THE NEWS LETTER

BUREAU OF PUBIGIC ROADS

VOL. 2, NO. 9

JULY, 1927
A. C. ROSE, EDITOR

CONTENTS

Concrete Caibeing Used As Retaning Mall In Connecticut - 1

$$
\text { A Unique Contrivance For Screening And Loading Gravel Surfacing- } 4
$$

Status Of Current Federal Aid Road Work, June 30, $1927 \ldots \ldots$

Comments On The 1927 Meeting of The A.S.T.M. 7

Mileage Of State Rohds Bullt To Grade And Surfaced During 1926. 9

Hawailan Concrete Pavement Bult With Rain Sheds- 10

Status 0 f United States Routes 75 And $85 \ldots \ldots \ldots$

Tests 0 f High-Strength Cements Made In Germany 18

CO：CRETE CRIBBING USED AS RETAINING AALL AA CONEOTIOUT

Contrieuted ey H ．G．Mickelvey of the division of Construgition：

CCNCRETE CRI ヨヨING，AS SHOWiN IN ThE ACCOMPANYING ILLUSTRA－ tion，is useo to a consideraele extent ey the Connecticut State HIIGHWAY COMMIESION AS A SUミSTITUTE FOR THE CUSTONIAFY CONCRETE RETAINING VALL．THE CRIヨEING TYDE OF CONSTRUCTION COSTS LESE，AND IS EASIER TO INSTALL，TMAN A SOLID WALL。 It WAY EE uSEO EITHER TO RETAIN THE EMSANKMENT，OR THE SIDE SLOPE OF A RSAC IN EXCAVATIOV． IF THE CRIEEING IS NOT PLACEO TO A SATISFACTORY HEIGHT WMEN FIGST euilt；it may，later，be adoed to vith little trougle o If the SECTION OF ROAD，ON UHICH the CRIbEING HAS EEEN USED，is AEANDONED；

OR IF FOR ANY REASON，THE CRIBEING IS FOUND TO SE NO LONGER NEEESSAFY； THE TIES AND THE ETFINGERS MAY EE REMOVED AT A MODERATE COST ANE USED Elsevihere．The installation of the cribeing may ee accomplisheo EY A PICK－ANO－SHOVEL CREW。

DETAIL OF HEADER

$$
6^{\prime}-0^{\prime \prime}
$$

$i{ }^{1}$

$$
-2-
$$

MATERIAL FOR ONE HEADER
190 CU FT CLASS"A CONCRETE
83 BS AEINFORGING STEEL.

$4-\frac{3}{8}$
4- $\frac{3}{8}$

—

ELEVATION

$$
\begin{aligned}
& \text { 6-0" } \\
& \text { DETAIL OF STRETCHER } \\
& \text { MATERIAL FOR ONE STRETCHER } \\
& \text { I. } 75 \text { CU FT. CIASS "A CONCRETE. } \\
& \text { B. LBS. REINFORCING STEEL. }
\end{aligned}
$$

-3

The ties and stringers are cast, during the summer, at the Statels repalr shops. They cost aeout \$1.25 each. a sUpply of some le,000 of the geams are malntained in storage to take care of any emergency that may develop.

A UNIQUE CONTRIVANCE FOR SCREENING AND LOADIVG GRAVEL SURFACING Contributed ey G. L. Mclane, Associate highway Engineer of District?

A unique contrivance, for screening and loading gravel, was used IN placing a comparatively small amount of sjrfacing on the TElEgRa3pass Out-off federal-aio project, on the phoenix-yuna, ariz., route. The contrivance, illuetrateg in the accompanying photograph, coveieted

OF A HOPPER, GRIZZLY, AND CHUTE, SUPJORTEC EY SIX WOODEN DOSTS. A DOWER SHOVEL, WHICH HAD RECENTLY COMPLETEO THE HEAVY ROCK CUTE ON TME PROJECT, WAS USEO TO EXCAVATE THE GRAVEL FROM AN ALLUVIAL OEPOSIT, AND pLACE IT IN THE HOPOER. THE GRAVEL OIT, ADJACENT TO THE ELDPE OF A 15 TO 2D-FOOT CUT, V.AS SATISFACTORY, EXCE?T FOR THE LARGE PERCENTAGE OF OVER-SIZE MATEFIAL.

The contractor believed that it woulo be economical

-7-
 (Not for releabe)

COMMENTS ON THE 1927 MEETING OF THE A. S.T. M.

Contrisuted by F. H. Jackson of the Division of Tests

The 30 th annual meeting of the american society for testing Materials, helo at the french Lick Springs Hotel, french LICk, Indiaina, during the week of june 20-25, was a memorable ONE IN SEVERAL RESPECTS. THE MEFTING, IN ADD:TION TO MARKING THE TWENTY-FIFTH ANNIVERSARY OF THE INCORPORATION OF THE SOCIETY, WAS the first ever hei. d hest of the Alleghfny mountalng. for THIS REASON, A CONSIUERABLY LARGER PROPORT:ON OF THE WESTERN MEMbers than usual attendeg the various esseions. Highwiay testing engineers from most of the M:selsgipd: Valley gtates were in attendance. The Bureau whis repregented dy Mesgrs. E. F. Melley, L. W. Teller, F. H. Jackson. and W. J. Emmons, of the division of TESTS.

