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ABSTRACT 

 Currently, operators and maintainers cull though numerous electronic reports, 

display boards, and historical maintenance records to determine and plan for maintenance 

activities for equipment. However, in recent years, emerging technologies such as the 

Internet-of-Things, big data analysis, and low-cost sensors and actuators have enabled 

applications that were not possible previously. From these developments, information 

that was once unavailable is now accessible through embedded sensors and actuators, 

providing real-time condition monitoring of complicated machinery. This thesis 

demonstrates the use of inexpensive COTS hardware devices and open-source software 

to develop an automated data collection architecture and a data processing framework to 

implement a preventative maintenance approach for the Marine Corps Medium Tactical 

Vehicle Replacement (MTVR). Data processing techniques were used to convert raw 

sensor data collected from on-board MTVR sensors into useable and measurable 

diagnostic data. Using statistical analysis based on a time series regression model, the 

diagnostic parameters that closely modeled engine operating conditions were chosen to 

predict engine usage characteristics of an MTVR engine. The thesis also describes a 

conditions-based maintenance policy that can be used to enhance preventative 

maintenance methods and decision support capabilities on Marine Corps ground 

equipment. 
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I. INTRODUCTION 

The purpose of this thesis is to examine a conditions-based maintenance approach 

to support preventative maintenance policies for Marine Corps ground equipment. 

Specifically, this research examines implementing conditions-based maintenance from 

diagnostic data extracted from the Marine Corps Medium Tactical Vehicle Replacement 

(MTVR). The thesis will begin with a review of the major research questions, describe the 

importance and benefits of conditions-based maintenance, and present a brief literature 

review of conditions-based maintenance practices in the Department of Defense (DoD) and 

certain industry organizations. Using the diagnostic data extracted from the vehicle, this 

thesis will establish a CBM decision methodology by analyzing diagnostic data using 

regression analysis. Conclusions from this analysis will be drawn to demonstrate a CBM 

policy for use across Marine Corps ground equipment. 

A. BENEFITS AND IMPORTANCE OF CBM 

Marine Corps doctrine recognizes that "logistics is an integral part of war fighting 

[because it] provides the resources of combat power, brings those resources to the battle, 

and sustains them throughout the course of operations" [1, p. 1]. Until recently, it has been 

difficult to achieve and discover optimal maintenance procedures to support military 

operations because real-time information visibility on equipment conditions was 

inaccessible [2]. Military organizations relied on paper charts, display boards, and 

historical maintenance schedules to create maintenance policies and determine optimal 

maintenance actions. However, with emerging technologies brought forth by IoT devices, 

radio frequency identification (RFID), equipment sensors, interconnect networks, and 

computational power, information containing the status of equipment conditions and 

operations can be monitored and gathered for data analysis and decision support models 

[2]. To sustain combat power and compete in the war landscape of the 21st century, military 

organizations have begun to leverage the latest advances in logistics technology systems. 

Military organizations have identified logistics data as a critical enabler for their 

future success. The Army recently published an update to its “Field Manual 3-0 
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Operations," describing ways to leverage today's logistic data and technology to fight the 

next adversary. Similarly, the Navy is leveraging data from logistic assessment systems 

integrated on its ships to find ways to sustain lethality and maintain sea power using data-

driven methods aligned along National Defense Strategy pillars [3]. Also, the Air Force is 

working closely with industry partners, particularly Boeing and Lockheed Martin, to find 

ways and opportunities to increase fighter plane readiness through investment in logistics 

systems and software that specialize in data analytics. In the commercial sector, DoD 

industry partners are actively finding ways to optimize logistical distribution services and 

supply chains by using computational machines and computer software to prove and create 

effective logistics strategies. They are leveraging logistics information technology to plan 

the movement of vast fleets of trucks, aircraft, and ships to transport goods and services 

from one corner of the globe to the next in the way that reduces cost and increases 

efficiency in a global economy that is increasingly integrated. 

This research explores a way to exploit the real-time logistic data collected from 

military vehicles and other equipment to enable predictive maintenance. This data provides 

information revealing insights that drive logistic and operational decisions. Predictive 

maintenance enables organizations to maximize performance and availability from their 

physical assets and revolutionizes traditional logistic strategies and supply paradigms [4]. 

As mentioned in the DoD Guidebook on Conditions-based Maintenance, "the 

Department of Defense is continually challenged to identify and meet warfighter 

expectations while making every effort to conduct cost effective sustainment operations" 

[5, p. 2]. Conditions-based maintenance (CBM) is a preventative maintenance approach 

that focuses on identifying failures before they occur and monitoring the condition of an 

item for improved life cycle sustainment. This thesis presents a brief overview of literature 

on CBM and an insight into a CBM approach as a maintenance strategy [6]. 

A traditional scheduled maintenance approach does not reveal the health or 

condition of equipment, whereas a CBM approach captures the experience of the life of a 

repair part. This benefit allows organizations to make real-time decisions and visualize 

readiness drivers based on information available. Another major benefit of a CBM 

approach is reduced downtime and maintenance cost. By identifying failures before they 
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occur, maintainers and logistics planners can eliminate progressive troubleshooting 

procedures, which reduces the number of intrusions into equipment, saving time and 

reducing risk of failure. With reactive or preventive maintenance, a massive inventory of 

spare parts is necessary because maintainers do not know what is needed until an asset is 

taken out of operation making repair parts difficult to forecast. Furthermore, predictive 

maintenance models built on historical data are not exact enough to provide the level of 

detail needed for accurate forecasting. However, logistic or maintenance-based computer 

software used to process, collect, and analyze maintenance data, enable CBM revealing 

relationships and correlations beyond historical maintenance records and day-to-day 

maintenance charts. A CBM approach enables the estimation of time-to-failure for each 

part, allowing the forecasting of only necessary parts, optimizing existing supply 

inventories. CBM also reveals the true cost of life cycle ownership by tracking the 

remaining life of each equipment component; therefore, increasing availability of parts by 

creating accurate demand signals, and the development of optimal upgrade and 

replacement plans based on the estimated life of equipment components. Put briefly, CBM 

extends the life of equipment while keeping cost low and ensuring high availability of parts. 

This thesis discusses a low-cost proof-of-concept CBM approach. 

B. PROBLEM STATEMENT 

This research aims to investigate a preventative maintenance approach to support 

predictive maintenance of Marine Corps ground equipment. The two key questions are 

summarized as follows: 

• What is a good architecture for automated collection of sensor data that 

can be used to determine conditions necessary for maintenance actions on 

Marine Corps equipment? 

• How can this collection of sensor data be used to provide in-depth 

maintenance analysis, improve quality assurance, and generate enhanced 

maintenance solutions for vehicle or weapon system life cycle support? 
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C. SCOPE AND LIMITATIONS 

This thesis utilizes a low-cost commercial-off-the-shelf (COTS) device to extract 

real-time diagnostic data from an MTVR. The collected data is processed using an on-

computer database file system. While this thesis presents a single use-case for CBM on one 

piece of equipment, this method can be exported and scaled across a variety of Marine 

Corps ground equipment. The COTS device simulates an industrial Internet of Things (IoT) 

device utilized to collect data from on-board equipment sensors. These devices then 

transfer the data collected into a central server or cloud via an interconnected network. 

Cloud and computerized maintenance management systems are represented by the on-

computer database software. The collected data is then transformed to scaled engineering 

values where regression analysis is used to create a predictive model. This thesis aims to 

provide a proof-of-concept CBM methodology that can be transferred to large-scale 

computing cloud architectures where advanced machine learning algorithms can be 

applied. MTVRs are equipped with the industry standard bus wiring system to transmit 

diagnostic data. This plug-and-play capability means vehicles did not have to be modified 

to support this research. 

There are three limitations of this research. First, due to the geographical separation 

of Naval Postgraduate School from Marine Corps operating forces, testing and validation 

of hardware used for data extraction was conducted at Combat Logistic Battalion 453, 

Combat Logistic Regiment 4, 4th Marine Logistics Group in San Jose, CA. Data from two 

MTVRs was collected for equipment testing and validation. The final diagnostics data was 

collected from one MTVR at 11th Marines, 1st Marine Division located in Camp 

Pendleton, CA. Second, data was collected in real-time and only the data available at the 

time of collection is utilized. Third, diagnostic data of equipment with known failures was 

not obtained. In practice, CBM is a maintenance policy that recommends performing 

maintenance only upon need. Typically, this policy is built from probabilistic models 

derived from the data collected from healthy equipment and equipment with failures. To 

make up for this limitation, this research modeled the known “normal” operating engine 

conditions and established warnings and triggers on operating ranges outside the “normal” 

to trigger maintenance actions. 
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D. ORGANIZATION OF THESIS 

This thesis is organized into four subsequent chapters: 

• Chapter II, Logistics in a Distributed Environment contains a brief 

discussion on logistic concepts and the need for CBM in a distributed 

environment, the history of conditions-based maintenance in the DoD, and 

its implementation and integration into current maintenance paradigms. 

• Chapter III, Experimentation Methodology and Technical Approach 

contains a detailed discussion on the experimentation used to develop a 

prototype and methodology for data collection and retrieval, data analysis, 

and decision support capabilities for data sets of time series data to enable 

CBM. 

• Chapter IV, Results, Analysis, and Limitations summarizes findings from 

the experimentation and implementation from Chapter III and discusses 

the capabilities and limitations of the proposed CBM probabilistic model. 

• Chapter V, Conclusions and Recommendations for Future Study 

concludes the research report, identifying areas where additional research 

is recommended. 

The thesis also includes four appendices: Appendix A contains Python source code 

on data cleaning and parsing of J1939 log data. Appendix B has R source code for data 

analysis and plot drawing. Appendix C is electronic control unit wiring diagram on the 

MTVR 23. The driving course for the MTVR is included in Appendix D, Figure 29. 
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II. LOGISTICS IN A DISTRIBUTED ENVIRONMENT 

This chapter has four purposes. The first purpose is to briefly explain fundamental 

methods and practices of military logistics. Emphasis is placed on two Marine Corps 

doctrinal methods, "push" logistics and "pull" logistics. The second purpose is to identify 

the significance of computer integration into modern logistic methods to enhance logistic 

capabilities. This section explains how digitally enabled logistic creates opportunities for 

new approaches to maintenance. The third purpose is to identify and discuss how DoD 

organizations and commercial companies leverage digital technologies to increase 

reliability, sustain lethality, and enable predictive maintenance. The final purpose of this 

chapter is to discuss a business model to support a digital maintenance strategy. 

A. LOGISTICS OVERVIEW 

Reinhardt Jünemann, a leading logistics expert and scientist, describes the objective 

of logistics as "providing the right quantity of the right objects in the right place at the right 

time for the right price" [7, p. 11]. To achieve these objectives, the Marine Corps, uses a 

combination of two methods. The first method is an automatic push system wherein a 

resource is provided to a unit without any action or request from the receiving unit. In this 

method, resources are distributed and allocated among units based on planned schedules 

and formulas [8]. An example of this process is the prepositioning of certain repair parts 

or maintenance teams in front of a unit in the battle space in anticipation of the unit’s future 

requirements [8]. The second method is the demand-based pull method. This method is 

used when organizations who require support request replenishment and repair parts from 

the sourcing unit [8]. 

Each system provides advantages that the other system lacks. A logistical push 

system uses known and scheduled logistic requirements to position or deliver resources. 

This process allows units to have dependable support with little effort in planning. 

However, the downside of the push method is that a unit can easily become overburdened 

with excessive supplies and unnecessary parts. A pull logistic system allows for efficiency  
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and optimal logistic parts flow because units receive only the support that is needed. 

However, though efficient in terms of reducing the logistic burden, this system is 

vulnerable to the uncertainties of war as well as unpredictable consumption rates and 

resource limitations. Resources for these systems are naturally constrained due to fiscal 

shortfalls, material limitations, the unavailability of skilled laborers or manufacturers, or a 

combination of all three. These constraints force our logistic systems to rely on an 

impractical perfect balance of human-projected requirements and logistics planners’ 

estimates as well as the availability of support vehicles and systems  to distribute, manage, 

transport, handle, and deliver supplies [8]. 

B. THE NEED FOR COMPUTER INTEGRATION INTO LOGISTIC 
SYSTEMS FOR TODAY’S SUCCESS 

Logistics plays in integral role in any military action, whether in war or peace [1]. 

Moreover, the complexities and uncertainties of war only exacerbate logistical constraints 

lessening the effectiveness of our logistic methods. In many ways, the characteristics of 

logistics can be described as a science [1]. The distribution and allocation of materials 

based on information received, planned schedules, or formulas, form the basis for 

calculations, deduction, and prediction [1]. Information such as fuel consumption by a 

convoy of trucks transporting from one location to another or the type of spare parts needed 

to support a certain vehicle can all be calculated ahead of time. These facts and rules 

coupled with the exponential growth of computer power and the proliferation of data have 

created conditions to enhance current logistic methods. The logistical experience of an 

organization combined with technology enable logistics planners to find opportunity in 

uncertainty allowing organizations to maintain their lethality and operational effectiveness. 

1. Lessening Logistic Constraints through Technology 

The state and health of our military equipment is deteriorating and in need of 

modernization [9]. Current Marine Corps logistic systems fall short to meet demands of a 

constantly changing Marine Corps [10]. According to a Marine Corps Gazette article titled 

“One Single Nail,” the Marine Corps’ “combat experiences in the dusty cities of Iraq and  
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the inhospitable regions of Afghanistan have not only demonstrated Marine resilience and 

lethality, but also that our support systems and methodologies are reeling under the 

pressure of constant demands” [10, p. 5]. The Marine Operating Concept suggests that this 

situation will continue. The Marine Corps Operating Concept published in 2016 [11] serves 

as a guide for future force development and the Marine Corps operational approach to 

overcome future challenges for 2025 and beyond. It defines a set of critical tasks to inform 

how the Marine Corps will develop its force. It describes the future operating environment 

as an Anti-access/Area denial (A2AD) threat environment, one that denies our ability to 

build and sustain large stockpiles of logistics at fixed locations ashore. During the Iraq and 

Afghanistan wars, the US military had logistical freedom of movement due to the enemy’s 

inability to deny our logistic build-up ashore. The Marine Operating Concept describes the 

enemy of our next fight as one with an ability to disrupt this build-up as well as our logistic 

systems [11]. 

Thus, today, the problem USMC logistics planners face is determining what 

combination of methods allows them to achieve maximum effectiveness without loss of 

lethality. It is known that one-hundred percent availability of supplies and resources will 

never exist inside the Department of Defense (DoD) due to natural constraints; therefore, 

the flow of available supplies versus the demand for these supplies will always have a 

natural back and forth sway. To achieve "just in time" logistics, organizations and 

manufacturers must have the availability of mechanics, skilled laborers, factories, and DoD 

industry partners, as well as the proper demand signal. As the demand continues to increase 

for supply and materials and the money available to purchase supplies decreases, our 

current logistic models will limit our ability to meet forecasted demands. 

Improving these logistics methods will require addressing a number of emerging 

challenges in logistics more broadly. Logistics’ primary purpose is to ensure an optimal 

flow of cargo. Schuldt [7, p. 11] notes that “logistics is generally the planning and 

controlling” of supply material processes, such as procurement, production, and 

distribution “rather than the executing of respective operations” that bridge time and space 

between supply materials, personnel, infrastructure and the final material product.  
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Logistics planners and manufacturers have the near-impossible task of optimizing 

a complex system of material flow to match an ever-changing demand. In today’s logistical 

market, such supply chain management is no longer a linear process but a series of complex 

interconnected supply networks with a large number of participants, services, and 

requirements [7]. Information is more integral now than before due to rapidly advancing 

technology and the proliferation of data combined with the increasing growth and demand 

of supplies. Moreover, the worldwide market of logistics is larger, more competitive, and 

more connected [4]. The wealth of information available today requires the need for 

computer integrated systems and programs to effectively synchronize and aggregate the 

network of logistic processes with operations [7].  

2. Marine Operating Concept: A New Way to Fight 

Particularly, for the Marine Corps, there is an added layer of complexity in logistics 

systems due to the inherent characteristics of war. Forces often operate in areas where 

resources and infrastructure are limited, and the availability of raw materials for 

manufacturing may not be reliable due to geographic constraints [1]. Consequently, Marine 

units must master a combination of all logistics methods plus "empathized self-sufficiency" 

to sustain themselves in austere environments. To minimize the mass of logistics ashore in 

an A2AD environment, the Marine Corps has shifted its operational approach to one of 

distributed operations spanning the breadth of the Area of Operations (AO). Distributed 

logistics in a contested environment aims to generate the benefits of mass without the 

vulnerabilities of concentration. To achieve this logistic objective, the organization must 

understand how to ensure the optimal flow of cargo, materials, and supplies by applying 

the proper logistic function [7]. 

This achievement is only possible through the use of information technology that 

supports the management and control of logistic processes that can be shared, standardized 

and easily accessible throughout the force. The National Defense Strategy explains that to 

build a more lethal force, organizations must modernize key capabilities by increasing 

equipment readiness [9]. Modern computing technologies are more adaptable to changing  
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circumstances due to computational speed. Therefore, it is integral that Marine logisticians 

and planners challenge themselves to discover other ways to manage logistic process 

controls through use of information, data, and computational means to gain organizational 

success and sustain lethality in the future fight. Organizations must be able to leverage 

logistic technologies to determine and prioritize which cargo needs to be handled or which 

repair part forecasted and ordered. Schuldt mentions "whenever the term logistics is used, 

the main focus is on materiels rather than on persons and information" [7, p. 13]. He 

indicates that in order to achieve the optimal flow of logistics, one must determine which 

logistical method must be applied. He explains that information plays a vital role in 

determining this effectively. Logisticians and maintainers are charged to find other ways 

to enhance our current methodologies through use of information and technology.  

C. CONDITIONS-BASED MAINTENANCE DEFINED 

The increasing availability of computational power and rapidly advancing analytics 

opportunities, allow organizations to leverage data from multiple equipment sensors and 

take advantage of analytical models and visualization tools to optimize their logistic 

processes, increasing equipment availability while reducing cost. Conditions-based 

maintenance is a preventative maintenance approach that uses sensor-based monitoring on 

system components of equipment to predict the actual time to failure of loss of efficiency 

[12]. A discussion on CBM and its implementation across the DoD follows. 

1. Defining CBM 

Conditions-based Maintenance is defined as "maintenance performed based on 

evidence of need, integrating reliability-centered maintenance analysis with those enabling 

processes, technologies, and capabilities that enhance the readiness and maintenance 

effectiveness of DoD systems and components" [5, p. 9]. The term “Conditions-based 

Maintenance” is not new to the DoD. Its use can be traced back to late 2002 with the release 

of Deputy Under Secretary of Defense for Logistics and Material Readiness memo 

Conditions-based Maintenance Plus [13]. This memorandum established interim policy 

and provided definition and guidance to the Military Departments on Conditions-based  
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Maintenance. It further described the objectives, applicability, and implementation of 

CBM throughout the DoD acquisition communities and Military Services. Efforts and 

invigoration for the continued development and implementation of CBM slowed 

dramatically due to the Invasion of Iraq in 2003 followed by the U.S. War in Afghanistan 

(Operation Enduring Freedom). It was not until 2012 that strategic alignment supported 

CBM along with technology advancements in information tools and maintenance 

equipment. During this time, DoD reissued and updated the Conditions-based Maintenance 

Policy declaring CBM “an essential readiness enabler” and the “primary strategy for 

achieving cost-effective equipment system life cycle sustainment” [5, p. 1]. This policy 

assigned responsibilities and implementation measures for Military Departments and 

Defense Agencies. 

A DoD manual on CBM notes that an effective implementation of CBM requires 

using a “systems engineering approach to collect data” and information to enable analysis 

that “supports the decision-making process” for systems and equipment [14, p. 23]. 

