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PREFACE

One of the purposes of the elementary working courses in mathe-

matics of the freshman and sophomore years is to exhibit the bond

that unites the experimental sciences. "The bond of union

among the physical sciences is the mathematical spirit and the

mathematical method which pervade them." For this reason, the

applications of mathematics, not to artificial problems, but to the

more elementary of the classical problems of natural science, find

a place in every working course in mathematics. This presents

probably the most difficult task of the text-book writer,—namely,

to make clear to the student that mathematics has to do with the

laws of actual phenomena, without at the same time undertaking

to teach technology, or attempting to build upon ideas which the

student does not possess. It is easy enough to give examples of

the application of the processes of mathematics to scientific prob-

lems; it is more difficult to exhibit by these problems, how, in

mathematics, the very language and methods of thought fit

naturally into the expression and derivation of scientific laws and of

natural concepts.

It is in this spirit that the authors have endeavored to develop

the fundamental processes of the calculus which play so important

a part in the physical sciences; namely, to place the emphasis upon

the mode of thought in the hope that, even though the student may
forget the details of the subject, he will continue to apply these

fundamental modes of thinking in his later scientific or technical

career. It is with this purpose in mind that problems in geometry,

physics, and mechanics have been freely used. The problems

chosen will be readily comprehended by students ordinarily taking

the first course in the calculus.

A second purpose in an elementary working course in mathe-

matics is to secure facility in using the rules of operation which

must be applied in calculations. Of necessity large numbers of

drill problems have been inserted to furnish practice in using the

104^284



vi PREFACE

rules. It is hoped that the solution of these problems will be re-

garded by teacher and student as a necessary part but not the

vital part of the course.

While the needs of technical students have been particularly in

the minds of the authors, it is believed that the book is equally

adapted to the needs of any other student pursuing a first course

in calculus. The authors do not believe that the purposes of

courses in elementary mathematics for technical students and for

students of pure science differ materially. Either of these classes

of students gains in mathematical power from the type of study

that is often assumed to be fitted for the other class.

In agreement with many others, the book is not divided into two

parts. Differential Calculus and Integral Calculus. Integration

with the determination of the constant of integration, and the

definite integral as the limit of a sum, are given immediately fol-

lowing the differentiation of algebraic functions and before the

differentiation of the transcendental functions. With this arrange-

ment many of the most important applications of the calculus

occur early in the course and constantly recur. Further, with this

arrangement, the student is enabled to pursue more advantageously

courses in physics and mechanics simultaneously with the calculus.

The attempt has been made to give infinitesimals their proper

importance. In this connection Duhamel's Theorem is used as a

valuable working principle, though the refinements of statement

upon which a rigorous proof can be based have not been given.

The subjects of center of gravity and moments of inertia have

been treated somewhat more fully than is usual. They are par-

ticularly valuable in emphasizing the concept of the definite

integral as the limit of a sum and as a mode of calculating the

mean value of a function. Sufficient solid analytic geometry is

given to enable students without previous knowledge of this sub-

ject to work the problems involving solids. In the last chapter

simple types of differential equations are taken up.

The book is designed for a course of four hours a week through-

out the college year. But it is easy to adapt it to a three-hour

course by suitable omissions.

The authors are indebted to numerous current text-books for

many of the exercises. To prevent distracting the student's at-
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tention from the principles involved, exercises requiring compli-

cated reductions have been avoided as far as possible.

The book in a preliminary form has been used for two years

with students in the College of Engineering of the University of

Wisconsin. Many improvements have been suggested by our

colleagues, Professor H. T. Burgess, Messrs. E. Taylor, T. C. Fry,

J. A. Nyberg, and R. Keffer. Particular acknowledgment is due

to the editor of this series. Professor C. S. Slichter, for suggestions

as to the plan of the book and for suggestive criticism of the manu-
script at all stages of its preparation.

The authors will feel repaid if a little has been accomplished

toward presenting the calculus in such a way that it will appeal to

the average student rather as a means of studying scientific prob-

lems than as a collection of proofs and formulas.

Unfversity op Wisconsin, Herman W. March,
November 6, 1916. Henry C, Wolff.
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CALCULUS
INTRODUCTION

1. Constant. Variable. Function. 1. A symbol of number
or quantity, as a, to which a fixed value is assigned throughout

the same problem or discussion is called a constant.

2. A symbol of number or quantity, as x, to which a succession

of values is assigned in the same problem or discussion is called a

variable.

Example. The mass or weight of mercury in a thermometer is

constant. The number that results from measuring this quantity

(weight) is a constant.

The volume of the mercury in the thermometer is variable.

The number that results from measuring this quantity (volume)

is a variable.

3. The variable y is said to be a function of the variable x if,

when X is given, one or more values of y are determined.

4. X, the variable to which values are assigned at will is called

the independent variable, or the argument of the function.

5. y, whose values are thereby determined, is called the de-

pendent variable.

6. y is said to be a function of several variables u, v, w, • • •

if, when u, v, w, • • • are given, one or more values of y are

determined.

7. The variables u, v, w, ' • •
, to which values are assigned

at will are called the independent variables, or the arguments of the

function.

Functions of a single variable or argument are represented

by symbols such as the following: f{x), F{x), 4>{x), yp{x). Func-

tions of several arguments are represented by symbols such as

f{u, v, w), F{u, v, w), 0(w, V, w).

2. The Power Function. $. The function x", where n is a

constant, is called the power function.

1
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If n is positive the function is said to be of the parabolic type,

and the curve representing such a function is also said to be of the

parabolic type. If w = 2, the curve, y = x"^, is a parabola.

-^y

4-Li''

Fig. 1.—Curves for y = x", n = 1, 2, 3, and 4.

If n is negative the function x" is said to be of the hyperbolic

type, and the curve representing such a function is also said to be
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of the hyperbolic type. If n = —1, the curve, y = x-^, is an
equilateral hyperbola.

In Figs. 1, 2, 3, and 4, curves representing ?/ = x" for different

values of n are drawn. In Fig. 1, n has positive integral values;

in Fig. 2, positive fractional values; in Fig. 3, negative integral

values; and in Fig. 4, negative fractional values. The curves for

StY"

Fig. 2.—Curves for y = x", n = 5, 5, f, and |.

y = x" all pass through the point (1, 1). They also pass through

the point (0, 0) if n is positive. If n is negative, they do not

pass through (0, 0). In the latter case the coordinate axes are

asymptotes to the curves.

3. The Law of the Power Function. 9. In any power function,

if X changes by a fixed multiple, y also changes by a fixed multiple.

The same law can be stated as follows:
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10. In any power function, if x increases by a fixed percent,

y also increases by a fixed percent.

The preceding statements are also equivalent to the fol-

lowing:

11. In any power function, if x runs over the terms of a

geometrical progression, then y also runs over the terms of a

geometrical progression.

Fig. 3.—Curves for y = x", n = —1, —2, and —3.

4. Polynomials. Algebraic Function. 12. A polynomial in

a; is a sum of a finite number of terms of the form ax", where a is a

constant and n is a positive integer or zero. For example:

ax^ + bx^ -^ ex -\- d.

13. A polynomial in x and y is a sum of a finite number of
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terms of the form ox'»i/'», where a is a constant and m and n are

positive integers or zero. For example:

axhj^ + ^xy^ + cx^ -{• dy -{• e.

1 i. Functions of a variable x which are expressed by means of a

finite number of terms involving only constant integral and

Y

w=--|-

Fig. 4.—Curves for y = x^, n = — |, — 5, — f, and — |.

fractional powers of x and of polynomials in x are included in the

class of functions known as algebraic Junctions^ of x. For example

:

(a) x\ (d) ^, + 1 + 1-

(b) a;3 + (2a; 3)i.

a;'' X

ie) X + 5 +

(c) Vx^ + 4x + 7 + 4x + 5. (/)

\/x — 7

3a;2 + 5a; + 7

x3 _ 3a; + 2

1 A function of x defined by the equation F(,x, y) = 0, where F{x, y) is a polynomial

in X and y, is an algebraic function of x. For example, y = \/xs + 2 is an algebraio

function of x. For by squaring and transposing we obtain

2/2 - x2 - 2 = 0,

in which the first member is a polynomial in x and y.
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15. An algebraic function is said to be rational if it can be

expressed by means of only integral powers of x together with

constants.

Rational algebraic functions are divided into two classes:

rational integral functions and rational fractional functions.

16. A rational integral function of x is a polynomial in x.

17. A rational fractional function is a quotient of two poly-

nomials in X.

It is usually desirable to reduce rational fractional functions

of a: to a form in which the numerator is of lower degree than

the denominator. This can always be done by performing long

division.

X + 3 2
Thus y =

. 1
is equivalent to y = 1 -\ ^rjy, and

Sx^ + 5x + 7 . . , ,, o ,
Ux + 1

5. Transcendental Functions. The circular (or trigonometric),

the logarithmic, and the exponential functions are included in the

class of functions known as transcendental^ functions.

6. Translation. If, in the equation of a curve

fix, y) = 0,

X is replaced by (x — a), the resulting equation,

fix - a, y) = 0,

represents the first curve translated parallel to the axis of a; a

distance a; to the right if a is positive; to the left if a is

negative.

If y is replaced by (y — /3) the resulting equation,

fix, 2/
- /3) = 0,

represents the original curve translated parallel to the axis of y

a distance j8; up if /3 is positive; down if /3 is negative. Thus

V = (x + 3)^ — 4 is the parabola y = x- translated three units

to the left and four units down. See Fig. 5.

* All functions which are not algebraic functions as defined by the footnote on p.

6 are transcendental functions.



§7] INTRODUCTION

7. Elongation or Contraction, or Orthographic Projection, of a
X

The substitution of - for x in the equation of any locusLocus

multiplies all of the abscissas by a.

X-f

This transformation can be considered as the orthographic

projection of a curve lying in one plane upon another plane, the

two planes intersecting in the axis oiy. If a < 1 the second curve

is the projection of the former curve upon a second plane through

the F-axis and making an angle a, whose cosine is equal to a,

with the first plane. If a > 1, the first curve is the projection of

the second when the cosine of the angle between their planes
. 1
IS -.
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y
Similarly the substitution of - for y in the equation of a locus

multiplies the ordinates by a. The interpretation from the

standpoint of orthographic projection is evident from what has

just been said. See Figs. 6 and 7.

8. Shear. The curve y = f{x) + mx is the curve y = f{x)

sheared in the line y = mx in such a way that the y-intercepts

remain unchanged. Every point on the curve y = f{x) to the

right of the F-axis is moved up (down if m is negative) a distance

proportional to its abscissa; and every point to the left of the Y-

axis is moved down (up if m is negative) a distance proportional

to its abscissa. The factor of proportionality is m.

In general a curve is changed in shape by shearing it in a line.

The parabola is an exception to this rule.

Thus y = dx^ sheared in the line y = mx becomes

y = ax^ + mx,

or

y = ^['' + 2a) -ia'

This may also be considered as the result of translating the
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4M tfl

original curve by the amounts —^ and — j- in the x and ij direc-

tions, respectively. Hence, by shearing, the parabola y = az^

is merely translated.

9. The Function a*. In Fig. 8 are given the graphs of ?/ = a*,

for the values a = 1, 2, and 3. By reflecting these curves in the

line y = X we have the corresponding curves for y = logo x.

The exponential function y = a" has the property that if x is

given a series of values in arithmetical progression the corre-

sponding values of y are in geometrical progression.

Fig. 8.—Curves for y = a*, a = 1, 2, and 3.

10. The Function sin x. The function y = sinx is repre-

sented in Fig. 53.

11. The Functions p = a cos 9, p = 6 sin ^, and p = a cos 6 +
b sin 6. The function p = a cos d is the circle OA, Fig. 9, and

p = bsin d is the circle OB, Fig. 9. The function p = a cos 6 +
6 sin d can be put in the form p = R cos {8 — a), where
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R = \/a^ + 6S and where cos « = n and sin a = „ • This function

is represented by a circle, Fig. 9, passing through the pole, with

diameter equal to R, and with the angle AOC equal to a. The
maximum value of the function is R and the minimum value is

-R.
12. Fimdamental Transformations of Functions. It is valuable

to formulate the transformations of simple functions, that most

commonly occur, in terms of the effect that these transformations

have upon the graphs of the functions. The following list

of theorems on loci contains useful facts concerning these

transformations

:

Fig. 9.

THEOREMS ON LOCI

I. If X be replaced by {—x) in any equation containing x and

y, the new graph is the reflection of the former graph in the F-axis.

II. If y be replaced by {—y) in any equation containing x and

y, the new graph is the reflection of the former graph in the X-axis.

III. If X and y be interchanged in any equation containing

x and y, the new graph is the reflection of the former graph in the

line y = X.

IV. Substituting / - ) for x in the equation of any locus multipUes

all abscissas l)y a.
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V. Substituting L\ for y in the equation of any locus multiplies

all ordinates of the curve by b.

VI. If (x — a) be substituted for x throughout any equation,

the locus is translated a distance a in the a;-direction.

VII. If (y — b) be substituted for y in any equation, the locus

is translated the distance b in the ^/-direction.

VIII. The addition of the term mx to the right side of

y = fi^) shears the locus y = f(x) in the line y = mx.

IX. li {6 — a) he substituted for 9 throughout the polar equa-

tion of any locus, the curve is rotated about the pole through the

angle a.

X. If the equation of any locus is given in rectangular coordi-

nates, the curve is rotated through the positive angle a by the

substitutions

x cos a + y sin a for x

and

y cos a — x sin a for y.

Exercises

1. Translate the curves

(a) y = 2x2, (e) y = e", (t) y = -'

(b) y = - 3X2, (_/) y = ^3^ (y) y = _.

(c) y = log X, (g) y = sin x, (/b) y = x^,

2

(d) y = e-^, (h) y = cos x, (l) y = x^,

two units to the right; three units to the left; five units up; one unit

down; two units to the left and one unit down. Sketch each curve

in its original and translated position on a sheet of squared paper.

2. Shear each curve given in Exercise 1 in the line 2/ = ix;

y = — \x', y = x; y = — x. Sketch each curve in its original and
shearetl position.

3. Write the equation of each curve given in Exercise 1 when re-

flected in the X-axis; in the F-axis; in the line y = x] in the line

y = — X. Sketch each curve before and after reflection.

4. Rotate tlie ^curves
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(a) p = a sin 9, (e) p = a(l + cos $),

(b) p = a cos 6, (f) p = a(l — sin 6),

(c) p = a cos ^ + 6 sin ^, (^) p = a(l + sin 0),

(d) p = a (1 — cos 6), (h) p = ad,

about the pole through an angle o' 7-' k' ''^j ~ o' *^ketch each curve

in its original and rotated position.

6. Sketch the following pairs of curves on squared paper:

(a) y = x^ and y = x^ -{- x.

(6) y = x^ and y = (x — Sy + 2.

(c) y = x^ and y = — a;^ — 2x.

(d) 2/ = X* and y = a;* — 4a;' + Gx'^ — 4a;.

(e) y = — 2x'^ and j/
= fx^.

(f) y = x^ and 2/
= |x^.

(?) 2/ = sin X and y = sin 2x.

(h) y = sin x and y = 2 sin x.

(i) y = cos X and y — sin ( „ — x j

.

6. Rotate the following curves about the origin through the angle

indicated.

(o) x* - J/2
= a" through 45°.

(6) x2 - y2 = a2 through -45°.

(c) x2 - 7/2 = a2 through 90°.

(d) a;2 - ?/ = a2 through -90°.

(e) a;2 + 2/2 = a through a.

if) y = mx^ through a.



CHAPTER I

DERIVATIVE

In Elementary Analysis the student investigated the dependence

of a function upon one or more variables with the help of algebra

and geometry.

He is now to study a very powerful method of investigating the

behavior of functions, the method of the infinitesimal calculus,

which was discovered by Newton and Leibnitz in the latter part

of the 17th century. This method has made possible the great

development of mathematical analysis and of its applications to

problems in almost every field of science, particularly in engi-

neering and physics.

13. Increments. Let us consider the following examples which

illustrate the principles of the calculus:

Example 1. A steel bar, subjected to a tension, will stretch,

and the amount of stretching, or the elongation, will continue to

increase as the intensity of the force applied increases, until

rupture occurs. The elongation is a function of the applied force.

In fact, if the force is not too great, so that the elastic limit is not

exceeded, experiment has shown that the elongation is propor-

tional to the applied force (Hooke's Law). If we denote the

elongation by y and the force by x, the functional relation between

them will be expressed by the simple equation

y = kx,

where A; is a constant. This relation is represented graphically

by a straight line through the origin, Fig. 10.

Suppose that after the bar has been stretched to a certain length,

the force is changed. This change in the force produces a cor-

responding change in the elongation, an increase if the force is

increased, a decrease if the force is decreased. Evidently, from

the law connecting the elongation and the force, this change in the

13
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elongation is directly proportional to the change in the force. We
shall call the change in the force x, the increment of the Jorce, or

the increment of x, and shall denote it by the symbol A.x (read "in-

crement of x" or "delta x"). The corresponding change in the

elongation we call the increment of the elongation, or the increment

of y, and denote it by Ly.

In Fig. 10 let P be any point on the line y — kx. If x takes on

an increment Ax, y takes on an increment Ay. We see that the

Ay .

ratio of these mcrements, i.e., the quotient -r- is entirely inde-

pendent of the magnitude and sense of Ax and of the position of P
on the line. Indeed this ratio is the slope of the line. Here the

increment of y is everywhere k times the increment of x.

Fig. 10.

The relation between Ay and Ax can be shown without the use

of the figure as follows: If x is given the increment Ax, y takes on

an increment Ay so that

y + Ay = k{x + Ax).

On subtracting

y = kx,

Ay = kAx.

Hence

Ax '

a quantity independent of x and of Ax.

Example 2. A train is moving along a straight track with a

constant velocity, i.e., it passes over equal distances in equal inter-
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vals of time. Denoting by s the distance measured, say in miles,

from a fixed point, and by t the time measured, say in hours,

which has elapsed since the train passed this point, the functional

relation between s and t is expressed by

s = ct,

where c is a constant denoting the velocity of the train. This

function is represented graphically by a straight line. Fig, 11. If

we take an increment of time At following an instant t and measure
As

the distance As passed over in this time, the quotient r-. repre-

sents the velocity of the train, since we have assumed the velocity

As
of the train to be uniform. Furthermore, the quotient -r^ will

oo >^
i

5
^^^t

AS

^
o Time ( t

)

Fig. 11.

be independent of the length of A^ and of the time t to which the

increment was given. As is everywhere c times A^. This is

evident from the graph.

In these two examples the functions were both linear functions

of the independent variable. We have seen in these cases (and

clearly the same is true for any linear function, y = ax -\- h)

that the ratio of A?/ to Ax is constant. Ay is everywhere equal to a

constant times Aa;, no matter how large Ax is taken and no matter

at what point (x, y) on the graph the ratio is computed.

Example 3. Let us now take an example in which the func-

tional relation is no longer a linear one. We shall find that the

ratio of the increment of the function to the increment of the

variable is no longer constant. Suppose that the train of Example
As

2 is not moving with constant velocity. Then the quotient -r--.
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IS called the average velocity of the train during the interval of

time At. Evidently this quotient will approximate more and

more closely to a fixed value the smaller the interval of time

At, is chosen. The limiting value

As
of the quotient -rr as At approaches

zero is called the velocity at the time t.

Let the curve of Fig. 12 repre-

sent graphically the relation be-

As— tween s and t. The ratio t-; cal-
Tlme (t)

Fia. 12.

At
culated at any point P on the curve

is no longer constant as in Example

2, but varies with At and also with the position of the point P.

the power function14. The Fxinction y = x^. Consider

y = x^. Let us find the ratio of Ay to

Ax at a certain point of the curve, say

(0.2, 0.04), for different values of Ax.

The results are given in the adjoining

table.

We observe that as Ax is taken smaller

Ay
and smaller the ratio v^ approaches more

and more closely a value in the vicinity

of 0.4.

Ay
The value of -r— will now be calculated

Ax
for any point P, (x, y), on the curve y =x^.

From this value, which is a function

of X and Ax, the limiting value as Ax approaches zero will be

found. The point P, Fig. 13, has the abscissa x. If we give to x

an increment Ax, we have corresponding to the abscissa, x + Ax,

the point Q on the curve. Its ordinate is

y + Ay •= {x -\- Ax)2.

Ay is equal to the difference between the ordinates of P and Q, or

Ay— (x + Ax)^ — x^

= 2x Ax + (Ax)2.

Ax Ay
Ay
Ax

0.4 0.32 0.8

0.2 0.12 0.6

0.1 0.05 0.5

0.05 0.0225 0.45

0.02 0.0084 0.42

0.01 0.0041 0.41

0.005 0.002025 0.405

0.002 0.000804 0.402

0.0010.0004010.401
\ 1
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Ay
Ax

= 2x + Ax.

As Ax approaches zero the first term jn the second member remains

unchanged, while the second term approaches zero. It follows

• • » ^y
that the limiting value of v- as Ax approaches zero is 2x. This

result is expressed by the equation

I

Fig. 13.

Ay
(read "limit of -r^ as Ax approaches zero"). When x = 0.2,

limAy = 0.4. This is the limiting value which the ratio tabu-

lated in the last column of the table above is approaching. When

^ = 3, l^o^x = 6. When x = |, H^.f^ = 1. Thus the

formula just obtained enables us to calculate very easily, for any
Ay

value of X, the limit of -r- as Ax approaches zero.

16. Slope of the Tangent.—The curve of Fig. 14 is the graph of

the function y = f(x). On this curve take the point P with
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coordinates x and y, and a second point Q with coordinates

X -\- Ax and y + Ay. Draw the secant PQ making tlie angle <^

with the X-axis and the tangent PT' making the angle t with the

Ay
X-axis. From the figure, -r- is the slope of PQ, or

Ay
Ax

= tan (/>.

As Ax is taken smaller and smaller the secant PQ revolves about

the point P, approaching more and more closely as its limiting

position the tangent PT', and tan <^ approaches tan t. (The

Y

/ ,
T
/

J /

P/n
X

O 4
Fig. 14.

student will recall that the tangent to a curve at a point P is

defined as the limiting position of the secant PQ as the point Q
approaches P.) Hence

hm Ay
aj=oAx ^^^=0 ^

Hence ^x^qX ^^ equal to the slope of the tangent to the curve

y = /(^) oi the point for which this limit is computed.

In the case of the parabola, y = x^, the slope of the tangent at

2
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the point (x, y) is 2x. This shows that the curve becomes steeper

and steeper for larger positive and negative values of x and that at

X = the slope is zero.

In Fig. 15, let the X-axis be divided uniformly and let the F-axis

be divided in such a way that distances measured from on a

uniform scale are equal to the squares of the numbers affixed to

the points of division. Draw
lines parallel to the F-axis

through equidistant points

on the X-axis and lines par-

allel to the X-axis through

points on the F-axis whose

affixed numbers on the non-

uniform scale are equal to

the numbers affixed to the

points on the X-axis through

which lines were drawn.

On the cross section paper

thus constructed, any point

at the intersection of a hori-

zontal and a vertical line

bearing the same number is

a point on the curve ij = x^

which would be constructed

in the usual way by using

the uniform scale on the F-

axis as well as on the X-axis.

Join the consecutive points

thus located by straight lines.

These lines are the diagonals

of the rectangles on the cross

section paper and they are

secants of the parabola y = x

let PR = ^x

Y

2

1 /

8 QJ
it

p1 R
Y

1
3 /
4

1 /
2

1 y
4 _^,,„0^^ „

~
I

-
^

' . .

f -r ;

[

Fig. 15.

Let PQ be such a diagonal and
RQ Ay

Then RQ = Ay and ^ = ^. the slope of the

secant PQ. The diagonals give an approximate idea of the slope

of the curve. The construction shows why the slope increases

so rapidly with x.
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As more and more horizontal and vertical lines are inserted, the

diagonals approach more and more nearly the direction of the

tangent lines.

The fact that the slope of the tangent to the parabola y = x^

is 2x furnishes an easy way of constructing the tangent at any
point P {x, y). We have only to draw from P in the direction of

the positive X-axis, a line PK of unit length, and from the ex-

tremity of this line, a line KT parallel to the F-axis, whose length

is twice the abscissa of P. The line joining PT" is the tangent to the

parabola at P. When the abscissa is negative the line XT is to be

drawn downward.

16. Maxima and Minima. The algebraic sign of ^^q ~
enables us to tell at once where the function y is increasing and

where it is decreasing as x increases. For, if the slope is positive

at a point, the function is increasing with x at that point and the

greater the slope the greater the rate of increase. Similarly if the

slope is negative, the function is decreasing as x increases. Hence
the function y = x^ is a decreasing function when a;<0 and an

increasing function when x>0, since the slope is equal to 2x.

When X = the slope is zero and the tangent is parallel to the

X-axis. Since the function is decreasing to the left of x =
and increasing to the right of this line, it follows that the function

decreases to the value zero when x = and then increases. This

value zero is a minimum value of the function y = x"^. In general

we define minimum and maximum values of a function as follows:

Definition. Let y = f{x), where /(x) is any function of a single

argument. If y decreases to a value m as x increases and then

begins to increase, m is called a minimum value of the function. If

y increases to the value M as x increases and then begins to decrease,

M is callec a maximum value of the function.

Thus in Fig. 16, if ABDFHI is the graph oi y = f(x), the func-

tion increases to the value represented by the ordinate bB and

then begins to decrease. bB is then a maximum value of the

function. Similarly fF is another maximum value. dD and hH
are minimum values of the function.

In referring to the graph of a function, points corresponding to

maximum and points corresponding to minimum values of the
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function will be called, respectively, the maximum and minimum
points of the curve. Thus B and F, Fig. 16, are maximum points

and D and H are minimum points of the curve.

Thus, zero is a minimum value oiy == x^ or (0, 0) is a minimum
point on the curve y = x^.

It will be noticed that a maximum value, as here defined, is not

necessarily the largest value of the function, nor is a minimum
value the smallest value of the function. A maximum value may
even be less than a minimum value.

17. Derivative. We see that the limit of the ratio of the incre-

ment of the function to the increment of the independent variable

as the latter increment approaches zero, is very useful in studying

the behavior of the function. This limit is called the derivative of

the function with respect to the variable. Hence the following

definition:

The derivative of a function of a single independent variable

with respect to that variable is the limit of the ratio of the increment

of the function to the increment of the variable as the latter increment

approaches zero. The derivative of a function y with respect to a

dy
variable x is denoted by the symbol ^' This symbol will not be

considered at present as representing the quotient of two quan-

tities but as a symbol for a single quantity. Later it will be

interpreted as a quotient. (See §G1.) It is read, "the derivative

of y with respect to x." The process of finding the derivative

is called differentiation.
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18. Velocity of a Falling Body. As a further illustration of the

application of the derivative let us attempt to find the velocity of

a falling body at any instant. The law of motion has been experi-

mentally determined to be

s = yt\

where s is the distance through which the body falls from rest in

time t. If s is measured in feet and t in

seconds, the constant g is 32.2 feet per

second per second, s is plotted as a func-

tion of the time in Fig. 17. At any time

t, let t take on an increment A^ s will take

on an increment As, represented in the

figure by the line RQ. Since s = \gt^,

1
•0 Ql

o
»
a
S AS

P P/
X RAc^t

Time (t)

Fig. 17. Hence

s + As = ^git + Aty.

As = hgit + Aty - hgt\

(1)

or

As = gtAt + hg{Aty. (2)

This is the distance through which the body falls in the interval

As
At counted from the time t. The quotient -r- is the average

velocity for the interval At. The velocity at t has been de-
1" As

fined as ^™ ^^, i.e., as the derivative of s with respect to t.

To find this limit divide (2) by At and obtain

As

At
= gt + \gAt,

the average velocity for the interval A^. From which

lira ^
At= At

= gt,

or

ds

dt
= gi,

(3)

(4)

the velocity at t. Thus the velocity at the end of three seconds

is 96.6 feet per second; at the end of four seconds, 128.8 feet per

second.
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19. Illustration. As an example of the use of the derivative in

studying the behavior of a function, let us consider the power

function

y = x^.

y + Ay = (x + Axy,

y + Ay = x^ -\- 3a;2(Ax) + 3x(Aj;)2 + {Axy,

Ay = 3x2(Aa;) + 3x(Aa;)2 + (Ax)^,

^ = 3x2 + SxiAx) + (Ax)\

Then
Hm Ay _
Ax=0 Ax~

T- = 3x2.
ax

For X = the derivative is equal to zero and consequently the

tangent at (0, 0) is horizontal and coincides with the X-axis.

For all other values of x the derivative is positive. This

shows that the function is an increasing function for all these

values of x. Where is the slope of the curve equal to 1?

Equal to Vs?
20. Illustration. The solution of the following problem will

further illustrate the use of the derivative.

Find the dimensions of the gutter with

the greatest possible carrying capacity ^ ^
p

and with rectangular cross section, which

can be made from strips of tin 30 inches

wide by bending up the edges to form ^
the sides. See Fig. 18. Fig. 18.

If the depth MR is determined, the

width is also determined, since the sum of the three sides MR,
PQ, and RQ is 30 inches. We seek to express the area of the

cross section as a function of the depth. Denote the depth by

X and the area by A. The width RQ is 30 — 2x. Hence

A = (30 - 2x)x.

In Fig. 19, A is plotted as a function of x. A first increases with x
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and then decreases. The value of x for which A reaches its

greatest value can be determined from a graph with a high degree

of approximation. The derivative can be used to calculate

accurately this value of x and this saves construction of an
accurate graph.

From to H, A is an increasing function. Its derivative is

therefore positive for this part of the curve . From H to N the

function A is decreasing. Its derivative is therefore negative

for this part of the curve. At the point H the derivative changes

sign, passing from positive values through zero to negative values.

The abscissa of the point H can then be found by finding the

Fig. 19.

derivative of A with respect to x and determining where it changes

sign. In this case the change of sign occurs where the derivative

is equal to zero. We find by the method of increments

ax
Ax = 4(7.5 - x).

= when x = 7.5. If a:<7.5, ~r~ is positive and A is an
dx dx

dA
increasing function. If x>7.5, -7— is negative and A is a de-

creasing function. This shows that A increases up to a certain

value at a; = 7.5 and then begins to decrease. Hence the gutter
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will have the greatest cross section if its depth be made 7.5

inches.

It is interesting to plot the derivative as a function of x on the

same axes. See the dotted line, Fig. 19. The statements made
concerning the derivative are verified in the graph.

Exercises

1. Consider the function y = /(x) whose graph is given in Fig. 20.

In what portions of the curve is the derivative positive? In what
portions negative? Where is the derivative equal to zero?

y =f(x)

Fig. 20.

2. Find ,, U y = 3x*. For what values of x is the function in-

creasing? For what values decreasing? At what point does the

tangent line drawn to the curve representing the function, make an

angle of 45° with the positive direction of the axis of x? Find the

coordinates of the maximum or minimum points on the curve.

3. Answer questions asked in Exercise 2, if y = x'.

4. Answer questions asked in Exercise 2, ii y = x*.

5. Answer questions asked in Exercise 2, if y = x^.

6. Answer questions asked in Exercise 2, if y = x* — 2x + 3.

7. Answer questions asked in Exercise 2, ii y = -^ 2" + 2x — 6.

8. Find the derivative of \/x.

Solution. Let y = \/x.

Then

y +Ay = y/x +Ax
and

Ay = y/x + Ax — Vx
Ay _ \^x + Ax — \/x

Ax
~

Ax
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Rationalize the numerator

:

Ay 1

Ax Vx + Ax+Vx
As Ax approaches zero the right-hand side of this equation approaches

-7^- 7^- Then
Vx + vx

or

lira A^ 1

2Vx

1

2\/x

9. Find the derivative of v/x -^.
lU. Find the derivative of \/x* --4.



CHAPTER II

LIMITS

In §17 the derivative was defined as the limit of a certain ratio.

The word limit was used without giving its precise definition,

as the reader was supposed to have a fair conception of the mean-

ing of this term from previous courses in mathematics. How-
ever, since the entire subject of the calculus is based on limit

processes it is well to review the precise definition and to state

certain theorems from the theory of limits.

21. Definition. // a variable changes by an unlimited number

of steps in such a way that, after a sufficiently large number of steps,

the numerical value of the difference between the variable and a

constant becomes and remains, for all subsequent steps, less than any

preassigned positive constant, however small, the variable is said to

approach the constant as a limit, and the constant is called the limit

of the variable.

1
K

A Xi X2 Xs Xi B

Fig. 21.

Illustration 1. Let AB, Fig. 21, be a line two units in length,

and let x be the distance from A to a point on this line. Suppose

that X increases from by steps such that any value of x is greater

than the preceding value by one-half of the difference between 2 and
2 — X

this preceding value, i.e., by —^— Xi, Xi, Xz, Xi, • • - are the

end points of the portions of the line representing the successive

values of x. Then the lengths X\B = 1, x^B = ^, XzB = (^)^

XiB = (^)', • • • , XuB = (^)""^ are the successive differ-

ences between the constant length 2 and the variable length x.

This difference becomes and remains less than any preassigned

length KB after a sufficient number of steps has been taken.

27
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This is true however small the length KB is chosen. Therefore,

by the definition of the limit of a variable, 2 is the limit of the

variable x.

Illustration 2. Consider the variable x"^ — 2. Give to x the

3(2" - 1)
vnliiAQ ft ^ A iJ- A.1 A3.values u, 2 , 4 , a i 1 « , 32,

2"
= 3[x-i].

which are chosen by starting with x = and giving to it successive

increments which are one-half the difference between 3 and the

7 B
8

6
R

5 a

4

«3 ^ ,

2

< )

1 a! 5 i\

Fig. 22.

preceding value of x. The corresponding values of a;^ — 2 are

given in the adjoining table. The corresponding points, excepting

(0, - 2), are plotted in Fig. 22.

From the table and the expression a;^ — 2 it

is readily seen that the difference between 7

and the variable x^ — 2 becomes and remains

less than any previously assigned quantity (such

as KB, Fig. 22) after a sufficiently large number
of steps. Therefore 7 is the limit of the vari-

able a;2 — 2 as X approaches 3.

Illustration 3, By giving x values nearer

and nearer 2, the value of ?: becomes nu-
' x — 2

merically larger and larger. Indeed its numeri-

cal value can be made greater than any preas-

signed positive number however large by choosing x sufficiently

X x'' -2

0.0 -2.00
1.5 0.25

2.25 3.06

2.62 4.89

2.81 5.91

2.91 6.45

2.95 6.72

2.98 6.86

2.99 6.93
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near 2. The variable does not approach a limit as x ap-

proaches 2. Instead of doing so it increases without limit.

// a variable changes by an unlimited number of steps in such

a way that after a sufficiently large number of steps its numerical

value becomes and remains, for all subsequent steps, greater than

any preassigned positive number however large, the variable is said

to become infinite. Illustration 3 of this section is an example

of a variable which becomes infinite, or approaches infinity.

22. Notation. If in any limit process, the variable, say y, is a

function of another variable, say x, the successive steps by
which y changes are determined by those by which x changes.

// y approaches a limit A, as x approaches a limit a, we say that the

limit of y as X approaches a is A, and write

lim ., _
x=a y = A.

After what has just been said, the meaning of the two following

expressions will be clear:

lim y ^ ^ lim„ = ^o.

In the second case a limit does not really exist. The form of

expression is only a convenient way of saying that if x is taken

sufficiently near a, the value of y can be made to become and

remain greater in numerical value than any preassigned positive

number however large.

From the illustrations of the preceding section we have:

1. ""^ X = 2, where n is the number of steps taken.

2.
^i"^

z=3

Q lim

X.3 (^^ - 2)

"2= "'^

23. Infinitesimal. In the particular case where the limit of a

variable is zero, the variable is said to be an infinitesimal. An
infinitesimal is a variable whose limit is zero. Thus Ay and Ax

which were used in §§13, 14, and 15 are thought of as approaching
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zero and are infinitesimals. Hence the derivative, §17, is defined

as the limit of the quotient of two infinitesimals. Infinitesimals

are of fundamental importance in the Calculus. Indeed the

subject is often called the Infinitesimal Calculus.

24. Theorems on Limits. The following theorems concerning

limits are stated without proof:

Theorem I. 7/ two variables are always equal and ifone approaches

a limit, the other approaches the same limit.

Theorem II. The limit of the sum of tivo variables, each of which

approaches a limit, is equal to the sum of their limits.

Theorem III. The limit of the difference of two variables, each

of which approaches a limit, is equal to the difference of their limits.

Theorem IV. The limit of the product of two variables, each of

which approaches a limit, is equal to the product of their limits.

Theorem V. The limit of the quotient of two variables, each of

which approaches a limit, is equal to the quotient of their limits,

provided the limit of the divisor is not zero.

If the limit of the divisor is zero, the quotient of the limits in

Theorem V has no meaning, since division by zero is an impossible

operation. For, the quotient Q of two numbers A and B is

defined as the number such that when it is multiplied by the

divisor B, the product is the dividend A. Now if B is zero while A
is not zero, there clearly is no such number.

25. The Indeterminate Form 5. If, in the quotient considered

above, A is also zero, any number will satisfy the requirement,

so that Q is not determined. One encounters exactly this diffi-

a;2 _ 4
culty in seeking the value of ^ at a; = 2. Its value is not

determined at this point but it is determined for all finite values

of X different from 2. We define its value at a; = 2 as the limit of

its value as x approaches 2. The student should construct a

graph of this function. Usually we proceed as follows to find the

desired limit.

lim a;2 - 4 Hm
x=2

a; _ 2 x=2 (x + 2) = 4.

a;2 _ 4
The expression -_-^ is said to be indeterminate at x = 2,
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since any one of an infinite number of values can be assigned to it.

The determination of its limiting value as x approaches the value 2

is called the evaluation of the indeterminate form. Indeterminate

forms of this and other types are frequently found in the Calculus.

Thus V- is an indeterminate form for Ax 0. We have already

seen in several cases how it can be evaluated. Exactly as in the

example just given, we have sought the limit of the quotient as

Ax approaches zero and not the quotient when Ax = 0, because the

latter quotient has no meaning.

Exercises

1. Determine the following limits, if they exist.

(6) ^^gCOtX.
, lim
(a) ^cosx.

(c) \"} sin -. Draw the curve for values of x between — tt and -f- jr.

(d) ".'V,xsin"-

2. Evaluate the following indeterminate forms

:

(a)
x2 -9
X -3

3. Find

(&)
X* + 6x2|

symbol

z=s=3 ' ' 3x3 + x^\x^O

lim 3x2
_ jjj^ 4^_ jjj^ 4^2^ jj^^ 4x^ + 3

j;=oo
a;

» x=oo53.2> a;===co5^2> x= «= Qx^ '

Show that it is an indeterminate form.

26, Continuous and Discontinuous Functions,

graphs of the following functions:

1
1. y = 2. y = x^. 3. y = 7x +

Discuss the

Draw the

1

4. 7/ = tan X. 5. y = sin x. 6- y = 3^.

Hint. In 6, values in the vicinity of a; = should be carefully

determined. Take a set of values of x approaching from the

left and another set approaching it from the right.

7. 2/ = 3^
3'' +

2

3' + 1
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Study the vicinity of a; = 0. See 6.

The functions 2, 5, and 7 are said to be continuous while

1, 3, 4, 6, and 8 are discontinuous. The meaning of these

terms is obvious from the graphs that have been drawn. A
precise definition follows : A function f{x) is said to be continuous

atx = a if Ji^ fix) = /(a).

In 1, 3, 4, 6, and 8, this condition is not satisfied at a; = 0,

0, ^, 0, and 0, respectively. In these examples the functions

either become infinite for the values of x in question or approach

different limits as the value of x is approached from larger or

smaller values. A function f{x) is said to be continuous in an in-

terval (c, d), i.e., the interval c ^ x ^ d, if it is continuous at every

point in this interval. Thus the functions 2, 5, and 7 are continu-

ous in any finite interval. The remaining functions are continu-

ous in any interval not containing the points to which attention

has been called.



CHAPTER III

THE POWER FUNCTION

27. In Chapter I the derivative of a function was found by what

may be called the fundamental method, viz., by giving to the

independent variable an increment, calculating the corresponding

increment of the dependent variable, and finding the limit of the

ratio of these increments as the increment of the independent

variable approaches zero. This method is laborious and since it

will be necessary to find derivatives in a large number of problems,

rules will be established by means of which the derivatives of

certain functions can be written down at once. The process of

finding the derivative of a function is called differentiation.

In this chapter we shall find the derivative of the power

function, and study the function by means of this derivative.

The graphs oi y = x", for various values of n, appear in Figs.

1, 2, 3, and 4. If n is positive, the curves go through the points

(0, 0) and (1, 1), and are said to be of the parabolic type. In this

case a;" is an increasing function of x in the first quadrant. If n

is negative, the curves go through the point (1, 1) but do not go

through the point (0, 0). They are asymptotic to both axes of

coordinates. These curves are said to be of the hyperbolic type.

In this case x^ is a decreasing function of x in the first quadrant.

The law of the power function, as stated in §3, should be

reviewed at this point.

28. Derivative of x°. Let y = x", where n is at first assumed

to be a positive integer.

y -{- Ay = (x + A.r)".

y+ Ay = X- +nx--''Ax + "^^,"~-"^^x"-2 (Ax)^ + +(Ax)".

Ay = nx--^Ax +^^^ a-"-^ {AxY+ +(Ax)".

If

a 33
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Ay , , n{n - 1)

Ax

lim Ay

or

dy

dx

+ .^
a;»-2 Aa;+ • • • +(Ax)»-i.

= nx""

= nx"-^ (1)

This proof holds when n is a positive integer. In §§33 and 42
it will be shown that the formula obtained holds for fractional and
negative exponents. For the present we shall assume the

formula true for these exponents.

Illustrations.

1. ^ = 3.=.
ax

dx dx X*

3. ^' . W.
dt

dv ~ ""^ ~ 2\/y

Exercises

dy

.

. .

Find -y- in each of the following fifteen exercises:

1. y = x^. 6. y = x. 11. y = x*.

2. y = x<. 7. y = x*. 12. y = x^.

3. y = x^ 8. y = x». 18. y = x"*.
3 _1

4. y = x^". 9. y = x^. 14. y = x ^.

6. y = -• 10. y = -^^ 15. y = -,-

16. Find the slope of each of the curves of Exercises 1-15 at the

point (1, 1); also at the point whose abscissa is ^ and whose ordinate

is positive.

17. By making use of the derivative, find for what values of x

each function given in Exercises 1-15 is increasing; is decreasing.
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18. How does the slope of j/ = a;" change with increasing x, if x
is positive and if n is positive and less than 1? If n is positive and
greater than 1 ?

19. Find where the slope of each curve given in Exercises 1-15 is

equal to zero; equal to 1.

20. Find:riif:
at

(a) s = t\ (C) 8 = Vt' (e) s = ^yr^

(b) s=l,- (d) s = \-
t^

CO . = ^--

21. Find ^f if:
at

(a) y = IK (c) y = ^l (e) y = IK

ib)y=l (d) y = 4- U)y=l-

29. The Derivative of ax°. In case the power function is writ-

ten in the more general form ax", it is easy to see that the con-

stant multiplier a will appear as a coefficient in all terms on the

right-hand side of the equations in the proof in §28, and the

derivative oi y = ax" is, therefore,

f^
= nax'^-^, (1)

or

d(ax'')

dx
— nax"-^. (2)

The proof of the formula is for positive integral values of n only,

but as in §28 will be assumed for all commensurable exponents.^

Since ax"-^ is the given power function y = ax" divided by x,

formula (1) may be written

' The relation of formula (2) to that of §28 is at once evident when it is recalled that

the curve J/
= oi" can be thought of as obtained from the curve j/ = x" by stretching

all ordinates in the ratio 1 : a. Then the slope of the tangent at a point of j/ = ox" is

o times the slope of the tangent to y = i" at the corresponding point; i.e.,

d(ax") d(x'^)
,= o = anx" .

dx dx
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The geometrical meaning of formula (3) is shown by Fig. 23.

y
The fraction - is the slope of the radius vector OP from the origin

to the point P on the curve. Formula (3) states that the slope,

at any point of the graph of the function, y = ax", is n times the

slope of the radius vector OP. Thus, if n = 1, ?/ = ax" reduces

to a straight line through the origin, and the line has the same
slope as OP. If n = 2 the curve is the parabola y = ax^, and the

slope of the curve is always twice that of OP. If n = —1 the

r

F

ft 1

/

o

Fig. 23.

curve is the rectangular hyperbola, y =

curve is the negative of the slope of OP.

Illustrations.

d{7x^)
1.

dx

il
dx

= 14a;.

d{5x-^) ^ d(x-^)

and the slope of the

dx
= 5

dx
= -lOx-3 = - 10

3. -^-iT-- = 6 ^TT- = 9^2
dt

4. If 2/ = 5x',

dt

dy

dx
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5. If V = ~2' ^~ = -2
x^ dx X

Exercises

Find -T~ in each of the following fifteen exercises

.

1. y = 4x3. 6. 2/ = 2xi 11. y = -3x«.

2. J/
= 3\/x. 7. 2/ = 4x^. 12. ?/ = x.

3. y = 5x*. 8. y = fx"". 13. y = -x.

4. y = 3x. 9. 2/ = lOv^i. 14. 2/ = -3\/x.

2 4 4
6. 2/ = -,' 10. 2/ = --2- 15. 2/ = --3-

16. Find -yj in each of the following:

(a) s == 2<2. (6) s = SVi". (c) s = -^tK

civ
17. Find -jt in each of the following:

(a) 2/ = 4v^. {b) y = - At. (c) ?/ = -Si^.

18. Find the slope of each of the curves given in Exercises 1-15,

at the point whose abscissa is 1; at the point whose abscissa is |.

19. For what values of x is each function given in Exercises 1-15

increasing? Decreasing? Where, if at all, is the slope of each of

these curves zero?

2
20. Draw the curves y = \x^, y = ~, y = x^, y = -y/x] and draw

tangent lines to them at the points for which the abscissas are 1, 2, 3,

and 4. Make a table showing the slope of the radius vector and the

tangent line for each of these points.

30. Rate of Change of ax°. Let y = ax", where a; is a function

of the time t. Since a: is a function of t,y is a, function of t. For

example, y = Sx^, where x = t — 1.

Let Ax and Ay be the increments of x and y, respectively, corre-

Aw
spending to the increment A^ of t. -rr is the average rate of

dv
change of y during the interval AL .r is the rate of change of y

at the instant t.

At any time, t

y = ax".
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At the time t + Af,

y -\- Ay = a{x + Ax)".

y -\-Ay= alx-+nx"-'Ax + Z ^
x»-''(Ax)H h (Ax)"l •

Ay = aLx"-' + "^^^^ a;»-2Aa; + • • • + (A.t)"-i1 Ax.

Aw r , >
W(W "~ 1) OA I /A N iTAX

^^ = a wx»-i + ^2"^ x"-2Ax + • • + (Ax)»-i ^•

As Af approaches zero, the expression within the brackets ap-

proaches nx""^, and irr approaches -jr*

Hence
dy dx

dt -°^^""'dr
or

. dt "*^ dt

The rate of change of the function ax" is expressed in terms of x
dx

and of -TT, the rate of change of x. If then the rate of change of

X for a given value of x is known, the rate of change of the func-

tion for that value of x can be calculated.

Illustration 1. The side of a square is increasing at the uni-

form rate of 0.2 inch per second. Find the rate at which the area

is increasing when the side is 10 inches long.

Let X be the length of the side, and y the area of the square.

dx dv
Then ^rr = 0.2 and ^r is the rate of increase of the area. To find

dt dt

this rate of increase, differentiate the function y = x^.

^ -2x— •

dt ^^ dt

Since

dx

dt = 0-2.

dt
"-^
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dv
When X = 10, -rr = 4. The area is increasing at the rate of 4

dv
square inches per second. When x = 13, -tt = 5.2, the rate of

change of the area at this instant.

Illustration 2. A spherical soap bubble is being inflated at the

rate of 0.2 cubic inch per second. Find the rate at which the

radius is increasing when it is 1.5 inches long.

dV
Let r be the radius, and V the volume of the bubble, -rr = 0.2

at

dv
and ^7» the rate of increase of the radius, is to be found.

V = AirrK

^ = ^^^^41-

From which
dr 1 dV
dt ^ 47rr2 dt

Since

dV
TT- = 0.2, and r = 1.5,

dr 1

tit
~ on-n K\2

~ 0.0071 inch per second.

Exercises

1. Find the rate at which the surface of the soap bubble of Illustra-

tion 2 is increasing when r = 1.5 inches.

2. If each side of an equilateral triangle is increasing at the rate

of 0.3 inch per minute, at what rate is the area of the triangle increas-

ing when the side is 6 inches long?

3. Water is flowing at a uniform rate of 10 cubic inches per minute

into a right circular cone whose semi-vertical angle is 45°, whose apex

is down, and whose axis is vertical. At what rate is the surface of

the water in the cone rising, and at what rate is the area of this surface

increasing when the water in the cone is 25 inches deep?

31. The Derivative of the Sum of a Function and a Constant.

Sketch, on the same set of axes, the graphs of the functions:
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y = x^; y = x^ — 5; y = x^ -{- 3; y = x^ -\- 10. Find -v- for each

dy
of the functions. Find t-, if y = x"^ -{- C, where C is any

constant.

Sketch a graph of any function y = f{x), and on the same set

of axes, graphs oi y = fix) -\- C for several values of the constant
dy

C. What relation exists between t- for the different functions
dx

corresponding to the same value of cc?

From these illustrations it is clear that the derivatives of all

Junctions which differ only by an additive constant are the same.

The reason for this is geometrically evident. For, the addition

of a constant to a function has the effect of merely translating the

graph of the function parallel to the F-axis. The slope corre-

sponding to any given abscissa is clearly not changed by this

translation. Hence,
d[f(x)+C] d[f^x)l

dx dx
In particular d[axn-|-C] d[ax'i]

_ = _-— = a
dx dx

Thus, if _ , . „

dy d{5x^)

rll—

1

(1)

(2)

dx dx

Exercises

15x2

1. Prove formula (2) above by the increment process.

Differentiate

:

2. y = 3x^ + 2. 11. 7/ = - 4x^ + 6.

3. y = 5\/x + 4. 12. y = - 3x* + 2.

4. y = 2x3 _ 3. 13. y = Tx^ - 3.

3
5. 2/ = —5 + 5. 14. ?/ = 4x' + 5.

6. 2/ = 2t* + 7. 15. 2/ = ^ + 2.

7. s = 16<2 + 5. 16. 2/ = - ix« + 3.

8. « = 2y/t^ + 6. 17. 2/ = ix* + 2.

9. s = ^3 - 4. 18. 2/ = ?x* - 5.

10. X = 4<3 - 2.
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32. The Derivative of au°. li y = aw, where w is a function

of X and n is a positive integer, the student will prove, as in §30,

that
dy .du

dx dx

or

d(au'') „ .du

dx dx

Illustrations.

= 30x(x2 + 3)2.

2 d[2(x'' + 4)^+10] _rf[2(x2 + 4)^]_,^ ,(J(x2 + 4)

dx dx dx

= 2-4(a;2 + 4)3 2.r = 16x(x2 + 4)'.

3. If y = (2x2 + 1)2, find ^.

dy _ cj(2x2+l)2 _
, 1^

^(2x2+ 1)

•2'2x

4. If 77 = (x2 + l)t.

= 2(2x2 + i).2-2x ^ = 8x(2x2 + 1) ^j-

dy _ 3

dx ~ "(a:2+l)^ 2x = 3x(x2 + 1)5,

and
dy

3 (X2+1)^
dt

= 3x(x2 + 1)^
dx

dt'

Exercises

Find^:
ax

y = (4x2

y = 5(2x

y = 2(3

y = \/x

y = (5-

-2)3.

2 - 5)3.

- 4X2)3

- X2)3.

6. y

7. y

8. y

9. y

10. y

1.

2.

3.

4.

6.

= V9
= (3x2

= a/x^

= V2a

-X2.

+ 7)2.

-5.

;2 + 3

;2 + l.
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11- y = /^ ' • 15. y =
VSx - 2 A^x2 + 1

7 "i

12. 2/ = -7===-. 16. y =

2
13. y = V(x« + 4). 17. y = y-

14. 2/ = V(x + 1). 18. 2/
=

(a:2 + 4)2

3

(5 -x»)2

33. The Derivative of u*^, n a Positive Fraction. We are now
in a position to prove that the rule for the derivative of m" holds

when n is a positive fraction of the form -' where p and q are

integers. Let

p

y = w.

Raise each member to the power q:

?/« = UP.

Since m is a function of x,yisa function of x. Hence each member
is a function of x raised to a positive integral power. Then each

member can be differentiated by the rule of §32 which was

proved for positive integral exponents. We find

,
dy

^y-'
Tx

== pu -1 '^'^.

dx
From which

dy V tip-i'du

dx q y-^ dx

Substitute for y in the second member and obtain

dy P wp-^ du p up--1 du

dx
~

9

u'

dx q
up-

p dx

Then

dy ^1
dx q

u
du

dx
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and the rule is proved that

dw , du

ax dx

where n is a positive fraction whose numerator and denominator

are integers. This rule has already been used in the solution of

numerous exercises.

34. The Derivative of a Constant. Let y = c, where c is a

constant. Corresponding to any Ax, Ay = 0, and consequently

Ax "'

lim -^ = 0.

and

Ax= Ax
or

^ = 0.
dx

The derivative of a constant is zero.

Interpret this result geometrically.

35. The Derivative of the Sum of Two Functions. Let

y = u + v,

where u and v are functions of x. Let Au, Av, and Ay be the incre-

ments of u, V, and y, respectively, corresponding to the increment

Ax.

y -\- Ay = u -{- Au + V -jr Av

Ay = Au -\- Av

Ay _ Au Av

Ax ~ Ax Ax
dy du . dv

dx dx dx

or

d(u4-v) _ du dv

dx ~ dx dx*

The derivative of the sum of two functions is equoiL to the sum of

their derivatives.
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The student will observe that the proof given can be extended

to the sum of three, four, or any finite number of functions.

Illustrations.

I
t^(63^ + 15a;') ^ d(6x) rf(15x') _ g , 30^

dz dx dx

^ d{2Vx + 3x' + 4) d{2V~x)
,

d(3x^)
,
d(4) 1

2. =
h.

' = —7= + ox.
rfx dz dx dx y/x

d(t^ + 2<' + 3)
3. f; = 2< + 6«2

Exercises

Differentiate the following functions with respect to x, also with

respect to t:

1. 3x* - 2x^ + 6. 10. ax2 + bx + c.

2. 5x» - 7x2 -2x - 10. 11. y = v^a;2 + 4^; _ 5.

3. gx* - ix' + X - 7.
12. 2/ =

1

4. x2 + 2x

3 2

y/x^ - 5x + 7

13. 2/ = V3x2 _ 2x + 5.

* \7x
~ ^"

^ 14. y = Ve - 3x - x\

6. 3x7 _ 63.8 + 9. 16. s =Vm + ^2< - 3

?_2 1
.. -. — X ^ 16. 7/ =

x" - 7x - 6
8. - \x^ -\- \x^ - X + 2. _ /II 17. y = V a;^ - 5x + 4.

9. x~5 4- a;~5. 18_ y _ (3_j.2 _|. 2x + 2)3.

36. Differentiation of Implicit Functions. The derivative of

one variable with respect to another can be found from an equa-

tion connecting the variables without solving the equation for

either variable. For, if the variables are x and t/, j/ is a function

of x, even though its explicit form may not be known, and the

usual rules for finding the derivative of functions can be applied

to each member of the equation.

