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Hagedorn bag-like model with a crossover transition meets lattice QCD

Volodymyr Vovchenko,1,2 Mark I. Gorenstein,2,3 Carsten Greiner,1 and Horst Stoecker1,2,4

1Institut für Theoretische Physik, Goethe Universität Frankfurt, Max-von-Laue-Strasse 1, D-60438 Frankfurt am Main, Germany
2Frankfurt Institute for Advanced Studies, Giersch Science Center, Ruth-Moufang-Strasse 1, D-60438 Frankfurt am Main, Germany

3Bogolyubov Institute for Theoretical Physics, 03680 Kiev, Ukraine
4GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany

(Received 21 November 2018; revised manuscript received 1 February 2019; published 10 April 2019)

Thermodynamic functions, the (higher-order) fluctuations and correlations of conserved charges at μB = 0,
and the Fourier coefficients of net-baryon density at imaginary μB, are considered in the framework of a
Hagedorn bag-like model with a crossover transition. The qualitative behavior of these observables is found
to be compatible with lattice QCD results. Fair quantitative description of the lattice data is obtained when
quasiparticle-type quarks and gluons with nonzero masses are introduced into the bag spectrum. The equation of
state of the model exhibits a smooth and wide crossover transition.
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I. INTRODUCTION

The empirically known spectrum of hadrons suggests a
rapid, possibly exponential, increase of the density of states
at large masses [1]. An exponentially rising hadron mass
spectrum was first proposed by Hagedorn in the 1960s [2]
in the framework of the statistical bootstrap model, long
before the advent of QCD as the fundamental theory of strong
interactions. Evaluations within the Massachusetts Institute
of Technology (MIT) bag model [3] similarly suggest an
exponentially increasing mass spectrum [4]. The Hagedorn
mass spectrum is characterized by the Hagedorn temperature
TH ≈ 170 MeV, above which a transition to a new state of
matter occurs according to the early ideas [5]. The asymp-
totic freedom property of QCD suggests a transition to the
quark-gluon plasma phase at high temperatures and densities.
First-principle lattice QCD simulations at zero baryochemical
potential are consistent with a smooth crossover transition
between hadronic and partonic matter [6], characterized by
the pseudocritical temperature Tpc � 155 MeV [7,8] obtained
from the analysis of chiral observables.

Hagedorn states are possibly created in multiparticle reac-
tions, e.g., during heavy-ion collisions [9], most abundantly
close to the Hagedorn temperature, as was discussed in
Refs. [10,11]. Their appearance can explain the fast chemical
equilibration of the hadronic gas; this especially concerns the
abundances of (multi)strange baryons and their antiparticles.
The presence of Hagedorn states in a hadron resonance gas
model provides also a lowering of the speed of sound and
of the shear viscosity over entropy density ratio [12,13].
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Recently also a microcanonical bootstrap description of Hage-
dorn states with explicit conserved quantum numbers has been
developed: The energy spectra of the resulting hadrons from
the decays of such exotic states follow an exponential law
akin with the Hagedorn temperature and thus look thermal by
themselves [14]. Incorporating those states into a microscopic
hadronic transport model, again fast equilibration of strange
and multistrange baryons and mesons, has been shown [15],
and the full dynamics of heavy-ion collisions within such an
unorthodox picture has also been developed [16].

In the simplest Hagedorn model all hadrons are treated as
point particles. Due to the exponentially increasing hadron
mass spectrum, the Hagedorn temperature TH becomes the
limiting temperature above which the partition function
diverges—a behavior which cannot be reconciled with lattice
QCD results. Early on, it has been suggested that hadrons in
a statistical system should be treated as spatially extended
objects [17–21], which essentially corresponds to a van der
Waals type excluded volume correction in the partition func-
tion of a hadron gas. The inclusion of the spatial size of
hadrons leads to a disappearance of the “limiting” temper-
ature under certain conditions [21]. Moreover, as shown in
Refs. [20,22], there is a possibility of a first-order, second-
order, or a crossover transition in the gas of spatially extended
quark-gluon bags, with thermodynamic properties at high
temperatures being similar to the MIT bag model equation of
state [17]. Both phases are described within a single partition
function. Different possibilities, such as a crossover transition
at zero baryon density and a first-order phase transition at
finite baryon density in the gas of quark-gluon bags, were
explored in various works [23–28].

The temperature dependence of thermodynamic functions
at zero chemical potential within the gas of extended quark-
gluon bags with a crossover transition was considered in
Ref. [27] in the context of lattice QCD equation of state.
General qualitative features were found to be compatible with
lattice QCD, although a quantitative description is lacking.
Recently, a lot of lattice data have appeared on correlations
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and fluctuations of conserved charges. These observables
correspond to the derivatives of the partition function with
respect to chemical potentials, and they have long been
considered sensitive to phase transitions [29,30]. Nowadays,
the susceptibilities are actively being used to formulate, test,
and constrain various effective QCD models for equations
of state at nonzero baryon density [31–37]. In the present
work we explore to what extent the behavior of the conserved
charge susceptibilities in the gas of extended hadrons and
quark-gluon bags is compatible with lattice QCD. We also
consider an extension of the conventional quark-gluon bag
model by introducing the effects of finite, constituent quark
and gluon masses as in a quasiparticle picture, which lead to
a substantially improved agreement with the lattice data.

II. MODEL DESCRIPTION

A. Partition function

The model assumes a multicomponent system of color neu-
tral objects. These objects, henceforth referred to as particles,
have finite sizes—the eigenvolumes. The particles can carry
three Abelian charges—baryon number, electric charge, and
strangeness. These three charges are characterized by the cor-
responding chemical potentials μB, μQ, μS . For convenience,
we will employ the fugacities, λi ≡ eμi/T .

First, we consider a system with a finite number of dif-
ferent components f ; a generalization to an infinite number
of components will follow later. The particles under consid-
eration can have arbitrary integer values of baryon charge,
electric charge, and strangeness. It is assumed that particles
are nonoverlapping—this constraint is modeled through the
excluded-volume correction [20,38]. The grand canonical par-
tition function reads

Z (T,V, λB, λQ, λS )

=
∞∑

N1=0

. . .

∞∑
Nf =0

f∏
i=1

λ
Ni
i

×
[(

V − ∑
j v jNj

)
di φ(T ; mi )

]Ni

Ni!
θ

⎛
⎝V −

∑
j=1

v jNj

⎞
⎠.

(1)
Here λi = λ

bi
B λ

qi
Q λ

si
S where bi, qi, and si, are the baryon charge,

electric charge, and strangeness of particle species i, di is its
degeneracy, and

φ(T, m) = m2T

2π2
K2(m/T ). (2)

The presence of the theta function in Eq. (1) causes certain
technical difficulties. These technical difficulties can be over-
come by considering the isobaric (pressure) ensemble [20].
The isobaric partition function, Ẑ (T, s, λB, λQ, λS ), is given
as the Laplace transform of Z (T,V, λB, λQ, λS ) (see details in
Ref. [20]),

Ẑ (T, s, λB, λQ, λS ) =
∫ ∞

0
Z (T,V, λB, λQ, λS ) e−sV dV

= [s − f (T, s, λB, λQ, λS )]−1, (3)

f (T, s, λB, λQ, λS ) =
f∑

i=1

λ
bi
B λ

qi
Q λ

si
S di φ(T, mi ) e−vi s. (4)

In the thermodynamic limit, V → ∞, the grand canon-
ical partition function behaves as Z (T,V, λB, λQ, λS ) �
exp[p(T, λB, λQ, λS )V/T ]. The isobaric partition function in
the thermodynamic limit has the form

Ẑ (T, s, λB, λQ, λS ) ∝
∫ ∞

0
exp

[
V

T
(p − T s)

]
dV. (5)

It follows from Eq. (5) that Ẑ (T, s, λB, λQ, λS ) has a singular-
ity at s = s∗ = p/T , and no singularities at s > s∗. The inte-
gral representation (5) is unconditionally divergent at s < s∗,
and, therefore, does not directly provide information about the
behavior of the isobaric partition function in that region. Thus,
there is a possibility that Ẑ has singularities at s < s∗. These
considerations lead to the conclusion that the system pressure
p(T, λB, λQ, λS ) in the thermodynamic limit is defined by the
farthest-right singularity s∗ of the isobaric partition function
Ẑ , i.e.,

p(T, λB, λQ, λS ) = T s∗. (6)

The exact nature of the farthest-right singularity s∗ depends
on the input particle spectrum.

