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In this work, we have studied the isothermal compressibility (κT ) as a function of temperature, baryon
chemical potential, and center-of-mass energy (

√
sNN ) using hadron resonance gas (HRG) and excluded-volume

hadron resonance gas (EV-HRG) models. A mass cut-off dependence of isothermal compressibility has been
studied for a physical resonance gas. Further, we study the effect of heavier resonances (>2 GeV) on the
isothermal compressibility by considering the Hagedorn mass spectrum, ρ(m) ∼ exp(bm)/(m2 + m2

0 )5/4. Here
the parameters b and m0 are extracted after comparing the results of recent lattice QCD simulations at finite
baryonic chemical potential. We find a significant difference between the results obtained in EV-HRG and HRG
models at higher temperatures. The inclusion of the Hagedorn mass spectrum in the partition function for hadron
gas has a large effect at a higher temperature. A higher mass cut-off in the Hagedorn mass spectrum takes the
isothermal compressibility to a minimum value, which occurs near the Hagedorn temperature (TH ). We show
explicitly that at the future low-energy accelerator facilities like FAIR (CBM), Darmstadt, and NICA, Dubna,
the created matter would have higher compressibility compared to the high-energy facilities like the Relativistic
Heavy Ion Collider and Large Hadron Collider.
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I. INTRODUCTION

Ultrarelativistic heavy-ion colliders such as the Relativistic
Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC)
aim to produce matter at extreme conditions of temperature
and/or energy density, where a phase transition is expected
to take place from colorless hadronic matter to a colored
phase of quarks and gluons known as quark-gluon plasma
(QGP). Lattice QCD (lQCD) predicts a smooth crossover
transition between hadron gas (HG) phase and QGP phase at
zero baryon chemical potential [1,2]. However, various QCD
inspired phenomenological models predict a first-order phase
transition from the HG to the QGP phase [3–6]. These results
advocate the possible presence of a critical point (CP), where
the first-order phase transition ends. Currently, theoretical and
experimental studies are dedicated toward understanding the
nature of the QCD phase transition and location of CP. Ther-
modynamic observables such as specific heat and isothermal
compressibility are very useful in quantifying the nature of
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the phase transition and to obtain the equation of state (EOS)
of the matter. Specific heat measures the change in energy
density with respect to the change in temperature and is also
related to the temperature fluctuation in the system [7–9]. The
isothermal compressibility (κT ) defines the change in volume
with the change in pressure at constant temperature. It can be
expressed as a second-order derivative of Gibbs free energy
with respect to pressure and is expected to diverge at CP. Thus
κT and CV are very helpful in unveiling the nature of the phase
transition and helpful in the search for CP.

Various methods are employed to study κT of hadrons pro-
duced in heavy-ion collision experiments. The ideal hadron
resonance gas (HRG) model is a type of statistical-thermal
model which is used to describe the behavior and properties
of hadrons in equilibrium [10–21]. In this model, the hadrons
and their resonances are assumed as ideal or noninteracting
particles. The HRG model is very successful in describing
the particle ratios measured in various heavy-ion collision
experiments [10,12–17] as well as in nucleon-nucleus and
nucleon-nucleon collisions [22,23]. However, when HRG is
used to study the phase transition from hadron gas (HG) to
QGP phase using Gibbs construction, an anomalous rever-
sal of phase from QGP to HG is observed at large baryon
chemical potential and/or temperature [24]. This ambigu-
ity is removed by giving a hard-core size to each baryon
which results in strong repulsive interactions between a
pair of baryons or antibaryons. Such a statistical-thermal

2469-9985/2019/100(1)/014910(7) 014910-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.100.014910&domain=pdf&date_stamp=2019-07-30
https://doi.org/10.1103/PhysRevC.100.014910
https://creativecommons.org/licenses/by/4.0/