The following example will illustrate the process.

dy
Illustration. Letx' + 2/^ = O"- Find -?

•

The left-hand member of the given equation is the sum of
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two functions of x, since y is a function of x. Further, the deriva-

tive of the left-hand member is equal to the derivative of the

right-hand member. The derivative of the latter is in this case

zero, since the right-hand member is constant. On differentiat-

x+ y=^o,

Fig. 24.

ing the left-hand member as the sum of two functions, we obtain

Solving for -t->

2x + 2y% = 0.

dx

When the derivative is found by differentiating each member of

an equation in the implicit form, as in the foregoing illustration,

the operation is called implicit differentiation.
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Exercises

1. Draw the circle x^ + y'' = o* and show geometrically that the

slope of the tangent at the point (x, y) is

dy
2. Solve the equation of Exercise 1 for y and find -j- •

dv
From the following equations find -r by implicit differentiation:

3. 3x« + 4y* = 12.

4. a;^ — ?/* = a^.

^' ^ + ^ = !• (^o ^'^^ clear of fractions.)

If y is an implicit function of x expressed by an equation of the

form

x" + y = a", (1)

differentiation gives

or

g=-[i]""'
<^>

The equation (1) includes a number of important special cases.

The graphs corresponding to the following values of n are shown in

Fig. 24. For

n = h x' + y* = o^, a parabola,
2 1 2

.

n — I, x^ -\- y^ = a^, an important hypocycloid,

n = l, X + y =a, a straight line,

n = 2, x"^ -\- y"^ = o^, a circle.

The graph of (1) passes through the points (0, a) and (a, 0) if n is

positive.12?
6. x» + J/* = o^.Ill
7. x* + 2/2 = o2.

8. x' + y' = a\

3 3 3

9. x^ + y^ = a^.

37. Anti-derivatives. Integration. Let it be required to

find the equation of a curve whose slope at any point is equal to

twice the abscissa of that point.
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dy
This means that at every point of the curve -, = 2x. We

seek then a function whose derivative is 2x. y = ^^ is such a

function. But y = x^ -\- C, where C is a constant, is also a

function having the same derivative. Hence there is an infinite

number of functions whose derivatives are all equal to 2x. The
problem as proposed has then an infinite number of solutions,

viz., the system of parabolas y = x^ + C, corresponding to the

infinitely many values of C.

If now we add to the statement of the problem the requirement

that the curve shall pass through a given point, say (1, 2), it is

geometrically evident that but one of the curves y = x^ + C will

pass through the point. In other words there is but one value of C
for which the latter requirement is satisfied. This value is de-

termined by substituting the coordinates of the point in the

equation y = x^ -{- C, since they must satisfy this equation for

some value of C, if the problem has a solution. On making the

substitution we have

2 = 1 + C,

from which (7=1. Hence y = x"^ -\- 1 is the equation of the

curve whose slope at any point is equal to twice the abscissa of the

point and which passes through the point (1, 2).

The nature of the problem which has just been solved can be

further explained by the following geometrical solution. Draw,

Fig. 25, at the vertices of each small square on a sheet of co-

ordinate paper on which a set of axes has been chosen, short

lines whose slopes are equal to two times the abscissas of the

respective vertices. A curve is to be drawn which at each of its

points is tangent to a line such as those which have been drawn.

Now it is impossible in the figure to draw lines through every point

in the plane, but if the points through which the lines are drawn

are sufficiently thick, the lines will serve to indicate the direction

which the curve takes at nearby points. The lines may be

regarded as pointers indicating the stream lines in flowing water.

Then a point tracing the curve would move as a small cork would in

water having the stream lines indicated by the figure.

Thus, to get the curve that goes through (1, 2), start from this

point and, guided by the direction lines, sketch in as accurately
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as possible the curve to the right of this point. Do the same
thing to the left, noting that here it is necessary to go against the

stream lines instead of with them.

In Fig. 25 it should be noted that all lines through points

having the same abscissa are parallel. This fact is of great

^ ^ ^ ^ ^ \

^

M ^ ^ H ^

k k h \ \ ^
k k k \^\^

/MM
/^ ^ M M

Fig. 25.

assistance in drawing. The squares on the coordinate paper can

be used to advantage in drawing lines when the slope is known.

If the derivative which was given had been any other function

of X, a geometrical solution could have been obtained by the same

method. -

The foregoing illustration introduces a new type of problem,
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viz., that of finding a function whose derivative is given. A
function whose derivative is equal to a given function is called

an anti-derivative, or integral, of the given function. From the

illustration it is clear that any given function which has one anti-

derivative, has an infinite number of anti-derivatives which differ

from each other only by an additive constant. This latter fact is

indicated in obtaining the anti-derivative of a given function by
writing down the variable part of the anti-derivative and adding

to it a constant C which is undetermined or
'

' arbitrary.
'

' In a given

application this constant will be determined by supplementary

conditions as in the illustration at the beginning of this section.

The process of finding the anti-derivative of a given function is

called integration.

y = x^ + C.

y = lx' + C.

y — x^ {- x^ -\- C.

y = x^ + x"^ -\- Ix -\- C.

2/ = 3- + 2- + 7a; + C.

If in Illustration 1 the curve is to pass through the point

(3, -2) we must have -2 = 3' + C, or C = -29. Hence the

equation of the curve is y = x^ — 29.

Exercises

Illustrations.

1.
jfdy

dx
~ 3x2

2. If — -
dx

x\

3.
-ffdy 3x2 + 2x,

4. If — -
dx

3x2 + 2x -h 7,

5. Tf ^ -
dx

x^ + x + r.

Integrate the following ten functions:

1- 1 = 3,. ^-
dt

~ dx
(3x2 + 2x + 6) ^

.. g = 4... ^ dy _
'' dt

(ax + b) ^-.

''•|--4r ^- dx~ 3x2 _ 2x2 _|. 7.

«• f = 3..f

.

Q '^y

^' dx- lOx-2 + 2x-3 - X

6. ^ = 3x2 + 2x - 6. 10. f~
=

dx
x^ + x'\
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Illustrations.

6. ^ = 3(x2 + 2)2 2x.

The right-hand side is in the form, nw-^ ^, where n is 3, and w

du -,

is (x'^ + 2). Since the integral of nw"-i ^ is -u" + C,

2/ = (x^ + 2)» + C.

7. ^ = (x2-5)'2x = H4(x2-5)'2x].

2/ = i(x2 - 5)^ + C.

8. ^ = x(x2- l)'' = -iM6(x2- l)''2x].

y = Mx^ - 1)« + C.

y = _ -j^(3 - x')« + (7.

10. I = (.' - 2x + 3)-'(x - l);j^

= - il - 2(x^ - 2x + 3)-^(2x -
2)^J.

y " 4(x2 - 2x + 3)2 + ^*

Exercises

Integrate

:

11. ^ = a;V^^"^=l- Ans. y = K^^ - 1)^ + C.

12. ^ = (2x3 4. 3x2) 3 (x^ _|_ x). Ans. y = i(2x3 4. 3x2)1 + c,
ax

13. ^ = (x + 1)*. ^ns- y = f (x + 1)^ + C.
dx

14. I = (2- XT X. 16. ^^ MX- 3)2 X.

16.| = xVr^'. 17.g = x2+3x.

18.^^ = (x2 + 7)3x.
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20.
f^

= (x^ + 2x + iy(x + 1).

22.
dy

dx
~ X

24
dy

dx

X2

V5 -X* -
(4 - x")*

25.
dy

dx
~ (3x2 + 2) ' X. Ans. y = A (3x2 + 2y + c.

26.
dy

dt
~ (2-- 3x2)

. dx

'"'dt-

27.
dy ^
dx

(2x + 1)^ Ans. y = K2x + 1] 3 + C.

28.
dy

dt
~ (3x -2y dx

dt'

29.^f
= (3-4x)2^.

30. ^ = V^TT- ^ns. 2/ = f (x + 1)' + C.

31. ^ = >/2F+^. 40. ^ = \/(2x+3)».

33. -2 = Vir=^. 42. ^ = Vx^ + 3x - 7 (x^ + 1).

3*- 5x = vTTT' "• ^' ^ ^" "^ 4)^/iM^8^+^.

^^- ^^ = virr2 '*• ^' = ^^ - ^)^^^^^+^-

^^ dy 1 .- dy 1 — 5x
36. T^ =

, 46.
"

dx V3 - 5x * dx -y/e 4- 4a; - lOx*

— dw / .^ dy 3x — 2
37. / = X V4x2 _ 5. 46. *'

dx
*

' dx V3x2 _ 4a; _|_ 5

88. I - .V9^'. «. I - V4^.

89. f . '^

48. f^
- x(2 - x>)..

dx .^^4 — 3x2 dx

49. Find the equation of the curve whose slope at any point is equal

to the square of the abscissa of that point and which passes through

the point (2, 3).

60. Find the equation of the curve whose slope at any point is equal
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to the square root of the abscissa of that point and which passes

through the point (2, 4).

51. Find the equation of the curve whose slope at any point is equal

to the negative reciprocal of the square of the abscissa of that point

and which passes through the point (1, 1).

38. Acceleration. The velocity of a body moving in a straight

line may be either uniform or it may vary from instant to instant.

In the latter case its motion is said to be accelerated, and this

applies both to the case where there is an increase in velocity

and the case where there is a decrease in velocity.

Thus it is a fact of common knowledge that the velocity of a

body falling to the ground from a height increases with the dis-

tance through which the body has fallen, or with the time since

the body started to fall. The time rate of change of the velocity

of a moving body is an important concept in mechanics and

physics.

If s denotes the distance passed over in time t, the velocity has

been defined as the rate of change of s with respect to t. The
notion of the velocity at a given instant was derived from that of

the average velocity for an interval A^ The average velocity was

obtained by dividing the change in s, As, in a time A^ by At {i.e.,

by dividing the distance passed over in time At by At). The
limiting value of this quotient as At approaches zero was defined

as the velocity at the beginning of the interval A^.

In the same way if the velocity, r, changes by an amount Av in

the time A^ counted from a certain time t, the average rate of

Av
change of v for this interval is ^- It is the average linear accelerch

tion^ for this interval. The acceleration at the time t is defined as

the limit of the average acceleration as At approaches zero. It is

then ^' The acceleration is the time rate of change of velocity. In

the case of a falling body it is known experimentally that for

bodies falUng from heights that are not too great, the velocity

changes uniformly, due to the action of the force of gravity, i.e.,

• We suppose here that the body is moving in a straight line. If the path is curved,

it will be seen later that the total acceleration is to be thought of as the resultant of

two components, one of which produces a change in the direction of the velocity and
the other a change in the magnitude of the velocity.
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the time rate of change of the velocity is a constant. This con-

stant is called the acceleration due to gravity and is usually

denoted by g. In F.P.S. (foot-pound-second) units it is equal

to 32.2 feet per second per second. That the unit of acceleration

is 1 foot per second per second is explained by the fact that accelera-

tion is the change per Second of a velocity of a certain number of

feet per second.

The differential equation of motion of the falling body can be

written

= 9- (1)
dt

From which on integrating,

V = gt + C.

If it is given that the body

starts falling from rest, we have

as the condition for determin-

ing C, that V = when t = 0.

Equation (2) shows that C must

be equal to zero. Then,

V = gt. (3)

(2)

Time U)

Fig. 27.

The graph, Fig. 27, o( v = gt is a, straight line whose slope is g.

If the body had had an initial speed of Vq feet per second, i.e.,

if it had been projected downward instead of being dropped, the

constant C would have been determined from the condition that



54 CALCTJLUS [§38

V = Vo when t = 0. It follows from (2) that C = vo, and the

equation for v would have been

V = gt + Vq. (4)

The graph of this function is shown in Fig. 26. It is again a

straight line but it cuts the F-axis at the point (0, Vo).

The foregoing discussion evidently applies equally well to any

uniformly accelerated motion, i.e., to any motion where the rate of

change of the velocity is constant. In all such cases the graph of

r as a function of the time is a straight line.

Since v = -n' equation (4) gives

ds

di
= 9i + f0.

Integrating,

s = yt^ + vot + Ci. (5)

If t is measured from the instant the body begins to move and s

from the position of the body at that instant, s = when t = 0.

From this condition d = 0. Then the distance of the body from

its initial position is given by

s = igf^ + Vot.

If a body is thrown vertically upward, it is convenient to count

distances measured upward, and upward velocities, as positive.

Then, since the acceleration due to gravity diminishes v, equation

(1) becomes

di = -^- (^ ^

The formulas (4) and (5) then become

v^ -gt + vo (4')

s = - hgt' + Vot. (5')

If a body falls from rest it is easy to express the speed as a

function of the distance traversed. In this case, 2^0 = 0. Then

(4) and (5) become,

V = gt (4")
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Elimination of t between these equations gives:

V = VWs- (6)

Exercises

1. If a body falls from rest how far will it fall in 10 seconds?

2. If a body is thrown vertically downward with a velocity of 10 feet

per second, how far will it have moved by the end of 10 seconds?

What will its velocity be?

3. If a body is thrown vertically upward with a velocity of 64.4

feet per second, what will the velocity be at the end of 10 seconds?

What will be the position of the body? How far will it have moved?

4. Find the laws of motion if the acceleration is equal to 2t and if

(1°) s = and v = when t = 0; (2°) s = 3 and v = --2 when t = 0.

6. If the acceleration is proportional to the time and ii v = vo and

8 = So when i = 0, show that

8 = -^ + Vol + So.



CHAPTER IV

DIFFERENTIATION OF ALGEBRAIC FUNCTIONS

39. The Derivative of the Product of a Constant and a Variable.

Let

y = cu,

where c is a constant and u and y are functions of x. Let Am and

Ay be the increments of u and y, respectively, corresponding to

the increment Ax. Then

2/ + A?/ = c{u + Am)

A?/ = cAm

Ay
Ax

Am
Ax

dy

Ix
~ du

c v-»
dx

d(cu)

dx
~ du

C J*dx

or

The derivative of the product of a constant and a function is equal

to the constant times the derivative of the function.

Illustrations.

d{3x^) d(x2)
1. —J = O —j—• = DX.

ax dx

,m__m,_,^j^._,,^_,.

3.
d[-f(x2-5)2]

dx

,d{x^^-5)^

-i d{x^ -
dx

=

3

2

dx

2-5)-

X

A)

3

(X2-

50

-5)2
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40. The Derivative of the Product of Two Functions. Let

y = uv,

where u and v are functions of x.

y -\-Ay = (u + Au)(v + Aw)

y + Ay = uv -\- nAv + vAu + AuAv

Ay = uAv + vAu + AuAv

Ay
4!i_i_ 4!f_i_A —

Ax ~ Ax Ax Ax

Since Aw approaches zero as Ax approaches zero,

dy _ dv du

dx dx dx

or

d(uv) dv
,

du ...

^^dr = ^dx + ^dx' ^^^

The derivative of the product of two functions is equal to the first

times the derivative of the second plus the second times the derivative of

the first.

Illustraiions.

- ^J^i^ = (. + „^J^ + (. + 3,^i^t^

= (i + 2) + (I + 3) = 2i + 5.

= (x2 + 3x) + (x - 2)(2x + 3)

= 3x2 _|_ 2x - 6.

3. If x^ + xy^ + y = 10,

dx ^y ^dx

2x + 3xy^f^ + y^ + f^
= 0,

whence

dy ^ _ 2x + y»
^

dx 3xy» + l'
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Exercises

Differentiate the following:

1. (x + l)ix - 1). 9. 2/ = (x -h l)VJi^^.
2. (x^ + 2x)(x - 3). 10. y = (2 - x)\/^c^~:^.

3. a;(x2 + 2x - 6). 11. y = {2x { 3)\/4 - x\

4. (x - l)='(x^ + 1). 12. ?/ = x\/n^.
5. (x' + 2x - 3)(x + 1)2. 13. xV + 3x - 7?/ = 15

6. xVx - 1. 14. a;2?/ - Sxy^ = lo.

7. (x - 1)V^. 15. yy/^ + xv^ = 3.

8. x(x - l)i 16. xy - xhj = 0.

41. The Derivative of the Quotient of Two Functions. Let

u
y = -y

where u and v are functions of x. Then

yv = u.

Differentiating by the rule of §40,

dv dy _ du
^ dx dx ~ dz

du dv

dy _ dx ^dx

dx V

Replacing y by its value, ->

(v)

du dv

Vx ~ ^dx (1)

dx

The derivative of the quotient of two functions is equal to the

denominator times the derivative of the numerator minus the numera-

tor times the derivative of the denominator, all divided by the square

of the denominator.
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Illustration.

47^72-] _ (^ - 2) -^^ (x^ + 1) -^^-

dx (a; -2)2

_ ix-2)i2x) - (x^+1)
(a: -2)2

x^ — Ax — 1

{x - 2)2

Exercises

Differentiate the following:

1. ^- 4. ^^-r-'. 7.
a;-l 1+a- x - Vx^ - 1

V'x - 1

1 -\-x

x^ - 1

Vx
x

x2 -3 a:2 - 1 g2 4,4

X — 2 V X •'' — 2

„ X + x'^ „ a; „a;3 + 8
3.
~~ 6. T-- 9. hi'
1 - a;

(1 - x)^ ^ ~ ^

42. The Derivative of u", n Negative. In Chapter III the

formula

dw" , du

dx dx

was proved for n positive and commensurable. The formula

was assumed for negative exponents. We are now in a position

to give a proof of the formula for this case. Let

y = u-%

where s is a positive commensurable constant. Then

1

or

yw = 1.

Differentiate by the formula of §40,

du dy
ysu'-^^^+u-^^ = 0,

dy sy du=
J-
= — su-

dx u dx
8-1

^'^

dx
(1)
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This completes the proof that

du° , du
dx dx

if n is a commensurable constant.^

We see from equation (1) that

'(J) nc du

dx u°+i dx
Illustration.

d S 6 dix^ - 1) 12a;

(2)

dx (x2 - 1)2 (a;2 - 1)» dx {x^ - lY

2. *

Exercises

llo

4.

wmg:

3

X - 1
7 6 .

'• x^ + 1

6.
5

(X + ly (x^ + D*

6
3

0. ' .

Vx - 1 (1-x^y

1 -X

Vx
43. Maximum and Minimum Values of a Fvmction. In Chap-

ter I it was shown that the derivative of a function with respect to

its argument is equal to the slope of the tangent drawn to the

curve representing the function. The derivative is positive where

the function is increasing and negative where the function ia

decreasing. These facts enable us to determine the maximum
and minimum values of a function.

Additional exercises in finding maximum and minimum values

of a function will be given in this section.

Illustration. Let

J/
= 2x3 + 33-2 _ 12a; - 10.

• ^ = 6x2 + Gx - 12 = 0(3, _j_ 2) (i _ 1).

> It can be shown that the formula also holds for incommensurable exponents.
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If X is less than —2, both factors of the derivative are negative.

Then for all values of x less than —2, the derivative is positive

and the function is increasing. If x is greater than —2 and less

than 1, the first factor of the derivative is positive and the second

negative. Hence, if — 2 < x < 1, the derivative is negative and

the function is decreasing. If x is greater than 1 the derivative is

positive and the function is again increasing.

The function changes from an increasing to a decreasing func-

tion when x passes through the value —2, and changes from a

decreasing to an increasing function when x passes through the

value 1. Hence the function has a maximum value when x equals

—2, and a minimum value when x equals 1. These values, 10 and
— 17, respectively, are obtained by substituting — 2 and 1 for

X in the function. (See Fig. 28.) The more important results

of the above discussion are put in tabular form below.

X X + 2 X - 1
dy

dx
Function

X < -2 + Increasing.

-2 < I < 1 + - - Decreasing.

1 < X + + + Increasing.

X = -2 — Max. value = 10.

X = 1 + Min. value = —17.
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It is to be observed that — 2 and + 1 are the only values of x

at which the derivative can change sign and that these are the

values that need to be examined in finding the maximum and
minimum values of the function.

Exercises

Find where each of the following functions is increasing; decreas-

ing. Find the maximum and minimum values if there are any.

Sketch the curve representing each function.

1. y ^ xK 6. 2/
= (x + 2)(x -3).

2. y = x\ 1. y = 2a;' - 9x^ + 12x - 10

3. t/ = -2x\ 8. y = x' - 3x + 7.

4. y = x' + 3x - 2. 9. 2/
= x' + x2 - X - 1,

5. 2/ = 3x' - 2x« — 6. 10. y = —^

11. A sheet of tin 24 inches square has equal squares cut from

each corner. The rectangular projections are then turned up to form

a tray with square base and rectangular vertical sides. Find the side

of the square that must be cut out from each comer in order that the

tray may have the greatest possible volume.

Hint. Show that the function representing the volume of this tray

is 4x(12 — x)'', where x is the side of the square cut out.

12. In a triangle whose sides are 10, 6, and 8 feet is inscribed a rec-

tangle the base of which lies in the longest side of the triangle. Ex-

press the area of the rectangle as a function of its altitude. Find

the dimensions of the rectangle of maximum area.

13. A ship A is 50 miles directly north of another ship £ at a
certain instant. Ship B sails due east at the rate of 5 miles per hour,

and ship A sails due south at the rate of 10 miles per hour. Show
that the distance between the ships is expressed by the function

V 125/* — lOOOi + 2500, where t denotes the number of hours since the

ships were in the position stated in the first sentence. At what
time are the ships nearest together? At what rate are they sepa-

rating or approaching when f = 3? When < = 5? When < = 6?

14. The stiffness of a rectangular beam varies as its breadth and as

the cube of its depth. Find the dimensions of the stiffest beam which

can be cut from a circular log 12 inches in diameter.
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Miscellaneous Exercises

Differentiate tlie following twenty-five functions with respect to x:

l.i. 9. (3 - x)^ 18. X2(l - X).

X
10. (2 - x^y. 19. x(i - x^y.

11. (3 - x=')-2. 20. (1 - X3)2(X -2)2.

4. (X - sy.

12. (2 - x*)-".

13. (x + l)(x - 2).

14. Vi.

21.

22.

X - 1.

X2 + 1

1 -X
1 +X2

5. (x - 2)^ 15. x\ 23. (x - l)i
6. (x2 - 1)2.

x-6)
16. ]. 24.

X

7. (x' - 2x2 + Va^ - x2

8. (x - 2) -3. 17. x(x - 1)2. 26. XVI - X2.

Integrate the following twenty expressions

:

26. ^ = x3.
dx

37. '^ .-?
ax X i'

27. J = x3+x2. . 38. J = ^^^:^

28. -^-^ = 0.3 + x2 + X + 1. 39.
^^ ^

^^ - .c -r u. -r -, -r X. ^^ ^^ _ ^^^^

^^ dy 1 .^ dy \ — X
29. -7^ = x2. 40. -

-
dx

~
dx (2x - x2)2

30. ^=-4- 41.^^- ^
dx ^x ' ^^ Vx + 1

31. :7: == a;^ + x^. 42. ;t- =
dx

'
' dx "v/x^-T

a.. I = (. - 1,^. 43. g - ^^.
44. —- = x"i

dx

46. ^ = X - 1.
dx

46. Find ~\i x^ - y"^ = a\

^-Ftodgitfa + l'-i.

48. A ladder 20 feet long leans against the vertical wall of a

33.
dy

dx
~ x(l - X2)2.

34.
dy

dx
~ X2(x3 - 2)5

36.
dy

dx
~ 1

(1- xy

36.
dy

dx
~ 1

X2'
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building. If the lower end of the ladder is drawn out along the

horizontal ground at the rate of 2 feet per second, at what rate is

its upper end moving down when the lower end is 10 feet from
the wall?

Hint. Let AC, Fig. 29, be the wall and let CB be the ladder.

I-et AB =x and AC = y. Then

and
V

dy

dt

= \/400 -

But, since
dx

dt

dy

dt

- X dx

\/400 - x^ dt'

-2X
^400 - x^

The negative sign of the deriva-

tive indicates that the upper end pjQ 29.
of the ladder is moving down.

49. Answer the question of Exercise 48, ifx=0;x=2;a; = 15;

a; = 20.

50. With the statement of Exercise 48, find the rate at which the

area of the triangle ABC, Fig. 29, is increasing when the lower end

of the ladder is 5 feet from the wall.

51. With the statement of Exercise 48, find the position of the ladder

when the area of the triangle ABC, Fig. 29, is a maximum.

Fig. 30.

52. A ball is dropped from a balloon at a height of 1000 feet. Ex-

press the velocity of its shadow along the horizontal ground as a

function of the time, if the altitude of the sun is 20°.

Hint. Let x. Fig. 30, be the distance of the falling body above
the earth. Let y be the distance of the shadow from a point on the

earth directly under the falling body.
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53. With the statement of Exercise 52, find the velocity of the

shadow when the ball leaves the balloon; when it is half way to the

earth; when it reaches the earth.

64. A man standing on a dock is drawing in a rope attached to a boat

at the rate of 12 feet per minute. If the point of attachment of the

rope is 15 feet below the man's hands, how fast is the boat moving
when 13 feet from the dock?

55. The paths of two ships A and B, sailing due north and east,

respectively, cross at the point C. A is sailing at the rate of 8 miles

per hour, and B at the rate of 12 miles per hour. If A passed through

C 2 hours before B, at what rate are the two ships approaching or

separating 1 hour after B passed through C? 3 hours after B passed

through C? When are the two ships nearest together?

56. Two bodies are moving, one on the axis of x, the other on the

axis of y, and their distances from the origin are given by

X = 31^ - 31 + 1,

y = 6t - 12,

the units of distance and time being feet and minutes, respectively-

At what rate are the bodies approaching or separating when 1 = 2?

When t = 5? When are they nearest together?

57. A ship is anchored in 35 feet of water and the anchor cable

passes over a sheave in the bow 15 feet above the water. The cable

is hauled in at the rate of 30 feet a minute. How fast is the ship

moving when there are 80 feet of cable out?

58. A gas in a cylindrical vessel is being compressed by means of a

piston in accordance with Boyle's law, pv = C. If the piston is

moving at a certain instant so that the volume is decreasing at the

rate of 1 cubic foot per second, at what rate is the pressure changing if

at this instant the pressure is 5000 pounds per square foot and the

volume is 10 cubic feet?

59. Water is flowing from an orifice in the side of a cylindrical tan k

whose cross section is 100 square feet. The velocity of the water in

the jet is equal to \/2gh, where h is the height of the surface of the

water above the orifice. If the cross section of the jet is 0.01 square

foot, how long will it take for the water to fall from a height of 100

feet to a height of 81 feet above the orifice?

60. At a certain instant the pressure in a vessel containing air is

3000 pounds per square foot; the volume is 10 cubic feet, and it is

increasing in accordance with the adiabatic law, piP-* = c, at the rate

of 2 cubic feet per second. At what rate is the pressure changing ?

6
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61. Water flows from a circular cylindrical vessel whosa radius is

2 feet into one in the shape of an inverted circular cone whose vertical

angle is 60°. (a) If the level of the water in the cylinder is falling

uniformly at the rate of 0.5 foot a minute, at what rate is the water

flowing? (6) At this rate of flow, at what rate will the level of the

water in the cone be rising when the depth is 4 inches? When it is

20 inches?

62. A toboggan slide on a hillside has a uniform inclination to the

horizon of 30°. A man is standing 300 feet from the top of the slide

on a line at right angles to the slide. How fast is the toboggan moving
away from the man 3 seconds after leaving the top? 10 seconds after

leaving the top? (Use formula for speed of a body sliding down an

inclined plane. Neglect friction.)

If the man is approaching the top of the slide at the rate of 10 feet

a second, answer the same questions, it being supposed that the man is

300 feet away from the top of the slide when the toboggan starts.

44. Derivative of a Function of a Function. If y = <j)(u) and

u = fix), ?/ is a function of x. The derivative of y with respect

to X can be found without eliminating u. For any set of corre-

sponding increments, Ax, Ay, and Au,

Ay _ Ay Au
Ax Au Ax

Hence

lim A^ ^ lim 4^ lim Aw^

Since Am approaches zero as Ax approaches zero,

dx du dx ^ '

This is the formula for the derivative of a function of a function.

Illustration. Let

y = u^ -\- 5

and

u = 3x^ + 7x + 10.

du
and
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Then

^ = 3m2(6x + 7)

= 3(3a;2 + 7x + 10)^ (6x + 7).

dv
45. Inverse Functions. If x = 't>iv),li^ can be found by the rule

^ = A,
dx dx

dy

which is easily proved.

dy ^ Mm ^ ^ Mm i_ ^ ±,
dx '^^-0 Ax ^x^^Ax dx

Ay dy

Illustration. U x = 5y^ -\- 7y^ + 3,

^^ = 302/« + 147/,

and

dy

dy 1

dx 2y{lby* + 7)

Exercises

1. Find-TT- in terms of X if:
ax

(a) y = Vu^+ 7 and m = 3a; + 10.

(6) 7/ = 2«3 + 5m and i* = x" - 2x.

(c) y = — and w = x^ — 2.

2. Find^ if
dx

W ^ - (7/2+2)2

3. Find ^ if:
dx

(a) y* +x* - 7xy = 15. (6) Sxy^ + &x'y + 4x2 = 15.

46. Parametric Equations. If the equation of a curve is given

in parametric form, x = f{t), y = (f>{t), it is important to be able

to find the derivative of y with respect to x without eliminating

«
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between the given equations. A rule for doing this can be derived

by the method used in §§13 and 17.

If I is given an increment At, x and y take on the increments

Ax and Ay, respectively. Then
Ay

Ay At

and

or

Ax Ax
At

Um At/

lim ^y At=0 ^t
M=0 ^x lim Ax

At= ^{

dy

dy

dx dx

dt

Exercises

1. Find the slope at (6,1) of the curve whose parametric equations

arc

X = t^ +t,

2/ = < - 1.

Find -T- for each of the following:

2. x = t",

2/ = i^ + 1.

3. x = u^ +3,
1

47. Lengths of Tangent, Normal, Subtangent, and Subnormal.

In Fig. 31, PT is the tangent and FN is the normal at P. The
lengths of the lines PT, PN, TD, and DN are called the tangent,

the normal, the subtangent, and the subnormal, respectively, for

the point P. Show that the lengths of these lines are;

y^

¥ (1)

dx

y

TD =
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DN = y'£. (2)

"^-UHir- (3)

dx

=4- (I)
PN = yjl -h (^] • (4)

Exercises

1. Obtain the length of the tangent, normal, subtangent, and sub-

normal for the point (1, 2) on the curve y* = 4x. Show that for points

on this curve the subnormal is of constant length.

• 2. Write the equation of the tangent to y^ = 4x at the pomt (1,2).

Write the equation of the normal at the same point. It is to be noted

that in this exercise the equations of the tangent and normal lines

are to be found, and not the lengths of the tangent and normal as

in the preceding exercise.

3. Write the equation of the tangent to

I* «*— +— = 1
25 ^9 ^

at the point (3, 2.4). Use implicit differentiation.

4. Find the equation of the curve whose subnormal is of constant

length 4 and which passes through the point (1, 3).

2
6. Find the length of the tangent to j/ = - at the point where

y = 1.

6. Find the length of the normal to the curve y

point where x = 3.

7. Find the equation of the curve passing through the point (1, 3)

and having a subtangent equal to the square of the ordinate.



CHAPTER V

SECOND DERIVATIVE. POINT OF INFLECTION

48. Second Derivative, Concavity. Since the first derivative

of a function of x is itself a function of x, we can take the deriva-

tive of the first derivative. The derivative of the first derivative

is called the second derivotive. In the case of a function y of x, it

di^)
is denoted by the symbol —-r-— , or -r- vj') , or more commonly by

dh/ dhi
-j-j* -r-^ is read "the second derivative of y with respect to x." Ifr

d^
must here again be remembered that -r-^ is not a fraction with a

numerator and a denominator, but is only a symbol representing

the derivative of the first derivative.

If y = f{x), the first derivative of y with respect to x is some-

times written y' and very commonly fix). Similarly the second

derivative is indicated by/"(a;).

The derivative of the second derivative is called the third deriva-

d^v
tive. It is designated by -r-^» or ii y = f(x), by f"'{x). The nth

derivative is designated by-i-^' or by/^"^^(x).

Between the points A and C, Fig. 16, where the curve is con-

cave downward, the slope of the tangent decreases from large

positive values near A to negative values near C. This means

that the tangent revolves in a clockwise direction as the point of

tangency moves along the curve from A toward C. Clearly this

will always happen for any portion of a curve that is concave

downward. (See Fig. 32, a, h, and c.) The slope decreases as the

point of tangency moves to the right.

On the other hand, if a portion of a curve is concave upward,

the slope of the tangent increases as the point of tangency moves

to the right. Thus in Fig. 16 the slope of the tangent is negative

at C and increases steadily to positive values at E. The same

70
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thing is evidently true for any portion of a curve that is concave

upward. In this case the tangent line revolves in a counter-

clockwise direction.

Since the first derivative of a function is equal to the slope of

the tangent to the curve representing the function, what has just

been said can be stated concisely as follows:

If an arc of curve is concave upward the first derivative is an

increasing function, while if the curve is concave downward, the

first derivative is a decreasing function.

If the second derivative of a function is positive between cer-

tain values of the independent variable x, the first derivative is an

increasing function, the tangent line revolves in a counter- clock-

FiG. 32.

"wise direction, and consequently the curve representing the

function is concave upward between the values of z in question.

If the second derivative is negative, the first derivative is a de-

creasing function and the curve is concave downward. Thus in

Fig. 16 the second derivative is negative between A and C, and

between E and G. It is positive between C and E, and between

G and /.

49. Points of Inflection. Points at which a curve ceases to be

concave downward and becomes concave upward, or vice versa,

are called 'points of inflection.

At such points the second derivative changes sign. C, E, and

G, Fig. 16, are points of inflection. At C, for instance, the second

derivative changes from negative values to positive values.

Illustration 1. Study the curve y = |x' by means of its

derivatives.

Differentiating,

dx~ ^^*

d^y _
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When a; < 0, -^ < 0, -7- = ^x'^ is a decreasing function, and

the curve y = |x' is concave downward. When x > 0,

d^y dy . .

-Y~2
^ ^> TT ^^ ^^ increasing function, and the curve y = Ix^ is

concave upward.

Fig. 33.

d'^y
At the point where x = 0, -7^2 changes sign from negative to

positive, and the curve changes from being concave downward to
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being concave upward

inflection.

dy

Hence the point (0, 0) is a point of

Since ^- is positive except when x = 0, ?/ iX* IS an in-

creasing function excepting when x = 0. When x = the curve

has a horizontal tangent.

Fio. 34.

In Fig. 33 the graphs of the functions y= \x^ and of its first

and second derivatives are drawn on the same axes. Trace out

in this figure all the properties mentioned in the discussion.

Illustration 2. Let

y = Ix' — x^ -\- Ix + 2.

Differentiating,
Jdy _
dx

Ix- -2x + l

d'y

.dx^

h(x

X —

- l){x -

2.

3).
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At X = 2, -T^ changes sign from minus to plus. Hence the curve

is concave downward to the left, and concave upward to the right

of the line x = 2. The point on the curve whose abscissa is 2 is

then a point of inflection. The value of the function corresponding

to X = 1 is a maximum value, and the value of the function

corresponding to x = 3 is a minimum value. See Fig. 34 for a

sketch of the function and its first and second derivatives. Trace

out in the figure what has been given in the discussion.

The more important properties of the function are put in tabular

form below.

X
dx^

dy

dx
Curve

X < 2

X > 2

X = 2

+
Decreasing

Increasing

Concave downward.
Concave upward.

Point of inflection {y = 2^),

X < 1

1 < X < 3

X > 3

X = 1

X = 3

+

+

Increasing,

Decreasing.

Increasing,

Maximum point (v = 2f).

Minimum point {y = 2),

Exercises

Find the maximum and minimum points and points of inflection of

the following curves. Sketch the curves,

1. y = x' — 3x^

2. y = x' 4- 3x2,

3. 2/
= 2x3 + 3x2 4. ga; _|_ 1,

4. 2/ = 3x* - 4x3 - 1.

6. y = x'.

6. t/ = 2x< - 4x3 - 9x2 _^ 27x + 2,

1. y = 6x^ - 4x3 _|_ I



CHAPTER VI

APPLICATIONS

60. Area under a Curve: Rectangular Coordinates. An im-

portant application of the anti-derivative is that of finding the

area under a plane curve.

Let APQB, Fig. 35, be a continuous curve between the ordinates

X = a and x = b. Further, between these limits, let the curve

lie entirely above the X-axis. Our problem is to find the area,

A, bounded by the curve, the X-axis, and the ordinates x = a

and X = h.

The area can be thought of as generated by a moving ordinate

starting from x = a and moving to the right to a position DP where

the abscissa is x. This ordinate sweeps out the variable area u,

which becomes the desired area A when x = b. On moving from

the position DP to the position EQ where the abscissa is a; + Ax,

the ordinate to the curve takes on an increment Ay and the area u

an increment Aw. By taking Ax small enough the curve is either

ascending or descending at all points between P and Q. It

follows at once from the figure that

yAx < Au < (y -{-Ay)Ax, (1)

or

Au
, .

y <x:;.<y + ^y-
Ax

75
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(If the curve descends between P and Q the signs of inequahty in

(1) are reversed. The argument which follows will not be affected.)

As Ax approaches zero, Ay approaches zero and y -\- Ay

approaches y. Hence v-' which lies between y and y + Ay,

approaches y. Thus

lim Am ^
Aa:=0

J>^x
^'

or

If the equation of the curve is y = f(x),

g = m. (3)

Let F{x) be a function whose derivative is /(x) . Then

u = Fix) + C.

C is determined by the condition that u = when x = a. Then

C = - F(a)

and

u = F{x) - F(a), (4)

an expression for the variable area measured from the ordinate

X = a to the variable ordinate whose abscissa is x. A, the area

sought, is obtained by putting x = 6 in equation (4).

A = F(b) - F(a) (5)

Illustration. Find the area A bounded hy y = x', the X-axis,

and the ordinates x = 2 and x = 4.

du

dx
= x\

u = \X'' + c.

When X = 2, u = 0, andC = -- A
3* Then

and

u = \x' _ 8
i)
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Exercises

1. Find the area bounded by the X-axis, the lines x = 1 and x = 2,

and

(a) y = mx.

(b) y = x^.

(c) y = 2x2 + 3x + 1.

2. Find the area between the curves y = x^ and x = j/';

.
y* = a{a — x) and y = a — x; y^ = ^x and y = 2x; y^ = x* and ?/ = x.

3. Find the area bounded hy y = %/x + 1, the Z-axis, and the

ordinates x = and x = 2.

51. Work Done by a Variable Force. In this section there is

given a method of finding the work done by a variable force

whose line of action remains unchanged.

Illustrations of such variable forces are:

1. The force of attraction between two masses, m and ilf, is

given by the Newtonian law
ItMrn

fis) = -^'

where s is the distance between the masses and A; is a factor of

proportionality. Note that the equation is of the form

f(s) - "-,

2. The force exerted by the enclosed steam on the piston of a

steam engine is, after cut-off, a function of the distance of the

piston from one end of the cylinder.

3. The force necessary to stretch a bar is a function of the

elongation of the bar.

Let AB, Fig. 36, represent a bar of length I, held fast at the

left end, A. A force / is applied at its right end and the bar

is stretched. It is shown experimentally that up to a certain limit

the elongation, s, is proportional to the force applied (Hooke's

Law), i.e.,

f = ks,

where A; is a constant depending upon the length of the bar,

its cross section, and the material of the bar.
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The work done by a constant force in producing a certain

displacement of its point of application in its line of action is

defined as the product of the force by the displacement. In

the problem which we are considering the force varies with the

displacement. The work cannot be found by multiplying the

displacement by the force. Instead it will be found by integrat-

ing an expression for the derivative of the work with respect

to the displacement.

Let w denote the work done in producing the displacement from

s = a to a variable position s = s. Let Aw denote the work

done in producing the additional displacement As. Let / denote

the force acting at s, and / + A/ the force acting at s + As. A/

I I

FiG. 36.

may be positive or negative according as the force increases or

decreases with distance. For definiteness suppose A/ positive.

In producing the displacement As the force varies from / to

/ + A/, and hence the work Aw; lies between /As and (/ + A/) As,

which represent the work which would have been done had the

forces / and / + A/, respectively, acted through the distance As.

Hence
/As < Aw; < (/ + A/) As,

or

f<fs<f+^f-
As As approaches zero, A/ approaches zero, and we obtain,

dw
ds

= f. (1)
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Integration gives

w = F{s) + C, (2)

where F{s) is a function whose derivative is /.

When s = a, w = Q, (2) gives C = — F{a) and,

w =F{s) -Fia). (3)

This represents the work done in the displacement from s = a

to s = s. The work, W, done in the displacement from s = a

to s = & is obtained by substituting 6 for s in (3).

W = F(b) - F(a). (4)

Illustration 1. Find the work done in stretching a spring from a

length of 20 inches to a length of 22 inches, if the length of the

spring is 18 inches when no force is applied and if a force of 30

pounds is necessary to stretch it from a length of 18 inches to a

length of 19 inches.

Denote the elongation of the spring by s. In accordance with

Hooke's Law,

/ = ks.

Since s = 1 when / = 30, A; = 30 and/ = 308

Substituting in equation (1),

-r = 30s.
as

w = 15s2 + C.

The problem is to find the work done in changing the elonga-

tion from s = 2 to s = 4. When s = 2,w = 0. Hence C = — 60,

and

w = 15s2 - 60.

The required work, W, is found by giving to s the value 4.

TF = 240 - 60 = 180.

Thus the work done is 180 inch-pounds, or 15 foot p junds.

Illustration 2. Two masses M and m are supposed concen-

trated at the points A and B, respectively. Find the work done
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against the force of attraction in moving the mass m along the line

AB from a distance a to a distance b from the mass M, the latter

mass being fixed.

If / is the force of attraction between the two masses,

_ kmM
f - g2

Then
dw _ kmM
Is

~~
s2

From which
kmM

w = — + C.

-S +AS-

FiG. 37.

When s = a, w = 0. Hence
kmM

and

w = kmM —
\_a

1-

To find the required work, PF, let s = 6,

W = kmM - -

[a

1-

b_

Illustration 3. Gas is enclosed in a cylinder, one end of which is

closed by a movable piston. Find the work done by the gas in

expanding in accordance with the law pv^-* = K, from a volume
of 3 cubic feet at a pressure of 15,000 pounds per square foot to

a volume of 4 cubic feet.

Let A be the area of the cross section of the cylinder. Then
pA is the force on the piston, Fig. 37, and

dw
ds=P^'
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or

dw AK AK K I

ds
~ v^* ~ (AsY* ~ A'^U^*'

Integration
i

gives

1 K 1^~
0.4 ^""s"'*'^^

- ^ ^ +C
When V = 3,w = 0. Hence

1 K
0.4 3°"'

and
K r 1 1 -]

^ 0.4 [s^* v°*y

0.4 [3°" 40''_

81

When t; = 3, p = 15,000. Hence K = (15,000)(3i"), and

W = 150,000[0.75 - (0.75) i«l

= 12,230.

Exercises

1. A spring is 12 inches long and a force of 120 pounds is necessary

to stretch it from its original length, 12 inches, to a length of 14 inches.

Find the work done in stretching the spring from a length of 13 inches

to a length of 15 inches.

2. In the case of a bar under tension, Fig. 36, the relation between

the stretching force, /, the original length of the bar, I, and the elonga-

tion of the bar, s, is given by
^ EAs
^ = -r'

where E is the modulus of elasticity of the material of the bar and

A is the area of the cross section of the bar. Find the work done in

stretching a round iron rod ^ inch in diameter and 4^ feet long to a

length of 54.5 inches, given that E = 3-10^ pounds per square inch.

3. A spherical conductor, A, is charged with positive electricity and

a second spherical conductor, B, with negative electricity. The force

of attraction between them varies inversely as the square of the

6
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distance between their centers. If the force is 10 dynes when the

centers are 100 centimeters apart, find the work done by the force of

attraction in changing the distance between the centers from 140

centimeters to 120 centimeters.

4. Find the work done by a gas in expanding in accordance with

the law pv^ = C from a volume of 5 cubic feet to one of 6 cubic

feet, if p = 70 pounds per square inch when v = 5 cubic feet.

5. Find the work done in compressing a spring 6 inches long to a

length of 5§ inches if a force of 2000 pounds is necessary to compress

it to a length of 5 inches.

6. The work done by a variable force can be represented graphically

as the area under a curve whose ordinates represent the force. Con-
struct the figures and prove this fact for Illustrations 1, 2, and 3.

62. Parabolic Cable. Suppose a cable, AOB, Fig. 38, a, is

loaded uniformly and continuously along the horizontal, i.e., so

that any segment of the cable sustains a weight proportional to

the projection of the segment upon a horizontal line. Let k be the

weight carried by a portion of the cable whose horizontal pro-

jection is one unit of length.

Choose 0, the lowest point of the cable, as origin and a hori-

zontal line through as axis of x. LetP be any point on the cable.

Suppose the portion OP of the cable cut free, Fig. 38, b. To keep

this portion in equilibrium a horizontal force H and an inclined

force T must be introduced at the points and P, respectively.

The force H must be equal in magnitude to the tension in the cable

at 0, and it must act in the direction of the tangent line at that

point. Similarly, the force T must be equal to the tension in

the cable at the point P and act in the direction of the tangent

line. The force T can be resolved into its vertical and horizontal
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components V and H', respectively. Now H and H' are the only

horizontal components of the forces acting on OP and, since OP is

in equilibrium, they must balance each other. Therefore,

H = H'. (1)

Hence the horizontal component of the tension in the cable is

independent of the point P, i.e., it is a constant.

In like manner the only vertical components of the forces

acting on OP are the weight kx supported by OP, acting downward,

and V, the vertical component of T. They must balance one

another. Hence

V = kx. (2)

V
The slope of the tangent Ime to the curve at the point P is „/

Then
dy _ V^ _kx
dx~ H'~ H' ^'^'

This is the slope of the curve at any point. On integrating

we obtain the equation of the curve apart from the arbitrary

constant C.

y = % + c. (4)

C is determined by the condition that y = when x = 0. Then

C = 0, and (4) becomes

y = 2^- (5)

This is the equation of a parabola with its vertex at the origin.

63. Acceleration.^ In §38 acceleration was defined as the time

rate of change of velocity, i.e., as the derivative of the velocity

with respect to the time. But velocity is the derivative of dis-

tance with respect to time. Hence the acceleration is the second,

derivative of the distance with respect to the time. If s denotes

the distance and t the time, the acceleration is expressed by -w-.

In the case of a freely falling body

d'^s „.

• The statements in this section refer to motion in a straight line.
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The relation between s and t can be found from this differential

equation by integrating twice, as follows:

The first integration gives

and the second

s = igt^ + Cit + C2. (3)

Two arbitrary constants of integration are introduced. They
can be determined by two conditions. If

s = So (4)

and

v = -^ = Vo (5)

when t = 0, (2) gives Ci = Vq, and (3) gives C2 = Sq. Then

s = hgt' + vot + So. (6)

This result was found in §38 by essentially the same method, where

dv d^s
the symbol n^ was used instead of -n^'

Exercises

1. Solve Exercise 5, §38, by the method used above.

2. Obtain the relation v = \/2gs (see §38) directly from the

equation

ds
Hint. Multiply by 2 -jr •

dt^
= 9-

ds d^s _ n f^s

^dt di^ ~^^dt'

(ds\i
~T7 I with respect to t and the

second that of 2gs. We then have

Determine C by the condition that v = Q when 8 = 0.
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64. The Path of a Projectile. An interesting application of

integration is to find the equation of the path of a projectile, a

baseball for instance, thrown with a given velocity at a given

inclination to the horizontal.

Let 0, Fig. 39, be the point from which the ball is thrown.

Take this point as the origin of a system of rectangular coordi-

nates. Let the ball be thrown so that its direction at the instant

of leaving the hand makes an angle a with the horizontal, and let

the initial velocity of the ball be Vq. Then the horizontal com-

ponent of the initial velocity is Vo cos a, while its vertical

component is Vo sin a. That is, at the instant the ball is thrown

its x-coordinate is increasing at the rate of Vo cos a feet per second.

Similarly the initial rate of change of the ^/-coordinate is vq sin a.

Fig. 39.

At the end of t seconds after the ball was thrown it is at the point

P whose coordinates are x and y. If the resistance of the air is

neglected there is no force acting on the ball tending to change the

component of its velocity parallel to the X-axis. Hence the

x-component of the velocity is at all times the same as at the

beginning, viz., Vq cos a. The x-component of the velocity is also

dx
-rr, viz., the time rate of change of the abscissa of the ball. There-

fore we can write

dx . .

jT = Vo cos a. {1)

From which on integration

X = {vo cos a)t + C. (2)

Time is counted from the instant the ball was thrown. The
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condition for determining C is then that a; = when f = 0. It

follows that C = 0, and (2) becomes

X = {vo cos a)t. (3)

This equation gives the x-coordinate of the ball at any time t.

In the vertical direction, the force of gravity acts to change the

t/-component of the velocity.

Then

g= -.. (4)

The negative sign is used since the force of gravity causes the

velocity in the direction of the positive F-axis to decrease. In-

tegration gives

1= -gl + C. (6)

dvd is determined by the condition that 37 = ^0 sin a when t = 0.

Then C2 = Vq sin a and (5) becomes

^y
= — gt + v^ sin a. (6)

Integrating again,

y = -W + i^o sin ci)t + C3. (7)

Since y — when ^ = 0, C3 = 0, and (7) becomes

y = — hgi^ + (^0 sin a)L (8)

This is the ^/-coordinate of the ball at any time t. Equations (3)

and (8) are the parametric equations of the path of the ball.

The elimination of t between these equations gives the rectangular

equation of the path,

y = — :r~2 r~ x^ + x tan a. (9)"
2^0 cos^ a

This is the equation of a parabola with its vertex at the point,

r?;o^ sin 2a Vq'^ sin^ a"!

L 2g ' ~2^J"
Tt is to be remembered that in the solution of this problem the
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resistance of the air was neglected. Consequently the results

obtained can be regarded only as approximations. Experimentally

it has been shown that the resistance of the air increases with the

velocity of the moving body. For low velocities the resistance is

assumed to vary as the first power of the velocity, but for higher

velocities, such as are attained by rifle balls, the resistance is as-

sumed to vary with the second power, and the results obtained

above cannot be considered to be even approximations.

Exercise

1. Find the angle of elevation, a, at which the ball must be thrown

to make the range, OA, Fig. 39, a maximum.



CHAPTER VII

INFINITESIMALS, DIFFERENTIALS, DEFINITE INTEGRALS

55. Infinitesimals. In §23 an infinitesimal was defined as a

variable which approaches the limit zero. Thus, x^ — 1, as z

approaches 1, is an infinitesimal.

It is to be noted that a variable is thought of as an infinitesimal

only when it is in the state of approaching zero. Thus x^ — 1 is

an infinitesimal only when x approaches +1 or —1. An in-

finitesimal has two characteristic properties: (1) It is a variable.

(2) It approaches the limit zero; i.e., the conditions of the problem

are such that the numerical value of the variable can be made less

than any preassigned positive number, however small.

This meaning of the word infinitesimal in mathematics is entirely

different from its meaning in everyday speech. When we say

in ordinary language that a quantity is infinitesimal, we mean
that it is very small. But it is a constant magnitude and not one

whose numerical measure can be made less than any preassigned

positive number, however small. Thus, 0.000001 of a miUigram

of salt might be spoken of as an infinitesimal quantity of salt, but

the number 0.000001 is clearly not an infinitesimal in the sense

of the mathematical definition. On the other hand, if we have a

solution containing a certain amount of salt per cubic centimeter

and allow pure water to flow into the vessel containing the solu-

tion while the solution flows off through an overflow pipe, the

quantity of salt per cubic centimeter constantly diminishes. The
amount of salt left in solution after a time t is then an infinitesimal,

as t becomes infinite.

Infinitesimals are of fundamental importance in the Calculus.

The derivative, which we have already used in studying functions,

is the limit of the ratio of two infinitesimals. Ay and Ax.

56. ^f^ • Let the arc AB, Fig. 40, subtend an angle a

88
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at the center, O, of a circle of radius r. The angle a is measured

in radians. Let AT he tangent to the circle at A, and let BC be

perpendicular to OA. The area of the triangle OCB is less than

the area of the circular sector OAB, and this in turn is less than

the area of the triangle OA T.

UBC){OC) < har^ < ^iAT)r

BC OC ^ ^AT— —
- < a <

r r r

OC .— sin a < a < tan a
r

OC
<

sin a

As the angle a approaches zero,

OC
OC approaches r and — approaches

1, and further, cos a approaches 1.

Hence the first and last members
of the inequalities (2) approach the

same limit, 1. Then the second
a

member, -;—» which lies between
' sin a

them, must approach the same limit, 1. Therefore

lim sin a lim
a=0

1

a
sin a

= I. (3)

57.
lim tan a lim tana

sin a

tan a

a=0

lim

a
^ lim /sina 1 \

«-o \ a cos a/

^ Aim sina\ /lim 1 \

\a=0 cc / \°'=° cos OC/

= 1.

lim tan a lim
a=0 = 1.

(1)

(2)

58.
lira 1 — cos a
1=0
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Since

^ 2 sin'' fT sin 7,
1 — cos a 2 2 . a= = sin ^»a a a 2

lim l-coso! /lim
^^" 2 W IJm . a

cc^Q a ~ I
«=^o a / I

«^o ^ 2

Hence

lim 1 — cos « _
a=^o « ~ "• ^^^

In Fig, 40, AB, AC, AT, BT, and BC are infinitesimals as a
approaches zero. Then,

from (3), §56, i™ ^ = h

from (1), §57, i^o ^ = 1,

from (2), §57, i^o ^^ = 1,

from (1), §58, i^o J^ = 0.

59. Order of Infinitesimals. Consider the infinitesimals x^

and X as X approaches zero. The ratio of x^ to x is x, which is

itself an infinitesimal. The infinitesimals x^ and x are repre-

sented. Fig. 41, by the ordinates MP and MN, to the curves

y = x^ and y = x. The quotient

X ~ MN
is a measure of the relative magnitude of these infinitesimals as

they approach zero. It shows that MP becomes small so much
more rapidly than MN that the limit of their quotient is zero.

On the other hand, the infinitesimals 2x and x behave very

2x
differently. Their quotient is — = 2, and the limit of this
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quotient is 2. In this case the limit of the ratio of the infini-

tesimals is not zero. (See Fig. 42.)

Again,

lim 1 — cos a

while

= 0,

lim sma
«-0 rv

= 1.

These illustrations of the comparison of two infinitesimals lead

to the following definitions of the order of one infinitesimal with

respect to another.

Two infinitesimals, a and /3, are said to be of the same order if the

ex

limit of ^ is a finite number not zero.

Fig. 41. Fig. 42.

7/ the limit of ^ is zero^ a is said to be of higher order than jS.

Thus, 2x and x are of the same order; x^ is an infinitesimal of

higher order than x; sin a and a, or CB and AB, Fig. 40,

are of the same order; tan a and a, or AT a,nd AB, Fig. 40, are of

the same order; tan a and sin a, or CB and AT, Fig. 40, are of the

same order; 1 — cos a is of higher order than a, or CA, Fig. 40,

is of higher order than AB.
Let ACB, Fig. 43, be a right angle inscribed in a semicircle.

Let BD be a tangent line, and let CE be perpendicular to BD. If
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the angle CAB approaches zero, BC, CD, BE, ED, CE, and arc

BC are infinitesimals. From similar triangles

AB BC BD
AC~ BE~ BC'

AB
Since lim a^— 1, it follows that

,. BC .. BD ^

Hence BC and BE, and BD and BC are infinitesimals of the same
order.