In addition to the many features of general jnterest to the representatives of the bureau, there were eeveral sessions and many committee meet!ngs dealing with guejects of direct interest to the highway engineer. Of perhafs outstanding interest may ee mentioned the bymposium, on lifielo Control of the Quality of Concretel', presented during the final sesejon. Several papers dealing with particular phases of thls problem were presented by outstanding authorities buch as D. A. Agrams, H. 8. Mattimore, R. B. Young, and R. W. Crum. A very interesting olsCUSBION FOLLOWED THE PREEENTATION OF THE GYMPOBIUM. THIS DIEcussion centered largely on what constituter the most significant strength test for concrete. The sugject is of considerable importance to the highway testing engineer at the present time.

Other segsions of interest included the gessions on CEMENT, ROAD MATERIALS, CORROBION OF METALB, ETC. AT THESE SESSIONS SEVERAL CHANGES IN THE STANDARD METHODS OF TESTING ROAD materials were approved. These ineluded changes in the standaro METHOD OF MAKING THE MECHANICAL ANALYSIS OF GAND, THE STANDARD METHOD OF TEGT FOR THE DISTILLATION OF BITUMINOUB MATERIALE, THE gTANDARD METHOD OF TEST FOR THE UNIT WEIGHT OF AGGREGATEG FOR

CONCRETE, THE BTANDARD METHOD OF MAKING AND STORING CONCAETE IN THE FIELD, THE STANDARD METHOD OF TESTS FOR VOIDG IN FINE AGGREGATE FOR CONCRETE, AND THE STANDARD METHOD OF MAKING THE COMPREBSION TEST OF CONCRETE.

At the meeting of the Committee on Cement, the results of PROJAOLY THE LARGEGT SERIES OF CHECK TESTS OF CEMENT, EVER CONDUCTED IN TH!S COUNTRY, WERE PRESENTED DY MR. H. F. GONNERMAN OF the portlano Cement association. These tests were made by over FORTY TESTING LARORATORIEG, ON THIRTYーTWG BRANDS OF PORTLAND CEMENT, FOR THE PURPOSE OF DETERMINING THE RELATIVE CONCORDANCE OF THE PRESENT STANOARD METHODS OF TEST:NG AS COMPARED TO A PROPOSED METHOD OF TEST, WHICH INVOLVES THE UEE OF NEAT CEMENT OF FLUID CONSISTENCY IN THE FORM OF A 2-INCH CUDE, INSTEAO OF THE STANDARD ORIQUETTE. A DETAILED REPORT OF THE RESULTS OF THESE TESTS WILL OE PUOLISHED IN THE NEAR FUTURE.

ANOTHER MEETING OF INTEREST TO HIGHWAY ENGINEERB WAS THE ORGANIZATION MEETJNG OF THE NEWLY FORMED SUBCOMMITTEE ON SCREENS OF the COMMITTEE ON METHODS OF TESTB. THIS COMMITTEE HAS BEEN CHARGED WITH THE OUTY OF GTANDARDIZING, IF POSSIBLE, THE SHAPE OF THE APERTURE IN TESTING SCREENS FOR LARGE~EIZED AGGREGATE8, SUCH AS CRUSHED STONE, SLAG, GRAYEL, ETO. ALL TESTING ENGINEERS ARE FAMILIAR WITH THE CONFUSION RESULTING FROM THE PRESENT METHOD OF HAVING COTH ROUND-HOLE AND SQUAREMMESH SIEVES IN USE.