ARVIND KHUNTIA et al. PHYSICAL REVIEW C 100, 014910 (2019)

model is known as an excluded-volume hadron resonance gas
(EV-HRG) model, which is also very successful in describing
various properties of hadrons particularly at lower collision
energies [24–35]. Hagedorn has proposed an exponentially
increasing continuous mass spectrum to describe a variety of
particles called as Hagedorn mass spectrum. This is given as
[36]

ρ(m) = A(
m2 + m2

0

)5/4 exp(m/TH ). (1)

Here m0 and A are the free parameters extracted by comparing
the lQCD results with the HRG model including the Hagedorn
mass spectrum at finite baryochemical potential. The slope of
this spectrum is defined by the limiting Hagedorn tempera-
ture, TH . The partition function of a hadronic matter diverges
above TH and a new phase is possibly formed called as QGP.
Thus, in the infinite mass limit, the thermodynamical observ-
ables for the Hagedorn resonance gas would show critical
behavior as it reaches TH (∼150 ± 15 MeV [37]), which ap-
proximately equals the critical temperature (TC ∼ 159 ± 10)
[2]. The thermodynamic and transport properties of hadrons
modify significantly after incorporating the Hagedorn states
(HS) in the HRG model. The speed of sound (cs) becomes
lower at the phase transition when one adds mass spectrum
in HRG and describes the lQCD data successfully [38–42].
A similar decrease is also found in the shear viscosity–to–
entropy ratio (η/s) when comparing the results obtained with
HS [38,40,43,44]. These findings prompt us to carry out a
study of effect of Hagedorn mass spectrum on isothermal
compressibility (κT ) of a hadron gas at very high temperature.

In this paper, we have presented the calculation of the
isothermal compressibility of a hadronic matter produced
in high-energy collisions using hadron resonance gas and
the excluded-volume model. We study κT as a function of
temperature, baryon chemical potential, mass cut-off and
center-of-mass energy. We also see the behavior of κT after
including the Hagedorn mass spectrum in the grand partition
function for hadrons in HRG. The experimental data [45]
for isothermal compressibility at the RHIC at Brookhaven
National Laboratory (BNL) and Super Proton Synchrotron
(SPS) of CERN are also shown for comparison. The re-
sults of event generators such as a multi phase transport
(AMPT) model, ultrarelativistic quantum molecular dynam-
ical (UrQMD) simulation, and EPOS are presented for
completeness [45].

The paper is organized as follows: in Sec. II, we give
the formulation of isothermal compressibility for a physical
hadrons gas using the HRG and EV-HRG models. Here
we have taken all the hadrons and their resonances having
masses to a cut-off value of 2 GeV. Further, we include those
resonances which have well-defined masses and widths. The
branching ratios for sequential decays are also accounted for
in both the models. In addition, we present the calculation
of κT in HRG with Hagedorn mass spectrum. In Sec. III, we
discuss the results obtained using this formulation. Finally, we
summarize and conclude in Sec. IV.

II. METHODOLOGY

In this section, we present the formulations used to cal-
culate the isothermal compressibility (κT ) for a hot hadronic
matter. In this work, first, we discuss the HRG model used
for calculation of κT . We then present the formulation of the
excluded-volume hadron resonance gas model based on van
der Waals type of interactions. Finally, we derive isothermal
compressibility after including the Hagedorn mass spectrum
in the HRG model.

A. Hadron resonance gas model

In this subsection, we consider a noninteracting physical
hadron resonance gas. The grand-canonical partition function
for a ideal system of ith particle species contained in a volume
V in Boltzmann’s approximation with mass mi and chemical
potential μi is given as [10]

ln Zi = giV

2π2

∫
p2d p exp[−(εi − μi )/T ], (2)

where gi is the degeneracy factor and εi =
√

p2 + m2
i is the

energy of ith particle. The number density of hadrons calcu-
lated by using the basic thermodynamical relationship is given
as follows:

ni = gi

2π2

∫
p2d p exp[−(εi − μ)/T ]. (3)