Similarly, the industry defines Conditions-based Maintenance along these same lines. 

Olivier Sénéchal, an expert in performance measure for maintenance decisions, defines in 

his paper titled “Performance Indicators Nomenclatures For Decision Making In 

Sustainable Conditions Based Maintenance” that Conditions-based Maintenance is a 

“maintenance policy which undertakes maintenance actions before product failures 

happen, by assessing productivity conditions including operating environments, and 

predicts the risk of product failures in a real-time way, based on product data gathered” 

[15, p. 2]. Jardine, et al., [16, p. 1] define CBM as “a maintenance program that 

recommends maintenance” decision “based on information collected through monitoring” 

systems. For the logistician, CBM enhances push and pull logistics methods, further 

closing the gaps presented in the Marine Operating Concept to support distributed 

operations.  

CBM uses onboard diagnostics from sensor data and technology built into the 

equipment to retrieve information about that system. Vanli discusses that the goal of CBM 

is to repair or replace parts before they fail, which “is in contrast to traditional maintenance  
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policies that are based solely on the system age or occurrence of breakdowns” [17, p. 335]. 

2. Reliability-Centered Maintenance as an Enabler to CBM 

One of the key enablers of CBM is Reliability-Centered Maintenance (RCM). RCM 

uses historical data, equipment reports, and experience from industry experts to build 

probabilistic models to prevent future failures. DoD 4151.22-M (Reliability Centered 

Maintenance (RCM) manual defines RCM as “a logical, structured process used to 

determine the optimal failure management strategies for any system, based on system 

reliability characteristics and the intended operating context” [14, p. 25]. It establishes the 

need for reactive and proactive maintenance tasks. RCM is at the heart of CBM, built on 

years of data. It tracks as-is or current system trends, evaluating measures of effectiveness 

and their cost drivers, which feeds equipment and cost analysis reports. 

The information gained from CBM is used in concert with RCM to improve combat 

power and lethality in terms of operational and material availability. Traditionally, units 

operate equipment until it fails and then they begin to progressively troubleshoot to find 

the issue. They also perform maintenance activities at regular time intervals determined by 

failure-time data [17]. CBM aims to drive units out of the reactive and preventative phase 

and into the “react when required” phase and model driven phase (predictive). Figure 1 

depicts the evolution of maintenance from this traditional approach to the current predictive 

and sensor-based approach. Together, CBM combined with RCM form a predictive 

maintenance loop that allows us to leverage information to measure the variables that fail 

or degrade over time. This is then used to plan future maintenance activities. 
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Figure 1. Approach to Maintenance. Source: [18].  

D. CBM IMPLEMENTATION AND EXISTING CAPABILITIES ACROSS 
THE DOD 

This section provides a brief discussion on how to enable CBM on ground 

equipment. Then this section will discuss CBM implementations in the DoD and in certain 

commercial organizations. 

1. The Controller Area Network Data Bus 

To conduct CBM, information must be obtained from sensors on equipment. Most 

modern commercial vehicles contain a high-speed Controller Area Network (CAN) bus, 

ISO 11898 [19]. This bus provides serial data communications between the electronic 

control units (ECU) in heavy-duty vehicles. ECUs include engine control units, airbags, 

temperature systems, anti-brake locking systems, etc. Modern heavy-duty vehicles can 

have over 70 ECUs [20]. These ECUs exchange thousands of messages per second between 
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other electrical components in the vehicle carrying data pertaining to wheel speed, torque 

control, engine temperature, oil diagnostics, and many other parameters [19].  

The Society of Automotive Engineers (SAE) defined a communication protocol 

standard around the mid-90s [19] to allow simple communications across equipment 

sensors. Modern heavy-duty trucks in the United States, such as tractor trailers, 

construction equipment, agriculture or forestry equipment, use the Society of Automotive 

Engineer J1939 Standard (J1939) as a protocol for serial bus communication in internal 

CAN networks [21]. J1939 provides a higher layer protocol using CAN as the physical 

layer basis. J1939 offers a standardized method for communication across ECUs from 

different manufacturers. Logistic commercial companies leverage the J1939 protocol to 

create a logistic capability to build fleet management solutions [21]. This integration of 

equipment sensor data to a networked capability provides companies with the infrastructure 

for implementing conditions-based maintenance, challenging the idea of scheduled 

maintenance cycles.  

Military vehicles also have the capability to leverage the SAE J1939 

communication standard. The Marine Corps possesses a fleet of logistic vehicles and 

weapons systems that share the J1939 protocol standard on their CAN serial bus. 

Information obtained from on-board sensors using this capability can enable CBM. For 

example, the Medium Tactical Vehicle Replacement (MTVR) fielded in 2001 [22, p. 12] 

comes equipped with SAE J1708/J1939 Data Bus and Built-in Diagnostics. Several pieces 

of Marine Corps equipment such as the M142 High Mobility Artillery Rocket System 

(HIMARS), the Logistic Vehicle System Replacement (LVSR), the Mine-Resistant 

Ambush Protected (MRAP), the MRAP All-Terrain Vehicle (M-ATV), M1A1 Abrams 

battle tank, and some engineering equipment have the J1939 data bus capability [23]. These 

can leverage the same CAN-bus utilized in commercial industries via the J1939 data bus. 

However, not all Marine Corps equipment is equipped with J1939 sensor diagnostic 

capabilities. Some use an older serial communication standard not compatible with CAN 

or the J1939 protocol. These systems rely heavily on scheduled maintenance cycles, which 

limits their informational logistical reach. This dynamic creates a challenge to the CBM 

approach. Currently the Marine Corps has no CBM policy and is governed by the 2012 
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DoD CBM+ Memorandum. This has led to a gap in CBM capabilities in the Marine Corps 

logistics community, nevertheless, recently the Marine Corps has made several 

investments to accelerate the execution of CBM [24]. Conditions-based maintenance 

challenges organizations to develop an environment that can store real-time data as well as 

use historical maintenance indicators to drive decision and offer a new way of doing 

business. 

2. Health Management Systems as an Enabler for CBM 

A discussion on CBM implementations in the DoD and commercial sector follow. 

a. CBM in the Air Force 

A 1973 study by the Rand Corporation for the Air Force analyzed inefficiencies in 

maintenance data analysis. Their goal was to understand the relationship between costs and 

the benefits of scheduled maintenance activities. The Rand study reached three 

conclusions. First, that time or interval-based scheduled maintenance alone overlooks 

many factors that lead to increased aircraft sustainment [25]. Second, there is no correlation 

to the number of aircraft mishaps due to equipment failure and increased frequency of 

scheduled maintenance [25]. Last, for adequate interpretation of maintenance data, many 

issues require skilled personnel that understand maintenance policies and procedures and 

the augmentation from computer-based programs. Since these results, the U.S. Air Force 

has invested heavily in integrating health-monitoring systems into their platforms. 

Currently, the Air Force is implementing CBM on their B-1B and C-5M aircraft 

[26, p. 62]. Their CBM toolkit consists of real-time data streaming, predictive maintenance 

algorithms and reporting, active Reliability Centered Maintenance, condition-based 

inspections, and comprehensive fleet health dashboards [27]. For some time, the Air Force 

has been developing a CBM ecosystem and "already sees a significant reduction in cost 

and about a 30 percent reduction in unscheduled maintenance" [26, p. 62]. The Air Force 

is building a CBM ecosystem that is a combination of predictive analytics and codified 

processes that captures the maintenance experience through the life of a repair part. The 

Air Force has adopted a predictive maintenance alert loop (PMAL) process that enables 
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stakeholders involved in the process to make informed decisions regarding the timing and 

location of aircraft maintenance actions and performance indicators for failures [28]. 

The US Air Force's CBM vision is robust. Instead of looking at one aspect of CBM, 

they aim to propagate a culture in which CBM philosophy can thrive beyond just 

predicative algorithms and sensors to a new business model (by 2025) [29]. In response to 

Combatant Commanders’ needs for rapid development of new capabilities in the current 

fight and to outpace our near-peer competitors, the Air Force initiated the Air Operations 

Center (AOC) Pathfinder effort in August 2017 [30, p. 19]. The USAF Pathfinder program 

has successfully demonstrated several CBM+ solutions, particularly on the B-1B and C-

5M aircraft. On the C-5M, the Air Force was able to detect and replace a faulty primary 

heat exchanger outlet temperature sensor before it failed. This alleviated an eventual costly 

air exit door failure and avoided an expense of over $250,000 per occurrence. 

b. CBM in the Army 

The US Army Material Systems Analysis Activity (AMSAA) is focused on 

developing onboard systems for ground tactical vehicles to enable CBM. "The onboard 

system that AMSAA has designed in conjunction with the Aberdeen Test Center collects 

data from a vehicle’s onboard vehicle sensors, data bus, terrain sensors, and global 

positioning system (GPS) and analyzes the data to determine the vehicle’s condition” [31, 

p. 1]. Since 2008, the US Army has invested heavily and partnered with organizational-

level Command and Research and Development units to spearhead strategies and improve 

ways to reduce maintenance burden while increasing readiness through CBM [32]. The 

Army used a phased approach to implement CBM into their fleet. They integrated a small 

health monitoring system "with limited but very specific capabilities that can be deployed 

across larger fleets” [31, p. 1]. This system allowed them to integrate proven hardware and 

data analysis methods into other equipment. The approach has allowed the Army a steady 

way to build a health monitoring system platform into a sustainable, robust, military-grade 

analysis platform [31]. Today, the US Army has enabled CBM and diagnostic technologies 

for their Stryker vehicles and Heavy Expanded Mobility Tactical Truck (HEMTT) A4 

platforms through their Stryker Brigade Combat Team (SBCT) Embedded Data Collection 
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and Analysis System (SEDCAS) program [33]. They have also integrated several 

diagnostic systems and programs such as the Health Usage and Management System 

(HUMS) and Vibration Management Enhancement Program (VMEP) to their UH-60, CH-

47 Chinook, and AH-64 Apache helicopters [34], with plans to expand to other vehicles 

and platforms [35] in the near future. 

Kevin Guite [32], a lead operations research analysis partner with AMSAA, 

reported that a recent AMSAA study "indicated that approximately 97 percent of the 

tactical wheeled vehicle fleet and 98 percent of the 1,310 instrumented Strikers were being 

serviced based solely on time rather than actual use.” He also reported that the study shows 

that maintenance was being conducted to replace fluids or repair parts before conditions 

were actually necessary due to required time-based maintenance policies. As a result, this 

has led to further developments and improvements in the Army's maintenance sustainment 

strategy for CBM. Currently, the Army is using a transportation company in its 25th 

Infantry Division to conduct experimentation and testing focused on improving 

maintenance burdens, reducing cost, and evaluating sustainment practices through CBM 

[32]. It is clear the Army has recognized the benefits of CBM across their fleet of 

equipment, and studies show the investments are clearly worth it. 

c. CBM initiatives at Naval Sea Systems Command 

Since 2001, the Navy has trained and certified over 10,000 personnel in RCM and 

invested in CBM technologies over the last 10 years [3]. Now, with recent improvements 

in CBM enablers, due to the growth and rapid expansion of Internet of Things (IoT) 

devices, the Navy is expecting to capitalize on tools and systems to "make vast 

improvements in [their] Operating Availability, reduce system downtime, and also save 

money" [3, p. 2]. The Navy has been using the Integrated Condition Assessment System 

(ICAS) as their common tool to support CBM for the past 20 years [3]. The Navy is already 

migrating to a new health monitoring system called Enterprise Remote Monitoring (eRM) 

and Consolidated Machinery Assessment System Ashore (CMAS) that is able to support 

rapid development for new algorithms and linkage to existing systems and sensors [3]. The 

Navy is using CBM as an enabler to sustain their fleet and close the digital thread. 
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d. ALIS enabling CBM for F-35 Lightening 

A recent and well-publicized example of CBM within the DoD comes from the F-

35 Joint Strike Fighter (JSF) [36, p. 11]. This joint service inter-operable aircraft is 

equipped with an Autonomic Logistics Information System (ALIS) that automatically 

responds to failure events and transmits appropriate information across its globally 

distributed network to technicians. A published report released by the Air Force Logistics 

Management Agency on CBM initiatives highlighted the health system as an "emerging" 

example of true prognostic-capabilities embodying the full intent of CBM+ and an 

unmatched technological capability as compared with other weapon system aircraft [37]. 

The ALIS creates a logistic environment in which little human intervention is needed to 

engage the logistics cycle. The ALIS serves as an information conduit, transmitting aircraft 

heath and maintenance information to appropriate users while in flight through radio 

frequency links.  

The ALIS captures the total flight and maintenance experience from cradle to grave 

for the JSF, bringing together the training, planning, maintenance, and supply support in 

one ecosystem. The ability to scale and drive decisions is what makes ALIS powerful and 

novel as a CBM tool across the DoD. Logistic infrastructure is already transforming to 

match the flexibility and responsiveness the system provides [38]. ALIS is minimizing cost 

by optimizing a logistic strategy that operates within the lowest level of maintenance 

required to successfully meet mission. This keeps the logistical footprint low. 

Organizations are adjusting their inventory policies to match the flexibility of ALIS, 

creating a seamless interface into the supply chain [38]. ALIS is paving the way for supply 

system reform, providing new ways to view part consumptions, and breaking down 

stovepipes of data transmission, allowing information output of action and 

recommendation rather than just data [38]. These factors along with a host of other aspects 

bring us closer to an Autonomous Logistics environment. 

e. CBM in Industry 

Similar to military, commercial companies leverage CBM through use of health 

management systems and diagnosed sensors. Southwest Airlines’ aircrafts are equipped 



20 

with an onboard network system architecture that "securely connects airline operations and 

maintenance with key airplane data and software parts making data available for flight 

crews and airline ground infrastructure” [39]. Southwest Airlines is seeking to move to a 

predictive maintenance approach by transition to an airplane health management platform 

managed by Boeing [39]. The small startup FIXD is leveraging data feeds from the On-

board Diagnostics (OBD2) on personal vehicles to build a personal diagnostic mobile app. 

Their app and plug-in sensor keeps track of vehicle diagnostics and notifies drivers when 

their vehicle is due for maintenance [40]. As described in the article [40], the data from the 

app can reveal patterns such as parts that appear to fail around the same mileage mark — 

and dealers can start fixing problems for customers before they even happen. In the same 

way FIXD leverages the OBD2 controller area network to enable CBM the Marine Corps 

can leverage the J1939 CAN transmitting off of military vehicles. 

E. IMPROVING LIFE CYCLE MAINTENANCE WITH CBM 

A discussion on the impact of CBM on current maintenance practices follows. 

1. Readiness Mandate 

In Fall 2018, the Defense Secretary issued a mandate to achieve 80 percent mission- 

capable rates for the F-35, F-22, F-16 and F/A-18 aircraft by the end of FY-19 [41]. Though 

funding is an issue and a separate concern, the Air Force is meeting this demand by working 

with industry partners, such as Lockheed Martin, to leverage CBM technologies and grow 

their spare parts pool. Through the use of their health management systems and CBM 

ecosystem, they are able to conduct parts prioritization and shorten lead times between 

industry partners, maintainers, and supply, interconnecting all parts of logistics. This 

increased interconnectivity enabled by CBM builds a community effort aligned from 

acquisition to operation along a common axiom, increasing the total life cycle of equipment 

and readiness.  

To meet this mandate, organizations must optimize a CBM strategy that increases 

operational availability by matching maintenance capabilities to dynamic mission needs. 

This is one of the principal objectives of CBM [18]. To support this strategy, all key 

players, manufacturers, distributers and providers must define, redefine, and assess ways 
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for continuous process improvement throughout the life cycle of the system. As stated in 

the CBM+ Guidebook, "Implementation of CBM+ is not a single event. It is an 

evolutionary effort that progresses incrementally. DoD managers at all organizational 

levels, including logistics activities, PMs, depot- and field-level maintainers, and 

operational commanders face similar management issues during CBM+ implementation. 

A good manager periodically steps back, reviews the organization’s progress, and assesses 

the initiative results to date" [18, p. 68]. This continuous feedback loop improves the total 

system life cycle of equipment. Figure 2 shows the relationship between CBM and the total 

system life cycle. 

 

Figure 2. Relationship between CBM and Total 
System Life Cycle. Source: [18]. 
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2. CBM Business Strategy 

Diagnostics or health monitoring systems in many cases have proven to detect 

future failures and predict time between failures [17]. The statistical models and prediction 

methods that drive the underlying outputs to these systems enable analysis that captures 

inter-dependency within relationships [17]. These models have enabled “the transition 

from a corrective or time-based maintenance approach to a proactive”, and “predictive-

based philosophy” as noted in the DoD CBM guidebook [18, p. 24]. CBM drives 

maintainers and logisticians to design new business paradigms to support an environment 

that enables constant process improvement.  

The Marine Corps must determine its own "specific maintenance business 

strategies based on operational need, mix of facilities, application of technologies, and 

availability of skills, organizational structure and resources" [18, p. 24]. This research looks 

at fundamental ways to apply CBM application to improve maintenance planning and 

prediction of future equipment failure. The goal of CBM is to reduce maintenance cost 

manpower constraints while increasing operational availability. In today’s technological 

age the interconnectivity of sensors and their ability to communicate across devices is 

rapidly expanding. One method of improving life cycle maintenance through CBM is by 

leveraging data available from military equipment sensors to forecast maintenance tasks 

and minimize equipment down time. This eliminates the sheer amount of man hours and 

scheduled maintenance paper trail created by dated policies and processes. 

F. SUMMARY 

Traditionally the Marine Corps relies on a "supply-push", "demand-pull" or a 

combination of both to plan logistic sustainment. The 2016 Marine Operating Concept and 

the 2018 National Defense Strategy challenge logisticians and planners to modernize these 

methods and equipment capabilities to build a more lethal force for the future fight. 

Conditions-based maintenance is used to enhance traditional push/pull logistic methods by 

leveraging current technologies, historical data, and modern computing power. Information 

from on-board equipment sensors can be used to develop analytical methods, formulas, 

and calculations to predict equipment failures and increase equipment sustainment. The 
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Marine Corps’ current maintenance approach is to operate equipment until failure and 

progressively troubleshoot to diagnose the maintenance actions. CBM is a maintenance 

model that allows units to transform maintenance approaches to produce timely results 

through data driven models and conditions monitoring. This allows organizations to match 

the security challenges demanded by the 21st century. DoD organizations and Military 

Departments use health monitoring systems to leverage data from on-board sensors to 

enable CBM. Industry partners and commercial companies, such as airline manufacturers 

and vehicle companies use similar health monitoring systems and interconnected devices 

equipped on their  equipment to enable CBM across their fleet. This research explores a  

use case in which the Marine Corps can leverage on-board sensor information collected 

from ground vehicles to enable a Conditions-based maintenance approach. 
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III. EXPERIMENTATION METHODOLOGY AND 
TECHNICAL APPROACH 

CBM stretches across eight broad areas, depicted in Figure 3. This research is 

focused on five of the eight areas—sensors, condition monitoring, health assessment, data 

management, and analytics. Sensor refers to the raw electronic communication data 

transmitted across equipment components [19]. Condition monitoring is a maintenance 

process of converting raw sensor output to a digital parameter representing a quantifiable 

physical condition or measurable engineered valued [18]. Health assessment is the 

capability to derive usable data from sensor measurements or condition monitoring to 

identify abnormalities or facilitate the creation and maintenance of “normal” operating 

baseline profiles on equipment [18]. Data management consists of acquiring, manipulating, 

transmitting, and storing data captured from sensors [18]. Analytics represents the off-

system processing of diagnostic data through some form of software to determine the 

current health state of equipment.  

