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ABSTRACT  

THz radiation covers the region of the electro-magnetic (EM) spectrum between 

the microwaves and infra-red (IR), corresponding to frequencies from 

approximately 100 GHz to 10 THz. Recently, new imaging techniques, which 

take advantage of the special properties of THz waves, have been developed. 

Despite the great interest in these new techniques, limitations such as the lack of 

appropriate detectors and powerful sources are placing the technology in the 

research domain. The objective of this thesis is to characterize and analyze a set 

of fabricated bi-material detectors integrated with thin metamaterial films. 

Different experimental measurements were performed to measure the main 

figures of merit of the detectors and analyze them. Initially, optical microscopy 

was used to measure the dimensions of the sensors and stress induced 

curvature. Then, the thermal response of the sensors was tested and analyzed. 

The responsivity, the speed of operation and the minimum detected incident 

power were measured using a quantum cascade laser (QCL), operating at 3.8 

THz. The measured experimental data agree well with the theoretical calculated 

values of the performance parameters. 
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I. INTRODUCTION 

Terahertz (THz) imaging has been an important topic of studies in the 

recent years, due to its attractive properties for potential applications. 

Specifically, its nature is non-ionizing (THz photons do not carry enough energy 

to ionize an electron from an atom or molecule). Therefore, it does not inflict 

significant damage to human DNA, as do X-ray imaging techniques [1]. 

Moreover, THz radiation has the ability to penetrate most dry, non-metallic, non-

polar materials [2] and simultaneously to resolve details which overmatch the 

corresponding resolution from sensors operating in the microwave region of the 

spectrum. However, limitations such as the lack of appropriate detectors and 

powerful sources are placing the technology in the research domain [3]. 

Military uses of terahertz waves are constrained, not only by the limited 

performance of sources and detectors, but also by strong water vapor absorption 

in the atmosphere which prevents its long range operation at sea level [4]. 

Therefore, the applications which are of interest to the Navy, cannot yet be 

implemented, since they require a very strong source for external illumination 

and hence they are constrained mostly in the security field.  

Despite the limitations which arise from the nature of THz radiation, many 

applications in imaging and communication can be implemented. The high 

resolution imaging capabilities and rich spectral content have sparked interest 

not only in military applications [5] but also medical [6], pharmaceutical 

manufacturing for polymorph detection [7] and non-destructive testing fields [4], 

aerospace industry etc. Communication and imaging applications can also be 

performed at high altitudes, since the water vapor concentration decreases 

rapidly with altitude. Perhaps the greatest potential for new military applications 

lies in the strong spectral dependence of the interaction with materials, where 

resonant absorption by the molecular structure of targets provides information on 

their composition, and hence the target identity, not readily available by other 

remote sensing methods [4]. A wide variety of techniques is available for security 
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screening to detect the presence of various threats, such as weapons containing 

a small amount of metal, ceramic explosives, explosive materials, chemical and 

biological threats [8]. 

Nevertheless, for real-time imaging applications, a sensor with a relatively 

high speed of operation and sensitivity would be required. Despite the great 

interest in this area of the electromagnetic spectrum, the design and fabrication 

of sensors with those characteristics is still only in the research stage. 

Recently, a novel approach has been used by researchers at the Sensor 

Research Lab of the Naval Postgraduate School (NPS), using micro-

electromechanical systems (MEMS) bi-material sensors with structural 

metamaterial layers to drastically increase THz sensitivity. Bi-material sensors 

are very convenient because they allow the use of external optical readout, 

avoiding complex integrated microelectronics configurations. Metamaterials are 

artificial materials whose properties can be tailored by design to fill the gaps of 

natural materials. They can be designed to absorb nearly 100% of THz radiation 

in specific frequencies, which cannot be found in natural occurrences. The 

combination of metamaterials and MEMS bi-material sensors has shown to be 

very attractive for real-time THz imaging [9]. 

The NPS Sensor Research Lab group has designed and fabricated 

sensors, which are “made of materials that are fabrication-friendly, exhibit low 

residual stress, have very different thermal expansion coefficients and strong 

THz absorption. Configurations should have a large absorption area, good 

thermal isolation to increase sensitivity and provide a reflective surface for optical 

readout. All of these requirements are intrinsically interdependent making the 

optimization of the final choice highly dependent on the application. Nonetheless, 

the quest to achieve high performance THz bi-material detectors starts with 

dθ/dt, defined by the bi-metallic effect and η, which is maximized by the 

integration of metamaterial structures” [2]. 
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In order to optimize the integration of metamaterials in MEMS bi-material 

sensors, different configurations were fabricated where metamaterials and bi-

material characteristics were varied to allow the observations of their effects in 

the overall sensor response. In this context, the objective of this thesis is to 
characterize and analyze the fabricated sensors and provide feedback to 
optimize future designs.  

To achieve this goal, the research work reported in this thesis was 

conducted according to the methods described in the following paragraph:  

Initially, the dimensions and geometrical details of the detectors were 

observed and measured using optical microscopy. Subsequently, bi-material 

response and figures-of-merit were experimentally determined. The bi-material 

response of the sensors was measured using a heat chuck for a range of 

temperatures from 295 to 314 K. Then a quantum cascade laser (QCL) operating 

at 3.8 THz was used as an illumination source to determine THz characteristics 

of the sensors. Through this experiment, operating parameters of the sensors, 

such as the responsivity, the speed of operation and the minimum detectable 

power, were measured. Then, the figures of merit mentioned above were 

analytically estimated to allow for the assessment of the design methods.  

