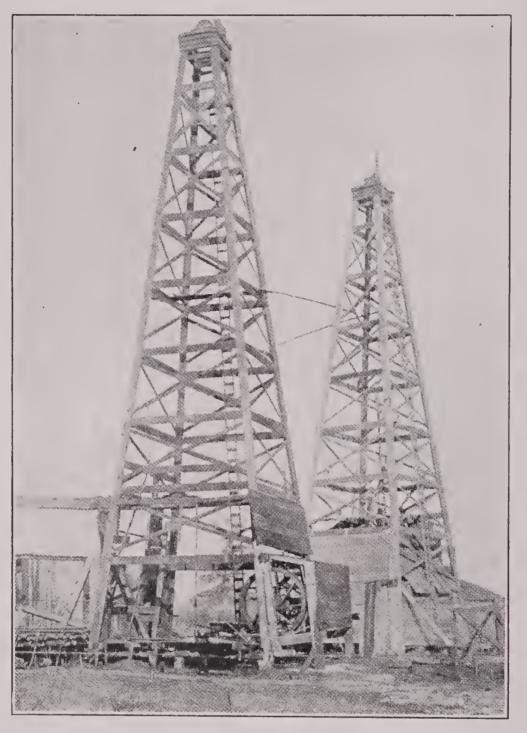


Fig. 14. Standard derricks. (Ill. Geol. Survey).

of the various departments which are a necessary part of the industry. In the absence of a sufficient number of trained engineers some large companies have established apprenticeships for inexperienced men and paid them wages while training them for their positions. In the development of new oil territory much preliminary work must be done before the drilling can be begun. Locating the Structure. The first work in the new field falls to the Geologist. He is required to locate and to carefully map the geological structure. No wise company starts drilling operations until it has assurance that the geological conditions are favorable for the accumulation of oil. This assurance can only be given by some one thoroughly trained in the science of geology. There are pseudo-geologists, so-called practical

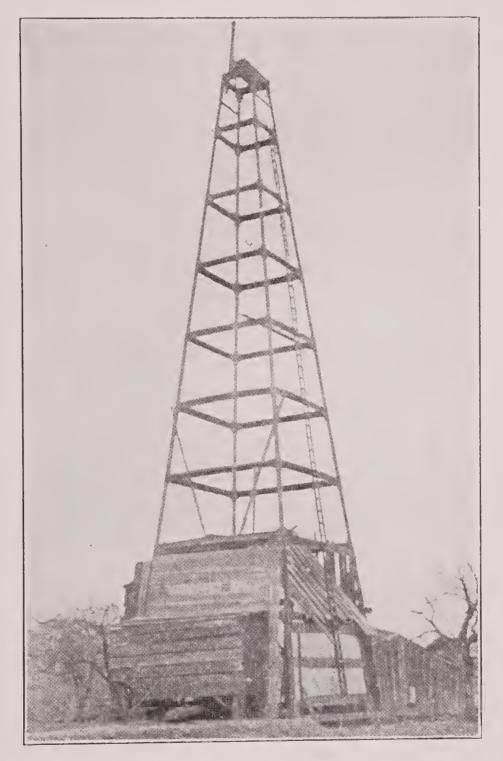


Fig. 15. A steel framed derrick. (Photo by Ill. Survey).

geologists, who can lay small claim to any real knowledge of the science and such men have done much harm to the industry as well as discredit to the science. But so strongly intrenched has the science of geology become in the oil industry that some large companies keep in their employ more than one hundred geologists many of whom have attained high rank in the profession. Securing Leases. After an oil company has determined the location of favorable geologic structure, leases covering the area are secured as rapidly as possible. The leases are in the nature of written agreements between the owner of the land and the oil company. The terms of such agreements vary greatly in different states and even in different parts of the same state. The lease gives a description of the land covered by the lease, duration of the lease, and states the compensation to be received by the lessor. The property is usually described by the quarter section, town and range. The time of the duration of the lease may be from one to five years with the option of extending the lease to cover the period of produc-

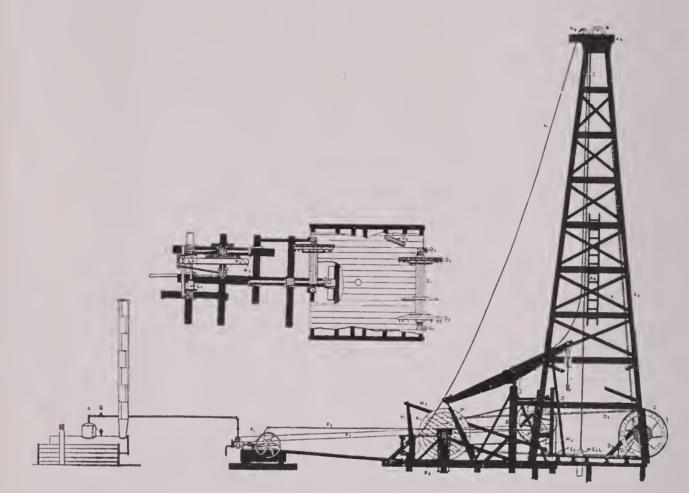


Fig. 16. Standard drilling outfit, coupled for raising tools. (After Bowman, U. S. Geol. Survey.)

A Derrick foundation posts. A² Mudsills. A³ Subsill. A⁴ Main sill. A⁵ Derrick legs. A⁶ Derrick girts. A⁷ Derrick braces A⁷ Ladder. A⁹ Crown block. B Crown pulley. C³ Dri ling Cab e. D Bull-wheel shaft. D², D³ Bull wheels.

D⁴ Bull-wheel posts. D⁵ Bull-wheel post brace. D⁶ Bull rope. D⁷ Bull-wheel brake band, E¹ Calf-wheel brake lever. E² Calf-wheel brake lever. F Sampson post G Walking beam. H Pitman. J Temper screw. K¹ Band Wheel. K², Tug pulley. K³ Band-wheel crank. L¹ Sand-reel drum. L² Sand-reel pulley. M¹ Sand-reel lever. M² Sand-reel reach. M³ Sand-reel handle. N¹ Sand-pump line. N² Sand-pump pulley. O Calf-wheel posts. P¹ Throttle-valve wheel. P² Telegraph cord and throttle valve. P³ Rod to reverse engine. Q Głobe valve.

tion. The lessor is paid one dollar to make the agreement legally binding. His further compensation may take the form of a fixed rental per acre such as one-fourth of one dollar per acre annually in wild cat territory to many hundreds of dollars in proven territory. The compensation may take the form of a royalty of one-twelfth, one-eighth, or one-sixth of the production. In exceptional good territory an additional bonus of \$100 to \$300 per acre may be paid. By the terms of some leases rentals do not begin until after the drilling of the first well which must occur before the expiration of a certain period, say two years. In leases providing for cash yearly rentals no provision is made for the completion of a well; it generally being considered to the advantage of the operator to prove his territory as soon as possible so as to avoid payment of unproductive rentals. Some leases provide for the time of beginning and finishing the first well.

The terms of the lease provide that the lessee shall have access to the land and the use of enough of the surface of the land for the establishing of his equipment and for conducting operations necessary to production. The lessor has the use of all land not necessary to the operations of the lessee. In the event of natural gas instead of oil being found on the property under lease, the owner of the property is protected by a clause in the lease which provides for the payment for the gas based on the number of cubic feet produced. Some leases provide for the payment of from \$100 to \$150 per year per well to the land holder and free gas for his use.

Locating the Wells. The location of the wells on the structure is a matter of considerable importance. The location of the first well should be chosen with care since a failure tends to condemn the entire structure. When gas and oil are present in an anticlinal structure, as gas, oil and water arrange themselves in the order of their specific gravities, gas may be expected in the highest portion of the porous stratum, oil farther down the dip and water still farther down the structure.

Locations along the crest or apex of the anticline may, under such circumstances yield gas and if oil is desired a location should be made farther down the dip. If gas is not present, oil may occupy the highest part of the porous layer and rest beneath the surface of the apex of the structure.

If the first well is productive, the second well is located near the first following the supposed trend of the structure. The distance between the wells should be governed by the thickness and the porosity of the oil sand. If the oil sand is thin and porous, the wells may be placed further apart, say 1,000 to 1,500 feet. If the oil sand is thick and not very porous, the wells may be placed 500 feet apart or even less. Some operators place one well to every ten acres. In the drilling of deep wells much money is wasted by close placing of wells.

Drilling Methods. Methods of drilling oil wells and the type of drill used varies with the depth of the wells, the character of the rocks penetrated, and other conditions. For moderately shallow wells in soft strata the portable type of drill may be used. (See figure 18.) Such rigs are easily transported over rough roads and rapidly put down to depths not exceeding 1,200 feet, but wells have been put down to depths of 2,500 feet by the use of such rigs.

The rig most in use for the drilling of deep wells is known as the "Standard" which consists of a derrick, with walking beam, bull wheel, cable with tools attached, and other accessories. (Figure 14.) The derrick may be either a steel frame (Figure 15) or wood, but consists of four uprights converging toward the top and tied and braced at intervals with cross pieces. The height of the derrick is usually 70 or more feet, about 20 feet wide at the bottom and four feet at the top. The bottom of the

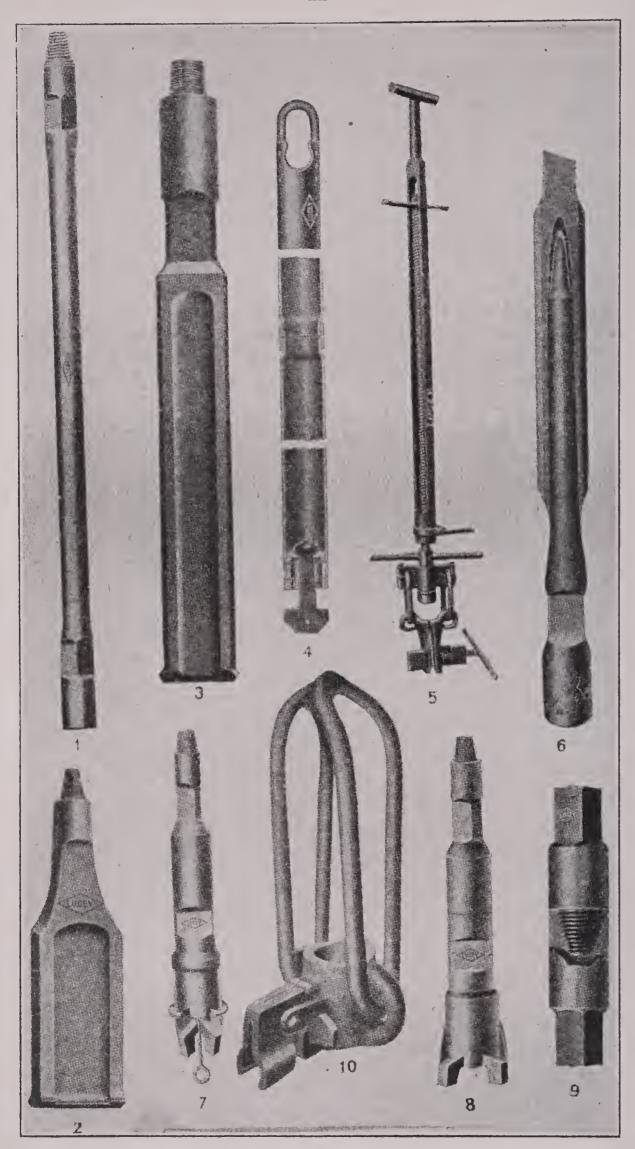


Fig. 17. Drilling tools. 1. Augur stem; 2, spudding bit; 3, drilling bit; 4, bailer; 5, temper screw; 6, drilling jars; 7-8, underreamer, closed and open; 9, joint; 10, elevator, for lifting casing into derrick. (Lucey.)

derrick rests upon large beams, rocks, or concrete and supports at the top, the crown block bearing the pulleys for the cables attached to the drill and sand pump.

The cable, composed of manilla or wire is wound upon the shaft of the bull wheel, while one end passes over the crown pulley at the top of the derrick and down to the end of the walking beam, to which the temper screw is attached by one end, the other end is clamped to the cable. (Figure 16.) To the end of the cable is attached the string of tools which consists of the rope socket, sinker bar, jars, auger stem, and auger. (Figure 17.) The walking beam is pivoted at the middle to an upright post and is attached by a pitman rod to a crank on the band wheel. The motion of the band wheel moves the walking beam up and down alternately lifting and dropping the auger and string of tools in the bore. As the bore is deepened the temper screw (Figure 18) is turned until the bore has increased in depth a full screw length, about five feet, when the temper screw is unclamped from the cable, the latter is wound on the bull wheel shaft and the tools are lifted from the well. The well is then bailed by lowering a sand pump or a bailer into the well by a line passing over the sand-reel pulley, allowing it to fill and elevating it to the surface by the same line. The bailer consists of a cylindrical body of galvanized iron with a bail at the top and a stem valve at the bottom. When the stem rests on the bottom of the bore it raises the valve and allows the bailer to fill, but when lifted from the bottom the valve drops into place and the water and drillings are carried to the surface and allowed to escape as the stem of the valve rests on the bottom of the water trough.

An engine and boiler are necessary to furnish power to the drill, the engine being connected to the band wheel by a belt. The fuel used for the boiler may be coal, oil or gas. Water for the boiler may be supplied from wells, springs, streams, or ponds.

Drive Pipe and Casing. Whenever a well is started in loose rock such as glacial drift or forms of mantle rock, a large iron pipe called drive pipe is forced through the mantle rock, following the drill and set on the solid bed rock. This pipe prevents caving of the soft strata and keeps water out of the drill hole. If, during the process of drilling, a porous layer is encountered, containing water under pressure, it may be necessary to lower the string of casing inside the drive pipe and set it on an impervious layer below the water bearing layer in order to shut out the water. If other water bearing layers are encountered, other strings of casings must be lowered. In deep wells it is often necessary to have eight or ten different sizes of casings, starting with an 18-inch casing and ending with a 2-inch.

Cost of Oil Wells. The cost of an oil well varies with a number of factors, such as depth, character of rock, accessability to fuel, transportation conditions and others. The cost of work preliminary to the actual drilling is the same regardless of the depth of the well, providing the same type of rig is used for both shallow and deep wells. The cost of actual drilling per foot increases with the depth. The light portable rig which may be used to advantage in Indiana in drilling wells ranging up to 1,200

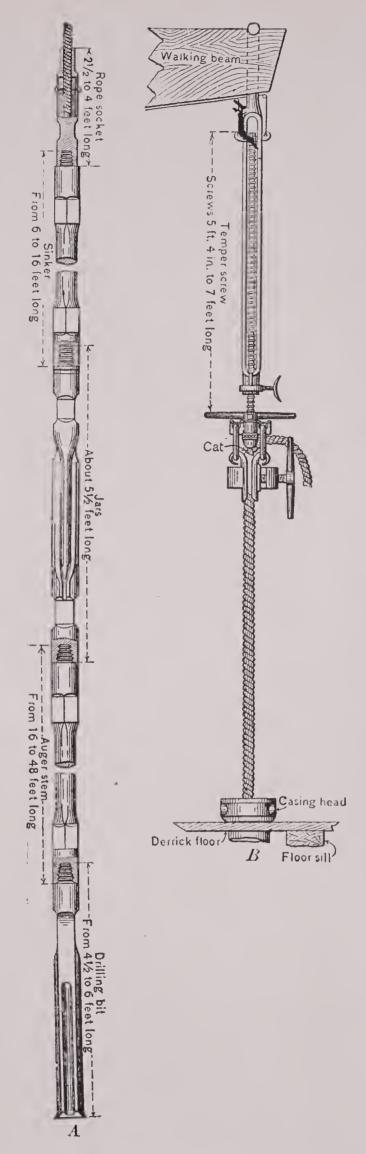


Fig. 18. A, String of tools used with standard drilling outfit; B, temper screw. (After Bowman, U. S. G. S.)

or 1,500 feet in depth and has been used in wells as deep as 2,400 feet, cost \$2,500 to \$3,000. The Standard rigs because of the construction of the derrick, cost much more. The cost of wells having depths ranging from \$00 to 1,000 feet is from \$2,000 to \$2,500. Wells of twice those depths, cost from \$6,000 to \$8,000. Drillers usually contract to drill a well to a certain depth at so much per foot for the drilling and installing the casing, which is to be furnished by the owner of the well. The cost of casing varies from \$1 per foot for the smaller sizes to \$3.50 per foot for the larger sizes. In the glaciated regions of Indiana the largest tubing, the so-called drive pipe, must extend the full thickness of the glacial drift and be set on the solid bed rock. The length of the drive pipe in this region varies from a few feet to more than four hundred feet. In the non-glaciated region except in the alluvial bottoms of rivers the drive pipe rarely exceeds one section of pipe.

A written contract is usually made between the driller and the operator. This contract binds the driller to drill to a certain depth for a certain specified sum per foot; to furnish all necessary equipment; to begin drilling within a certain specified period; to install the casing and to pull it in case of a dry hole. It binds the operator to furnish on the ground the drive pipe, casing, rodding, tubing and other accessories except such as are a part of the drilling equipment; he also allows the driller the use for fuel the oil or gas which exists or may be found in drilling.

Abandoning a Well. If a well is dry or the production too light to be profitable and the well is to be abandoned it must be plugged. The laws of Indiana provide that before the casing can be drawn from a well and abandoned, the nearest State Gas Inspector shall be notified and his presence secured. Under his direction the casing may be drawn and the well plugged.

Shooting Oil Wells. If after an oil well has reached pay sand the oil does not flow freely into the well as it is not likely to do in case of a close-textured rock it becomes necessary to shoot the well. Shooting is accomplished by lowering to the position of the oil sand a charge of nitroglycerine in cannisters. The amount of nitroglycerine used will depend upon the texture of the rock, the thickness of the pay sand, danger of flooding and other factors. The amount ordinarily used is from 60 to 100 quarts but the amount may be more or less. The explosive may be exploded by placing a fulminate cap on the charge in the well and dropping a conical iron, the "go-devil" upon it or by dropping a nitroglycerine "jack squib" bearing a fulminate cap upon the charge in the well (Fig. 22). Care must be taken not to get the charge below the pay sand because of the danger of flooding or of getting it above the pay sand in which case the shattered barren rock may interfere with production.

Pumping Oil Wells. When oil exists in the oil sand under great pressure it may be forced to the surface and a flowing well produced. Even a flowing well by decrease of pressure may cease to flow and require pumping. Some wells require pumping from the start. Wells may be pumped by separate power units or by central power units. A very common practice is to connect a number of wells, say six, with a central power plant

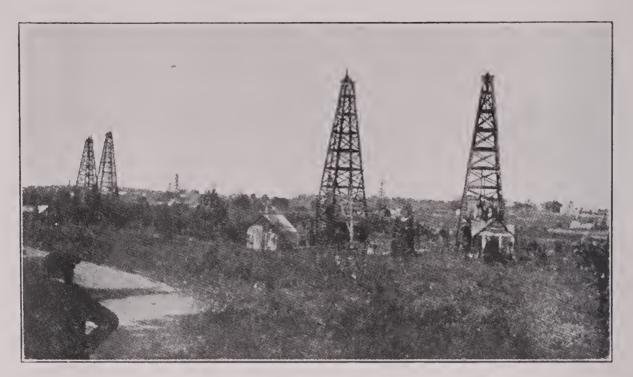


Fig. 21. View of an oil field in Indiana. (Amer. Inst. Min. Engineers.)

Fig. 22. Broad Ripple oil well after shooting.

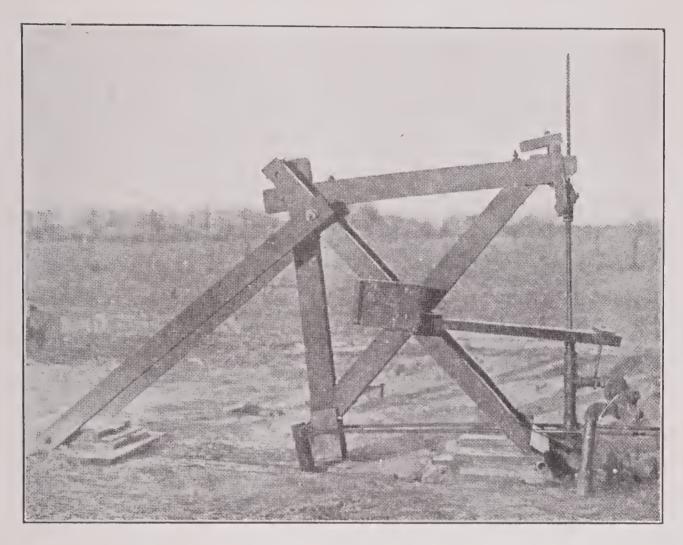


Fig. 19. Standard pumping jack.

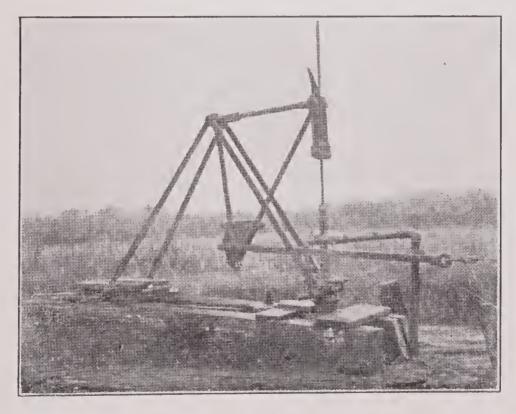
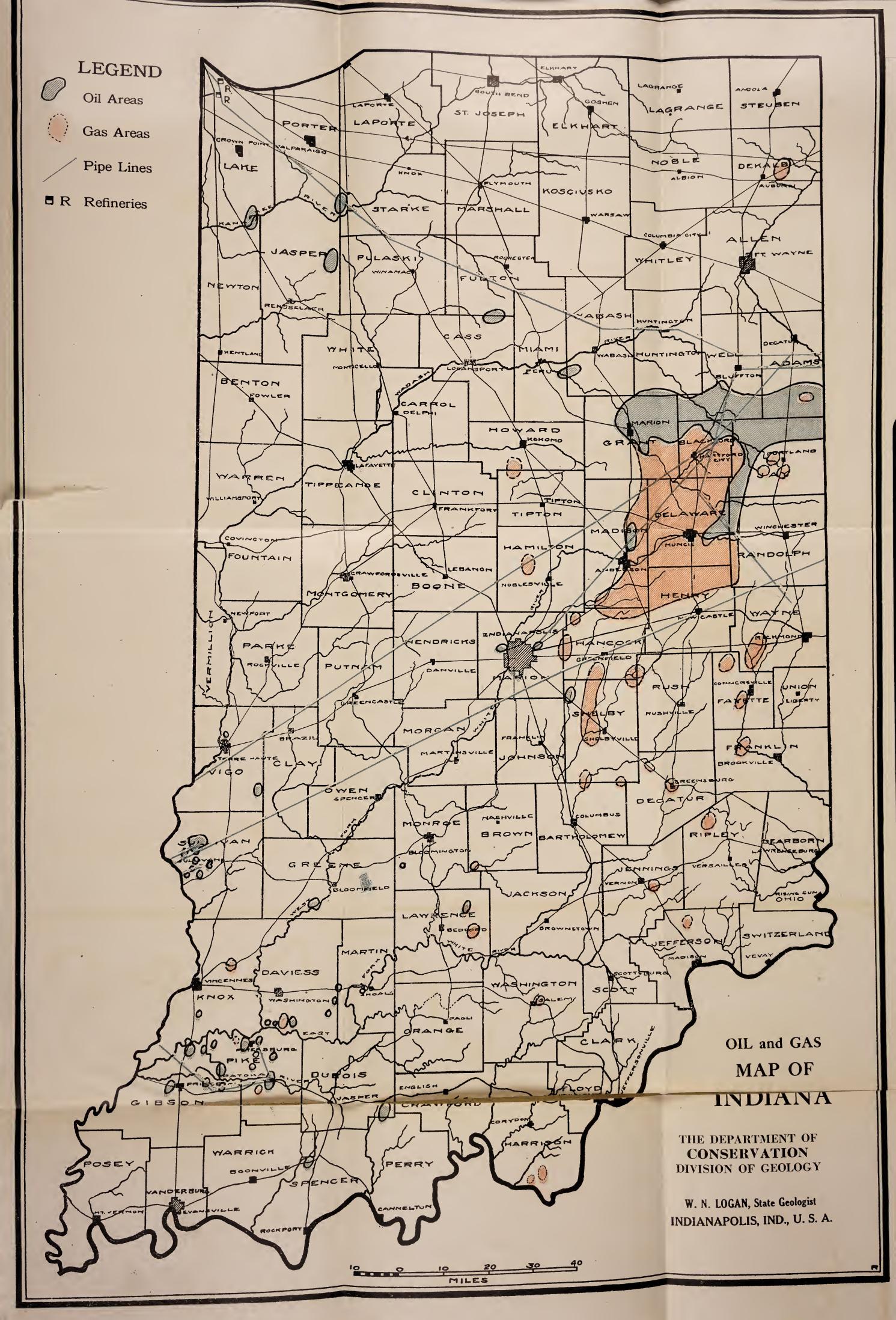
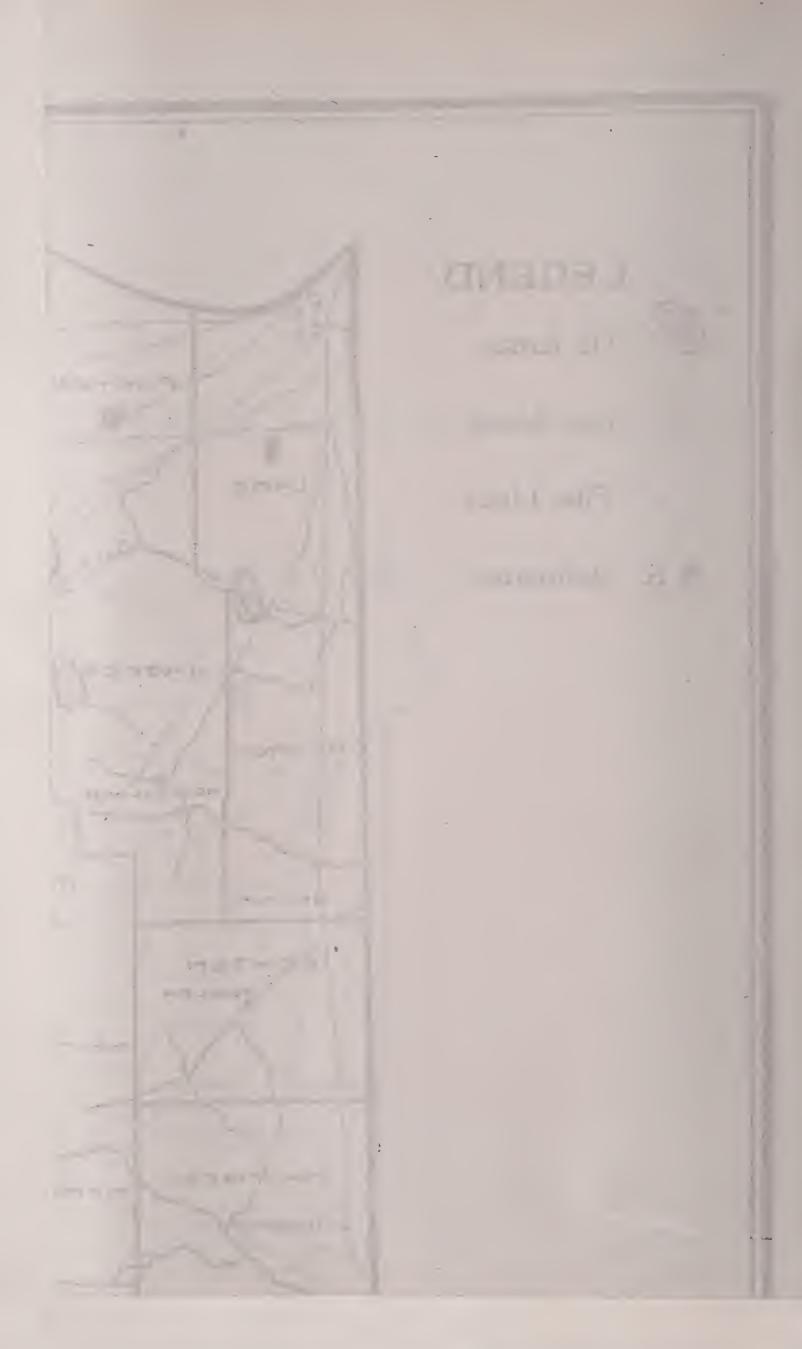


Fig. 20. Steel pumping jack. (Ill. Geol. Survey.)


by means of rods which are attached at the well to pumping "jacks" which transform the horizontal pull of the rods into vertical movement of the pump rods in the well. (Figs. 19 and 20.)


Oil Transportation. The most efficient method of oil transportation is by pipe line, pipes laid underground through which oil is pumped. Pipe lines now carry oil from the mid-continental field to the Atlantic Coast. The pipe of the main lines have a diameter of eight inches and the feeders from three to six inches. Pumping stations are distributed at intervals along the main lines. Oil is also transported from the oil field to the refineries by tank cars and tank ships. Some oils, like certain Mexican oils, are too dense to be transported long distances through pipes and such oils are transported in tank cars or tank ships.

Oil Storage. Oil as it is brought from the wells, must be stored in tanks at least temporarily. If the oil field is near the refinery it may be pumped through pipe lines and kept moving from the field thus necessitating only temporary storage. When the field is located at a distance from the refinery and the means of transportation is by tank cars, large storage facilities are a necessity. Storage tanks are built of iron, wood or concrete, in cases of emergency reservoirs of earth, have been made. Tanks may be placed above or below ground. In some of the oil fields concrete tanks placed below ground are being constructed. Less evaporation and greater safety from fires, especial fires caused by lightning, are the claims made for them. The approximate dimensions of tanks of various capacity are given below:

Capacity in Barrels.	Height in Feet.	Diameter in Feet.
5,000	20	40
10,000	30	49-7/12
20,000	30	70
30,000	30	86
55,000	30	115

The gauging tanks range in size from 25 to 100 barrels and the oil is measured in these before being pumped to the storage tanks.

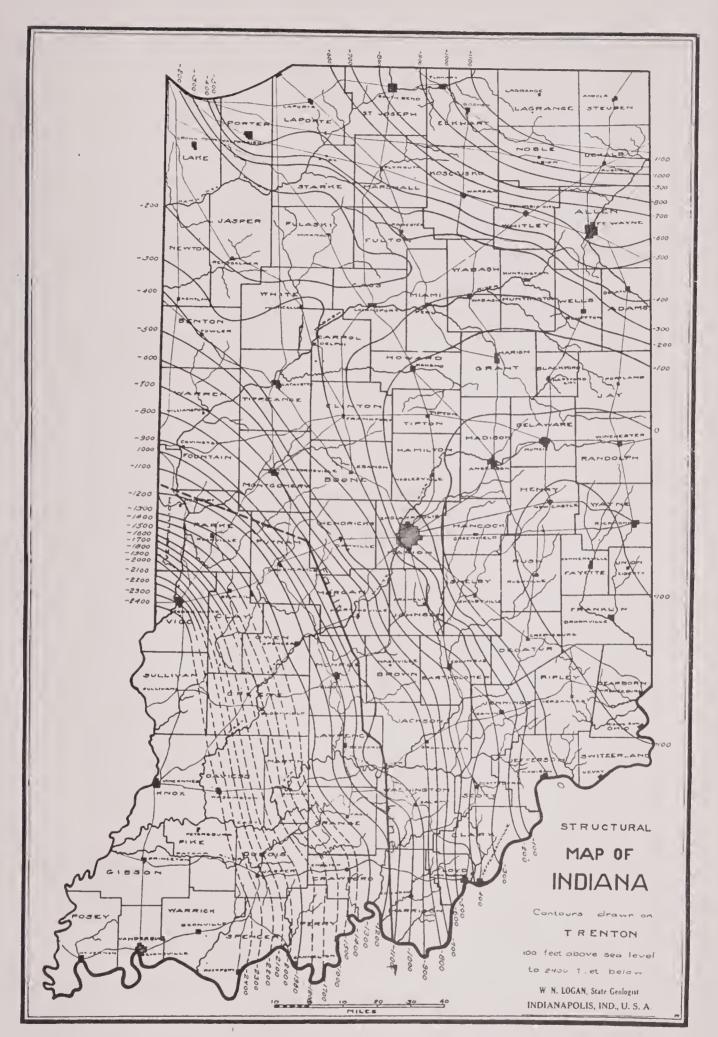


Fig. 24. Structural map of Indiana, contours drawn on Trenton.

CHAPTER VI

GENERAL GEOLOGICAL CONDITIONS IN INDIANA

The general geological conditions of Indiana are not complex. The rocks belong to the sedimentary division. The only rocks of igneous origin known in the State are the boulders which were carried into the State from the crystalline belt of rock lying far to the north. During a great part of the time that the rocks of Indiana were being deposited the sea occupied the whole or a part of the State. In this sea the fragments of disintegrated rocks of former ages were deposited to contribute to the strata which were later to form the surface of the State. The movement which was to convert the marine Indiana into dry land began on the eastern border and extended across the state northwesterly. Because of this differential uplift the southwestern and the northeastern corners of the State were the last portions to emerge from a gradually retreating sea. Though it is possible the emergence of the northeast corner may have antedated that of the southwest. (See next page for table.)

Potsdam Sandstone. The oldest rock reached by the drill in Indiana is a sandstone which is probably of the age of the Potsdam sandstone of the Cambrian period. Oil or gas has not been found in this formation in this or in the neighboring States. The formation does not outcrop at any point within the State. Wells have penetrated it to a depth of 300 feet without passing through it.

Lower Magnesian Limestone. Overlying the Potsdam sandstone is a limestone which is thought to be of the age of the Lower Magnesian. No outcrop of the formation occurs within the State. Its thickness as recorded in well records is about 300 feet. It is thought to be equivalent in age to the Calciferour of the New York section.

St. Peter's Sandstone. A number of deep wells in Indiana have passed through the Trenton limestone and pierced a stratum of sandstone which has been referred to the St. Peter's. The thickness of the sandstone as revealed by well records varies from 150 to 300 feet. It is thought to be equivalent in age to the Chazy of New York.

Trenton Limestone. Overlying the St. Peter's sandstone is a limestone which has been the source of the larger part of the oil and gas produced in the State. Portions of the upper part of the limestone have been rendered porous by dolomitization and where the structural conditions of the formation have been favorable oil or gas has been collected in these porous portions. The thickness of the Trenton limestone varies from 470 to 586 feet.

The geological formations which outcrop at the surface or have been revealed in deep wells in Indiana are given in the accompanying table.¹

		LOGICAL SECTION OF IN	NDIANA
Area	PERIOD	Еросн	FORMATION .
Cenozoic		{Recent {Pleistocene	. Glacial drift.
	(Tertiary	. Pliocene?	Gravels (Lafayette?).
	Pennsylvanian	(Allegheny	
		Pottsville	Mansfield sandstone.
		Unconformity	
	Mississippian	Chester . St. Genevieve . St. Louis . Salem .	
		Osage	[Harrodsburg (Warsaw)limestone. {Kuobstone shales. d (Goniatite)limestone.
	Devoniau	.Corniférous	(New Albany shale. Sellersburg limestone. Silver Creek limestone. Beachwood). Geneva (Jeffersonville limestone).
	Unconformily		
	Siturian		Louisville limestone. Waldron shale. Laurel limestone.
			Osgood limestone and shale. Brassfield.
		Unioniormity.	
			Richmond Elkhorn. Whitewater sh. and Ls. Saluda, sh. and ls. Liberty, limestone. Waynesville, Sh. and Is. Arnheim, shaie.
	Ordovician Cincinnatian		Maysville Maysville Bellevue, Sh. Ls. Ss. Fairmount, sh. and ls. Mt. Hope, sh. and ls.
			Eden Southgate, sh. ss. ls. Economy Fulton,
	 Cambrian		Trenton linestone. St. Peters sandstone. Magnesian limestone. Potsdam sandstone.

GEOLOGICAL SECTION OF INDIANA

¹For more complete discussions of the subdivisions represented in this table see reports by Ashley, Cummings, Foerste, Newsom, Price, Siebenthal, and others published in the Annual Reports of the Survey. For the subdivisions of the Chester see paper on "The American Bottoms," Indiana Studies, by C. A. Malott.

.

Cincinnatian. The group of limestones, shales and sandstones overlying the Trenton are usually referred to as the Utica and Hudson River shales in report pertaining to the oil industry of the State. These formations outcrop in the southeastern part of the State and they have been studied and their lithological and paleontological characters determined. The total thickness of the strata of this group is about 700 feet.

Silurian Strata. The formations belonging to the Silurian in Indiana consist chiefly of limestones with thin layers of calcareous shales. In the records of oil wells they are commonly referred to under the head, "Niagara limestone." Over much of the oil and gas territory in the eastern part of Indiana the first stratum of the durolith (bed rock) encountered by the drill is the Silurian limestone. The Silurian strata outcrop in the southeastern portion of the State and in the eastern portion where erosion has removed the glacial drift. The divisions represented in southern Indiana are: Brassfield limestone (Medina), the Osgood limestones and shales, the Laurel limestone, the Waldron shale and the Louisville limestone. The thickness of the Silurian in southern Indiana varies from 95 to 140 feet. The Waterlime is supposed to be represented in northern Indiana and the Schoharie by the Pendleton sandstone.

Devonian Strata. The lower portion of the Devonian consists of the Jeffersonville, the Silver Creek and the Sellersburg limestones. These outcrop in Clark, Jennings and other counties in the southern part of the State where they attain a total thickness of about ninety feet. In the well records these limestones are usually referred to as the Corniferous, though they are probably largely Hamilton. In many places it is sufficiently porous to allow the accumulation of oil and gas where structural conditions are favorable and some oil and gas production in Indiana is derived from the Corniferous. Above the Devonian limestone lies a black bituminous shale called the "New Albany" which is supposed to be of equivalent age to the Genessee of the New York section.

Mississippian Strata. The lowermost division resting on the New Albany is the Goniatite or Rockford limestone, a thin stratum, often only two feet thick, greenish color on fresh fracture but weathers brown. Overlying the Rockford is the New Providence shale member which is followed by the Knobstone shales and sandstones, containing some lenses of limestone. The term, Riverside sandstone was applied by Foerste to a sandstone in the Knobstone. The Knobstone sandstones frequently contain pockets of gas and there is reason to believe they may form oil reservoirs. The thickness of the Knobstone varies from 530 to 650 feet. The Harrodsburg (Warsaw) limestone overlies the Knobstone. The line of contact is marked by a large quantity of quartz geodes. The crystals in the interior of the geodes are usually quartz but in some calcite. This member consists of thin bedded limestone and shales. The limestones are irregularly bedded. very fossiliferous, contain chert, stylolites and coarsely crystalline calcite. Its thickness is from 60 to 90 feet. The Salem furnishes the Indiana oolitic building stone. It occupies in its outcrop, a narrow strip extending from Putnam County to Harrison County, the main quarry district being located

Fig. 26. An Oolitic (Salem) limestone quarry. The overburden which has been removed is Mitchell limestone. The first cut is being made in the upper surface of the Salem.

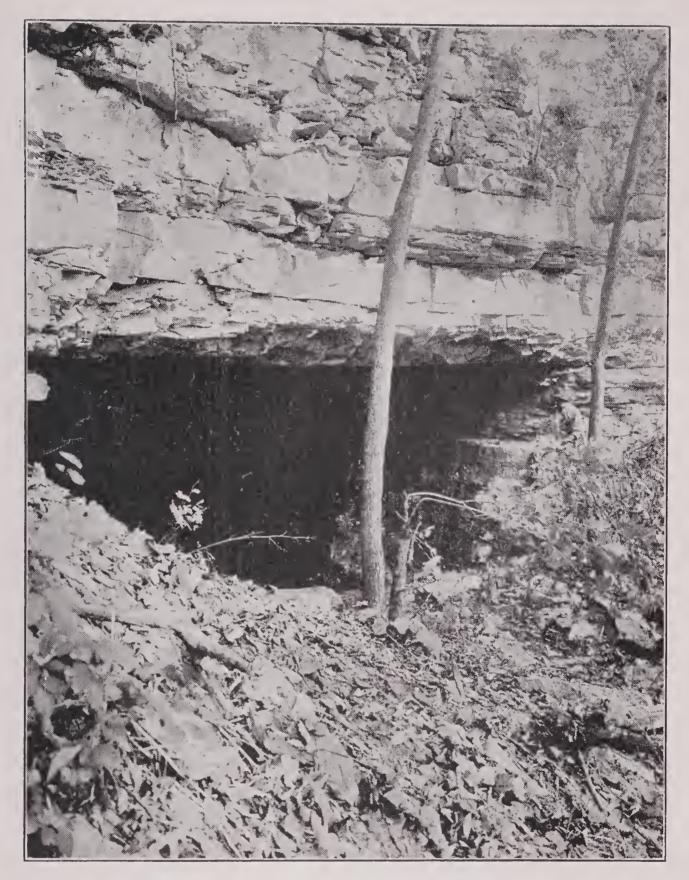


Fig. 27. Cave in Mitchell limestone in Harrison County. Caves and underground water courses are abundant in this limestone in Indiana and Kentucky. (Photo by Hohenberger.)

in Lawrence and Monroe Counties. The limestone occurs in a massive bed usually varying in thickness from 30 to 90 feet. The stone is a fine grained limestone, the grains being composed of shells or fragments of shells. It is generally recognized by its massiveness and granular (so called oölitic) structure.

The Mitchell is composed chiefly of limestone with some thin beds of shale in its upper horizon. It is a harder limestone than the oolitic and

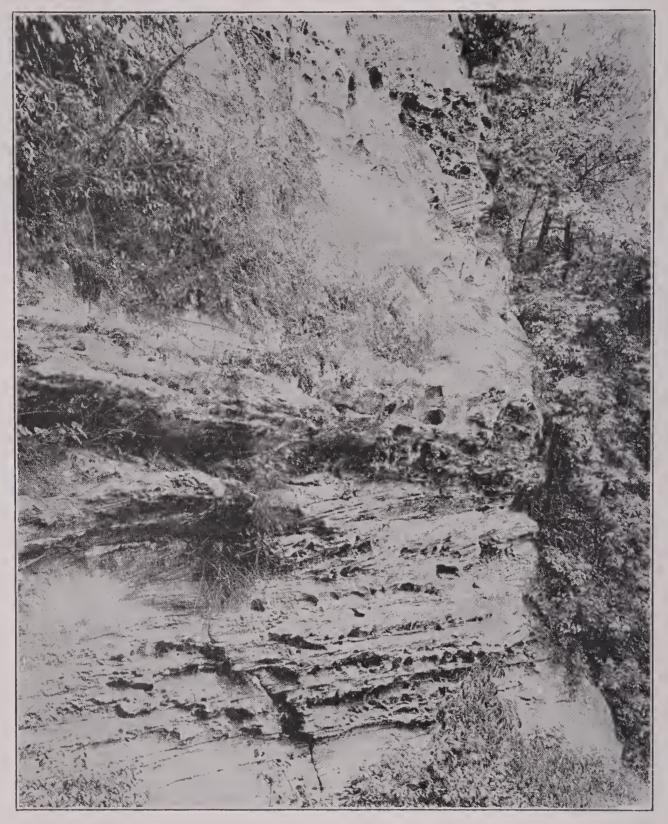


Fig. 28. An outcrop of Mansfield sandstone showing differential weathering, the more resistant parts are cemented with iron oxides. This forms one of the oil sands of southwestern Indiana. (Photo by P. B. Stockdale.)

is used much for road material. The individual beds of the limestone vary from two to thirty feet in thickness. Some of the layers of the upper portion contain inclusions of chert. Fine grained, lithographic stone is present in some horizons. The thickness of the Mitchell varies from 150 to 200 feet.

The Chester is composed of a series of sandstones, limestones and shales. The sandstones become oil reservoirs in southwestern Indiana, a portion of the oil production of that region being derived from them. Some of the shales of the Chester are oil-bearing though they do not form reservoirs. Some of the limestones are of an oolitic character and some are lithographic. The sandstones are fine grained and are usually distinguishable from the coarser grained Mansfield.

Pennsylvanian Strata. A long period of erosion preceded the deposition of the Pennsylvanian rocks, and the surface of the Mississippian upon which the Pottsville rocks were deposited was very irregular. The Pottsville division is represented by beds of shale, thin beds of coal and a coarse sandstone, the Mansfield. The latter is often conglomeratic and in some places contains irregular masses of limonite. The Mansfield sandstone becomes an oil reservoir in the southwestern part of the State. Many of the shales associated with the coals of the Pottsville are oil bearing. There is an unconformity between the Pottsville and Allegheny divisions in Indiana which in some places is well marked.

Coal Measures. The rocks of the Allegheny division consist of shales, coals, limestones and sandstones. Many of the shales are oil bearing under destructive distillation. The sandstones furnish reservoirs in which oil and gas have accumulated at points where structural conditions are favorable. Many of the productive sands in Gibson and Pike Counties belong to the Coal Measures.

Merom Sandstone. This sandstone rests unconformably upon the Coal Measures in some places occupying erosion channels carved in the rocks of the Coal Measures. This sandstone is conglomeratic in its basal portions in some localities.

Tertiary. Some gravel beds which occur in southern Indiana consisting chiefly of chert and flint gravels with geodes probably belong to the Pliocene epoch of the Tertiary Period.

Quaternary. The Pleistocene or glacial deposits cover a large part of the surface of Indiana. There is an area in the southern part of the State lying south of the north line of Monroe County where the two lobes of the Illinoian glacier did not coalesce that was not glaciated. The deposit of glacial drift reaches a thickness of more than 400 feet in places. The presence of the drift has greatly interfered with the development of the oil and gas industry since it concealed the outcrop of the durolith and prevented the determination of structural conditions by direct observation. The strata of the Cincinnati geanticline are buried under the drift and its minor structural irregularities concealed.

The Recent deposits consist of residual clays, loam and soils formed from the decomposition of the durolith, alluvial deposits of the stream valleys, dunes of wind blown sand and marl and peat deposits.

Structural Features of Indiana. The major structural features of Indiana are comprised in the Cincinnati geanticline, the northern basin, the western basin and the Mount Carmel Fault.

The Cincinnati Geanticline which extends northward in Ohio sends off an arm which passes through Indiana in a northwesterly direction. The movement which inaugurated the arching took place during the Ordovician period and continued until the close of the Carboniferous Period but while the movement resulted probably in land condition being produced in southern Ohio, the effect in Indiana was the production of a sub-marine ridge on the slopes and across the top of which the sediments of later periods were deposited. This ridge formed the dividing line between a basin on the north and one on the southwest. The younger rocks dip away from the ridge toward these basins. Sediments of Cambrian and Ordovician age were deposited on the eroded Pre-Cambrian surface before the elevation of the Cincinnati Arch. Through well records we learn that below the Trenton limestone which has a thickness of 500 or more feet there lies a sandstone which probably corresponds to the St. Peter's sandstone which outcrops in Wisconsin. Its thickness varies from 150 to 300 feet. That below the sandstone there is a limestone which probably corresponds in age to the Lower Magnesium limestone which has a thickness of about 300 feet and rests on the Potsdam sandstone which has a thickness of more than 300 feet. The Potsdam sandstone belongs to the Cambrian period and is the oldest rock known to occur in situ in Indiana.

The Northern Basin. The center of the northern basin lies north of Indiana about Bay City, Michigan. The southern limit of the basin is the Cincinnati Arch which passes across the State in a northwesterly direction. The sediments deposited in this basin range in age from the Silurian to and including the Coal Measures of the Pennsylvanian. It is very probable that the sediments of these formations were continuous across the arch at one time, but if so, they have been removed by erosion as only the Silurian rocks now rest below the drift and overlie the Ordovician on the top of the Arch. The dip of the strata from the top of the Arch northward is gentle at first not exceeding ten feet to the mile but the dip increases until it reaches thirty or more feet to the mile.

The Southwestern Basin. This basin has its center in southern Illinois toward which the formations laid down on the western and southern flanks of the Cincinnati Arch dip. The dip of the formations varies from thirty to fifty feet to the mile, perhaps in a few places exceeding fifty feet. The total thickness of the sediments deposited in this basin in Indiana on top of the Trenton is probably as much as 3,500 feet.

The Mount Carmel Fault. Early in the fall of 1916 the attention of the writer was attracted to a reversal of dip in some beds of limestone lying in eastern part of Monroe County. In places, this reversal of dip was noticeable in the limestones which overlie the Knobstone shales and sandstones, in other places in the sandstones of the Knobstone and again in beds of limestone occupying certain horizons in the Knobstone. Upon an investigation of the available geological literature I found in the Report of the State Geologist for 1896, pages 390-91, that Siebenthal discusses the Heltonville Limestone Strip as follows: "Commencing at Limestone Hill. eight miles southeast of Bloomington and extending east of southeast through Heltonville to, and probably beyond Fort Ritner, Lawrence County, is a band of limestone from one-half to one and a half miles in width, bordered sharply, both east and west, by Knobstone, and known in that neighborhood as the Limestone Strip. Isolated patches of similar limestone occur north of this strip and in line with it. The strip is well developed in the vicinity of Heltonville, Lawrence County, where it gives exposures of the Harrodsburg, Bedford Oolitic and Mitchell limestones."

At many points the Knobstone contains intercalated lenticular beds of limestone, and it is possibly conceivable that the conditions which prevailed while these beds were being deposited might have been extended over a narrow territory like the Heltonville strip. However, the fact, first that Knobstone has not been found overlying this limestone, and second, that it shows the lithological facies of the Harrodsburg, the Bedford Oolitic and the Mitchell limestones, and the faunas of these formations, identifies it with them and shows conclusively that it is a narrow band of these formations, occupying a depression in the Knobstone, and not an included member of the Knobstone.

This depression may have resulted from a double fault or may be an old erosion channel. Some things seem to point to one as the origin and some to the other. The facts at hand incline us to the latter view. The most palpable objection to this view is the fact that no nonconformity exists between the Knobstone and the Harrodsburg limestone at their contact a few miles west of the strip. Another objection is that the bottom of the channel, at present at least, is not all of uniform elevation throughout its length. The principal objections to the view of a double fault are two-at no point was a direct vertical contact of Knobstone and limestone visible, nor was there to be seen any of the tilting, crushing and shattering which usually accompanies faulting. On the other hand, as the vicinity of the contact line is approached the shaly layers of the limestone become more and more argillaceous and apparently pass over into the Knobstone. To determine the exact conditions under which the limestone strip was laid down would require more extended study than is consistent with the scope of this report. What has been done was to trace upon the accompanying maps the outcrop of the Bedford Oolitic and to examine the bed more carefully at places where it is now being quarried, namely at Heltonville and Fort Ritner."

In the proceedings of the Academy of Science of Indiana for 1897, page 262, J. A. Price discusses the boundary of the limestone strip and says in conclusion: "It is not possible, from data in hand, to say surely whether this strip of limestone owes its existence to an unconformity or a fault."

In 1903 J. F. Newsom published a description of a "Geologic Section Across Southern Indiana" as a part of the 26th Annual Report of the State Geologist. On pages 274 and 275 Newsom refers to the structure as a fault in the Knobstone area. He gives its extent as being from near Unionville in Monroe County to a point in the northern part of Washington County.

In referring to the discussions of Siebenthal and Price in the 27th Annual Report of the State Geologist, 1903, on page 90, Ashley says: "It is evident that if the limestone strip north of White River is due to a fault its effects should continue to the south rather than turn and follow the outcrop. A glance at the map in the region north of Campbellsburg is alone sufficient proof of the fault character of the disturbance."

In studying this structure in detail the writer has found that it is much more extensive than Newsom stated; that there is a second fault; that other disturbances were connected with it and that the actual contact which he has found presents some interesting features.

Extent of the Fault. While I have not yet been able to trace the fault to the borders of the State at either of its extremities I have been able to trace it far beyond its mentioned boundaries and feel confident that the particular disturbance under discussion extended from the Ohio to the Wabash along the western border of the Knobstone outcrop and perhaps beyond. Tracing the fault south of Campbellsburg in Washington County is difficult because the area on each side of the rift is occupied by limestone.

Along the northern end of the displacement glacial deposits conceal the bedrock to such an extent as to render observation difficult. Under these circumstances the best that can be done is to trace the disturbance by the reversal of dip of the limestones, as the finding of the rift will be extremely difficult. By such observations as it was possible to make I have traced the disturbance from a point southeast of Campbellsburg in Washington County to a point northwest of Waveland in Montgomery County.

Rift. The actual contact of the rocks along the fault plane is revealed in only a few places. There are numerous places where the harder more resistant stratum of limestone stands forth like a wall on one side of the rift, but the opposite side is occupied by mantle rock which was derived by the weathering of the Knobstone and which conceals the actual rift. Excavations made at such places would doubtless reveal the actual contact of the limestone and the Knobstone.

In a few localities the rift is exposed and the plane of the fault is bordered on the one side with limestone and on the other by shale. One outcrop of the rift zone was found in the bed of the north fork of Leatherwood Creek near Heltonville. At this point the Knobstone occurs on one side of the fault plane and the Harrodsburg limestone on the other. The line of rift is distinct, being marked by a thin bed of breccia. The brecciated zone is composed mainly of fragments of limestone in which small fragments of shale are intermingled. These fragments have been cemented together with calcite and the whole zone more or less marbleized. In a cross-section of the brecciated rock the veins of calcite stand out clearly, as they are whiter than the fragments of limestone and shale which they bind together. Small quantities of other minerals are present in some parts of the brecciated zone, but there is an absence of the more insoluble minerals, such as silica or the silicates. This fact leads to the conclusion that meteoric rather than thermal waters have played the leading role in the concentration of these minerals.

Periods of Movement. The question of whether the displacement took place all at one time or was intermittent is an interesting one. All of my attempts to find an evidence of intermittent movement by an examination of surface features have been unsuccessful. If there were intermittent movements of any considerable extent we would probably find them revealed in hanging valleys on the upthrow side and the rapid broadening of valleys on the downthrow side of the fault. In case there were two stages of movement, and the movement in the last stage an exceedingly slow one, the vertical cutting of the main stream might be as rapid as the uplift, but still the rejuvenation of the tributaries should result in a narrowing of the valleys. In the rift zone there is evidence of two stages of movement though the amount of displacement in the second stage is slight. The time interval between the two movements was of considerable length, since the fragments of the brecciated zone were firmly cemented before the second movement took place. Fragments of shale which were included in the limestone fragments during the first movement were faulted by the second movement. These shale inclusions would not have undergone faulting had they not been held rigidly in place by the cementing material.

Amount of Throw. The amount of throw of the fault varies probably from 200 to 300 feet. Opportunities for measuring the amount of throw are not numerous. It can best be computed by estimating the total amount of eastward dip of the formations along the line of contact between the Harrodsburg and the Knobstone. At a point south of Mt. Carmel the difference in elevation of the contact above sea level is 50 feet in a distance of one-fourth mile. Since the width of the down-thrown block is at least one mile and a half in this locality the throw of the fault is at least 300 feet. The amount of dip of the down-thrown beds in other localities is less than at this point, so much less that the indicated throw is not more than 200 feet.

Age of the Fault. The time at which the dislocation occurred can not be fixed definitely. It is probable that it occurred at the close of the Paleozoic Era when the Appalachian revolution which resulted in the elevation of the eastern part of North America took place. Contemporaneous with or subsequent to that great epeirogenic movement, faulting and minor folding took place in Indiana, Illinois and Iowa, and other States lying as far west as these from the region of maximum disturbance. These faults like the one under discussion have a northwest disturbance.

The Heltonville Fault. About one mile west of the Mt. Carmel fault there is a second fault. This I have named the Heltonville Fault because the rift is exposed a short distance east of Heltonville in the bed of the north fork of Leatherwood Creek, at a point just east of the wagon-crossing under the Southern Indiana railroad. This fault lies approximately parallel with the Mt. Carmel fault. The limestone has been faulted down against the Knobstone. Slickenslides have been produced in the limestone and it has been much fractured. In places the limestone has been thrust backward and fragments of the Knobstone shales have been thrust into the limestone. In places these formations are dovetailed, fingers of limestone projecting into the Knobstone and vice versa as first one and then the other yielded to the pressure. The fragments of limestone containing inclusions of shale have been united by calcite veins.

Though the fault character of the disturbance at this point is incontestable it is not equally clear at other points. The disturbance extends both north and south of this point, but it probably passes into a fold in both directions. In Monroe County near Unionville there is an anticline which occupies about the same position in relation to the Mt. Carmel fault as the Heltonville fault does. Similar folds have been noted at intervening points and also to the south of Heltonville.

Effect Upon Topography. The general effect upon topographic conditions within the area of disturbance has been to produce a narrow limestone belt extending parallel with the main Knobstone outcrop and bordered on each side by outcrops of Knobstone. In the southern portion of the faulted area the western belt of Knobstone is absent, but its nearness to the surface along the line of the eastward reversal of dip is revealed in the channels of many streams which have carved their valleys at right angles to the line of reversal. Probably the most marked effect is on the drainage. Both surface and underground drainage lines are affected. In the faulted area the ground waters which have found their way through the limestone have a tendency to follow the eastward sloping surface of the Knobstone to the rift, and near this point often come to the surface in a stream valley which lies near the rift and generally parallel with it. This tendency of the underground streams is modified by local dips of the strata north or south.

The surface streams, especially those along the line of the fault plane, have been influenced by the displacement. They have worked off the harder limestones on to the Knobstone in many places. These follow the line of rift until a local north or south dip has caused them to change the direction of their course. Small tributaries of the larger cross-cutting streams have developed, as has been noted again and again, along the line of rift.

The Mount Carmel Fault is one of the most important structural features in Indiana. It extends from near the Ohio River northward to the north part of Putnam County and possibly extends in a westerly and northwesterly direction from that point to the western boundary of the State. The extent of its throw in places exceeds two hundred feet. In a general way it parallels the western limits of the Knobstone outcrop. The downthrown side is west of the fault line. The faulting and the subsequent erosion has resulted in a limestone belt bordered on the east and west by Knobstone, the limestone being on the down throw side and thus protected from the erosion which caused the removal of the limestone of the same age lying at a higher elevation both east and west. Since the normal dip of the rocks is southwest the downward drop of the block toward the east resulted in a fold lying parallel with the fault plane to the west. As the fault changes its directions in some places north and south components of dip are produced in the fold at such places and conditions favorable for the accumulation of oil and gas produced. One such place occurs in Lawrence County and considerable gas and a showing of oil obtained west of Leesville. Another favorable structure exists near Unionville in Monroe County.

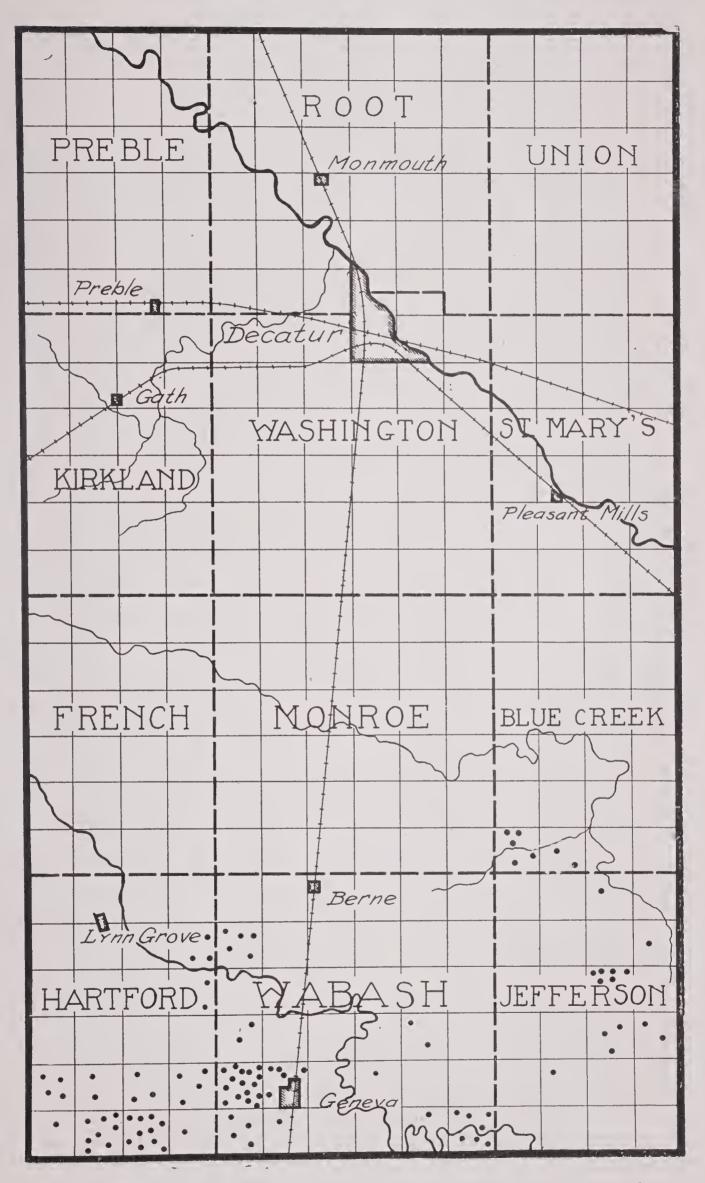


Fig. 29. Map of Adams county showing location of wells. The southern tier of townships is in gas and oil territory.