 

Figure 3. The Infrastructure of CBM. Adapted from [18]. 

Three things are needed to conduct CBM at the enterprise level. First, a 

combination of physical logging devices to pull diagnostics data from equipment. Second, 

a computing architecture network to collect, parse, clean, and process the data. Third, a 

software tool that reads the maintenance data collected and through some statistical model 

enables analysis methods that feed data insights to front-end maintenance systems. A CBM 
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maintenance policy incorporates data insights to trigger maintenance actions. This research 

explores the most basic form of a CBM ecosystem using the following methodology shown 

in Figure 4. There are three steps in the process: 

1. Raw data collection from on-board sensors using Raspberry Pi, SAE

J1939 Interface Board, and standard J1939 CAN cable connector.

2. Data cleaning and decoding using software tools to support condition

monitoring and data management. Leveraging software tools, the

individual raw log data files collected are parsed and decoded using

Python, a programming language. The SAE Digital Annex (document

used to convert J1939 log data) is loaded into a database and used to

execute queries to convert parsed log data into human-readable messages.

This data is loaded into a data frame (which can be scaled to a database or

cloud architecture) for further processing.

3. Data analysis is performed using statistical methods to define the data

structure and categorize the data according to its properties. During this

step we can derive a time-series regression model used for prediction that

categorizes “normal” operating conditions.

Figure 4. Decoding J1939 Diagnostic Data Methodology 
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Using a single MK23 Medium Tactical Vehicle Replacement (MTVR) shown in 

Figure 5, condition monitoring techniques are used to capture data from vehicle 

components transmitted through the CAN serial bus. This data is then decoded and 

analyzed to generate information which is used to identify condition thresholds for 

“normal” vehicle operating conditions, allowing abnormalities to be identified when new 

data is acquired. 

Figure 5. MK23 Medium Tactical Vehicle Replacement. Source: [42]. 

The MTVR is a widely used ground vehicle across the Marine Corps. Also, the SAE J1939 

Port is easily accessible, located behind a removable panel on the passenger-side dashboard 

[36]. While this research is focused on a single-use CBM model at the tactical level, the 

data management environment demonstrated in this approach can be scaled and exported 

into an enterprise-level environment at the strategic level. 
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A. CBM DECISION MODEL METHODOLOGY 

CBM is conducted at time-directed intervals only when it is believed that a failure 

is likely to occur. Tsang describes “three types of decisions which need to be made in 

condition-based maintenance” [12, p. 13]: 

1. selecting the parameters to be monitored;

2. determining the inspection frequency;

3. establishing the warning limit (the trigger). [12, p. 13]

These steps are used as an over-arching methodology for this research. While the 

MTVR offered only a select number of diagnostic parameters to monitor, due to dated truck 

software, parameters with greatest correlation to engine operating conditions were selected 

from the MTVR. This research will focus on the data available during raw data extracting 

to present the emerging patterns and characteristics of “normal” engine operating 

conditions. The correlation coefficient between the engine speed and extracted parameters 

is used to determine the extent of which parameters are most related. Further discussion on 

the correlation of data parameters is in Section C, Chapter IV. As a final note, diagnostic 

parameters vary across equipment sets and depends on the data available, the data 

extraction hardware used, and the availability of software resources that perform the 

analysis. Different types of equipment produce different parameters. This research focuses 

on developing one method for one vehicle that is exportable to different equipment 

platforms regardless of available parameters. 

The MTVR was monitored continuously with data from the truck being transmitted 

at 250 Kbits/sec for the inspection frequency. This rate equates to one diagnostic message 

every millisecond. Each message contains a number of measurable vehicle functions. For 

other cases where the equipment is not monitored continuously, Tsang comments that an 

inspection interval between when to pull data must be determined "so that action can be 

taken in time to prevent functional failures or to minimize the consequences of those which 

cannot be prevented" [12, p. 13]. 
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This research is focused on finding static triggers outside of "normal" operating 

conditions. CBM programs can use a combination of static or dynamic warning limits as 

triggers or alarms to diagnose or begin the repair process [12]. Static limits, much like time-

directed intervals, use pre-selected thresholds for measured data, for example, changing 

vehicle oil once it reaches the 10% level because prior RCM/CBM analysis has signaled 

likely failures after the 10% oil-level threshold. Alternatively, dynamic warning limits 

monitor the rate of change of a measured parameter. Measuring the rate of change is 

valuable because a great change in a parameter over a short amount of time could indicate 

a potential failure even if the actual value of the parameter is in normal operating range. 

This research uses static warning limits based on the data collected. 

B. DECISION MODELS FOR CBM 

Many predictive maintenance models exist to prevent failure, detect the likelihood 

of failure, or discover hidden failures. Additionally, statistical modeling approaches often 

extend or build from previous methods already discovered. A brief discussion of the  

models that contributed to the derivation of the final CBM decision model used in this 

research follows. 

1. Linear Regression Analysis 

This research uses a time-series regression to describe “normal” conditions of 

engine parameters in the presence of speed. In simple terms, this model is an extension of 

linear regression analysis. Using linear regression analysis, we can predict failure or 

"Remaining Useful Life," the time left before the next failure, based on a predictor 

(parameter), such as “Oil Level”, and decide a time for maintenance triggers and warnings 

[20]. Regression analysis investigates the relationship between two or more variables [43]. 

It is the simplest approach for predicting a quantitative response on the basis of some 

predictor, , which is some engine parameter extracted from the MTVR that can be used 

for predicting failure. 

A simple linear regression model is typically expressed as 

   (1) 
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where  and  are unknown constants that represent respectively, the intercept and the 

slope; and  is the random variable representing the response on dependent variables, 

which in our case is a measure of engine wear; oil level or some other diagnostic parameter 

is represented by , and  is an unobservable random error. The model, applied to a data 

set, assumes that random error is independent and identically distributed with a mean-zero, 

Normal distribution. The observations in the extracted data set allow us to estimate  and 

. When model assumptions are reasonable, the maximum likelihood estimates of  and 

 are equivalent to the least squares estimates which find the values of  and  to 

minimize the sum of squared differences between the observed and predicted values of the 

response variable. When the modeling assumptions are not met, but the relationship 

between the expected response and predictor variable is linear, least squares estimators of 

 and  are unbiased and provide sensible estimators of  and . 

Consider a vehicle where the only possible failure is from not refilling the oil. Using 

linear regression, one could observe and record the oil level over a specified time period or 

until the vehicle fails, and estimate the best possible linear relationship across all recorded 

samples of the oil level observed. That line is then used to predict the time or oil level 

percentage of a likely failure, illustrated in Figure 6. This simple regression model allows 

us to develop procedures for making various predictions and obtain quantitative measures 

on how closely two variables are related. 
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As oil level decreases, RUL decreases. Triggers to conduct maintenance are established at 
the 10% oil level. 

Figure 6. Linear Regression Analysis to predict Remaining 
Useful Life. Source: [20]. 

2. Failure Rate Model

An alternative to a linear regression model is a failure rate model. This model is 

used to estimate the likelihood of failure of an item over time and helps describe the level 

of deterioration at a designated time interval, which is commonly used in CBM decision 

modeling and worth noting. The survival or reliability function is , which describes 

the probability that an object will survive beyond a specified time [12]. For our purposes, 

 describes the reliability of a piece of equipment at some usage time or age limit. One 

method to conduct CBM is through a time-directed interval (similar to static triggers) based 

on a failure model defined by the failure rate, expressed as 

(2) 
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where the probability density function of failure is . Tsang defines the failure rate of 

equipment as a hazard or failure function that measures the risk of failure at time  among 

equipment that have survived to time  [12]. Georgia-Ann Klutke defines, "A fundamental 

tenant of reliability theory is that the [failure] function displays a 'bathtub shape'” [44, p. 

1]. This statement means that when the equipment is new or the usage is low, the failure 

rate, , decreases. However, as time of use and age increase, the equipment falls into a 

"useful life" period, when the failure rate is constant. This leads to a “wear-out” period, 

when failure rate increases over time [12, p. 3], [44]. The static triggers (time intervals to 

begin the repair process or diagnosis) are placed right before the vehicle enters the “wear-

out” period. Extensions of the failure rate model allow the inclusion of diagnostic 

parameters. By leveraging a failure rate model, future failures are more likely to be 

captured and prevented before they begin.  

3. Time Series Analysis 

The first two decision models, linear regression and failure rate modeling, are two 

classical approaches popularly used to predict equipment failure rates and prescribe CBM 

policies. Each approach requires a dataset of “good operating conditions” and “failed 

operating conditions” to test for valid predictions. For the purpose of this research, a time 

series model best fits the data extracted from the MTVR. Due to scope and limitations, 

only one dataset of parameters was extracted from one MTVR. A dataset of “failed” truck 

data was not captured; however, the following method used can be scalable across a pool 

of trucks or equipment set. 

In this research, we use a regression model that closely reflects the behavior of the 

data extracted from the MTVR. To categorize “normal” operating conditions, we measured 

temperature and pressure parameters of components because they can be modeled as an 

increasing function of age (usage). For example, when engine speed increases, operating 

temperatures react in response to the engine speed, or when pressure levels of engine fluids 

rise or fall, usage indicators of engine components correspond. Time series analysis is the 

analysis of a series of data points over time. A time series, , is a discrete time, continuous 
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state process where time  are discrete time points spaced at uniform time 

intervals, particularly at a single occurrence of a random event [45], [46]. 

   (3) 

With regard to the data collected, the operating temperature of an engine parameter is 

dependent on the temperature prior to the current temperature; a time series model with lag 

values captures this changing value characteristic over time. Furthermore, the current 

engine temperature also depends on current and past (lagged) engine speeds. These engine 

speeds  measured at  are the independent or predictor variables analogous 

to those used in linear regression. 

An autoregressive distributed lag (ARDL) time series can be used to express the 

behavior of the dependent variable  as follows [46, p. 682]: 

   (4) 

where, as in the linear regression model,  are independent and identically mean-zero, 

Normally distributed;  and  are the lag length for the dependent and predictor variables 

respectively, and , are unknown constants to be estimated. Since at 

any time  and their lagged values are observable, and the ARDL in Equation 4 has 

the form of a linear model, ordinary least squares gives efficient estimates of the unknown 

constants [46]. Using this model, we are able to predict values of  using  and values 

of both the dependent and predictor variables that have occurred before. 

C. DATA ORGANIZATION 

1. Data Properties 

The data collected revealed four measures of readable engine temperature 

parameters, two measures of vehicle speed, one measure of engine fuel consumption, and 

one measure of engine oil pressure, depicted in Table 1. 
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Table 1. List of Human-readable Diagnostic Parameters 

PGN PGN LABEL SPN SPN NAME 
61444 Electronic Engine Controller 1 190 Engine Speed (RPM) 

65262 Engine Temperature 1 
110 Engine Coolant Temperature 

174 Engine Fuel 1 Temperature 1 

65263 Engine Fluid Level/Pressure 1 100 Engine Oil Pressure 1 

65265 Cruise Control/Vehicle Speed 1 84 Wheel-based Vehicle Speed 

65266 Fuel Economy 183 Engine Fuel Rate 

65270 Intake/Exhaust Conditions 1 105 Engine Intake Manifold 1 
Temperature 

65272 Transmission Fluids 177 Transmission Oil Temperature 1 
Table list of PGNs and SPNs relating to temperature, speed, oil pressure, and fuel rate from 
MTVR 

 

Out of the 9,000 diagnostic messages available in the J1939 protocol (not including 

proprietary messages), the MTVR used for experimentation produced 23 unique message 

IDs. For this research, 17 diagnostic messages contained information that decoded to 

measurable data. The other messages contained “on/off” message indicators of truck 

functions, such as lights on/off indicators, air condition in use, passenger door open, etc. 

Subsequently, the MTVR produced 82 data parameters, though only 32 were human-

readable. Much of the data extracted from the truck logged a “Not Applicable” message 

indicator. This is due to truck settings designated by the manufacturer and dated truck 

software. 

2. Data Categorization to Detect Normalization 

The data is categorized by the subset of parameters that contributes to “normal” 

operating conditions. Temperature values of engine components revealed measurable 

observations under a variety of operating conditions. Lag values of temperature were 

measured to monitor residuals. The residuals in the data reveal the variability of the 

dependent variables (the temperature and pressure parameters) under conditions of an 

independent regressor (engine speed or RPMs). Outliers in data are discarded. Using 
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residual analysis through normalizing quantile-quantile (QQ) plots and robust 

autocorrelation function estimation allowed the verification of prediction results. The 

model built conceptualizes normal behavior. 

In this method, we develop a method for one MTVR that is exportable to another 

MTVR. Limits are set around the “normal” conditions, and CBM policies are established 

for alarms/triggers based on “out of normal” temperature readings. 

D. SUMMARY 

The proposed methodology for this research incorporates five of the eight areas of 

a CBM infrastructure. The methodology is based on a three-step approach cataloging the 

process to collect raw data from on-board equipment sensors, then the process to derive 

usable data from sensor measurements, and the manipulation, storing, and transmitting of 

diagnostic data for off-system processing to determine data insights for front-end 

maintenance systems. The statistical methods presented, linear regression and failure rate 

modeling, are common approaches used to reflect the behavior of equipment operating 

conditions. These methods are the underlying models that form the basis of any CBM 

maintenance policy. This thesis uses an extension of the regression model, an ARDL time-

series, to characterize the data collected from an MTVR to detect normalization, which is 

used to recommend a CBM maintenance policy. 
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IV. RESULTS, ANALYSIS, AND LIMITATIONS 

This chapter focuses on answering the problem statement, presented in Chapter I, 

of determining a good architecture for the automated collection of sensor data that can be 

used for a CBM approach on Marine Corps equipment and how this collection of sensor 

data can be used to provide in-depth maintenance analysis and generate enhanced 

maintenance solutions for vehicle life-cycle support. This chapter expands upon the 

methodology presented in Chapter III: We use a standard data engineering approach to log,  

parse, decode, and analyze raw sensor data collected from the MTVR. In Section A of this 

chapter, we present a collection method to extract raw sensor data from ground equipment. 

It begins with an overview of the hardware tools required and then demonstrates how to 

implement tools to extract vehicle data. Then, in Section B, this chapter derives a technique 

using the J1939 protocol to process the collected data to produce useful data features for 

further analysis. Finally, in Section C, it examines and analyzes the collected data to build 

a predictive model of “normal” operating conditions. Figure 7 maps our experimentation 

workflow to our overall methodology. 

 

Figure 7. Data Engineering Workflow 
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A. EXTRACTING VEHICLE CAN-BUS DATA 

The first step in extracting vehicle CAN-bus data is configuring hardware tools and 

devices to read and log raw diagnostic data from equipment sensors to support condition 

monitoring. The MTVR uses CAN as a diagnostic data-bus technology which, is the 

industry standard for diagnostic data transmission. The advantages of CAN field-bus 

technology are reduced wiring, reliable communication, reduced production cost, and easy 

implementation and service capabilities [19]. 

1. Hardware 

This section covers the three main components required to extract on-board 

diagnostics from military equipment: a single-board computer, the SAE interface board, 

and the SAE J1939 connector cable (discussed in Subsections a. and b., respectively). 

a. Single-Board Computer and SAE Interface Board: Using Low-cost 
Microcontroller Devices to Collect Data from Equipment 

The Raspberry Pi with an attached SAE interface board is programmed to extract 

data from the CAN-bus serial port. The Raspberry Pi is a handheld computer device that is 

used  to solve problems, run applications, and prototype technology solutions. It is suitable 

for our research purposes due to its low cost (approximately $35) and sufficient computing 

power [47]. This device can be coupled with an SAE interface board which provides two 

independent CAN-bus interfaces that are used to extract data from a CAN-bus serial port. 

The Raspberry Pi used in this research (Figure 8) is the Raspberry Pi 3 Model B+, which 

supports 1GB SDRAM, 2.4GHz and 5GHz wireless LAN, Bluetooth, HDMI, USB ports, 

camera port, and display ports [47]. A MicroSD is used as the hard drive and stores data. 

It is powered by a 5-volt micro USB supply. As shown in Figure 8, the SAE interface board 

is the PiCAN2 Duo CAN-Bus board, offered for less than $100. It uses the Microchip 

MCP2515 CAN controller with MCP2551 CAN transceiver [48]. Connections to the 

Raspberry Pi are made via a 4-way screw terminal. This board also comes with a 5-volt 1-

amp power supply which powers the Raspberry Pi as well via the screw terminal [48]. 
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Figure 8. PiCan2 Duo Board (left). Raspberry Pi 3 
Model B+ (right). Source: [47], [48]. 

b. 9-pin Deutsch Connector to CAN Serial Bus 

A connector cable is required to connect the Raspberry Pi to the MTVR diagnostic 

port (J1939 CAN-bus). The SAE J1939 Connecter, shown in Figure 9, is a Deutsch HD10 

9-pin round connector cable that connects to the CAN serial port on heavy-duty vehicles. 

It is a standard connector for diagnostic purposes and costs approximately $25. The 

connecter can be wired into the SAE interface board connected to the Raspberry Pi. By 

simply connecting the SAE Interface board to the Raspberry Pi via the screw terminals and 

configuring the wiring of the SAE J1939 connecter into the SAE Interface board in 

accordance with the CAN Standard [49], on-board diagnostics can be logged from any 

equipment equipped with the CAN-bus serial port. Figure 9 shows the complete data-

extracting hardware configuration, including the wiring configuration for the SAE J1939 

connector into the SAE interface board. 
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Top-left: 9-pin Deutsch J1939 connector cable. Top-right: wiring configuration of SAE 
connector wires to interface board CAN inputs. Bottom-left: physical connection of 9-Pin 
SAE connector to MTVR J1939 port. Bottom-right: exposed 9-pin Deutsch J1939 female 
connector on MTVR. 

Figure 9. Connection of 9-pin Deutsch J1939 Connector 
to MTVR and SAE Interface Board 

2. J1939 Protocol Architecture 

Once the hardware has been assembled, the log data collected can be decoded and 

converted into measurable values using the SAE J1939 standard. The SAE J1939 is a 
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communication standard used by many vehicle and heavy-duty truck manufacturers for 

communications across engine ECUs. A discussion on how to interpret and use this 

communication protocol follows. 

a. The SAE J1939 Standard

The Society of Automotive Engineers (SAE) has defined a high-speed CAN-bus 

communication standard that supports "real-time, closed-loop control functions, simple 

information exchanges, and diagnostic data exchanges between electronic control units 

throughout the vehicle" [50] for heavy-duty vehicles and equipment. The SAE J1939 

provides a higher-layer communication protocol using CAN-bus as the physical basis. It is 

the key protocol among devices that transmit electronic signals via ECUs across vehicle 

components [19], allowing for one language across commercial manufacturers. 

This standard specifies how to handle diagnostic messages transmitted via the 

ECUs from vehicle sensors. Each message of J1939 is 29-bits in size. Wilfried Voss 

explains that “the main characteristics of the J1939” 29-bit message are the embedded 

“Suspect Parameter Numbers (SPN) and Parameter Group Numbers (PGN), which point 

to a large set of predefined vehicle data and control functions” [19, p. 19]. Figure 10 shows 

the J1939 message format frame architecture, which includes the message identifier that 

contains a PGN and the associated data fields that contain the SPNs. SPNs are the data 

parameters of a J1939 message, which contain information such as engine speed or RPMs. 

A PGN is a unique ID inside the 29-bit J1939 message identifier that defines the diagnostic 

function of a J1939 message. PGNs are used to group together associated data parameters 

(SPNs) within the data field of a J1939 message [19], [20]. For example, we can have a 

raw 29-bit message identifier such as 0x18feee00. Raw message identifiers are logged as 

hexadecimal numbers by default and divide into three sections: a priority field, which is 

three bits in length; an 18-bit PGN field that identifies the message data parameters; and 

an 8-bit source address containing the node address of the ECU that transmitted the data. 

