ROYAL SOCIETY OPEN SCIENCE

royalsocietypublishing.org/journal/rsos

Research

Cite this article: Liu X, Zhang Q, Liang L, Chen L, Wang Y, Tan X, Wen L, Huang H. 2019 *In situ* growing of CoO nanoparticles on $g-C_3N_4$ composites with highly improved photocatalytic activity for hydrogen evolution. *R. Soc. open sci.* **6**: 190433.

http://dx.doi.org/10.1098/rsos.190433

Received: 13 March 2019 Accepted: 11 June 2019

Subject Category: Chemistry

Subject Areas:

materials science

Keywords:

CoO nanoparticle, photocatalytic hydrogen production, g-C₃N₄

Author for correspondence:

Xuecheng Liu e-mail: liuxc@ctbu.edu.cn

This article has been edited by the Royal Society of Chemistry, including the commissioning, peer review process and editorial aspects up to the point of acceptance.

THE ROYAL SOCIETY PUBLISHING

In situ growing of CoO nanoparticles on g-C₃N₄ composites with highly improved photocatalytic activity for hydrogen evolution

Xuecheng Liu^{1,2}, Qian Zhang¹, Liwei Liang¹, Lintao Chen², Yuyou Wang¹, Xiaoqing Tan¹, Li Wen¹ and Hongyu Huang²

¹Engineering Research Center for Waste Oil Recovery Technology and Equipment, Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, People's Republic of China

²Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China

(D) XL, 0000-0002-2260-8995

CoO/g-C₃N₄ hybrid catalyst is facilely prepared for application to photocatalytic H₂ evolution from water splitting by the vacuum rotation-evaporation and in situ thermal method. The physical and chemical properties of CoO/g-C₃N₄ are determined by a series of characterization methods. The g-C₃N₄ with 0.6 wt% Co loading exhibits superior photocatalytic hydrogen evolution activity with an H₂ evolution amount of 23.25 mmol g^{-1} after 5 h. The obtained 0.6 wt% CoO/g-C₃N₄ can split water to generate 0.39 mmol g^{-1} H₂ without sacrificial agent and noble metal, while the pure g-C₃N₄ is inactive under the same reaction conditions. The remarkable enhancement of photocatalytic H_2 evolution activity of CoO/g-C₃N₄ composites is mainly ascribed to the effective separation of electron-hole pairs and charge transfer. The work creates new opportunities for the design of low-cost g-C₃N₄-based photocatalysts with high photocatalytic H₂ evolution activity from overall water splitting.

© 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.

1. Introduction

The development of photocatalytic water splitting into hydrogen by using solar energy has been considered as one of the most promising strategies in photocatalysis to solve the global energy crisis and environmental deterioration [1–3]. Great efforts have been devoted to searching for cheap and efficient photocatalysts. Graphitic carbon nitride (g-C₃N₄) with an appropriate band gap (approx. 2.7 eV) has been assumed to be a promising candidate photocatalyst for hydrogen production [4]. However, the photocatalytic hydrogen production activity of g-C₃N₄ is limited by low electrical conductivity, a lack of visible light absorption and high charge carries recombination rate [5,6].

The photocatalytic activity of materials can be improved with the enhanced band structures, light adsorbance, charge transport and photogenerated electron-hole pairs separation [7,8]. Several strategies, such as synthesis techniques [9], nanostructure design [10] and electronic structure modulation [11,12], have been conducted to obtain highly efficient g- C_3N_4 -based photocatalysts. Apart from the above-mentioned methods, a Z-scheme photocatalytic system with two different photocatalysts which sparked interest from the natural photosynthetic systems of plant leaves is one of the most promising approaches to obtain hydrogen evolution from water splitting. The construction of Z-scheme g-C₃N₄-based composite has been widely investigated, e.g. NiO/g-C₃N₄ [13], Cu₂O/g-C₃N₄ [14], CeO₂/g-C₃N₄ [15], TiO₂/g-C₃N₄ [12], Bi₂MoO₆/g-C₃N₄ [16] and Cr₂O₃/g- C_3N_4 [17], to promote the photoactivity for water splitting. In comparison with pure g- C_3N_4 , these Z-scheme g-C₃N₄-based composites have superior potential for promoting charge transportation, limiting the photogenerated electron-hole pairs recombination, strengthening light absorbance and lowering the redox overpotential [18]. Recently, the construction of heterojunction photocatalysts is mainly focused on how to effectively limit photogenerated electron-hole pairs recombination, and it places less emphasis on the selection of semiconductors. In fact, in order to optimize the fabrication of Z-scheme g- C_3N_4 -based photocatalysts for overall water splitting, it is important to design a heterojunction photocatalyst with band energy alignments not only trapping an electron to effectively separate the photogenerated charges but also suppressing the back reaction of water formation.

