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The selective catalytic reduction (SCR) decomposition of nitrogen
oxide (de-NOx) process in coal-fired power plants not only
displays nonlinearity, large inertia and time variation but also a
lag in NOx analysis; hence, it is difficult to obtain an accurate
model that can be used to control NH3 injection during changes
in the operating state. In this work, a novel dynamic inferential
model with delay estimation was proposed for NOx emission
prediction. First, k-nearest neighbour mutual information was
used to estimate the time delay of the descriptor variables,
followed by reconstruction of the phase space of the model
data. Second, multi-scale wavelet kernel partial least square was
used to improve the prediction ability, and this was followed by
verification using benchmark dataset experiments. Finally, the
delay time difference method and feedback correction strategy
were proposed to deal with the time variation of the SCR de-
NOx process. Through the analysis of the experimental field
data in the steady state, the variable state and the NOx analyser
blowback process, the results proved that this dynamic model
has high prediction accuracy during state changes and can
realize advance prediction of the NOx emission.
1. Introduction
During the operation of coal-fired power plants, NOx emissions
discharged into the atmosphere via the exhaust gas are very
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harmful to human health and the environment. Meeting pollutant discharge regulations using

traditional combustion control is difficult, so selective catalytic reduction (SCR) systems have been
widely installed in the flue for the decomposition of nitrogen oxide (de-NOx) [1]. The efficiency of the
SCR de-NOx process can be easily affected by factors such as NH3 injection, dilution air, reaction
temperature and the catalyst activity. It is difficult to ensure the optimal ratio of NH3 to NOx when
the coal feed rate changes and the command of the automatic generation control fluctuates rapidly.
The reasons for this are as follows: firstly, the SCR de-NOx process is nonlinear, has a large inertia
and varies with time; secondly, the response of the NOx analyser has a large time delay of
approximately 1 min; thirdly, every 50 min, the NOx analyser performs a blowback process lasting
approximately 5 min. When the measured NOx emission value, which is maintained by the control
processor during blowback, is too high or too low, the action of the proportional–integral–derivative
(PID) control generally leads to an imbalance between the NH3 injection and the required NOx

reduction. This results in the NOx emission suddenly increasing or decreasing after blowback. This
work aims to provide a method to predict the NOx emission in a timely manner through the
operating variables in coal-fired power plants.

Many data-driven modelling techniques have recently emerged that established black-box models
based on measured data from the SCADA system. Zambrano et al. [2] adopted the Hammerstein–
Wiener model to optimize NH3 injection. Krijnsen et al. [3] used neural networks (NN), nonlinear
autoregressive exogenous (NARX) models and polynomial fitting to predict the NOx emission of a
diesel engine. For coal-fired boilers, Peng et al. [4] established a hybrid ARX model with Gaussian
radial basis function network-style coefficients under the steady state. Safdarnejad et al. [5] developed
a data-driven model based on the recurrent NN model and the dynamic particle swarm optimizer to
simultaneously estimate NOx and CO emissions. Tuttle et al. [6] presented a unique NN model using
swappable synapse weights and the hybrid optimization approach in a combustion optimization
system. For the SCR de-NOx process, Si et al. [7] used an improved online support vector regression
(SVR) technique for modelling. Wu et al. [8] used an NOx emission prediction model that was only
related to NH3 injection. However, it would not be able to correctly reflect the other factors that affect
the NOx emissions.

For complex chemical process, the high dimensionality and collinearity of the measured data
make modelling difficult. The radial basis function kernel partial least square (RBF-KPLS) model
can deal with the high dimensionality and collinearity of data [9]. If the sample features
contain heterogeneous information, the use of a single kernel for mapping all the samples is not
reasonable. Bao et al. [10] used a multi-scale kernel to improve the prediction accuracy of the support
vector machine (SVM) model. For industrial process modelling, it is difficult to realize accurate
results using the RBF kernel model. Zhang et al. [11] proposed the Morlet wavelet kernel
SVR, and they verified that it has a smaller prediction error than the RBF kernel SVR via the
mathematical function.

Because of the lag associated with NOx analysers, the determined NOx emission does not reflect the
NH3 flow in real time. The phase space of the model sample can be reconstructed by estimating the
descriptor variable’s delay time to improve the prediction accuracy [12]. In general, the delay time is
estimated by field experiments, so its accuracy is usually low. The mutual information (MI) parameter
can be used to analyse linear and nonlinear correlations [13]. For the SCR de-NOx process, the coal
feed rate, inlet flue gas flow and inlet flue gas temperature affect the NOx emission, and there are
interactions between the inlet flue gas flow and the inlet flue gas temperature.

To improve the accuracy of the NOx emission prediction model and solve the time-varying problem
for the SCR de-NOx process, a novel dynamic inferential model is proposed in this paper. First, the
k-nearest neighbour MI (knnMI) is used to estimate the time delay and reconstruct the model sample.
Then, the model brings the Morlet wavelet kernel, which is able to effectively characterize data
variation into a multi-scale KPLS. Finally, the delay time difference (DTD) method is used to update
the model and the feedback correction strategy to correct the model.