63

CHAPTER VII.

ADAMS COUNTY

Adams County lies within the glaciated area of Indiana, hence its bed rock (durolith) is covered with a thick over-burden of glacial drift (regolith). The latter varies in thickness from a few feet to eighty or more. It conceals the eroded surface of the Silurian (Niagara limestone). Beneath the Silurian strata lie the shales of the Ordovician which rest upon the Trenton limestone, within porous portions of which oil has been found in this county. The structural conditions cannot be determined in this county by surficial observations. Enough wells have been drilled in the county to furnish sufficient data for outlining the structural conditions, but unfortunately these records have not been preserved, and so the minor irregularities on the surface of the geanticline cannot be located.

Railroad Elevations.

	GRAND RAP	IDS AND	INDIA	NA I	RAT	LROAD.	
Location		eet above		ation			reet above
	ł	Sea Level					Sea Level
					-	L	
-	st	849.7	68th	6.6	6.6		. 808.7
56th " "		833.2	69th	66	66	••••••	. 803.5
57th " "		845.2	70th	6.6	66		. 801.8
58th " "		847.4	Decat	ur			. 799.2
59th " "		838.7	71st	6.6	6.		. 797.7
60th " "		841.3	72nd	<i>" "</i>	66		786.4
61st " "		840.3	73rd	66	66		794.0
62nd " "		826.2	Monm	outh			789.7
63rd " "		839.2	74th	6 6	6.6		789.0
64th " "		825.3	75th	6 6	66		. 810.0
Monroe		823.8	76th	6.6	6.6		817.5
65th " "		823.2	77th	66	6.6		816.1
66th " "		817.2	Willia	ms			826.2
Т	OLEDO, ST. LO	OUIS AND	WEST	ERN	J R.	AILROAD.	
State line		800.7	112th	mile	pos	st	815.6
101st mile po	ost	795.9	$113 \mathrm{th}$	66	66	•••••	822.0
102nd " "		802.7	Peters	son			817.0
Pleasant Mill	.s	799.4	114th	6.6	68		823.8
104th mile po	st	797.0	115th	6.6	66		829.0
105th " "		800.1	116th	6.6	6.6		835.6
106th " "	••••••	804.0	117th	6.6	6.6		846.3
107th " "		802.2	118th	6.6	6.6		851.0
108th " "		795.6	119th	6.6	6.6	•	859.5
Decatur		800.3	120th	66	6.6		855.2
109th " "	••••••	804.9	121st	6.6	66		830.3
110th " "		809.0	122nd	4.4	6.6		824.0
111th " "		815.0	123rd	6.6	6 6		814.5

CHICAGO AND ERIE LINE.

Bridge No.	49	799.0	Bridge	No.	53	800.0
Decatur	• • • • • • • • • • • • • • • • • • • •	799.0	Bridge	No.	56	809.0
Magley	•••••	830.0				

Oil has been produced in the southern tier of townships and in Blue Creek Township. The production was heaviest in Hartford Township.

Washington Township. The following is the record of a well drilled at Decatur as given by Phinney¹:

Decatur Well.

Drift	47	feet.
Limestone	436	6.6
Bluish Shale	667	6.6
Black shale		6.6
Trenton limestone		6.6
Total depth	1300	feet.
Altitude of well	800	6.6

Blue Creek Township. Wells in sections 8, 9, 10, 15, 16, 17, 21, 22, 27, 28, 29, 30, 31, 32, 33, and 34. Light oil production was obtained in 15, 16, 22, 27, 29, 30, 31, 32, and 34. In 1916 five wells were abandoned in section 31 and two in section 32. Dry holes were drilled in sections 8, 9, 10, 15, 17, 21, 28, 29, 30, and 33. Gas was obtained in section 16.

Hartford Township. The most productive territory was found in this township. Oil production was obtained in sections 12 to 36 inclusive. Dry holes were drilled in sections 4, 7, 8, 12, 14, 15, 16, 17, 18, 22, and 23. Some of the wells had an initial production of 180 barrels per day. Thirteen wells were drilled in the northeast quarter of section 25, the average depth of the Trenton being 1004 feet and the average initial production being one hundred barrels per day². The record of a well drilled on the southwest quarter of section 25 is given by Blatchley² as follows:

Record of Well in Section 25.

Production in October, 1896, two barrels.

A large number of wells have been abandoned in this township, a partial list is given below:

The	wells abandoned	in this	township are	located as	follows:
Sec.	wells	Sec.	wells	Sec.	wells
12	3	25	4	34	8
13	2	26	3	35	10
17	1	28	4	36	1
20	1	33	1		

Jefferson Township. Production has been obtained in this township from sections 4, 5, 6, 10, 16, 18, 19, 20, 21, 22, 27, 28, 29, 30, 31, 32 and 34. Dry holes were drilled in sections 3, 7, 8, 10, 15, 16, 17, 18, 22, and 33. Gas was obtained in 16 and 34. The initial production of oil ranged as high as one hundred barrels per day. Abandoned wells are located in section 4, one well; section 10, one well; section 16, seven wells; section 21, three wells; section 22, two wells; section 29, one well.

Wabash Township. Light production was obtained in sections 18, 19, 20, 27, 28, 29, 30, 31, 32 and 36. Dry holes were drilled in sections 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 32, 33, 35, and 36. A partial list of the wells abandoned is given below:

Sec.	wells	Sec.	wells	Sec.	wells	Sec.	wells
7	5	27	1	31	4	36	7
19	2	29	5	32	1		
23	2	30	- 23	35	1		

In Adams County 880 wells have been abandoned only a partial list of which has been recorded.

ALLEN COUNTY

The durolith of the northern portion of Allen County is composed of strata of Devonian age, but for the remainder of the county it is composed of Silurian strata. The regolith, which is composed mainly of glacial drift, varies in thickness from one hundred to three hundred feet. Irregularities in the surface of the durolith, irregularities of decomposition and post glacial erosion, account for the difference in thickness of the drift. This county lies largely on the side of the Cincinnati arch dipping toward the north basin. The dip of the surface of the Trenton northward from Ft. Wayne is at the rate of twelve and one-half feet to the mile. At Ft. Wayne the surface of the Trenton lies about 650 feet below sea level, at Stoners near the north line of the county, it is 860 feet and near New Haven it is about 680 feet below sea level. Not enough well records are available to determine accurately the structural conditions and subsurface work is the only possible source of information on account of the concealment of the durolith. The following are some of the railroad elevations in the county:

Railroad Elevations.

Fort Wayne757.3	Fort Wayne779.0	New Haven758.6
State Line757.8	Dixon	Gorham
Fort Wayne765.1	Carroll852.6	Washington811.9
East Yard802.3	Dawkins769.1	Maples
Huntertown841.6	Hoagland826.7	Stoner's
Academie829.9	Junction764.4	Wab. Crossing757.8
Edgerton	Monroeville789.6	Adams
Hadley840.1	Huntertown871.1	Wallen854.6
		Adams

Wayne Township. Four wells were drilled at Fort Wayne. They range in depth from 1000 to 3000 feet. The records¹ of Nos. 1 and 2 follow:

Section of Well No. 1, Nov. 18, 18	86.	•
Drift	77	feet.
Water-lime	30	6.6
Niagara	570	6.6
Hudson River and Utica	751	66
Trenton limestone	15	66

Gas with an initial pressure of 160 pounds per square inch was found upon entering the Trenton rock at a depth of 1428 feet; at a depth of 1431 feet a considerable quantity of oil was found.

Section of Well No. 2.

Drift	110	feet.
Lower Helderburg	34	6.6
Niagara limestone and shale	571	6.6
Hudson River limestone and shale	41 0	6.6
Utica shale	312	6.6
Trenton limestone	21	6.6
-	<u>.</u>	

Tota	l deptl	1	1	.458	feet.
Trenton	below	sea	level	650	6.6

Yielded no gas. Salt water, however, was found in considerable quantities.

Below is given the record of a well drilled in Perry Township¹:

Section of Well Drilled on Sec. 4, Twp.	32, R. 12.
Surface above sea level	844 feet.
Drift	281 "
Limestone	749 ''
White shale	
Black shale	240 "
Trenton limestone	52 "

Total depth1752 feet.

Did not strike gas, oil or salt water. The dip of the surface of the Trenton from Fort Wayne to this point is about twelve and one-half feet to the mile.

Adams Township³. N. E. ¹/₄ of section 14 in 1899 made a fair showing of oil, but a second bore resulted in a dry hole. A third bore resulted in a well, described below:

Drive pipe	96	feet.
Casing	700	6.6
	440	6.6
*	496	6.6

Several bores were drilled on the farms adjoining the above, but resulted in dry holes.

Jackson Township³. Section 3, bore completed on the Amspaugh farm, started with an output of twelve barrels per day. Section 33, a test well was drilled in October, 1903, which resulted in about eighteen barrels.

Monroe Township. A large showing of oil in section 3, also a big supply of gas; caught fire before the drilling was completed. A well in section 3, on the C. K. Dresser property was abandoned in 1919.

BARTHOLOMEW COUNTY

The glacial drift covering Bartholomew County varies in thickness from five to more than one hundred feet. Underlying the drift in the eastern part of the county are strata of Silurian and lower Devonian age, while in the western part the strata are of the upper Devonian and lower Mississippian age. The Silurian rocks are limestones largely, the Devonian, shales and limestones, and the Mississippian, shales and sandstones.

The structural conditions are not easily determined on account of the glacial drift which conceals the outcrop of the bed rock strata. If the proper geological structures exist, it is possible that oil and gas may be found in the Devonian and the Trenton in the western part of the county and from the Trenton in the eastern part of the county. The Trenton lies below the surface at depths ranging from 800 to 1200 feet.

The record of a well drilled at Columbus is given below:

Drift	26	feet.
Devonian shale	87	66
Corniferous limestone	32	6.6
Niagara limestone	235	6.6
Hudson River limestone and shale	440	6.6
Utica shale	135	6.6
Trenton limestone	155	6.6
Total depth	1110	feet.
Yielded no gas.		

Section of Well No. 1².

Elevation on Railroads.

Columbus, 627.3; Clifford, 668.3; St. Louis Crossing, 679.5; Wiggs, 615.9; Elizabethtown, 615.8; Waynesville, 601.7.

BENTON COUNTY

Rock strata belonging to the Devonian, Mississippian and the Pennsylvanian periods underlie the Pleistocene deposits in Benton County. The latter attain a thickness of from 75 to 350 feet. The bed rock strata dip toward the southwest. The Trenton limestone may be reached at a depth of from 800 to 1100 feet, depending upon the surface elevation and location in the county. The structural conditions in the county cannot be determined by surficial methods, and the use of a large number of well records will be necessary in order to gain even a general idea of structural conditions. Without such data, prospecting for oil in this county will be, of necessity, with the drill and attended with exceptional risks.

The following is the reported record of a well at Fowler:

Section of Well No. 1.		
Drift	280	feet.
Devonian black shale	92	6.6
Corniferous limestone	40	6.6
Niagara limestone	328	66
Hudson River and Utica	255	66
-		
Total depth	995	feet.

Railroad Elevations.

Wadena, 800.0; Lochiel, 795; Barce, 808; Swanington, 796; Oxford, 736; State line, 706; Freeland, 720; Atkinson, 712; Gravel Hill, 780; Sheff, 727; Sheldon, 680; Iroquois, 649; Otterbein, 705.3; Vilas, 707; Templeton, 669; Fargo, 771; Chase, 738.3; Boswell, 756.3; Talbot, 763.8; Handy, 743; Ambia, 730.6. The elevations above given used with well records and records of outcrops and an aneroid barometer in the hands of a trained geologist may be the means of determining the structural conditions in this county.

BLACKFORD COUNTY

The mantle rock in Blackford County is glacial drift varying in thickness from 15 to 150 feet. The drift rests on the Niagara limestone which has been eroded by preglacial streams and varies in thickness with the configuration of that surface. The Silurian (Niagaran) limestone has a thickness of 200 to 350 feet at least. The underlying Ordovician shales (Hudson River and Utican) reach a thickness of 600 feet, while the Trenton limestone has a thickness of about 500 feet.

Licking Township. Producing oil and gas wells have been drilled in this township. The following well records were reported by Gorby¹:

Hartford City.

	Well	No. 1		Wel	l No. 2
Drift	130	feet.		82	feet.
Niagara limestone	. 350	6.6		280	6.6
Hudson River and Utica	. 473	6.6		573	66
Trenton limestone	. 30	6.6		32	6.6
Total depth	983	feet.		967	feet.
Trenton below sea level	. 70	6.6		40	6.4
The first gave a strong flow of gas and	the s	secon	d a very s	stron	g flow.

¹Gorby, S. S., Ind. Geol. Sur. 1888, p. 247.

Another well located near the Fort Wayne and Muncie Railroad depot was reported by Phinney² as follows:

Drift	125	feet.
Limestone	200	6.6
Shale	622	6.6
Trenton limestone	35	6.6

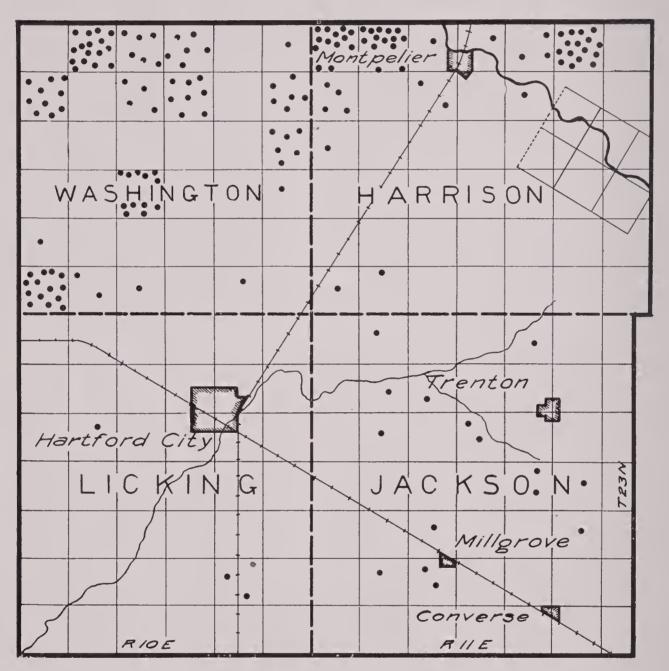


Fig. 30. Map of Blackford County, showing abandoned wells. Washington and Harrison Townships were oil territory and Licking and Jackson gas territory. A little oil was produced in Licking in the northern part.

Since the altitude of the mouth of the well is given at 895, the top of the Trenton would lie 52 feet below sea level. This well at first had a flow of gas of 850,000 cubic feet per day; by drilling deeper it was increased to 2,787,000 cubic feet per day. A second well was drilled half

²Phinney, A. J., 11th Ann. Rept. U. S. G. S., p. 679.

a mile southwest of the first and the Trenton reached at 935 feet. This well flowed 7,982,000 cubic feet per day.

A well drilled north of Hartford City reached gas at 980 feet and had a daily capacity of 6,383,000 cubic feet. Gas wells were located in this township in sections 5, 7, 8, 17, 19, 20, 21, and 27. Oil wells were located in sections 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 14, 16, 18, 22, and 27. The following wells have been plugged: Section 1, one well; section 2, one well; section 6, nine wells; section 8, one well; section 10, four wells; section 11, three wells; section 14, one well; section 15, one well; section 17, one well; section 29, one well; section 35, two wells.

Harrison Township. A well drilled at Montpelier reported by Dr. C. Q. Sholl¹ gives the following section:

1.	Drift	$16\frac{1}{2}$	feet.
2.	Gray limestone	23	6.6
3.	Gravel, 14 ft. and red clay, 16 ft	30	6.6
4.	Gray limestone	180	6.6
5.	Shale (Niagara)	38	6.6
6.	Bluish limestone	65	66
7.	Bluish shale	35	66
8.	Brownish limestone	35	66
9.	Bluish shale	35	66
10.	Gray limestone	8	66
11.	Bluish green shale	160	68
1 2.	Brown shale	50	6.6
13.	Bluish shale	18	6.6
14.	Black shale	280	6.6
15.	Trenton limestone	$11\frac{1}{2}$	66
	Total depth	975	feet.

The elevation of the station at Montpelier is 867.0 feet above sea level.
The following wells have been plugged in this township: Section 1, 16 wells; section 3, 1 well; section 4, 1 well; section 5, 14 wells; section 6, 13 wells; section 7, 4 wells; section 9, 2 wells; section 16, 1 well; section 18, 1 well; section 30, 2 wells; section 31, 1 well; section 32, 1 well.

Washington Township. All the sections in the township have produced oil, and gas has been obtained from sections 23, 24, 31, 32, 35, and 36, R. 11 E., oil in 6, 7, 18, 19, 30, and gas in 19 and 30, R. 12 E.

Wells have been plugged as follows: Section 1, 1 well; section 3, 6 wells; section 4, 6 wells; section 5, 23 wells; section 7, 10 wells; section 9, 4 wells; section 10, 8 wells; section 12, 6 wells; section 13, 6 wells; section 21, 12 wells; section 24, 1 well; section 30, 1 well; section 31, 14 wells; section 32, 2 wells; section 33, 1 well; section 35, 1 well.

Jackson Township. Sections 6 and 7 produced oil. Gas was found in sections 5, 17, and 18. Wells have been abandoned in the following sections: Section 2, 1 well; section 5, 1 well; section 8, 1 well; section 9, 1 well; section 15, 2 wells; section 17, 1 well; section 23, 2 wells;

¹Phinney, loc. cit.

section 24, 1 well; section 25, 1 well; section 28, 1 well; section 32, 1 well; section 33, 1 well.

Anna C. Simonton Farm, Sec. 15, Harrison Twp.:		
Sand and gravel	134	feet.
Limestone	138	6.6
Shale	725	6 6
Trenton rock	42	6.6
-		
Total depth1	.039	feet.

Lewis Blount Farm, section 14, Harrison Townshi	ip, Blackford County:
Sand and gravel 1	18 feet.
Limestone1	62 "
Shale	00 "
Trenton rock	47½ "
Total depth of well102	$27\frac{1}{2}$ feet.

More than 1398 wells have been abandoned in this county.

BOONE COUNTY

Strata of Devonian age form the durolith which underlies the eastern and central portions of the surface of Boone County, while strata of Mississippian age underlie the western portion. These strata are concealed by the glacial drift which varies from fifty to one hundred and fifty feet in thickness. The strata of the durolith which are recognizable from the well records are:

Mississippian	Shales and sands—Knobstone
Devenion	Shale—New Albany Limestones
Devonian	Limestones
Cilianian	(Shale
Silurian) Limestones—Niagara (?)
	Limestones—Niagara (?) (Shales—Utica and Hudson River
Ordovician) Limestone—Trenton

The structural conditions in Boone County cannot be determined by the use of surficial observations. Deep well records are not sufficiently abundant to furnish the data for subsurface work.

Railroad Elevations.

Zionsville, 842; Whitestown, 928; Hazelbrigg, 904; Terhune, 940.8; Max Station, 922; Advance, 928.

A well drilled at Zionsville is reported as follows ¹ :	
Drift	feet.
Black shale (trace)	6.6
Devonian limestone, with sandstone	
at base	66
Lower Helderburg and water lime 50	66
Niagara limestone	66
Clinton limestone	66
Hudson River and Utica	66
Trenton limestone	6.6
Total depth1038	feet.
Altitude of well	66
A well drilled at Thorntown has the following record: ²	
Drift	feet.
Sub-carboniferous limestone and shale 338	66
Hamilton shale	6.6
Corniferous limestone	66
Niagara limestone 405	6 6
Hudson River and Utica	66
Trenton limestone	66
Total depth	
Trenton below sea level	66
Yielded no gas.	

A well was drilled at Lebanon, Indiana to a total depth of 1800 feet. Depth to Trenton, 1227 feet. Trenton below sea level 302 feet. No gas. The record of this well as given by Phinney is as follows:

0 1 1		
Drift	210	feet.
Blue and black shales	204	66
Limestones	401	66
Shale	412	66
Trenton limestone	373	6.6
Total depth	1600	feet.
Altitude of well		

BROWN COUNTY

The northern part of Brown County lies within the glaciated area but the greater part of the county furnishes good rock exposures as the topography is of a rugged type. Even though the strata are not concealed by glacial drift the determination of the structure is difficult on account of the absence of persistent layers of rock. A lense or perhaps several lenses of limestone occur about one hundred feet below the upper surface of the Knobstone group. These lenses may be used locally as datum for mapping the structure. Sandstone layers occur at many horizons in the Knobstone. but they are unreliable because of their lenticular character and cross bedded nature.

Trevlac. A well was drilled on the Bullhimer farm two miles north of Trevlac. The drill passed into the Trenton limestone at 1460 feet. The upper part of the limestone was fossiliferous, porous and contained a showing of gas. The drill passed through the Trenton at 2056 feet, showing 596 feet of limestone.

Johnson Township. A well was drilled in section 7 in Johnson Township and a showing of gas was obtained.

The elevation of the surface on the railroad at Trevlac is 654; Helmsburg, 676; Fruitdale, about 797.

CARROLL COUNTY

A small area around Delphi, another one in the northern part of the county and another in the eastern portion is occupied by the Niagara limestone as a bed rock formation, the remainder of the county is occupied by the Devonian strata. The bed rock is largely concealed by glacial drift but outcrops occur to a limited extent along the Wabash River and some of its tributaries.

The following are the records of two wells drilled at Delphi:²

Niagara limestone	587	feet.
Hudson River limestone and shale	220	6 6
Utica shale	93	66
Trenton limestone	12	66
Total depth	912	feet.
Trenton below sea level	334	6.6
Yielded no gas.		

Section of Well No. 2

Niagara limestone	565	feet.
Hudson River and Utica shale	351	6.6
Trenton limestone	434	6.6
Potsdam sandstone	12	66
Total depth	1362	feet.
Trenton below sea level	350	6.6
Yielded no gas.		

Recently attempts were made to drill in the Niagara mound at Delphi under the assumption that it represented an anticline. There is reason to believe that this dome may be only the remnant of an ancient reef.

Railroad Elevations

Cutter, 722.7; Bringhurst, 718.7; Flora, 699.7; Camden, 659.7; Woodville, 692.7; Pattons, 682.4; Lennox, 663.7; Sleeths, 657.8; Wabash River, 647; N. Delphi, 557; Delphi, 555; Deer Creek, 672; Harley's, 693.5; Ockley, 695; Orvasco, 701.

CASS COUNTY

Strata of Silurian and Devonian age underlie the surficial deposit of glacial drift in this county. The determination of structural conditions from surficial observations is prevented by the glacial mantle.

A well drilled at Galveston furnishes the following sections:

Section of Well No. 1^2

Drift	40	feet.
Corniferous and Niagara limestone	41 0	6.6
Hudson River and Utica	480	6.6
Trenton limestone	20	6 f
-	·	
Total depth	950	feet.

Yielded no gas. At Logansport a well is re

nsport a well is reported to have:		
Depth to Trenton	995	feet.
Trenton below sea level	344	6.6

Yielded no gas.

A second record was constructed by Phinney from drillings kept by Dr. J. H. Shultz:

Upper Helderburg limestone	40	feet.
Lower Helderburg limestone	30	6.6
Water lime	108	6.6
Bluish limestone, Niagara	55	6.6
Argillaceous limestone	110	6.6
White and gray limestone	135	6.6
Bluish green shale (Niagara)	2	6.6
Clinton limestone steel gray, red grain	53	6.6
Hudson River limestone and shales	90	6.6
Utica shale	281	6.6
Trenton limestone	200	6.6
-		

Total depth1	104	feet.
Altitude of well	611	6.6

Section of well at Royal Center:

Drift	105	feet.
Niagara limestone	485	66
Hudson River	220	6.6
Brown shale, Utica shale	110	66
Trenton limestone	42	6.6

Three wells were drilled in this county in 1909, two were reported dry and the third as showing small production.

CLARK COUNTY

The greater part of Clark County lies within the unglaciated area but the northeastern part of the county is covered with glacial drift. The strata represented by the outcrops of the county are given in the following table:

	(Recent: Clays and	olluvium
Quaternary		
Mississippian	Mitchell limestone Salem limestone Harrodsburg limes Knobstone, sandste Rockford limeston	one and shales
Devonian	New Albany shales Sellersburg limest Silver Creek limes Jeffersonville lime	ones tone
Silurian	Louisville limestor Waldron shale Laurel limestone Osgood limestone Brassfield shale	
Ordovician	Richmond	Elkhorn Whitewater Saluda Liberty Waynesville Arnheim
	Maysville	Mt. Auburn Coryville Bellevue Fairmount Mt. Hope

The determination of structural conditions favorable for gas or oil, if such exist, seems possible in this county because of the absence of glacial drift and the rugged condition of the topography which produces many outcrops of the strata. Key formations such as the Louisville limestone, the Sellersburg and the Harrodsburg may be used to advantage in locating structures. In the eastern part of the county the Trenton limestone is a possible source of gas and oil if favorable conditions exist. In the western portion the Trenton, Silurian and the Devonian limestones may furnish oil or gas reservoirs The following is the record of a well drilled at Jeffersonville:

Section of Well No. 1

Alluvium	45	feet.
Devonian limestone	40	6.6
Niagara limestone	105	6.6
Clinton limestone		6.6
Hudson River limestone and shale		6.6
Douth to Trouton	050	C I

	000	reet.
Trenton below sea level	401	6.6
Violdod and all form of non		

Yielded small flow of gas.

Some gas was obtained from a well north of Jeffersonville.

CLAY COUNTY

The portion of the Geological column represented by the outcrops in this county is given below:

	Recent: Alluvial sands and clays
Quaternary	Pleistocene: Glacial sands, gravels and till
(Allegheny: Limestones, sandstones, shales and coals
	Pottsville: Conglomerate, sands, shales and coals
	Chester: Shales, sandstones and limestones

On account of the thickness of the mantle of Pleistocene and Recent, outcrops of the bed rock are not numerous but some of the streams have cut through the mantle and revealed the bed rock. Coal strip pits have also uncovered the strata in limited areas. The determination of structural conditions will require the use of sub-surface data, such as the record of wells, coal shafts, etc. Careful discrimination between Pottsville coals and Allegheny coal will be necessary as the use of the latter for key horizons is not always safe, as there is some evidence of a post-Pottsville disturbance.

The following is the record of a well drilled east of Jasonville. These records were obtained from Jesse Liston of Lewis:

Sheets Drill East of Jasonville

Do -t

	Feet	
Surface clay	0 to	15
Sandstone	15"	30
Shale	30 "	36
Coal	36 ''	38
Blue fire clay	38 ''	50
Water sandstone	50	75
Shale	75 "	100
Water sandstone	100 "	130
Blue shale, soft	130 "	150
Water sandstone	150 $^{\prime\prime}$	170
Blue shale, soft	170 "	282
Coal	282"	286

]	Fee	et
White shale, soft	286	66	305
Sandstone	305	66	328
Shale	328	66	338
Water sandstone	338	6.6	352
Shale	352	66	408
Sandstone	408	6.6	452
Blue shale	452	66	520
Water sandstone	520	6.6	580
Hole full of water			550
Shale	580	6.6	586
Limestone	586	6.6	643
Shale	643	6.6	653
Blue shale, soft	653	6.6	668
Limestone	668	66	850
8¼ in. casing at			740
White limsetone, soft	850	6.6	855
Brown limestone	855	66	875
White limestone, soft	875	66	885
Brown limestone	885	66	925
White limestone, soft	925	6.6	932
Brown limestone	932	6 6	987
Water sandstone, blue	987	66	1030
Blue lick water			987
Brown limestone	1030	6.6	1052
Water sandstone	1052	6.6	1077
Limestone	1077	6.6	1365
Shale	1365	6.6	1385
Shale	1385	66	1550
White shale	1550	6 6	1685
Black shale	1683	66	1791
Sandstone	1791	6 6	1836
Light showing of oil			1836
Sandstone and limestone	1836	66	1858
Sandstone, water sand	1836	6.6	1858
About the same to bottom of hole			1892

Pigg Drill East of Lewis, Indiana

	Feet		
Coal	75	to	80
Broken stuff, soft lime shale and a			
little broken sand			410
Water sand	410	6.6	615
Shale	615	6.6	695
Water sand	695	6.6	725
Black shale	725	6.6	730
Top of big lime			730
Hard lime	730	6.6	740
White shale	740	6.6	744
Hard lime	744	6.6	800

Soft lime	Feet.		
Shale95Hard lime95Blue sand107Water110	0	s 6	805
Hard lime	5	6.6	950
Blue sand	0	6.6	955
Blue sand	5	66	1075
Lime 110	5	66	1100
			1090
	0	6.6	1175
Brown sand 117	'5	66	1185
Lime	35	66	1290
Sandy lime 129	0	66	1300
Lime 130)()	66	1420
Blue lime 142	20	6.6	1500
Gray lime)()	6.6	1525
Light shale	25	6.6	1570
Dark shale	70	66	1670
Light shale	70	66	1680
Riley? sand 168	30	6 6	1684
Light shale	34	6.6	1785
Dark shale 178	35	66	1860

It was drilled some deeper than this, but the record further down was unobtainable.

Glacial drift	35	feet.
Sandstone and shale	35	6.6
Sandstone	5	66
Sandy shale	15	66
Slate and stone	, 6	66
Blue shale		
Sandstone	3	6 6
Sandy shale and slate	16	6 6
Black sandstone	13	6 6
Gray slate	75	6.6
Sandstone	20	6.6
Stone and slate	10	6.6
Sandstone	30	6.6
Sandstone and slate	28	6.6
Gray slate	10	6.6
Sand and slate	17	66
Sandstone and slate		
Limestone	83	6.6
Slate and sandstone		
Limestone and slate	5	6.6
Limestone	30	
Black slate	20	6.6
Blue slate	267	6.6
Slate	145	66
_		-

.

Merchon Well

979 "

Mea	sur	ed Line	930
Slate	70	feet	
Blue slate	48	66	
Blue shale	46	66	
Casing set1	094	66	
Blue shale	95	··1	189
Black shale	19	"1	208
Oil on water, salt water			
Limestone	34	66	
-			
Total depth1	242	6.6	

The above is the record of a well drilled about 1½ miles Southwest of Carbon in the center of Section 12, T. 13 N, R. 7 W. Record secured by Dr. C. A. Malott.

CLINTON COUNTY

With the exception of a small area in the southwestern part of the county which is occupied by strata of the Mississippian age, the entire subsurface of this county is occupied by Devonian strata. The glacial drift overlying the bed rock varies in thickness from 50 to 300 feet. This covering prevents the determination of the structural conditions of the durolith.

The following are the records of two wells drilled at Frankfort.²

Section of Well No. 1

Drift	88	feet.
Niagara limestone and shale	272	6.6
Hudson River and Utica	480	6.6
Trenton limestone	22	6 6
-		
Total	862	6.6

Yielded good flow of gas.

Section of Well No. 2

Drift	278	feet.
Niagara limestone and shale	380	66
Limestone	-10	6 6
Hudson River and Utica	400	66
Trenton limestone	260	6.6
-		
Total depth	1328	66
Trenton below sea level	327	66
Yielded no gas.		

Railroad Elevations

Forest, 878.8; Frankfort, 846.7; Colfax, 840.7; Moran, 796.7; Michigantown, 866.2; Jefferson, 859.3; Manson, 857.7; Sedalia, 776.7; Avery, 872; Fickle, 827.3; Kilmore, 829.7; Circleville, 929.3; Hillsburg, 919.7; Boylston, 903.0; Deniston, 844.1; Mulberry, 772.6.

CRAWFORD COUNTY

Crawford County lies within the driftless area of Indiana. The strata which outcrop in the county belong to the following divisions and subdivisions:

. ∫ Recent—alluvium.
Quaternary
∫ Allegheny—shales, sandstones, limestones, coal.
Pennsylvanian
\int Chester—shale, sandstone and limestone.
Mississippian) Mitchell—limestone.

The structural conditions for a portion of the county can probably be determined by using limestones as the key formations. A portion of Orange County has already been mapped structurally and since the geological conditions are similar, for a part of Crawford County, it may be that the work can be extended to the latter. Possible oil bearing sand may be expected in the Trenton, Devonian and Chester rocks.

Taswell Well.

In 1903 the Highland Investment Company of Chicago, drilled a well in search of gas or oil, near the eastern limits of Taswell, eight miles east of Birdseye, on the Southern Railway. Drilling continued to a depth of 1,690 feet, where they encountered the actual Trenton, and drilled it 100 feet, a total depth of 1,790 feet, and got neither gas nor oil. In the western part of Crawford County there are surface indications of oil that have an extent of five miles in width by ten miles in length. Oil in paying quantities was never found. An oil well and a gas well were drilled in Section 16, Patoka Township about one mile northwest of Eckerty.

DAVIESS COUNTY

The mantle of glacial drift varies in thickness in this county from a few feet to more than one hundred feet in the valley of White River. The strata which underlie the drift belong to the Pennsylvanian period. Outcrops of the Pottsville division occur in the east part of the county and of Allegheny in the western portion. Structural conditions of the bed rock cannot be determined by surficial observation so that subsurface work must be resorted to in order to achieve results. Oil has been found in this county south of Cannelburg in Barr Township in the southeast part of Section 8. One dry hole was drilled in the north; one dry hole in Section 7; one gas well and one dry hole in Section 3; one oil well and one gas well in the northwest quarter of Section 17, and one oil well in Section 30. The productive wells range in depth from 380 feet to 725 feet. The oil sand probably occurs in the Mansfield and the Chester.

Washington Township. In Section 22 of this Township, on the land of Stanton Barber, a well was drilled and plugged in 1912.

Madison Township. A well was drilled on the land of the Graham Class Company in Section 34. The well was plugged in 1912.

Reeves Township. A well was drilled on the property of D. A. Brown in Section 10 and plugged in 1910.

Barr Township. The following wells have been plugged in this Township: Section 2, Ralph Thompson, 1911. Section 35, Ed Grundy, 1911, and Charles M. Allan in 1913.

Harrison Township. A well drilled in Section 32 on the James Pettigrew property was plugged in 1911 and one in the same section on the property of F. M. Remsel in 1912.

The majority of the wells drilled in this County were drilled from 1910 to 1912.

Fig. 31. Structural map of an area near Washinton, Daviess County. Contours drawn on Coal VII. Data secured by C. A. Malott and P. B. Stockdale of the field party of 1919.

DEARBORN COUNTY

The bedrock formations of this county belong to the Ordovician period of geologic time. They are for the most part covered with glacial drift.

It may be possible to determine the structural conditions of this County if enough outcrops and well records can be secured. It lies on the west side of the Cincinnati Arch and the surface of the Trenton may be low enough in the southwest part of the County to be favorable territory. The surface of the Trenton is 158 feet above sea level at Lawrenceburg, where gas was obtained and dips westward where at North Vernon it is 260 feet below sea level.

Lawrenceburg Township. The log of a well drilled at Lawrenceburg in the river valley is as follows:

Alluvium	139	feet
Hudson River limestone and shale	185	6.6
Utica shale	25	6.6
Trenton limestone	451	6.6
Potsdam sandstone	40	6 6
Total depth	840	
Trenton above sea level	158	6.6

The second well was drilled in the fairgrounds and reached the Trenton at 325 feet and showed gas.

Center Township. A well drilled at Aurora has the following log:

Drift	92	feet.
Bluish green shale	148	6.6
Dark shale, Utica	25	6.6
Limestone, Utica, gas	2	6.6
Shales and limestone, Utica	18	6.6
Shale, Utica	25	6.6
Trenton limestone	521	6.6
St. Peterabout	170	6.6
Total depth	1000	
Altitude of well		

DECATUR COUNTY

The bed rock formations of this county are of Silurian and Devonian age and are largely concealed by glacial drift which varies in thickness from 10 to 100 feet.

Washington Township. The record of the Greensburg city well as given by Phinney is as follows:

	City Well	No. 1	No. 2	No. 3
Drift	10	7	•••••	
Corniferous limestone	4	90	• • • • • •	
Niagara limestone		90		
Niagara shale	35			
Hudson River & Utica shale		823	886	883
Trenton		63		
Total		$\overline{983}$	886	883
Altitude of well		920	925	925

The following wells have been abandoned:

Owner S	ection	Date	Wells
Township School	2	1911	1
Aaron Logan	3	1919	1
Wm. Jackson	4	1919	1
City of Greensburg	5	1911	1
S. Logan	10	1919	1

Adams Township. A well drilled on the Chas. White property was abandoned in 1911.

The surface of the Trenton around Greensburg varies from sea level to 68 feet above sea level. The gas obtained in the wells at Greensburg had a maximum pressure of 350 pounds. In the northwestern portions of the County in Adams Township, at Adams and St. Omer, light flows of gas were obtained.

DeKALB COUNTY

The subsurface of this county is occupied by strata of the Devonian age which in the region of Auburn seems to have been slightly uplifted. The surface of the eroded Devonian rocks are covered with glacial drift which attains a thickness of more than 300 feet. Deep wells have been drilled at Auburn, Butler, Garrett and Waterloo. The structural conditions of the durolith are determinable only by the use of subsurface data.

The record of one of Auburn wells follows:

Section of Well No. 1

Drift	280 f	eet.
Black shale	120	6.6
Corniferous, water-lime and Niagara	963	6.6
Hudson River, limestone and shale	306	6.6
Utica shale	268	6.6
Trenton limestone	27	6.6

Total depth1964 "

The following is the log of the Butler well:

Section of Well No. 1

Drift	378	feet.
Hamilton shale	108	feet.
Corniferous, water-lime and Niagara	1064	6.6
Hudson River and Utica	500	66
Trenton limestone	89	66
Total depth	2139	66

Yielded a small flow of gas, which was found at a depth of 27 feet in the Trenton.

The record of the well at Garrett is given below:

Section of Well No. 1

De	epth	to	renton	1980 feet.
		_		

Yielded a small flow of gas.

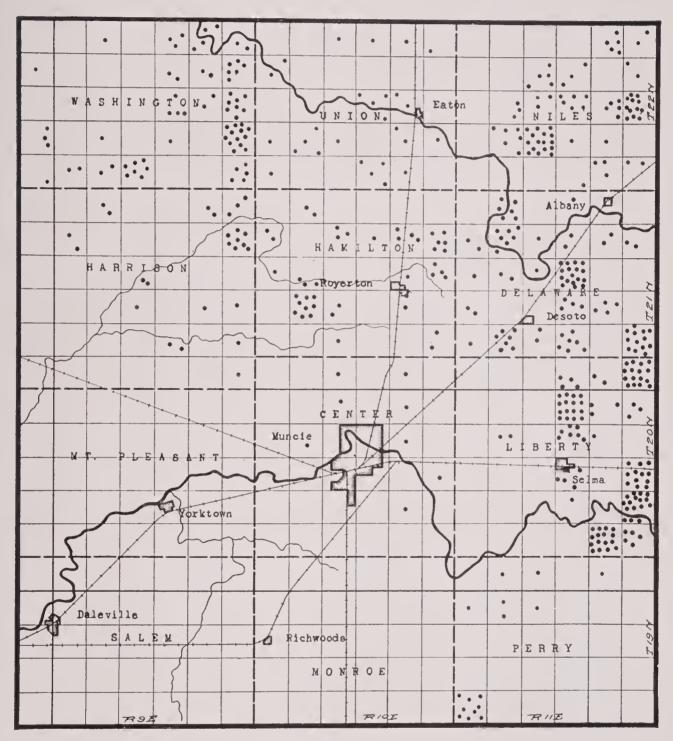


Fig. 32. Map of Delaware County showing location of abandoned wells. The eastern tier of townships are oil bearing, the remainder of the county is gas territory.

DELAWARE COUNTY

The Niagara limestone occupies the subsurface of this county and is covered with a mantle of glacial drift varying in thickness from 50 to 150 feet. A large number of wells have been drilled in this county and nearly 1,500 have been abandoned. From 1906 to 1914, 422 wells were completed, 103 of which were dry. Centre Township. Many productive gas wells have been drilled at and near Muncie. The combined records of wells No. 1 and No. 2, are given by Phinney as follows:

Cedarville limestone	90	feet.
Bluish limestone (Springfield beds)	135	66
Niagara shale	40	66
Hudson River limestone and shale	100	66
Hudson River shale	340	66
Utica shale	270	66
Trenton limestone	481	66
St. Peter's sandstone	150	66
-		
Total depth1	606	66

The records of other wells are given in the table below :

		Altı-
	Depth to	tude of
Altitude	Trenton	Trenton
936	876	60
933	889	44
955	887	68
949	884	65
946	894	52
930	872	58
938	887	51
936	892	44
938	891	47
956	891	65
944	886	58
	936 933 955 949 946 930 938 936 938 938 938 936 936 936 936 936 936 936	Altitude Trenton 936 876 933 889 955 887 949 884 946 894 930 872 936 892 936 891 956 891

A 1+;

Two wells were drilled on the J. C. Quick farm in Section 14, one yielded 25 barrel of oil. The records are as follows:

	No. 1	No. 2
Drive pipe	104	108
Casing	348	350
Top of Trenton	898	890
Total Depth	1212	1210
In Section 35 a million-foot gas well has the	e following	record:
Drive pipe	4	7 feet.
Casing		50 "
Top of Trenton		20 "
		_
Total depth		5 "

Abandoned wells are located in the following sections: Section 2, 1 well; Section 4, 1 well; Section 8, 1 well; Section 11, 1 well; Section 13, 1 well; Section 23, 1 well; Section 33, 1 well; Section 34, 1 well. Delaware Township. A gas well at Albany furnished the following record:

Drift	8	feet.
Limestone	200	6.6
Shale (Niagara)	68	6 6
Hudson River and Utica shale	658	66
Black shaly limestone	30	6.6
Trenton limestone	14	6.6
-		
Total depth	978	6.6
Altitude of well	940	66

The table below gives the records of various wells drilled in this Township.

		Section	16	Sec. 18	Sec. 15	Sec. 10
Drive pipe	80	70	70	28	40	27
Casing	380	370	370	294	370	310
Top of Trenton	940	960	965	921	920	921
Total depth1	280	1290	1297	1227	1195	123 2

Wells abandoned are located in Section 3, 1 well; Section 5, 6 wells; Section 7, 2 wells; Section 8, 7 wells; Section 9, 1 well; Section 10, 2 wells; Section 11, 2 wells; Section 12, 2 wells; Section 15, 19 wells; Section 16, 1 well; Section 17, 2 wells; Section 18, 1 well; Section 19, 2 wells; Section 22, 4 wells; Section 23, 4 wells; Section 25, 13 wells; Section 27, 7 wells; Section 28, 2 wells; Section 29, 7 wells; Section 30, 1 well; Section 36, 5 wells.

Liberty Township. The record of well drilled in this township is as follows:

Drift	90	feet.
White and buff limestone	85	6.6
Soft and Ferruginous	15	6.6
Bluish limestone	75	66
Niagara shale	40	6.6
Hudson River	485	6.6
Utica shale	210	6.6
Trenton limestone	25	6.6
Total depth1	.025	6.6
Altitude of well1	.015	6.6

As late as 1903, 81 wells were drilled in this Township. Fifty-three produced oil and the average initial production was 21 barrels. The records of three wells as given by Blatchley are as follows:

	Section 12	Secti	ion 14
Drive pipe	85 feet	104	97
Casing	360 feet	350	364
Top of Trenton	976 feet	984	988
Total depth	1030 feet	1040	1035

Wells abandoned are located as follows: Section 1, 3 wells; Section 2, 3 wells; Section 3, 16 wells; Section 10, 7 wells; Section 13, 12 wells; Section 14, 1 well; Section 15, 4 wells; Section 17, 2 wells; Section 22, 1 well; Section 24, 26 wells; Section 25, 5 wells; Section 26, 16 wells; Section 34, 4 wells; Section 35, 2 wells; Section 36, 22 wells.

Union Township. A well drilled in Eaton in 1876 produced some gas from Hudson River Shale. In September, 1886, the first gas well of importance in Indiana was drilled at this place. The record of the well follows:

Buff limestone	5 f	leet.
Bluish limestone	20	6.6
Buff limestone	30	6.6
Bluish gray limestone	45	66
White limestone	35	66
Shale, bluish green	35	66
Buff limestone (Clinton)	10	6.6
Shale, Hudson River and Utica	690	6.6
Trenton limestone	32	66
Total depth	922	6.6

The Trenton was reached at Shideler at 884 feet. Successful gas wells were drilled at Cowan, Oakville, Yorktown, Royerton and New Corner. Jas. Dill Farm, Section 26, Township 21 North Range 11 East.

ť	arm, Section 26, Township 21 North Rang	e H	East
	Top soil	67 f	leet.
	Lime	200	66
	Shales	681	66
	Top of sand	948	4 G
	Into Trenton	325	66
	Salt water struck in Trenton	320	66

Jefferson Township. An abandoned well is located in Section 21.

Harrison Township. Abandoned wells are located as follows: Section 1, 3 wells; Section 2, 2 wells; Section 5, 2 wells; Section 7, 2 wells; Section 12, 8 wells; Section 16, 2 wells; Section 21, 1 well; Section 23, 1 well; Section 24, 1 well; Section 25, 1 well; Section 27, 2 wells; Section 36, 1 well.

Hamilton Township. Wells were drilled in the following sections: Section 5, 2 wells; Section 7, 2 wells; Section 10, 1 well; Section 11, 4 wells; Section 12, 6 wells; Section 13, 4 wells; Section 16, 2 wells; Section 17, 3 wells; Section 20, 9 wells; Section 21, 2 wells; Section 23, 2 wells; Section 24, 1 well; Section 25, 9 wells; Section 28, 1 well; Section 30, 1 well.

Washington Township. Wells were drilled and abandoned as follows: Section 5, 1 well; Section 10, 2 wells; Section 11, 2 wells; Section 12, 1 well; Section 13, 4 wells; Section 14, 1 well; Section 15, 1 well; Section 22, 2 wells; Section 23, 1 well; Section 24, 4 wells; Section 25, 8 wells; Section 27, 1 well; Section 31, 1 well; Section 32, 1 well; Section 33, 4 wells; Section 36, 3 wells. Niles Township. Wells abandoned are as follows: One each in Sections 11, 12, 20, 23, 13, 26, 27, 34, 35 and 36; Section 9, 2 wells; Section 21, 3 wells; Section 22, 5 wells; Section 24, 5 wells; Section 28, 13 wells; Section 15, 2 wells; Section 16, 4 wells and Section 29, 4 wells.

Union Township. Wells abandoned are located as follows: One each in Sections 9, 10, 11, 12, 18, 25, 27 and 35; 2 in Section 20; 4 in Section 22; 2 in Section 26; 3 in Section 28; 2 in Section 29 and 4 in Section 34.

Perry Township. Abandoned wells are located one each in Sections 2, 4, 7, 9, and 3 in Section 5; 2 in Section 8, and 11 in Section 34.

Wells drilled by Wallace Oil Company, Section 22, Delaware Township, Farm of Marcellius Hitchcock.

Well No. 1

8" drive pipe	30	feet.
6¼" casing	326	4.6
Top Trenton	935	6.6
Oil (light showing)	1206	64
Total depth	1209	66
Shot March 25, 1919. Well pumping.		

Well No. 2

8" drive pipe	18	feet.
61/4" casing	306	6.6
Top Trenton	926	6.6
Crevice showing light gas	1184	6.6
Total depth	1187	6 d

Well No. 3

10" drive pipe	28 f	eet.
S" drive pipe	140	6 6
6¼" casing	330	6.6
Top Trenton	940	6.6
Oil	1215	6.6
Total depth	1216	6.6
Light oil. Well pumping light.		

Well No. 4

10" drive pipe	45	feet.
8" drive pipe	96	6 6
	330	66
Top Trenton	946	6.6
Oil (first)	0-32	6.6
Total depth1	232	6.6
Light oil.		

Well No. 5

10" drive pipe	57	feet.
8" drive pipe	89	6.6
65%" Casing	315	66
Top Trenton	945	6.6
	208	6.6
Light oil.		

Well No. 2

10" drive pipe	20	feet.
8" drive pipe	100	66
65%" casing		
Total depth	1206	66
First pay	1200	66
Light showing. Well pumping.		

Farm of Elmer Ritchie. Well No. 1

10" drive pipe	-39	feet.
8" drive pipe	95	6.6
61/4" casing	295	6.6
Top Trenton	927	6.6
Total depth	1206	6.6
First oil	198	6.6
Best oil	1203	6.6

.

Well No. 2

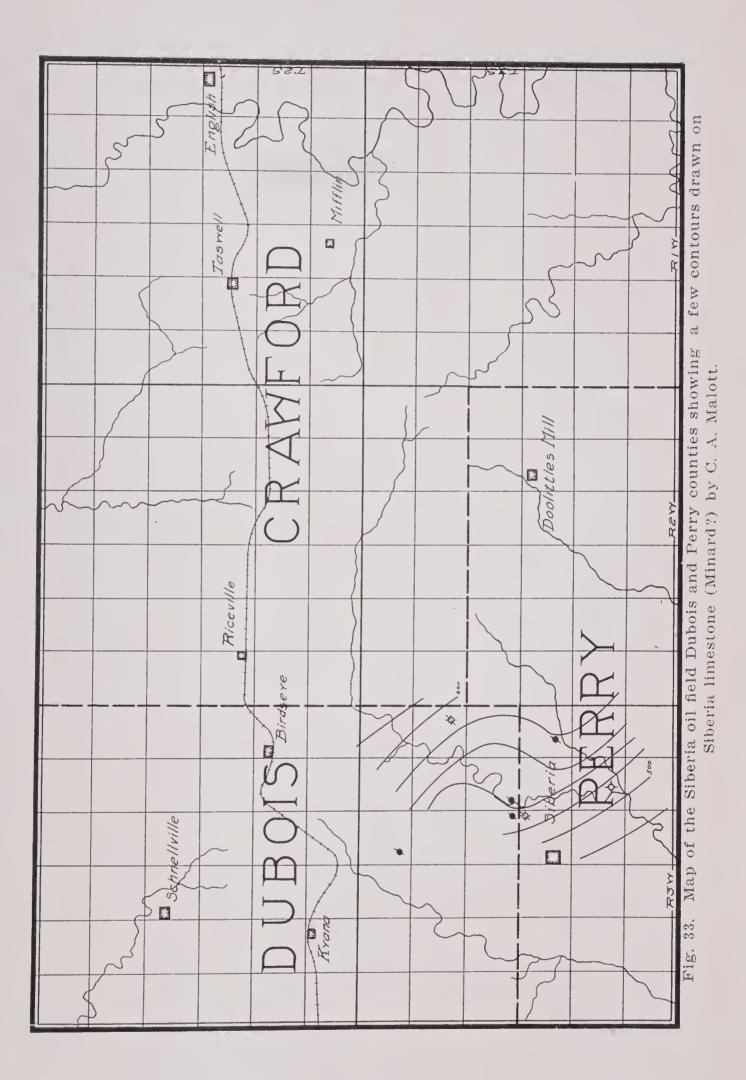
8" drive pipe	76	feet.
6¼" casing	309	6.6
Top Trenton	927	6.6
Total depth, 1207-oil	1200	6.6

Monarch Gas Company, Winchester, Indiana, Well No. 1

S. W. corner of E, ½ of S. W. ¼ of Sec. Delaware Township 21, Range 11, 125 feet drive pipe.

Drive pipe	125	feet.
Casing	325	6.6
To sand	900	66
In sand	320	6.6
Depth of well	1230	66

Well No. 2


500 feet W. and 500 feet N. of S. E. corner of W. ½ of S. W. ¼ of Sec. Delaware Township 21, Range 11.

Drive pipe	69	feet, 1 inch.
Casing	335	66
To sand	916	66
Depth of well1	210	"

Well No. 3

650 feet West and 1,000 feet N. of S. E. corner of W. ½ of S. W. ¼ of Sec. Delaware Township 21, Range 11.

Drive pipe	79 :	feet.
Casing	340	66
To sand	915	6.6
In sand	288	6.6
Depth of well	1202	66

DUBOIS COUNTY

Only the northwestern part of this county lies within the glaciated area The larger part of its surface is occupied by the outcrops of the strata of the Coal Measures. The divisions and the subdivisions represented by outcrops in the county are given below:

	Recent—Alluvium. Pleistocene—Clays, sands and gravels. Allegheny—Sandstone, limestone shale, coal. Pottsville—Sandstone, shale and coal. Chester—Shales, limestone
Quaternary	Pleistocene—Clays, sands and gravels.
	Allegheny—Sandstone, limestone shale, coal.
Pennsylvanian	Pottsville—Sandstone, shale and coal.
	Chester—Shales, limestone
Mississippian	and sandstones.

Structural conditions will be difficult to determine in this county because of the absence over a large part of the County of persistent layers which may be used as key horizons. In limited areas it may be possible to use some of the coal beds and in limited areas in the southeastern and the northeastern parts of the county to use some of the limestones of the Chester as key horizons.

Birdseye. A small oil and gas field has been developed about Birdseye. Fourteen wells were drilled in Dubois, Crawford and Perry, oil was obtained in ten, gas in one and three were nonproductive. The depth of the oil bearing sand varied in the various wells from 980 feet to 1,010 feet. The oil sand is probably in the Devonian limestone and occurs about ten feet below the top of the limestone. A black or brownish black shale forty feet thick overlies the limestone.

Patoka Township. A well drilled on the property of J. E. Shertz and Company in Section 36 was plugged in 1911.

About ten wells have been drilled in the county, five of which were dry.

ELKHART COUNTY

Glacial drift covers the bed rock in this county to a depth of from 50 to 200 feet. The drift overlies the eroded surface of the Devonian and Mississippian strata which dip northward.

Structural conditions of the durolith cannot be determined by direct observation because the outcrop of the durolith is concealed by the drift. Subsurface work is prevented by the absence of sufficient well records.

The record of a well drilled at Elkhart is as follows:¹

Section of Well No. 1	
Drift	122 feet.
Subcarboniferous shale (gray shale)	213 "
Hamilton black shale	215 "
Corniferous limestone	65 "

"At this depth the well was abandoned under the erroneous belief that the drill had passed through the Hudson River and the Utica shales, and that the Corniferous was Trenton limestone." The record of a well drilled at Goshen is as follows:

Section of Well No. 2

Drift	165	feet.
Shale, sub-carboniferous and Devonian	308	6.6
Corniferous limestone	60	6.6
Water lime	32	6.6
Niagara limestone	728	6.6
Hudson River limestone and shale	307	6.6
Utica shale	215	6.6
Trenton limestone	239	6.6
-		
Total depth	2054	6.6
Trenton below sea level1	026	6.6
Yielded no gas.		

Railroad Elevations

Elkhart, 753.0; Dunlap, 784.5; Goshen, 797.6; Millersburg, 879.7; Morehouse, 761.4; Bristol, 771.8; Vistula, 794.2; Williams, 845.5; Burns, 894.6; Middlebury, 852.1; Pleasant Valley, 749.9; New Paris, 809.

FAYETTE COUNTY

The Pleistocene deposits in this county range in thickness from 25 feet to more than 100 feet. The strata underlying the Pleistocene belong to the Silurian and Devonian periods. The outcrops of these rocks being concealed by the glacial drift, the determination of the structural conditions favorable to the accumulation of oil and gas is difficult. The surface of the Trenton limestone for the greater part if not all of this County lies above sea level and lies 700 to 900 feet below the surface. At Connersville the following well records were obtained:²

Section of Well No. 1		
Drift, Hudson River and Utica	712 f	feet.
Trenton limestone	522	6.6
Potsdam sandstone	12	66
-		

Total depth	1246	66
Trenton above sea level	120	6.6
Yielded a small flow of gas.		

Section of Well No. 2

Drift	90	feet.
Hudson River and Utica	615	66
Trenton limestone	61	66
Total depth	766	6.6
Trenton above sea level	117	66
Yielded a small flow of gas.		

Harrison Township. A deep well was drilled on the W. H. Wolf property in Section 8 and abandoned in 1912.

Posey Township. A well was drilled on the John Copeland property in Section 3, and abandoned in 1911. Another well was drilled on the property of J. Lambertson in Section 10 and abandoned in 1912.

Gas was obtained in Connersville, Jackson and Posey Townships.

FLOYD COUNTY

Floyd County lies in the unglaciated area of Indiana. The strata which outcrop in the county belong to the Devonian, Mississippian and Quaternary periods. The sub-divisions present are represented in the following table:

(Recent—Alluvium.
Quaternary	Pleistocene—Residuals.
	Mitchell limestone.
	Salem limestone.
Mississippian	Harrodsburg limestone.
	Knobstone, shales and sandstones.
	Rockford limestones.
	New Albany—Shale.
Devonian	Sellersburg—Limestone.

By using the contact of the Knobstone and the Harrodsburg it may be possible to determine the structural conditions of a part of this County. The contact of the New Albany and the Rockford might also be used as a key horizon.

The following is the record of a well drilled at New Albany:

Section of Well No. 1 ² .		
Clay and sub-carboniferous shale	80	feet.
Devonian shale	104	66
Corniferous limestone	69	66
Niagara limestone		6.6
Hudson River and Utica	545	6.6
Trenton limestone	500	6.6
-		

Railroad Elevations

New Albany, 498.8; Smith, 565; Floyd, 445.8; Georgetown, 710.

FOUNTAIN COUNTY

Underlying the glacial drift of this County are strata belonging to the Knobstone, Warsaw, Salem and Chester (?) divisions of the Mississippian and to the Pottsville and the Allegheny divisions of the Pennsylvanian periods. The glacial drift which largely conceals these formations varies

in thickness from a few feet to more than one hundred feet. Whether or not structural conditions favorable to the accumulation of oil and gas exist in this County, can be determined only from subsurface data. Surficial methods cannot be used because of the glacial covering which conceals the outcrops. From reliable data collected in the form of well, shaft and outcrop records, it may be possible to determine the structural conditions.

Van Buren Township. Near Veedersburg three wells were drilled to depths of 1,000 feet. In one of them, gas occurred at 610 feet. These wells probably finished in the Devonian.

Two wells' were drilled six miles south of Veedersburg to depths of 900 feet.

Cain Township. A well was drilled by the Fountain County Oil and Gas Company, $4\frac{1}{2}$ miles southwest of Hillsboro. The log of the well follows:

og of the David Renor were				
Yellow clay and gravel	0	to	30	feet.
Sand white	30	6.6	75	6.6
Shale gray	75	6.6	118	
Sand white	118	6.6	220	6 6
Sand, limey, coarse	220	6.6	265	6.6
Sand, showing oil	265	6.6	273	6.6
Sand, limey, coarse	273	6.6	290	6.6
Sand, very light lime	290	6.6	305	66
Lime, very coarse			315	6.6
Shale, gray	315	6.6	350	6.6
Sand	350	6.6	400	6.6
Slate, white	400	6.6	415	6.6
Lime, hard, coarse	415	6.6	430	6 b
Shale, gray	430	6.6	545	• •
Lime, hard, coarse			550	6.6
Shale, gray			565	66
Lime, blue, soft	565	6.6	595	
Lime, hard			635	* *
Shale, gray			685	66
Clay, green			725	6.6
Slate, white			735	6.6
Shale, black			755	6.6
Shale, brown	755	6.6	800	66
Slate, white		6.6	810	6.6
Shale, brown	810	66	840	6.6
Sand, hard, brown	840	6.6	860	6.6
Sand, odor of oil	860	66	890	6.6
Niagara lime, containing salt				
water	890	66	938	6.6

Well No. 1

Drilling log of the David Keller well.

Railroad Elevations

Mellott, 699.0; Veedersburg, 604.3; Cates, 644.7; Silverwood, 516.0; Attica, 543.0; Rob Roy, 634.0; Aylesworth, 635.0; Stone Bluff, 622.0.

FRANKLIN COUNTY

The subsurface formations of this county belong to the Ordovician and the Silurian periods. They are covered largely by a mantle of glacial drift.