B. Mass-volume density of states

In the isobaric ensemble, the input particle spectrum enters
through Eq. (4) only. This permits a generalization to a system
with an infinite number of different components, character-
ized by some density function. First, let us rewrite Eq. (4) in
the following form:

f (T, s, λB, λQ, λS ) =
∞∑

b=−∞

∞∑
q=−∞

∞∑
s=−∞

∑
i∈{b,q,s}

× λb
B λ

q
Q λs

S di φ(T, mi ) e−vi s. (7)

Here the sum i goes through all particles which carry the spe-
cific baryon number b, the electric charge q, and strangeness
s. One can now introduce a mass-volume density of states
ρ(m, v; b, q, s), which determines the number of particle
states carrying fixed quantum numbers b, q, and s, in the
mass-volume interval [m, v; m + dm, v + dv]. Equation (7) is
generalized to

f (T, s, λB, λQ, λS ) =
∞∑

b=−∞

∞∑
q=−∞

∞∑
s=−∞

∫
dv

∫
dmλb

B λ
q
Q λs

S

× ρ(m, v; b, q, s) φ(T, m) e−v s. (8)

Equation (8) is reduced to (7) for ρ(m, v; b, q, s) =∑
i∈{b,q,s} di δ(m − mi ) δ(v − vi ).
Finally, let us rewrite Eq. (8) as follows:

f (T, s, λB, λQ, λS )

=
∫

dv

∫
dmρ(m, v; λB, λQ, λS )φ(T, m)e−v s, (9)

045204-2



HAGEDORN BAG-LIKE MODEL WITH A CROSSOVER … PHYSICAL REVIEW C 99, 045204 (2019)

where we have introduced the generalized fugacity dependent
mass-volume density of states:

ρ(m, v; λB, λQ, λS )

=
∞∑

b=−∞

∞∑
q=−∞

∞∑
s=−∞

λb
B λ

q
Q λs

S ρ(m, v; b, q, s). (10)

Note that ρ(m, v) ≡ ρ(m, v; λB = 1, λQ = 1, λS = 1) is the
mass-volume density of all states irrespective of their quantum
numbers.

We follow the picture presented in Refs. [22,23]. The
particle spectrum is assumed to consist of two contributions:

(1) the established, low mass hadrons and resonances
listed in Particle Data Group (PDG) [1], corresponding
to a hadron resonance gas (HRG);

(2) an exponential Hagedorn spectrum of the heavy quark-
gluon bags.

Therefore,

ρ(m, v; λB, λQ, λS ) = ρH (m, v; λB, λQ, λS )

+ ρQ(m, v; λB, λQ, λS ), (11)

where ρH corresponds to the established hadrons listed in
PDG, and ρQ corresponds to the quark-gluon bags. The PDG
hadrons form a discrete spectrum, therefore ρH is given as a
finite sum of δ functions:1

ρH (m, v; λB, λQ, λS )=
∑

i∈HRG

λ
bi
B λ

qi
Q λ

si
S di δ(m − mi ) δ(v − vi ).

(12)

Each of the PDG hadrons is assumed to have a finite
eigenvolume parameter vi. In the spirit of the bag model, we
assume here that the eigenvolumes of the PDG hadrons are
proportional to their mass: vi = mi/ε0, where ε0 = 4B unless
stated otherwise. Here B is the bag constant. In principle, one
can consider a different parametrization of vi, e.g., based on
phenomenological knowledge of some hadron-hadron inter-
actions; the only requirement here is that all eigenvolumes are
nonvanishing, i.e., vi > 0.

C. Quark-gluon bags

The mass-volume spectrum of the quark-gluon bags, ρQ, is
the crucial ingredient of the model, which determines some
of its most qualitative features. The form of ρQ depends
strongly on the assumptions regarding the internal color-flavor
structure of the bags (see, e.g., Refs. [24,25]). In the region
where both m and v are large, the spectrum can be described in
the framework of the bag model [3]. The mass-volume density
of states was computed assuming bags filled with noninteract-
ing massless quarks and gluons, at zero chemical potentials

1We neglect here the effects of finite resonance widths. These can
have an important effect in precision thermal model applications,
such as thermal fits [39], but are not very relevant for the mostly
qualitative aspects of the equation of state studied here.

[4,40,41], and also for finite baryon chemical potential [42].
One obtains

ρQ(m, v; λB, λQ, λS )

= C vγ (m − Bv)δ

× exp

{
4

3
[σQ(λB, λQ, λS )]1/4 v1/4 (m − Bv)3/4

}
× θ (v − V0) θ (m − Bv − M0). (13)

Here V0 is a model parameter which is given a sufficiently
large value, B is the bag constant, and M0 > 0 is a parameter
which regularizes the mass-volume density close to the lower
threshold [23]. As will be shown, the exact value of M0 has
no significance for applications considered in this paper. σQ

corresponds to the energy density (or three times the pressure)
of the noninteracting gas of massless quarks and gluons. Here
this quantity is taken as a function of all three chemical
potentials in (2+1)-flavor QCD:

σQ(λB, λQ, λS )

= 19π2

12
+

∑
f =u,d,s

[
3

2
(lnλ f )2 + 3

4π2
(lnλ f )4

]
(14)

with λu = λ
1/3
B λ

2/3
Q , λd = λ

1/3
B λ

−1/3
Q , and λs = λ

1/3
B λ

−1/3
Q λ−1

S .
Equation (13) implies that the eigenvolume of a QGP bag

with a given mass is fluctuating. These fluctuations are given
by the distribution ρQ(m, v; λB). The presence of volume
fluctuations is crucial for obtaining a transition to quark-gluon
plasma: assuming a fixed mass-volume relation, e.g., m =
4Bv from the MIT bag model [3], leads to a constant energy
density at high temperature, which is incompatible with lattice
QCD (see Refs. [24,25,27] for more details).

The values of parameters C, γ , and δ in the pre-exponential
factor in Eq. (13) depend strongly on the details of the bag
model calculation. For example, they depend on whether the
colorlessness constraint for the bags is implemented [41–43],
as well as on other internal symmetry constraints considered
[24,25]. Therefore, these parameters are usually treated as free
model parameters. Such a philosophy is considered in the
present work as well. Similar arguments apply to a possible
dependence of C, γ , and δ on fugacities λB, λQ, λS . In
the absence of a detailed knowledge, we omit this possible
dependence on fugacities in the present study.

The Hagedorn temperature. The exponential hadron mass
spectrum was first introduced by Hagedorn [2]. It has a
general form

ρhag(m) = A m−α exp(m/TH ), (15)

with the parameter TH called the Hagedorn temperature. The
mass-volume relation (13) for quark-gluon bags employed in
the present work also implies this same exponential asymp-
totic mass spectrum. The mass spectrum for the quark-gluon
bags reads

ρQ(m) =
∫

dv ρQ(m, v)

= C
∫ (m−M0 )/B

V0

dv vγ (m − Bv)δ exp[w(v; m)], (16)
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with w(v; m) = 4
3 [σQ]1/4 v1/4 (m − Bv)3/4. The integral con-

verges as long as M0 > 0. The function w(v; m) has a peak
for large values of m. Therefore, the integral in Eq. (13)
can be approximated for large m with Laplace’s method.
One has w(v; m) ≈ w(v0; m) + 1

2w′′
vv (v0; m) (v − v0)2 where

v0 satisfies the condition w′
v (v0; m) = 0. This yields

v0 = m

4B
, (17)

w(v0; m) =
(

σQ

3B

)1/4

m, (18)

w′′
vv (v0; m) = −16 (σQ)1/4 B7/4

35/4 m
. (19)

Equation (17) is the familiar relation between the mass of a
quark-gluon bag and its average volume from the MIT bag
model with massless quarks [3]. Applying Laplace’s method
to Eq. (16) one obtains the asymptotic mass spectrum

ρQ(m) �
√

2π 3δ+5/8 C

4γ+δ+1 Bγ+7/8 σ
1/8
Q

mγ+δ+1/2 exp

[
m σ

1/4
Q

(3B)1/4

]
.

