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Magnitude information is often correlated in the external
world, providing complementary information about the
environment. As if to reflect this relationship, the perceptions
of different magnitudes (e.g. time and numerosity) are
known to influence one another. Recent studies suggest that
such magnitude interaction is similar to cue integration, such
as multisensory integration. Here, we tested whether human
observers could integrate the magnitudes of two quantities
with distinct physical units (i.e. time and numerosity) as
abstract magnitude information. The participants compared
the magnitudes of two visual stimuli based on time,
numerosity, or both. Consistent with the predictions of the
maximum-likelihood estimation model, the participants
integrated time and numerosity in a near-optimal manner;
the weight of each dimension was proportional to their
relative reliability, and the integrated estimate was more
reliable than either the time or numerosity estimate.
Furthermore, the integration approached a statistical
optimum as the temporal discrepancy of the acquisition of
each piece of information became smaller. These results
suggest that magnitude interaction arises through a similar
computational mechanism to cue integration. They are also
consistent with the idea that different magnitudes are
processed by a generalized magnitude system.
1. Introduction
Magnitude information, such as time, space and numbers, is
essential for interacting with the environment. We routinely make
conscious and unconscious judgements about how long an event
lasted, how large an object is, and how many objects there are.
Moreover, different magnitude dimensions are often correlated in
the external world and thus provide complementary information
about the environment. As if to reflect this relationship in the
external world, ample evidence shows that the perception of
magnitude in one dimension is influenced by magnitudes in
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other dimensions. For example, more numerous stimuli are perceived to last longer than less numerous

ones, while longer-lasting stimuli are perceived to be more numerous [1–4]. In addition to these
behavioural interactions between magnitudes, neuroimaging studies have shown that the processing of
different magnitudes activates partially overlapping brain regions [5–9]. These findings converge into a
prevailing theory: ‘A theory of Magnitude’ (ATOM; [10]). ATOM proposes the presence of a common
magnitude-processing system that is shared across different dimensions located mainly in the parietal
cortex [10,11].

Although ATOM conceptually accounts for the behavioural interactions between magnitudes (often
referred to as ‘magnitude interaction’), its predictions remain ambiguous and therefore cannot explain
the systematic differences under different experimental conditions. For example, previous studies
suggest that the size and directionality of the magnitude interaction depend on the range of the
magnitude [2], the time course of the stimulus [3,12,13], and the reliability of each dimension [14–16].
Specifically, the perception of space/numerosity is affected by time when space/numerosity
information dynamically accumulates over time [3,12,13,15]; the perception of time is influenced by
space/numerosity when the reliability (i.e. precision) of space/numerosity is higher than that of time,
but it is less affected when the reliability of the two pieces of information is comparable [14–16].
Therefore, to explain these observations and further elucidate the mechanism of magnitude
interaction, a different framework that enables detailed quantitative predictions is required.

Interestingly, a recent study suggests that magnitude interaction reflects an active ‘binding’
mechanism that integrates different magnitudes of the same stimulus to achieve a unified magnitude
representation [17], rather than a contextual interference mechanism as was conventionally assumed
[5,10,18,19]. This raises the possibility that magnitude interaction (also referred to as ‘magnitude
integration’ [3,17]) is considered one form of ‘cue integration’ [20–22]. Cue integration typically occurs
when a single physical quantity is specified using multiple features that provide redundant
information. For example, in a classical ‘ventriloquist effect’, the perception of the auditory spatial
location is dragged by the nearby visual information [23]. This effect is thought to reflect the brain’s
function of integrating redundant audiovisual information to obtain a single estimate of a spatial
location [24,25].

It has been shown that cue integration, including the ventriloquist effect, can be successfully
explained by computational models based on a Bayesian framework [24,26–28]. A well-known model
often tested as a benchmark for cue integration is the maximum-likelihood estimation (MLE) model
[24,26]. Assuming that the estimates from each cue are unbiased and their noises (i.e. variability) are
normally distributed and independent of one another, the MLE model makes two important
quantitative predictions: first, the integrated estimate (Ŝ12) is a weighted average of two single
estimates (Ŝ1 and Ŝ2),

Ŝ12 ¼ w1Ŝ1 þ w2Ŝ2,

with the weights for cues 1 and 2 (w1 and w2) given in proportion to their relative reliabilities:

w1 ¼ 1=s2
1

1=s2
1 þ 1=s2

2
¼ s2

2

s2
1 þ s2

2

and

w2 ¼ 1� w1,

where s2
1 and s2

2 indicate the variances (i.e. the inverse of the reliability) associated with cues 1 and 2,
respectively. Second, the variance of the integrated estimate (s2

12) is lower than that of either of the
single estimates:

s2
12 ¼

s2
1s

2
2

s2
1 þ s2

2
� min(s2

1,s
2
2):

Therefore, the integrated estimate has the lowest possible variance. In this sense, the integration
following the MLE model is statistically optimal.