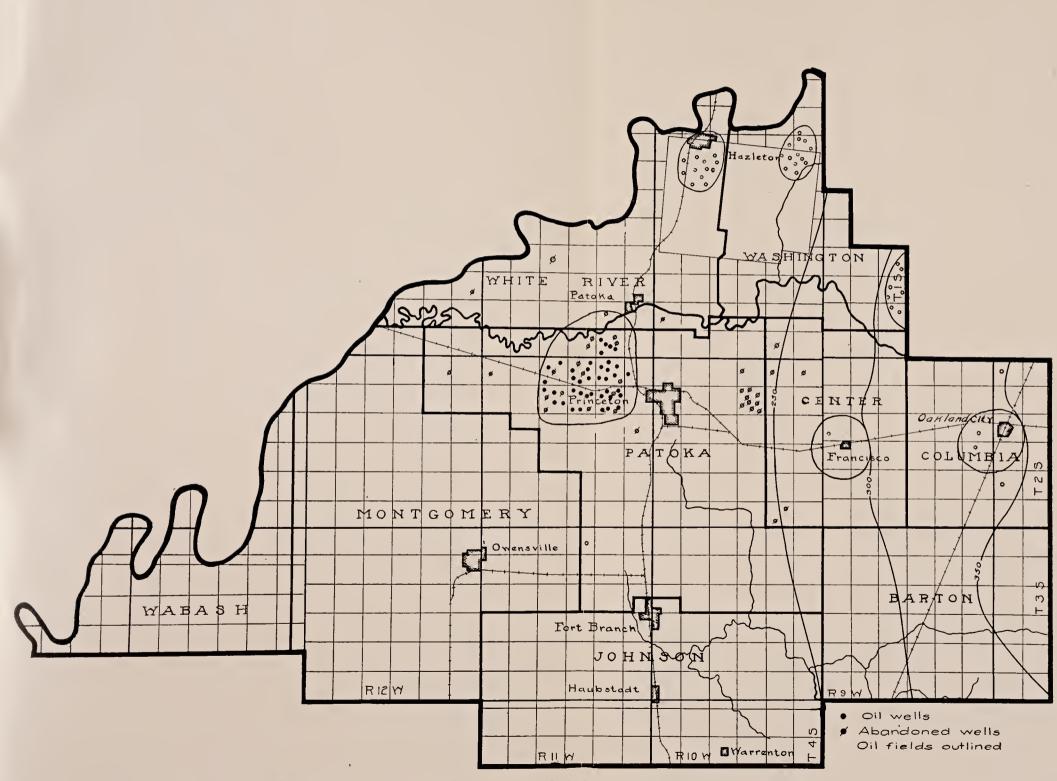
The divisions which are probably represented in the durolith are as follows:

	Louisville limestone.
	Waldron shale.
Silurian	Laurel limestone.
	Osgood limestone and shale.
	Brassfield.
	Richmond, shales and limestones.
	Maysville shales, limestone and sandstones.
Ordovician	Eden, shales, limestones and sandstones.
	Trenton limestones.
	St. Peter's sandstone.

Brookville Township. Seven wells were, drilled in the vicinity of Brookville. The log of a well drilled in White Water River valley is as follows:

Drift		
Shale		66
Trenton and St. Peter	854	66
Total depth	1254	66
Altitude of well	575	6.6
Salt water at	800	6.6

Well, No. 2, located in town reached the Trenton at 550 feet at an altitude of 700 feet. The surface of the Trenton is 150 feet above sea level. A small supply of gas was obtained in this township and in Laurel Township.


Railroad Elevations

Peoria, 999; Raymond, 1,008; Bath, 1,012.

FULTON COUNTY

Strata belonging to the Silurian and Devonian periods lie beneath the glacial drift in this County. The drift attains a thickness of more than 300 feet.

The concealment of the strata of the durolith by the drift makes it impossible to determine the structural conditions by surficial methods. The accumulation of the logs of deep wells will greatly aid in such determination. The County lies on the north slope of the Cincinnati Arch and the Trenton surface which lies nearest sea level near the southern boundary of the County is 351 feet below sea level at Rochester.

~

.

Fig. 34. Map of Gibson County, showing location of oil fields. Only a few wells indicated.

The section of a well drilled at Rochester is given below:*

Drift	. 245	feet.
Niagara limestone	. 525	66
Hudson River and Utica	. 391	66
Trenton limestone	. 24	66
Total depth	.1185	6.6
Trenton below sea level	. 351	66
Yielded no gas.		
of well drilled at Kowana. ²		

Section of Well No. 1

Record of well drilled at Kewana:²

Section of Well No. 1

Drift	170	feet.
Limestone and shale	879	6.6
Trenton limestone	29	6.6
Total depth	1078	6 6
Trenton below sea level	278	6.6
Did not yield gas or oil.		

GIBSON COUNTY

The strata underlying the glacial drift in Gibson County are the coal measures of the Pennsylvanian period. The mantle of drift has been removed in places so that the outcrops of the bed rock occur in the northern and central parts of the County. The extreme southern part of the County was not glaciated. The structural conditions of the bed rock can not be determined from a study of surficial conditions. However the use of the subsurface data combined with such surficial data as may be obtained from outcrops, may make it possible to locate structures favorable to the accumulation of oil and gas. Several small oil pools have been located in this County but largely, if not wholly, by using the drill. The position of these pools is given in the accompanying map. There are probably three sands in this County from which oil has been obtained. These sands probably all belong to the Pennsylvanian group of rocks or possibly the lower to the Chester.

White River Township. Eight miles northwest of Princeton, gas was obtained at 1,300 feet. At Hazelton three wells were drilled to 2,000 feet. Oil was obtained and this is known as the Hazelton pool.

Patoka Township. Wells in Sections 2, 9, 10 and 32, oil was obtained in 2 at 871 feet in the Princeton sand.

Center Township. S. E. ¼ of the S. W. ¼ of Section 36, bore drilled came in dry. (Rept. 1908) Oil is reported in a well drilled near Francisco to a depth of 1,690 feet.

One well in Oakland City³ field, S. W. ¹/₄ of the N. W. ¹/₄ of Section 13, was reported to have reached a sand lower than the Oakland City sand

and to yield an oil of good gravity and of strong sulphur smell. The Oakland City sand in this well was found at 1,228 feet and was eight feet thick. The two lenses yielded an initial output of 150 barrels. The stray sand was found at a lower depth at 1,284 feet and was reported to be 18 feet thick, yielding the sulphur oil.

The No. 1 well on the Montgomery lease, completed in 1907, drilled to a depth of 1,000 feet, sand struck at 845 feet, 87 feet of drive pipe used; dry well. No. 17, drilled to a total depth of 862 feet, sand at 820 feet, drive pipe, eighty feet ten inches; sixty-five barrel well, completed March, 1907. No. 18, completed April, 1907, total depth, 865 feet; sand at 820 feet; 90 feet of drive pipe; 92 barrel well.

Well drilled on the Skinner farm, near Oakland City, total depth 1,300 feet; encountered salt water, dry well.

H. A. Mauck lease, S. W. ¼ of Section 19; drive pipe (10 inch) 95 feet; casing (8 inch), 130 feet; casing (6¼ inch) 785 feet; top of sand 918 feet.

Record of a well drilled in Washington Township. L. C. Frederick farm, No. 4.

Surface 30 30 Sand 20 50 Shale 20 70 Broken sand 80 150 Cased with 10" Black slate 50. 200 Sand, dry 60 260 Shale 40 300 Broken sand 20 320 Some water Black slate 50 370 Shale 30 400 Lime shell 10 410 Shale 90 500 Black slate 30 400 Lime shell 10 410 Shale 90 500 Black slate 30 530 Shale 70 600 Broken lime 20 620 Some water Black slate 40 660 Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 20 862 Shale 40 842 </th <th></th> <th></th> <th>Depth</th>			Depth
Shale 20 70 Broken sand 80 150 Cased with 10" Black slate 50, 200 Sand, dry 60 260 Shale 40 300 Broken sand 20 320 Some water Black slate 50 370 Shale 30 400 Lime shell 10 410 Shale 90 500 Black slate 30 530 Shale 70 600 Broken lime 20 620 Some water Black slate 40 660 Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007	Surface	30	30
Broken sand 80 150 Cased with 10" Black slate 50, 200 Sand, dry 60 260 Shale 40 300 Broken sand 20 320 Some water Black slate 50 370 Shale 30 400 Lime shell 10 410 Shale 90 500 Black slate 30 530 Shale 70 600 Broken lime 20 620 Some water Black slate 40 660 Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 <td>Sand</td> <td>20</td> <td>50</td>	Sand	20	50
Black slate 50. 200 Sand, dry 60 260 Shale 40 300 Broken sand 20 320 Some water Black slate 50 370 Shale 30 400 Lime shell 10 410 Shale 90 500 Black slate 30 530 Shale 70 600 Broken lime 20 620 Some water Black slate 40 660 Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 40 842 Black slate 20 862 Sand 30 752 Black slate 40 842 Black slate 40 842 Black slate 40 962 Lime 10 970 Shale 35 1007	Shale	20	70
Sand, dry 60 260 Shale 40 300 Broken sand 20 320 Some water Black slate 50 370 Shale 30 400 Lime shell 10 410 Shale 90 500 Black slate 30 530 Shale 70 600 Broken lime 20 620 Some water Black slate 40 660 Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 20 862 Sand 30 752 Black slate 20 862 Shale 40 842 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 San	Broken sand	80	150 Cased with 10"
Shale 40 300 Broken sand 20 320 Some water Black slate 50 370 Shale 30 400 Lime shell 10 410 Shale 90 500 Black slate 30 530 Shale 90 500 Black slate 30 530 Shale 70 600 Broken lime 20 620 Some water Black slate 40 660 Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032	Black slate	50.	200
Broken sand20320 Some waterBlack slate50370Shale30400Lime shell10410Shale90500Black slate30530Shale70600Broken lime20620 Some waterBlack slate40660Hard lime10670Coal2672 2' coalShale50722Sand30752Black slate50802Shale20862Sand30752Black slate40842Black slate20862Sandy shale60922Black slate40962Lime10970Shale351007Sand201027Shale51032Sandy lime51037Oil sand61041	Sand, dry	60	260
Black slate 50 370 Shale 30 400 Lime shell 10 410 Shale 90 500 Black slate 30 530 Shale 90 500 Black slate 30 530 Shale 70 600 Broken lime 20 620 Some water Black slate 40 660 Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6	Shale	40	300
Shale 30 400 Lime shell 10 410 Shale 90 500 Black slate 30 530 Shale 70 600 Broken lime 20 620 Some water Black slate 40 660 Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 50 802 Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 842 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Broken sand	20	320 Some water
Lime shell 10 410 Shale 90 500 Black slate 30 530 Shale 70 600 Broken lime 20 620 Some water Black slate 40 660 Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Black slate	50	370
Shale 90 500 Black slate 30 530 Shale 70 600 Broken lime 20 620 Some water Black slate 40 660 Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 50 802 Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Shale	30	400
Black slate 30 530 Shale 70 600 Broken lime 20 620 Some water Black slate 40 660 Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 40 842 Black slate 20 862 Shale 40 842 Black slate 20 862 Shale 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Lime shell	10	410
Shale 70 600 Broken lime 20 620 Some water Black slate 40 660 Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 40 842 Black slate 20 862 Shale 40 842 Black slate 20 862 Shale 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Shale	90	500
Broken lime 20 620 Some water Black slate 40 660 Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Black slate	30	530
Black slate 40 660 Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Shale	70	600
Hard lime 10 670 Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Broken lime	20	620 Some water
Coal 2 672 2' coal Shale 50 722 Sand 30 752 Black slate 50 802 Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Black slate	40	660
Shale 50 722 Sand 30 752 Black slate 50 802 Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Hard lime	10	670
Sand 30 752 Black slate 50 802 Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Coal	2	672 2' coal
Black slate 50 802 Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Shale	50	722
Shale 40 842 Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Sand	30	752
Black slate 20 862 Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Black slate	50	802
Sandy shale 60 922 Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Shale	40	842
Black slate 40 962 Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Black slate	20	862
Lime 10 970 Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Sandy shale	60	<u>922</u>
Shale 35 1007 Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Black slate	40	962
Sand 20 1027 Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Lime	10	970
Shale 5 1032 Sandy lime 5 1037 Oil sand 6 1041	Shale	35	1007
Sandy lime 5 1037 Oil sand 6 1041	Sand	20	1027
Oil sand 6 1041	Shale	5	1032
	Sandy lime	5	1037
Total depth 1043	Oil sand	6	1041
	Total depth		1043

Washington Township, well of McNeece,	2 miles east of Hazelton.
Lime and slate	
Sand (dry)	
Slate	
Sand (4 Bailer water)	
Slate	
Broken sand (dry)	
Slate	
Sand (soft) strong flow water Sand (no water)	
Slate	
Sand (dry)	
Slate	
Lime rock	
Slate	1190 1228
Slate	
Lime rock	
Slate	1290 1320
Lime rock	
Slate and shell	1921 1999
White sand	
Slate	
Lime rock.	1400 1420
Broken sand and shale	1420 1430
Sand (strong flow of water)	1450 1500
Lime rock	1500 1520
Slate	
Red rock	
Lime rock	
Slate	
Lime rock	
Slate	
Sandy (dry)	
Red rock	
Lime rock	
White sand	
Lime rock	1600 11718 1
Slate	1718 " 1799 "
Lime rcck	1799 '' 1740 ''
Sand (dry)	1740 " 1800 "
Lime rock	1800 " 1806 "
Oil sand (slight show)	1806 " 1870 "
Lime rock	1870 " 2000 "
Lime rock	
Total depth	

Log of well No. 5 on the L. C. Frederick farm, Washington Township, Gibson County.

Surface	 to	30 fe	et.
10 11-	6.6	60 '	

99

Fire clay	to	65	feet
Coal	66		£ 66
Slate	66	80	66
Sand	66	125	66
Dark slate	66	160	6.6
Shale	6.6	195	6.6
Sand and water	66		6.6
Slate	6.6	235	6.6
Lime	66	245	6.6
Shale	66	285	6.6
Sand (dry)	66	295	66
Shale	6.6		66
Broken lime	66	335	66
Shale	66	355	66
Sand	66	365	66
Slate	66		6.6
Lime	66		66
Shale	66	420	66
Lime	66	425	66
Brown shale	66	440	66
Slate	66	465	66
Shale	66	493	68
Coal	66	504	66
Fire clay	66	504	66
	66	$\frac{508}{515}$	6.6
Sand	66		66
	6 6	555	66
	6.6	562	66
Shale	6.6	590	66
Brown shale		620	66
Sandy lime	66	625	66
Brown shale		675	66
Broken lime		685	
Slate	66	700	66
Lime	66	710	6.6
Sand	66	725	66
Slate	66	730	66
Sand	66	750	66
Sandy shale	66	800	6.6
Lime	66	810	6.6
Shale	66	825	66
Slate	66	875	66
Shale	66	900	6.6
Sand	66	920	66
Shale	66	950	66
Water sand	66	965	66
Shale	66	1005	66
Slate	"	1025	6.6
Broken sand	66	1065	66

Sand	to	1165	feet	
Shale			6.6	
Lime	· 66	1195	6.6	
Slate	66	1220	6.6	
Lime	66	1225	66	
Slate	66	1235	6.6	
Lime shell	66	1240	6.6	
Slate	···	1245	66	
Shale	66	1260	66	
Lime		1270	66	
Broken sand		1280	6.6	Hoover
Hoover sand	66	1305	66	
Shale	6 6	1310	66	
Broken sand	· · · · · · · · · · · · · · · · · · ·	1320	6.6	Gas sand
Sand, gas at 1328	6.6	1355	66	
Brake	^{6 6}	1358	66	
Lime	6.6	1380	66	
Greene shale	6.6	1405	66	
Lime	66	1415	66	
Shale	· · · · · · · · · · · · · · · · · · ·	1430	66	
Lime	6.6	1450	6.6	
Shale	6.6	1455	66	
Lime	66	1455	66	
Shale		1410	66	
Broken sand		1485	6.6	
Lime	66	1490	6.6	
Sand		1500	6.6	

Well No. 3 on the John Zimmerman farm; 200 feet to East line, 665 feet to South line. Section 7, Washington Township, Gibson County.

Soil	to	1	foot.
Dark clay	66	20	feet.
Gravel	6.6	22	6.6
Dark slate	66	40	66
Dark lime	66	44	66
Dark slate	6.6	98	66
Gray sand	66	114	66
Dark slate	66	157	66
Coal	66	161	6.6
Dark slate	-4.6	179	6.6
Gray lime	66	185	6.6
Dark slate	6.6	186	6.6
Gray lime	6.6	191	6.6
Dark slate	6.6	194	66
Gray lime	6.6	200	6.6
Gray sand	6.6	209	6.6
Black slate	66	240	6.6
Light slate	66	245	66
Dark slate	6.6	300	66

Light sand to 320 fect Gray sand, water..... 365 6.6 369 Gray lime..... 6.6 372Coal 66 66 Gray sand..... 386 Dark slate " 6.6 42166 Gray sand..... 431 66 Dark slate " 48066 490 Dark slate " 66 5256.6 Brown lime 5356.6 Black slate..... " 540 66 Gray lime......" 546 66 Gray sand..... " 556 Light slate..... " 66 566 Dark slate " 66 578 66 583 66 610 66 Light slate..... 6.6 Coal 615 - 6 6 66 Dark slate 625 Gray lime...... " 6.6 630 66 Black slate " 760 Gray sand " 66 775 6.6 Dark slate 815 Gray sand " 6.6 825 Dark slate..... " 66 830 Gray sand...... " 66 850 66 6.6 Dark slate 865 Gray sand..... " 66 895 900 66 Black slate..... " 66 908 6.6 912Black slate..... " 66 925Gray sand...... " 66 939 Dark slate " 1001 66 Black slate..... " 1004 66 Dark slate " 1016 66 Gray sand..... " 1025 66 Dark slate " 1030 66 Gray sand:..... " 1035 66 Dark slate " 1070 66 Gray sand..... " 1230 66 Dark slate " 1245 66 66 Light slate..... " 1254 66 Gray sand..... " 1258 66 Dark slate " 1265 66 Gray sand, gas " 1279 6.6 66 Dark slate " 1295 Gray lime " 1306 66

Dark slate	t.)	1317	feet
Gray sand, first oil	6.6	1335	6.6
Dark slate	6.6	1337	6.6
Gray lime	66	1339	6.6
Dark slate	6.6	1348	6.6

Well No. 4 on the John Zimmerman farm, 200 feet to East line, 200 feet to South line. Section 7, Washington Township, Gibson County.

inter section 1, masmington 10wns.	mp,	on	son c
Soil	to	1	foct.
Yellow clay	6.6	12	feet.
Light slate	6.6	54	66
Dark slate	6.6	73	6.6
Dark sand	6.6	83	6.6
Dark slate	6.6	108	66
Dark lime	6.6	110	6.6
Dark slate	6.6	113	6.6
Gray sand	6.6	124	6.6
Light slate	6.6	127	6.6
Gray lime	6.6	133	66
Dark slate	6 6	170	6.6
Coal	6 6	174	6.6
Dark slate	6.6	197	6.6
Gray lime	6.6	208	6.6
Light slate	6.6	225	6.6
Gray sand	6.6	233	6 6
Dark slate	66 ~	294	6.6
Gray sand	6.6	303	6.6
Dark slate	6.6	311	6.6
Dark sand	6.6	314	6.6
Dark slate	6.6	325	6.6
Dark sand	6.6	358	6.6
Dark slate	6.6	360	6.6
Light sand	66	385	6.6
Black lime	6.6	392	66
Dark slate	6.6	397	6.6
Light slate	6.6	405	6.6
Light sand	6.6	414	6.6
Light slate	6.6	462	66
Dark slate	6.6	500	6.6
Black slate	6.6	506	6.6
Gray lime	6.6	510	6.6
Coal	6.6	512	6.6
Dark slate	6.6	526	66
Dark lime	4.6	528	6.6
Dark slate	6.6	536	6 6
Gray lime	6.6	540	6.6
Coal	6.6	547	6.6
Light slate	6.6	572	66
Light sand	6.6	578	6.6
Dark slate	6.6	605	6.6
Durt Sture		000	

Light slate	to	635	feet
Dark slate	6.6	650	6 6
Gray lime	44	655	6.6
Light slate	6.6	665	6.6
Dark slate	66	776	6.6
Gray lime	44	784	6 6
Light slate	66	797	66
Gray sand	66	808	6.6
Dark slate	66	838	6.6
Light sand	66	862	66
Brown lime	66	865	6.6
Light sand	66	872	6.6
Dark slate	66	874	6.6
Dark sand	66	910	6.6
Gray lime	66	917	6.6
Light slate	66	930	6.6
Dark slate	66	942	6.6
Light sand	66	950	6.6
Dark slate	66	955	6.6
Light sand	66	960	66
Dark slate	66	1012	6.6
Light sand	6.6	1020	66
Dark slate	66	1025	66
Gray sand	66	1033	66
Light sand	66	1042	66
Dark slate	66	1050	66
Gray lime	66	1052	66
Light slate	66	1112	6.6
Light sand	66	1160	6.6
Light slate	66	1175	6.6
Light sand	66	1212	6.6
Light slate	66	1217	6.6
Gray sand	66	1246	6.6
Dark slate	66	1250	6.6
Light slate	66	1271	66
Dark lime	66	1273	6 6
Dark slate	66	1280	6.6
Dark sand	66	1288	6.6
Dark slate	66	1290	6.6
Light sand	66	1295	66
Light slate	66	1299	6 6
Light sand	66	1303	66
Dark slate		1314	6.6
Gray sand		1316	.6 6
Brown lime		1324	6.6
Dark slate		1336	6.6
Gray sand, first oil at 1338		1353	66
Dark slate	661	1361	66

uth line. Section 1, Washington Town	shij	p, Gi	bson	(
Yellow clay			feet.	
Light slate	6.6	4 8	6.6	
Gray lime	6.6	51	6.6	
Light slate	6.6	60	6.6	
Dark slate	6.6	68	6.6	
Light slate	6.6	71	6.6	
Light lime, water at 73 ft	6.6	75	66	
Light slate	6.6	100	6.6	
Coal	6.6	104	66	
Light slate	6.6	176	6.6	
Dark lime	6 6	180	6.6	
Light slate	6.6	223	6.6	
Coal	66	225	6.6	
Light slate	6.6	230	6.6	
Light sand	6.6	240	6.6	
Dark slate	66	254	6.6	
Light sand	66	269	6.6	
Gray lime	6.6	274	6.6	
Light slate	6.6	276	6.6	
Gray lime	6.6	279	6.6	
Dark slate	6.6	305	6.6	
Coal	66	309	6.6	
Dark slate	6.6	417	6.6	
Dark lime	6.6	423	6.6	
Light slate	6.6	500	6.6	
Dark slate	6.6	520	6.6	
Dark slate	6 6	545	6 6	
Light slate	66	555	6.6	
Dark slate	66	588	6.6	
Light slate	66	602	6.6	
Dark slate	6.6	615	6.6	
Light slate	6.6	630	6.6	
Dark lime	66	632	66	
Dark slate	6.6	650	6.6	
Light slate	66	662	66	
Dark slate	66	750	66	
Light slate	6.6	770	66	
Dark slate	6.6	775	6.6	
Light sand	6.6	780	6.6	
Dark slate	6.6	787	6.6	
Gray lime	6.6	790	6.6	
Dark slate	6.6	835	6.6	
Gray lime	6.6	839	66	
Dark slate	66	898	66	
Light lime	6.6	901	6.6	
Dark slate		940	6.6	
Gray lime		948		

Well No. 1, on the farm of Mary Shawhan, 200 feet to East line, 700 feet to South line. Section 1, Washington Township, Gibson County.

.

Dark slatet			əet	
Light lime		1015	6.6	
Dark slate		1045	66	
Gray sand		1075	6.6	
Light sand	66	1103	6.6	
Dark slate	66	1114	6.6	
Light sand	6.6	1151	6.6	
Dark slate	66	1158	6.6	
Gray sand	66	1195	6.6	
Dark slate	66	1200	6.6	
Gray sand	4.6	1216	6.6	
Dark slate	6.6	1218	6.6	
Light sand	66	1294	6.6	
Dark slate	66	1300	6.6	
Brown lime		1301	6.6	
Dark slate		1338	6.6	
Gray sand		1343	6.6	
Dark slate	66	1350	6.6	
Gray lime	66	1373	6.6	shows gas
Dark slate		1384	66	5110 11 5 6 11 5
Gray sand		1390	66	barren
Dark slate		1393	6.6	Darren
	66	1400	66	
Gray lime	6.6		6.6	
Light slate		1402	6.6	
Gray lime		1410	6.6	
Dark slate		1423	6.6	
Gray lime		1424	6.6	,
Gray sand	66	1430		gas sand
	66	1490	6.6	
Gray lime	66	1498	6.6	
Dark slate	66	1504	6.6	
Gray lime	6.6	1506	6 6	
Dark slate	66	1512	66	
Dark lime	66	1529	66	
Dark slate	66	1531	66	
Light sand		1533	66	
Light sand	66	1537	66	
Gray lime	6.6	1539	6.6	
Light sand	66	1550	6.6	
Dark slate	6.6	1560	6.6	
Brown lime	66	1569	6.6	
Dark slate	66	1572	6 6	
Gray sand	66	1584	6.6	
Light sand	66	1589	6.6	
Dark sand	66	1594	6.6	
Light sand	6.6	1601	66	
Light sand	66	1612	6.6	
Dark slate	66	1617	6.6	

Well No. 1, farm of Geo. Colvin, 164 feet to South line, 237 feet to West line. Section 6, Washington Township, Gibson County.

on 6, Washington Township, Gibson (nty.	
Yellow clay	to	35	feet
Light slate	6.6	45	6.6
Gray lime	6.6	4 9	6.6
Dark slate	6.6	80	6.6
Light lime	6.6	100	6.6
Light sand	6 6	145	66
Dark slate .	66	200	66
Gray lime	66	230	6.6
Light slate	6.6	235	6.6
Light lime	66	275	6 6
Dark slate	66	285	6 ú
Light sand	66	292	6.6
Dark slate	6.6	295	6.6
Light sand	6.6	300	66
Dark slate	66	340	66
Light lime	6.6	350	66
Gray sand	6.6	380	66
Light slate	6.6	382	66
Gray slate	66	395	66
Light slate	66	397	66
Gray lime	66	400	66
Light slate	66	408	6.6
Gray lime	6.6	418	6.6
Light sand	6.6	425	6 6
Dark slate	66	475	66
(le el	66	480	6.6
	66	530	6.6
	66	533	66
Coal	66	535	66
Gray lime Dark slate	66	570	66
	66	590	66
Light lime	66	600	66
Light slate	66	690	66
Dark slate	. 66	- 696	66
Gray sand	. 66	715	66
Dark slate	66	713 721	66
Gray lime	``66	$721 \\ 725$	6.6
Dark slate	• • •	735	6.6
Gray lime		770	
Dark slate	- 66	780	
Gray sand	- 66		
Dark slate	-	795	
Gray sand	•	800	
Dark slate	-	820	
Gray lime		827	
Dark slate	-	833	
Gray sand	-	835	1
Dark slate	•	845	•
Gray sand	•	860	

Dark slate	t	o 907	feet
Gray lime	66	910	66
Dark slate	66	933	6.6
Gray sand	"	947	66
Dark slate	66	955	6.6
Light sand	66	963	6 6 ~
Dark slate	66	1010	6.6
Coal	"	1014	6.6
Light sand	66	1027	6 6
Dark slate	66	1040	66
Gray sand	66	1050	6.6
Dark slate	6.6	1060	66
Brown sand, oil	66	1062	6.6
Light sand	66	1066	6.6

Well No. 1 on the Phoebe Hayden farm, 200 feet to North line, 200 feet to East line. Section 7, Washington Township, Gibson County.

Casing Record

Thirteen feet wood conductor; 1,270 feet $8\frac{1}{4}$ inch casing; 142 feet 7 inch casing (liner).

Shot Record

One hundred forty quarts, 1,375 feet to 1,398 feet.

Formation Record

Formation		C	Depth	
Soil	to	1	foot.	
Yellow clay	66	20	feet.	
Quick sand	66	28	61	
Yellow clay	66	43	6 +	
Dark lime	66	53	66	
Dark slate	66	73	6.6	
Light slate	66	77	6.6	
Dark lime	66	79	6.6	
Light slate	66	98	6.6	
Dark lime	66	104	6 6	
Dark slate	66	155	6.6	
Light slate	66	160	6 6	
Gray lime	66	220	66	
Dark slate	6.6	232	66	
Gray lime	66	243	66	
Dark slate	6.6	248	6.6	
Gray lime	6.6	250	6 6	
Dark slate	66	255	6 6	
Gray lime	66	295	6 6	$12\frac{1}{2}$ set at 256'
Dark slate	66	325	66	
Light slate	6.6	335	66	
White lime	66	340	66	
Dark slate	66	380	66	
Sand and lime	66	400	6.6	
Gray lime	66	409	66	

Formation		D	epth	
Dark slate	to	419	feet	
Gray lime	6.6	423	6.6	
Dark slate	66	428	66	
Light sand	66	435	66	
Gray lime	6.6	455	66	
White lime	66	465	66	
White slate	66	470	66	
Light sand	6.6	474	66	
Light slate	66	475	66	
Gray lime	66	479	6.6	
Light slate	66	481	66	
Dark slate	66	550	6.6	
Coal	66	550	66	
White slate	66	565	6.6	
White lime	66	573	6.6	
Brown slate	66	580	66	
Dark slate	66		66	
	66	600	6.6	
Gray lime	66	609	6.6	
Dark slate	6 6	621	6.6	
Gray lime	66	626	66	
Dark slate	6.6	629	66	
Gray lime	6.6	641		
Light slate		648	66	
Dark slate	66	650	66	
White slate		676	66	
Dark slate	66	705	66	
Gray lime	6.6	710	6.6	
Dark slate	6.6	715	66	
White slate	6.6	722	66	
Dark slate	6 6	770	66	
Gray lime	66	774	66	
Dark slate	66	824_{-}	66	
Dark slate	۶۶ -	830	66	10" set at 829'
Gray, lime	66	834	66	
Dark slate	66	840	66	
Dark sand	66	845	66	
Dark slate	66	849	66	
Dark sand	66	860	66	
Dark slate	66	865	66	
White lime	<u> </u>	869	66	
Brown sand	6.6	874	66	
Brown slate	6.6	880	6.6	
Gray lime	66	884	66	
Dark slate	66	885	6.6	
Gray lime	66	889	66	
Dark slate	6.6	900	66	
Gray sand	66	950	66	
· · · · · · · · · · · · · · · · · · ·	6.6	951	66	

Dai Dai Dai Dai Dai

Formation	Depth
Gray sand	to 990 feet
Dark slate	" 1012 "
Gray lime	" 1020 "
Light sand	" 1030 "
Dark slate	" 1128 "
Gray sand	" 1137 "
Dark slate	·· 1170 ··
Gray sand	" 1180 "
Dark slate	" 1190 "
Gray lime	" 1195 "
Gray sand	" 1218 "
Dark slate	" 1240 "
Gray sand	" 1245 "
Brown lime	" 1252 "
Dark slate	" 1260 "
Gray sand	" 1269 "
Dark slate	" 1270 "
Brown lime	" 1272 " 8¼" set at 1270'
Dark slate	" 1286 "
Dark lime	" 1289 "
Dark slate	" 1345 "
Light sand	" 1347 "
Dark slate	" 1353 "
Gray lime	" 1360 "
Dark slate	" 1374 "
Gray sand	" 1398 "
Dark slate	" 14 02 "
First shows oil at 1375 feet.	

Well No. 2 on farm of Phoebe Hayden, 200 feet to North line, 200 feet to West line. Washington Township, Section 7, Gibson County.

Shot Record

One hundred quarts, 1,358 feet to 1,381 feet.

Formation Record

Formation	Total Depth			
Soil	to	1	foot.	
Yellow clay	66	23	feet.	
Dark slate	6.6	37	6.6	
Light slate	6.6	42	6.6	
Gray lime	6.6	66	6.6	
Light slate	66	73	6.6	
Coal	66	75	6.6	
Dark slate	6.6	91	6.6	
Gray sand	66	94	6.6	
Light slate	6 6	112	6.6	
Dark slate	66	122	6.6	
Gray sand	6.6	140	6 6	
Light sand	66	175	6.6	

1

Formation		De	pth	
Light slate	to	$195\mathrm{fe}$	ret	
Coal	6.6	201	6 6	
Light slate	66	222	6.6	
Gray lime	6.6	230	6.6	
Light slate	66	240	6.6	
White sand	66	261	6.6	
Dark slate	6.6	295	6.6	
Gray lime	64	298	6.6	$12\frac{1}{2}$ " set at 295'
Dark slate	6.6	325	6.6	
Light slate	6.6	360	66	
Dark sand	66	373	6.6	
Dark slate	6.6	400	6.6	
Light sand	6.6	408	6.6	
Dark slate	6.6	423	6.6	
Gray sand	66	445	6.6	
Dark slate	66	460	66	
Light slate	6.6	483	6.6	
Dark slate	6.6	535	66	
Black slate	6.6	550	6.6	
Dark slate	66	567	66	
Coal	66	572	66	
Gray lime	66	576	66	
Dark slate	66	594	66	
Gray lime	6.6	603	66	
Light slate	6.6	617	6 6	
Dark slate		624	6.6	
Gray lime	6.6	630	6.6	
Light slate	66	658	66	
Coal	66	663	66	
Light slate	66	675	66	
Dark slate	6 6	677	6.6	
Gray lime	66	680	66	
Dark slate	66	766	6.6	
Light sand	6.6	770	66	
Dark slate		775	6.6	
Gray sand		785	66	
Dark slate	66	821	66	
Gray sand	66	825	66	
Dark slate		835		
Gray sand		840	66	
Dark slate		885	66	
Dark sand		915	6.6	
Dark slate		963	6.6	
Coal		965	6.6	
Light sand		985	66	
Dark slate		1027	66	4.011
Gray lime		1033	66	10" set at 102 9'
Dark slate		1048	66	
Black slate	- <u>-</u>	1052		

Formation		Depth	
Dark slate	to 1067	feet	
Light sand	" 1100		
Dark slate	" 1120	66	
Light sand	~~ 1200	66	
Dark slate	" 1206	66	
Gray sand	" 1223	6.6	
Dark slate	" 1225	6.6	
Dark lime	" 1229	66	
Dark slate	" 1243	66	
Light sand	" 1272	66	
Light slate	" 1286	66	
Gray lime	" 1289) "	8¼" set at 1286'
Dark slate	~~ 1295	66	
Dark sand	" 1297	66	
Dark slate	" 1303	66	
Dark sand	·" 1 309	6.6	
Light sand	'' 1324	6.6	gas 1313-1322
Dark slate	" 1339	66	
Gray lime	" 1 342	2 "	$6\frac{5}{8}$ " set at 1340
Gray slate	'' 1360	6.6	
Gray sand	" 136 2	66	
Dark sand	" 1366	6.6	
Light sand	" 1372	66	
Brown sand	ʻʻ 1 381		
Top of sand 1360 feet.			
First show of oil 1361 feet.			

Well No. 3 on the farm of Phoebe Hayden, 200 feet to North line, 660 feet to West line. Washington Township, Section 7, Gibson County.

Casing Record

Fourteen feet wood conductor, 1,298 feet 8¼ inch casing, 134 feet 65% inch casing (liner).

Shot Record

One hundred twenty quarts, 1,398 feet to 1,416 feet.

Formation Record

Formation		D	Depth
Soil	to	1	foot.
Yellow clay	66	11	feet.
Yellow sand	6 6	60	66
Dark slate	6.6	65	66
Coal	66	67	66
Dark slate	66	71	66
Light lime	66	73	6.6
Light slate	66	110	66
Dark slate	66	127	66
Gray sand	66	130	6.6
Dark slate	66	150	66
Gray lime	66	205	66

Formation		D	epth	
White sand	10	225	feet	
	6.6	250	6.6	
Gray lime	66	253	6.6	12½" set at 250'
Dark slate	66	262	6.6	
Light lime	66	300	6.6	
	66	320	6.6	
	6.6	323	6.6	
	66	330	6.6	
	66	400	66	
-	66	410	6.6	
Light slate	66	420	66	
-	66	440	66	
Dark slate	66	449	6.6	
Light sand	66	455	66	
Dark lime	66	463	6.6	
Light sand	66	480	66	
Light slate	66	525	66	
Dark slate	66	560	6.6	
Black slate	66	567	6.6	
Dark slate	66	577	6.6	
Light slate	66	590	6.6	
Dark slate	66	597	4 G	
	6.6	599	6.6	
Gray sand Dark slate	66	603	66	
	66	607	66	
Dark lime	66	612	6 6	
Coal Light sand	66	625	66	
Dark slate	66	635	66	
Dark slate Dark lime	66	650	6.6	
	66	665	66	
Light slate	66	672	6.6	
Brown lime	66	685	66	
Light slate	66	700	6.6	
Dark lime	66	720	6.6	
Dark slate	66	725	66	
Dark lime	66	775	66	
Dark slate	66	788	66	
Gray sand	66	839	66	
Dark slate	66	- 845	6.6	10" set at 839'
Brown lime	66	855 855	66	10 Set at 000
Light slate	66		6.6	
Gray lime		860		
Gray sand	6.6	872		
Dark sand		888		
Dark sand	66	925		
Dark slate	66	930		
Dark sand	66	945		
Dark slate	6.6	965		
Dark sand		984		

Formation		D	epth
Dark slate	to	1012	feet
White sand	66	1040	66
Dark slate	"	1088	66
Coal	66	1090	66
Dark slate	"	1114	6.6
Light slate	6.6	1119	66
Light sand	66	1135	66
Dark slate	66	1175	6.6

Dark slate " 1175	66
Light sand " 1185	66
Dark slate " 1190	6.6
Dark lime " 1193	66
Dark slate "1197	66
Dark sand " 1270	"
Dark slate " 1272	66
Brown lime " 1274	66
Light sand " 1298	" water
Brown lime "1302	" 8¼" set at 1298'
Light sand " 1308	66
Dark slate " 1317	66
Gray lime " 1319	"
Dark slate "1340	66
Light sand " 1359	" Gas at 1357'
Dark slate " 1369	"
Gray lime " 1383	66
Dark slate " 1398	"
Dark sand "1403	" first oil 1400'
Light sand " 1408	"
Gray sand " 1415	"
Dark slate " 1425	"

McRoberts well No. 2. Section 6, Washington Township, Gibson County.

Yellow clay	to	25	feet.
Shelly slate	6.6	38	6.6
Light slate	6.6	116	6.6
Dark slate	" "	218	6.6
Light lime	66	296	6.6
Light sand	6.6	327	6.6
Light slate	66	340	6.6
Light sand	6.6	354	6.6
Broken lime	6.6	385	6.6
Light slate	66	407	66
White lime	6.6	449	6.6
Light slate	66	502	6.6
Dark slate	66	536	66
Light slate	°66	551	6.6
Dark slate	66	560	6 6
Light lime	66	568	66
Light slate	66	621	66

Dark slate	to	662	feet
Light slate	60 66	748	"
Dark slate	66	763	66
Sandy slate	66	783	66
Dark slate	66		66
	66	814	66
Light slate	66	833	6.6
Gray lime	66	842	66
Dark slate		851	66
Light slate	66	859	-
Light slate	6.6	909	
Water sand		953	
Dark slate	66	984	6.6
Brown lime	6.6	989	6.6
Dark slate	66	998	6.6
Sandy lime	6.6	1003	66
Dark slate, show of oil		1042	66
Gray sand		1057	6.6
Dark slate	66	1088	66
White sand	66	1129	6.6
Gray lime	66	1138	66
White slate	66	1152	66
Light water sand	66	1207	6.6
Dark slate	6.6	1240	6.6
Gray lime	66	1255	6.6
Brown slate	6.6	1286	66
Brown lime	66	1291	66
Brown slate	66	1315	66
Light sand	6.6	1318	66
Light slate	66	1326	6.6
Light lime	6.6	1331	6.6
Light slate	66	1337	6.6
Light sand	66	1342	6.6
Light lime	6 6	1347	6 6
Dark slate	66	1358	6.6
Light lime	6.6	1363	6.6
Light sand, water	6.6	1368	6.6
Light sand	66	1382	6.6
Dark slate	6.6	1448	6.6
Gray lime	66	1453	6.6
Dark sand	6.6	1 484	6.6
Dark slate	66	1494	6 6
Brown lime	66	1501	6.6
Dark slate	66	1516	66
White sand	66		66
Brown sand	66		6.6
onth of the well 1532 feet Heavy	C .		of a

Ę,

C.

191 × -- ---

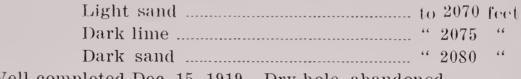
Total depth of the well 1,532 feet. Heavy showing of gas. Well completed on September 25, 1919. Gas well.

Log of L. W. McDonald well No. 6 located in S. W. corner of the N. E. $\frac{1}{4}$ of the N. W. $\frac{1}{4}$ of Section 7, Washington Township, Gibson County.

Top of sand			1323	feet.
Oil pay	.1324	to	1341	6.6
Shelly gray sand				
Bottom of well			1349	6.6
December 4th 1919				

Finished December 4th, 1919.

1


Well No. 1, Ellis Lucas, Section 33, Montgomery Township, Gibson County.

Dark soil	to	10	feet.	
Light sand	66	50	6.6	
White slate	66	75	66	
Broken sand, water	66	90	6.6	
White slate	6.6	135	6.6	
White sand	6.6	145	6.6	
White slate	66	225	66	
Broken sand	6.6	235	6.6	
Gray lime	66	260	66	
Dark slate	6.6	430	6.6	
Lime shell	66	435	6.6	
White sand	6.6	490	6.6	
White slate	66	555	6.6	
Lime shell	6.6	575	6.6	
Coal	6.6	580	6.6	
Black slate	6.6	610	6.6	
Gray lime	6.6	615	6.6	
Sand	66	645	6.6	
White slate	6.6	690	6.6	
White lime	6.6	695	6.6	
Dark slate	6.6	790	6.6	
Sand	6.6	800	6.6	å
Coal	66	806	6.6	
Lime	6.6	811	6.6	٩:
White slate	6.6	850	6.6	
Broken lime	6.6	865	6.6	
White slate	6.6	890	6.6	
White lime	6.6	910	6.6	
White slate	6.6	920	6.6	
White lime	6.6	950	66	
Brown slate	6 6	990	66	
Brown lime	6.6	1005	6.6	
Dark slate	66	1007	6.6	
White sand	6.6	1095	6.6	Ę
White slate	6.6	1100	6.6	
Gray lime	6.6	1110	6.6	
Brown slate	66	1120	6.6	
Brown lime	64	1130	6 6	

23

internal with a s

Light date		1140	o ,
Light slate			reet.
Light sand	6.6	1215	6.0
Dark slate		1235	6.6
Dark lime		1245	66
Dark sand		1255	
Dark slate	66	1310	66
Broken sand		1330	66
Dark slate	66	136 0	66
Brown sand	6.6	1390	66
Black slate	66	1425	66
Lime shell	66	1430	66
Light slate	66	1440	6 6
Light lime	66	1450	66
Light slate	66	1490	66
Dark slate	66	1500	6 6
Light slate	6.6	1510	6.6
Dark slate	6.6	1520	66
Light slate	6.6	1540	66
Light lime	66	1565	6.6
Light slate	66	1575	6 6
Dark lime	6.6	1585	6 6
Light slate	6 6	1600	66
Light lime	6.6	1605	66
Light slate	66	1610	66
Dark lime	66	1615	66
Light slate	66	1625	66
Sharp sand	66	1640	66
Black slate	66	1660	66
	66	1670	66
Light lime	66	1690	66
Light slate	66	1710	66
Sand	66	1718	66
Black slate	66	$1710 \\ 1721$	66
Black lime	66	1721 1735	66
Black slate	66		66
Gray lime	66	1745	6.6
Slate and lime	6.6	1780	6.6
Blue slate	66	1805	6.6
Light limestone	6.6	1815	6.6
Blue slate	6 6	1875	6 6
Lime shell		1880	6.6
Dark slate	66	1920	
Gray lime	66	1925	66
Dark slate	66	1940	66
Gray sand	6.6	1945	66
Dark sand	6.6	1995	6.6
Dark lime	6.6	2000	6.6
Dark lime	66	2010	66
Dark slate	66	2040	6.6

Well completed Dec. 15, 1919. Dry hole, abandoned.

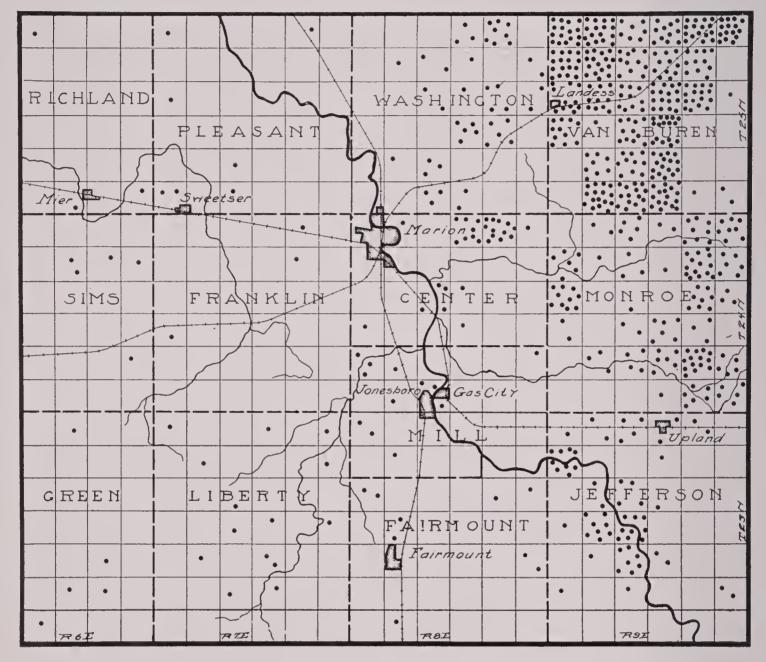


Fig. 35. Map of Grant County showing location of recorded abandoned wells. The northeastern part of this county is oil territory and the southeastern part is gas territory.

GRANT COUNTY

Grant County is covered with glacial drift which varies in thickness from 100 to 425 feet. Except for exposures along the Mississinewa River and Pike Creek the bed rock is completely concealed. The drift rests on the Silurian surface which has been greatly eroded.

Centre Township. The city of Marion in this Township was one of the first to prospect for oil and gas. The first well reached the Trenton at a depth of 865 feet, or 60 feet below sea level and produced 350,000 cubic

feet of gas daily, but after being deepened produced two million cubic feet daily. The second well reached the Trenton at 880 feet or 83 feet below sea level. At the top of the sand it produced 350,000 cubic feet, 35 feet deeper it produced five million cubic feet daily.

The following table gives the records of some of the wells drilled at Marion:

		Record	l of Marion Wells		
No. of		Depth of	Relation to	Thickness	Production
Well.	Altitude.	Trenton.	Sea Level.	of Drift.	in Cu. Ft.
1	840	900	60 feet below		2,000,000
2	797	880	83 " "		5,000,000
3	820	878	58 " "		3,500,000
4	802	880	78 " "		2,500,000
5	830	1000	70 " "		4,000,000
6		908		32	350,000
7	701	904			3,000,000
8					3,000,000
9					1,500,000
10					oil and gas
11					7,425,000
12				Oil a	ind 350,000
13					5,642,000
Soldiers' Home					
2	•••••			20	Salt water

Record of Well No. 6

Drift	32	feet.
Limestone	250	66
Niagara shale	40	66
Hudson River	336	66
Utica shale	250	66

Wells abandoned in 1911 are located as follows: Section 1, 1 well; Section 2, 12 wells; Section 3, 8 wells; Section 5, 1 well; Section 15, 1 well; Section 16, 4 wells; Section 19, 1 well; Section 22, 1 well.

Mill Township. A well drilled at Jonesboro produced 5,567,000 cubic feet of gas. It was called the "Cyclone" on account of its pressure. A record of the well is given by Phinney as follows:

Drift	162	feet.
Limestone	148	66
Bluish green shale	225	66
Gray shale	1 80	66
Brown shale	197	66
Trenton	23	66
Total	935	6.6
Altitude at well about	834	6.6

The following wells have been abandoned: Section 6, 2 wells, 1911; Section 8, 1 well, 1911; Section 29, 1 well in 1912; Section 30, 3 wells, 1912; Section 32, 1 well, 1912; Section 33, 2 wells, 1912.

Oil has been obtained from nearly all of the section in this Township and gas from many.

Fairmount Township. The first well drilled at Fairmount produced 11,500,000 cubic feet of gas per day. A second well produced 5,000,000 cubic feet per day.

Record of Fairmount Well No. 1 (Phi	inne	y)
Drift	35	feet.
Limestone	290	6.6
Shale	609	6.6
Trenton limestone	31	66
Total depth	965	6.6
Altitude of well	893	6.6

A well drilled in Section 25, has a record as follows: (Blatchley)

Drive pipe	 feet.
Casing	 6.6
Trenton limestone	 6.6
Oil sand	 66
2nd oil sand	 66
Total depth	 66
Initial production	 barrels.

Well in Section 2

Drive pipe	170	feet.
Casing	380	6.6
Top of Trenton	960	6.6
Oil sand	990	66
Second oil sand	1025	66
Total depth	1040	6.6

Wells have been abandoned in this Township as follows: Section 5, 1 well in 1912; Section 13, 1 well, 1912; Section 14, 1 well, 1912; Section 18, 1 well, 1911; Section 20, 1 well, 1911; Section 25, 1 well, 1911.

Jefferson Township. The first well drilled at Upland reached the Trenton at 1,010 feet. The oil sand was 10 feet thick and the total depth of the well 1,040 feet. The drift was 185 feet thick. Sixteen wells were drilled in this township in 1906, 13 were light producers. Forty wells were abandoned the same year. Below is a record of four wells in this Township, all of which produce gas, and the first one oil.

S. E. $\frac{1}{4}$ of N. W. $\frac{1}{4}$ of					
Sec. 28.	Sec. 19.	Sec. 19.	Sec. 17.		
Drive pipe 100	187	162	100		
Casing 420	375	375	365		
Top of Trenton. 920	933	925	886		
Total depth1020	1035	953	911		

Clay, gravel and quicksand 107 feet. Limestone 247 " Slate 577 " Trenton rock at 931 " In Trenton 102 "	ina.
Slate	
Trenton rock at	
In Trenton 102 "	
Total depth1033 "	

Well No. 14. Mary Anderson Farm. Jefferson Township, Grant County, Indiana.

Clay, gravel and quicksand	112	feet.
Limestone	268	6.6
Slate	563	6.6
Trenton rock at	943	6.6
In Trenton	107	6.6
Total depth	L050	6.6

Well No. 3. A. D. Mittank Farm.		
Clay, gravel and quicksand	102	feet.
Limestone	256	6.6
Slate	558	6.6
Trenton rock at	916	6.6
In Trenton	107	6.6
Total depth1	023	66

Every section in this Township has produced either oil or gas or both. The following wells have been abandoned: Section 2, 2 wells; Section 3, 2 wells; Section 4, 4 wells; Section 5, 2 wells; Section 6, 1 well; Section 7, 9 wells; Section 10, 1 well; Section 15, 1 well; Section 16, 4 wells; Section 17, 2 wells; Section 19, 1 well; Section 20, 8 wells; Section 21, 9 wells; Section 27, 2 wells; Section 28, 7 wells; Section 29, 1 well; Section 31, 1 well; Section 33, 1 well; Section 36, 2 wells.

Monroe	Township.	The records	of two	well	ls are	giver	i belov	W
				Se	c. 12	Sec	c. 36	
	Drive pip)e		425	feet	227	feet.	
	Casing .	•••••••••••••••••••••		430	66	403	6.6	
	Top of T	renton		990	6.6	995	6.6	
	Gas sand				6.6	1030	66	
	Water				66	1049	6.6	
	Total der	oth	. 1	050	6.6	1077	6.6	

N

More than one-half of the sections in this Township have produced oil or gas or both.

Abandoned wells: Section 1, 8 wells; Section 2, 8 wells; Section 3, 2 wells; Section 4, 5 wells; Section 5, 2 wells; Section 7, 6 wells; Section 8, 1 well; Section 9, 3 wells; Section 10, 1 well; Section 11, 14 wells; Section 12, 6 wells; Section 13, 2 wells; Section 14, 8 wells; Section 15, 1 well; Section 16, 1 well; Section 17, 1 well; Section 18, 10 wells; Section 19, 2 wells; Section 21, 2 wells; Section 22, 6 wells; Section 23, 3 wells; Section 25, 5 wells; Section 26, 14 wells; Section 27, 6 wells; Section 28, 4 wells; Section 29, 2 wells; Section 34, 1 well; Section 35, 6 wells; Section 36, 6 wells.

Pleasant Township. Light producing wells have been found in this township. Two wells were drilled near Jalapa in 1901 and 1903, both light producers. Wells abandoned are located as follows: Section 2, 1 well; Section 6, 1 well; Section 18, 1 well; Section 28, 1 well; Section 31, 2 wells; Section 33, 1 well.

Richland Township. Salt water was obtained in a well drilled about two miles from the north boundary. Wells were abandoned in Section 4, 1 well; Section 34, 1 well; Section 36, 1 well.

Sims Township. A strong gas supply was obtained at Swayzee. Two wells were put down in Section 12, both produced a small supply of oil. Wells abandoned are as follows: Section 2, 1 well, 1913; Section 9, 1 well, 1913; Section 10, 2 wells, 1911; Section 25, 1 well, 1912.

Van Buren Township. The first well drilled contained both oil and gas. A record of the well drilled at Van Buren is given below.

Log of Van Buren Well No. 1		
Drift	91	feet.
Limestone	300	66
Shale	559	66
Trenton limestone	23	6.6
-		
Total depth	973	6.6
Altitude of well	843	66

•

The following are records of other wells drilled in this township:

	Sec. 2	Sec. 7	Sec. 17	
Drive pipe	174	156	412	
Casing	460	439	441	
Top of Trenton		1003	972	
Gas		1012	987	
Oil (first)	1020	1018	1005	
Oil (best)		1038		
Total depth	1046	1085	1032	
Initial production	20 bbl.	65 bbl.	30 bbl.	

Every quarter section of land in this Township has been a producer of oil or gas or both. The following wells have been plugged: Section 1, 15 wells; Section 2, 23 wells; Section 3, 11 wells; Section 4, 7 wells; Section 5, 19 wells; Section 6, 33 wells; Section 7, 22 wells; Section 8, 21 wells; Section 9, 11 wells; Section 10, 11 wells; Section 11, 11 wells; Section 13, 1 well; Section 14, 19 wells; Section 15, 56 wells; Section 16, 6 wells; Section 17, 10 wells; Section 18, 11 wells; Section 19, 11 wells; Section 20, 1 well; Section 21, 12 wells; Section 22, 19 wells; Section 27, 16 wells; Section 28, 10 wells; Section 29, 8 wells; Section 32, 20 wells; Section 33, 29 wells; Section 34, 38 wells; Section 35, 1 well; Section 36, 2 wells.

Washington Township. A few sections in the northwest corner of the Township are the only ones that have not been productive. Wells No. 1 on the N. M. Bradford, and No. 1 on the Ira Bradford farm, in the north half of the southeast $\frac{1}{4}$ of 16, and No. 11 on the J. T. Bradford in the S. W. $\frac{1}{4}$ of 16, had the following records:

	No. 1	No. 2	No. 11
	N. M. B.	I. B.	J. T. B.
	feet.	feet.	feet.
Drive pipe		256	341
Casing	509	409	442
Top of Trenton		996	994
Gas		1020	1020
Best oil	1040	1030	1055
Total depth	1071	1071	1094
Initial production, 1	obls 25	60	15

Section 2, E. J. Hunt farm, S. W. ¼. An average well on the lease shows the following record:

Drive pipe	300	feet.
Casing	500	6.6
Top of Trenton	980	6.6
Total depth	1055	66

On Section 3, one mile west of the above farm, a record of bore No. 1 was as follows (the well was a fair producer):

Drive pipe	199	feet.
Casing	504	6.6
Top of Trenton1		
Gas struck at1	014	6.6

	First oil pay Salt water Second oil pay Total depth	1040–1045 1055–1070	feet "
	the N. E. ¼ of Section 11 had th Drive pipe Casing Top of Trenton First pay Salt water Total depth	$\begin{array}{c} 250 \\ 455 \\ 1014 \\ 1026 \\ 1073 \end{array}$	
An avera the northwe	e well started at 60 barrels. ge record of ten wells drilled on est ¼, up to October 1, 1903, is a Drive pipe Casing Top of Trenton Total depth he wells came in with an initial p	as follows: 104 460 1001 1079	feet. ,, ,,
A well or	a the L. W. Smith farm, Section owing record: Drive pipe Casing Top of Trenton. Total depth	16, south hal 	f of the N. W. $\frac{1}{4}$
The well showing of a pocket of the fluid ro	8, N. E. ¼. Drive pipe Casing Top of Trenton Struck gas at Total depth yielded 2,000,000 feet of gas a d oil. At the end of that time it w oil near the bottom of the bore ose 20 feet above the derrick. The d settled down into a fair product	420 987 1000 1074 day for twen as shot with was evidentl The well mad	" " ty days, with no 160 quarts, when y broken into, as
producers. Abandone Section 3, 3	<pre>rkins lease, on the N. W. ¼ of The record of No. 7 being as fol Drive pipe Casing Top of Trenton First oil pay Second oil pay Total depth ed wells are located as follows wells, 1913; Section 9, 2 wells, 1 2 wells, 1912; Section 13, 3 well</pre>	lows: 	feet. " " " 2, 8 wells, 1913; 10, 1 well, 1916;

.

1912; Section 15, 1 well, 1913; Section 16, 2 wells, 1912; Section 22, 5 wells, 1913; Section 23, 5 wells, 1913; Section 28, 3 wells, 1913; Section 33, 3 wells, 1912; Section 34, 2 wells, 1912.

Green Township. Abandoned wells are loca	ated as fo	llows:	
Owner. Date.			Welts.
E. Pennington 1912	3	$6\mathrm{E}^-$	1
Joe Hoe 1913	4	$6\mathrm{E}$	1
J. J. Johnson	16	$6\mathrm{E}$	1
G. M. Kilgore 1912	26	6E	1
N. J. Lacure 1912	34	$6\mathrm{E}$	1
Chas. Lear 1913	35	$6\mathrm{E}$	1
Liberty Township. A list of the abandoned	wells is g	given be	low:
Owner. Date.	Section.		
A. W. Jay 1912	1	7E	1
Henry Daugherty 1913	3	$7\mathrm{E}$	1
A. Gimmell 1912	6	$7\mathrm{E}$	1
P. & N. Muchmore 1912	8	$7 \mathbf{E}$	1
Thos. Shady 1912	12	$7\mathrm{E}$	1
F. A. Stewart 1912	16	7E	1
W. W. Elliott 1912	21	$7\mathrm{E}$	1
John Harold 1912	22	$7\mathrm{E}$	1
Jessie Haisley 1912	24	$7\mathrm{E}$	1
Frank Mason & Webb Winslow 1912	27	7E	2
Woodie Clark	29	$7\mathrm{E}$	1
Thos. Shady	33	$7\mathrm{E}$	1
Wm. Harvey	34	7E	1
Franklin Township. Wells were drilled and	labandon	ed as fo	llow s :
Owner. Date.	Section.	Range.	Wells.
H. J. Paulus 1912	2	$7\mathrm{E}$	1
B. D. Tharp 1911	11	$7\mathrm{E}$	1
Mat Sheffield 1911	19	$7 \mathbf{E}$	1

GREENE COUNTY

The mantle of glacial drift covering this County is light, varying from five to fifty feet in thickness except in the White River valley where it may exceed one hundred feet. The rock strata underlying the drift belongs to the Mississippian and the Pennsylvanian periods. In the eastern part of the county the structure may be determined by locating elevations on the surface of some of the Chester limestones which may be used as datum planes for drawing structural contours. In the western part of the County where the coal measures outcrop the coal beds may be used, with proper methods of discrimination, for a like purpose. The surface of the Trenton limestone probably lies from 2,000 to 2,500 feet below the surface in this County. The Devonian, which may be oil bearing where the structure is favorable, may be reached at depths ranging from 1,500 to 1,800 feet. Jefferson Township. A well drilled at Worthington reached water in the Niagara limestone at 1,430 feet. The well was completed at 1,445 feet.