Cobalt monoxide (CoO), as a traditional transition metal monoxide, has gained more attention for its application to photocatalytic water splitting. It is reported that CoO exhibits good photocatalytic water splitting activity with an extraordinary STH of around 5% [1,19]. Wang and co-workers [20] reported photocatalytic decomposition of water for hydrogen evolution on a CoO/SrTiO₃ catalyst in 2007. Besides, CoO with efficient photo-induced electrons separation can be used as an effective co-catalyst to improve the photocatalytic water splitting activity for hydrogen evolution [21]. But the poor stability of the CoO catalyst is caused by H_2O_2 poisoning, hindering its further development [22–24]. It is still a challenge to seek a suitable structure of CoO-based catalyst with high activity and stability.

It is reported that the combination of $g-C_3N_4$ and CoO can result in improved photocatalysts for water splitting [25–27]. The particles could be well dispersed on the carrier by the vacuum rotation–evaporation method [28]. In this work, CoO nanoparticles are growing *in situ* on the g-C₃N₄ to prepare well-dispersed CoO/g-C₃N₄ composite photocatalyst by the vacuum rotation–evaporation and thermal annealing methods under nitrogen atmosphere. The physical structure, chemical composition, photoelectric properties and photocatalytic H₂ generation activity of CoO/g-C₃N₄ nanocomposite with different Co loading are investigated in detail by a series of characterizations. The enhancement mechanism of photocatalytic overall water splitting for hydrogen evolution of assynthesized CoO/g-C₃N₄ nanocomposite is also discussed.

2. Experimental section

2.1. Sample preparation

Urea, triethanolamine and cobalt nitrate with analytical grade are purchased from Aladdin Industrial Corporation (Shanghai, China). Firstly, $g-C_3N_4$ is prepared by the thermal polycondensation of urea [29]. Typically, 10 g urea is placed into a covered crucible and heated at 500°C for 3 h using a heating rate of 10°C min⁻¹ in a muffle furnace to obtain $g-C_3N_4$. By sonication, 200 mg $g-C_3N_4$ powder is dispersed in 50 ml of deionized water. According to the mass ratio of Co from 0 to 5%, the certain volume of Co(NO₃)₂ aqueous solution is dipped into the prepared $g-C_3N_4$ aqueous dispersion and stirred continuously for 20 h to form homogeneous solution with water bath at 70°C for 12 h. After

3

rotavaporation to dryness, the obtained impregnated sample is annealed at 400°C for 2 h in nitrogen atmosphere in the tube furnace and the CoO nanoparticles are grown *in situ* on the g-C₃N₄ sheets to obtain CoO/g-C₃N₄ composites.

2.2. Sample characterization

The phase compositions of the prepared materials are determined by an X-ray diffractometer (XRD) with Cu K α radiation (modelD/max RA, RigakuCo., Japan). The transmission electron microscope (TEM) images are obtained by using the electron microscope (JEM-6700F, Japan). X-ray photoelectron spectroscopy (XPS) measurements are analysed by Thermo ESCALAB 250, USA, with Al Ka X-rays radiation operated at 150 W. The XPS spectra of the samples were calibrated by using the C1s level at 284.5 eV as an internal standard. Diffuse reflectance spectra of the dry-pressed disc samples are performed by a UV–Visible spectrometer (UV-2700, Shimadzu, Japan). Photoluminescence (PL) is recorded on a fluorescence spectrometer with an Xe lamp as an excitation source with optical filters (FS-2500, Japan). Electrochemical analysis is carried out on a CHI660E workstation. Electrochemistry impedance spectroscopy (EIS) and photoelectric current response measurements are conducted on a conventional three-electrode system with the as-prepared photocatalyst coated onto a 2 cm × 1 cm FTO glass electrode as a working electrode, platinum foil as a counter electrode and Ag/AgCl as a reference electrode, respectively. The frequency range is from 0.01 Hz to 100 kHz in an alternating voltage of 0.02 V under chopped illumination with 40 s light on/off cycles in 0.1 M Na₂SO₄ aqueous solution. Incident light was performed by an Xe arc lamp.