In summary, eight different configurations of bi-material based sensors 

were characterized and analyzed to allow optimization of future designs aimed at 

specific applications. 
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II. THEORETICAL BACKGROUND 

A. TERAHERTZ RADIATION AND TERAHERTZ IMAGING 

THz radiation covers the part of the electro-magnetic (EM) spectrum 

between the microwaves and infrared (IR), which corresponds to wavelengths 

from 30 μm to 3 mm. This results in the sharing of some characteristics from both 

of these regions. 

 
Figure 1.  EM spectrum with highlighted THz region. 

Detection and spectroscopy in the THz spectral range have been reported 

to include several different approaches. These include the use of different 

detectors and techniques, such as microbolometer and pyroelectric based 

thermal detectors, photoconductive dipole antennas, Fourier transform terahertz 

spectroscopy and time domain spectroscopy [10], [11]. Real-time THz imaging 

has been demonstrated using conventional, microbolometer-based imagers 

optimized for infrared (IR) wavelengths (8–12 μm) coupled with a QCL as an 

illumination source [2], [12], [13]. Limitations, such as the low sensitivity of the 

microbolometer cameras in the THz region, motivated the development of more 

sensitive detectors. The use of bi-material sensors has shown many advantages, 

which make it a potential solution for THz imaging. 

B. PRINCIPLE OF OPERATION OF BI-MATERIAL SENSORS 

The micro-electromechanical, bi-material based sensor relies on the 

deflection of bi-material structures under rising temperature due to 

electromagnetic radiation absorption [9]. The potential of employing external 

optical readout is what makes this way of detection attractive [14], [15]. 
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A typical bi-material THz detector has three main components: (a) a 

metamaterial absorber, (b) bi-material legs (microcantilevers) and (c) a thermally 

insulating anchor as illustrated in Figure 2 (a).   

The absorber is responsible for capturing the incoming THz radiation and 

converting it into heat. The heat is then transmitted via the bi-material legs and 

anchors to the substrate. During this process the bi-material legs and the 

absorber attached to it, deflect as shown in Figure 2(b). The anchor connects the 

bi-material legs to the substrate and also thermally isolates the structure from the 

Si substrate. The substrate acts as a heat sink, allowing the sensor to return to 

its unperturbed position when incoming radiation is terminated [9]. In addition, an 

adequate reflective surface is necessary to allow optical readout. 

 

 

 

Figure 2.  Bi-material Sensor (a) 3D view of the THz bi-material sensor with 
metamaterial absorber, fabricated on a Si substrate (b) Side view of an isolated 

bi-material leg connected to central absorber. From [2].  

In Figure 2(b) the metal (Al) coating is shown with thickness , in pink, 

while the structural layer, made of silicon-rich silicon oxide , with thickness 

 is shown in blue. These two materials compose the bi-metallic leg and have 

different thermal expansion coefficients. Therefore, they undergo expansion at 
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different rates with the same temperature change, resulting in bi-material beam 

bending.  

C. METAMATERIAL FILMS 

The use of metamaterial films as absorbers, integrated with bi-material 

sensors, exhibits several advantages. Their absorption characteristics were 

studied in [16] and [17] and showed that an absorber with absorption near 100% 

can be designed for the desired frequency. The metamaterial layer used in the 

studied THz sensors is comprised of a periodic array of Al square elements 

separated from an Al ground plane by the  layer, as schematically illustrated 

in Figure 3. Such a combination allows matching to the free space impedance at 

specific frequencies, eliminating the reflection, while the ground plane prevents 

transmission which results in nearly 100% absorption. In addition, the ground 

plane of the metamaterial acts as a mirror for optical readout of the deflection. 

 

 

 

Figure 3.  Metamaterial Absorber (a) Schematics of a metamaterial unit cell, 
consisting of a 100 nm Al ground plane, a 100nm square element, separated by 

a 1.1.μm  layer. (b) Metamaterial test structures with 20μm period and 
varying square dimension (s), fabricated in a Si substrate. From [17]. 
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The fraction of the incident power absorbed by the sensor is represented 

by the absorption efficiency η. The absorption for three metamaterial structures 

with different square sizes (s = 17, 18 and 19 μm) and the same repetition period 

(20 μm) was experimentally measured in [2] and the results are shown in  

Figure 4. 

 
Figure 4.  Absorption measurements of metamaterial with square sizes of 19 
μm (A2), 17 μm (A4) and 18 μm (A1, A3, A5-A8) with the same repetition period 

of 20 μm. The red line is the normalized power of the QCL used in this thesis 
characterization work. From [2].  

From the data in Figure 4, it is possible to extract the absorption efficiency 

of all studied sensors at the illuminating QCL frequency (see Table 1 at the end 

of this section).  
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D. DESCRIPTION OF THE SENSORS 

To optimize the operation of a bi-material sensor, two main choices have 

to be considered, the materials and the configuration. For this study, “the 

combination of  and Al (both standard MEMS materials) to maximize 

thermomechanical sensitivity , while simultaneously alleviating some of 

the excessive residual stress related deformation, observed in the sensors 

fabricated in [9] was selected. Furthermore,  and  exhibit electro-optical 

properties that are suitable for fabricating highly efficient metamaterial  

absorbers” [2]. 