This paper is organized as follows: the theory of the knnMI estimator and the KPLS model are
introduced in §2; §3 describes data preprocessing, delay estimation and model reconstruction, model
update and correction approach and the framework of the dynamic inferential model; in §4, to
evaluate the accuracy of the multi-scale wavelet kernel partial least square (mwKPLS) predictions, it is
compared with the RBF-KPLS, multi-scale RBF-KPLS (mRBF-KPLS), wavelet KPLS (wKPLS), particle
swarm optimization back propagation (PSO-BP) and SVR based on cross-validation optimization
(CV-SVR) models using benchmark datasets; §5 details the experimental results of the dynamic
inferential model for the SCR de-NOx process; finally, concluding remarks are provided in §6.
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2. Theory

2.1. k-nearest neighbour mutual information estimator
Estimation of MI derives from the concept of entropy in information theory. As a measure of information,
it reflects the measure of the statistical dependence between two variables. The basic histogram and
kernel estimator that belong to the MI estimator are based on probability density estimation. However,
they have weaknesses, such as computational complexity, low precision and large amounts of
calculation in higher dimensions. The knnMI estimator avoids the shortcoming of exact probability
density estimation, and it is simple and only requires a small amount of calculation, which can be
summarized as follows [14].

Suppose a space Z = (x,y); here, the vectors x and y are each formed by 1 column and n samples. The
estimate for the MI of vectors x and y is then

MI(x,yÞ ¼ cðkÞ � hcðnx þ 1Þ þ cðny þ 1Þi þ cðnÞ, ð2:1Þ
where nx(i) is the number of sample points xj, whose distance from xi is strictly less than εi/2,
εi/2 is denoted as the distance from xi to its kth neighbour; similarly, ny(i) is obtained instead
of y, i∈[1,… , n]. Ψ(x) is the digamma function, Ψ(x) = Г(x)−1dГ(x)/dx. It satisfies the recursion
Ψ(x + 1) =Ψ(x) + 1/x and Ψ(1) ≈ −0.5772156. The symbol 〈 · · · 〉 indicates the mean of the variables
in it.

2.2. Kernel partial least square model
Assuming the descriptor variable matrix X ∈ Rn×m, response variable vector Y ∈ Rn×1, i = 1,2,… ,
n. For the kernel matrix K0, its centralized form is K1. X and Y are z-score normalized as X 1

and Y 1.
The estimation of the KPLS model from the training set is described as follows [9]:

1. Normalizing the training set X0
tr and Y0

tr, to get X1
tr and Y1

tr.
2. Calculating the training kernel matrix

K0
tr ¼ kðxtr,xtrÞ: ð2:2Þ

3. Centring the training kernel matrix

K1
tr ¼ I � 1

n
1n1Tn

� �
K0

tr I � 1
n
1n1Tn

� �
, ð2:3Þ

where I is a unit matrix; 1n is a matrix where all the elements are 1 with dimensions of n.
4. Let L be the number of principal components, and i iterates from 1 to L and randomly initializes the

score vector ui of X1
tr.

5. Calculate the score vector ti

ti ¼ K1
tru

i

kK1
truik

: ð2:4Þ

6. Calculate the weight vector ci

ci ¼ (Y1
tr)

Tti: ð2:5Þ

7. Calculate the score vector ui

ui ¼ Y i
trc

i

kY i
trcik

: ð2:6Þ

8. Then steps (4)–(7) are repeated until ti converges.
9. The matrices K1

tr and Y1
tr are reduced until t and u are extracted.

Kiþ1
tr ¼ [I � ti(ti)

T
]Ki

tr[I � ti(ti)
T
] ð2:7Þ

and

Y iþ1
tr ¼ Y i

tr � ti(ti)TY i
tr: ð2:8Þ
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10. The regression coefficient B is calculated and the regression equation of the training set is
obtained.

Ŷ tr ¼ KtrB ¼ KtrU(TTKtrU)�1TTY tr, ð2:9Þ

where T and U are matrices that are composed of score vectors t and u.

The prediction for the test set by the KPLS model is similar to the training set, except for computation of
the test kernel matrix K0

te and the centralization of K0
te

K0
te ¼ kðxte,xtrÞ ð2:10Þ

and

K1
te ¼ K0

tr �
1
n
1nt1TnK

0
te

� �
I � 1

n
1n1Tn

� �
, ð2:11Þ

where nt is the number of the test set.
 .open
sci.7:191647
3. Dynamic inferential model with delay estimation
3.1. Data preprocessing
Data preprocessing includes outlier eliminating and data filtering, which are useful for building a stable
model structure.

In this paper, the Pauta criterion was used to eliminate outliers. The formula for this is

jxt � �xtj � 3st, ð3:1Þ
where xt is the suspected outlier at time t, �xt is the sample mean at time t and σt is the standard deviation
of the sample at time t. If the above equation is satisfied, the outlier can be eliminated and replaced with
the value of the linear interpolation.

To realize dynamic elimination of outliers, �xt and σt in equation (3.1) used the following
equations [15]:

�xtþ1 ¼ n� 1
n

�xt þ 1
n
xtþ1 ð3:2Þ

and

stþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2
n� 1

s2
t þ

1
n� 1

(xtþ1 � �xtþ1)
2

r
, ð3:3Þ

where n is the sample size.
In addition, the Butterworth filter was used to filter data.
3.2. Delay estimation and model samples reconstruction
Because the time delay between each set variable vector x.i and the response variable vector y is different,
the phase space for each x.i is reconstructed by inserting a different time delay τi∈ [min(τi), max(τi)]
(min(τi) and max(τi) are determined by field measurements).