STATES. (yEAR EnDs DECEMEER 31 EXCEPT AS NOTED)	$\begin{aligned} & \text { TCTAL OF } \\ & \text { MILES } \\ & \text { GRAOEO } \\ & \text { MILES } \\ & \text { SURFACEO } \end{aligned}$	EARTHIMPROVEOGRAOED $\&$DRAINED(4)	NEM SLAFACIAG PLACEO (3)				$\begin{aligned} & \text { SANO-CLAY } \\ & \text { TOP } \mathrm{ABO} \mathrm{OOIL} \end{aligned}$		gravel, etc. TREATEO AND UNTREATEO				SITUMINOUS macaoam by - PENETRATION		$\begin{aligned} & \text { SHEET } \\ & \text { ASPHALT } \end{aligned}$		Bituminous CONCRETE		PORTLANO CEMENT CONCREIE		vitaifieo BRICK		$\begin{gathered} \text { QLOCK: } \\ \text { ASPHATT, } \\ \text { HOOD. SSONE } \\ \hline \text { RECON. } \end{gathered}$	REVISION OF SURFACEO MILEAGE (6)	States
			$\begin{aligned} & \text { TOTAL } \\ & (5) \\ & \hline \end{aligned}$	ON EARTH ROADB (5)	OTHER TYPES$\|$BAME TYPE (RECON)																				
							NEW	RECON.	new	RECON.	NEW	RECON		RECON	NEW	RECON	HEW	RECON		Recon	NEW	RECON			
alabama (7)	495.9	29.7	467.2	346.5	113.7	7.0	44.0		350.3	7.0	-	-	7.9	-	-	-	0.3	-	57.7	-	-	-	-	-7.0	alapama
ARIZONA	113.3	38.3	75.0	60.8	9.0	6.2		-	59.2	5.2	-	-	9.5	-	-	-	4.0	-	1.8	-	-	-	-	- 91.8	ARIZONA
arkansas	874.0	516.0	358.0	358.0			-	-	429.0		-	-		-	-	-			2.0	13	-	-	-		ARKANSAS
CALIFORNIA	285.4			188.9	65.1	41.4				15.5			2.1	6.9	-	-	35.3	5.3	21.9	13.7	-			-4.3	CALIFURNIA
colorado	406.9	111.6	295.3		25.7	226.1	6.9		35.6	226.1	$\overline{-}$	-	-						26.7			-	-		COLORADS
CONNECTICUT (a)	200.6	0.6	200.0	107.5	73.7	18.8	-	-	1.7	2.3	90.8	13.8	27.1	-		-	25.5	2.7	36.0	-	0.1	-	-	-13.2	connecticut
oelamare	84.9		84.8	79.8	5.0	-	-	-	22.0	-				-	5.8	$\bigcirc 3$	1.0	-	56.0	-	-	-		+5.0	Oelamare
FLORIOA	358.0	8.5	349.5	257.0	90.2	2.3	126.1	-		-	196.8	-	1.3	-	16.5	2.3	0.2	-	16.3	.	-	-		-76.6	florica
GEORGIA	386.7	59.1	327.6	192.5	73.0	62.1	104.9	-	89.0	62.1		-	27.4	-	11.9	-		-	32.3	-	-			-0.5	GEORGIA
10AHO LLiNOIS	373.0	103.6	299.4	241.2	22.1	8.1	-	-	232.6	6.1	-	-	-	-	-	-	27.3	-	3.4	$\overline{3}$	$\overline{-}$	-	-		ICAHO
ILININOIS INOTANA	407.5	45.7	361.8	358.6	0.1	3.1	-	-	-		-			-	-	-		-	332.3	3.1	6.4	-	-	-	ILSINOIS
$\frac{1 \text { INOPANA }}{}$	385.1	9.4	378.7	88.2	2112	77.3 35.0	-		572. 5	40.8	57.9	33.5	38.9				2.2	$=$	195.0					+200. -6.8	INOLANA
KGANSAS	1,475.5	9)1.072.0	403.5	375.7	-	27.8	255.0	-	38.0	-	-	-	10.0	27.9	-	-	-	-	57.0	-	15.7	-	-		KNWSAS
KENTLCKY (a)	434.8	237.2	197.8	91.9	32.2	73.5		-	62.3	27.2	1.7	46.3	24.9	-	-	-	-	-	36.2	-		-	-	+1.827.9	KENTUCKY
Loulisiana	594.5	-	594.5	586.0	8.5		-	-	578,7					-	0.5		13.3	-	2.0	-	-	-		+ 299.5	LOUISIAMA
maine	135.1	-	135.1	87.4	22.3	25.4	-	-	69.7	25.4			23.1						16.9						malve
MAAYLANO (7)	148.1	-	149.1	126.4	19.1	2.5	-	-	23.6	-	19.5	1.1			3.3	-	12.6	-	86.4	1.5	-	-		+ 17.6	mazylano
massachugettr (10)	102.8	-	102.8	8.8	76.1	17.9	-	-	0.5	0.6	-		41.7	16.9	-	-	12.6	0.1	30.1		-	-	(11) 0.4	+ 13.0	magsachusetta
MICHIGAN	354.1	-	354.1	208.8	128.0	19.3	-	-	130.6	15.2	-	0.1	0.6		-		22.1		173.5	4.0				- 5.1	MICHIGAN