Several bi-material sensors with metamaterial absorbing films were 

fabricated using  layers on a Si wafer. The thickness of the  

layers, both for the ground plane and the square element, was 100 nm, while the 

thickness of the  layer of the bi-material legs (  in Figure 2 (b)) is 170 nm. 

The thickness of the intermediary layer of   is 1.1 μm. 

The sensors are designed with different configurations, and in the case of 

the same configuration they have different metamaterial parameters (square size 

and pitch). Therefore, the total absorbing area differs between the configurations. 

The length of the legs also varies depending on the configuration, while their 

width remains the same. The width of the anchors is constant, but in some 

configurations the anchor has been designed to consist of two identical regions 

with a gap in between them. Micrographs of the components of sensor A1 are 

depicted in Figure 5. 

As mentioned before and depicted in Figure 4, a structure with square size 

 gives absorption efficiency of around η~95%, at the 3.8 THz. The 

sensors with different square sizes appear to have a significantly different 

efficiency of absorption (see Figure 4). The geometrical data and the 
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corresponding absorption efficiency for each configuration are listed in Table 1, 

later in this section. 

 

 

Figure 5.  Micrographs of sections of sensor A1 (a) top view, (b) bi-material 
leg, (c) anchor, (d) gap between legs and absorbing area, (e) trench in the 

substrate, and (f) metamaterial dimensions. 

Figure 6 shows the micrographs of the top view of the eight bi-material 

sensors which are studied in this thesis. In most of the cases, the sensors are out 

of focus because the absorbing area is tilted due to intrinsic residual stress.  
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Figure 6.  Micrographs of the top view of the studied detectors. Sensors A2, 
A3 and A4 have the same configuration as A1. Sensors A2 and A4 have larger 
and smaller square sizes, respectively. Sensor A5 has longer bi-material legs, 

which are connected to the absorber at the top center. Sensor A6 has two 
separate anchors, which are separated by a gap. Sensor A7 has two double bi-
material legs with anchors similar to that of A6. In sensor A8, the two exterior 

legs are non-metallized and form part of the anchor. 

The detectors A1 to A4 have the same configuration, however, with 

different geometrical details. Specifically, they have side-connected legs and 

one-piece thermal insulating anchor. The metamaterial absorbers of sensorsA1 

and A3 have the same square size  and hence the same absorption 

efficiency η. Sensors A2 and A4 have larger  and smaller 

 squares, respectively, which in both cases negatively affects their 

efficiency, as explained in Chapter II, Section C. This fact is expected to affect 

the responsivity of the sensors. All the first four configurations have an equal 

central absorbing area of . 
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In the sensor A5, there is an additional extension of metalized legs to get 

more bimetallic effect. Its square size is equal to that of sensors A1 and A3, 

, but because of the extension of the legs, its central absorbing area is 

decreased to . 

Sensor A6 is of the same design as the first four, but with a different size 

thermal insulating anchor, which in this case consists of two individual parts 

separated by a 212 μm gap. This difference is expected to affect the response 

time of the sensor. The size of its squares and the total central surface is equal to 

A1.  

The sensors A1 to A6 have bi-material legs of the same length equal to 

214 μm. The width of the legs is also the same in all the sensors.  

Sensor A7 was designed to have two bi-material legs interconnected in 

opposite directions. In this configuration, the thermal deformation of one leg 

compensates for the other; therefore there is almost no angular displacement on 

the central part. Hence, it is expected to be the least sensitive among all the 

sensors, because of its minimum deflection under increasing temperature. 

Moreover, its metamaterial central region is smaller than that of the rest of the 

sensors specifically, , and the length of bi-material legs is 200 μm. 

The thermally insulating region, which is in two parts as in the case of A6, is 

attached the top sides of the legs. The gap in this case is 200 μm. The square 

size is which corresponds to absorption efficiency of η ~0.95. 

Sensor A8 has a similar design and dimensions to sensor A7 but the 

exterior legs are non-metallized and constitute part of the anchor. In this case, 

the longer anchor is expected to reduce the thermal conductance and therefore 

increase the time constant. Its gap is also 200 μm and its absorbing area is 

smaller than that of sensor A1, , which is expected to affect the 

sensitivity. It has the same square size, efficiency and length of the bi-material 

legs as in A7. The detailed dimensions of the detectors are presented in Table 1: 
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Table 1.   Detailed dimensions of the main parts and characteristics of the 

sensors. The corresponding absorption efficiency is obtained exclusively by the 
square element size. 

E. FIGURES OF MERIT 

The most significant figures of merit of bi-material sensors for imaging 

applications are the thermomechanical sensitivity, the speed of operation, the 

responsivity and the Noise Equivalent Power (NEP) [2].  

The thermomechanical sensitivity can be defined as the angular deflection 

due to temperature change . This characteristic depends basically on the 

bi-metallic effect and can be increased by properly selecting the bi-material layer 

thicknesses. The linear displacement, , of the tip of a cantilever consisting of 

two material layers, as depicted in Figure 2(b), was first quantified by 

Timoschenko [18]. In the case of the studied sensors, the linear displacement 

 is much smaller than the length of the bi-material leg, allowing for the 

estimation of the angular deflection (Δθ) by dividing  by . When the leg is 
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connected to a free standing absorber, as shown in Figure 2(b), the sensor 

deflection is twice the leg deflection. The thermomechanical sensitivity is given 

by [2]: 

 

  (1) 

 
  
 
where t is the thickness, α is the thermal expansion coefficient and E is the 

Young’s modulus. The indices 1 and 2 represent the metal (Al) and the dielectric 

structure  respectively. 