In the case of message ID 0x18feee00, the PGN starts at bit 6, with length 18 (indexed 

from 1). The outcome is PGN 0xfeee, or, in decimal, PGN 65262. 
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Figure 10. SAE J1939 Message Frame Architecture. 
Adapted from [19], [20]. 

To interpret this information, the “SAE J1931/71 Vehicle Application” reference 

document is used to look up the specific PGN ID. This document is one of several reference 

documents in the J1939 Standards Collection that defines message functions, conversion 

rules, and the bit-level logic required to convert cross-manufacturer J1939 messages into 

human-readable data [20], shown in Figure 11. PGNs along with their grouped SPNs are 

listed and defined in the J1939 Standards Collection. Using the lookup list in this 

document, the example PGN 65262 referenced earlier decodes to "Engine Temperature 1 

- ET1" [51, p. 371]. 
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Figure 11. J1939/71 Parameter Group Definition of 
PGN65262. Source: [51]. 

Further, this document defines details associated with the PGN, including priority, 

transmission rate, and a list of associated SPNs (the data parameters). For this PGN, there 

are six associated SPNs: engine coolant temperature, fuel temperature, engine oil 

temperature, turbo oil temperature, engine intercooler temperature, and engine intercooler 

thermostat opening; each SPN can be looked up in the J1939/71 for further details. The 

SPNs in the example point to vehicle data associated with Engine Temperature [19]. For 

every message ID there is an embedded 8-byte CAN data field carrying the actual data for 

a specific parameter reflected via an SPN. Further details on decoding individual SPNs 

will be covered in Section B, Chapter IV. 

b. Software Tools and the SAE Digital Annex

During live diagnostic extracting, it is impractical to look up specific PGNs and 

SPNs using the physical J1939/71 reference document. So, to make the information 

accessible in a more useful way, it was necessary to build a database using the 
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programming languages Python, SQLite and R, and an electronic version of the SAE 

J1939/71 reference document. 

In this research, Python was used to extract, import, parse, and decode raw J1939 

CAN-bus diagnostic data. Python is an interpreted, object-oriented, high-level 

programming language similar to Java, Perl, or PHP [52]. It is a scripting language that is 

simple and known for its easily understood syntax relative to other programming 

languages. These features make Python ideal for text parsing and rapid prototyping. Python 

is also highly compatible with other software applications and supports add-on modules 

and packages to enhance its capabilities. Additionally, Python is the default programming 

language installed on the Raspberry Pi. 

SQLite, a highly scalable query language, is used to create a database structured 

around the data available in the J1939 message ID (PGN) and associated SPNs. A 

companion spreadsheet for SAE J1939 reference document is available in an Excel format 

called the SAE Digital Annex, which contains the latest PGNs and SPNs published in the 

J1939/71. This electronic document is used to build the SAE Digital Annex Database used 

in this research. SQLite is native to the Python library and can be imported as a module. It 

offers useful database functionality without the overhead of an entire data management 

server environment such as MYSQL or Amazon Web Server, making it ideal for small to 

medium applications for prototyping or testing. Data can be scaled and exported to a larger 

database or cloud architecture if necessary. 

Data analysis was conducted using R, an open-source statistical programming 

language commonly used in statistical research [53]. R is highly extensible; compatible 

with Python and SQL; and ideal for exploratory data analysis and linear and nonlinear 

modeling. 

B. VEHICLE DATA FILTERING AND PROCESSING SPNS 

This research explores 8 of the 32 parameters extracted:  

• SPN 190 Engine Speed (RPM)

• SPN 100 Engine Oil Pressure
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• SPN 110 Engine Coolant Temperature

• SPN 174 Engine Fuel Temp

• SPN 84 Wheel-based Vehicle Speed

• SPN 105 Engine Intake Temp

• SPN 177 Transmission Oil Temp

• SPN 183 Engine Fuel Rate

The CAN-bus transmits log data at 250 Kbit/sec which equates to a logged time stamp 

every millisecond [19]. Data was collected over an 8-hour period. Due to the immense 

amount of timestamp observations, we down-sampled the data from microseconds to 

seconds while averaging the data in-between. Down sampling is a common technique used 

in statistics to remove some data points by averaging out (or through some other 

mathematical function) data points, creating new data points representing the groups of 

points removed. 

1. Data Collection Criteria

To ensure the data represented realistic operating conditions, the data was collected 

under the following conditions: 

• The MTVR was on and sufficiently warm.

• Engine speed was above idling speed.

• The driving course allowed for a variety of terrain to reveal dynamic

vehicle conditions. Figure 29, Appendix D depicts driving course.

• Operating time for data collection was conducted in 45-minute intervals.

Data collected while the MTVR was in idle before the clutch was engaged was not used 

(for example, starting the truck). Data was collected over a period of different days; 



46 

however, for this research, only one day of data will be used. The MTVR carried no load 

during data collection. 

2. Interpreting and Parsing MTVR Raw Sensor Data 

The placement of the sensors by the diesel engine manufacturer is shown in Figure 

28 in Appendix C. These sensors provide diagnostic measures on engine component 

temperatures, various speed measures, fluid levels, and electrical on-off-switch indicators 

based on data transmitted through the CAN-bus network. The log data from these ECUs is 

extracted via the J1939 9-pin connector and a Raspberry Pi with SAE Interface board 

attached, as described in Section A (Figure 8, 9). Raw CAN-bus data logs a timestamp, 

CAN-bus logger port location, a J1939 message ID in hexadecimal, and the associated SPN 

control functions. Figure 12 shows the raw sensor data output from the MTVR. 

 

Figure 12. CAN-bus Logging Output Screenshot 

Utilizing Python programming software and a relational database, we can read, 

parse, and decode each line of log data outputted from the MTVR in real-time. Annex A 

shows the Python script created to decode, parse, and store J1939 CAN-bus log files, 

adapted from [54]. Hexadecimal values of PGN message IDs are converted to decimal 

values. The decoded PGN and its associated SPNs are queried against the SAE J1939 
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database (which is created and loaded from the SAE Digital Annex) to convert J1939 

diagnostic message into readable diagnostic parameters. For every time stamp observation, 

the output provides a description of each SPN (data parameters), which includes the data 

length, resolution, operating value range, and data type of the measured MTVR data 

parameters, shown in Figure 13. This information can be manually looked up in the “SAE 

J1939-71 Vehicle Application Layer” reference, but as mentioned in Subsection 2, Section 

A, it is impractical to look up this information during real-time data logging due to the 

amount and speed of data transmission. Over four million rows of data was decoded and 

parsed, totaling over 6 hours of driving time, to create the diagnostic dataset for analysis. 

PGN message IDs are decoded to decimal values and associated SPN descriptions of 
conversion functions. 

Figure 13. Decoded J1939 Message of PGNs and SPN 
Conversion Rules from Raw CAN-bus Data 
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3. Decoding SPNs 

The decoded J1939 messages are used to convert SPN parameters to scaled 

engineering values that measure parameter changes over time. To convert SPN 

observations, we extract the proper number of data bytes from the 64-bit data message 

according to the conversion rules for this PGN message ID. These conversion rules are 

defined in the SAE J1939/71 reference document. Figure 14 shows a single observation 

from our log data that decodes to PGN 61444, Electronic Engine Controller 1 with SPN 

190, engine speed (RPM). The raw message ID is 0x0CF00400. We parse the PGN value 

from this message ID starting at bit 9. The outcome is PGN 0xF004, which is 61444 in 

decimal. 

 

Figure 14. One observation Sample from CAN-Bus Data 

That value is then referenced using the J1939 protocol. For this research it was 

queried against the created SAE Digital Annex database. From the J1939 Standard, we 

identify that there are hexadecimal values in the byte position 4 and 5, 0x68 and 0x13 

respectively, of the SPN data frame. Note how some SPN data bytes in Figure 14 are FF 

or 255 decimal, which means “not available” or “not applicable.” The SAE Digital Annex 

database is then queried again to retrieve the correct conversion rules for each message ID 

based on the J1939 protocol. Figure 15 shows the conversion rules related to the SPN in 

byte position 4-5 of PGN ID 61444, which is SPN190, Engine Speed. In the case of the 

SPN relevant to data bytes 4 and 5 of Figure 15, Intel Byte Order is used to swap bits (due 

to how large bits are stored in serial bus memory) taking the decimal form of 0x1368. The 

values are converted to decimal 4968. We then use the J1939 conversion rules, specifically 

the resolution and the offset, to scale this value to actual engine speed. Scaled values are 

computed as the raw decimal value of the SPN multiplied by the scale factor (the 

resolution) plus the offset, as expressed in Equation 5. 
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PGN IDs are queried from the database to retrieved SPN functions which then are 
referenced for their conversion rules to scale bit values to measured values. 

Figure 15. J1939 SPN Conversion Rules for Engine 
Speed. Adapted from [51]. 

Each SPN has its own conversion rules, but the same scaling formula is utilized. 

To arrive at the actual RPM, we take the raw decimal value 4968 multiplied by 0.125 

RPM/bit plus an offset of 0. 

   (5) 

The result is 621 RPM. 
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Figure 16 shows the converted output of the MTVR diagnostics for Engine Speed 

(RPM). We repeat this method for all other SPNs in our PGN message ID. This shows us 

the change in our engine parameters over time. With this method all PGN and SPNs 

available are parsed, decoded, and converted to measured values to be used for further data 

analysis. 

 

Figure 16. Converted J1939 Message Data for 
SPN190 Engine Speed 

C. DATA PROCESSING AND ANALYSIS 

After the CAN-bus log data was cleaned, parsed, and decoded into measurable 

values, the data was loaded into a database for further analysis. Utilizing R statistical 

software [53], "not applicable" SPNs were discarded, leaving 19,949,624 observations of 

diagnostics totaling over five hours of operating time and eight measurable parameters 



51 

relating to engine components for analysis. In this section, first, we describe the 

characteristics of the data collected from the MTVR, followed by the analysis performed. 

Next is an assessment of the usable diagnostic parameters to be used for further analysis. 

Finally, we describe the statistical model used to support a CBM approach. 

1. Datasets 

In order to reduce the number of observations and see noticeable change in 

measured diagnostic parameters, the data was down-sampled from microseconds to 

seconds. To handle missing values from down-sampling, we used linear interpolation 

between missing points to approximate the mean. This yielded a smoother time series with 

low bias. Specifically, the imputeTS package [55] available in R was used for "NA" 

interpolation. The final dataset resulted in a data-frame of eight diagnostic parameters and 

551 observations. This dataset was comprised of data collected from one MTVR, as a 

result, we split the dataset into 30-minute increments, creating a total of 12 datasets of 

diagnostics for modeling. Two out of the 12 datasets contained time intervals where no 

data was actively collected. These datasets were discarded and explain the gap in our time 

series from 18:39:58 to 20:01:28. Table 2 shows the data and duration of the 10 datasets 

used for analysis. 

Table 2. Data and Duration of Diagnostic Data 

Dataset Date Duration (30 min) Observations 
A 20 Mar 2019 15:50:00 59 
B 20 Mar 2019 16:20:00 60 
C 20 Mar 2019 16:50:00 60 
D 20 Mar 2019 17:20:00 58 
E 20 Mar 2019 17:50:00 60 
F 20 Mar 2019 18:20:00 39 
I 20 Mar 2019 19:50:00 38 
J 20 Mar 2019 20:20:00 60 
K 20 Mar 2019 20:50:00 60 
L 20 Mar 2019 21:20:00 57 

Dataset G and Dataset H removed due to being empty datasets 
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The data was collected from an MTVR driving through a variety of road conditions. 

Figure 29, in Appendix D displays a map of the driving course. Data was not collected until 

the clutch was engaged and the engine sufficiently warm. This was to allow variability in 

our datasets. Idle engines do not have changing values. Maximum slope of driving course 

was no more than 10 degrees or 17%. Maximum speed was no more than 55 miles per hour 

with a minimum speed of 0 due to traffic conditions. Of note, the time stamps do not equate 

to the actual time the data was collected due to being set to the system time of the Raspberry 

Pi, which was not accurate. This has no effect on the outcome of our model. 

2. Summary of Data Parameters 

The parameters and their range of values are summarized in Table 3. Engine Speed 

is measured and recorded from a range of 0 to 8,000 RPM. The MTVR high-idle speed is 

1,500 RPM. The average RPM speed from the data collected is 1,231 RPM. Coolant, fuel, 

engine intake manifold, and transmission oil temperature values are measured in degrees 

Celsius ranging from -40 to 210 degrees. The average operating temperature of engine 

coolant and fuel temperature are 85.5 degrees Celsius and 44.6 degrees Celsius, 

respectively. Engine intake manifold temperature and transmission oil temperature 

averaged operating values of 23.9 degrees Celsius and 80 degrees Celsius. Engine fuel rate 

measures the amount of fuel consumed by engine per unit of time. It is measured in liters 

per hour ranging from 0 to 3,212.75 liters per hour. The average fuel rate from our 

observations is 21 liters per hour which is approximately 5.56 gallons per hour. Engine oil 

pressure measures the gage pressure of oil in the engine provided by the oil pump. It is 

measured in kilopascal (kPa) with an operating range of 0 kPa to 1000 kPa. The average 

oil pressure from our observations is 234 kPa. Our last parameter used for analysis is wheel-

based vehicle speed. This measures the speed for the vehicle as calculated from the wheel. 

The operating range is 0 to 250 kilometers per hour (km/h) with an average of 46.5 km/h 

(28 mph) from our observations. Measured values that operated outside the data range for 

each specific parameter based on the conversion rules were converted to "NA" and 

discarded. 
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Table 3. MTVR Diagnostic Parameters 

Parameters Units 
Minimum 

Value 
Maximum 

Value 
Engine Speed RPM 0 8,031.875 
Engine Coolant Temperature Degree Celsius -40 210 
Engine Fuel Temperature Degree Celsius -40 210 
Engine Oil Pressure kPa 0 1000 
Wheel-based Vehicle Speed km/h 0 250.996 
Engine Fuel Rate L/h 0 3,212.75 
Engine Intake Manifold Temperature Degree Celsius -40 210 
Transmission Oil Temperature Degree Celsius -273 1735 
Information based on "J1939-71 Vehicle Application Layer" Reference 

3. Parameter and Dataset Selection

A correlation matrix was created for each dataset to measure the strength of the 

linear relationship between pairs of parameters. Table 4 shows the correlation between 

engine speed and the other parameters. Highlighted in red are values with strong negative 

correlation. Highlighted in blue are values with strong positive correlation according to our 

dataset. The strongest correlation coefficient for each dataset is highlighted in bold. For 

this research, values greater than 0.7 and less than -0.7 are considered a strong correlation. 

The correlation coefficient of engine speed to engine oil pressure suggest there is a strong 

correlation across our datasets. Engine speed is an independent variable and the correlation 

matrix suggest there is a strong relationship between engine speed and engine temperatures. 
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Table 4. Correlation Table between Engine Speed 
and Remaining Parameters 

D
at

as
et

 
Engine 
Intake 
Temp 

Engine 
Fuel 

Temp 

Engine 
Coolant 
Temp 

Wheel 
Vehicle 
Speed 

Trans 
Oil 

Temp 

Engine 
Fuel Rate 

Engine 
Oil 

Pressure 
 

A 0.3165 0.7431 0.7027 0.8221 0.7331 0.4105 0.9198 RPM 
B 0.0620 0.5072 0.2029 0.5442 0.2943 0.2330 0.8659 RPM 
C 0.3042 -0.2185 0.2727 0.6960 -0.0446 0.4626 0.8753 RPM 
D -0.9567 -0.8926 0.4479 0.8633 0.1074 0.8343 0.9967 RPM 
E -0.4723 0.5878 -0.0307 0.9235 0.6385 0.5193 0.9665 RPM 
F -0.9309 -0.9044 -0.6134 0.8802 -0.2362 0.7945 0.9955 RPM 
I -0.4021 0.7034 0.9104 0.9462 0.8017 0.6021 0.8906 RPM 
J 0.2168 -0.3263 0.1441 0.4862 -0.3547 0.5159 0.8996 RPM 
K 0.3185 0.2080 0.2929 0.7728 0.2411 0.3867 0.9042 RPM 
L -0.9247 -0.8120 -0.4836 0.9708 -0.5464 0.8197 0.9916 RPM 

 

We observe weak relationships across datasets J, K, C, B, and E. Therefore, these datasets 

are not used for further analysis. Datasets A, D, F, I, and L show the strongest relationships 

across the correlation coefficients which suggest these datasets better reveal the behavior 

of engine operating conditions. Figure 17 shows the correlation density plot of Table 4. 

This figure shows that engine oil pressure has the highest correlation coefficient across 

datasets followed by wheel-based vehicle speed, engine fuel temperature, and then engine 

intake manifold temperature. 
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Circles sizes and colors change and shift relative to their correlation value displayed in the 
number line on the right. Large blue circles suggest strong positive correlation. Large red 
circles suggest strong negative correlation. 

Figure 17. Correlation Density Plot of Engine Speed by Datasets 

4. Data Plots 

We plot each parameter against time to observe the behavior of the engine across 

our datasets. Plots are shown in Figure 18. We standardize our diagnostic values to plot 

them on the same scale so we can observe how each parameter interacts across the dataset 

with respect to other parameters. Specifically, the data plots show how each parameter 

responds to engine functions over time. The largest trends across are datasets are the 

observation of engine speed (RPMs) as a function of fluid temperature parameters. As 
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engine speed increases, temperature values respond. Engine fluid temperatures exhibit 

similar trends across datasets A, F, and I. In dataset D we identify points where coolant 

temperature drops substantially with large positive spikes. 

 
Top-left: Dataset A. Top-right: Dataset D. Bottom-left: Dataset F. Bottom-right: Dataset I. 
Bottom-center: Dataset L.  

Figure 18. Standardized Diagnostic Plots of Datasets 
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The drop in engine oil temperature in dataset F is explained by discarded datasets G and 

H. We conclude that engine oil pressure closely follows engine speed, which was indicated 

by the correlation matrix in Table 4 and Figure 17. Further investigation is needed to 

examine how each variable is related to engine speed. 

5. Subset Selection

Datasets F and L are chosen as our final modeling datasets. dataset F will be used 

to fit our model and dataset L will be used to test our model. These datasets show the 

strongest correlation of engine speed across parameters. Specifically, datasets F and L 

show how engine oil pressure closely models engine speed. From our chosen datasets we 

display a matrix of scatter plots of all pairs of parameters (a pairs plot) to search for 

interaction and relationships among predictors against the response. In Figure 19 we 

observe that across the time stamp row our temperature parameters show a mostly linear 

relationship as time of engine operation increases. RPMs and wheel-based vehicle speed 

share a similar trend across temperature parameters which suggest they may be correlated. 

Engine oil pressure and RPMs show the strongest linear relationship across our datasets. 

No distinct patterns can be determined for engine coolant temperature, engine fuel 

temperature, and engine intake manifold temperature in our pairs plots. 
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Figure 19. Pairs Plot Dataset F and L 

6. Using Engine Oil Pressure as a Predictor of Engine Usage Conditions 

From our exploratory analysis on the data extracted from the MTVR and our 

correlation matrix charts, we determine that engine oil pressure closely characterized the 

condition of the engine in relation to engine speed. Monitoring engine oil for maintenance 
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indicators is one of the earliest methods of preventative maintenance. Historically, engine 

oil conditions describe how an engine is operating over time. Oil pressure measures the 

amount of oil and lubrication moving through the engine components, as engines wear 

down or oil gets low or dirty, engine oil pressure responds as an early indicator to an issue. 