Again,

BC CE CD
AB BC ~ BD'

D

E

,• BG ^
Smct! lim -ir-f, = 0,AB '

Fig. 43.

Hence CE is an infinitesimal of higher order than BC, and CD
is an infinitesimal of higher order than BD.

Again,

CB ^CE^ _CD
AC ~ BE ~ CB

Since lim -j-^ = 0,AC '

hm^ = lim^ = 0.

Hence CE is an infinitesimal of higher order than BE, and CD is

an infinitesimal of higher order than CB.
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Exercises

1. Show that X — 2x^ and 3a; + x^ are infinitesimals of the same
order as x approaches zero.

2. Show that 1 — sin d and cos'' 9 are infinitesimals of the same

order as 6 approaches g-

3. Show that 1 — sin is an infinitesimal of higher order than

cos as 6 approaches ^^

4. Show that sec a — tan a is an infinitesimal as a approaches -•

5. Show that 1 — sin a is an infinitesimal of higher order than

sec a — tan a as a approaches ^•

6. Show that 1 — cos 6 is an infinitesimal of the same order as 0^

as 6 approaches zero.

T ou +1, + lim sin g - g
7. Show that ^^q = 0.

o ou +1. + lim sine - 9
8. Show that „ . „—.—r— = 0.»=o sin 9

9. Show that i™ *^^^T^^ = °-

10. Show that 1™*^J^^ = 0.*=o tan d

^^ n, . > , lim sin a — tan a
11. Show that .^ 7 = 0.«=0 tan a

12. Show that^'"^
/^".-^^"" = 0.«=o sin a

60. Theorem. The limit of the quotient of two infinitesimals,

a and /3, is not altered if they are replaced by two other infinitesimals,

a B
y and 5, respectively, such that lim -- = 1 and lim -: = 1.

Proof :

a
y ~a _ 7

~B~ TT'

lim —
lim ^ = a lim -i = lim j i

hm g^
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since

lim — = lim -v = 1-

7

It is evident from the proof that the limit of the quotient is

unaltered if only one of the infinitesimals, say a, is replaced by

T
another infinitesimal 7, such that lim - = 1.

a
Illustrations.

L Since

lim sin a _
a=0 ~ ~ ^»a

lim 1 ~" cos a _ Hm 1 ~ cos a
«-o sin a ~ "=o q.

= 0.

2. Since

lim tan a
a= a 1,

lim 1 — cos « _ lim 1 — cos « _
«-0 tan a "-0 a

3. In Fig. 40,

lim ^ ^ lim C;4 _ Urn C'A ^
cc^oAB »=OBC "=0AT

Exercises

l.Showthat^^"l^"7" = i

Hint. 1 — cos a = 2 sin^ ^-

2. Show that
lim̂ i^«a--cos«) ^
a=0 a^ ^

3. Show that
lim («-5)-sina ^ ^5.a=0 a

4. Show that"'" ^"'"'«
'

«=Ocos a sin- a ^*

K «, ,, . lim 33:" - 4x3
5. Show that

;,^0 2x^-5x< = ^'

Hint. Replace numerator by 3x* and denominator by 2x*.

A .A A
6. Show that "."^^—4^= ^^-^ = 2.

X^ X^ X^
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61. Diflferentials. Let PT, Fig. 44, be a tangent line drawn

to the curve y = f{x) at the point P. Let DE = Ax, RQ =
A?/, and let angle RPT = t.

From the figure,

RM . .,. .= tanr = / (x),
Ax

or

RM = fix) 'Ax.

This is the increment which the function would take on if

it were to change uniformly at a

rate equal to that which it had

at P.

This quantity, j'{x)Ax, is

called differential y, and is de-

noted by dy. Its defining equa-

tion is

dy = f'{x)Ax. (1)

Ax, the increment of the independent variable, is called differential

X and is denoted by dx, i.e., Ax = dx. Equation (1) becomes

dy = j'{x)dx\ (2)

In Fig. 44, RM = dy and DE = PR = dx.

In general, dy is not equal to Ay, the difference being MQ,

Fig. 44. However, it will be shown that ^^^g ^
— ~ ^•

lim RQ_f,(^s

or

lim \RQ_ Rm = .>r^.
ix=0 RM PR J ^•^^'^^^0 IRM PRJ (3)

RM

.

But, since p^ is constant and equal to/'(x), equation (3) becomes

lim RQ
Ax=0 RM 1,

> In the expression (2) for the differential of the function /(i), the first derivative

is the coefficient of the differential of the argument, and for this reason it is sometimes

called the differential coefficient.
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at

It is to be noted that dx is an arbitrary increment and that dy

is then determined by this increment and the value of the deriva-

tive, i.e., by the slope of the tangent at the point for which the

differential is computed, dx and dy are then definite quantities

and we can perform on them any algebraic operation. Thus we
can divide (2) by dx and obtain

t = f'M. (5)

where dy and dx denote the differentials of y and x, respectively.

Thus from the definition of differentials the first derivative may
be regarded as the quotient of the differential of y by the differ-

ential of X.

It is to be observed, however, that this statement gives no new
meaning to the derivative, since the derivative was used in the

definition of the differential.

62. Formulas for the Differentials of Functions. In accordance

with equation (5) of the preceding section, any formula involving

first derivatives can be regarded as a formula in which each first

derivative is replaced by the quotient of the corresponding

differentials. Thus,

, /m\ du dv

dx dx

dx

Each derivative being considered as a fraction whose denominator

is dx, we can multiply by dx, and obtain

vdu — udv

e)
=

v

In words, the differential of a fraction is equal to the denominator

times the differential of the numerator minus the numerator times the

differential of the denominator, all divided by the square of the denomi-

nator. It will be noted that the wording is the same as that

for the derivative of a fraction except that throughout the word
differential replaces the word derivative.
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The other formulas for derivatives which have been de-

veloped are expressed below with the corresponding formulas for

differentials.

Formulas

1.
dc

dc = 0.

2.
d{cu) du

dx ~ dx
d{cu) = cdu.

3.
d{u + v) du dv

dx ~ dx dx
d{u + v) = du + dv.

4.
du'* , du
dx dx

dw* = nM"~^ du.

6.
d(uv) dv du

dx dx dx
d(uv) = udv -{- vdu.

6.

, /u\ du dv
a ) v~j wt—
\v 1 dx dx

dx ~ v^

,
/u\ vdu — udv

7.
\v / dx

dx ~ v^

, /c \ cdv

8.
dx v*^

/ c \ cndv

9.

du

du dx dJ - ^"
.

2u^

The formula for the differential oi y = cu" can be put in the fol-

lowing convenient form

:

(fy du
10. — = n

—

}
y u

which is obtained directly by dividing dy = cnu'*~^du hy y = cW.

The process of finding either the derivative or the differential of a

function is called differentiation.

The process of finding a function when its derivative or differential

is given is called integration.

We have no symbol representing integration when applied to

derivatives. The symbol for integration when applied to dif-
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forentials is j . Thus I Sx^dx = x^ -\- C. The origin of this

symbol will be explained later. It is read "integral of."

Illustrations.

1. U y = Vn^S
dy = Ui - x2)-5( - 2xdx)

_ xdx

Vl - x^'

By formula 10, where w = 1 — x^,

dy _ 1 — 2x dx

J ~2 (1 - a;*)

xdx

2. If 2/
=

1 -a;*
X

X2- 1

^y =
(^^^^Tp

_ (x' — 1) c?a; — X (2a; dx)~
(x2_ 1)2

^ _ (x^ + l)dx

(x* - ly
'

3. If d?/ = xdx,

y = ixdx

= A r2xdx

=i-+c.

4. If dy = xVl — x^ dx,

y = Cx{l — x^)^dx

= -H/HI -x2)2( _2xdx)

(l-x^)^ + C.
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dtj dx

r'

2/ = C(x - 1).

5. If -
,

y X - 1

by formula 10.

ft If
d]i xdx

y x^ — 1

dy _ 1 2xdx

y ^ 2 x2- 1

y = C\/a;2 - 1.

Exercises

Find dy in the following ten exercises

:

1. J/
= x2 - 3x - 2. ^ V:

6. y =

2. 2/
=

(x-l)»

X- 1 7. J/
= (x - l)(x» - 1)2.

3. y = x^- x~^ - 3a;. 8. y = {x* + x - 2)».

,_i
4. y = (x - 2)*. 9. y = (x - 1)"

6. y = (x2 - 2)i 10. y = (x2 - 1)~^.

Integrate the following:

11. fxMx.

12. C{x^ - l)xdx.

13. fCx' - 3x + 5) (x2 - 1) dx.

14. r(x» - 2x - 6)3 (x - 1) dx.

/dx

16. Cs/x dx.

" /t
18. Cx^dx.
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19.
dy

y
=

X

20.
dy _ xdx

x2- 1

21.
dy _ (x^ - 2x + 4)dx

y ~ a;3-3x2+12a;-2'

lim
Ax

Since^

63. Differential of Length of

Arc : Rectangular Coordinates.

Let PR, Fig. 45, = Ax, RQ = Ay,

the chord PQ = Ac, and the arc

PQ = As. (s represents the length

of arc measured from some point

A.) PT is the tangent at P.

(Ax)2 + {Ayy

m /^\2 _ 1 ,
lim (^Y__ 1 ,

(f^vy
^0 \Ax) ^

"^ ^^=^0 \^xj ~ ^ "^
\dxl

lim Ac
A2:=0 ^s

= 1,

> When Ai is taken so small that the curve has no point of inflection between P
and Q, the chord PQ < arc PQ < PT + TQ, or Ac < As < Pr + TQ. Whence,

Therefore

Then from (1),

i<^<^+m

(ptX 2 ^ (da:) 2 + (dy)2 ^ [^ \dx)

[ac
J

(Ax) 2 + (A2/)2
J _|_ /^\f

lim /•

Ax=0 I Ac
I

= 1.

lim TQ
Ax=0 -^

lim Aj/ — dy Ay
^^-0 A^ a;^

r lim /. ''i/^l r 'im ^l „ n= [Ax^oV^ - Ayjj [ax=0 AcJ
"'

lim ^ =,

Ax— Aj/

lim As

AcAa;=s=0

(1)
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Ac can be replaced by As ( §60)

.

lira /As\ 2 ^ , , /M

'

^=0 \Ax) "^
[dxj

'

or

(ds)2 = (dx)2 + (dy)2 (1)

ds=Vl+(g)'dx (2)

ds = Vi + a~)^<iyVdy/ - (3)

Equation (1) shows that the line PT, Fig. 45. represents ds.

If T denotes the angle made by the line PT with the positive

X-axis,

dx = cos T ds

dy = sin r ds.

Illustration. Find the length of the curve y = fx^ between

the points whose abscissas are 3 and 8.

^= x^
dx

(I)'-
Substituting in formula (2),

ds = Vl + X dx.

Integrating,

s= 1(1 + x)' +C.

When X = 3, s = 0. Hence C = - Y, and

s= iil + xy -W
This formula gives the length of the curve measured from the

point whose abscissa is 3 to the point whose abscissa is x. On
placing X = 8 we obtain s = ^3^, the length of the curve from
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the point corresponding to x = 3 to the point corresponding to

X = 8.

Exercises

Find the differentials of the length of the following curves:

1. y = x'.

2. x^ + y^ = 4.

3. 2/ = xK
4. 2/2 = X.

5. 3x2 + 4y2 = 12.

6. xy = 1.

7. xj/2 = 1.

8. 7/ = x-^

64. The Limit of 2f(x)Ax. Let y = /(x) be a continuous

function between x = a and x = 6. In §50 it was shown that

the area bounded by the curve, the X-axis, and the ordinates

X = a and x = 6 is given by the formula

A = F{b) - F{a), (1)

where F{x) =
J f(x)dx. A second expression will now be found

for the area. Divide the interval h — a, Fig. 46, into n equal parts

and at each point of division erect an ordinate. Complete the

rectangles as indicated in the figure.

!/=/(«)

The sum of the rectangles of which DEQ'P is a type, is approxi-

mately equal to the area ABUV. The greater n, the number of

rectangles, i.e., the smaller Ax, the closer will the sum of the

rectangles approximate the area ABUV. We say then that

_ lim1"^ 2 DEQ'P,
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or
x = b

The above expression (2) represents the actual area and not

an approximation to it, as can be shown by finding the greatest

possible error corresponding to a given number of rectangles and

then proving that this error approaches zero as the number
of rectangles becomes infinite. Thus it is easily seen that the

difference between the true area A and the sum of the rec-

tangles is less than the area of the rectangle RSTU. The altitude,

f{b) — f{a), of this rectangle is constant while the length of the

base, Ax, approaches zero. Hence the area of RSTU approaches

zero. Therefore the limit of the sum of the rectangles is the

area sought.

On equating the two expressions for A, given by (1) and (2),

we have
x = b

where

Fix) = ff(x)dx.

This equation is the important result of this section. It gives a

means of calculating

Ax=
X =a

For, to calculate this limit we need only to find the integral of

f{x)dx and take the difference between the values of this integral

at X = a and x = h. The result of this section will be restated

and emphasized in the next section.

65. Definite Integral. The expression

x = a

which was introduced in the preceding section is of such great
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importance that it is given a name, "the definite integral of f{x)

between the limits a and b," and is denoted by the symbol

i f{x)dx.

Equation (3), §64, gives a means of calculating the value of the

definite integral.

The function F(x), the integral oi f{x)dx, is called the indefinite

integral of j{x)dx in order to distinguish it from the definite inte-

gral which is defined independently of it, viz., as the limit of a

certain sum.

We have then the following definition and theorem:

Definition. Let J{x) be a continuous junction in the interval from
X = a to X = b, and let this interval be divided into n equal parts of

length Ax by points Xi, Xz, Xi, . . ., x„_i. The "definite integral of

f{x) between the limits a and b" is the limit of the sum of the products

f{xi) Ax formed for all of the points Xq = a, Xi, xj, . . . , x„_i, as the

number of divisions becomes infinite.

Theorem. The definite integral of f(x) between the limits a and

b is calculated by finding the indefinite integral, F(x), of f{x)dx and

forming the difference F{b) — F{a).

The symbol for the definite integral,

fix)dx,r
is read "the integral from a to b of f{x)dx." As we have seen, it

means
h

Jf{x)dx = J2i Zff{x)Ax.
a a

Many problems, such as finding the work done by a variable

force, the volume of a solid, the coordinates of the center of

gravity, lead to definite integrals. But, no matter how a

definite integral may have been obtained and no matter what

other meaning it may have, it can always be regarded as repre-

senting the area included by the curve y = f(x), the X-axis, and

the ordinates x = a and x = b, provided that /(x) is a function
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which can be represented by a continuous curve. This fact, that

f{x)dxr
can be regarded as representing an area, enables us to calculate

its value. For the area in question is equal to F{b) — F{a),

where F{x) is the indefinite integral of f{x)dx. Consequently we
have, in all cases,

f{x)dx = F{b) - F{a).r
This is often written

X
b

j{x)dx = F{x) = F{b) - Fia),

to show how the result is to be calculated. Thus

I x^dx = -^
2^ _ P _ 7

3 3 ~ 3'

Exercises

Evaluate the following definite integrals:

r C'dx C
1. I (2x + Z)dx. 2. I ^- 3. I Va^ + x" xdx.

Ji Ji Jo

66. Duhamel's Theorem. If ai, ocz, as, • •, oin are n in-

finitesimals of like sign, the limit of whose sum is finite as n becomes

infinite, and if /3i, jSz, /Ss, • •
, /3„ are a second set of infinitesimals

such that

lim §J _ 1
n=co ^. - A.

where i = 1, 2, 3, • • •
, n, then

lim V „.. = lim V p,.n=m ^ n=co ^ t^*'

1 1

Proof. Let — = 1 + €<.
OCi
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Since

lim ^i _ .

n=co „. A.

^^
€i = 0.

n=oo

At first let it be assumed that the a's are positive. Let E be the

numerical value of the largest e, i.e.,

E >. le<', i = 1, 2, 3, • • • , n.

Then, since /3i = «» + e.a,, i = 1, 2, 3, • • • , n,

ai — Eai < ^i £ ai + Eai

az — Ea-i <. ^1 ^ a2 + Ea^

an - EUn <^n<an-\- E Un-

Adding, we get
i = n x=n »' = »

{l-E)%ai<^^i<{l-\-E) X cii.

1=1 i = 1
» = 1

^^E = Q,
n=oo

n i = n

lim^ a< = lim ^ /3i

t = 1 » = 1

and the theorem is proved.

If the a!s are negative, it will be necessary to change the proof

just given, only by reversing the signs of inequality.

Section 64 furnishes an illustration of this theorem. In this

example the limit of the sum of the infinitesimal trapezoidal

areas DEQP is finite as n becomes infinite, since it is the area

sought.

DEQ'P < DEQP < DEQP',

(see Fig. 46), or

yAx < DEQP < {y + Ay) Ax,

or

DEQP y + Ay
_

^ ^ DEQ'P ^ y

This shows that the limit of the ratio of the trapezoidal area to

Since

n=<

t = n
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the area of the corresponding rectangle is 1 as n becomes infinite.

Then by Duhamel's Theorem,

Um 2 DEQ'P = ^^^ 2 DEQP = A,

Since we are able to replace the infinitesimals DEQP by the

infinitesimals DEQ'P, we may calculate the area which is the sum
of these infinitesimals by means of the definite integral. This

is a characteristic process in the use of the definite integral.

The quantity sought is subdivided into n portions which are

infinitesimals as n becomes infinite. These are replaced by n

other infinitesimals of the form f{xi) Ax. The limit of the sum of

the latter infinitesimals is a definite integral.

Since the limits of the two sums are equal by Duhamel's

Theorem, the definite integral is equal to the quantity sought.

Illustrations of the applications of Duhamel's Theorem to

obtain definite integrals representing work, force, volume, etc.,

follow.

67. Work Done by a Variable Force. In §51 there was found

the work done by a variable force, /(s), in producing a displacement

Fig. 47.

from s = a to s = &. We shall now obtain the same result by

building up the definite integral which represents the work.

Divide the total displacement h — a, Fig. 47, into n equal parts

of length As. The force acting at the left end of one of these

parts is /(s), while that acting at the right end is /(s + As).

The total work done in producing the displacement, 6 — a, is

approximately
8 = 6

s = a

The actual work is the limit of this sum as As approaches zero.^

' This step can be justified by using Duhamel's Theorem. Let Au) represent the

work done in producing the displacement As. Then
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Illustration 1. The solution of the problem of Illustration 1,

§51, is expressed by
4

I SOsds = 15s2 = 180.

2

Illustration 2. The solution of the problem of Illustration 2,

§51, is expressed by

w = kmM I
—- = — kmM — = — kmM \r I

J„ s- s „ L6 a J

= kmM\

Illustration 3. In solving the problem of Illustration 3, §51,

we can write

_ lim

« = o

where t)2 and t^i are the volumes corresponding to s = a and s — b,

respectively. Since pv'' = C, p = ^' and

, C'dv _ C
J

C

The student will complete the numerical work.

n= 00

But /(s)As < Au) < /(s + As)A8,

, ^ Aw /(s-fAs)
°' ^</(.)A«<-7(«)
Then

lim Am

1 _ A;

^'"'~'' ~ '"'~''^-

Hence by Duhatnel's Theorem

b

As=0 /(s)A8

So 2^-= ii"o 2/WA.=/j'/(,M..
o a "

s = b c

s = a *f "
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Exercises

1. Set up and evaluate definite integrals representing the work
sought in Exercises 1-5, §51, Chapter VI.

2. Water is pumped from a round cistern whose median section

is a parabola. The cistern has a diameter of 8 feet at the top and
it is 16 feet deep. The water is 10 feet deep. Find the work done
in pumping the water from the cistern if the discharge of the pump
is 3 feet above the top of the cistern and if the friction in the pump
and the friction of the water in the pipes are neglected.

3. Find the work done by a gas in expanding in accordance with

the law pv^-* = C from a volume of 10

cubic feet to one of 12 cubic feet, if

when V = 9 cubic feet p = 100 pounds
per square inch. \B

4. Find the work done in stretching

a spring whose original length was 15

inches from a length of 16 inches to a

length of 18 inches if a force of 40

pounds is required to stretch it to a

length of 16 inches.

6. Find the work done in compress-

ing a spring of original length 5 inches

to a length of 3§ inches, if a force of

900 pounds is required to compress it

to a length of 4 inches.

6. The force due to friction is pro-

portional to the component of force Fig. 48.

normal to the surface over which a body
is being moved. Find work done in dragging a body weighing 100

pounds from the base to the top of a slide in the form of a segment

of a sphere, Fig. 48, if the distance AB = 200 feet and the radius of

the sphere is 500 feet. Express the result in terms of /*, the coeffi-

cient of friction.

68. Volume of a Solid of Revolution. The area bounded by

the curve y = f{x), Fig. 46, the ordinates x = a and x = b,

and the X-axis, is revolved about the X-axis. Find the volume of

the solid generated.

Divide the interval AB = 6 — a on the X-axis into n equal parts

of length Ax and pass planes through the points of division

perpendicular to the X-axis. These planes divide the volume into

H
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n portions, Ay. A typical portion can be regarded as generated

by revolving DEQP, Fig. 46, about the base DE in the X-axis.

Replace the volume of this slice by that of the cylinder generated

by the revolution of DEQ'P about the Z-axis. Its volume is

TTj/'Ax. The total volume is then

or

-r.
Illustration. Find the volume between the planes x = 1 and

X = 3 of the solid generated by revolving the curve y = x^ -\- x

about the X-axis.

/»3 /»3

F = TT
I

{X^ + Xydx = TT \ {x* + 2x3 _|_ x^)(lX

= X[U' -I- \X* -I- W]\ = TTXV^X^ + hx + ii;

= 27ir(| -1-3-^1)- x(i + i 4- i) =
-^ tPr.

Exercises

1. Find the volume between the planes x = and x = 3 of the solid

generated by revolving the parabola y^ = 6x about the X-axis.

2. Find the volume of a sphere of radius r.

3. Find the volume of the ellipsoid of revolution generated by
revolving the ellipse

16
"^

9

about the X-axis; about the K-axis.

4. Find.the volume between the planes x = and x = 4 of the solid

generated by revolving y^ = x^ about the X-axis.

6. Find the volume of the solid generated by revolving x' + y^ = a'

about the X-axis.

6. Find the volume generated by revolving y^ = 2ax — x* about

the X-axis.

7. Find the volume generated by revolving the oval of

y* = x(x — l)(x — 2) about the X-axis.
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69. Length of Arc: Rectangular Coordinates. In §63 the

length of arc of a curve was found by integrating its differential.

We shall now express the length of arc by means of a definite

integral.

To find the length of arc APQB, Fig. 49, divide CH into n
equal parts of length Ax each. At the points of division erect

ordinates dividing the arc AB into n parts of which PQ is one.

The length of arc AB is defined by

g ^ lim V ^
n=oo ^^

3 P Q

A
/
y^

AC \B
\

O C D E
«-o-*j

H-

Fig. 49.

where Ac is the length of the chord PQ. Then

s = ^^^ y,V(Ax)^+(Ayy

Since

= 1,

it follows by Duhamel's Theorem that

b

lim
s =:iT.x^^uM'^
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Hence,

« = I \/l + l^) dx.r>/^^
Exercises

l.^Find the length of the curve y = x^ between the points (0, 0)

and'(l, 1).
z 1 1

2. Find the entire length ofx* +y* = a^-

3. Find the entire length of x^ + y^ = a^.

4. Find the length of y^ = 4:X^ between the points (0, 0) and (4, 16).

70. Area of a Surface of Revolution. The portion AB, Fig. 49,

of the curve y = f{x), between the ordinates x = a and x = b,

is revolved about the X-axis. Find the area, S, of the surface

generated.

Pass planes as in §69 perpendicular to the X-axis through the

equidistant points of division of the interval CH = h — a.

Denote the convex surface of the frustum of the cone generated by
the revolution of DEPQ by AF. The area, S, of the surface of re-

volution will be defined as the limit of the sum of the convex

surfaces, AF, of these frusta as n becomes infinite, i.e., as Ax
approaches zero. Then,

„ lim V A p lim V o ^ + ('^ + ^V^
Ac

Ay
By Duhamel's Theorem we can replace y + -„" by y, since

lira 2/ + |Aj/

Ax-o V,
= 1- Hence,

Since

lim ,—

,

\x=0 I T— = 1>
'dy\i
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Therefore

a

yds,
x — a

5 = 2x I v\il + [~\''dx

= 27r

where ds is the differential of the length of arc. The latter form

is easily remembered since 2Tryds is the area of the strip of surface

generated by revolving ds, the differential of arc, about the X-axis

at a distance y from it. If it is more convenient to integrate with

respect to y, ds can be replaced by

v^d)^"-
and the limits are the values of y corresponding to x = a and x = b.

Thus

Wl + U) dy = 2ir\ yds.

Exercises

1. Find the surface between the planes x = and x = 5 of the

paraboloid of revolution obtained by revolving t/'* = 4x about the

X-axis.

2. Find the surface of the sphere generated by revolving x'' + 2/^ =^*

about the X-axis.

3. Find the surface of the right circular cone whose altitude is 10

feet and the radius of whose base is 5 feet.

4. Find the surface of the solid generated by the revolution of
2 2 2

a^ + 2/' = a* about the X-axis.

71. Element of Integration. The first step in setting up a

definite integral is to break up the area, volume, work, length, or

whatever it is desired to calculate, into convenient parts which

are infinitesimals as their number approaches infinity. These

parts are then replaced by other infinitesimals of the typical

8
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form fix)dx, which must be so chosen that the limit of the ratio

of each infinitesimal of the second set to the corresponding

infinitesimal of the first set is one. fix)dx is called the "element"

of the integral or of the quantity which the integral represents.

Thus the element of volume is wy^dx, that of area is ydx, that of

work is Fdx.

If the magnitude which it is desired to calculate is broken up into

suitable parts, the expressions for the elements can be written

down at once. The best way of retaining in mind the formulas

of §§68, 69, and 70 is to understand thoroughly how the elements

are chosen. The process of writing down the element of integra-

tion at once becomes almost an intuitive one.

72. Water Pressure. The pressure at any given point in a

liquid at rest is equal in all directions. The pressure per unit

area at a given depth is equal to the

pressure on a horizontal surface of

unit area at that depth, i.e., to the

weight of the column of liquid sup-

ported by this surface. This weight

is proportional to the depth. Hence

the pressure at a depth x below the

surface of the liquid is given by the

formula p = kx. If the liquid is

water and the depth x is expressed

in feet, k = 62.5 pounds per cubic

foot.

The method to be used in finding the water pressure on any
vertical surface is illustrated in the solution of the following

problems:

1. Find the pressure on one side of a gate in the shape of an
isosceles triangle whose base is 6 feet and whose altitude is 5 feet,

if it is immersed vertically in water with its vertex down and its

base 4 feet below the surface of the water.

Take the origin at the vertex of the triangle, the axis of x vertical,

and the axis of y horizontal, as in Fig. 50. The altitude is sup-

posed to be divided into n equal parts and through the points of

division horizontal lines are supposed to be drawn dividing the

surface into strips. The trapezoid KHMN = AA is a typical
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strip. Denote the pressure on this strip by AP. The abscissa

of the lower edge of the strip is x and the pressure at this lower

edge is A;(9 — x). Then the total pressure is

P = n^^Xm-x)LA. (1)

In accordance with Duhamel's Theorem we can replace AA
by 2i/Ax.

x=

or

Since

= 2A;
I

(9 - x)ydx. (3)

V = 3x

V
•5

P = ~
\ (,9-x)xdx

_6kr
5 Jo

= g- "2- - 3^ = 5312.5 pounds. (4)

In general, if u denotes the depth below the surface of the liquid

and z denotes the width, at the depth u, of the vertical surface

on which the pressure is to be computed,

P = k \ uzdu, (5)

where a and b are the depths of the highest and lowest points,

respectively, of the surface. For,

p = lim X\kuAA = lin^ X kuzAu = k \ uz du.
n^a, ^^ Au=0 •^T I

2. Find the total pressure on a vertical semi-elliptical gate

whose major axis lies in the surface of the water, given that the

semi-axes of the ellipse are 8 feet and 6 feet. Take the origin at
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the center, the axis of x horizontal and the axis of y positive down-

ward. The element of pressure is

and the total pressure is

2kyx dy

^ =4 yxdy.

X is expressed in terms of y by means of the equation of the

ellipse,

Then

— -u ?^ = 1

64
"^

36

P = 2ki I yVSQ - y^ dy.

Exercises

1. Find the pressure on the vertical parabolic gate, Fig. 51: (o)

if the edge AB lies in the surface of the water; (b) if the edge AB lies

5 feet below the surface.

2. Find the pressure on a vertical semicircular gate whose diameter,

10 feet long, lies in the surface of the water.

73. Arithmetic Mean. The arithmetic mean, ^, of a series of

n numbers, Oi, 02, aa, • • • , a„, is defined by the equation

or

nA = ai + a2 + as + • • • + a„,

ai + a2 + as + • • • + a„
A =

That is, A is such a number that if each number in the sum
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Oi + c[2 + cfs + * • ' -\- ttn be replaced by it, this sum is

unaltered.

74. Mean Value of a Function. We can extend the idea in-

volved in the arithmetic mean to other problems.

Illustration 1. Suppose a body moves with uniform velocity

a distance of 1 foot during the first second, a distance of 2 feet

during the second second, a distance of 3 feet during the third

second, and so on for 10 seconds. At the end of 10 seconds the

body would have moved 1 + 2 + 3+ • • -+10 = 55 feet.

The mean, or average, velocity of the body is the constant velocity

with which the body would describe this distance in the same

time. It is equal to 5.5 feet per second.

If the velocity of the body instead of changing abruptly as

indicated above were changing continuously in accordance with

the law V = t, the total distance s traversed in 10 seconds would be

•10

tdt = 50.

J

"10 /*1

vdt = j

Jo

From this equation

The mean velocity, V, the constant velocity which a body must

have in order to traverse the same distance in the same length

of time, is 50 -i- 10 = 5 feet per second. This can be expressed

by the formula

J

"10 /»10

Vdt = I vdt.

Jo

vdt

10

In general, if i; = j{t), the mean velocity, V, of the body in

the interval of time between t = a and f = 6 is expressed by the

equation

= { At)dt,

or, since F is a constant,

S{t)dt

V =

Vdt= I

a Ja

Ja
b — a
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V is the constant velocity, which replacing the variable velocity,

" = /(O, at every instant in the interval between t = a and t = b,

gives the same distance traversed, i.e., leaves the value of the
nb

integral, I v dt, unchanged.

Illustration 2. Consider the work done by a variable force /
acting in a straight hne, the X-axis, and producing a displacement

from a; = a to X = 6. If the law of the force is f = (f){x), the

mean force F in the interval from a; = a to x = 6, or the constant

force which would do the same work while producing the dis-

placement 6 — o, is given by the equation

nb f*b

I
Fdx =

I
0(x)dx,

f.

or

(l){x)dx

F =
b — a

F is a constant such that if, in the integral I 4>{x)dx, the func-

tion ^(x) be replaced by it, the value of the integral remains

unchanged.

Illustration 3. Let a unit of mass be situated at each of the

points on the X-axis whose abscissas are Xi, X2, X3, • • •, x„.

The X-axis is taken horizontal and the masses are acted upon
by gravity. We shall find the distance, x, from the origin at

which the n masses must be concentrated in order that the sum of

the moment about the origin of the forces acting on the masses

shall be unchanged.

Clearly x must satisfy the equation

gnx = g{xi + X2 + X3 -{- • • • + x„),

or

Xi + X24-X3+ • • . +x„
X = •

n

If there are mi, mj, ms, • « •
, 7n„ units of mass concentrated

at Xi, X2, Xs, • • •
, x„, respectively, the mean moment arm, x,

the distance from the origin at which the masses must be con-
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centrated in order that the sum of the moments about the origin

of the forces acting on the masses shall be unchanged, is given by
the equation

(mi + m2 + • • • m„)x = niiXi + W2X2 + • • • + m„x„,

or
- 2 THiXi

2wi
-, (i= 1,2,3,. . .,n). (1)

rr is a constant such that if in the sum 2 m,x, each of the num-
bers Xi, X2, • • •

, x„ be replaced by x this sum is not changed.

Now let there be a continuous distribution of matter along the

X-axis from x = a to x = b. Divide the interval b — a into n
segments each of length Ax. An expression for the approximate

sum of the moments about the origin of the forces acting on the

mass is 2 gxAmt, where Am, is the mass of the segment AZf.

An expression for the approximate force is 2 ^Am,-. Hence an

expression for the approximate x is „ .
—-*• It is readily seen

that as Ax approaches zero, the numerator approaches the total

moment and the denominator approaches the total mass. Hence

lim ^ ^ T^
Am=o ZigAm I dm

(2)

X is a constant such that if in the integral, I x dm, x is replaced, I xdm,

by X, the value of the integral is unchanged.

For example, if the density is proportional to x^, i.e., is equal to

kx^, the element of mass, dm, is kxHx, and we have

J'*b
nb

xkxHx
I

x^dx
_ a _ Ja

•6 Ch
Mx

3 b* - a\
»b 7'6 4 fe» — a'
kx^dx

I
x^dx

a Ja

The mean value, M, cf the function fix) with respect to the
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magnitvde u, which is a function of x, is defined by the equation

(3)

where M is a constant, or

Jf*x
= b r*x = b

Mdu =
I

f{x)du,
x = o Jx = a

J'*x
= b

f{x)du
x = aM =
'1 = 6

duJ^di
x= a

(4)

M is a constant such that if the function f{x) is replaced by it in

Jr*x
= b

f{x)du, the valv£ of the integral is not changed.
a; = o _
In (2), X is the mean value of x with respect to the magnitude,

m.

A particular case of (4) is that in which u = x. Then (4)

becomes

M = ,—^^ I f(x) dx. (5)
1 p

Illustrations 1 and 2 are cases of

this type.

When w = a;, as in equation

(5), M can be interpreted as

the altitude, AC, of a rectangle

wth base AB = b — a, Fig.

52, whose area is equal to the

area bounded by the curve y =

X f{x), the A'-axis, and the ordi-

nates x = a and x = b. From
this standpoint M is called the

mean ordinate of the curve y =

f{x) in the interval from x = a to x = b.

Illustration 4. Find the mean ordinate of the curve y = x'

between the ordinates a; = and x = 2.

Fig. 52.

M = ^-^
I

f{x)dx = §
I

x^dx = ix3 4.
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Illustration 5. Find the mean with respect to w of x between

the limits u = \ and tt = 9, if m = x^.

J'*u

=» 9 (*u = 9

Mdu =
I

xdu,
u =

1

Ju =

1

J
3 /»3

2xdx=
I

2x»dla:,

8M = V,

M = V.

Exercises

Find the mean ordinates for the following curves:

1. y = X* between x = and x = 3.

2. 2/ = x^ between x = 2 and x = 4.

3. 2/ = 3x3 between x = and x = 2.

4. y = 3x3 between x = 1 and x = 3.

5. J/
= x* between x = and x = 1.

6. Find the radius of the right circular cylinder of altitude 3 whose
volume is equal to the volume between the planes x = 2 and x = 5 of

the solid generated by revolving 7/ = x + x'' about the X-axis.

7. Find the radius of the right circular cylinder of altitude h — a

whose volume is equal to the volume between the planes x = a and

X = fe of the solid generated by revolving y = /(x) about the X-axis.

8. The density cf a thin straight rod 10 inches long and of uniform

cross section is proportional to the distance from one end. Find the

mean density of the rod.

9. Find the mean velocity of a freely falling body between the

time ^ = 1 second and t = 3 seconds.

10. The density of a rod is given by p = 3x2, 'v^here x is the distance

from one end. Find the mean density if the rod is 10 inches long.

11. Find the mean moment arm in the case of the rods of Exercises

8 and 10, about a horizontal axis through the end of the rod (x = 0).

The rods are horizontal, and perpendicular to the axis about which

moments are taken. The rods are supposed to be acted upon by
forces due to gravity alone.

12. Find the mean ordinate of a semicircle, the ends of which are

upon the X-axis.



CHAPTER VIII

CIRCULAR FUNCTIONS. INVERSE CIRCULAR FUNCTIONS

Up to this point only functions have been discussed which are

simple algebraic combinations of powers of the dependent variable.

Many interesting applications of the calculus to the study of

these functions have been given. We shall now take up the

study of the appUcation of the methods of the calculus to another

very important class of functions, the circular functions. It is

apparent that the principles developed in the preceding chapters

are equally applicable to the circular functions and to the

algebraic functions.

As the student has already learned, the circular functions occur

very frequently in the study of the physical sciences and their

applications, because by means of them periodic phenomena can

be studied.

76. Derivative of sin u.

Let

y = sin u.

y -\- Ay = sin (u + Am),

Ay = sin {u + Aw) — sin u
— sin u cos Au + cos u sin Au — sin u,

Ay _ cos w sin Am sinM(l — cosAm)

Aw Am Am
Then

lim A^ _ lim sin Am . lim 1 - cos Am
A«=o Am ~ ^°^ "^"=0 Am ®^° ^^«-o Am

*

Hence by §56 and §58
dy^ = cosw.. (1)

Whence
dy du

di
= «°«^dx" (2)

122
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The corresponding formula for dy is

dy = cos udu.

It has thus been shown that

d(smu) du—
J = cos u j-
dx dx

(3)

(4)

and

d(sinu) = cos udu.

Well known properties of the function y = sin u can be verified

by formula (1). Thus sin u is an increasing function between

tt = and u =
t), and between u — -^ and u = 27r, and decreas-

ing between w = ^ and w = -p" The same facts are shown by

re
I I I p^ I I I I I I I I I I I

G_u

Fig. 53.

the derivative, cos u, which is positive between w = and « =
o'

Stt
and between u = -^ and u = 27r, and negative between u =

^

and u =
Stt

Further, sin u has maximum and minimum

values for u = ^ and u = -^» respectively. The same facts

are shown by the derivative, cos u, which becomes zero at these

points and changes sign at ^ from plus to minus, and at -^ from

minus to plus.

The slope of the sine curve is approximately the slope of the

diagonal PQ of a rectangle in Fig. 53. The greater the number of

equal parts into which the circumference of the circle is divided

and hence the smaller the subdivisions of the arc, the closer do the

slopes of these diagonals approach the slopes of the tangents.
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76. Derivatives of cos u, tan u, cot u, sec u, esc u. The
derivatives of the remaining circular functions can be obtained

from that of the sine.

Let y = cos u. Then

y = sin

and

dy /x X^(I-^)
^ = cos^2-i.j-

^^^

du\= cos
(I

- u) (- ^)
du

= — sm « -r'
dx

Hence
d(cos u) . du—^ = — sm u :i—dz dz

and

d(cos u) = — sin u du.

By writing

sin u
tan u = »

cos u

cos u
cot u = --. »

sin u

and

sec u

1
CSC u =

(1)

sin u
the student will show that

d(tan u) du—
^

= sec^'u^ » or d(tan u) = sec^u du (2)

d(C0t U) du Ar 4. \ 2 A f}\—J = — csc'^u , » or d(cotu) = — csc^ u du (3)

d(sec u) * du ^r \ *. a /^^—
-V = sec u tan u , ' or d(sec u) = sec u tan u du (4)

d(cscu)
. du ,. . , , ._.

-—

J

= — CSC u cot u J » or d(csc u) = — csc u cot u du (5)
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Illustration 1. Find the first and second derivatives of

3 sin (2a; - 5).

rf[3sin (2a; -5)] _ d[sm (2x - 5)]

dx dx
d(2x - 5)

dx
= 3 cos (2a; - 5)

= 6 cos (2a; — 5).

Differentiating again,

d'[3sin (2a; -5)] ^ rf[cos(2x-5)]

dx^ dx

= —6 sin (2x — 5) ^

= -12sin(2x - 5).

dv
Illustration 2. li y = sin 2a; cos x, find j— Since sin 2x cos x

is the product of two functions, apply formula (1) §40.

dy • „ / . ^ dx
. , X / ^ X d2x

-T- = sin 2a;(— sin x)-i—|- (cos x) (cos 2x) -r-

= 2 cos x cos 2a; — sin x sin 2x.

dv d^v
Illustration 3. If ?/ = 3 sin x + 4 cos x, find --r- and -r-^'

-p = 3 cos X — 4 sin X (6)

From (6)

d^y
J—2 = —(3 sin X + 4 cos x) = —y. (7)

-r- = 4 cos X (f — tan x).

TT

When < x < ^, cos x is positive. The second factor, f — tan x,

is positive when x < tan~^ (^), and negative when x > tan"^ (f ).

Thus, when x is in the first quadrant the function has a maximum
value coriiesponding to x = tan~i (|).

When r, < a; < TT, -T- is negative.

3x
When TT < X < -^, cos x is negative, and J — tan x is negative
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when X < tan~^ (f), and positive when x > tan-' (f). Thus
when X is in the third quadrant the function has a minimum
value corresponding to the value x = tan~^ (j).

When -^ < x< lir, -3- is positive.

The same facts can be seen directly from the function, for it

can be put in the form

y = 5(5 cos X + t sin x).

Let cos a = i and sin a Then

or

y = 5(cos x cos a + sin x sin a),

y = 5 cos (x — a).

In polar coordinates this represents a circle passing through the

origin, with a diameter of 5. (See Fig. 54.) x is the vectorial

angle and y the radius vector. The
diameter OB makes an angle a with

the polar axis. As x varies from

to IT the circle is described, and as x

varies from tt to 27r, y is negative

and the circle is described a second

time.

Hence y has a maximum value 5

when X is equal to a, and a mini-

FiG. 54. mum value —5 when x is equal to

a -\- IT.

dy d^y
Illustration 4. li y = tan' 3x = (tan ZxY, find -r- and -j-^*

The function is of the form y = w. Hence

g = 3(tan3x)^^^^^

= 3 tan^ 3x sec^ 3x
d3x

dx
= 9 tan^ Zx sec^ 3x.

d^
dx*

9 tan* 3x
c?(sec* 3x)

dx
+ sec* 3x

(i(tan* 3x)-

dx
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= 18 r

tan2 3x-2 sec 3a; ^
,

' + sec^ 3x-2 tan 3x -

dx dx

dSx
tan^ 3a; sec 3a; sec 3a; tan 3a; ,

dx
dSx^

+ sec'^ 3x tan 3a; sec^ 3x -i

—

= 54(tan' 3x sec^ 3a; + tan 3x sec* 3a;)

= 54 tan 3a; sec'' 3x(tan2 Sx + sec' 32).

Illustration 5. If -r- = cos x, find y.

dy
-T- = COS x.
dx

y = sinx -\- C.

dv
Illustration 6. If -p = cos 3a;, find y.

dy .r „ d3a;"|

^=i[cos3x^J.

The expression within the bracket is the derivative of sin 3x,

hence,

2/ = ^ sin 3x + C.

dv
Illustration 7. If ",^ = sin 3a;, find y.

Hence

= -i[-sin3a;^].

?/ = — ^ cos 3a; + C.

Illustration 8. If -j- = sec^ 2x, find y.

1/ = 5 tan 2a; + C.

dv
Illustration 9. If -^- = sec 5x tan 5x, find y.

Hence

= I sec 5x tan 5x -r— .
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Hence

y = 6 sec 5a; + C.

Illustration 10. li dy = cos 3x dx, find y.

y = \ cos Zxdx

= \ \ cos 3x rf(3x)

= \ sin 3x + C'.

Illustration 11. li dy = sin'^ 2x cos 2x dx, find ?/.

y =
j
(sin 2x)^ cos 2x dx

= i 5/3 (sin 2x)2 cos 2x rf(2x)

= iJ3(sin 2xyd{sm 2x).

Hence

2/ = Ksin2x)« + C.

Illustration 12. If d?/ = tan^ 5x sec^ 5x dx, find y.

y =
j tan^ 5x sec^ 5x dx

= i iJ 4(tan 5x)^ sec'' 5x d(5x)

= "sHr j 4(tan 5x)' d(tan 5x).

Hence

y = 2V(tan Sx)^ + C.

Illustration 13.

J sin 5x cos 3x dx =
J Msin (5x + 3x) + sin (5x — 3x)]dx

= 5 I sin 8x dx + ^J
sin 2x dx

= — iV cos 8x — J cos 2x + C.

Illustration 14.

j cos 7x sin 3x dx =
J |[sin (3x + 7x) + sin (3x — 7x)]dx

=
IJ sin lOx dx — 5J sin 4x dx

= — 2V cos lOx + I cos 4x + C.
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Illustration 15.

J cos 4a; cos 7x dx =
J | [cos (7x + 4a;) + cos (7x — 4a;)] dx

= 5J
cos llx dx + hi cos 3a; dx + C

= -2V sin 11a; + 6 sin 3a; + C.

Illustration 16.

J
sin 4x sin 2x dx = — ^J [cos (4a; + 2x) — cos (4a; — 2x)] dx

— ~ 2] cos 6x dx -{- h j cos 2a; rfx

= — iV sin 6x + J sin 2x + C.

Exercises

In Exercises 1 to 10, verify the differentiation.

1. y = sin ox, ^ = 5 cos ox, -3-^ = — 2oy.

dy „ . „ d^y
2. y = cos 3a;,

dx
^ ~ ®'"

' dx^
" ~ ^^*

3. y = tan 2x,
'd

^ '^ ^^^^ ^^'

j-^ = 8 sec'' 2x tan 2x.

dw
4. 2/ = sin X cos 2x, -r- = cos 2x cos x — 2 sin 2x sm x

. 3x - 2 dy
,

3x - 2
6. 7/ = sin —^ — = I cos

dx ' 5 '

dx-^
= - ^' y-

6. 2/ = tan' 5x, dy = 15 tan^ 5x sec* 5x dx.

7. y = sec^ 3x, dy = 12 sec* 3x tan 3x dx.

[y ~ °(1 ~ cos 0), dy = a sin d9.

Lx = a{d — sin 0), dx = a(l — cos O)d0.

. /2wt \ dy 2aw /27rt \
9. y = a sin I ^^ ^) ' di

^ ^ ^°^
XT'

~ V '

10. y = X sin x, dy = (x cos x + sin x) dx.

11. From the results of Exercise 8, show that -r- = cot s-' dx 2
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Find dy in Exercises 12-20.

12. y = tan 2xsin 2x. 15. y = cos (3 — x)*.

sin 2x

14. y = sin (x^ + 3x — 2). 17. y = x cos 2x — tan 2x.

18. y = tan- (x — 1).

19. y = cos* (1 — x» — 2x).

20. 2/ = sin2 (2x - 1) cos^ (2x - 1).

Integrate

:

21. dy = sin 2x<fx. 26. dy = sin x cos xdx.

22. dy — cos 2xdx. 26. dy = tan x sec* xdx.

23. dy = sec* 4x<ix. 27. dy = Vsin 2x cos 2xdx.

24. dy = sec 5x tan 5xdx. 28. dy = cos^x sin xdx.

29. dy = sec* x tan xdx = sec'x sec x tan xdx.

30. dy = sec" (x — 1) tan (x — 1) dx.

31. Find the area iinder one arch of the sine curve.

32. Find the area under one arch of the curve y = 2a* sin* x.

1 — cos 2x
Hint, sin* x = „

33. The equations of Exercise 8 are the parametric equations of the

cycloid. Find the length of one arch of the cycloid.

Hint, ds — -\/{dxy + (dy)". Express ds in terms of e and dO.

34. Find the area under one arch of the cycloid.

dv
36. X = a cos 6, y = a sin 0. Find -j-. Find the length of the

curve. Find the area bounded by the curve

36. x =

the curve.
dy

37. X = a cos' <j), y = a sin' </>. Find -j-. Find the length of the

curve.

38. Find the volume bounded by the surface obtained by revolv-

ing y = sin X about the X-axis.

39. A man walks at the constant rate of 4 feet per second along the

diameter of a semicircular courtyard whose radius is 50 feet. The
sun's rays are perpendicular to the diameter. How fast is the man's

shadow moving along the semicircular wall of the courtyard when he

is 30 feet from the end of the diameter?

dv
36. X = a cos e, y = h sin 6. Find t-. Find the area bounded by
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40. A drawbridge 25 feet long is raised by chains attached to the end

of the bridge and passing over a pulley 25 feet above the hinge of the

bridge. The chain is being drawn in at the rate of 6 feet a minute.

Horizontal rays of light fall on the bridge and it casts a shadow on a

vertical wall. How fast is the shadow moving up the wall when 13

feet of the chain have been drawn in?

41. Find ^ ii x = y\/y - 1.

dy .^
42. Find ^ ii x = Vl - sin y.

43. If p' = a* cos 2d . show by implicit differentiation that

dp _ a* sin 29

dd^ P

44. If p 2 cos = a^ sin 36, find ^•

46. I sin 6x cos 2x dx. 49. I sin Ax cos 7x dx.

46. I cos 4a; cos 3x dx. 60. I cos 5x cos 9x dx.

47. I cos 5x sin 2a; dx. 61. I sin wt cos at dl.

48. I sin Sx sin 3x dx. 62. 1 cos ut cos at dt.

63. Find the mean ordinate of the curve y = sin x between the

limits X = and x = tt.

77. Derivatives of the Inverse Circular Functions. ^ The for-

mulas for the derivatives of the inverse circular functions are

readily obtained from those of §§75 and 76.

.
1 The student will recall that sin"' u is defined for values of u between —1 and +1

only, and that it is a many valued function. To a given value of u there correspond

infinitely many angles whose sines are equal to u. This will be seen to be the case on
sketching the curve y = sin"' u. In this and future discussions of this function it

will be made single valued by considering only those values of y = sin"' m which lie

between — ^ and +o'> inclusive.

The positive sign of the radical in the final formula (1) is chosen because

cos V » \/l — uJ is positive when j/ lies between —^ and +0"*

Of the functions occurring in (2), (3), (4), (5), and (6), y = cos"' u, and y = sec"' u
are made single valued by choosing y between and ir, while the remaining functions,

y — tan"' u, y =• cot"' u, y = esc"' u, are made single valued by choosing y between

— 2" and +2"' Show that the proper sign has been chosen for the radicals in the

formulas (2), (5), and (6).
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Let y = sin"^ u. Then sin y = u. Differentiation gives

dy du
cos y -r = T~'^ dx dx

dy _ 1 du

dx ~ cos y dx

1 du

Vl — sin" y dx

du

dy dx

Hence

dx y'l _ u^

Therefore,

du
d(sin-iu) dx J/ . , X <*" (1)—-— =

, » or d(sm-i u) = —7-
'^

'

The student will show that

du
d(cos-iu) dx J/ , X

du (2)
: = — , > or dtcos-^u) = , ^ '

dx . VI - u2 VI - u'

du
d(tan-»u) dx ^/* , x

<^^ (3)
or d(tan-'u) = f^p^z

du
or d(cot-i u) = - YJ^i (4)

» or d(sec"^u) = 7
-

(5)
uVu* - 1

-
, ^ or d(csc-i u) =

, (6)
dx uVu" - 1 uVu^ - 1

Illustration 1. K y = sin"i(x^ — 2x — 3), find dy. By-

formula (1)

dx " 1 + u^'

du
d(cot-» u)

dx

dx
" i + u*'

du
d(sec~^ u) dx

dx uVu2 - i

du
d(csc-' u) dx
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d(x^ -2x-3)
dy =

Vl - {x^ -2x- 3)«

2(x - l)dx

Vl - (x* -2x- sy

Illustration 2. U y = tan~^ 3x, find dy. By formula (3)

_ djSx)
^y ~

1 + (3x)2

_ 3(Za;

~
1 + 9x2"

Illustration 3. If dt/ = 7-3^—^» find y.

/r
(ia;

+ a;2

or

y = tan~^ x + C.

Illustration 4. li dy =
^ , ^ ^

y find r/.

cix

'/r

+ 9x»

3(ix

+ (3x)2

The expression under the integral sign is now of the form -r-y—

i

whose integral is tan~^ u. Hence

y = \ tan-i (3x) + C.

(XX
Illustration 5. If dy = . . „

g
> find ^.

-/ dx

4 + 9x2

dx

+ {ixy
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Hence

y = i tan-i (ix) + C.

Illustration 6. If dy = — ^
, find «

V4 - 9x2
»•

[§77

9x5

_ j^
r dx

~ V Vl-(|x)»'

= 1.2 r ^dx
' VVi-(ix)

The expression under the integral sign is now of the form
du

;^/p=| whose integral is sin-» u. Hence

y = i sin-i (fx) + C.

Exercises

dy
Find ^ in Exercises 1-10.

1. y = sin-i (x^). 6. 2/ = sin"' (sin x).

2. y = sin-i (x - 1). f, y = tan-i -^—

•

X — 1
3. 2/ = tan-Ux2). 8. t/ = sin-» (1 - x)K
4. y = tan-i (x - 1). 9. y = gec-i (a;2 _ 3).
5. y = sm (sin-»x). 10. y = a;sin-ix.

Integrate

:

11. dy = t4%-^ 4 + x2

12. rfw = K-^^-^ 9 + x2

13. rfy = "^^

25 + 16x2

-^ 7 _ dx It^ ~ a2 + x^' ^^' y =
a
*^"~'

^ + ^-
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dx

Ans. y = sin~*—f- C

dx

20. dy =
. — = -• Ans. y = - sec~i - + C.

Using the results of Exercises 14, 18, and 20 as formulas, evaluate

the following integrals:

21.

22.

23.

24.

26.

26.

27.

J x/16^^^"
^^'

J

J Vl6 - 9x» J
^

J Vl - 9x2 J

J 25TT^ 32.

J
-

J 25 + 16x2*
33.

J

dx

x\/9x2 - 1

dx

X2 + 17

dx

Vl3 - a;2

dx

\/x2 - 19'

dx

5x2 + 8

dx

J 1 + 16x2"
34-

J
^2^43.4.5

J

J 7v^2^^-
35.

J

^ (x+2)2+l

dx

x\/3x2 - 14

C dx «„ r dx
28. I -. 36. I ,

J x\/9x2 - 25 J \/9 - x2

37. Find the area between the ordinates x = 0, x = §, the X-axis

and the curve y = — .

Vl -x2
4a'

38. Find the area under the curve y = , , . , » above the X-axis," x2 _j. 4o2 '
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and between the ordinates x = and x = b. Find the limit of the

area as b increases without limit.

39. Find the mean ordinate of the curve y = j--r—^> between the

JT

limits X = and x = -y

78. Velocity and Acceleration. If a particle is moving in a

curved path, its velocity at any point is represented by a vector

laid off along the tangent with its

length equal to the magnitude of

ds
the velocity, -r:' Thus the ve-

locity at the point P, Fig. 55, is

represented by the vector PT. It

can be resolved into the com-

ponents PK and PM, parallel to

the X- and F-axes, respectively.
~^ These components represent the

time rates of change of the coor-

dinates of the moving point P, i.e.,

PK^^""

Fig. 55.

and

Since

PM =

dt

dy

dt'

(1>

PT = V{PK)^ + {PM)\

ds

dt
(2)

This relation can be obtained directly from (2), §63, if we consider

X and y functions of t. For, we can divide by dt and obtain the

equation (2).

In Fig. 55, let PT be the velocity at P, and QT' that at Q.