The sensor’s speed of operation is typically described by the thermal time 

constant of the sensor, which determines the reaction time of the sensor. For 

imaging applications it has to be as low as possible [19]. It is defined as from 

[20]:  

  (2) 
 

where C is the heat capacitance, and G is the thermal conductance of the 

sensor.  

The thermal capacitance can be estimated using the expression: 

 

  (3) 
 
where  is the heat capacity dependent on the material properties, ρ is the 

material density and t is the structure thickness.  is the corresponding surface 

area.   

In our research the total heat capacitance was calculated as the sum of 

the heat capacitances of the three main sections of the sensors. For the top part 
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of the central absorbing area, the metamaterial elements cover 80% of the total 

surface and have a thickness of 100nm, while the other layers  and  

(ground plane) cover 100% of the area with a thickness 1.1μm and 100nm, 

respectively. In the case of the bi-material legs, the  was calculated as a sum 

of the heat capacitances of the  top part, with thickness 170 nm, and the 

layer with a thickness of 1.1μm. Finally, for the anchor, the only material used 

there was the , which was 1.1μm thick.  

The heat conduction to the surroundings consists of several components 

which can be represented by total thermal conductance, .[19] The three 

primary components of thermal conductance: 

1.  , is the thermal conductance to the heat sink, 

2. , is the thermal conductance via the radiation, 

3. , is the thermal conductance via the convection. 

The thermal conductance to the heat sink was estimated using the 

expression from [2] 

  (4) 
 
where is the thermal conductivity,  is the cross sectional area and l is the 

length.  

Since the thermal conductance is defined as the inverse of thermal 

resistance, the inverse of the total thermal conductance via the body was 

calculated as the sum of the inverses of each individual part of the anchor with 

different cross sectional areas. The metal layers were considered thermal shorts 

due to their high thermal conductivity in comparison to the .  

The thermal conductance via the radiation was estimated using the 

expression from [19] 
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  (5) 
 
where  and   is the emissivity of the top and the bottom part, respectively, 

 is the surface area, σ = 5.670373×10−8 W m−2 K−4 is the Stefan Boltzmann 

constant and Ts= 300 K is the room temperature. For the top central 

metamaterial surface, the thermal conductance was calculated using emissivity 

of metamaterial , while for the bottom part, which is the Al ground plane, 

the emissivity used was . Since the anchors are made of  

uniformly, the emissivity used for both the top and the bottom surfaces was

. The same factor was used for the bottom surface of the bi-material 

legs and for the top surface of its two exterior non-metallized legs in sensor A8. 

For the top surfaces of its two interior metallized legs the emissivity  was 

used. The heat dissipation due to convection was neglected, since the sensors 

were operated in a low pressure vacuum chamber.  

The thermal conductance due to radiation and the body were found to be 

of the same order of magnitude, and the total thermal conductance of the sensor 

was calculated as the sum of the two.  

The material properties that were used for the above calculations are 

listed in Table 2.  

 
Table 2.   Material properties of the layers used for fabricating the sensors. 
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The responsivity ( ) of a bi-material sensor is defined as the angular 

deflection per unit power, given by the following equation from [2]: 

 

  (6) 
 

In Equation (6), the efficiency (η) depends only on the metamaterial 

absorption at the frequency of the illumination source. Most of the sensors 

studied in this thesis have the efficiency η~95% with some variations, as was 

shown in Sections C and D of this chapter. 

For bi-material sensors, noise equivalent power (NEP) is defined as the 

incident radiant power that produces a signal equal to the detector’s root mean 

square (rms) noise [21], [22]. The primary noise sources intrinsic to the detectors 

are temperature fluctuations, background fluctuations and thermomechanical 

noise, while the external sources of noise are the illumination source fluctuations, 

the readout laser fluctuation, mechanical vibrations of the cooling system and the 

vacuum chamber, as well as the readout sensor noise. 

In this thesis, we estimate the intrinsic noise and measure the total noise 

of the sensor/source/readout system. The spontaneous fluctuation in angular 

deflection (deg) of the absorbers caused by temperature fluctuations is given by  

 

  (7) 
 
where T is the sensor temperature,  is the Boltzmann constant, G is the total 

thermal conductance and B is the bandwidth, which can be set to unity. The 

background fluctuation noise can be obtained by replacing the total thermal 

conductance in Equation (7) by thermal conductance via radiation loss of heat. 

The angular deflection (deg) due to thermomechanical noise, knowing that the 

detector operating frequency is much slower than the mechanical resonances 

(few kHz), is given by 
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  (8) 
 
where Q is the quality factor, k is the stiffness and  is the resonant angular 

frequency of the mechanical structure [2].  