The isothermal compressibility is a measure of change of
volume with the change in pressure at a constant temperature
and average number of particles, which is given as [46]

κT |T,〈Ni〉 = − 1

V

(
∂V

∂P

)∣∣∣∣
T,〈Ni〉

. (4)

In order to calculate κT , we proceed as follows. The change in
pressure can be written as

dP =
(

∂P

∂T

)
dT +

∑
i

(
∂P

∂μi

)
dμi, (5)

which gives(
∂P

∂V

)∣∣∣∣
T,{〈Ni〉}

=
∑

i

(
∂P

∂μi

)(
∂μi

∂V

)∣∣∣∣
T,{〈Ni〉}

. (6)

The first factor is the formula for Ni and the second factor is
obtained from the condition of constancy of Ni as follows:

dNi =
(

∂Ni

∂T

)
dT +

(
∂Ni

∂V

)
dV +

(
∂Ni

∂μi

)
dμi. (7)

If Ni and T are kept constant, then Eq. (7) reduces to
(

∂μi

∂V

)∣∣∣∣
T,{〈Ni〉}

= −
(

∂Ni
∂V

)
(

∂Ni
∂μi

) . (8)

In the HRG model, ∂N
∂V = ∂P

∂μ
. Thus, Eq. (6) becomes

(
∂P

∂V

)∣∣∣∣
T,{〈Ni〉}

= −
∑

i

(
∂P
∂μi

)2

(
∂Ni
∂μi

) . (9)
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Using Eqs. (4) and (9), we get

kT |T,{〈Ni〉} = 1∑
i

[(
∂P
∂μi

)2/(
∂ni
∂μi

)] . (10)

Here ni = Ni/V = ∂P
∂μi

and is calculated by using Eq. (3).

B. Excluded-volume hadron resonance gas Model

Now we describe an equation of state for the HG based
on the excluded-volume correction [24], where a hard-core
size is assigned to all the baryons while mesons are treated as
pointlike particles in the grand-canonical partition function.
An excluded-volume correction in physical hadron resonance
gas indirectly takes care of van der Waals-like repulsive
interactions that arise due to a hard core size of the particles.
In this approach, an annihilation of baryons and antibaryons
is not allowed. The excluded number density is calculated as
[24]

nex
i = λi

V

(
∂ln Zex

i

∂λi

)
T,V

, (11)

with

ln Zex
i = V

⎛
⎝1 −

∑
j

nex
j V 0

j

⎞
⎠Iiλi. (12)

Here V 0
j is the eigenvolume assigned to each baryon of

jth species and hence
∑

j n jV 0
j becomes the total occupied

volume where n j represents the total number of baryons of
jth species.

Equation (11) leads to a transcendental equation:

nex
i = (1 − R)Iiλi − Iiλ

2
i

∂R

∂λi
+ λ2

i (1 − R)I ′
i , (13)

where I ′
i is the partial derivative of Ii with respect to λi and

R = ∑
i nex

i V 0
i is the fractional occupied volume. We can write

R in an operator equation form as follows [47]:

R = R1 + 	̂R, (14)

where R1 = R0

1+R0 with R0 = ∑
n0

i V 0
i + ∑

I ′
iV

0
i λ2

i ; n0
i is the

density of pointlike baryons of ith species and the operator 	̂

has the form:

	̂ = − 1

1 + R0

∑
i

n0
i V 0

i λi
∂

∂λi
. (15)

Using the Neumann iteration method and retaining the series
up to the 	̂2 term, we get

R = R1 + 	̂R1 + 	̂2R1. (16)

Once we get R, we can calculate the excluded number
density and isothermal compressibility by using Eqs. (10) and
(13), respectively.