(20)

This form coincides with the Hagedorn mass spectrum (15)
with

A =
√

2π 3δ+5/8 C

4γ+δ+1 Bγ+7/8 σ
1/8
Q

,

α = −
(

γ + δ + 1

2

)
, (21)

TH =
(

3B

σQ

)1/4

.

The accuracy of Eq. (20) for given m depends on the values
of the parameters of the mass-volume density. For the parame-
ter sets used in the present work, Eq. (20) is accurate to within
10% relative error for m � 8–10 GeV/c2; this is illustrated in
Sec. 1 of the Appendix. Note that Eq. (20) is derived here
solely for the purpose of illustrating the appearance of the
familiar Hagedorn mass spectrum form. Equation (20) is not
used in further applications presented in this paper.

D. Pressure function

The pressure function [Eq. (6)] is defined by the farthest-
right singularity s∗ of the isobaric partition function [Eq. (3)],

Ẑ = 1

s − f (T, s, λB, λQ, λS )
, (22)

where f is given by Eq. (4). Function Ẑ has a pole singularity
at sH = f (T, sH , λB, λQ, λS ). Another possibility is a singu-
larity sQ in the function f (T, s, λB, λQ, λS ) itself.

Let us compute the function f for the particular mass-
volume density given by (11)–(13). First, we split it into two

parts f = fH + fQ with

fH (T, s, λB, λQ, λS )

=
∑

i∈HRG

di φ(T, m) λ
bi
B λ

qi
Q λ

si
S exp

(
−mis

4B

)
, (23)

fQ(T, s, λB, λQ, λS )

= C
∫

V0

dvvγ exp(−vs)
∫

Bv+m0

dm(m − Bv)δ

× exp

{
4

3
[σQ(λB, λQ, λS )]1/4v1/4(m−Bv)3/4

}
φ(T, m).

(24)

The quark-gluon bags in Eq. (24) are heavy, m � 2 GeV,
therefore one can use the nonrelativistic approximation:

φ(T, m)
m�T�

(
mT

2π

)3/2

exp

(
−m

T

)
. (25)

This approximation has a relative accuracy of 10% or better
for m/T > 20, a condition which is realized in the applica-
tions considered in this work. The error due to the nonrela-
tivistic approximation for quark-gluon bags in the resulting
pressure is even smaller; see Sec. 2 of the Appendix.

The expression for fQ then simplifies to

fQ � C
∫

V0

dv vγ exp(−vs)

×
∫

Bv+M0

dm (m − Bv)δ
(

mT

2π

)3/2

exp[g(m)], (26)

where

g(m) = −m

T
+ 4

3
[σQ(λB, λQ, λS )]1/4 v1/4 (m − Bv)3/4.

(27)

The integration over m in Eq. (26) can be carried out
approximately using Laplace’s method. One has

g(m) ≈ g(m0) + 1
2 g′′(m0) (m − m0)2, (28)

where m0 satisfies the equation g′(m0) = 0. The dominant part
of the contribution of the QGP bags with volume v to the
thermodynamics of the system is given by those bags with
mass m � m0. Using Eq. (27) m0 is obtained explicitly,

m0 = B v + σQ(λB, λQ, λS ) v T 4. (29)

One can invert the above relation to obtain

v(m0) = m0

B + σQ(λB, λQ, λS ) T 4
. (30)

One can see that v(m0) is a decreasing function of tempera-
ture. This elucidates the so-called effect of thermal compres-
sion of bags.

Let us note that

g(m0) = 1

3
σQ(λB, λQ, λS ) v T 3 − Bv

T
, (31)

g′′(m0) = − 1

4 σQ(λB, λQ, λS ) v T 5
. (32)
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Applying Laplace’s method to Eq. (26) one obtains

fQ � C

π
T 4+4δ [σQ]δ+1/2 [B + σQT 4]3/2

×
∫

V0

dv v2+γ+δ exp[−v(s − sB)]. (33)

Here sB corresponds to sB = pB/T , where pB(T, λB, λQ, λS )
coincides with the pressure in the MIT bag model equation of
state [17]:

pB(T, λB, λQ, λS ) = σQ(T, λB, λQ, λS )

3
T 4 − B. (34)

Recalling the definition of the “upper” incomplete gamma
function,

�(α, x) =
∫ ∞

x
tα−1 e−t dt, (35)

one can perform the integration over v in Eq. (33) explicitly:

fQ � C

π
T 4+4δ [σQ]δ+1/2 [B + σQT 4]3/2 (s − sB)−(γ+δ+3)

×�[γ + δ + 3, (s − sB)V0]. (36)

Note that dependence on λB, λQ, λS in the above re-
lation enters through σQ ≡ σQ(T, λB, λQ, λS ) and sB ≡
sB(T, λB, λQ, λS ). Also note that the application of Laplace’s
method eliminates the dependence of the final result on the
parameter M0 from Eq. (13).

The function f has a singularity at sQ = sB, as follows from
(36). Thus, the system pressure is defined at given temperature
and chemical potentials as

p(T, λB, λQ, λS )

= T max{sH (T, λB, λQ, λS ), sQ(T, λB, λQ, λS )}. (37)

The model may contain a phase transition, defined as a
“collision” of singularities sH and sQ at particular values of
the thermodynamic parameters, i.e., sH (Tc) = sQ(Tc) at the
critical temperature Tc of the phase transition. This mecha-
nism was first described in Ref. [20]. In this case sH (T ) >

sQ(T ) for T < Tc and sH (T ) < sQ(T ) for T > Tc. A detailed
analysis performed in Ref. [28] reveals that a phase transition
as described above is only realized when γ + δ < −3 and
δ < −7/4. For other values of these parameters a crossover-
type transition is realized, i.e., sH (T ) > sQ(T ) for all T . If the

crossover transition takes place, then p/T 4 T →∞→ pB/T 4 [28],2

i.e., the system proceeds to a phase which has thermodynamic
properties similar to that of the quark-gluon plasma described
by the MIT bag model equation of state.

Lattice QCD simulations at physical quark masses reveal
that the transition from hadronic to partonic degrees of free-
dom at μB = 0 is of a crossover type [6–8]. Therefore, in this
work we focus only on the case where the crossover transition
is realized. A possibility of a real phase transition at finite μB

will be considered in a separate publication.
The farthest-right singularity of the isobaric partition

function Ẑ is equal to sH for all possible values of

2Note that p/T 4 T →∞→ pB/T 4 does not necessarily imply p
T →∞→ pB.

Whether this is the case depends on the values of γ and δ [28].

thermodynamic parameters when the crossover scenario
is realized. The pressure, p = T sH , satisfies the following
transcendental equation:

p(T, λB, λQ, λS )

= T
∑

i∈HRG

di φ(T, m) λ
bi
B λ

qi
Q λ

si
S exp

(
− mi p

4BT

)

+ C

π
T 5+4δ [σQ]δ+1/2 [B + σQT 4]3/2

(
T

p − pB

)γ+δ+3

×�

[
γ + δ + 3,

(p − pB)V0

T

]
. (38)

The first term in Eq. (38) corresponds to the discrete part
of the particle spectrum. It equals the sum of the partial pres-
sures evaluated self-consistently for an ideal Boltzmann gas
with shifted chemical potentials μ∗

i = μi − mi p
4BT . The second

term corresponds to the contribution of the quark-gluon bags.
The two terms are not independent—they both depend self-
consistently on the total system pressure to which they both
contribute. Equation (38) is solved numerically in the present
work. The energy density, the entropy density, the speed of
sound, and the various susceptibilities are obtained from the
pressure function as derivatives with respect to T or λB,Q,S ,
through the standard thermodynamic relations.