The MI value is related to the dimension w of x0�i. A suitable w should cover the most relevant data of
x0�i with y. Hence, the delay time τi and dimension w at time t are calculated as

max
ti¼t0 i ,wi¼w0

i

MI(½x�iðt� ti � wiþ1Þ, . . . ,x�iðt� ti � 1) ,x�iðt� tiÞ�T,½yðt� wiþ1Þ, . . . ,yðt� 1) ,yðtÞ�T)
s:t:min(ti) � ti � max(ti) ,ti þ wi,Tmax; i [ ½1,m�, ð3:4Þ

where Tmax is the maximum reaction time of the SCR process. The above equation is a constrained multi-
variable nonlinear optimization problem. For m set variables, there are 2 m variables that need to be
optimized. Thus, within the scope of the above constraints, a global searcher based on a PSO
algorithm maximizes the objective function, thereby obtaining an optimal t0 ¼ ½t01,t02, � � � ,t0m� and
w0 ¼ ½w0

1,w
0
2, � � � ,w0

m�.
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By estimating the time delay t0i of each set variable vector x.i, the reconstructed descriptor variable

matrix Xrc is assumed as follows:

Xrc ¼

x�1ðt� t01 � nþ 1Þ � � � x�iðt� t0 i � nþ 1Þ
..
. . .

. ..
.

x�1ðt� t01 � 1Þ � � � x�iðt� t0i � 1Þ
x�1ðt� t01Þ � � � x�iðt� t0iÞ

2
6664

3
7775: ð3:5Þ

3.3. Multi-scale wavelet kernel partial least square
The Morlet wavelet kernel adopted in this paper has a strong capability for characterizing data variation
that can be used to construct the allowable multi-dimensional tensor product wavelet kernel. The mother
function is

cðxÞ ¼ cosð1:75xÞexp � x2

2

� �
: ð3:6Þ

To prove that the Morlet mother wavelet kernel is an admissible support vector kernel, the following
definitions are first introduced.

Definition (3.1). (Mercer’s condition [16]) In a double infinite dimensional square integrable space L2(Ω),
the necessary condition for the kernel k(x, z) that can realize the dot product in a feature space for: 8wðxÞ = 0,Ð
wðxÞdx,1 and

Ð Ð
kðx,zÞwðxÞwðzÞdxdz. 0.

Definition (3.2). (Fourier condition [16]) If the Fourier transform F[k�ðvÞ ¼ (2p)�N=2 Ð
x e

�ihv,xikðxÞ dx � 0, a
translation invariant kernel k(x, z) = k(x− z) is a positive definite kernel, x, z∈RN.

Definition (3.3). (Wavelet kernel satisfying translation invariance [17]) Ifψ(x) is amother wavelet function, a is
a scale parameter, a > 0, bi and b0i are translation parameters, bi, b

0
i, xi∈R, i = 1, 2,… ,N, x, z∈RN. Thewavelet kernel is

represented by the dot product as

kðx,zÞ ¼
YN
i¼1

c
xi � bi

a

� �
c

zi � b0i
a

� �� �
: ð3:7Þ

The tensor product wavelet kernel that satisfies the translation invariance theorem according to
definition (3.2) is expressed as

kðx,zÞ ¼
YN
i¼1

c
xi � zi

a

� �h i
: ð3:8Þ

Theorem (3.1). The Morlet wavelet kernel function satisfies the positive definite condition of the Mercer
kernel.

Proof. According to definition (3.1) and equation (3.7), let w(x)∈R and w(x)≠ 0, hence

F ¼
ðð
RN�RN

kðx,zÞwðxÞwðzÞ dxdz

¼
ðð
RN�RN

YN
i¼1

c
xi � bi

a

� �
c

z0i � b0i
a

� �� �
� wðxÞwðzÞ dxdz

¼
ðð
RN�RN

YN
i¼1

cos 1:75
xi � bi

a

� �
exp � (xi � bi)

2

2a2

" #
� cos 1:75

z0 i � b0 i
a

� �
exp � (z0 i � b0 i)

2

2a2

" #
wðxÞwðzÞ dxdz

¼
ð
RN

YN
i¼1

cos 1:75
xi � bi

a

� �
exp � (xi � bi)

2

2a2

" #
wðxÞ dx

8<
:

9=
;

2

:

Because w(x)≠ 0, F > 0 can be obtained, therefore, the Mercer’s condition is satisfied. ▪
Theorem (3.2). On the basis of the Morlet wavelet kernel, the translation invariant wavelet kernel

kðxÞ ¼ QN
i¼1

cos 1:75
xi
a

� �
exp � x2i

2a2

� �
is a permissible support vector kernel that is represented by equation (3.7)

in definition (3.3).
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Proof. Fourier transform for k(x)

F[k](v) ¼ (2p)�N=2
ð
RN

e�jhv,xikðxÞ dx

¼ (2p)�N:2
ð
RN

e�jhv,xi YN
i¼1

cos 1:75
xi
a

� �
exp � x2i

2a2

� �
dx

¼
YN
i¼1

1ffiffiffiffiffiffi
2p

p
ðþ1

�1
e�jvixi cos

1:75xi
a

� �
exp � x2i

2a2

� �
dx

¼
YN
i¼1

1

2
ffiffiffiffiffiffi
2p

p
ðþ1

�1
e�jvixi exp j

1:75xi
a

� �
þ

�
exp � j

1:75xi
a

� ��
exp � x2i

2a2

� �
dx

¼
YN
i¼1

a
ðþ1

�1
e
j
1:75xi

a
� jvixi þ e

�j
1:75xi

a
þ jvixi

0
@

1
A dx

¼
YN
i¼1

a
2

exp
(1:75� via)

2

2

" #
þ exp � (1:75þ via)

2

2

" #( )
:

Because a > 0 and N > 1, then, F > 0. According to definition (3.3), the Morlet wavelet kernel is a
permissible support vector kernel.

