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DNA is considered as a useful building bio-material, and
it serves as an efficient template to align functionalized
nanomaterials. Riboflavin (RF)-doped synthetic double-
crossover DNA (DX-DNA) lattices and natural salmon DNA
(SDNA) thin films were constructed using substrate-assisted
growth and drop-casting methods, respectively, and their
topological, chemical and electro-optical characteristics were
evaluated. The critical doping concentrations of RF ([RF]C,
approx. 5 mM) at given concentrations of DX-DNA and
SDNA were obtained by observing the phase transition
(from crystalline to amorphous structures) of DX-DNA and
precipitation of SDNA in solution above [RF]C. [RF]C are
verified by analysing the atomic force microscopy images for
DX-DNA and current, absorbance and photoluminescence
(PL) for SDNA. We study the physical characteristics of
RF-embedded SDNA thin films, using the Fourier transform
infrared spectrum to understand the interaction between the
RF and DNA molecules, current to evaluate the conductance,
absorption to understand the RF binding to the DNA and PL
to analyse the energy transfer between the RF and DNA. The
current and UV absorption band of SDNA thin films decrease
up to [RF]C followed by an increase above [RF]C. By contrast,
the PL intensity illustrates the reverse trend, as compared
to the current and UV absorption behaviour as a function
of the varying [RF]. Owing to the intense PL characteristic
of RF, the DNA lattices and thin films with RF might offer
immense potential to develop efficient bio-sensors and useful
bio-photonic devices.
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1. Introduction
After the discovery of double-helical structures and evaluation of their intrinsic functions and properties,
DNA molecules have attracted tremendous attention due to the programmability of the DNA base
sequences that enables the design of various DNA nanostructures and applicability of DNA molecules
to embed functionalized nanomaterials [1–8]. The additional advantages of using DNA in constructing
nanostructures and thin films with dimensional precision and fabrication of efficient devices or sensors
with functional enhancement are due to the exceptional features of DNA molecules, i.e. efficient self-
assembly and molecular recognition [9–15]. DNA can be easily functionalized with various types of
ions, drugs, proteins and nanoparticles and this allows explicit functionalities for novel applications in
conventional devices or sensors [16–22]. Among various biomolecules, riboflavin (RF) drug molecules
have certain advantages for use in medical treatment as well as fabrication of bio-sensors and bio-
photonic devices due to the non-toxic, bio-compatible and significant luminescence. RF, which is known
as vitamin B2, is essential for living organisms and is available from food and beverages [23]. RF as
flavin cofactors participates in reduction and oxidation processes and is metabolized in vivo to flavin
adenine dinucleotide followed by flavin mononucleotide. As photosensitizing agent, RF is also used to
improve blood clotting via platelet treatment and to detect gene mutations caused by UV irradiation
[24]. In addition, RF can serve as a biomarker for cancer therapeutics and as a bioactive molecule to
sense optical signals due to conjugation characteristics with RF receptor proteins on a cancer cell and
significant photoluminescence (PL) characteristics, respectively [25–27].

Although DNA and RF molecules have been studied in terms of their physical, chemical and
biological properties, as well as structural characteristics, RF-embedded DNA lattices and DNA thin
films have been rarely discussed. DNA lattices (made of artificially synthesized DNA strands) and DNA
thin films (extracted from salmon) with RF having its own functionality might provide a significant
platform to construct useful devices (e.g. bio-lasers, bio-organic light-emitting diodes and fluorescence
sensors) and suggested tuning of sensitive characteristics (by controlling the amount of functionalized
materials) [28,29]. In addition, the study of the characteristics of RF-embedded DNA thin films to
understand the interaction, binding, energy transfer and conductance between RF and DNA molecules
has not been carried out systematically until now.

Here, we fabricate synthetic double-crossover DNA (DX-DNA) lattices [3] (via substrate-assisted
growth) and natural salmon DNA (SDNA) thin films (through drop-casting) doped with various
concentrations of RF [RF] and study their topological, chemical and electro-optical characteristics. The
critical doping concentration of RF ([RF]C) in DNA is obtained by analysing the atomic force microscope
(AFM) images of the DX-DNA and current, absorbance and PL of SDNA. The physical characteristics
of the RF-embedded SDNA thin films (i.e. Fourier transform infrared (FTIR) spectra, current–voltage,
absorption and PL measured by an FTIR spectrometer, a semiconductor parameter analyser, a UV–visible
absorption spectrometer and a fluorimeter) are discussed in detail.