Taylor Township. A well drilled in Taylor Township has the following record:

Well No. 1 on Section 31

Surface to 15 feet—Soil, drift and mud.
15 to 20 feet.—Quick sand 5 feet
20 " 40 " —Soft mud 20 "
40 " 45 " —Limeshell 5 "
45 " 72 " —Shale and water
72 " 80 " —Limeshell 8 "
80 " 100 " —Shale and water 20 "
100 " 120 " —Lime 20 "
120 " 125 " —Broken shale 5 "
125 " 250 " —Limestone full of water.
250 " 300 " —Soft black mud.
300 " 310 " —Limeshell 10 "
310 " 610 " — Hard limestone
610 " 615 " —Soft lime 5 "
At 610 feet lime got soft and brown, with a smell
of gas and you could just notice a rainbow of a
color of oil.
615 to 710 feet.—Brown limestone.
710 " 800 " —Brown lime full of water.
800 " 1250 " —Black shale.
1250 " 1285 " —Lime shell.
1285 " 1290 " —Very hard lime.
1290 '' 1400 '' —Dark shale.
1400 " 1487 " —Brown shale.
1487 " 1642 " —Niagara rock.
Total depth of well1642 feet.

Washington Township. A small gas and oil field was located at Lyons. The production was never very large. Wells were abandoned in Section 4, Section 6, Section 9, Section 11, Section 15, and Section 16. The following is a record of the Kaufman well:

Drift	26	feet.
Sandy lime	60	6.6
Coal	4	6.6
Sand and water	86	6.6
Slate	20	66
White lime	30	66
Red rock	35	6.6
Sandy slate	10	6.6
Dark slate	55	6.6
Bedford lime	8	6 6
Dark shaley lime	342	6.6
Shell and lime	100	* 4

Brown slate and water	10	feet
Black lime		6.6
Hard white lime		6.6
Slate and shale		6.6
White lime		6.6
Black slate		6 6
Brown sand	50	6.6
White slate	238	6.6
Trenton rock		6.6

Still in Trenton when finished at 1,959. Big water at 1,950. Filled up to 1900. This well probably finished in the Niagara rather than the Trenton. Casing record, 10 inch, 209 feet; 8 inch, 620 feet; 65% inch, 1,188 feet.

Stafford Township. Two wells were drilled in this Township, one on the property of J. L. Morgan and in Glenns Valley.

HAMILTON COUNTY

The bed rock formations of this County belong to the Silurian and Devonian periods of geologic time. These formations are largely concealed by glacial drift varying in thickness from 50 to 300 feet. The surface of the Trenton lies from 800 to 1,200 feet below the surface and for the greater part of the County is above sea level. The dip of the strata is southwest.

Noblesville Township. A well drilled at Noblesville gave the following log:

Drift	140	feet.
Limestone	286	6.6
Shale	410	6.6
Trenton limestone	7	6.6

 Total
 843 feet.

 Altitude of well
 750 "

Many gas wells are located in this Township. Abandoned wells are located in Section 11, 1 well; Section 17, 1 well; Section 18, 2 wells.

Delaware Township. Gas wells were located at New Britton and Fishers.

Fall Creek Township. Oil wells were located in Sections 1, 2, 36 and others.

Logs of Wells in Section 2^a

N	0.1.	No. 2.	No. 3.
Drive pipe	56	54	54
Casing	380	384	381
Top of Trenton	886	889	885
Best oil at	914	918	914
Total depth	926	955	935
Initial output, barrels	65	2	50

Jackson Township. Oil wells were located in Sections 5, 6, 31, 33, 36 and others. Three abandoned wells are located in 28 and 1 in 23. Logs of some of the wells are as follows:

		Sec. 6.	Sec. 5.	Sec. 36.
Ø	Drive pipe	203	240	70
	Casing	525	545	
	Top of Trenton			91 6
	Total depth			
The reco	rd of a well drilled at Cicer	o is give	en below	•
	Drift		161	feet.
	Niagara limestone and sha	le) "
	Hudson River and Utica		490) "
	Trenton limestone			2 **
Phinney	gives the following record o	f a well	drilled a	nt Arcadia:
	Drift		130	feet.
	Limestone) "'
	Blue limestone			
	Shale		581	66
	Trenton limestone			\$ 66
	Total depth			÷ 6
	Altitude of well			66

Adams Township. At Sheridan gas was obtained at 1,076 feet and the top of the Trenton at 1,069 feet.

Washington Township. At Westfield the top of the Trenton was reached at 1,040 feet and salt water at 1,080 feet. Blatchley gives the records of five wells in this Township, the first three are in the S. W. $\frac{1}{4}$ of Section 13, and the last two in the east half of Section 20.

	No. 1	No. 2	No. 3	No. 4	No. 5	
	Drive pipe 305	231	234	160	161	
	Casing 560	500	500	515	515	
	Top of Trenton1024	1020	1022	1005	1000	
	Total depth1042	1037	1050	1032	1019	
)	abandoned well is located	in Secti	ion 26	on the	Allan Stal	ker

An abandoned well is located in Section 26, on the Allan Stalker property.

Clay Township. At Carmel gas was obtained.

Wayne Township. Abandoned wells are located in this territory as follows: One well each in Sections 3, 5, 9, 10, 17 and 20 and two in Section 9.

White River Township. Abandoned wells are located as follows: One each in Sections 3, 9, 10, 27 and 34.

128

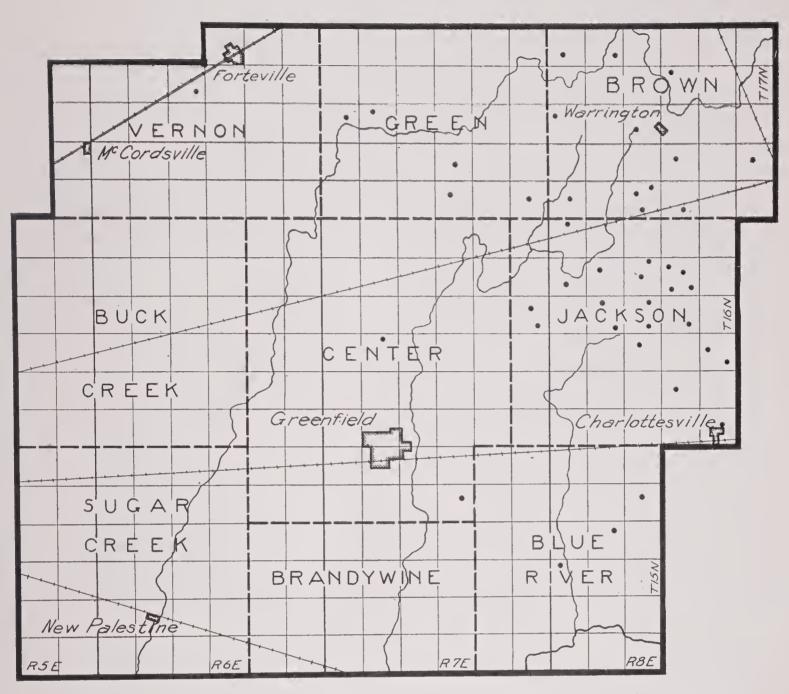


Fig. 36. Map of Hancock county showing abandoned wells. Gas areas occur in the following townships: Vernon, Buck Creek, Brandywine and Blue River.

HANCOCK COUNTY

This county is covered with glacial drift varying in thickness from 50 to 250 feet. The durolith formations belong to the Silurian and the Devonian periods. In the greater part of the county the surface of the Trenton is above sea level in the southwest corner of the County it lies below sea level.

Centre Township. Productive gas wells were drilled at Greenfield. A record of well No. 1 as given by Phinney is below:

Drift	215	feet.
Corniferous limestone	65	6.6
Shale (upper Niagara)	17	6.6
Limestone (Niagara)		
Shale	135	6.6

Black shale	45	feet
Bluish green shale	138	6.6
Limestone	2	6.6
Brown shale	300	6 k
Trenton limestone	14	1 44
-		
Total depth	999	1 66
Altitude of well	902	66

Wells drilled on the property of Joe Docman and Max Franks were abandoned in 1912 and one on the property of Joe Branny in Section 20 in 1913.

Sugar Creek Township. The record of a well drilled at Palestine is as follows:

Drift	285	feet.
Limestone	122	6.6
Shale	593	66
Trenton limestone	60	66
-		
Total [.]	1060	66
Altitude of well	839	6.6
Salt water at	1003	66

Vernon Township. Gas was obtained in wells at Fortville and McCordsville, Vernon Township. The following wells were abandoned, one each on the property of Wm. Fort and J. Lindamood and one on the property of Nelson Fort in Section 16, all in 1913.

Greene Township. Wells abandoned in this township are located:

		*	
Owner.	Section.	Date.	Wells.
Sarah Martin	: 19	1912	1
Mark O'Mailey	20	1913	1
S. E. Stubbs	27	1916	1
David Jones	34	1916	1
Ora Peacock	36	1919	1

Brown Township. Abandoned wells are located as follows:

•			
Owner.	Section.	Date.	Wells.
Harry Davies	7	1916	1
H. Cook		1919	1
J. W. Hedrick		1911	1
Madison Brooks		1913	1
Frank Burgis		1912	1
Hayes		1913	1
Joe Van Matre		1913	1
Carwood		1913	1
W. Keck		1913	1
Joe Van Matre	33	1913	1

Jackson Township: Gas was obtained at Charlottsville in Section 35 and in many other sections. The following wells have been abandoned: Section 6, 1 well; Section 7, 1 well; Section 8, 1 well; Section 9, 2 wells; Section 10, 4 wells; Section 13, 2 wells; Section 15, 1 well; Section 16, 2 wells; Section 17, 2 wells; Section 21, 1 well; Section 23, 2 wells; Section 27, 1 well; Section 35, 3 wells.

Blue River Township. The following wells have been abandoned in this Township: One each in Sections 9, 10, 17 and 19.

HARRISON COUNTY

Harrison County lies wholly within the unglaciated area of the state. The greater part of its surface is occupied by the Mitchell peneplain through the surface of which the major streams have cut to the underlying formations. The strata represented by outcrops in the County belong to the following divisions:

(Recent—Residual clays and alluvium.
Quaternary	Pleistocene—Possible residuals.
	Chester, sandstones limestone and shale.
	Mitchell limestone.
Mississippian	Salem limestone.
	Harrodsburg limestone.
	Knobstone, shales and sandstones.

In that portion of the county occupied by the Mitchell limestone the determination of structural conditions will be difficult because of the absence of definite and persistent horizons in the Mitchell. Where numerous outcrops of the Knobstone-Harrodsburg contact can be found, this may be used as a key horizon. If structural conditions are favorable, oil and gas reservoirs may be found in the Trenton, Silurian and Devonian limestones. Gas has been obtained at Tobacco Landing from the Devonian. A record of one of the wells follows:

Section of Well No. 1

Keokuk limestone15 feet.Knobstone390 "

Depth to Devonian shale...... 405 "

A good flow of gas was found in the Devonian shale. The gas pressure in 1911 was from 60 to 110 pounds. In 1914 it was only 50 pounds. Gas and oil wells range in depth from sixty to nine hundred feet. Six oil wells range in depth from 135 feet to 700 feet. The initial production was from five to thirty barrels per day.

HENDRICKS COUNTY

The strata underlying the glacial drift in this County belong to the Devonian and Mississippian periods. The New Albany shale occupies the subsurface in the eastern part of the County and the Knobstone in the western portion. The glacial drift conceals the bed rock almost completely and reaches a thickness of two hundred feet. A well was drilled at Plainfield at an altitude of 742 feet. The total depth was 1,386 feet and a slight flow of gas was obtained at a depth of 350 feet.

The surface of the Trenton in all parts of this County is below sea level, probably 400 to 600 feet. If oil or gas in quantity is obtained in this County it will probably be in terraces or spurs or small domes connected with the Cincinnati geanticline. The position of such structures, if they exist cannot be determined by surficial observations because the outcrop of the strata is concealed largely by the drift. Not enough well records have been secured to enable one to secure sufficient data for subsurface work.

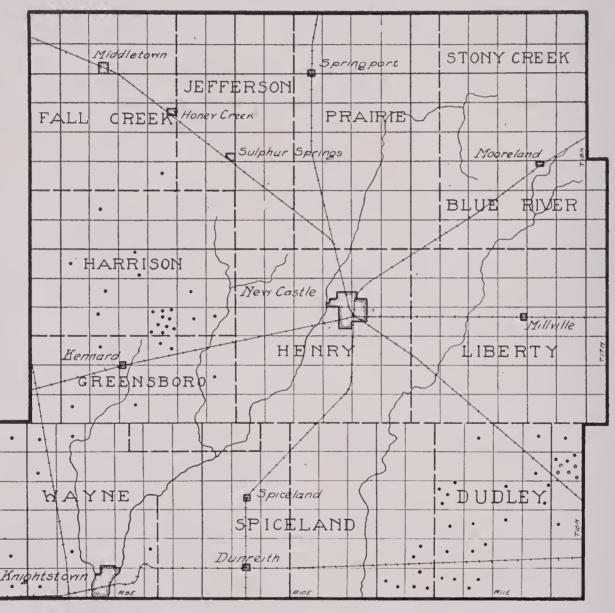


Fig. 37. Map of Henry County showing location of abandoned wells. The northern tier of townships is in gas territory.

HENRY COUNTY

The surface of the durolith of Henry County is formed by Silurian strata (Niagara limestone), which is covered with glacial drift varying in thickness from 25 to 500 feet. The surface of the Trenton lies from 500 to 1,200 feet below the surface of the county and for a large part of the County is above sea level.

Henry Township. Well No. 1 at New Castle has the following log: 66 Trenton limestone 421 66 66 66 The surface of the Trenton about New Castle varies in height above sea level from 104 to 137 feet, the average is about 125 feet. Prairie Township. A well drilled at Mt. Summit gave the following log: 66 6.6 66 66 Two wells were drilled at Springport, the record of the second follows: Drift 156 feet. 66 66 Black shale 111 66 66 66 Total depth1020 66 Spiceland Township. At Spiceland a well was drilled which has the following log: 66 66 66 Shale 10 66 66 66 Total depth1002 66 Altitude of well.....1023 Wayne Township. A well drilled at Knightstown has the following log: Drift 64 feet. Niagara limestone 200 Hudson River limestone and shale....... 360 66 66 Utica shale 199 66 66 Total depth1036 Trenton above sea level..... 113 66

At this point the surface of the Trenton varies from 112 to 121 feet above sea level. Three wells were drilled in Knightstown recently. The records of these wells are given below. No. 1 was drilled on the lot of Mrs. Walter Garrison; No. 2 on lot of James Oakerson; No. 3 on lot of L. P. Wenly.

	No. 1	No. 2	No. 3	
Drift to lime rock	57	63	60	feet.
Thickness of lime rock	200	200	200	6.6
Thickness of slate to shale	560	555	560	6.6
To Trenton	817	818	820	4.6
Drilled in Trenton	8	10	10	6.6
Total depth	825	828	830	6.6

HOWARD COUNTY

A mantle of drift covers the bed rock of this County to a depth of 40 to 100 or more feet. Underlying the drift are the limestones of the Silurian period. This County was among the first to drill for gas and as early as 1886 brought in a well of 2,000,000 cubic feet capacity. The depth to the surface of the Trenton varies from 800 to 1,100 feet and the surface of the Trenton is from 50 to 350 feet below sea level.

Center Township. The Township has produced much gas. The first well was drilled in 1886. The following is a list of 14 wells drilled in or near Kokomo¹:

No. of well	Depth to Trenton feet	Depth to gas feet	Altitude feet	Trenton below sea level	Thickness of drift	Capacity in cu. ft. per day
$ \begin{array}{r}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\end{array}$	$\begin{array}{r} 912\\ 913\\ 905\\ 936\\ 895\\ 889\\ 908\\ 904\\ 900\\ 902\\ 932\\ \hline \\ 903\\ \end{array}$	$\begin{array}{r} 922\\922\\910\\944\\901\\893\\912\\914\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots\\\cdots$			40 90	$\begin{array}{c} 2,000,000\\ 1,117,000\\ 810,000\\ 1,500,000\\ 4,462,000\\ 1,555,000\\ 3,015,000\\ 1,072,000\\ 2,500,000\\ 2,800,000\\ 2,800,000\\ 2,600,000\\ 3,650,000\\ 3,727,000\end{array}$
13	905		· · · · · · · · · · · ·			3,727,000

Record of Well No. 4 (Wm. Moore)

Drift	65	feet
Water lime	10	6.6
Bluish limestone	80	6.6
White shaly limestone	15	6.6
Bluish limestone	65	6.6
Niagara shale (calcareous)	35	6.6
Gray limestone	75	6.6
Hudson River shale	255	6.6
Utica shale	256	6.6
Trenton limestone	22	6.6
Total depth	958	66

At Tarkington the Trenton was reached at 965 feet and the drift has a thickness of 140 feet. In Section 19, 4 wells; Section 20, 8 wells and in Section 24, 1 well, were abandoned from 1911 to 1913.

Jackson Township. Gas wells were produced at Sycamore in this township. Wells abandoned are located as follows: Section 7, 2 wells; Section 12, 3 wells; Section 13, 3 wells; Section 17, 2 wells; Section 18, 1 well; Section 20, 1 well; Section 23, 1 well; Section 24, 5 wells; Section 26, 1 well; Section 31, 1 well; Section 32, 1 well.

Liberty Township. At Greentown a strong flow of gas was obtained. The depth to the Trenton is 936 feet, gas obtained at 965, and the drift was 79 feet. Wells have been abandoned as follows: Section 4, 1 well; Section 6, 1 well; Section 7, 1 well; Section 19, 2 wells; Section 27, 2 wells.

Union Township. The Trenton was reached at 934 feet, gas at 959, and the thickness of the drift was 107 feet. Wells abandoned are located in Section 6, 1 well; Section 7, 1 well; Section 15, 1 well; Section 17, 1 well; Section 20, 2 wells; Section 21, 1 well; Section 23, 1 well; Section 29, 1 well.

Taylor Township. The Fairfield well reached the Trenton at 937, drift 55 feet, McNeal well went through 32 feet of drift and reached the Trenton at 925 feet. Wells abandoned are located in Section 12, 2 wells; Section 15, 1 well; Section 18, 1 well; Section 26, 1 well; Section 30, 3 wells.

Howard Township. The Templin well passed through 80 feet of drift and reached the Trenton at 921 feet. The Weaver well passed through 100 feet of drift and reached the Trenton at 921 feet. A well drilled on the Underwood place in Section 15 was abandoned in 1913.

Harrison Township. A well located on the property of Jackson Morrow in Section 13 and one on the property of Mary A. Frances were abandoned in 1912 and 1913.

HUNTINGTON COUNTY

The Niagara limestone underlies the glacial drift in this County. The surface of the limestone has been deeply eroded and the drift varies much in thickness. Outcrops of the limestone occur along the banks of the Salamonie River. The southern part of this County has been good oil territory in the past and the field has been extended slightly recently. The County lies on the north side of the Arch and the strata dip toward the north. Structural conditions can be determined only by subsurface work.

The following are the records of some of the wells that have been drilled in this County:

Jefferson Township: Sections 7, 8, 17 and 18 were all productive territory in 1905. The following wells have been abandoned: Section 7, 2 wells; Section 13, 2 wells; Section 19, 3 wells; Section 21, 6 wells; Section 24, 1 well; Section 28, 7 wells; Section 31, 11 wells; Section 33, 27 wells; Section 34, 10 wells; Section 35, 13 wells; Section 36, 8 wells.

Salamonic Township. 25 new wells were drilled in this Township in 1905, which was formerly known as salt water territory. All were good producing wells.

An average record of the bores on the S. E. ¼ showed: Drive pipe 58 feet. 66 6.6 March Petroleum Co. Mill Lot Well No. 1. Located S. E. 1/4 of Section 20, Salamonie Township: Total depth $1007\frac{1}{2}$ " Shot with 100 quarts April 4, 1919. Pumped 50 barrels oil first 24 hours. J. L. Priddy Lease No. 9. N. W. 1/4 of Section 20, Salamonie Township: 66 66 66 Total depth1037 66 Not shot, plugged April 11, 1919. Calvin Perdue Lease No. 3, S. E. 1/4 of Section 29: 66 66 66 66 Shot with 60 quarts April 11, 1919. Pumped 125 barrels first 24 hours. Calvin Perdue Lease No. 4. S. E. 1/4 of Section 29, Salamonie Township: Drive pipe 61¹/₂ feet. 66 6.6 Total depth1007 " Shot with 100 quarts. Pumped first 24 hours, 50 barrels. Calvin Perdue Lease No. 5. S. E. 1/4 of Section 29:

Drive pipe	89	feet.
Casing	432	6.6
Top of sand	956	6.6
Drilled in sand	$25\frac{1}{2}$	61
Total depth	$981\frac{1}{2}$	66
Shot 80 quarts. Pumped 70 barrels first		
24 hours.		

Calvin Perdue Lease No. 6. S. E. 1/4 of Section 29: 66 66 66 Shot with 80 quarts. Pumped 55 barrels first 24 hours. Calvin Perdue Lease No. 7. S. W. 1/4 of Section 29: 66 66 66 66 Shot with 80 quarts. Pumped 150 barrels 24 hours. Calvin Perdue Lease No. 8. N. E. 1/4 of Section 29: Drive pipe 44 feet. - 66 66 66 66 Total depth1001 Shot with 120 quarts July 25, 1919. Pumped 180 barrels first 24 hours. Calvin Perdue Lease No. 9. N. E. 1/4 of Section 29: 6.6 66 66 66 Total depth1003 Shot with 140 guarts August 6, 1919. Pumped 90 barrels first 24 hours. Calvin Perdue Lease No. 10. S. E. 1/4 of Section 29: Drive pipe 32 feet. Shot with 60 quarts August 9, 1919. Calvin Perdue Lease No. 11. N. E. 1/4 of Section 29: Drive pipe 44 feet. 2" Casing 400 66 66 66 66 Shot with 100 quarts. Pumped 45 barrels first 24 hours.

137

L. S. Jones Lease No. 16. S. E. 1/4 of Section 20: Drive pipe $16\frac{1}{2}$ feet. 66 6.6 6.6 66 Shot with 80 quarts May 2, 1919. Pumped 50 barrels first 24 hours. Frank Malott Lease No. 1. N. E. 1/4 of Section 29: 6.6 4" Shot with 100 quarts. Pumped 100 barrels first 24 hours. Frank Malott, Lease No. 2, N. E. 1/4 of Section 29. Drive pipe 73 feet. 66 66 6.6 Total depth1003 Shot with 120 quarts. Pumped first 24 hours, 90 barrels. Frank Malott Lease No. 3, N. W. 1/4 of Section 29. 66 66 66 6.6 Pumped salt water first 24 hours. Calvin Perdue Lease No. 12, N. E. 1/4 of Section 29. 39 feet to limestone. 376 feet through limestone. 2 572 feet of shale. 22 feet of Trenton rock. Pumped 20 barrels first 24 hours. Calvin Perdue Lease No. 13, S. E. 1/4 of Section 29. 39 feet to limestone. 363 feet through limestone. 566 feet of shale. 23 feet of Trenton rock. Pumped 40 barrels first 24 hours. Finished Aug. 30, 1919.

Calvin Perdue Lease No. 14, N. E. 1/4 of Section 29. 28 feet to limestone. 367 feet through limestone. 573 feet of shale. $24\frac{1}{2}$ feet of Trenton limestone. Pumped 140 barrels first 24 hours. Calvin Perdue Lease No. 15, N. E. 1/4 of Section 29. 31 feet to limestone. 369 feet through limestone. 586 feet of shale. 25 feet of Trenton limestone. Pumped 25 barrels first 24 hours. Calvin Perdue Lease Well No. 16, N. E. 1/4 of Section 29. 46 feet 3 inches to limestone. 384 feet through limestone. 550 feet of shale. 24 feet of Trenton. Pumped 110 barrels first 24 hours. Calvin Perdue Lease Well No. 17, S. W. 1/4 of Section 29. 28 feet to limestone. 287 feet through limestone. 542 feet of shale. 20 feet of Trenton. Pumped 35 barrels first 24 hours. Finished Sept. 19, 1919. Calvin Perdue Lease Well No. 18, N. E. 1/4 of Section 29. 34 feet to limestone. 371 feet through limestone. 575 feet of shale. 25 feet of Trenton. Water, 24 hours. Calvin Perdue Lease Well No. 19, S. W. 1/4 of Section 29. 33 feet to limestone. 384 feet through limestone. 542 feet of shale. 19 feet of Trenton. Pumped 15 barrels first 24 hours. Finished Oct. 18, 1919. Calvin Perdue Lease Well No. 20, N. E. 1/4 of Section 29. 78 feet to limestone. 336 feet through limestone. 563 feet of shale. 20 feet of Trenton. First 24 hours, 25 barrels. Finished Oct. 10,1919.

;

Calvin Perdue Lease Well No. 21, N. E. ¼ of Section 29.
56 feet to limestone.
357 feet through limestone.
578 feet of shale.
19 feet of Trenton.
First 24 hours, 20 barrels. Finished Oct. 18, 1919.
Frank Malott Lease Well No. 4, N. W. ¼ of Section 29.
58 feet to limestone.
422 feet through limestone.
503 feet of shale.
20 ½ feet of Trenton.

First 24 hours, 20 barrels. Finished Oct. 3, 1919.

...

4 4

Wayne Township. 10 wells were drilled in the west half of Section 36, in 1904 and 1905, all of which started at about 100 barrels. Well No. 5, on the Hamilton lease, S. W. ¼ of Section 25, finished August, 1905, may, except in production, be taken as an average for this territory, its record being as follows:

Drive pipe	221	feet.
Casing	512	66
Top of Trenton	L0 01	66
Total depth1	1064	6.6
Initial production (barrels)	100	

Well No. 6 on the Pinkerton Lease, N. E. $\frac{1}{4}$ of Section 13, Jefferson Township had the following record:

Drive pipe	170	feet.
Casing	520	66
Top of Trenton	971	66
Total depth1	10233	6.6
Initial production	143	barrels.

Wells have been abandoned in this Township as follows: Section 3, 1 well; Section 11, 1 well; Section 12, 8 wells; Section 13, 9 wells; Section 22, 1 well; Section 23, 5 wells; Section 24, 15 wells; Section 27, 1 well; Section 31, 2 wells; Section 34, 10 wells; Section 35, 15 wells; Section 36, 1 well.

Monroe Wyley Lease No. 1, S. E. 1/4 of Section 12.

Drive pipe	137	feet.
Casing	427	66
·Top of sand	1001	6.6
Drilled in sand	30	6.6
Total depth	1031	66
No showing of oil. July, 1919.		

Chas. H. Freck Lease No. 1, S. W. ¼ of Section 13. 28 feet to limestone. 417 feet through limestone. 556 feet of shale. 17 feet of Trenton.

Finished Aug. 20, 1919. Slight showing of oil, but not enough to shoot. Aug. 20, 1919. Geo. Good Lease No. 1, N. E. ¼ of Section 32.
33 feet to limestone.
357 feet through limestone.
580 feet of shale.
19 feet of Trenton.
4 barrels first 24 hours.

Geo. Good Lease No. 2, N. E. ¼ of Section 32.

54 feet to limestone.
374 feet through limestone.
570 feet of shale.
38 feet of Trenton.

Finished Oct. 13, 1919. No showing of oil.

Well of Grant Myres, No. 1.

Surface	0	to	42	feet.
Gravel	42	6.6	215	6.6
Red rock	215	6.6	235	6.6
Slate	235	6.6	259	66
Lime	259	66	350	6 6
Slate	350	6 6	370	66
Lime	370	6.6	390	6.6
Slate	390	66	510	6.6
Shale	510	66	600	6.6
Brown shale	600	66	680	6.6
Light shale	680	66	750	6.6
Brown shale	750	66	900	6.6
Slate	900	66	992	6.6
Trenton rock	992	66	1002	6 6

Very hard, light showing of oil. Water found at 1,002 feet. Total depth 1,002 feet. Drilled by Blosser, Phipps and others.

Section 17. Well No. 1. Ed Mossburg, S. W. ¼ of S. W. ¼: 8 inch drive pipe 52 feet; 5% inch casing, 437 feet. Top of sand (Trenton) 1,013 feet. Salt water at 1,032 feet. Total 1,041 feet. Plugged January 29, 1919. Elevation of mouth 821 feet. Trenton 192 feet.

Well No. 2. S. E. ¹/₄ of S. E. ¹/₄ of Section 17: Drive pipe 35 feet. Top of Trenton 1,027 feet. Elevation 831 feet. Trenton 196 feet.

Well No. 1, Martha A. Raugh: S. E. ¼ of Section 17. 8 inch drive pipe, 32 feet; 5% inch casing, 395 feet. Top of sand, 1,027 feet. Big dose salt water at 1,050 feet. No showing of oil. Drilled June, 1918. Plugged June, 1918.

Section 20. S. E. ¹/₄ Old Home Well No. 1: Top of Trenton, 965. Elevation 816. Trenton, 149.

No. 2, 10 rods east. Top of Trenton 979. Elevation 826. Trenton 153.

No. 3, 500 feet north of No. 2. Top of Trenton 986 feet. Elevation 826. Trenton 160.

No. 4, S. E. of No. 2 500 feet. Top of Trenton 985. Elevation 827. Trenton 158. No. 5. S. E. of No. 4, 500 feet. Top of Trenton 983. Elevation 826. Trenton 157.

No. 6, S. E. of No. 5, 500 feet. Top of Trenton 972. Elevation 816. Trenton 156.

No. 7, S. E. of No. 6, 500 feet. Top of Trenton 979. Elevation 827. Trenton 152.

No. 8, north of No. 7, 500 feet. 10p of Trenton 982. Elevation 828. Trenton 154.

No. 9, north of tanks near No. 1, not drilled. Elevation 827.

Well No. 14. L. S. Jones, south half of N. E. ¼, Section 20: 8 inch drive pipe, 58 feet; 5% inch casing, 412 feet. Top of sand 990 feet. Total depth, 1,015 feet. Drilled 25 feet in sand. Shot 80 quarts. First 24 hours, 30 barrels. Drilled February 21, 1919.

Well No. 7. J. L. Priddy. S. E. corner of N. W. ¼, Section 20. 8 inch drive pipe 28 feet; 5% inch casing, 412 feet. Top of sand 988 feet. Total depth, 1,007 feet. In sand 19½ feet. Shot 100 quarts. Production first 24 hours, 24 barrels. Drilled January, 1919.

Well No. 8. J. L. Priddy. S. E. corner of N. W. ¼ of Section 20. 8 inch drive pipe, 64 feet; 5% inch casing, 400 feet. Top of sand 990 feet. Total depth 1,015 feet. Drilled 25 feet in sand. Shot 80 quarts. First 24 hours, 30 barrels. Drilled February 21, 1919.

Well No. 15, L. S. Jones, S. ½ of N. E. ¼ of Section 20. 8 inch drive pipe, 72 feet; 5% inch casing, 400 feet. Top of sand 983 feet. Total depth 1,003 feet. 20 feet in sand. Drilled February, 1919. Production first 23 hours, 40 barrels. Elevation of mouth 837 feet.

Well No. 3. J. L. Priddy, S. ½ of N. W. ¼, 8 inch drive pipe, 52 feet; 5% inch casing, 424 feet. Top of sand 1,007 feet. First pay 10 feet. Total depth, 1,029 feet. Drilled September, 1918.

Well No. 8. L. S. Jones, S. ½ of N. E. ¼ of Section 20. 8 inch drive pipe, 62 feet; 5% inch casing, 425 feet. Sand at 1,007 feet. Total depth, 1,027 feet. Drilled August, 1918. Production 24 hours, 20 barrels.

Section 20. Well No. 10. L. S. Jones, S. ½ of N. E. ¼ of section 20; 8 inch drive pipe 75 feet 10 inches—5 5/8 casing 415 feet. Top of sand 1006 feet. Bottom of sand 1027 feet. Drilled Oct. 3, 1918. Production first 24 hours 22 barrels.

Well No. 4. J. L. Priddy, S. ½ of N. W. ¼; 8 inch drive pipe 62 feet, 5 5/8 casing 425 feet. Top of sand 987 feet. Total depth 1017 feet. Showing of oil 7 feet in sand. Second pay 22 feet in. Drilled October, 1918. Produced 45 barrels first 24 hours.

Well No. 11. L. S. Jones, N. E. ¼; 8 inch drive pipe 72 feet, 5% casing 400 feet. Top of sand 997 feet. Total depth 1034 feet. In sand 27 feet. Shot Oct. 21, 1918.

Well No. 12. L. S. Jones, N. E. ¼; 8 inch drive pipe 71 feet, 5% casing 425 feet. Top of sand 1007 feet. Total depth 1029 feet. In sand 22 feet. Production first 24 hours 12 barrels.

Well No. 13. L. S. Jones, N. E. ¹/₄ of section 20; 8 inch drive pipe 58 feet, 5⁵/₈ casing 415 feet. Top of sand 995 feet, 22 feet in sand. Drilled Nov. 30, 1918.

Well No. 5. J. L. Priddy, S. ½ of N. E. ¼; 8 inch drive pipe 91 feet, 5% casing 405 feet. Top of sand 986 feet. Pay 14 feet in sand. Depth 1017 feet. Drilled 31 feet in sand. Shot 80 quarts. Production first 24 hours 60 barrels.

Well No. 6. J. L. Priddy, S. $\frac{1}{2}$ of N. E. $\frac{1}{4}$; 8 inch drive pipe, 117 feet 6 inches—55% casing 401 feet. Top of sand 982 feet. Total depth 1007 feet. Drilled 25 feet in sand.

Well No. 6. L. S. Jones, S. W. ¹/₄ section 20; 8 inch drive pipe 56 feet, 55% casing 425 feet. Top of sand 991 feet. Total depth 1018 feet. In sand 27 feet. Showing of oil 10 feet in. Pay at 24 feet in. Shot July 17, 1918.

Well No. 1. J. L. Priddy, N. ½ of N. W. ¼. Drive pipe 68 feet, 5% casing 418 feet. Top of sand 989 feet. Bottom 1022 feet. First pay 10 feet in. Second pay 28 feet in sand. Shot July 22, 1918. Production first 24 hours 80 barrels.

Well No. 7. L. S. Jones, S. E. ¹/₄. Drilled in Aug. 9, 1918. Top of sand 994 feet. Drilled 27 feet in sand. Total depth 1021 feet; 8 inch drive pipe 57 feet, 5% casing 425 feet. Production first 24 hours 20 barrels.

Well No. 2. J. L. Priddy, S. ½ of N. W. ¼; 8 includrive pipe 70 feet, 5% casing 425 feet. Top of sand 991 feet. Total depth 1024 feet, first pay 8 feet in. All pay. Shot Aug. 23, 1918. 100 quarts. Production first 24 hours 145 barrels.

Well No. 9. L. S. Jones, S. E. $\frac{1}{4}$: 8 inch drive pipe 70 feet 3 inches—55% casing 423 feet. Top of sand 991 feet. Total depth 1019 feet. Pay at 19 feet. In sand 28 feet. Completed Sept. 6, 1918. Production first 24 hours 50 barrels.

Well No. 1. L. S. Jones, N. E. ¹/₄ section 20; 8 inch drive pipe 25 feet 5 inches, 6¹/₄ casing 404 feet 1 inch. Top of sand 987 feet. First pay at 991 feet. Total depth 1005 feet.

Well No. 2. L. S. Jones, S. E. ¼; 8 inch drive pipe 29 feet, 6¼ casing 402 feet. Top of sand 978 feet. Pay sand 14 feet. Total depth 1006 feet. Elevation of mouth 831 feet.

Well No. 3. L. S. Jones, S. E. $\frac{1}{4}$; 8 inch drive pipe 47 feet—5% casing 415 feet. Top of sand 990 feet. First pay 4 feet in sand. Total depth 1016 feet. Elevation of mouth 841 feet.

Well No. 4. L. S. Jones, S. E. ¼; 8 inch drive pipe 58 feet—5% casing 415 feet. Top of sand 990 feet. First pay 2 feet in. Total depth 1010 feet.

Well No. 5. L. S. Jones, S. E. ¼; 8 inch drive pipe 47 feet, 5% casing 414 feet. Top of sand 988 feet. First pay at 12 feet in sand. Show of oil at 16 feet. Salt water at 18 feet. Total depth 1031 feet. Elevation 831 feet. Drilled 41 feet in sand. Production salt water. Plugged June 17, 1918.

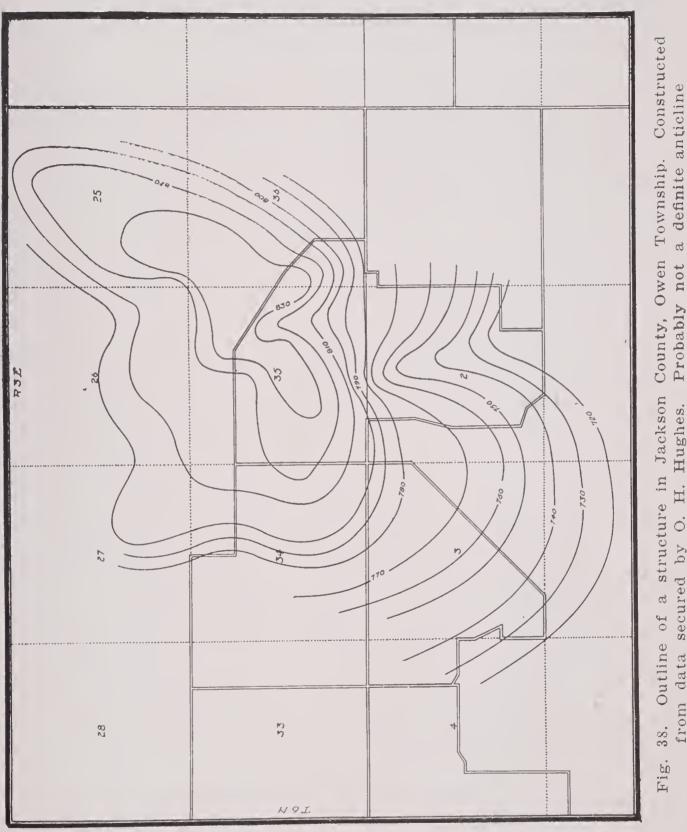
Section 21. Well No. 1. Eliza P. Thompson, N. E. corner of S. W. ¼; 8 inch drive pipe 67 feet, 5% casing 425 feet. Top of sand 1007 feet, 28 feet in sand. No showing of oil. Plugged November, 1918.

Section 27. Well No. 1. Raper Holmes, N. E. corner of the S. W. ¼; 8 inch drive pipe 87 feet, 5% casing 420 feet. Top of sand 1023 feet. Bottom of sand 1067 feet. Show of oil 26 feet in sand, not shot. Production all salt water. Plugged June 21, 1918.

Section 28. Well No. 1. Louisa Beard, S. E. ¼; 8 inch drive pipe 32 feet, 5% casing 410 feet. Top of sand 1001 feet. First pay 10 feet in. Total depth 1021 feet.

Well No. 1. A. J. Gephart, S. E. corner N. E. ¼; 8 inch drive pipe 70 feet, 5% casing 425 feet. Top of sand 1007 feet. Total depth 1028 feet. In sand 21 feet. Production first 24 hours 1 barrel.

Section 29. Well No. 1. Catherine Beard, W. ½ S. W. ¼; 8 inch drive pipe 28 feet 4 inches, 6¼ casing 412 feet 10 inches. Top of sand 999 feet. Total depth 1038 feet. Pay all way along, water at 1038 feet.


Section 29. Well No. 1. Calvin Perdue, N. ½ of S. E. ¼; 8 inch drive pipe 22 feet, 5% casing 405 feet. Top of sand 968 feet. In sand 25 feet. Total depth 993 feet. Drilled January, 1919. Production first 24 hours 15 barrels.

Well No. 2. Calvin Perdue, N. E. corner S. E. ¼; 8 inch drive pipe 23 feet, 5% casing 404 feet. Top of sand 995 feet. In sand 32 feet. Total depth 1027 feet. No showing of oil. Drilled March, 1919. Elevation of mouth above sea level 836 feet.

Wells abandoned in this township are as follows: Section 3, 1 well; section 4, 1 well; section 12, 1 well; section 20, 1 well; section 24, 2 wells; section 25, 5 wells; section 26, 2 wells; section 29, 1 well; section 31, 13 wells; section 34, 9 wells; section 35, 4 wells; section 36, 19 wells.

JACKSON COUNTY

The bed rock in the eastern part of Jackson County belongs to the New Albany shale division of the Devonian; the remainder of the county is occupied by the Knobstone division of the Mississippian. The northwest portion lies within the unglaciated region and the remainder of the county is covered with drift varying in thickness from a few feet to more than one hundred feet. In the region not covered with glacial drift the study of structural conditions is difficult because of the absence of persistent layers of rock in the Knobstone. In the region west of Brownstown there is a layer of limestone, a ledge in the Knobstone, and an accompanying bed of sandstone, which may be used for a datum plane for the registering of the structure. Using this limestone and the sandstone, Mr. O. H. Hughes located a small terrace or shoulder which is represented on the accompanying map. It is possible that under the proper structures oil or gas may be found in the Devonian or in the Trenton in this county. The Trenton lies below the surface in the county at a depth of from 1200 to 1500 feet.

from data secured by O. H. Hughes. Probably not a definite anticline but a shoulder. Key formation, a lens of limestone in the Knobstone.

÷

The following is the record of a well drilled at Brownstown:

Section of Well No. 1.

Drift	43	feet
Knobstone shale	275	6.6
Devonian shale	147	66
Corniferous and Niagara limestone	225	66
Hudson River and Utica	658	66
Trenton limestone	100	6.6

The following is the record of a well drilled at Seymour:

Section of Well No. 1.

Drift	75	feet.
Sub-carboniferous sandstone	15	6.6
Devonian sandstone	115	6.6
Corniferous limestone	20	66
Niagara limestone	190	6.6
Hudson River limestone and shale	520	66
Utica shale	165	66
Trenton limestone	94	6.6
-		
Total depth1	194	66

JASPER COUNTY

The northwestern extension of the Cincinnati Arch passes through this county and the strata in the southern part of the county dip in the opposite direction to those of the northern portion of the county. Differential movements in the arch have produced structures favorable to the accumulation of oil and gas. These structures occur for the most part on the north side of the arch. Since the bed rock is covered with a mantle of glacial drift ranging in thickness from five to more than one hundred feet, these structures cannot be located by surface examinations. For this reason prospecting operations have been confined to the drill. Such prospecting has not been so expensive in this county on account of the oil sand being found at shallow depths. The geological formations underlying the drift belong to the Silurian, Devonian, Mississippian, and the Pennsylvanian periods. Several small oil pools occur in this county, the oil being drawn from the Devonian strata at shallow depths. The map shows the location of these oil fields. Many of the wells indicated as producing wells have been abandoned since the map was prepared or prior to it.

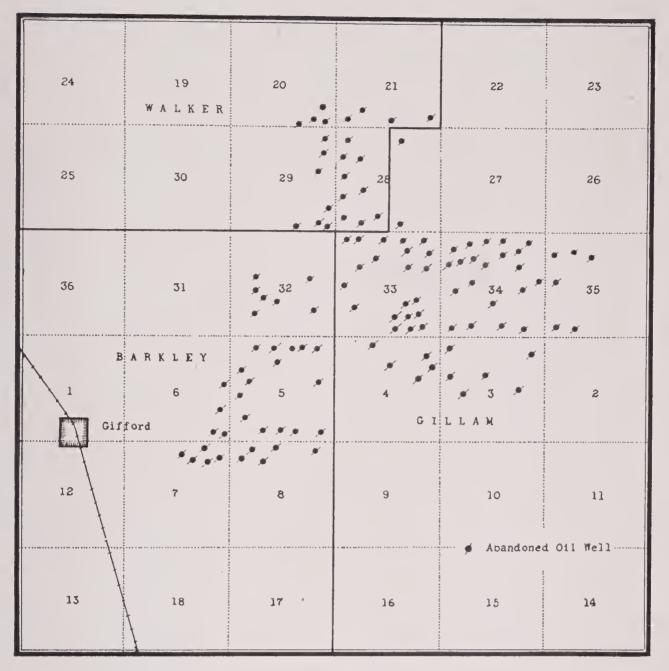
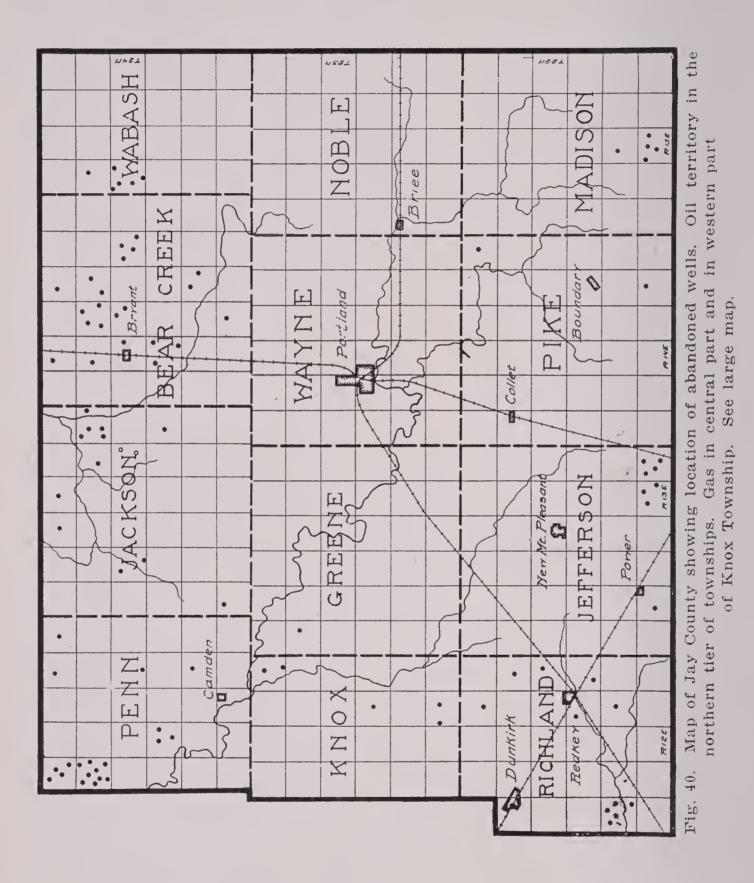



Fig. 39. Map showing location of oil wells in the Jasper County field near Gifford.

The following is the section of a well drilled at Remington²:

Section of Well No. 1.

Drift	5	feet.
Devonian shale	85	6.6
Corniferous limestone	50	6.6
Niagara limestone	260	6.6
Hudson River and Utica	570	6.6
Trenton limestone	295	6 6
Total depth	1265	6.6
Yielded no gas.		

JAY COUNTY

The Silurian forms the bed rock in this county and outcrops along the Wabash River near the north line and on the Salamonie near Portland. The bed rock is largely concealed by the glacial drift which has a thickness of 25 to 125 feet. The general geologic conditions as represented in a well drilled at Portland are given below:

Wayne Township.

 Section of Portland Well No. 1.

 Drift
 58 feet.

 Niagara limestone
 192 "

 Shales
 740 "

 Trenton limestone
 500 "

 St. Peter
 20 "

A small flow of gas and oil yielding 25 barrels a day was obtained. Five wells drilled near Portland reached the Trenton at 17, 63, 62, 67, and 71 feet below sea level. Oil was obtained from sections 5, 6, 10, 21, and 26, and gas from 5, 6, 10, 17, 21, and 22.

Richland Township. At Red Key the Trenton was reached at 900 feet and a flow of gas a few feet below the top of the Trenton resulted. At Dunkirk the Trenton was reached at 925 feet and a flow of 5,000,000 cubic feet of gas obtained. A second well reached the Trenton at 930 feet and produced a strong flow of gas at 955 feet. A section of this well is given below:

Section of Dunkirk Well.		
Drift	60	feet.
Niagara limestone	230	66
Hudson River and Utica	64 0	66
Trenton limestone	25	66
-		

Oil was obtained in this township in sections 13, 16, 24, 25, 28, and 36, and gas in 9, 24, and 26. Wells have been abandoned as follows: Section 2, 1 well; section 12, 1 well; section 13, 1 well; section 23, 1 well; section 24, 1 well; section 26, 1 well; section 29, 5 wells.

Penn Township. At Camden the Trenton is reached at 935 feet and gas at 963 feet. The average depth of the drift at Camden is 35 feet and the average depth of the Trenton 925 feet. Nearly all the sections in this township have produced oil or gas or both. Wells have been abandoned in section 1, 1 well; section 2, 1 well; section 5, 4 wells; section 8, 9 wells; section 14, 1 well; section 21, 3 wells; section 26, 1 well.

Jefferson Township. Gas is reported to have been found at Coneo in this township. The following wells were drilled and plugged: Section 32, 1 well; section 35, 3 wells; section 36, 4 wells.

Greene Township. Oil was obtained in sections 8, 17, 20, and 24, and gas in 4, 5, 6, 7, 18, 19, 20, 23, 26, 28, 31, 32, 34, and 35. Wells were abandoned in section 7, 1 well.

Jackson Township. Oil was obtained in this township from sections 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, and 36. Gas was obtained in sections 7, 18, 19, 20, 21, 25, 29, 30, and 32. Wells have been plugged in section 3, 1 well; section 4, 1 well; section 11, 1 well; section 12, 5 wells; section 14, 2 wells; section 17, 2 wells; section 24, 1 well; section 31, 1 well.

Knox Township. Oil was found in sections 1, 4, 11, and gas in sections 1, 2, 25, and 36. Wells have been abandoned in section 1, 2 wells.

Pike Township. Oil was found in sections 7, 8, and 34. Wells have been abandoned in section 23, 1 well; section 35, 2 wells. Recently wells were drilled in this township as follows:

James Tharp No. 1. N. E. 1/4 N. W. 1/4, Section 29, Township 22 N, Range 14 E:

Mud, sand and gravel	189	feet.
Limestone	91	6.6
Slate and shale	800	6.6
In Trenton limestone	20	6.6
-		

Grant Whitenack, No. 2. S. E. ¼, N. W. ¼, Section 28, Township 22 N., Range 14 E:

Mud, sand and gravel	137	feet.
Limestone	203	66
Slate and shale	690	6.6
In Trenton limestone	20	6.6
-		

Total depth1050 "

Corn. Whitenack No. 2, N. E. ¼, N. W. ¼, Section 28, Township 22 N, Range 14 E:

Mud, sand and gravel	140	feet.
Limestone	690	6.6
Slate and shale	691	6.6
In Trenton limestone	32	6.6
_		

Wells drilled by Union Heat, Light and Power Company.

Noble Township. Oil occurred in sections 3, 4, 5, 17, and 27. Gas in sections 8 and 17.

Bear Creek Township. At Bryant the top of the Trenton is 1020 feet or 160 feet below sea level. Oil was obtained 30 feet below the top of the Trenton. The following are the records of two wells drilled on the Kuhn lease, in the southwest quarter of section 28:

	Wel	l No. 7	Well	No. 2
Drive pipe (drift)	. 78	feet.	104	feet.
Casing	. 245	6.6	238	6 6
Top of Trenton	.1004	66	997	6.6
e				
Total depth	.1050	6.6	1048	66

The record of a well drilled by W. J. Heeter in section 3 is given as follows:

Drift	73	feet
White limestone	131	66
White slate	10	6.6
White lime	20	6.6
Slate (shale)	30	6.6
Limestone	15	6 6
Slate	40	6 6
Blue lime	5	6.6
White slate	75	6.6
Blue lime	10	6.6
White slate	305	6.6
Brown shale	300	6.6
Black slate	12	6.6
Trenton rock	50	6.6
-		
Total depth	1081	6.6

Showing of oil at 20 feet in Trenton. Salt water, strong flow.

Oil was obtained in sections 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 21, 24, 30, and 31, and gas in sections 14, 18, 19, 22, 26, 27, 29, 30, 31, and 34. Wells have been plugged in section 3, 1 well; section 5, 1 well; section 8, 1 well; section 9, 4 wells; section 10, 2 wells; section 14, 4 wells; section 16, 2 wells; section 17, 1 well; section 20, 3 wells; section 26, 2 wells; section 27, 2 wells; section 33, 1 well.

Wabash Township. Oil was found in sections 3, 4, 5, 6, 7, 8, 17, 18, 19, and 32; gas in 19. Wells have been plugged in section 7, 1 well; section 18, 5 wells.

Well No. 2, Bon Macy Farm.	
Gravel, sand and mud 5	0 feet.
Limestone	0 ''
Slate and limestone	0 ''
Slate	0 "
Brown shale 15	0 "
Gray shale 2	5 ''
Top of Trenton102	5 ''
Into Trenton 4	

Madison Township. Wells have been drilled at various points in this township. Four wells were drilled and abandoned in section 33 and 1 in section 28.

JEFFERSON COUNTY

The strata which outcrop in Jefferson County belong to the Ordovician, Silurian, Devonian and Quaternary periods. The subdivisions as given by Cumings, Siebenthal and others are given in the following outlines:

	Recent-clays and	alluvium		
Quaternary	Pleistocene—sand gravels and till			
	New Albany-shale	es		
	Sellersburg—limest	cone		
Devonian	Silver Creek—lime	stone		
	Jeffersonville—lime	estone		
	(Louisville—limesto	ne		
	Waldron-shale			
Silurian	Laurel-limestone			
	Osgood—limestone	and shale		
	Brassfield—shales			
	Richmond—shales	Elkhorn Whitewater Saluda Liberty Waynesville Arnheim		
Ordovician	Marysville—shales	Mt. Auburn Corryville Bellevue Fairmount Mt. Hope		
	Eden—shales	McMicken Southgate Economy Fulton		

The Quaternary covering in this county varies in thickness from a few feet to fifty feet. Sufficient outcrops of the bed rock may be obtained to determine the structure. Probably the best key horizon for the west part of the county will be the contact between the Sellersburg limestone and the New Albany shale. Farther east the Laurel or the Louisville limestone might be used. Some gas has been obtained from near Foltz in the Niagara limestone. These wells were reported to have a pressure of 20 pounds in 1914.

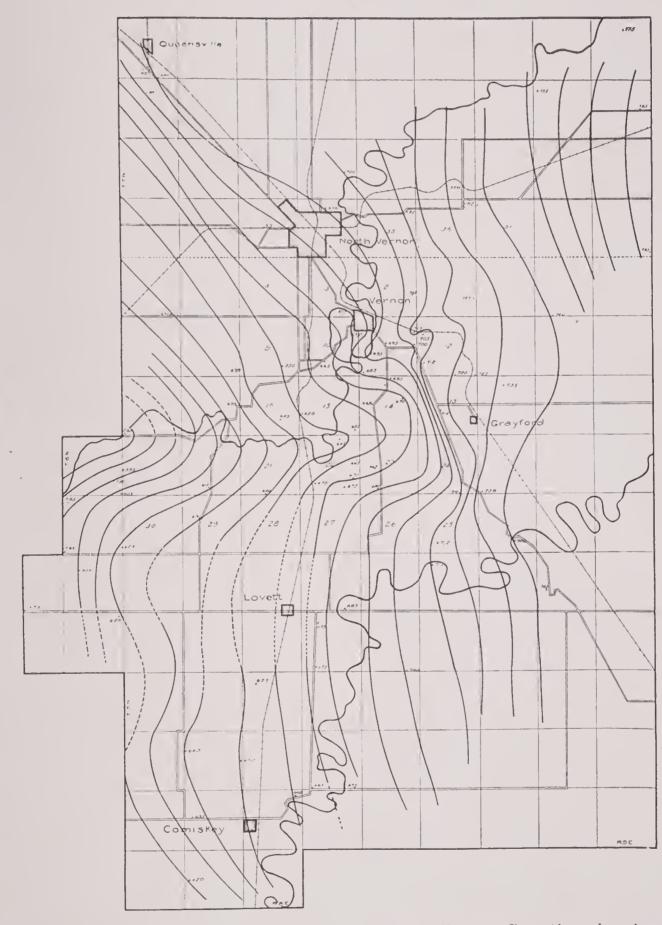


Fig. 41. Map of a portion of Jennings and Jefferson Counties showing structural contours drawn on the contact of the Sellersburg limestone and New Albany shale. Data collected by C. A. Malott and P. B. Stockdale.

JENNINGS COUNTY

The strata which outcrop in Jennings County are given in the table below:

Onentonnom	Recentresidual clays and alluvium
Quarternary	Pleistocene-gravels, sand and till
	New Albany-shales
Devonian	New Albany—shales Sellersburg—limestone
	Silver Creek—limestone Jeffersonville—limestone
	Jeffersonville—limestone
Silurian	Louisville-limestone

The Devonian and the Silurian strata are largely concealed by the surficial deposits of drift and alluvium, but enough outcrops have been obtained to enable the construction of a structural map covering a large part of the county. See page 156. The field work in the preparation of the map was done by Dr. C. A. Malott and P. B. Stockdale, members of the field party of 1919.

Gas has been obtained at North Vernon in wells drilled on structure, though perhaps not on the best part of it. A record of one of the wells is given below²:

Section of Well No. 1.		
Surface clay	11	feet.
Corniferous limestone	. 28	6.6
Niagara limestone	. 252	6.6
Clinton (?) limestone	29	66
Hudson River limestone	440	66
Utica shale	220	6.6
Trenton limestone	470	66
Total depth	1450	feet.
Trenton below sea level	253	6.6
Yielded medium flow of gas.		

JOHNSON COUNTY

The subsurface rocks of Johnson County consist of the New Albany black shale, which occupies the eastern portion of the county and the Knobstone group occupying the western part. The surface is covered with glacial drift.

A well drilled in Ninevah Township about nine miles south of Franklin reached the Trenton at 1273 feet; the first 60 feet of the Trenton was porous and contained a showing of oil. It was a wildcat well drilled without any reference to structure. The Trenton was passed through at 1820 feet, showing 547 feet of Trenton at this point.

The Trenton limestone was reached in the southeastern part of the county at 987 feet; in the central part at 1042 feet, and in the north central part at 1220 feet.

The following are the records of some of the wells drilled in the county:

Vandivin Well No. 1, Section 9, Nineveh Township.

Drift	to	16	feet
Sandy lime	6.6	33	6.6
Gray shale	6.6	285	6.6
Slate	6.6	295	6.6
Red rock	6.6	327	6.6
Sandy lime	6.6	335	66
Brown shale	66	425	66
Jeffersonville lime	66	702	6 6
Gray shale	6.6	704	66
Brown lime	66	745	6.6
Gray shale	66	750	6.6
Gray lime	66	795	6.6
Slate	66	953	6.6
Dark brown lime	66	977	6.6
Slate	66	982	6.6
Gray lime	6 6	1017	6.6
Slate	6.6	1022	6.6
Gray lime	6 6	1072	6.6
Slate	6.6	1077	6 6
Gray lime	6.6	1082	6.6
Slate	6.6	1097	6.6
Brown lime	6.6	1105	6.6
Gray lime	6.6	1107	6.6
Slate	6.6	1273	6.6
Trenton rock	6.6	1830	6.6
This well showed some oil in the first	15	feet	
of Trenton rock.			

Mullindore Well No. 1, Section 3, Nineveh Township.

Drift	to	34	feet.
Gravel	6.6	37	6.6
Hardpan	6.6	65	6.6
Gray shale	6.6	100	6.6
Gray lime		105	6.6
Gray shale		160	6.6
Lime		165	6.6
Brown shale		261	6.6
Jeffersonville lime		440	6.6
Gray shale		445	6.6
Gray lime		482	6.6
		487	"
Gray shale		401	

Gray lime to 531 feet Gray shale, " 765 66 66 Slate 843 66 66 Gray lime 848 66 66 Utica shale, dark gray 1129 Trenton rock " 1164 66 Drilled 28 feet in the Trenton. Small showing of oil in the first five feet of the rock. A well drilled at Franklin was reported by Dr. D. A. Owen as follows: Drift 170 feet. Black shale 34 66 66 Blue and gray limestone 7166 Sandstone 2766 23Blue shale (upper Niagara) Gray and white limestone 120 66 66 Greenish blue shale varying to black..... 597 66 A well drilled in the southeastern part of the county at Edinburg is reported as follows: Shale 20 66 66 66 66 66 66 White sandstone 10 Total depth1580 feet. Altitude of well 670 A well was drilled at Greenwood the record of which is as follows: Black shale 90 66 66 Whitish shale 40 66 66 66 Lower Magnesian limestone.

KNOX COUNTY

This county lies in the area occupied by the strata of the Pennsylvania division, but these bed rock strata are covered with a mantle of glacial drift and alluvium which varies in thickness from twenty-five to more than one hundred feet, so that the determination of structure by direct observational methods is not possible. Subsurface work will depend upon the amount of data secured from well records. To secure a sufficient number of such records will require a large amount of wild cat drilling. A well drilled about eight miles south of Vincennes has produced some oil and the prospects of the extension of favorable structures north of the Gibson County line are encouraging. It may be possible, by using data from coal mines, wells, etc., to outline the structure on some of the coals.

Washington Township. A well drilled in the southeast quarter of section 30 reached a dry sand at 1252 feet.