Draw from a common origin, o, Fig. 56, the vectors op and oq

equal to the vectors PT and QT', respectively. Then pq equals

the vector increment, Av. The average acceleration for the

Av
interval At is equal to -rr directed along pq. Lay off, on pq, pm
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equal to ry As At approaches zero, Q approaches P, and q ap»

proaches p as indicated by the dotted line, Fig. 56; p7n approaches a

vector pt directed along the tangent to the arc pq at p. This vector,

Av
the limit of —.• represents the acceleration of the particle moving

in the curved path. Let us calculate its x and y components. In

Fig. 56, denote:

op by V and its components by Vx and Vy,

oq by v' and its components by v'x and v'y,

pq by Ay and its components by Ay, = v'x — Vx and Ay„ = v'„ — Vy,

pt by j and its components by jx and j^.

Fig. 56.

Then

Jx = lim Ay. _ dv^

^'=^0 Af dt

lim Ay^ dv„

dt

dt

dt

d^
df

d^
dt"^'

The magnitude and direction of the vector ^ are given by:

(3)

(4)

(5)
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and

where is the angle made by pt, Fig, 56, with the positive direction

of the X-axis.

Again we can resolve the acceleration j into components along

the tangent and normal. In Fig. 57, PL is the tangential com-

ponent and PJ is the normal component. The tangential com-

ponent clearly produces the change in the magnitude of the

velocity, and the normal component the change in its direction.

Fig. 57.

79. Angular Velocity and Acceleration. If a body is rotating

about an axis, the amount of rotation is given by the angle d

through which a line in the body turns which intersects the axis

and is perpendicular to it. Thus in the case of a wheel the rotation

is measured by the angle 6 through which a spoke turns. ^ is a

function of the time t. The rotation is uniform if the body rotates

through equal angles in equal intervals of time. If the uniform

rate of rotation is co radians per second, the body rotates through

6 = cat radians in t seconds. If the rotation is not uniform the

rate at which the body is rotating at any instant, the angular

velocity, is

<^^M^o^t dt'
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Similarly, the angular acceleration a is the time rate of change of

the angular velocity. Then,
do) dW

"~lt ~
dt^'

If we consider a particle at a distance r from the axis of rotation,

its linear velocity v is

V = cor

and is directed along the tangent to the circle described by the

particle. The tangential acceleration is

jt = ar.

Exercises

, 1. The following formulas have been established for linear motion,

with constant acceleration

:

V = Vo + jt.

S = Vot + ^jl\

I'
- ^* = js. (See §38.)

Show that the corresponding formulas for rotation are:

e = cjoi + W^'

W^ COo^

T - "2- = «^-

2. A flywheel 10 feet in diameter makes 25 revolutions a minute.

What is the linear velocity of a point on the rim?

3. Find the constant acceleration, such as the retardation caused

by a brake, which would bring this wheel to rest in 30 seconds. How
many revolutions would it make before coming to rest?

4. A resistance retards the motion of a wheel at the rate of 0.5

radian per second per second. If the wheel is running at the rate of 10

revolutions a second when the resistance begins to act, how many
revolutions will it make before stopping?

5. A wheel of radius r is rotating with the uniform angular velocity

w. Find the direction and magnitude of the acceleration of a point

on the rim.
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Hint. The coordinates of the point can be written x = r cos w<,

y = rain. uL Find -jtj and tt^*

6. A wheel of radius r is rolling with the uniform angular velocity

u along a horizontal surface without slipping. How fast is the axle

moving forward? The parametric equations of a point P on the rim

are:

X = r{u}t — sin cat)

y = r(l — cos (at).

Find the magnitude and the direction of the velocity of P at any

instant. What is the velocity of a point at the top of the wheel?

At the bottom?

7. If a particle moves in such a way that its coordinates are

re = a cos t -\- h, y = a sin < + c, where t denotes time, find the

equation of the path and show that the par-

j> tide moves with constant tangential velocity.

80. Simple Harmonic Motion. Let the

point P, Fig. 58, move upon the circumfer-

ence of a circle of radius a feet with the

uniform velocity of v feet per second, so that

V
the radius OP rotates at the rate of - = co

Fig. 58. o,

radians per second. The projection, B, ofP
on the vertical diameter moves up and down. If the point P
was at C when t = 0, the displacement, OB = y, is given by

y = asind = asinwf.

If the point P was at D when t = 0, we have

y = asin(co^ — a). (1)

Any motion such that the displacement at time t is given by (1)

is called a simple harmonic motion. Thus the point B, Fig. 58,

describes simple harmonic motion. The abbreviation "S.H.M."

will be used for "simple harmonic motion."

From (1) it follows that the velocity of a point describing

S.H.M. is

dy

dt
(2)
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and that the acceleration is

-77^ = —a cousin (co^ — a). (3)

The second member is —oihj, by equation (1), Hence

- a)2y, (4)

or

df"
+ co^y = 0. (5)

Equation (4) shows that the acceleration of a particle describing

S.H.M. is proportional to the displacement and oppositely di-

rected. That the acceleration is oppositely directed to the

displacement is to be expected from the character of the motion,

which is an oscillation about a position of equilibrium. Thus if

the body is above this position the force is directed downward,

and vice versa. In Fig. 58, the point B has a positive acceleration

when below and a negative acceleration when above 0. The
acceleration is zero at 0, a maximum at the lower end of the diame-

ter, and a minimum at the upper end.

In accordance with (2) the velocity is zero at the two ends of the

diameter. The velocity has its greatest numerical value when
B passes through in either direction.

Equation (4), or (5), is called the differential equation of

S.H.M. The proportionality factor co^ is connected with the

period T by the relation T = — The equation (4) was

obtained from (1). Frequently it is desired to solve the converse

problem, viz., to find the motion of a particle whose acceleration is

proportional to the displacement and oppositely directed. In

other words, a relation between y and t is sought which satisfies

equation (4). Clearly (1) is such a relation. However, it will be

instructive to obtain this relation directly from (4).

First, a differential equation equivalent to (4) will be obtained

in the solution of the problem of the motion of the simple pendulum.

81. The Simple Pendulum. Let P, Fig. 59, be a position of the

bob of a simple pendulum at a given instant and let it be moving

to the right. If s denotes the displacement considered positive
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on the right of the position of equiUbrium, -tt^ is the acceleration

ds
in the direction of the tangent PT, for ^ is the velocity along the

tangent. This acceleration must be equal

to the tangential component of the accelera-

tion due to gravity, if the resistance of the

air be neglected. This component is equal to

— g sin 9. Since it acts in a direction opposite

to that in which s is increasing, it must be

taken mth the negative sign, i.e., the acceler-

ation diminishes the velocity. We have then

Fia. 59.

d's . .

(1)

If the angle through which the pendulum swings is small,

sin 6 can be replaced by 6. Then (1) becomes

d^
dt^

Since s = W,

(2)

d^
dV I

(3)

Putting , = w^ for convenience in writing,

d-'d

dt^
= - co^d.

dd
Multiplying by 2 -ir and integrating.

\dt) - oiW^ + C».

(4)

The arbitrary constant is written for convenience in the form C.
The constant must be positive. Otherwise the velocity would be

imaginary. Extracting the square root,

dd

dt
= VC*- w2 0»'

or
dd

Vc^ - w' d^

= dt. (5)
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Integration gives

— sin~^ -p7 = t -\- Ci.

sin~^ -^ = cof + coCi

= «< + C2,

where the constant coCi is replaced by the constant C2. Then

-T7 = sin (wf + C2),

= — sin (a>« + C2)
CO

= C3 sin {wt + C2),

where — has been replaced by C3. Therefore
CO

e = Ci sin (co< + C2) (6)

is the equation of the angular displacement of the pendulum.
2_. /r

The form of (6) shows that the motion is of period — = 2ir'\^-'

It is a S.H.M. and contains two arbitrary constants. They can

be determined by two conditions, e.g., the displacement and

velocity at a given instant. Suppose the bob drawn aside to the

right so that the string makes an angle 9o with the vertical. The
bob is then released without being given an impulse; i.e., with an

initial velocity zero. The time will be counted from the instant

of release. The conditions are then

d = do (7)

and

f = » («)

when t = 6. From (6),

do
-jj = C0C3 cos (cof + Ci).

The condition (8) gives

= C0C3 cos C2,

or cos C2 = 0. Whence C2 = ^- Then (6) becomes

6 = Cz cos cot.
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The condition (7) gives

do = Cz.

Hence

e = do cos oit. (9)

Multiplying by I and recalling that W = s, and denoting Ido by

So, we have as the equation for the displacement s,

S = So cos bit. (10)

The period is T = — = 27r 'y-. When is the velocity of the

bob greatest? When least, numerically?

Equation (6), the solution of (4), shows that, if the acceleration

of a particle is proportional to its displacement and oppositely

directed, the particle describes S.H.M.

Exercises

1. Write the differential equations of the following simple harmonio

motions. Find the period in each case.

y = 5 sin 3^

2/ = 6 sin Izt + Ij
•

y = 5 cos 3/.

2/ = 4 sin 2t + S cos 2t.

J/
= 7 sin {8t + a).

2. Write the equation of a S.H.M. which satisfies the equations:

J + 3!,-0.



CHAPTER IX

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

82. Derivative of the Exponential and Logarithmic Functions.

Let

T/ = a*. (1)

Then

Ay = a'(a^ - 1)

Ay _ ^/(i^ — 1\

Ax~ \ Ax )

dx~ ^ Ax^o Aa;
^'^>

„, a^ — I . . . . , lim fl"^ — 1 .

bince —-r IS independent of x, ^^q —r
is a constant

for a given value of a. Call this constant K, so that

Then from (2),

_ lim «^- 1 ,^.

% = Ka: (4,

Equation (4) shows that the slope of the curve y = a'' is propor-

tional to the ordinate of the curve. In other words, the rate of

increase of the exponential function is proportional to the function

itself.

When a; = 0, it follows from (2) and (3) that

dy Hm a^ - 1

dx ^-0 Ax
= K.

Consequently the constant K introduced above is the slope of the

curve t/ = a^ at the point (0, 1). This slope depends upon the

value of a. Let e be that particular value of a for which the

corresponding curve, y = e^, has a slope equal to 1 at the point

where it crosses the F-axis.

10 145
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If, then,

equation (4) becomes
y = 6"=, (6)

dy

dx

since K = \'\n this case. Or

de

Then

and

dx
=''• (6)

de» du _.

de» = cdu. (8)

Equation (6) shows that the slope of the curve y = e' is equal

to the ordinate of the curve. The number e is the base of the

natural system of logarithms. It is sometimes called the Naperian

base. Its value, 2.71828 • • • •
, will be calculated later in

the course.

The formula for the derivative of the natural logarithm of a

function is now easily obtained. In calculus if no base is indi-

cated, the natural base is understood. Thus log u means log, u.

If

y =- log u,

u = e«

du dy
and by (7)

Whence

That is

or (9)

dx
''= ^"d|-

dy

dx
'
_ 1 du
~

e" dx

=
_ 1 du
~ u dx

d(log u) _ 1 du
dx ~ u dx'

d(Iog 1

du
u) = —

•

' u
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Since ^

logoW = logoclogw, (10)

d (logau) , „ ^ 1 du

or (11)
du

d(logaU) = logaC —

'

11 y = a", log y = uloga
l dy _ , du

y dx
~

dx

dy . du

Tx^^y^^'^^'Tx

. du= aMoga^.

That is

da" , du^ = auloga^

da« = a«» log a du

(12)

Illustrations.

1. If 2/ = e*', dy = e^'d(x2) = 2xe''"dx.

2. If 2/ = e''"" ", dy = e
"''^ ''d{smx) = cos x e"° * dx.

r. Tr 1 / . HX 1 1 ^(^ + 1) 1
dx

3.Uy = logio (x + 1), dy = logio e ^ , ^
= logio e^-^y

•l. J.1 J/
= lUJU^ t- ^), t''V x + V

»Let z = log u

Then & = u

Taking logarithms to the base 1,

z log a e = logo U

That is

log u 1 og»1 e = logo M
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5. Uy = e*^'^"'^ dy = e*'*'^'"^ d(tan-i x) = e*^"" '^ rr^

•

1 -\-x

6.1iy = log 1^^, y = 2 log (1 + x) - 3 log (1 - X),

and
, 2dT; , Sdx 5 + X ,

7. If 2/ = e* sin x, -r- = e*(cos x + sin x)

and

-j-^ = 2e* cos X.

Exercises

Find the first derivative of each of the following

:

1. y = e'*. 6. 2/ = log (1 - x^). 11. y = e^''^*.

2. y = e'\ 7. y = e' cos x. 12. y = e***^ ^'.

Z. y = log (x"). 8. 2/ = e'». 13. y = log Vx'' - 1.

4. y = log (x'). 9. y = e'=^', 14. y = e~* sin x.

6. y = log (x* - 1). 10. y = log [^^^I' 16- 2/ = 10'-

16. y = logio X.

17. y = 5'.

18. y = x^ 5*.

19. Show that the aubtangent for the curve y = a'' is a constant.

What is this length when a = e?

Illustrations.

8. If dy = e'rfx, y = \ e'dx = e' -\- C.

9. If dy = xe'^dx.

y = \ xe'^dx

= |e'' + C.

10. If dy = ^>X
J/
= log X + C
= log X + log i2!

= log Kx.
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dx
11. If dy = ^:^,

y = \og{x + l) + C
= log K(x + 1).

xdx
12. If dy = ^^^p3,

a;2 + l

2xdx

x' + l

= i log (x^ + 1) + (7

= log Vx2 + 1 + C

= log KVx^ + 1.

13. If dy = e™* cos xdx,

y = j e
"° * COS X dx

1.1 Tf J (x + l)dx
14. If dy = ^2 + 2x + 3'

-/
(x + l)dx

x2 + 2x + 3

r 2(x + l)dx
^ ^J x2 + 2x + 3

= h log (x2 + 2x + 3) + (7

= log Vx^ + 2x + 3 + C

= log KVx^ + 2x + 3.

15. If dy = tan x dx,

y = I tan x dx

-/- sin X
,

ax
cosx

= — log cos X + (7

= log sec X + C.
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16. If

17. If

18. Find

Let

whence

and

Then, since

dy = cot xdx,

y = \ cot X dx

Si
dx

sin X

= log sin X -^ C.

dy = sec x dx,

y =
J secx dx -\- C

(sec x + tan x) sec xdx
sec X + tan x

/-'""•"
f-

dx
sec X -J- tan x

= log (sec X + tan x) + C
dx

SVx^ ± a2

v^ = x^ ± a"

2v dv = 2x dx

dv

X

dv

X

dx

dx

V

dx _ Ci

dx + dv

X + V
'

dx + c^p

19. If

Vx^ ± a2 J X + v

= log (x + v) -\-C

= log (a; + Vx* ± a2) + C.

y /.e' + 1

= log (e* + 1) + C.
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20. If ^^ = ^,
y X

log 2/ = log X + log C
log y = log Cx

y = Cx.

21. If — = n — J

y X

log y = n log a; + log C
= log a;» + log C
= log Cx",

1/ = Cx".

Exercises

The results of Illustrations 15, 16, 17, and 18 are to be used as

formulas of integration.

In the following exercises and y :

20. dy = x2 e*' dx. 27. dy = tan 2x dx.

21. dy = e*-"" sec"^ X dx. 28. dy = cot2xrfx.

22. dy = —r-r. 29. dy = sec 2x dx." X + 1
"

23. dy = Y^x ^°- "^^ = (logx)*^.

_, - xdx «^ , cos X dx
2*- ^^ =

IT^^'
31. dy = ^-j^^^^^-

26. d2/ = ^,- 32. d2/ = (!l-ZiZM£.
'^ 1 — x^ -^

e* + e *

«/. ,
(e"^ + l)dx „„ , sec^xdx

(e2* - l)dx
34. dy =

+ 1

35. Find the area between the equilateral hyperbola xy = 10, the

X-axis, and the lines x = 1 and x = 2.

36. The volume of a gas in a cylinder of cross section A expands

from volume vi to volume Vi. If it expands without change in tem-

perature the pressure, p, on the piston varies inversely as the volume

(Boyle's Law, pv = K). Show that the work done by the expansion is

pdvK\ ? = xiog^;.
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37. The subtangent of a curve is of constant length, k. Find the

equation of the curve.

38. For what value of x is the rate of change of logio x the same
as the rate of change of z?

-I
I
tan 36 dd. 48. |

39.
I
CSC X dx. (See Illustration 17.)

xdx

41.
j

e*"'^'' sin e dd. 49. j lO'dx.

42. I cot I dd. 60. I cos^ (5x — 4)

2 (1 — Bmx)dx
43. j X sec2(z2 + l)dx. 51. |

I ' I a; + cos X

44.
I
sec

I
dx. 52. j e^^ + """^ "> sin dd.

Cdx C xHx
46. I

— 63. I ; , 3
-

46. f'-^^. 64. f-^:^.
J„ Vl+x^ J Va^ + X*

66.
I
(tan 20 — \)^de = \ tan 20 + log cos 20 + C.

/
/Idx

57. I
C8c(7x + 5) dx.

68. 1
-^ +^)^"

Vx^ + 4x + 7

69.

~ (3x + 2)dx
"•

' 3x* + 4x + 9
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(x + 2)dx
61

/.(x" + 4x + 7)2

62. Show that y = ae~** cos o)t satisfies the differential equation

g+2fc* + („.+*=)„-0.

63. Find the mean ordinate of the curve w = - between the limits
" X

X = 1 and X = 2.

83. Logarithinic Differentiation. It is often advantageous in

finding the derivative oi y = f{x) to take the logarithm of each

member before differentiating. A number of examples will be

solved to illustrate the process.

(x- 1)3
lUllSLIUUUII, 1. X' lllU Liie ut

{x + 1)^

y = {x - 1)^

(x+ 1)'

and take the logarithm of each member.

log
3
!/ = 1 log (X - 1) - 1 log (x + 1).

Differentiating,

Idy
y dx

2 3

3(x - 1) 5(x + l)

Let

x + 19

15 (a;2 - 1)

dy _ g + 19

dx ~ 15 (a;2 - 1)
2/

X + 19 (x - 1)^

15 (x2- 1) (x + 1)'

x + 19

15 (x - l)^ (x + 1)^

111.11RtTniinti. 2
•\/l — x^

Find the derivative of "

i/x^ + i

Vl-a;^
2/ - 3/-^^^^
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log 2/ = § log (1 — x2) — A log (x2 4- 1)

1 dy X 2x

ydx^~ 1 -x2 ~
3 (a;2 + 1)

_ _ 3^ (5 + a:")

~ 3 (1 - x^)

dy a; (5 + a:') Vl - x^

dx ~ 3(1 -x^) v^mh:
a: (5 + a;2)

3Vl -a;2(x2+ 1)^

This method is manifestly shorter and simpler than that of differ-

entiating by the rule for the derivative of a quotient.

Illustration 3. Find the derivative of {x^ + l)''''^^.

y = {x"^ -\- 1)3^^2

log y = (3a; + 2) log {x^ + 1)

dy
J^=(^^

+ 2)^-^ + 3log(x^ + l)

^^
= [(3a: + 2)^^ + 3 log (x2 + 1)] {x^ + 1)3-+^

- -p is called the logarithmic derivative of y with respect to x.

It will be considered further in a later article.

Exercises

Find the derivative in Exercises 1-8.

3

1. 2/ = ^^^tilL- 3. 2/ = (X + 1)3 (2x + 5)1
(x-7)5

2- ^ = (x-4)t(r5)^
-

*• ^ = ^(1 + ^)^^^-

5. 2/ = x"n^. (Solve by two methods.)

6. 7/ = x^^°^.

7. s = (7< + 3)10^-2.

8. 2/ = xV'^.

In Exercises 9-16 find the logarithmic derivative.

9. 2/ = e^'. 12. y = x".

10. y = x\ 13. y = ex".
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11. y = Zi' 14. 2/ = e*'+^ = ce**.

15. y = 10*'+^.

16. y = uv, where u and v are functions of x.

17. y = uvw, where u, v, and w are functions of x. Find t—

Find y if its logarithmic derivative is:

22. A;.

(1)

(2)

Equation (2) expresses the fact already noted in §82, as a

characteristic property of the exponential function, viz., that the

function increases at a rate proportional to itself. We can show,

conversely, that if a function increases at a rate proportional to

itself, it is an exponential function.

Thus, let it be given that

dy

18. 61 + 7. Ans. y = Ce
' X

19J.
X

20. -
X

21. FkxY

84. Compound Interest Law. If

y = Ce*S

dy

dt
CA;e*' = ky.

dt
= ^y- (3>

Then
dy

kdt

logy = kt + C
2/ = e*'+c = e^e*'.

Hence

y = Cie*'. (4)

When a function varies according to this law it is said to follow

the "compound interest law." For, if a sum of money be placed

at compound interest, its rate of increase, for any interest term, is

proportional to the amount accumulated at the beginning of that

term. The more frequently the interest is compounded the

more nearly does the amount accumulated increase according

to the exponential law.

In many cases in nature the function decreases at a rate pro-
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portional to itself. The compound interest law appears in this

case in the form Ce~*', where A is a positive constant. For, if

^= -kv

it follows that

y = Ce-*«.

Illustration 1. Newton's law of cooling states that the tem-

perature of a heated body surrounded by a medium of constant

temperature decreases at a rate proportional to the difference in

temperature between the body and the medium. Let d denote the

difference in temperature. Then

ft = - ^^- (S)

and
e = Ce-*«. (6)

The meaning of the constant C is seen at once on setting t = 0.

It is the difference in temperature between the body and the

medium at the time t = 0. If this initial difference in temperature

is known, (6) gives the temperature of the body at any later

instant. Call the initial difference in temperature ^o- (6)

becomes

e = doe-"'. (7)

The time which is required for the difference in temperature to

fall from di to 62 can be found from (7). Thus

01 = 0oe-*'i

62 = ^oe-*'»

whence

/.-<. = ^ log |. (8)

This result could have been obtained directly from the differ-

ential equation (5). Thus

..= -if. (9)
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Integrating the left-hand member between the limits ti and <2 and

the right-hand member between the limits di and 62,

f— iX e

Illustration 2. Find the law of variation of the atmospheric

pressure with height.

Consider a column of air of unit

cross section (Fig. 60). Denote

height above sea level by h and the

pressure on unit cross section at this

height by p. The difference in pres-

sure at C and D is the weight of the

gas within the element of volume

of height Ah.

Thus
Ap = — gp Ah,

where p is the average density of the air in the volume CDEF.

Then

Fig. 60.

and

Ap
Ah

dp

dh

= - gp

= - gp,

(1)

where p is the density at C. If the temperature is assumed con-

stant, the air obeys Boyle's Law, pv = c, where v denotes the

volume occupied bj'^ unit mass of air. Since

mass _ 1^ _ P
volume V c

P =

dh
= - kp,
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where

* = ^
Integration gives

[§84

logp = — kh + logCi,

or

When h = 0, p = Po, the pressure at sea level, and Ci = po-

Hence

p = poe~**. (2)

If h is measured in meters and p in millimeters of mercury,

k = risVir, (2) becomes

p = 760e-iToT- (3)

Exercises

1. A law for the velocity of chemical reactions states that the

amount of chemical change per unit of time is proportional to the

mass of changing substance present in the system. The rate at which

the change takes place is proportional to the mass of the substance

still unchanged. If q denotes the original mass, find an expression

for the mass remaining unchanged after a time t has elapsed.

2. Assuming that the retardation of a boat moving in still water is

proportional to the velocity, find the distance passed over in time t

after the engine was shut off, if the boat was moving at the rate of 7

7
miles per hour at that time. Ans. s = t(1 — e *').

3. The number of bacteria per cubic centimeter of culture increases

under proper conditions at a rate proportional to the number present.

Find an expression for the number present at the end of time t. Find

the time required for the number per cubic centimeter to increase

from 6i to 62- Does this time depend on the number present at the

time t = 0?

4. A disk is rotating about a vertical axis in a liquid. If the retar-

dation due to friction of the liquid is proportional to the angular

velocity «, find w after t seconds if the initial angular velocity was wo.

6. If the disk of Exercise 4 is rotating very rapidly, the retardation

is proportional to w^ Find w after t seconds if the initial angular

velocity was wq.
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85. Relative Rate of Increase. If the rate of change of a func-

tion is divided by the function itself, the quotient is the rate of

change of the function per unit value of the function. This

quotient has been called the relative rate of increase of the function.

If a function varies according to the compound interest law, its

relative rate of increase is constant, i.e.,

y dt

One hundred times the relative rate of increase is the percent rate

of increase. Thus if

- t = 0.02,
V dt

'

the percent rate of increase is 2. This means that y increases 2

percent per unit time. Any of the Exercises 1-5 might have been

stated in terms of the relative rate of increase of the function

concerned.

Exercises

1. Given that the intensity of light is diminished 2 percent by
passing through one millimeter of glass, find the intensity / as a func-

tion of t, the thickness of the glass through which the light passes.

2. The temperature of a body cooling according to Newton's Law
fell from 30° to 18° in 6 minutes. Find the percent rate of decrease of

temperature per minute.

86. Hyperbolic Functions. The engineering student is likely

to meet in his reading certain functions called the hyperbolic

functions. These functions present analogies with the circular

functions and they are called hyperbolic sine, written sinh, hyper-

bolic cosine, written cosh, and so on.

These functions are defined by the equations:

cosh X = —n— ' sech x =

. , e' — e~' ,smh X = —-X » csch x =

2
gx — g-x

6' — e~*
tanh X = .. , ,_. ' coth x =

odd functions

e* 4- e~* tanh x

cosh X and sech x are even functions, while the remaining four are
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Exercises

1. By making use of the definitions the student will show that the

following identities hold. They are analogous to those satisfied by the

circular functions.

cosh^x — sinh^x = 1.

1 — tanh*x = sech^x.

2. Show by the use of the defining equations that

:

d cosh X

dx

d sinh X

dx

d tanh x

dx

d coth X

dx

d sech X

dx

d csch X

sinh X,

= cosh X.

= sech^ X.

= — csch^ X.

= — sech X tanh x.

= — csch X coth X.
dx

3. Sketch the curves y = cosh x, y = sinh x, and y = tanh x.

87. Inverse Hyperbolic Functions. The logarithms of certain

functions can be expressed in terms of inverse hyperbolic functions

Let

y = sinh~* x.

e« — e~y
J/ — Buiii (/ — 2

or

e'^y — 2xey — 1=0,
whence

c = X ± Va;^ + 1.

The minus sign cannot be taken since e" is always positive.

Hence

e" = a; + Vx^ + 1 ,

and

y = sinh-' x = log (x + Va;^ + !)•
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Exercises

cosh~i a; = log (x + va;" — 1).

X - -y/x^ - 1 = 7 >

X + Vx'^ - 1

log (x - a/x" - 1) = - log {x + \/x2 - 1).

Therefore

cosh~ia; = + log (x + 's/x^ — 1).

The inverse hyperbolic cosine is then not single valued. Two values

of cosh~i x, equal numerically but of opposite sign, correspond to each

value of x greater than 1.

2. Show that:

1 + x
tanh'^x = § log , _ > if x'^ < 1;

X + 1
coth~i X = 2 log _ ^

» if x^ > 1

;

1 -f. a/1 _ a;2
sech~* X = ± log > if < x ^ 1

;

and

, _. , 1 + Vx^ + 1 ..
csch ^x = log > if X > 0:^ X '

csch ^ X = log > if X < 0.

The student is not advised to memorize the formulas of this and the

preceding sections at this stage in his course, but to acquire sufficient

familiarity with the hyperbolic functions to enable him to operate with

these functions by referring to the definitions and formulas given here

and to others that he will find in mathematical tables.

88. The Catenary. Let AOB, Fig. 61 a, be a cable suspended

from the points A and B and carrying only its own weight. Let

us find the equation of the curve assumed by the cable, consider-

ing it homogeneous. We shall assume that the curve has a

vertical line of symmetry, OY, and that the tangent line drawn

to the curve at is horizontal.

Take 07 as the F-axis. Imagine a portion of the curve, OP,

of length s, cut free. To hold this portion in equilibrium the

forces // and T, Fig. 61 h, must be introduced at the cut ends.

n
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H and T are, respectively, equal to the tension in the cable at

the points and P and they act in the direction of the tangent

lines drawn to the curve at these points. The portion of the cable

OP, Fig. 61 b, is in equilibrium. Hence H', the horizontal com-

ponent of T, is equal to H.

V, the vertical component of T, must balance the weight of the

portion OP of the cable. Hence

V = sw,

where w is the weight of a unit length of the cable.

From Fig. 61 6, it is seen that

dy _ V^ _ V^ _ ws
dx~ H' ~ H ~ H'

Let

w _ 1

H ~ a
Then

dy s

di "
a'

(^)

This differential equation involves three variables, viz., x, y, and

8. s may be eliminated by differentiating and substituting for^
its value,

Thus

dx a dx a \^ +W
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The equation now involves only two variables and may be written

,
dy

ok upon -j-

tion (2) is

= -dx. (2)

dv
If we look upon -r- as the variable u, the left-hand side of equa-

du

vTTw2
whose integral is log (u + \/l -|- u^). (See Illustration 18, §82.)

Integrating (2),

When a; = 0, ^ = 0.

Hence C = and (3) becomes

dv
From the symmetry of the curve -r- changes sign when x is re-

placed by —X. Then from (4),

Subtracting (5) from (4),

2g=e«-e"a, (6)

or

^ = sinh? (7)
dx a

Integrating (7),

y = a cosh -
-f- d- (8)

If the origin is taken a units below the point 0, Fig. 61 a,

y = a when x = 0, and C2 = 0. Hence

y = a cosh — (9)
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This is the equation of the curve assumed by the cable. It

is called the catenary.

Equation (9) can be written

Y = cosh X, (10)

where

r = ^ and X = ?•

a a

The constant a depends upon the tautness of the cable. Equa-

tion (10) shows that the curve y = cosh z if magnified the proper

number of diameters will fit any cable hanging under its own
weight.

The length of OP can be found by substituting in formula 2, §63,

du
the value of j- given by (7), and integrating.

-^'ds = « / 1 + sinh' - dx
a

1C= cosh- dx.
a
X

s = a sinh + C3.
a

Since s is measured from the point where the curve crosses the

y-axis, s = when x = 0. Hence Cj = and

s= a sinh -• (11)
a

Exercises

1. If the two supports A and B, Fig. 61, are on a level, L feet apart,

and if the sag is d feet, show that the tension, T, in the cable at the

points A and B is

T = w(a + d).

2. Beginning with equation (6) find expressions for y and s without

making use of hyperbolic functions.

3. If the cable. Fig. 61, is drawn very taut, show that the equation

of its curve is approximately
X2

y =
2a

if the origin of coordinates is taken at the lowest point of the cable.

Hint. Begin with equation (2) and note that i-r-j is small com-

pared with 1.



CHAPTER X

MAXIMA AND MINIMA

In previous chapters maximum and minimum values of func-

tions have been found by making use of the derivative. Besides

this method several others which do not involve the use of the

derivative may, at times, be used to advantage.

89. The Maximum or Minimum of y = ax^ + j8x + 7. In

elementary analysis the student learned that y = az^ + j8a; + 7
represents a parabola with its axis parallel to the F-axis, and

that the equation can be put in the form y = a(x — p)^ -\- q.

The point (p, q) is the vertex of the parabola. If a is positive,

the vertex is a minimum point, if negative, a maximum point of

the curve. Let

y = Sx^ - 12x + 19.

y = 3ix- 2)2 H- 7.

The last equation shows at once that the minimum value of the

function is 7 and that it occurs when x = 2.

Exercises

Find the maximum or minimum values of the following:

1. y = 3x2 _ 2x + 1.

2. y = 3x - 2x2 + 1.

3. y = 3x2 _^ 7a.,

4. If a body is thrown vertically upward with an initial velocity of

a feet per second, its height h in feet at the end of t seconds is given by

h = at - 16.1<2.

To what height will the body rise if thrown with an initial velocity of

32.2 feet per second? When will it reach this height?

90. The Function a cos x + b sin x. The function a cos x +
6 sin X is of frequent occurrence. If it is put in the form of

165
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the product of a constant by the cosine of a variable angle, the

maximum and minimum values can be found at once. Thus

cos X + —r=a cos X -\-hsmx = ^aP' + h'''

a b
Now,

—

/ and — ,

'Va^ + b^ Va^ + b^

sine, respectively, of an angle a. For if P, Fig.

62, be the point (a, 6) and the angle POX be a,

Va^ + 62
sin X

[Va^ + b^

may be regarded as the cosine and

and
Va^ + b^*

b

Va^ + b^ Fig. 62.

Hence

a cos X -\- b sin x = y/a^ -\- b^ (cos x cos a + sin x sin a),

or

a cos X -r b sinx = -x/a^ -j- b^ cos (x — a). (1)

The quadrant in which ce lies will be determined by the signs of

a and b.

a is in the first quadrant if a is positive and 6 is positive.

a is in the second quadrant if a is negative and b is positive.

a is in the third quadrant if a is negative and b is negative.

a is in the fourth quadrant if a is positive and b is negative.

In polar coordinates equation (1) shows that the function

a cos X + bsinx is represented by a circle passing through the

pole, of diameter -y/a^ + b^, and with its center on the line making

an angle a with the polar axis.

The right-hand side of equation (1) shows that the function is

represented graphically in rectangular coordinates by a cosine

curve of amplitude -y/a^ -f b^. Thus, the maximum value of

a cos X + & sin a; is \/a^ + b^ and occurs when x = a. The mini-

mum value of the function is — \/a'^ + b^ and occurs when
2 = a -|- X.

Two examples giving rise to this function are solved below.
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Illustration 1. The weight W, Fig. 63, rests upon the horizontal

surface AB. P is the force, inclined at an angle 6 with the

horizontal, which will just cause the weight to slide over the

plane. The problem is to find the angle 6 for which P will be a

minimum. The coefficient of friction is denoted by ^i.

The normal pressure, N, between the weight and the plane is

(]F — P sin 0), the difference between W and the vertical com-

ponent of P. The force of friction, F, is then fi {W — P sind).

The horizontal component of P equals F. Hence

niW - Psind) = Pcosd,

or

^ = cos0+Atsine. (2)

uW
Since ix and W are constants,-p- is a maximum when and only

when P is a minimum. Hence to find the minimum value of P
uW

we may find the maximum value of -p- and multiply its reciprocal

hy fiW

W
p

B

A <

—

i:i îtiw^m i B

N
Fig. 63. Fig. 64.

From (2),

^ = Vl + M^' cos (0 - a),

where a is an angle in the first quadrant whose tangent is /x,

the coefficient of friction. Therefore, when 6 is acute and equal

to tan~^ /x, JP is a minimum and equal to ,

Vl + /X''

Illustration 2. A weight, W, Fig. 64, rests upon the inclined

plane AB. Find d so that P, the force which will just cause W
to move up the plane, shall be a minimum.

The normal pressure, N, between the weight and the plane AB



168 CALCULUS I §91

is equal to Tf cos (3 - P sin 6. Then F, the force of friction, is

equal to

H iW cos iS - P sin 6),

where /t is the coefficient of friction. We have then

F = m(^ cos |8 -Psin0).

Since the force of friction must balance the components of P
and W parallel to the plane AB, we have

H{W cos i3
- P sin d) = (P cos e -W sin /3).

Hence
Win cos j8 + sin /3)—^^-

p
^-^ = cos + /i sm 6,

or

Tr(^cos^ + sin/?) ^^^^-^^^^^^_^^ (3^

where a is the acute angle whose tangent is n. Thus, the left-

hand side of (3) is a maximum, and P a minimum, when d is acute

and equal to tan~^ ju.

„, . . . , f p • .K
Tr(MCos^ + sini8)

The mmimum value of P is then .

Exercise

In Fig. 64, find the minimum force, P, and the angle between its

line of action and AB, which will just prevent the weight W from slid-

ing down the plane.

91. The Function mx + -y/a^ — x^. Frequently problems in

maxima and minima lead to functions of the form mx ± s/a'^ — x^.

The curve for

y = mx ± y/a^ — x"^ (1)

can be obtained by shearing the circle y = + \/a^ — x^ in the

line y = mx. Every ordinate of the circle to the right of the F-axis

is increased (or decreased if m is negative) by an amount propor-

tional to the distance from the F-axis. To the left of the F-axis

the ordinates are decreased if m is positive and increased if m is

negative.

The maximum value of y is easily found by placing

X = a cos t. (2)
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Then from (1)

y = a(m cos t + sin t) (3)

= aVl + m^ cos (t — a), (4)

where a = tan"^— The maximum value of y occurs when

X = a cos a =
vTT

92. Maxima and Minima by Limits of Curve. In case f(x, y) =
is of the second degree in x and y, and in a few other cases, the

maximum and minimum values of y can be found by determining

when X changes from real to complex values.

The method will be illustrated by an example.

Let

^ g^ + e

^ ~ 2x + l"

Then
x = y ± V{y + S){y-2). (1)

From equation (1) it is seen that for values of y greater than 2

or less than — 3, x has two distinct real values. When y = 2 or

— 3, X has two equal real values. When — 3 < ?/ < 2, a; is imagi-

nary. This shows that the line y = c meets the curve in two

distinct points if it is more than two units above or more than

three units below the X-axis; that it is tangent to the curve

when two units above and when three units below the X-axis, and

that it does not cut the curve when it falls within the limits two

units above and three units below the X-axis. Hence the func-

tion has a minimum value 2 and a maximum value —3.

Exercises

1. Find the luaximum and minimum values of

x" - 2x + 19

2z +5
2. Find the maximum rectangle which can be inscribed in a circle

of radius 10.

93. Maxima and Minima Determined by the Derivative. The

first derivative has been used to determine the value of the argu-
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ment corresponding to maxima and minima of functions. Im-

mediately to the left of a maximum point the function is increas-

ing with X and consequently the first derivative is positive. On
the other hand, immediately to the right of such a point the func-

tion is decreasing as x increases and the first derivative is negative.

Similarly it follows that the first derivative is negative im-

mediately to the left and positive immediately to the right of a

minimum point. In both cases the first derivative changes sign

as the independent variable passes through the value for which

the function has a maximum or a minimum value. This change

of sign may take place in a number of ways.

Illustration 1. Thus, in the case of the function

y = x^ -2x + 7,

the derivative,

I = 2. - 2 . 2(. - 1),

is negative to the left and positive to the right of the line x = 1,

dy
When a; = 1, ^ = and the curve has a horizontal tangent. In

the vicinity of this point the curve has the

shape shown in Fig. 65.

At first thought it might appear that if the

first derivative is negative to the left and

positive to the right of a certain point, it

certainly must become zero at this point.

This is, however, by no means the case, as

the next illustration will show.

Illustration 2. y = 4 + (x — 1)^. Although the minimum
value of this function can be determined at once by noting that

it represents a semi-cubical parabola with its vertex at (1, 4), the

problem will be worked by the method of the calculus for illustra-

tive purposes.

The derivative,

dy^ 2
^

^^ 3(x-l)*'

is negative when x < 1 and positive when x > 1. Hence the

function is decreasing to the left and increasing to the right of
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a; = 1. When x = 1, ?/ = 4. This value is a minimum value of

the function. For z = I the derivative does not exist, as the

denominator becomes zero. Let us see what really happens in

the vicinity of x = 1. As x approaches 1 from the left, j- takes

on larger and larger negative values. The form of the curve to

the left and in the immediate vicinity of the point (1, 4) is some-

thing like that shown in Fig. 66. The line x = 1 is tangent to

the curve at this point.

As X approaches 1 from the right, i.e., through decreasing values,

the derivative becomes larger and larger. The form of the curve

to the right of the line x = 1 is also shown in Fig. 66. The line

X = 1 is also tangent to the portion of the curve obtained by allow-

ing X to approach 1 from the right.

Fig. C6. Fig. 67.

It is now apparent that the first derivative may change sign

without passing through zero. In the above illustration it changes

sign by becoming infinite.

The first derivative may change sign in still another way as

illustrated by the curve of Fig. 67. Let us suppose that the de-

rivative approaches — 1 as x approaches a from the left, and the

value +1 as X approaches a from the right. The function has a

minimum value at the point P, for the derivative changes from

minus to plus as x increases through the value a and consequently

the function is decreasing to the left and increasing to the right

of X = a.

The essential thing at a minimum point is that the derivative

changes sign from minus to plus, and at a maximum point that it

changes sign from plus to minus.
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A derivative which is continuous at a maximum or a minimum
point changes sign by passing through zero. But it may change

sign by becoming infinite, as the second illustration shows, or by

becoming otherwise discontinuous as explained above. This last

type is of rare occurrence and will not be referred to again.

Illiistration 3. y = x^ -^ 3. The derivative of this function,

-p = 3x^, is positive for all values of x except x = 0, when it is

zero. The function is increasing for all these values of x. At
this point, (0, 3), there is a horizontal tangent but the function

has neither a maximum nor a minimum at the point, for it in-

creases up to the value 3 for x = and then continues to increase

to the right. This illustration brings out clearly the fact that

there is no reason for assuming that a function has a maximum or

a minimum value at a point where the first derivative is zero.

What kind of a point is the point (0, 3) ?

94. Second-Derivative Test for Maxima and Minima. In the

first of the three types of maximum or minimum points considered

in §93, the first derivative changes continuously from positive to

negative values or vice versa. For a maximum point of this type

the curve is concave downward and the second derivative is

negative at such a point. For a minimum point the curve is

concave upward and the second derivative is positive. A con-

venient test for the behavior of a function at a point where the

first derivative is zero is then, to substitute the abscissa of this

point in the expression for the second derivative. If the second

derivative is positive the point is a minimum point; if negative,

a maximum point. If the second derivative is zero, the test

fails. This test also fails for maximum or minimum points where

the first derivative is discontinuous.

Examine the curves

y = x»,

y = X*,

95. Study of a Function by Means of its Derivatives. The
following is a summary of the application of the first and second

derivatives to tracing the curve representing a function:
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1. The function is increasing if the first derivative is positive,

and decreasing if it is negative.

2. To find maximum and minimum points find the values

of X for which the first derivative becomes zero or infinite. If

the derivative changes sign at any of these points, the correspond-

ing point is a maximum or minimum point according as the

change is from plus to minus or vice versa.

Points at which the first derivative is equal to zero can also bo

tested by substituting the abscissa of the points in the second

derivative. If the second derivative is positive, the point is a

minimum point, if negative, a maximum point.

3. Points of inflection are found by determining where the

second derivative changes sign. As in the case of the first

derivative, the change in sign can take place through zero or

infinity. If the change is from positive to negative values the

curve changes from being concave upward to being concave

downward.

The abscissas of the points at which the first and the second

derivatives become zero or infinite we shall call the critical

values. These values and these alone need be tested in study-

ing the behavior of an ordinary curve. The investigation of a

curve by means of its derivatives can be put in the tabulated

form shown in the following illustrative examples:

1. y (See Fig. 33.)

dy

dx

d^
dx^

— X.

dy

dx
= when x = 0.

-1-^ = when x

X
dhj

dx^

dy

dx y

X <0
X >

<0
>0

>0
>o

Concave downward, increasing

Concave upward, increasing
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Here (0, 0) is a point of inflection. There is neither a maxi-

mum nor a minimum point.

2. 1/
= ix3 - x^ + Ix + 2. (See Fig. 34.)

g = ix^ - 2x + I

= X

i(:r - Dix - 3).

2.

dv-^ = when x
ax

= when x

1,3.

2.

X
dy

dx y

X < 2

X > 2

<o
>

Decreasing

Increasing

Concave downward
Concave upward

X < 1

1 <x < 3

X > 3

>
<
>

Increasing

Decreasing

Increasing

1

2

3

8
3

i
2

2

(2, I) Point of inflection.

(1, f) Maximum point.

(3, 2) Minimum point.

Apply second derivative test for x = 1 and x = 3.

96. Applications of Maxima and Minima. In solving problems

involving maxima and minima the first step is to set up from the

conditions of the problem the function whose maximum or mini-

mum value is sought. Frequently the function will be expressed,

at first, in terms of two or more variables. Usually, however,

there is a relation between these variables, and the function can be
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expressed in terms of a single variable. After this has been done

the maximum or minimum values can be found.

Exercises

1. Equal squares are cut from the comers of a rectangular piece of

tin 30 by 20 inches. The rectangular projections are then turned up
forming the sides of an open box. Find the size of the squares cut out

if the volume of the box is a maximum.
2. A man who is in a boat 3 miles from the nearest point, A, of a

straight shore wishes to reach, in the shortest possible time, a point

B on the shore which is 6 miles from A. Find the point of the shore

toward which he should row, if he can row at the rate of 3 miles per

hour and walk at the rate of 5 miles per hour.

3. The horizontal component of the tension in the guy wire BC,
Fig. 68, is to balance the horizontal pull P. If the strength of the wire

varies as its cross section, and if its cost varies as its weight, find the

angle such that the cost of the guy wire shall be a minimum.

B

Fig. 68. Fig. 69.

4. Find the length of the shortest beam that can be used to brace

a wall if the beam passes over a second wall 6 feet high and 8 feet from

the first.

5. A steel girder 30 feet long is moved on rollers along a passageway

10 feet wide, and through the door AB, Fig. 69, at the end of the pas-

sageway. Neglecting the width of the girder, how wide must the

door be in order to allow the girder to pass through?

6. A sign 10 feet high is fastened to the side of a building so that the

lower edge is 25 feet from the ground. How far from the building

should an observer on the ground stand in order that he may see the

sign to the best advantage, i.e., in order that the angle at his eye sub-

tended by the sign may be the greatest possible? The observer's eye

is 5 1 feet from the ground.

7. A man in a launch is m miles from the nearest point A of a

straight shore. Toward what point on the shore should he head his

boat in order to reach, in the shortest possible time, an inland point
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whose distance from the nearest point B of the shore is n miles? The

man can run the boat Vi miles per hour and can walk Vj miles per hour.

The distance AB is p miles.

Ans. Toward a point such that

sin 61 sin dt

Vl V2

where 0i and 62 are the angles made by the paths of the man with the

normal to the beach. It will be noticed that the path taken by the

man is similar to that followed by a ray of light in passing from one

medium to another with a different index of refraction.

-.25

.5 1 1.5

Fig. 70.

8. A man in a launch is m miles from the nearest point A of a
straight shore. He wishes to touch shore and reach, in the shortest
possible time, a second point on the lake whose distance from the
nearest point B on shore is n miles. In what direction must he head
his boat if the distance AB is p miles?
The path taken by the man is similar to the path of a ray of light

reflected by a plane surface.

9. It is desired to make a gutter, whose cross section shall be a
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segment of a circle, by bending a strip of tin of width a. Find the

radius of the cross section of maximum carrying capacity.

10. A sector is cut from a circular piece of tin. The cut edges of

the remaining portion of the sheet are then brought together to form a

cone. Find the angle of the sector to be cut out in order that the

volume of the cone shall be a maximum.
11. The stiffness of a rectangular beam varies as its breadth and as

the cube of its depth. Find the dimensions of the stiffest beam which

can be cut from a circular log 12 inches in diameter.

12. The strength of a rectangular beam varies as its breadth and as

the square of its depth. Find the dimensions of the strongest beam
which can be cut from a circular log 12 inches in diameter.

1.5

L26

.75

(4)

.25

k^^

3^(2)

(1) 2/ = e"* +0.56-^"*

(2) y=e-
(3) 2/

= e ^-o.ie

(6) 2/ = e-* -1.56
^

>A(3)

p^\,

|(6) \s^

—

-

1 1.5

Fig. 71.

2.6

13. Consider the sum

y = ox" + bx*"

for positive values of x only. First, if n and r are of like sign, show

that: (1) a maximum or a minimum value exists if a and b are of

unlike sign; (2) neither a maximum nor a minimum value exists if a

and b are of like sign. Second, discuss the same cases if n and r have

opposite signs.

14. Determine the exact values of the maxima shown in Figs. 70

and 71.

Hint. Consider first the general case

12
y e~' — ae



CHAPTER XI

POLAR COORDINATES

97. Direction of Curve in Polar Coordinates. Let BPQ,
Fig. 72, be a curve referred to as pole and OA as polar axis.

Let P be any point of the curve and let PT be a tangent to the

curve at this point. Let PS be the radius vector of the point P,

produced.

A point describing the curve, when at-P, moves in the direction

PT. This direction is given by the

angle ^ through which the radius

vector produced must rotate in a posi-

tive direction about P, in order to be-

come coincident with the tangent line.

An expression for tan^ will now be

found. Let Q, Fig. 72, be a second

point of the curve. PR is perpendicu-

lar to OQ, and PM is a circular arc with as center and radius

OP = p.

tan^= iJ^otani2QP= iJS'o ^. (D

The infinitesimals PR and RQ can be replaced by PM and MQ,
respectively, if (see §60)

lim PR
A0=OPM

Fig. 72.

1 (2)

and

= 1.
lim RQ

Equation (2) is true by equation (3), §56

(3) follows:

lim RQ^
Afl-.0 MQ

(3)

The proof of equation

lim RM + MQ
Ae=o MQ
Urn p(l -cos Ag) + Ap
A9=0 ^p
, , lim p(l-cosA0) Ae

178
Ad Ap
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Hence

since
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lim RQ
= 1.Ae=o MQ

lim 1 — cos Ad
A9=0 ^0

From (1), (2), and (3) it follows that

= 0.

, ,
lim PM

Hence

lim pAg

tan^
dp

tan^ = ^-

dd

(4)

This formula* can be easily remembered if the sides of the tri-

angular figure MQP, Fig. 72, are thought of as straight lines, and

d sin
' This formula enables us to give another proof for —-yz—. In polar codrdinates

p = sin 8 represents a circle, Fig. 73. By geometry, x// = e. Then

p sin
tan^ = tanfl=^ - ^.

de

dp

de
"

d sin

de

de

cos 8,
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the angle MQP as equal to \p. Then the tangent of rp would be

de p_

dp

dd

dp dp

dv
Formula (4) corresponds io -r = tan t in rectangular coordi-

nates.

Illustration L If p = e"*,

dd = «^

and tan \I/ = -, a, constant.^ a'

Illustration 2. Find the equation of the family of curves for

which the angle between the radius vector produced and the

tangent line is a constant.

tan yp = k.

or

Integrating

or

dp

dd

k,

dp
;

dd _
P

1

k

dp

P
>•

IP = 1--

P = «:—

= e e*,

P = Kek,

where K is an arbitrary constant.
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Exercises

Find tan \p for each of the following curves

:

1
'^. 4. p = a(l — cos e).

5
o

2. p = ad. ''
1 - cos »

3. p = e"'. 6. p = o cos (0 — a).

98. Differential of Arc: Polar Coordinates. We. shall now
ds

find an expression for -v^ in polar coordinates. From Fig. 72,
dd

(chord PQ) 2 = (PRy + (RQ^.

From which

lira /chord PQV lira /PRy
,

lira /RQV

Replacing chord PQ by arc PQ = As, PR by PM = pA0, and

RQ by MQ = Ap,

(1)

(2)

(3)

It corresponds to (ds)^ = (da-)^ + (%)'' in rectangular coordinates.

It can be remembered easily by the help of the triangle MQP,
Fig. 72.

The length of the curve can be expressed as a definite integral.

Thus: (See Fig. 74)

lim -^ _,^
s = A« = 2Lf

P^

lira /

A9 = 1

Y lim fpAey ,
1

Therefore

[de) = ^ + [de)

and

dS = Jp2+(^P)W

This formula can be written

(ds)2 = p2(d0)2 + (dp)^
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= a/™o % ViPRV + {RQy
B

= /3

-J'i-0 D'VQV (ff)'-
= a
= fi

Illustration. Find the entire length of the curve p = a(l — cos 0).

This curve is symmetrical with respect to the polar axis. The
length of the upper half will be found and multiplied by 2.

dp

=
j Va\i - cos ey + a2 sin2 d dd

=^^de
a

sin -H" rf0

= — 4a cos — = 4a.
^ lo

s = 8a.

Exercises

1. Find the entire length of the curve p = 2a sin 9.

2. Find the entire length of the curve p = a(l — sin 6).
a

3. Find the entire length of the curve p = a sin' -^•
o

4. Find the length of p = e°* between the points corresponding to

6=0 and = v. Also between the points corresponding to =

and e =Z-
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5. Prove formula (3) directly from

and

X = p cos d,

y = p sin e,

ds = Vidxy + (dj/)2.

99. Area : Polar Coordinates. Find the area bounded by the

curve p = fid) and the radii vectores 6

= a and 6 = ^. We seek the area

BOC, Fig. 74. Draw radii vectores

dividing the angle BOC into n equal

parts Ad. Let POQ be a tj'pical one

of the n portions into which the area

is divided by these radii. The angle

POQ is Ad. The line OP makes an

angle 6 with the initial line OA, and ^^°- '^'

its length is p = f(d). Denote the area of BOC by A.

lim

o7

^ =nT^XPOQ^ (1)

Replace^ POQ by the circular sector POR whose area is ^p^'A^.

Then
^ s

or

'I

P^dd,

A = h\ [mv dd.

Exercises

(3)

1. Find the area bounded by the curve p = 2o sin e.

2. Find the area bounded by the cardioid p = 2a(l — cos 6).

, 1 + cos 29
Hint. cos*0 = ^

iLetA^ = OPQ (Fig. 74). PR and QS are arcs of circles. Then

OPR < A^ < OSQ,

Jp«Ae <AA< i(p + Ap)'AJ.
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3. Find the area bounded by p = 2a(l + sin e).

4. Find the area bounded by one loop of p = 10 cos 2d.

5. Find the area bounded by one loop of p = 10 sin 26,

6. Find the area bounded by one loop of p = a cos Sd.

7. Find the area bounded by one loop of p^ = 10 cos 29.

8. Find the area swept out by the radius vector of the curve

p = ad, as varies from to 2ir.

9. Find the area bounded by the radii vectores = 2, ^ = ir, and

the curve p = -r^-

10. Find the area bounded by the radii vectores = 0, 6 = ^ and

the curve p = 5^^.



CHAPTER XII

INTEGRATION

100. Formulas. In Chapters III, VI and VII the following

formulas of integration, with the exception of (19), have been used.

They are collected here foj reference, and should be memorized by

the student.

1. fw du = —7-r w»+i + C, if w 7^ - 1.
J n + 1

3. J e» rfw = e» + C.

4. I a" du =
, a» + C.

J log, a

5. j sin udu = — cos u -\- C.

6. J cos w dw = sin w + C.

7. I sec'^ udu = tan u + C.

8. I csc'^ udu = — cot w + C.

9. I sec u tan udu = sec m + C

10. I esc M cot udu = — esc w + C

11. J tan udu = log sec w + C.

12. J cot udu = log sin w + C

13. J sec udu = log (sec w + tan u) + C

14. { CSC udu = — log (esc w + cot u) + C.

15.
I
—r = sm-i - + C.

185
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16.
du

a^ + u^
= - tan-i - + C.

a a

[§100

17. I
.- = - sec-i - + C.

J u\/u'^ — a2 « «

18.
I

,J^ = log (m + Vu^ ± a^) + C.

r du ^ 1^

J u^-a^~ 2a
19. Iri^.-^loK^ + C.ifX-

= K- log—j \- C,itu < a.
2a ^ a + u

Formula (19) is proved as follows:

.^^lU Ll
u2 — qZ 2a \u — a u-\- aj

f du ^ i_ rr_i 1 1

J u^ - a^ 2aJ [u-a w + a
J
"

_ 1 r du 1 r du
~ 2aJ u — a 2aJ u-\- a

= 2" log {u - a) - 2^ log (w + a) -f C.

1
,
u-a

^= ^ log—
, h C.

2a ^ u + a

This formula leads to the logarithm of a negative number if m < a.