C. Hagedorn mass spectrum

In this subsection, we include exponentially increasing
continuous mass spectrum of the Hagedorn form given by

Eq. (1) in the grand-canonical partition function for a hadron
gas, which is given as

ln Z = 1

2π2

∫
exp[−(ε − μ)/T ]p2d p

∫ ∞

m0

ρ(m)dm, (17)

where the spectral function, ρ(m), can be written as

ρ(m) = A(
m2 + m2

0

)5/4 exp(m/TH ). (18)

Now, Eq. (17) becomes

ln Z = 1

2π2

∫
exp[−(ε − μ)/T ]p2d p

×
∫ ∞

m0

A(
m2 + m2

0

)5/4 exp(m/TH )dm. (19)

The values of A and m0 from fitting the lQCD data are
0.57 GeV−3/2 and 0.425 GeV, respectively [48]. Here the
Hagedorn temperature TH = 0.180 GeV [48]. The formula for
the number density and pressure of hadrons after including the
Hagedorn mass spectrum is given as follows:

n = 1

2π2

∫
exp[−(ε − μ)/T ]p2d p

×
∫ ∞

m0

A(
m2 + m2

0

)5/4 exp(m/TH )dm (20)

and

P =
∫

exp[−(ε − μ)/T ]
p4

3ε
d p

×
∫ ∞

m0

A(
m2 + m2

0

)5/4 exp(m/TH )dm. (21)

The isothermal compressibility of hadrons in the presence
of Hagedorn mass spectrum is calculated by using Eq. (10).

III. RESULTS AND DISCUSSION

In Fig. 1, we have shown the κT as a function of tempera-
ture for various mass cut-offs at μB = 0.5 GeV calculated in
HRG model. κT decreases with temperature due to increase
of number of particles. We also observe that isothermal com-
pressibility has a lower value when higher mass resonances
added into the system. This suggests that with a higher
number of particles, it is difficult to compress the system
and hence it becomes more incompressible. This could be
because of particles gaining higher kinetic energy. Further,
we have explicitly calculated the change in number density
in the HRG model with μB = 0.5 GeV at T = 0.170 GeV
for various mass cut-offs. We find a 23% increase in number
density when mass cut-off increases from 1.0 to 1.5 GeV.

Figure 2 depicts the isothermal compressibility calculated
in the HRG model as a function of temperature for various
μB with a mass cut-off of 2 GeV. We notice that κT decreases
with the temperature and has lower values for higher baryon
chemical potential, which goes inline with the concept that
as the number of baryon states increase, the system becomes
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FIG. 1. The isothermal compressibilities obtained in HRG model
as a function of temperature for various mass cut-offs at μB =
0.5 GeV.

incompressible. The effect of baryon chemical potential on κT

is more pronounced at a lower temperature.
In Fig. 3, a three-dimensional (3D) plot of isothermal

compressibility calculated in the HRG model as a function of
T and μB is shown. It is observed that κT decreases with T at
a constant μB and its values decrease with the increasing μB

for a given temperature of the system.
Now we want to compare the results of the HRG and

EV-HRG models. For this, we compare κT calculated in both
the models for μB = 0.5 GeV with mass cut-off =2 GeV as
shown in Fig. 4. We notice that when κT is varied as a function
of T , the EV-HRG results lie above those obtained in HRG
model and the difference is larger at a higher T . This finding
tells that the excluded-volume correction in the ideal hadron
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FIG. 2. κT as a function of temperature for various μB. The lines
are the results obtained in the HRG model for different μB.
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FIG. 3. Variation of κT as a function of T and μB in the HRG
model.

gas model plays an important role as we go toward higher
temperatures.

Figure 5 represents the results of κT estimated in the
HRG model for μB = 0.5 GeV. We have also shown the
results after adding the HS in the grand partition function of
HRG model for various upper mass limits. Here we take a
continuous mass spectrum in the calculation above a hadron
mass of 2 GeV. An upper mass limit in the mass integration
is taken to 10 GeV. The decrease in compressibility is found
with the addition of higher HS into the system. The effect of
Hagedorn states is prominent when the mass cut-off increases
from 2 to 3 GeV.