The multi-scale kernel takes into account the distribution characteristics of the samples in the original
input space. Therefore, it improves the sparsity of the solution in the high-dimensional feature space.
Based on the Morlet wavelet kernel, the multi-scale wavelet kernel is represented by

kðx,zÞ ¼ k1ðx,zÞ þ k2ðx,zÞ þ � � � þ kcðx,zÞ

kcðx,zÞ ¼
YN
i¼1

cos 1:75
xi � zi
ac

� �
exp �ðxi � ziÞ2

2a2c

" #( )
ð3:9Þ

where c is the scale parameter, ai is the wavelet kernel width and i = 1,…, c.
To prove that the multi-scale wavelet kernel preserves the finitely positive semi-definite ‘kernel’

property, the following theorems are introduced. ▪
Theorem (3.3). Kernel matrix is a positive semi-definite matrix.
Proof. Let kernel matrix K = k(xi, xj) = 〈ψ(xi), ψ(xj)〉 and i, j = 1, …, n. Thus, any vector α∈Rn satisfies:

aTKa ¼
Xn
i,j¼1

aðiÞaðjÞK ¼
Xn
i,j¼1

aðiÞaðjÞhcðxiÞ,cðxjÞi ¼
Xn
i¼1

aðiÞcðxiÞ,
Xn
i¼1

aðjÞcðxjÞ
* +

¼
Xn
i¼1

aðiÞcðxiÞ
					

					
2

� 0: ð3:10Þ

▪
Theorem (3.4). Multi-scale kernel matrix is a positive semi-definite matrix.
Proof. Let the multi-scale kernel matrix K =K1 +K2 + · · · +Kc= k1(xi, xj) + k2(xi, xj) + · · · + kc(xi, xj), i, j =

1, · · · , n. According to theorem (3.3), any vector α∈Rn satisfies

aTKa ¼ aTK1aþ aTK2aþ � � � þ aTKca � 0: ð3:11Þ

▪

Hence, the multi-scale kernel matrix K is positive semi-definite.
A kernel function with a certain kernel width is suitable for mapping a learning sample with a

certain feature into a high-dimensional feature space; hence, the feature distribution number can
be used as the optimal scale parameter. In this paper, fuzzy c-means (FCM) clustering was
used to partition the sample feature distribution, so that the optimal classification is selected as the
scaling parameter.

If the descriptor variable matrix X∈Rn×m has c cluster centres, the fuzzy classification matrix Uc×n

denotes that n samples are partitioned into c classifications. Therefore, in the corresponding cluster
centre matrix Zc×s, the sth index value is the average of the index value in accordance with the cth
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classification sample

Zij ¼
Pn

l¼1 ðUilÞ2XljPn
l¼1 ðUilÞ2

: ð3:12Þ

Then the objective function is constructed

J ¼
Xc

i¼1

Xn
j¼1

(Uij)
2kXj � Zik2: ð3:13Þ

The optimal fuzzy classification matrix U and the corresponding cluster centre matrix Z are solved, so
that the objective function J reaches a minimum. Here, kXj � Zik represents the Euclidean distance
between the jth sample and the ith cluster centre.

The fuzzy classification uncertainty is

WcðUÞ ¼ 1
n

Xn
i¼1

Xc

j¼1

(Uij)
2: ð3:14Þ

If equation (3.14) is close to 1, the classification ambiguity is low and the FCM clustering effect is
better. When equation (3.14) is at its maximum, that is

Wc� ðUÞ ¼ max
2�c�n

[max(WcðUÞ)]: ð3:15Þ

When the above equation is satisfied, the optimal classification is realized for c�.
3.4. Dynamic model update method
In this paper, dynamic modelling was realized by increasing the inputs to the model; for this, the
historical input x(t− 1),…, x(t−w + 1) and output y(t− 1),…, y(t−w + 1) were added as the new
input. Furthermore, the time difference (TD) method can solve the variable drift problem and realize
improved prediction accuracy compared with other update methods; furthermore, the data-driven
model based on the TD method does not require frequent reconstruction and parameter updates
[18,19]. The TD method first calculated the first-order TD between adjacent sampling data for the
input and output. Here, Δx(t) and Δy(t) can be calculated as

DxðtÞ ¼ xðtÞ � xðt� 1Þ ð3:16Þ
and

DyðtÞ ¼ yðtÞ � yðt� 1Þ: ð3:17Þ

Then, the regression model was expressed as Δy(t) = f [Δx(t)]. After the above regression model was
trained, when a new sample x(t + 1) is taken, the TD of the input can be calculated as

Dxðtþ 1Þ ¼ xðtþ 1Þ � xðtÞ: ð3:18Þ

Hence, the TD of the output can be predicted by the training regression model as

Dyðtþ 1Þ ¼ f ðDxðtþ 1ÞÞ: ð3:19Þ

Finally, the actual predicted output was

ŷðtþ1Þ ¼ Dyðtþ 1Þ þ yðtÞ: ð3:20Þ

In this paper, because of the time-varying SCR de-NOx process and large time delay for NOx analysis,
the DTD update method and feedback correction strategy are proposed. In §3.2, the model matrix is
reconstructed by delay estimation. Therefore, the training regression model becomes

DyðtÞ ¼ f[Dx�iðt� t0iÞ] ¼ f[x�iðt� t0 iÞ � x�iðt� t0 i � 1Þ]: ð3:21Þ

Similarly, the DTD of the output can be predicted by:

Dyðtþ 1Þ ¼ f ðDx�iðtþ 1� t0iÞÞ: ð3:22Þ



acquire selected variables data of coal-fired power plant and SCR system

the real value of
NOx emission concentration y at time t

data preprocessing data preprocessing

historical data before time t

the real value of NOx
emission concentration y

before time t

the reconstructed descriptor variable matrix
Xrc and original response variable matrix Yrc