In this thesis several different configurations with different geometrical 

details are studied. The measured characteristics and their comparison with the 

calculations are presented in the next chapter. 
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III. COMPARISON AND ANALYSIS OF CALCULATED AND 
MEASURED DATA 

A. THEORETICAL ESTIMATION OF THE FIGURES OF MERIT 

1. THERMOMECHANICAL SENSITIVITY 

Using Equation 1 (see Chapter II) and the dimensions of the sensors, the 

angular deflection was calculated analytically for each sensor and is listed in 

Table 3. 

 
Table 3.   Dimensions of the sensors, required for the theoretical calculation 

of thermomechanical sensitivity, using Equation (1). The only parameter defining 
the difference between the sensors’ angular deflection is the length of the bi-
material legs. *As explained before, sensor A7 was designed to have two bi-
material legs interconnected in opposite directions. In this configuration, the 

thermal deformation of one leg compensates for the other resulting in no 
appreciable angular displacement on the central part. 

Sensors A1 to A4 and A6 have the same theoretical value of 

thermomechanical sensitivity due to the same length of the bi-material legs. 

Sensor A5 has longer bi-material legs, which increases its theoretical sensitivity. 
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Sensor A8 has lower theoretical sensitivity than A1, because of the shorter bi-

material legs.  

2. SPEED OF OPERATION 

Using Equations (3) to (5) from Chapter II, the sensor dimensions and the 

data from Table 2, the thermal capacitance, C, and the thermal conductance, G, 

were calculated for each individual sensor. Then, using Equation (2), the 

theoretical values of the time constant were also calculated and tabulated. 

 
Table 4.   Theoretical estimation of thermal capacitance C, thermal 

conductance G and time constant  of the sensors, using Equations (2) to (5) 
and data from Table 2. 

Sensors A1 to A5 have a similar theoretical time constants. This is due to 

the fact that they have the same anchor configuration and same size of central 

absorbing area, except A5, which has a slightly smaller area. This results in a 

lower time constant. Sensor A6 has higher thermal conductance because of the 

shorter anchor. 

Sensors A7 and A8 have lower thermal capacitance and greater thermal 

conductance than the other sensors. This is expected due to the smaller size of 
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the anchor, especially for sensor A7, and also the smaller absorbing area of both 

sensors.   

Sensor A5 has a time constant similar to the sensors A1 through A4, 

although it has a smaller absorbing area. This is due to the longer legs that 

provides smaller thermal conductance. 

3. RESPONSIVITY 

The theoretical values of the responsivity of the sensors were calculated 

using Equation (6) in Chapter II and the data from Table 2 (angular deflections). 

The results are presented in Table 5.  

 
Table 5.   Analytical calculation of the responsivity of the sensors using 

Equation (6) and data from Table 3. 

As can be seen in Table 5, sensors A2 and A4 have a significantly lower 

theoretical responsivity compared to sensors A1 and A3 because of their lower 

absorption efficiency.  
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Sensor A5 has the highest theoretical value of responsivity among all the 

sensors due to its high absorption efficiency (~95%) and the longest legs, which 

increase its thermomechanical sensitivity.  

Sensor A6 has a lower responsivity than A1, although both have equal 

absorption efficiencies. This is due to A6’s smaller cross sectional area of legs, 

which results in the increase of its thermal conductance.   

Sensor A7 has no theoretical responsivity due to the reasons already 

explained.   

Sensor A8 has a similar responsivity to A1, because its two exterior non-

metallized legs contribute to the increase of thermal insulation similar to the 

sensor A1’s anchor. Since they have the same absorption efficiencies, they 

exhibit almost the same responsivity. 

B. EXPERIMENTAL MEASUREMENTS AND DATA 

1. OPTICAL MICROSCOPE MEASUREMENTS 

First, the geometrical dimensions of the sensors were measured using 

optical microscopy to verify the accuracy of the fabrication’s process. 

Micrographs showing the top view of all the sensors and the components of the 

sensor A1 are depicted in Figures 5 and 6 in Chapter II. The measured 

dimensions are listed in Table 6. 



 23 

 
Table 6.   Geometrical details and intrinsic deflections of the detectors due to 

the residual stress. 

The measured dimensions are in good agreement with the designed 

parameters showing that the fabrication process, described in [2] is highly 

reliable. 

The intrinsic angular deflection was calculated using the arctangent of the 

measured vertical deflection over the absorber’s lateral dimension. The 

measured vertical deflection is the number of deviations of the adjustment knob 

of the microscope needed to focus the two edges of the absorber along the 

lateral dimension. Each deviation corresponds to 1 μm. Τhe lateral dimension 

was in every case equal to 200 μm for the central absorber, 214 μm for A1-A6 

and 200 μm for A7-A8 for the bi-material legs. 

2. THERMAL RESPONSE MEASUREMENTS 

The thermal response  of the sensors was measured by attaching 

it to a flat resistive heating element and varying the temperature from 295 to 306 

( )d
dT

θ
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K, and, in the case of sensor A7, up to 314 K. This approach provides thermal 

response similar to that which would be obtained if only the absorber was 

uniformly heated using THz since the temperature gradient in the bi-material legs 

is less than 5% compared to that of the absorber (central element) and the 

substrate (heat sink). Therefore, the legs can be assumed to be thermally 

shorted, allowing the measurement of the thermal response by uniformly heating 

the sensors [2].  

The displacement of beam of light from a laser diode reflected from the 

back side of the absorbers was projected on a screen to measure the deflection 

of absorber as the temperature changed. Knowing the beam path length, the 

angular displacement of the absorbers was estimated. Figure 7 shows a 

schematic diagram of the experimental setup.  