Decker Township. A well was drilled on the property of J. Cunningham in section 12 and plugged in 1912. No record of the well has been obtained.

Record of Bore Northeast of Vin	cer	nnes	
Drive pipe to bed rock	to	45	feet.
Yellow sandstone	6.6	80	6.6
Slate and shale	6.6	195	66.
Sandstone, limestone and shale	66	335	6.6
Coal	66	340	66
Blue limestone	6.6	350	66
Light shale	66	360	66
Soapstone	6.6	390	6 6
Limestone	6.6	425	6 6
Light shale	6.6	435	66
Sandstone	66	465	6.6
Slate and shale	6 6	485	66
Fire clay	66	505	66
Blue shale	66	520	6.6
Limestone	66	525	66
Blue slate	66	545	66
Black shale	66	565	6.6
Sandstone	66	580	66
Soapstone	66	590	6.6
Slate	66	625	6.6
Limestones and slates	6.6	640	66
White sandstone and salt water	66	670	6.6
Slate and shale	6.6	700	66
Blue limestone	66	702	6 6
Soapstone and shale	66	785	6 6
White sandstone and salt water	6.6	800	6.6
Sandstone		815	6.6
Sandstone and shale alternately		940	66
Limestone		950	66

Black slate	t	0 980	feet
Sandstone	66	1000	66
Slate	66	1020	6.6
Streaks of slate and limestone	66	1130	66
Sandstone	66	1180	6.6
Shale	66	1200	66
Sandstone	66	1292	6.6
Shale	6.6	1298	66
Gray limestone	66	1310	6.6
Shale	66	1315	6.6
Soapstone	66	1325	6.6
Shale	6.6	1335	6.6
Blue limestone	66	1340	6.6
White sandstone	6.6	1365	6.6
Shale	66	1375	6.6
Blue limestone	6.6	1385	6.6
Slate	6.6	1400	6.6
Red rock	6.6	1410	6.6
Sandstone and salt water	66	1430	6.6
Shale (cased)	6.6	1535	6.6
Gray limestone	66	1655	6.6
Shale	66	1660	6.6
Blue limestone	66	1665	6.6
Slate and shale	66	1690	6.6
Sandstone and sulphur water	66	1740	6.6
Slate	66	1750	6.6
Shale	66	1755	66
Gray limestone	66	1765	6.6
Shale and gray limestone	66	1820	66
Bed rock	66	1825	6.6
Hard gray limestone	66	1840	6 6
Soapstone	66	1845	6.6
Gray limestone	66	1850	66
Soapstone	66	1860	6.6

Vincennes Artesian Salt Well

Sand and gravel	80	feet.
Sandstone	18	6.6
Soapstone	100	6.6
Hard pebble rock	10	66
Sandy shale	15	66
Soapstone	32	6.6
Blue sandstone	35	6.6
Sandy shale	20	6.6
Soapstone	10	66
Coal	3	66
Soapstone	18	66
Coal	5	6.6
Soapstone	18	6.6

159

Black shale	41	feet
Soapstone	138	66
Coal	5	66
Limestone		66
Blue shale	27	6.6
Black slate	30	6.6
Soapstone and shale		6.6
Sandstone	15	6.6
Slate and soapstone		6.6
Sandstone and salt water	25	6 6
Slate and shale	95	6.6
Sandstone	175	66
Shale and black slate	140	6 6
Sandstone	96	66
-		
Total depth	1336	6.6

Well No. 1 on the Geo. Ryan farm, 200 feet N., 200 feet to west line. Section 36, Twp. 2N., R. 11 W. Knox County. Oct. 8, 1919. Well plugged and abandoned.

Soil	to	6	feet.
Gravel	6.6	10	66
Slate, white	66	175	66
White lime	66	179	6 6
Slate, black	66	185	6 6
White lime	66	195	66
Slate	66	310	6 6
Lime	66	315	66
Slate	66	340	6.6
Lime	66	343	6.6
Slate	66	360	6.6
Sand	66	480	6.6
Slate	66	500	66
Sand	66	540	66
Black slate	66	600	6.6
Sand	66	624	66
Black slate	66	635	66
White slate	66	655	66
Black slate	66	673	66
Lime	66	675	6.6
White slate	66	710	6.6
Black slate	66	716	6.6
Lime	66	746	66
Black slate	66	775	6.6
Lime	66	781	6.6
White slate	66	840	6.6
Sand	66	865	6.6
Slate, black, soft	66	900	6.6
Lime	66	904	66

Sand " 1060 " Slate " 1080 " Lime " 1100 " Slate " 1120 " Sand, hole full of water " 1145 " Black slate " 1125 " White slate " 1222 " Sand " 1222 " Sand " 1222 " Slate " 1310 " Sand " 1255 " Lime, hard " 1222 " Slate " 1310 " Sand " 1350 " Lime, hard " 1355 " Slate " 1370 " Sand " 1440 " Lime " 1440 " Lime " 1551 " Slate	Slate	to 960 feet
Shate 1080 Lime "1100 Slate "1120 Sand, hole full of water "1145 Black slate "1125 Sand, hole full of water "1145 Black slate "1220 Lime, hard "1222 Sand "1222 Lime, hard "1222 Slate "1310 Sand "1350 Lime, hard "1355 Slate "1370 Sand, hard "1370 Sand, hard "1400 Lime, hard "1440 Lime, hard "1440 Lime, hard "1442 Sand "1440 Lime, hard "1442 Sand "1446 Lime, hard "1455 Sand "1455 Sand "1455 Sand "1455 Sand "1455 Lime "1455 Sand "1455 Lime "1551 Sand "1666 Sand "1655 <td></td> <td></td>		
Shate 1100 Slate 1145 Sand, hole full of water. 1145 Black slate 1195 Sand 11215 White slate 1222 Lime, hard 1222 Slate 1310 Sand 1322 Lime, hard 1322 Slate 1330 Sand 1350 Lime, hard 1355 Slate 1370 Sand, hard 1395 Slate 1400 Lime, hard 1440 Lime, hard 1440 Lime, hard 1442 Slate 1440 Lime, hard 1442 Slate 1466 Sand 1446 Lime, hard 1442 Slate 1466 Sate 1455 Sate 1466 Sate 1666 Lime 1551 Slate 1660 Lime 1615 Slate 1663 Slate 1643<	Slate	" 10 80 "
Sand, hole full of water. " 1145 Black slate " 1195 Black slate " 1195 White slate " 1215 White slate " 1220 Lime, hard " 1222 Slate " 1310 Sand " 1365 Lime, hard " 1365 Lime, hard " 1365 Slate " 1370 Sand, hard " 1370 Sand, hard " 1370 Sand, hard " 1370 Sand " 1405 Slate " 1400 Lime, hard " 1405 Sand " 1440 Lime, hard " 1440 Lime, hard " 1440 Lime, hard " 1445 Sand " 1446 Sand " 1446 Sand " 1455 Sand " 1455 Sand " 1455 Sand " 1446 Lime, hard " 1446 Sand " 1455 Sand " 1466 Slate " 1653 Lime<	Lime	" 1100 "
Sand, hole full of water. " 1145 " Black slate " 1195 " Sand " 1215 " White slate " 1220 " Lime, hard " 1222 " Slate " 1310 " Sand " 1350 " Lime, hard " 1355 " Slate " 1370 " Sand, hard " 1370 " Sand, hard " 1440 " Lime, hard " 1440 " Lime, hard " 1440 " Lime, hard " 1442 " Sand " 1440 " Lime, hard " 1442 " Sand " 1446 " Lime, hard " 1445 " Slate " 1460 " Sand " 1446 " Lime " 1551 " Slate " 1664 " Slate " 1664 " Slate " 1665 " Slate " 1663 " <td>Slate</td> <td>" 1120 "</td>	Slate	" 1120 "
Black slate " 1195 " Sand " 1215 " White slate " 1220 " Lime, hard " 1222 " Slate " 1310 " Sand " 1365 " Slate " 1370 " Sand, hard " 1395 " Slate " 1400 " Lime, hard " 1440 " Lime, hard " 1442 " Slate " 1466 " Slate " 1466 " Slate " 1466 " Slate " 1667 " Slate " 1666 " Slate " 1660 " Lime " 1643 " Lime " 1643 " Lime " 1643 " Slate " 1675 " Sand <		" 1145 "
Sand " 1215 " White slate " 1220 " Lime, hard " 1222 " Slate " 1310 " Sand " 1350 " Lime, hard " 1365 " Slate " 1370 " Sand, hard " 1370 " Sand, hard " 1405 " Slate " 1400 " Lime, hard " 1442 " Sand " 1442 " Sand " 1442 " Sand " 1442 " Sand " 14466 " Sand " 1445 " Sand " 1545 " Lime " 1564 " Sate " 1665 " Lime " 16		" 1195 "
Write state 1222 " Slate " 1310 " Sand " 1350 " Lime, hard " 1365 " Slate " 1370 " Sand, hard " 1370 " Sand, hard " 1370 " Sand, hard " 1400 " Lime, hard " 1405 " Sand " 1440 " Lime, hard " 1442 " Slate " 1466 " Sand " 1466 " Slate " 1466 " Slate " 1466 " Slate " 1653<"		" 1215 "
Lime, hard " 1222 " Slate " 1310 " Sand " 1350 " Lime, hard " 1365 " Slate " 1370 " Sand, hard " 1370 " Sand, hard " 1395 " Slate " 1400 " Lime " 1405 " Sand " 1440 " Lime, hard " 1440 " Slate " 1440 " Sand " 1440 " Slate " 1460 " Sand " 1445 " Slate " 1485 " Sand " 1485 " Sand " 1551 " Lime " 1564 " Lime " 1615 " Slate " 1663 " Slate " 1663 " Slate " 1675 " Slate " 1675 " Slate " 1675 " Slate " 1	White slate	" 1220 "
Slate " 1310 " Sand " 1350 " Lime, hard " 1365 " Slate " 1370 " Sand, hard " 1395 " Slate " 1400 " Lime " 1400 " Lime " 1400 " Sand " 1440 " Lime, hard " 1442 " Slate " 1466 " Sand " 1466 " Slate " 1466 " Slate " 1455 " Sand " 1455 " Slate " 1466 " Slate " 1455 " Lime " 1558 " Lime " 1564 " Slate " 16600 " Lime " 1663 " Slate " 1663 " Slate " 1663 " Slate " 1675 " Sand " 1675 " Slate " 1777<"		" 1222 "
Sand " 1350 " Lime, hard " 1365 " Slate " 1370 " Sand, hard " 1370 " Sand, hard " 1395 " Slate " 1400 " Lime " 1400 " Lime " 1440 " Lime, hard " 1442 " Slate " 1460 " Sand " 1466 " Slate " 1466 " Slate " 1455 " Sand " 1551 " Slate " 1551 " Lime " 1558 " Lime " 1558 " Lime " 1660 " Slate " 1663 " Slate " 1663 " Slate " 1643 " Lime " 1643 " Sand " 1675 " Slate " 1675 " Sand " 1777<"		" 1310 "
Slate " 1370 " Sand, hard " 1370 " Sand, hard " 1395 " Slate " 1400 " Lime " 1400 " Lime " 1400 " Sand " 1400 " Lime, hard " 1440 " Slate " 1440 " Lime, hard " 1442 " Slate " 1466 " Sand " 1466 " Sand " 1551 " Slate " 1551 " Slate " 1558 " Lime " 1558 " Lime " 1564 " Slate " 1615 " Slate " 1615 " Slate " 1643 " Lime " 1643 " Lime " 1645 " Slate " 1675 " Sand, hole full of water " 1727 " Slate " 1772 " Slate " 1777 " Brown lime " 1808 " Lime " 1814 " Sand " 1814 " Sand " 1818 " Sand " 1824 "	Sand	" 1350 "
Slate 1310 Sand, hard "1395 Slate "1400 Lime "1405 Sand "1440 Lime, hard "1442 Slate "1440 Lime, hard "1442 Slate "1466 Sand "1485 Sand "1466 Slate "1485 Sand "1551 Lime "1551 Lime "1564 Slate "1600 Lime "1615 Slate "1663 Slate "1675 Sand, hole full of water "1727 Slate "1772 Slate "1772 Slate "1772 Slate "1777 Brown lime "1808 Lime "1814	Lime, hard	" 1365 "
Sand, name 1535 Slate " 1400 Lime " 1405 Sand " 1440 Lime, hard " 1442 Slate " 1440 Sand " 1442 Slate " 1466 Slate " 1466 Sand " 1466 Slate " 1466 Sand " 1455 Sand " 1466 Slate " 1485 Sand " 1455 Lime " 1551 Lime " 1551 Slate " 1553 Lime " 1564 Slate " 1600 Lime " 1615 Slate " 1663 Slate " 1635 Slate " 1675 Sand " 1675 Slate " 1777<"		" 1370 "
Lime " 1405 " Sand " 1440 " Lime, hard " 1442 " Slate " 1440 " Slate " 1440 " Slate " 1440 " Slate " 1446 " Sand " 1466 " Slate " 1485 " Sand " 1455 " Lime " 1551 " Lime " 1551 " Slate " 1553 " Lime " 1564 " Slate " 1600 " Lime " 1615 " Slate " 1643 " Lime " 1643 " Lime " 1643 " Sand " 1675 " Sand, hole full of water " 1727<"	Sand, hard	" 1395 "
Lime " 1405 " Sand " 1440 " Lime, hard " 1442 " Slate " 1466 " Sand " 1551 " Lime " 1551 " Slate " 1553 " Lime " 1664 " Slate " 1663 " Slate " 1643 " Lime " 1643 " Lime " 1643 " Sand " 1643 " Lime " 1648 " Sand " 1675 " Sand " 1675 " Sand " 1772 " Slate " 1772 " <	Slate	" 14 00 "
Sand 1440 Lime, hard " 1442 Slate " 1460 Sand " 1466 Sand " 1466 Slate " 1485 Sand " 1551 Lime " 1551 Lime " 1564 Slate " 1600 Lime " 1615 Slate " 1635 Red rock " 1643 Lime " 1643 Sand " 1653 Slate " 1675 Slate " 1675 Sand, hole full of water " 1727 Slate " 1773 Lime " 1773 Slate " 1772 Slate " 1777 Brown lime " 1808 Lime " 1814 Sand " 1824 Red rock " 1827 Lime " 1838		" 1405 "
Linte, name, name	Sand	" 1440 "
Slate " 1460 " Sand " 1466 " Slate " 1485 " Sand " 1545 " Lime " 1551 " Slate " 1551 " Slate " 1551 " Lime " 1553 " Lime " 1564 " Slate " 1600 " Lime " 1615 " Slate " 1615 " Slate " 1635 " Red rock " 1643 " Lime " 1643 " Sand " 1653 " Slate " 1643 " Lime " 1643 " Lime " 1643 " Slate " 1643 " Slate " 1675 " Sand, hole full of water " 1727 " Slate " 1773 " Lime " 1773 " Slate " 1777 " Brown lime " 1808 " Lime " 1814 " Sand " 1824 " Red rock " 1827 " Lime " 1838 " Sand " 1850 " Lime	Lime, hard	" 1442 "
Sand 1400 Slate " 1485 " Sand " 1545 " Lime " 1551 " Slate " 1558 " Lime " 1558 " Lime " 1564 " Slate " 1600 " Lime " 1615 " Slate " 1615 " Slate " 1615 " Slate " 1615 " Slate " 1643 " Lime " 1643 " Lime " 1643 " Lime " 1643 " Lime " 1675 " Sand " 1675 " Slate " 1675 " Sand, hole full of water " 1727 " Slate " 1753 " Lime " 1772 " Slate " 1777 " Brown lime " 1808 " Lime " 1814 " Sand " 1827 " Lime " 1838 " Sand " 1850 " Lime " 1868 "		" 1460 "
Slate 1433 Sand " 1545 Lime " 1551 Slate " 1558 Lime " 1558 Lime " 1564 Slate " 1600 Lime " 1615 Slate " 1615 Slate " 1635 Lime " 1643 Slate " 1643 Lime " 1643 Lime " 1643 Sand " 1653 Slate " 1675 Slate " 1675 Slate " 1727 Slate " 1753 Lime " 1753 Slate " 1772 Slate " 1777 Slate " 1777 Brown lime " 1808 Lime " 1814 Sand " 1827 Lime " 1838 Sand " 1827 Lime " 1838	Sand	" 1466 "
Sand 1343 Lime "1551 Slate "1558 Lime "1558 Lime "1564 Slate "1600 Lime "1615 Slate "1615 Slate "1615 Lime "1615 Slate "1635 Red rock "1643 Lime "1643 Lime "1643 Sand "1653 Slate "1675 Sand, hole full of water "1727 Slate "1753 Lime "1753 Slate "1772 Slate "1777 Slate "1777 Brown lime "1808 Lime "1814 Sand "1824 Red rock "1827<"	Slate	" 1485 "
Lime 1551 Slate "1558 Lime "1564 Slate "1600 Lime "1615 Slate "1635 Red rock "1643 Lime "1643 Lime "1643 Slate "1643 Lime "1643 Lime "1653 Sand "1653 Slate "1675 Sand, hole full of water "1727 Slate "1753 Slate "1759 Slate "1777 Slate "1777 Slate "1777 Slate "1777 Slate "1777 Brown lime "1808 Lime "1814 Sand "1824 Red rock "1827<"	Sand	" 1545 "
Lime "1553 Lime "1564 Slate "1600 Lime "1615 Slate "1635 Red rock "1643 Lime "1643 Lime "1643 Sand "1653 Slate "1675 Sand "1675 Slate "1675 Slate "1675 Slate "1675 Slate "1727 Slate "1735 Lime "1753 Slate "1772 Slate "1777 Slate "1777 Brown lime "1808 Lime "1814 Sandy lime, oil "1818 Sand "1824 Red rock "1827 Lime "1838 Sand "1850	Lime	" 1551 "
Slate " 1600 " Lime " 1615 " Slate " 1635 " Red rock " 1643 " Lime " 1643 " Lime " 1643 " Sand " 1653 " Slate " 1675 " Sand " 1675 " Sand, hole full of water " 1727 " Slate " 1773 " Lime " 1775 " Slate " 1775 " Slate " 1777 " Slate " 1777 " Slate " 1777 " Slate " 1818 " Sandy lime, oil " 1818 " Sand " 1824 " Red rock " 1838 " Lime " 1838 " Sand " 1838 " Lime " 1838 " Sand " 1850 "	Slate	" 1558 "
Lime " 1615 " Slate " 1635 " Red rock " 1643 " Lime " 1643 " Sand " 1643 " Sand " 1653 " Slate " 1675 " Sand, hole full of water " 1727 " Slate " 1735 " Lime " 1753 " Slate " 1772 " Slate " 1777 " Slate " 1777 " Slate " 1777 " Slate " 1808 " Lime " 1814 " Sandy lime, oil " 1818 " Sand " 1824 " Red rock " 1838 " Lime " 1838 " Sand " 1838 "	Lime	" 1564 "
Slate " 1635 " Red rock " 1643 " Lime " 1648 " Sand " 1653 " Slate " 1675 " Slate " 1675 " Slate " 1727 " Slate " 1735 " Lime " 1753 " Lime " 1759 " Slate " 1772 " Slate " 1772 " Slate " 1777 " Slate " 1777 " Slate " 1777<"	Slate	" 1600 "
Red rock " 1643 " Lime " 1643 " Sand " 1653 " Slate " 1675 " Sand, hole full of water " 1727 " Slate " 1735 " Lime " 1753 " Slate " 1753 " Slate " 1772 " Slate " 1772 " Slate " 1772 " Slate " 1777 " Slate " 1777 " Sndy lime, oil " 1814 Sandy lime, oil " 1814 Ked rock " 1827<"	Lime	" 1615 "
Lime "1643 Sand "1653 Slate "1653 Slate "1675 Sand, hole full of water "1727 Slate "1735 Lime "1753 Slate "1759 Slate "1772 Slate "1777 Slate "1777 Slate "1777 Slate "1777 Slate "1777 Brown lime "1808<"	Slate	" 1635 "
Sand " 1653 " Slate " 1675 " Sand, hole full of water " 1727 " Slate " 1735 " Lime " 1753 " Slate " 1773 " Slate " 1773 " Slate " 1773 " Slate " 1773 " Slate " 1779 " Sand " 1772 " Slate " 1777 " Brown lime " 1808 " Lime " 1814 " Sandy lime, oil " 1814 " Sand " 1824 " Red rock " 1827 " Lime " 1838 " Sand " 1838 " Sand " 1838 "	Red rock	" 1643 "
Slate "1653 Slate "1675 Sand, hole full of water "1727 Slate "1735 Lime "1753 Slate "1759 Sand "1772 Slate "1772 Slate "1772 Slate "1777 Slate "1777 Brown lime "1808 Lime "1814 Sandy lime, oil "1818 Sand "1827 Lime "1838<"	Lime	" 1648 "
Shate 1075 Sand, hole full of water. "1727 " Slate "1735 " Lime "1753 " Slate "1759 " Sand "1772 " Slate "1777 " Slate "1777 " Slate "1777 " Slate "1777 " Brown lime "1808 " Lime "1814 " Sandy lime, oil "1824 " Red rock "1827 " Lime "1838 " Sand "1838 " Sand "1838 "	Sand	" 1653 "
State " 1735 " Lime " 1753 " Slate " 1759 " Sand " 1772 " Slate " 1777 " Slate " 1777 " Brown lime " 1808 " Lime " 1814 " Sand " 1814 " Sand " 1824 " Red rock " 1838 " Lime " 1838 " Sand " 1827 " Lime " 1838 " Sand " 1838 "	Slate	" 1675 "
Lime " 1753 Lime " 1753 Slate " 1759 Sand " 1772 Slate " 1777 Brown lime " 1808 Lime " 1814 Sandy lime, oil " 1818 Red rock " 1824 Lime " 1838 Lime " 1838 Sand " 1838	Sand, hole full of water	" 1727 "
Linte 1755 Slate "1759 Sand "1772 Slate "1777 Brown lime "1808 Lime "1814 Sandy lime, oil "1818 Sand "1824 Red rock "1827 Lime "1838 Lime "1838 Sand "1826	Slate	" 1735 "
State 11755 Sand "1772 " Slate "1777 " Brown lime "1808 " Lime "1814 " Sandy lime, oil "1818 " Sand "1824 " Red rock "1827 " Lime "1838 " Sand "1850 " Lime "1868 "	Lime	" 1753 "
Sand 11112 Slate "1777" Brown lime "1808" Lime "1814" Sandy lime, oil "1818" Sand "1824" Red rock "1827" Lime "1838" Sand "1838" Lime "1838" Sand "1868"	Slate	" 1759 "
Brown lime " 1808 " Lime " 1814 " Sandy lime, oil " 1818 " Sand " 1824 " Red rock " 1827 " Lime " 1838 " Sand " 1826 "	Sand	" 1772 "
Lime " 1814 " Sandy lime, oil " 1818 " Sand " 1824 " Red rock " 1827 " Lime " 1838 " Sand " 1850 " Lime " 1868 "	Slate	" 1777 "
Sandy lime, oil. " 1818 " Sand " 1824 " Red rock " 1827 " Lime " 1838 " Sand " 1850 " Lime " 1868 "	Brown lime	" 1808 "
Sand " 1824 Red rock " 1827 Lime " 1838 Sand " 1850 Lime " 1868	Lime	" 1814 "
Red rock " 1827 " Lime " 1838 " Sand " 1850 " Lime " 1868 "	Sandy lime, oil	" 1818 "
Lime	Sand	" 1824 "
Lime 1858 Sand "1850 Lime "1868	Red rock	" 1827 "
Lime	Lime	" 1838 "
Dune	Sand	" 1850 "
Dark lime	Lime	" 1868 "
	Dark lime	" 1882 "

Lime shell, volites	to	1894	feet
White lime			6.6
Lime, brown, hard	66	192 0	6.5
Lime, soft	66	1930	66
Lime	66	2004	6.6
Total depth	66	2004	6.6

KOSCIUSKO COUNTY

Underlying the glacial drift which covers the surface of this county are strata of Devonian age consisting of a series of limestones and shales. The strata dip northward away from the arm of the Cincinnati Arch, which passes through Indiana. The drift attains a thickness of over two hundred fifty feet in this county.

Warsaw.	The record of a well drilled at Warsaw	is g	given	below:
	Drift	248	feet.	
	Limestone (Silurian and Devonian)	652	66	
	Shale (Ordovician)	487	6.6	
	Trenton limestone	50	66	
	-			
	Total depth1	437	feet.	
	Altitude of well	815	6.6	

Syracuse. The record of a well drilled at Syracuse on the property of the Sandusky Cement Company was furnished the writer by Mr. S. B. Newberry, President of the company. The record of the well shows sixty-three feet of New Albany (Devonian) shale underlying the drift. The well probably ended in the Jeffersonville Minestone of the Devonian. By consulting the Warsaw well record above, it will be seen that the total thickness of the Devonian and the Silurian limestone is recorded as being 652 feet. In the Elkhart well the New Albany shale has a thickness of 215 feet, which is to be expected as it is down in the basin north of the arch. The well stopped in limestone at sixty-five feet. From the evidence of these wells the Devonian Minestone is thicker here than in the southern part of Indiana.

Sand, gravel, clay and boulders	278	feet.
Gray and dark shale	63	6.6
Gray argillaceous limestone	42	66
Crystalline gray and white limestone showing oil		"
Total	403	feet.
(Carbonate of lime		51.40
Carbonate of lime 341-351 feet	iesia	11.93
Insoluble		

161

	Carbonate of lime	72.00
351-361 feet	Carbonate of magnesia	7.73
	Insoluble	17.50
6,	Carbonate of lime	66.60
[*] 361-371 feet	Carbonate of magnesia	9.24
	Insoluble	21.24
	Carbonate of lime	48.60
371-381 feet	Carbonate of magnesia	8.57
	Insoluble	37.87

This appears to be similar to the cement rock of southeastern Indiana, but of much greater thickness than recorded in that region.

	Carbonate of lime	71.60
381-390 feet	Carbonate of lime Carbonate of magnesia	23.52
	Insoluble	3.36
	Insoluble Carbonate of lime Carbonate of magnesia	75.40
392-403 feet	Carbonate of magnesia	19.32
	Insoluble	

LAGRANGE COUNTY

Glacial drift occupies the surface of this county to a depth probably varying in thickness from 100 to 200 feet. The bed rock formations consist of strata belonging to the Devonian and the Mississippian periods. As these formations lie to the north of the Indiana extension of the Cincinnati arch they dip toward the north.

On account of the covering of the glacial drift the structural conditions of the bed rock cannot be determined by surficial observation. The possibility of oil and gas accumulations are connected with the possible occurrences of terraces, or small anticlines in the strata of the northward dipping formations. These can be located by means of well records only.

LAKE COUNTY

Silurian and Devonian strata underlie the glacial drift in this county. Because of the overlying mantle of drift stratigraphical and structural conditions of the bed rock are difficult to determine. At Crown Point the Trenton lies 919 feet below the surface, south of this point it should be encountered nearer the surface for points of the same or less elevation than Crown Point. At the north it will be found to lie deeper as the strata dip to the north.

Center Township. The following is the record of the well at Crown Point:

Drift	176	feet.
Black shale	76	6.6
Limestone	433	66
Bluish green shale	55	6.6
Clinton limestone	37	66
Bluish green Hudson River shale	122	6.6

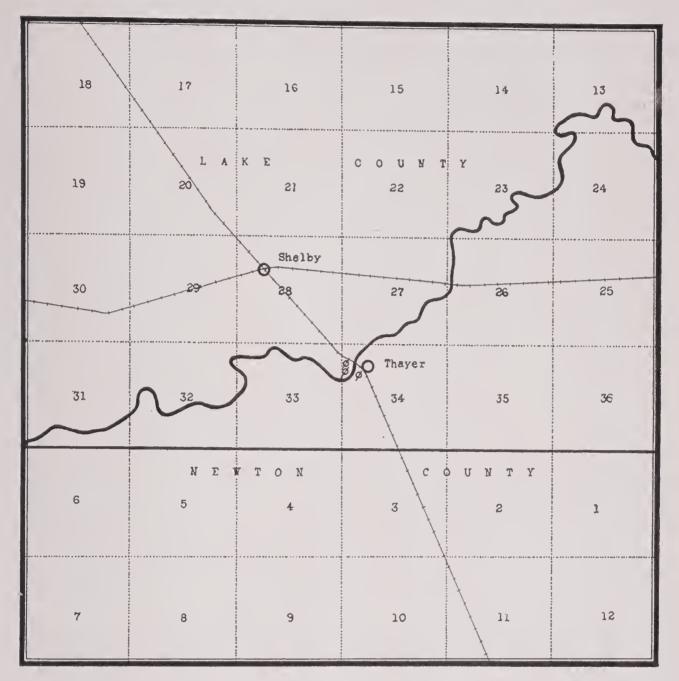


Fig. 42. Map of a portion of Lake and Newton Counties showing the location of the Thayer oil field.

Trenton limestone	342	feet
White limestone (sandy)	89	6.6
Limestone	15	6.6
-		
Total depth1	365	66
Altitude of well	736	66
Trenton below sea level	183	66

West Township. The following is the record of a well drilled on the farm of Martin Driscoll, section 23, T. 33 N., R. 9 E., Lake County:

Drift	73	fee	et.	
Gray limestone	73	to	598	feet.
Red shale	598	6.6	607	6.6
Green-gray slate	607	66	640	6.6
Shelly limestone	640	66	705	6.6
Limestone	705	66	715	6.6
Limestone with salt water	715	66	735	66

163

Dark gray limestone	735	to	795	feet
Slate	795	66	850	66
Dark gray limestone	850	66	870	66
Hard white limestone	870	6.6	890	6 6
Gray limestone	890	66 -	1025	6.6
Trace of oil			905	feet.
Good showing of oil			925	6.6
Total depth			1025	66
Well plugged August 18, 1914.				

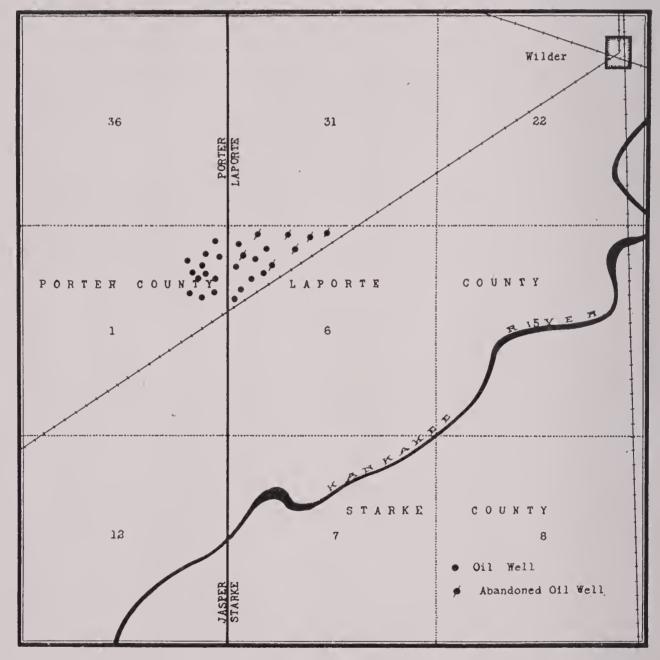


Fig. 43. Map showing the location of oil wells in the Wilder oil field on the border between Laporte and Porter Counties.

LAPORTE COUNTY

Underlying the glacial drift in this county are strata of Devonian age. The drift attains a thickness of three hundred feet or more. The dip of the bed rock is toward the north. The drift at Laporte has a thickness of 295 feet and overlies black shale. At Michigan City the drift is 250 feet thick and overlies limestone. Michigan Township. The drift varies from 170 to 250 feet and overlies black shale and limestone at Michigan City.

Center Township. A deep well drilled at Laporte contained the following section:

Drift	295	feet.
Black shale	125	6.6
Shale and limestone	460	6.6
Limestone	500	6.6
Trenton limestone	520	6.6
St. Peter and Low. Magnesian	600	66
Potsdam sandstone	323	6 6
Total depth	2823	6.6

Galena Township. A deep well was drilled on the property of O. L. Sutherland two miles east of Reason in section 2. No record was obtained of this well. It was plugged in 1911.

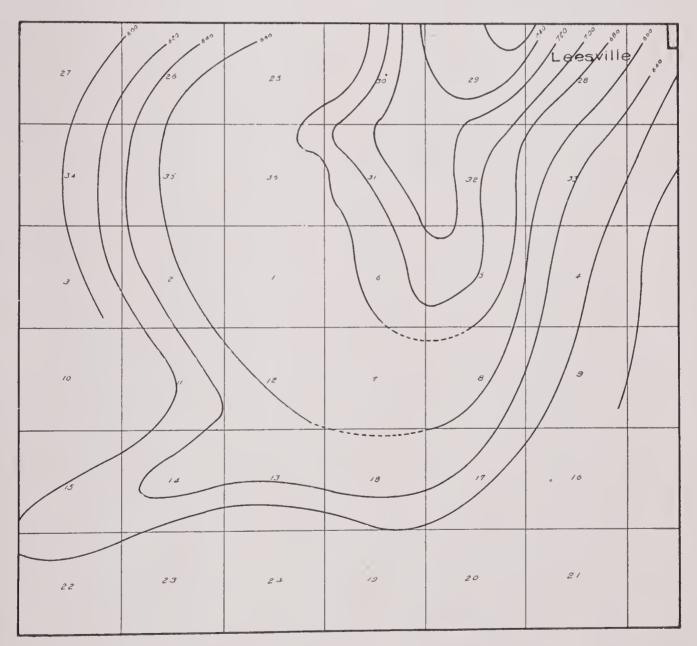


Fig. 44. Structural map of a portion of Lawrence County.

LAWRENCE COUNTY

Geology. A small portion of the surface in the eastern part of the county is occupied by the Knobstone, the remainder by the Harrodsburg limestone, the central portion by the Salem and the Mitchell limestone and the western portion by the Chester formations and the Pottsville.

Structure. The presence of the Mount Carmel fault and the Heltonville fault in the eastern part of the county produce a fold extending in a general north and south direction parallel to these faults. A change in direction of the Mt. Carmel fault at Leesville produces an anticlinal area southwest of Leesville which has been productive of gas and has to date produced a showing of oil in the Corniferous. The wells which have been drilled have not gone to the Trenton. In the neighborhood of Heltonville three wells have been drilled and a small amount of gas and oil obtained. These wells are located near the fold produced by the down throw of the strata, but the structure seems not to have been considered.

Heltonville Well. In 1913 the Bedford Oil and Gas Company drilled three wells near Heltonville. One of these wells was drilled to a depth of 1707 feet, entered the Trenton at 1633 feet and encountered a showing of oil at about 1675 feet.

Thie	ckne	\mathbf{SS}	Dept	h
Surface soil, etc	15	fe	et.	
Shale (knobstone)	85	66	100	feet.
Limestone (lense in Knobstone)	60	66	160	66
Sand (7 feet of oil sand)	20	66	180	66
Shale	10	66	190	66
Shale (white)	310	66	500	66
Shale	100	66	600	66
Shale	40	66	640	66
Sand, gas and oil bearing	10	66	650	66
Shale	50	66	700	66
Limestone	15	66	715	6.6
Shale	38	66	753	66
Oil sand	3	66	756	66
Limestone (water)	334	66	1090	66
Shale	543	66	1633	66
Trenton limestone	74	66	1707	66

Record of Heltonville Well.

The following is a record of Easton Well No. 1 drilled in the same township:

Easton No. 1 Well. Pleasant Run Township

Drift	20	feet
Gravel	5	66
Lime	5	66
Shale	75	66
White mud	150	66
Lime	200	66

Black shale	5	feet	
White slate	95	6.6	
Brown shale	40	6.6	
Lime	70	6.6	
Brown sand	15	66	Mineral water.
Lime	15	66	
Gray sand	5	6.6	Some gas.
White sandy lime	5	6.6	0
Blue lime	90	6.6	
Gray sand	35	66	Mineral water.
Lime	100	66	
White slate	150	66	
Lime	5	66	
Brown shale	100	66	
Broken shale with lime	50	6.6	
Brown shale	240	6.6	
Trenton at1	.540	6.6	
Gray sand at	1620	6.6	No oil, 15 foot sand
Light brown sand at	715	6 6	5 foot sand
Finished at1	750	66	

The second well was drilled near the first to a depth of 1100 feet and encountered a moderate flow of gas at 1090 feet. A third well was drilled about a mile south of the first two and resulted in a dry hole.

Flinn Township. Gas has been obtained from the Corniferous in this township in sections 3, 4, 5, and 28. Four of these wells were drilled by Mr. W. H. Wheitknecht and associates, and the fifth by Mr. Claude Malott. The following are brief records of the Wheitknecht wells: No. 1 is located in section 3, No. 2 in section 4, and Nos. 3 and 4 in section 28. No. 5 is in section 5.

	No. 1	No. 2	No. 3	No. 4	No. 5
Elevation above sea	587	566	709	608	570
Top of Corniferous	597	616	683	600	512
Water	635	655	714	636	550

These wells were all drilled on the east side of the structure where the strata are dipping toward the fault line. A showing of oil was found in two of the wells. These wells all started in the Knobstone and passed through four feet of Rockford Goniatite limestone and one hundred and twenty-five feet of New Albany shale and about thirty-eight feet of Devonian limestone before reaching water. A slightly different interpretation of the well records might modify the outline of the structure shown on the structural map. The elevations taken on the contact by the use of the aneroid barometer may vary slightly from the true elevations but probably not enough to make a serious change in the structural map.

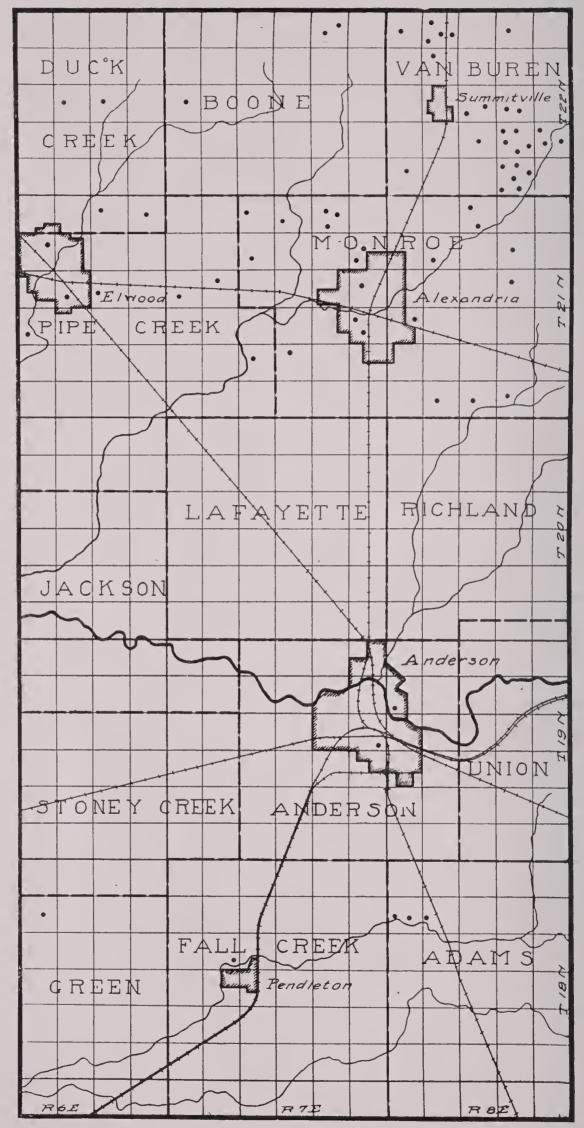


Fig. 45. Map of Madison County showing location of abandoned wells. Gas territory exists in the eastern tier and in Fall Creek Township, oil in Richland and Monroe.

MADISON COUNTY

The eroded surface of the Niagara limestone underlies the glacial drift in this county and may be reached at from five to one hundred and fifty feet. Gas has been produced in every township and oil in some parts of the county. The oil saud is reached at from 800 to 1200 feet. The surface of the Trenton lies between 100 feet above and 100 feet below sea level.

Anderson Township. The record of a well drilled at Anderson is given below:

Drift	114	feet.
Niagara limestone and shale		
Clinton (?)		
Hudson River and Utica		
Trenton limestone	24	66
To to 1 dow th	000	

A great many wells were drilled in this township, most of which produced gas.

Boone Township. Wells were drilled and abandoned in section 11, 2 wells; section 19, 1 well.

Monroe Township. A well drilled at Alexandria h	as t	he following log:
Drift		
Niagara limestone		
Hudson River and Utica	611	"
Trenton limestone	5	6.6
-		
Total depth	897	feet.
Well No. 3, B. Markle, Monroe Township.		
Clay, gravel and quicksand	84	feet.
Limestone	246	66
Slate	593	6.6
Trenton rock at	923	66
In Trenton	77	6.6
- Total depth1	.000	feet.

Many wells vere drilled and much gas and oil were obtained from this township. Wells have been abandoned in section 2, 3 wells; section 4, 2 wells; section 8, 1 well; section 10, 1 well; section 12, 2 wells; section 13, 1 well; section 15, 1 well; section 19, 1 well; section 24, 2 wells; section 27, 1 well; section 32, 1 well; section 33, 1 well; section 34, 1 well.

Van Buren Township.At Summit, the strata encountered are:Drift98 feet.White limestone45 "Blue limestone195 "Soft bluish green shale388 "Black shale200 "Trenton limestone45 "

An oil well in the eastern limits of Summit yielded 120 barrels per day and has the following log:

Drive pipe	120	feet.
Casing	440	6.6
Top of Trenton	940	66
Total depth	1042	66

Wells have been abandoned in the following sections: Section 7, 1 well; section 8, 1 well; section 10, 1 well; section 17, 1 well; section 21, 2 wells; section 22, 2 wells; section 26, 3 wells; section 27, 5 wells; section 28, 1 well; section 31, 1 well; section 34, 6 wells.

Duck Creek Township. A well drilled on the William Shafer farm in section 24 has the following record:

Drive pipe	36	feet.
Casing	228	66
Top of Trenton	938	66
Total depth	1238	66

One well has been plugged in section 14, and one in section 15.

Pipe Creek Township. The following strata were encountered in a well at Elwood:

Drift	et.
Niagara limestone and shale	
Hudson river limestone	
Utica shale	
Trenton limestone	
Total depth	t.
Trenton below sea level	
At Frankton the strata pierced by a well are as follows:	
Drift	t.
Niagara limestone and shale	
Hudson River and Utica 480 "	
Trenton limestone	

Total depth 862 feet.

Two wells have been plugged, one in section 15, the other in section 28.

Fall Creek Township. At Pennelton, the first well drilled passed through the following:

Drift	5	feet.
Corniferous limestone	2	6.6
Sandstone	14	e e
Upper Niagara shale	20	6.6
Limestone	200	6.6
Shale (Lower Niagara)	5	6.6
Limestone	4	66
Shale (green and brown)	610	6 G
Trenton limestone	87	6.6
-	2¥	
Total depth	947	feet.
Altitude of well	841	6.6

Wells were plugged in 1913 in section 7 and one in section 16, in 1916.

Adams Township. Gas wells were drilled in and near Markleville. A few wells are still supplying gas (1919).

Wells were plugged in Green Township in sections 6 and 21 in 1911, and 1913, and in Lafayette Township in section 18 in 1916.

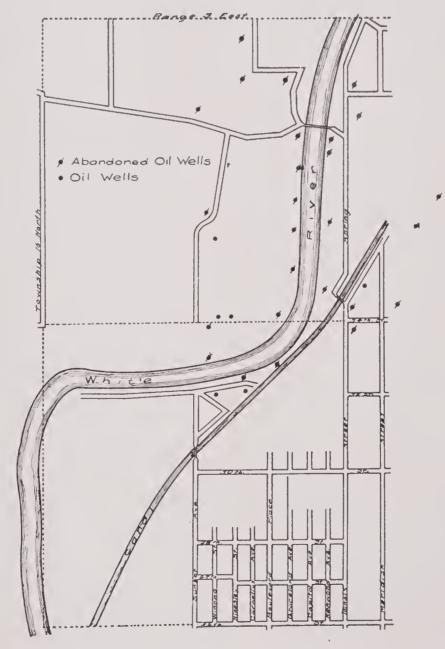


Fig. 46. Map showing location of Broad Ripple oil field in Marion County. Position of abandoned and pumping wells shown.

MARION COUNTY

The bed rock of this county consists of limestones of the Silurian age and limestones and shales of the Devonian and the Mississippian ages. These formations are concealed by glacial drift which varies in thickness from 25 feet to 200 feet. The surface of the Trenton lies from 100 feet above to 200 below sea level and the depth to the Trenton is from 800 to 1100 feet.

Washington Township. At Broad Ripple a number of oil wells have been brought in recently. The record of one of the wells is given below:

Drift	55	feet.
Corniferous limestone	48	6.6
Niagara limestone	257	6.6
Hudson River and Utica	504	66
Trenton limestone	24	6.6
Total depth	888	feet.
Trenton below sea level	109	6.6

Centre Township. A well at Brightwood passed through 199 feet of drift and reached the Trenton at 951 feet, below this a little gas and oil were obtained and salt water reached at 1181 feet. Eight producing gas wells were obtained northeast of Brightwood.

Lawrence Township. At Lawrence a number of wells were drilled. One was reported to have reached the Trenton at 1010 feet and salt water at 1015 feet.

Warren Township. A well drilled at Irvington reached the Trenton at 966 feet and salt water at 990 feet. At Cumberland the Trenton was reached at 1039 feet.

Wayne Township. The log of a well reported by Judge E. B. Martindale at Bridgeport is as follows:

Drift	160	feet.
Black shale	14 0	66
Limestone	360	66
Shale	490	66
Trenton limestone	50	66

The record of a well drilled one and one-half miles northwest of Bridgeport is as follows:

Drift (clay and gravel)	170	feet.
Soapstone (Knobstone shale)	85	6.6
Black and brown Genesee shale	125	66
Corniferous limestone	1 40	66
Niagara shale	50	6.6
Niagara limestone	100	6.6
-		
Total depth	670	feet.

The following are the records of wells drilled on the farm of D. H. Wiggins, Broad Ripple, in 1918-1919:

No. 1.	No. 2,	No. 4.	No. 7.	No. 8.	
Drive pipe	35	24	31	40 feet.	
Casing	365	360	365	340 "	
Sand at858	854	855	8481/4	860 "	
Total depth878	8621/4	868	860	875 "	
vo wells drilled on the form of	Mr. D.	114000	- C - TD		10

Two wells drilled on the farm of Mr. Britton of Broad Ripple in 1919. are as follows:

NT O

	INO. 3.	NO. 5	•
Drive Pipe	26	39	feet.
Casing	365	380	6.6
Sand at		867	6.6
Total depth	883	883	6.6

The following are the logs of two wells drilled on the Wheeler farm, in Broad Ripple, in 1919:

	No. 1.	No. 2,	
Drive pipe	51	$72\frac{1}{2}$	feet.
Casing	340	315	66
Sand at	853	847.4	6.6
Total depth	871	859	6.6

The following well was drilled on the Carter farm in 1919, in the Broad Ripple field:

Drive pipe	35	feet.
Casing	360	6.6
Sand at	851	6.6
Total depth	8661/2	66

MARSHALL COUNTY

Shales and limestones of Devonian age underlie the glacial drift in this county. The dip of the strata is toward the north, so for points of equal elevation above sea level, the Trenton is nearer the surface in the southern part of the county than in the northern part. The glacial drift which lies on the eroded surface of the bed rock has a thickness of from one hundred to two hundred and fifty feet. Plymouth has a number of flowing artesian wells which are forty to fifty feet deep and draw their supply from the glacial drift. The total thickness of the glacial drift at this point is 242 feet. In a deep well drilled at Plymouth, the Trenton was reached at 1368 feet. The altitude of the well is 783 feet, and the surface of the Trenton is 585 feet below sea level.

Minor folds may exist in the Trenton underlying the county, but the structural conditions of the strata cannot be determined by direct observation because the outcrops of the durolith are concealed by the glacial drift. Well records and other subsurface data are not of sufficient abundance to warrant the mapping of structural conditions.

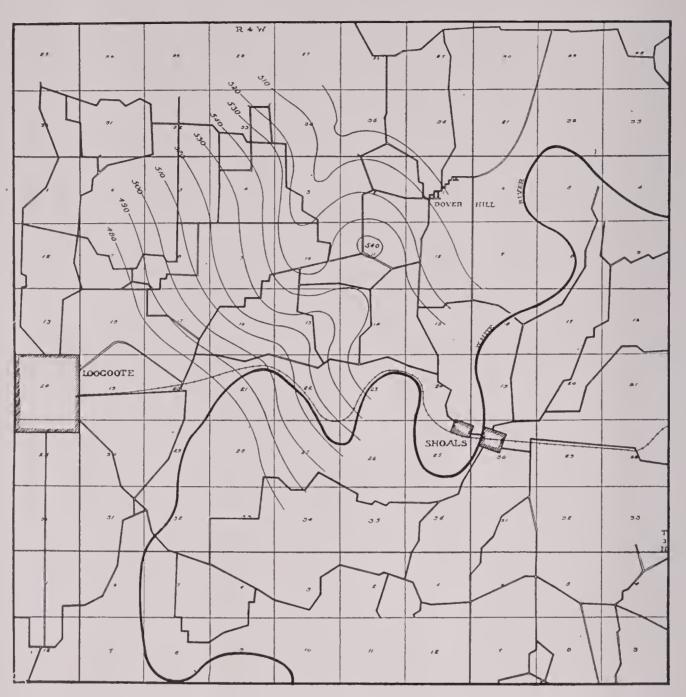


Fig. 47. A structural map of a portion of Martin County showing presence of a terrace. Contours drawn on limestone of Chester series.

MARTIN COUNTY

Martin County lies within the area of outcrop of strata of Pennsylvanian and the Mississippian age. Except for some filled-in valleys, the bed rock has been little affected by glacial deposition. The accessibility of the strata renders stratagraphical and structural work possible though the pronounced unconformity between the rocks of the ages mentioned above somewhat adds to the difficulties of correct interpretation. A general section of the rocks exposed in this county would include formations from the top of the Mitchell to and including a small part of the Allegheny. A generalized section is as follows:

Shales and sandstones containing coal

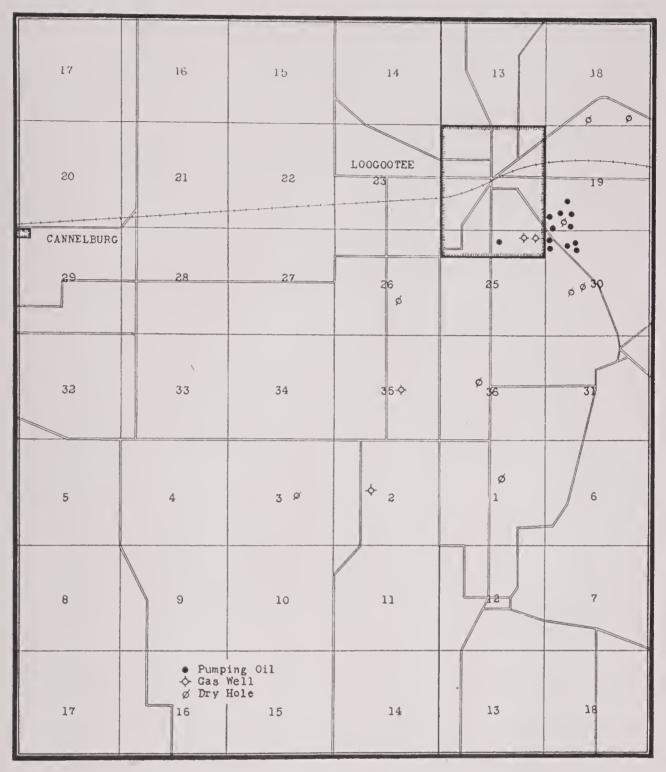


Fig. 48. Map of Loogootee oil and gas field showing location of oil, gas and dry wells, Martin County. Data collected by field party of 1919.

One of the best datum planes for use in drawing structural contours is the contact between the Beech Creek limestone and the Cypress sandstone which lies above. The extreme regularity in thickness of the Beech Creek, the presence of bold springs below, the massive character of the sandstone in connection with its position immediately overlying the limestone render the contact easy of recognition and materially lessens the possibility of its being confused with other limestone contacts of frequent occurrence in the Chester.

A structural map of a portion of Martin County has been constructed from data collected by the writer, Dr. C. A. Malott and other members of the field party of 1919. This map shows the presence of a terrace or possibly a low anticline in the area southwest of Dover Hill. Since the Loogootee field is so near, this may prove productive territory. A deep well was drilled to a depth of 2200 feet southwest of Shoals and it is said that a small amount of gas was obtained.

A well drilled west of Shoals in section 26 reached oil at 1400 feet in the Corniferous. A well drilled in White River valley in the eastern part of Shoals reached salt water at 960 feet. This well was probably finished in the Knobstone.

Perry Township. A small oil field is located in the southwest part of section 19, the northwest part of section 30, and the southeast part of section 24. Dry holes were drilled in sections 19, 36, and 1. See map.

Rutherford Township. Two dry holes were drilled in section 1 on the property of Jno. D. Allen and D. E. Elliott.

MIAMI COUNTY

The eroded surface of the Silurian and the Devonian strata underlie the glacial drift in the county. The drift varies in thickness from a few feet to as much as 325 feet. Outcrops of the bed rock occur along the bed of Big Pipe Creek between Bunker Hill and the western boundary of the county. The rocks of Devonian age consist of limestones. Outcrops of Silurian rocks occur along the bed of Little Pipe Creek, the Wabash and the Mississinewa Rivers. Gas has been found in this county at Peru, Bunker Hill, Amboy and Xenia. The surface of the Trenton dips northward from Bunker Hill to Peru at the rate of 9 feet per mile.

The records of wells drilled at these points as given by Gorby and others are as follows:

Soil	4	feet.
Gravel	46	66
Water lime	31	66
Niagara	238	6.6
Hudson River and Utica	587	66
Trenton limestone	31	66
Total depth	937	feet.
Altitude of well	81	15 ''
Trenton below sea level		91 "
Record of well drilled at Bunker Hill:		

Xenia Well².

Section of Well No. 1.

Drift	feet.
Corniferous and Niagara limestone 503	66
Hudson River and Utica 431	6.6
Trenton limestone 12	66
	,
Total depth1004	feet.

Section of Well No.	. 4
---------------------	-----

177

Drift	36	feet.
Niagara (and Clinton) limestone	325	b 4
Hudson River and Utica	454	66
Trenton limestone	30	6 6

Tota	ul depti	h		 905	feet.
Trenton	below	sea	level	 218	6.6

A small quantity of oil was found at a depth of 808 feet. Salt water occurred at 900 feet. This well was drilled in the northern part of the city.

Yielded a small quantity of oil and gas, but not sufficient for use. This well was bored a little south of the city limits, about $1\frac{1}{4}$ miles from well No. 1.

Section of Well No. 3.		
Drift	70	feet.
Niagara limestone	490	66
Hudson River and Utica	400	6.6
Trenton limestone	42	6.6

Total depth1002 feet.

A light flow of gas was obtained from this well. The above well was situated on the Younce farm, seven miles southeast of Peru.

Section of Well No. 4.

Drift	324	feet.
Niagara limestone	276	6.6
Hudson River and Utica	407	6.6
Trenton limestone	35	6.6

Total depth1042 feet.

Yielded no gas.

Record of wells drilled in sections 16 and 28, S. E. $\frac{1}{4}$ of the N. E. $\frac{1}{4}$ of section 28:

Alluvium—river drift		
Niagara limestone	385	66
Hudson River and Utica	454	66
Top of Trenton	875	feet.
Total depth		
	657	6.6

68

S. W. $\frac{1}{4}$ of section 16 (27 N. 4E):		
Drift	324	feet.
Niagara limestone	379	66
Hudson River and Utica shale	307	66
-		
Top of Trenton	1010	feet.
Total depth	1041	6.6
Surface above sea level	757	66
Top of Trenton below sea level	253	66

Hospital Hill.

Drift	20	feet.
Niagara limestone	375	6.6
Hudson River shales and limestone	255	6.6
Utica shale	248	6.6
Top of Trenton at	898	66
Total depth	933	6.6

This well was drilled in October, 1897, and produced 400 barrels of oil a day for four days. The production gradually dropped to 300 barrels when three weeks old.

Jackson Township. Record of well drilled at Amboy:

Section of Well No. 1.

Drift	. 35	feet.
Niagara limestone and shale	. 350	66
Hudson River and Utica	. 522	66
Trenton limestone	. 33	66

The following is a record of wells abandoned in this township:

Owner	Date	Sec.	Town	Range	Wells
C. C. Hull	1911	14	25	$5\mathrm{E}$	1
E. L. Daniels	1913	20	25	$6\mathrm{E}$	1
Chas. Friemal	1913	20	25	$6\mathrm{E}$	1
E. L. Daniels	1913	24	25	$5\mathrm{E}$	1
E. Hooper	1913	29	25	6E	1
E. L. Carter	1913	30	25	$6\mathrm{E}$	1
E. Gross	1913	32	25	$6\mathrm{E}$	1

MONROE COUNTY

Geology. The eastern portion of the county lies within the area occupied by the Knobstone, the central portion is occupied by the Harrodsburg, Salem and Mitchell limestones, the western portion by the Chester shales, limestones and sandstones while the highlands in the extreme western portion are occupied by the Pottsville.

•

Ŧ

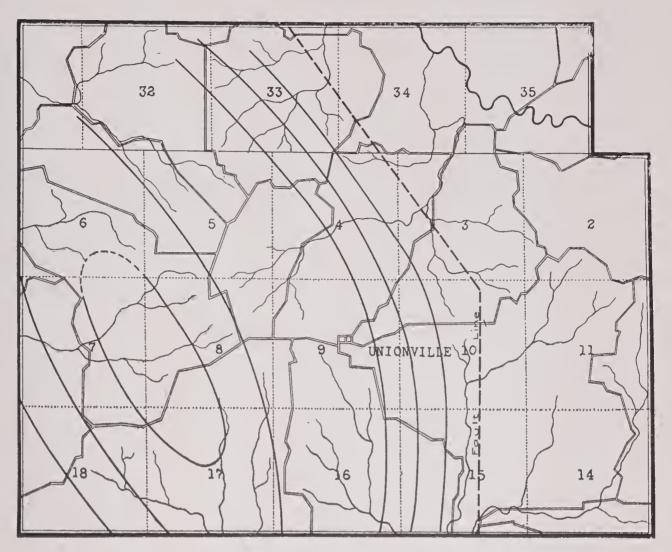


Fig. 49. A structural map of a portion of Monroe County.

Structure. The Mount Carmel fault crosses the eastern part of the county and near Unionville makes a change in direction which makes conditions favorable to anticlinal folds. The fault itself with its down-throw toward the east produces an anticlinal fold extending parallel to the fault but not a closed structure except at such places as cross flextures are produced.

Bloomington Well. A deep well was drilled in the courthouse yard in 1885 to a depth of 2730 feet. A generalized record of the well follows:

Surface loam	6	feet.
Mississippian limestones and shales	749	- 66
Devonian shales and limestones	170	66
Niagara limestone	240	6 6
Hudson River limestone	485	6 6
Utica shale	180	66
Trenton limestone	626	66
Potsdam sandstone	274	66
Total depth	2730	feet.
Altitude of well		6.6

~ .

water supp	ly. The complete record is given below	v:			
	Earth	6	feet		
	St. Louis limestone, water	. 30	66		
	Keokuk limestone	. 89	66		
	Knobstone	630	66		
	Red shale	. 20	6.6		
	Blue limestone	. 5	6.6		
	Brown shale, gas	10	66		
	Black slate, Devonian	120	6.6		
	Gray limestone, Portland cement	15	6.6		
	Brown limestone, Niagara		66		
	Shaly limestone				
	Light brown limestone	130	66		
	Flinty limestone				
	Light colored limestone		6.6		
	Brown limestone		6 6		
	Blue shale		6.6		
	Blue limestone	40	6.6		
	Blue shale, streaks of limestone		6.6		
	Blue shale		66		
	Grey limestone, some shale		6.6		
	Blue shale		6.6		
	Hard, white sandstone		6.6		
	Shaly limestone and sandstone		6.6		
	Gray limestone and sandstone		66		
	Shaly limestone, sandstone quartzite		66		
	White and yellow, hard sandstone, iron	22	66		
	White sandstone, softer		66		
	White sandstone, soft		66		
	Gray limestone and sandstone, mixed		66		
	Gray limestone, sulphur-water increas-	14			
		8	66		1
	ing rapidly	0			3
	Total	0790	foot		3
			reet.		9
Well east	Trenton below sea level about		hours		
wen east	of Coleman House, west of Thrasher So			5:	
	Oolitic limestone at		ieet.		
	Soil		66		
	Sandstone and iron ore		6.6		
	White sandstone				
	Iron stone		,	6 inches.	
	Brown sandstone		66		
-	Coal			0	
	Blue sandstone		,	6 inches.	
	Blue sand		66 °		
	Iron stone		68		
	Limestone	3	66		
guiltonia .					
	Total depth	133	feet.	e e	1

ŧ

f. .