DTD update

feedback
correction

the mwKPLS model

the output of dynamic model

the corrected output of dynamic model

delay estimation of
descriptor variables x.i

ti¢,w¢

Dx·i  (t + 1 – ti¢)

Dy (t + 1)

y (t)

ŷ(t + 1)

y~(t + 1)

model samples
reconstruction

Figure 1. Framework for the dynamic inferential model.
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Furthermore, the model correction formula to compensate for the prediction error caused by changes
of the operating state is as follows:

~yðtþ 1Þ ¼ ŷðtþ1Þ þ Dyðtþ1Þ, ð3:23Þ
Dyðtþ 1Þ ¼ r� Dy0ðtþ 1Þ þ ð1� rÞ � DyðtÞ ð3:24Þ

and Dy0ðtþ 1Þ ¼ yðtÞ � ŷðtÞ, ð3:25Þ
where ρ is 0.3, ~yðtÞ is the corrected dynamic model output, ŷðtÞ is the dynamic model output and y(t) is
the real value.

3.5. Framework for the dynamic inferential model
The framework for the dynamic inferential model mainly includes data preprocessing, delay estimation,
model sample reconstruction, the multi-scale wavelet kernel partial least square (mwKPLS) model, DTD
update and feedback correction (figure 1). The steps of the algorithm are as follows:

1. Acquire the measured data for the selected variables before time t and confirm the raw samples.
2. Preprocess the raw samples including eliminating outliers and filtering.
3. Estimate the descriptor variable’s delay time t0 ¼ ½t01, t02, . . . , t0m� and reconstruct the samples.
4. Construct the first-order DTD based on the reconstructed descriptor variable matrix Xrc and the

original response variable matrix Y.



Table 1. Parameters of the datasets.

dataset size descriptor variable response variable training sample test sample

concrete slump 103 × 8 7 1 78 25

polymer 61 × 11 10 1 41 20

Table 2. Comparison between the dataset experiment results.

dataset algorithm scale parameter
fuzzy classification
uncertainty

RMSE value

training test

concrete slump PSO-BP — — 2.0927 mg m−3 4.7421 mg m−3

CV-SVR — — 0.1389 mg m−3 5.4851 mg m−3

RBF-KPLS c = 1 — 1.4020 mg m−3 4.5867 mg m−3

mRBF-KPLS c = 2 Wc(U ) = 0.7334 1.1793 mg m−3 4.0792 mg m−3

mRBF-KPLS c = 3 Wc(U ) = 0.7039 1.2022 mg m−3 4.1851 mg m−3

wKPLS c = 1 — 1.2869 mg m−3 4.4404 mg m−3

mwKPLS c = 2 Wc(U ) = 0.7334 1.0306 mg m−3 3.8684 mg m−3

mwKPLS c = 3 Wc(U ) = 0.7039 0.6500 mg m−3 4.1186 mg m−3

polymer PSO-BP — — 0.0486 0.3462

CV-SVR — — 0.0055 0.0679

RBF-KPLS c = 1 — 0.0530 0.0852

mRBF-KPLS c = 2 Wc(U ) = 0.8946 0.0290 0.0684

wKPLS c = 1 — 0.0312 0.0830

mwKPLS c = 2 Wc(U ) = 0.8946 0.0242 0.0671
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5. Carry out FCM clustering on the reconstructed descriptor variable matrix Xrc to determine the optimal
scale parameter c�.

6. Normalize the training set and carry out estimation using the mwKPLS model.
7. Predict the NOx emission using the mwKPLS model based on a1, · · · , ac�.
8. Acquire the measured data for selected variables at time t + 1 and correct the predicted NOx emission

value based on the feedback.
9. Repeat steps 2–8.

4. Benchmark dataset experiments
In this paper, two benchmark datasets—the concrete slump dataset [20] and the polymer dataset [21]—
were used to verify the prediction ability of the mwKPLS model. The parameters of the datasets are shown
in table 1.

The following models were used for comparison with the mwKPLS model: RBF-KPLS, multi-scale
RBF-KPLS (mRBF-KPLS), wKPLS, back propagation NN (BP-NN) based on PSO optimization (PSO-
BP) and CV-SVR. The 10-fold CV method was adopted for parameter optimization in all the models
except PSO-BP. To avoid parameters in a local optimum, a grid search was used to optimize the
kernel width under the same search range, and the root mean square error (RMSE) was used as
the evaluation index for model accuracy. The results of the experiment and the parameters of the
algorithm that were optimized are shown in tables 2 and 3 (b indicates the number of hidden layer
nodes, p indicates penalty parameter and σ indicates RBF kernel width).

(1) The wKPLS algorithm had a smaller RMSE value than the KPLS one for the training and test sets at
the same c. The Morlet mother wavelet kernel is nearly orthogonal with the RBF kernel; hence, the
fitting and generalizability of the wKPLS algorithm were improved.