 
Figure 7.  Schematic diagram of thermal response measurement system. The 

temperature of the sensor is set using the heating element and temperature 
controller. The diode laser illuminates the back side of the absorber. The 

deflection of the reflected beam from the back side of the absorber is projected 
onto a screen.  
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Figure 8 shows a picture of the actual experimental setup. 

 
Figure 8.  Actual experimental setup used for the thermal response 

measurement. 

Figure 9 shows the measured angular displacement as a function of 

temperature for the sensor A1. The solid line is the linear fit, showing that the 

response of the sensor in this temperature range is nearly linear. The same 

procedure was adopted for the rest of the sensors and the slopes of the linear fits 

are listed in Table 7. 
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Figure 9.  Angular displacement due to changing temperature of sensor A1. 

The slope of the plot represents the thermomechanical sensitivity of the sensor.  
provide units for the 0.18 on the figure) 

 
Table 7.   Comparison between analytically calculated and experimental 

values of thermomechanical sensitivity (dθ/dT) of the sensors.  
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As can be seen in Table 7, the sensitivity of sensor A1 is 0.18 deg/K. The 

other sensors, except sensor A7, have approximately similar sensitivities.  

The similar results for the sensors A1 to A8, except A7, are expected 

since they are made of the same materials and have bi-material legs of the same 

dimensions, apart from A5. Sensor A5 has longer bi-material legs, a property 

which according to Equation (1) should have increased its thermomechanical 

sensitivity. This result allows us to conclude that the longer bi-material legs, 

which are top-connected to the absorbing area, do not contribute to the increase 

in sensitivity as much as was expected. Further studies are required for a better 

explanation. Sensor A7 exhibits almost no sensitivity, as expected and explained 

in Section A of this chapter.  

Sensor A8 has the same bi-material characteristics; however, it showed 

lower sensitivity. The most relevant difference that could affect its response is the 

leg configuration that causes a greater intrinsic bending due to stress. This could 

be acting in opposition to the thermal deformation. Further studies are required 

for a better explanation. 

Among the sensors of the same configuration, sensor A4 seems to have a 

slightly higher sensitivity.  

3. RESPONSIVITY MEASUREMENTS 

Responsivity measurements were performed using the experimental 

setup, as shown in Figure 10. In this case, the angular displacement of the 

sensors was measured under 3.8 THz-QCL excitation. 
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Figure 10.  Schematic diagram of the experimental setup used for responsivity 
measurement. The power of the QCL varied from 0 to approximately 1.5 μW and 

in the case of A7 up to 16μW. 

The detector was placed in a vacuum chamber, in which the left window is 

made of Tsurupica  and the right is made of quartz. Heat loss due to 

convection is dependent on the pressure of the surrounding gas and can be 

minimized by operating the detector at a relatively low pressure [2]. Hence, the 

pressure in the vacuum chamber was set approximately to 0.03 mTorr. The QCL 

was placed in the cryostat, which also has a Tsurupica window, and the 

operating temperatures were between 11 and 20 K. The THz beam passes 

through a converging 40 mm polyethelene lens (focal length = 100 mm) and hits 

the THz sensor, placed at the focal point. Both Tsurupica and polyethelene 

exhibit reasonable transmission (~65%) at 3.8 THz frequency. The mount of the 

vacuum chamber had three degrees of freedom to allow positioning and fine 

tuning of the sensors under test.  

The same diode laser as that used for the thermal response measurement 

was used to determine the deflection of the sensor. In this case though, the initial 

effort was to align the system for each different sensor. This was performed by 

placing the detector and the intersection point of the two laser beams on the 

QCL’s focal point, to capture most of the QCL power at a single detector. First, 
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the THz laser was turned on, gated at ~200 mHz, and using a CCD camera with 

coaxial illumination we were able to identify the detector being illuminated by the 

QCL, inspecting the image and finding the sensors that are excited by the QCL. 

Then, the diode laser beam was first pointed approximately at the same detector 

and then fine tuned using the three axis of motion of the mount.  

It is important to remark that the vibrations in the chamber, caused by the 

operation of the vacuum pumps, was significant and the noise in the signal was 

always present. In many cases, clamps and mounts had to be added in the setup 

to reduce noise due to the vibrations. In addition, the measurements were 

repeated several times in order to achieve better accuracy and minimize the 

error.   

The QCL was operated in pulsed mode with frequencies from 1 to 5 kHz 

while keeping the pulse width at 5 μs. Since the pulse width was kept constant at 

5 μs, the average output power is proportional to the pulse frequency.  

Since alignment might have been slightly different for different sensors, 

the absolute power that reaches the sensors (i.e., incident power, Pin) is 

estimated using the responsivity in Equation 6 of Chapter II, along with the 

calculated thermal conductance using: 

  (9) 
Responsivity measurements were performed for all the sensors. Figure 11 

shows the estimated responsivity for the sensors A1 and A7. 
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Figure 11.  Angular displacement of sensors A1 and A7. Both the sensors have 
an efficiency coefficient of ~95%. Responsivity of sensor A7, as expected is very 

small due to the use of two metalized legs on each side. 