NIMNESOTA	1.727.8	315.8	1.412 .0	443.5	180.2	788.3		-	443.5	789.3		-	-	-	-	-	4.9	-	174.9	-	0.4	-		-68.7	MINNESOTA
M\|SSIS81PP1	594.3	125.7	458.8	453.5	1.1	4.0	-	-	439.8	4.0	-	-	-	-	0.3	-	-	-	14.7	-		-	-	+695.8	M1S8ISSIPP1
missouni	1.187.2	344.5	822.7	822.7	-	-	-	-	342.7		-	-	-	-	-	-		--	480.0	-	-	-	-	-	missouni
MOMTANA	124.2	5.0	1193.2	67.5		51.7			101.7	51.2							1.5								MOMTAMA
nerraska	1,476.9	642.1	833.8	833.8	-		128.5	-	693.3						0.5		1.3		10.2						nebraska
NEVAOA	200.3	10.6	189.7	151.7	,	38.0	-	-	151.7	38.0	$\overline{-}$	-	150	-	-	-		0		-	-	-	-	-2.7	nevada
NEW HAMPSHIRE	135.7	16.3	169.4	139.8	21.7	7.9	-	-	129.6	7.6	8.8	-	15.0	-	-	-	5.4	0.3	2.7	-	-	-	-	+ 2.2	NSW HAPPSHIRE
NEW JERSEY	53.7	3.2	50.5		50.5	-	-	-					$-$		0.4			-	60.1	-				+115.0	NEW Jeaser
NEW MEX ${ }^{\text {N }}$ NEW YORK	451.9	408.0	73.9	68.5	0.3	5.0	-	-	${ }^{87.0}$	5.0	3	-						-	1.9	-	-				NEW Wex lico NEW YOAX
NEW YORK NORTH CAROLINA	$\begin{array}{r}581.3 \\ 1.091 .6 \\ \hline\end{array}$	15.7 395.4	565.8	286.4	254.2	15.0		-	21.2	-	3.5	-	40.3	15.0	,	-	8.2	-	477.4	-	-	-	-	-	NEW YOAK NORTH CAOLIMA
NORTH OAXOTA	1.0977.3	337.9	539.4	531.9	623.8	7.6	78.1	-	529,5	7.5	21.4		\bigcirc	-	2.4 0.7		82.6		1.7						NORTM OAKOTA
OH10	2,480.9	69.6	2,411.2	1,426.9	436.8	548.5	-	-	1.483.3	229.5	42.4	177.4	122.1	46.2	7.3		11.6	2.8	142.4	39.8	53.6	52.0		+939.9	OHIO
OKLAHOMA	136.5	200.4	236.1	236.1	-	-	-	-	189.4	-	-	-	-	-	-	-	-	-	102.6	-	4.2	-	-	-	axLahova
OREGON	374.6	81.0	293.6	240.4	13.1	40.1	-	-	776.6	40.1		5	1	-	-		3.3	0	9.7	-		-	-	-28.4	OREGON
PENNGYLVANIA	1.045.0	293.7	751.3 49.9	504.2 31.7	$\frac{179.2}{19.2}$	88.9		-	$\frac{12.5}{3.5}$	3.3	$\frac{214.4}{6.9}$.59,9	$\frac{12.9}{19.9}$	0.4	0.2	4.8	$\begin{array}{r}10.7 \\ \hline 2.6\end{array}$	0.1	$\frac{430.8}{15.2}$	0.	0.8	0.1	$-$	+ 392.8	PENNSYLVAA IA
south carolina	632.0	47.9	584.1	467.8	100.3	16.0	345.4	-	150.4	16.0	-9	-		-	971	-	38.2	-	25.0	-	-	-	-	+181.3	south cazolina
SOUTH OAKOTA	472.9	28.1	444.8	442.9	1.9	(12)	-	-	442.9	(12)	\therefore	-	-	-	-	-		-	1.9	-	-	-	-	+ 1.9	80uth cakota
TESWE93EE	472.7	181.0	291.7	219.3	73.4	-			42.4.		28.0		83.7				8.1		144.5					+ 6.7	TENNESSEE
TExA8	999.0	471.9	497.1	474.9	22.2	-	-	-	195.6	-	11.1	-	186.3	-	4.3	-	22.5	-	77.3	-	-		-		Texas
	139.0	30.4	139.0	124.0	-	15.0	-	-	100.0	13.2 15.0		-	${ }^{-} 7.5$	-	$\stackrel{0}{0}$	-	-	-	16.5 16.5	-	-	-		-0.7 +15.0	UTAH
VIRGINIA	137.4	21.6	135.8	165.8			23.9	-	9.9		16.6		54.4	-	-		-	-	61.9		-			+113.2	VIRGİI/
WASHINGTON	126.7	30.5	98.2	64.6	28.8	4.8	-	-	73.7	3.3		-	5.8		1.5			-	10.4	1.5	-		-	0.4	HASHINGTOM
BEST VIRGIRIA \%ISCONAIN	494.0		494.0	469.6	16.7	7.7	-	-	162.7		-	-	203.3	4.6	-	-	12.5	-	107.8	-	-	3.1	-	-	HE8T VIRGINIA
${ }_{\text {WISCONAIN }}$	1.016 .2 233.1	54.2	962.0 129.4	442.4	162.5	357.1	19.9	3.6	299.0	343.5	33.2	10.0	3.8	-	\pm	-	-	-	249.0	-	-	-	-		WHSCons ik HYOMIAG
									129.4																HYawing
TOTAL8	26,652.3	7,060.0	19,492.3	13,663.7	3,182.6	2,646.0	1,132.7	3.6	9,748.0	2,040.9	743.1	345.1	1,014.6	117.7	66.7	8.1	369.7	11.1	4.339 .4	63.9	81.2	55.2	0.4	+4.541.4	totals