As discussed above, magnitude interaction is qualitatively consistent with the MLE prediction that
each piece of information is integrated based on its reliability [14–18]. However, no study has directly
tested whether the quantitative predictions of the MLE model apply to magnitude integration, where
two quantities that have distinct physical units (e.g. time and numerosity) are integrated as abstract
magnitude information.
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In the present study, we test the hypothesis that the brain integrates the magnitude information of

different dimensions according to the MLE model to achieve a unified magnitude representation of
the stimulus. We develop a task in which participants are asked to integrate the magnitude
information of time and numerosity. In the task, participants compare the magnitude of two visual
stimuli based on only time, only numerosity or both time and numerosity. We manipulate the
reliability of the numerosity information by changing the contrast of a set of dots. Moreover, based on
a previous report that asymmetries in the time course of a stimulus affect the interaction of time and
numerosity [3], we examine the effect of the time course of a stimulus in separate experiments. In
Experiment 1, we present the dots (i.e. numerosity) at the onset of the stimulus; in Experiment 2, we
present the dots near the offset of the stimulus.
rnal/rsos
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2. Methods
2.1. Participants
A total of 42 volunteers (13 females; mean age 20.4, range 18–27 years) participated in the study (21
participants for each of Experiments 1 and 2). All the participants reported normal or corrected-to-
normal vision and no history of neurologic or psychiatric conditions. They provided written informed
consent before the experiment and received monetary compensation for their participation. The
experimental protocol was approved by the Institutional Review Board of the University of Tokyo.

According to a tutorial on cue integration research, 10 participants should be sufficient to test the
MLE model [22]. However, because previous studies on magnitude integration have tested
approximately 15–20 participants [2,3,17], we recruited 21 participants for each of Experiments 1 and 2.

2.2. Apparatus and stimuli
The experiments were conducted in a dark room. The stimuli were generated using Psychophysics
Toolbox-3 [29] and MATLAB (R2021a; The MathWorks, Inc.) and were presented on a 23.6-inch LCD
monitor with 1920 × 1080 resolution at a refresh rate of 120 Hz (VIEWPixx 3D; VPixx Technologies, Inc.).
Participants were seated in a chair and their heads fixed on a chin rest 75 cm away from the monitor.

All stimuli were presented on a grey background. Stimuli comprised a set of dots presented on a
dynamic random-noise patch. A black fixation cross (0.144° radius) was always presented at the centre
of the screen except during the response period. The dynamic random-noise patch comprised a circle
(8.450° diameter) and was updated every frame by generating random numbers from a normal
distribution. The mean luminance was equal to that of the background, and the contrast was constant
under all conditions. Each set of dots contained equal proportions of black and white dots randomly
placed in a virtual circle. Each dot had a 0.051° radius. The minimum inter-dot and dot-fixation
distance was 1.5 times the radius of a single dot, such that each dot did not overlap with any other
dot or a fixation cross. The Michelson contrast of the dots was either 100% (high) or 48% (low) in
Experiment 1 and either 100% (high) or 55% (low) in Experiment 2 (see ‘Conditions’). The mean
luminance of the dots was equal to that of the background. The radius of the virtual circle on which
the dots were presented was varied in each trial to attenuate the correlation between the numerosity
and non-numerical properties, such as the convex hull and density; it was either large (4.200° radius)
or small (3.437° radius) for the comparison stimulus, while it was fixed at the average value of large
and small for the standard stimulus. An example of stimuli is shown in figure 1.

2.3. Conditions
Experiments were conducted in a two-interval forced-choice (2IFC) paradigm. In each trial, participants
were sequentially presented with two visual stimuli (i.e. standard and comparison) each of which
comprised a set of dots placed on a dynamic random-noise patch. Under all conditions, the
presentation duration for the dynamic random-noise patch defined the time dimension of the stimulus,
while the number of dots defined the numerosity dimension. Participants were asked to compare the
magnitude of the first and second stimuli based on time alone (T), numerosity alone (N), or both time
and numerosity (TN). Specifically, in the time conditions (T), participants indicated whether the noise
patch of the first or second stimulus lasted longer while ignoring the number of dots. In the
numerosity conditions (N), they indicated whether the first or second stimulus comprised more dots
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Figure 1. Schematics of the experiments. (a) Trial structure of the task. Participants were sequentially presented with two visual
stimuli each comprising a set of dots placed on a dynamic random-noise patch, and were asked to compare the magnitudes of the
first and second stimuli based on time (i.e. the presentation duration of the dynamic random-noise patch), numerosity (i.e. the
number of dots), or both time and numerosity. These three types of trials were presented in separate blocks and participants
were informed about what they had to judge before starting each block. The figure depicts an example of a numerosity trial.
The order of standard and comparison stimuli was counterbalanced. (b) An example of contrast manipulation for numerosity
information. The reliability of the numerosity information was manipulated by varying the contrast of the dots in the
numerosity and time-numerosity conditions. The contrast was always high in the time conditions. (c) The time course of a
stimulus in Experiments 1 and 2. In Experiment 1, a set of dots was presented at the stimulus onset. In Experiment 2, a set
of dots was presented 350 ms before the stimulus offset, and its contrast was gradually increased.
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while ignoring the duration of the noise patch. In the bidimensional conditions (TN), they attended to
both the duration of the noise patch and the number of dots and indicated whether the first or second
stimulus lasted longer and comprised more dots. Note that in the TN conditions, the time and
numerosity of the comparison stimulus were perfectly correlated (r = 1), such that participants could
integrate the two dimensions without confusion (see below). Figure 1 shows a visual depiction of a trial.