An engine’s efficiency and “remaining useful life” can be characterized by the frictional 

loss of power related to its cylinders and pistons [56]. Engine oil pressure measures this 

frictional viscosity revealing early indicators of performance or degradation issues relating 

to engine components [56]. Our data shows that engine speed may closely predict engine 

oil pressure which may function as a good indicator of engine usage conditions. We can 

observe from our data plots that after the engine is sufficiently warm, oil pressures closely 

models the operation of the engine. Our statistical model will characterize the behavior of 

engine oil pressure to determine “normal” operating conditions of the engine. 

7. Building an Autoregressive Distributed Lag Time-series Model

We use an autoregressive distributed lag model to characterize engine usage. This 

model, expressed in Equation 4, shown in Chapter III, Section B, Subsection 3, uses  and 

 to specify respective lag lengths of our dependent variable, , which is engine oil 

pressure and our independent variable, , engine speed. The coefficients,  and 

 are the estimated coefficients for our engine oil pressure and engine speed, 

respectively. From our datasets, the number of lags are represented by one 30-second time 

length from the previous observation (this is based on how the datasets were split earlier). 

Autocorrelations determine how each observation relates to its past observations. In Figure 

20, we show the autocorrelations associated with dataset F. The time lag is indicated on 

the horizontal axis depicted as “Lag Length.” The height of each vertical line estimates 

the value of the estimated autocorrelation at that lag. The plot shows that autocorrelations 

are largest at the low lags on the left and decrease as the lag increases to the right. This 

implies that each observation is positively associated with its recent past, but the 

association becomes weaker as the lag increases. Engine oil pressure series shows strong 

persistence, meaning that the current value is closely related to those that proceed it. 

While we are interested in determining how a series of observations relates to its most 

recent past, we 

r

p yt

xt i = 1,2,…,r

j = 1,2,…, p



60 

recent past, we must test to ensure that the error values of our final model do not follow 

this pattern. This will prevent our model predictions from being incorrectly specified or 

invalid. 

Figure 20. Autocorrelation Function Plot of Dataset 

For our dataset we need to ensure the residuals of our fitted model shows no indication of 

autocorrelation. Our goal is to find optimal lag lengths for  and  that best characterizes 

engine conditions. Using the R language function “lm” [53], we build a linear model 

against our predictor with engine oil pressure as the response. To determine the optimal 

lengths for  and  we fit ARDL models with lags 1, 2, 3, 4, and 5. The results of all five 

of these models were similar and we present only the results of ARDL time series with one 

lag ( ) and one with five lags ( ). 

r p

r p

r = p = 1 r = p = 5
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a. ARDL With One Lag

We introduce one lag into our time series model. In Figure 21, we display 

the autocorrelation of the residuals, the residuals vs fitted, and the quantile-quantile (QQ) 

plot of the residuals for normality. 

Top-center: auto correlation function for time series with one lag, bottom-left: plot of fitted 
values against residuals, bottom-right: QQ normal plot of standardized residuals 

Figure 21. Auto Correlation and Residual Plots with One Lag 
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We run a Durbin Watson (DW) statistics test for autocorrelation in the residuals from our 

ARDL model. The results show no autocorrelation detected in our sample with a DW value 

of 1.7611 and a p-value of 0.1601. We do not reject the null hypothesis that the error terms 

are not auto-correlated in accordance with the Durbin Watson significance tables. The 

residuals vs fitted plot in Figure 21 suggest unequal variance in our model, but this is 

accounted for by the small number of observations with smaller fitted values in our data 

set from down sampling. Of note, we used Cook’s distances to determine if our data had 

any influential observations, and standardized residuals to identify any outliers. Neither set 

of diagnostic statistics revealed influential observations or outliers. The plot revealed no 

outliers or leverage points in our data. Observations with measured values of 0 in our 

dataset were removed and identified as an administrative error due to data being collected 

while the MTVR was stopped and reset between runs. 

b. ARDL With Five Lags

We introduce five lags into our time series model. In Figure 22, we display the 

autocorrelation of the residuals as well as the residual versus fitted plot along with the QQ 

plot of the residuals for normality. The QQ plot suggest slight skewness and heavy tails in 

our five-lagged model. Residuals vs fitted plot reveals similar variance issues observed 

with one-lag model. Autocorrelations reveal no statistically significant time periods and 

suggest residuals are not autocorrelated. Durbin Watson test confirms assumptions from 

autocorrelation function plot. 
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Top-center: auto correlation function for time series with five lag, bottom-left: plot of fitted 
values against residuals, bottom-right: QQ normal plot of standardized residuals 

Figure 22. Auto Correlation and Residual Plots with Five Lags 

c. Lag Length Results and Summary 

To ensure we do not overfit we keep the model with one lag. Table 5 shows our 

model summary. The model describes the intercept and coefficients of the dependent and 

independent variables with one lag. 
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Table 5. Linear Model Regression for Time Series One Lag 

Terms Coefficients Terms Coefficients 
 -12.04  0.16 
 0.87  -0.13 

 

D. SUMMARY STATISTICS (PREDICTION RESULTS) 

Simple models are good for a variety of reasons: they are practical, easy to interpret, 

and repeatable across data domains. Using an ARDL times series model with one lag we 

predict engine oil pressure. Verification and summary of prediction results follows. 

1. Prediction 

The prediction results of our model were fitted and validated against actual values 

of engine oil pressure from dataset F. Figure 23 shows the overlay of predicted results 

versus actual results in our dataset. 

 

Figure 23. Plot of Predicted Engine Oil Pressure Versus Actual 
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From our validated results we observe a very high prediction trend with little deviation 

from actual values. The R-squared value is used to measure goodness of fit for a model 

using values 0 to 1. For our model, the R-squared is 0.98. We used dataset L as our test 

dataset, which was set aside before model fitting, to verify the predicted results of our 

model on new data. In Figure 24 we see the plot of predicted values from our model against 

new data from dataset L.  

 

Figure 24. Plot of Predicted Engine Oil Pressure versus Actual 
on New Data 

2. Residuals 

The residuals reveal the variability of the predictor variable. Our plots show 

little deviance from actual values of engine oil pressure. We analyze the difference between 
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our observed values and predicted values given by our model on dataset L, shown 

in Figure 25. 

 

Figure 25. Residual Plot of Predicted Values 

The max deviation from actual values is 25 and the mean deviation from actual values is 

less than 6 with a mean absolute deviation percentage of 0.5% across the range of possible 

values, 0-1000. Our prediction results indicate that variance is not an issue and our model 

does well at predicting engine oil pressure as an indicator of engine usage conditions. 
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3. Autocorrelation Function 

We plot the autocorrelation function to observe any indication of autocorrelations 

in our residuals, shown in Figure 26. Only one time period is statistically significant, 

however, it is less than 0.3. Overall, our plot suggest acutely low measures of 

autocorrelation across our residuals. 

 

Figure 26. Residual Autocorrelation Function Plot 
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E. SUMMARY AND LIMITATIONS 

Although our fitted model does well at predicting engine oil pressure, one limitation 

of our model is that only one predictor, engine speed, was used for prediction. Many 

parameters exists in the MTVR that combine to identify more features and characteristics 

that describe engine health and conditions. 

The R-squared of our model suggest a goodness of fit. We validated and verified 

prediction results on actual data. Our plots compared predicted values versus actual values 

in dataset F and L. The autocorrelation plots show no autocorrelation in our residuals. The 

residual standard deviation was notably low with minimum prediction error. Model 

diagnostic plots revealed variance may not be equal across fitted values against residuals, 

however, QQ plot of normality suggest a common distribution with little to no skewness 

in tails. We assume that residuals are randomly distributed around our regression line. Our 

model assumptions are confirmed when viewing residual plots of validated predicted 

values. 

Engine oil pressure responds to engine temperature and engine speed. Specifically, 

our model predicts the usage and health of an MTVR engine based on engine oil pressure. 

Engine speed was used as a predictor because it best demonstrates the use of an engine 

under certain driving conditions. When the engine is hot and working hard, engine speed 

responds. Usage parameters such as fluid temperature, fuel consumption, and oil pressure 

respond to engine speed The fitted model is an ARDL time series with one lag that 

characterizes engine oil pressure as a function of engine usage condition. From this model 

we characterize the “normal” operating behavior of an MTVR. We observe that when 

parameters increase or decrease they carry their values on to the next factor 

(autocorrelation). Our lag value of predicted engine oil pressure allows us to monitor the 

residuals. The variability of residuals describe the range of “normal” operating conditions. 

Based on these predicted values, conditions that push residuals outside of their “normal” 

variability range indicate and trigger maintenance actions. 
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V. CONCLUSIONS AND RECOMMENDATIONS 
FOR FUTURE STUDY 

This thesis demonstrated the use of inexpensive COTS hardware devices and open-

source software to develop an automated data collection architecture and a data processing 

framework to determine a preventative maintenance approach to support predictive 

maintenance of Marine Corps ground equipment. Data processing techniques were used to 

convert raw sensor data collected from on-board MTVR sensors into useable and 

measurable diagnostic data. Using a statistical analysis technique and a time series 

regression model, the diagnostic parameters that closely modeled engine operating 

conditions were chosen to predict engine usage characteristics of an MTVR engine. This 

predictive model was then used to describe a conditions-based maintenance approach. 

Using the data collected, we  are able to provide in-depth maintenance analysis, 

improve quality assurance, and generate enhanced maintenance solutions for vehicle life 

cycle support by designing a CBM policy designed around sensor data received from 

certain vehicle components. The data collected was categorized into twelve 30-minute 

datasets. The correlation coefficient was used to determine the relationship between 

parameters and engine usage conditions. We used an auto regressive distributed lag time 

series model with engine speed as the independent variable and engine oil pressure as the 

dependent variable. We monitored engine oil pressure to determine "normal" engine usage 

conditions. A change in engine speed that produced engine oil pressure values outside of 

its predicted range caused area for concern and form the basis of our CBM policy. 

A. CONDITION MONITORING AS A CBM POLICY 

For each component being monitored, rules are established to determine the "zone 

of opportunistic replacement" [57, p. 11]. For this thesis, our monitored engine components 

were engine fluid temperatures, engine speed, and engine oil pressure. We fit an auto 

regressive distributed lag time series model to predict at time, , and engine speed, , the 

future observed engine oil pressure, . The residuals of our model are used to determine 

the expected observed deterioration level of our monitored components. In our case, engine 
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oil pressure helps determine the current operating health of the engine or "remaining useful 

life." The decision to trigger maintenance is based on reading values of residuals outside 

of the "normal" operating range. For this thesis, sustained values greater than 30% of our 

maximum residual deviance exceed "normal" thresholds and trigger a maintenance 

decision. Below is our decision model for a condition-monitoring CBM maintenance 

policy from the data collected from the MTVR, adapted from Albert Tsang’s[12] CBM 

decision making methodology. 

The proposed method for known failures 

1. Catalog known failures based on past failures and the data collected over 

time in a “known-failure” database or central server. Apply an “alert” 

condition code to each failure to track failure types based on symptoms, 

operating environment, mission profile, and driving conditions. 

2. Associate known failures (by querying the database) with applicable 

maintenance tasks (preventive or corrective). One example of this is 

conducting an "opportunistic replacement" based on the amount of failure 

data collected to indicate a part is likely to fail. 

The proposed method for new failures: 

1. For new failures not cataloged in “known-failure” database or central 

server, begin fault-finding task. 

2. Categorize failure based on symptoms, operating environment, mission 

profile, and driving conditions in “known-failure” database. 

3. Update “alert” condition codes in “known-failure” database 

4. Conduct corrective or preventative maintenance action or apply 

modification. 

5. Update stakeholders, such as maintenance key players, manufacturer, and 

supply distributers and providers, in CBM network. 
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Figure 27 presents a CBM “trigger/alert” classification diagram to expand upon 

the CBM policy stated previously. 

 

Figure 27. CBM Failure Alert Decision Policy.  
Adapted from [12], [29]. 

B. GENERALIZABILITY 

While this thesis explored one-method to conduct CBM on a single piece of 

equipment, the method can be generalized and used to categorize the behavior for a fleet 
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of MTVRs and other Marine Corps ground equipment or weapon systems Using mission 

profiles for truck operating conditions software functions can be defined to compute and 

return the highest correlating features relating to engine conditions. This collection of data 

features can then be stored in a central server or cloud network where the data can be 

processed to output measured values. After the data is processed, predictive maintenance 

analytics using machine learning models can be used to reveal data insights, trends, or 

operational limits that trigger or alert user maintenance actions at the component and 

system level. This data can feed into an interconnected cross-organizational data store of 

maintenance data revealing relationships between pieces of information beyond single-

equipment discovery. The value of CBM is realized at the intersection of data aggregation 

and interchange where a variety of possible CBM solutions can combine to solve complex 

maintenance issues. 

C. DATA LIMITATIONS OF MTVR 23 

The software and capability exist to extract on-board diagnostic data from ground 

equipment; however, this research showed that the J1939 data-bus technology installed in 

the MTVR 23 was underdeveloped. Out of 9,000 diagnostic messages available in the 

"J1939 Standards Collection,” the MTVR only produced 82 data parameters from 23 

unique parameter group numbers. Further, much of the data logged a 0xFF suspect 

parameter number, meaning "not applicable." This constraint limited our research focus to 

only the data available during real-time diagnostic extraction from the MTVR. Other 

parameters such as exhaust gas temperature, battery voltage, total engine running hours, 

and engine oil temperature, would have been useful to determine mechanical wear and tear 

across all vehicle components, but were unavailable from the MTVR 23. It would be 

beneficial to conduct further data extraction experimentation on other Marine Corps ground 

equipment, such as HMMWVs, engineering equipment and generators, M777 Howitzers, 

and M1A1 tanks capable of utilizing the J1939 data-bus technology. 

D. RECOMMENDATIONS FOR FUTURE STUDY 

This research did not address three critical areas that are integral to creating a CBM 

environment; namely, data security and authentication from ground equipment to server to  
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front-end application, integrating the CBM data management architecture into the current 

Marine Corps command and control infrastructure, and secondary and tertiary analytic 

insights from using additional analysis methods. A brief discussion on areas recommended 

for future study follows. 

1. Security of Data Transmission 

By default, J1939 data-bus is not encrypted. This diagnostic data applies no layers 

of security protocol. During this research, we were able to directly log raw CAN-bus data 

with only the 9-Pin J1939 connecter and the Raspberry Pi. This plug-and-play convenience 

presents notable security risk for diagnostic data being read from equipment. If this data 

were to be pushed to a cloud or central service network via WIFI or Bluetooth, this data 

can easily be altered, read, or copied during transmission. This leaves way for malware 

injection or manipulated data transmission to CBM maintenance servers. Further research 

is needed to examine encryption protocols and security practices to ensure secure 

transmission of diagnostic data and data protection for the data sitting in maintenance 

servers. 

2. Integration into Marine Network 

This research did not address the data strategy necessary to build the data 

environment to manage, store, and process the data collected from equipment using CBM. 

The data environment includes integrating existing network architectures to combine with 

CBM networked data; building deployment and support strategies for sensitive equipment 

and weapon systems capable of producing on-board diagnostics; establishing a network 

policy for cross-organization data sharing (internal and external) revealing equipment 

conditions, performance, and history; and implementing data management access protocols 

to ensure maintenance users and administrative personnel are qualified to operate, 

maintain, and view data collected in maintenance servers. Future research in the CBM data 

management and communications domains will help document the next steps needed in 

integrating CBM into the Marine Corps network environment. 



74 

3. Additional Model-Based Reasoning Methods 

This research presents one statistical model that derives a "normal" engine 

operating profile from the MTVR, however, many other statistical and machine learning 

methods can be applied to derive further insights and trend analysis. This thesis used a 

model that best matched the capabilities of the data collected, however, over time, as larger 

datasets filled with dense diagnostics parameters are collected, the use of more complex 

statistical analysis methods such as decision trees, classification models, logistic 

regression, and machine learning modeling, can be used to solve problems, create new 

opportunities, and drive maintenance decisions. Future research in this area can take a 

deeper look at combining different statistical models to best fit the demands and constraints 

of the Marine Corps operating environment. 
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APPENDIX A.  PYTHON SOURCE CODE FOR 
DECODING J1939 DATA 

# --------------------------------- 
# DECODING J1939 
# Thesis: Decoding J1939 to Enable Conditions-based Maintenance 
# Whitaker, Michael Capt, USMC 
# Adapted from [54] 
# Python 3.6 
# 
# --------------------------------- 
import sqlite3  # import the sqlite 3 extensions for Python 
import csv 
import glob 
import os 
import datetime 
file_list = glob.glob(os.path.join(os.getcwd() + '/LOG FILES/', "20 marc mtvr 592420", "*.TXT")) 
datalines = [] 
for file_path in file_list: 
    with open(file_path) as f_input: 
        datalines.extend(f_input.readlines()) 
print(datalines[0:10])  # shows the first few entries in the list. These entries should match the log file 
 
# remove header information, start from end of list as not to skip index from values shifting 
for line in reversed(datalines): 
    if line.startswith("#"): 
        datalines.remove(line) 
    if line.startswith('T'): 
        datalines.remove(line) 
# print(datalines[0:10])  # shows the first few entries in the list after cleaning 
# 
######################################################################################
############## 
# P A R S I N  G   T H E   L O G   F I L E    A N D   C R E A T IN G   D A T A   S T R U C T U R E S 
# T O   H O L D    D A T A   F O R   F U R   H E R   P R O C E S S I N G 
# 
######################################################################################
############## 
DLCs = {}  # Data length Code Dictionary that will be used to find all IDs. 
timeStamp_list = []  # store the timestamp from the log file 
IDList = []  # store the IDs in sequence 
rawData = []  # Store the data fields in sequence 
for line in datalines:  # iterate through the entire file starting at line 0 
    elements = line.split(';')  # Separate the entries by commas 
    # convert Time to iso and parse 
    t = elements[0] # 20T155058861 
    dt_obj = datetime.datetime.strptime('201903' + t, '%Y%m%dT%H%M%S%f') 
    t = int(dt_obj.strftime('%Y%m%d%H%M%S%f')) 
    timeStamp_list.append(t)  # add timestamp to list 
    # ## this took almost 3 minutes 
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    #  '20170828T160536247' 
    ID = elements[2]  # extract the PGN associated with the CAN identifier 
    # cf00400 or 18febf0b 
    IDList.append(ID)  # add the ID to a list 
    # DLCText = 8  # The DLC text field has a colon, so separate the label from the text 
    # Dlc:8 
    DLC = 8  # Get the data length code as an integer 
    #  8 
    # Store the DLC in a dictionary with the ID as a key. This will ensure only unique IDs are used as keys. 
    DLCs[ID] = DLC 
    # {'14fef031': 8} 
    # this splits up the HEX value into SPNs 
    templist = []  # hold the 32 bit hex value as I build it 
    for i in range(len(elements[3][:-1])): 
        if i % 2 == 0: 
            templist.append(elements[3][:-1][i] + elements[3][:-1][i + 1])  # store the data field as a list of text strings 
    rawData.append(templist) 
    # ['ff', 'ff', 'ff', 'ff', 'ff', 'fc', '00', 'ff'] 
IDs = DLCs.keys()  # the keys in the DLCs dictionary are all the unique IDs that have not been duplicated. 
# print('ID\tDLC')  # Print the heading of a table 
# for ID in sorted(DLCs.keys()):  # iterate through all the sorted dictionary keys 
#     print('%s\t%i' % (ID, DLCs[ID]))  # display the dictionary contents 
# 
# print('Number of Unique IDs: %i' % len(IDs))  # display the total number of messages 
# 
######################################################################################
############## 
# C R E A T I N G     A   D A T A B A S E 
'''Create a database to decode the raw data in accordance with SAE Technical Standards.  The data inputted 
into 
the database id copyrighted by SAE''' 
 