Table 3. Parameters of algorithm.

algorithm
scale
parameter

principal
component parameter range

optimal parameter

concrete slump polymer

PSO-BP — — b∈ [15, 20] b = 19 b = 19

CV-SVR — — σ∈ [−10, 10],
p∈ [−10, 10]

σ =−5, p = 5 σ =−10, p = 9

RBF-KPLS c = 1 L = 4 σ∈ [1, 20] σ = 3 σ = 2

mRBF-KPLS c = 2 L = 4 σ1, σ2∈ [1, 20] σ1 = 2, σ2 = 5 σ1 = 1, σ2 = 3

mRBF-KPLS c = 3 L = 4 σ1, σ2, σ3∈ [1, 20] σ1 = 2, σ2 = 3, σ3 = 10 —

wKPLS c = 1 L = 4 a∈ [1, 20] a = 7 a = 4

mwKPLS c = 2 L = 4 a1, a2∈ [1, 20] a1 = 4, a2 = 10 a1 = 3, a2 = 11

mwKPLS c = 3 L = 4 a1, a2, a3∈ [1, 20] a1 = 2, a2 = 5, a3 = 10 —
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(2) For the concrete slump dataset, Wc(U ) reached a maximum of 0.7334 when c = 2. However, when c =
3, the RMSE value of the training set decreased, and the RMSE value of the test set increased. This
indicated that the optimal c was related to the sample features. If c was too large, the training
accuracy of the model could be improved, but it may not improve the generalizability of the
model. Therefore, FCM clustering was used to determine the optimal c effectively.

For the polymer dataset, the c determined by the FCM clustering was at most 2. The mwKPLS
algorithm had a smaller RMSE value than the wKPLS one for the training and test sets. The
prediction accuracy for the mwKPLS algorithm was the highest. This indicated that the Morlet
wavelet kernel is suitable for samples with multiple feature distribution.

(3) Compared with the PSO-BP and CV-SVR algorithms, mwKPLS had the highest prediction accuracy.
This indicated that the CV-SVR brought unnecessary redundancy or noise into the training model,
resulting in the low prediction accuracy of the model. Because many parameters (except b) need
to be optimized, the output of the PSO-BP model was not necessarily optimal.

5. Field data experiment and result analysis
5.1. SCR de-NOx process
In coal-fired power plants, the SCR de-NOx reaction is carried out in a reactor that is vertically installed
between the boiler economizer and the air preheater. When NH3 and air are mixed, the mixed air passing
through the ammonia injection grille in the upper part of reactor reacts with the flue gas from the outlet
of the economizer under the catalyst and then passes into the air preheater. Finally, the de-NOx exhaust
gas is discharged into the atmosphere through the chimney. The flow chart for the SCR de-NOx process is
shown in figure 2.

5.2. The selection of model variables and samples
The NOx emission is related to many factors, such as NH3 injection, the dilution air volume, the reaction
temperature and the catalyst activity. In addition, the boiler load change, coal quality and combustion
conditions (such as the O2 content) cause large fluctuations in the inlet NOx concentration. The
selection of the descriptor variables is generally based on the mechanism of the process. Therefore,
this paper mainly considers the steps for NOx formation and the mechanism of the SCR de-NOx

reaction. NOx in the flue gas is mainly in the form of NO, with a smaller portion of NO2. The main
reactions in SCR de-NOx process are as follows:

4NH3 þ 4NOþO2 ¼ 4N2 þ 6H2O, ð5:1Þ
4NH3 þ 6NO ¼ 5N2 þ 6H2O ð5:2Þ

and 2NH3 þNOþNO2 ¼ 2N2 þ 3H2O: ð5:3Þ
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Figure 2. The flow chart of the SCR de-NOx process.
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From the above reactions, the inlet NOx concentration and the NH3 injection flow directly reflect the
NH3/NOx molar ratio that affects the de-NOx efficiency and the NH3 slip. Furthermore, the SCR reaction
is affected by the inlet O2 content. The NH3 injection flow is mainly controlled to adapt for different
boiler loads via the NH3 valve. The inlet O2 content directly affects the NOx emission concentration
and de-NOx efficiency. Further, the boiler load change often affects the inlet flue gas flow, resulting in
a change of the flue gas temperature by heat exchange. The change of the inlet flue gas temperature
affects the speed of the SCR de-NOx reaction and the activity of the catalyst.

The experimental fielddatawere continuously recorded in theDCSdatabaseof the coal-firedpowerplant.
Assuming that the coal quality was constant, the state of unit covers the steady state and the variable state, in
which the load varied between 700 and 900 MW, and the selected data should be continuous. One-
dimensional linear interpolation was performed on the measured NOx emission during the blowback
process, and any abnormal operation condition should be avoided. The sampling period was 10 s and a
total of 2100 samples were collected. Table 4 shows the range of selected model variables.

5.3. Analysis of the data preprocessing results
An assumption of the Pauta criterion is that the data are normally distributed. While the operational data
of the practical industrial process rarely conform to a normal distribution, it does not affect the
effectiveness of the outlier elimination. The probability that the numerical distribution of industrial
process data is within (μ− 3σ, μ + 3σ) is 0.9973. Taking the NOx emission concentration as an example,
outlier elimination was performed using the Pauta criterion. Figure 3a shows that the Pauta criterion
was able to detect some obvious outliers, such as data at 100, 250 and 318 min. These outliers were
consistently mismatched with the baseline population, which adversely affected the statistical
properties of the entire data.

Figure 3b shows that the data before filtration have a large amount of high-frequency noise, which
does not help stabilize the model. In this work, the order of the Butterworth filter used was 8 and the
cut-off frequency was 0.9. After filtering, the high-frequency noise was eliminated to a large extent,
and the filtered data could capture the change of the trend. Therefore, using adaptive filtering to
process raw data was beneficial for the predictive model.

5.4. Analysis of the delay estimation result
According to the field test results, the maximum delay for the SCR denitration reaction is approximately
120–400 s, and the maximum delay for the boiler load that affects the inlet NOx concentration is 600 s.
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Figure 3. The result of outlier elimination and filtration.