2.3. Photocatalytic H₂ generation testing

Photocatalytic hydrogen evolution reactions are measured in a top-irradiation reaction vessel with a 300 W xenon lamp connected to a closed glass gas-circulation system (CEL-SPH2N, AG, CEAULIGHT). Fifty milligrams of photocatalyst are put into an aqueous solution with 45 ml water and 5 ml triethanolamine. Then, 1.5 wt% of Pt nanoparticles are loaded onto the surface of catalysts *in situ* photo-deposition by using H₂PtCl₆·6H₂O as the precursor. For the overall water splitting, 50 mg of photocatalyst is put into an aqueous solution with 50 ml water without sacrificial agent and noble metal Pt. Next, the reaction system is sealed and evacuated for 30 min to remove air prior to the irradiation experiments, and during the photocatalytic reaction, the reaction solution temperature is kept around 10°C by a flow of cooling water. The outlet gases are analysed by gas chromatography (GC 7920, Beijing) with a thermal conductivity detector and nitrogen as the carrier gas to determine the amount of generated hydrogen.

3. Result and discussion

The crystalline structures and the phase components of as-prepared CoO/g-C₃N₄ composites and g-C₃N₄ are studied by XRD. As shown in figure 1, the based materials give two typical diffraction peaks at 13.0° and 27.4°, which can be indexed to the (100) and (002) reflections of g-C₃N₄, respectively. It is assumed that g-C₃N₄ has a wrinkled sheet-like structure with relatively smooth surface [30]. For CoO/g-C₃N₄ composites, the diffraction peaks of g-C₃N₄ are observed clearly, indicating that these prepared samples maintain the basic structure of g-C₃N₄. But in comparison with pure g-C₃N₄, there is a distinct diffraction peak at 36.4°, which can perfectly match with the face-centred cubic CoO structure (JCPDS 71-1178). The characteristic diffraction peaks of both CoO and g-C₃N₄ reveal the successful fabrication of CoO/g-C₃N₄ composites by *in situ* growing of CoO nanoparticles on g-C₃N₄.

The TEM images of the prepared materials are presented in figure 2. As shown in figure $2b_cc$, the CoO nanoparticles are highly dispersed by *in situ* growing onto the g-C₃N₄ matrix. From the enlarged high-resolution TEM of 5% CoO/g-C₃N₄ in figure 2*c*, the exposed crystal planes of the obtained CoO can be easily observed, and the lattice fringes with a spacing of 0.25 nm are attributed to the (111) planes of CoO. Based on the XRD and TEM characterizations, this can provide solid evidence for the successful formation of a CoO/g-C₃N₄ heterostructure with the *in situ* growing method.

Surface chemical states of elements and the specific bonding in the prepared samples are characterized in-depth by XPS, and the results are shown in figure 3a-e. The full survey spectrum of the prepared material is shown in figure 3a. There are three sharp peaks with binding energy values

Figure 1. XRD patterns of (*a*) $g-C_3N_4$, (*b*) 0.3% CoO/ $g-C_3N_4$, (*c*) 0.6% CoO/ $g-C_3N_4$, (*d*) 0.8% CoO/ $g-C_3N_4$, (*e*) 1% CoO/ $g-C_3N_4$ and (*f*) 5% CoO/ $g-C_3N_4$ composites.