To obtain a formula for this case write

^_ = ir__i Li.
u^ — a^ 2a L a — u a-\-uJ

Then

/
du 1 , a — M . _

= o:; log :,-n-7: + C-
u^ — a^ 2a ^ a + w

Exercises

r xdx r
*

J Vie - z2*
^*

J V^

^*
J Vie - X*"

*'

J ^' + 16

2-16

dx
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r dx
• J16-X

I

16

xdx
x^ - 16*

dx

xy/x^ - 16

9. fcot 1i dt.

r{x+ a)dx
^

J ^' + 2ax

11. fix^ - 16)^ X dx.

12. fsin (2x - 3) dx.

13. fsec^ (5a + 2) da.

25.
I

e2 +e~2 dx.

26. la^'' dx.

27. r(2x + 4)''-" dx

^^'
J 7x* + ll

30. I

4. Jsec (2(? + 4) tan (20 + 4) de.

5. fcsc^ (3 - 2</.) d<^.

7. fe^^'^^ainede.

C 31^ dt

J 30<'+ 13'

9. JiVc - Vxy dx.

20.
J
\/3 + 4x dx.

/I
e^dy.

23. fe*'*" (2^ +2) sec2(2x + 3) dx.

dx. Divide numerator by denominator.

31. le^'dx.

dx

/
dx

4x2 _

/

J Vie - 9x2"

35. ftan (3a + 4) da.

33

34

9

cos X dx

4 + 3 sin X

dx

cos" (3x - 2)

36. Htan e + cot ey dd = tan e - cotB + C.

39. Jcos (3< - 4) dt.

„ 40 r ^*-
38.

J
cot (5< - 8) dt. J ^ - *2/'

/37. I (sin -z — cos 50) dd.
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dz 61. fcos^ (3x - 2) sin (3x - 2) dx.

62. I sec* (9 - 7x) dx.

63. I e 3 sec^^dx.•{. 63.

43.
J
tan (2x - 5) dx. J

44. Jsec (2y + 4) dt/. 64.
J
tan* x sec* a: dx.

46. fcsc (2t/ — 7) dy. 65. J cos* 3x sin 3a; dz.

46.
J

cot (3< + 11) d/. 66. ftan^ 5x sec* 5xdx.

47. I sec* (^ — 5]dx. 67. I sec* x tan xdx.

48. jTcos (3 - 2x) dx. «8.
J

csc^ x cot x dx.

Aa r 2x + 5 ^ 69. fx tan (2x* - 5) dx.
**•

I x* + 5x + 4r^- %

/
_ I sin X cos X dx

62

/
<^^ 72. (e* —^dx.

V9<* - 4 J *

/
<^^ 73. fiJ - x»)» dx.

V4-9/*-

J <\/9<* - 4 "^

/
tdt 75. ft^Qt^ - 17 dt.

V9i^^4: r ^dx
r tdt ^^J
j9t*-4 n

. I sec 5x dx. '
j i

V9 -X*

sin 5x dx

57. I sec 5x dx.
'

/ ^ ^*^^ ^^ "I" ^^

68. fsin (cot + a) dt. 78. fe^'''
^^ cos 3x dx.

69. Jcos* 4x sin 4x dx. 79. fe^' + <^ + '^{x + 3) dx.

60. j sin* (x +3) cos (x + 3) dx. 80. | cos 5x sin 3x dx.
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83. Jsin 3t cos 4t dt.

84. I sin«5«d<.
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81. I cos 3x cos 5x dx.

82.
I
sin 7x sin 4x dx.

r
85. I sin mt cos n< di, where m and n are integers. What is the

value if m = n?

86. I cos (3w< + a) sin (3w< + a)dt.

'I?

88

89

90

2x + 3 ,

x^ + 3x^+7
x* + 9

•J
3^^^^-

/3x-f-2 ,

91. fsin* 5fl cos 56 dO.

92.
I
sin^ X dx.

93.
J
xVie - x2 dx.

94.
I
sec2

(l
+

2J
dx.

95.jy^^dt.

96. I sec 2 4x tan 4x dx.

97. I \ dx.

109. fsec {3<l>
- 2) tan (30 - 2) d,/..

110. rtanH2x - 1) sec* C2x - 1) dx.

dx

V5 - 7x2

dx

VSx^ - 5

00. I sin 4x cos 6x dx.

01. f(V^-V^)'dx.

'2x + 3

2x + 7

dx

dx.

V3x +2

04.
I
sin* 2x cos 2x dx.

05.
I
Vsinx cos x dx.

06. fe-^dt.

07. r(2x - 5)^dx.

08. /sec odx.
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"^-
j l + tan3x

^^- "8-j3^M^4

112. fv2^^3idx. 119. [—y^
•^

J yVsy
dy

113. ftan (5 - 2x) dx. f* vdvJ 120 I —^=^

114

116

f .i. J Vs.' -7

J 5 - 3x2 ]L21. I sec^ tan e dd.

•

J
¥~^7 "2-

J VlP^'

116. I^^dx. 123. |sm'|cos|dx.

/x + 4 C X
—

;

?; <ix. 124. I cos 2xsin o<ia;.
x^ - 9 J 2

101. Integration of Expressions Containing ax^ + bx + c, by

Completing the Square.

Illustration 1.

/
dx ^ r dx 1_

J
X + 2

X2 + 4X + 9 J(x + 2)2+5 VS VS
Illustration 2.

/rfx r dx C dx

V3 + 4x -"x^
~
J VS - (x2 - 4x)

~
J \/3 + 4-(x-2)2

dx . X — 2

J:\/7 - (x - 2)2 \/7
Illustration 3.

+ C.

r dx _ 1 r
J7x2 + 3x + ll IJ x^ + ^x + tEit + V - ~lU

dx

1 14
^ _, x + -A- , ^s —;== tan * .> . + C

' V^99 V^99^
14

2
tan-. lii+3 + c.

299 \/299
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Illustration 4.

dxr dx i_ r dx 1^ r

J VQ+2x-3x^~ V3J V2+lx-x^~VSJ V2-{x^-l^
1 C dx 1 . _. x-l= —7= I

—— = —-7= sin * —7= + C
\/3j VY -ix-\r \/3 VY
—;- Sin^ ;p:r— + C.
V3 \/l9

Exercises

J x^ + 6x +25 J

^-

J
x2 - 6x + 5 J

5x^ -

4. f-^^ 9. f
J A/2a;2 + 2x - 3 J

V2 + 3t - 2t2

dx

8x + l

dt

Vl +2t + 2t2

2x2 _|. 5x - 3

,„ r 2x-5 ^ f2x+6-ll _,

1°-
Jx^ + 6x+25^^ =J^2+6x+25'^^

/
(2x + 6)dx _ r___^5___

x2 + 6x + 25 J
x2 + 6x + 25*

J V2x2^+ 2x - 3 J VS - 4x - x2

/4x + 1

1

C^^-p2^-dx. 14.

J-

16 r ^^
18. f ^^

'

J xV3l^ 6x + 5x2 J V4J/2 + 122/ - 7

17. f-^-=' 19. fg^-

dx 1
15. I ^ Substitute x = -•

xv/2x2 + 3x - 2 ^

(Zx

24x -9
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20. I 23. I . ^='
J V8 + 12x - 4x» J x\/^+12x - 7x2

J \/8 + 12x - 4x2 J aX VSx^ + 12x - 4

/
22.

16x2 - 24x + 24

102. Integrals Containing Fractional Powers of x or of a + bx.

Illustration 1.

/:

x^ — x^— ax.
3 +4

Let X = 2*. Then dx = 62^ dz, and

J ^i + 4
^ j0^ + 4' ^"

J^^ + 4
'''•

The integration can be performed after dividing the numerator

by the denominator until the degree of the remainder is less

than 2. After integration replace z by x^.

Illustration 2.

\x + 2)^ + 4

/!
dx.

(x + 2)^-3
Let X + 2 = z<. Then

r(x + 2)U4
f(?!+-41^'rf.

Divide the numerator by the denominator. The integration can

readily be performed. After integration replace 2 by (x + 2)*.

In general if fractional powers of a single linear expressior,

a + bx, occur under the integral sign, let a -{- bx = z", where n is

the least common denominator of the exponents of a + bx. The
linear expression a + bx reduces to x when a = and 6=1.
See, for example, Illustration 1.

Exercises
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f.

/'
^„ , 3x- 2 ,

10. I . dx.
x\/2x

+

3

(a;i + a;3) dx.

12. I . dx.
Sx\/2x - 3

14.

J 1 + (X + 2)^
13. I

v-^-T--^- -rx
^^^

1 + (X + 2)

Vx — 3 dx

P

x + 4

x(l + x^)

15.
I

~"
' T dx.

jg rV2x + 3 dx.

3x - 2

103. Integrals of Powers of Trigonometric Functions.

(a)
I

sin" X cos" x dx where at least one of the exponents is an

odd positive integer. This includes I sin"» x dx and J cos" x dx

where the exponents are odd.

Illustration 1.

J sin^ X cos^ X dx =
J (1 — cos^ x) cos* x sin x dx

=
J cos* xsinx dx — J cos* xsinxdx

_ cos' a; cos^x _,- 3- + -5— + ^-

Illustration 2.

I cos' X dx = 1(1— sin^ x) cos x dx

= I cos X dx — j sin* x cos x dx

sin'x , _
= sin X — — o r C.

It is seen that the process consists in combining one of the func-

tions sin X or cos x with dx to form the differential of — cos x or

of sin X, respectively, and of expressing the remaining factors

of the function to be integrated in terms of cos x or sin z,

respectively.

13



4.
I
sin* X dx

6.
I
\/sin X cos' x dx.
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Exercises

1. fsin'zdx. f cos»a;
•7. 7. -y== dx.

2. j sin" X COS* z dr. J ^^^'^ ^

3.
I
cos* X sin' x dx. g I

^'"' ^
^^^

r . . . t/ (cos^)'

9. I sin* a cos' a da.

6. fcos* X sin' x dx. 10-
J

cos^ (2x+3) sin' (2x+3) dx.

(b) I sin" z COS" x dx when w and n are both even positive

integers- In this case make use of the relations:

sin'^ X = 5(1 — cos 2.t).

cos^ X = 5(1 + cos 2x).

sin X cos X = ^ sin 2x.

Illustration 1.

I sin' X dx = H(l ~ cos 2x) dx = \\dx — \\ cos 2x dx.

_ X sin 2x
~2 r^ + ^-

Illustration 2.

I sin' X cos' X dx = 5 j sin' 2x dx = | 1 (1 — cos 4x) dx

_ X sin 4x
~ 8 32~ "^

Illustration 3.

J cos* X dx = J I (1 + cos 2x)' dx

= ij(l 4- 2 cos 2x + cos' 2x) dx

= ix + 4 sin 2x + I I (1 + cos 4x) dx

= f^ + 4 sin 2x + -^2 sin 4x + C.

Illustration 4.

J sin' X cos* X dx =
J (sin x cos x)* cos* x dx

=
IJ sin' 2x (1 + cos 2x) dx

= iVJ (1 — COS 4x) dx + I I sin' 2x cos 2x dx

= iVx — Vv sin 4x + Vif sin' 2x + C.
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Exercises

1. js'm'^xdx. 4. jsm*xdx.

2.
J

cos* 2x dx. 5. fsin* 3x dx.

3. / sin* X cos'' x dx. 6. j cos* 5a; dx.

(c) I tan" a; rfx and I cot" x da;.

Illustration 1.

J
tan^x dx =

J
tan^x (sec^x — 1) dx = „ — ftan^ x dx

tan' X f/ « . V ,= —5
I (sec'^x — 1) dx

tan^x
, , /^= —o tan X -r X + C.

Illustration 2.

J cot' X dx =
J (csc^ X — ly cot X dx

= I esc* X cot X dx — 21 csc^ x cot x dx + I cot x dx

= — J CSC* X + csc^ X + log sin x -\- C.

(d) I sec X dx and J csc" x dx, n an even integer.

Illustration 1.

J sec* X dx =
J (1 + tan^ x) sec'^ x dx = tan x + | tan' x + C.

When n is odd this method fails. (See §106.)

(c) / tan" z sec" x dx andJ cot*" x csc" x dx when n is a positive

even integer, or when m and n are both odd.

Illustration 1.

J tan* X sec* x dx =
J
tan* x(l + tan'^ x) sec^ x dx

= I tan^x + 7 tan^x + C.

Illustration 2.

J tan' X sec' x dx = j tan'^ x sec^ x sec x tan x dx

= I (sec'^ X — 1) sec^ x sec x tan x dx

= I (sec* X — sec' x) sec x tan x dx

= i sec' X — 5 sec' x + C.



196 CALCULUS I §104

If m is even and n is odd the methods of §106 must be used, for

the integral reduces in this case to the integral of odd powers

of the secant.

Exercises

9.
I
tan^ X sec' x dx.

LO. I tan' X sec* x dx.

1.
I
tan* X dx.

2. 1 CSC* X dx.

3. 1 tan^ X sec' x dx.

4. I tan* X sec' x dx.

6.
I
cot* X dx.

6. I csc« X dx.

7.
I
tan* X sec'* x dx.

8. I sec* X dx.

I tan 5 z sec* a; dz.

2. I (tan 2 x + tan* x) dx.

1.

I
sec' X tan^ x dz.

4. fctan e -f cot OY dd.

5. jtan^ede.

.

I
sec' e tan~* 6 d9.

104. Integration of Expressions Containing s/a.^ — x% Va* + x*>

\/x2 — a^ by Trigonometric Substitution. The methods of §103

find frequent application in the integration of expressions which

result from the substitution of a trigonometric function for x

in integrals containing radicals reducible to one of the forms

Va* + x\ Va* - x\ or Vx* - a^.

Illustration 1. I \/a^ — x^ dx. Let x = a sin 6. Then

dx = a cos d0, and

JVa^ - a;2 dx = Ja^ cos^ dO = la^{e + | sin 2d) + C
= ^a2(0 + sip cog ^) + c

= la' [sin-i ^ + ^, aA^":^] + C

= W sin-' ^ + JxVa* - x^ + C.

Illustration 2. j -\/a2 -|- a;2 ^3 dx. Let x = a tan 0. Then

J Va» + x^x'dx =a5
J
tan^ sec^ d9

= a'^Jtan^ 6 sec^ tan sec d^

= a»J(sec* d - sec* 0) tan sec & dd
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= a6(i sec* d - I sec3 6) + C

a'

1 + 1 +

Illustration 3. /

5 3

5 3
+ (7.

dx. Let X = a sec 6. Then

dx = a sec d tan d0, and

sec5tan2 0d0

sec

= aJtan2 6 dd

= a (tan 9 - 0) + C

= a-* /-; — 1 — a sec"^ - + (7

= Vx^ — a2 — a sec-i - + C.
o

The integration can also be performed directly if the numerator

is rationalized. Thus,

rVx2 - a^
, (x2 — a^)dx

r-7^£= - a^ f
dx

= \/x2 — a2 — a sec-i - + C.
a

The substitutions used in these illustrations are summarized in

the following table:

Radical Substitution Radical becomes

X = a sin ^

X = a tan 9

X = a sec d

a cos 9

a sec 9

a tan 9

Va' +x^
Vx^ - a^
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Expressions involving s/ax^ + 6x + c can frequently be inte-

grated by completing the square under the radical sign and making

a trigonometric substitution.

Illustration 1.

r xdx r xdx

J V3 + 2x- x2 J V'4 - (x - 1

Let X - 1 = 2 sin 9. Then a; = 1 + 2 sin ^ and dx = 2 cos 6 dd.

Hence

/
x dx r

VS + 2x - a;2
""

^

J

(1 + 2 sin 6) cos Ode
2 cos

= J(l + 2 sin 0)d0

= - 2 cos ^ + C

X — 1= sin-» —2 VS + 2x - x^ + C.

Illustration 2.

0^]'/
rfx r rfx__

\/(2aa; - x^y
~
J [a^ - (x - a)

Let X — a = a sin ^. Then x = a(l + sin d) and dx = a cos rf5.

dx r a cos 5

•\/"(2ax - x^y
~~

J a'coss

= ^Jsec^ede

= -„ tan + C

^ 1 sin g

a2 cos "^ ^

X — a

1 ~^
a2 1 ,

_
-V2aa; - x^

+ C

o'' \/2ox - x2
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Exercises

dx

dx

1 r dx ^ r dx r

2./>^'... »./;vfc, »-/a-.,vr^

3./xvrTT..x.
6.J^^7^,- »./^^;r~r»

10.
J

(a^ - x^y-dx = 3a^fcos* sm^O de.

Hint. Let
S 3 .

xs — a^ sin'' e,

X = a sin^ 0.

4)5

dx

(16 - x^)*

dx

r x^dx r dx r dx
'

J Va^~^^' '

J xWx^^^' ^-

J a;(x» -

12. fV9 - 5x2 dx. 14. f{9 ~x^)^dx. 16. 1

J (x2 + 6x + 25) 2 J (x2 + 4x - 5)^

Vl^^^" 20. Jv'2 + 6x-x^cix.

105. Change of Limits of Integration. In working the pre-

ceding exercises by substitution it was necessary to express the

result of integration in terms of the original variable. In the

case of definite integrals this last transformation can be avoided

by changing the limits of integration.

L. I x^Vo^Illustration 1. | x^ Vo^ — x^dx. Let x = a sin 6. Then

dx= a cos d dd.

When X = 0, sin = and ^ = 0.

TT

When X = a, sin ^ = 1 and ^ = o*
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As X varies continuously from to o, varies continuously from

TT

to ^ • Hence we have

I
x^y/a^ - x^dz = a^\ "sin^ Q cos^ Q

Jo Jo
dd

= a*{ld - A- sin Ad)
2

n

wa*
~ 16

r** x' dx
Illustration 2. 1 —-. Let x = a tan 6. Then

Jo Vfl^ + x^

dx = a sec^ 6 dd.

When X = 0, tan = and 6 = 0.

r,^, . /> - 1 /.
'T

When X = a, tan = 1 and ^ = 7*

As X varies continuously from to a, varies continuously from
IT

to T- Hence we have
4

J^*

x'dx C* \~*

-^=== = a' 1 tan» d sec d dd = a^i sec^ d - sec d)\

VS^T^^ Jo lo

= ia\2 - V2).

\/a2 — x^ dx. By using the substitution

X = a sin we obtain

/*2

d5JVa^ - x2 dx = a^ j cos^

«/0

= iaM^ + ^ sin 20)r

Tra''l2

~ 4
*

The above integral is of frequent occurrence in the application

of the calculus. The integrand, \/a^ — x^, is represented graphic-
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ally by the ordinates of a circle of radius a, center at the origin.

The integral then represents the area of one-quarter of this circle.

(See §§64 and 65.) The value of any integral of this form may
be written down at once. Thus,

I
V4 -{x- 5)2 dx =

I
\/4 - M^ rfw =

Jo Jo

7r22

s:

^^TT^
_ _ 7r(3-hz^)

\/3 + z^ - a;2 dx = -.

Exercises

1. I (9 - a;*)* dx. 7. I

Jo Jo (o^ + X

,. f—i^. s. r
Jo V2ax-x' J^A

r x^dx g r_
• X V9^r^ '

Jo
(^

,. r dx
. ^, r

Vi" X (x^ - 4)'

dx

+ 16)2

dx

x'^ix^ - 9)^

6
I
^25 - x^dx. 11.

I
\/9 - (x - 4)2 dx.

V^9 _ a;2 dx. 12. I Vb'' - 2/2 _ x2 dx.

Jo

106. Integration by Parts. The differential of the product of

two functions u and v is

d{uv) = udv }- V du. (1)

Integrating we obtain

uv = \udv -\- \vdu

From which

r u dv = uv —
J

V du. (2)

This equation is known as the formula for integration by parts.

It makes the integration of u dv depend upon the integration of

d» and of v du.
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Illustration 1. j x log x dx. Let log x = u and x dx = dv.

The application of (2) gives

I xlogx dx = Ix^ log X — I I x^- dx

= |x2 log X - lx^ + C.

Illustration 2. I xe'*da;. Let e^'dx = dv and x = u. The

application of (2) gives

I xe^'dx = \xe^' — \ \ e^' dx

= |xe3' - W + C

= ie3'(3x - 1) + C.

If we had let xdx = dv and e'* = w we should have obtained a

more complicated expression to integrate than that with which

we started.

Exercises

1. I x* log X dx. 2. j X cos x dx. 3. I sin~i x dx

4.
I

x'' e*' dx. (Apply formula (2) twice in succession.)

6. I tan~i X dx. 9. I x sin' x dx .

6. I X sin X dx. 10. I log x dx.

7. I x" log X dx. 11. I x^ sin 2x dx.

8. I x'^ tan~^ 2x dx. 12. I sin x log cos x dx.

107. The Integrals J e" sin nx dx, J e** cos nx dx. Let

M = sin nx and dv = €"dx. Then

Jc* sin nx dx = -e»* sin nx ( e"' cos nx dx.
a a J

A second integration by parts with u = cos nx and dy = e"dx
gives

f . , 1 . n w* f . .

I e"sm nxdx = -e<»*sin nx ;e"cos nx x I e" sm nx dx.
J a a^ a^ J

The last term is equal to the integral in the first member multiplied
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by -^- On transposing this term to the first member we obtain

^— I e"^ sm nx ax = ^ (a sm nx — n cos nx) + C.

Then/©ax
e sin nx dx = —^-r—i (a sin nx — n cos nx) + C

eax
sin (nx - a) + C, (1)

where

and

cos a =

sm a

Va^ + n2

q

The student will show in a similar way that/gax
e"cos nx dx = ~ir~,

—
o (n sin nx + a cos nx) + C

a2 _i- n2 V

Va^ + n2
where

a^ + n^
eaz

cos (nx - a) + C, (2)

cos a =

and
n

sm a =
Va^

Exercises

The student will work exercises 1-5 by the method used in obtaining

(1) and (2) above. In the remaining exercises he may obtain the

results by substituting in (1) and (2) as formulas.

1. fe-" sin 7t dt. 6. \e-'^ cos bt dt.

2. fe-^ cos St dt. 7. je-"-" sin ut dt.

3. fe-o" sin St dt. 8. fc-o-^ cos co< dt.

4. fe-o-^' cos 4< d<. 9. fe-"'" cos 5t dt.

5. je~''smxdx. 10. j e'"-' s'm 4:t dt.

11. Find a in exorcises 1-10.
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108. J sec^ X dx. This integral can be evaluated by a method

similar to that used in the last article.

/sec...x=/sec.sec..<*.

= sec X tan x — \ sec x tan^ x dx.

Since tan^ x = sec'^ a; — 1,

I sec' xdx = sec x tan ^ — j sec' x dx + j sec x dx.

Transposing the next to the last term to the first member, dividing

by 2, and integrating the last term we have

I sec' X dx = i [sec x tan x + log (sec x + tan x)] + C.

Exercises

1. I csc^ X dx. 5. j VoM-^ rfx.

2. jsec" X dx. 6.
J Vx^ — 4x + 11 (ia;.

,. dx. 7. I , dx.

Va^ + x2 dx. 8.
I

\/x2 — 9 dx.

t/3

109. Wallis' Formulas. Formulas will now be derived which

make it possible to write down at once the values of the definite

integrals:

I
sin" d de,

2

COS" 6 dd,

and
f

I
sm« 9 cos" 6 dd,

where m and n are positive integers greater than 1.

J
sin" Odd = \ sin"-i sin d dd.

Jo
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Integration by parts gives

205

sin" ddd = — sin»-^ d cos B

a

+ (n - 1 ) I sin"-2 e cos2 B dB

2 0(1 - sin2 B) dB= (n — 1)
I

sin""'

= (n - 1)
I

sin»-2 BdB - (n - 1) \ sin»

Jo Jo

g the last term and dividing by n

J
sin" BdB= ^

~
I sin"-^ B

« Jo

rfe.

On transposing the last term and dividing by n we obtain

dB.

This equation can be regarded as a reduction formula for

expressing

r sin" B dB

in terms of an integral in which sin B occurs with its exponent

diminished by 2. Applying this formula successively we obtain

I sin" BdB = 1 I ' sin"-" B dB
Jo n n- 2X

n — In — 3n — 5

n 71 — 2 n — 4

(n-l)(n-3)

^BdB

n{n - 2)

(n-l)(n-3)

-^ ( sin BdB'iin is odd.

t

n{n - 2) •

[(n-l)(n-3)

4-2 ^r
dB

sin" dO

4-2

n(n - 2) • • • 31
(n-l)(n-3) • • • S-Itt

n(n - 2) • • • 4 2 2

if n is even.

if n is odd.

if n is even.
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From the fact that the integrals

f-
sin" X dx

Jo
and

''2

£ COS" X dx

represent the areas under the curves y = sin" x and y = cos" x
,

IT

respectively, between the limits x = and x = ^, it is clear

from the graphs that

I COS" xdx = I

Jo Jo
COS" xdx = \ sin" x dx.

The results obtained can be expressed in the single formula

fCOS. ... ./W... - ^^^i^^^^^,-^^..)
where a = 1 if n is odd, and a = ^ if n is even.

In a similar way we shall evaluate

T

f:
sin" d COS" 6 dd.

I
2 ri
sin" d COS" d dd = | sin^-i ^ cos" d sin ^ f/0

sin*"-^ d cos"+^ 5 m — _ .

+ ^ , 1 I sm'"-^ d cos"+2 d0n + 1

X

^ I ^
I

sm^-2 COS" 0(1 - sm2 d) dd

1/^2 m — 1 P
J

I sm^-^ecos"^^^ - ^^-pj I siw-dcos^dde.n +
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Transposing the last term to the left member of the equation

b-m]£ sin" 6 COS" 6 do =

sin" 6 COS" 6 dd

m-1 C^ .

I
, I SI

^ + 1 Jo

m-1 r

sin^-^acos"^^^

Apply this formula successively and obtain

r sin" 9 cos° d dd

(w — 1) (w —

m — 1 m—S
m -\- n m -{- n

3_ p
-2J0

sm'"-2 0cos"ed^.

sin"'"''^ COS" 0d^

{m -\- n) {m -\- n

(m-1) (m-3)

Z^pTV(^pcos«ed^ if m IS even

(m + n) (m + n — 2)

(m-i)(m-3)- • •i-(n-i)(n-3)

^ n
•(^ + 3)J„

sin 6 COS" ^ dd if mis odd

(in+n)(mH-n— 2)

(m-i)(in-3)-

•(n+2)(n)(n-2)

i-(n-i)(n-3)-
(m+n)(m+n— 2) • • • (n+2)(n)(n— 2)

(m-i)(m— 3) • • • 2

IT., .

if n is
2 2

if n is

odd

and

m is

even.

, w , N / , x/ ;—r if n is either even or(m+n)(m+n— 2) • • • (n+3)(n4-i) j •, j • jj' odd, and m is odd.

The right-hand member of the last formula of this group can

be put in a form similar to the others by multiplying numerator

and denominator by (n — l)(n — 3) • • • 2 or 1. It becomes

(m-i)(m-3) • • • 2 • (n-i)(n-3) • • • 2 or i

(m+n)(m+n-2) • • • (n+3)(n+i) (n-i) (n-3) • • • 2 or i

IT

These formulas for | sin"* ^ cos" 6 dd can all be expressed in

the single formula
X

r sin-d cos"d dd = (m-i)(m-3)--2ori(n-i)(n-3)-2ori

Jo (m + n) (m + n- 2)---2 or I
«•

(2)

IT

where a = 1 unless m and n are both even, in which case a = „*
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Illustration 1. By formula (1)

_ 8-6-4-2 128

r

r
B;

sin^ Odd
9-7-5-31 315

Illustration 2.

X

cos*edd = ^!!: = ^TT.

4-2 2 16

Illustration 3. By formula (2),

4.0.0 1

sm^ X cos' X dx = = __.
8-6-4-2 24

Illustration 4.

J

2
. 4-9'^-1 Ssm^x cos^a: dx = ^ '^ = _r_.

9-7-5-31 315

Illustration 5.

sin'x cos^a; dx _ 5-31-31 X 3t
10-8-6-4-2 2 512

Exercises

cos" X dx.1.
I

sin^ e de. 7.
I

Jo Jo

2.
I

cos^^ede. 8.
I

sin^<^d<^.

r

3. I cos^ede. 9. I sin^ a; COS* X dx.

4.
I

sin'^ede. 10.
I

sin^ X cos" X dx.

Jo Jo
X X

6. I COS* e do. 11. I sin< x cos^ x dx.

Jo Jo
x^

!L

6. I sin«fldfl. 12.
I

sii

Jo Jo
sin' <f> cos ff> d4t.
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13.
I

sin* X cos* x dx. 16. I x^ {a^ — x*) dx.

14.
I

cos^ X sin6 x dx. 17. I (a* - x^)^^^.

Jo Jo

15.
I

(a2-x2)^dx. 18.
I

x(a^ - x^)^dx.

Jo Jo

19.
j a}{\ - cos e)HQ = 4a2 j

sin^ | dd.

Let 0' = 2- Then d0 = 2de' and «' = | wnen fl = tt, and fl' =

when = 0. Hence

a}\ (1 - coseyde = 8a2 ( sin^O'dO'.

Jo • Jo
WaUis' formula can now be applied.

By transformations similar to the foregoing many integrals can be
put into a form to which Wallis' formulas can be applied.

20.
I

cos* 2ede = \
I

cos* e' do'.

Jo Jo

r _
22. I x\/2ax - x* dx.

21.
I

(2ax - x*)^dx. (Substitute x = 2a sin* 6.)

I

»2a

fl. sixi X I b cos X
110. Integration of f

—
. —^— dx. Integrals of this

' c sm X + d cos X

X
form can be reduced by the substitution, z = tan g. In making

this substitution it is necessary to express sin x, cos x, and dx in

terms of z. This is easily done as follows. (The student is ad-

vised to observe the method carefully, but not to learn the results

as he can readily obtain them whenever needed.) Since

z = tan ^>

X = 2 tan~* z,

14
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and
dz

dx = 2~.—j

—

7,

Further,

and

Then

and

COS;^ =
2 X

\ X V'l+2='
sec 2 -y/l + tan2 o

. X ^ X X
sin 7. = tan 7=. cos ^

2 2
^"-^

2 VlT

„ . a; a; 2z
sin X = 2 sin ^ cos ^ =

2 2 1+^2

X X 1 - z^
cos a; = cos^ 7^ — sin^ - =

'/r

2 2 1 + z2

dx
Illustration 1. I ^—r~j On making the substitution

' ^ + 4 cos X

X
z = tan ^ we obtain by using the values just found for cos x and

dx in terms of z,^

2dz

!
l-\-z' ^ 2 '

^^

1 + 4,
, _3

^/r1 -z^ J 1 +2^ + 4(1 -z^)

1 +2^

dz-/^ 322

2 C \/3dz

J-VsJ 3z2 - 5

2 ,„gV^i^- + c
2\/3 \/5 \/3z + VS

V3 tan
I
+ VS

= A \/l5 log^ 3 + C.

\/3 tan 2 — \/5

1 The student will derive these values in each problem worked in order to famil-

iarize hinist'lf with the method.
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Illustration 2. |
_ #:7— • Let z = tan % Then

2dz

dzf
dx ^ r i+g' _ ^ r

j5-3sinx I Qz ~
^J 5 + 522 - 62

1+02

dz. f dz _ , r

V .2 _ e, + 1
-

J_ (2-|)^ + ii

= f • I tan-i-^ + C = ^ tan-i ^^^ + C'

5 tan 2 ~ 3

= § tan-i -. + C.

Exercises

The student will find cos x, sin x, and dx in terms of the new vari-

able in each of the exercises.

. r dx r
^'

J 3 + 5 cos x' ^'

J 1

i. C l^- 7 fs
J 5 — 3 cos X J 1

,
r ^-^

. 8 ' r ^

J 4 — 5 sin a;
*

J sin a

/ sin xdx r
•

J 2 + sin x' ^-

J :

/COS iC 1

o I o 1^^- 10. I3 + 2 cos T I .

— 3 sin X

+ 4 sin x

+ 2 sin X

+ sin X

dx

dx.

dx.
x(l + cos x)

dx

3 sin 2x

dx

4 — 5 cos 2x

111. Partial Fractions. A rational fraction is the quotient of

two polynomials, e.g.,

ttox™ + flix"*-^ + • • + am-ix + a„ 4>{x)

box" + bix"-^ + • • • + b„-ix + 6„ /(x)
(1)

1 The integrand is not in the form given in the heading of this article, but the sub-

stitution z = tan 2 enables us to transform any expression containing only integral

powers of sin x and cos x into a rational function of «, i.e., into a function containing

only integral powers of z.
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If the degree of the numerator, m, is greater than or equal to the

degree of the denominator, n, the fraction can be transformed by

division into the sum of a polynomial and a fraction whose nu-

merator is of lower degree than the denominator. In this case

the division is always to be performed before applying the

methods of this section.

The integration of a rational fraction cannot in general be aC'

complished by the methods which have been given if the degree

of the denominator is greater than 2. Illustrations will now be

given of a process by which a rational fraction can be expressed

as the sum of fractions whose denominators are either of the first

or second degrees.

Illustration 1.

x2 + 2

/.
dx.-2x2-9x4-18

Factoring the denominator

X' - 2x2 - 9x + 18 = (x - 2)(x - 3)(x + 3).

Assume
x2 + 2 A ,_B_ C

x3-2x2-9x + 18 X -2^x -3"^x4-3'

where A, B and C are to be so determined that this equation shall

be satisfied for all values of x. Clearing of fractions

x^ + 2 = Ax2 - 9A + 5x2 + Bx - QB + Cx^ - 5Cx + 6C
= {A+ B + C)x2 + (B - 5C)x - 9A - 65 + 6C.

On equating the coefficients^ of x^, x, x", we obtain the following

three equations for the determination oi A, B and C.

A-hB + C = 1.

5 - 5C = 0.

- 9A - 6B 4- 6C = 2.

1 In applying this process use is made of the fact that if two polynomials in x are

identically equal, the coefBcients of like powers of x are equal. Thus, given the

identity

a«" + aia;"-l + • • • + ccn-i x + a„ = /Sox" + /3ii"-l + • • • +0n-i x + P„,

then

ao = Po

ai = /Si
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From these equations

A= -h
5 = V.
C = U.

Hence
x^ + 2 -6 11 11

a;3 _ 2x2 _ 9a; _|_ 18 5(3. _ 2) ' 6(x - 3) ^ 30(a; + 3)

and

r x^+2 ^ r_rfx

J a;3 _ 2x2 - Qx + 18
^

^J X-

= - l\og{x-2) + V log (x-3)+U log (x + 3) + C.

2

+ V Tr-. + U r^

Short Method. The foregoing method of determining the

values oi A, B, • • •, by equating coefficients of like powers of

X, is perfectly general. However, a shorter method can sometimes

be used. Thus in the illustration just given write the result of

clearing of fractions in the form

a;2 + 2 =A(x- S)ix + 3) + 5(x - 2)(a; + 3) + C(x -2)(x- 3).

Since this relation is true for all values of x, it is true for x = 2.

On setting x = 2, we obtain

6 = - 5A.

Hence

A = -i
On setting x = 3^ we obtain

11 = 6B.

Hence

B = V.

On setting x = — 3, we obtain

11 = 30(7.

Hence
/n* _ -Li

Illustration 2.

x2 + l

/ (x + lKx-l)'^''-
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Let
x' + l _ A B C D

(x + l){x - 1)3
~ X + 1

"•"
(x - 1)3 + (x - 1)2

"^
a; - 1*

On clearing of fractions,

x^ + I = Aix - ly + Bix + 1) +C{x-l){x-{-l)+D(x-iy{x+l),

or

x^ + 1 = Ax^ - 3Ax2 + 3Ax- A+ Bx + B + Cx^ - C
+ Dx^ - Dx^ - Dx -j- D.

In the first form put x = 1. Then

5 = 1.

In the first form put x = — 1. Then

- 8A = 2.

Hence

A= -h
Equating coefficients of x' in the second form

A + D = 0.

Hence

D = - A = I

Equating coefficients of x^ in the second form,

-SA + C - D = I.

Hence

O— 14-1-4 — 2'

Consequently

x^-\-l ^ -1 1 1 1

(x + l)(x - ly 4(x + 1)
"*"

(x - ly "^ 2(x - 1)2
+"

4(x - 1)

and

J (X + 1)(X-1)3'''' ^Ja^ + l+J (.r_l)3

= _ ^ log (X+ 1 ) - 2^^^, - 2(^ + i ^
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Illustration 3.

/i
3.r2 - 2a; + 2

ax.
{x - l)(a:2-4x + 13)

Let
3x2 -2a; + 2 ^ 5.r + C

(x -l)(a:2-4x + 13) x-1 ' x^ - 4a; + 13

Clearing of fractions,

3x2 - 2x + 2 = A{x^ - 4x + 13) + Bx(x - 1) + C(x - 1),

or

3x2 - 2x + 2 = Ax^ - 4Ax + 13A + 5x2 ^ Bx + Cx - C.

In the first form put x = 1. We obtain

3 = lOA.

Hence
A = A.

Equating the constant terms in the second form,

13A - C = 2.

Hence

18 - C = 2

and
n — i-9O — 1 u-

Equating the coefficients of x^ in the second form,

A+ B = 3.

Hence
5 = 3 — "i

= To

.

Consequently

C 3x2-2x + 2 . 3 r rf^
, 1 r 27x + 19

J(x-l)(x2-4x + 13)^^ = '^"J^^
+ "^"Jx-2-4x + 13''^

= A log (x-1) + ,ij .̂_4^^i3 + i3
J (^^

dx

-2)2 + 9

X — 2
= -h log (x-1) + 2-& log (x2-4x+13) + H tan-i -3— + C

Illustration 4.

2x dx

(r+x)(l+x2)5Ji
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Let 2a; ^ Bx -\- C Dx + E
(1 + x)(l + x^y ~

1 + a;

"•"
(1 + x^y "^

(1 + x-")'

In Illustrations 1 to 4 a fraction was broken up into "partial

fractions." The denominators were the factors of the denomina-

tor of the given fraction. In Illustrations 1 and 2 the factors were

all real linear factors, while in Illustrations 3 and 4 there were also

factors of the second degree which could not be factored into two

real linear factors. The method of procedure will be further indi-

cated by the following examples. They will be grouped under the

numbers I, II, III, and IV, corresponding to Illustrations 1, 2, 3,

and 4.

I. Factors of denominator linear, none repeated.

, . x' + 5 ^ g C
^"^ {x - l)(x + l)(a; -3) a;-l"'"x + la;-3
., . x^ -I- 2a: + 7 A_ B
^'

(a; + 4) (2a; 4- 3) (x- 2) (3a; + 1) a; + 4
"*"

+ ^
a; - 2 ' 3a; + 1

II. Factors of denominator linear, some repeated.

a;^ + 2a; + 5 ^_ . ^_ .
C'

(x-2)2(a;-3)'(x + l) (a; - 2)^ ' x-2 ' {x-ZY
D E

(a; -3)2 ' a; -3 ' x + 1

... x» + 4a; - 2 A B
(2x -f l)8(a; + 3)(a; - 4)^ (2a; + l)^ ^ (2a; + 1)^

2x + 1 ' x + S ' (x - 4)2 ' a; - 4

III. Denominator contains factors of second degree, none

repeated.

x2 + 7x + 3 _ Ax + B C
^^'

(x2 + 4) (a; - 2)
~

x* + 4 + x - 2*

„ . x» - 3x + 5 Ax-\-B Cx-^D
"' /•-V.2 _i_ o^/•^2 _ /i^ j^ '7\/'^ 1 o^ "~ ™2 I o I

(x2 + 2)(x2 - 4x + 7)(x + 3) x2 + 2 ^ x2 - 4x + 7

+ _^.
X -\- 3

x2 + 2x - 5 _ Ax + B C__ D
^^^

(x2 + 7)(x-2)2 x2 + 7 "^ (x-2)2 + x
-2'
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IV. Denominator contains factors of second degree, some
repeated.

a;3 + 2x2 + 5 Ax + B
(a)

(x2 + 2x + 10)2(x2 + 3)(a; + 2) (x^ + 2x + 10) ^

Cx + D Ex-^F G
a;2 + 2x + 10 ' x^ + S ' x + 2

Exercises

X3+ X - 10
'^*' *•

J (i+1

r (x-4)^x r

J X' - 6x« + 9x °'
J

rx«+ x^ + 7x + 1

dx

KxM-T)'

(3 + 4x - x") dx

(x- lKx''-2x + 5)'

5x2 _|_ 13a; _ 7

(x+4)(2x+l)2
dx.

dx
I*

+ x3+3
— 9x

dx. (Divide numerator by denominator.)



CHAPTER XIII

APPLICATIONS OF THE PROCESS OF INTEGRATION.
IMPROPER INTEGRALS

112. In this section a brief summary and review of the appHca-

tions of the process of integration will be given.

1. Area under a Plane Curve: Rectangular Coordinates.

nb

A = I f{x)dx.

See §64, and Fig. 46.

2. Area: Polar Coordinates.

-'£
See §99, and Fig. 74.

3. Length of Arc of a Plane Curve: Rectangular Coordinates.

dx

i:>F(i)'*-
See §69, and Fig. 49.

4. Length of Arc: Polar Coordinates.

See §98, and Fig. 72.

5. Volume of a Solid of Revolution.

»b

F =
I

Try"^ dx

See §68, and Fig. 49.

218
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6. Surface of a Solid of Revolution.

'x = b

ds= 2ir I y
Jx =a

y ds.

See §70, and Fig. 49.

7. Water Pressure on a Vertical Surface.

P = k\ uz du,

Ja

where z denotes the width of the surface at depth u and k = 62.5

pounds per cubic foot if u and z are expressed in feet. See §72,

and Fig. 50.

8. Work Done by a Variable Force. See §67.

Exercises

1. Find the area in^the first quadrant between the circle x^ + y'^ = a*

and the coordinate axes.

The definite integral which occurs in the solution of this problem is

of very frequent occurrence. See Illustration 3, §105.

2. Find the area bounded by the lemniscate, p^ = a^ cos 20.

3. Find the length of one quadrant of the circle x^ + 2/^ = o*, or

X = a cos 0, y = a sin 0.

4. Find the length of p = 10 cos 0.

6. Find the volume of a sphere of radius a.

6. A solid is generated by a variable square moving with its center

on, and with its plane perpendicular to, a straight line. The side of

this square varies as the distance, x, of its center from a fixed point

on the line, and is equal to 2 when a; = 3. Find the volume generated

by the square when its center moves from a; = 2 to x = 7.

7. Find the area of the surface of a sphere of radius a.

8. The unstretched length of a spring is 25 inches. Find the

work done in stretching it from a length of 27 inches to a length oi
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29 inches, if a force of 400 pounds is necessary to stretch it to a

length of 26 inches.

9. A trough 3 feet deep and 2 feet wide at the top has a parabolic

cross section. Find the pressure on one end when the trough is

filled with water.
3 3 2

10. Find the length of the curve x* +2/' =a^, orx = ocos' 6,

y = a sin' B.

11. Show that the work done by the pressure of a gas in expanding

from a volume i^i to a volume V2 is given by

I p dv.

Jn
where p is the pressure per unit area.

Hint. Take a cylinder closed by a piston of area A forced out

a distance Ax by the expanding gas. Denote by At/; the work done

by the gas in expanding from a volume r to a volume v -\- Av,

Then,

I]

p dv.

-f
12. Find the area of one quadrant of the ellipse x = o cos 6,

y = b sin 6.

13. Find the area of one loop of the curve p = a cos 26.

14. Find the length of the cardioid, p = a(l — cos 6).

15. Find the volume of the ellipsoid of revolution generated by

revolving the ellipse "i + j^i
~ ^ about the X-axis; about the F-axis.

16. A volume is generated by a variable equilateral triangle moving
with its plane perpendicular to the JC-axis. Find the volume of the

solid between the planes x = and x = 2, if a side of the triangle is

equal to 2x^.

17. Find the area of the surface generated by revolving about

the X-axis the portion of the arc of the catenary

a
^=2 + e ]

between (0, a) and (xi, yi).

18. Find the area under one arch of the cycloid x = a {d — sin d),

y = a(l — cos 9).
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19. Find the length of that portion of 9y^ = x' above the Z-axis

between x = and x = 3.

20. Find the volume generated by revolving the portion of the

catenary

y
« r - . --1
2 e" +e «

between x = and x = b about the X-axis; about the F-axis.

21. Find the volume generated by revolving the hypocyoloid
2 3 1

x^ + y^ = o*, or X = a cos^ 0, y = asm^ 0, about the X-axis.

22. Find the area included between the parabolas 47/^ = 25x and

5x^ = \oy.

23. Find the area between the X-axis, the curve y = x'' — 4x + 9,

and the ordinates x = 1 and x = 7.

24. Find the area between the curve y = sin x, the X-axis, and

X = and x = w.

26. If a gas is expanding in accordance with Boyle's law, -pv = C,

find the work done in expanding from a volume vi to a volume V2.

Represent the work graphically by an area.

26. Find the work done if the gas is expanding in accordance with

the adiabatic law, py* = C.

Hint. From the result of Exercise 11,

C
k

A-k _ „.l-ft
Vi^-').

Now,
C == PiVi* = ^2^2*.

Hence

W = j-iri; (P2i'2 - PlVl).

Represent the work graphically by an area. Use the same scale as

in Exercise 25.

x^ V^
27. Find the area of one quadrant of the ellipse Ta + g" ~ '• ^^

Exercise 1.

28. Find the length of p = e"* from ^ = to ^ = 27r.

29. Find the length of p = e""^ from ^ = to (? = - =" , if a is

assumed positive.

30. Find the area bounded by the cardioid p = a(l + cosO).

31. Find the area bounded by p = 10 sin d.

32. Find the area bounded by the hypocycloid x = o cos^ 9,

y = a sin^ d.
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33. Find the area between y^ = Ax and y^ = 8x — x'^.

34. Find the work done by a gas in expanding isothermally from

an initial volume of 2 cubic feet and pressure of 7000 pounds per square

foot to a volume of 4 cubic feet.

36. Find the work done if the gas expands adiabatically. Take
k = \h the value for steam. (See Exercise 26.)

36. Find the pressure on a trapezoidal gate closing a channel con-

taining water, the upper and lower bases of the wet surface being

25 feet and 18 feet, respectively, and the distance between them being

10 feet.

37, Find the area between the catenary

|[^ea+e aj,

the X-axis, and the ordinates x = and x = a.

38. Find the length of p = ad from = to fl = 27r.

39. Set up the integral representing the length of one quadrant

of the ellipse x = a cos 0, y = b sin 0.

40. Find the volume generated by a circle of variable radius mov-
ing with its plane perpendicular to the X-axis, between the planes

X = 2 and x = 8. The radius is proportional to x^ and is equal to 54

when X = 3.

41. Find the volume generated by revolving one arch of the cycloid

X = a{d — sin d), y = a(l — cos 6) about the X-axis; about the

tangent at the vertex.

42. Find the area of the surface generated by revolving a quadrant

of a circle about a tangent at one extremity.

43. If the density of a right circular C3dinder varies as the distance

from one base, find the mass of the cylinder. if the altitude is h and the

radius of the base is r.

44. The force required to stretch a bar by an amount s is given by

„ Eos

where E is the modulus of elasticity of the material of the bar, o is the

area of the cross section, and L is the original length. Find the work
that is done in stretching a bar whose unstretched length is 400 inches

to a length of 401 inches, if £ = 30,000,000 pounds per square inch and
o = 1.5 square inches.

46. Find the area of one loop of p = 10 sin Zd.
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46. Find the length of

y = ^\|[^e- +e~aj

from (0, a) to {xi, y,).

47. Find the length of one arch of the cycloid x = a{d - sin. e)

,

y = a{l — cos e).

48. Find the volume of the anchor ring generated by revolving the
circle x^ + (y - by = a^ about the X-axis, a being less than b.

a
49. Find the area of the small loop of p = a sin^ ^ *

o
60. Find the work done in pumping the water out of a cistern 20 feet

deep, in which the water stands 8 feet deep, if the cistern is a parabo-
loid of revolution and the diameter at the surface of the earth is 8 feet.

51. Find the volume included between two equal right circular

cylinders, radius a, whose axes intersect at right angles.

62. Find the area of the surface generated by revolving one arch of

the cycloid x = a{e — sm 6), y = a{l — cos 9), about the X-axis;

about a tangent at the vertex.

63. Find the area bounded by p =3+2 cos 6.

64. Find the area bounded by the small loop of p =2 + 3 cos B.

66. Find the area of the surface generated by revolving the cardioid

p = a(l + cos 6) about the polar axis.

56. Find the volume bounded by the surface of Exercise 55.

113. Improper Integrals. Since —

,

becomes infinite at
s/x — 1

X = 1, the definite integral

r 1

dx
: s/x

must not be evaluated by the usual process. For, the assumption

has been made that in the integral

fix) dx

fix) is a continuous finite function at x = a and x = 6 as well as

at all intermediate points, and the evaluation of this integral was

based on the area under the curve y = fix). In this case
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becomes infinite at the lower limit. The area under the curve

1

y Vx^^
between the ordinates x = 1 and x = 7 has no meaning. In fact

the integral in question has no meaning in accordance with the

definition of a definite integral already given. A new definition

is necessary. We define

•^
1

dx

as

r
im /

dx,

+, Vx - 1

where r/ is a positive number, if this limit exists. Otherwise the

integral has no meaning. Now,

1™ f -yL^ dx - >s, (2Vi^i) r
Ji+, y/x-\ I14-,

=
I'i? (2V6 - 2v^) = 2V6.

Since the limit exists we say that

J
7 1

dx = 2\/6.

Graphically this means the limit as 17 approaches zero of the area

under the curve y = , between the ordinates x = 1 + ?;V a; — 1

and X = 7, exists and is equal to 2\/6.

Exercise 1, Show that

i
dx

],
{X - 1)'

exists if < w < \.

On the other hand, when n = 1,

im r 1 , lim , / ^sV

Ji+v X I ^
1 1̂+17
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This limit does not exist and consequently we say that

1

/ x-1 dx

has no meaning or does not exist.

Graphically this means that the area under the curve

y = 1

X- 1

between the ordinates x = 1 + t] and x = 7 increases without

limit as rj approaches zero.

Exercise 2. Show that

S.

dx

X (^ - 1)"

does not exist if n ^ 1. (Note that the case n = 1 has just been

considered.) If n<0 no question as to the meaning of the

integral can arise. Why?
A definite integral in which the function to be integrated

becomes infinite at the upper limit is treated in the same way.

Thus

I
dx

is defined as

dxlim p""

vn=-

where ?; is a positive number, if tliis limit exists.

Exercise 3. Show that

i
dx

(1-^)"

has a meaning in accordance with this definition if < n < 1, and

that it has no meaning if n > 1. If » < no question can arise as

to the meaning of the integral.

It is easy to see how to proceed in case the function under the

15



226 CALCULUS [§114

integral sign becomes infinite at a point within the interval of

integration. Thus

dx
;;» where n is a positive integer,I

is defined as

limrr-" dx__ r dx

where r; is a positive number, if this limit exists. If not, the

integral has no meaning. Tf n < no limit process is necessary.

Exercises

Evaluate the following integrals if they have a meaning:

dx

3x-4

dx
2

I
3

dx

2)^

*

Jo
^''

Jo VoT^' •

J_, X

Jo
"^ X V^^=^^ Jo (X-

4 f^^
dx

g p dx

12. Find the area between the curve y' = ^

—

——
> its asymptote and

the X-axis.

114. Improper Integrals : Infinite Limits. In §113, the interval

of integration was finite. In other words neither of the limits oi

the integral

fmdx
was infinite.

The integral

p dx

Jo ^' + «^

will be defined as

lim r dx
6= CO 1 3-2 1 ^
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if this limit exists. Now

lim
b =

lim 1
,

_,b 1 TT

0-" a a a 2

im r d^ ^ ^^"^-tan-i-

6™
I 2 I

—2 represents graphically the limit of the area under

the curve y = —;rn—; between the ordinatcs x = and x = h
" x^ + a^

as & increases indefinitely.

Consider

dx

X

'

lim / dx lim lim , ,

inci

I

X

But log 6 increases without limit as h increases witnout limit.

Hence | — has no meaning.

Exercises

Evaluate the following integrals if they have a meaning:

2. I e-'dx. 4.
I

x'^e-'dx.

Jo Jo

6. Find the area between the witch, ij = VXT^' ^^^ ^^® ^^^^ °^ ^*



CHAPTER XIV

SOLID GEOMETRY

115. Coordinate Axes. Coordinate Planes. Just as the posi-

tion of a point in a plane is given by two coordinates, for example

by its perpendicular distances from two mutually perpendicular

coordinate axes, the position of a point in space is given by three

coordinates, for example by its perpendicular distances from three

mutually perpendicular planes of reference, called the coordinate

planes. Let the three coordinate planes be those represented in

Fig. 75, viz., XOY, called the ZF-plane, YOZ, called the FZ-plane,

and ZOX, called the ZX-plane. Jhen the position of the point P
whose perpendicular distances from the YZ-, ZX-, and XF-planes

/
Fig. 75. Fig. 76.

are 2, 3, and 1, respectively, is represented by the coordinates 2, 3,

and 1. The lines of intersection of the planes of reference are

called the axes. Thus X'OX, Y'OY, and Z'OZ, Fig. 76, are called

the axes of x, y, and z, respectively. The coordinates of a point

P measured parallel to these axes are known as its x, y, and z

coordinates, respectively. Thus for the particular point P
of Fig. lb,x = 2,y = 3, and z = 1. More briefly we say that the

point P is the point (2, 3, 1). In general, (x, y, z) is a point whose

coordinates are x, y, and z. If these coordinates are given the

228
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position of the point is determined, and if a point is given these

coordinates are determined.

The relation between a function of a single independent variable

and its argument can be represented in a plane by a curve, the

ordinates of which represent the values of the function correspond-

ing to the respective values of the abscissas. Thus, y = j{x) is

represented by a curve. To an abscissa representing a given value

of the argument there correspond one or more points on the

curve whose ordinates represent the values of the function. In

like manner a function of two independent variables x and y can

be represented in space. Choose the system of coordinate planes

of Fig. 75. Assign values to each of the independent variables

X and y. These values fix a point in the XF-plane. At this

point erect a perpendicular to the XF-plane, whose length z repre-

sents the value of the function corresponding to the given values of

the arguments. Thus a point P is determined. And for all values

of X and y in a given region of the XF-plane there will, in general,

correspond points in space. The locus of these points is a surface.

The surface represents the relation between the function and its

two independent arguments just as a curve represents the relation

between a function and its single argument.

Thus if 2 = ± V25 -x^ - y^ = /(x,y), ± \/l2 are the

values of the function corresponding to the values x = 2 and

2/ = 3. Then the points (2, 3, 2\/3) and (2, 3, - 2V3) lie on the

surface 2 = ± V^25 -x^- y\ If x = -3and?/ = 1, 2 = ± -s/l5-

The corresponding points on the surface are (— 3, 1, -v/lS)

and (-3, 1, - \/l5)-

The coordinate planes divide space into eight octants. Those

above the XF-plane are numbered as shown in Fig. 76. The oc-

tant immediately below the first is the fifth, that below the second

is the sixth, and so on. The points (2, 3, 2\/3) and (2, 3, - 2\/3)

lie in the first and fifth octants, respectively. The points

(-3, 1, \/l5) and ( — 3, 1, — \/l5) lie in the second and sixth

octants, respectively.

The locus of points satisfying the equation

z = ± V25 - x^ -tj^ (1)

iS a sphere of radius 5. For, this equation can be written in the
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form x^ + 2/^ + 2^ = 25, which states that for any point P on the

surface (1), OP = Vx"^ + y^ + z^ = 5. The left member is the

square of the distance, OP, of the point P (x, y, z), from 0, since

OP is the diagonal of a rectangular parallelopiped whose edges

are x, y, and z. If then the coordinates ofP satisfy (1), this point

is at a distance 5 from the origin. It lies on the sphere, of radius 5,

whose center is at the origin.