Table 4. Ranges for selected model variables.

variable range

boiler load (Ne) 676–898 MW

inlet NOx concentration (CNOx ,in) 127–292 mg m−3

inlet O2 content (Co2 ) 3.78–5.62%

inlet flue gas flow (F) 1220–1630 km3 h−1

total coal feed rate (B) 275–382 t h−1

NH3 injection flow (Q) 36.76–101.9 kg h−1

inlet flue gas temperature (T) 351–370°C

NOx emission concentration (CNOx ,out) 22–64 mg m−3
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In this work, the sampling period was 10 s and Tmax in equation (3.4) was 120, and the range for the time
delay is shown in table 5. As an example, the delay estimation results for each descriptor variable at time
t = 250 min are shown in table 5.

5.5. Data correlation analysis
To analyse whether the descriptor variable xi and the response variable y is nonlinear and that there is
multi-collinearity between the descriptor variables, correlation analysis was performed on the
normalized data. The correlation structures and the Pearson correlation coefficient |r| are shown in
figure 4.

It can be seen from figure 4 that xi and y are nonlinear. Furthermore, |r| < 0.39, so there is a low
correlation between x and y. The unit load, inlet O2 content, inlet flue gas temperature and NOx

emission concentration display very weak correlations, while the inlet NOx concentration and NOx

emission concentration show a slightly stronger correlation. Therefore, the NOx emission concentration
has a nonlinear relationship with the boiler load and inlet flue gas temperature; hence, the NOx

emission may also increase as the boiler load decreases. In addition, a Pearson correlation coefficient
|r| greater than 0.7 was observed between the descriptor variable vectors, including the total coal
feed rate, inlet flue gas flow and unit load, inlet NOx concentration and NH3 injection flow, inlet flue
gas flow and inlet flue gas temperature showing strong correlation; indicating that there is high
multiple correlation. For example, the flue gas flow can cause a change of the flue gas temperature,
with a greater inlet flue gas flow resulting in a higher inlet flue gas temperature.



Table 5. The delay estimation result for each descriptor variable.

descriptor variable
range of
time delay maximum MI optimal result time delay

Ne [20,60] MI(Ne, CNOx ,in) = 0.9496 t01¼ 41, w0
1 ¼ 116 410 + 300 = 710 s

B [20,60] MI(B, CNOx ,in) = 1.0126 t01¼ 45, w0
1 ¼ 56 450 + 300 = 750 s

CNOx ,in [1,40] MI(CNOx ,in, CNOx ,out) = 1.1015 t03¼ 30, w0
3 ¼ 84 300 s

Q [1,40] MI(Q, CNOx ,out) = 1.1835 t04¼ 30, w0
4 ¼ 84 300 s

Co2 [1,40] MI(Co2 , CNOx ,out) = 0.1829 t05¼ 6, w0
5 ¼ 105 60 s

T [1,40] MI(T, CNOx ,out) = 0.5942 t06¼ 30, w0
6 ¼ 120 300 s

F [1,40] MI(F, CNOx ,out) = 0.8322 t07¼ 30, w0
7 ¼ 120 300 s

5
| r | = 0.1408

| r | = 0.8901 | r | = 0.7100 | r | = 0.9585 | r | = 0.9700

| r | = 0.2119 | r | = 0.4771 | r | = 0.1966
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Figure 4. Correlation between the variables.
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5.6. Analysis of knnMI-mwKPLS model parameters
The parameters of the knnMI-mwKPLS model include the wavelet kernel width a1 and a2, multi-scale
parameter c and the principal component L. Generally, L and c are selected as fixed values according
to the sample characteristics. For further analysis, the following experimental data were chosen from
time t = 200 min, and the sample size n was 500.

First, multi-scale characteristic analysis of the training set was performed. FCM clustering was used to
determine the scale c, and Wc(U ) was compared to obtain the optimal scale c�.

It can be seen from table 6 that when c = 2, Wc(U ) reached the maximum and the clustering effect of
the training set after FCM clustering was the best. Therefore, in this paper, c = 2 was used as the multi-
scale parameter. Secondly, L is determined by the leave-one-out cross-validation. The relationship
between L and R2

kðYÞ is shown in figure 5.
It can be seen from figure 5 that when k = 4, the explained variance was R2

kðYÞ � 0:0975 and the total
explained variance R2(Y ) reached 93.17%. Noise would be included in the model if too many L were
extracted, which would affect the prediction accuracy; therefore, L = 4 was selected for this work.

To analyse the effects of different variables and phase space reconstruction on model performance,
a training sample of n = 500 and a test sample of nt = 200 were used. The comparison results are
shown in table 7.

(1) Dynamic modelling strategies often use an incrementally set variable to bring the system’s dynamic
characteristics into the model. For the mwKPLS model, if the descriptor variable only adds x(t− 1),
the fitting accuracy and the prediction accuracy would both be reduced. When y(t− 1) is added, the
fitting accuracy and the prediction accuracy both improved, similar results were obtained for the
knnMI-mwKPLS model.



Table 6. Multi-scale characteristic analysis of the training set.

sample
n

column
m

scale
c

fuzzy classification
uncertainty Wc(U )

optimal scale
c�

500 15 2 0.7419 2

3 0.7021

4 0.6097

10

R2 (Y)

R
2 

(Y
)

119876
L

54321

0.8

0.65

0.16

0.1063

0.0154 0.0125 0.0165 0.0094 0.0075 0.0023 9 × 10–4

0

0.2

0.4

0.6

Figure 5. The relationship between the L and R2kðYÞ.