Figure 2. TEM and HR-TEM images of (a) g-C₃N₄, (b) 0.6% CoO/g-C₃N₄ and (c) 5% CoO/g-C₃N₄ composites.

of 285, 399, 530 and 782 eV attributed to the signals of C 1s, N 1s, O 1s and Co 2p, respectively, in the asprepared samples. The C 1s spectra (figure 3b) can be deconvoluted into three peaks at 284.8 eV, 288.1 eV and 293.6 eV, respectively. The binding energy at 284.8 eV can be ascribed to the signals of C-C coordination of the surface adventitious carbon. The binding energy at 288.1 eV is attributed to the sp^2 -hybridized carbon in N=C-N coordination, while the peak observed at 293.6 eV results from π -excitation [31]. Figure 3c presents the N 1s spectra, which can be subdivided into four peaks at 398.7, 399.4, 400.9 and 404.7 eV. The binding energy at 398.7 eV is ascribed to the sp^2 -hybridized nitrogen atoms in C=N-C groups [32]. The binding energy at 399.4 eV is corresponding to the tertiary nitrogen $N-C_3$ groups or $H-N-C_2$ [33]. The binding energy at 400.9 eV is result from the amino function groups [32], and the binding energy at 404.7 eV is attributed to charging effects or positive charge localization in heterocycles [34]. The high-resolution XPS spectra of Co 2p of 0.6% $CoO/g-C_3N_4$ and 1% $CoO/g-C_3N_4$ are displayed in figure 3e. The weak and diffused Co 2p peaks of 0.6% CoO/g-C₃N₄ at two pairs of individual peaks centred at 780.3 and 796.2 eV confirm the existence of Co, which are identified as the major binding energies of Co^{2+} in CoO [35]. Two peaks at 780.6 and 796.5 eV can be attributed to the Co $2p_{3/2}$ and Co $2p_{1/2}$ spin-orbit peaks of CoO, respectively [1]. The O 1s spectra with two peaks at about 529 and 532 eV are shown in figure 3d. The binding energy at 529 eV is ascribed to the Co-O bond in the CoO phase [36], while the strong peak at about 532 eV corresponds to the Co-O-C bond, indicating that a strong interaction exists between CoO and $g-C_3N_4$ [26]. It can be seen that the signal of Co-O-C bond becomes bigger with the increase in Co loading because of the change of electronic state of adsorbed oxygen species [37]. Therefore, the interfacial interaction between CoO and g-C₃N₄ could be greatly enhanced due to the interfacial hybridized Co-O-C bond.

Figure 3. XPS profiles of (a) survey, (b) C 1s, (c) N 1s, (d) O 1s and (e) Co 2p of the prepared samples.

It is widely accepted that the optical and photoelectric properties are of great significance to the photocatalytic activity. UV–Vis absorption spectra and PL are measured to identify these properties of $g-C_3N_4$ and $CoO/g-C_3N_4$ composite samples. Figure 4 displays the UV–Vis diffuse reflectance spectra of pure $g-C_3N_4$ and $CoO/g-C_3N_4$ with different CoO contents. It is seen that 0.6% CoO/ $g-C_3N_4$ exhibits the best ultraviolet and visible light absorbance, indicating that the 0.6% CoO/ $g-C_3N_4$ composite could obtain the best photocatalytic activity for hydrogen evolution by using more solar light. The efficient separation of photo-induced electron–hole pairs is another factor to influence the photocatalytic activity. It is well known that photocatalytic activity is enhanced by interfaces of

Figure 4. UV – Vis absorbance spectra of $g-C_3N_4$, 0.3% CoO/ $g-C_3N_4$, 0.6% CoO/ $g-C_3N_4$, 0.8% CoO/ $g-C_3N_4$ and 1% CoO/ $g-C_3N_4$ composites.

Figure 5. PL spectra ($\lambda_{ex} = 370 \text{ nm}$) for the prepared g-C₃N₄, 0.3% CoO/g-C₃N₄, 0.6% CoO/g-C₃N₄, 1% CoO/g-C₃N₄ and 5% CoO/g-C₃N₄ composite.

heterojunctions with a faster separation efficiency of photogenerated electron-hole pairs. The PL analysis is usually carried out to investigate the transfer, migration and recombination of photogenerated electron-hole pairs of the photocatalyst [26]. The PL spectra of as-prepared g- C_3N_4 and CoO/g- C_3N_4 composites with excitation wavelength of 370 nm are demonstrated in figure 5. CoO/g- C_3N_4 composite exhibits a much weaker emission profile with the CoO loading content increasing in comparison with g- C_3N_4 , indicating that the recombination rate of the photogenerated charge carrier is greatly restrained and there is a faster photoelectron transfer between the hybrid of CoO and g- C_3N_4 .