(12) REPORTEO 1010.7 MILES OF LIGMT RECONSTRUCTION. NOT RECOROEO MERE.
$-10-$
(Not for release)

HAWAIIAN CONCRETE PAVEMENT BUILT WITH RAIN SHEDS

Oontributed oy H.G. Mckelvey of the Divibion of Construction Compiled from a report bubmitted by E. ©. Wheeler, senior Highway Engineer in charge of the bureau's work in hawall

Rain sheds were used to protect the pavement ano workmen, duaing unfavorable weatmer, in the conbtruction of the Volcano ROad - Hawall federal-ajo project 2-B - in the district of puna. The pavement consisted of 6.5 miles of plain concrete, 16 feet WIDE, AND WITH AN 8-5-8 CROS8 SECTION. THE pROJECT TERMINATE8 near the Kilauea Crater, in the southeabtern sector of the territory, and forms part of a oely highway, skirting the shoremline of the Ibland of Hawail.

TME RaInfall, which wab almost incesbant during part of THE CONSTRUCTION, WAS OF SUCH VOLUME THAT SOME BORT OF PROTECTION WAS NECESSARY TO PREVENT INTERRUPTION OF THE WORK. TO OVERCOME possible delays caubed oy the inclement weather, the contractor oUilit a moveable shed, large enough to house the paver and finishER, AND ALSO A TRAIN OF LOWER SHED UNITB. ALL OF THE SHEDS WERE run on rollerg, bearing on the side forms, and were pulled forward at the proper time oy the paver. This arrangement of moveable SHEDS PROVIDED COVER FOR THE LADORERS, AND PROTECTED THE GREEN CONCRETE UNTIL BUCH TIME AB THE BURFACE COULD NOT DE PITTED 日Y RAIN; WHEN THE COAT OF CURING GOIL COULD BE APPLIED,

The forward large shed was conbtructed 16 feet high in the clear, 50 feet long, and of the same width as the pavement, as shown in figure i-(Top). The shed was mounted on flanged wheels, gavgeo to fit the side formb. This main bhed was large enough to house the entire mixing and finishing equipment, in adoition to the LABORERB. FOR FURTHER PROTECTION, AGAINBT WIND AND RAIN ENTERING from the sideg and ends, awninge were provided on three gideg.
following the large main shed and connected to it oy cableg Was a train of 8 lower protective bheds, (figure l-bottom), Each 30 FELT LONG ANO 2 feet 6 incheg high, mounted in the same manner as the large bhed, and covereo with a cheap quality of roofing material. these minor sheds were of the flat a-type construotion

FIGJRE I- (TOP) VAIN RAIN GMEE JSED FOR HJJSIN' THE NVRR
FINIEHER, AND CREW

```
ANO RESTED UPON LIGHT GRIOGING, PARALLEL TO THE AXIE OF THE ROAD.
IN ORDER TO MAKE LAPPING POSSIBLE, EVERY ALTERNATE SHED WAS MADE
6 ~ I N C H E S ~ H I G H E R ~ T H A N ~ T H E ~ A D J A C E N T ~ S H E D S . ~ T H E ~ S H E D S ~ W E R E ~ G A B L E D ~
TOGETHER AND, AS THE PAVEMEHT WAS LAID, THE ENTIRE TRAIN WAB
HOOKED TO THE PAVER, OR FINISYER, AND MOVED FORWARD THE REQUIRED
DISTANCE. WHERE THE GRADE WAS GTEE; ENOUGH, FOR THE TRAIN TO BE
MOVED BY GRAVITY, CARE WAS TAKEN TO CHOCK THE WHEELS OF THE
SHEDG AFTER EVERY MOVE, IN ORDER THAT THE TRAIN MIGHT FUNCTION
SMOOTHLY, AND NOT LEAVE THE SIDE FORMS, THE SHEDS WERE GUILT
FAIRLY RIGID AND THE FORMS 8ET TRUE TO LINE AND GRADE.
In APRIL ANO MAY OF THIE YEAR, ALTHOUGH IT RAINED DAILY DURING THE CONBTRUCTION OF A PORTION OF THE PAVEMENT, NO TIME WAE LOST QUE TO WEATHER CONDITION8, BECAUSE OF THE ADEQUATE PROTECTION AFFORDED BY THE SHEOB.
```

(Not for release)

STATUS OF UNITED STATES ROUTES 75 AND 85

Contributed by F. W. Mills of the Division of Design

United Stateg Route 75 is 71 per cent improved with GRAVEL AND THE HIGHER TYPES OF SURFACING. ANOTHER 22 PER CENT CONSISTS OF EARTH, AND GRADED AND DRAINED ROADE, AND THE BALANCE IS unimproved. tmere are no large mileages of continuoublysurfaced road on the route. the total length of the route WHICH ALMOST BIBECTS THE UNITED STATES IN A NORTH-ANO-SOUTH direction - 181,617 miles.