Table 7. Performance comparison of the model with different variables and phase space reconstruction.

model variable
phase space
reconstruction dimension

RMSE

training set
(mg m−3)

test set
(mg m−3)

mwKPLS x(t) no 7 0.8639 7.3568

x(t − 1), x(t) 14 1.5737 7.4873

x(t − 1), y(t − 1), x(t) 15 1.2209 5.3755

y(t− 1), x(t) 8 0.9899 5.1095

knnMI-mwKPLS x(t − τ) yes 7 0.9723 8.2636

x(t − τ− 1), x(t− τ) 14 1.5164 8.9046

x(t − τ− 1), y(t− 1), x(t − τ) 15 1.1542 5.1667

y(t− 1), x(t − τ) 8 0.9171 4.8371
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(2) The performance of the mwKPLS and knnMI-mwKPLS models were improved by adding the y(t− 1)
variable, and the influence of phase space reconstruction was then further analysed. From the results
in table 7, it can be verified that the fitting accuracy of the training set and the prediction accuracy on
the test set could both be improved.

5.7. Dynamic inferential model analysis
In this paper, the dynamic model and the corrected dynamic model were analysed, and the model update
performance was verified with the field data for different operating states, including the steady state,
variable state and the blowback process of NOx analyser.
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Figure 6. Real and predicted values after correction in the steady state and variable state.

Table 8. Comparison of the dynamic model and corrected dynamic model in the steady state and variable state.

model state RMSE (mg m−3) Q2

dynamic model steady 1.4540 0.9038

variable 4.4407 0.5343

corrected dynamic model steady 1.1580 0.9289

variable 1.2180 0.9739
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The moving window method was used to select the steady-state samples and variable state from the
preprocessed operating data. The steady-state determination criteria were evaluated using the stability
factor (SF), which is shown by the below equation

d ¼ xmax � xmin

1=N
PN

i¼1 xi
, d0, ð5:4Þ

where N is the length of the moving window, xmax and xmin are the maximal and minimal values,
respectively, of samples (xi, i = 1,…, N ) in the moving window and δ0 is the SF given previously. In
this work, the boiler load was chosen as the feature variable for the state judgement. The δ0 was set to
0.083, N was 200 and the sampling period was 10 s. Finally, the steady state and variable state
samples were obtained according to the above criteria, as shown in figure 6.

It canbe seen fromfigure 6a and table 8 thatwhen the unit is in the steadystate, the load is relatively stable.
Therefore, the dynamic model showed good predictive accuracy with a low RMSE of 1.4540 mg m−3 and a
high coefficient of determination (Q2) of 0.9038. The configuration parameters for the model include L, c�,
a1 and a2, with selected value of 4, 2, 4 and 20, respectively. After feedback correction, the corrected
dynamic model showed slightly improved predictive ability. For the variable state, the boiler load
gradually increased and a large amount of NOx was produced. The predictive ability of the dynamic
model is lower at the peak of the NOx emission curve in figure 6b. At this time, the model configuration
parameters were the same as those for the steady state. After feedback correction, the corrected dynamic
model demonstrated a clear improvement in its predictive ability.

The NOx analyser periodically performs a blowback operation to ensure the cleanliness of the sampling
system.At this time, the finalmeasuredvalue of theNOx emissionconcentration ismaintaineduntil the endof
the blowback process; therefore, this is an important scenario for the dynamic inferential model.

The corrected dynamicmodel uses y(t) formodelling and y(t + 1) for correction; however, these values are
not available at this point because y(t) and y(t + 1) are in the self-hold state during blowback. Therefore, it is
necessary to substitute the predicted value ŷðtÞ for the real value y(t) to calculate the predicted value ŷðtþ 1Þ
at time t + 1.
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Table 9. Prediction accuracy of the dynamic model during the NOx analyser blowback process.

model RMSE Q2

dynamic model 2.6954 mg m−3 0.8339
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Assuming that the NOx analyser is in the blowback process from t = 300 min to t = 350 min and the
model configuration parameters are L = 4, c� = 2, a1 = 2 and a2 = 18, the results show that the dynamic
model can still maintain high accuracy, as seen from figure 7 and table 9; the deviation between the
predicted value and the real value is small, which effectively tracks the change in the curve, even for
the highest or lowest points. When the NOx analyser reverts from the blowback process to normal
operation, there is only a small disturbance to the model output.

In addition, the dynamic model also does not need frequent reconstruction and parameter updates,
which is similar to the TD method. After analysis of numerous experimental results, it can be stated that
even if the dynamic model adopts a different parameter, it has minimal effect on the accuracy of the
model’s predictions. Therefore, the dynamic model used a fixed parameter. The average time for
model training was only 3.47 s for each update of the model, which meets engineering requirements.
6. Conclusion
In this paper, the multi-scale kernel and the Morlet wavelet kernel were combined to propose a new
kernel function. The prediction accuracy of the mwKPLS model based on the new kernel function was
further improved, as confirmed via verification using benchmark datasets.

Due to the response lag of the NOx analyser and the large inertia of the SCR reaction, the knnMI
estimator could realize delay estimation and the model samples could be reconstructed. Therefore, the
dynamic inferential model was able to accurately predict the NOx emissions one sampling period
in advance.

In practice, abnormal operational condition of the boiler and the SCR system should be avoided; in
particular, the continuous emission monitoring system should be in a normal work mode to ensure
accuracy of the measured data. Under normal operating condition, the dynamic inferential model
could better track the NOx emission trend under conditions with large fluctuation. If the deviation
between the predicted value and the set value was large or the NOx analyser was in the blowback
process, the NH3 injection could be adjusted in time to adapt for load change, which is beneficial for
improving the de-NOx efficiency and reducing NH3 slip, which lays the foundation for design of
the controller.
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