Figure 6 depicts the impact of the baryochemical potential
on the isothermal compressibility for hadronic matter calcu-
lated in both the HRG and HRG + HS models, where an
upper mass limit of 2 and 10 GeV are taken in the HRG
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FIG. 4. κT as a function of temperature. The black line is the
result obtained in EV-HRG and the dotted red line is from HRG
calculations.
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FIG. 5. κT as a function of temperature in the HRG model and
HRG with Hagedorn mass spectrum for various mass cut-offs at
μB = 0.5 GeV.

and HRG + HS models, respectively. It is evident from the
figure that κT has lower values particularly at a higher T in the
case of HRG + HS in comparison to that obtained in HRG.
Again, we notice that it decreases with the increasing baryonic
chemical potential for both cases. Addition of Hagedorn states
reduces the values of κT and supports the earlier findings that
inclusion of higher masses makes the system incompressible.

In order to study the collision energy dependence of
isothermal compressibility, we need a parametrization of tem-
perature and baryon chemical potential in terms of center-of-
mass energy [49]:

μB = a

1 + b
√

sNN
(22)
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FIG. 6. κT as a function of temperature in the HRG model and
HRG with Hagedorn mass spectrum for various μB at a mass cut-off
of 10 GeV.

1 10 210 310

 (GeV)NNs

0

10

20

30

40

50

60

70

80

/G
eV

)
3

 (
fm

Tκ

EV-HRG
HRG
HRG + HS
AMPT-SM
EPOS
UrQMD
PLB 784, 1 (2018)

FIG. 7. The center-of-mass energy dependence of κT obtained
in HRG, excluded-volume HRG, and HRG with Hagedorn states.
Transport model results from AMPT, UrQMD, and EPOS are shown
and results from Ref. [45] are superimposed for comparison.

and

T = c − dμ2
B − eμ4

B, (23)

where the parameters in EV-HRG are a = 1.482 ±
0.0037 GeV, b = 0.3517 ± 0.009 GeV−1, c = 0.163 ±
0.0021GeV, d = 0.170 ± 0.02 GeV−1, and e = 0.015 ±
0.01 GeV−3. In the case of HRG, the parameters are a =
1.22 ± 0.04 GeV, b = 0.242 ± 0.017 GeV−1, c = 0.170 ±
0.003 GeV, d = 0.190 ± 0.039 GeV−1, and e = 0.0108 ±
0.0074 GeV−3 [24]. Figure 7 represents κT as a function
of center-of-mass energy (

√
sNN ) evaluated at the chemical

freeze-out temperature (Tch). In the course of evolution of
a hot fireball created in heavy-ion collisions, the particle
multiplicity is frozen at the chemical freeze-out, where the
inelastic collisions cease. This chemical freeze-out surface
thus corresponds to a fixed temperature and baryon chemical
potential at a given collision energy. In order to estimate
the isothermal compressibility at a given collision energy in
the context of HRG, EV-HRG, and HRG + HS, we use the
chemical freeze-out parameters as the inputs.

The solid line is the result obtained in the EV-HRG model
while the dashed line is the result obtained in the HRG
model. The dash-dotted line is the calculation done in the
framework of a HRG model with the Hagedorn mass spec-
trum. We perceive that isothermal compressibility initially
decreases rapidly with