2. Material and methods
2.1. Fabrication of riboflavin-doped double-crossover DNA lattices grown on a mica substrate
The synthetic DNA oligonucleotides purchased from Bioneer (Daejeon, Korea) were purified using high
performance liquid chromatography. To grow the DX-DNA lattices on mica with various [RF] (Sigma
Aldrich, Seoul, Korea), individual DX-DNA strands, freshly cleaved mica having size of 5 × 5 mm2, as
well as an appropriate amount of RF (i.e. 1, 3, 5, 7 and 9 mM) were added into an AXYGEN-tube. A total
sample volume of 250 µl in a 1 × TAE/Mg2+ buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA and
12.5 mM magnesium acetate) was achieved. The sample test tube was placed in a Styrofoam box with 2 l
of boiling water and was then cooled down slowly (about 24 h) from 95 to 25°C for hybridization. During
the course of the annealing process, individual DX-DNA tiles were formed in solution and were bound
onto a given mica substrate through an electrostatic interaction. We used a final DNA concentration of
50 nM, which was sufficient to be fully covered by DNA on a given substrate (figure 1a).

2.2. Preparation of riboflavin-doped salmon DNA thin films
To prepare the SDNA solution, an enzyme isolation processed SDNA (Chitose Institute of Science and
Technology, Hokkaido, Japan) of 0.1 g dissolved in 10 ml of de-ionized water was placed on a magnetic
stirrer at 800 rpm for 10 h at room temperature to obtain 1 weight% (wt%) of homogeneous SDNA
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Figure 1. Illustrative representations of sample preparation procedures, RF interactions with DNA molecule, and molecular structure of
RF. (a) Construction of RF-doped artificially designed double-crossover (DX) DNA lattices on a given substrate by the substrate-assisted
growth method. Individual DX DNA strands and RF along with the freshly cleaved mica substrate are added into a test tube in order to
grow RF-doped DX DNA lattices on the substrate during the course of annealing. A schematic of a RF-bound DX lattice is shown in the
middle. The schematic on the far right shows a simplified (brown-coloured) and a molecular representation of RF. The molecular weight
of RF is 376.36 g per mole. (b) Fabrication of RF-doped natural SDNA (obtained from salmon fish) thin films formed via drop casting. The
substrates are processed using O2 plasma to render the substrate hydrophilic which enhances the adhesion of the DNAmolecules on the
substrate. The sample preparation procedures: dissolving DNAmolecules in de-ionizedwater viamagnetic stirring, SDNA incubationwith
RF for doping, fabrication of the RF-doped SDNA thin film via drop-casting on O2 plasma-treated substrate and groove and electrostatic
bindings of RF on SDNA duplex.

solution. To fabricate the RF-doped SDNA thin films, an appropriate amount of RF (i.e. 1, 3, 5, 7 and
9 mM) was added into homogeneous SDNA solution (final [SDNA] of 0.5 wt%) followed by vortex
mixing and incubating for a few hours. An RF-doped SDNA solution of 20 µl was drop-cast on a
plasma-treated fused silica substrate (size of 5 × 5 mm2), and the sample was dried naturally for 24 h
(figure 1b).

2.3. Atomic force microscopy imaging
A mica substrate with RF-doped DX-DNA lattices was placed on a metal disc with the help of instant
glue. Thirty microlitres of 1 × TAE/Mg2+ buffer was added onto the substrate and another 20 µl of
1 × TAE/Mg2+ buffer was dispensed into the AFM tip (NP-S10, Veeco Inc., CA, USA). The AFM images
were obtained using a Multimode Nanoscope (Veeco Inc., CA, USA) in the fluid tapping mode (figure 2a).

2.4. Fourier transform infrared spectroscopy measurement
The FTIR spectra of the RF-doped SDNA thin films with wavenumber in the range of 4000–600 cm−1

were recorded using a TENSOR 27 spectrometer (detector: MIR_ATR (ZnSe), Bruker Inc., MA, USA).
Thirty-two scans were co-added and averaged with a sensitivity of 4 cm−1. The data in the FTIR spectra
were analysed by subtracting the background spectrum produced by bare fused silica (figure 2b).