One should note that the application of Laplace’s method
used to perform the mass integration in the derivation of
Eq. (38) is, strictly speaking, most accurate in the limit of
large masses, i.e., when m0 [Eq. (30)] is large. The method
is expected to be less accurate if contributions of “small”
quark-gluon bags close to the mass-volume density threshold
V0 are significant. This situation can take place in the vicinity
of the crossover transition, where the bags start to appear
in addition to the PDG hadrons. In Sec. 2 of the Appendix
we show numerically that, for the parameter sets used in the
present study, Laplace’s method allows us to evaluate the
pressure with a precision of better than 2%, for all temperature
values considered. We therefore adopt Laplace’s method in all
our subsequent calculations, as that method remedies some
technical difficulties and presents a clear physical picture. In
a more elaborate study one may omit the Laplace method
approximation altogether.

It should be pointed out that the mass-volume density
(13) of quark-gluon bags is obtained for asymptotically large
masses and volumes, whereas the lower end of the mass-
volume spectrum is regulated by the cutoff parameters V0 and
M0 only. One may ask how this lower end of the mass-volume
spectrum matches with the spectrum of the PDG hadrons at
even lower masses. In Sec. 1 of the Appendix we show that
the spectra of PDG hadrons and quark-gluon bags can indeed
be merged rather smoothly for the model parameter sets under
consideration here.

E. Other quantities

1. Particle number density

The particle number density is the average number of
particles per unit volume. It is the sum (integral) of individual
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densities corresponding to different particle species:

n =
∑

i

ni, (39)

where the sum goes over all species. As the considered particle spectrum includes the continuous spectrum of the quark-gluon
bags, the sum in Eq. (39) in general corresponds to the integral over the mass-volume density of states, i.e.,

∑
i λ

bi
B λ

qi
Q λ

si
S di ≡∫

dv
∫

dm ρ(m, v; λB, λQ, λS ).
The individual densities can be computed by introducing the fictitious fugacities λi for all species into the partition function.

ni are given by the standard expression for the multicomponent excluded-volume model [44]:

ni = nid
i e−vi p/T

1 + ∑
j v j nid

j e−v j p/T
. (40)

Here

nid
i = di φ(T, mi ) λ

bi
B λ

qi
Q λ

si
S , (41)

and p is the system pressure.
The total hadron density reads

n =
∑

i nid
i e−vi p/T

1 + ∑
j v j nid

j e−v j p/T
= nid

1 + κ
, (42)

with

nid =
∑

i

nid
i e−vi p/T

=
∫

dv

∫
dm ρ(m, v; λB, λQ, λS ) φ(T, m) e−vp/T , (43)

κ =
∑

i

vi nid
i e−vi p/T

=
∫

dv

∫
dm v ρ(m, v; λB, λQ, λS ) φ(T, m) e−vp/T . (44)

For the particle spectrum (11) consisting of the PDG hadrons and quark-gluon bags the above quantities can be computed
explicitly. The calculation proceeds in the same fashion as done for the pressure function in Sec. II D: the PDG part of the
mass-volume density is computed explicitly, whereas for the quark-gluon part one first applies Laplace’s method to perform
the integration over the mass in Eqs. (43) and (44), the remaining integrals over the volume can be expressed in terms of the
incomplete Gamma function. The result is

nid =
∑

i∈HRG

diφ(T, mi )λ
bi
B λ

qi
Qλ

si
S exp

(
− mi p

4BT

)
+ C

π
T 4+4δ[σQ]δ+1/2[B + σQT 4]3/2

(
T

p − pB

)γ+δ+3

�

[
γ + δ + 3,

(p − pB)V0

T

]
,

(45)

κ =
∑

i∈HRG

di
φ(T, mi )mi

4B
λ

bi
B λ

qi
Qλ

si
S exp

(
− mi p

4BT

)
+C

π
T 4+4δ[σQ]δ+1/2[B + σQT 4]3/2

(
T

p − pB

)γ+δ+4

�

[
γ + δ + 4,

(p − pB)V0

T

]
.

(46)

2. Filling fraction

Another interesting quantity is the filling fraction (f.f.)—the ratio between the average total volume occupied by hadrons over
the system volume. The definition of this quantity reads

f.f. =
∑

i vi 〈Ni〉
V

=
∑

i

vi ni

=
∑

i vi nid
i e−vi p/T

1 + ∑
j v j nid

j e−v j p/T
= κ

1 + κ
. (47)
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3. Average particle eigenvolume

The average eigenvolume of a particle in the thermal system can be computed as follows:

〈v〉 ≡
∑

i vini∑
i ni

= κ

nid
= f.f.

n
. (48)

4. Average particle mass

The average mass of a particle in the thermal system is given by

〈m〉 ≡
∑

i mini∑
i ni

=
∫

dv
∫

dm m ρ(m, v; λB, λQ, λS ) φ(T, m) e−vp/T ,

n
. (49)

The explicit calculation, employing Laplace’s method to integrate over m and the incomplete Gamma function to express the
integral over v, yields

n〈m〉 =
∑

i∈HRG

di φ(T, mi ) mi λ
bi
B λ

qi
Q λ

si
S exp

(
− mi p

4BT

)

+ C

π
T 4+4δ [σQ]δ+1/2 [B + σQT 4]5/2

(
T

p − pB

)γ+δ+4

�

[
γ + δ + 4,

(p − pB)V0

T

]
. (50)

III. CALCULATION RESULTS FOR BAGS WITH
MASSLESS QUARKS AND GLUONS

Calculations here are performed for the following set of
parameters:

γ = 0, −3 � δ � − 1
2 , B1/4 = 250 MeV,

C = 0.03 GeV−δ+2, V0 = 4 fm3. (51)

All model parameters are fixed; the only exception is the
δ exponent. In the present study we fix γ = 0, for simplicity.
Nonzero γ values can be considered equally well. For γ =
0, the crossover-type transition is realized if δ � −3 [28].
Therefore, the δ exponent is varied here in the range −3 �
δ � − 1

2 , in the steps of 1
2 . This variation of δ corresponds

to the range 0 � α � 5
2 for the exponent α in the Hagedorn

mass spectrum [see Eq. (21)]. The scan in δ performed here
is, therefore, similar to the study presented in Ref. [27].

The value of the bag constant B determines the Hagedorn
temperature through Eq. (21). The B1/4 = 250 MeV value cor-
responds to TH � 165 MeV—a sensible value for the Hage-
dorn mass spectrum.

The constant C determines the overall normalization of the
exponential spectrum of quark-gluons bags. In the spirit of
the quark-gluon bag model, it is usually considered as a free
parameter. It can, in principle, be determined microscopically,
e.g., as the solution of the bootstrap equation; see Ref. [14]
for an illustration. The qualitative features of the resulting
equation of state are found to be rather insensitive to variations
in C.

The parameter V0 determines the lower mass-volume cut-
off for the quark-gluon bag spectrum. This value should be
sufficiently large to avoid an overlap between the quark-gluon
bag spectrum and the ground state hadrons. This ensures that
the ground state hadrons determine the equation of state at
low temperatures and/or densities. On the other hand, a too

large V0 value would create a large gap between the spectrum
of established hadrons and that of the quark-gluon bags. The
V0 = 4 fm3 value was found to be sufficient with regard to the
above considerations.

The temperature dependence of the scaled pressure p/T 4

and the scaled energy density ε/T 4 is depicted in Fig. 1. The
model shows a crossover transition; the functions plotted ap-
proach the Stefan-Boltzmann limit of massless quarks at high
temperatures. The results are compared with the lattice QCD
data of the Wuppertal-Budapest collaboration3 (blue bands)
[45]. On a quantitative level, the agreement of the model with
the lattice data is not very good. This is especially true for the
energy density: the model predicts a peak in the temperature
dependence of ε/T 4—a qualitative feature not seen in lattice
simulations. The main reason for this disagreement is that the
QGP phase is described by the MIT bag model with massless
quarks, which is known to provide only a rough description of
QCD thermodynamics at large temperatures.

The auxiliary quantities introduced in Sec. II E are depicted
in Fig. 2. The filling fraction [Fig. 2(a)] shows a monotonic
increase with temperature, from small values (f.f. � 0) at
small temperatures towards f.f. � 1 at high temperatures. This
implies that almost the whole volume is occupied by the
finite-sized particles at high temperatures.