√
sNN and gets saturated around a

collision energy of 10–20 GeV. This change of behavior
of κT emphasizes a very different nature of the system at
lower collision energies in comparison to higher energies.
The energy window at which such a change of behavior
of compressibility is observed could be the onset of phase
transition from hadron gas to QGP. Significant differences are
found among the EV-HRG, HRG, and HRG + HS results for√

sNN > 10 GeV. Further, we find that addition of Hagedorn
states in the HRG model lowers the values of isothermal
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compressibility. The results in the HRG + HS framework are
found to be closer to the results obtained in Ref. [45], which
are shown by the green inverted triangles. Other theoretical
models, however, show some degree of deviation. This ne-
cessitates the inclusion of a Hagedorn mass spectrum while
studying thermodynamical observables. We know that κT is
related to the particle multiplicity fluctuation, temperature,
and volume of the system formed in heavy-ion collisions
[45]. Multiplicity fluctuations are extracted from the event-
by-event distributions of charged-particle multiplicities in nar-
row centrality bins. The dynamical part of the multiplicity
fluctuations are obtained by removing the contributions from
the number of participating nucleons. In Ref. [45], κT is
evaluated at various collision energies using the dynamical
part of multiplicity fluctuations. In an experimental scenario,
the chemical freeze-out temperatures are obtained by particle
yields and their ratios, which are in agreement with those
obtained from combined fits of net-charge, net-kaon, and
net-proton fluctuations [50,51]. Hence, it is reasonable to
use the chemical freeze-out temperature as a proxy to the
temperature where fluctuations happen to cease. We therefore
use chemical freeze-out temperature for the estimation of
isothermal compressibility. In a similar fashion, the values of
κT have been estimated from three different transport models,
such as AMPT with a string melting scenario (AMPT-SM),
UrQMD, and EPOS. These values are plotted in Fig. 7. This
study helps in confining the search for a critical point in
the QCD phase diagram to a center-of-mass energy of 10–
20 GeV per nucleon. It is observed that the matter created
in heavy-ion collisions at the lower collision energies like
in future facilities, e.g., CBM@FAIR and NICA, Dubna, is
more compressible, unlike that created at the RHIC and LHC
energies.

IV. SUMMARY AND CONCLUSIONS

In the present work, we have estimated the isothermal
compressibility for hot and dense hadron gas using the HRG
and EV-HRG models. Here hadrons and their resonances of
masses only to 2 GeV are considered in the system. We study
the mass as well as baryon chemical potential dependence
of κT as a function of temperature. We have also shown
the effect of Hagedorn mass spectrum on κT after including
the continuous mass spectra in the grand-canonical partition
function for hadron gas in HRG model. The lower limit of the
mass cut-off is set to 2 GeV in the mass integration of the

Hagedorn mass spectrum while the upper mass cut-offs vary
from 3 to 10 GeV. The findings of this study are summarized
below:

(i) Isothermal compressibility decreases with the in-
creasing temperature, which suggests that the sys-
tem at higher temperature behaves as incompressible
matter.

(ii) It is also observed that isothermal compressibility
becomes lower for higher mass cut-offs and larger
baryochemical potential. This again emphasizes that
it is difficult to compress the matter with the addition
of more number of baryons and heavier resonances.
The effect of baryochemical potential is more promi-
nent at lower temperatures.

(iii) The effect of continuous mass spectra is seen on
κT , where heavier resonances having masses above
2 GeV are included into the system. Addition of more
resonances lowers the values of isothermal compress-
ibility.

(iv) A collision energy dependence of κT is studied in the
EV-HRG, HRG, and HRG + HS models. Isothermal
compressibility initially decreases rapidly with colli-
sion energy and it becomes saturated beyond

√
sNN =

10−20 GeV. This suggests a very different nature of
the system formed in lower collision energies. Signif-
icant differences in the results from EV-HRG, HRG,
and HRG + HS are found for

√
sNN > 10 GeV. We

emphasize the need to have more experimental data as
a function of collision energy from very low to high
energies.

(v) Addition of the Hagedorn mass spectrum in the HRG
model reduces the isothermal compressibility and
hence it more closely approaches the results obtained
using experimental data at higher collision energies in
comparison to the other theoretical calculations. This
signifies the use of Hagedorn mass spectrum into the
system while studying the isothermal compressibility.

(vi) We observe that the produced hadronic matter is more
compressible at FAIR and NICA collision energies as
compared to RHIC and LHC energies.
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