2.5. Current–voltage measurement
The electrical measurement of the RF-doped SDNA thin film was performed at room temperature using a
semiconductor parameter analyser (4200-SC, Keithley Instruments Inc., OH, USA). Silver paste (serving
as electrodes) was applied on the surface of the RF-doped SDNA thin film to produce a channel of
approximately 1 mm in length (figure 3).
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Figure 2. Atomic force microscopy (AFM) images of the double-crossover (DX) DNA lattices and FTIR spectra of the SDNA thin films
with various concentrations of RF. (a) Representative AFM images (scan size of 1× 1 µm2) of pristine (without RF) and the RF-doped DX
DNA lattices with 3, 5 and 9 mM of RF marked as DX, RF 3, RF 5 and RF 9, respectively. Insets in AFM images are noise-filtered images
(scan size of 100× 100 nm2) reconstructed through fast Fourier transform to display the periodicity (crystalline phase at or up to RF
5) and aperiodicity (amorphous at RF 9) of the unit building blocks on the lattices. (b) FTIR spectra of the RF-doped SDNA thin films
in the frequency range from 4000 to 600 cm−1. The FTIR absorption spectra of pristine SDNA and SDNA thin films doped with various
concentrations of RF aremeasured to understand the bindingmechanism between RF proteins and DNAmolecules. The absorption peaks
at 832, 960 and 1733 cm−1 marked as dotted lines indicate the evidence of RF doping in SDNA thin films.
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Figure 3. Current–voltage characteristics of RF-doped SDNA thin films. (a) Current–voltage curves of the SDNA thin films doped with
various [RF] of 0, 1, 3, 5, 7 and 9 mM labelled as SDNA, RF 1, RF 3, RF 5, RF 7 and RF 9, respectively. (b) Resistance as a function of fixed
voltage (i.e. 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 V) for pristine SDNA and RF-doped SDNA thin films obtained from the current–voltage curve.

2.6. Absorption measurement
A spectrophotometer (Cary 5G, Varian, CA, USA) was used to conduct the optical absorbance
measurement of the RF-doped SDNA thin film on fused silica in the visible and UV regions (wavelength
between 600 and 190 nm). The spectrophotometer was equipped with two light sources (a deuterium arc
lamp for near-infrared and visible and a quartz W−halogen lamp for UV) and two detectors (a cooled
PbS detector for near-infrared and a photomultiplier tube for visible and UV). The spectrophotometer
measured the frequency-dependent light intensities of the sample (figure 4).

2.7. Photoluminescence measurement
The PL and excitation spectra of the RF-doped SDNA thin film were measured at room temperature
by using a Xe-arc lamp equipped fluorometer (FS-2, Scinco, Seoul, Korea) with power of 25 W. The
excitation spectrum was obtained at fixed emission wavelength of 545 nm, while the emission spectra
were measured by exciting the samples at two different wavelengths: 367 and 454 nm (figure 5).
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Figure 4. Absorption and absorption band intensity of RF-doped SDNA thin films. (a) Variation in the absorption spectra as a function
of wavelength for pristine SDNA (without RF labelled as SDNA) and RF-doped SDNA thin films (with dopant [RF] of 1, 3, 5, 7 and 9 mM
labelled as RF 1, RF 3, RF 5, RF 7 and RF 9, respectively). (b) Changes in the absorption band intensities as a function of [RF] at fixed
absorption wavelengths of 260, 367 and 454 nm for pristine and RF-doped SDNA thin films obtained from absorption spectra.
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Figure 5. PL characteristics of the RF-doped SDNA thin films. (a) PL excitation spectra of the RF-doped SDNA thin films at a fixed
emissionwavelength of 545 nm. (b,c) PL spectra of the pristine SDNA and RF-doped SDNA thin filmsmeasured at two different excitation
wavelengths, i.e. 367 and 454 nm. (d) The energetic emission area and height as a function of [RF] in the SDNA thin films obtained from
the emission spectra at excitation wavelength of 367 nm using Gaussian fitting. The inset reveals the emission shift as a function of [RF]
at excitation wavelength of 367 nm.