The particle chemistry at different temperatures can be
clarified by studying the temperature dependence of the mean
hadron mass 〈m〉 [Fig. 2(b)]. 〈m〉 is a monotonically increas-
ing function of temperature, for all values of δ considered.
At small temperatures, T � 70 MeV, one has 〈m〉 � mπ �
138 MeV/c2. This means that the system consists mainly
of pions at low temperatures and μB = 0, as expected. 〈m〉

3Similar lattice results were also obtained by the HotQCD collabo-
ration [46].
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FIG. 1. Temperature dependence of (a) scaled pressure p/T 4 and (b) scaled energy density ε/T 4 calculated in the Hagedorn model with
quark-gluon bags filled with massless quarks and gluons. Lattice QCD data of the Wuppertal-Budapest collaboration [45] are shown by the
blue bands. The short horizontal lines depict the Stefan-Boltzmann limiting values.

increases rapidly in the vicinity of the Hagedorn temperature
TH � 165 MeV, signaling that the particle chemistry becomes
dominated by quark-gluon bags. 〈m〉 continues to increase at
high temperatures, the rate of increase depends on the value
of δ: the smaller δ is, the stronger is the increase of 〈m〉.

The temperature dependence of the mean hadron volume
〈v〉 depends nontrivially on the value of δ [Fig. 2(c)]. For
−3 � δ � −2, 〈v〉 shows a fairly fast monotonic increase at
high temperatures. For −3/2 � δ � −1/2, on the other hand,
〈v〉 exhibits slow monotonic decrease at high temperatures.
The γ and δ dependence of the behavior of 〈v〉 at asymptoti-
cally high temperatures was studied in Ref. [28]: taking γ = 0

one has 〈v〉 → ∞ for δ < −7/4 and 〈v〉 → V0 for δ > −7/4.
The present numerical results are consistent with this analytic
expectation.

The nontrivial behavior of 〈v〉 with respect to δ similarly
implies a nontrivial behavior of the particle number density n
[Fig. 2(d)]. Indeed, as follows from Eqs. (43), (47), and (48),
the mean hadron density can be expressed as n = f.f. /〈v〉.
As f.f. � 1 at high temperatures irrespective of the value of
δ, the asymptotic behavior of n is determined by the corre-
sponding behavior of 〈v〉. For δ > −7/4 one has 〈v〉 → V0

and therefore n → 1/V0. On the other hand, at δ < −7/4 one
has 〈v〉 → ∞ which implies n → 0. The numerical results

FIG. 2. The temperature dependence of (a) the filling fraction (f.f.), (b) the average particle mass 〈m〉, (c) the average particle volume 〈v〉,
and (d) the particle number density n, calculated in the Hagedorn model with quark-gluon bags filled with massless quarks and gluons.
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FIG. 3. The temperature dependencies of the second order di-
agonal susceptibilities, χB

2 , χ
Q
2 , and −χ S

2 , calculated in the Hage-
dorn model with quark-gluon bags filled with massless quarks and
gluons at μB = 0, and compared with the lattice QCD data from
Refs. [47,48].

shown in Fig. 2(d) are consistent with these considerations.
In fact, the vanishing hadron number density for δ < −7/4
implies that an arbitrary large but finite subvolume of the
system is occupied at high temperatures by a single bag filled
with quark-gluon plasma.

Fluctuations and correlations of conserved charges are
other observables, accessible with lattice QCD, suggested
long ago to be sensitive to the parton-hadron transition
[29,30]. These observables, henceforth referred to as suscep-
tibilities of conserved charges, are defined by the derivatives
of the pressure function with respect to the corresponding
chemical potentials:

χ
BSQ
lmn = ∂ l+m+n p/T 4

∂ (μB/T )l ∂ (μS/T )m ∂ (μQ/T )n
. (52)

The matrix of the second order conserved charge suscep-
tibilities has been studied in lattice QCD simulations at the
physical point in Refs. [47,48]. Lattice simulations agree well
with the predictions of the ideal HRG model at temperatures
below the pseudocritical one, and show a behavior consistent
with an approach towards the Stefan-Boltzmann limit at high
temperatures. The temperature dependencies of the second
order diagonal susceptibilities, χB

2 , χ
Q
2 , and χS

2 , are shown in

Fig. 3 in comparison with the lattice QCD data. The behavior
of the susceptibilities in the model is qualitatively compatible
with lattice QCD results. From a quantitative point of view,
one sees that the approach to the Stefan-Boltzmann limiting
values is too fast in the model compared to the lattice data.

IV. QUARK-GLUON BAGS WITH MASSIVE
QUARKS AND GLUONS

A. Modification of the model

While the simple bag model picture above appears to
describe many qualitative features seen in lattice data, the
quantitative description of the main thermodynamical func-
tions, such as pressure, energy density, interaction measure,
and the speed of sound, is obviously not very good. This
description cannot be notably improved solely by a variation
of the parameters in Eq. (51). The main reason for the dis-
crepancy is the inaccuracy of the standard MIT bag model
equation of state (34) for describing the strongly coupled
quark-gluon plasma. Therefore, an improvement of the model
can be achieved by an appropriate generalization of Eq. (34) to
describe the thermodynamics of high-temperature QCD more
accurately. At the same time, it is desirable to preserve the
overall bag model picture when generalizing (34).

Equation (34) assumes massless quark and gluon degrees
of freedom. Meanwhile, it is well known that quarks and glu-
ons attain sizable “thermal” masses in the quasiparticle model
of the equation of state of the quark-gluon plasma [49–55];
quark or gluon thermal masses up to GeV are possible in the
temperature range of interest. A notably improved description
of the high-temperature lattice data was reported for a bag
model with finite constant masses of quarks and gluons [56].

Here we adopt a similar strategy and consider constant,
finite values of quark and gluon masses:

mu = md = 300 MeV,

ms = 350 MeV, (53)

mg = 800 MeV.

These values are taken here as a representative case; other
combinations of the thermal quark and gluon masses are
certainly possible.

Equation (14) for σQ should be modified to reflect massive
quarks and gluons in the bag model equation of state. The
modified σQ is temperature dependent and reads

σQ(T, λB, λQ, λS ) = 8

π2 T 4

∫ ∞

0
dk

k4√
k2 + m2

g

⎡
⎣exp

⎛
⎝

√
k2 + m2

g

T

⎞
⎠ − 1

⎤
⎦

−1

+
∑

f =u,d,s

3

π2 T 4

∫ ∞

0
dk

k4√
k2 + m2

f

⎡
⎣λ−1

f exp

⎛
⎝

√
k2 + m2

f

T

⎞
⎠ + 1

⎤
⎦

−1

+
∑

f =u,d,s

3

π2 T 4

∫ ∞

0
dk

k4√
k2 + m2

f

⎡
⎣λ f exp

⎛
⎝

√
k2 + m2

f

T

⎞
⎠ + 1

⎤
⎦

−1

. (54)
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FIG. 4. The temperature dependence of the scaled pressure
p/T 4, calculated within the bag model equation of state [Eq. (34)]
for massive quarks [Eqs. (53) and (54)] with B1/4 = 200 MeV (solid
line), and for massless quarks [Eq. (14)] with B1/4 = 250 MeV
(dashed line). The lattice QCD data of the Wuppertal-Budapest
collaboration [45] are shown by the blue band.

With this modification of σQ, Eq. (34) reproduces the heavy-
bag model studied in Ref. [56]. Here, for simplicity, we only
consider temperature-independent quark and gluon masses. A
more involved model may take into account their temperature
dependence, as typically done in quasiparticle models. This
can be achieved by employing, e.g., a hard-thermal-loop de-
scription [57,58] for the intrinsic thermal pressure of the bags.
An explicit temperature dependence of the quark and gluon
masses, however, will require careful considerations regarding
the thermodynamic consistency of the model [50], and will be
considered elsewhere.