116. The Distance between Two Points. The student will

show that the distance d between the two points (xi, yi, Zi) and

(X2, t/2, Zz) is

d = V(x, - xi^ + (i/2 - yir + (22 - zi)K (1)

See Fig. 77. If the point (xi, yi, Zi) is the origin, (0, 0, 0), the

expression for d becomes

P = VX2^ + 2/2^ + 22= (2)

Fig. 77. Fig. 78.

Exercises

Find the distance between the following points

:

1. (1, 2, 3) and (3, 5, 7).

2. (1, -2, 5) and (3, -2, -1).

3. (0, -3, 2) and (0, 0, 0).

4. (0, 0, 3) and (0, 2, 6).

6. (0, 0,-5 and (2, 0, 6).

6. (-3, 2, -1) and (0,0, 0).

117. Direction Cosines of a Line. Let OL, Fig. 78, be any line

passing through the origin. Let a, jS, and y be, respectively, the

angles, less than 180°, between this Hne and the positive direc-

tions of the X-, Y-, and ^-axes. These angles are called the
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direction angles of the line, and their cosines are called the direction

cosines of the line. Let P, whose coordinates are x, y, and z, be

any point on the line. Let OP = p. Then

X = p cos a,

y = p cos /3,

and
z = p cos y.

Squaring and adding the above equations we obtain

2-2 _|. y2 _^ 2^ = p2(cos^ a + cos^ /3 + cos^ 7).

Since
3.2 _j_ j^2 ^ 2^ = p2,

cos^a + cos^/3 + cos^Y = L (1)

The direction cosines of any line are defined as the direction

cosines of a parallel line passing through the origin. Then, the

sum of the squares of the direction cosines of any line is equal to

unity.

Exercises

Find the direction cosines of the lines passing through each of the

following pairs of points.

1. (0, 0, 0) and (1, 1, 1).

2. (0, 0, 0) and (2, -3, 4).

3. (0, 0, 0) and (-1, 2, -3).

4. (1, 2, 3) and (5, 6, 7).

6. (-2, 3, -1) and (-3, -4, 3).

118. Angle between Two
Lines. Let AB and CD, Fig.

79, be two lines, and let their

direction cosines be cos aj, cos /3i,

cos 7i, and cos 0:2, cos ^2, cos 72,

respectively. Denote the angle

between the lines by d. Let CH, HK, and KD be the edges of

the parallelopiped formed by passing planes through C and D
parallel to the coordinate planes. The projection of CD on AB
is clearly equal to the sum of the projections of CH. HK, and

KD on AB.

Hence

CD cos d = CH cos ai + HK cos /3i + KD cos 71.
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Now

and

CH = CD cos a2,

HK = CD cos /32,

KD = CD cos 72.

Consequently

CD cos = CZ)(co8 ai cos ccz + cos /3i cos /32 + cos 71 cos 72).

Hence
cos 6 = cos ai cos 0:2 + cos |8i cos 182 + cos 71 cos 72. (1)

Exercises

Find the cosine of the angle between the lines determined by the

points of Exercises 1 and 2; 2 and 3; 3 and 4, of the preceding

section.

119. The Normal Form of the Equation of a Plane.—^Let ABC,
Fig. 80, be a plane. Let ON,
the normal from 0, meet it in

N. Let the length of ON be p
and let its direction angles be a,

j3, and 7. If p, a, /3, and 7 are

given the plane is determined.

We seek to find the equation

of the plane. Let P, with co-

ordinates X, y, and z, be any

point in the plane. The sum
of the projections of OH = x, HK = y, KP = z, and PN upon

ON is ON = p.

The projection of OH on ON is x cos a.

The projection of HK on ON is y cos j8.

The projection of KP on ON is z cos 7.

The projection of PN on ON is 0.

Hence

. X cos a + y cos ^ + z cos 7 = p. (1)

If P does not lie in the plane ABC, the projection of PN on OiV

is not zero, and the coordinates of P do not satisfy (1). Hence the

locus of a point satisfying (1) is a plane. Equation (1) is the

normal form of the equation of the plane, p is taken to be
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positive. The algebraic signs of cos a, cos/3, and cosy are de-

termined by the octant into which ON extends.

Illustration 1. Find the equation of a plane for which p = 2,

a = 60°, 13 = 45°.

cos a = ^,

cos /3 = —-^.

V2
Then by (1), §117,

cos- 7 = 1 — J — §•

Hence

cos 7 = ± i.

The equation of the plane is

2 + V2 - 2

There are thus two planes satisfying the conditions of the problem,

one forming with the coordinate planes a tetrahedron in the first

octant, the other a tetrahedron in the fifth octant.

Exercises

1. Find the equation of a plane if a = 60°, /3 = 135°, p = 2, and
if the normal ON extends into the eighth octant.

2. If a = 120°, /3 = 60°, p = 5 and if the normal ON extends into

the sixth octant.

120. The Equation Ax + By + Cz = D. The general equation

of the first degree in x, y, and z is

Ax + By ^ Cz = D, (1)

where A, B, C, and D are real constants. D may be considered

positive. For, if the constant term in the second member of an

equation of the form (1) is not positive it can be made so by

dividing through by —1.

.(2)

Divide (1) by VA^ + B^

A ^
,

+ C2

B
and obtain

D
VA^ -\- B^ + C^ Va^

1

+ B^

C
+ C2^

^VI' + B-2 + C2 \/A^ + B^ + C^'
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The coefficient of x is either equal to or less than unity in numerical

value. It can then be considered as the cosine of some angle, say

a. Similarly the coefficient of y may be considered as the cosine

of some angle /3, and that of z as the cosine of some angle 7.

Further the sum of the squares of these coefficients is equal to L
Hence a,^, and 7 are the direction angles of some line. Then (2)

is in the form

X cos a -^ y cos /3 + 2 cos 7 = p, (3)

where

and cos a, cos /3, and cos 7 are the coefficients of x, y, and z, respect-

ively, in equation (2). Hence (3) is the normal form of the equa-

tion of a plane. Equation (1) is the general equation of the first

degree in the variables x, y, and z. Therefore every equation of

the first degree in x, y, and z represents a plane.

Illustration 1. Put 3x — 2y — z = Q in the normal form.

Divide by VZmTbM^ = \/9 + 4 + 1 = \/U and obtain

3j 2y z__ _ 6

Vii \/l4 Vii ~ Vii

The plane is .

—

units distant from the origin, and forms, with the
Vl4

coordinate planes, a tetrahedron in the eighth octant.

Exercises

Transform each of the following equations to the normal form, find

the distance of each plane from the origin, and state in which octant

it forms a tetrahedron with the coordinate planes.

1. Sx - 2y - z = 1. 6. X + 2?/ = 6.

2. X + y + z = —1. 7. x — 2 = 4.

3. X - 3r/ + 2z = 3. 8. x = 2.

4. x - 2j/ + 3z + 2 = 0. 9. X = -1.

6. 2x - y - z - 1 = 0. 10. z = y.

121. Intercept Form of the Equation of a Plane. We seek the

equation of a plane whose intercepts on the X-, Y-. and Z-axes

are a, b, and c, respectively.
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The general equation of a plane is

Ax + By -{- Cz = D. (1)

The constants are to be so determined that the plane will pass

through the points (a, 0, 0), (0, b, 0) and (0, 0, c).

On substituting the coordinates (a, 0, 0), in (1), we obtain

Aa = D,

or

a

Similarly, since (1) passes through (0, b, 0),

Bb = D,

or

-?•
And, since it passes through (0, 0, c),

Cc = D,

or

C

With these values oi A, B, and C, (1) becomes

a c

or

a ' b ' c
+ f + - = 1- (2)

Equation (2) is known as the intercept form of the equation of a

plane.

Illustration. Transform the equation 3x — 2?/ — 52 = 4 to the

intercept form. Divide by 4 and obtain

-+-^ + -^=1
3 ^ 5

The intercepts on the X-, F-, and Z-axes are i, —2, and — |,

respectively.
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Exercises

Transform each of the following equations to the intercept form :

1. X +y +z = 3. 4. 2a; + 7y - 3z = 1

2. 2x - 3y + 42! = 7. 5. x - y + Sz = -\.

3. 2x + y - z + 2 = 0. 6. t/ - 2x - 3z = 5.

122. The Angle between Two Planes. The angle between two

planes is the angle between the normals drawn to them from the

origin. The cosine of the angle between the normals can be found

by formula (1) §118, in which ai, /3i, 71 and 0:2, ^2, 72 are the direc-

tion angles of the normals.

Illustration. Find the angle between the planes

x + y + z = l (1)

and 2x + y + 2z = S. (2)

Transform these equations to the normal form and obtain

Vs Vs V^ Vs
and

2a; V 22
3+1+3=1. (4)

The direction cosines of the normals to the first and second

planes are —t=, —j=, —^, and f , \, f , respectively. Then, if Q is

the angle between the normals, formula (1), §118, gives

fl
2,1,2 5

cos Q = -—7= + -—7^ +
3\/3 3\/3 3\/3 3\/3

From which Q = 74.5°.

• Exercises

Find the angle between the following pairs of planes

:

1. X - 3j/ + 2z = 6 and x - 2?/ + 2 = 1.

2. X - 2?/ + 3z = 2 and 2x + y - 2z = 3.

123. Parallel and Perpendicular Planes. If two planes are

parallel = and cos Q — \. If they are perpendicular Q = 90°

and cos 6 = 0.

Let

Arx-^ B,y + C,z = Di (5)

and

AiX + B^y + C2Z = D2 (6)
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be the equations of two planes. After writing these equations in

the normal form it is found that

AiA2 + BiB2-\-CiC2
cos d = , (7)

If AxA^ + B,B^ + C1C2 = 0, (8)

cos B = Q and the planes (5) and (6) are perpendicular.

If the planes (5) and (6) are parallel, the corresponding coeffi-

cients must be equal or proportional. For then and only then will

their normals be parallel.

Exercises

From the following equations pick out pairs of parallel planes and

pairs of perpendicular planes.

1. a; + J/ + z = 6.

2. X — y - z = 2.

3. 2x + 2y + 2z = 7.

4. 3x - 27/ - z = 8.

6. 2x - 3i/ + z = 1.

124. The Distance of a Point from a Plane. Let {xi, iji, Zi)

be any point and let

Ax + By + Cz = D
be the equation of a plane. We shall find the distance of the

point from the plane.

Now
Ax + By + Cz = K,

where K is any constant, is the equation of a plane parallel to the

given plane. (See §123.) Let us choose K so that this plane shall

pass through the given point (xi, ?/i, Zi). To do this substitute

the coordinates of the point in the equation and solve for K.

This gives

K = Axi + Byi + Czi.

Placing the equation of each plane in the normal form we have

Ax-hBy + Cz D

and
R

Ax + By + Cz K
R R

~

R

Axi + Byi + Czi

R
where R = VA^ + B^ + C.
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The given plane is -h units distant from the origin, and the plane

through the point (xi, yi, Zi) is p— units distant

from the origin. Then the distance, d, between the two planes,

and hence the distance of the given point from the given plane,

is equal to the difference of these two distances, or

d = Axi + Byi + Czi - D
\/A24^B2"+C2

Illustration. Find the distance of the point (1, 2, —1) from the

plane 3x — y + z-{-7 = 0.

Axi + Byi -\-Czi-D _ 31 - 1-2 + !•( - 1) +7 ^ 7

Vnd =
VA^ + B^ + C^ V32+(-l)2 + P

Exercises

In each of the following find the distance of the given point from

the given plane:

1. (3,1,-2); 3x + y - 2z - 6 = 0.

2. (-1,2,-3); x-y -2z + l =0.
3. (0, 2,-3); 2x + 3y - 5z - 10 = 0.

125. Symmetrical Form of the Equations of a Line. Let PPi,

Fig. 81, be a line passing through

the given point Pi (xi, yi, zi),

and having the direction cosines

cos a, cos /3, cos y. In order to

find the equations of the line,

let P (x, y, z), be any point on

the line and denote the distance

PPi by d. Then

Fig. 81.

and therefore

Xi

X — Xi = d cos a,

y - 2/1 = d cos /3,

Z — Zi = d cos 7,

y - 2/1 Z - Zi

cos j3 cos 7
(1)

COS a —
These equations are known as the symmetric equations of the

straight line.
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Frequently a straight line is represented by the equations

of two planes of which it is the intersection.

Illustration 1.

3x-y + l=0, (2)

5x -z = S. (3)

From these equations the symmetrical form of the equations can

readily be obtained. From (2) and (3) we obtain

_y-l _z+3
"^ ~ 3 - ^5~'

or

x-0 y-1 z + 3 ...

nr = ~3~ = ~5- (^>

The denominators, 1, 3, and 5, of (4) are not the direction cosines

of the line, but they are proportional to them. Upon dividing

each by \/35, the square root of the sum of their squares, they

become the direction cosines. Then

X -0 _ y-1 _ 2 + 3

1 ~ 3 ~ 5

-s/35 \/35 VS5
is the symmetrical form of the equations of the line.

The line therefore passes through the point (0, 1,-3) and has

the direction cosines given by the denominators in the preceding

equations.

Illustration 2. Consider the line which is the intersection of

the planes

13a: + 52/ - 42 = 40,

-13x + lOy -2z = 23.

On eliminating x we obtain

5y - 2z = 21,

and on eliminating y we obtain

13x -2z = 19.

From the last two equations we find

5y - 21 13x - 19
' = —2~ = 2 '

or

x-n y-\^ z -
A i 1
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These are the equations of a line which passes through the point

(+3, ^6*", 0) and whose direction cosines are proportional to A,
5, and 1. The student will find the direction cosines.

In Illustration 1, equation (2) represents a plane parallel to the

^-axis whose trace in the XF-plane is the line 3x — 7j -{- 1 = 0.

Equation (3) represents a plane parallel to the F-axis whose trace

in the ZX-plane is the line 5x — z = 3.

In Illustration 2 the position of the two planes which intersect

in the straight line is not so evident. By eliminating first x and

then y, the equations of two planes passing through the same line

are obtained, one of which is parallel to the X-axis and the other to

the y-axis.

Exercises

Put the equations of the following lines in the symmetrical form

:

1. X + 2y +3z =6,
X — y — 2 = 1.

2. a; + y — z = 1,

a; - 3y + 2z =6.
Z. X - y + 2z = 0,

X + 2y - 3z =0.

126. Surfaces of Revolution. Let

2/2 = 42 (1)

Fig. 82.

be the equation of a curve in the

FZ-plane, Fig. 82, and let it be

rotated about the Z-axis. The sur-

face generated is a surface of revolu-

tion. Any point D on the curve de-

scribes a circle of radius CD, equal to

the 7/-co6rdinate of the point D.

During the revolution the z-co6rdinate

does not change. Let P be any posi-

tion taken by D in the revolution. Let

the coordinates of P be (x, y, z).

But by (1),

x2 -f 7/2 = icpy = {coy

{CDY = iz,

(2)
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where z is the common ^-coordinate of Z) and P. Then (2)

becomes

x2 + 2/2 = 42, (3)

an equation satisfied by any point on the surface of revolution.

We note that (3) is obtained from (1) by replacing ^/^ by x^ + y"^,

or y by -s/x^ + y"^.

In general, if

/(y, 2) = (4)

is the equation of a plane curve in the FZ-plane, the equation of

the surface of revolution generated by revolving it about the Z-

axis is obtained by writing -s/x^ + y"^ for y, i.e., the equation of

the surface of revolution is

fiVx^TV', ^) = 0- (5)

This equation can also be regarded as the equation of the surface

generated by revolving the curve f{x, z) = 0, lying in the XZ-
plane, about the Z-axis.

Similarly, /(i/, V^M^) = o (6)

is the equation of the surface generated by revolving the plane

curve /(y, x) = about the F-axis; and

<A(x, V^M=^) = (7)

is the equation of the surface generated by revolving the plane

curve 0(.T, 2) = about the X-axis.

Illustration 1. The equation of the surface generated by rotat-

ing x^ -{• iy — ^y = a^ about the X-axis is

x^ + [Vy^ + 2' - ^Y = a^

Exercises

Find the equation of the surface generated by rotating:

1. y = x^ about the F-axis.

2. y =^ x^ — a^ about the X-axis.

3. 6^x2 + a^yi = a^b^ about the X-axis.

4. 6^x2 - 0^2/2 = a^b^ about the X-axis.

6. &2x2 — a-y^ = a-b^ about the F-axis.

6. x2 + y^ = a^ about the F-axis.

7. x2 -f- t/2 = a2 about the X-axis.

8. y = mx about the X-axis,

9. J/
= mx about the F-axis.

16
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127. Quadric Surfaces. Any equation of the second degree

between x, y, and z, of which

Ax^ + By^ + Cz^ + Dxy + Eyz + Fxz -\- Gx -{- Hy + Kz -h L =
(1)

is the general form, represents a surface which is called a quadric

surface, or conicoid.

By a suitable rotation and translation of the axes, the equation

of any quadric surface can be put in one of the following forms:

• x^ v^ z^

± ^' ± P ± ^ = 1' (2)

rp2 y2 2*2

<^ ± P ±
C-'
= » (3)

X^ 7/2

-,±i,= + 2c2. (4)

The particular form assumed by the equation depends upon the

values of the coefficients in (1).

The quadric surface

X^ 0/2 2j2

^= + f= + ,T = l (5)

is called the ellipsoid. To find the shape and properties of this

surface, let

X = k, (6)

where k is any real constant. This equation represents a plane

perpendicular to the axis of x. Equations (5) and (6) considered as

simultaneous equations represent the curve of intersection of the

ellipsoid with the plane. If x is eliminated between (5) and (6)

there results

t/2 ^2

/by/a^-k^y ^ /cVa^ - k^V

the equation of the curve of intersection in the plane x = k.

Equation (7) is the equation of an ellipse. The semi-axes of the

„. &\/a2 - k^ , c\/a^ - k^ rru u *
ellipse are —^ and —^ . These axes grow shorter

a, a

as A; increases in numerical value from to a. When k = ± a
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the elliptical section reduces to a point. When
|
A;| > a, the lengths

of the axes of the ellipse become imaginary, i.e., the plane x = k,

(,\k\ > a), does not meet the surface (5) in real points. Hence the

surface is included between the planes z = + a.

The above discussion shows that the surface represented by the

equation (5) is included between the planes x = + a; is symmet-

rical with respect to the FZ-plane; and has elliptical sections

made by planes perpendicular to the axis of x. These sections

grow smaller as the cutting plane is moved away from the YZ-

plane and at a distance + a reduce to a point.

In a similar manner, by taking y = k, and then by taking

z = k, the student will discuss plane sections of the ellipsoid (5)

perpendicular to the F-axis and to the Z-axis.

a, b, and c, are called the semi-axes of the ellipsoid.

It can be shown that any plane section of the ellipsoid is an

ellipse.

The surface represented by

/2
^^

. r _ 1 _ 1 rsi
^2 + ^,2 c^

- 1 - w

will now be discussed. Let z = k. Then

S + f:
= i + l'

(»)

is the equation of the plane section made hy z = k. It is an

ir . aVcM^2 , bVc^ + k^ rp,
ellipse whose semi-axes are — ' and —^^ . They

increase in length with the numerical value of k. The axes

have a minimum length when k = 0. The surface represented by

equation (8) is symmetrical with respect to the XF-plane, and

every section parallel to this plane is an ellipse. The smallest

elliptical section is that made by the XF-plane.

li X = k, equation (8) becomes

P -
c"^
= 1 -

a^'
(10)

an hyperbola.

If A; < a, the transverse axis of the hyperbola is parallel to the
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F-axis. If fc > o, the transverse axis is parallel to the Z-axis.

When k = a, equation (10) reduces to

or

r z'^^^

(^+^)(i-:-)=».
the equation of two straight lines.

The student will discuss the curves of intersection of the surface

(8) with planes parallel to the XZ-plane.

The surface is called the hyperboloid of one sheet, or of one

nappe.

Exercises

The student will discuss the following surfaces and make sketches

of them:

a;2 y2 z2
1. —2~

hi 2 ~ ^» ^^^ hyperboloid of two sheets.

2. ~^— Ti = 2cz, the hyperbolic paraboloid.

-j;2 y2
3. —5 + r^ = 2c2, the elliptic paraboloid.

128. Cylindrical Surfaces. If the circle

x2 + 2/2*=25 (1)

be moved parallel to itself so that all of its points describe lines

parallel to the Z-axis, it will generate a right circular cylinder.

The equation of this cylinder is sought. In any plane z = k, the

relation between x and y for points in the curve of intersection of

this plane and this cylinder is the same as that for points in the

plane z = 0, viz., x"^ -{- y^ = 25.

Now, this equation is satisfied by all points on the surface for

all values of z. Hence it is the equation of the surface.

The cylindrical surface just considered can be regarded as

generated by a line moving parallel to the Z-axis and passing

through points of the circle x^ -\- y^ = 25 in the plane z = 0.

In general a cylindrical surface is a surface generated by a line

moving parcdlel to itself.
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It is clear that the equation

Kx, y) = (2)

represents the cylindrical surface generated by a line moving

parallel to the Z-axis and passing through points of the curve

f{x, y) = in the plane z = 0. The equation of a section of (2)

made by any plane z = A; is j{x, y) = 0.

Thus

$ + $-^ (3)

represents an elliptical cylinder whose elements are parallel to the

Z-axis.

3.2 _j_ 1^2 _ 2ax (4)

represents a circular cylinder whose elements are parallel to the

Z-axis. The center of the section in the plane z = is the

point (a, 0).

By the same reasoning

7/ + z^ = a^ (5)

represents a circular cylinder whose elements are parallel to the

X-axis.

z2 = 4x (G)

represents a parabolic cylinder whose elements are parallel to the

y-axis.

The plane

a; - 4y + 3 = (7)

can be regarded as a cylindrical surface whose elements are

parallel to the Z-axis and which pass through the line

X
, 3

y-i + i

in the plane z = 0.

In general, an equation in which one of the letters x, y, z is

absent, represents a cylindrical surface whose elements are

parallel to the axis corresponding to the letter which does not

appear in the equation.
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Exercises

Describe the surfaces represented by the following equations:

1. x^ + y^ = 16. 7. x« - 2/2 = 0.

x^ V^
2- 4 +16 = 1-

3. a;* - t/« = 1.

4. 2» + y2 = 25.

5. 22 - X* = 25.

B. X + 2y = 10.

8. a;?/ = 1.

9. xz = 2.

10. (x -3)(x + 2) = 0.

11. y^ = 4x.

12. 7/2 + 2" = 2ay.

13. x2 + 2/2 = lOx.

129. Partial Derivatives. Let z = f(x, y) be a function of two

independent variables, x and y. When x takes on an increment

Ax, while y remains fixed, z takes on an increment which we shall

denote by AxZ. When y takes

on an increment, Ay, while x

remains fixed, z takes on an in-

crement which we shall denote

by A^2.

For example, if a gas be en-

closed in a cylinder with a mov-

able piston, the volume v of the

gas is a function of the tempera-

ture T and of the pressure p
which can be varied by varying

the pressure on the piston. If

the temperature alone be changed the volume will take on a

certain increment A?^. If the pressure alone be changed the

volume will take on the increment ApV.

If 3 = /(x, y) be represented by a surface. Fig. 83, the increment

of z obtained by giving x an increment, while y remains constant,

is the increment in z measured to the curve cut out by a plane

y = k, Q, constant. Thus A^z = HQ; similarly A^z = KR.
AxZ

The limit of the quotient -r— as Ax approaches zero is called the

partial derivative of z with respect to x. It is denoted by the

dz
symbol -t^. Then

dx
dz

dx
lim AxZ
^=0 Ax*
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It is evidently calculated from z = J{x, y) by the ordinary

rules of differentiation, y being treated as a constant. Thus if

z = x^y,

dz
Geometrically w— represents the slope of the tangent at the

point (x, y, z) to the curve cut from the surface by the plane

through this point parallel to the XZ-plane.

Similarly

dz_ _ lim A^
dy ^J/=o Ay

and it is calculated by differentiating z = /(x, y), treating x as a

constant. Geometrically it represents the slope of the tangent

at the point {x, y, z) to the curve cut from the surface by the

plane through this point, parallel to the FZ-plane. If z = xhj,

5— = x^.
dy

X
Illustration 1. If 2 = sin ->

y
dz X d /x\ 1 X= cos - -^T" I - ) = - cos -
dx y dx \yj y y

and
dz X d /x\ X X
V- = cos - ^- ( - ) = ~ cos -•

dy y dy \y} y^ y

130. Partial Derivatives of Higher Order. If z is differentiated

twice with respect to x, y being treated as a constant, the deriva-

tive obtained is called the second partial derivative of z with re-

dh
spect to x. It is denoted by the symbol 3—^. Similarly the second

partial derivative of z with respect to y is denoted by the symbol

dy^'

If z is differentiated first with respect to x, y being treated as a

constant, and then with respect to y, x being treated as a constant,

dh
the result is denoted by the symbol „ „ • If the differentiation

takes place in the reverse order the result is denoted by the symbol
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- „ • The first is read "the second partial derivative of z with
dxatj

respect to x and y;" the second, "the second partial derivative

of z with respect to y and x." In the case of functions usually

occurring in Physics and Engineering, viz., functions which are

continuous and which have continuous first and second partial

d-z d'^z

derivatives, „ ^ = ^ „ • The order of differentiation is
dyax oxay

immaterial.

Illustration 1. z = xhj.

dz ^ d^z „ dh
ai = 2^^^'

d^^ = 2^' d^x = 2^-

^ ^ 3.2 ^ = -^- = 2x
^2/

' dy^ ' dxdy

In this case

d^z _ d^z

dydx dxdy

X
IlliLstration 2. z =

dz

dx
"

= sin •

y
1 X

= - cos —
y y

dx^
"

1 . X
=

2 sin •

y' y

a?/ax

1/ . x\ / x\ 1 X
= -

(
— sin I (

—
„ ) — „ cos ~

y\ yJ \ yV 2/' 2/

=
1 / . X x\

= , I a; sin w cos -
)

•

y'\ y ^ y)

dz

dy
'

X X
= i cos -•

2/' y
d^z

dy''

2x X x' . X
= 7 cos iSin -•

2/^. 2/ 2/^ 2/

. dH
dxdy

a; / . a;\ /1\ 1 x
= —i. I

sm "
I I

-
I

i cos
2/^ \ y) \yJ 2/' y

=
1 / . X x\

= —.
I
a; sin y cos - )

•

2/' \ y y)

Here again, we notice that

d'z dH
dydx

~~
dxdy
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Exercises

d^z d^z d'^z d^z
1. Find ^r^» ^r—,' -> a ' and ^ a ' for each of the functions

:

(a) z = ^- (b) z = xy\ (c) z = xhj.

(d) z = sin xy. (e) z = e* sin y.

9^z 6^z
2. Find , - - and - ^ for each of the following functions

:

dydx dxdy

(a) z = x^y. (h) z = xsin'^y. (c) z = x cos y.

Id) z = y log X. (e) z =- e" sin x. (J) z = y tan'i j;.

It is seen that ^-^- = ^-^T in all of these cases.
dydx dxdy

In the above discussion z was considered to be a function of two

independent variables only. The notion of partial derivatives

can, however, be extended to functions of three or more variables.

Illustration 3. li z = xhjt,

ix = 2^^^'

dy "" ''

dt
= ^ ^'

and

dy _^
dxdt " *'^^'

d'z
^2x

' dtdydx



CHAPTER XV

SUCCESSIVE INTEGRATION. CENTER OF GRAVITY.
MOMENT OF INERTIA

131. Introduction. In the preceding chapters there have been

numerous examples of successive integration of functions of a

single independent variable. Thus, to determine the law of

motion of a falling body whose differential equation of motion is

it is necessary to integrate twice. The result of the first integration

ds
is -^ = gt -{- Ci, and that of the second is s = ^gt^ + Cit + Cz.

Exercises

1. If -j—^ = 2x, find y as a function of x, given that -r- = 3 when

X = 1, and y = 2 when x = 4; given that ?/ = 4 when x = 2, and

that y = 7 when x = 4.

d^y
2. Find y if -7-^ = 7x. Assign suitable conditions to determine the

constants of integration.

3. Find y if^ = 2x\

The operation of finding the result of Exercise 2 can be written

J[JiJtx dx\dx]dz = /[/[la;^ + Ci\dx\dx

= ^ + Ci^- + C,x + C3.

The first member can be written

Ix dx dx dx.///'
It is a triple integral and indicates that integration is to be per-

formed three times in succession. An arbitrary constant of

250
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integration is introduced with each integration. If each integra-

tion is performed between limits the constants of integration do not

appear. Thus,

7x dx dx dx =
I

I -^ dx dx

is:
42 dx dx

= I 42 a; dxr 1

= 1 84 dx

|2

= 84 X =84.
|i

132. Illustration of Double Integration. Let

il = -' + y- <i)

Integration with respect to y, treating x as a constant, gives

^ = x^t/ + | + 0(x),

where (t>(x) is an arbitrary function of x. This arbitrary function

of X takes the place of an arbitrary constant of integration in the

case of a single independent variable. A second integration, this

time with respect to x, gives

2 = ^ + ^' + J<A(^)rfx + ^(^), (2)

where 4'{y) is an arbitrary function of y.

The result contains an arbitrary function of x and an arbitrary

function of y. Equation (2) represents a surface, but a very

arbitrary one on account of the presence of the arbitrary functions

I
(f){x)dx and 4'(.y)- The process of finding (2) from (1) is indi-

cated by a double integral sign. Thus,

//(x2 + ?/2) dy dx,
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which means

I ( I (x2 + 2/2)di/) dx.

Upon performing the integration indicated, first with respect to y,

then with respect to x, we obtain

I

I

(x2 + t/2) dydx = I (x^y +J + <f>ix)) dx

Instead of an indefinite double integral such as the one just

considered we may have a definite double integral. If the inte-

gration with respect to y is performed before that with respect to

X, the limits of integration with respect to y may be functions of

X. Thus,

I

\\x^ + y') dydx=f (xH) + I) Y dx

The last integration is readily j)erformed. It is to be noted that

in evaluating a double integral, x is treated as a constant when the

integration with respect to y is performed.

If in a definite integral dx is written before dy, the integration

with respect to x is to be performed first. ^

1. 1 1 xydydx.

Exercises

f*ir f*a{\ + C03 B)

4. 1 1 rdrde.
Jo Jo

2. 1 1 xy dy dx.

Jo Jo

r- rva-^-x^.
5. 1 dydx

Jo Ja—x

3. 1 1 xy-'dydx.
Jo Jix

6. 1 1
1 x^y^z^ dz dy dx.

Jo Jo Jz

1 Usage varies on this point. The student will have to observe in every case the

convention adopted in the book he is reading.
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I dzdy
Jo

nVx n rvi
xdydx. 10. I I

n'' {x^ + y^) dy dx. 11-
I I

2 Jo Jx^

dx.

10.

12.

dy dx.

y dy dx.

Vo^ — ^"^ — y^ dy dx.

Hint. To perform the integration in Exercise 12, let v a^ — x^ = b

and make use of the result of Illustration 3, §105.

133. Area by Double Integration: Rectangular Coordinates.

A plane area can be represented by a double integral. Thus, let

it be required to find the area A between the curves y = /i(x),

y = f^ix), and the lines x = a and x = b. The area of the strip

IJKH, Fig. 84, is approximately

lim
Ay

«2 «t /.V,

j2)At/Aa; = Aa;]^m^2)Ay = Ax
I

dy,

where yi and y^ are the ordinates of the two curves y = /i(x) and

y = fiix), respectively. And
the area sought is approxi-

mately

x = a Jvi

Fig. 84.

The smaller Ax is taken, the "o

closer the approximation.

The limit of this sum as Ax
approaches zero is the area sought. Since y\ and 2/2 are func-

tions of X, 1 dy is, a, function of x and consequently

lim
K)X Ax

I
^2/=

I \
dy dx = A.

It is to be noted that in setting up this integral the summation
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with respect to y was performed first, giving the area of a vertical

strip for a particular value of x. Consequently, the integration

with respect to y is to be performed first, x being treated as a

constant. On performing the integration with respect to y we
obtain

(2/2 - yi)dx =
I

[/zCx) - Si{x)\dx,
a Ja

a single integral which might have been set up at once by consider-

ing the area as the sum of vertical strips of length 1/2 — yi, and

of width Ax. It is, however, desirable to be able to set up a

double integral over an area.

In choosing the limits for a double integral, the student should

proceed systematically. The process of setting up the above

integral with its limits is the follow-

ing: The "element" is the rectan-

gular element of area dy dx. The
"summation" (integration) of this

element, for a particular value of x,

between the limits for y of WI and

WH, the ordinates of the curves y =
/i(x) and y = /2(.t), gives the area of

the typical strip IJKH. The "sum-
mation" (integration) of the strips of

which this is a typical one, between
the extreme values oi x, x = a and x = b, gives the area sought.

Thus

A = I I dy dx.nv
The procedure may be briefly summarized in the following concise

directions. Write first the element dy dx, then the integral sign,

then the limits /i(x), /2(x), then another integral sign with the

limits a and b.

Illustration. Find by double integration the area between the

parabolas y^ = x and y = x^. The integral is set up as follows:

Write the element dy dx, then an integral sign with the limits

x^ and \/x. This represents the area of the typical strip, IJKH,
Fig. 85, for a fixed x. All of the strips of which this is a typical
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one are to be summed from a; = to x = 1, the abscissas of the

points of intersection of the curves. Then write the second

integral sign preceding the first with the limits and 1. Thus

Jo Jx'
dy dx = \.

Exercises

1. Find by double integration the area between the curves y = x

and y^ = x'.

2. Find the area of Exercise 1 by integrating first with respect to x

and then with respect to y.

3. Find by double integration the area between r/* = a{a — x) and
X* + 2/^ = a^.

4. Find the area between y^ = ax and y^ = 2ax — x^.

5. Find the area of Exercises 3 and 4 by integrating first with respect

to X.

6. Find the area bounded by y^ = 4x, x + y = 3, and the X-axis.

7. Find the area of a rectangle by double integration.

8. Find the smaller area between x^ + y^ = 1 and y = x + 5-

134. Geometrical Meaning of the Definite Double Integral

Consider the definite double integral

fix, y) dy dx. (1)

,
= /i(x)J'»6

/»2/2=/20

In accordance with the definition of a definite single integral,

§66, (1) can be written

f'[ll^oXf(^'y) ^y]d^' (2)

Here x is considered constant under the summation sign, and

f{x, y) is, for such a fixed x, a function of y alone.

V,

lim
^2 /»2/2

is a function of x, since x occurs as an argument of / and also in

the limits of integration. Hence we can write (2) in the form
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lim

O L «. J

-E%'Zll%Xn-.y)^vAx, (3)

where Ax under the second summation sign is regarded as a con-

stant multiplier.

Z

Fig. 86.

In Fig. 86, let EFGL represent the surface z = f{x, y) ;
QABS,

in the ZF-plane, the curve y = fi{x) ; DHKC, the curve y = fi{x) ;

AD the line x = a; BC the line x = b; and A'B'C'D' the portion

of the surface cut from z = f(x, y) by the cylinders y = fi{x),

y = f^ix), and the planes x = a and x = b.
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Divide ABCD into small rectangles, as shown in the figure, by

lines parallel to the X- and F-axes, at intervals of At/ and Ax,

respectively. Through these lines pass planes parallel to the

XZ- and FZ-planes. These planes divide the solid bounded by the

planes and surfaces of Fig. 86 into vertical columns of rectangular

cross section Ay Ax. The column erected on MNPR as a base is a

typical one. f{x, y)Ay Ax represents approximately the volume of

the column whose base is MNPR and whose top is M'N'P'R', since

the area of its base is Ay Ax and its altitude is MM' = f{x, y).

Then the sum of the columns at a fixed distance from the

yZ-plane,

2)/(x, y) Ay Ax,

is approximately the volume of the slab between the planes

IHH'I' and JKK'J', i.e., between the planes x = x and

X = X + A X. And
h r «2 -1

a L w. -I

the sum of the volumes of all the slabs, is approximately the vol-

ume of the solid ABCDA'B'C'D'. If Ay and Ax are each taken

smaller and smaller this sum will eventually represent a very close

approximation to the volume in question, and the limit of this

sum as Ay and Ax approach zero is the volume. Hence the inte-

gral

f(x, y) dy dx,

which we have seen is equal to

X = b r- V

a; = a L v. J

lim

x = a

represents the volume bounded by the plane z = 0, the surface

^ = /(-^j y), the planes x = a and x = h, and the cylinders

y = /i(.t) and y = Jiix).

Illustration. Find the volume contained in the first octant of

17
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the sphere x^ + y^ + z"^ =- a^. See Fig. 87. The equation of the

surface is

z = \/a2 — x^ — y^.

yi = fiix) =

2/2 = f2{x) = Va^ - x\

the trace of the sphere on the XF-plane. The volume of the col-

umn on MNPR as a base is

Va^ — x^ — 2/2 A?/ Ax,

or, as we shall say in the future,

\^a^ — x^ — y^ dy dx.

The summation of these columns

for a fixed x gives

Fig. 87. r y/a'^ — x^ — y"^ dy dx,

!/

the volume, expressed as a function of x, of the slab between the

planes x = x and x = x4-Axorx = x + dx. The summation
of all these slabs from x = to x = a gives

*y/a^— xi

^/a^ — x^ — y^ dy dx,

to

the volume of one octant of the sphere. This integral was evalu-

ated in Exercise 12, §132.

Exercises

1. Find the volume of the segment of the paraboloid y^ + 2z^ = 4x,

cut off by the plane x = 5.

2. Find the volume bounded by the cylinders y = x^ and y- = x,

and the planes z = and z = 1.

3. Find the volume common to the cylinders x^ + y^ = a^ and
y^ + z^ = a2.

4. Find the volume between the cylindrical surface y^ — x', the

plane y = x, and the planes z = and z = 1.

135. Area: Polar Coordinates. Let it be required to find, by

double integration, the area between the radii vectores 6 = a,
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and d = ^, and the curve p = f{d). Divide the area as shown in

Fig. 88, the radii making an angle of Ad with each other and the

radii of the concentric circles differing by Ap. The area of MPQR
is equal to

Kp + Ap)2 A0 - § p2 A^ = p Ap A0 + ^ Ap2 A0

As Ap approaches zero,

limpApA0 + |Ap2A5

Hence

P=Ke)

^"=0 p Ap A^
= 1.

p = p = Jp =

Fig. 88. Fig. 89.

This sum represents the area of the sector OHL. The total area

sought is the limit of the sum of these sectors as A9 approaches

zero, i.e.

^ = Ai"oX^^ p^p=
\

p^p^-

This integral is to be set up as follows: The element of area is

the approximately rectangular area MPQR whose area is approxi-

mately {MR){MP) = pdpdd. This element is to be summed
from p = to p = f{d) . This gives approximately the area of the

typical sector OHK. These sectors are to be summed from

e = atod = fi.
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More briefly: Write down the element pdpdd, then an

integral sign. Its limits are the extreme values of p for a given 6.

Then write before this integral another integral sign. Its limits

are to be chosen so as to sum up all the sectors such as OHK.
Illustration 1. Find the area

of the circle p = 10 cos 6, Fig.

89. The area bounded by the

semicircle above the initial line

will be found and multiplied by

two.

.20 cos
ff

Jo Jo

lOcosO

A =2\
I

pdpde.

p dd dp.

Illiistration 2. Find by double integration the area between

p = 10 cos e and p = 20 cos d. See Fig. 90.

•20 COS e

A =2\ I pdpdd
'l0CO3 tf

Show that

t/O t/10

mo /•«=o«-'^ /•20 /-cos-^

A = 2 I
I ^ pdddp+2 \ I pdddp.

Jo JC08-1-^ JlO Jo
10

Which method is the simpler in this case?

Exercises

Find by double integration:

1. The area of the circle p = 5 sin 0.

2. The area of the cardioid p = a(l — cos 9).

3. The area of the lemniscate p" = a" cos 20.

4. The area outside p = a (1 + cos 6) and inside p = 3a cos d.

136. Volume of a Solid: Triple Integration. We shall now
find the volume of the solid of Fig. 86 by triple integration. Sup-
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pose the solid further subdivided by planes parallel to the XY-
plane and at a distance Az apart, into rectangular parallelopipeds

of Volume Az Ay Ax. Then the volume of the column on the base

MNPR is approximately

a = f(.x, y)

^ Az Ay Ax.
Z =

Then
Vi z => f(.x,y)

'^ 2^ Az AyAx
y\ « =

is approximately the volume of the slab between the planes

IHI'H' and JKJ'K', i.e., between the planes x = x and

X = X \- Ax.
X = h 2/2 2 = f{x, y)

X 2) 2) Az Ay Ax
X = a y^ « =

is approximately the sum of the volumes of all of the slabs.

If Az, Ay, and Ax are each taken smaller and smaller, this sum will

represent a very close approximation to the volume sought, and the

limit of this sum as Ao:, Ay and Az approach zero is exactly this

volume. Hence the integral.

a Jy^ Jo
dz dy dx,

represents the volume bounded by the plane z = 0, the surface

z —j{x,y), the planes x = a and x = h, and the cylinders

y = j\{x) and y = Si{x).

Illustration 1. Find by triple integration the volume of the

ellipsoid

a"
^ 62 -r g2

See Fig. 91.

F = 8 I
I

dzdydx
Jo Jo Jo



262 CALCULUS [§136

The student will perform the integration.

Illustration 2. Find by triple integration the volume of the

solid bounded by the cylinder x^ -\- y^ = 2ax, the plane z = 0,

and the paraboloid of revolution x^ -{- y^ = ^az. Write the ele-

ment of volume, dz dy dx. The integration with respect to z

cc^ "4* 1/^

-J
gives the volume of the typicalbetween the limits and

vertical column of base dy dx, extending from the point (x, y) in
/j;2 _|_ y2

the plane z = to the surface of the paraboloid, z = —j
'

Next, X being kept fixed, these columns are summed into a

typical slab by integrating with respect to y from the Z-axis,

y = 0, to y = ^/2ax — x^, the trace of the cylinder in the XY-
plane. Finally the integration with respect to x from x = to

X = 2a gives one-half of the total volume sought, viz., that lying

in the first octant.
xi + y^

F = 2 I I I dzdy dx.
Jo Jo Jo

The student will perform the integration.

Exercises

1. Find the volume common to the cylinders x" + y^ = r^ and
x2 -f-

22 = r^
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2. Find the volume of one of the wedges cut from the cylinder

^2 ^ y2 —
J.2 \yy ^hc plancs z = and z = mx.

3. Find the volume in the first octant bounded by the coordinate
X y z

planes and the plane—h r H— = 1.^ ^ a c

4. Set up the integral representing the volume bounded by the

surface x^ -\- y^ + z^ = o*.

6. Find the volume between y^ + z^ = 4ax and x — z = a.

6. Find the volume between the planes y = 0, z = and the sur-

faces z = x^ + Ay^, y = 1 — x'^.

7. Find the volume between y^ + 2z^ = 4x and z = x.

137. Center of Mass, Centroid. Let there be a system of

masses mi, m2, ms, . . . , rUn situated at the points {xi, yi, Zi),

{xi, 2/2, 22), (^3, 2/3, Zz), . . . , {Xn, yn, Zn) , Tespectlvely. The mean
distance with respect to mass, of the system from the FZ-pIane is

The mean distances, with respect to mass, of the system from the

ZX- and XF-planes are, respectively,

2 m.i/<

and

(2)

(3)

The point (x, y, z) is called the centroid, or the center of mass, of

the system of masses mi, m2, • • • , m„.

m,- Xi is called the moment, and Xi the moment arm, of the mass

mi with respect to the FZ-plane.^ Then x is the mean moment
arm with respect to the FZ-plane of the masses mi, m2, • • •, m„.

For, equation (1) shows that if all the masses were placed at the

distance, x, from the FZ-plane, the moment with respect to this

plane would be the same as the sum of the moments of the masses.

Hence we can say that the centroid of a system of masses is a point

such that if all the masses were concentrated at this point, the

moment with respect to each coordinate plane would be equal to

1 The term moment of a mass with respect to a plane has evidently a diflerent

significance from the term moment as applied to a force.
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the sum of the moments with respect to the corresponding planes

of the masses in their given positions.

138. Centroid Independent of the Position of the Coordinate

Planes. It will now be shown that the distance of the centroid,

(x, y, z), from any plane is the mean of the distances, with respect

to mass, of the masses mi, m2, • • •, m„, from that plane. And
thus it will be shown that (x, y, z), the centroid, is a point whose

position with reference to the masses is independent of the choice

of the coordinate planes.

Let ax -\- hy -\- cz -\- d = hQ the equation of a given plane

(see §120). The distance, p, of the point (x, y, z) from this plane

is

- ax + hy + cz \- d
P =

22
' ^^^

where

R = Va^ + 62 + c\

(See §124.) On substituting the values of x, y, and 2 from (1),

(2), and (3) §137, and reducing the absolute term, d, to the common
denominator, we have

aSwiX,- + blfTTiiyi + cZniiZi + dXnii

or

sm.r

R'Emi

axi + hyi + czi + d'

R J
.

(2)

ox,- + hyi •\-czi + d • +1 j- . f .1 •
^But 5 = pi is the distance of the point

K
(x,-, yi, Zi) from the given plane. Hence (2) can be written

in the form
_ S mipi

This proves the statement at the beginning of this section. In

other words, if all the masses of the system were concentrated at

the centroid, the moment with respect to any plane would be

equal to the moment of the system of masses with respect to this

plane.

139. Center of Gravity. Let the system of masses considered

above be acted upon by gravity. It will be shown that the line
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of action of the resultant force passes through the center of mass,

or the centroid.

Since the position of the centroid is independent of the choice of

axes, choose the positive direction of the axis of z vertically upward

and the axes of x and y horizontal. The force acting on mi is

mi^, that on m^ is m-ig, etc. The resultant force is equal to 2 niig

and is directed vertically downward. Its line of action meets the

XF-plane in a point (a, j3, 0) such that its moment, aSm.gr, about

the F-axis is equal to 2m,gfXi, the sum of the moments of the

forces acting on the individual masses; and such that the moment,

jSSmigr, about the X-axis, is equal to the sum of the moments,

Sw.grr/,, of the forces about this axis.

and

Whence

and

Consequently

Hence the resultant passes through the centroid of the system of

masses.

If the masses all lie in one plane, say the XF-plane, z is zero and

the centroid is fixed by the two coordinates z and y. The product

rtiiXi is called the moment of the mass rrii with respect to the

F-axis. In this case x is the mean moment arm with respect to

the F-axis.

If the masses all lie upon a line, say the X-axis, the centroid is

fixed by a single coordinate, x.

140. Centroid of a Continuous Mass. If instead of discrete

masses we have a continuous mass, the coordinates of the center

of mass, or the centroid, are clearly.

a2,miQ = 'Lrriig^i,

/SSw xQ = 'Lruigvi-

^rUiXi
Oi =

^rrii

^ =
^rmyi

2)^<

a = X and |8 = y-
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Ani =

X =

y =

i%^Am Jdm

z =

IL^.oX^ /dm

^jj
Vz Am J

z dm

^ X -^m fdm

lim
Am

Am=(

The integration is to be extended throughout the entire mass, and
the integrals considered may be single, double, or triple, depending

on the form of the mass.

Illustration 1. Find the center of gravity of a bar, Fig. 92,

of length L, whose linear density, p, may vary. Let the axis of x

coincide with the bar, the origin being taken at one end. The

OF

^1

Fig. 92.

mass of an "element" of the bar of length dx is p dx, p being a

function of x, the distance of the element from the origin. The
moment of this element of mass, dm = p dx, about an axis

through the origin perpendicular to the bar is

X dm = xp dx.

X, the abscissa of the centroid, the only coordinate necessary

to fix the centroid in this case, is given by

px dx
mJ

X = f.

p dx

The numerator represents the total moment, and the denominator

the total mass. If the bar is of uniform density, p can be taken
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out from under the integral sign. Then

xdx —
2

X = r ^L.

dx x\

If the linear density is proportional to the distance from one end,

then p = kx and we have

k \ x^ dx 1f
k
f.

X dx

Illustration 2. Let it be required to find the center of gravity

of a plate of uniform thickness and of mass p per unit volume or of

mass p per unit surface. Take a plate of the shape of Fig. 84.

The mass of the element MNPR is p dy dx. The moment of this

element about the Y- axis is xp dy dx, and its moment about the

X-axis is jj p dy dx. Then

r r p X dy dx

fdm r p p^y^^

p y dy dx

If p is constant,

and

i ^^« r r^pdydx
Ja Jvi

I
xdy dx

I
{ dy dx

Ja Jy^

J'*b
nvi

I
ydydx

a Jy^
y^ rb /»!/,

'

II dy dx
Ja Jv^
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The numerator of each of these expressions is the integral of the

product of an element of area by its distance, x or y, from the Y-

axis or X-axis, respectively. The denominator is the area. The
mass does not enter into either of these formulas. We are thus

led to speak of the centroid of an area, of a line or of a solid, with-

out reference to its mass. This notion of the centroid of a geo-

metrical figure, a line, an area, or a solid, without reference to its

material composition is an important one. For, in many prob-

lems in mechanics one is interested in the centroid of a geomet-

rical configuration as such. Thus in the study of the deflection

of beams it is necessary to know the position of the centroid of the

cross section of the beam.

Illustration 3. Find the centroid of the solid represented in

Fig. 86. The element of mass, dm, is equal to p dz dy dx, and its

moment with respect to the yZ-plane is xp dz dy dx. Then

Vix, y)

px dz dy dx
I
X dm

I dm

Ja Jy^ Jo

Similarly

:

Ja Jy^ Jo

J
Jo

'fix, y)

p dz dy dx

'/(x, y)

py dz dy dx

and

_ \y dm

J^^
I

Pdzdydx
Ja Jvi Jo

j
zdm

1 dm

rb ny, n

Ja Jvi Jo

'Kx, v)

pz dz dy dx

rb ry, r

Ja Jy^ Jo

iix, y)

p dz dy dx

If the density is constant, p can be canceled from numerator

and denominator.

If the solid has an axis or a plane of symmetry the centroid lies

in this axis or in this plane.

Illustration 4. Find the centroid of the area in the first quad-

rant bounded by the circle x^ -\- y^ = a^.
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If we use double integration we have, in accordance with Illus-

tration 2,

X dy dxn— Jo Jo

4
and

ydydx

y =—"—^
4

Radicals could be avoided in the evaluation of the numerator

of the expression for x if the integration were performed first with

respect to x and then with respect to y. Thus

"Va2 - j/2

X dx dy
'0 «/o

X = ^ •

1"

The student will evaluate each expression given for x.

From the symmetry of the figure, x = y, and it is not necessary

to evaluate the integral for y.

In finding the centroid in this case, and indeed in many cases,

it is easier to use single integration than double integration.

Thus if we choose as the element of area, the strip y dx parallel

to the y-axis, the moment of this strip about the F-axis is xy dx,

and

X dm I xy dx I x\/a' — x^ dx
Jo Jo

h fydx -^

Illustration 5. Find the centroid of the solid in the first octant

bounded by the sphere x^ -\- y^ -\- z^ = a^.

The method of Illustration 3 gives

I X dz dy dx
Jo Jo Jo '

X = -,
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From considerations of symmetry, y = z = x.

Here again it is simpler to use single integration. Choose as

element a slab of thickness dx parallel to the FZ-plane. The
base of such a slab is a quadrant of a circle of radius \/a^ — x^,

where x is the distance of the slab from the FZ-plane. The volume
of this elementary slab is

7r(a^ — x^)
,

z ax.

Hence

TT

X =
I

X {a^. , .^ . V. x^) dx
4. f ^

Exercises

Find the coordinates of the centroid of:

1. The area between y = x^ and y^ = x,

2. The areas of Exercises 1, 3, and 6, §133.

3. A triangular plate.

Hint. Draw lines parallel to the base, BC, Fig. 93, at intervals

dx along the median AM. The mass of each strip is proportional

to AL = X and can be regarded as

concentrated at its centroid on the

line AM. Hence we can think of

the triangular plate as replaced by
the bar AM whose density is propor-

tional to the distance from the end

A In accordance with Illustration

1, its centroid is at a point / two-

FiG. 93. thirds of the way from A to M.
The centroid of a triangle can also

be located without any calculation whatever. From Fig. 93 it follows

that the centroid lies on the median AM. The same argument shows

that it lies on the medians BMi and CM2. Hence it lies at the

point of intersection of the medians, i.e., at a point two-thirds of the

way from a vertex to the middle of the opposite side.

4. The area of a semicircular plate of radius r. (Single integra-

tion will be sufficient.)
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5.1 Let OMKB, Fig. 94, be a quadrant of a circle of radius r. Let

OMDB be a square. Denote by Ci, C2, and C3 the centers of gravity

of the square, the quadrant of the circle, and the area MDBKM,
respectively; and by Ai, A2, and A3 the corresponding areas. Then

^2X2 + AzX3 = AiXi

A2X2AiXi
X3 = = 0.223 r.

DC3 = 0.315 r.

6. A circular arc of radius r and central angle 2a. See Fig. 95.

Ai

\ /
/

\\"~ /C2
*- \V
/
-^^

D ti

Fig. 94. Fig. 95.

Hint. The centroid lies on the radius which bisects the central

angle since this line is an axis of symmetry. Choose this radius as the

axis of X and the center of the circle as the origin. Then y = 0, and

- Xr! X
^ ~ Ira. ~

r cos Or do r'-

— a
'
Ira.

/:.•
cos do

2rc

This problem can also be solved by using rectangular coordinates.

Thus

— t/r C(

xdx
Wj.2 —

2rc

2r^ sin a r sin a

2ra

7. The portion of the arc of the circle x^ + j/^ = r^ which lies in the

1 Exercises 5, 9, 20, 21, and 22 taken from Technical Mechanics by Maurer.
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first quadrant. Use the result of Exercise 6. Also find the result

directly.

8. The parabolic segment of altitude a and base h. See Fig. 96.

Hint. Show that the equation of the parabola is ^ay"^ = b^x.

Ans. X = fa.

9. A conical or pyramidal solid of altitude a and base A.

Hint. Let OMNO, Fig. 97, represent the projection of the solid

on the XF-plane. Divide the solid by planes parallel to the base

into laminas or plates of thickness dx. Then the area of the lamina

' Y N

^.---^
~" "

< a >^>

of a
' K ^/

/^

\
^^...^M

\
^--^^

\ ,

O^•"""'''^

! !
X

dx

Fig. 96. Fig. 97 ,

Ax"^
whose abscissa is x is—^: and its volume is

solid is -0-. Hence

:

Ax^dx
The volume of the

J'*''

/Ax^dx\

X =
1Aa
T

3a
4"

Further the centroid of every lamina lies on the line joining the apex

with the centroid of the base. Consequently the centroid of the

solid lies on that line.

10. The hemisphere generated by revolving one quadrant of

x» -(- j/2 = r^ about the A'-axis. Evidently 7/ = 2 = and

I xy' dx

11. The surface of the hemisphere of Exercise 10.

12. The segment of a paraboloid of revolution of altitude h.
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13. The semi-ellipsoid of revolution generated by revolving one

quadrant of -^ + r^ = 1 about the X-axis.

14. The surface of the paraboloid of Exercise 12.

15. The surface of a right circular cone. Any conical or pyramidal

surface.