3. Results and discussion
Two unit DX tiles were used to construct DX-DNA lattices on the mica substrate using the substrate-
assisted growth method [3]. A DX tile was produced by hybridizing two parallel duplexes with
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two DX junctions cross-linking DNA backbones among two duplexes. Each DX tile had four
sticky ends which were preferentially bound to the complementary sticky ends in neighbouring DX
tiles, aiding further assembly into DX-DNA lattices. Incubation of RF into DX-DNA lattices was
carried out during the course of annealing. By tuning the [RF], the [RF]C at a given concentration
of DX-DNA (50 nM) can be obtained through observation of the phase transition from periodic
crystalline to aperiodic amorphous structures. The detailed experimental schematics of the DX-
DNA lattice fabrication, RF intercalation and molecular structure of RF are shown in figure 1a.
The individual DX strands, RF, and freshly cleaved mica substrate were added in the test tube
in order to grow the RF-doped DX-DNA lattices on the given substrate during the course of
annealing.

In addition, a thin film made of natural DNA duplexes extracted from salmon which provided
unique and intrinsic physical and biological characteristics was constructed via simple drop-casting
(with fixed sample drop-volume of 20 µl) method, as shown in figure 1b. The [RF]C at a fixed [SDNA]
(0.5 wt%) was predicted by SDNA precipitation in solution above [RF]C and verified by measuring the
current, absorbance and PL. Even though we used synthetic DX-DNA lattices (<2.0 nm in thickness)
with different [RF] in order to find [RF]C by estimation of morphological changes via AFM, the physical
characterizations (i.e. current, absorption and PL) were performed with RF-doped SDNA thin films
(thickness approx. 1.5 µm) in order to obtain the significant impact of RF doping with reliable and
reproducible results.

To understand the tolerance of the DNA lattice formation with groove and electrostatic binding RFs,
the topological characteristics of the DX-DNA lattices with various [RF] (i.e. 3, 5 and 9 mM) were studied.
AFM images revealed the tolerance of the DNA lattice formation with RFs, as shown in figure 2a.
Although the topological features of the RF-doped DX-DNA lattices were mostly similar to pristine DX-
DNA lattices (i.e. crystalline phase) up to 5 mM of [RF], they changed dramatically from crystalline to
amorphous with an increasing [RF] above 5 mM. [RF]C, which was defined as the maximum possible
doping [RF] without structural deformation of DX-DNA lattices, was 5 mM. The phase change of the
lattices mainly comes from the excess of [RF] (making non-specific binding to DNA) in the sample test
tube during the course of annealing.

Figure 2b shows FTIR-attenuated reflection spectra for pristine SDNA and SDNA thin films doped
with various [RF] (i.e. 0, 1, 3, 5, 7, and 9 mM labelled as SDNA, RF 1, RF 3, RF 5, RF 7 and RF 9,
respectively). FTIR spectroscopy was carried out in the frequency range between 4000 and 600 cm−1

to demonstrate the specific chemical bond interaction between RF and DNA molecules. Here, we used
natural SDNA thin films (having thickness of 1.5 µm) for chemical and electro-optical characterization
(e.g. FTIR, current, absorption and PL) due to easy fabrication and manipulation with reliable results.
The SDNA thin films without RF showed significant absorption characteristics of water OH stretching
(in the range between 3600 and 3000 cm−1), and stretching and vibration of nucleobase (1800–1300 cm−1)
and the sugar and phosphate backbone groups (1250–600 cm−1) [30,31].

The FTIR spectra of RF-doped SDNA thin films showed notable absorption band variations (i.e.
intensity and position controlled by [RF]) compared to pristine SDNA. While increasing the [RF] in
SDNA thin films, two additional notable absorption bands appeared at wavenumbers of 832 and
1733 cm−1 (marked as dotted lines in figure 2b) which indicated evidence of RF binding into SDNA
duplexes. The two bands at 832 (appearing in the phosphate backbone region, 1200 – 700 cm−1) and
1733 cm−1 (the DNA nucleobases region, 1800 – 1300 cm−1) indicate that the RF could be bound with
nucleobases as well as phosphate backbone sites of SDNA molecules. Interestingly, the absorption band
of C − C and C − O of deoxyribose skeletal motion around 960 cm−1 (marked as a dotted line in figure 2b)
decreased gradually with increasing [RF] and eventually vanished at a higher [RF]. In addition, we
observed absorption band broadening of the antisymmetric PO−