The solid lines in Figure 11 are linear fits, showing good linearity of the 

angular displacement for the range of incident power. Note that sensor A7 shows 

very small response to the incident power. As explained earlier, this is expected 

since the bi-material legs are compensating the bending of one another. 

However, the observed responsivity is not zero primarily due to the non-metallic 

connection between the legs. This causes the temperature on the internal leg 

(closer to the absorber) to be a little higher than the other’s, causing a minute net 

deflection. This is a good indication that the self-leveling configuration is a 

sufficient option to reduce the thermal fluctuation noise.  

Responsivities of all the sensors are listed in Table 8, along with the 

theoretical values.  
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Table 8.   Comparison between theoretical and experimental values of 

responsivity (dθ/dP) of the sensors. 

The term represents the experimental value of responsivity and 

is the slope of the lines in Figures 9 and 11. The term  represents the 

calculated responsivity using Equation (6), with the data from Table 1 for the 

efficiency η, Table 3 for the thermomechanical sensitivity  and Table 4 

for the thermal conductance G .  

The experimental values of the responsivity for the sensors A1, A3, A6 

and A8 are in very good agreement with the theoretical calculations. This is also 

true for the sensors A2, A4 and A5 but with a little greater divergence. Measured 

responsivity of the sensor A7 is almost negligible as was expected.   

An analysis of the measured results allows the following conclusions: 

1. The sensors A1 through A5 have similar thermomechanical 

sensitivity (same bi-material legs); however, the sensors A2 and A4 

have lower efficiency, 64% and 59%, respectively. Therefore, their 

responsivities are lower than those of sensors A1 and A3, which 

have 95% efficiency. The fact that the responsivity of A4 is slightly 

higher than A2’s, although it has a lower efficiency, is most likely to 

be due to limitations of our experimental setup. 

Figure 12 shows the angular deflection of the sensors A2, A3 and 

A4, highlighting their efficiencies.  
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Figure 12.  Angular deflections of the sensors A2, A3 and A4. The efficiencies 
of the sensors are indicated necx to the lines. The slope of each linear fit, which 

represents the responsivity R, is indicated at the legends. 

2. Sensor A5 has a little higher thermomechanical sensitivity than the 

sensor A1 (longer bi-material legs); however; it has a smaller 

absorption area, and the overall trade gives a smaller responsivity. 

3. Sensor A6 has 95% efficiency; however, since the anchors are 

smaller than in the other sensors, the thermal conductance G is 

higher. Therefore, its responsivity is lower than that of A1 and A3, 

as expected. 

4. Sensor A7 has almost no thermomechanical response; therefore, 

even though its efficiency is 95%, the responsivity is almost 

negligible, as expected. 
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5. Sensor A8 should have thermomechanical sensitivity similar to that 

of sensor A1, which has been confirmed in the previous sets of 

measurements (see Table 7). The thermal conductivity is shown to 

be between that of sensors A1 and A6 (see Table 5) due to the 

anchor configuration. Responsivity measurements show a value 

lower than that of A1 and A6, which is not expected. However, the 

measured value has a very small deviation from the theoretical one, 

which confirms the sufficient measurements of responsivity. 

4. SPEED OF OPERATION 

For the measurement of speed of operation of the sensors, a position 

sensing detector (PSD) instead of the screen used earlier was employed to allow 

measurement of smaller deflections. The PSD is a quadrant photodiode, as 

shown in Figure 13.  

 
Figure 13.  Quadrant photodetector. The A, B, C, and D are the four quadrants 
and R is the radius of the reflected laser beam from the bi-material sensors. The 
position of the beam (X,Y) is calculated using the responses of the four detectors 

using:  and , where A+B+C+D is the 

total power of the beam [23] . Initially, the beam is centered by adjusting position 
of the laser beam. 
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For optimum performance and resolution, the spot size should be as small 

as possible, while being bigger than the gap between the photodetectors. When 

illuminated, the cells generate an output signal proportional to the intensity of the 

illumination. The output signal is then digitized and processed by a computer. 

The software performs basic calculations of the position and power of the beam. 

The output position is displayed as a fractional number or as a percentage, 

where the percentage represents the fraction of the beam movement relative to 

the X and Y direction [23]. In our case, the sensor was deflected from the pulsed 

THz laser beam and returned to its unperturbed position when the excitation was 

terminated. 

The time constant was measured using two different methods:  

The first approach was based on the frequency response of the sensor, 

which was obtained by sweeping the QCL gating frequency from 100 mHz to 30 

Hz under the same incident power and recording the output peak to peak signal 

of the PSD. The normalized frequency response of sensor A1 is plotted in Figure 

14. The time constant was obtained from this graph by taking the inverse of the 3 

dB frequency (70.7% of the normalized amplitude), as in  

  (12) 

The second approach used the transient response of the sensor. The time 

constant in this case was obtained by measuring the time at which the 

normalized output signal is 1–1/e (63.2%): 
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Figure 14.  First method to obtain the speed of operation of the sensor A1. The 
graph is the result of a spline averaging fit of the peak to peak output of the PSD. 
The 3dB, which corresponds to the 70.7 % of the normalized frequency was used 
to obtain the cut-off frequency,  . Figure 15(a) shows the temporal response 

of sensor A1, and Figure 15(b) shows one cycle used to extract the time 
constant. 
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.  