# 
######################################################################################
############## 
# ### Digital Annex ### 
pathtoDA        = '/Users/whitakermichael/NPS/_THESIS/DigitialAnnex/SAEDigitalSAEcsvs' 
SPNsandPGNs     = os.path.join(pathtoDA, "SPNsandPGNs.csv") 
Slots           = os.path.join(pathtoDA, "slots.csv") 
src_address_hwy = os.path.join(pathtoDA, "SourceAddressesOnHighway.csv") 
man             = os.path.join(pathtoDA, "Manfuacturers.csv") 
glb_addr        = os.path.join(pathtoDA, "SourceAddresses.csv") 
# #SQL Statements to create tables 
nameofdatabse = "SAEJ1939_db" 
filename = '/Users/whitakermichael/NPS/_THESIS/Decoding J1939/' + nameofdatabse 
if os.path.isfile(filename): 
    os.remove(filename)  # delete the database if it already exists. This prevents errors for duplicate tables 
conn = sqlite3.connect(filename) 
conn.text_factory = str  # This command enables the strings to be decoded by the sqlite commands 
cursor = conn.cursor() 
cursor.execute('CREATE TABLE SourceAddressesOnHighWay (ID INT, Name STRING, Notes STRING, 
DateModified STRING)') 
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cursor.execute('CREATE TABLE Manufacturers (ID INT,MANUFACTURER,LOCATION,DateLastModified)') 
cursor.execute('CREATE TABLE SLOTS (SLOTIdentifier INT,SLOTName STRING,SLOTType 
STRING,Scaling STRING,' 
               'Range STRING,Offset STRING, Length STRING ,DateModified STRING)') 
cursor.execute('CREATE TABLE SPNandPGN (PGN INT, ParameterGroupLabel, PGNLength, 
TransmissionRate, Acronym, pos,' 
               'SPNlength INT, SPN INT, Name, Description, DataRange, OperationalRange, Resolution, Offset, 
Units,' 
               'DateSPNAddedToPGN, StatusOfSPNAdditionToPGN, DateSPNModified, SPNDoc, PGNDoc, 
BitField)') 
cursor.execute('CREATE TABLE SourceAddresses (ID INT, Name STRING, Notes STRING, DateModified 
STRING)') 
with open(src_address_hwy, 'r') as f: 
    reader = csv.reader(f) 
    for row in reader: 
        cursor.execute('INSERT INTO SourceAddressesOnHighWay VALUES (?,?,?,?)', row) 
with open(man, 'r') as f: 
    reader = csv.reader(f) 
    for row in reader: 
        cursor.execute('INSERT INTO Manufacturers VALUES (?,?,?,?)', row) 
with open(SPNsandPGNs, 'r') as f: 
    reader = csv.reader(f) 
    for row in reader: 
        cursor.execute('INSERT INTO SPNandPGN VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)', row) 
with open(Slots, 'r') as f: 
    reader = csv.reader(f) 
    for row in reader: 
        cursor.execute('INSERT INTO SLOTS VALUES (?,?,?,?,?,?,?,?)', row) 
with open(glb_addr, 'r') as f: 
    reader = csv.reader(f) 
    for row in reader: 
        cursor.execute('INSERT INTO SourceAddresses VALUES (?,?,?,?)', row) 
conn.commit()  # save changes 
# Test to make sure tables are uploaded in database 
cursor.execute('SELECT * from SourceAddresses').fetchone() 
# goto terminal log into database and fix unicode error 
# ('\ufeff0', <- THIS IS THE UNICODE ERROR 
#  'Engine #1', 
#  'The #1 on the Engine CA is to identify that this is the first PA being used for the particular function, Engine. 
#  It may only be used for the NAME Function of 0, Function Instance 0, and an ecu instance of 0, which is 
commonly 
#  know as the “first engine”.', 
#  '') 
# ######################################## 
# RUN THIS IF DATABASE IS ALREADY CREATED 
# ######################################## 
nameofdatabse = "SAEJ1939_db" 
filename = '/Users/whitakermichael/NPS/_THESIS/Decoding J1939/' + nameofdatabse 
conn = sqlite3.connect(filename) 
conn.text_factory = str  # This command enables the strings to be decoded by the sqlite commands 
cursor = conn.cursor() 
# TEST 
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cursor.execute('SELECT * from SourceAddresses').fetchone() 
# 
######################################################################################
############## 
# D E C O D I N G   J 1 9 3 9 
'''Use database and SAE technical specificaitions to parse 64 bit message and 18 bit PGN header. 
This allows us to pull out functions from ECU communication in vehicles.''' 
# 
######################################################################################
############## 
SA_Name = {}  # Source Address 
SA_Note = {}  # Source notes 
SPNs = {} 
decodingDictionary = {} 
for IDText in sorted(IDs): 
    SAText = IDText[-2:] 
    try: 
        SA = int(SAText, 16)  # Convert the hex string into an integer 
    except ValueError: 
        print("SAText:", SAText) 
        print("IDtext:", IDText) 
        continue 
    PFText = IDText[-6:-4] 
    PF = int(PFText, 16) 
    if PF < 240:  # PDU1 format 
        DA = int(IDText[-4:-2], 16) 
        PSText = '00' 
        PS = DA 
    else: 
        PSText = IDText[-4:-2] 
        PS = int(PSText, 16) 
        DA = 255  # Broadcast 
    PriorityText = IDText[-8:-6] 
    Priority = int(PriorityText, 16) >> 2  # bit shift the priority integer by 2 to account for hte Dp and EDP fields. 
    print('\nMessage ID: %s' % IDText) 
    decodingDictionary.setdefault(IDText, []) 
    print('Priority (Hex): %s' % PriorityText) 
    print('J1939 Priority: %i' % Priority) 
    decodingDictionary[IDText].append(Priority) 
    print('PDU Format (PF) in hex: %s and in decimal: %i' % (PFText, PF)) 
    decodingDictionary[IDText].append(PF) 
    print('PDU Specific (PS) in hex: %s and in decimal: %i' % (PSText, PS)) 
    decodingDictionary[IDText].append(PS) 
    print('Source Address in hex: %s and in decimal: %i' % (SAText, SA)) 
    decodingDictionary[IDText].append(SA) 
    PGNText = PFText + PSText 
    PGN = int(PGNText, 16) 
    print('Parameter Group Number (PGN): %i' % PGN) 
    decodingDictionary[IDText].append(PGN) 
    PGNData = cursor.execute('SELECT ParameterGroupLabel,TransmissionRate,Acronym FROM 
SPNandPGN WHERE PGN=?', 
                             [PGN]).fetchone() 
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    try: 
        print('Parameter Group Label: %s' % PGNData[0]) 
        decodingDictionary[IDText].append(PGNData[0]) 
    except TypeError: 
        break 
    print('Transmission Rate: %s' % PGNData[1]) 
    decodingDictionary[IDText].append(PGNData[1]) 
    acronym = str(PGNData[2]) 
    print('Acronym: %s' % acronym) 
    decodingDictionary[IDText].append(acronym) 
    # Source Addresses 
    if SA < 94 or SA > 247: 
        sourceAddressData = cursor.execute('SELECT Name,Notes FROM SourceAddresses WHERE ID=?', 
[SA]).fetchone() 
        SA_Name[SA] = sourceAddressData[0] 
        SA_Note[SA] = sourceAddressData[1] 
    elif SA > 159 and SA < 248: 
        sourceAddressData = cursor.execute('SELECT Name,Notes FROM SourceAddressesOnHighWay 
WHERE ID=?', [SA]).fetchone() 
        SA_Name[SA] = sourceAddressData[0] 
        SA_Note[SA] = sourceAddressData[1] 
    else: 
        SA_Name[SA] = 'SAE Future Use' 
        SA_Note[SA] = 'Used SAE future Use or for dynamic address assignment' 
    print('Source Controller: %s' % SA_Name[SA]) 
    decodingDictionary[IDText].append(SA_Name[SA]) 
    print('The Following SPNs are available in the message:') 
    TempDict = {} 
    for SPNData in cursor.execute('SELECT SPN,Name,Units,Offset,Resolution,pos, SPNlength, DataRange 
FROM SPNandPGN WHERE PGN=?', [PGN]): 
        try: 
            SPN = int(SPNData[0]) 
        except ValueError: 
            SPN = -1 
        Name  = str(SPNData[1]) 
        Units = str(SPNData[2]) 
        # PARSE OFFSET VALUE 
        offset_val = SPNData[3].split()  # ['-40', '°C'] 
        if len(offset_val) > 0: 
            try: 
                Offset = float(offset_val[0].replace(',', '')) 
            except ValueError: 
                Offset = 0 
        else: 
            Offset = 0 
 
        # PARSE RESOLUTION 
        res = SPNData[4].split(' ') 
        res = res[0].split('/bit') 
        res = res[0].split('/') 
        try: 
            if len(res) == 2: 
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                Resolution = float(res[0]) / float(res[1]) 
            else: 
                Resolution = float(res[0]) 
        except ValueError: 
            Resolution = 0 
        #  PARSE BIT START POSITION FILL WITH -GRAND VAL 
        try: 
            pos = int(SPNData[5][0]) 
        except IndexError: 
            pos = int(-88888) 
        length_measure = SPNData[6] 
        try: 
            if length_measure.split()[1].startswith('bit'): 
                continue 
        except IndexError: 
            continue 
        #  PARSE DATA RANGE 
        temp_datarange_list = [] 
        data_range_str = SPNData[7] 
        for val in data_range_str.split(): 
            try: 
                min_or_max_val = float(val.replace(',', '')) 
            except ValueError: 
                min_or_max_val = () 
                continue 
            temp_datarange_list.append(min_or_max_val) 
        date_Range = tuple(temp_datarange_list) 
        if len(date_Range) < 1: 
            # date_Range = (-8888, -88888) 
            continue 
        SPNs[SPN] = [Name, Units, Offset, Resolution, (IDText, PGN), acronym, pos, length_measure, 
date_Range] 
        TempDict[SPN] = [Name, Units, ('Offset', Offset), Resolution, (IDText, PGN), acronym, ('pos', pos, 
length_measure), date_Range] 
        # print(SPNData[4]) 
        print('SPN: %i, Name: %s, Unit: %s, Offset: %g, Resolution: %g, BitStartPosition: %i, length: %s ' 
              'DataRange: min= %d, max= %d' % (SPN, Name, Units, Offset, Resolution, pos, length_measure, 
date_Range[0], date_Range[1])) 
    decodingDictionary[IDText].append(TempDict) 
# close connection to Database 
# conn.close() 
 
# 
######################################################################################
############## 
#                C R E A T E   T A B L E   T O    H O L D   O U T P U T   O F 
#                        D E C O D E D   J 1 9 3 9   M E S S A G E S 
# 
######################################################################################
############## 
conn = sqlite3.connect(filename) 
conn.text_factory = str  # This command enables the strings to be decoded by the sqlite commands 
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cursor = conn.cursor() 
cursor.execute('DROP TABLE decodedValues')  # drop table if it exist 
cursor.execute('CREATE TABLE decodedValues (time FLOAT,ID STRING, PF INT, PS INT, DA INT, PGN 
INT, SA INT, Priority INT,' 
               'Acronym STRING, Meaning STRING, Unitss STRING) ') 
# ADD SPN COLUMN TO TABLE FOR EVERY UNIQUE SPN VALUE 
for SPN in sorted(SPNs.keys()): 
    print('{}\t{}\t{}' .format(SPNs[SPN][4], SPN, SPNs[SPN][0])) 
    cursor.execute('ALTER TABLE decodedValues ADD COLUMN SPN%i' % SPN)  # This adds only the SPNs 
that are in the data stream. 
# 
######################################################################################
############### 
#               T H I S    A D D S   D E C O D E D   V A L U E S   T O   D A T A B A  S E 
# 
######################################################################################
############### 
spn_list = [k for k, v in SPNs.items()] # added to test specific spns 
for timestamp, PGNID, payload in zip(timeStamp_list, IDList, rawData): 
    # "20190320173110134000", "18f00010", ['c0', '7d', 'ff', 'ff', 'ff', 'ff', 'ff', 'ff'] 
    for key, value in decodingDictionary.items(): 
        if PGNID[-6:] == key[-6:]: 
            for spn, spnDataValue in value[9].items():  # this is the spn dictionary 
                # if spn in spn_list: #this was added to test specific SPNs 
                position = spnDataValue[6][1] 
                SP_length = spnDataValue[6][2].split()[0] 
                SPN = spn 
                Unit = spnDataValue[1] 
                Resolution = spnDataValue[3] 
                Offset = spnDataValue[2][1] 
                Max_dataRange = spnDataValue[7][1] 
                if position < 8: 
                    if int(SP_length) > 1: 
                        # intel byte order (the right byte switched with left byte) 
                        # this is why 0-based index is working out 
                        binary = int(payload[position] + payload[position - 1], 16) 
                        Value = Resolution * binary + Offset 
                        if Value > Max_dataRange: 
                            if Unit == 'count': 
                                Value = 0 
                            else: 
                                Value = 9999  # THIS MEANS NO DATA (NA) 
                        # print(f'{timestamp} -  {PGNID} - {SPN} - {Value}') 
                        cursor.execute('''INSERT INTO decodedValues(time, ID, PF, PS, PGN, SA, Priority, Unitss, 
SPN%i) 
                                       VALUES(%i, \"%s\", %i, %i, %i, %i, %i, \"%s\", %f)''' 
                                       % (spn, timestamp, PGNID, decodingDictionary[key][1], 
                                          decodingDictionary[key][2], decodingDictionary[key][4], 
                                          decodingDictionary[key][3], decodingDictionary[key][0], Unit, Value)) 
                    else: 
                        # do this 
                        binary = int(payload[position-1], 16) 
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                        Value = Resolution * binary + Offset 
                        if Value > Max_dataRange: 
                            if Unit == 'count': 
                                Value = 0 
                            else: 
                                Value = 9999  # THIS MEANS NO DATA (NA) OR FALSE VALUES 
                        # print(f'{timestamp} -  {PGNID} - {SPN} - {Value}') 
                        cursor.execute('''INSERT INTO decodedValues(time, ID, PF, PS, PGN, SA, Priority, Unitss, 
SPN%i) 
                                       VALUES(%i, \"%s\", %i, %i, %i, %i, %i, \"%s\", %f)''' 
                                       % (spn, timestamp, PGNID, decodingDictionary[key][1], 
                                          decodingDictionary[key][2], decodingDictionary[key][4], 
                                          decodingDictionary[key][3], decodingDictionary[key][0], Unit, Value)) 
                else: 
                    length, signal_range = spnDataValue[6][2].split() 
                    if signal_range.startswith('bit'): 
                        continue  # there should be no SPNs with bit specified for length 
                    else: 
                        binary = int(payload[position - int(length)], 16)  # makes it index 7 vs 8 
                        Value = Resolution * binary + Offset 
                        if Value > Max_dataRange: 
                            if Unit == 'count': 
                                Value = 0 
                            else: 
                                Value = 9999  # THIS MEANS NO DATA (NA) 
                        cursor.execute('''INSERT INTO decodedValues(time, ID, PF, PS, PGN, SA, Priority, Unitss, 
SPN%i) 
                                       VALUES(%i, \"%s\", %i, %i, %i, %i, %i, \"%s\", %f)''' 
                                       % (spn, timestamp, PGNID, decodingDictionary[key][1], 
                                          decodingDictionary[key][2], decodingDictionary[key][4], 
                                          decodingDictionary[key][3], decodingDictionary[key][0], Unit, Value)) 
                # print(f'{timestamp} - {PGNID} - {SPN} - {Value}') 
conn.commit() 
conn.close() 
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APPENDIX B.  R SOURCE CODE FOR DATA ANALYSIS AND 
PLOT DRAWING OF MTVR DIAGNOSTIC DATA 

# --------------------------------- 
# DATA ANALYIS OF MTVR DIAGNOSTIC DATA 
# Thesis: Decoding J1939 to Enable Conditions-based Maintenance 
# Whitaker, Michael Capt, USMC 
# 
# R version 3.6.0  
# 
# --------------------------------- 
# load Data Set that that has NA removed and interpolated 
DiagnosticData <- readRDS("~/NPS/_THESIS/Decoding 
J1939/Rworkindir/J1939DecodedValues__NoNA.rds") 
str(DiagnosticData) 
# 'data.frame': 1237373 obs. of  9 variables: 
# $ time  : num  20190320155058860032 20190320155058876416 20190320155058888704 
20190320155058905088 20190320155058909184 ... 
# $ SPN174: num  29 29 29 29 29 29 29 29 29 29 ... 
# $ SPN190: num  714 716 714 716 715 ... 
# $ SPN110: num  74 74 74 74 74 74 74 74 74 74 ... 
# $ SPN84 : num  0 0 0 0 0 0 0 0 0 0 ... 
# $ SPN105: num  27 27 27 27 27 27 27 27 27 27 ... 
# $ SPN177: num  51 51 51 51 51 51 51 51 51 51 ... 
# $ SPN183: num  5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05 ... 
# $ SPN100: num  176 176 176 176 176 176 176 176 176 176 ... 
 