2 vibration (around 1220 cm−1 occurring
on the DNA phosphate backbone), and band shifts from 1005 to 1020 cm−1 (due to the C−O deoxyribose
stretching mode) and from 1050 to 1060 cm−1 (P–O or C–O stretching) while increasing the [RF]. The
spectral differences of the SDNA thin films with various [RF] indicated a specific interaction between
the RF and SDNA duplexes. These results provide evidence of RF bindings to SDNA indirectly through
geometrical and electrostatic interactions [32].

To understand the electrical characteristics of the SDNA thin films with different [RF] (i.e. 1, 3, 5, 7
and 9 mM), the current was measured as a function of voltage (figure 3a). Two electrodes made of silver
paste with a channel length of approximately 1 mm were placed on the pristine and RF-doped SDNA
thin films, and the overall trends in the current of the thin film showed slight nonlinearities by varying
the voltage, which might come from the asymmetric electrode contact on the SDNA thin film as well as
intrinsic characteristics of the sample. Figure 3b shows the resistance (inversely proportional to current)
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of the SDNA thin films with different [RF] as a function of fixed voltages (i.e. 0.5, 1.0, 1.5, 2.0, 2.5 and
3.0 V). Interestingly, an appreciable increase in the resistance (due to the accumulation of electrically
insulating RF) was observed with an increase in the [RF] up to 5 mM (which accidently corresponded
to [RF]C), and above 5 mM, the RF-doped SDNA thin films showed decreases in resistance (because of
non-specific RF binding to SDNA) at almost all voltages.

The absorption spectra (measured wavelength-dependent light intensity) of pristine SDNA and RF-
doped SDNA thin films with various [RF] were obtained with a UV–visible spectrophotometer (shown
in figure 4a). The absorption bands indirectly suggest the binding of RF in the SDNA thin films. The RF
in the DNA molecules enhanced the absorption bands around wavelengths of 367 and 454 nm (due to the
π–π* transitions from the ground state S0 to the two lowest-lying excited states of the singlet manifold
states S1 (corresponding to 454 nm) and S2 (367 nm)) and suppressed intrinsic DNA characteristic peaks
at 210 and 260 nm [33–36].

Figure 4b shows the variation in the absorption band intensities of RF-doped SDNA thin films as a
function of [RF] at three different wavelengths of 260 (a characteristic peak of DNA), 367 (RF) and 454 nm
(RF). The characteristic absorption band intensity of the RF-doped SDNA thin film at a wavelength of
260 nm decreased (i.e. hypochromic effect) up to a certain critical [RF] (which corresponded to [RF]C of
5 mM) and increased (hyperchromicity) with an increase in [RF]. Here, hypochromic and hyperchromic
effects suggested RF binding to DNA duplexes through a π–π stacking interaction between the RF
and DNA and the dissociation of DNA duplexes due to the presence of excess RF (=[RF] – [RF]C),
respectively. By contrast, the characteristic absorption band intensities of the RF-doped SDNA thin film at
367 and 454 nm showed a monotonic increase (hyperchromicity) of the peak intensities as [RF] increased.
Interestingly, a slight band shift (about 4 nm) to a higher wavelength (i.e. bathochromic effect) of the
sample at 367 nm was observed. The variation in the absorption band intensities of the RF-doped SDNA
thin films as a function of [RF] suggested the presence of RF in SDNA thin films and the interaction of
RF with SDNA.

Finally, we demonstrated the PL characteristics of RF-doped SDNA thin films as a function of [RF].
We initially obtained the photoluminescence excitation (PLE) spectra of the RF-doped SDNA thin films
at a fixed emission wavelength of 545 nm because the RF molecules are known to show a strong green
emission at 545 nm, which is depicted in figure 5a. From the PLE spectra, a strong PLE peak at 367 nm in
the UV region could be observed. Interestingly, the absorption spectra (figure 4a), which were analogous
to the PLE spectra, showed strong absorption peaks at 454 nm in the blue region as well as 367 nm in
the UV. Consequently, two different excitation wavelengths of 367 and 454 nm were fixed to understand
the energy transfer characteristics between the RF and SDNA molecules. The PL was free of a photon
upon relief of the electron from the triplet excited state, and the energy transfer arises during internal
conversion within the excited singlet state, then from the excited singlet state to the triplet state via
intersystem crossing, and then to emissive states [9,31,37].