16. The area of the cycloid a; = a{d — sin e),y = a(l — cos 6).

17. The arc of the cycloid of Exercise 16.

18. The area in the first quadrant under x^ + y^ = a^.

19. The arc of the curve of Exercise 18 in the first quadrant.

20. The segments of the ellipse indicated in Fig. 98. It will be

found that the centroid of the segment XAAX coincides with that of

Fig. 98.

the segment XaaX of the circumscribed circle, and that the centroid

YBBY coincides with, that of the segment YhhY of the inscribed

circle.

21. Ci and Cj are the centers of gravity of the two portions of Fig.

99. Show that their distances from the sides of the enclosing rec-

tangle, a X b, are those marked in the figure. The curve OC is a

parabola. See Exercise 5.

22. Find the centroid of the portion of a right circular cylinder

shown in Fig. 100. C is the centroid. Its distance from the axis of

the cylinder shown is —jr—-, and from the base is « H
pj,

—
When the oblique top cuts the base in a diameter (lower part of Fig.

100) the distance of the centroid from the axis is -r^ and from the base
16

3ira
32'

18
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23. Find the centroid of the volume lying in the first octant and

included between the cylinders x- + y^ = a^, x^ + z* = a^

4«H

\

C
•

1

1" "- 1

>

a

__J_
^^,C

Fig. 99. Fig. 100.

141. Theorems of Pappus. Theorem I. The area oj the surface

generated by revolving an arc of a plane curve about an axis in its

plane and not intersecting it is equal to the length of the arc multi-

plied by the length of the path described by its centroid.

Theorem 11. The volume of the solid generated by revolving a.

plane surface about an axis lying in its plane and not intersecting

its boundary is equal to the area of the surface multiplied by the

length of the path described by its centroid.

Proof of I. Let ABC, Fig. 101, be an arc of length L lying in the

XF-plane. Then y, the ordinate of its centroid, is given by the

equation

:

H M Whence

Fig. 101.

/yds = y L.

(1)

(2)

The surface generated by revolving the arc ABC about the

X-axis is given by
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/S = 2Tr \ yds. (3)

It follows then from (2) and (3) that

S = 2TryL. (4)

But 2iry is the length of the circular path described by the cen-

troid of the arc ABC. Hence the theorem is proved.

Proof of II. Let ABC, Fig. 102, be a plane surface of area A.

Then y, the ordinate of its centroid, y
is given by

. /ydA
-y = ^-j- (5)

Whence ^

/ydA=Ay. (6)
Fig. 102.

Now the volume of the solid generated by the revolution of the

area ABC about the X-axis is

V = 2ir I j ydydx = 2t I y dA. (7)

It follows from (6) and (7) that

V = 2TrAy. (8)

Hence the theorem is proved. •

Exercises

1. Find the surface of the anchor ring generated by revolving the

circle x'^ + {y — b)^ = a^, a < b, about the X-axis.

2. Find the volume of the anchor ring of Exercise 1.

3. Find, by using one of the theorems of Pappus, the centroid of a

quadrant of a circular arc, radius a.

Hint. The rotation of the arc about the X-axis, which coincides

with a radius drawn to one extremity, generates the surface S = 2ira'^.

Then, by (4),

S = 27ra2 = 2T2/L = 2-Ky'^'
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Hence

y
2a

4. Find, by using one of the theorems of Pappus, the centroid of a

quadrant of a circular area.

142. Centroid: Polar Coordinates. The formulas are readily

obtained for finding the coordinates of the centroid of an area

bounded by a curve whose equation is given in polar coordinates.

The area of the element MPQR, Fig. 88, is p dp dd, and its moment
about the F-axis is pdpdd p cos 6 = p"^ cos d dp dd. Hence

Similarly,

fCp"^ cose dp do

ffpdpdd

f fp^
sine dp dd

ffpdpdd

X =

y =

If it is advantageous, the integration with respect to d can be

performed first.

Exercises

Find the coordinates of the center of gravity of:

1. The area of p = a(l + cos 6). The area of the upper half of

the same cardioid.

2. The area of one loop of p =
a cos 2d.

3. A circular sector of central angle

2 a.

4. One quadrant of a circle. A
semicircle. (Obtain directly and also

use the result of Exercise 3.)

5. The area of a portion of a cir-

cular ring, Fig. 103, of radii R and

r, and of central angle 2a. Denote

by Cr the centroid of the sector of

radius R, and by Cr that of the sector of radius r, and by C that

of the given portion of the ring. Let the abscissas of these points be

xr, Xt, and x, respectively, and let the corresponding areas be denoted

by Ar, Ar, and A.

Fig. 103.
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Then

Hence
Artr \- Ax = ArXr.

- _ "^g^fl - ^rXr ^ 2 R^-r^ sin a^~ A 3 R^-r^ a '

Obtain this directly by integration.

6. A segment of a circle of radius r cut off by a chord of length c.

Use the method of Exercise 5. The distance of the centroid from the

center is

(.3 ^ 2r^ sin^ a
12A ~ M '

where A = area of the segment = r^ (2 a — sin 2 a:).

143. Moment of Inertia. Consider a system of masses, mi,

rriz . , rrin, moving with linear accelerations, ji, j^, • •
, jn,

respectively. The forces acting on these masses are then m\j\,

m^ii, . . ., rrinjn, respectively; and the sum of the moments of

these forces about an axis is equal to l^niijiri where ri, rz, . . .

r„, respectively, are the moment arms of these forces with respect

to this axis. If now the masses are rigidly connected and rotate

about an axis, they have a common angular acceleration. Let the

common angular acceleration be denoted by a. Then ^i = ari,

ji = ar2, . . ., jn = oLTn, whcro ri, r2, . . ., r„ are the dis-

tances of the masses mi, m^, . . ., rUn from the axis of rota-

tion. The sum of the moments, T^mijiTi, becomes a'Zmiri^.

This is the moment necessary to produce the angular acceleration

a. To produce unit angular acceleration a moment equal to

Sm.ri^ is necessary. This moment, ^miri"^, is called the moment
of inertia, and is denoted by the symbol /. Thus

I = SmiV. (1)

The moment of inertia of the system would be unchanged if the

n masses of the system were situated at a distance k from the axis

of rotation such that

'Zniik'^ = 'ZmiTi^,

or

^ ~ 2mi
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k is called the radius of gyration. Its square is the mean of the

squares of the distances ri, ri, . . . , r„ with respect to the mass.

The moment of inertia of a system with respect to an axis of

rotation plays the same role in the discussion of a motion of rota-

tion as the total mass in the discussion of a motion of translation.

In the former case the moment necessary to produce an angular

acceleration a is a^niiri^. In the latter case the force necessary

to produce a linear acceleration j is jSm,-.

The kinetic energy of a rotating system can be expressed in

terms of its moment of inertia and its angular velocity. If a

particle of mass m is rotating with angular velocity co about an

axis and at a distance r from it, its kinetic energy is equal to

one-half the product of its mass

by the square of its linear veloc-

ity, i.e., to jWwV^. And if

there is a system of particles of

masses mi, m2, • • • , w„, at dis-

tances ri, r2, . . ., r„, respec-

tively, from the axis, all rotating

with the angular velocity w, the

kinetic energy of the system is

equal to ^SmiCoVi^ = ^oo^Ziriiri^

= Wl-
If a rectangular plate of uniform thickness ^ and composed of

material of uniform density, p, rotate about an axis through one

corner and perpendicular to its plane, its moment of inertia can be

found by a process of double integration. Let the sides of the rec-

tangle be a and h and take the origin at one corner. Fig. 104.

The moment of inertia of the rectangle MNPQ is approximately

the product of its mass, p^ Ay Ax, and the square of the approxi-

mate distance, s/x^ -\- y"^, of its mass particles from the origin.

That is, the moment of inertia of MNPQ is approximately

p^(x2 -I- y^)Ay Ax.

That of the strip EHIJ is approximately

y = b ^^
P^ AySo DC-^' + y') AyAx=p^Ax i (x' + y') dy.

And the moment of inertia of the entire plate is obtained by

y

J I

Q P
W

M N

X
o B7 J1

Fig. 104.
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taking the limit of the sum of the moments of inertia of these

strips as Ax approaches zero, viz.,

«/o Jo

I = P^£to^^x\ {x^ + y')dy

b

(x2 + 2/2) dy dz = Wia-" + 6^),

where M — p^ab, the mass of the plate.

We have obtained the moment of inertia of the plate by inte-

grating over its area the product of the mass of the element,

p^ dy dx, by the square of its distance, ^Jx^ + y"^, from the axis of

rotation.

If instead of a rectangular plate we consider a plate of any shape,

say that of Fig. 84, its moment of inertia is given by

(x^ + y^) dy dx. (2)

If the density, p, and the thickness, ^, are variable the foregoing

argument shows that they must be written under the integral sign.

For, the element of integration is p^{x^ + y"^) dy dx and only when

p and ^ are constant can they be taken out from under the integral

sign. If p and ^ are variable we have

Pk {x^ + y^) dy dx. (3)

(2) and (3) can be written in a form easily remembered, viz.,

I=Jr2dm, (4)

where dm is an element of mass, and r is its distance from the

axis.

Sometimes in finding the moment of inertia of a body it is

advantageous to choose the element of mass so that a single inte-

gral will suffice. See for example Illustration 2, below.

Illustration 1. Find / of a right-angled triangular plate whose

thickness is 0.5 inch, and whose legs are 10 inches and 4 inches,

about an axis through the vertex of the right angle and perpendicu-
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lar to the plane of the triangle. The density of the material is

0.03 pound per cubic inch. See Fig. 105.

I = 0.03-0.5 II (a;2 + y"^) dij dx.

t/0

The student will carry out the integration and find the radius of

gyration.

Illustration 2. Find 7 of a circular plate about an axis through
its center and perpendicular to its plane. . The plate has a radius

of 10 inches. It is 2 inches thick and its density is 0.04 pound
per cubic inch.

Hint. Here it is convenient to divide the plate into concen-

tric rings of inner radius r and of width dr. See Fig. 106. The

Fig. 105. Fig. 106.

volume of such a ring is 2-2Trr-dr, and its mass is 0.04*47rr-dr.

The distance of this mass from the axis is r. Hence

I = 0.16

s:
dr.

Also find the radius of gyration.

144. Transfer of Axes. Theorem. The moment of inertia of a

body about any axis is equal to its moment of inertia about a parallel

axis through the centroid, increased by the product of the jnass by

the square of the distance between the axes.

Let AB, Fig. 107, be the axis about which the moment of inertia

is desired. Choose a system of rectangular axes such that the

origin, 0, is at the centroid, such that the Z-axis is parallel to AB,
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and such that the ZF-plane contains the line AB. Consider an

element of mass, dm, at P. The moment of inertia of the body

about AB is then

I = fiPBy dm = fUy - dy + x^l dm,

or I = j {x"^ -\- y"^) dm — 2d j ij dm -{ d^ j drn. (1)

The first term of the right-hand side of (1) is the moment of

inertia, /„, of the body about the Z-axis, an axis through the cen-

troid. The second term, I y dm, is the moment of the body

with respect to the XZ-plane, a plane passing through its centroid.

Fig. 107.

__ \y dm

I dm

Since y = 0, j y dm = 0. The last term, d"^ j dm, is d^M,

where M is the mass of the body. Hence

I = !„ + Md2.

145. Moment of Inertia of an Area. We have spoken of the

center of gravity of an area quite apart from any idea of mass and

have stated that this is a useful conception in the study of mechan-
ics. In the same way the solution of some problems in mechanics

requires the moment of inertia of an area quite apart from any idea

of mass.
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The moment of inertia of a plane area about an axis through the

origin and perpendicular to its plane is defined by the integral.

I = JJ (x2 + y2) dy dx = Jf (x2 + y2) dx dy.

The theorem on the transfer of axes holds in this case if the word

"area" is substituted for the word "mass."

Exercises

Find the moment of inertia of the following

:

1. A rectangle of sides a and b about one comer. (See Fig. 104.)

About the centroid. About one base. About a line parallel to one

base and passing through the centroid.

2. A right triangle, legs a and b, about

one of the legs. About a line through the

^^ centroid parallel to this leg.

3. The area of a circle about an axis

' through a point on its circumference and

perpendicular to its plane. See Illustration

2, §143.

4. The area of a circle about a diameter.

Hint.

I =
X? 2xdy.

Fig. 108.

5. The area of a circle about a tangent

line.

6. The area between y = x^ and y^ = x

about an axis through the origin perpen-

dicular to the XF-plane.

7. A uniform bar of length L and linear

density p about an axis through one end
perpendicular to the bar. Find / about a parallel axis through the

middle point of the bar.

8. A bar of length L, whose density is proportional to the distance

from one end, about an axis perpendicular to the bar through the

end of least density.

9. A slender uniform rod. Fig. 108, about a line through its middle

point and making an angle a with the rod.

Ans. I — ^s'lnL^ sin'' a, where m is the mass and L is the length

of the rod.
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Hint. Denote by p the linear density. Then

I = P i x^ sin^a dx, with proper limits.

10. The rod of Exercise 9 about a parallel axis through one end.

11. A wire bent into the form of a circular arc, Fig. 109, about the

origin. Also find the moments of inertia, Ix and ly about the X- and
F-axes, respectively.

/-

/-

7 = I r^rdB;

Ix = I r^sin^erdd',

/„ = I r^ cos^e r de.
Fig. 109.

12. A triangle of base h and altitude h about an axis through the

vertex parallel to the base. Divide the area into strips parallel to the

base and of width dx. The axis of x is drawn from the vertex perpen-

dicular to the base.

_ , x^hx dx

f
13. A triangle about a line through the center of gravity parallel

to the base. Use the result of Exercise 12.

14. The area of the ellipse ^ + rj =1 about the major axis. (Use

single integration.) About the minor axis. About the origin.

146. Moment of Inertia: Polar Coordinates. The moment of

inertia of the element r dr dd about an axis through the origin is

r^r dr dd. Hence the moment of inertia of an area is

/ = JJr3 dr dd,

with proper limits. If the moment of inertia of a plate is required,

r' dr dd is to be multiplied by p, the density per unit area.

Exercises

Find the moment of inertia of the following

:

1. The area of the cardioid p = a (1 + cos 6) about an axis through

the origin perpendicular to the plane of the cardioid. About the

initial line.
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2. The area of one loop of p = o cos 2d about the initial line.

3. A circular sector of central angle 2a about the radius of

symmetry.

4. The arc of the sector of Exercise 3 about the radius of sym-
metry.

5. The area of Exercise 3, about an axis through the center of the

circle and perpendicular to the plane of the sector. About a parallel

axis through the centroid.

147. Moment of Inertia of a Solid.—We wish to find the moment
of inertia of the solid of Fig. 86, about the Z-axis. The moment of

inertia of the element of mass, p dz dy dx, about the Z-axis is equal

to pix"^ + 7/^) dz dy dx. The total moment of inertia of the solid

about this axis is the integral of this element throughout the solid.

Hence,

/. =
I I I

p(x2 + 7/2) dz dy dx. (1)

Similarly

r, - f r r
Ja Jy^ Jz =

n"2
ni = fix.

J
Jz =

Jo, Jy, Jz =

y)

/«=
I j I

p{y^ + z^) dz dy dx, (2)

•z - fix, y)

p{z^ + x2) dz dy dx. (3)

If the solid be regarded as a geometrical volume of density 1,

the p's disappear, and the formulas (1), (2), and (3) can be written

/. = Jffi^' + y') dz dy dx, (4)

I. = Jffiy' + 2') dz dy dx, (5)

ly = ///(2' + x^) dz dy dx. (6)

Let

/„, = III px^ dz dy dx, (7)

Lx =
JJJpy'^

dz dy dx, (8)

hv = fffp^^ dz dy dx. (9)

The quantities (7), (8), and (9) will be called the moments of

inertia of the solid with respect to the FZ-plane, the XZ-plane,

and the XF-plane, respectively. They are the integrals of the
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product of the element of mass by the square of its distance from

the respective planes. They can very frequently be found by a

single integration by taking as element a plane lamina between

two planes parallel to the plane with respect to which the moment
is computed. If this is the case the moment of inertia about the

coordinate axes can easily be found by noting that from the equa-

tions(l), (2), (3); and (7), (8), (9):

Iz = Iy^ + Ixz,

I. = Ixz + Ixy,

ly = Ixy + Iyz.

That is, the moment of inertia about the Z-axis is equal to the sum

of the mom£nts of inertia with respect to the YZ- and XZ-planes, and

so on.

In general, the moment of inertia of a body about an axis is equxil

to the sum of its moments of inertia with respect to two perpendicular

planes which intersect in that axis.

In the same way it follows from the formula for the moment of

inertia of an area, I = I I (a;^ + y^) dy dx, that the sum of the

moments of inertia of an area {or a plate) about two perpendicular

axes is equal to its moment of inertia about an axis perpendicular

to the plane of these axes through their point of intersection.

Illustration 1. Find the moment of inertia of the ellipsoid

X V z
—i + T^-{—s = 1 about each of its axes.
a^ 0^ c'-

First Method.

y
/. = 8j

j

^ a^-^'\^ a^
%J^ + Z^) dz dy dx.

Carry out the integration far enough to see that it is not simple

and then note the relative simplicity of the

Second Method. Compute Ixz, the moment of inertia with

respect to the XZ-plane. Take as element of integration the ellip-

tical plate cut out by the planes y = y and y = y -\- Ay. The

equation of the intersection of the ellipsoid and the plane y = y is

x^ 2^ _

.»(i-fi) .<!-«;)
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Now the area of an ellipse is t times the product of its semi-

major and semi-minor axes. Hence the area of this ellipse is

The volume of the elliptical plate in question is

irac [l - p-j dy

and its moment of inertia with respect to the XZ-plane is

xacy^ (l - p-j dy.

The total moment of inertia of the ellipsoid with respect to this

plane is then

I,, = Tracfy^[l-pjdy

= 27roc (

/63 5A
3 5/ 16

IXV can be written down at once as

-. _ 47ra6c'

Then
T TIT ^Trahc ,, „ .

We can write down at once by interchanging letters:

Illustration 2. Find the moment of inertia of a right circular

cone about a line through its vertex perpendicular to its axis, if

the radius of the base is b and the altitude is h. Choose the vertex

as origin and the axis of the cone as axis of x. Consider the plate

bx
of radius r cut out by the planes x = x and x = x + dx. Its
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moment of inertia about a diameter parallel to the axis of rotation

through the vertex is equal to —j-rz— . (See expression for / of

a circular plate about a diameter, Exercise 4, §145). Then the

moment of inertia of this plate about the axis of rotation through

the vertex is equal to this moment of inertia about an axis through

the centroid increased by its volume (mass if density = 1) multi-

plied by the square of the distance between this axis and the par-

allel axis through the vertex (see §144) i.e., to

Tb*x*dx irb^x'^dx
^W "^ P ^

And the total moment of inertia of the cone about the axis through

the vertex is equal to the integral of this moment of inertia from

X = to X = h. That is

SX
jrb^h

,
Trb%^ Trb-h ,, „ , ^,,.

"20- +-5- =
-20" (^^ + ^'^^)-

Exercises

Find the moment of inertia of:

1. The cone of Illustration 2, about a parallel axis through the

centroid of the cone. About a diameter of the base.

2. A right circular cylinder, the radius of whose base is r, and whose

altitude is h, about a diameter of one base. About a parallel axis

through the centroid.

3. A rectangular parallelopiped with edges a, b, and c, about an

axis through the centroid parallel to one edge.

4. A right circular cylinder about its axis.

5. A hollow right circular cylinder of outer radius R, inner radius r,

and altitude h, about its central axis. About a diameter of one base.

About a diameter of the plane section through the centroid perpen-

dicular to the axis.

6. A right rectangular pyramid of base a X b and of altitude h,

about an axis through the centroid parallel to the edge a. About an

axis through the vertex and the center of gravity.

Ans. /. = ^ (b- + Ih^). h=^ {a' + &=).
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7. A frustum of a right cone about its axis if the radius of the large

base is R, that of the small base is r, and the altitude is h.

R^ — r^
Ans. I = -fifTrh -fzR — r

8. A hollow sphere about a diameter, if the outer radius is R and
the inner radius is r.

9. A paraboloid of revolution, the radius of whose base is r and
whose height is h, about the axis of revolution.

Ans. I = lirr*h.

10. The anchor ring generated by revolving the circle

[x - R]^ + y^ = r^ about the F-axis.

Ans. h = TT^RrKR^ + fr"). ly = 27rmr\R^ + fr^).

11. A right circular cone about its axis.

12. A right elliptical cylinder of height L, and having the semi-major

and semi-minor axes of its cross section equal to a and b, respectively,

about an axis through the centroid parallel to b.

13. A quadrant of a circular plate about one of its bounding radii.

14. An equilateral triangle of side 2a, about a median. About a

line through a vertex perpendicular to one of the sides through that

vertex.



CHAPTER XVI

CURVATURE. EVOLUTES. ENVELOPES

y 1

qI

A-
Pf /r+t^T

o y /

Fig. 110.

148. Curvature. Let PT and QT, Fig. 110, be tangents drawn

to the curve APQ at the pointsP and Q, respectively. Denote the

length of the arc PQ by As and

the angles of inclination of PT
and QT' to the positive direc-

tion of the X-axis by t and t

-j- Ar, respectively. At gives a

rough measure of the deviation

from a straight line, of that por-

tion of the arc of the curve be-

tween the points P and Q. The
sharper the bending of the curve

between the points P and Q the

greater is At for equal values of As. The average curvature of

the curve between the points P and Q is defined by the equation

At
Average Curvature = 't~'' (1)

The average curvature of a curve between two points P and Q
is the average change between these points, per unit length of

arc, of the inclination to the X-axis of the tangent line to the

curve. Or, more briefly, the average curvature is the average

change per unit length of arc, in the inclination of the tangent line.

The curvature at P is defined as the limit of the average curvature

between the points Q and P as Q approaches P. On denoting the

curvature by K, we have in accordance with the definition,

^' ^' (2)K = 1™^
As = As ds

The curvature at a point P is then the rate of change at this point of

the inclination of the tangent line per unit length of arc. The
19 289
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curvature is a measure of the amount of bending of a curve in

the vicinity of a point,

149. Curvature of a Circle. It is clear that the average curva-

ture of a circle, Fig. Ill, is

At _ At
As r At

Hence the average curvature is independent of As and conse-

quently the curvature, the limit of the average curvature as

As approaches zero, is

A' = (1)

Tfie curvature of a circle is constant and equal to the reciprocal of its

radius.

150. Circle of Curvature. Radius of Curvature. Center of

Curvature. Through any point P of a curve infinitely many cir-

cles can be drawn which have a

common tangent wdth the curve at

P and whose centers are on the con-

cave side of the curve. Of these

circles there is one whose curvature

is equal to that of the curve at P,

i.e., one whose radius is equal to the

reciprocal of the curvature at P.

This circle is called the circle of

curvature at the point P. The
radius of this circle is called the

radius of curvature, and its center the center of curvature, of the

curve at the point P. The radius of curvature is denoted by R
and, in accordance with (2), §148, its length is

Fig. 111.

R =
K

ds

dr*
(1)

151. Formulas for Curvature and Radius of Curvature: Rec-

tangular Coordinates. For obtaining the curvature at any point

on the curve y = /(x), we shall now develop a formula involving
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the first and second derivatives of y with respect to x. The above

formula for curvature K can be written

(1)

dr dr

dx dx

dx \1 + [dx)

Since

.
,dy

T = tan-^ -j-y
dx

d'y

dr dx"^

Consequently

and, by (1), §150,

[^M^Q?

, [-(S)r
^ - d2y

dx2

(2)

(3)

We shall understand by K and R the numerical values of the

right-hand members of (2) and (3), respectively, since we shall

not be concerned with the algebraic signs of K and R.

Illustration. Find the curvature oi y = x^.

^ = 2x ^ = 2
dx ' dx^

Substitution in formula (2) gives

2K =
(1 + 4x2)^

From this expression it is seen that the maximum curvature

occurs when x is zero, and that the curvature decreases as x
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increases in numerical value. When a; = 0, K = 2. When

> — X -1-, -IV —
25

Exercises

Find the curvature and radius of curvature of each of the curves:

l.y = 2x- xK A. y = x^ — x^. 7. 2/ - 3x*.

2. 2/ = xi 5. y = -.• 8. y = x~^.

-y-l- 6. 2/ = Vx.
Vx

10. If p = /(&) is the equation of a curve in polar coordinates, show
that

„ ^ +Hd"gJ -^d¥^
K — , •

Hint.
['-(^^)T

_ dr _ d^
"~

ds ~ ds

d«

T = e +ip. (See Fig. 72.)

til- _ d^

50 ~ "^ do"

Obtain -jr from the relation
dff

d0

IS given in
de

152. Curvature: Parametric Equations. If the equation of a

curve is expressed in parametric form, z = f{t), y = F{i), the cur-

vature can be found by differentiating x and y and substituting

in (2), §151. t can be eliminated from the result if desired.

Illustration 1 . li x = t and y = t^,

^ ^ 2« and^ = ^^— = 2
dx ' dx' dt dx
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Hence
2 2

Illustration 2. Find the curvature of the ellipse x = a cos t,

y = 6 sin t.

dy b
-J- = cot t.
ax a

d-hj b d .dt & „,
3-: =

-V, cot t -3— = — csc^ t
dx^ a at ax a

r—T = iCSC^^
a sin t_\ a^

- -cscH„ a^ — ab — ab
h. =

[l+^'cot^f]^ (a'sinH + b^cosH)^ g ^2 + ^J
^^1

a*b*

ib*x^ + a*y^Y

Exercises

1. Find the curvature of the curve x = a cosh I, y — a sinh t.

2. Find the curvature of the curve x = a{t — sin 0)

y = a{\ — cos 0-

153. Approximate Formula for the Curvature. If a curve

dy
deviates but little from a horizontal straight line, -r- is small and

(dv\ 2

^1 in formula (2), §151, is very small compared with 1.

Hence the denominator differs very little from 1 and the formula

becomes approximately

^=S- (')

This approximate formula for K is frequently used in mechanics

in the study of the flexure of beams. The slope of the elastic

d'^y
curve of a beam is so small that -v-^ can be used for the curva-

ture without appreciable error.

The approximate formula for the radius of curvature R is

7?- ^^~ d^ (2)

dx^
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154. Center of Curvature. Evolute. Formulas will now be

obtained for the coordinates of the center of curvature of a curve

corresponding to any point P. Let the coordinates of P be a; and

y. Denote by a and j8 the coordinates of the center of curvature

of the curve at this point. There are four cases to be considered.

See Fig. 112, a, b, c, d.

Fig. 112.

In Fig. 112, a,

a = OM =^ ON - HP = X - Rsinr,

/3 = MC = NP + HC = y + R cost.

Since

tanr = dy

dx

cost =

NRS-f
; sinT

dy

dx

/dy\^
\dx)
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Consequently,

^-m
«=--f-d^f^' (1)

and

1 + (^)
^ = y +—d^- (2)

The student can show that, since -7— is negative for a descending

curve and positive for an ascending curve, and since -r^ is positive

when a curve is concave upward and negative when a curve is

concave downward, formulas (1) and (2) hold for the three curves

represented in Fig. 112, b, c, d.

Illustration. Find the coordinates of the center of curvature

corresponding to any point on the curve y = ± 2 y/~x. Only the

positive sign will be used. If the negative sign is used it will

only be necessary to change the sign of ^.

dy ^ 1

dx y/^

^ = _ J_
dx^ 2a;i*

1

1
1 +

2x1

= y
1
— = y - 2V^(x + 1) = 2/ - 2/ [I + 1] = -

2x3

The equation of the locus of the center of curvature is obtained

by eliminating x and y from the equations for a and /3 and the

equation of the original curve. Thus

0= ~ 2 /.ox'
X = —y—

; y = - (4)8)' .
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Substituting in y"^ = 4a;, we obtain

^^ = A(« - 2)»,

the equation of the locus of the center of curvature. This is the

equation of a semi-cubical parabola whose vertex is at the point

(2,0).

The locus of the center of curvature corresponding to points on a

curve is called the evolute of that curve. Its equation is easily

obtained in many cases by eliminating x and y from equations (1)

and (2) and the equation of the original curve. Otherwise (1)

and (2) constitute its parametric equations, a and /3 being ex-

pressed in terms of the parameters x and y.

Exercises

1. Find the evolute of t/ = 4x^.

2. Find the evolute of the ellipse

I*^ ^yi - 1

a^
"^ 6*

^'

Hint It will be found that

(a* - &2)x' (a« - 6*)y«
« =

^,
; ^ =

^,

Whence

Elimination gives

iaa)i + (6^)5 = (o2 - 62)5.

3. Find the parametric equations of the evolute of the cycloid,

X = a{9 — sin 9),

y = a(l — cos e).

Ans. a = a(0 + sin 6), = — a(l — cos d). Show that the evo-

lute is an equal cycloid with its cusp at the point ( — wa, — 2a).

4. Find the equation of the evolute of

X = a(cos 9 + 9sm e),

y = o(sin — ^cos^).

Ans. a = a cos 9, /3 = a sin 9. Discuss.

155. Envelopes. If the equation of a curve contains a constant

c, infinitely many curves can be obtained by assigning different

values to c. Thus
(x - c)2 + 2/2 = a2 (1)
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is the equation of a circle of radius a whose center is at (c, 0). By-

assigning different values to c we get a system of equal circles

whose centers lie on the X-axis. A constant such as c, to which

infinitely many values are assigned, is called a parameter. A
constant such as a, which is thought of as taking on only one value

during the whole discussion, is called an absolute constant. We say

that equation (1) represents Si family of circles or a system of circles

corresponding to the parameter c.

The general equation of a family of curves depending upon a

single parameter can be written in the form,

fix, y, c) = 0. (2)

Exercises

State the family of curves represented by the following equations

contammg a parameter:

1. y = x^ + c,

2. y = mx + b,

3. y = mx + b,

*• a» ^ &» ^'

6. 2/* = m(x + m),

6. x^ + y^ = a\

c being

b being

m being

a being

TO being

a being

the parameter,

the parameter,

the parameter.

the parameter.

the parameter,

the parameter.

Consider again the family of circles (1). Two circles of the

family corresponding to the values, c and c -f- Ac, of the parameter

intersect in the points Q and Q',

Fig. 113. We seek the limiting

positions of these points of in-

tersection as Ac approaches zero.

Clearly they are the points P
and P', respectively, on the lines

y = +a. Such a limiting posi-

tion of the point of intersection

of two circles of the family is

called the point of intersection of

two "consecutive" circles of the

family. In general, the limiting position! f the point of intersec-

tion of two curves, f{x, y, c), f (x, y,c-\- Ac), of a family, as Ac



298 CALCULUS [§155

approaches zero, is called the point of intersection of "consecu-

tive" curves of the family.

In the case of the family of circles (1) the locus of the points of

intersection of "consecutive" circles is the pair of straight lines

y = +a. This locus is called the envelope of the family of circles.

In general, the envelope of a family of curves depending upon one

parameter is the locus of the points of intersection of "consecutive"

curves of the family. It will be shown in a later chapter that the

envelope of a family of curves is tangent to every curve of the

family.

Exercise

Draw a number of lines of the family

X cos 6 + y sin d = p,

where 9 is the parameter, and sketch the envelope.

A general method of obtaining the envelope of a family of

curves will now be given.

The equation of a curve of the family is

f(x, y, c) = 0, (3)

where c has any fixed value. The envelope is the locus of the

limiting position of the point of intersection of any curve (3) of

the family with a neighboring curve, such as

fix, y, c + Ac) = 0, (4)

as the second curve is made to approach the first by letting Ac
approach zero. The coordinates of the points of intersection of

the curves representing equations (3) and (4) satisfy

fix, y, c + Ac) - fix, y, c) = 0. (5)

Then they satisfy

fix,y,c + Ac) -fix,y,c)

Ac
= 0, (6)

since Ac does not depend on either x or y. Then the coordinates

of the limiting positions of these points of intersection satisfy

lim fix,y,c + Ac) -fix,y,c) _
Ac A ^c

~
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The first member of this equation is the derivative of /(x, y, c)

with respect to c. It may be written in the form,

df(x, y, c) _ ,

dc ~ ^- ^''

The differentiation is performed with respect to c, x and y being

treated as constants. The point of intersection also lies on (3).

Hence the equation of its locus is obtained by eliminating c

between (3) and (7).

Illustration 1. Find the equation of the envelope of the

family of circles, {x — cy -{- y^ = a^, c being the parameter.

The equation of the curve written in the form f{x, y, c) = is

{x - cY + 2/2 _ a2 = 0. (I)

Differentiating with respect to c,

- 2{x - c) = 0. (II)

The elimination of c between (I) and (II) gives

or

y = ±a,
as the envelope.

Illustration 2. Find the equation of the envelope of the

family of lines, x cos 6 -^ y sin d = p, 6 being the parameter.

On differentiating the first member of

X cos d -\- y sin d '- p = (I)

with respect to d we obtain

— X sin 6 -\- y cos d = Q. (II)

The result of eliminating d between (I) and (II) is

^2 _j_ ^2 _ p2^

a circle of radius p about the origin as center.

Exercises

P
1. Find the envelope of the family of straight lines y — mx -\—

'

m
where m is the parameter. Draw figure.



300 CALCULUS [§156

2. Find the envelope of the family of lines y = mx + o\/l + m',

where m is the parameter. Draw figure.

3. Find the envelope of the family of parabolas y^ = c(x — c), c

being the parameter.

4. Find the envelope of the family of lines of constant length whose
extremities lie in two perpendicular lines.

6. Find the envelope of y = px — -p^, p being the parameter.

Draw figure.

6. Find the envelope of the family of curves (x — c)^ + 2/^ = 4pc,

c being the parameter. Draw figure.

7. The equation of the path of a projectile fired with an initial

velocity Vo which makes an angle a with the horizontal, is

y — X tan a — n—;
7.
—

" 2v^ cos^a

Find the envelope of the family of paths obtained by considering a a

parameter.

Wo* gx^
Ans. V == -ji— — 77—!

8. The equation of the normal to y^ = 4x at the point P, whose

coordinates are Xi and yi, is

yi
,

.

y - yi = - 2^ (x— xi).

Since yi^ = 4xi, this may be written

2/iX +2y -'^ 2yi= 0.

Find the equation of the envelope oi the normals as P moves along

the curve.

Hint. On differentiating with respect to the parameter 2/1 we
obtain

a. o V^^^Z?

On substituting this value of yi in the equation of the normal and

squaring we obtain

2 4(x - 2)^

y = —27

—

This is the evolute of the parabola as we have seen in §164.

156. The Evolute as the Envelope of the Normals. In Exercise

8 of §155 it was seen that the evolute of a parabola is the envelope

of its normals. This is true for any curve. The result is fairly

evident from the examination of the curves of the exercises of
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§165 and their evolutes. It will be shown that the normals to a

curve are tangent to its evolute.

The parametric equations of the evolute are

a = X — Rsinr, (1)

^ = y + RcosT. (2)

On differentiating with respect to the variable s, which is per-

missible since x, y, R, and r are aU functions of s, we obtain

da dx dR . _, dr
3— = 3 5— sm T — /t cos r 3- •

ds ds ds ds

d^ dy
,
dR „ . dr

T" = 3 r T' COST — R smr -j--

ds ds ds ds

Now

= COST,
dx

ds

dy

ds ~ R'

Then the foregoing equations become

da dR .

ds ds '

d^ dR
3— = 3— COS T.
ds ds

Hence the slope of the tangent to the evolute is

^ = -cotT (3)da

Therefore the tangent to the evolute is parallel to the normal to

the curve at the point (x, y) to which (a, jS) corresponds. But the

normal to the curve at (x, y) passes through (a, /3). Hence it is

tangent to the evolute at this point.

It can also be shown that if Ci and C2, Fig. 114, are the centers

of curvature corresponding to the points Pi and P2, the length of

the arc C1C2 of the evolute is equal to the difference in the lengths

of the radii of curvature, Ri and R^. For, from the above values

of da and d^ it follows that

Vda^ + diS* = dR.
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But VdoM-d^ is the differential of the arc of the evolute. Call

it d(T. Then da = dR, and hence on integrating a = R -\- C.

a and R are functions of s, the arc of the given curve. Then corre-

sponding to a change As( = arc P1P2) in s, cr and i2 will take on the

increments Ac and AR which are equal by the foregoing equation.

But A(T = arc C1C2, and AR = R2 — Ri. Hence arc C1C2 equals

^2 — Ri-

Fig. 114.

157. Involutes. In Fig. 114, suppose that one end of a string is

fastened at C and that it is stretched along the curve CdCiKM.
If now the string be unwound, always being kept taut, the point M
will, in accordance with the properties of the evolute, trace out the

curve MP1P2P. This curve is called the involute of the curve

KC1C2C. If longer or shorter lengths of string, such as CKM2
be used, other involutes will be traced. In fact to a given curve

there correspond infinitely many involutes. The given curve is

the evolute of each of these involutes. We see that while a given

curve has but one evolute it has infinitely many involutes.

In Exercise 4, §154, the circle x = a cos 6, y = asin 6 was found

as the evolute of the curve x = a(cos 6 -\- 6 sin 6), y = a(sin 6 —
6 cos 6). Then the latter curve is an involute of the circle. The
student will draw a figure showing a position of the string as it

would be unwound to generate the involute and indicate the

angle 6.



CHAPTER XVII

SERIES. TAYLOR'S AND MACLAURIN'S THEOREMS.
INDETERMINATE FORMS.

158. Infinite Series. The expression

Ui + U2-\- U3-\- + Un+ ' ' (1)

where ui, Uz, "Wa, • • •, %i„, ' • ' is an unlimited succession of

numbers, is called an infinite series.

Let s„ denote the sum of the first n terms of the infinite series

(1). Thus

Sn = Ul + U2 + U3 + • • • -\- u„. (2)

If, as n increases without limit, Sn approaches a limit s, this

limit is called the sum of the infinite series, and the series is said

to be convergent.

Illustration 1, In Illustration (1), §21, AB, Fig. 21, is a line

2 units long. The lengths Axi, X1X2, XiXz, x^Xt, • • • x„_ix„,

• • • are 'i-, h, l, h ' ' '
> n~i t

' ' '
> respectively. For this

series

Sn = 1 + ^ + ^ + I + • • • + -^f (3)

The limit of this sum as n increases without limit is 2, as the

figure shows. Or, we may write,

l + h + l + l+ • • • +2^,+ • ' =2. (4)

Illustration 2. The sum of the geometrical progression

1 + r + r^ + r^ + r" + • • • + r" (5)

does not approach a limit if \r\ y 1, but if \r\ < 1 it approaches

the limit z , when n becomes infinite.
1 — r'

The infinite series (1) is said to be divergent or to diverge if, as n
increases without limit, s„ does not approach a limit.

303
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Thus the series

l+2 + 3 + 4+---+n + ---,

l-1 + l-l + l-l + l---, •

1 + R-\- R^-\- R^ + R*+ • • + R^+ • ' {R> I)

are illustrations of divergent series.

If the terms of an infinite series are functions of a variable x and

if the series is convergent for any range of values for x, the series

defines a function of x for that range of values. Thus, if |x| < 1,

the series

1 +x + x^ + x^ + • • • +x^ + • ' '

(7)

defines the function z . On the other hand, if the series is
1 —x '

divergent it does not define a function of x. Thus, if \x\ > 1, the

series (7) is divergent and does not define the function
^ _ '

or any other function.

It may happen that the sum of a few terms of an infinite series

representing a function is a very close approximation to the value

of the function. As an illustration take the infinite geometrical

progression (7), which when |x| < 1 represents the function . _ .

If the terms after x*~^ are neglected, the error is

X* + x*+i + • • . + X" + • • • = r^—-
1 — X

X*
The error, :j-^— is very small compared with the value of the

function, q
, and decreases as k increases; i.e., a better and

1 — X ' '

better approximation is obtained the greater the number of terms

retained.

Another infinite series is obtained by expanding (1 + x)' by
the binomial theorem,

(1 + x)' = 1 + -|x + Ix' - -Ax^ + • •
•

(8)

This series can be shown to be convergent when |x| < 1 and

divergent when |x| > 1.

Just as the function . _ is represented to a high degree of ap-

proximation by the first few terms of the series (7) when jxj is small,
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the function {I }- x)^ is represented approximately by the first

few terms of (8) when |a;| is small. In both cases the functions are

represented approximately by polynomials. A method will be

developed in the succeeding articles which will enable us to deter-

mine polynomial approximations to other functions, such as sin x,

tan X, e'.

An infinite series of the form

ao+ di'X + o.-ix''' + asx' + . . . + OnX" + . . . (9)

is called a 'power series in x. One of the form

Oo + ai(a; — a) + a^ix — ay + 03(3; — a)' + • • •

+ an{x - a)" + • • • (10)

is called a power series in (x — a). The series (7) and (8) are

power series in x representing the functions
^ _ and (1 + x)^,

respectively. In the succeeding articles power series will be

obtained representing the functions sin x, tan x, e*, etc.

159. Rolle's Theorem. Let f{x) be a single-valued continuous

function between x = a and x = b, having a continuous first

Fig. 116.

Fig. 117. Fig. 118.

derivative, f'{x), between the same limits. Further, let /(o) =
and f(b) = 0, i.e., let the curve representing the function cross or

touch the X-axis at a; = a and x = b. The curve may or may not
?o



306 CALCULUS [§160

cross or touch the X-axis at intermediate points. (See Fig. 115.)

Since f{x) is continuous it cannot have a vertical asymptote be-

tween X = a and x = b as shown in Fig. 116, nor can it have a

finite discontinuity as shown in Fig. 117. Since f'{x) is con-

tinuous between x = a and x = h, the curve cannot change its

direction abruptly between these limits, as shown in Figs. 118 and

119. Since cases such as are represented by Figs. 116, 117, 118,

and 119 are excluded, the curve. Fig. 115, must have a horizontal

tangent at some point x = Xi between x = a and x = b. Hence

the

Fig. 119. Fig. 120.

Theorem. If f{x) is a single-valued function from a; = a to

X = b, andiff(x) andf'(x) are continuous between these limits, and

further if f{a) = andf(b) = 0, thenf'ixi) = 0, where a < Xi < b.

160. Law of the Mean. Let f(x) be a single-valued function

between x = a and x = b. Further let f{x) and f'{x) be con-

tinuous between these limits. Fig. 120. It is then apparent from

the figure that at some point P between A and B, the tangent

line to the curve will be parallel to the secant line AB. Hence the

Theorem. If f{x) and f'{x) are continuous between x = a and

X = b, then

J ^""'^ - b-a '

where a < Xi < b, or

fib) = /(a) + (& - a)f(x^). (1)

An analytic proof of this law will also be given. Define a

number Si by the equation

fib) = fia) + ib- a)Si, or

fib) -fia) -(6-a)>Si = 0. (2)
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It will be shown that Si = f'{xi), where a < Xi < b. From the

first member of (2) build up the function 0i(a;) by replacing a

by X.

<l>iix) =m -fix) - {b-x)Su (3)

Then

<f>'i{x) = -f{x)+Su (4)

Since f{x) and f'(x) are continuous between x = a and x = b,

0i(a;) and <f>'i(x) are continuous between the same limits. By (3)

and (2), <^i(a) = 0, and by (3), <t>i{b) = 0. Hence <^i(x) satisfies

the conditions of RoUe's Theorem and consequently

<l>'i(xi) = 0,

or

/'(xi) - 5i = 0,

or

Si^f'ixi),

where a < xi < b. On substituting this value of Si in (2) we
obtain

m =/(a) + (6-a)/'(xi),

which proves the theorem.

161. The Extended Law of the Mean. Let f(x) be a function

which with its first and second derivatives, f'{x) and /"(x), is

continuous from x = a to x ^ b. Define a number Sz by the

equation

m = f{a) + {b- a)f'{a) + ^-^-^S^, (1)

or

m - /(a) - (6 - a)f'ia) - ^^^^S, = 0.

From the first member of the latter equation, form the func-

tion (f>2{x) by replacing a by x:

Mx) =m - /(x) - (6 - x)/'(x) - ^^^'-5,. (2)

Then
0'2(x) = -fix) - (6 - .x)/"(x) +/'(x) + (& - x)S,

= {b-x) \S^ - /"(x)].

Since /(x), /'(x), and/"(x) are continuous, ^lix) and 4>\{x) are

continuous. Further by (2) and (1), 02(a) = 0, and by (2),
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02(&) = 0. Hence the conditions of RoUe's Theorem are satisfied,

and

<t>'2{x,) = 0, (3)

where a < X2 < h.

Or

[h - X.MS2 - fix,)] = 0,

or

^2=r(x2). (4)

On substituting this value of Sz in equation (1), we obtain

m = /(a) + (6 - a)na) + ^^^^fix,), (5)

where a < x^ <. h.

162. Taylor's Theorem with the Remainder. Finally let j{x)

and its first n derivatives be continuous from x = a to x =b.

Define Sn by the equation

m = f{a) + (6 - a)r{a) + ^^^^f{a) + • •

m -m -ib- a)f'{a) - ^^-—^fia) - • • •

I

n — 1 "^

I

n

Form the function </)„(x) by replacing a in the last equation by x.

*.(x) =./(6) -/(x) - (6 - i)/'(x) - ^^-=^V(^) - •

_((^)^ (6-x)«
n — 1"^

_ri

Then

<^ "C^) = - |n_i /^"^(^) + |^_i 'S:,. (3)

Since /(x),/'(x), • • •, /W(x) are continuous, <^„(x) and </)'„(a;)

are continuous. By (2) and (1) <i)n{a) = 0, and by (2) 4>n{h) = 0.

Hence the conditions of Rolle's Theorem are satisfied, and

'P'niXn) = 0,
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or

S„=f(-^{Xn) (4)

where a < x„ < 6. Hence the

Theorem: If f{x), f{x), f"{x), • • •, /("Ka;) are continuous

from X = a to X = b,

m = f(a) + (b- a)!' (a) + ^^^^ r(a) +

where a <. x„ <. b.

This theorem, which is only an extension of the theorem express-

ing the law of the mean, is called Tmjlor's Theorem with the

remainder. The last term is called the remainder.

If b is replaced by x, (5) becomes

/(x) = /(a) + (X - a)}\a.) + ^"^'/'(o) + • -

where a < x„ < x. This inequality is sometimes written

Xn = a -\- e{x - a), where < B < I.

Illustration 1. Let/(x) = e*. Then

/(x) = e' f{a) = e»

fix) = e» /'(o) = e»

/"(x) = e' /"(a) = e-

/(")(a;) = e* f^"\a) = e-

Hence by (6)

l+(x-a)+-^"-^+ • • •

4-(^-«)"-^

In - 1

+ (^^^,... (7)

If a = 0,

If a = and x = 1,

«^2 /j«7l ~" 1 ']*'*

e=l + l + ,^+. • •+r^ + T^«-- (9)
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The remainder in (8) and (9) can be made as small as we please

by choosing n sufficiently large.

Taylor's Theorem may be expressed in still another form by
setting b in (5) equal to a -\- h.

fia + h)= Si.a) + hna) + ^ /"(a) + • • • + ^/^"^(xn) (10)

where a < x„ < a + A, or Xn = a + 0/i, < ^ < 1.

If the values of a function and its derivatives are known at a,

then the values of the function at a point a -\- h can be computed

by this formula.

In (10), /(a + A) is represented approximately by a poly-

nomial of degree n — \ in h. The coefficients are the derivatives

of /(x) at X = a. The error in the approximation is given by
the last term. This term gives only a means of estimating the

error, since Xn is not known. The maximum error can, however,

be determined by substituting M^^\ the greatest numerical

value of /^">(a;) in the interval (a, a -\- h) for f''\xr.). The
numerical value of the error is therefore less than

|n

If a = 0, (6) becomes

f(x) = f(0) +f(0) X + f"(0) % + ' • • + f^"~'' (0) ^5^^
12 l(n-l)

+ f^"nx»)^» (11)

where < Xn <• x, ov Xn = 6x, < d < 1.

In (11) it is assumed that the function f{x) and its first n

derivatives are continuous from x = to x = a. (11) is known
as Maclaurin's Theorem with the remainder.

Illustration 2. Expand sin x by Maclaurin's Theorem in powers

of z as far as the term containing x®.

/(x) = sin X /(O) =

f{x) = cos X /'(O) = 1

/"(x) = - sin X /"(O) =

fix) = - cos X /'"(O) = - 1

/^(x) = sin X rxo) =

P{x) = cos X /"(O) = 1

/^*(x) = — sin X rm =
/^"(x) = - cos X r'\x.) = — COS X7.
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Substitution in (11) gives

X''

sina; = x — ro+j-g— i^ cos Xi, (12)

where <. Xt <. x.

Since |cos X7I < 1, sin x differs from

x^ x^
^~

[3 + j5

x''

by a number less than r«*

In general, since sin x and its derivatives are continuous,

x^
,
x^ x" , , ^ , ssmx = X — r^ + re ~ ' ' "if" (sin x„ or cos x,,), (13)

where < x„ <. x. Thus the difference between sin x and

^ ~ [3 + [5
~ " - \r^^^

x"
is less than r—, a number which for a given x can be made as small

\n

as we please by taking n sufficiently large. Hence the series (13)

can be used in computing the value of sin x. If x is small, only a

few terms of the series need be used to obtain a very close ap-

proximation to sin X. Thus in formulas in which sin x occurs,

sin X is frequently replaced by x if the angle is small. Such a sub-

stitution was made in equation 1, §81. It must be remembered
in making the substitution that x is expressed in radians.

163. Taylor's and Maclaurin's Series. If f{x) and all of its

derivatives are continuous within an interval, the number of

terms in (6), (10), and (11), §162, can be increased indefinitely.

These equations then become, respectively,

f (x) = f(a) + f (a) (X - a) + f"(a) ^^^' + • •
•

+ f^"Ha)^^^%---. (1)

f(a+h)=f(a)+ f'(a)h + r(a)j'^+- • • + f (">(a)^+ •
• •. (2)

f(x)=f(0) +f(0)x+ f"(0)^^ + • • • + f ^"^ (0)^ + • • •• (3)
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In (1), f{x) and its derivatives are assumed to be continuous

from a to x.

In (2) ,
/(x) and its derivatives are assumed to be continuous from

aio a + h.

In (3), /(x) and its derivatives are assumed to be continuous

from to X.

The series (1) and (2) are called Taylor's Series and (3) is called

Maclaurin's Series.

If we denote the last term in each of the equations (6), (10), and

(11), §162, by Rn, it is necessary that

i^h^n =

in order that (1), (2), and (3) shall represent /(x), /(o + h), and

/(x), respectively.

Such series represent a function only so long as they are conver-

gent. Later in this chapter means of testing the convergence of

series will be discussed. The series (1), (2), and (3), if convergent,

represent /(x) but do not give a means of estimating the error

made by stopping with a given term. This can best be deter-

mined from the expression for the remainder 72„ in Taylor's or

Maclaurin's Theorem with the remainder.

Illustration 1. Represent sin x by a power series in (x — a).

Use formula (1).

/(x) = sin X /(a) = sin a

/'(x) = cos X f'ia) = cos a

j" (x) = — sin X /"(o) = — sin a.

/'"(x) = — cos X /'"(«) = — cos a

fix) = sin X /'^(«) = sin a

P{x) = cos X /^(o) = cos a

Then by (1)

,
, . . (x- ay (x - ay

sin X = sin a + cos a {x — n) — sm a —r^ cos a—r^

—

. (x - a)* {x -ay
+ sm a—Hi + cos a , -

—
- — • • •.

The corresponding Maclaurin's Series is obtained by letting a = 0.

x' , x^ x^ ,

sin X = x - rg + , 5 -
1^ + • . •.
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Illustration 2. Expand tan x in a power series in x.

fix) = tan X. /(O) =

fix) = sec^x. f'iO) = 1

fix) = 2 sec^x tan x. /"(O) =
= 2(tana; + tan'x).

fix) = 2(sec2a; + 3 tan^x sec^a;) /'"(O) = 2

= 2(1 + 4 tan^x + 3 tan%)

fix) = 16 tan X sec^x + 24 tan^x sec^x /"'(O) =
= 16 tan X + 40 tan^x + 24 tan^x

fix) = 16 sec^x + 120 tan^x sec^x + 120 tan^x sec^x fiO) = 16

On substituting in (3) we obtain

X' 2x«
tan x = x + -^ + Yk''t~''

'•

The next two terms are ^W ^^ and ^H^ x".

Exercises

1. Expand cos x in a power series in x.

2. Expand cos x in a power series in (x — a).

3. Expand cos (a+ ^0 in a power series in h.

4. Expand sin (a + A) in a power series in h.

6. Express the remainder after three terms in each of the series

of Exercises 1, 2, 3, 4.

6. Expand e" in a power series in x.

7. Expand e"'^'^ in a power series in h.

8. Expand e" in a power series in {x — a).

9. Expand log (1 + x) in a power series in x.

10. Expand log (1 — x) in a power series in x.

11. Expand tan'^x in a power series in x.

12. By the use of the series already found, compute:

(a) ^e to 5 decimal places.

(6) \^e to 6 decimal places,

(c) sin 3° to 6 decimal places.

(d) cosine of 1 radian to 4 decimal places.

13. By the use of the result of Exercise 3, find cos 33° correct to 4

decimal places.

14. By the use of the result of Exercise 4, find sin 32° correct to 4

decimal places.

164. Second Proof for Taylor's and Maclaurin's Series. These
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series can be obtained very simply in another way if we make
certain assumptions and do not attempt to justify them.

Assume that j{x) can be represented by an infinite power series

in (x — a):

f{x) = aa-\-ai{x—a)-\-a2{x—aY+' • • +a„(a;—a)"+ •
• •, (1)

where Oo, Oi, 02, ' ' ', On, ' ' ' are coefficients which are to be

determined. Assume further that the result of differentiating the

second member term by term any given number of times, is equal

to the corresponding derivative of the first member. Then,

f'{x) = ai + 2a2(x — a) -\- 803(0; — a)^

+ • • • + nan(x — a)"~^ + •

fix) = 202 + Ga^ix - a)

+ ' + n{n - l)a„(a; - a)--^ + (2)

f"'ix) = 603 + • . • + n(n - l)(n - 2)a„(x - a)"-^ +• •

/(") (x) = |wo„ + . . .

Put re = a in (1) and (2).

whence

/(a) = ao,

/'(a) = ai,

r(a) = 2a2,

/'"(a) = I3a3,

/"Ha) = Inan.

ao = /(a),

ai = f'(a),

fia)
a2 = ^v

at = —f^—

>

/("^ («)
Ctn =

,

>
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Substituting in (1) we obtain

fix) = f{a) + /'(a)(x -a)+ -^(x - a)'

By setting a = 0, and x = a + h,we get (3) and (2), respectively,

of the preceding section.

165. Tests for the Convergence of Series. Several tests will

now be given for determining whether or not a series is convergent.

They will be given without proof, though in most cases the proof

is not difficult.

If a series Ui -\- uz -{• • • • + Wn + • • -is convergent,

lina Un = 0.
n— 00

The converse of this statement is not true. Thus the series

1 + i + i + i + i + • • • + ^ + • •
•

(1)

is divergent, although

^^"^ - = 0.n=oo^

That this series is divergent can easily be seen as follows:

3 T^ 4 -^ 2

"5 + C + Y + "8 > 2

« ~r 1 0' + 1 f -P "1 2" "T 1
3' + "1 4" "T I 5 "1" 1 6" ^ 2

The terms of the series can then be grouped into infinitely many
groups such that the sum of the terms in each group is greater

than 5. But the series

is divergent. Much more then is the series (1) divergent.