B. Modification of the parameters

Equation (21) which relates the Hagedorn temperature TH

to the bag constant B should be modified for quarks and gluons
with finite thermal masses. This is because the quantity σQ

is modified and now depends on the temperature, i.e., σQ =
σQ(T ). The Hagedorn temperature can therefore be obtained
as the solution of the following transcendental equation:

TH =
[

3B

σQ(TH )

]1/4

. (55)

For B1/4 = 250 MeV and for thermal masses of quarks
and gluons given by Eq. (53) one obtains TH � 199.5 MeV, a
rather high value compared to the massless quarks case before.
A smaller value of the bag constant B1/4 = 200 MeV is thus
used here to yield TH � 167.1 MeV. The resulting bag model
equation of state with massive quarks [Eq. (34)] is shown in
Fig. 4 by the solid line for this choice of parameters. One sees
a clear improvement in the description of the lattice data at
high temperatures compared to the previously employed bag
model with massless quarks (dashed line in Fig. 4).

The decreased value of the bag constant necessitates an in-
crease of the value of the parameter V0, to avoid a large overlap
of the spectrum of stable hadrons and quark-gluon bags. We,
therefore, adopt the value V0 = 8 fm3 in the following.

As before, we set γ = 0 and C = 0.03 GeV−δ+2. We do not
vary the value of δ but settle here for the value δ = −2. In this
case one expects a crossover transition to a gas of infinitely
large quark-gluon bags in the limit of high temperatures, as
elaborated on in the previous section.

C. Thermodynamic functions

The temperature dependence of the scaled pressure p/T 4,
the scaled energy density ε/T 4, the interaction measure (ε −
3p)/T 4, and the speed of sound squared c2

s = d p/dT at
μB = 0 is depicted in Fig. 5. All quantities are in a rather
good agreement with the lattice QCD data of the Wuppertal-
Budapest collaboration [45]. It is particularly notable that the
scaled energy density shows a monotonic behavior, consistent
with lattice QCD, in contrast to the previous simple model
where the bags are filled with massless quarks and gluons.
The behavior of the auxiliary quantities from Sec. II E is found
here to be quite similar to the one shown in Fig. 2 for the
massless quarks and gluons case.

The model describes the lattice data on a semiquantitative
level. Sizeable deviations are seen close to TH only for the
trace anomaly and the speed of sound squared, which is
sensitive to the second temperature derivative of the pressure
function. An improved description of the data can be achieved
by variations of the free parameters of the model. However,
in light of the general limitations of the present model this
appears to be rather unnecessary. We proceed, instead, by
studying, in this model, the behavior of those lattice observ-
ables, which are considered to be sensitive probes of the
nature of the quark-hadron transition.

D. Second order correlations and fluctuations
of conserved charges

We turn now to the behavior of the susceptibilities of
conserved charges. The temperature dependence of the matrix
of the second order conserved charge susceptibilities in the
present model is depicted in Fig. 6. These are compared to
the lattice QCD data of the Wuppertal-Budapest [47] and
HotQCD collaborations [48]. The model predictions agree
qualitatively with the lattice data for all observables consid-
ered. A notable underestimation of the lattice data is observed
for χ

Q
2 and χ

BQ
11 in the vicinity and also above the crossover

temperature region. We argue that these observables are sen-
sitive to the eigenvolume values assumed for the discrete,
PDG part of the hadronic spectrum. In order to illustrate this
sensitivity, we additionally depict in Fig. 6 the calculation re-
sults in the case where the eigenvolumes of the PDG hadrons
were taken to be four times smaller, i.e., ε0 = 16B instead of
the standard choice of ε0 = 4B. This modification results in
a notably improved description of χ

Q
2 and χ

BQ
11 , as well as

a slightly better agreement for some other observables such
as (ε − 3p)/T 4, c2

s , and χB
2 ; see the dotted curves in Figs. 5

and 6. It also does not break the existing agreement for other
observables.

The net charge susceptibility χ
Q
2 is furthermore sensitive

to the quantum statistical effects for charged pions, owing
to their small masses and to the fact that they carry electric
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FIG. 5. The temperature dependence of (a) the scaled pressure p/T 4, (b) the scaled energy density ε/T 4, (c) the trace anomaly (ε − 3p)/T 4,
and (d) the speed of sound squared c2

s , computed in the Hagedorn model with quark-gluon bags filled with massive quarks and gluons. The
dashed and dash-dotted lines in (a) depict, respectively, the first and second terms of Eq. (38) for the total pressure whereas the green line
depicts the pressure from the bag model equation of state. The dotted curves in (c) and (d) depict calculation results where the eigenvolumes
of the PDG hadrons were taken to be four times smaller, i.e., ε0 = 16B. The lattice QCD data of the Wuppertal-Budapest collaboration [45]
are shown by the blue bands.

FIG. 6. The temperature dependence of the second order conserved charge susceptibilities: (a) χB
2 , (b) χ

Q
2 , (c) χ S

2 , (d) χ
BQ
11 , (e) χ

QS
11 ,

(f) −χBS
11 , computed in the Hagedorn model with quark-gluon bags filled with massive quarks and gluons. Lattice QCD data of the Wuppertal-

Budapest [47] and HotQCD collaborations [48] are shown by the blue and green bands, respectively.
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FIG. 7. The temperature dependence of the baryon-strangeness

correlator ratio CBS = −3
χBS

11
χS

2
, computed in the Hagedorn bag-like

model with quark-gluon bags filled with massive quarks and gluons.
Lattice QCD data of the Wuppertal-Budapest [47] and HotQCD col-
laborations [48] are shown by the blue and green bands, respectively.

charge [59]. The Bose-Einstein statistics of pions enhances the
fluctuation observables. To illustrate this, we have performed
a calculation where we have substituted the Boltzmann pres-
sures of the three pions in Eq. (38) by the corresponding
pressures of the ideal Bose-Einstein gas. The resulting effect
on χ

Q
2 is depicted in Fig. 6(b) by the dash-dotted line. The

inclusion of the Bose statistics for pions improves the agree-
ment with the lattice data for χ

Q
2 in the crossover temperature

region; other observables are almost unaffected.
We also consider the baryon-strangeness correlator ratio,

CBS = −3
χBS

11

χS
2

, (56)

introduced in Ref. [60] as a useful diagnostic of QCD mat-
ter. An uncorrelated gas of hadrons and resonances yields
a strong dependence of CBS on both the temperature and
the baryochemical potential. The QGP phase, on the other
hand, is characterized by CBS � 1 at both zero and finite μB.
The temperature dependence of CBS at μB = 0 is depicted in
Fig. 7, together with the lattice QCD data. CBS shows a quick
increase at small temperatures followed by a quick saturation
just above the Hagedorn temperature TH in the model. This
behavior is consistent with the lattice QCD data.

E. Higher-order susceptibilities

Higher-order susceptibilities are expected to be particularly
sensitive to crossing the crossover transition [61]. The higher-
order susceptibilities, such as χB

4 /χB
2 , χS

4 /χS
2 , χB

6 /χB
2 , and

χB
8 , were recently computed in lattice QCD [62–65]. Here we

study the above observables in the Hagedorn bag-like model
with massive quarks and gluons. The results are depicted in
Fig. 8, together with the lattice data.

FIG. 8. The temperature dependence of the conserved charges susceptibilities: (a) χB
4 /χB

2 , (b) χ S
4 /χ S

2 , (c) χB
6 /χB

2 , and (d) χB
8 , computed in

the Hagedorn model with quark-gluon bags filled with massive quarks and gluons, and compared to the lattice QCD data of the Wuppertal-
Budapest [62,65] and HotQCD [63,64] collaborations.
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The so-called kurtosis of the net baryon number
fluctuations—the χB

4 /χB
2 ratio—shows a rapid decrease from

unity towards the Stefan-Boltzmann limiting value of 2/(3π2)
in the temperature range T = 150–200 MeV; see Fig. 8(a). In
the conventional ideal HRG model this quantity is equal to
unity, owing to the fact that no multibaryon hadrons are known
to exist. This scenario is reasonable for low temperatures,
where a dilute hadron gas is expected, and it is realized in
the present model. The deviation of this observable from
unity in the vicinity of the pseudocritical temperature, seen in
lattice QCD, is often interpreted as a signal for a rapid hadron
melting and transition to a deconfined phase [66]. However,
this onset of deviations from unity is well captured also in
a HRG model with repulsive excluded volume interactions
[32,33,35,67]. The present Hagedorn model extends the HRG
model to include the exponentially increasing Hagedorn bag
spectrum with massive quarks and gluons, as well as the
excluded volume corrections. The combined effect of these
two extensions leads to the behavior shown in Fig. 8(a) which
is consistent with the lattice data on a quantitative level. At
this point it is necessary to emphasize the importance of
including both the exponential Hagedorn spectrum and the
excluded-volume interactions. Only when both effects are
included simultaneously is it possible to obtain a smooth
transition to the quark-gluon plasma type behavior of χB

4 /χB
2

at high temperatures. Taking into account the Hagedorn spec-
trum, but not the excluded volume corrections, would lead
to a monotonic increase of χB

4 /χB
2 with temperature, with a

subsequent divergence at the Hagedorn temperature [68]—a
behavior inconsistent with lattice QCD.