Figure 5b,c shows the PL spectra of the SDNA without and with various [RF] at fixed excitation
wavelengths of 367 and 454 nm. Interestingly, the emission spectra of the SDNA thin film with [RF]
of 5 mM (i.e. [RF]C) showed strong and broad characteristic green emission bands at approximately
545 nm, which could not be observed from the pristine SDNA sample. The PL properties of RF have
been extensively studied, and it shows a bright green fluorescence when excited at wavelengths in the
range of 360 – 375 nm [27,38]. From the PL spectra of the RF-doped SDNA thin films, the PL intensity was
appreciably enhanced by an increase in the [RF] up to [RF]C, and it then exhibited a quenching effect with
a further increase in the [RF]. The energetic emission peak area and height as a function of the [RF] in
the SDNA thin films obtained from the emission spectra at a fixed excitation wavelength of 367 nm using
Gaussian fitting of the data are displayed in figure 5d. Both the area and height of the emission peaks
were initially enhanced by increasing the [RF] up to [RF]C and then decreased with a further increase in
the [RF] in SDNA thin films.

The inset in figure 5d reveals an emission shift as a function of the [RF] at an excitation wavelength of
367 nm. The emission peak at 545 nm shifted to a lower wavelength (blue shift) with an increase in the
[RF] up to [RF]C, and it then shifted to a higher wavelength (red shift) with a further increase in the [RF] in
the SDNA thin films. The enhancement in the emission and the blue shift of the emission peak at 545 nm
up to [RF]C suggested that the RF molecules interacted with the SDNA through groove and electrostatic
bindings. The PL quenching effect and red shift of the emission at 545 nm above [RF]C implied that the
excess RF molecules might be improperly bound to the SDNA, which resulted in unexpected stress and
strain to DNA duplexes, which caused a structural deformation (as shown in figure 2a). In addition,
we tested the pristine RF (without SDNA) in water, which did not show appreciable emission when
compared with the RF-doped SDNA thin film at the same [RF]. Consequently, the emission was notably
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enhanced when the RF was doped into the SDNA due to suppressing the quenching of RF by water
molecules [39].

4. Conclusion
In summary, a DNA lattice made of double-crossover tiles and DNA thin film extracted from salmon
embedded with various concentrations of RF were fabricated via substrate-assisted growth and drop-
casting methods, respectively, and their physical properties were studied. The AFM analysis shows
that the critical doping [RF] (=[RF]C of 5 mM) in DNA lattices was obtained through observation
of the phase transition from periodic crystalline to aperiodic amorphous structures. To understand
prominent intrinsic properties of DNA samples with different [RF], the FTIR, current, absorbance and PL
measurements of RF-doped SDNA thin films were conducted. The FTIR spectra indicated the binding
strength of RF in DNA through an analysis of the specific wavenumbers of 832, 960 and 1733 cm−1. The
current curves of the DNA thin film showed slightly nonlinear behaviour by varying the voltage, which
might be a result of asymmetric electrode contacts on the RF-doped SDNA thin film as well as intrinsic
characteristics of the DNA sample. The absorbance at 260 nm (characteristic band of DNA) decreased
with an increase in [RF] up to [RF]C and then increased with a further increase in the [RF]; whereas
the absorbance at 367 and 454 nm (characteristic band of RF) increased monotonically with an increase
in [RF]. The PL spectra of RF-doped SDNA thin films showed significant enhanced intensities as well
as emission shift in the green region due to the efficient energy transfer between RF and DNA. The
enhanced and tuneable optical characteristics of RF-doped SDNA thin films might be beneficial for use
in various applications, including bio-light emitting diodes, bio-lasers, fluorescence sensors, bio-imaging,
photo-sensitizers and bio-sensors in the near future.
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