A detailed statement of the condition of the road as determined by the bureau survey follows:

UNITED STATES ROUTE 75

State	:	CITY OR TOWN	: TYPE	:	Miles :	total
minnesota	: FROM	the U.S.-Canadian	:	:	:	
	: Bound	dary near Noyes	:	:	:	
	: VIA	Hallock	: Concrete, Ano	:	:	
		Warren	:citr pavement		$7.86:$	
	:	Crookston	- Gravel	:	422.14:	
	:	ADA	: Graded earth	:	10.02:	440.02
	:	Moorhead	:	:	:	
	:	Breckenrioge	:	:	:	
	:	Wheaton	:	:	:	
	:	Ortonville	:	:	:	
	:	Madison	:	:	:	
	:	pipestone	:	:	:	
	:	Luverne	:	:	:	
	: то	lowa State line	:	:	:	
Iowa	: FROM	Minn. State line	:	:	:	
	: VIA	Rock Raplos	:CONGRETE, ANO		:	
	:	le Mars	: City pavement		54.00:	
		SIoux City	: Gravel	:	80.00:	
	:	Onawa	: Gradeo ano	:	:	
	:	Missouri Valley	: DRAINED	:	53.00:	187.00
	: TO N	Nebr. State line	:	:	:	
	: AT	Council Bluffs	:	:	:	

UNITED STATES ROUTE 75 (CONTINUED)

State	City or town	: TYpE	: Miles :	total
	:	:	:	
Nebraska	: From lowa state line	:	:	
	: at Omaha	:	:	
	: via plattsmouth	: Gravel	70.26:	
	aueurn	: Earth	29.74:	100.00
	: to Kang. State line	:	:	
	: north of Easetha	:	:	
Kansas	:from Nebr. State line	:	: \quad	
	: via Sabetha	: Concrete,	:	
	: TOPEKA	:BRICK, AND	:	
	: Carzondale	: city pave.	49.5	
	: LYNOON	: Eituminous	:	
	: Burlington	: Macadam	29.5	
	: Yates center	: Gravel	48.5	
	: Neodesha	- Gramed and	:	
	Independence	: ORAINED	78.9	
	: Havana	:Unimproveo	49.5	255.9
	: to Okla. State line	:	:	
OKlahoma	: FRom Kans. State line	:	:	
	: via Bartlegville	- Concrete	77.51;	
	: Tulsa	: Bituminous	:	
	Sapulpa	:Condrete	11.81:	
	Okmulgee	: Gravel	50.41 :	
	Henryetta	: Gradeo earth	50.12:	
	Wetumka	: Un improveo	61.40:	
	coalgate	:	:	251.25
	Atoka	:	:	
	Durant	:	:	
	: to tex. State line	:	:	
TEXAS	: from Okla. State line	:	:	
	: via Sherman	:	:	
	: McKinney	:	1 :	
	Dallas	: Pavement	95.00:	
	Corsicana	: Gravel	158.00:	
	Buffalo	: EArth	130.20:	383.20
	: Madisonville	:	:	
	Huntsville	:	:	
	: Conroe	:	:	
	- Houston	:	:	
	: to Galveston	:	:	
		Total mi	LE8	1,617.37

$$
\begin{gathered}
-15- \\
\text { Summary of TYpes } \\
\text { UNited States Route } 75
\end{gathered}
$$

	Miles	Per cent
Hard surface pavements, including concrete, CITY PAVEMENT, E:TUMINOUS CONCRETE AND		
macadam	325.18	20.1
Gravel	829.31	51.2
Earth, and graded ano oraineo roads	351.98	21.8
Unimproved	110.90	6.9
total	. 617.37	$\overline{100.0}$

United States route 851842 per cent improved with gravel and the higher types of surfacing. Another 32 per cent consists of bladed earth, ano graded and drained roajs, and the galance is unimproved. The total length of the route - whioh extends in a north-and-south direction, just east of the Rocky Mountains - is 1,551 MILES.

A detailed statement of the condition of the road as oetermined sy the bureau survey follows:

UNITED STATES POUTE 85

State	:	CITY OR TUWN	: YYPE	:	MILES	TOTAL
North Dakot	: FROM	THE U.S.-OANADIAN	:	:	:	
	: Bound	Dary north of Amaros		:	:	
	: VIA	Amerose to a point	:	:	:	
	:	On U.S.HIghway	:	:	:	
		Route 2 West of	:	:	:	
	:	Williston	:	:	:	
	: VIA	Alexander	: Graded ano	:	:	
		Watford city	: ORAINED	:	135.00:	
	:	Mioway	:UNIMPROVED	:	121.00:	256.00
	:	Amjdon	:	:	:	
	:	Bowman	:	:	:	
	: TO S	s. Dak. State line	:	:	:	

UNITED STATES ROUTE 85 (CONTINUED)