Figure 15.  Temporal response of the sensor A1 by gating the THz-QCL at 0.5 
Hz.  (a) PSD output signal for several periods. (b) Normalized half-period (1 sec) 
of the output signal. The time constant was obtained using the time to reach the 

63% of the steady state signal.  

The same process was repeated for the rest of the sensors. The noise 

from the mechanical vibrations of the vacuum chamber made the measurements 

relatively difficult. The experimental values of individual time constants along with 

the calculated ones are listed in Table 9. 



 37 

 
Table 9.   Comparison between theoretical and experimental values of time 
constant of the sensors. The average experimental values are based on the 

average of the two different methods employed. 

The experimental values are generally in agreement with the theoretical 

values. The divergence between them is almost the same for all the sensors, a 

fact which allows us to assume that the measurements were correct.  

An analysis of the measured results allows the following conclusions: 

1. The sensors A1 to A5 have a similar temporal response, which is 

expected since they have the same anchor configuration and 

therefore the same thermal conductance G. The size of the square 

elements for sensors A2 and A4 (19x19 and 17x17  

respectively) is not affecting the time constant, as was expected. 

However, sensor A3 was expected to have exactly the same 

response as A1, which has not been verified. This may be due to 

limitations in our experimental setup and measurements and should 

be repeated in a future work.  

2. The experimental results using the two methods for sensor A5 have 

a significant difference between them. We assume that the 
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transient method is more accurate, because it is closer to the 

theoretical value. Sensor A5 has longer bi-material legs which is 

probably the reason for the higher time constant.  

3. Sensor A6 has a lower time constant. This is expected due to its 

smaller total size of the anchor, which increases the thermal 

conductance and hence reduces the time constant.  

4. For sensor A7, it was impossible to obtain results using either of the 

methods described due to its very low sensitivity.  

5. Sensor A8 should have a lower time constant than A1’s, which is 

confirmed by the experimental results. This is due to the smaller 

absorbing area, which decreases the total thermal capacitance but 

also due to its smaller anchor area which increases the total 

thermal conductance of the sensor. 

5. NOICE EQUIVALENT POWER (NEP) 

The NEP was also determined using the PSD to read the deflection as the 

THz power is decreased. Figure 16 shows the PSD signal corresponding to 

minimum detectable THz power, including the readout noise for sensor A1, taken 

from [2]. The fact that the influence of readout cannot be eliminated from the 

experimental results makes it difficult to compare the experimental and the 

theoretical values (estimated to be between 5 to 15 pW [2]). 
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Figure 16.  Measured Output voltage of the PSD for the sensor A1 by gating 

the QCL at 200 mHz. The estimated power incident on the detector is shown on 
the right vertical axis. From [2]. 

 

The measured NEP values for all the sensors are listed in Table 10. 

 
Table 10.   Experimental values of the minimum detectable incident power.  

Since the measured values of minimum detectable incident power is in the 

order of tenths of nW, which is three orders of magnitude higher than the 

predicted intrinsic values [2], it is reasonable to assume that most of the noise is 

originated from the experimental setup. Vacuum chamber vibrations, QCL 
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fluctuations, readout laser fluctuations, PSD noise, oscilloscope limitations, etc., 

are by far limiting the overall performance. The NEP value for the sensor A4 was 

measured to be much higher than the rest potentially due to high background 

vibrations in the laboratory environment.  

C. GENERAL DISCUSSION: ANALYSIS AND OPTIMIZATION 

According to Table 8, the sensors A1 and A3 show the highest 

responsivities. Sensors A2 and A4 also have high responsivity, although their 

absorption efficiency is lower than the A1 and A3, due to the smaller square size. 

Moreover, Table 8 shows a significant decrease of responsivity for sensor A6, 

when shifting from the configuration of anchor of A1 to a high thermal conducting 

configuration. Therefore, it is concluded that the configuration of sensor A1 

provides the optimum responsivity for used with 3.8 THz QCL.  

The current sensors are too slow for real time imaging; however, it is 

possible to reduce the pixel size to increase the speed of operation for real time 

imaging applications. 
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IV. CONCLUSION 

In this thesis a set of bi-material THz sensors with integrated metamaterial 

absorbers was characterized. The characterization includes both the structural 

properties as well as figures of merit. The measured figures of merit include 

thermal time constant, responsivity, speed of operation and minimum detectable 

THz power.  

The measurements showed a responsivity of up to 0.6 deg/μW and time 

constants as low as 113 ms. Moreover, the minimum detectable power was 

measured to be as low as 10 nW. It is possible to scale the existing bi-material 

sensor designs to increase the speed of operation needed for real time THz 

imaging. For example, decreasing the absorbing area by 10 to 20%, increasing 

the length of the bi-material legs by 10 to 15% and decreasing of the thermal 

insulating anchor size by 50 to 60%, is estimated to improve the speed of 

operation while maintaining the responsivity at the same level. The square size of 

the element should remain the same, as well as the materials used for matching 

the 3.8 THz QCL frequency. 

In future research it is important to make improvements to the 

experimental setup, such as the use of a larger vacuum chamber to provide 

better access to the sensors and reduction of mechanical vibrations generated by 

the cryostat and vacuum pumps. In addition, the optical readout system needs to 

be optimized using a stable light source and low noise electronics. These 

enhancements will allow the determination of intrinsic noise of detectors and high 

sensitive imaging. 
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