The temperature dependence of the net strangeness
kurtosis—the χS

4 /χS
2 ratio—shows a peak at T � 160 MeV,

both in the model and in the lattice data. It is also consis-
tent with an approach to unity at low temperatures, and an
approach to the Stefan-Boltzmann limit at high temperatures.
The presence of the peak in the temperature dependence of
χS

4 /χS
2 is an interplay of two effects: (i) the presence of the

multistrange hyperons in the list of known hadrons causes
the initial increase of χS

4 /χS
2 to above unity [62], whereas

(ii) the presence of the excluded-volume corrections sup-
presses this ratio at higher temperatures [33]. The inclusion of
the Hagedorn quark-gluon bag states enforces the quark-gluon
plasma type behavior of this observable at high temperatures.
As shown by the dashed line in Fig. 8(b), this observable is
rather sensitive to the magnitude of the eigenvolumes taken
for the PDG hadrons. This sensitivity is less pronounced for
χB

4 /χB
2 .

The behavior of the sixth and eighth order net baryon
susceptibilities χB

6 /χB
2 and χB

8 , shown in Figs. 8(c) and
8(d), shows a strong nonmonotonic temperature dependence.
As far as the present level of accuracy in the lattice data
is concerned, the Hagedorn model provides a reasonable
quantitative description of these data. As within its present
formulation the model exhibits a crossover transition at both
zero and nonzero baryon density, this agreement suggests
that strong nonmonotonic behavior seen in lattice data is not
unambiguously related to possible critical phenomena, at least
not directly.

F. Fourier coefficients at imaginary μB

The model can also be applied to study observables at
imaginary chemical potentials. This is achieved through the
analytic continuation. These observables can then be com-
pared with lattice QCD data at imaginary chemical potentials.
Such a comparison with an independent set of lattice observ-
ables provides an important cross-check of the model validity.

Here we consider the behavior of the model at the imag-
inary baryochemical potential μB = iθB T ; the electric and
strangeness chemical potentials are set to zero. The QCD
partition function is an even function of μB because of the CP
symmetry, and it is periodic in the imaginary μB/T direction
with the period of 2π—the Roberge-Weiss symmetry [69].
Therefore, it is sufficient to apply the model in the interval
0 < θB < π , where it exhibits analytic behavior.4

The QCD pressure at imaginary baryochemical potential
can be written in terms of the Fourier series

p(T, μB)

T 4

∣∣∣∣
μB=iθB T

= p0(T ) +
∞∑

k=1

pk (T ) cos(kθB), (57)

with the Fourier coefficients

pk (T ) = 2

π (1 + δk0)

∫ π

0

p(T, iθB T )

T 4
cos(kθB) dθB. (58)

The net baryon density at imaginary μB reads

ρB(T, μB)

T 3

∣∣∣∣
μB=iθB T

≡ ∂ (p/T 4)

∂ (μB/T )

∣∣∣∣
μB=iθB T

= i
∞∑

k=1

bk (T ) sin(kθB), (59)

with bk ≡ k pk .
The leading four Fourier coefficients bk of the net baryon

density at imaginary μB were recently calculated in lattice
QCD and presented in Ref. [70]. The coefficients were used to
constrain the parameters of various phenomenological mod-
els, such as the excluded volume HRG model [70] or the
cluster expansion model [36]. Here we do not use the Fourier
coefficients to constrain the parameters of the Hagedorn
model but rather test whether the behavior of bk in the model
is generally compatible with the lattice data. These Fourier
coefficients are calculated in the Hagedorn model numerically,
via Eq. (58).

Comparison with the lattice data is presented in Fig. 9.
Both the model and the lattice data predict |bk (T )/b1(T )| �
1 at T � 160 MeV. This is consistent with the picture of
an uncorrelated gas of hadrons at low temperatures. The
higher-order coefficients start to visibly depart from zero as
the temperature is increased to above the Hagedorn tempera-
ture TH . The coefficients show an alternating sign structure:
the odd-order coefficients, b1 and b3, are positive, whereas
the even-order ones, b2 and b4, are negative. The emergence
of this structure was explained in Ref. [70] in terms of a
baryonic excluded-volume; an alternating sign structure is

4The Roberge-Weiss transition is expected at θB = π in the decon-
fined phase [69]. Therefore, the functional form (54) for the quantity
σQ should be considered at imaginary μB only up to this θB value.
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FIG. 9. Temperature dependence of the leading four Fourier co-
efficients of the net baryon density at imaginary μB calculated within
the Hagedorn model with quark-gluon bags filled with massive
quarks and gluons (solid lines) compared with the lattice QCD data
[70] (dots). The arrows depict the Stefan-Boltzmann limiting values
[70].

also expected for an uncorrelated massless gas of quarks at
high temperatures.

The present model agrees qualitatively with the available
lattice data. It does appear to underestimate b1 and overesti-
mate the higher-order coefficients at certain temperatures. The
quantitative description can be improved by a variation of the
model parameters.

G. Some remarks on the chiral transition

As presented, the description of a hadronic gas together
with fluctuating Hagedorn bag-like states within the pressure
ensemble including their (repulsive) eigenvolume interactions
shows many agreements with the current state of the art lattice
QCD equation of state. On the other hand, the chiral transition,
taking place with increasing temperature in the crossover
region, has not been discussed, as the present model is not
suited for a straightforward calculation of the chiral order
parameter—the chiral condensate 〈q̄q〉. The phenomenolog-
ical picture of the chiral transition, however, can be given.
The bag-like states start to rapidly occupy nearly the whole
system volume during the (crossover) transition within a small
temperature interval [see the behavior of the filling fraction
in Fig. 2(a)]. As the (MIT) bags inside are chirally restored
with 〈q̄q〉 = 0, the total overall order parameter should rapidly
decrease towards 0, mimicking the chiral transition.

The temperature dependence of the chiral transition in the
presented picture can be characterized by the available volume
fraction, 1 − f.f., which is depicted in Fig. 10 by the solid
line. In a chirally “broken” phase at very low temperatures the
particle densities are small and this quantity is close to unity.
In a chirally “restored” phase at high temperatures, where the
bags occupy almost the whole volume, the available volume
fraction is close to zero. The chiral transition takes place in
a relatively narrow T ≈ 150–180 MeV temperature range. A
related (but not identical) quantity computed on the lattice is
the subtracted chiral condensate �l,s [71], which is expected

FIG. 10. Temperature dependence of the available volume frac-
tion, 1 − f.f., calculated within the Hagedorn model with quark-
gluon bags filled with massive quarks and gluons (black solid line).
The blue symbols depict the lattice QCD data of the Wuppertal-
Budapest collaboration [7] for the subtracted chiral condensate �l,s.

to show a similar qualitative behavior as one traverses the
chiral transition. The corresponding lattice QCD data of the
Wuppertal-Budapest collaboration [7], computed for physical
quark masses, is depicted in Fig. 10 by the blue symbols. This
quantity exhibits a rather similar behavior to 1 − f.f. from the
Hagedorn bag-like model.

In the further discussion of Sec. IV we have assumed finite
quark masses, as motivated by various thermal field calcu-
lations. Strictly speaking the masses would be temperature
dependent, as poles of the thermal quark propagators. For
the time being we have approximated the quark masses inside
the bags to be constant during the crossover. This was done
to pursue our new calculations, restricted at the moment to
the equation of state properties. In principle, though, one can
envisage a hard-thermal-loop-improved description for the
intrinsic thermal pressure of the bags; Eq. (54) [or Eq. (34)].
Hence, inside the bags, the quark condensate would be van-
ishing if the perturbative masses mq are taken to be zero.