State	: D1:Y OE TOWN	TYPE	: MILES :	TOTAL
South Dakotasifroin N. DAK. State line		:	:	
	:SOUTH OF STWARTWOOD	:	:	
	: via Buffalo	: Gravel	26,03:	
	: Bellefourche	: Bladed earth	34.010:	
	: SPENPFISH	:Unimproved	95.00:	155.03
	DEALVOOD	:	:	
	Lead	:	:	
	: to Wyo. State line	:	;	
Wyoming	: From S. Dak, State line	:	:	
	:SOUTHWEST OF BUCKHORN	:	:	
	: via Newoastle	: Gravel, or	:	
	: Lusk	: SEl.EOTED	:	
	Lingle	imaterial	74.5 :	
	torrington	- Gradeo	157.4 :	
	: Coheyenne	:UNimproved	47.1 :	279.00
	: to Colo. State line	:	:	
Colorado	: From Wyo. State line	:	:	
	: south of Cheyenne	:	:	
	: via Greelmey	: Concrete, and	:	
	: Brighton	:CITY PAVEMENT	: 107.86:	
	: Denver	:Bituminous	:	
	Castle rock	:Micadam	35.31:	
	Colorado springs	: Gravel	110.6 :	
	pueblo	: Graded earth	65.23 :	319.00
	: Walseneurg	:	:	
	: Trinjoad	:	;	
	: to N.Mexico State line	:	:	
	: at raton fass	:	:	
NEW MEXICO	: From Colo. State line	:	:	
	:at Raton pass	:	:	
	: via raton	:	:	
	: Maxwell	:	:	
	: Wrigon Molind	:Concrete, and	:	
	: Las vegas	:pavement	55.41 :	
	: Romeroville	:Crushed stone	: 68.82:	
	: Santa Fe	: Gravel	169.07 :	
	Alsuquerque	: Graded earth	100.1 :	
	los lunas	:UNIMPROVED	148.6 :	542.00
	: Socorro	:	:	
	Hot Springe	:	: \quad :	
	: Caballo	:	:	
	: to las cruces	: Total		
		Total	MILES	1,551.03

$$
-17-
$$

Summary of Types
 United States Route 85

(Not for Release)
tests of high-strength cements made in germany
(from der bauingenieur, March 19, 1927, page 213)
Translated and abstracteo by C. S. Jarvis, of the division of design

A NUMEER OF TESTS, INVOLVING 16 GRANDS OF HJGH-STRENGTH cement, were conducted during 1926 by the german concrete association. TENSILE AND COMPRESSIVE TESTS WERE MADE ON NORMALLY ORY, AND SLOPPY MI XTURES OF CEMENT MORTAR, AND GRAVEL CONCRETE, AT 650 F., ANO AT 32° F.; ANO ALSO ON CEMENT STORED FOR A PERIOD OF 6 MONTHS. THE investigations were further extendeo to include admixtures of tufa, A NATURAL HYORAULIC CEMENT FOUNO AMONG THE VOLCANIC DEPOSITG SO ALUNdent along the lower rhine.

The results of the tests indicated that:

1. THE HIGH-StRENGTH CEMENTS SHOULD REAOH OR EXCEED, AT 3 DAYS, A COMPRESSIVE STRENGTH OF 3,550 POUNDS PER SQUARE INCH; AND, at 28 days, 7,100 pOUNDS per square INCH. THE CORRESPONDING TENSILESTRENGTH VALUES, AT 3 AND 28 DAYS, SHOULD EE 355 AND 640 POUNDS PER SQUARE INCH.
2. The 6-months storage of the cements caused a consideragle REDUCTION IN gOth the tensile and compressive strengthe at 3 and 28 DAYS.
3. A freezing temperature reduced doth the tensile and compressive strengths, considerably, at 3 days, but to a much lesser degree at 28 days.
4. An excessive amount of water in the mixture reduced both the tensile ano compressive strengths, congideraely, at 3 days, eut MUCH LESS at 28 dayb.
5. The tensile and compressive strength values of tufa cement mortar and concrete werie less than those oetained with similar AMOUNTS OF PORTLAND CEMENT.
tegts of $1: 3$ Cement Mortar Using Standard Sand
Mixtures of one part cement to three parts of standard sand Were moistened with water equivalent to 8 per cent ey weight of the
dry ingredients．Specimens molded from this mortar were tested for tensile and compressive strength at 3 and 28 days．the moldeo specimens were maintalned one day in alr and then immersed two days IN WATER FOR THE 3－DAY TEST；OR 6 dAYS IN WATER，AND 21 DAYS IN AIR for the 28 day test．