The standard stimulus lasted 600 ms (time dimension) and comprised 24 dots (numerosity dimension)
in the unidimensional conditions (T, N). By contrast, there were three types of standard stimuli
depending on the magnitudes of the time and numerosity in the TN conditions: Δ =−1, Δ = 0, and Δ =
1, where Δ indicates that time was 600 ms multiplied by 1.1Δ while numerosity was 24 dots multiplied
by 1.1−Δ. Therefore, Δ =−1 means that time was 600 × 1.1−1 ms while numerosity was 24 × 1.11 dots; Δ =
1 means that time was 600 × 1.11 ms while numerosity was 24 × 1.1−1 dots; and Δ = 0 means that time
was 600 ms while numerosity was 24 dots. The reason for setting the standard stimuli with different Δ
in the TN conditions was to estimate the empirical weights. Here, Δ can be considered as a ‘shift’ of
time and numerosity from the standard magnitude of 600 ms and 24 dots, respectively. For example,
when Δ =−1, the standard stimulus has time of 542 ms and numerosity of 26 dots, which can be
thought that time and numerosity are ‘shifted’ 1.1−1 and 1.11 times from the standard magnitude,
respectively. These ‘shifts’ allow the estimation of empirical numerosity weights from the observed
PSEs when the standard stimulus is Δ =−1, Δ = 0 and Δ = 1 (see ‘Data analysis’).

The comparison stimulus took nine possible magnitude values, defined as the 600 ms and 24 dots
multiplied by 1.1−5, 1.1−3, 1.1−2, 1.1−1, 1.10, 1.11, 1.12, 1.13 and 1.15, resulting in durations of 375, 450,
500, 542, 600, 658, 725, 800 and 966 ms (time dimension) and numerosities of 15, 18, 20, 22, 24, 26, 29,
32 and 39 dots (numerosity dimension). This manipulation was necessary to make the magnitudes of
time and numerosity comparable on a logarithmic scale (these values were rounded off to the nearest
integer, and the durations corresponded to the presented durations calculated from the monitor’s
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refresh rate). In the T conditions, only the time dimension of the comparison stimulus could vary while

numerositywas fixed at the standard magnitude (24 dots); in the N conditions, only numerosity could vary
while time was fixed at the standard magnitude (600 ms). In the TN conditions, both time and numerosity
could vary, but they were perfectly correlated (r = 1). That is, time and numerosity were equivalent in
magnitude relative to the standard magnitude of 600 ms and 24 dots, respectively. This manipulation
was a prerequisite for the MLE modelling and was based on the assumption that an ideal observer
would weight time and numerosity equally, depending only on their relative reliability, when two
magnitudes are perfectly correlated [21,28,30].

To manipulate the reliability of the numerosity information, we used two levels of dot contrast, high and
low, in the N and TN conditions (see ‘Apparatus and stimuli’ and figure 1b). The dot contrast was fixed at the
high value in the T conditions. Within trials, standard and comparison stimuli had the same contrast.

To examine the effect of the time course of a stimulus on magnitude integration, we conducted two
experiments. In Experiment 1, a set of dots was always presented from the stimulus onset to the stimulus
offset. In Experiment 2, a set of dots was presented 350 ms before the stimulus offset, gradually
increasing its contrast from 0% over 200 ms, reaching the specified contrast (i.e. high or low) 150 ms
before the stimulus offset (figure 1c). The initial ramp-up period of 200 ms was introduced to prevent
the abrupt appearance of the dots because our preliminary experiment suggested that such a short
presentation of the dots for 150 ms may mask the perception of time and interfere with the time-
numerosity integration. Thus, Experiments 1 and 2 differed in terms of how much of a gap there was
between when time and numerosity information became available; time was available only at the offset,
numerosity was always available from the onset in Experiment 1, while numerosity also became
available near the offset in Experiment 2. In other words, the gap in the timing for when time and
numerosity information became available was smaller in Experiment 2 than in Experiment 1.

2.4. Procedure
The conditions (T, N and TN) were presented in separate blocks. Before each block, participants were
cued on whether they had to make judgements about time, numerosity, or both time and numerosity. In
each trial, the standard and comparison stimuli were presented with an inter-stimulus interval (ISI)
sampled from a uniform distribution between 450 and 550 ms. The order of the standard and
comparison stimuli was counterbalanced across trials. Participants were instructed to press M on a
conventional keyboard if they perceived the second stimulus as larger in magnitude than the first
stimulus, and C if they perceived the first stimulus as larger in magnitude than the second stimulus.
After the response, the next trial started with an inter-trial interval sampled from a uniform
distribution between 500 and 600 ms. In the actual experiment, no feedback was provided regarding
the correct or incorrect responses.