No oil or gas was found in this well, which was drilled for an artesian water supply. The complete record is given below:

en southeast of Thrasher Schoolhouse	Thick	iness	Total	Depth
Drift	10	feet.	10	feet.
Iron stone	$5\frac{1}{2}$	6.6	$15\frac{1}{2}$	6.6
Shale	6	. 6	$21\frac{1}{2}$	66
Iron stone	$4\frac{1}{2}$	4.6	26	66
Blue sandstone	15		41	6.6
Kaolin	$5\frac{1}{2}$	ñ. a	$46\frac{1}{2}$	* •
Blue sandstone	22	6 P	681/2	6.6
Coal	$4\frac{1}{2}$	6.6	73	6.6
Blue shale	26	6 6	99	6.6
Blue sandstone	19	6 0	118	6.6
Iron stone	22	6 6	140	6.6
White limestone, water	140	6 6	280	66
Shale	60	6 6	340	6.6
Brown limestone	45	6.6	385	6.6
Shale		6.6	390	6.6
Brown limestone	20	n 4	410	6.6
Blue limestone, water	130	<u> </u>	540	6.6
Quartz		6.6	560	6.6
White sandy shale		6 6	660	6.6
Blue shale		6 6	1020	6.6
Sand		66	1045	6.6
Blue shale		6.6	1172	66
Bed rock	7	6 6	1179	6.6
Shale		6.6	1197	6 6
Limestone		6 6	1204	6 6
White sandstone		6.6	1210	66
Dark shale	35	66	1245	6 6
Iron pyrite		6 +	1255	6.6
Brown shale and iron		6 6	1288	6.6
Black shale, hard	30	6 6	1318	66
White limestone		6 6	1342	66
Limestone		6 6	1351	6.6
White gray limestone		6.6	1436	66
Brown limestone	~ ~	6.6	1461	6.6
Gray limestone	- 0	6.6	1471	66
Brown limestone		6 6	1496	6.6
White limestone			1511	6.6
Brown and gray limestone	0.0		1539	6.6
Gray limestone		66	1556	6.6
Black shale	0.0	6 6	1578	6.6
Limestone (Niagara)		6.6	1584	s 6
Pure white limestone	0.0	66	1676	6.6
Black limestone	0.1	66	1700	6.6
Gray limestone	~ ~	66	1725	6 6
Gray limestone and water		6.6	1736	6 6
Coarse limestone and gas		66	1745	66
Gray limestone	~ ~	66	1780	6.6
tray mucholic				

Well southeast of Thrasher Schoolhouse:

Brown limestone	23	feet	1803	feet
Gray limestone	10	6 6	1813	6.6
Blue limestone	37	6 6	1850	4.6
Blue shale	15	6 6	1865	6.6
Blue shale	15	66	1880	6.6
Blue limestone	9	6.6	1889	66
Blue shale	11	6 6	1900	6.6
Shale (Utica)	50	6 6	1950	6.6
Shale (Utica)	15	66	1965	6.6
Black shale	35	66	2000	6.6
Blue and black shale	274	6.6	2274	6.6
Trenton limestone	301	6.6		6 6
		`		
Total depth			2575	feet.

Top of Trenton at 2272 feet.

Oil sand at 2301 feet. Light initial production.

Altitude at mouth of the well 975 feet.

There is a dip of thirty-five feet to the mile for the Trenton limestone between the deep well at Bloomington and the Koontz well. In the former the Trenton is 1060 feet below sea level and in the latter 1300 feet.

MONTGOMERY COUNTY

A small area of the bed rock in the western portion of this county is occupied by Pennsylvanian strata, but the greater part of the subsurface of the county is occupied by the strata of the Mississippian age. The covering of the glacial drift in a large measure prevents the determination of structural conditions of the strata. The surface of the Trenton lies from 1200 to 1600 feet below the surface of the county. The dip of the strata is toward the southwest, dipping away from the Cincinnati arch, which lies to the north. The surface of the Trenton lies from 400 to 800 feet below sea level.

The following is the record of well No. 1 drilled at Crawfordsville²:

Drift	140	feet.
Sub-Carboniferous rocks	410	66
Devonian shale	80	66
Corniferous limestones	55	66
Niagara limestone	380	66
Hudson River and Utica	365	6.6
Trenton limestone	69	66
Total depth	1499	feet.
Trenton below sea level	664	6.6
Yielded no gas.		

Railroad Elevations.

Linden, 787; Cherry Grove, 797.5; Manchester, 753.4; Crawfordsville, 738.5; Whitesville, 871; Ladoga, 822.5; New Ross, 877; Pawnee, 846; Lapland, 840; Penobscot, 859; Waveland, 744; Sand Creek, 582.

MORGAN COUNTY

The glacial mantle covering the bed rock in this county varies from a few feet to ninety feet. The Knobstone division of the Mississippian underlies the drift over a large part of the county. Outcrops of the Knobstone occur, but they are not sufficiently abundant to be of much service in locating favorable structural conditions. Even if a sufficient number of outcrops could be found the absence of sufficient number of persistent hard layers of rock would render the determination of structural conditions exceedingly difficult. In the presence of favorable conditions, oil and gas sands may be found in the Devonian and the Trenton strata. The Trenton will be found below the surface at a depth ranging from 1400 to 1600 feet.

Two wells were drilled south of Hall, in 1916. The first one was drilled to a depth of about 860 feet and had a showing of oil in the Corniferous limestone. The well was shot, but the shot did not increase the show of oil.

Section of Well No. 1, Martinsville, Ind.
Drift
Sub-Carboniferous rocks
Hamilton shale 120 "
Corniferous limestone
Niagara limestone
Hudson River and Utica
Trenton limestone
Total depth1448 feet.
Trenton below sea level
Yielded no gas.

Jackson Township. A well was drilled on the Donald Stewart property in Section 1 in 1911 and another on the Emory Hilderman property in Section 36 in 1912. Both were non-productive.

NEWTON COUNTY

The subsurface of Newton County is occupied by the strata of the Silurian in the central portion and northern portion of the county and by the Devonian strata in the southern portion of the county. The strata of the northern portion dip north and those of the southern portion toward the south. Slight variations in the uplift of the arch formed has resulted in the creation of at least one minor fold favorable to the accumulation of oil. This occurs in the boundary between Newton and Lake Counties near the town of Thayer.

The following formations will be encountered in this county between the surface of the glacial drift and the surface of the Trenton:

		Thickness.			
Glacial drift	100	to	150	feet.	
Devonian (in Southport)					
			300		
Hudson River			300	66	
Utica ·			210	66	

On the north boundary at Thayer the Trenton is encountered at 846 feet where the surface elevation is 650 feet. At Kentland in the part of the county at an elevation of 680 feet the Trenton is encountered at 1060 feet. The dip of the Trenton surface is more than 57 feet to the mile toward the south.

On account of the covering of glacial drift which attains a thickness of more than one hundred feet, the geological structures favorable to the accumulation of oil cannot be determined or located by the use of surficial methods. The oil which has been found is probably in the Trenton limestone. The following is a log of well No. 2 drilled on the Grant farm west of Thayer by the Thayer Oil and Gas Co., Lincoln Township:

> Oil sand at 615 feet. Thickness of gas sand...... " 20 "

0				
Salt water at	"	675	، ۲	
Trenton rock at	6.6	846	66	
Oil at	66	850	66	

Total depth " 862 feet.

This well was plugged in 1919, as was a well on the Pebecca Spitter property.

Well No. 3.

Drift	73	feet.
Niagara limestone	283	6.6
Hudson River limestone	300	66
Utica shale	190	66
Trenton limestone	6	66

Section of Well No. 1.

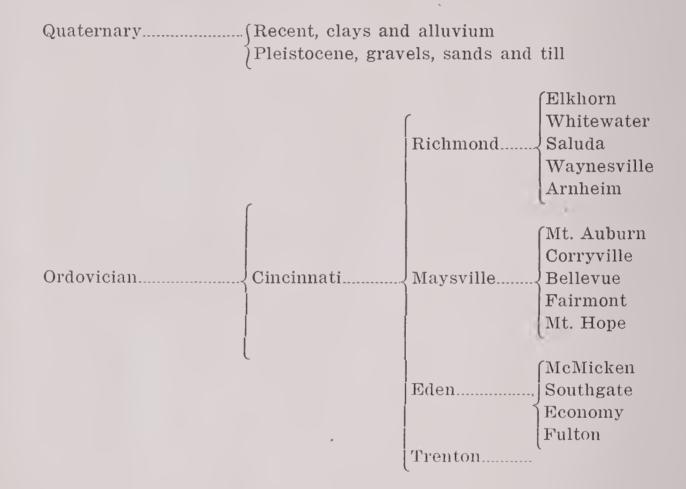
Drift	feet.
Black shale (New Albany) 100	<i></i>
Corniferous	"
Niagara limestone	6 6
Hudson River limestone	6 G
Utica shale	6.6
Trenton limestone	66
Total depth1120	feet.
Trenton below sea level	66
Yielded no gas.	

NOBLE COUNTY

Noble County probably lies wholly within the area occupied by the Devonian strata, though its bed rock is concealed by a heavy mantle of glacial drift. A well record at Albion shows a thickness of 375 feet and at Kendallville of 485 feet of drift. The well at Kendallville reached the Trenton at 1920 feet.

A well drilled at Albion furnished the following log¹: Section of Well No. 1.

Drift	375	feet
Devonian shale	65	6 6
Devonian limestone	65	6.6
Sandstone	5	6.6
Hydraulic limestone		6.6
Niagara and Clinton (?) limestone and		
shale	815	6.6
Hudson River limestone and shale	285	6.6
Utica shale	250	6.6
Trenton limestone	24	6.6
-		
Total depth1914	feet.	,


The surface of the Trenton dips northward through this county at the rate of from thirty-five to thirty-eight feet to the mile. If there are structures developed in these northward dipping strata they are not visible at the surface because of the thick over-burden of drift, which prevents the detection of reverse dips.

Railroad Elevations.

LaOtto, 872.9; Swan, 872; Avilla, 962.9; Kendallville, 974.7; Rome City, 920.3; Grismore, 868.2; Ligonier, 893.8; Wawaka, 952.1.

OHIO COUNTY

The Cincinnatian Division of the Ordovician including the Eden, (Utica) Maysville, (Lorraine) and Richmond from the strata underlying the Pleistocene and Recent deposits of this county. The Pleistocene deposits vary in thickness from a few to fifty feet. The Ordovician sediments that are revealed consist of a series of shales and limestones. The Trenton limestone lies below these formations. The number and abundance of out-crops will probably make it possible to determine the structural conditions existing in this county, but careful detailed work will be required. The table below gives the sub-divisions which are represented in the county.

ORANGE COUNTY

This county lies within the unglaciated area and the structural conditions of the rocks may be determined for the greater part of the county by surficial observations. The eastern part of the county contains the Salem and the Mitchell limestones of the Mississippian. The western part of the county contains the shales, sandstones and the limestones of the Chester division of the Mississippian and the conglomeratic sandstones of the Pottsville division of the Pennsylvanian. Where the geologic conditions are favorable there is a probability of the accumulation of oil and gas in the Devonian strata (Corniferous limestone) which may be reached in the western part of the county at a depth of from 1100 to 1400 feet. There is also a probability of oil and gas accumulating under such structures in the Trenton though the Trenton limestone may lack porosity due to the lack of dolomitization.

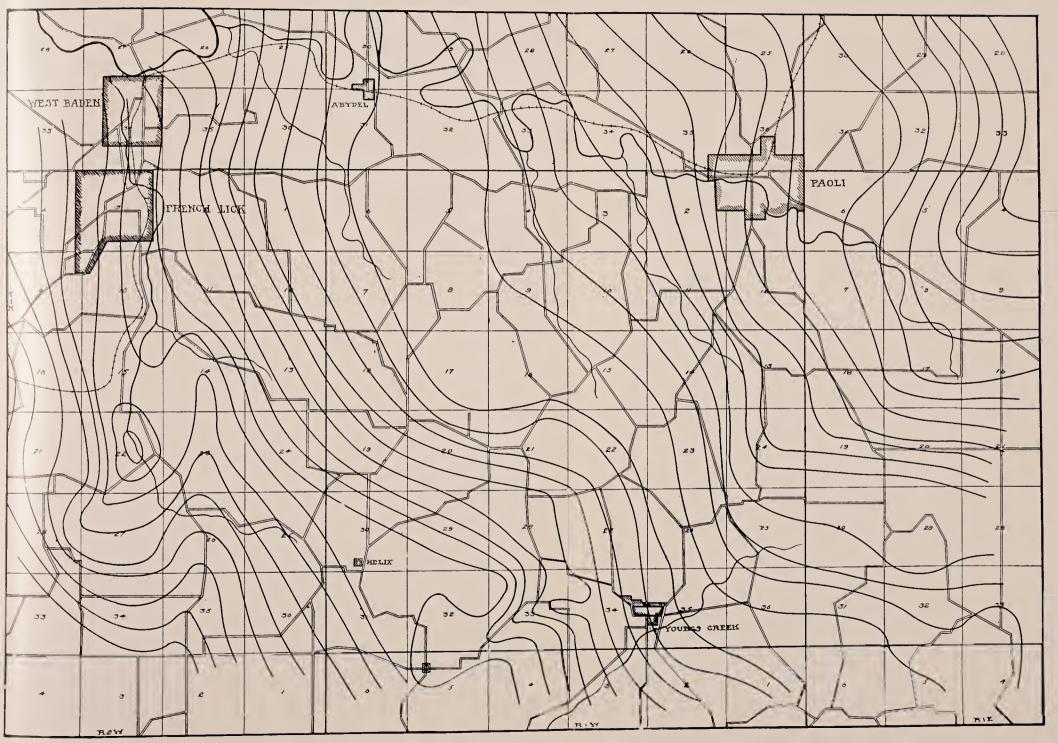


Fig. 50. Structural map of a portion of Orange County.

.

Fig. 51. Map of a portion of Orange County showing structural conditions near Orangeville. Contour lines drawn on Chester limestone. Data secured by C. A. Malott and P. B. Stockdale of field party of 1919.

A general geological section in this county would include:		
Reddish conglomeratic sandstone with iron ore (Pottsville)	200	feet.
Fine grained massive sandstone (Tar Springs, Chester)	45	66
Limestone, gray (glendeane)	10	66
Sandstone and sandy shales (Hardinsburg, Chester)	50	6.6
Limestone, thin bedded (Colconda)	16	66
Sandstone, massive (passing to shale, Cypress)	35	66
Limestone, massive (Beech Creek)	12	66
Shales and sandstones (Elwren)	32	66
Limestone, pyritiprous, reddish (Reelsville)	4	66
Sandstone and shales (Brandy Run)	13	66
Limestone, massive ledges (Beaver Bend), Top of Mitchell	10	66
Limestone (Mitchell, Salem, Harrodsburg)		66

Two wells were drilled at Paoli, one to a depth of 1,000 feet, the other to a depth of 1,130 feet. In the first mineral water was found at 250 feet and in a blue shale at 1,000 feet. The bottom of this well is probably in the Silurian shale. Its altitude is about 580 feet. The second well encountered mineral water in a limestone at 1,130 feet and probably was completed in the Silurian limestone. These wells were drilled for oil or gas and were drilled without reference to structure. By consulting the structure map accompanying this report it will be evident that no favorable structure is present. A well drilled in Section 8 southwest of Paoli reached a depth of over 1200 feet before being abandoned. This well was drilled on a slight shoulder or terrace as will be seen by consulting the structure map. The field work necessary to the preparation of this map was done by Dr. C. A. Malott and Mr. P. B. Stockdale.

OWEN COUNTY

The geological formations represented by the outcrops in this county are found in the following section:

	Recent—River alluvium.
Quaternary	Pleistocene—Glacial gravels, sands and clays.
Pennsylvanian	Coal measures—coal beds, sandstones, shales and limestones. Mansfield (Pottsville) sandstone shales and coal.
	Chester, shales, limestones, and sandstones.
	Mitchell, limestones and shales.
Mississippian	Salem, limestone.
	Warsaw, limestone.
	Knobstone, shales and sandstones.

The Pleistocene deposits mantle the surface in all places except along the courses of streams, where it has been removed by postglacial erosion. The number of outcrops may be sufficient in some places in the county to enable the structures of the bed rock to be determined.

Washington Township. Three wells were drilled in Spencer to the Niagara limestone from which a supply of sulphur-saline water was obtained. A well was also drilled south of Spencer and a showing of oil obtained at a depth of 800 feet. This well was drilled deeper, but did not strike production.

A well was drilled on the Tanner property in Section 20 west of Spencer in 1913. No record of this well has been obtained.

PARKE COUNTY

The strata of the Pennsylvanian period underlie the glacial drift in Parke County. Outcrops of the bed rock occur along the beds of some of the streams, but the structural condition cannot be determined from surficial observations.

The Trenton limestone lies from 2000 to 2500 feet below the surface in this county. The following is the record of a well drilled at Rockvillo. Section of Well No. 1.

Drift	96	feet.
Gray sandstones	44	6.6
Brown shale	25	66
White sandstones*	110	6 6
Black shale	25	66
Black shale	105	6 6
White sandstone	50	6 6
Limestone	170	6.6
Gray shale	305	66
Sandstone	100	66
White shale	114	6.6
Black shale	102	6.6
Limestone	118	6.6
Brown sandstones		6.6
White limestones	135	6.6
Crystallized limestone	85	6.6
White shale, like kaolin	48	6.6
Limestone		6.6
Dark shale (Utica)		6.6

Total depth to Trenton2100	feet.
Altitude of well	6.6
Trenton below sea level	6 6
Yielded no gas.	

In 1908 a bore was sunk to a depth of 1200 feet near Diamond, in Parke County but was dry.

Where structural conditions are favorable oil may be found in the Devonian in this county.

PERRY COUNTY

As Perry County occupies a part of the unglaciated area of Indiana the outcrop of its strata is unconcealed. The formations of the county belong to the following divisions:

	Recent—alluvium and residuals
Quaternary	Pleistocene-residuals
	Allegheny—shales, sandstones, limestones, coals
	Pottsville—shales, sandstones and coal
Mississippian	Chester—limestones, sandstones and shales

No structural map of this county has been attempted, but it seems possible to determine the structural conditions for a large part of the county by using the limestones of the Chester as key formations.

Some oil was found in two wells in section 19 near Uniontown, also in sections 24 and 26. The records of these wells are given below:

Wells drilled in Clark Township east of Siberia, near Anderson River six miles south of Birdseye.

Well in Southwest $\frac{1}{4}$ of	Section 24.
Drive pipe	
Casing	595 ''
Top of pay	
Total depth	
Well in Southeast $\frac{1}{4}$ of Sect	tion 26 (38.3W.)
Drive pipe	10 feet.
Casing	
Total depth	
he above well came in as a salt water w	ithout a showing of oil.
Northeast 1/4 of the Southwest	$\frac{1}{4}$ of Section 19.
Drive pipe	60 feet.
Casing	
Total depth	
Better producer than No. 1.	

TE

Well in Southwest $\frac{1}{4}$ of Section 24.

Record of Deep Well at Cannelton.

	Thickness	Depth	
	Feet	Feet	
Sand	47	47	
Shale	110	157	
White sand	63	220	
Shale	9	229	
Limestone	41	270	
Shale	5	275	
Hard limestone, white	55	330	
Shale	16	346	
Limestone	6	352	
White sand	5	357	
Shale	3	360	
Sand	13	373	
Shale	23	396	
Black limestone	10	406	
Grey shale	30	436	
White limestone	9	445	
Grey shale		460	
White shale salt water at 480	.: 51	511	
Shale	7	518	
White limestone salt water at 73	3 218	736	
Limestone salt water at 774	204	940	
Dark sandy shale	87	1027	
Dark brown limestone	81	1108	
Limestone		1780	
Shale (Utica)		1900	
Linestone (Trenton)	633	2533	

Tell City Well Record.

Soil	25	25
Grey shale		
White sand		
Brown sand		155
White limestone		185
Dark grey shale		
		215
Shally lime		225
Limestone	5	230
Greenville shale		275
Limestone		346
Grey sand		352
Grey limestone and shale	-43	395
Sand	15	410
Varigated shales	116	526
Limestone	33	559
Grey shale	36	595
Grey sand	-20	615
Liemstone and shale	3	618
Limestone	17	635
Brown shale	13	648
Grey sand		675
Brown shale		680
Sand stone		742
No record		752
Grey limestone		920
Light limestone	~	1165
inght innestone	210	1100

PIKE COUNTY

The strata of Pike County belong to the coal measures with the exception of a mantle of glacial drift in the northern portion, of glacial lake deposits in the central portion and recent residuals covering the southern portion and overlying the coal measures. As many as eight distinct veins of coal occur in the county. Three or four of these are workable over considerable area. For the determination of structural conditions it is possible that some use may be made of the Coal Measures. Oil fields have been developed northeast of Petersburg, southwest and southeast, in Washington Township, Madison, Monroe, Patoka and Logan Townships. Some of the structures in this county were outlined on the Petersburg coal and published in the Ditney folio¹.

Madison Township. Oil sands range in depth from 960 to 1340. Five sands are reported.

¹See Ditney Folio, U. S. G. S.

Fig. 52. Map of portion of Pike County showing outline of structure at Petersburg. Contour lines drawn on Coal V by C. A. Malott and P. B. Stockdale, field party 1919.

Well No. 3, D. & R. Snyder farm. Section 35, Madison Twp.:

Soil	to	5	feet.
Mud		45	6.6
Quick sand		55	66
White sand		95	66
Slate		100	66
Coal		105	6.6
Slate		165	66
Sand		175	6.6
Slate		375	4 6 [°]
Shale		391	66
Lime		420	6.6
Coal		423	6.6
Sand		433	6.6
Blue sand		453	6.6
Dark lime		463	6.6
Slate		523	6.6

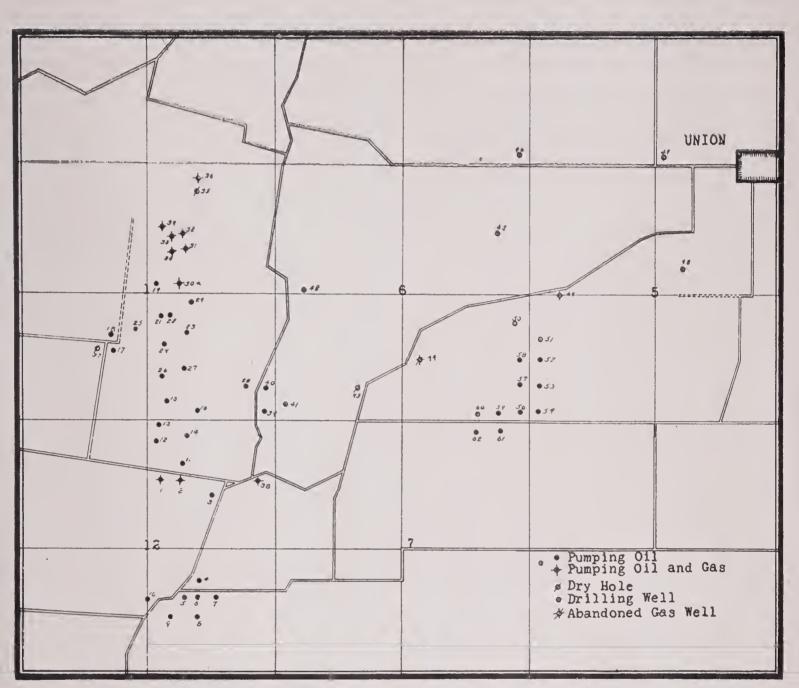


Fig. 53. Map of the Union oil field showing oil and gas wells and dry holes. Data collected by C. A. Malott and P. B. Stockdale of field party of 1919.

Lime 1	to 540 feet
Shale	690 "
Sand	710 "
Water sand	800 "
Slate	845 "
Lime	850 "
Slate	870 "
Sharp sand	935 ''
Gray slate	945 ''
Lime	960 "
Slate	1005 "
Sand	1015 "
Shale	1035 "
Water sand	11 40 "
Slate	1145,"
Little lime	1163 "

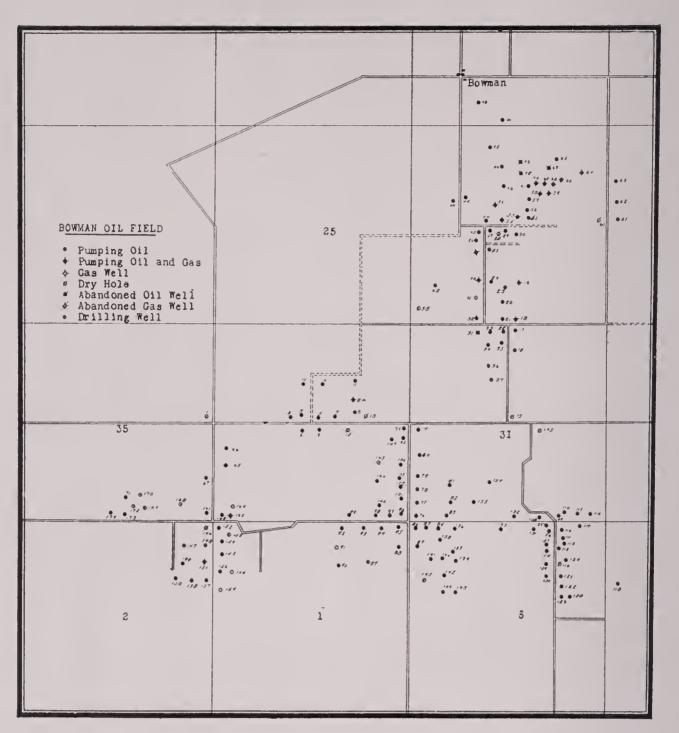


Fig. 54. Map of the Bowman oil field in Pike County, showing location of oil wells, dry holes and gas wells. Data secured by C. A. Malott and P. B. Stockdale, field party of 1919.

Slate to	1193	fect
Dark lime	1200	6 G
Shale	1205	6.6
Lime	1215	6.6
Slate	1245	6.6
Dark sand	1253	66
Big lime	1275	66
Slate	1285	6.6
Sand	1295	66
Shale	1300	6.6
Gas sand	1303	66
Slate	1304	6.6
Snyder sand	1313	6.6
Slate	1323	66

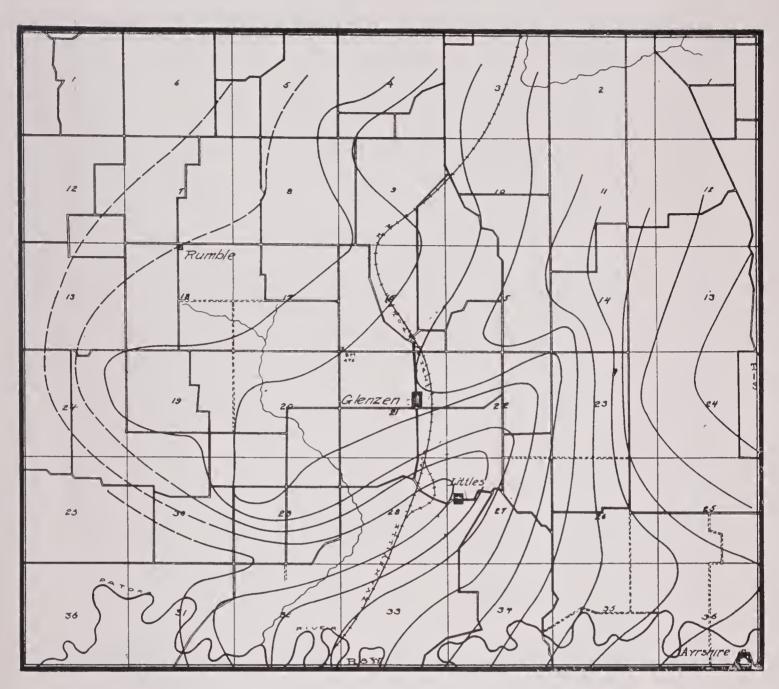


Fig. 55. Map of the Glenzen terrace in Pike County. Structure lines drawn on Coal V. Data secured by C. A. Malott and P. B. Stockdale, field party of 1919.

Brown shell t	to 1330 feet
Slate	1341 "
Dark sand	1347 "
Brown sand	1348 "
Total depth	1348 feet.
Casing Record.	
$12\frac{1}{2}$ in.	
10 in	
9¼ in.	
$6\frac{1}{2}$ in	
Well No. 5, L. Johnson Farm. Madison Twp.	Pike Co., Oct. 6, 1919:
Clay	61 feet.
Slate	
Coal	

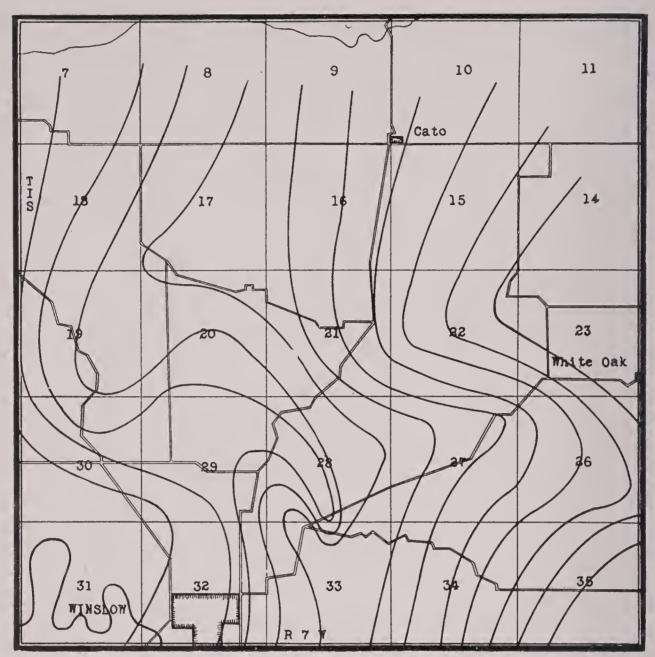


Fig. 56. Map of structural conditions near Winslow. Contours drawn on Coal V. Data secured by C. A. Malott and P. B. Stockdale of the field party of 1919.

Slate	319	feet
Lime	6	6.6
Slate	414	6 6
Sand	55	66
Slate	75	66
Oil sand	15	66
Lime	7	66
Slate	38	66
Water sand	110	66
Lime	8	6.6
Slate	7	6.6
Sand	35	6.6
Slate	35	6.6
Big lime	27	6.6
Slate	29	66
Oil sand	24	66
_		
	0.1.0	-

196

Total depth1346 feet.

Well No. 5, M. E. Sutton farm, Madison Township, Pike County: Surface to 1 foot. Quick sand " 16 feet. Shale -----Coal Shale Shale Shale Shale Shale Shale Shale Shale 6.6 Sand " Shale Sand oil Total depth " 963 feet. Record of Dan Snyder No. 2, Section 36, Madison Township: 92 feet. 12¼" casing 10" casing 210 47%" liner Quick sand to 45 feet 6.6 Blue mud Lime shell Blue mud 130 • • Brown shale 155 ... Coal 6.6 Gray mud 205 6.6 White mud 230 Blue mud 340 White mud 370 Lime 435 6.6 Blue mud 440 Lime 490 Gray mud 500

Shale	535	foot	to	585	feet		
Brown mud		44	66	640	66		
Water sand		6.6	66	660	66		
Slate and shale		66	66	720	66		
Light shale		66	66	780	6.6		
Slate		66	66	850	66		
Shale		66	66	875	6.6		
Water sand		66	66	910	66		
Brown mud		6.6	66	930	66		
Slate		66	66	994	66		
Rumble sand		<i>46</i>	66	1011	66	No	oil
Slate		66		1016	66		
Brown mud		6.6		1025	66		
Sand		66		1060	66		
Sandy shale		66		1095	66		
Water sand		66		1125	66		
Slate		66		1135	66		
Shale		66		1158	66		
Gray mud		66		1170	66		
Lime		6.6		1190	66		
White mud		6.6		1195	66		
Hard lime		66		1210	66		
Blue mud		66		1234	66		
Big lime		66		1249	66		
Slate		66		1264	66		
Red rock		66		1273	66		
Shale		66			66		
Snyder sand		66		1302	66		
Total depth				1302	66		
Central Refining Co.							
Well No. 9. Section 35, Madison Twp).:						
Clay			to	18	feet.		
Sand			66	70	66		
Brown shale			66	75	66		
Coal			66	77	66		
Brown shale			66	135	66		
Lime			66	148	66		
Gray slate			66	160	66		
Lime			66	165	66		
Gray slate			"	180	66		
Brown slate			66	205	66		
Coal			66	208	66		
Lime			66	211	66		
Brown slate			66	215	66		
Lime			6.6	222	66		
Gray slate			66	250	6.6		
Brown slate			66	260	6.6		
Lime			6.6	288	66		

Brown slate	+	200	feet
Brown slate Gray slate	to "	310	1eet "
-	66	310 350	66
Brown slate	66	390	66
Gray slate	66		66
Brown slate	66	430	66
	66	$\frac{438}{440}$	6.6
Brown slate Lime	66	440	66
Lime Brown slate	66	443 450	66
Gray slate	66	490	66
Brown slate	66	488	6.6
T •	66	500	6.6
Lime	66	500	66
Gray slate	66	515	66
	66	522	66
Brown slate	66	5 <u>6</u> 0	66
Gray slate	66	6 00	66
Brown slate	66	6 50	66
Gray slate	66	69 0	66
Sand	66	696	66
Brown slate	66	715	66
Gray slate	66	755	6 6
Sand	66	760	66
Brown slate	66	800	6.6
Gray slate	66	830	66
Brown slate	66	858	66
	66	872	6 6
Sand Brown slate	66	880	6 6
Sand	66	940	т 6 б
Gray slate	66	946	- د د
Lime	6.6	950	66
Gray slate	66	955	66
Lime	66	965	6 6
Gray slate	66	1050	6 6
Sand		1060	6.6
Gray slate		1080	6 6
Sand	66	1160	66
Little lime	66	1172	66
Gray slate	66	1200	66
Lime	66	1210	6 6
Gray slate	66	1220	6.6
Lime	6.6	1225	6.6
Gray slate	66	1230	66
Big lime	"	1238	66
Gray slate	66	1250	6 6
Lime	66	1258	66
Gray slate	66	1261	6 6
Lime	66	1265	6.6
Brown slate	66	1275	6.6
Red rock	66	1277	6.6
1001 1001			

Brown slate	to	1313	feet
Sand	6.6	1319	6.6
Brown shell	66	1325	66
Slate	66	1326	6.6
Lime			6.6
Slate	6.6	1340	6.6
Gray sand	6.6	1345	6.6
Brown sand	6.6	1348	6.6
Total depth		1348	feet.
Casing Record.			

		J		
$12\frac{1}{2}$	in.		70	feet.
10	in.	4	442	6.6
81/4	in.	6	948	6.6
61/4	in.		231	66

Wells abandoned in this township are located in Section 1, 1 well; Section 2, 2 wells; Section 6, 2 wells; Section 25, 1 well; Section 35, 2 wells; Section 36, 2 wells.

Log of M. F. Snyder Well. Located in Section 2, Madison Twp.:

Yellow clayto	10	feet.
Gray slate	30	6.6
Sand	47	6.6
Gray slate	85	6 6
Sand	93	6.6
Gray slate	95	6.6
Coal	97	6.6
Lime	103	6.6
Gray slate	135	6.6
Brown slate	150	6.6
Lime	165	6.6
Gray slate	170	6.6
Sand	180	6.6
Brown slate	185	6.6
Sand	210	66
Gray slate	240	6.6
Sand	265	66
Brown slate	268	6.6
Coal	272	6.6
Lime	277	6.6
Coal	280	6.6
Gray slate	295	66
Lime	310	6.6
Sand	362	6.6
Brown slate	372	6.6
Gray slate	380	6 6
Sand	384	6.6
Gray slate	405	6.6
Brown slate	407	6.6
Lime	442	6.6
Gray slate	460	6.6

Brown slate	0 463	feet
Coal	467	
Gray slate	483	6.6
Lime	485	6 6
Brown slate	495	
Lime	513	6.6
Gray slate	525	6 6
Brown slate	528	6 6
Coal	530	6 6
Brown slate	558	6.6
Lime	560	6.6
Brown slate	580	6.6
Gray slate	590	6.6
Brown slate	625	6.6
Sand	635	6.6
Sand	675	6.6
Brown slate	700	6 6
Gray slate	735	6.6
Brown slate	790	6 6
Sand	820	6 6
Brown slate	832	6.6
Sand	838	6 6
Gray slate	842	6.6
Sand	869	6.6
Coal	872	66
Gray slate	875	6.6
Sand	930	6.6
Sand	965	6.6
Gray slate	994	6.6
Lime	997	6.6
Gray slate	1010	6.6
Lime	1033	6 6
Brown slate	1055	6.6
Sand	1078	6.6
Gray slate	1160	6.6
Lime	1178	6.6
Gray slate	1188	6.6
Sand	1192	6 6
Lime	1212	6 6
Gray slate	1217	6.6
Sand	1232	6 6
Gray slate	1237	6.6
Lime	1245	6.6
Gray slate	1260	6.6
Lime	1270	6.6
Brown slate	1280	6.6
Red rock	1283	66
Gray slate	1298	66
Sand	1307	66

Gray slatety	o 1312 feet
Sand	1327 "
Brown lime	1335 "
Gray slate	1340 "
Sand	1345 "
Oil sand	1347 ''
Total depth	1347 feet.

Estate of Michael Murphy (deceased) Oil Co. Well No. 5, S. T. Rumble farm, Madison Twp. Finished July 7, 1919. Dry.

compression output in roa		~			
Lime shell	80		85	feet.	
Coal	85	66	88	6.6	
Sandy lime	88	66	110	6.6	
Slate	110	66	130	6.6	
Lime	130	66	145	6.6	
Coal	145	66	150	6.6	Water
White slate	150	66	210	66	
Sandy lime	210	6.6	325	66	Water, 2 bbls.
Dark slate	325	66	420	66	per hour
Lime	420	66	425	66	
White slate 4	125	66	460	6.6	
Lime	460	66	470	66	
Broken lime 4	470	66	550	66	
White slate 5	550	66	625	6.6	
Dark slate 6	525	66	715	6.6	
Sand	715	66	750	66	More water
Slate	750	"	840	6.6	
Sandy lime 8	340	66	920	66	
Water sand 9	920	66	940	66	Salt water
Dark slate 9	940	66	1050	6.6	
Lime cave10)50	"	1075	6.6	
Water sand10)75	66	1110	6.6	
Lime11	110	"	1130	6.6	
Dark slate11	L30	66	1160	6.6	
Sand11	L 6 0	66	1180	6.6	
Little lime11			1200	6.6	
Slate12	200	66	1220	6.6	
Lime and sand12	220	"	1250	6.6	
Dark slate12	250	66	1270	6.6	
Big lime12	270	66	1292	6.6	
Slate12	292	66	1302	6.6	
Red rock13				66	
Slate13	310	66	1322	66	
Oil sand13			1332	66	Dry—Snyder
					sand
Lime	332	66	1345	"	Oakland City
					Sand
Sand and lime13	345	66	1384	66	Water-brown

203

Casing Record.

$12\frac{1}{2}$	in.	 feet.
	6.6	 6.6
81/4	6.6	
81⁄4	66	

In Madison Township a well on the Thomas farm, Section 30, pumped 50 barrels from a depth of 1280 feet. The Bement Oil and Ga3 Co.'s No. 1 well on the L. C. Thomas farm, in the S. W. ¼ of the S. W. ¼ of section 32, is estimated at 50 to 100 barrels. The depth is 1170 feet.

Log of M. F. Snyder well No. 9, located in section 35, Madison Twp.:

Yellow clay			feet.
Sand	6.6	70	6.6
Brown slate	6.6	75	
00a1	6.6	6.6	
Brown slate	6.6	135	
Lime	66	148	4.4
Gray slate	66	160	66
Lime `	6 6	165	14
Gray slate	66	180	<u>dn</u>
Brown slate	66	205	44
Coal	6.6	208	19
Lime	66	211	d n
Brown slate	6.6	215	14
Lime	6.6	222	69
Gray slate	66	250	64
Brown slate	6.6	285	64
Lime	6.6	288	64
Brown slate	6 6	290	64
Gray slate	66	310	66
Brown slate	6 6	350	66
Gray slate	66	390	66
Brown slate	66	430	66
Sand	66	43 8	66
Brown slate	6.6	440	66
Lime	6.6	443	6.6
Brown slate	6.6	450	66
Gray slate	66	490	66
Brown slate	6.6	4 98	6.6
Lime	66	500	6.6
Coal	6.6	503	6.6
Gray slate	6.6	515	6.6
Lime	6.6	522	6.6
Brown slate	6.6	560	6.6
Gray slate	6.6	600	6.6
Brown slate	6.6	650	6.6
Gray slate	6 6	690	6.6
Sand	66	696	66
Brown slate	6 6	715	f 6
Gray slate	66	755	6.6

Sand			feet
Brown slate	66	800	66
Gray slate	6.6	820	
Sand	66	830	
Brown slate	66	858	6.6
Sand	66	872	6.6
Brown slate	66	880	6.6
Sand	6.6	940	66
Gray slate	6.6	948	6.6
Lime	6.6	950	6.6
Gray slate	66	955	6.6
Lime	66	965	6.6
Gray slate	6.6	1050	6.6
Sand	66	1060	6.6
Gray slate	6.6	1080	6 6
Sand	66	1160	66
Lime	6.6	1172	6 6
Gray slate	6 6	1200	6.6
Lime	6.6	1210	6.6
Gray slate	6.6	1220	6.6
Lime	66	1225	4.6
Gray slate	66	1230	6 6
Lime	66	1238	6.6
Gray slate	6.6	1258	6.6
Lime	66	1261	6.6
Gray slate	6 6	1265	6.6
Black slate	66	1275	6.6
Red rock	6 6	1277	6.6
Black slate	66	1313	6 6
Gas sand	6.6	1319	6.6
Brown shell	66	1325	6 6
Black slate	66	1340	6 6
Black lime	66	1342	6.6
Sand	66	1348	66
Total depth	66	1348	6 6
Casing Record.			
12½ in.		70	feet.
10 "		442	4.6

$12\frac{1}{2}$	11 1 .	 10	ieet.
10	6 6	 442	6.6
8	6 6	 948	6.6
6	66	 .231	6.6
47_{8}	66	 .325	6.6

Well No. 1 on the F. P. Robling farm, 200 feet to South line, 200 feet to West line, Section 35, Madison Twp., Pike County:

Soil	to	1	feet.
Clay	66	11	66
White sand	66	51	6.6
Blue slate	6.6	90	66
White lime	6.6	100	6.6
Blue slate	6 6	14 0	66

ţ

Plagh slate	,	170	0 1
	to 	170	feet
Gray slate	6.6	190	6.6
White sand		200	6.6
Coal		202	
Fire clay	6.6	210	6.6
Gray shale	6.6	255	6.6
White sand	6.6	325	6.6
Gray shale	6 6	330	6.6
White sand	6.6	355	6.6
Black slate	6.6	375	6.6
White sand	6.6	390	6.6
White shale	6.6	395	6.6
White lime	6.6	430	6.6
Black shale	6.6	450	6.6
Light slate	6.6	515	6.6
Coal	6.6	518	66
Light slate	6.6	563	6.6
Dark slate	6.6	598	6 6
Coal	6 6	600	66
Light slate	6.6	645	6.6
Light sand	66	655	6.6
Dark slate	66	660	6.6
Brown lime	66	665	6.6
	6 6	675	6.6
Light sand (gas)	66	675 780	6.6
Dark slate	6.6	• • •	"
Gray sand	6.6	797	66
Gray slate	6.6	815	6.8
White sand		890	66
Dark lime	66	897	66
Dark slate	66	960	
White shale	6.6	962	66
Brown sand (oil)	66	967	66
Gray sand		977	6.6
Brown sand (best pay)	66	992	66
Dark slate		1006	6 6
Gray sand	6 6	1022	66
Light sand	66	1028	6.6
Light sand	66	1119	6.6
Dark lime	66	1131	6.6
Blue mud	66	1134	6.6
Dark sand	6.6	1147	6.6
Dark lime		1152	6.6
White sand	6 6	1167	6.6
Brown lime		1176	6.6
 ⁵ Red rock 		1179	6.6
Jark sand		1191	6.6
Dark slate		1197	6 6
		1233	6.6
White lime Dark slate		1270	6.6
juin Sideo			

1 derivers 5

Î ľ Į.

Ţ ţ

a - a a

Dark sand (show of oil)	to	1285	fect
Dark sand	66	1292	66
Dark lime	6.6	1294	6.6
Light lime	66	1297	66
Black slate	66	1302	66
Light sand	6 6	1304	6.6
Dark slate	6.6	1313	6.6
Dark lime	6.6	1316	6.6
Gray sand	66	1322	6.6
Top of pay	66	1316	6.6

Well No. 2, on the F. P. Robling farm, 333 feet to West line; 200 feet to North line, Section 35, Madison Twp., Pike County:

me, section ob, maanson imp, ime		un cy .		
Black soil	. to) 1	fee	t.
Yellow clay	6.6	6	66	
Brown mud	6.6	100	66	
Coal	6.6	104	66	
Gray lime	66	109	6.6	
Blue mud	6.6	129	66	
Gray shale	6.6	189	6 6	
Blue mud	6.6	204	6.6	
Gray lime	6.6	208	6 6	
White mud	66	253	6.6	
Brown shale	6.6	353	6.6	
White shale	66	403	6.6	
White lime	6.6	445	6.6	
Brown mud	6.6	545	6.6	
Gray lime	66	550	66	
White mud	66	640	6.6	
White lime	66	648	66	
Gray mud	6 6	678	66	
Brown shale	66	703	66	
Gray lime shell	66	710	6 6	
White mud	6.6	735	66	
Brown shale	66	755	66	
White sandy shell	66	760	6.6	
Gray slate	6.6	810	66	
Brown shale	66	885	66	
Blue shale	66	893	6.6	
White sand	66	903	66	
Blue slate	6.6	909	66	
White sand	66	926	66	
Gray lime	66	928	66	
Gray sand	66	943	66	
Black slate	66	950	6.6	
Gray lime	66	952	6.6	
Dark slate	66	1003	66	
Light slate	66	1021	66	
Gray sand	6.6	1029	66	Sand dry.
Dark slate	6.6	1035	6.6	

.

h

5

ş

ę

n,

2.2

Gray lime to 1039 teet Same " 1054 " Dark lime " 1059 " White sand " 1149 " Gray lime " 1164 " Blue slate " 1169 " Gray lime " 1167 " Blue slate " 1177 " Blue slate " 1181 " Gray lime " 1185 " Blue slate " 1185 " Blue slate " 1190 " Gray lime " 1202 " Blue slate " 1202 " Blue slate " 1202 " Blue slate " 1207 " Blue slate " 1208 " Gray lime " 1220 " Blue slate " 1237 " White lime, top of big lime " 1240 " Dark lime " 1250 " Dark gray lime " 1275 " Red rock " 1280 " Dark slate " 1292 " Gray lime " 1302 " Dark lime " 1317 "
Dark lime " 1059 " White sand " 1149 " Gray lime " 1164 " Blue slate " 1169 " Gray lime " 1177 " Blue slate " 1177 " Blue slate " 1181 " Gray lime " 1185 " Blue slate " 1185 " Blue slate " 1190 " Gray lime " 1202 " Blue slate " 1208 " Gray lime " 1220 " Blue slate " 1237 " White lime, top of big lime " 1240 " Dark lime " 1250 " Dark gray lime " 1275 " Red rock " 1280 " Dark slate " 1202 " Dark lime " 1302 " Dark lime " 1317 "
White sand " 1149 " Gray lime " 1164 " Blue slate " 1169 " Gray lime " 1177 " Blue slate " 1177 " Blue slate " 1181 " Gray lime " 1185 " Blue slate " 1185 " Blue slate " 1190 " Gray lime " 1202 " Blue slate " 1208 " Gray lime " 1220 " Blue slate " 1237 " White lime, top of big lime " 1240 " Dark lime " 1250 " Dark gray lime " 1275 " Red rock " 1280 " Dark slate " 1292 " Gray lime " 1302 " Dark lime " 1302 "
Gray lime " 1164 " Blue slate " 1169 " Gray lime " 1177 " Blue slate " 1181 " Gray lime " 1185 " Blue slate " 1185 " Blue slate " 1190 " Gray lime " 1202 " Blue slate " 1202 " Blue slate " 1208 " Gray lime " 1220 " Blue slate " 1237 " White lime, top of big lime " 1240 " Dark lime " 1250 " Dark gray lime " 1275 " Red rock " 1292 " Gray lime " 1292 " Dark slate " 1302 " Dark lime " 1302 "
Blue slate " 1169 " Gray lime " 1177 " Blue slate " 1181 " Gray lime " 1185 " Blue slate " 1185 " Blue slate " 1190 " Gray lime " 1202 " Blue slate " 1208 " Gray lime " 1220 " Blue slate " 1220 " Dark lime " 1245 " White lime " 1245 " Dark gray lime " 1275 " Red rock " 1280 " Dark slate " 1292 " Gray lime " 1302 " Dark lime " 1302 "
Gray lime " 1177 " Blue slate " 1181 " Gray lime " 1185 " Blue slate " 1185 " Blue slate " 1190 " Gray lime " 1202 " Blue slate " 1202 " Blue slate " 1202 " Blue slate " 1203 " Gray lime " 1220 " Blue slate " 1220 " Blue slate " 1237 " White lime, top of big lime " 1240 " Dark lime " 1250 " Dark gray lime " 1275 " Red rock " 1280 " Dark slate " 1292 " Gray lime " 1302 " Dark lime " 1302 "
Blue slate " 1181 " Gray lime " 1185 " Blue slate " 1190 " Gray lime " 1202 " Blue slate " 1208 " Gray lime " 1208 " Gray lime " 1207 " Blue slate " 1220 " Dark lime " 1245 " White lime " 1250 " Dark gray lime " 1275 " Red rock " 1280 " Dark slate " 1292 " Gray lime " 1302 " Dark lime " 1317 "
Gray lime " 1185 " Blue slate " 1190 " Gray lime " 1202 " Blue slate " 1208 " Gray lime " 1208 " Gray lime " 1208 " Blue slate " 1208 " Blue slate " 1220 " Blue slate " 1237 " White lime, top of big lime " 1240 " Dark lime " 1245 " White lime " 1250 " Dark gray lime " 1275 " Red rock " 1292 " Gray lime " 1302 " Dark lime " 1317 "
Blue slate " 1190 " Gray lime " 1202 " Blue slate " 1208 " Gray lime " 1220 " Blue slate " 1220 " Blue slate " 1220 " Blue slate " 1237 " White lime, top of big lime " 1240 " Dark lime " 1250 " Dark gray lime " 1275 " Red rock " 1292 " Gray lime " 1302 " Dark lime " 1317 "
Gray lime " 1202 " Blue slate " 1208 " Gray lime " 1220 " Blue slate " 1237 " White lime, top of big lime " 1240 " Dark lime " 1250 " White lime " 1250 " Dark gray lime " 1275 " Red rock " 1280 " Dark slate " 1292 " Gray lime " 1302 "
Blue slate " 1208 " Gray lime " 1220 " Blue slate " 1237 " White lime, top of big lime " 1240 " Dark lime " 1245 " White lime " 1250 " Dark gray lime " 1275 " Red rock " 1280 " Dark slate " 1292 " Gray lime " 1302 " Dark lime " 1317 "
Blue slate " 1237 " White lime, top of big lime. " 1240 " Dark lime " 1245 " White lime " 1250 " Dark gray lime. " 1275 " Red rock " 1280 " Dark slate " 1292 " Gray lime " 1302 " Dark lime " 1317 "
White lime, top of big lime. " 1240 Dark lime " 1245 White lime " 1250 Dark gray lime. " 1275 Red rock " 1280 Dark slate " 1292 Gray lime " 1302 Dark lime " 1317
White line " 1240 Dark line " 1245 White line " 1250 Dark gray line " 1275 Red rock " 1280 Dark slate " 1292 Gray line " 1302 Dark lime " 1317
Dark line "1243 White lime "1250" Dark gray lime "1275" Red rock "1280" Dark slate "1292" Gray lime "1302" Dark lime "1317"
Dark gray lime
Red rock " 1280 " Dark slate " 1292 " Gray lime " 1302 " Dark lime " 1317 "
Dark slate " 1292 " Gray lime " 1302 " Dark lime " 1317 "
Dark state 1292 Gray lime "1302 " Dark lime "1317 "
Oray line 1302 Dark line "1317"
Black lime " 1323 "
Brown shell " 1326 "
Dark slate
Gray sand " 1335 "
Dark slate " 1343 "
Gray sand " 1348 "
Top of pay sand " 1343 "

Well No. 3, on the farm of F. P. Robling, 200 feet to East line, 400 feet S. E. Well No. 2, Section 35, Madison Township, Pike County:

**	rio. 2, Section co, maanson ronnsmp	· •		oune,
	Soil	to	1	feet.
	Yellow clay	66	6	6 6
	Dark slate	6 6	100	66
	Coal	6.6	104	66
	Gray lime	66	109	66
	Dark slate	66	134	6.6
	White lime	66	154	6.6
	Dark slate	6.6	209	6.6
	Gray lime	66	213	6.6
	Light slate	66	258	6.6
	Dark slate	66	308	6.6
	Gray sand	66	323	66
	Light slate	66	343	6.6
	Dark lime	66	353	6.6
	Dark slate	6.6	393	66
	Black slate	6.6	398	6.6
	Light slate	6.6	435	6.6
	Gray lime	6.6	450	6.6

Light slate	-t0 -11		feet "
Gray slate	66	485	
Light slate		495	
Gray lime	66	500	6.6
Light slate	6.6	505	6.6
White lime	66	525	6.6
Light slate	66	540	6.6
Coal	66	545	66
Dark slate	66	560	66
Brown lime	66	565	6.6
Dark slate	66	595	66
Light slate, $8\frac{1}{4}$ " set at 635 '	66	645	66
Brown lime	66	650	66
Dark slate	66	700	66
White sand	6.6	715	66
Dark slate	66	720	66
White lime	66	750	6.6
Dark slate	6.6	790	6.6
Brown slate	66	850	6.6
Light slate	6.6	890	6.6
White sand, hole full of water	66	923	6.6
Light slate	66	926	6.6
White sand	66	931	6.6
Dark slate	66	953	66
Brown lime	66	958	6.6
Dark slate	66	1015	6.6
Brown sand	66	1030	6.6
Dark slate	66	1045	6.6
Dark slate	66	1050	6.6
Brown lime	66	1055	6.6
Light sand, hole full of water 1060	6.6	1160	66
Gray lime	6.6	1168	66
Dark slate	"	1173	66
White lime	66	1180	
Dark slate	66	1185	6.6
Gray lime	66	1205	66
Light slate	66	1212	6 6
White lime	66	1216	6.6
Dark slate	66	1220	6.6
White lime	66	1223	6.6
Dark slate	66	1234	6.6
Brown lime	66	1259	6.6
Light slate	66	1279	6.6
Light mud	66	1289	66
Dark lime	66	1305	6.6
Dark slate	66	1315	66
Dark sand	66	1320	6.6
Dark lime	6.6	1327	66
Dark slate	6.6	1340	6.6
		7010	

-

Gray limet			feet	
Gray sand			66	
				(1)
Well Record No. 4, C. Burkhart farm, Section 3.				
Soil	03 44		feet	
~ .	66	16 28	6.6	
	66	40	66	
	66	4 0 70	66	
	66	90	6.6	
	66	95	66	
	66	105	6.6	
	66	110	6.6	
Mud	6.6	190	6.6	
Slate	6.6	220	6.6	
	16	227	4.6	
	66	280	6.6	
Sand	66	300	66	
Slate	66	305	6.0	
Sand	66	335	66	
Lime	66	340	6 6	
Slate	66	385	66	
Sandy lime	66	405	66	
White slate	6.6	410	6.6	
Black slate	6.6	435	66	
White slate	66	440		
Lime	66	445		
Black slate	66	450		
White slate	6.6	460		
Lime	66	465		
Black slate	66	480		
White slate	66	560		
Black slate		580		
Lime	6.6	$\frac{585}{615}$		•
White slate	66			
Water sand	66			
Black slate Water sand	66			
Black slate	66			
White slate	66			
Black slate	66			
Sand	6 6			
Black slate	66			
Sand	66			
Sandy lime	6.6	880)	
Water sand	66	900) "	
Black slate	66	920) "	
White slate	6.6	930) "	
Black slate	66	975) · · ·	

Lime	to	979 f	leet
Oil sand	"	1007	66
Total depth	66	1024	66

Washington Township. Two oil sands are reported from this township at depths ranging from 1110 to 1226 feet. The following is the log of a well completed Sept. 27, 1919, on the J. R. Chew farm, Section 32, Pike County:

-

Surface	to	45	feet
Sand rock		55	6.6
Slate		105	66
Lime shell	66	110	66
Coal	66	112	6.6
Slate	66	170	66
Sand	66	180	66
Slate	6 6	240	66
Lime	66	245	66
Coal	6.6	247	6.6
Slate	6.6	317	6.6
White mud	66	367	66
Slate	66	383	6.6
Sandy shale	66	470	6.6
Sand	"	525	66
Slate	"	550	6.6
Sand	66	590	6.6
Slate	66	630	66
Water sand	66	680	6.6
Dark slate, mud	66	710	66
Sand	66	725	6.6
Dark slate	66	770	6.6
Lime shell	66	815	6.6
Sand	66	868	66
Sandy lime	66	876	6 6
Broken slate	66	877	6 G
Little lime	66	887	66
Light slate	66	920	6 4
Light lime	66	935	6.6
Sand	66	959	66
Lime	66	962	66
Slate	66	965	6.6
Big lime	66	1001	6.6
Slate	66	1036	6.6
Shell	66	1039	6.6
Slate	66	1041	6.6
Oakland City sand	66	1050	66
Slate	"	1053	66
Oakland City sand	"	1061	66
Brown lime	٤٢	1071	6.6
Slate	6.6	1081	6.6

Oil sand	to	1094	feet
Hard shell		1095	66
Broken sand		1107	6.6
Brown oil sand		1109	6.6
Total depth		1109	66
Log of Rogers well, Rogers Station, E. & I. R.	\mathbf{R}^{-1}	,	
Common top sand			feet.
Shale and limestone shells		90	"
Streak of soft sand	66	115	66
Soft muddy shale	66	140	6.6
Coal and black shale	6.6	150	66
White sand and black shale	6.6	160	66
Streaks of very sharp sand	6.6	187	6.6
White sand	66	200	66
White and limestone shells	6.6	220	6.6
Shale	66	230	6.6
Shells	66	247	6.6
Coal	6.6	250	66
Caving slate and shale	66	260	66
Sand, small flow of gas on top	6.6	290	66
Black shale	6.6	320	66
Limestone and shale	6.6	360	66
Shale	66	375	6.6
Limestone, shells and slate	66	460	66
Sand shells	66	470	6.6
Sand	6.6	505	66
Limestone, shells and slate	66	560	66
Sand, shells and slate	66	600	66
Straight salt sand	66	692	66
Straight limestone	66	885	6 6
Limestone	66	900	6.6
Sandstone and slate	66	920	66
Sand and limestone	66	945	66
Sand with small streaks of slate		992	66
Streak of red marl	66	994	66
Case brick penal cave	6.6	1000	6.6
Slate and sand oil		1027	6.6
Sand		1057	66
Slate		1075	6.6
Sand and limestone		1161	66
Limestone		1185	66

Report on Oil.

24 Degrees gravity

20 Degrees cold test

300 Degrees fire test

504 Vis. at 70 degrees

-

Section 28, Washington Township:

13	inch drive pipe	57	feet.
10	inch drive pipe	124	6.6
81/4	inch casing pipe	791	6.6
61/4	inch casing	1075	6.6
тор	of gas sand	.16 2	6.6

Drilled in three feet. Tested 3,162,000 cubic feet capacity. Completed March 24, 1909. One well has been abandoned in Section 19, 3 in Section 27, 3 in Section 28 and 1 in Section 30.

A. B. Bement's No. 10, on the L. C. Thomas farm, Section 32, Washington Township, pumped 20 barrels from the brown sand. The top of the sand was struck at 1123 feet and drilled to a total depth of 1138 feet.