Figure l－（Top）illustrates the minimum，average，and maximum Compressive strengths for the 16 brand of cements as given in table 1．the full lines represent the strengths attained by FRESHLY－MANUFACTURED PRODUCTS，AND THE EROKEN LINES－INDICATING SOMEWHAT LOWER VALUES－ARE FOR THE CEMENT STORED FOR SIX MONTHS in a dry warehouse．The data show that the minimu compressive strengths recorded ay the freshly－manufactured cement，at 3 and 28 days，were 3,850 and 7,530 pounds per square inch，respectively； while the corresponoing average values were 4,840 and 8,900 POUNDS PER SQUARE 1 NCH ．
figure 1 －（bottom）and the data in table \mid show that the MINIMUM TENSILE STRENGTHS OF THE $1: 3$ MIXTURES OF FRESHLY－MANUFACTUREO cement and standard sand were，at 3 and 28 oays， 370 and 640 pounds per square inch，respectively；while the corresponding average values WERE 442 AND 717 POUNOS PER SQUARE INCH．
tegts of $1: 3$ Cement Mortar Using Rhine Sand
Higher strengths were invariably obtained when Rhine sand grading from 0 to 5 millimeters（ 0.2 inch）was substituted in the mortar for the standard sand．The average increases in compressive strength，at 3 and 28 days，were 29 and 31 per cent aespectively； WITH CORRESPONDING JNCREASES IN TENSILE STRENGTH OF 41 AND 23 PER CENT．
tests of Concrete Mixtures
TESTS WERE THEN MADE OF THE HIGH－GTRENGTH CEments in CONCRETE MIXEO IN THE PROPORTIONS OF $1: 2 \frac{1}{2}: 2 \frac{1}{3}$ BY VOLUME．THE FINE AND COARSE AGGREGATES WERE OBTAINED BY SGREENING RIVER GRAVEL into sizes varying from 0 TO 5 MILLIMETERS（ 0.2 INCH），AND FROM 5 to 20 MILLIMETERS（ 0.79 INCH）．FOR COMPRESSIVE TESTS ON EACH grand of cement，there were prepared twelve 8 －inch cubical specimens， MIXED WITH 9⿳亠口冋己 PER CENT OF WATER TO PRODUCE A RELATIVELY DRY CONCRETE． ANOTHER 12 SPECIMENS WERE MIXED WITH $15 \frac{1}{2}$ PER CENT OF WATER TO PRODUCE A SLOPPY CONGRETE．THE FORMS WERE REMOVED AFTER BEING UNDER A MOIST COVERING FOR THE FIRST 24 hOURS．ONE HALF OF THE TEST SPECIMENS WERE THEN CURED IN AIR AT ORDINARY TEMPERATURES， 57° TO $68^{\circ} \mathrm{F}$ ．，and the other samples were kept in oold storage at $32^{\circ} \mathrm{F}$ ．

FIGURE 1- (TOP) - MAXIMUM, MEAN, AND MINIMUM COMPRESSIVE STRENGTH OF 16 SAMPLES OF HIGHSTRENGTH CEMENT.
(BOTTOM) - MAXIMUM, MEAN, AND MINIMUM TENSILE STRENGTH OF 16 SAMPLES OF HIGHSTRENGTH CEMENT.
Table 1. - Tensile and compressive strengths of several German high-strength Portland cements

Table \mid gives the results of all the tegts ag reported except that the values are expressed in the English equivalents of the metrac units. The data indicate that the dry concrete, CURED AT AN ORDINARY TEMPERATURE, ATTAINED A MINIMUM STRENGTH at 28 days of 3,920 pounds per square inch, with an average STRENGTH OF 4, T2O POUNOS PER GQUARE INCH; WHILE THE CORRESPONDing flgures for the sloppy oonctrete were 1,851 and 3,110 pounds per square inch, or 61 and 89 per cent of the cry-concrete values, respectively. The ory-ooncrete geecimens cured at 32° F., attalneo strength "equiling, at 3 and 28 days, 67 and 89 per cent, respecTIVELY, OF THE MIXTURES OF A SIMILAR CONSISTENGY CURED AT 65° F. THE SLOPPY-CONCRETE SPECIMENS, AT 3 and 28 days, attained Values OF 59 and 87 per cent, respectively, of the mixtures of simblar CONSISTENCY CURED at 65° F. These figures indicate that the EFFECTS OF LOW TEMPERATURES ANO HIGH MOISTURE CONTENTS ARE MORE PRONOUNCED DURING THE FIRST FEW DAYS OF CURING. THE VARIOUS ERANDS of Cement showed practically the same resibtance to low temperatures.

The experiments with concrete cured at normal temperatures here then duplicated with the same erands of cements after 6 months of dry storage. the lumps, that hag formed while in storage, were not removed, and the cement was used just as it was found. The resulting strengthe for the ory mix, at 3 and 26 days, were 55 and 69 per cent, respectively, of the results secureo with the freshlymanufactured product; while the corresponoing values for the sloppy concrete were 57 and 59 per cent.

tests of Tufa Cement

In CONNECTION with the foregoing experiments, tests were CONDUCTED ON TUFA CEMENT TAKEN FROM VOLCANIC DEPOSITS 80 arundant along the lower Rkine.

The normal portland cement, such as was used in the foregoing tests, was calleo cement A; the suestitution of tufa cement for 20 per cent of normal cement was called Cement b; and the adoition of one-third of a bag of tufa to one bag of portland cement constituted Cement C. In all the mixtures in this series of tests, $1-1 / 3$ parts Cement C were compared with one part of either Cement a or Cement B.
the data in taele 2 indicate that tufa cement mortar, and CONCRETE, SHOWED LESS TENSILE AND COMPRESSIVE STRENGTH THAN MORTAR, or concrete, made with similar proportions of portlano cement. the
Table 2. - Tensile and compressive strengths of tufa cement as compared with Portland cement


```
INCREASED RICHNESS OF MIXTURES CONTAINING CEmENT C produced
gREATER STRENGTH IN THE MORTARS MADE WITH STANDARD SAND, AS COM-
ParED WITH THE STANOARD PORTLAND-CEMENT MIXTURE; \XiUT SHOWED LESS
strength in the mortars constructed with RHine sand. The 1-1/3:
2-1/2:2-1/2 CONCRETE MIX WITH CEMENT C ALSO SHOWED CONSIDERAJLY
lfsS stRfNGTH than the game mix WITH CEmENt A.
```