######## D A T A S E T   C O L U M N S ############: 
### TIME 
### SPN174 (Engine Fuel Temp), 
### SPN190 (RPMs), 
### SPN110 (Engine Coolant Temperature ), 
### SPN84  (Wheel based Vehicle Speed), 
### SPN105 (Engine Intake Temp), 
### SPN177 (Transmission Oil Temp), 
### SPN183 (Engine Fuel Rate), 
### SPN100 (Engine Oil Pressure), 
 
options( scipen = 9999)  
# Separate dianosticData$time to down sample data by 30 second intervals 
# TimeStamp: 20190320155058860032 
# CONVERT TIME STAMP TO BELOW FOR EASY AGGREGATION 
# YEAR-MM-DD HH:MM:SS:sss:sss 
# 2019-03-20 15:50:58:860:032 
df<-DiagnosticData  # make copy to df 
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str(df) 
df$time 
tt<- as.character(df$time) # convert time to character 
tt<-transform(tt, date=substr(tt, 1, 8), Time = substr(tt, 9, 14), Seconds = substr(tt, 15, 20))  
str(tt) 
 
df$date <- tt$date 
df$Time <- tt$Time 
df$Seconds<- tt$Seconds 
head(df, n=20) 
tt$date 
 
dfnew1 <- df[,c("time", "date", "Time", "Seconds","SPN174", "SPN190", "SPN110", "SPN84", "SPN105", 
"SPN177", "SPN183", "SPN100")] 
head(dfnew1, n=20) 
dfnew1$date <- as.Date(dfnew1$date , "%Y%m%d") 
head(dfnew1,20) 
dfnew1$Time <- format(strptime(dfnew1$Time, "%H%M%S", tz="America/Los_angeles"), "%H:%M:%S") 
dfnew1$timeStamp <- as.POSIXct(paste(dfnew1$date, dfnew1$Time), format="%Y-%m-%d %H:%M:%S") 
head(dfnew1, 30) 
# Building final data frame 
dfnew2 <- dfnew1[,c("timeStamp", "date", "Time", "Seconds","SPN174", "SPN190", "SPN110", "SPN84", 
"SPN105", "SPN177", "SPN183", "SPN100")] 
head(dfnew2) 
# make a data.table frame for data to do time series 
diagnosticDT <- dfnew2 
# aggreagate mean of SPNS by 30sec intervals 
require(dplyr) 
require(lubridate) 
diagnosticDT <- diagnosticDT %>% 
    group_by(timeStamp = cut(timeStamp, breaks="30 secs")) %>% 
    summarize(Engine_Intake_Manifold_Temp = mean(SPN105), 
              Engine_Fuel_Temp=mean(SPN174), 
              RPMs = mean(SPN190), 
              Engine_Coolant_Temp = mean(SPN110), 
              Wheel_based_vehicle_Speed = mean(SPN84), 
              Transmission_Oil_Temp = mean(SPN177), 
              Engine_Fuel_Rate = mean(SPN183), 
              Engine_Oil_Pressure = mean(SPN100), 
              seconds = Seconds[Engine_Fuel_Temp]) 
table(complete.cases(diagnosticDT))  # only one FALSE 
which(!complete.cases(diagnosticDT)) # last one 
 
# There is one NA value need to remove that gets dropped 
diagnosticDT<- diagnosticDT[complete.cases(diagnosticDT), ] 
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head(diagnosticDT, 20) 
# This makes diagnosticDT$timeStamp a FACTOR 
# Convert this back to date object 
diagnosticDT$timeStamp<-as.POSIXct(diagnosticDT$timeStamp, format="%Y-%m-%d %H:%M:%S") 
# split data into 30 minutes groups and make a new data coloumn 
diagnosticDT$by30min <- cut(diagnosticDT$timeStamp, breaks="30 min") 
# move the 30min grouping to the front of data frame 
x <- "by30min" 
diagnosticDT<- diagnosticDT[c(x, setdiff(names(diagnosticDT), x))] 
head(diagnosticDT) 
# Move Seconds column to the beginning of dataframe 
diagnosticDT<- subset(diagnosticDT, select=c(1:2,11,3:10)) 
head(diagnosticDT) 
str(diagnosticDT) 
# Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 551 obs. of  11 variables: 
# $ by30min                    : Factor w/ 12 levels "2019-03-20 15:50:00",..: 1 1 1 1 1 1 1 1 1 1 ... 
# $ timeStamp                  : POSIXct, format: "2019-03-20 15:50:58" "2019-03-20 15:51:28" "2019-03-20 
15:51:58" "2019-03-20 15:52:28" ... 
# $ seconds                    : Factor w/ 15625 levels "000000","000064",..: 2486 4297 4475 4421 4599 4545 4723 
4669 4911 4793 ... 
# $ Engine_Intake_Manifold_Temp: num  23.4 20.8 20 20 20 ... 
# $ Engine_Fuel_Temp           : num  24.6 22.4 22 22 22 ... 
# $ RPMs                       : num  702 700 745 908 805 ... 
# $ Engine_Coolant_Temp        : num  73.2 73.8 74.3 75.9 77.6 ... 
# $ Wheel_based_vehicle_Speed  : num  0 0 1.84 6.44 6.15 ... 
# $ Transmission_Oil_Temp      : num  51.9 52 52.8 53.9 55 ... 
# $ Engine_Fuel_Rate           : num  3.81 3.74 5.69 9.87 6.44 ... 
# $ Engine_Oil_Pressure        : num  171 168 180 219 192 ... 
 
### SPN174 (Engine Fuel Temp), 
### SPN190 (RPMs), 
### SPN110 (Engine Coolant Temperature ), 
### SPN84  (Wheel based Vehicle Speed), 
### SPN105 (Engine Intake Temp), <-- RESPONSE 
### SPN177 (Transmission Oil Temp), 
### SPN183 (Engine Fuel Rate), 
### SPN100 (Engine Oil Pressure), 
diagnosticDT 
# #  
#    by30min timeStamp           seconds Engine_Intake_M… Engine_Fuel_Temp  RPMs Engine_Coolant_… 
Wheel_based_veh… Transmission_Oi… 
#    <fct>   <dttm>              <fct>              <dbl>            <dbl> <dbl>            <dbl>            <dbl>            <dbl> 
# 1 2019-0… 2019-03-20 15:50:58 159040              23.4             24.6  702.             73.2            0                 51.9 
# 2 2019-0… 2019-03-20 15:51:28 274944              20.8             22.4  700.             73.8            0                 52   
# 3 2019-0… 2019-03-20 15:51:58 286336              20               22    745.             74.3            1.84              52.8 
# 4 2019-0… 2019-03-20 15:52:28 282880              20               22    908.             75.9            6.44              53.9 



86 

# 5 2019-0… 2019-03-20 15:52:58 294272              20               22    805.             77.6            6.15              55   
# 6 2019-0… 2019-03-20 15:53:28 290816              20               22.8  804.             78.7            5.96              55   
# 7 2019-0… 2019-03-20 15:53:58 302208              20.1             23    793.             79.7            5.92              55.9 
# 8 2019-0… 2019-03-20 15:54:28 298752              20.7             23    703.             80.8            0.532             56.2 
# 9 2019-0… 2019-03-20 15:54:58 314240              21               23.5  700.             81              0                 57.4 
# 10 2019-0… 2019-03-20 15:55:28 306688              21               24    700.             81              0                 58   
# … with 541 more rows, and 2 more variables: Engine_Fuel_Rate <dbl>, Engine_Oil_Pressure <dbl> 
 
##### all my Parameters are numeric, which is a good thing 
# data split into 30 minute levels and saved into separate dataframes  
# 12 total based on timestamps 
DiagnosticData <- readRDS("~/NPS/_THESIS/Decoding J1939/Rworkindir/diagnosticDT.rds") # <- put the 
downloaded RDS file here 
timegaps<-levels(diagnosticDT$by30min) 
diagnosticInterval <- split(diagnosticDT, diagnosticDT$by30min) 
diagnosticInterval 
 
df_A <- diagnosticInterval[[1]] 
df_B <- diagnosticInterval[[2]] 
df_C <- diagnosticInterval[[3]] 
df_D <- diagnosticInterval[[4]] 
df_E <- diagnosticInterval[[5]] 
df_F <- diagnosticInterval[[6]] 
df_G <- diagnosticInterval[[7]] 
df_H <- diagnosticInterval[[8]] 
df_I <- diagnosticInterval[[9]] 
df_J <- diagnosticInterval[[10]] 
df_K <- diagnosticInterval[[11]] 
df_L <- diagnosticInterval[[12]] 
 
### C O R R E L A T I O N #### 
 
# Correlation between engine_temp and rps 
colname<-colnames(diagnosticDT) 
( colname<-as.vector(colname[4:11]) ) 
diagnosticCor<-subset(diagnosticDT[,c(colname)]) 
diagnostic.cor <- round(cor(diagnosticCor), 4) 
diagnostic.cor 
#                             Engine_Intake_Manifold_Temp Engine_Fuel_Temp  RPMs Engine_Oil_Pressure 
Wheel_based_vehicle_Speed Transmission_Oil_Temp Engine_Fuel_Rate 
# Engine_Intake_Manifold_Temp                        1.00             0.35 -0.72                0.03                     -0.56                  
0.21            -0.23 
# Engine_Fuel_Temp                                   0.35             1.00 -0.21                0.31                      0.00                  
0.74            -0.06 
# RPMs                                              -0.72            -0.21  1.00                0.23                      0.84                  0.05             
0.57 
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# Engine_Oil_Pressure                                0.03             0.31  0.23                1.00                      0.33                  0.61             
0.25 
# Wheel_based_vehicle_Speed                         -0.56             0.00  0.84                0.33                      1.00                  
0.22             0.57 
# Transmission_Oil_Temp                              0.21             0.74  0.05                0.61                      0.22                  
1.00             0.03 
# Engine_Fuel_Rate                                  -0.23            -0.06  0.57                0.25                      0.57                  0.03             
1.00 
 
### G E T   C O R R E L A T I O N   F O R THE ENTIRE DATA FRAME NO WITHOUT 30MIN INTERVALS 
############## 
Install.packages("corrplot") 
library("corrplot") 
colname<-colnames(diagnosticDT) 
( colname<-as.vector(colname[4:11]) ) 
length(colname)  # should be 8 
par(mfrow=c(1,1)) 
require(corrplot) 
col2 <- colorRampPalette(c("#67001F", "#B2182B", "#D6604D", "#F4A582", 
                           "#FDDBC7", "#FFFFFF", "#D1E5F0", "#92C5DE", 
                           "#4393C3", "#2166AC", "#053061")) 
 
corrplot(diagnostic.cor, 
         type="upper", 
         col = col2(50), 
         bg = "gray87", 
         cl.ratio = 0.2,  
         cl.align = "r", 
         tl.col = "gray8", 
         cex.lab=1.5, 
         main="Dataset A Correlation Plot " 
) 
### G E T   C O R R E L A T I O N   F O R   A L L   T H E   D A T A S E T S O N E   ############## 
########################## O N E  A T   A   T I M E ( A  - L ) ################################## 
### 1 
diagnosticCor.A<-subset(df_A[,c(colname)]) 
diagnostic.cor.A <- round(cor(diagnosticCor.A), 4) 
# only one at a TIME 
corrplot(diagnostic.cor.A, 
         type="upper", 
         col = col2(50), 
         bg = "gray87", 
         cl.ratio = 0.2,  
         cl.align = "r", 
         tl.col = "gray8", 
         cex.lab=1.5, 
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         main="Dataset A Correlation Plot " 
         ) 
### 2 
diagnosticCor.B<-subset(df_B[,c(colname)]) 
diagnostic.cor.B <- round(cor(diagnosticCor.B), 4) 
corrplot(diagnostic.cor.B, 
         type="upper", 
         col = col2(50), 
         bg = "gray87", 
         cl.ratio = 0.2,  
         cl.align = "r", 
         tl.col = "gray8", 
         cex.lab=1.5, 
         main="Dataset B Correlation Plot" 
) 
### 3 
diagnosticCor.C<-subset(df_C[,c(colname)]) 
diagnostic.cor.C <- round(cor(diagnosticCor.C), 4) 
corrplot(diagnostic.cor.C, 
         type="upper", 
         col = col2(50), 
         bg = "gray87", 
         cl.ratio = 0.2,  
         cl.align = "r", 
         tl.col = "gray8", 
         cex.lab=1.5, 
         main="Dataset C Correlation Plot" 
) 
### 4 
diagnosticCor.D<-subset(df_D[,c(colname)]) 
diagnostic.cor.D <- round(cor(diagnosticCor.D), 4) 
corrplot(diagnostic.cor.D, 
         type="upper", 
         col = col2(50), 
         bg = "gray87", 
         cl.ratio = 0.2,  
         cl.align = "r", 
         tl.col = "gray8", 
         cex.lab=1.5, 
         main="Dataset D Correlation Plot" 
) 
### 5 
diagnosticCor.E<-subset(df_E[,c(colname)]) 
diagnostic.cor.E <- round(cor(diagnosticCor.E), 4) 
corrplot(diagnostic.cor.E, 
         type="upper", 
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         col = col2(50), 
         bg = "gray87", 
         cl.ratio = 0.2,  
         cl.align = "r", 
         tl.col = "gray8", 
         cex.lab=1.5, 
         main="Dataset E Correlation Plot" 
) 
### 6 
diagnosticCor.F<-subset(df_F[,c(colname)]) 
diagnostic.cor.F <- round(cor(diagnosticCor.F), 4) 
corrplot(diagnostic.cor.F, 
         type="upper", 
         col = col2(50), 
         bg = "gray87", 
         cl.ratio = 0.2,  
         cl.align = "r", 
         tl.col = "gray8", 
         cex.lab=1.5, 
         main="Dataset F Correlation Plot" 
) 
### 7 
diagnosticCor.I<-subset(df_I[,c(colname)]) 
diagnostic.cor.I <- round(cor(diagnosticCor.I), 4) 
corrplot(diagnostic.cor.I, 
         type="upper", 
         col = col2(50), 
         bg = "gray87", 
         cl.ratio = 0.2,  
         cl.align = "r", 
         tl.col = "gray8", 
         cex.lab=1.5, 
         main="Dataset I Correlation Plot" 
) 
### 8 
diagnosticCor.J<-subset(df_J[,c(colname)]) 
diagnostic.cor.J <- round(cor(diagnosticCor.J), 4) 
corrplot(diagnostic.cor.J, 
         type="upper", 
         col = col2(50), 
         bg = "gray87", 
         cl.ratio = 0.2,  
         cl.align = "r", 
         tl.col = "gray8", 
         cex.lab=1.5, 
         main="Dataset J Correlation Plot" 
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) 
### 9 
diagnosticCor.K<-subset(df_K[,c(colname)]) 
diagnostic.cor.K <- round(cor(diagnosticCor.K), 4) 
corrplot(diagnostic.cor.K, 
         type="upper", 
         col = col2(50), 
         bg = "gray87", 
         cl.ratio = 0.2,  
         cl.align = "r", 
         tl.col = "gray8", 
         cex.lab=1.5, 
         main="Dataset K Correlation Plot" 
) 
### 10 
diagnosticCor.L<-subset(df_L[,c(colname)]) 
diagnostic.cor.L <- round(cor(diagnosticCor.L), 4) 
corrplot(diagnostic.cor.L, 
         type="upper", 
         col = col2(50), 
         bg = "gray87", 
         cl.ratio = 0.2,  
         cl.align = "r", 
         tl.col = "gray8", 
         cex.lab=1.5, 
         main="Dataset L Correlation Plot" 
         ) 
 
# DATASETS A , D, F, L, I LOOK THE BEST 
corrplot(data, 
         is.corr=FALSE, 
         type="upper", 
         col = col2(50), 
         bg = "gray87", 
         cl.ratio = 0.2, 
         cl.align = "r", 
         tl.col = "gray8", 
         cex.lab=1.5, 
         main="Dataset Correlation Plot") 
    
#### E N D ###### 
# load  Dataset correlation matrix that I made in excel as a csv 
data <- read.csv("/Users/whitakermichael/NPS/_THESIS/Decoding J1939/Rworkindir/coormatrix.csv", 
stringsAsFactors=FALSE, row.names = 1) 
head(data) 
str(data) 
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data.m <- as.matrix(data) 
corrplot(data.m, 
         is.corr=FALSE, 
         col = col2(50), 
         bg = "gray87", 
         cl.ratio = 0.2, 
         cl.align = "r", 
         tl.col = "gray8", 
         tl.cex=0.5, 
         tl.srt=90, 
         main="Dataset Correlation Plot") 
############## P L O T S #################################### 
#plot all predictions across time for the Five Data Frames 
#### 
###### plot  DF_A 
###### 
install.packages("RColorBrewer") 
library(RColorBrewer) 
library(ggplot2) 
library(reshape2) 
library(col) 
# Standardized data columns 
Scaled.df_A <- as.data.frame(scale(df_A[,4:11]))  # <- all diagnostic parmeters 
Scaled.df_A$RPMs 
#check to make sure its 1 sd 
sd(Scaled.df_A$RPMs) 
sd(Scaled.df_A$Engine_Intake_Manifold_Temp) 
## add scaled data to dataframe for plotting 
df_A.with.scaled <- cbind(df_A[,1:3], Scaled.df_A) 
head(df_A.with.scaled, 20) 
ggplot(data=df_A.with.scaled, aes(x=timeStamp, y=values, color=Parameters)) + 
  geom_line(aes(y=Engine_Intake_Manifold_Temp, col="Engine_Intake_Manifold_Temp"),size=.7)+ 
  geom_line(aes(y=Engine_Fuel_Temp, col="Engine_Fuel_Temp"), size=0.7)+ 
  geom_line(aes(y=Engine_Coolant_Temp, col="Engine_Coolant_Temp"), size=0.7)+ 
  geom_line(aes(y=RPMs, col="RPMs"), size=0.7)+ 
  geom_line(aes(y=Wheel_based_vehicle_Speed, col="Wheel_based_vehicle_Speed"), size=0.7)+ 
  geom_line(aes(y=Transmission_Oil_Temp, col="Transmission_Oil_Temp"), size=0.7)+ 
  geom_line(aes(y=Engine_Fuel_Rate, col="Engine_Fuel_Rate"), size=0.7)+ 
  geom_line(aes(y=Engine_Oil_Pressure, col="Engine_Oil_Pressure"), size=0.7)+ 
  scale_colour_brewer(palette = "Dark2")+ 
  labs(title="Standard Plot of Diagnostic Values", 
       subtitle="From Dataset A", 
       y="Standardized Diagnostic Values", 
       x="Time")+ 
  theme_bw(base_size = 16, 
           base_line_size = .5) 