Monroe Township. Record of the Yeager No. 1 well, N. E. $\frac{1}{4}$ of the S. W. $\frac{1}{4}$ of Section 26, Monroe Township:

Surface, mud, loam and quick sand	52	feet.
Coal measures, shale, coal, etc	408	6.6
Sandstones (Mansfield and Huron)	410	6.6
Limestone	30	6.6
Shale	15	66
Limestone	40	6.6
Shale	10	6.6
Limestone	70	6.6
Shale	5	6.6
Limestone	54	6 6
Shale	46	6.6
Limestone and shale	41	6 6
-		
Total depth	1181	6.6

The following wells have been abandoned: Section 21, 6 wells; Section 22, 1 well; Section 23, 9 wells; Section 24, 1 well; Section 26, 6 wells; Section 27, 2 wells; Section 28, 3 wells; Section 30, 1 well; Section 35, 4 wells.

Logan Township. Two oil pools are located in this township, the Union and the Oatsville. The following is the record of a well from the Oatsville pool. A second well drilled on this lease reported oil at 1320 feet. Drilled July 17, 1919.

Well No. 1, John Cornelius Farm, S	Sect	ion	27.
Surface clay	to	25	feet.
Blue slate	6 6	50	66
Shell, first water	66	55	66
Slate	66	80	6.6
Sand	6 6	135	6.6
Lime	"	145	66
Black slate	4.6	155	6 6
Sand	"	175	6.6
Sandy shale	6.6	200	66

Lime and coal	to	210	foot
White lime	- 66	220	"
White slate	6.6	265	6.6
Black slate	66	285	6.6
Sandy slate	66	320	66
Sandy slate	66	330	66
White slate	66	360	66
Coal	6.6	366	6.6
Slate	66	415	6.6
Lime	6.6	420	6 6
Slate	66	485	6.6
Lime	6.6	489	6.6
Slate	6.6	540	6.6
Sandy lime	6.6	600	6.6
White slate	6.6	630	66
Black slate	66	675	66
Sandy lime	6.6	745	6.6
Slate	6.6	795	ĉ.
Salt water sand	6.6	900	6.6
White slate	66	935	6.6
Sand hard	6.6	949	6.6
Sandy slate	66	956	6.6
Black slate	66	999	6.6
Coal	6.6	1000	6.6
Black slate	6.6	1010	6.6
Sand	6.6	1116	6.6
Blue slate	66	1126	6 6
Gray lime	66	1146	6.6
Blue slate	6.6	1177	6.6
Lime	6.6	1232	6.6
Blue slate	66	1239	6.6
Gray lime	66	1244	6.6
Slate broken	66	1269	6.6
Sand top	66	1269	66
First oil	6.6	1275	6.6
Coarse brown sand	66	1281	6.6
Fine white sand	66	1292	66
Show water in last foot.	0	~	

One well in Section 27 and another in Section 35 were abandoned. In the Union field oil sands are reported at depths ranging from 1,070 to 1,774 feet.

Patoka Township. A large number of wells have been drilled in this township. Wells have been abandoned as follows: Section 11, 7 wells; Section 13, 2 wells; Section 14, 18 wells; Section 15, 1 well; Section 18, 1 well.

Lockhart Township. One well was drilled in Section 5 and one in Section 21.

.

Clay Township. One well was abandoned in Section 3 and one in Section 32.

Jefferson Township. Wells were drilled in Sections 4, 8 and 31.

PORTER COUNTY

Devonian strata probably underlie the whole of Porter County, though it is possible that preglacial streams may have been cut through to the Silurian. The eroded surface of the Devonian is covered with glacial drift which attains a thickness of 200 feet or more. The record of a well drilled at Valparaiso is given by Phinney¹ as follows:

Drift	125	${\tt feet.}$
Black shale	65	6 6
Corniferous, lower Heiderburg & water	230	66
Niagara limestone	380	66
Niagara shale	5	66
Clinton limestone	55	66
Bluish-green Hudson River shales	160	66
Chocolate-brown limestone (galena)	256	66
Trenton limestone	68	66
-		
Total depth	1344	6.6
	71	6.6

Another well reported by Gorby² for the same place is recorded below:

Drift	125	feet.
Hamilton shale	65	66
Corniferous limestone	55	66
Niagara limestone	565	66
Clinton (?) limestone	10	6.6
Hudson River limestone and shale	185	6.6
Utica shale	295	6.6
Trenton limestone	144	6.6
Total depth	1444	6.6

Section of Well No. 1.

The surface of the Trenton appears to dip northward through this county at the rate of about twenty feet to the mile.

POSEY COUNTY

Posey County lies within the area of outcrop of strata of the Pennsylvanian age. As it lies between the Wabash and Ohio Rivers, a goodly portion of its area is covered with alluvium. A somewhat larger area is mantled with glacial drift, though a portion of the county is unglaciated. With the exception of the river valleys, outcrops are not wanting in many parts of the county. Careful detailed work will probably reveal the structural conditions favorable to the accumulation of oil and gas if such exist. The coal beds and beds of limestone will probably be the most useful keys for unlocking structure.

The following is the record of a well drilled at I	Mt. V	Verno	n ¹ :
Yellow clay	27	feet.	
Brown soapstone	44	66	
White sandstone (Merom)	32	6.6	
Coal			2 inches.
Limestone with streaks of clay		6.6	
Blue shale	7	6.6	
Coal	1	6.6	
Fire clay	5	6.6	
Sulphur mixed with fire clay	3	6.6	
Soapstone	3	6.6	
Dark blue shale	25	66	
Limestone	7	66	
Coal			2 inches.
Dark shale	25	66	
Sandstone			6 inches.
Soapstone	22	6.6	6 inches.
Sandstone	5	6.6	6 inches.
Sandstone and shale, about every alter-	Ū		
nate foot	19	66	
Coal	6	66	
Shale streaked with sandstone	5	6.6	6 inches.
Soapstone		66	0
Dark shale		66	6 inches.
Black coal shale	3	66	• • • • • • • • • • • • • • • • • • • •
Coal	0		4 inches.
Blue fire clay	12	66	i monos.
Dark fire clay		66	
Sandstone	3	6.6	
Shale streaked with sand	4	66	6 inches.
Blue shale with small white streaks	46	66	o mones.
Soft dark blue shales	46	66	6 inches.
Black shale		66	o menes.
Bastard shale	1	66	6 inches.
	Т		6 inches.
Rock	1	66	3 inches.
Coal	7	66	3 inches.
Fire clay		6.6	3 inches.
Soapstone			o menes.
Total depth	407	66	

Point Township. A deep well was drilled in Section 2 on the property of W. E. Hastings, and was plugged in 1913. No record of this well was obtained.

¹Ashley, Coal Report, 1898, p. 1416.



Fig. 57. Map showing the location of oil wells in the Francesville oil field in Pulaski County.

PULASKI COUNTY

Silurian and Devonian strata underlie the glacial drift in Pulaski County. Gas was found in some wells drilled at Francesville. The record of the first well drilled is given below:

Section of Well No. 1.		
Drift	8	feet
Niagara limestone	542	6 é
Hudson River limestone and shale	235	6.6
Utica shale		6 5
Trenton limestone	10	6.6
Total depth	895	6 6
Trenton below sea level	200	• •
Yielded a small quantity of gas.		

The concealment of the bedrock strata by the glacial drift prevents the determination of the structural conditions so that it is impossible to

say whether structures favorable to the accumulation of oil and gas exist in other parts of the county or not. The surface of the Trenton in the southern part of the county is about 200 feet below sea level and the depth increases to more than 400 feet in the northern portion of the county.

Railroad Elevations.

Boone, 725.1; Thornhope, 710.8; Star City, 697.7; Winamac, 700.3; Monterey, 714; Francesville, 680; Medaryville, 688.1; Clarks, 705.4: Anthonys, 706.6; Lawton, 713; Beardstown, 713.

1

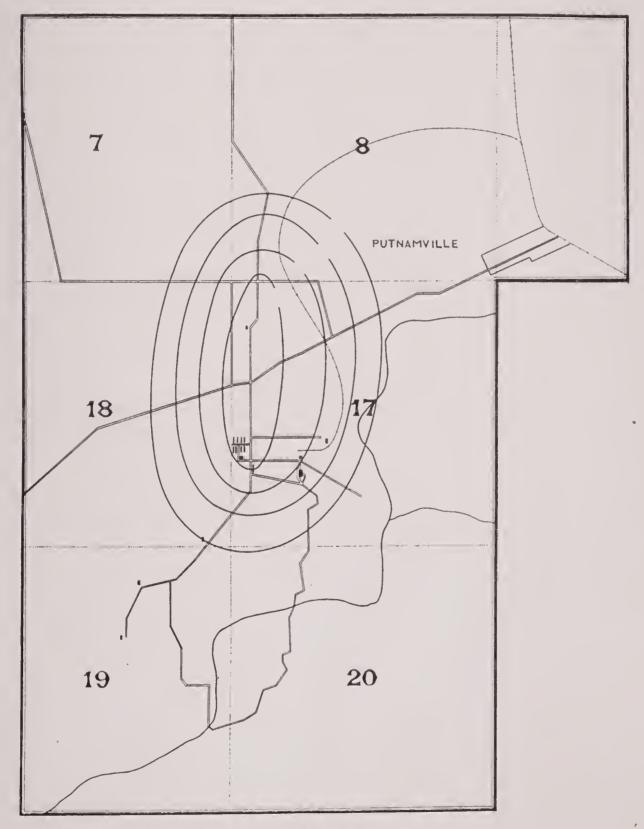


Fig. 58. Map showing outline of small anticline on the State Farm near Putnamville. Contours on the surface of limestone.

PUTNAM COUNTY

The glacial drift in Putnam County is thin so that the bed rock is exposed in many places. The drift is of greater thickness in the northern part of the county than in the southern part and consequently the outcrops of the bed rock are more numerous in the latter. The rocks underlying the drift belong to the Knobstone, Warsaw, Salem, Mitchell, and Chester divisions of the Mississippian and Pottsville (Mansfield) and coal measures (Allegheny) divisions of the Pennsylvanian. In the southern part of the county in the region occupied by the Chester and the Pennsylvanian divisions the structural conditions may be determined. A small structure has been outlined by the writer on the State Farm and others may exist in the county.

A well was drilled in Section 28 of Russell Township to a depth of 800 feet. It probably encountered the Corniferous limestone in the Devonian at which point a strong flow of salt water and a slight showing of gas were encountered.

A well at Reelsville in Washington Township at an elevation of 600 feet above sea level penetrated the Niagara limestone at 1240 feet and secured an artesian supply of salt water.

Bainbridge. A well was drilled on the Miller farm, one and one-half miles west of Bainbridge, to a depth of 1647 feet, a little oil was obtained at 1450 feet. This was evidently in the Trenton, the surface of which must be about 1400 feet or a little below.

Several wells have been drilled around Greencastle, but no records have been obtained.

RANDOLPH COUNTY

This county lies within the glaciated area where the drift is from 25 to 150 feet thick. The drift rests upon the eroded surface of the Niagara. The concealment of the bed rock prevents the determination of the structural conditions favorable to the accumulation of oil.

White River Township. The first well drilled in Winchester passed through the following strata¹:

Drift	147	feet.
Niagara limestone	110	66
Niagara shale	40	66
Hudson River	430	6.6
Utica shale	330	66
Trenton limestone	20	66
· · · · · · · · · · · · · · · · · · ·		

Total depth1077 "

Trenton below sea level, 24 feet. A feeble flow of gas and a few barrels of oil were obtained. A second well drilled one mile north of No. 1 found the Trenton 38 feet higher, well shot, only a feeble flow of gas. No. 3 was drilled one-fourth mile northeast of No. 2, and the Trenton found 72 feet above sea level, well shot, flow feeble. No. 4, located west of No. 1,

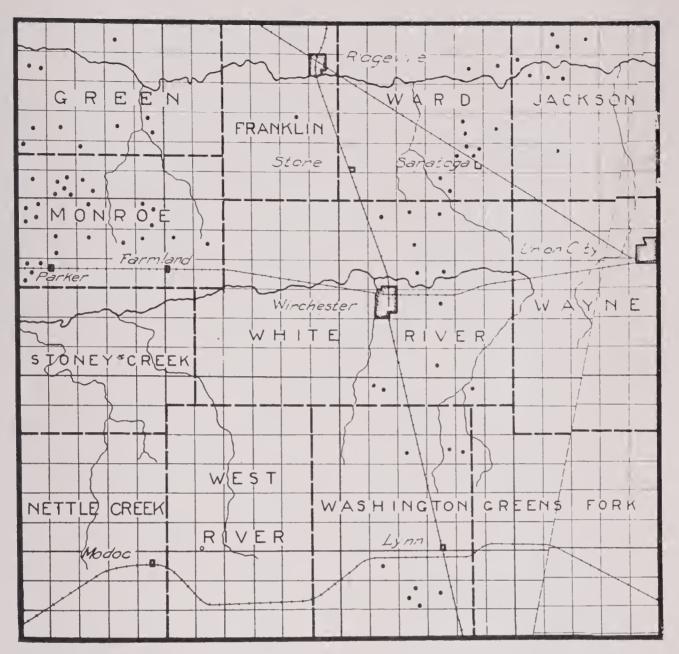


Fig. 59. Map of Randolph County showing location of recorded abandoned wells. The western part of Green and Monroe Townships is oil territory and the western part of Stony Creek and Nettle Creek is gas territory.

yielded a little gas and oil, as did No. 5, located east of No. 3. No. 6, located three-quarters of a mile northeast of Winchester, reached the Trenton at 1044 and yielded gas at 1056 to 1060. No. 7, located sixty rods southeast of No. 6, reached the Trenton at 1036 feet and gas between 1060 and 1071. No. 8, located one-half mile northeast of No. 7, was dry. No. 9, located forty rods north of No. 7, gave a good flow. No. 10, located south of No. 7, produced 1,500,000 cubic feet per day.

Wells drilled on the Prickett farm in Section 23, southeast of Winchester, produced 20 barrels of oil per day.

Record of Prickett Wells.

Drive pipe	85	feet.
Casing	226	6.6
Top of Trenton	091	4 6
Total depth1		

219

Wells drilled on the Eliza Goodrich farm, near Winchester, produced a small amount of oil and gas. The records of two of these wells are as follows:

	N	Io. 7	No. 8
Drift	102	feet.	70 feet.
Niagara limestone	85	6.6	110 "
Hudson River	549	6.6	520 "
Utica shale	300	66	$332\frac{1}{2}$ "
Trenton limestone	49	6.6	$51\frac{1}{2}$ "
			1001 (/

Total depth10851084Wells have been plugged in this township as follows:

Wells have been plugged in this township as follows: Section 2, 1 well; Section 3, 1 well; Section 4, 1 well; Section 5, 1 well; Section 9, 2 wells; Section 15, 1 well; Section 16, 1 well; Section 22, 1 well; Section 27, 1 well; Section 32, 1 well; Section 35, 1 well.

Monroe Township. Seven wells were drilled at Farmland. Four produced some gas. A section of well No. 1 is given below:

-	ar	m	ar	d	VV	ell	N	ο.	- 1	

Drift	55	feet.
Niagara limestone	160	6.6
Hudson River	585	6.6
Utica shale	185	6.6
Trenton limestone	32	6.6
Total depth	1017	<u> </u>
		11

Oil was found in this township in Sections 3, 4, 5, 8, 9, 10, 11, 15, 16, 17, 21, gas in 9 and 27. Wells abandoned are located in: Section 1, 3 wells; Section 3, 1 well; Section 5, 4 wells; Section 7, 1 well; Section 8, 1 well; Section 9, 2 wells; Section 10, 1 well; Section 12, 1 well; Section 13, 1 well; Section 15, 1 well; Section 17, 4 wells; Section 32, 1 well; Section 33, 5 wells; Section 34, 2 wells.

Stony Creek Township. Oil was obtained from Sections 19 and 30. The record of a dry hole in Section 32 is given below:

· ·	0		
Drive pipe		64	feet.
Casing		20	6.6
Top of Trenton		56	6.6
Total depth		07	6.6

Greene Township. Oil was found in Sections 20, 28, and 29. Wells have been plugged in Sections 2, 1 well; Section 6, 1 well; Section 8, 2 wells; Section 20, 1 well; Section 21, 1 well; Section 23, 1 well; Section 24, 2 wells; Section 27, 1 well; Section 29, 1 well; Section 35, 1 well.

Section 1, R. 12 E., Greene Towns	hip.	
Top soil	42	feet.
Lime	220	6.6
Shale	694	6.6
Drilled 446 feet into Trenton.		

Total depth	.1402	6.6
Dry hole. Showing of oil very good at	.1006	6.6
Showing of sand favorable for oil	.1250	6.6
Well shot. No good results.		
Section OF T Of N D 44 E I W/ Dave		

Section 20, 1. 21 N., R. 11 E., J. W. Barti	ett r	arm.
Top soil	46	feet.
Lime	280	6.6
Shales	632	6.6
Trenton at	958	6.6
Into Trenton	145	6.6
Total depth	1103	6.6
Oil showing at	975	66
Good oil showing at	1103	6.6

Franklin Township. At Ridgeville three dry holes were drilled. The Trenton was reached at 981, 2 feet above sea level. A well was drilled and abandoned in Section 23, on the J. M. Addington property, in 1919.

Wayne Township. A little gas was found at Union City. Four wells were drilled. In well No. 4, north of the city, the Trenton was reached at 1093 and is 83 feet below sea level. The record of the first well kept by A. Jaqua is as follows:

ention enty went no. 1.		
Drift	98	66
White limestone (Niagara)	72	6.6
Dark gray limestone	62	6.6
Bluish limestone	38	6.6
Niagara shale	40	6.6
Clinton (?) limestone	15	66
Bluish-green shale	400	6.6
Gray shale	175	6.6
Brown shale	175	66
Black shale	80	66
Trenton limestone	525	6.6
Gray sandstone (St. Peter)	100	66
Total depth	1780	66
	1079	6.6

Union City Well No. 1.

Another well at Union City yielded traces of gas between depths 1155 and 1162 feet. The record of this well follows:

Union City Well.

Drift	98	66
	250	٤ ۵
0	800	6.6
	540	6.6
Total depth1	688	66
Trenton below sea level		66

Nettle Creek Township. A well was drilled at Losantsville and after passing through 173 feet of drift and 821 feet of rock the Trenton was reached at 994 feet. The total depth was 1105 feet. No oil, gas or water was found in the Trenton. The top of the Trenton is 146 feet above sea level.

Washington Township. Abandoned wells are located in this township as follows: Section 5, 1 well; Section 9, 3 wells; Section 10, 1 well; Section 14, 1 well; Section 15, 1 well; Section 16, 1 well.

Jackson Township: Wells have been abandoned in this township as follows: Section 4. 1 well; Section 5. 2 wells; Section 7. 2 wells; Section 8, 2 wells; Section 29, 1 well.

Ward Township. Abandoned wells are located as follows: Section 11, 1 well; Section 12, 1 well; Section 23, 2 wells; Section 24, 1 well; Section 26, 4 wells; Section 34, 2 wells.

RIPLEY COUNTY

The geological formations represented by outcrops in this county are given below:

The Pleistocene covering the bed rock varies from a few feet to fifty feet in thickness and rests on the eroded surface of the bed rock. The latter outcrops at many points so that it may be possible to determine the structural conditions by surficial observations.

The surface of the Trenton is about sea level in the eastern part of the county and lies probably as much as 150 feet below in the western part of the county. If the structural conditions are favorable there is a possibility of oil or gas accumulations in the Devonian and the Trenton strata.

Railroad Elevations.

Milan, 1.007; Pierceville, 1.007; Osgood, 990; Dabney, 966; Holton, 923; Sunman, 1,016.6; Morris, 997.5.

RUSH COUNTY

Rocks belonging to the Devonian and Silurian periods form the bed rocks of this county. The glacial drift lies upon the surface of these formations to a depth of from 50 to 100 feet and prevents the determination of structural conditions.

Rushville Township. At Rushville three wells obtained gas. The record of well No. 1 is given below:

Drift	60	feet.	
Chert and cherty limestone (Corniferous)	40	6.6	
Niagara limestone and shale	200	66	
Hudson River limestone and shale	200	6.6	•
Utica shale	360	66	
Total to Trenton	860	66	
Trenton above sea level	124	66	"arw

From drillings preserved by G. W. Clark, Phinney constructed the following record of one of the wells:

Drift	48	feet.
White limestone	42	6.6
Blue limestone	30	6.6
Gray limestone (Clinton)		6.6
Hudson River limestone and shale	420	6.6
Utica shale	262	6.6
Gray limestone	25	6.6
Brown limestone, Trenton	35	6.6
White limestone	30	6.6
Total	922	feet.
Altitude of well	996	6.6

Union Township. At Glenwood the top of the Trenton was reached at 950 feet, or 166 feet above sea level.

A well at Milroy in Anderson Township was unproductive.

Ripley Township. A log of a well drilled at Carthage is as follows:

	~
Drift	
Limestone 100 "	
Shale	
Trenton limestone	
Total depth	
drilled and abandoned in this township are as follo	ov

Wells drilled and abandoned	in this tow	unship are a	s follows:
Owner.	Section.	Date.	Wells.
J. Phares	10	1912	1
F. K. Mull	15	1912	1
W. P. Stanley		1912	1
V. Robertson		1913	1
Benton Henley		1912	1
Noah Moore		1916	1
J. Vasbinder	6	1911	1
Jabez Reddick		1912	1
J. H. Powers		1911	1
John Swain		1912	1
Wm. Dille	35	1913	1

Washington Township. A large number of wells were drilled in this township. The following have been abandoned: Section 1, 3 wells; Section 3, 1 well; Section 14, 1 well; Section 33, 1 well; Section 4, 3 wells; Section 5, 2 wells; Section 16, 2 wells; Section 34, 1 well; Section 7,

6 wells; Section 8, 3 wells; Section 22, 1 well; Section 9, 2 wells; Section 11, 5 wells; Section 26, 2 wells; Section 12, 2 wells; Section 13, 1 well; Section 32, 1 well.

Jackson Township. Wells were drilled and abandoned in the following Sections: 5, 6, 10, and 20, one well each.

Posey Township. A well drilled in Section 4 was abandoned in 1911, on J. Piper property.

Walker Township. A well on the Tillie Trees property in Section 15 was abandoned in 1913.

SCOTT COUNTY

The geological formations outcropping in this county belong to the Devonian, Mississippian, and Quaternary periods. The divisions represented are given below:

Quaternary	(Recent—Clays and alluvium.
	Pleistocene—Sands, gravels and till.
Mississippian	Recent—Clays and alluvium. Pleistocene—Sands, gravels and till. Knobstone—Shales and sandstones.
· · · · · · · · · · · · · · · · · · ·	Rockford—Limestones.
	New Albany—Shales.
	New Albany—Shales. Sellersburg—Limestones.
Devonian	Silver Creek—Limestones.
	Jeffersonville—Limestones.

Because of the removal of much of the regolith, outcrops of the durolith are perhaps numerous enough to permit the determination of the structural conditions for the greater part of the county. The best key horizon will be the contact between the Sellersburg limestone and the New Albany shales for the eastern part of the county and the Rockford limestone for the western part.

Three deep wells were drilled in this county in search of oil, but no production was obtained and the records of the wells were not obtained.

Railroad Elevations.

Blocher, 677; Lexington, 620.

SHELBY COUNTY

The drift in Shelby County varies in thickness from 50 to 150 feet and overlies Devonian limestones and shales. There are a few outcrops of Silurian rocks in the southeastern part of the county.

Addison Township. According to Phinney¹ five wells were drilled in the vicinity of Shelbyville. He gave the following general section:

Drift	45	feet.
Limestone	265	6.6
Shale	527	6 6
Trenton limestone	100	6.6
-		
Total depth	937	6.6
Altitude of well	772	66

Logs of the first two wells drilled at Shelbyville are given below:

		v	0		
	N	Io. 1	No	o. 2	
Drift	48	feet.	80	feet.	
Corniferous limestone	30	6.6			
Niagara limestone	102	6.6	769	6.6	
Hudson River limestone and					
shale	657	6.6			. e
Trenton limestone	86	6.6			
-					
Total depth	923	66	849	6.6	
Trenton below sea level	79	6 6			

Hanover Township. At Morristown a well drilled on the Chas. F. Muth farm was reported by Phinney¹ as in No. 1 below and by Gorby² as in No. 2.

	No. 1	No. 2
Drift	140 feet.	140 feet.
Limestone	20 "	
Niagara	120 "	130 "
Hudson River & Utica shale	$638\frac{1}{2}$.	628 "

Two wells were abandoned in Section 1, three in Section 17, and one in Section 18. The Trenton was reached at St. Paul in Noble Township at 820 feet. The thickness of the drift is 90 feet and the altitude is 844 feet.

Marion Township. A well drilled on the S. A. Haven property in Section 6 was abandoned in 1911.

Union Township. A well drilled on the property of H. W. & J. W. Moore was abandoned in 1911, and one on the property of Charles Brown in Section 17 in 1913.

Van Buren Township. Wells drilled on the property of Walter Hadley and Elias Miller in Section 17 were abandoned in 1913.

SPENCER COUNTY

The strata occupying almost the whole of the surface of Spencer County belong to the Allegheny division of the Pennsylvanian, though some outcrops of the Pottsville probably occur on the banks and in the bed of the Anderson River, which forms the eastern boundary. The rocks are sandstones, shales, and limestones with intercalated beds of coal. Three divisions of coal occur in the county. It is possible that coal and some of the associated limestones may prove valuable as key formations by the use of which the structure may be determined. Gas has been found in the county in Jackson Township, near Graysville.

The following is a record of the well drilled on the Fred Frakes farm, Section 3, R. 6 W., Jackson Township, near Gentryville, Spencer County:

10-inch drive pipe	80	feet
8-inch drive pipe	400	66
Showing of oil	720	6.6
6¼-inch casing	900	6.6
Gas sand	990	6.6
Finished	1025	6.6

225

Capacity of first twenty-four hours, 1,000,000 cubic feet. A well was drilled in Section 1 of this township in 1913, three miles east of Graysville. Two dry holes were drilled in 1916.

Harrison Township. A well was drilled north of St. Meinrad in Section 12 in 1913 without securing production.

Railroad Elevations.

Dale, 432.0; Lincoln City, 459.0; Gentryville, 413.0; Pigeon 403.0; Lincolnville, 459; Buffaloville, 427; Lamars, 411; Evanston, 413; Bradleys, 460; Chrisney, 447; Millers, 423; Ritchies, 409; Rock Hill, 400; Rockport, 380.

STARKE COUNTY

This county lies on the north side of the extension of the Cincinnati arch passing through Indiana. Its bedrock strata consist of limestones and shales of Devonian age. On the eroded surface of these rocks there has been deposited an overburden of glacial drift which attains a thickness of several hundred feet. Because of the covering of glacial drift the structural conditions existing in the bed rock of this county cannot be determined by direct observation. If a sufficient number of deep well records could be obtained, the structures might be determined. Until such records are available the location of structures favorable to the accumulation of oil and gas cannot be located if such exist in the county.

The surface of the Trenton lies between 250 and 500 feet below sea level in this county, being nearer sea level in the southern part of the county.

Railroad Elevations.

Hamlet, 702; Knox, 702; Toto, 703; North Judson, 697; San Pierre, 704; Grovertown, 719.8; Davis, 681.7; Ora, 718; Bass Lake Jct., 711; Aldine, 715.

ST. JOSEPH COUNTY

The strata of the Devonian age underlie the glacial drift of this county. The glacial drift reaches a thickness of one hundred and fifty or more feet. The dip of the bed rock is toward the north.

The section of a well in South Bend constructed from drillings furnished Phinney¹ by J. D. Oliver is as follows:

Drift sand and gravel	137	feet.
Waverly shale(bluish green, calcareous)	1 43	66
Black shale	70	6.6
Brown shale	25	6.6
Gray limestone upper (Helderburg)	60	6.6
Blue limestone	20	66
Lower Helderburg, with gypsum	170	6 6
Water lime	55	6.6
Niagara limestone (gray buff & white)	470	6.6
Buff Clinton limestone	30	66
Hudson River limestone and shale	220	6 6

Utica shale 183 Trenton limestone (chocolate colored) 85 66 Salt water was encountered at 375, 610 and 1670 feet. The record of a well drilled on the Studebaker farm follows²: Drift 160 feet. Sub-Carboniferous and Hamilton shale 220 Corniferous limestone 66 60 Lower Helderburg limestone 40 6.6 6.6 6.6 Hudson River and Utica 420 66 66

Yielded no gas or oil.

The structural conditions of the durolith in this county cannot be determined by direct observation because of the glacial drift which conceals the outcrop of the strata. The surface of the Trenton lies from 600 to 1,000 feet below sea level.

STEUBEN COUNTY

The strata underlying the glacial drift in Steuben county belong to the Mississippian and the Devonian periods of geological times. The bed rock formation consist of shales and limestones. The outcrops of these rocks are concealed by a thick mantle of glacial drift which was deposited on their eroded surface and attains a total thickness of several hundred feet. The dip of the bedrock is toward the north away from the westward extension of the Cincinnati arch through Indiana. Because of the glacial drift the structural and the stratigraphical conditions of the bedrock can not be determined by surficial methods of observation. Deep well records are not at present available for the determination of the structure by the use of subsurface data. Prospecting for oil and gas in this county, for the above reasons, will prove extremely hazardous.

The surface of the Trenton probably lies between 1,500 and 2,000 feet below sea level in this county, being nearer the surface in the southern part.

Railroad Elevations

Hamilton, 926; Ashley, 999; Fredrick, 972.2; Helmer, 986; Steubenville, 991; Pleasant Lake, 976.1; Angola, 1055.3; Fremont, 1058.1; Ray, 1077.8.

Fig. 60. Map of Sullivan County showing the location of the oil fields.

SULLIVAN COUNTY

(By Dr. S. S. Visher)

Location. There are seven major pools or oil fields producing at present in Sullivan County. These pools are about 30 miles south of Terre Haute, in the Wabash Valley. They are within a few miles of Sullivan, northwest, west and southwest. Their combined area is about twelve square miles. The location of the pools is shown on the accompanying map on which the elevation of numerous points is also shown.

Production. The present production is about 380 barrels per day. Widespread production commenced in August 1913; it became considerable in 1914, reaching 3,000 barrels a day by June 1st; increased somewhat in 1915 and reached a maximum in that year. Since 1915 it has declined somewhat steadily, in spite of the opening of two new pools and the bringing in of a number of producers in the older pools. The daily production, when greatest, was about 3,500 barrels per day, or nearly three times the present production. Number of Wells. October 1, 1919 about 480 wells were being pumped. More than 1,000 wells have been sunk for oil in the county. (Four hundred between April 1, 1913 to June 1, 1914, of which 225 were producers, according to Barrett.) Probably more non-producing wells have been drilled in the county than producers. Every month a few wells formerly pumped are abandoned, because it no longer pays to pump them. Two outfits are at present engaged in drilling new wells. Before the war, several outfits were kept busy thus. New producers are added to the total of producers every month, but more wells are abandoned than added, so that the number of producing wells is decreasing, and has been for the last two or three years. The decrease in production is greater than the decrease in the number of wells, however, the declining yield of the existing wells, being the cause.

The average production per well is already distinctly less than a barrel per day. Many wells yielded 20 barrels their first day, and some yielded 100 to 150 and a few somewhat more. At present, many wells yield as little as one-fourth barrel. With the present high price of oil, a producer is not abandoned until it yields less than that, unless it needs recasing.

The presence of 480 wells in an area of 12 square miles, means that on the average there are 40 wells per square mile. In the better parts of the 12 square miles, the wells are drilled only 400 or 460 feet apart, 9 on each 40 acres; wells being drilled 200 feet from the outside lines of the 40 and on a central row where each well is 460 feet from another of the tract. Nine wells on a 40, is at the rate of 144 per square mile.

"Wild-catting" is the only method known in this area to discover new pools. Wells are drilled at increasing, or irregular distances from the original producing area. If a pool extends that far, production is obtained; if it does not extend that far, a "dry hole" results, unless a new pool is entered.

Similarity of the Pools. The pools of Sullivan County are similar in several respects: (1) The oil is of similar quality, a good, light oil, for the most part (that in the Bragdon pool is the heaviest; that in the Shelburn or Heim pool, the lightest. All the oil is pumped together to the refinery. The Refinery for Illinois Pipe Line Company is at Marshall, Ill.) (2) The oil all comes from "oil sands." (3) The depth to corresponding rock formations is approximately the same in all the pools because the surface slopes to the southwest at approximately the same rate that the rock formations dip in that direction. The region has slight relief. (4)In all the pools, all the four oil sands are present. In one of them, all the four sands are productive. Each of the four sands is the chief productive sand in one or more of the pools. (5) The pools are all small, the largest, the Shelburn or Heims has considerable production from only three square The smallest, the Bradgon is only 40 acres. (6) The production miles. per well averaged approximately the same in each pool when it was (7) The decline per well in yield has been at a somewhat opened up. similar rate in each of the pools. (8) Most of the producing wells yield a little gas, more when new than later, however. (Five strong gas wells have been struck in the county, but none in a pool. Four are just southeast of the Scott pool, near Sullivan. Their gas is piped to the city.) (9)In none of the pools is the main gas supply associated with the oil sands.

Name	No. of Pro- ducing Wells	Daily Produc- tion in Bbls.	When opened	Average Elevation of Surface Above Sea Level	Average Depth to Sand	Productive Sand	Depth of Sand Below Sea Level
Heimes or Shelburn	260	231	1913	520	615-645	1, 2, 3 and 4	100-130
Dodds' Bridge		51	1915	580	635 - 683	1, 2, 9 and 1	130-185
Denny.	14	14	1914 - 18	520	809-810	4	180 - 280
Harmon or Raley	19	10	1914 - 15	480	770-780	3 and 4	290-300
Bradgen	6	3	1917	460	-	4-	
Edwards or Buff	32	44	1911	480	740-760	2 and 3	260 - 280
Scott or Jamison	79	27	1913 - 13	530	730-775	2	200250

Production, etc., of the Sullivan County Oil Pools.

Geology of the Pools. Production is obtained in Sullivan County from four oil sands. The highest of these is quite certainly along the unconformity between the Allegheny and the Pottsville Divisions of the Coal Measures. It occurs below Coal 111 and in most places above the level of the lower Minshall coal. As is to be expected on an erosion surface, this sand is higher at some points than at others. It is about 90 feet below Coal 111 in many places, elsewhere it is only 40 feet. In some places it is found below the level at which the upper Minshall coal occurs in not distant wells. In none of the logs however was it found actually below that coal though in some composite logs it is necessarily so shown. Erosion removed both the upper and lower Minshall coals at some points. The sand deposited along such an erosion valley might be below the level of these coals where they occur in intervalley areas. The existence of such valleys is indicated by a number of the well records.

The second and third oil sands are a short distance below the lower block coal and are thus in the Mansfield sandstone of the Pottsville Division of the Pennsylvanian Formation ("The Coal Measures"). The lowest, fourth, oil sand is probably also in the Mansfield, but it may be barely possible that it is in the uppermost Mississippian Formation, the Chester.

The correlation of the coals upon which the above conclusions, as to the ages of the oil sands depends in part was by means of (1) Ashley's identifications of the higher coals in the mines just east of the pools, at Shelburn, Sullivan, Farmersburg and Curry; (2) Upon the spacings of the coals and their thickness as compared with the conditions stated by Ashley in the 1898 and 1908 reports of the State Geologist ,to be characteristic of these horizons where they are penetrated by many mines in the eastern half of this county. (3) A few logs are sufficiently detailed so far as the rocks overlying and underlying the coals are concerned so that some of the coals may be identified by characteristic roof or floor rock. (4) Coal IV contains more gas in this area than does the other coals. In some of the logs mention is made of this gas at this horizon and hence has aided in the correlation. It is of course recognized that there may be mistakes in the numbering of the coals in the following logs. The determination of the age of the oil sands does not, however, depend solely upon the correlation of the coals. The clear evidence of the erosion surface occupied by the first, (Heims or Shelburn pool) oil sand is independent of the correlation of the coals. The existence of three coals

below this oil sand proves that it is not Mansfield in age, as it has been considered. The fact that no coal has been found below the lower oil sands in the several wells which have gone deeper proves that these sands are below the Block coals. The fact that the second and third sands are within a hundred feet or so of the lowest coals proves that they are Pennsylvanian in age, rather than older.

The existence of more than two productive sands has not previously been clearly recognized in this oil field. Many operators have assumed indeed, that there is only one, in spite of indisputable evidence to the contrary long available. Some few operators recognized that two sands are producive, and one operator suspected that three are. A study of the more than 100 well records upon which this study is largely based, shows that a failure to appreciate that more than one oil sand is productive, has reduced production greatly. Many well records show that drilling was terminated only a few feet above the horizon where, in not distant wells valuable production was obtained. In not a few cases, a small amount of oil was found in one of the higher sands. After pumping the oil out of this sand, the well should have been deepened to the next sand, instead of being abandoned, as it has been in nearly every case. Of the four sands which yield oil in paying quantities in one or more wells in this field, the top sand is productive in at least two pools. It is entered at from 610 to 660 feet depending upon the topography of the surface and the location of the well. Most of the production in the chief pool, the Heims or Shelburn is from this level. Much of the production from the Dodds' Bridge pool is also from this level. The second sand is productive in at least three pools. It yields most of the oil in the Scott and the Edwards pools and much of that in the Dodds' Bridge pool. The third sand is productive in at least four pools, the Edwards, Harmon, Scott and Heims. The fourth sand is productive in at least four of the pools, the Bragdon, Harmon, Denny and Heims. The second sand occurs at approximately 660 to 700 feet varying with the pools and the surface. The third sand is at about 730 to 775 and the fourth sand at 800 feet or so. The depth to the sands is less in the Heims pool than in the pools to the west or south because the rock formations dip southwest at a little greater angle than the surface slopes in that direction.

None of the oil sands are uniformly productive. Even only a few hundred feet from a productive well, the corresponding sand in another well may yield no oil. Commonly such a non-productive condition is due to the sand not being porous. That is, it is clayey. In other cases the sand is so thin as to yield little oil. In still other cases it is filled with water. Some of the water is salty. Before abandoning a well, where the sand is filled with water it might pay to pump the water a while. Sometimes oil is obtained after the water has been removed.

The productive sand is from 20 to 30 feet thick in most of the producing wells. Considerable production is obtained in some wells, however, from sands less than 10 feet thick.

The variation in the thickness of the sand in nearby wells, and its presence at some points and absence nearby indicates that the sand

deposits are lenticular or along channels. There commonly is a conspicuous thinning of the sand outward from the center of the pool. In most dry holes, no oil sand, or sand of any kind at that horizon'is penetrated. This thinning is not only at the edge. Many dry holes have been drilled within pools. In most of them the sand is so impure as not to be porous, however. In some, it is lacking.

The pools are not known to be related to any local folding or doming. Much oil elsewhere has been proven to have accumulated in paying quantities along the buried sandy channels of ancient streams. The evidence at hand does not warrant a dogmatic statement in regard to the reasons for the pools of Sullivan County being where they are. The indications are, however, that the several pools represent lenses of sand along the valley of an aggrading stream or streams.

The fact, established by a number of well logs, that the depth to the sand is often less near the central part of the pool than near its periphery probably is to be explained by the lenticular shape of the deposits of sand rather than as being due to doming. The depths to the overlying coals do not clearly indicate dynamic doming. The fact that some coals are higher at one point than nearby often show that the coals themselves were not laid down horizontally, because often one coal in a well will be higher than normal and another will be lower, deeper, than normal.

Glacial drift of considerable thickness overlies most of the area. In some wells it is penetrated for nearly 100 feet, in others it is very thin. It has been removed by erosion along some of the valleys in some of the pools. In Dodds' Bridge pool and in Scott pool for example, a seam of coal is exposed in the valley side only a few rods from some oil wells and only a few feet lower.

Special Problems:

1. The present cost of a completed well is about \$2,200. When most of the wells were drilled, the average cost was between \$1,600 and \$1,700. At the present price of oil, a well yielding less than ½ barrel a day will ordinarily not pay for itself, even if located most favorably, in respect to other wells. Rather than abandon such a well, however, it pays to pump it if it can be connected up to a nearby pump. It will bring good interest on the casing and pay the cost of pumping, but not the cost of drilling.

2. Salt water occurs just beneath the lowest oil sand at many points. If the well is drilled too deep, salt water may enter, making the well valueless, in many cases. Many of the dry holes near the pools and elsewhere stop in a salt sand, because of the conviction that when that sand is struck, there is no further hope for oil. This belief is supported by experience, as many wells have gone deeper. However salt water occurs in some wells at levels far above the lowest oil sand. Thence the striking of salt sand is a proper occasion for the abandonment of the hole only when it is struck at about 800 feet.

3. Where the numerous coal seams are penetrated, the casing is etched, probably by sulphuric acid developed from the sulphur in the coal. The pipe becomes bright within a few weeks. Many wells have to be recased or abandoned after only a few months. (If the well does not yield more than $\frac{1}{2}$ barrel, it is not recased.)

Conclusions:

Sullivan County has several pools now yielding oil. The oil comes from four oil sands in the lower Coal Measures partly just above the Pottsville, and partly from the Mansfield horizon of the Pottsville. Undoubtedly other pools will be discovered for in the past the existence of the four oil sands has not been clearly recognized. Many wells have been abandoned before the underlying sands have been tested. The deepest oil sand is only about 800 feet beneath the surface¹.

Composite log for Heims Pool. Based on 50 logs to first oil sand. Average elevation of surface about 523 feet. Surface relief in area about 20 feet:

Coal 8, (average thickness 3 ft.) top at	60	to	70	feet.
Coal 7, (4 ft.)	110	6.6	150	6.6
Coal 6a (5 ft.)	170	6.6	180	6.6
Coal 6 (6 ft.)	220	6.6	240	6.6
Coal 5a (3 ft.)	260	6.6	280	6.6
Coal 5 (5 ft.)	305	66	320	6.6
Coal 4a (rare) 5 ft		66		6.6
Coal 4 (5 ft.)	425	66	440	6.6
Coal 3a (5 ft.)	480	6.6	500	6.6
Coal 3 (4 ft.)	520	66	560	66
Gas pockets present in coals 3 and 4.				
1st (main) oil sand	615	6.6	645	66
Coal 2 (locally) (2 ft.)	608	66		
Minshall (4 ft.)	636	6.6	640	6.6
Upper block?	655	6.6	661	6.6
2nd oil sand	66 0	66	680	6.6
Lower block coal?	690	6.6	694	6.6
3rd oil sand	705	6.6	708	6.6
Salt sand or oil sand (Osborn pool)	775	6.6	815	6.6

Composite log for Section 35, Fairbanks Township in N. W. part Heims' Pool. Based on 4 logs for coals and on 6 for oil. Elevation of surface about 500 feet:

Coal 8, top at	to	70	feet.
Coal 6a	170 "	175	6.6
Coal 6	220 "	225	6.6
Coal 4	435 +		
Coal 3a	492 to		6.6
Coal 3	550 "		
Best oil (2 wells)	615 "	620	C.6
Best oil (2 wells)	645 "		
Best oil (2 wells)	658 "	669	""

.

.

^{&#}x27;The author received much information from L. H. Crews, Shelburn, the local manager of the Ohio Oil Co., the dominant company in this area, and from John Kerens, Sullivan, the local gager for the Illinois Pipe Line Co. Some of the logs studied are given in the 38th (1913) Report of the State Geologist.

Composite log from Section 36, Fairbanks Township, in north central part of Heims' Pool. Based on 5 logs for coals and on 16 logs for sand. Elevation of surface about 520 feet:

Coal 6a top at	175 to	205 feet.
Coal 6 top at	215 "	226 "
Coal 5 top at	310 "	320 "
Coal 4 top at	425 "	450 "
Coal 3a top at	485 "	495 ''
Coal 3 top at	540 "	560 "
Best oil (7 wells)	615 "	620 "
Best oil (4 wells)	661"	681 "
Best oil (1 well)	709 "	

Composite log, Section 1, Turman Township, in central part of Heims' Pool. Based on 11 logs for coals and 18 logs for sand. Elevation of surface about 530 feet:

Coal 8 top at	to	60	feet.
Coal 7 top at	110 "	150	6.6
Coal 6a top at	150 "	205	6.6
Coal 6 top at	225 ''		
Coal 5a top at	260 "	280	6 6
Coal 5 top at	305 "	315	6.6
Coal 4 top at	445 ''	470	6.6
Coal 3a top at	480 "		
Coal 3 top at	510 "	565	6.6
Best oil (13 wells)	622 "	645	6 6
Best oil (4 wells)	666 ''	675	66
Some gas found in coal 3 and above it and	d in coa	al 4.	

Log for N. ½, N. W. ¼, N. E. ¼, Section 12, Turman Township, south edge of Heims' Pool. Elevation about 525 feet:

Coal 6a	173 to	178	feet
Coal 6	238 "	240	6.6
Coal 4a	340 ''	345	6 6
Coal 4	470 "	474	6 6
Sand (oil)	640 "	655	6.6
Went to 685 but found no mo	re sand	l. –	

Log of well 1 mile west of Heims' Pool, in Section 3, Turman Township (T. 8 N., R. 10 W.) High ground about 500 feet:

Coal 6	200 to	207	feet.
Coal 5a	250 "	253	6.6
Coal 3a	490 "	495	6.6
Oil sand	619 "	634	6.6
Upper block coal or Minshall	655 ''		

.

Log of Emery Smith well No. 2, S. E. ¼, Section 4, T. 8 N., R. 9 W., southwest of Shelburn, about 2 miles east of Heims' Pool. Elevation of top of well, 540 feet:

Gravel and quick sand	to	43	feet.
Hard lime shell	6.6	49	6.6
Gray sandstone	6.6	90	6.6

Gray shale	10	190	faat
White slate		$120 \\ 130$	1661
Gray shale	66	$150 \\ 165$	6.6
Light sand	66	175	6.6
Black slate	66	179	
Coal 6a	66	184	
Fire clay	66	202	
Brown shale	66	202 225	6.6
Sandstone	6.6	$\frac{220}{230}$	<u> </u>
Brown slate	66	$\frac{230}{239}$	6 6
Hard lime shell.	66	$\frac{239}{244}$	
White slate	6.6	250	6.6
Sandy shale	66	$250 \\ 265$	66
Gray shale		$\frac{200}{310}$	56
White slate	66	335	6 6
	66	$\frac{350}{350}$	* 6
Coal 5 Black slate	6.6	350	66
	6.6		6.6
White slate	66	365	6.6
Brown slate	6.6	380	6.6
Black slate	6.6	400	6.6
Coal 4a	6.6	405	66
Brown slate	6 6	420	6.6
Sandstone	6.6	433	66
Coal 4	6.6	440	66
Gray shale	66	445	6.6
Brown shale	66	455	66
Lime shell		460	66
Sandy slate	66	465	66
Brown shale	6.6	475	66
Coal 3a and black slate	66	485	
Gray shale		495	6.6
White slate	6.6	546	6.6
Brown slate	6.6	551	· · ·
Coal 3	6.6	556	
Brown shale		580	4.6
Lime shell	6.6	583	
Light slate	66	600	6.6
White chocolate sand	6.6	615	6.6
Black slate	6.6	622	6.4
Dark hard oil sand	••	633	••
Black slate	6.6	643	6.6
Total depth	6.6	643	6 6
Well abandoned July 5, 1919.			

Record of Wm. Scott well No, 1, N. W. ¼ of S. E. ¼ of Section 33, Township 9 N., R. 9 W., 2 miles east of Heims' Pool. Elevation of surface about 540 feet:

Gravel and sand	to	28	feet.
Pink rock	66	30	6.6
Gray sandstone	6 6	45	6.6

Gray slate	to "		feet
Black slate	66	95	66
Fire clay		105	66
Sandy shale	6.6	140	
Sandy shale	66	172	6.6
Coal 6a	66	176	6.6
Fire clay	• 6	186	6.6
Gray sandstone		206	6.6
Black slate	66	216	6.6
Coal 6	66	222	6.6
Fire clay	6.6	226	6 6
Dark slate	6.6	240	6 6
Black slate	6.6	260	66
Gray shale	6.6	270	66
Hard lime shell	6.6	275	66
Coal 5a	6.6	277	6.6
Black slate	6.6	320	66
Light slate	6.6	360	6 6
Black slate	6.6	380	6.6
Coal 4a	66	384	6.6
Brown shale	6 6	440	66
Light slate	6 6	46 0	6.6
Coal 4	66	466	6.6
Brown shale	4.6	490	66
Black slate	6.6	505	6.6
Sandy shale	6.6	545	6.6
Gray shale	6.6	570	6.6
Black slate	6.6	600	6.6
Light slate	6.6	620	6.6
Gray shale	6.6	635	6.6
Hard dark sand lime	s 6	665	6.6
Light slate	66	675	6.6
Gray slate	66	690	6.6
Black slate	* 6	700	6.6
Light brown sand	66	710	6.6
Dark sandy shale	66	728	6.6
Salt, sand and water	66	730	6.6
Total depth	6.6	730	6.6
Well abandoned.			

Record of Smith well No. 1, located in the S. E. ¼ of the N. E. ¼ of Section 4, Township 8 N., Range 9 W., Curry Township, 5 miles north of Heims' Pool, 2 miles west of Farmersburg. Elevation above sea level at top of well about 530 feet:

Drift	to	44	feet.
Soft sand	6 6	50	6.6
Hard shell	6.6	55	6.6
Red rock	<u> </u>	65	66
Slate	× 6	85	6.6
Sandstone and water	6.6	90	66

Gray slate	to	130	foot
Brown slate		141	46 CCU
Coal No. 7	6.6	146	66
Black slate	6.6	160	6.6
Sandstone	6.6	170	6 6
Brown slate	6 6	180	6.6
Coal 6a	6.6	186	6.6
White slate	6.6	195	6 6
White slate	6.6	205	66
Black slate, some gas	6.6	210	6.6
White slate	6.6	230	66
Sandstone	6.6	247	66
Hard shell	6.6	250	66
Hard lime shell	6.6	257	66
Black slate	6.6	261	6.6
Coal 6	6.6	266	6.6
White slate	6.6	290	6.6
Brown slate	6.6	352	6.6
Coal 5	66	358	6.6
Black slate	66	404	6.6
Coal 4a	6 6	408	6 6
Light slate	6.6	415	6.6
Sand and water	6.6	430	6 6
Water and sand	6.6	435	6.6
Black slate	6.6	443	6.6
Coal 4	6 6	450	6.6
Brown slate	6 6	460	6.6
White slate	6 6	470	6.6
Gray slate	66	484	6.6
Hard shell	66	486	6.6
Coal 3a	66	488	66
Black slate	66	500	66
White slate	6.6	520	66
White sand	6.6	535	66
Brown slate	6.6	560	6 6
Coal 3	6.6	565	66
Brown slate	6.6	575	6.6
Brown slate	6 6	580	66
Black slate or shale	66	589	66
Gray shale	6.6	595	66
Gray shale and coal	6.6	602	6.6
Lime shell	6.6	608	66
Gray shale and lime	6.6	614	66
Gray shale and lime	66	620	6.6
Gray slate	66	626	6.6
Gray sandy shale	66	630	66
Oil sand, no production	66	635	••

ide

and 9, Turman Township. Elevation about 50	0 feet.	Relief a	bout 30 feet:
Coal 6a top at	170 to	183 feet.	
Coal 6		200 "	
Coal 5a	250 "	260 "	
Coal 5	305 "	320 "	
Coal 3a	460 "	490 "	
Coal 3		550 "	
Oil sand (slight production)		619 "	
Coal Minshall (where present)		636 "	
Main oil sand (Minshall absent)		656 "	
Upper block		660 "	
Oil sand		683 "	
Lower block		690 ''	
3rd oil sand		730 "	
Composite log for Harmon pool, Sections 28			n Township.
Based on 6 logs. Elevation of surface about 4		o, - u	
Coal 8 (average 5 feet) top at		8	5 feet.
Coal 7 (3 feet) top at			
Coal 6 (5 feet) top at			
Coal 5a (4 feet) top at			
Coal 5 (5 feet) 3 wells			
Coal 4a (4 feet)			
. ,			~
Coal 4 (5 feet)			
Coal 3a (5 feet)			
Coal 3 (5 feet) 2 wells		60 62	0
Slate sand (first oil sand)			0
Minshall coal, 6 feet			
2nd oil sand (95 barrel well)			0
Main oil sand			
4th oil sand (75 barrel well)			0
Composite log for Scott pool, based on 10			
Turman Township. Average elevation of su	rface a	about 53(). Relief in
pool about 20 feet.			
Coal 8 top at			
Coal 7 (5 feet) top at	•••••	95 " 11	
Coal 6a (4 feet) top at		170 " 17.	2 ''
Coal 6 (5 feet) top at			
Coal 5 (6 feet) top at		320 " 34	8 "
Coal 4 (5 feet) top at		440 "	
Call 3 (5 feet) top at		560 " 58	5 ''
Upper Block (4 feet)		68	0 "
Lower Block (3 feet)		70	0 ''
Oil sand, top of		730 " 77	5 "
Composite log for Edwards pool and vicinity	, in Se	ctions 3,	9, 10 and 16.
Cill Township Paged on 7 fairly detailed 1	10 000	Floretion	of gunfoco

Gill Township. Based on 7 fairly detailed logs. Elevation of surface about 480 feet.

Coal 8	(3 feet) top at	 80	to	90	feet.	
Coal 7	(2 feet) top at	 107	66	11 0	6.6	

	24.0.10
Coal 6a (5 feet) top at	
Coal 6 (4 feet) top at	
Coal 5a (5 feet) top at	
Coal 5 (4 feet) top at	
Gas sand, top at	
Coal 4a (1 foot)	421 ''
Gas sand (coal 4 level)	460 ''
Coal 2 (5 feet)	585 "
Coal 2 ? (5 feet) where present	605 "
Heims' pool oil sand top at	630 to 640 feet.
Minshall (5 feet)	660 " 685 "
Upper Block (5 feet)	715 "
Scott pool oil sand	740 " 756 "
3rd oil sand	770 " 785 "
4th oil sand	
Salt sand	
`	
Log of wells 9 and 10, G. W. Buff farm, N. W. ¼, S. Township, near N. E. Corner of Fdwards pool.	$W \cdot \frac{1}{4}$, Section 5, Gm
	to 20 foot
Clay and shale	
Coal 8	
Shale	
Hard shell	
Coal 6	
Shale	
Coal 5 with some gas	
Shale	
Limestone	
Shale and mud	408 " 500 "
Sand with water	
Shale and mud	522 " 640 "
First salt sand, some oil	640 " 675 "
Limestone	675 " 685 "
Coal, Minshall	685 " 690 "
Dark shale	690 " 715 "
Coal, upper block	715 " 720 "
Dark shale	
3rd oil sand	
Dark shale	
4th lower oil sand	
Dark shale	
Note: Well No. 9 got 10 barrels production at 75	56 sand. Well No. 10
found merely a show of oil there, but got production	
is 444 feet east of well No. 9.	
Township 8 North, Range 10 West.	
Chastine No. 2	C1 foot
10 inch drive pipe	61 feet.
Salt sand	
Coal 465 "	470

Coal	 465	66	470	6

	3 inch casing			feet
S	Salt sand	560 '	600	6.6
€	61/4 inch casing		750	6.6
(Dil sand		786	6.6
r.	Fotal depth		800	6.6
	Bell No. 4			
	10-inch pipe		42	feet.
	Coal	446 t	o 450	6.6
	8 inch casing		350	4 £
	31/4 inch casing		629	6.6
	Oil sand		786	6.6
	Fotal depth		797	6.6
	McClure No. 4			
1			32	feet.
	10 inch drive pipe			
	Coal 8 inch casing		540	6.6
	_			66
	Salt sand	900	740	66
	3 ¹ / ₄ inch casing			6.6
	Oil sand		796	6.6
	Total depth		806	
	on Oscar Hunt farm, Sullivan Co	-		
	From top of surface, red clay			
	Dark mud		80	6.6
	Coal		84	6.6
	Mud and shale			66
	Sand and some water			66
	Hard limestone shell		190	6.6
	Dark mud		220	6.6
	Sandy and hard material		260	6.6
	Coal		265	6.6
	White and black mud		340	6.6
	Coal		$\frac{345}{350}$	6.6
	White mud Hard shell		350	6 6
	Dark and white mud		$\frac{355}{465}$	6.6
	Limestone shell—hard		405	6.6
	White and dark mud		525	6.6
	Coal		$\frac{525}{530}$	6.6
	Dark shale		560	6.6
	Sand with some water and nice s		000	
	ing of oil		600	6.6
	Coal with plenty of water		605	6.6
	Dark shale		625	6.6
	Sand—hard		$\frac{625}{635}$	6.6
	Dark shale		685	6.6
	Coal and gas water flowing out of		690	6.6
	Dark shale		730	6.6
	Top of oil sand		752	66

Broken sand and shale		775 feet
Oil sand		780 "
Dark shale		800 "
Total depth of well		800 feet.
10 in. pipe	42	feet.
8¼ in. pipe 3	55	66
6¼ in. pipe 7	21	66

SWITZERLAND COUNTY

The following strata outcrop in Switzerland County:

The glacial deposits vary in thickness from a few feet to fifty. Many outcrops of the bed rock occur. It is possible that the structural conditions may be determined by surficial observations. The outcrop of the Trenton in the eastern part of the county precludes the possibility of securing oil from that formation in that locality but in the western part of the county where the thickness of the overlying formations is adequate, oil may be present in the Trenton if the proper structural conditions exist.

The following is the record of a well drilled at Vevay:

Record of Well Drilled Near Vevay.

Surface, soil and clay	60	feet.
Limestone shell and shale, 6 inches thick alternating	105	66
Limestone	75	66
Layers of shale and limestone 5 feet thick alternating	60	66
Dark hard limestone	22	66
Shale, soft	1	6 6
Limestone, very hard and full of salt water	32	66
-		
Total depth	355	feet.

TIPPECANOE COUNTY

Beneath the Pleistocene and Recent deposits of this county lie the strata of the New Albany division of the Devonian which occupies the northeast portion of the county and the Knobstone division of the Mississippian. The contact between the two formations is revealed between the Wabash River and West Lafayette by an outcrop of Goniatite limestone which lies at the base of the Knobstone just above the unconformity between the Devonian and the Mississippian. Small outcrops of the Warsaw occur near Montmorenci, but the number is too small to be of much service in determining structural conditions. The Pleistocene deposits vary in thickness from a few feet to more than one hundred feet. The mantle of glacial drift is everywhere so complete that little can be learned of stratigraphical or structural features of the bed rock. If oil structures are present in the county, they can be outlined only by the use of subsurface data derived from the records of deep wells, and to be of value the wells should be located within less than a mile of each other as the structures will probably be small.

A well drilled at Lafayette reached the top of the Niagara limestone at 235 feet. The top of the Trenton should be reached at about 1100 feet.

Railroad Elevations.

Clark's Hill 818.6; Stockwell 810; Crane 736; Altamount 645; Lafayette 542 (Monon Sta.); Dayton 647.1; Summit 608; Balls 697; Montmorenci 692.

TIPTON COUNTY

Tipton County lies within the glaciated area and is covered with glacial drift varying in thickness from 50 to 150 feet. The drift rests on the Silurian and Devonian limestones. The surface of the Trenton lies from about sea level to 150 feet below.

Cicero Township. Three wells were drilled at Tipton, and the record of No. 1 is given below:

-	Drift	. 139	feet.			
	Limestone	. 326	66			
	Shale	. 532	6.6			
	Trenton limestone, gas 11 ft., oil 3 ft.	,				
	water 19 ft	. 33	66			
	Total	.1030	feet.			
	Altitude of well	. 868	66			
Well on	the R. H. Foster farm, N. E. corner of	the	S. $\frac{1}{2}$	of S.	$\frac{1}{2}$	of
N, W. 1/4 of	Section 30, Twp. 22, R. 4 E. Cicero Twp).				
	Top of sand	.1002	feet.			
	Drilled in sand	. 14	6.6			
	Total depth	.1016	6 6			
	Casing used	. 503	6.6			
	Drive pipe	147	6 6			
	Dry hole.					

Wells drilled in Sections 20 and 28 were abandoned in 1911.

Madison Township. At Hobbs gas was obtained and the first well has the following log:

Drift 1	34 feet.
Limestone 3	30 "
Shale and limestone 5	$29\frac{1}{2}$ "
Trenton limestone	$13\frac{1}{2}$ "
Total depth [*] 10	07 feet.
Altitude of well	75 "
A well drilled in Section 19 was abandoned in 1911.	

Wild Cat Township. At Windfall the Trenton was reached at 937 feet and salt water at 1002 feet. Wells drilled in Sections 8, 17, 18, 20, and 31 were abandoned in 1911 and 1919.