Test 1. If ^^"^ Un is not zero the series is divergent. This test
n= <x>

is easy to apply and if it shows the series to be divergent, no

further investigation is necessary.
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Test 2. Alternating series. A series of decreasing terms whose

signs are alternately plus and minus and for which

n— 00

is convergent.

Thus the series

l-l + l-\ + l-ls+ • •
'

(2)

is convergent.

The reason for the convergence of such an alternating series

can be seen as follows. Denote by Sn the sum of the first n

terms and suppose the (n + 1)**^ term positive. (See Fig. 12L)

Then, since the terms are constantly decreasing,

Sn + l > Sn', Sn+2 <^ Sn + l', Sn+2 > Sn-

'Sfl+l

'

'\^ Sn+2 -*{

Fig. 121.

It is clear that as n increases Sn oscillates back and forth but

always within narrower and narrower limits, owing to the fact

that the terms are constantly decreasing. As n becomes infinite

the amount of this oscillation approaches zero since

71= 00

Sn therefore approaches a limit.

Test 3. Comparison Test. If the terms of a series are in numer-

ical value less than or equal to the corresponding terms of a known
convergent series of positive terms, the series is convergent. If the

terms of a series of positive terms are greater than or equal to the

corresponding terms of a divergent series of positive terms, the series

is divergent.

A useful series for comparison is the geometrical series

a -\- ar -^ ar^ + ar'' + • • + ar" + * * •
, (3)

which is convergent if |r| < 1 and divergent if |r| ^ L See also the

series (a) of Illustration 2 of this section.
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Test 4. The Ratio Test. By comparison with the geometrical

series it can be shown that the series

is convergent if

divergent if

If

lim Un+l
n=a> Un

lim Un+l
n=co Un

lim Un+l
«=« Un

<1,

> 1.

= 1

the test fails. In this case other tests must be appHed.

There are a great many tests for the convergence of series but

only a few can be given here. It should be added that there is no

test that can be applied to all cases.

Illustration 1. Test the series

1 - t+l-i + +
for convergence.

Since

lii
Un

is not zero, the series is divergent (Test 1). It is to be noted that

the terms of the series are alternately positive and negative and

that they decrease, but they decrease to the limiting value 1

instead of 0. Hence test 2 does not apply.

Illustration 2. Test the series

1 + -+-+-" +^ ~ 9< ' *?«
~

/!< '

(a)

for convergence. This series is useful in testing the convergence of

series by comparison.

If f = 1 we have seen that this series is divergent. (See (1).)

If f < 1 each term of (a) is greater than the corresponding term

of (1) and hence (o) is divergent. If f > 1 we can compare (a)

with

l + l + l + l,
+ i + ll + l.+

"• («
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Each term of (a) is less than or equal to the corresponding term

of (6). But (6) is convergent since it can be written

^ + ^(^)+M4^)+M^)-^

1+-+-+^+-+

which is a geometric series whose ratio, ^~, is less than 1. Hence

(a) is convergent when t > 1. Summing up:

(a) is divergent if t ^ 1.

(a) is convergent U t > 1.

Illustration 3. Test the series

1 1
i +

r2
+ r3+i4 + - •

•

for convergence.

Apply test 4.

1
Mn = P-

jn

Hence
1

lim Un+1 lim 1^ + 1 lim 1
M=oo

Un 1 "=- n + 1

In

= 0.

The series is therefore convergent.

Illiistration 4. For what values of x, if any, is the series

^~ 13"^ 15 17
+

convergent?

Then

2n -1

lim
n= 00

Un+l

Un

a;2„+i

im |2n + l

= QO a;2„-i

|2n-l

lim
n = oo

|2n (2n + 1)
= 0,
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for all finite values of x. Hence the series is convergent for all

finite values of x, positive or negative.

Illustration 5. For what values of x is

X''

'^3
X* ,x.

convergent?

\Un\ =
71

_ lim

^n + l

= lim
n= 00 X

Un + l n+ 1 n

Un n + 1

n

lim
n=oo

The series is therefore convergent if |x| < 1. Furthermore it is

convergent if x = 1 (Test 2), and divergent if x = — 1. (See

series (1).)

As has been stated there is no one test of convergence which

can be applied with certainty of success to any given series. The

tests which can be most frequently applied have been given. It

is suggested that the following procedure be observed in general.

1. See if ^^^Un = 0.
n= 00

2. If so, is test 2 applicable?

3. Tf not, try the fatio test, test 4. This will fail if

lim
n= 00

M„
1.

4. In this case, and in cases where the other tests fail or are

difficult, try the comparison test.

Exercises

Test the following scries for convergence.

\. \ -\+\ -I + i\ - • •

2. i - I + -f - I + A - • • ••

3. 4 + i + ^ + ^ + A + • • •.

|3 |4 |5

10*
^

^ A A
13 + 14+

I 5 + ' ' *•5.

10
"*"

10^
"^

10'

1

12 +
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^- ^ + 2V2 + 3V3 +4V4 + " '
•

'
32 ^ 52 72 ^9=*

^' 1-2 ^ 3-4 ^ 5-6 ^

For what values of x are the following series convergent?

10. The Maclaurin's series for e"? Exercise 6, §163.

11. The Maclaurin's series for cos x? Exercise 1, §163.

12. The Maclaurin's series for sin x? Illustration 1, §163.

13. The Maclaurin's series for log (1 — x)? Exercise 10, §163.

14. The Maclaurin's series for tan~^x? Exercise 11, §163.

166. Computation of Logarithms. The series of Exercise 9,

§163, for log (1 + x) is convergent only when —1 <x^ + 1, and

that for log (1 — x), Exercise 10, §163, only when — 1 ^x< + 1.

It would appear then impossible to find the logarithm of a number
greater than 2 by these formulas. By a very simple device it is,

however, possible to obtain formulas for finding the logarithm

of any number.

From the series of Exercises 9 and 10, §163 it follows that

1 -f J
log:j = log (1 + x) - log (1 - x)

X+3-+g-+---], (1)

where Ixl < 1. Let x = ^—i~T' Then
' ' 2z + 1

1 -hx _ z+ 1

1 — X z

z

where > 0, or

log(^+l)=log3+2[2^+3(22 + l)3+5(22Vl)^+' '^^^

By letting z = 1, log 2 can be computed by this formula. The
series is much more rapidly convergent than that for log (1 -\- x),

X = 1. In fact, 100 terms of the latter series must be taken to

and

^°^ ~T~ ^ ^L2M^ "^
3{2z + iy "^

5(27+Tr^ + • •

-J .

(2)
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obtain log 2 correct to two decimal places, while four terms of the

new series (3) will give log 2 correct to four decimal places. After

log 2 has been found, log 3 can be found by setting z = 2. The
logarithm of 4 is found by taking twice log 2; log 5 by setting

2 = 4; log 6 by adding log 3 and log 2, and so on.

Exercise

Compute log 5 correct to four decimal places, given that log 4

= 1.38629. Here, as always in the Calculus, the base is understood

to be e.

167. Computation of tt. By letting a; = 1 in the series for

tan~'x. Exercise 11, §163, the following equation is obtained from

which IT can be computed:

I
= tan-i l = l-i + i-|+- • ••

This series converges very slowly. To obtain a more rapidly con-

verging series make use of the relation

tan~^ 1 = tan"^ ^ + tan~^ |.

Then

4 ' (3) (23) + (5) (2^) (7) (2^)^

^' (3)(33) ^ (5)(3^) (7)(3^)^

168. Relation between the Exponential and Circular Functions.

If it be admitted that the Maclaurin's series expansion

e' = l+2 +
|2
+ ^ + - • •, (1)

which was proved for real values of z, is also true when z is imagin-

ary, we obtain, on setting z = ix,

6.^ = l-hta;+^-h-|3--|-^-h-|5- +^ + -|7-+- •

^ , , x^ ix^ , X* , ix^ x^ ix''
,= l+tx-j2-

|| + |4+^-j6--|7 + - •
•

(2)

On separating real and imaginary parts this becomes

e"-l-^ + |4-|g-|----

+ 1(2
13 ' 15 17

21

+%-%+). (3)
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Since (Exercise 1 and Illustration 1, §163),

and

cosx = l-j2- +
|^-ig

+

x^ , x^ x* .sinx=x-j3+^-i^ +
it follows that

e« = cos X + i sin X.

On changing the sign of x it results that

e-»^ = cos X — 1 sin X.

Solving equations (4) and (5) for cos x and sin x,

and

cosx =

sinx =

2

e** — e-

(4)

(5)

(6)

(7)

These interesting relations between the circular and exponential

functions are of very great importance.

Fig. 122. Fig. 123.

If Q represent the vectorial angle in the complex number plane,

then it is clear from Fig. 122 that e*' represents a point on the

unit circle (circle of radius 1 about the origin as center) in this

plane. Further, any complex number a + hi can be put in the

form pe". For (Fig. 123)

a -^-hi = p (cos + 1 sin Q) = pe*",

where p = y/a^ + h"^.



5. e*"-. 7. e^*'.

6. e-'"". 8.

3tV

5e 4 .
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Exercises

Represent by a point in the complex plane

:

IX IT

1. 3e^ 3. e^.

2. 2e" 3 , 4. e^.

9. Express the numbers of Exercises 1-8 in the form a + hi.

169. DeMoivre's Theorem. The interesting and important

theorem, known as DeMoivre's Theorem,

(cos + i sin 0)" = cos n0 + i sin n^ (1)

can be easily established by the use of the relation (4) of §168.

For,

(cos d + i sin 0)» = {e'^Y = e*"^ = cos nd + i sin nd.

Exercises

Find, by the use of (1),

1. The cube of 1 + i. 1 + iy/^
4. Ihe cube of

2. The square of ^ • - n^i i -.
— 1 — iy/Z

2 5. The cube of ^ -•

3. The cube of ^ 6. The cube of ^ ••

In (1), 11 may be a fraction as well as an integer. It will then

indicate a root instead of a power. In this case we do not have

simply one root:

— fl ft

(cos d -\- i sin 0)'" = cos [- i sin— >mm
(n having been placed equal to — , where m is an integer) but

m — 1 additional roots. This follows from the fact that

giO _ gi(0 + 2p»)
(2)

where p = 0, 1, 2, 3, 4, • • ,m,m -\- \, • • • . Hence we can write

(cos d + I sin ^)™ = [e^"]'" = [e'^" + ^p^^^^

or
1^ t(0 + 2pw)

(cos ^ + t sin d)"" = e »»
, (p = 0, 1, 2, • • •)

^^'
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It would appear at first sight as if there were infinitely many
roots corresponding to the infinitely many values of p. But a

little consideration shows that when p y m, the roots already

found by letting p take the values 0, 1, 2, • • • , w — 1, repeat

themselves, since e^" = 1. There are then exactly m mM^ roots

of e*^ = cos + I sin d,

e- —^ = cos —'

—

— + t sm —^

—

—, (4)

where p = 0,1,2, • • • , w — 1.

Illustration. Find the three cube roots of — 1.

(-l)i = (e-)i

^ ^gtu + 2px)j}
(p = 0,1,2)

t (ir + 2px)

= e 3 (p = 0, 1, 2)
tV 5jt

= e^ , e*', and c ^ .

Exercises

ie

1. Show that the three cube roots of a + 6t = pe'* are : -y^ « ^i

«(g + 2t) i(g -f 4t)

^^ e 3
J
and -^^ c 3 . How would these roots be deter-

mined graphically?

2. Find the two square roots of 1 + i.

3. Find graphically the two square roots of l.

4. Find graphically the three cube roots of 1.

170. Indeterminate Forms. It has already been shown that

^ has no meaning. See §25. Thus

x-2
has no meaning at a; = 2. Its value at x = 2 is defined as

lim ^^ ~ '^ = 4
x=2 X — 2

Similarly

sin a
tan a

has no meaning at a = 0. Its value at a = is defined as

lim sin a ^ ^°=o tana
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In general, if </)(a) = and /(a) = 0, the value of the function

lim ^xji
x = a

f(^x)

'

-77-v Sii X = a IS denned as

The calculation of this limit is simplified in many cases by the

application of the law of the mean. See §160.

Thus, let it be given that 4>{a) =0 and /(a) = and let 4)(x)

and f(x) satisfy the conditions imposed in the statement of the

law of the mean. Then

lim 0(a;) ^ Hm </>(») + (x - a) 4>' [a + 0\{x - a)]

x^a /(^) x^a ji^a) + {x-a) f [a + d^ix - a)]

__ lim 4>'[a + ei(x- a)] 0^(a) ^ .^i . .

- z^a f'[a + e,{x-a)] /'(a) '
"^ ^6,^ ^^

If (f>'(a) and /'(a) are also zero, we make use of the extended law

of the mean. Thus

0(a) + (x - a) 0'(a) + ^^-^V"[a + ^1(0;- a)l
lim 4>{x) ^ lim |i

•'^ ^
/(«) + (x- a) f'(a) + ^-^—^ria + d^ix - a)]

_ lim </>'[a + gi (x - g)] <i>"(a)

x^a j"[a + d,{x - a)\ f{a)
'

The process is to be continued further if f"(a) and <^"(a) are

both zero.

Illustration 1.

lim e' -1 ^
x=o X

Illustration 2.

lim e^ — e~' — 2x
a:=&0 X — sm a:

Hm e-

z=0 1
= 1.

lim € . + e-x_ 2
' x=0 1 — cos X

lim e^
. _ g-x

x=0 sin X

lim e' + e-*
1=0 p.na X

2.
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The Form — . The same process is employed in evaluating

00

the indeterminate form —-. The proof is omitted.

Illustration 3.

lim ^ _ lim 2x _ lim 2^ _«
X— 00 nx X— oo gx X= 00 ox '

The Form <» . The indeterminate form «> can be thrown
00

into either of the forms - or —. Thus
00

lim
3. „„. y _ lim _^ lim 1 _

.

=^=0 -^ ^"^ ^ ^=0 tan X ^^0 sec2 x~

Other indeterminate forms are : °o — «> , 1 °°, 0", °°°.

Thus, if <p(x) and /(x) become infinite for x == a, (/>(a) — /(a) is

defined as

^^^JHx) - fix)].

This expression can be written

1 1

lim r , / V ,/ ^^ _ lim fix) <t>{x)

W)f(x)

an indeterminate form of the type ^.

If (l>{x) becomes infinite and/(x) becomes 1 for x = a, [/(a)]*^"^

is defined as

This limit can be calculated as follows. Let y = [/(x)]*^^'.

Then

logy = 4){x) log/(x) =
^

>

W)
an indeterminate form of the type -. If

lim log /(a;)

W)
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is found to be c, then

lim „ = g«
x= a

The two remaining forms are evaluated in a manner similar to

the last.

Many indeterminate forms can be evaluated directly by simple

algebraic transformations.

Exercises

Evaluate the following:

lim loga^ 13 lim _^.
J- x=l X - i • 2=°' log a;

lim 1 -cosg 14.
lim ^

lim c»

9=0 cosflsin^fl

« lim a; COS a; — sin x 16. ^^ „ ^
X= X

4.
lim tan x - sin x 16. ^™ e« tan -•

z=0 a; — sin X

lim a:" - 1

^- a;=l X - 1 ^„ lim

lim sin 33;

• 1=0 sin 2a;

17 lim r_^ L_"
^'' X=l Lx2 - 1 X-l_

i™ [(|-9)ta„;
2

- i=u smzx r r 1 11
^ lim tan 3a; 19. ^^^ |^j^

-
a._ij'

g Um ^^ 20.1;- (cos xfot^.

x=o sin X — a; 1

lim x^ - X - 6 21. iTod-^)^-
^- x=3 x2 — 9 i:,„

,„,ta 311+5
22.'-(-x).»«.

• I* . 4i! + 1 jj_ hm (3j„
^)t.n .

lim log X

12.
li™ '^- „. lim tan fl.



CHAPTER XVIII

TOTAL DERIVATIVE. EXACT DIFFERENTIAL

171. The Total Derivative. Let z = f{x, y) and let x and y be

functions of a third variable t, the time for example. We seek an
dz

expression for -rr, the derivative of z with respect to t, in terms of

dx J dy

As an illustration of what is meant, let z denote the area of a

rectangle whose sides x and y are functions of t, and at a given

instant let each side be changing at a certain rate. The rate at

which the area is changing is sought.

Returning to the general problem let t take on an increment At.

Then x takes on the increment Ax and y the increment Ay, and

consequently z the increment Az. We then have

2 = fix, y) (1)

2 -f Az = /(x + Ax, 2/ + Ay)

Az=J{z + Ax,y + Ay) - /(x, y) (2)

Az = /(x+Ax, y+Ay)-J{x, y+Ay)+f{x, y+Ay)-f(x, y) (3)

. Az ^ fix -\-Ax,y + Ay) - /(x, y + Ay) Ax
At Ax At

fix, y + Ay) - fix, y) Ay
"•"

Ay At ^
'

Taking the limits of both sides of (4) as At approaches zero, we
have

dz _ dfjx, y) dx dfjx, y ) dy , .

dt dx dt
"^

dy dt' ^ '

since Ax and Ay each approach zero as At approaches zero.

Equation (5) can be written in the form

dz _ 3z dx 3z dy , .

dt ~ ax dt
"•"

ay dt
* ^^

328



§171] TOTAL DERIVATIVE. EXACT DIFFERENTIAL 329

This states that the rate of change of z with respect to t is equal

to the rate of change of z with respect to x, times the rate of change

of X with respect to f, plus the rate of change of z with respect to

y, times the rate of change of y with respect to i.

\il = Xy (6) becomes

dz

dx

dz dz dy

dx dy dx

This formula applies when z = f{x, y) and ?/ is a function of x,

e.g., y = <i>{x).

Multiplying (6) by dt we obtain

dz ^r dx + ^- dy.
dx dy

(7)

This defines dz, which is called the total differential of z.

z E I

S
c

F
R
Af K

%

7
Y

dy

r /
Fig. 124.

We shall now give a geometrical interpretation of dz. Let

P, Fig. 124, be the point {x, y, z) on the surface z = fix, y).

Let

PC = dy

and
PA = dx.

Then Q is the point {x + dx, y + dy, z + Az). Let PDEF be

the plane tangent to the surface at the point P. Then PF is

tangent to the arc PR, and PD is tangent to the arc PS.
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From F draw FK parallel to AB meeting BE in K.

BE = BK-\- KE

BK = AF = ^ dx.
ox

Since FK = PC and PD = FE, triangle KFE is equal to the

triangle CPD, and

KE ^ CD = ^ dy.
dy ^

Therefore

^^ = dx^ + 3y^y'

Hence BE = dz. Consequently dz may be interpreted as the

increment measured to the tangent plane to 2 = f{x, y) at the point

P (x, y, z) when x and y are given the increments dx and dy

respectively.

Illustration 1. \i z = xy, the area of a rectangle of sides x

and y, we obtain by using (7),

dz = y dx -\- X dy.

The first term on the right-hand side represents the area of the

strip BEFC, Fig. 125. The second term the area of DCGH. The
difference between Az and dz is the

^ area of the rectangle CFLG, which

becomes relatively smaller, the

smaller dx and dy become.

The above expression could have

been obtained by the formula for the

B dx E differential of the product of two

Fig. 125. variables.

Illustration 2. The base of a

rectangular piece of brass is 15 feet and its altitude is 10 feet.

If the base is increasing in length at the rate of 0.03 foot per hour

and the altitude at the rate of 0.02 foot per hour, at what rate is

the area changing?

Let X denote the base, y the altitude, and z the area.

Then
z = xy
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and dz _ dx dy
dt~'^ dt

'^^
dt

= (10) (0.03) + (15) (0.02).

X
Illustration 3. z = -•

y

^ _ 1,
dx y

dz

dy

X
~ y'-

and, by (7),

dz = — dx 5 dy,
y y^ ^'

or

, y dx — x dy
dz = 5 >yi

a result which could have been obtained by differentiating the

X
quotient - by the usual rule.

Exercises

Find by formula (7) the total differential of each of the following

functions

:

1. z = x^y. -=^.- 7. 2 = x'e".

2. 2 = XJ/^ 6. 2 = z log y. S. z = e* sin y.

a;2

3. 2 = —
y

6. z = e* cos y. 9. 2 = e"" cos nx.

Find ^f if:
dt

10. z = X* cos y- 11. 2 = e* sin y.

12. The radius of the base of a right circular cylinder is 8 inches and

its altitude is 25 inches. If the radius of the base is increasing at

the rate of 0.2 inch per hour and its altitude at the rate of 0.6 inch

per hour, at what rate is the volume increasing?

13. Given the formula connecting the pressure, volume, and tem-

perature of a perfect gas, pv = Rt, R being a constant. 11 t = 523°,

p = 1500 pounds per square foot, and v = 21.2 cubic feet, find the

approximate change in p when I changes to 525° and v to 21.4 cubic

feet.

14. If with the data of Exercise 13, the temperature is changing at
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the rate of 1° per second, while the volume is changing at the rate of

0.4 cubic foot per second, at what rate is the pressure changing?

15. The edges of a rectangular parallelopiped are 6, 8, and 10 feet.

They are increasing at the rate of 0.02 foot per second, 0.03 foot per

second and 0.04 foot per second, respectively. At what rate is the

volume increasing?

172. Exact Differential. An expression of the form

M dx -{- N dy,

where M and N are functions of x and y, may or may not be the

differential of some function of x and y. If it is, it is called an

exact differential. Thus

sin y dx -\- X cos y dy (1)

is an exact differential, for it is the differential of z = x sin y.

The coefficient of dx is ^ = sin y, and that of dy is \- = x cos y.

x^ sin y dx -\- x cos y dy (2)

is not an exact differential. It is fairly evident from (1) that we
dz

cannot find a function z = f{x, y) such that v- = x^ sin y and

dz
-^ — X cos y.
dy ^

We seek to find a test for determining whether or not an ex-

pression of the form

Mdx + N dy (3)

is an exact differential. If (3) is the exact differential of a func-

tion z, we must have,

| = M (4)

and

1 = ^. (5)

since
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Differentiate (4) with respect to y and (5) with respect to x

and obtain
AU AM

(7)

(8)

dh dM

and
dy dx

~~
dy

d^z dN

Since, in general,

dxdy " dx

d^z dh
dydx ~ dxdy

it follows that if (3) is an exact differential, we must have

dy dx

The condition (9) must be satisfied if (3) is an exact differential.

It does not follow, however, without further proof, that (3) is

an exact differential if (9) is satisfied. It can, however, be shown

that this is the case. The proof will be omitted. (3) cannot be

an exact differential unless (9) is satisfied and is an exact differ-

ential if (9) is satisfied.

When an expression of the form (3) is given, the first step is to

determine whether or not it is an exact differential by applying

the test (9). If it is an exact differential, the next step is to

find the function z of which it is the differential. This step will

be illustrated by integrating several differentials for which the

functions from which they were obtained by differentiation are

known.

Illustration 1. If z = a;^ + 2xhj -\- y^ -\- C,

^' =
dic'^'' + dl^y

= {3x^ + 4xy)dx + (2x^ + 2y)dy.

If then we are given the exact differential

dz = (3a;2 + ^xy)dx + {2x^ + 2y)dy

and arc required to find the function of which it is the differential,

we note first that

dz

Then
d^x

= ^^' + ^^2/.

2 = a;3 _|_ 2xhj + a Junction of y alone.
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And this function of ?/ is to be so determined that

dz

Clearly the term 2x^ is obtained by taking the derivative with

respect to t/ of 2x^2/, a term already found, and consequently it

is not to be added. 2y is the derivative of y^. y^ is then the

function of y which is to be added to the terms already found.

Further an arbitrary constant is to be added since its differential

will be zero. Then

z = x' + 2xh/ + y^ + C

is the function whose differential was given. If, as is usually the

case, it had been given that

(3x* + ^xy)dx + (2x2 + 2y)dy = (10)

it would have been required to find a function of x and y such that

its differential would be zero. Now the first member is, as we
have seen, the differential of

z = x^ + 2xh) + y\

But, if (fe = 0, 2 = C. Then

x» + 2xhi + y^ = C

is the relation between x and y which satisfies the given equation.

Illustration 2. If

z = e* cos y -{- x^ -\- sin y + y^,

dz = (e* cos y -\- 2x) (fx + ( — e* sin y + cos y + ^y^) dy

Now let it be given that

(e* cos y + 2x) dx -\- (— e' sin y -\- cos y + Sy^) dy = 0. (11)

From its derivation we know that the left-hand member is an

exact differential, dz. Let us proceed to find z as if it were

unknown.

dz

Then

-— = e" cos y + 2x.

z = e* cos y + x^ + a function of y alone. (12)
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The function of y is to be so determined that

dz
^ = - e' sm y + cos rj -{ dy'^. (13)

The first term is evidently obtained by differentiating e' cos y, a

term already found in (12). The remaining two terms in (13)

are obtained by differentiating sin y + y^. These are to be added

to the terms already found in (12).

Then
z = e' cos y -{- x^ -\- sin y + y^.

But, since dz = 0, z = C. Hence

e" cos y -{- x^ -{- sin y -\- y^ = C

is a solution of (2).

Illustration 3, Integrate if possible the equation

{e' y+sin y-\-2x) da;+(e'+x cos y-\-e''-\-2y—sin y) dy = 0. (14)

We have first to determine whether or not the first member is

an exact differential. Apply the test (9),

dM~ = e' + cos y.

dN—— = e* + cos y.

Hence (9) is satisfied and the first member of (14) is an exact

differential. On integrating the coefficient of dx with respect to

X we obtain

c^y -{- xsiny -{- x"^.

To this we have to add

gV ^ y2 _|_ pQg y^

the terms which arise from the integration of the coefficient of dy

and which contain y alone. (The other terms in the coefficient of

dy arise from the differentiation of terms already found by integrat-

ing the coefficient of dx.) Then the solution of (14) is

e^y + xsiny + x^ + e" + y^ + cosy = C.

173. Exact Differential Equations. Equations involving differ-

entials or derivatives are called differential equations. Those of

the type

Mdx + N dy = (1)
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where the first member is an exact differential, are called exact

differential equations.

The equations (10), (11), and (14) of Illustrations 1, 2, and 3,

§172, are exact differential equations. The process of finding

the relation between y and x, which when differentiated gives a

certain differential equation, is called the integration of the

equation.

The procedure in dealing with an equation of type (1) is to

determine first whether or not it is exact by applying the test (9),

§172. If it is, integrate the coefficient of dx with respect to x

and to this result add those terms which contain y only, which

are obtained by integrating the coefficient of dy with respect to y.

Exercises

Are the following differential equations exact? Integrate those
which are exact.

1. Sx'^y^dx +2xhjdy = 0.

2. — cos(-)dx cos (-) dy = 0.
y \yl y' \y/

3. y e'" (1 + X + y) dx + X e'" {I + x + y) dy = 0.

4. y e'" dx + X e'" dy = 0.

5. {x^y + 2x) dx - {Sx^y - 5x) dy = 0.

6. (p+l)dx- [^ + 2y)dy=0.

7. e-y(2 + -^^ -
j^

e^2 + ^^dy=0.

174. In §155 the envelope of a family of curves was defined,

and its parametric equations were found to be

fix, y, c) =0 (1)

We shall now show that the envelope is tangent to each curve

of the family of curves (1).

At a given point {x, y) of the curve determined by giving c

a particular value in (1), the slope of the tangent is found from

the equation

dj.dfdj,^^
dx dy dx '
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If the point also lies upon the envelope its coordinates satisfy

(1) and (2). The equation of the envelope can be regarded as

given by (1) where c is the function of x and y found by solving

(2) for c. On differentiating (1) with respect to x, regarding c

as a function of x and y, the slope, -r-, of the tangent to the en-

velope is given by

dx dy dx dc dx '

dc _ dc dc dy

dx dx dy dx

where

fif

But on the envelope ^ = 0. Hence (4) becomes

^ + ^ ^ = (5)
dx dy dx '

Equations (3) and (5) show that the slope of the tangent line to

the envelope at the point (x, y) is the same as the slope of the tan-

gent line at the same point to a curve of the family (1). Hence

the envelope is tangent to each curve of the family of curves (1).

22



CHAPTER XIX

DIFFERENTIAL EQUATIONS

175. Differential Equations. An equation containing deriva-

tives or differentials is called a differential equation. If no deriva-

tive higher than the first appears it is called a differential equation

of the first order. If the equation contains the second, but no

higher derivative, the equation is said to be of the second order.

And so on. Numerous differential equations have already

occurred in this course. We shall now consider the solution of

differential equations somewhat systematically.

176. General Solution. Particular Integral. Let

fix, y,c)=0 (1)

be any equation between x, y, and the constant c. If (1) is

differentiated with respect to x there results the equation

Fix, y, y', c) = 0. (2)

Between (1) and (2) the constant c can be eliminated giving the

differential equation of the first order

<l>{x, y, y') = 0. (3)

Equation (3) follows for any value of the constant c.

Let

/(x, y, ci, C2) = (4)

be an equation involving two constants, Ci and Co. By differ-

entiating (4) we obtain

Fix, y, y', ci, d) = (5)

and

<t>ix, y, y', y", ci, c^) = 0. (6)

Between equations (4), (5), and (6), Ci and C2 may be eliminated

giving the differential equation of the second order

Hx, y, y', y") = 0. (7)

338
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From the equation (1) containing one arbitrary constant the

differential equation of the first order (3) is obtained. From the

equation (4) containing two arbitrary constants the differential

equation of the second order (7) is obtained. In like manner
from a relation between x and y containing n arbitrary constants

a differential equation of the n*^ order is obtained by differentiat-

ing, and eliminating the constants.

Equation (1) is a solution of equation (3). It is called the

general solution and involves one arbitrary constant of integration,

c. Equation (4) is called the general solution of (7). It involves

two arbitrary constants, or constants of integration. It can be

shown that the general solution, or general integral, of a differential

equation contains a number of arbitrary constants, or constants

of integration, equal to the order of the differential equation.

A particular integral is obtained from the general integral by

giving particular values to the constants of integration.

177. Exact Differential Equations. This type of differential

equation was discussed in §173.

178. Differential Equations; Variables Separable. The vari-

ables X and y are said to be separable in a differential equation

which can be put in the form f(x) dx + </>(?/) dy = 0. The first

member is equal to a function of x alone multiplied by dx plus a

function of y alone multiplied by dy.

Illustration 1.

(1 + y'^)x dx-\- {l-\- x^)y dy = 0.

On dividing by (1 + ?/^)(l + x^) this equation becomes

xdx y dy _
l + x^ ' 14-2/

Integration gives

ilog (1 + x^) + ilog (1 + 2/2) = C.

This reduces to

'1>(1 + x^){\ + 2/2) = e2C = c.

or
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Illustration 2.

Vl - y^ dx + \/l - x2 rf?/ = 0.

Then
dx dy ^ ^

Vl -ic2 Vl - 2/' '

and the variables are separated. Integration gives

sin~i X + sin~i y = C.

Take the sine of each member, observing that the first member is

the sum of two angles, and obtain

a;Vl - 2/' + yVi - x"" = sin C = d.

Exercises

Solve the following differential equations:

1. (1 - x)dy - (1 + y)dx = 0. Ans. (1 + y){l - x) = C.

2. sin X cos y dx = cos x sin y dy.

8. (x - Vl + x^) Vl + 2/^ dx = (1 + x^)dy.

4. ^^ = 5y^x.

f.
dy y" + 4?/ 4- 5 _

**• dx "^
x2 + 4x + 5

~

6. (1 + a:)dj/ = y(l — i/)dx. ^ns. ?/ = c(l + x)(l — y).

7. (1 - x)ydx + (1 + j/)x dy = 0.

dv
8. ^ + e'2/ = e'y«.

9. (x» + j/x*)di/ - (t/2 - x?/2)dx = 0.

dy
, ^ dy

11. 3e* sin y dx + (1 — e') cos y dy = 0.

12. (xy + x»2/)dy - (1 + y^)dx = 0.

Ans. (1 4- x')(l + y') = ex*.

179. Homogeneous Differential Equations. The differential

equation

Mdx-\-N dy = Q (1)

is said to be homogeneous if M and iV are homogeneous functions

of X and y of the same degree.
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A function f{x, y) of the variables x and y is said to be homogen-

eous of degree n if after the substitutions x = Xx', y = \y' have

been made,

fix, y) = X-/(x', y').

Thus
ax^ + bxy -\- cy^

is liomogeneous of degree 2. For, on making the substitutions

indicated, it becomes

\\ax'^ + bx'y' + cy'^).

The expression

ax^Vx^ + 1/2 + 6x3 tan-» (-\

is homogeneous of degree 3. For, after the substitutions indi-

cated above, it becomes

X3 fox'^^/x'^ + y'^ + 6x'3 tan-i Z^;) ] •

A homogeneous differential equation of the form (1) is solved by

placing y = vx, and thus obtaining a new differential equation

in which the variables, v and x, are separable.

Illustration:

(x2 + 2/2) dx + 3xy dy = 0.

Let

y = vx.

Then
dy = V dx -\r X dv,

and

x2(l + v^) dx + Svx%v dx -\-x dv) = 0.

x2(I + 4«;2) dx + 3^3 dv = 0.

Separating the variables

dx Svdv _
T "•"

1 + 4i;2
" "•

log[x(l +4i;2)i] = C,

x(l 4-4i'2)i = Ci.
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yOn substituting t; = - we obtain as the solution of the given

equation

or

x\x^ + 4?/2)3 = Ci.

Exercises

Solve the following differential equations

^ _ ^„ #.
dx ~ ^y dx

2. x'^y dx - (x' + 2/3) di/ = 0.

3. (8y + 10a;) dx + (5y + 7x) dy = 0.

4. (2\/x?/ — x) dy + 2/ dx = 0.

?/ ^2/ 2/
6. X cos — -J- = y cos X.

X dx X
dy

7. x^ - y = Vx'' - y\

8. {y - x) dy + ydx = 0.

180. Linear Differential Equations of the First Order. The
equation

where P and Q are functions of x only, is called a linear differential

equation. It is of the first degree in y and its derivative. Multi-

ply the equation by
' Pdx

and obtain

./'

iPdxrdy
, „ 1 {pdx ^

(2)

The left-hand member is the derivative of

fpdx
eJ y,

as may be confirmed by differentiating this product. The inte-

gration of (2) gives



}180] DIFFERENTIAL EQUATIONS 343

e*
f'-"v = JQeJ'""dx + C.

Illustration 1.

t+^y-"'-

Here P = x and Q = x\ Then

I Pdx \ xdx T

X-

Multiply both members of (3) by c 2

.

Integration gives

a;2 /. a;2

a;2 a;2

= e^x^ - 2e2 + C.

Hence
a;2

J/
=x2-2 + Ce~"^.

Illustration 2.

I
Pdx (^

oJ = P.
'' =

Multiply both members of (4) by x.

Integration gives

xy

or

= ^ + x^* + 2x2 + C,

(3)

^ + l^=:.2 + 3^+4. (4)
dx x*^

x' C*

y = ^ + x24-2x + --

This illustration is inserted to call attention to the well-known

simple relation e'"«^ = x, which there will be frequent occasion



344 CALCULUS [§181

CO use in solving equations of this type. It should be recalled

that e''^°«^ = e'°«(^"> = x". Thus

e
— loga; _ t

X

Exercises

1.
dy

dx
+ 2xy = e ^\

2.
dy

dx + y cos X = sin 2x.

. dy
,

3. cos'^x-T

—

r y = tan x.

4. (x« + l)^ + 2xy = 4x2.

'•g +^ = (- + «••

6. x(l - x«) dy + (2x2 _ i)^ ^^ = ^x^ ^^.^

„ dy y
1. -/ -n- = e'x".

dx X

8. (1 + x^) dy ^- (xy -^ dx = Q.

^ dy ,1 -2x

10. (1 + y"^) dx = (tan-iy - x) dy.

181. Extended Form of the Linear Differential Equation. An
equation of the form

% + Pv = Qr (1)

is easily reduced to the linear form. For, on dividing (1) by y,
we obtain

The first term of the left-hand member of (2) is, apart from a

constant factor, the derivative of ?/""+', which occurs in the second

term. If we let z = 2/~"^^ we obtain the linear differential

equation

or

g _ (n - l)Pz = -in- 1)Q.
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Illustration 1.

dv
T—h 2/ cos X = y* sin 2x.

Dividing by y*

Let 2 = 7/-3. Then

.dy,, . „
y~* -j~ + y~^ cos X = sin 2x,

,-4 ^ = _ 1 ^
and the equation becomes

dz

dx

^ dz , . „— 5 ;i

—

\- z cos X = sin 2x,

or

3 Zz COS X = — 3 sin 2a;.
dx

This equation can be readily solved by §180; y~^ is to be sub-

stituted for z in the result.

Exercises

1- ^- + ~
2/ = a;V. 4. (1 - x2) ^ - xy = axy^.

dy
2.

;^^ + 2/ = xy3. ^'t+ly = '^'y^-

3.3,^1-7,3 = X + 1. 6. X^ + , = ,2 log X.

7 '^^ + 2 , - ^'.

182. Applications. Let there be an electric circuit, whose

resistance is R, whose coefficient of self-induction is L, and which

contains an electromotive force, which at first we shall suppose

constant and equal to E. It is required to find the current i at

any time t after the time < = 0, at which the circuit was closed.

The equation connecting the quantities involved is readily set up.

The applied E.M.F., E, must overcome the resistance of the circuit

and its self-induction. The former requires an E.M.F. equal to

iR, and the latter an E.M.F. proportional to the time rate of

dz dz
change of current, viz., j, and equal to L ^. The applied E.M.F.,

E, must equal the sum of these two E.M.F.'s.
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Hence ^ di
, ^. ^ ,,.

Lj^ + Ri = E, (1)

The student will show that, if i equals zero when t equals zero,

the solution of this linear equation is

Er ^h

If the battery or other source of E.M.F. is suddenly cut out of

the circuit, the current falls off in such a way that the differential

equation

Lj^ + Ri = (3)

is satisfied. Show that the law at which the current falls off is

t = ioe-L^'- '»>, (4)

if the instant at which the battery is cut out is the time 1 = 1^

and if the current at this instant is i = Iq.

If the E.M.F. is variable, the relation between the quantities

involved in the circuit is still governed by (1),

Lj^ + Ri^E, (1)

in which E is now variable. Suppose E = Eo sin cof. This sup-

poses that an alternating E.M.F. is acting in the circuit. The

differential equation to be solved is

di
L-r. + Ri = Eo sin cat. (5)

Show that

*« ~ L R ,

R^ + co^L

y- sin cat — 03 cos coHe ^ + C

ft
(R sin cat — caL cos cat)e + C

Eq . , . , X ^
^f

V<R' + w^L^
=r-rr- siu (cof — 0)e + C,
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where

sm <f)
=

Then,

cos d> = —,- =.

R
Jp

—^ t

i = ^ ° sin (co< - 0) + Ce
^

Since the last term becomes negligible after a short time because

of the factor

e ^ >

it is scarcely necessary to determine C. On droppmg out the

last term as unimportant except in the immediate vicinity oit =0,
we have

The current, therefore, alternates with the same frequency as the

E.M.F., but lags behind it and differs from it in phase by 4>- It

is to be noted that the maximum value of the current is not -^5-

K
JP

but .
• The quantity -s/R^ + oj^L^ replaces, in alter-

V /2^ + co^L^

nating currents, the resistance R of the ordinary circuit. It is

called the impedance of the circuit.

183. Linear Differential Equations of Higher Order with Con-

stant CoeflScients and Second Member Zero. A typical differen-

tial equation of this class is the following:

d"y , d^-^y ,
d"~hj ,

,
dy

, ^ /,s

where Oq, Oi, • • •, a„ are constants. As the equations of this

class which occur in the applications are usually of the second order

we shall confine our discussion in this article to linear differential

equations of the second order. Consider



348 CALCULUS [§183

Let us assume that

2/ = e-"* (3)

and find, if possible, the values of m for which (3) is a solution of

(2). The substitution of (3) in (2) gives

e"" {aom^ + aim + a^ = 0. (4)

The first factor cannot vanish. The second, equated to zero, gives

a quadratic equation in m. Call its roots nii and mt. Then (3)

is a solution of (2) if m has either of the values Wi or mo, the roots

of

OqW^ + aim + a2 = 0. (5)

The equation (5) in m, obtained from the given differential equa-
d'^v du

tion by writing m^ for y-^ and to for -v- is called the auxiliary

equation.

Two solutions of (2) are

y = gmii and y = e'^i*.

Furthermore,

y = Cie-"!"

is a solution of (2). For, after the substitution of this value of

y in (2), Ci can be taken out as a common factor and the other

factor vanishes in accordance with (4) or (5). In the same way,

y = de'^i'

is a solution of (2). And finally the sum of the two solutions

y — Cie""!^ + C2e"'2* (6)

is a solution of (2). This can be seen by substituting in (2) and

recalling that nii and mo are roots of (5). When mi is not equal

to m2, (6) is known as the general solution of the differential equa-

tion (2). It contains two arbitrary constants, the number which

the general solution of a differential equation of the second order

must contain.

The values of these constants are determined in a particular

problem by two suitable conditions.

Illustration.
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The auxiliary equation is

m^ — bm + 6 = 0,

[m - 2){m - 3) = 0.

Hence mi = 2, mz = 3. The general solution is then

y = Cie^' + C26''.

Exercises

»-g-l-''-°-
2.g-4, = 0.

»-g-4^'»-»-
*-g + |->^-»-

'2+^t-o-
184. Auxiliary Equation with Equal Roots. The method just

given fails when the auxiliary equation has equal roots, mi = W2.

For, equation (6), §183, becomes

y = de""!' + C2e'"2*

= (Ci + C2)e-^'.

But Ci + C2 is an arbitrary constant and the solution contains

only one arbitrary constant instead of two. When the auxiliary

equation has equal roots, mi = 7^2, equation (2) can be written

in the form

Its general solution is

This solution can be verified by direct substitution.

Illustration.

^_4^+4v = 0.
dx^ dx^ y

"•

The auxiliary equation is

m^ — 4m + 4 = 0.

TMi = m2 = 2.
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The general solution is

2/ = (C, + C^x)e^'.

Exercises

l-^^ + '^g + o-"-

185. Auxiliary Equation with Complex Roots. If the auxiliary

equation has complex roots the general solution can be written

in a form different from (6), §183. The importance of the result

will be evident at once when it is observed that it contains the

harmonic functions sine and cosine. If the coefficients of the

given differential equation (2), §183 are real, and if mi and niz

are complex, they must be conjugate imaginary numbers. Let

THi = a -\- ih. Then mz = a — ih. Then (6) becomes

y = Cie" + '*' + Cze "' ~ *'"

Now, by (4) and (5), §167,

gift* = cos bx + i sin bx
Q-ibx — COS bx — i sin bx.

Then

y = c* [(Ci + C-i) cos bx + i{Ci — Cz) sin 6a;]

On placing Ci + d = A and i{Ci — Cz) = B, we obtain

y = go* (^ cos bx -\- B sin bx)

= e"' C cos (6a; — <f>).

In the last form the two arbitrary constants of integration are

C and <f).

Illustration 1.

The auxiliary equation is

m2 + 4m + 13 = 0.
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I Hence

m = -2 ± Si.

Then

y = e-2x (J^ COS Sx -\- B sin 3a;).

Illustration 2.

2^ + ^y = o.

Whence

Then

m^ + 4 = 0.

m = ± 2i = + 2i.

T/ = A cos 2x + i5 sin 2x.

Exercises

d^

d^9

5^ + .^. = o.

2.^, + 9y = 0.

dx^+'^ = 0-

186. Damped Harmonic Motion. The resistance offered by the

air to the motion of a body through it, is roughly proportional to

the velocity, if the velocity is a moderate one. In §81, the differ-

ential equation of the motion of the simple pendulum was derived

on the assumption that the force of gravity was the only force

acting upon the bob of the pendulum. If the resistance of the air

is also taken into account we shall have to add to the second

member of the equation, I -xr^ = — ^ sin 0, a term, — 2kl -r. pro-

portional to the velocity I -rr- See equation (1), §81. The differ-

ential equation of the motion is then

idW . ^ ^,^dd ...l^=-g.me-2kl-^. (1)

The negative sign is used before the last term because the force

due to the resistance of the air acts in a direction opposite to that
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of the motion. The advantage of choosing 2k as the proportion-

ality factor instead of k will appear later. A; is a positive constant.

From (1) we obtain

j;|+2.f + f.„.
= 0. (2)

As in §81 assume that 6 is small and replace sin 6 by 9. Also let

g

I

d^e dd

This is a linear differential equation of the second order with

constant coefficients and can be solved by the method of §185.

The auxiliary equation is

m^ + 2km + w^ = 0,

whence

m = - k ± \/k'^ - o) 2.

When the velocity is not very great, as in the case of an ordinary

pendulum, k is very small for air and is much less than oj. The
expression under the radical sign is negative. We write then

m = - k ± i Vw^ - A;2,

oj^ — k^ being positive.

The solution of (3) is

e = Ae-*' cos [t^/(a^ — k'^ - e],

or, multiplying both sides by I and replacing Al by B,

s = 5e~*' cos[t\/(t)^ — k- — c].

The motion is a damped harmonic motion. The amplitude de-

2t
creases with the time. The period . — is a little greater

yct}^ — k'^

2x .

than — , the period of the free motion.

Since k is very small in comparison with w, we can, for an

approximate solution of our problem, neglect k^ in comparison

with co^. Equation (4) becomes

s = 5e-*' cos (aj< — e). (5)

This represents the motion with a high degree of approximation.
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The arbitrary constants B and e can be determined by suitable

initial conditions. For example, let it be given that s = sq and
ds
'77 = when t = 0. On differentiating (5) we obtain

ds
jT= Be-'"[ — k cos (cjt — e) — CO sin(co< — e)]. (6)

For f = we obtain from (5) and (6)

So = B cos €

= B(— k cos e + w sin e).

From the latter of these two equations

tan € = —

.

CO

From the former

1 -\—
i
=

to the degree of approximation used above. We have then as the

approximate equation of motion

s = SqC"*' cos (_ut — e) (7)

where
k k

€ = tan~' — = — J approximately.

Since k is very small, c is very small.

It follows from (5) and (7) that the period of the pendulum

in the case just considered is very little different from that of

the same pendulum swinging in a vacuum. The amplitude of

the swing, however, is affected and diminishes continually with

the time.

23
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Acceleration, 52, 83, 136, 138

angular, 138

average, 52

Algebraic function, 4, 55

definition of, 56

rational, 6

Alternating series, 316

Angle,

between two lines, 321

between two planes, 236

Angular acceleration, 138

velocity, 138

Anti-derivative, 46, 49

Applications, 218

Arc,

differential of length of, 100,

181

length of, 218

Area,

by double integration, 253,

258

moment of inertia of, 281

polar coordinates, 183, 218

of surface of revolution of,

112, 219, 274

under a curve, 75, 218

Arithmetic mean, 116

Axes, coordinate, 228

Base,

change of, 147

naperian, 146

natural, 146

147

199

func-

Cable, parabolic, 82

Catenary, 161

Center,

of curvature, 290, 294

of gravity, 250, 254, 274

of mass, 263

Centroid, 263, 265, 274, 281

of a line, 268

of an area, 268
• of a solid, 268

Change of base, logarithm,

of limits of integration,

Circle,

curvature of, 290

of curvature, 290

Circular and exponential

tions, relation between.

321

Circular functions, 122, 321

Comparison test, 316

Complex numbers, 323

Compound interest law, 155

Computation
of IT, 321

of logarithms, 320

Concavity of curve, 90

Conicoid, 242

Constant, 1

Continuous function, 31

Contraction of curve, 7

Convergence of series, 315

Convergent series, 303

Co6rdinate axes, 228

planes, 228

Cosines, direction, 230

Curvature, 289

approximate formula for, 293

center of, 290, 294

356
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Curvature, circle of, 290

of a circle, 290

defined, 289

parametric equations, 292

radius of, 290

Curve,

contaction of, 7

direction of, 178

elongation of, 7

orthographic projection of,

7

shear of, 7

translation of, 7

Curves

of hyperbolic type, 2

maxima and minima points

of, 20

of parabolic type, 2

Cylindrical surfaces, 244

Damped harmonic motion, 351

Definite double integrals, 255

integrals, 88, 103, 104

DeMoivre's Theorem, 323

Dependent variable, 1

Derivative, 21

first, 21

of a constant, 43

of a function of a function, 66

of a quotient, 58

of circular functions, 122,

124, 131

of exponential functions, 145

of logarithmic functions, 145

of sin u, 122

of the product of two func-

tions, 57

of the sum of a function and

a constant, 39

of the sum of a constant and

a variable, 56

of the sum of two functions, 43

Derivative of m„, 42, 59

second, 70

total, 328, 329

Derivatives of higher order, par-

tial, 247

partial, 246

Differential, 88, 95

exact, 328, 332

of length of arc: polar

coordinates, 181, 218

rectangular coordinates,

100, 218

Differential equation, 338

exact, 335

linear, 342

of higher order, 347

order of, 338

variables separable, 339

Diiferentiation, 31, 97

implicit, 44

logarithmic, 153

Direction cosines, 230, 239

of curve, 178

Distance

between two points, 230

of a point from a plane, 237

Divergent series, 303

Double integration, 251, 253, 258,

255

Duhamel's theorem, 105

Element of integration, 113

Ellipsoid, 242

Elliptic paraboloid, 244

Elongation of curve, 7

Envelope, 289, 296, 336

of normals, 300

Equation,

differential, 338

exact differential, 335

homogeneous differential,

340
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Equation, linear differential, 342,

347

of first degree in x, y and z,

233

of a plane, 233

intercept form of, 234

normal form of, 232

Equations of a line, 238

parametric, 67

Evolute, 289, 294, 300

the envelope of the normals,

300

Exact differential, 328, 332

equation, 335

Exponential functions, 9, 145, 321

Extended law of the mean, 307

Falling body, 22

Family of curves, 297

Formulas, integration, 185, 201,

203, 205, 206, 207

Formulas, Wallis', 204

Fractions, partial, 211

Function, 1

a", 9

a cos X + '^ sin x, 9, 165

a cos X, 9

ax' +px + y, 165

6 sin X, 9

sin X, 9

maximum and minimum val-

ues of, 20

mx ± y/a" - x% 168

xS 16

Functions,

algebraic, 4, 5, 56

circular, 122, 321

continuous and discontinu-

ous, 31

exponential, 145, 321

hyperbolic, 159

implicit, 44

Functions, logarithmic, 145

power, 1

rational, 6

integral, 6

transcendental, 6

transformations of, 10

General solution of a differential

equation, 338

Harmonic motion, 140

damped, 351

Homogeneous differential equa-

tion, 340

Hyperbolic functions, 159

paraboloid, 244

Hyperboloid,

of one sheet, 244

of two sheets, 244

Implicit differentiation, 44

Improper integrals, 218, 223, 226

Increments, 13

Indefinite integrals, 104

Independent variable, 1

Indeterminate forms, 30, 31, 303,

304

Infinite limits of integration, 226

Infinite series, 303

Infinitesimals, 29, 88

limits of ratio of two, 93

order of, 91

Infinity, 29

Inflection, point of, 70

Integral, the

I sec' X dx, 204

I e°* sin nx dx, 202

I
e "' cos nx dx, 202

Integrals, improper, 218

Integration, 46, 49, 185
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Integration, by parts, 201

double, 251, 253, 258

formulas, 185, 201, 203,

205, 206, 207

of expressions containing,

g-T " + bx + c,.190

Va^ + x^ Va^ - x2,

Vx^ - a^, 196

powers of x and of a + hx,

192

. Ca smx -\- I

of I —:

J c sin a; + .i

bcos x
dx, 209

J cos X

of powers of trigonometric

functions, 193

successive, 250

triple, 250, 260

Intercept form of the equation of

a plane, 234

Inverse functions, 67

Involutes, 302

Law of the mean, 306

extended, 307

Length of arc,

polar coordinates, 181, 218

rectangular coordinates, 100,

111, 218

Limit,

definition of, 27

of the quotient of two
infinitesimals, 93

of S/(x)x, 102

Limits,

infinite, of integration, 226

of integration, change of, 199

theorems on, 30

Line,

direction cosines of, 230

equations of, 238

Linear differential equation,

of first order, 342

of higher order, 347

Loci, theorems on, 10

Logarithmic differentiation, 153

Logarithmic functions, 145

Logarithms, computation of, 320

Maclaurin's series, 311

theorem, 303, 310

Maxima and minima, 20, 60, 165

applications of, 174

by limits of curve, 169

determined by derivative,

169

second derivative test for,

172

Maximum and minimum values

of functions, 60

Maximum defined, 20

Mean, arithmetic, 116

Mean value of a function, 117

Mean, law of the, 306, 307

Minimum defined, 20

Moment, 263

Moment arm, 263

Moment of inertia, 250, 277

of area, 280, 281, 283

of a solid, 284

polar coordinates, 283

translation of axes, 280

with respect to a plane, 285

Naperian base, 146

Natural base, 146

Normal form of the equation of a

plane, 232

Normal, length of, 68

Normals, envelope of, 300

Octant, 229

Order of differential equation,

338

Orthographic projection of curve,

7



INDEX 359

Pappus, theorems of, 274

Parabolic cable, 82

Paraboloid,

elliptic, 244

hyperbolic, 244

of revolution, 24

Parallel planes, 236

Parameter, 297

Parametric equations, 67, 292

Partial derivatives, 246

of higher order, 247

Partial fractions, 211

Particular integral of a differen-

tial equation, 338, 339

Path of a projectile, 85

Pendulum, the simple, 141

Per cent, rate, 159

Perpendicular planes, 236

Plane,

general equation of, 234

intercept form of equation

of, 234

normal form of equation of,

232

Planes,

angle between two, 236

coordinate, 228

parallel, 236

perpendicular, 236

Point of inflection, 70

Points, distance between, 230

Polar coordinates, 178

area, 183, 258

centroid, 276

differential of arc, 181

direction of curve in, 178

moment of inertia in, 283

Polynomials, 4

Power function, 1, 33

derivative of, 33, 35, 41, 42

hyperbolic type, 2

law of, 3

Power function, parabolic type, 2

Power series, .'505

Projectile, path of, 85

Quadric surface, 242

Quotient, derivative of, 58

Radius of curvature, 290

approximate formula for, 293

Radius of gyration, 278

Rate of change, 37

Rational algebraic function, 6

Relative rate, 159

Rolle's theorem, 305

Second derivative, 70, 172

Series, 303

alternating, 316

convergence of, 315

convergent, 316, 303

divergent, 303, 315

infinite, 303

Maclaurin's, 311

power, 305

Taylor's, 311

test for convergence, 315

Shear of curve, 8

Simple harmonic motion, 140

pendulum, 141

Slope of tangent line, 17

Solid geometry, 228

Solid of revolution, 109, 218

surface of, 219

volume of, 109, 218, 260

Solution of differential equation,

338

Subnormal, length of, 68

Subtangent, length of, 68

Successive integration, 250

Surface of revolution, 112, 219

Surfaces,

cylindrical, 244
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Surfaces of revolution, 240,

274

quadric, 242

Symmetric form of the equations

of a line, 238

Tangent,

length of, 68

slope of, 17

Taylor's series, 311

theorem, 303, 308

Tests for convergence, 316

Theorems of Pappus, 274

Total derivative, 328

differential, 329

Transcendental functions, 6

Transformation of functions, 10

Translation of curves, 6

Triple integration, 250, 260

Variable, 1

Velocity, 16, 52, 136, 138

average, 16

of a falling body, 22

Volume by triple integration, 260

of a solid of revolution, 109,

218, 274

Wallis' formula, 204

Water pressure, 114, 219

Work done by a variable force,

77, 107, 219
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