92 

# pairs plot 
pairs(timeStamp ~ Engine_Intake_Manifold_Temp + Engine_Fuel_Temp + RPMs + Engine_Coolant_Temp +  
        Wheel_based_vehicle_Speed + Transmission_Oil_Temp + Engine_Fuel_Rate + Engine_Oil_Pressure, 
      lower.panel=NULL, 
      panel=panel.smooth, 
      pch=20, cex=1, 
      lwd=0.3, 
      col="dimgray", 
      main=paste("Pairs Plot of Diagnostics", "\nDataset A"), 
      cex.axis = 1.3, 
      data=df_A) 
#### 
###### plot  DF_D 
###### 
# install.packages("RColorBrewer") 
# library(RColorBrewer) 
# library(ggplot2) 
# library(reshape2) 
# library(col) 
# Standardized data columns 
Scaled.df_D <- as.data.frame(scale(df_D[,4:11]))  # <- all diagnostic parmeters 
Scaled.df_D$RPMs 
#check to make sure its 1 sd 
sd(Scaled.df_D$RPMs) 
sd(Scaled.df_D$Engine_Intake_Manifold_Temp) 
## add scaled data to dataframe for plotting 
df_D.with.scaled <- cbind(df_D[,1:3], Scaled.df_D) 
head(df_D.with.scaled, 20) 
ggplot(data=df_D.with.scaled, aes(x=timeStamp, y=values, color=Parameters)) + 
  geom_line(aes(y=Engine_Intake_Manifold_Temp, col="Engine_Intake_Manifold_Temp"), size=0.7)+ 
  geom_line(aes(y=Engine_Fuel_Temp, col="Engine_Fuel_Temp"), size=0.7)+ 
  geom_line(aes(y=Engine_Coolant_Temp, col="Engine_Coolant_Temp"), size=0.7)+ 
  geom_line(aes(y=RPMs, col="RPMs"), size=0.7)+ 
  geom_line(aes(y=Wheel_based_vehicle_Speed, col="Wheel_based_vehicle_Speed"), size=0.7)+ 
  geom_line(aes(y=Transmission_Oil_Temp, col="Transmission_Oil_Temp"), size=0.7)+ 
  geom_line(aes(y=Engine_Fuel_Rate, col="Engine_Fuel_Rate"), size=0.7)+ 
  geom_line(aes(y=Engine_Oil_Pressure, col="Engine_Oil_Pressure"))+ 
  scale_colour_brewer(palette = "Dark2")+ 
  labs(title="Standard Plot of Diagnostic Values", 
       subtitle="From Dataset D", 
       y="Standardized Diagnostic Values", 
       x="Time" )+ 
  theme_bw(base_size = 16, 
           base_line_size = .5) 
################################ 
###### p a i r s   p l o t ##### 
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######### DATASET D AND I ###### 
pairs(timeStamp ~ Engine_Intake_Manifold_Temp + Engine_Fuel_Temp + RPMs + Engine_Coolant_Temp +  
        Wheel_based_vehicle_Speed + Transmission_Oil_Temp + Engine_Fuel_Rate + Engine_Oil_Pressure, 
      panel=panel.smooth, 
      lower.panel=NULL, 
      pch=20, cex=2, 
      lwd=1, 
      col="dimgray", 
      main=paste("Pairs Plot of Diagnostics", "\nDataset L"), 
      cex.axis = 1.3, 
      data=df_L) 
pairs(timeStamp ~ Engine_Intake_Manifold_Temp + Engine_Fuel_Temp + RPMs + Engine_Coolant_Temp +  
        Wheel_based_vehicle_Speed + Transmission_Oil_Temp + Engine_Fuel_Rate + Engine_Oil_Pressure, 
      upper.panel=NULL, 
      panel=panel.smooth, 
      pch=20, cex=2, 
      lwd=1, 
      col="dimgray", 
      main=paste("Pairs Plot of Diagnostics", "\nDataset F"), 
      cex.axis = 1.3, 
      data=df_F) 
#### 
###### plot  DF_F 
###### 
Scaled.df_F <- as.data.frame(scale(df_F[,4:11]))  # <- all diagnostic parmeters 
Scaled.df_F$RPMs 
#check to make sure its 1 sd 
sd(Scaled.df_F$RPMs) 
sd(Scaled.df_F$Engine_Intake_Manifold_Temp) 
## add scaled data to dataframe for plotting 
df_F.with.scaled <- cbind(df_F[,1:3], Scaled.df_F) 
head(df_F.with.scaled, 20) 
ggplot(data=df_F.with.scaled, aes(x=timeStamp, y=values, color=Parameters)) + 
  geom_line(aes(y=Engine_Intake_Manifold_Temp, col="Engine_Intake_Manifold_Temp"), size=0.7)+ 
  geom_line(aes(y=Engine_Fuel_Temp, col="Engine_Fuel_Temp"), size=0.7)+ 
  geom_line(aes(y=Engine_Coolant_Temp, col="Engine_Coolant_Temp"), size=0.7)+ 
  geom_line(aes(y=RPMs, col="RPMs"), size=0.7)+ 
  geom_line(aes(y=Wheel_based_vehicle_Speed, col="Wheel_based_vehicle_Speed"), size=0.7)+ 
  geom_line(aes(y=Transmission_Oil_Temp, col="Transmission_Oil_Temp"), size=0.7)+ 
  geom_line(aes(y=Engine_Fuel_Rate, col="Engine_Fuel_Rate"), size=0.7)+ 
  geom_line(aes(y=Engine_Oil_Pressure, col="Engine_Oil_Pressure"), size=0.7)+ 
  scale_colour_brewer(palette = "Dark2")+ 
  labs(title="Standard Plot of Diagnostic Values", 
       subtitle="From Dataset F", 
       y="Standardized Diagnostic Values", 
       x="Time" )+ 
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  theme_bw(base_size = 16, 
           base_line_size = .5) 
# pairs plot 
pairs(timeStamp ~ Engine_Intake_Manifold_Temp + Engine_Fuel_Temp + RPMs + Engine_Coolant_Temp +  
        Wheel_based_vehicle_Speed + Transmission_Oil_Temp + Engine_Fuel_Rate + Engine_Oil_Pressure, 
      lower.panel=NULL, 
      panel=panel.smooth, 
      pch=20, cex=1, 
      lwd=0.3, 
      col="dimgray", 
      main=paste("Pairs Plot of Diagnostics", "\nDataset F"), 
      cex.axis = 1.3, 
      data=df_F) 
#### 
###### plot  DF_L 
###### 
# install.packages("RColorBrewer") 
# library(RColorBrewer) 
# library(ggplot2) 
# library(reshape2) 
# library(col) 
# Standardized data columns 
Scaled.df_L <- as.data.frame(scale(df_L[,4:11]))  # <- all diagnostic parmeters 
Scaled.df_L$RPMs 
#check to make sure its 1 sd 
sd(Scaled.df_L$RPMs) 
sd(Scaled.df_L$Engine_Intake_Manifold_Temp) 
## add scaled data to dataframe for plotting 
df_L.with.scaled <- cbind(df_L[,1:3], Scaled.df_L) 
head(df_L.with.scaled, 20) 
ggplot(data=df_L.with.scaled, aes(x=timeStamp, y=values, color=Parameters)) + 
  geom_line(aes(y=Engine_Intake_Manifold_Temp, col="Engine_Intake_Manifold_Temp"), size=0.7)+ 
  geom_line(aes(y=Engine_Fuel_Temp, col="Engine_Fuel_Temp"), size=0.7)+ 
  geom_line(aes(y=Engine_Coolant_Temp, col="Engine_Coolant_Temp"), size=0.7)+ 
  geom_line(aes(y=RPMs, col="RPMs"), size=0.7)+ 
  geom_line(aes(y=Wheel_based_vehicle_Speed, col="Wheel_based_vehicle_Speed"), size=0.7)+ 
  geom_line(aes(y=Transmission_Oil_Temp, col="Transmission_Oil_Temp"), size=0.7)+ 
  geom_line(aes(y=Engine_Fuel_Rate, col="Engine_Fuel_Rate"), size=0.7)+ 
  geom_line(aes(y=Engine_Oil_Pressure, col="Engine_Oil_Pressure"), size=0.7)+ 
  scale_colour_brewer(palette = "Dark2")+ 
  labs(title="Standard Plot of Diagnostic Values", 
       subtitle="From Dataset L", 
       y="Standardized Diagnostic Values", 
       x="Time" )+ 
  theme_bw(base_size = 16, 
           base_line_size = .5) 



95 

# pairs plot 
pairs(timeStamp ~ Engine_Intake_Manifold_Temp + Engine_Fuel_Temp + RPMs + Engine_Coolant_Temp +  
        Wheel_based_vehicle_Speed + Transmission_Oil_Temp + Engine_Fuel_Rate + Engine_Oil_Pressure, 
      upper.panel=NULL, 
      panel=panel.smooth, 
      pch=20, cex=1, 
      lwd=1, 
      col="dimgray", 
      main=paste("Pairs Plot of Diagnostics", "\nDataset L"), 
      cex.axis = 1.3, 
      data=df_L) 
Scaled.df_I <- as.data.frame(scale(df_I[,4:11]))  # <- all diagnostic parmeters 
Scaled.df_I$RPMs 
#check to make sure its 1 sd 
sd(Scaled.df_I$RPMs) 
sd(Scaled.df_I$Engine_Intake_Manifold_Temp) 
## add scaled data to dataframe for plotting 
df_I.with.scaled <- cbind(df_I[,1:3], Scaled.df_I) 
head(df_I.with.scaled, 20) 
ggplot(data=df_I.with.scaled, aes(x=timeStamp, y=values, color=Parameters)) + 
  geom_line(aes(y=Engine_Intake_Manifold_Temp, col="Engine_Intake_Manifold_Temp"), size=0.7)+ 
  geom_line(aes(y=Engine_Fuel_Temp, col="Engine_Fuel_Temp"), size=0.7)+ 
  geom_line(aes(y=Engine_Coolant_Temp, col="Engine_Coolant_Temp"), size=0.7)+ 
  geom_line(aes(y=RPMs, col="RPMs"), size=0.7)+ 
  geom_line(aes(y=Wheel_based_vehicle_Speed, col="Wheel_based_vehicle_Speed"), size=0.7)+ 
  geom_line(aes(y=Transmission_Oil_Temp, col="Transmission_Oil_Temp"), size=0.7)+ 
  geom_line(aes(y=Engine_Fuel_Rate, col="Engine_Fuel_Rate"), size=0.7)+ 
  geom_line(aes(y=Engine_Oil_Pressure, col="Engine_Oil_Pressure"), size=0.7)+ 
  scale_colour_brewer(palette = "Dark2")+ 
  labs(title="Standard Plot of Diagnostic Values", 
       subtitle="From Dataset I", 
       y="Standardized Diagnostic Values", 
       x="Time" )+ 
  theme_bw(base_size = 16, 
           base_line_size = .5) 
# pairs plot 
pairs(timeStamp ~ Engine_Intake_Manifold_Temp + Engine_Fuel_Temp + RPMs + Engine_Coolant_Temp +  
        Wheel_based_vehicle_Speed + Transmission_Oil_Temp + Engine_Fuel_Rate + Engine_Oil_Pressure, 
      lower.panel=NULL, 
      panel=panel.smooth, 
      pch=20, cex=1, 
      lwd=0.5, 
      col="dimgray", 
      main=paste("Pairs Plot of Diagnostics", "\nDataset I"), 
      cex.axis = 1.3, 
      data=df_I) 



96 

# Dimensions of the dataset 
numseconnds <- nrow(diagnosticDT) 
numDiagnosticParam <- ncol(diagnosticDT) - 1 
library(ggplot2)  # for creating graphs 
par(mfrow = c(3, 4)) 
for(spns in 3:numDiagnosticParam + 1) { 
  with(diagnosticDT, 
       plot(timeStamp, unlist(diagnosticDT[,spns]),  
            type="l", 
            main=paste(colnames(diagnosticDT)[spns],"vs Time"), 
            ylab=colnames(diagnosticDT)[spns], xlab="Time", 
            pch=20, cex=0.7, lwd=2, col="dimgray") 
  ) 
} 
############## M O D E L I N G  #################   
 
# What is your research question? Does X affect Y? What are the predictors of Y? 
# only using  
# DATASETS A , D, F, L, I 
str(df_A) 
# Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 59 obs. of  11 variables: 
#  $ by30min                    : Factor w/ 12 levels "2019-03-20 15:50:00",..: 1 1 1 1 1 1 1 1 1 1 ... 
#  $ timeStamp                  : POSIXct, format: "2019-03-20 15:50:58" "2019-03-20 15:51:28" "2019-03-20 
15:51:58" "2019-03-20 15:52:28" ... 
#  $ seconds                    : Factor w/ 15625 levels "000000","000064",..: 2486 4297 4475 4421 4599 4545 
4723 4669 4911 4793 ... 
#  $ Engine_Intake_Manifold_Temp: num  23.4 20.8 20 20 20 ... 
#  $ Engine_Fuel_Temp           : num  24.6 22.4 22 22 22 ... 
#  $ RPMs                       : num  702 700 745 908 805 ... 
#  $ Engine_Coolant_Temp        : num  73.2 73.8 74.3 75.9 77.6 ... 
#  $ Wheel_based_vehicle_Speed  : num  0 0 1.84 6.44 6.15 ... 
#  $ Transmission_Oil_Temp      : num  51.9 52 52.8 53.9 55 ... 
#  $ Engine_Fuel_Rate           : num  3.81 3.74 5.69 9.87 6.44 ... 
#  $ Engine_Oil_Pressure        : num  171 168 180 219 192 ... 
## ##### ### 
install.packages("leaps") 
install.packages("faraway") 
#  Load packages we'll need 
# 
library(faraway) 
library(MASS) 
library(leaps) 
######################################################################################
########################## 
 
################## A R D L ################## 
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########## T I M E   S E R I E S ############ 
 
######################################################################################
########################## 
 
#### Engine speed is the independent variable, X 
#### we need to find which parameter (temp, pressure) interacts most with speed. 
### For this dataset it was Engine Oil Pressure 
### Datasets F and L have the closet  corr coefficients and their plots have similar patterns. B/c we did three 
loops, the first loops and 
####the second loop are represented 
### plot each one against speed 
# lm with Engine temp as Y 
#### we need to build a lm with RPM as Y and Engine Oil pressure as X, b/c it has the highest correlation 
coefficient in our datasets 
### make a new data frame, oil pressure, RPM, and Time 1...N 
# engine oil pressure (yt) rpm(xt) 
t  
# r = (rpm(x)) and p= (oil pressure(y)) tell you what the time lag is for y [], and x respectively. 
# make a new data frame  
# t = length of time stamps, y(t) is oil pressure, x(t) is RPM, y(t-1), x(t-1), ... 
# new data 
dim(df_F) #[1] 39 11 
dim(df_L) #[1] 57 11 
new.data.F <- df_F[df_F$RPMs !=0,] # takes out row where RPMs are zero, we know this is from Dataset G 
and H that had no observations 
(t <- rownames(new.data.F)) 
new.data.F <- cbind(t=t, new.data.F) # this is not needed at this point 
str(new.data.F) 
acf(new.data.F[ ,c("RPMs") ], plot=TRUE, main="Autocorrelation Function Plot of Dataset", 
    lwd=3, col="dimgray", xlab="Lag Length", cex=2) 
par(mfrow=c(1,1)) 
new.data.F<-new.data.F[, !(colnames(new.data.F) %in% c('by30min', 'timeStamp', 'seconds'))] 
str(new.data.F) 
# make t column a numeric so we can make t-1 columns 
# new.data.F$t <- as.numeric(levels(new.data.F$t)[new.data.F$t])# do not need this  
str(new.data.F) 
#make final data frame 
# the time of parameters before matter at tminust 
df <- new.data.F[ ,c("t","Engine_Oil_Pressure", "RPMs")] 
acf(as.numeric(as.matrix(df)), plot=TRUE) 
nrow <- dim(df)[1] 
df$y.tminus1 <- c(NA, df$Engine_Oil_Pressure[1:nrow-1]) 
df$y.tminus2 <- c(NA, df$y.tminus1[1:nrow-1]) 
df$y.tminus3 <- c(NA, df$y.tminus2[1:nrow-1]) 
df$x.tminus1 <- c(NA, df$RPMs[1:nrow-1]) 
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df$x.tminus2 <- c(NA, df$x.tminus1[1:nrow-1]) 
df$x.tminus3 <- c(NA, df$x.tminus2[1:nrow-1]) 
head(df) 
acf(as.numeric(as.matrix(df)), plot=TRUE) 
# model 0 
# 0 lags 
# r = p = 0 
new.data<-df 
lm.nolag<- lm(Engine_Oil_Pressure~RPMs, data=new.data) 
summary(lm.nolag) 
par(mfrow=c(1,1)) 
par(mfrow=c(2,2)) 
plot(lm.nolag) 
acf(lm.nolag, plot=TRUE) 
require(lmtest) 
dwtest(lm.nolag) 
dwtest(lm.onelag) # the error times are not auto-correlated, alt hypothesis the error terms negatively auto 
correlated 
#there is no positive or neg autocorrelation in our error times 
dwtest(lm.twolag) 
# model 1 
# 1 Lag 
# r = p = 1 
# throw out the zeros in RPMs and Engine Pressure we are seeing 
# zeros come from when truck was reset after conducting driving lap 
new.data 
lm.onelag<- lm(Engine_Oil_Pressure~y.tminus1 + RPMs + x.tminus1, data = new.data) 
summary(lm.onelag) 
acf(resid(lm.onelag), plot=TRUE, lwd=3, col="dimgray", main="ARDL One Lag (Resid Auto Correlation Plot)", 
xlab="Lag Length", cex=2) 
acf(resid(lm.twolag)) 
acf(resid(lm.fivelag)) 
par(mfrow=c(1,2)) 
plot(lm.onelag, col="dimgray", pch=20, cex=1, lwd=1) 
dwtest(lm.onelag) 
############## 
# PREDICTION 
############## 
y.hat<- predict(lm.onelag, new.data) 
# acf(y.hat[-1], plot=TRUE) 
y.hat 
length(y.hat) 
par(mfrow=c(1,1)) 
plot(1:33, y.hat, type = "b", col="dimgray", lwd=1.3, cex=.8, 
     xlab="Time", ylab="Engine Oil Pressure", 
     main="Predicted Values vs Actual Values") 
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points((1:33), new.data$Engine_Oil_Pressure, type="b", col="maroon", lwd=.8) 
legend("left", legend=c("Predicted", "Acutal"), 
       col=c("dimgray", "maroon"), lty=1, cex=1) 
dim(new.data) 
# now try on dataset 
# lets make the test dataset have the same number predictor columns 
nrow <- dim(df_L)[1] 
df_L$y.tminus1 <- c(NA, df_L$Engine_Oil_Pressure[1:(nrow-1)]) 
df_L$x.tminus1 <- c(NA, df_L$RPMs[1:(nrow-1)]) 
L.y.hat<- predict(lm.onelag, df_L) 
df_L 
par(mfrow=c(1,1)) 
plot(1:length(L.y.hat), L.y.hat, type = "b", col="dimgray", lwd=1.5,cex=.8, 
     xlab="Time", ylab="Engine Oil Pressure", 
     main="Predicted Values vs Actual Values on Test Dataset") 
points((1:length(L.y.hat)), df_L$Engine_Oil_Pressure, type="b", col="firebrick", lwd=1) 
legend("left", legend=c("Predicted", "Acutal"), 
       col=c("dimgray", "firebrick"), lty=1, cex=1) 
###################################################### 
# FINAL PLOTS  
# oil pressure residuals  
plot(1:length(L.y.hat), (df_L$Engine_Oil_Pressure-L.y.hat), col="dimgray", lwd=1.3, type="p", cex=.5, 
     xlab="Time", ylab="Engine Oil Pressure Residuals", 
     main="Residuals") 
abline(0,0, lty=2, col="maroon") 
#these are the difference of predicted and actual 
a<-(df_L$Engine_Oil_Pressure-L.y.hat) # residuals 
acf(as.matrix(a[-1]), plot = TRUE, lwd=3, col="dimgray", 
    main="Residual Auto Correlation Plot", xlab="Lag Length", cex=2) 
mean(abs(a[-1]))  # drop the first index b/c it is "NA" 
#mean absolute deviation 72. is only  
(5.08/1000)* 100  
# mean std is 7% of range, model does well job at predicting Engine Oil pressure, which determine engine 
operating conditions 
 
# model 2 
# 2 Lag 
# r = p = 2 
lm.twolag<- lm(Engine_Oil_Pressure~y.tminus1 + y.tminus2 + RPMs + x.tminus1 + x.tminus2, data = 
new.data) 
summary(lm.twolag) 
par(mfrow=c(2,2)) 
plot(lm.twolag) 
 
# model 3 
# 5 lag 
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# r = 5 = p 
# add to more columns for x and y 
df_L$y.tminus1 <- c(NA, df$Engine_Oil_Pressure[1:nrow-1]) 
df$y.tminus2 <- c(NA, df$y.tminus1[1:nrow-1]) 
df$y.tminus3 <- c(NA, df$y.tminus2[1:nrow-1]) 
df$y.tminus4 <- c(NA, df$y.tminus3[1:nrow-1]) 
df$y.tminus5 <- c(NA, df$y.tminus4[1:nrow-1]) 
df$x.tminus1 <- c(NA, df$RPMs[1:nrow-1]) 
df$x.tminus2 <- c(NA, df$x.tminus1[1:nrow-1]) 
df$x.tminus3 <- c(NA, df$x.tminus2[1:nrow-1]) 
df$x.tminus4 <- c(NA, df$x.tminus3[1:nrow-1]) 
df$x.tminus5 <- c(NA, df$x.tminus4[1:nrow-1]) 
new.data<-df 
lm.fivelag<- lm(Engine_Oil_Pressure~y.tminus1 + y.tminus2 +df$y.tminus3 +df$y.tminus4 + df$y.tminus5 + 
                  RPMs + x.tminus1 + x.tminus2 + x.tminus3 + x.tminus4 + x.tminus5, data = new.data) 
summary(lm.fivelag) 
par(mfrow=c(1,1)) 
acf(resid(lm.fivelag), plot=TRUE, lwd=3, col="dimgray", 
    main="ARDL Five Lags (Resid Auto Correlation Plot)", xlab="Lag Length", cex=2) 
 
par(mfrow=c(1,2)) 
plot(lm.fivelag, col="dimgray", pch=20, cex=1, lwd=1) 
dwtest(lm.fivelag) 
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APPENDIX C.  R ECU DIAGRAM FOR MTVR 

 
ECUs on the MTVR transmit diagnostic data through the CAN serial bus using the J1939 
Protocol 

Figure 28. ECU diagram for MTVR. Source: [58]. 
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APPENDIX D.  PENDLETON DRIVING COURSE 

 

Figure 29. Camp Pendleton Driving Course Loop 

 

• Start/End: 43 Area Las Pulgas Rd, 

• Head northwest on Basilone Rd, turn north on San Mateo Rd. 

• Turn around point: 63 Area Fire station, 

• South on Basilone Rd, west on Vandegrift Blvd, Head northwest on Stuart 

Mesa Rd, turn east on Las Pulgas Canyon Road. 
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