Liberty Township. At Sharpsville gas was obtained from wells in which the following strata were encountered :

Drift :	70	feet.
Limestone	46 0	6.6
Shale	432	66
Trenton limestone	8	6.6

Well drilled N. of the S. W. corner of Section 19, T. 22 N. R. 4. E., on the S. J. Smith farm:

Top of sand1008	feet.
Depth drilled in sand 18	x 6
Total depth of well	6.6
Dry hole.	

Abandoned wells occur in this township as follows: Section 1, 1 well; Section 5, 2 wells; Section 13, 1 well; Section 18, 2 wells; Section 22, 1 well; Section 23, 1 well; Section 31, 1 well; Section 35, 1 well; Section 36, 1 well.

Jefferson Township. At Kempton the upper surface of the Trenton is 93 feet below sea level. The log of the Kempton well follows:

Drift	306	feet.
Limestone	293	66
Shale	424	66
Trenton limestone	12	66
· · · · · · · · · · · · · · · · · · ·		
Total depth	1035	feet.
Altitude of well	930	6.6

A well drilled in Section 9 was abandoned in 1913 and one in Section 20 in 1912.

Prairie Township. Wells have been abandoned in this township as follows: Section 2, 2 wells; Section 10, 1 well; Section 15, 1 well; Section 16, 1 well; Section 22, 1 well; Section 23, 1 well; Section 24, 2 wells; Section 26, 1 well; Section 28, 1 well; Section 32, 1 well; Section 33, 1 well; Section 34, 3 wells.

UNION COUNTY

Strata of Ordovician and Silurian age form the bedrock of this county. The Silurian rocks have been removed from all except the northeastern part of the county. The thickness of the Ordovician rocks is about 800 feet. The overlying drift has a thickness of from twenty-five to seventyfive feet. Since the drift is not as thick as in other counties and outcrops of the bed rock are more numerous it may be possible by detailed work to determine the structural conditions in this county. The record of a well drilled at Liberty is given by Phinney as follows:

Drift	70	feet
Limestone (Hudson River)	15	6.6
Grayish shale	450	6.6
Dark shale	356	66
Gray Trenton limestone	25	66
Blue Trenton limestone	55	6.6
Total depth	971	feet.
Altitude of well	965	6.6

Gas was reported in small quantities from the Hudson River shale but none in the Trenton.

The surface of the Trenton is probably more than 100 feet above sea level in the southwestern part of the county and descends to sea level in the northeastern part.

Railroad Elevations.

Cottage Grove 1,039, Kitchell 1,096, Wilts 1,119, Loties 1,039, Liberty 980, Brownsville 793.

VANDERBURGH COUNTY

Vanderburgh County lies within the unglaciated area of the State. The strata which outcrop in the county belong to the Pennsylvanian period. The rocks consist of sandstones, shales, and limestones with intercalated beds of coal. The southern part of the county is occupied by the alluvium of the Ohio River valley and outcrops of the bed rock are not found. It is doubtful whether a sufficient number of outcrops of persistent layers can be found to determine structural conditions. It may be possible to use well records, mine shaft records, and outcrops and thus determine the structural conditions of the strata. Care should be exercised in using the dip of the rocks of the coal measures to discriminate between purely local dips which are so abundant, and dips of regional extent.

The following is the record of a well drilled on the east bank of Pidgeon Creek near Evansville:

Section in Crescent City Artesian V	Vell.			
Soapstone	31	feet.		
Gray sandstone	2	66	6	in.
Soapstone and shale	37	6.6	6	66
Very hard gray sandstone	1	6.6		
Slaty coal	1	6.6	6	66
Shale	6	6.6		
Gray shale or sandstone	44	6.6	6	66
Soft shale	11	6.6		
Soft gray sandstone	18	66		
Hard dark sandstone	5	6.6		
Gray flint	2	6.6		
Dark gray saudstone	62	66		
Salt water				

Hard black shale (coal?)	73	feet.	
Gray sandstone	65	66	
Flint		66	
Hard gray shale		6.6	
Hard argillacious sandstone		6.6	
Gray shales (soapstone)	55	66	
Coal (L?)	1	6.6	6 in.
Gray shale and sandstone	134	6.6	- 1,
Dark sandstone with salt water flowing seven			
gallons per minute, 3 degrees Baume	5	6.6	
Hard pure sandstone, conglomerate	50	6.6	
Coal and slate			6 ''
Soapstone	10	6.6	
Coal (A?) and slate		6.6	6 "
Fire clay			6 "

	682	feet.
Surface	 17	6.6

Section in Avondale Bore.

Surface	9	feet,	6	in.
Blue clay	30	66	6	6.6
Gray sand	2	66	6	6.6
Blue mud, quick sand	22	6.6	3	6 6
Gravel, sand and shells	6	6.6		
Fire clay and sand	28	6.6	3	6 6
Gravel and sand	1	6.6		
Sandstone	2	6.6		
Fire clay	2	6.6	9	6 6
Sandstone	11	6.6		
Fire clay	7	6.6	9	6.6
Sandstone	7	6.6		
Fire clay with pebbles	2	6.6	8	6.6
Silicious clay	1	6.6		
Sandstone with iron balls	72	**		
Concretion	1	6.6	10	66
Sandstone	36	66	10	6 6
Rock slate	6	6 6		
Black slate	2	6.6	10	**
Coal	4	66		

Section of Inglefield Bore.

Surface clay	10	feet.		
Red Merom sandstone				
Carbonaceous parting, coal			4	in.
Hard flinty limestone	_	66		
Clay parting, second rash coal	1	66	8	£ 6

Flinty gray limestone	6	feet.	in	
Light gray sandstone	20	6.6		
Soft white limestone	8	6.6		
Soapstone, first rash coal	16	6.6	3 ''	
Shale	20	66		
Gray flinty limestone	3	6.6	2 "	
Soapstone	26	66		
White limestone	30	6.6		
Gray shale	20	66		
Fire clay	10	6.6		
Coal (N?)	1	6.6	6 "	
Fire clay	4	6.6		
Gray shale	10	66		
Soap stone	28	66		
Sandstone	3	66		
Black slate	2	6.6		
Sandstone	17	6.6		
-				

Scott Township. A well was drilled on the John M. Hart farm in 1913; it resulted in no production. A well drilled on the R. Cutter farm in 1918 was non-productive. Records of the wells could not be obtained.

VERMILLION COUNTY

Vermillion County lies wholly within the area occupied by the Penn sylvanian strata, the outcrop of which is covered by the Pleistocene and Recent deposits. These deposits of mantle rock attain a thickness of more than one hundred feet. This regolith has been largely removed along the courses of the streams and outcrops of the durolith occur. It may be possible, that by using these outcrops in connection with coal openings and the records of wells, to determine the structural conditions of the bed rock, though careful work will be necessary and much time required.

The surface of the Trenton is probably 1600 or more feet below the level of the sea. If structures are present oil may be found in Trenton, De-. vonian or Pennsylvanian strata.

Railroad Elevations.

Cayuga 522; State Line (T., St. L. & W.) 626; Rileysburg 646; Gessie 616; Perrysville 582; Dickason 526; Malone 507; Walnut Grove 528; Newport 496; Dorner 510; Worthy 489; Mt. Silica 492; West Montezuma 488; Hillsdale 488; Logan 496; Summit Grove 520; Norton Crossing 493; Jackson 495; Clinton 494.

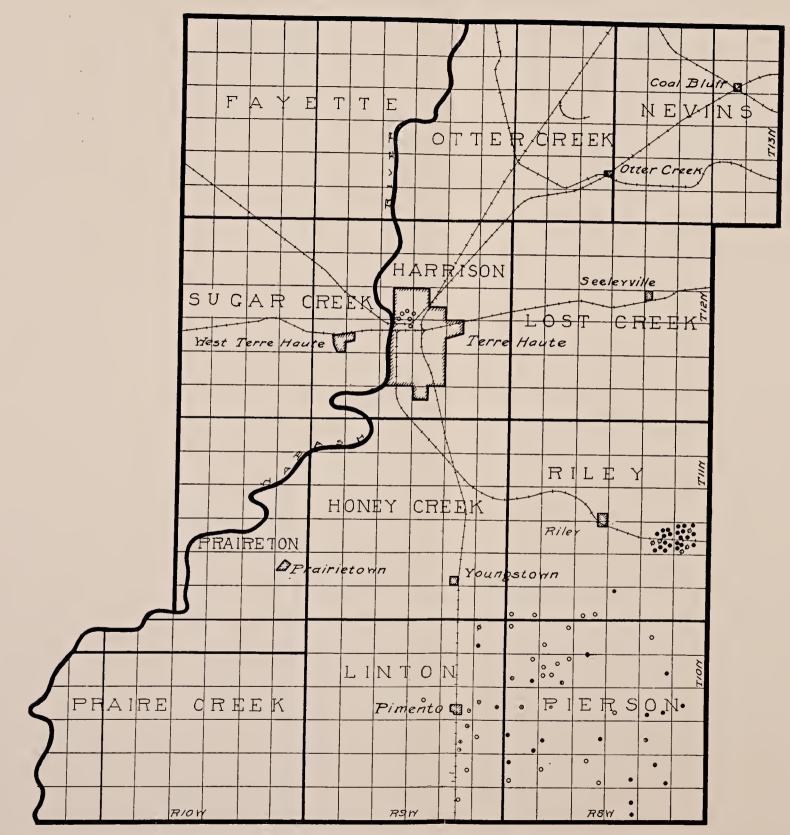


Fig. 61. Map of Vigo County, showing oil fields and location of some of the wells.

. .

.

·

VIGO COUNTY

Strata belonging to the Pennsylvanian period occupy the sub-surface in Vigo County. The rocks are sandstones, shales, and limestones with intercalated beds of coal. A covering of glacial drift largely conceals the outcrop of the durolith, the thickness of the latter varying from a few feet to more than one hundred feet. The structural conditions of the durolith can probably be determined by using coals IV and V as key horizons and relying on data secured from well records and coal outcrops for the position of these beds.

Harrison Township. Oil has been produced from a single well in Terre Haute for more than thirty years. The following is the record of a well drilled on the bank of the river at Terre Haute in 1869:¹

	F	'eet.	Inches	Feet	Inches
1.	Sand and gravel	100		100	
2.	Soapstone	64	6	164	6
3.	Coal	6	2	170	8
4.	Hard sandstone	2	3	172	11
5.	Soapstone	10		182	11
6.	Coal	3		185	11
7.	Soapstone	4	3	190	2
8.	Gray sandstone	5	10	196	
9.	Blue soapstone		10	196	10
10.	Gray sandstone		6	197	4
11.	Blue soapstone	12	9	210	1
12.	Soft black shale	6		216	1
13.	Coal		9	216	10
14.	Soapstone	7	7	224	5
15.	White sandstone (conglomerate)	30	3	254	8
16.	Blue shale	7	2	261	10
17.	Coal	2	3	264	1
18.	Black shale	10		274	1
19.	White soapstone	3		277	1
20.	Black shale	15		292	1
21.	White soapstone			300	1
22.	Black shale		3	303	4
23.	Coal	3		306	4
24.	Soapstone		8	324	
25.	Sand rock			327	
26.	Soapstone	20		347	
27.	Sand rock	10		357	
28.	Blue shale			379	
29.	Limestone	2		381	
30.	Blue shale	31		412	
31.	Light shale	5		417	
32.	Blue shale	60		477	
33.	Sandstone	7		484	

Record of Terre Haute Well.

¹Report of Indiana State Geological Survey for 1870.

34.	Blue shale	Feet. 24	Inches	${f Feet} 508$	Inches
35.	Sandstone			511	
36.	White shale			$511 \\ 521$	
30. 37.	Blue shale			668	
эт. 38.			- 7	679	7
	Hard gritty slate rock		5	694	1
39.	Hard gray sandstone		9		
40.	Hard limestone			705	
41.	White limestone			729	
42.	Gray limestone			731	
43.	Limestone			745	
44.	White limestone			827	
45.	Soapstone			830	
46.	Brown limestone			865	
47.	Soapstone			870	
48.	Lime rock			879	
49.	Soapstone			885	
50.	White limestone			892	
51.	Soapstone or Gypsum?			894	
52.	White limestone			915	
53.	Gray limestone			920	
54.	Limestone and soapstone			925	
55.	Gray limestone			930	
56.	White limestone			945	
57.	Fine blue limestone			947	
58.	Dark gray limestone and flint			1020	
59.	Light gray limestone			1027	
60.	Blue gray limestone			1034	
61.	Soapstone (fire clay)			1060	
62.	Gray limestone			1084	
63.	Gray sandstone			1087	
64.	Soapstone (fire clay)			1092	
65.	Quartz and shale mixed			1258	
66.	Quartz, slate and soapstone	3		1261	
67.	Slate rock	21		1282	
68.	Soapstone			1315	
69.	Slate rock	7		1322	
70.	Soapstone			1557	
71.	Soapstone and sandstone	10		1567	
72.	Fine sandstone	15		1582	
73.	Blue soapstone	40		1622	
74.	Black shale	15		1637	
75.	Red shale	5		1642	
76.	Black shale	15		1657	
77.	Lime rock	5		1662	
78.	Black shale	5		1667	
79.	Gray lime rock, oil near top	149		1816	
80.	Gray sand rock	23		1839	
81.	Lime rock	73	4	1912	4

In discussing the geology of Vigo County in the annual report of the Indiana Survey for 1896, Dr. J. T. Scovell publishes the following well records:

Swan Street Well on Banks of	Wab	ash.			
Sand, gravel sandstone, shale and limestone	1110	feet.	1110	fee'.	
Limestone			1560	6 7	
Shale			1610	6.6	
Limestone		6.6	1613	6.6	
Oil Sand and Oil.	Ŭ		2020		
Limestone	967	feet.	2580	feet.	
Shale			2680	6.6	
Limestone (perhaps Trenton)			2930	6.6	
Section of Kinser Well.					
Located between Fourteenth and Fifteenth	stree	ets iu	st eas	t of	t}
nter of section 22-12-9 near Liberty avenue.		J			
Soil, gravel and sand	80	feet.	80	feet.	
Shale or soapstone	70	6 6	150	6.6	
Sandstone	10	6.6	16 0	6.6	
Shale	90	6.6	250	66	
Sandstone		6.6	320	66	
Shale or slate		6.6	450	66	
Sandstone		66	590	6.6	
Limestone		6.6	950	6 6	

he cei

Soil, gravel and sand	80	feet.	80	feet.
Shale or soapstone	70	6.6	150	6.6
Sandstone	10	66	160	6.6
Shale	90	6.6	250	66
Sandstone		6.6	320	66
Shale or slate	130	6.6	450	6.6
Sandstone	140	6.6	590	6.6
Limestone	360	6.6	950	6.6
Limestone with some shale	185	6.6	1135	6.6
Limestone with quartz	85	6.6	1220	6.6
Shale	25	66	1245	6.6
Limestone with shale	225	6.6	1470	6.6
Shale or soapstone	5	6.6	1475	6.6
Sandstone or limestone	15	6.6	1490	6.6
Shale or soapstone	138	6.6	1628	6.6
Limestone or oil rock	20	6.6	1648	66

A little oil was present near the surface of the limestone. To reduce these records and the following to the level of the river fifty feet was deducted from the thickness of the first stratum.

Section of the Big Four Well.

Located in the northeast corner of the northwest quarter of Section 23-12-9.

Soil	6	feet.		
Gravel	10	66		
Sand	102	66	68	feet.
Shale	117	66	185	6.8
Sandstone or limestone	2	6 6	187	66
Shale	~ ~ -	66	394	6 6
Salt water at 78 feet below the top of shale.				
Limestone or sandstone	41	66	435	6.6
Shale or slate	50	66	485	6 6
Limestone or sandstone	12	66	497	6.6
Shale or slate	53	6.6	550	66

Sandstone		feet.	60 0			
Limestone		6.6	1200	5.6		
Shale with some limestone		6.6	1390	66		
Shale or slate		6.6	1600	6.6		
Limestone, cil rock sulphur water	18	6.6	1618	66		
Section of Exchange Well	•					
Situated a little west of the center of Section 22-12-9:						
Soil and coarse gravel	80	feet.	30	feet.		
Sand fine	45	6.6	75	6.6		
Shale and slate	65	66	140	6.6		
Coal at 22 feet below the top of shale.						
Limestone	5	6 6	145	6.6		
Shale	95	6 É	240	6.6		
Limestone	10	6 4	250	6 á		
Shale	40	6.6	290	s 6		
Limestone	20	6.6	310	6.6		
Shale		6.6	520	6.6		
Limestone		6.6	543	6.6		
Shale	10	6 6	553	6.6		
Limestone, hard and flinty	82	6 v	635	6.6		
Shale	5	n 6	640	6.6		
Limestone	160	6 ú	800	6.6		
Limestone with sand	70	6.6	870	6.6		
Sandstone	30	4.6	900	6.6		
Limestone	25	6.6	925	6 G		
Sandstone	65	6.6	990	6.6		
Limestone	30	66	1020	6.6		
Shale	180	<i>6</i> 6	1200	6.6		
Sandstone, white	50	6 G	1250	6.6		
Sandstone and shale	50	6 6	1300	6. ú		
Sandstone, white	150	66	1450	* 6		
Shale	122	6.6	1572	6.6		
Limestone—oil rock	11	6.6	1583	* 6		
Show of oil at 1575 and sulphur at 1578 feet.						

Alden Well.

On northwest quarter of Section 23-12-9:

Sand and gravel	130	feet.	80	feet.	
Shale	110	6.6	190	6.6	
Limestone	20	6.6	210	6.6	
Shale	300	6.6	510	6.6	
Sandstone	10	6 6	520	6 6	
Shale	30	6.6	550	6 6	
Sandstone	160	6.6	710	6.6	
Limestone	300	6.6	1010	* 6	
Sandstone	90	66	1100	6.6	
Shale with sand	132	6 E	1232	6.6	
Salt water at 525 feet and between 600 and					
700 feet.					

Section of the Elliott Well.

1

Near west line of Section 23 and Wabash avenu	le, T	'erre	Haute.	
Sand and gravel	128	feet.	78	feet.
Shale	260	6.6	338	6.6
Sandstone	35		373	44
Limestone	40	6.6	413	6.6
Sandstone	98	6.6	511	6.6
Limestone		66	534	6.6
Sandstone			713	66
Shale			823	60
	TIO		040	

The Smith well drilled near the southwest corner of Wabash avenue and Tenth street, southwest of the southwest section 22-12-9 reached the oil-bearing limestone at 1632 feet.

The Guarantee No. 3 between Eighth and Ninth streets, near Wabash avenue reached oil rock at 1569 feet.

The Guarantee No. 4 between Wabash avenue and Chestnut street on Tenth-Half street reached sulphur water at 1590 feet.

The Guarantee No. 5 near southwest corner South Fifth and Farrington streets southeast of the northeast section 28-12-9 reached oil sand at 1700 feet.

Section of Guarantee Well No. 6.

Northeast corner Third and Mulberry streets, northwest $\frac{1}{12}$ of the southeast $\frac{1}{4}$ section 21-12-9.

Soil, gravel and sand	128	feet.	78	feet.
Shale	44	6.6	122	66
Coal	5	6.6	127	6.6
Shales and sandstone	308	6.6	435	s 6
Limestone	40	6.6	475	6 6
Shale, blue and black	90	h 6	565	s 6
Limestones	415	6.6	980	6 G
Limestone, coarse	25	6 6	1005	6.6
Shale with some limestone	55	6.6	1060	6 G
Shale with some limestone	40	6.6	1100	6.6
Limestone with some shale	320	6.6	1420	66
Shale	25	66	1445	6 G
Limestone	9	<u>¢</u> •	1454	6 6
Shale	43	44	1497	6.6
Black shale, lime shell	72	6.6	1569	66
Coarse shale	9	6.6	1578	66
Limestone, black	20	6.6	1598	6 G
Limestone, black	20		1000	

Salt water at 800 feet, gas at 925, 160 and 1100 feet, sulphur water at 1598 feet.

Guarantee No. 1 (Diall well) located on the alley between Chestnut and Eagle streets and between Ninth and Tenth was drilled to oil on May 8, 1888. Oil rose fifty feet above the surface, "flowed out over the whole region into the sewer and down to the river and its villainous odor filled the air for squares."

The Phenix well was drilled 300 feet south between Eagle and Mulberry streets and became a good producer.

Guarantee No. 3 near Wabash avenue between Eighth and Ninth streets also produced some oil. The productive area is very small. Wells were drilled in all directions from the productive wells but yielded water only.

Riley Township. The Riley oil field is located southeast of the town of Riley in section 23 and 24. Oil has been produced from about twenty-five wells. The largest initial production is about twenty-five barrels per day. The locations of the producing wells on the accompanying map were made by Dr. C. A. Malott.

Joslin Well Record.

A well was completed October 7, 1912 on the Charles N. Joslin farm, Section 23, Township 11, North, Range 8 West, Riley Township, Vigo County, Indiana, by Bill Brothers. The following is a complete log of the well:

	-	0 1
Clay		feet
Sand rock to 21 feet		6.6
Lime to 40 feet	19	
Slate to 76 feet	36	6.6
10" pipe	76	66
Lime to 85 feet	9	66
Brown shale to 120 feet	35	6.6
Sand rock to 180 feet	60	66
Coal to 182 feet	2	6 6
Brown shale to 196 feet	14	66
Lime to 210 feet	14	6.6
Slate to 240 feet	30	6 6
Lime to 248 feet	8	66
Slate to 275 feet	27	6 6
White sand (water) to 290 feet	15	6 6
Slate to 340 feet	50	6.6
Lime to 355 feet	15	66
Slate to 390 feet	35	6 6
Salt sand (more water) to 420 feet	30	6.6
Slate to 450 feet	30	6 6
Lime to 465 feet	15	66
Slate to 490 feet	25	66
White sand to 560 feet	70	66
Slate to 620 feet	80	6.6
Lime to 625 feet	5	6.6
Salt sand to 645 feet	20	6.6
Lime to 660 feet	15	6.6
Hard lime to 710 feet		66
8¼″ casing		66
White lime with small break 750 feet		66
Hard lime to 820 feet	70	6.6
White lime to 990 feet	170	6.6
Slate and shells to 1060 feet		66
Slate to 1100 feet		6 6
Lime to 1115 feet.	15	66
Slate to 1160 feet	45	66
State to 1100 feet	40	

Lime to 1170 feet	10	feet.
Slate to 1220 feet	50	6.6
Lime to 1230 feet	10	66
Slate to 1250 feet	20	6.6
Black slate to 1290 feet	40	• •
Lime to 1310 feet	20	* 6
Slate to 1370 feet	60	66
Lime to 1380 feet	10	6.6
Slate to 1440 feet	60	6.6
Lime to 1445 feet		6.6
Slate to 1455 feet	10	6.6
Lime shell to 1458 feet	3	6.6
Slate to 1507 feet	49	6.6
65%" casing		6.6
Lime to 1520 feet	13	6.6
Slate and shells to 1555 feet		66
Brown shale to 1615 feet	60	6.6
Lime to 1617 feet	2	6.8
Slate to 1619 feet	2	61
Sand or cap rock to 1621 feet	2	11
First oil to 1623 feet	2	68
Light brown shale to 1625 feet	2	6.6
Dark brown sand to 1629 feet	4	6.6
Light and lime sand to 1631	2	6.8
Gray shelly sand to 1637 feet	6	6.8
Light shelly sand to 1641 feet	4	6.6
Oil only in one place 1621 to 1625.		

Linton Township. A deep well was drilled in this township just west of Pimento in section 14. No production was obtained. A well was also drilled in section 1 of this township without favorable results. Many wells in this township have been drilled to coal V, which is penetrated at depths ranging from 320 feet to 500 feet.

Sugar Creek Township. The record of a well drilled at St. Mary's-inthe-Wood on the northeastern quarter, southwestern quarter, Section 6-12-9 is given by Scovell as follows:

		Total
F	eet	Feet
Surface soil and yellow clay	20	
Blue clay	55	
Blue clay and quicksand	25	Low water
White shale	25	25
Coal, probably coal "N"	5	30
White shale—fire clay and shale	65	95
Coal, probably coal "M"	6	101
White shale—fire clay and shale	90	191
Coal, probably "L", the big vein	10	201
Fire clay and white shale		251
White sand rock	40	291

		Total
	Feet	Feet
White shale	.229	520
Sandstone	. 80	600
Limestone	. 490	1090
Fresh water at 730 feet.		
Shale	. 50	1140
Brown sandstone	. 20	1160
White shale	.250	1410
Limestone and sandstone	. 180	1590
Brown shale	. 115	1705
Limestone	.250	1955
Sulphur water at 1905 feet, but no show of oil or	t*	
gas reported.		

WABASH COUNTY

The bed rock strata in this county belong to the Silurian period. The drift overlying varies from 25 to 300 feet and conceals the bed rock strata to such an extent that stratigraphical and structural conditions are difficult to determine. The surface of the Trenton lies from 100 to 400 feet below sea level. The total thickness of the Niagara in this county is probably about 450 feet. The following are records of wells drilled at Wabash:²

Dwift	9.0	foot
Drift		feet.
Bluish limestone		
White limestone	. 20	66
Bluish limestone varying to green	. 140	66
Whitish limestone	. 30	6.6
Bluish limestone	. 60	66
Bluish green Niagara shale		66
Bluish gray limestone (Clinton)		66
Hudson River limestones and shales		66
Utica shale	. 280	6 6
Trenton limestone (salt water)	. 7	66
`` '		
Total depth	. 887	feet.
Total depth Altitude of well		feet.
Altitude of well		
Altitude of well	680	66
Altitude of well Section of Well No. 2. Drift	680 . 28	
Altitude of well	680 . 28	66
Altitude of well Section of Well No. 2. Drift	680 . 28 525	" feet.
Altitude of well	680 . 28 525 325	" feet. "
Altitude of well Section of Well No. 2. Drift Niagara limestone and shale Hudson River and Utica	680 . 28 525 325	" feet. "
Altitude of well Section of Well No. 2. Drift Niagara limestone and shale Hudson River and Utica	680 28 525 325 54	" feet. " "
Altitude of well	680 28 525 325 54 932	" feet. " "
Altitude of well	680 28 525 325 54 932	" feet. " " feet.

Record of a well drilled at North Manchester:²

The following is the log of a well drilled in S. W. ¼ of Section 34. Liberty township. Drilled in 1903:

Drive pipe	202	feet.
Casing		
Top of Trenton		
Total depth	965	6.6

A log of a well drilled at LaFountaine is given below:

Section of Well No. 1.

Drift	300	feet.
Niagara limestone	225	6.6
Hudson River limestone and shale	175	6.6
Utica shale	200	. 66
Trenton limestone	23	66

Total depth	923	feet.	
Trenton below sea level	6	6.6	
Yielded strong flow of gas.			

Section of Well No. 1.

Drift	274	feet.
Niagara limestone and shales	300	6.6
Hudson River limestone and shales	250	66
Utica shale	306	66
Trenton limestone	50	66
-		
Total depth	1180	66
Trenton below sea level	365	66
Yielded no gas.		

WARREN COUNTY

The bed rock formations which have been recognized by direct observation belong to the Knobstone, Harrodsburg (Warsaw), Salem, Mitchell and Chester Divisions of the Mississippian and the Mansfield (Pottsville) and coal measures (Allegheny) divisions of the Pennsylvanian. Overlying these formations are Pleistocene and Recent deposits of sand clay and gravel. The mantle rock or drift attains a thickness of more than two hundred feet. The Pennsylvanian rocks attain a thickness of about 225 feet, the Mississippian of about 110 feet; and the Devonian of about 525 feet. Devonian and Trenton strata which may be productive of oil and gas, if the proper geological structures exist, lie below the formations mentioned above. The surface of the Trenton lies probably from 1500 to 1800 feet below the surface of the county. The outcrops of the bed rock are not sufficiently numerous to make it possible to determine the structural conditions under which the formations exist. By the aid of well records, coal-shaft records and outcrops, it may be possible to determine the structural conditions favorable to the accumulation of oil and gas.

A deep well was drilled at Williamsport which struck salt water at 1200 feet. It is not probable that this well reached the Trenton limestone, it more probably reached the upper part of the Silurian.

Railroad Elevations.

Pine Village 702; Chatterton 714; Winthrop 677; Kickapoo 546; Independence 521; State Line 694 (C. & E. I.) Pence 700; Finney 719; Judyville 771.

WARRICK COUNTY

This is another one of the counties lying wholly within the unglaciated area of the state and the outcrops of the strata, where concealed, are only by alluvium and residual deposits of glacial and post-glacial age. The rocks of the Pennsylvanian period outcrop in the county. The structural conditions of the county are difficult to study because of the absence of outcrops of persistent layers in sufficient numbers. In the region of coal mines, some of the coal beds may be used as key formations in determining the structures. The Petersburg Coal, for instance, is an important and persistent bed of coal from the line of its outcrop to the western line of the county and might be used if a sufficient number of shafts or drill holes reached it. Structural lines were drawn on the surface of this coal for a part of this county and published in the Ditney Folio.

Not many well records are available for this county. The following have been reported:

Ohio Township. A well was drilled to a depth of 1450 feet in section 15 but no production was obtained.

Lane Township. A well was drilled in section 29 on the Elisha Burr property and plugged in 1911.

Record of dry hole on the John N. Miller lease, S. E. $\frac{1}{4}$ of the N. W. $\frac{1}{4}$ of Section 19, Boone Township:

Surface, loam and shaleto	40	feet.
Shale	60	66
Lime and shale	85	6.6
Shale	105	66
Fire clay	120	66
Black shale (cave)	130	6.6
Black shale	143	66
Coal	149	66
Hard shale	152	66
White shale	202	66
Black shale	222	66
Fire clay and shale	322	6 6
Shale and shells	333	66
Limestone	336	66
Coal	$341\frac{1}{3}$	66
Shale and shells	390	
Limestone and shells	416	66
Brown shale	465	66
White shale	567	66
Brown shale	617	6.6

Shale and shells	717 feet.
Black shale	
Lime shells	787 "
Gray shale	827 "
Black shale	837 "
White sand (full of salt water)	907 "
White shale	947 "
Brown shale	1047 "
Shale	1265 "
Brown lime	1280 "
Black shale	1292 "
Red cave	1300 "
Soft black shale	1323 ''
Salt sand, yielding salt water	1383 ''

The second dry hole in Warrick County was on the Barkley lease in the S. E. ¼ of the N. E. ¼ of Section 21, Hart Township. Its record showed a total depth of 1310 feet. A very slight showing of oil occurred at 1220 feet.

WASHINGTON COUNTY

Washington County lies largely within the unglaciated area of the State, only a small area in the northwestern part of the county is covered with glacial drift. The rocks which appear at the surface of this county belong to the Quaternary and the Mississippian periods. The sub-divisions are given in the table below:

	Recent—Sands, clays and alluvium.
Quaternary	
	Pleistocene—Sands and gravels.
	Mitchell limestone.
Directorica	Salem limestone.
Mississippian	Harrodsburg limestone.
	Knobstone, shales and sandstones.

A large part of the surface of the county is included in the Mitchell plain on which there are few outcrops that can be used in determining structures favorable for the accumulation of oil. The best key formation is the contact between the Knobstone and the Harrodsburg (Warsaw). Some gas was obtained at Salem from the Devonian limestone but the structural conditions existing there have not been determined. The following is the record of a well drilled at that point:

Section of Well No. 1.

Soil	7	feet.
Keokuk limestone	53	66
Sub-carboniferous sandstone	567	6 6
Hamilton shale	103	66
Devonian limestone	40	6 6
Niagara limestone	215	6.6
Clinton (?) limestone	30	6 6

Hudson River limestone and shale	535	6.6
Utica shale	180	6.6
Trenton limestone	45	66
-		
Total depth	1775	feet.
Trenton below sea level	1000	6.6

Yielded good flow of gas. The gas was found in the limestone underlying the Devonian shale.

WAYNE COUNTY

Rocks of Ordovician and Silurian age occupy the subsurface of this county, but are exposed at few places being covered with glacial drift which attains a thickness of more than two hundred feet.

Wayne Township. At Richmond a well was drilled the log of which was recorded as follows by Gorby:²

Hudson River limestone and shale	500	feet.
Utica shale	380	6.6
Trenton limestone	510	6.6
St. Peter's sandstone	10	66
Total depth	1400	6.6
Trenton above sea level	79	6.6

Another well reached the Trenton at 945 feet, another at 886 feet, and another at 972 feet.

Jefferson Township: At Hagertown gas was found in a number of wells. One of the wells passed through 100 feet of drift, reached the Trenton at 846 feet, 167 feet above sea level.

Jackson Township: Two wells drilled at Cambridge City gave the following sections:

Drift	96	feet.
Niagara limestone	2	6 6
Hudson River and Utica	668	6.6
Trenton limestone	134	6.6

Trenton above sea level...... 174 "

No. 2 passed through 100 feet of drift and reached the Trenton at 847 feet.

The records of other wells drilled in the county as given by Phinney are as follows:

		Wash-		Foun-
Dubl	in Dalton	ington	Russell	tain
Drift 300	275	212		185
Depth of Trenton 868	8 960	976	909	1025
Altitude of surface1060	3	1100	1029	1011
Altitude of Trenton 198	3	124	120	86

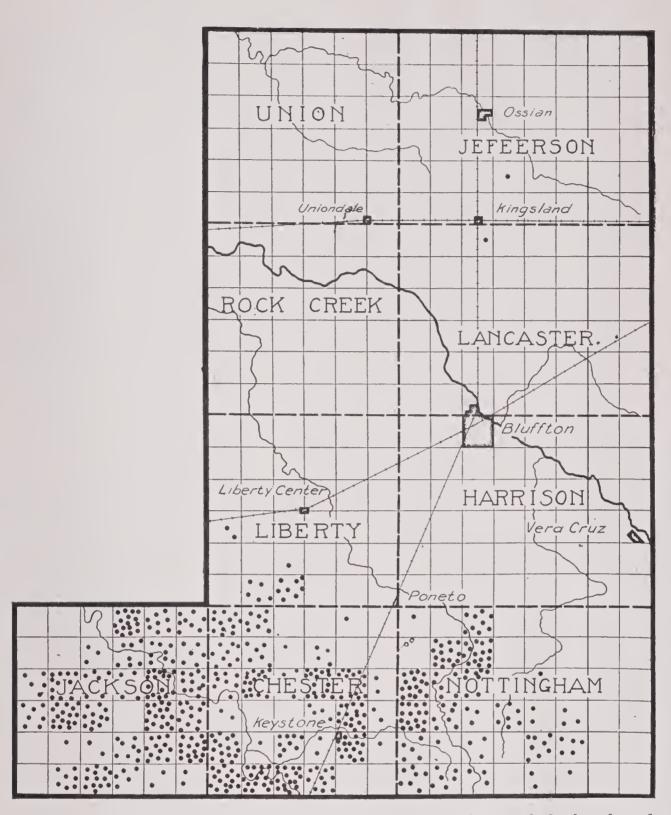


Fig. 62. Map of Wells County showing location of recorded abandoned wells. The southern tier of townships is oil territory. Some extension has been made recently in Liberty Township.

WELLS COUNTY

This county lies within the area occupied by the Silurian strata which is covered with glacial drift. The stratagraphical and the structural conditions can be determined by the study of well records. This county has produced oil and the old field has recently been extended in the western part of the county. The records of some of the wells are given below:

Chester Township. A large number of wells were drilled in this township. Two wells drilled in 1908, started at 80 and 85 barrels each. The abandoned wells are: Section 2, 1 well; Section 5, 6 wells; Section 6,

5 wells; Section 7, 9 wells; Section 8, 19 wells; Section 9, 1 well; Section 10, 4 wells; Section 14, 13 wells; Section 15, 37 wells; Section 16, 3 wells; Section 17, 18 wells; Section 18, 7 wells; Section 22, 4 wells; Section 23, 19 wells; Section 27, 1 well; Section 30, 21 wells; Section 31, 8 wells; Section 32, 16 wells; Section 33, 2 wells; Section 34, 11 wells.

Jackson Township. A well was drilled in 1908 in Section 12, S. E. $\frac{1}{4}$, and yielded 110 barrels the first day. The following is the average record of the wells in the N. W. $\frac{1}{4}$ of Section 20:

Drive pipe	153	feet.
Casing	385	6.6
Top of Trenton	989	66
Total depth	1045	6.6

A bore on the Palmer lease, east half of the N. W. ¹/₄ of Section 31 had the following record:

Drive pipe	130	feet.
Casing	340	66
Top of Trenton	985	66
Total depth	1045	66

The abandoned wells are as follows: Section 1, 9 wells; Section 2, 8 wells; Section 3, 9 wells; Section 9, 3 wells; Section 10, 8 wells; Section 11, 8 wells; Section 12, 9 wells; Section 13, 16 wells; Section 14, 26 wells; Section 15, 8 wells; Section 16, 13 wells; Section 17, 11 wells; Section 18, 5 wells; Section 19, 10 wells; Section 21, 27 wells; Section 22, 1 well; Section 23, 28 wells; Section 24, 15 wells; Section 25, 40 wells; Section 26, 12 wells; Section 27, 8 wells; Section 28, 3 wells; Section 29, 1 well; Section 32, 7 wells; Section 33, 14 wells; Section 34, 7 wells; Section 35, 2 wells; Section 36, 7 wells.

Nottingham Township. A well drilled on the Dickinson tract, in the N. E. $\frac{1}{4}$ of Section 28 has the following record:

Drive pipe	38	feet.
Casing	332	6.6
Top of Trenton1	1005	66
Total depth1	1050	66
Initial output	30	bbls.

Abandoned wells are as follows: Section 4, 9 wells; Section 6, 1 well; Section 9, 15 wells; Section 8, 15 wells; Section 14, 1 well; Section 16, 8 wells; Section 17, 6 wells; Section 18, 21 wells; Section 19, 29 wells; Section 20, 7 wells; Section 21, 3 wells; Section 22, 7 wells; Section 23, 2 wells; Section 24, 2 wells; Section 25, 3 wells; Section 26, 8 wells; Section 28, 3 wells; Section 29, 1 well; Section 30, 5 wells; Section 31, 7 wells; Section 32, 6 wells; Section 33, 3 wells; Section 35, 2 wells; Section 36, 1 well.

Harrison Township. Section of well No. 1, Bluffton, Indiana: Drift 12 feet. 6.6 66 66 66 Total depth1200 6.6 66 Yielded no gas. Section of well No. 2, Bluffton, Indiana: 66 66 Hudson River limestone and shale...... 340 66 Utica shale 175 66 66 Total depth1106 66 6.6

Liberty Township. A large number of wells were drilled in this township. The following have been abandoned: Section 19, 2 wells; Section 28, 1 well; Section 32, 5 wells; Section 33, 8 wells.

Lancaster Township. A well was abandoned in Section 4 on the property of H. Rupright in 1919.

Jefferson Township. A well drilled on the property of Grover Gibson in Section 27 was abandoned in 1919.

WHITE COUNTY

Strata of the Mississippian age occupy the subsurface of the southwestern portion of this county; Devonian strata, the central portion; and Silurian strata the eastern portion. A mantle of glacial drift largely conceals these strata and attains a thickness of from 200 to 300 feet. The structural condition of the strata of the durolith cannot be determined by direct observation because of the overlying drift.

The record of a well drilled at Monticello is given below:

Section of Well No. 1

Drift	205	feet.
Niagara limestone	515	6.6
Hudson River limestone and shale	120	66
Utica shale	170	6.6
Trenton limestone	63	66
	1079	66
Total depth	1073	
Trenton below sea level	338	6.6
Yielded no gas.		

Δ	well drilled at Monon is reported as follows:		
	Limestone	530	fee
	Shale	30	6.6
	Petroliferous limestone (Clinton?)		6.6
	Shale	285	
	Trenton limestone	50	6.6
	- Total depth	920	6.6
	Altitude of well	664	b 6

The surface of the Trenton lies from 250 to 400 feet below sea level in this county.

Railroad Elevations

Burnettsville 711.2; Idaville 709.7; Monticello 677.9; Reynolds 691.2; Seafield 697.7; Walcott 714.1; Lee 671; Monon 672.3; Wheelers 690.7; Chalmers 708.9.

WHITLEY COUNTY

The strata which form the bed rock for this county belong to the Silurian and the Devonian periods. The strata dip northward. They are concealed by an overburden of glacial drift which attains a thickness of more than three hundred feet. At Columbia City a deep well was drilled and salt water was encountered at 900 and at 1,375 feet. A bed of salt 25 feet thick was reported at a depth of 872 feet. The record of the well follows:

Drift	224	feet.
Limestone	350	4.6
Shale	776	66
Trenton limestone	25	6.6

Total	depth		б ь
-------	-------	--	-----

Gorby gave the following log of a well at Columbia City:

Section of Well No. 1

Drift	224	feet.
Niagara limestone and shale	526	6 6
Hudson River limestone and shale	400	6 6
Utica shale	218	6 6
Trenton limestone	39	66
Total depth	1407	6.6
Trenton below sea level	545	6.6
Yielded no gas.		

et.

Another well drilled at Larwill, northwest of Columbia City, has the following log:

Drift	365	feet.
Blue limestone	300	6.6
Whitish limestone	200	6.6
Bluish limestone	22	6.6
Niagara shale	43	5 6
Clinton limestone (salt water)	14	6.6
Shale	43	8.6
Limestone, salt water	43	s 6
Bluish green shale	212	66
Black shale	300	6.6
Trenton limestone	51	6.6
Total depth	1593	* *
Altitude of well	950	6.6

The structural conditions of the durolith are not determinable by the direct observations on account of the glacial covering. Subsurface work will depend upon data secured from deep wells.

.

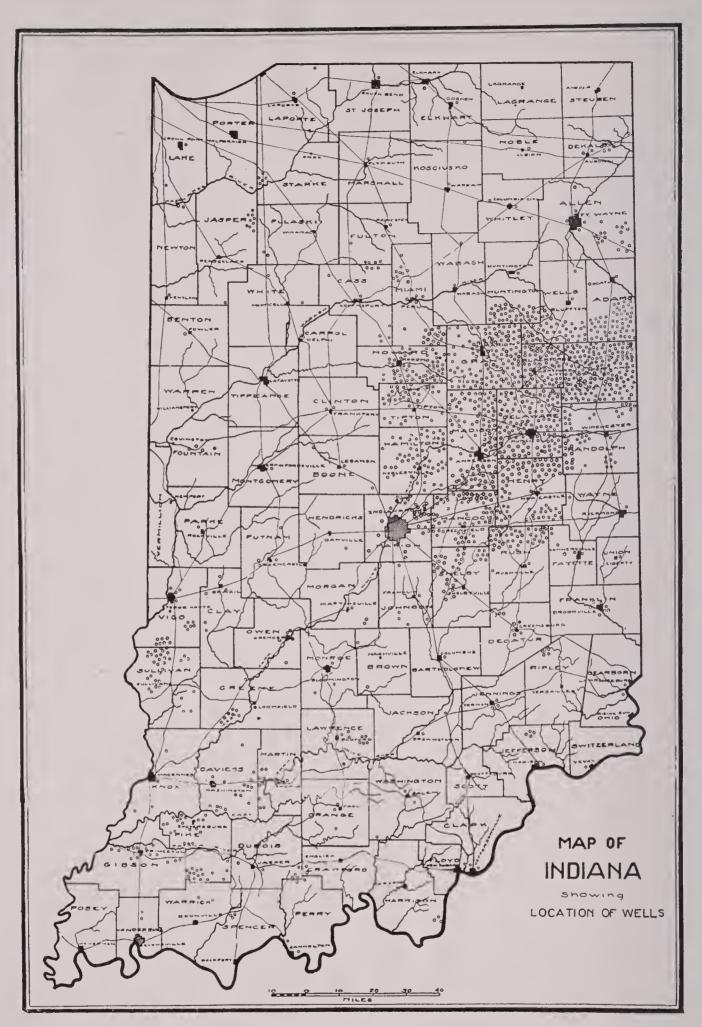


Fig. 63. Map showing distribution of oil, gas and dry wells drilled in Indiana. Space does not permit the location of all wells drilled in the oil and gas producing areas.

	Page
Abandoning a Well	45
Acknowledgements	13
Adams County	- 64
Blue Creek Township	65
Hartford Township	
Jefferson Township	
Railroad Elevation	
Adams Township—Allen County	
Decatur County	
Hamilton County	
Madison County	
Addison Township—Shelby County	
Albion	
Alden Well-Vigo County	
Allegheny Division	
Allen County	
Amount of Nitroglycerine Used in Shooting	
Analyses of Petroleum	
Anderson Township—Madison County	
Anticline	
Ashley	
Bainbridge	218
Barr Township—Daviess County	
Bartholomew County	68
Railroad Elevations	68
Baume Scale	
Bench Marks	
Benton County	
Berthelot	
Bibliography	13
Big Four Well—Vigo County	249
Blackford County	- 69
Harrison Township	71
Jackson Township	71
Licking Township	69
Bloomington Well	179
Blue Creek Township—Adams County	65
Blue River Township—Hancock County	131
Boiling Point of Petroleum	14
Boone County	72
Boone Township—Madison County	169
Broad Ripple Field	, 173
Brookville Township—Franklin County	96
DIORALLIC TOALPHILE THERE COULD	

X

INDEX

0	í	÷	1	è
<u> </u>	Į)	t)

	Page
Brown County	. 73
Railroad Elevations	. 74
Brownstown	. 146
Brown Township—Hancock County	. 130
Duck Creek Township—Madison County	. 170
Bunker Hill	. 176
Cain Township—Fountain County	. 95
Carroll County	. 74
Railroad Elevations	. 74
Cass County	. 75
Center Township—Dearborn County	. 83
Delaware County	. 86
Gibson County	. 97
Grant County	. 118
Hancock County	. 129
Howard County	. 134
Lake County	. 162
Laporte County	. 165
Chemical Properties of Natural Gas	. 19
Chester Series	
Chester Township—Wells County	
Cicero Township—Tipton County	. 242
Cincinnati Arch	. 58
Cincinnati Geanticline	. 57
Cincinnati Group	51. 53
(lark County	. 76
Clay County	. 77
Clay Township—Hamilton County	. 128
Pike County	. 214
Clinton County	. 80
Railroad Elevations	. 80
Coal Measures	51, 57
Columbia City Well	. 262
Columbus	. 68
Comparison Between Specific Gr. and Baume Scale	. 15
Composition of Natural Gas from Various Fields	. 19
Composition of Petroleum	. 14
Conditions for Accumulation	. 26
Contract Between Operator and Driller	. 45
Costs	. 43
Cost of Casing	. 45
Cost of Oil Wells	. 43
Crawford County	. 81
Crawfordsville Well	. 182
Cnmings, Dr. E. R	13, 51
Daviess County	. 81
Barr Township	, 82

	Page
Harrison Township	. 82
Madison Township	82
Washington Township	. 81
Dearborn County	. 83
Center Township	. 83
Lawrenceburg Township	- 83
Decatur County	. 83
Adams Township	. 84
Decker Township—Knox County	
Definition—Of Natural Gas	
Of Petroleum	
DeKalb County	
Delaware County	
Center Township	
Delaware Township	
Hamilton Township	
Harrison Township	
Jefferson Township	
Liberty Township	
Niles Township	
Perry Township	
Union Township	
Delaware Township—Hamilton County	
Density of Petroleum	
Determination of Structure1	
Methods Used	
Devonian Strata	1, 53
Diamond	. 189
Distance Between Wells	
Drake—Colouel	. 38
Drilling Methods Used	. 41 . 43
Drive Pipe and Casing	
Dubois County	• –
Patoka Township	
Durolith	. 10
	. 156
Edinburg	. 190
Elkhart County	. 93
Railroad Elevations	•
Elliott Well—Vigo County	
Exchange Well—Vigo County	. 38
Exploitation	. 244
Evansville—Well Near	
Fairmount Township—Grant County	. 120
Fairmount Township—Grant County Fall Creek Township—Hamilton County	. 127
Fall Creek Township—Hammon County Madison County	. 171
Madison County	32.35
Fault Structure	,

	Page
Fayette County	
Harrison Township	
Posey Township	. 94
Flashing Point of Petroleum	. 14
Flinn Township—Lawrence County	167
Foerste	51
Floyd County	
Railroad Elevations	
Fountain County	
Cain Township	
Railroad Elevations	
Van Buren Township	
Franklin County	
Brookville Township	
Railroad Elevations	
Franklin	
Franklin Township—Grant County	
Randolph County	
Fuel Used in Drilling	
Fulton County	
	50
Galena Township, Laporte County	165
Gas Pressure	19
Geological Section of Indiana	51
Geology of Monroe County	178
Gibson County	97
Center Township	97
Montgomery Township	
Patoka Township	97
White River Township	
Do-Devil, The	45
Goniatite or Rockford Limestone	1, 53
Gorby	69
Grant County	118
Center Township	
Fairmount Township	120
Franklin Township	
Jefferson Township	120
Liberty Township	
Mill Township	
Pleasant Township	
Richland Township	
Sims Township	
Van Buren Township	
Washington Township	
Greencastle	
Greene County	
Jefferson Township	
Stafford Township	
Taylor Township	
Washington Township	

Crear III Page
Green Township—Hancock County 130
Jay County 149
Madison County 171
Randolph County
Guarantee Wells Nos. 1, 3, 4, 5, 6, Vigo County 251
Hamilton County 127
Adams Township 128
Clay Township
Delaware Township
Fall Creek Township
Jackson Township
White River Township 128
Hamilton Township—Delaware County
Hancock County
Brown Township
Blue River Township 131
Center Township 129
Green Township
Jackson Township 131
Sugar Creek Township 130
Vernon Township
Hanover Township—Shelby County
Harris, G. D
Harrison County
Harrison Township—Blackford County
Daviess County
Delaware County
Fayette County
Howard County
Spencer County
Vigo County
Wells County
Harrodsburg Limestone
Hartford Township—Adams County
Hart Township—Warrick County 257
Hendricks County 131
Henry County 132
Henry Township 133
Prairie Township 133
Spiceland Township 133
Wayne Township 133
Heltonville Fault
Heltonville Well 166
Howard County 134
Center Township 134
Harrison Township 135
Howard Township 135
Jackson Township 135

Huntington County	135
Jefferson Township	135
Salamonie Township	136
Wayne Township	140
· · · ·	
Igneous Intrusions	
Indiana Geology	50
Ingle Field Bore	245
Inorganic Theories	16
Introduction	10
"Jacks"	48
Jackson County	
Jackson Township—Allen County	68
Blackford County	71
Hamilton County	128
Hancock County	131
Howard County	135
Jay County	
Miami County	
Randolph County	
Rush County	
Spencer County	
Wayne County	258
Wells County	-260
Jasper County	146
Jay County	-149
Greene Township	149
Jackson Township	150
Jefferson Township	149
Knox Township	
Madison Township	
Noble Township	
Penn Township	
Pike Township	
Richland Township	
Wayne Township	
Jefferson County	
Jefferson Township—Delaware County	
Grant County	
Greene County	
Huntington County	
Jay County	
Pike County	
Tipton County	243
and the second	

,

Page
Wayne County
Wells County
Jeffersonville Limestone
Jennings County 154
Johnson County 154
Ninevah Township 155
Joints
Joslin WellVigo County
Kemp
Kendallville
Kentland 184
Key Rock
Kinser Well, Vigo County 249
Knobstone
Knowledge of geology
Knox County 157
Knox Township—Jay County 150
Kosciusko County 161
Lafayette TownshipMadison County 171
LaGrange County
Lake County 162
Center Township 162
West Township 163
Lancaster Township—Wells County 261
Lane Township—Warrick County
LaPorte County
Michigan Township 165
Larwill Well
Law Concerning the Plugging of Wells 45
Lawrenceburg Township—Dearborn County
Liberty
Liberty Township—Delaware County
Grant County 125
Howard County 135
Tipton County 243
Wabash County 255
Wells County
Licking Township—Blackford County
Lincoln Township—Newton County 184
Linton Township—Vigo County 253
Locating the Structure
Locating the Wells 41
Lockhart Township—Pike County 213
Lawrence County
Geology of 160
Flinn Township
Structure of

Ι	Page
Lawrence Township—-Marion County	172
Length of Drive Pipe Necessary	43
Lens Structure	-31
Logan Township—Pike County	212
Loogootee Field	175
Lower Magnesian Limestone	50
Madison County	169
Adams Township	
Anderson Township	169
Boone Township	
Duck Creek Township	
Fall Creek Township	
Green Township	
Lafayette Township	
Monroe Township	
Pipe Creek Township	
Van Buren Township	
Madison Township—Daviess County	82
	151
Pike County	
Tipton County	
Malott, Dr. C. A.	13
Marion County	
Marion Township—Shelby County	
Marshall County	
Martin County	
Martinsville	
McCoy	17
Mendeleef	16
Jackson Township	178
Michigan Township—Laporte County	165
Mill Township—Grant County	
Mississippian Strata	53
Mitchell Limestone	55
Mode of Accumulation of Oil and Gas	26
	178
Monroe County	
Structure of	179
Monroe Township—Alien County	68
Grant County	
Madison County	
•	
Pike County	
Randolph County	
Montgomery County	
Railroad Elevation	
Montgomery Township—Gibson County	110

	age
Monticello Well	261
Morgan County	183
Jackson Township	183
Mt. Carmel Fault	58
Effect on Topography	62
Extent of the Fault	60
Periods of Movement	60
Mt. Vernon	215
Natural Gas	19
Definition of	19
In Indiana	21
New Albany Shale	, 53
Newberry, S. B	161
New Providence Shale	53
Newsom	59
Newton County	183
Lincoln Township	184
Niles Township—Delaware County	89
Ninevah Township—Johnson County	155
Noble County	
Railroad Elevation	
Noble Township—Jay County	
Noblesville Township—Hamilton County	
North Vernon	
Nottingham Township—Wells County	
Northern Basin	
Oakland City Field	97
Oatsville Pool	
Odor of Petroleum	14
Ohio County	186
Ohio Township—Warrick County	
Oil Creek, Pennsylvania	
Oil in Shales	
Oil Sands	
Oil Storage	
Oil Transportation	48
Orange County	186
Origin of Natural Gas	-20
Organic Origin	20
Owen County	188
Owen County	
Park County	189
Paoli Wells	187
Patoka Township—Dubois County	- 92
Gibson County	97
Pike County	213

Pennsylvanian Strata	57
Penn Township—Jay County 14	<u>49</u>
Perry County	3 9
Clark Township)()
Perry Township—Delaware County	89
Martin County 17	76
Peru	76
Petroleum	14
Analysis of 1	14
Classes of Origin 1	15
Inorganic Theories 1	16
Organic Theories 1	16
Color of	14
Composition of 1	14
Definition of 1	14
Density of	14
Flashing Point of 1	1-1
	14
Production in Indiana 1	18
Products 1	15
Properties and Origin 1	14
Phinney, A. J 1	13
	19
Pike County 19)1
Clay Township	1-1
Jefferson Township 21	
Lockhart Township 21	
Madison Township 19	
Monroe Township	
Patoka Township 21	
Washington Township 21	12
Pike Township—Jay County 15	50
Pipe Creek Township—Madison County 17	70
Plainfield 13	
Pleasant Township—Grant County 12	22
Pliocene	57
Point Township—Posey County 21	15
Porosity	28
Portable Drills 4	41
Porter County	14
Posey County	14
Posey Township—Fayette County 9	94
Rush County	24
Potsdam Sandstone	51
Pottsville Division	57
Prairie Township—Henry County 15	33
Tipton County 24	43
Price, J. A 5	59
Principal Constituents of Gas 1	19

Page Page	e
Prospecting for Oil and Gas	6
Pseudo Geologists 1	
Puliski County	6
Pumping Oil Wells 4	
Putnam County	8
Washington Township 213	8
Ouertownery Posiod	_
Quarternary Period	6
Railroad Elevations—Adams County	4
Allen County	
Bartholomew County	
Benton County	
Brown County	
Carroll County	
	0
	1
	6
Franklin County	G
Montgomery County 18	2
Noble County	5
Pulaski County	
Ripley County	
Scott County	
Spencer County	
Starke County	
Steuben County	
Tippecanoe County 24	
Union County 24	
Vermillion County	
Warren County	
White County	32
Randolph County	
Green Township	20
Jackson Township 22	22
Monroe Township	20
Nettle Creek Township 22	22
Stoney Creek Township 22	20
White River Township 21	18
Wayne Township	21
Reeves Township—Daviess County S	32
Regolith 1	10
Rolution of Geological Structure to Oil and Gas Accumulation	27

Regolith10Relation of Geological Structure to Oil and Gas Accumulation.27Remington147Richland Township—Grant County.122Jay County149Ripley County222

	Page
Ripley Township—Rush County	-223
Riley Township—Vigo County	
Rockville Well	
Rush County	
Jackson Township	
Union Township	
Washington Township	
Walker Township	
Rushville Township—Rush County	
Russell Township—Putnam County	
Rutherford Township—Martin County	
Sandstone, Riverside	53
Salamonie Township—Huntington County	
Salem Limestone	
Scott County	
Scott Township—Vanderburgh County	
Securing Leases	
Seibenthal	
Sellersburg Limestone	
Seymour	'
Shelby County	
Addison Township	
Hanover Township	
Marion Township	
Union Township	
Van Buren Township	
Shelbyville	
Shoals	
Shooting Oil Wells	45
Sims Township—Grant County	122
Silurian Strata	53
Silver Creek Limestone	53
South Bend Well	226
Southwestern Basin	58
Specific Gravity of Petroleum	14
Spencer County	225
Harrison Township	
Jackson Township	
Railroad Elevations	
Spiceland Township—Henry County	
Stafford Township—Greene County	
Standard Rig	41
Starke County	226
Railroad Elevations	
State Gas Inspector	45
Steuben County	
Railroad Elevation	
Stockdale, P. B	13

	Page
Stoney Creek Township—Randolph County	220
St. Joseph County	
St. Peters Sandstone	0, 51
Structure of Lawrence County	166
Structures Favorable to Oil and Gas Accumulation	. 28
Anticline	. 28
Synchine	. 29
The Dome	. 30
The Monocline	30
The Structural Terrace	. 31
Lens Structure	31
Foult Structure	. 32
Joints	, 33
Igneous Intrusions	00
Sugar Creek Township—Hancock County	, 130
Sullivan County	
Locationn	
Production	
Number of Wells	
Similarity of Pools	
Geology of Pools	. 230
Special Problems	. 232
Conclusion	. 233
Logs of Different Pools	. 233
Swan Street Well, Terre Haute	. 249
Switzerland County	. 241
Surface and Sound, Street Street	
Tanks	
Taswell Well	. 81
Taylor Township—Green County	. 126
Howard County	. 135
Terms of Lease	. 41
Terre Haute Well	. 247
Tertiary	51, 57
Thaver	. 184
Time of Lease	. 40
Tippecanoe County	. 241
Railroad Elevations	. 242
Tipton County	. 242 949
Cicero Township	, <u>24</u> 4 9.19
Jefferson Township	, ≟40 049
Liborty Township	. 240
Madison Township	949
Dusivia Township	. 240
Trenton Limestone	00, 01 049
The County	
Railroad Elevation	. 244

	Page
Union Field 193,	212
Union Township—Delaware County	-89
Howard County	135
Rush County	
Shelby County	
Valparaiso Well	914
	95
Grant County	
Madison County	
Shelby County	
Vanderburg County	
Scott Township	
· ·	
Vermillion County	
Railroan Elevation	
Vernon Township—Hancock County	
Vigo County	
Alden Well	
Guarantee Wells	
Harrison Township	
Linton Township	
Sugar Tree Township	
Vincennes 157.	158
Visher, Dr. S. S 13.	228
Wabash	254
Wabash County	254
Liberty Township	255
Wabash Township—Adams County	66
Walker Township—Rush County	224
Ward Township—Randolph County	22 2
Warren County	255
Railroad Elevation	256
Warren Township—Marion County	172
Warrick County	256
Hart Township	257
Lane Township	256
Warsaw	161
Washington County	257
Wayne Township—Allen County	67
Henry County	133
Huntington County	
Jay County	
Marion County	
Randolph County	
Wayne County	
Wayne County	

	age
Washington TownshipAdams County	65
Blackford County	71
Daviess County	81
Decatur County	83
Delaware County	88
Gibson County	98
Grant County	123
Green County	126
Knox County	157
Marion County	172
Owen County	188
Pike County	
Putman County	218
Randolph County	222
Rush County	223
Wells County	259
Chester Township	259
Harrison Township	261
Jackson Township	260
Jefferson Township	261
Liberty Township	261
Wells. Distance Between	-41
White County	261
White River Township—Gibson County	-97
Hamilton County	128
Randolph County	218
Whitley County	-262
Xenia Well	176

.

7-

29 93

A. DANKE