Each experiment (i.e. Experiments 1 and 2) was conducted in two sessions on two different days.
Each session comprised 21 blocks. These 21 blocks were further divided into three sub-blocks each of
which comprised one block of T trials, two blocks of N trials, and four blocks of TN trials. The order
of the blocks within the sub-blocks was randomized. Each block comprised either 36 trials (T and N
blocks) or 54 trials (TN blocks). The two levels of dot contrast (high and low) and three types of
standard stimuli (Δ =−1, Δ = 0 and Δ = 1) were randomly presented within the same block.
Specifically, each T block comprised 9 (comparison magnitude) × 4 (repetition) trials, each N block
comprised 9 (comparison magnitude) × 2 (dot contrast, high and low) × 2 (repetition) trials and each
TN block comprised 9 (comparison magnitude) × 2 (dot contrast, high and low) × 3 (standard stimuli,
Δ =−1, Δ = 0, and Δ = 1) trials. Thus, every combination of the different conditions was repeated 24
times. In total, 1944 trials were performed per participant in each experiment.

To familiarize the participants with the task and to allow them to learn that time and numerosity were
perfectly correlated in the TN condition, each experimental session for both Experiments 1 and 2 was
preceded by a short practice session. The practice session comprised four blocks of T, N and two TN
conditions with the standard stimulus of Δ = 0. After every response, the participants received feedback,
i.e. the fixation cross was changed to green/red for 200 ms to indicate a correct/incorrect response.

2.5. Data analysis
For each participant and every 18 conditions, the proportion of trials for which the comparison stimulus
was judged as larger was calculated as a function of the comparison magnitude. These data were fitted to
a cumulative normal distribution to obtain a psychometric function using Palamedes toolbox 1.10.11 [31].
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From the fitted psychometric functions, the point of subjective equality (PSE) and just-noticeable

difference (JND) were obtained. The PSE corresponded to the magnitude at which the probability of
‘larger’ responses reached 50%. The JND was defined as the inverse of the slope parameter (JND = 1/
β) of the fitted function. The empirical variance, s2

emp, was then computed using the following
formula for each condition [22]:

s2
emp ¼ JND2

2
:

In the main analysis, we used the empirical variances obtained from the unidimensional conditions
(T and N) to determine the predicted weights and variances under the bidimensional conditions (TN).
The predicted numerosity weights, WN,pred, were computed as follows:

WN, pred ¼ s2
T,emp

s2
T,emp þ s2

N,emp
,

where s2
T,emp and s2

N,emp were empirical variances under the T and N conditions, respectively. Note that
we did not analyse the predicted and empirical time weights, WT, as they are determined by WN, such
that WT = 1−WN. The predicted bidimensional variances, s2

TN,pred, were computed according to the
following formula:

s2
TN,pred ¼ s2

T,emps
2
N,emp

s2
T,emp þ s2

N,emp
:

The empirical numerosity weights were calculated from the PSEs obtained from the bidimensional
conditions according to the method used in [32]. First, the PSEs were measured for the standard
stimuli of Δ =−1, Δ = 0, and Δ = 1, and were plotted as a function of Δ. A regression line was then
fitted to the data, and the empirical numerosity weights, WN,emp, were computed as follows:

WN,emp ¼ 1� slope
2

,

where slope was the estimated slope of the regression line [32]. Finally, the empirical bidimensional
variances in the TN conditions, s2

TN,emp, were defined as the average of the empirical variances for
Δ =−1, Δ = 0 and Δ = 1 for each dot-contrast level [24]. Note that in the subsequent analysis, the
standard deviation (σ) rather than the variance was used as an index of the variability parameter.

For statistical testing, a two-way repeated-measures ANOVA was conducted on the weights and
variability, with prediction (predicted and empirical) and contrast (high and low) as within-subjects
factors. For each dot-contrast level, the predicted and empirical weights/variability were compared
using two-sided paired-sample t-tests. Moreover, for each dot-contrast level, the empirical
bidimensional variability (σTN,emp) was compared with the empirical unidimensional variability of the
most reliable dimension (σT,emp or σN,emp) using two-sided paired-sample t-tests. Additionally, we
calculated the correlation coefficients between the predicted and empirical weights/variability. These
statistical tests were further assessed by evaluating the null hypothesis and the strength of the
evidence by computing Bayes factors using JASP [33]. BF10 represents evidence in favour of
the alternative hypothesis that there is a difference/correlation. BF10 > 3 indicates support for the
alternative hypothesis, whereas BF10 < 1/3 indicates support for the null hypothesis that there is no
difference/correlation.
3. Results
3.1. Experiment 1
Figure 2a shows the across-participants mean of the psychometric function in the unidimensional (T, N)
and bidimensional (TN) conditions. As expected, the slope of the psychometric function for the
unidimensional numerosity conditions was flatter when the dot contrast was low than when it was
high, indicating that the reliability of the numerosity information indeed varied with the dot contrast.
In the low-contrast TN condition, the psychometric functions were almost invariant with Δ, and they
overlapped. By contrast, the psychometric functions for the high-contrast TN condition shifted
according to the value of Δ. Specifically, the psychometric function shifted to the left when Δ = 1 and
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Figure 2. Psychometric functions, numerosity weights, and variability in Experiment 1. (a) The across-participants mean of the
psychometric function in the unidimensional (time, numerosity) and bidimensional (time-numerosity) conditions separately for each
contrast level and Δ. The Δ in the bidimensional conditions indicates that time for the standard stimulus was 600 ms multiplied
by 1.1Δ while numerosity was 24 dots multiplied by 1.1−Δ (see the ‘Methods’ section). The proportion of trials for which the
comparison stimulus was judged as larger in magnitude was plotted as a function of the comparison magnitude. (b) The across-
participants mean of the predicted (circles) and empirical (triangles) numerosity weights. Each data point represents an individual
participant. (c) Individual predicted and empirical numerosity weights. Symbols indicate contrast levels: high (triangles) and low
(circles). The solid line indicates the linear fit of the empirical weights to the predicted weights. The shaded region indicates the
95% confidence interval for the linear fit. (d ) The across-participants mean of the predicted variability (circles) and empirical
variability in the bidimensional (triangles), time (diamonds) and numerosity (squares) conditions. Each data point represents an
individual participant. (e) Individual predicted and empirical variability. Symbols indicate contrast levels: high (triangles) and low
(circles). The solid line indicates the linear fit of the empirical variability to the predicted variability. The shaded region indicates
the 95% confidence interval for the linear fit. Error bars indicate the standard error of the mean (s.e.m.).
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shifted to the right when Δ =−1 relative to when Δ = 0. This trend suggests that the PSEs were pulled
toward the magnitude of the numerosity dimension, indicating that the weight of numerosity was
greater than that of time. Based on the PSEs and JNDs obtained from these psychometric functions,
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we computed the predicted weights and variability according to the MLE model and compared them