If a true second order chiral phase transition occurs at van-
ishing baryon chemical potential at the critical temperature,
the parameters γ and δ appearing in Eq. (13) would have to
be fine-tuned. A theoretical explanation for the behavior of
those parameters in the chiral limit, mq → 0, is not obvious.
Also then, as mπ → 0, the hadronic masses in the present
model have to be shifted too. Mean field type studies, as, e.g.,
in elaborated chiral models [72], cannot be straightforwardly
overtaken. We leave these ideas for future studies.

V. SUMMARY AND OUTLOOK

We have studied the behavior of thermodynamic functions,
various conserved charges susceptibilities at zero chemical
potentials, and the Fourier coefficients at imaginary μB in
the Hagedorn quark-gluon bag model with a crossover tran-
sition. To the best of our knowledge, the susceptibilities are
considered within such an approach for the first time in

045204-14



HAGEDORN BAG-LIKE MODEL WITH A CROSSOVER … PHYSICAL REVIEW C 99, 045204 (2019)

FIG. 11. The μB dependence of the Hagedorn temperature, TH

(55), computed for the massive quarks and gluons (53) and the bag
constant B1/4 = 200 MeV.

the present paper. The model behavior of susceptibilities is
found to be qualitatively compatible with lattice QCD data
already for the case of bags filled with massless quarks and
gluons. A simple phenomenological extension of the bag
model to include constant but finite masses of quarks and
gluons leads to a significantly improved agreement with the
lattice data, remedying some of the known shortcomings using
the standard MIT bag model approach, such as the peak in
the temperature dependence of the scaled energy density. This
result lends support to the quasiparticle picture for the QCD
equation of state at high temperatures.

The Hagedorn quark-gluon bag-like model, introduced in
Refs. [20,50], is historically one of the first models for a
hadron-parton transition in QCD. The quantitative aspects of
such a model have not been studied extensively before; the
present model results and their comparison to the lattice data
suggest that this approach is compatible with first-principle
lattice QCD results. One remarkable feature of such a model
is that the whole transition, be it a real phase transition or a
crossover, is described within a single partition function. This
is quite different from many conventional phenomenological
models for the equation of state, where the hadronic and
partonic phases are usually described by different partition
functions that are then being matched, either via the Maxwell
construction [73,74] or a smooth switching function [31,32].

In the present work we have considered only the case
where the crossover transition is realized, at all μB. The model
can be generalized to incorporate first and higher-order phase
transitions at finite baryon densities. This can be achieved
by considering the μB-dependent exponents γ and δ in the
pre-exponential factor of the quark-gluon bag mass-volume
density [Eq. (13)], as outlined in Ref. [23]. The phase tran-
sition lines can then be expected to be located in the present
approach in the vicinity of the Hagedorn temperature TH (55)
at finite μB, depicted for the finite quark and gluon masses
and bag constant used in the present work by the dashed line
in Fig. 11. Such an extension would allow us to look for

signatures of the hypothetical hadron-parton phase transition
at finite baryon density.
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APPENDIX

1. Mass distribution of PDG hadrons and QGP bags

In this Appendix we evaluate the mass distribution of PDG
hadrons and of quark-gluon bags for the “massive quarks”
parameter set used in the present work [Eq. (54)]. We also
demonstrate the emergence of the exponential Hagedorn mass
spectrum [Eq. (15)] at large masses.

To calculate the mass spectrum of PDG hadrons we smear
their masses with relativistic Breit-Wigner distributions. The
Breit-Wigner widths are taken to be constant and correspond
to the resonance widths listed in Particle Data Tables. We
also assume a width of 10 MeV for all stable hadrons; this
is done for presentation purposes. The mass spectrum of
quark-gluon bags is calculated numerically from Eq. (16)
using three different values of the M0 parameter: 0.1, 0.5, and
1 GeV/c2. These calculations are compared with the Hage-
dorn mass spectrum (15) with parameters given by Eq. (21).
The calculations are performed for the temperature T = TH �
167.7 MeV; this corresponds to σQ � 6.16.

Figure 12 presents the calculation results. The numerical
results for the quark-gluon bag spectrum approach the expo-
nential Hagedorn form (15) at large masses. This behavior
is independent of the M0 values considered. Calculations
show that the expression (15) becomes accurate to within
10% at m � 8 GeV/c2. The behavior of the quark-gluon bag
spectrum at smaller masses, m � 3 GeV/c2, depends on the
M0 value. As seen from the figure, for M0 = 0.1 GeV/c2 the
mass spectra of PDG hadrons and quark-gluon bags appear to
match each other rather smoothly at m � 2 GeV/c2. This is
not the case for the other two M0 values considered.

The picture for the massless quarks parameter sets
[Eq. (51)] turns out to be quite similar and is not shown here.

2. Accuracy of the approximations

In the present work the pressure has been determined
as the solution of the transcendental equation (38). Two
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FIG. 12. The mass spectrum of the PDG hadrons (blue line) and
of the QGP bags, using the Hagedorn mass spectrum form [Eq. (15)]
(orange line), or evaluated numerically through Eq. (16) for three
different values of M0 (in GeV/c2): 0.1 (red), 0.5 (green), and 1
(brown). Evaluations are done for the “massive quarks” parameter
set [Eq. (54)] at the temperature T = TH � 167.7 MeV.

approximations were used in order to obtain the quark-gluon
bag part of the right-hand side of Eq. (38):

(i) the nonrelativistic approximation [Eq. (25)];
(ii) the Laplace’s method to perform the integration over

the mass [Eqs. (26)–(33)].

Both approximations are expected to be rather accurate for
the heavy quark-gluon bags, as discussed in the main text.
Nevertheless, it can be useful to quantify the error introduced
by these approximations. In order to do that, we consider the
exact transcendental equation for the model pressure without
approximations:

p(T, λB, λQ, λS )

= T
∑

i∈HRG

di φ(T, m) λ
bi
B λ

qi
Q λ

si
S exp

(
− mi p

4BT

)

+ T C
∫

V0

dv vγ exp

(
−vp

T

) ∫
Bv+M0

dm (m − Bv)δ

× exp

{
4

3
[σQ]1/4 v1/4 (m − Bv)3/4

}
φ(T, m) . (A1)

Here is φ(T, m) is taken in the exact, relativistic form (2). At
each temperature value, we first obtain the approximate solu-
tion p(Approx) by solving Eq. (38). This corresponds to the
procedure employed in the main text. Then, we use p(Approx)
as the starting point to numerically solve (A1) and obtain the
exact model pressure p(Full). The combined accuracy of the

FIG. 13. The temperature dependence of the ratio p(Approx)/
p(Full), evaluated for the massive quarks parameter set for three
different values of m0 (in GeV/c2): 0.1 (red), 0.5 (green), and 1
(brown).

nonrelativistic and Laplace method approximations can then
be determined by comparing p(Approx) and p(Full).

Figure 13 depicts the temperature dependence of the ratio
p(Approx)/p(Full) evaluated for the massive quarks parame-
ter set [Eq. (54)] for M0 = 0.1, 0.5, and 1 GeV/c2. Deviations
of the ratio from unity are largest in the vicinity of TH , but they
do not exceed 2%. The dependence on M0 is very mild. The
results imply that the application of both the nonrelativistic
approximation and Laplace’s method for calculating the pres-
sure is well justified, at least for the parameter set considered.
This can be attributed to two reasons:

(1) At large temperatures the system is dominated by
heavy bags. As already elaborated on, the heavier the
bags are, the more accurate are the approximations.

(2) At low temperatures the system is dominated by the
PDG hadrons, which are evaluated without approxi-
mations. Therefore, possible inaccuracies in evaluating
the contributions from the quark-gluon bags at these
temperatures are irrelevant as these contributions are
negligible anyhow.

If only one of the two approximations discussed is pre-
served, i.e., if only the nonrelativistic approximation is used
but not Laplace’s method, or vice versa, then the relative error
in the calculated pressure is within 1%.

We have performed similar checks for the massless quarks
parameter sets [Eq. (51)] and obtained a very similar result:
the relative error in the calculated pressure does not exceed
2–3%.
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