with the empirical values (see ‘Data analysis’).

3.1.1. Weights

Figure 2b shows the predicted and empirical numerosity weights. A repeated-measures ANOVA revealed
significant main effects for prediction and for contrast: F1, 20 = 13.28, p = 0.002, BF10 = 71.77, h2

p ¼ 0:399;
and F1, 20 = 72.99, p < 0.001, BF10 > 10000, h2

p ¼ 0:785, respectively. There was no significant interaction:
F1, 20 = 0.61, p = 0.445, BF10 = 1.48, h2

p ¼ 0:030. As expected, numerosity weights were larger when the
contrast was higher. However, the empirical numerosity weights were larger than the predicted
weights when the contrast was low: t20 = 3.39, p = 0.003, BF10 = 14.37, d = 0.74; however, they were not
significantly different when the contrast was high: t20 = 2.03, p = 0.056, BF10 = 1.25, d = 0.44. Moreover,
there was a significant correlation between the predicted and empirical numerosity weights: r = 0.692,
p < 0.001, BF10 > 10000 (figure 2c).

3.1.2. Variability

Figure 2d shows the predicted and empirical variability (σ) in the bidimensional conditions, along with
the variability in the unidimensional conditions. A repeated-measures ANOVA revealed significant main
effects for prediction and for contrast: F1, 20 = 63.26, p < 0.001, BF10 > 10000, h2

p ¼ 0:760; and F1, 20 = 49.99,
p < 0.001, BF10 > 10000, h2

p ¼ 0:714, respectively, and a significant interaction: F1, 20 = 6.00, p = 0.024,
BF10 = 3.40, h2

p ¼ 0:231. As expected, the variability in the N and TN conditions was smaller when the
contrast was higher. However, the empirical variability was systematically larger than predicted. The
deviation was more profound when the contrast was high than when it was low: t20 = 7.73, p < 0.001,
BF10 > 10000, d = 1.69 (high contrast), and t20 = 6.58, p < 0.001, BF10 = 9258.65, d = 1.44 (low contrast).
Moreover, the bidimensional variability was not smaller than the smallest variability in the
unidimensional conditions; when the contrast was low, the bidimensional variability was not
significantly different from the variability of time alone: t20 = 0.01, p = 0.996, BF10 = 0.23, d = 0.00; and
when the contrast was high, it was not significantly different from the variability of numerosity alone:
t20 = 2.03, p = 0.055, BF10 = 1.26, d = 0.44. Nevertheless, there was a significant correlation between the
predicted and empirical variabilities: r = 0.862, p < 0.001, BF10 > 10000 (figure 2e).

These results suggest that the MLE predictions are partially supported for both weights and
variability. However, the numerosity weights and bidimensional variability were systematically larger
than predicted. Furthermore, we found no evidence to support a variance reduction due to
integration, which was the critical prediction of the MLE model.

3.2. Experiment 2
Figure 3a illustrates the across-participants average of the psychometric function. As in Experiment 1, the
psychometric functions for the unidimensional numerosity conditions indicated that the reliability of the
numerosity information varied with the dot contrast. In the low-contrast TN condition, the psychometric
functions shifted according to the value of Δ. The psychometric function shifted to the right when Δ = 1
and shifted to the left when Δ =−1 relative to when Δ = 0. This trend suggests that the PSEs were pulled
toward the magnitude of the time dimension, indicating that the weight of time was greater than that of
numerosity. A smaller but similar trend was observed in the high-contrast TN condition. Based on the
PSEs and JNDs obtained from these psychometric functions, we computed the predicted weights and
variability and compared them with the empirical values.

3.2.1. Weights

Figure 3b shows the predicted and empirical numerosity weights. A repeated-measures ANOVA revealed
a significant main effect for contrast: F1, 20 = 46.20, p < 0.001, BF10 > 10 000, h2

p ¼ 0:698. In support of the
MLE model, there was no main effect for prediction: F1, 20 = 0.01, p = 0.918, BF10 = 0.27, h2

p ¼ 0:001; neither
was there a main effect for interaction: F1, 20 = 3.65, p = 0.071, BF10 = 0.59, h2

p ¼ 0:154. Confirming these
observations, we found no evidence of a difference between the empirical and predicted numerosity
weights: t20 = 1.49, p = 0.152, BF10 = 0.59, d = 0.36 (high contrast) and t20 = 0.85, p = 0.403, BF10 = 0.32,
d = 0.19 (low contrast). Moreover, there was a significant correlation between the predicted and
empirical numerosity weights: r = 0.476, p = 0.001, BF10 = 25.71 (figure 3c).
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3.2.2. Variability

Figure 3d shows the predicted and empirical variabilities (σ). A repeated-measures ANOVA revealed
significant main effects for prediction and for contrast: F1, 20 = 34.04, p < 0.001, BF10 > 10000, h2

p ¼ 0:630;
and F1, 20 = 66.53, p < 0.001, BF10 > 10000, h2

p ¼ 0:769, respectively. There was no significant interaction:
F1, 20 = 1.94, p = 0.179, BF10 = 1.69, h2

p ¼ 0:088. As in Experiment 1, the empirical variability was
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systematically larger than the predicted variability: t20 = 4.98, p < 0.001, BF10 = 366.72, d = 1.09 (high

contrast) and t20 = 5.41, p < 0.001, BF10 = 891.48, d = 1.18 (low contrast). Importantly, the bidimensional
variability was smaller than either of the unidimensional variabilities when the contrast was high:
t20 = 3.82, p = 0.001, BF10 = 33.70, d = 0.83 (versus numerosity) and t20 = 3.69, p = 0.001, BF10 = 26.27, d =
0.81 (versus time); however, it was not different from the variability of time alone when the contrast
was low: t20 = 0.30, p = 0.769, BF10 = 0.24, d = 0.07. Moreover, there was a significant correlation
between the predicted and empirical variabilities: r = 0.753, p < 0.001, BF10 > 10000 (figure 3e).

The bidimensional variability was not different from the variability of time alone in the low-contrast
condition may be due to a small predicted improvement in variability; the MLE model states that the
amount of improvement is determined by the degree to which the two cues differ in reliability. When
the two cues are equally reliable, the greatest improvement is predicted. However, when one cue is
clearly more reliable than the other, the predicted improvement is small, even if the two cues are
optimally integrated. In our data, this explains why the predicted reduction in variability relative to
time alone was smaller in the low-contrast condition than in the high-contrast condition (figure 3d ). It
is, therefore, difficult to confirm whether or not the integration occurred in the low-contrast condition.
On the other hand, variance reduction during the high-contrast condition indeed suggests integration.

In summary, the results demonstrated that the empirical weights were consistent with the MLE
predictions. However, the empirical variability was systematically larger than the predicted variability.
Most importantly, the variability in the bidimensional condition was smaller than that in the time and
numerosity conditions, supporting the MLE prediction of a variance reduction due to integration.
30153
4. Discussion
This study aimed to test whether the integration of different magnitude information was statistically
optimal, as predicted by the MLE model. As a test case, we examined the integration of time and
numerosity. We found the following results from two experiments: first, when there was a large
discrepancy in the timing of the acquisition of the time and numerosity information, numerosity was
afforded more weight than predicted; the bidimensional variability was higher than predicted and
comparable to the most reliable unidimensional variability. Second, as the discrepancy in the timing
became smaller, the numerosity weights approached the MLE predictions; the bidimensional
variability remained higher than predicted, yet smaller than the most reliable unidimensional variability.

Concerning experimental manipulation, Experiments 1 and 2 differed only in the time course of the
stimulus. Therefore, we inferred that the lack of variance reduction from the unidimensional variability in
Experiment 1 was likely due to a large discrepancy in the timing at which each piece of information
became available. However, one might think that this does not explain why the numerosity weights
were systematically larger than predicted in Experiment 1. Two possible explanations may
accommodate the overweighting of numerosity: First, a bias toward numerosity may have occurred
because numerosity was more salient than time due to the difference in the available duration (i.e.
numerosity was available earlier and for a longer period than time). Second, observers may have
assumed a prior over the reliability of numerosity information, based on a lifelong experience, that
numerosity is a more reliable dimension than time when judging magnitude information [34].
Although we cannot rule out the latter possibility, the former seems more plausible as it
parsimoniously accounts for the difference between Experiments 1 and 2 in terms of the
bidimensional variability as well as the numerosity weights. In other words, the overweighting of
numerosity and the lack of variance reduction in Experiment 1 may both be attributed to the earlier
availability of numerosity information compared to time information. Relatedly, in Experiment 2, we
included a 200 ms ramp-up period before the 150 ms presentation of the dots to prevent the abrupt
appearance of the dots. While it is unlikely that the numerosity information was processed
throughout this entire 350 ms, it might be the case that the numerosity processing had already
completed before the stimulus offset even in Experiment 2, given that the numerosity processing
completes around 150–250 ms after stimulus onset [35,36]. This could explain why the empirical
variability remained higher than the predicted variability in Experiment 2. Further work is needed to
assess whether limiting the presentation duration more would alter the efficacy of the magnitude
integration. For example, restricting the presentation duration to less than 150 ms could hinder the
processing of numerical magnitude [36] and discourage its integration with the other dimension.

Collectively, the present results suggest that human observers can integrate different magnitude
information in a near-optimal manner. Previously, the MLE model has accounted for the integration of
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multiple cues that provide redundant information about a single physical quantity, such as the visual-

haptic integration of length [26], audiovisual integration of spatial location [24], and integration of
various visual cues to depth [37,38]. By contrast, the current study demonstrates that the two quantities
with different physical units, time and numerosity, are near-optimally integrated as abstract magnitude
information. Furthermore, the contrasting results of our two experiments suggest that matching the
availability of each piece of information is crucial for optimal magnitude integration. Interestingly,
spatial–temporal discrepancies in the acquisition of information have been shown to affect the optimal
integration of single physical quantities such as spatial location and orientation [39–41]. For example,
Plaisier et al. [41] reported that, in the visual-haptic integration of surface orientation, optimal integration
breaks down when there is a discrepancy between the visual and haptic exploration modes (i.e. the
instantaneous perception of the surface orientation by touching/seeing two spots versus sequential
perception by tracing the surface). This suggests that the time-numerosity interaction may result from a
similar computational mechanism to the multisensory integration of single physical quantities.

In contrast to the multisensory integration of a single physical quantity, one might consider the
integration of different magnitude dimensions to be outside the scope of the application of the MLE
model. However, even in the audiovisual integration of spatial location, visual and auditory signals
are assumed to be transformed into a common body-coordinate system [21]. This is conceptually
similar to assuming that time and numerosity are transformed into a common magnitude
representation [10]. Therefore, we believe it would be reasonable to apply the MLE model to the
integration of multiple magnitude dimensions that have distinct physical units.

However, it should be noted that the near-optimal integration observed in our study does not
necessarily mean that the magnitude integration shares a common mechanism with the cue
integration of other features. In particular, the present study cannot determine whether the magnitude
integration takes place at the perceptual or at the post-perceptual decision level. Still, our results
indicate that the magnitude integration is affected by the timing at which each piece of information is
acquired, suggesting that it could not be explained solely by the decision-level mechanisms, such as
pure cognitive reasoning. Moreover, considering that magnitude interaction may occur not only at the
decision level but also at the perceptual level [17,42,43], it is possible that magnitude integration
partly involves perception-level mechanisms.

The present study employed a distinct experimental paradigm compared to those typically used to test
magnitude interaction. In most previous studies, participants compared the magnitude of a specific
dimension while the other dimension was independently varied. In the present study, however, the
magnitudes of the two dimensions were perfectly correlated, and the participants were explicitly asked
to integrate them. Although essential for the MLE modelling, these manipulations preclude us from
assessing the cross-dimensional magnitude interaction bias (i.e. a bias on one dimension according to
the other). Moreover, these manipulations were somewhat artificial in light of the relationship between
magnitudes in the real world; in reality, different magnitudes do not necessarily correlate, and there are
situations where integration may not be appropriate. Therefore, the generalizability of our results may
be limited to scenarios where two magnitudes are redundant and must be combined.

Nevertheless, our findings provide further insight into the mechanism of the cross-dimensional
magnitude interaction. Separate studies have hypothesized that the direction and the size of
magnitude interaction are affected by the processing time course [3,12] and reliability [14,15,34] of
each piece of information. However, the processing time course and reliability have not been
independently manipulated within a single study, leaving uncertain the contribution of each factor to
the interaction. For example, Togoli et al. [3] reported that a bidirectional interaction between time and
numerosity occurred when numerosity information dynamically unfolded over time. While this result
suggests that the time course of the stimulus and the neural processing dynamics it entails are
important factors, dynamically unfolding numerosity information was accompanied by reduced
reliability, and thus the results could also be explained by the reliability of the numerosity
information. Meanwhile, Cai & Wang [15] proposed that the crucial factor for magnitude interaction
is the relative representational noise of each dimension (i.e. reliability). However, their experiments
used dynamic stimuli to manipulate the reliability of length information, confounded by the time
course of the stimulus processing. In contrast to these studies, our study independently manipulated
the stimulus’s reliability and time course by varying the dots’ contrast and the timing at which
numerosity information became available. We found that numerosity weights flexibly varied with
reliability (i.e. dot contrast), in accord with studies claiming the influence of reliability on magnitude
interaction [14,15,34]. Moreover, integration was affected by the timing at which each piece of
information was acquired, showing the influence of the time course of the stimulus processing [3,12].
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Taken together, our findings suggest that both the reliability of each dimension and the time course of the

stimulus processing potentially contribute to the cross-dimensional magnitude interaction. Further work
is needed to test this prediction by examining magnitude interaction bias while independently
manipulating the reliability and stimulus time course.

Our results for the near-optimal integration seem to align with the recent hypothesis that magnitude
interaction reflects active magnitude binding rather than passive contextual interference between
dimensions [17]. Togoli et al. [17] reported that a congruent integration effect was observed when time
and numerosity belonged to the same stimulus, whereas an opposite, ‘repulsive’ effect was observed
when they were conveyed by distinct stimuli. Regarding the latter repulsive effect, the authors
postulate that it may reflect the brain’s ability to disambiguate the magnitude of time and numerosity
that are in strict spatial proximity but belong to distinct stimuli. Interestingly, a similar phenomenon
has been reported in multisensory cue integration. Wallace et al. [44] reported that in the audiovisual
perception of spatial location, the localization of an auditory target ‘repulses away’ from the location
of the task-irrelevant visual stimulus when the spatial disparity between the audiovisual cues is
sufficiently small but they are perceived as distinct events. This finding was later replicated and
described well by the Bayesian causal inference model of multisensory cue integration, an extension of
the MLE model used here [27,45,46]. Therefore, a promising direction for future work may be
leveraging these advances in computational models of cue integration to delineate the mechanism of
the magnitude interaction effect. Indeed, similar Bayesian models have already been proposed to
account for spatio-temporal interferences [18,47,48]. Connecting these Bayesian models with our
findings of the near-optimal magnitude integration would also be an interesting future direction.

Evidence of magnitude interaction has been accumulated not only between perceptions of different
magnitudes but also between perception and action [49–51]. For example, Lindemann et al. [50]
reported that perceived numerical magnitude affects the size of reaching movements (i.e. grip
aperture). It is unclear whether these cross-dimensional magnitude interactions between perception
and action can be explained by the reliability-based integration model, such as the MLE model.
Meanwhile, sensorimotor integration in time perception has been well reported [52–55]. In particular,
it has been suggested that time perception is closely related to the motor system, and some studies
reported that sensorimotor integration of temporal information follows the reliability-based integration
model [52,54]. Given the close link between time and other magnitude dimensions, it is conceivable
that the cross-dimensional magnitude interaction between perception and action could also follow the
reliability-based integration. This possibility awaits further testing.

Regarding the existing theory, the present results support the basic idea of ATOM [10] that different
magnitude information is processed by a common magnitude system, which subsequently contributes to
efficient motor output [11]. However, while the MLE model assumes independence of the noise associated
with each piece of information, ATOM suggests that the encoding mechanism is partially shared across
different magnitude dimensions [10,11]. Since these two assumptions are unlikely to be simultaneously
satisfied, further theoretical development may require a modification of either model. Recently, it has been
proposed that rather than absolute magnitudes, such as a single length and duration, relative magnitudes
(i.e. the magnitude of the relationship between two absolute magnitudes, known as ratios) are processed
by a common ratio processing mechanism [56]. For example, a recent behavioural study suggests that
temporal and spatial ratios are processed by a domain-general ratio processing system [57]. Single-cell
recordings in non-human primates and fMRI studies in humans also indicate the presence of ratio-
selective neurons in the prefrontal and parietal cortex, regions often associated with the processing of
absolute magnitudes [58,59]. By contrast, behavioural studies on cross-dimensional adaptation between
space, time and numerosity found null or asymmetrical effects, indicating (partially) separate encoding
mechanisms for different magnitudes [60–62]. Therefore, a modified view of ATOM might be that
absolute magnitudes are initially encoded by (partially) separate mechanisms but are transformed into
abstract relative magnitudes (i.e. ratios) by a generalized ratio processing system in later processing stages
[63,64]. Assuming this view, the integration of magnitudes between dimensions with distinct physical
units would occur after they are transformed into abstract ratios. Finally, the present results seem
incompatible with Conceptual Metaphor Theory (CMT), a competing theory of ATOM [65]. CMT states
that magnitudes of abstract dimensions, such as time, are represented by mapping them onto more
concrete dimensions, such as space and number [65–68]. Unlike this prediction, however, the present
results show that time and numerosity are equally weighted during integration according to their relative
reliability if the experimental conditions are strictly controlled (but see [67,68]).

In the present experiments, the empirical variability was consistently higher than that predicted by
the MLE, although there was a variance reduction apparently due to integration. This suggests that
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magnitude integration may not satisfy some of the MLE assumptions [22]. Potential reasons include the

possibilities that (i) there was a mix of subjects/trials that properly integrated the two magnitudes and
subjects/trials that relied only on the reliable dimension without integrating the two magnitudes, (ii) the
MLE model assumption that noises are normally distributed does not hold true for time and numerosity
representations, and (iii) there is a correlation between the noises associated with the time and
numerosity representations. In particular, the third possibility seems consistent with the prediction of
ATOM that there is a partially common encoding mechanism for time and numerosity. Future
research should consider each of these possibilities and further elaborate on the relationship between
the MLE model and ATOM.
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