The photocatalytic H₂ evolution performance of the prepared CoO/g-C₃N₄ composite with different CoO content is measured using Pt as a co-catalyst and the results are shown in figure 6. In figure 6*a*, it can be found that the photocatalytic H₂ evolution amount for CoO/g-C₃N₄ composite with 0, 0.3, 0.6, 1, 5 and 100 wt% Co loading content is recorded to be 14.79, 17.19, 23.25, 13.02, 1.90 and 0.019 mmol g⁻¹ after 5 h, respectively. The photocatalytic H₂ evolution amount increases as the Co content increases from 0 to 0.6 wt% and then exhibits a decrease with a higher Co content. This decrease is possible due to excessive CoO aggregation and the decrease in g-C₃N₄ surface active sites. The 0.6 wt% CoO/g-C₃N₄ composite exhibits the best photocatalytic performance with an average hydrogen evolution rate of 4.65 mmol h⁻¹ g⁻¹, which is about 57% higher than that of pure g-C₃N₄ (2.51 µmol h⁻¹) [26] and 10 wt% CoO/g-C₃N₄ (0.46 µmol h⁻¹) [25], photocatalytic hydrogen evolution performance of

Figure 6. (*a*) The photocatalytic H_2 evolution amount of the samples; (*b*) recyclability of 0.6 wt% CoO/g-C₃N₄ photocatalyst for the photocatalytic H_2 evolution, with 10 vol% TEOA, 1.5 wt% Pt.

Figure 7. H_2 evolutions from pure water with g-C₃N₄, CoO and 0.6 wt% CoO/g-C₃N₄.

 $CoO/g-C_3N_4$ composite could be improved by the rotation–evaporation and thermal annealing methods. Figure 6*b* shows the photocatalytic stability of hydrogen evolution for the 0.6 wt% CoO/g-C₃N₄ sample is carried out by four cycling experiments under the same condition. The photocatalytic H₂ evolution activity of 0.6% CoO/g-C₃N₄ exhibits favourable stability for the four recycling runs.

In the following experiments, as $0.6 \text{ wt}\% \text{ CoO/g-C}_3\text{N}_4$ exhibits the superior photocatalytic H₂ evolution activity, its H₂ evolution performance for splitting pure water is investigated and the results are shown in figure 7. It is found that $0.6 \text{ wt}\% \text{ CoO/g-C}_3\text{N}_4$ can split pure water to generate H₂ without sacrificial agent and noble metal Pt, while the pure g-C₃N₄ and bulk CoO exhibit negligible photocatalytic activity towards H₂ generation under the same reaction condition. H₂O₂ is more easily generated than O₂, which is attributed to the more positive H₂O₂/H₂O (1.78 V versus RHE) than O₂/H₂O (1.23 V versus RHE) [26]. The drawbacks of rapid rate of photogenerated electron–hole pairs and severe poisoning by H₂O₂ generated during the reaction of g-C₃N₄ are the main reasons for the inactivation [13]. The photocatalytic H₂ evolution amount of 0.6% CoO/g-C₃N₄ reaches 0.39 mmol g⁻¹ and the photocatalytic H₂ evolution rate is very slow after 2 h under light irradiation. Based on these results, it can be safely concluded that g-C₃N₄ doped with 0.6 wt% CoO could effectively separate the photogenerated electron–hole pairs to generate H₂ from pure water splitting; however, it is likely subject to being greatly poisoned by H₂O₂ generation during the photocatalytic reaction to cause rapid inactivation.

The photogenerated charge transfer and separation properties in the 0.6 wt% CoO/g-C₃N₄ sample are further studied by photoelectrochemical measurements. EIS and photocurrents are carried out to obtain the photogenerated charge separation and transfer properties. Figure 8*a* shows the transient photocurrent responses for g-C₃N₄ and 0.6% CoO/g-C₃N₄ samples with an interval light on/off cycle

7

Figure 8. (*a*) Transient photocurrents, (*b*) electrochemical impedance spectra of $g-C_3N_4$ and 0.6% CoO/ $g-C_3N_4$ electrodes at 0.3 and -0.4 V versus Ag/AgCl.

Figure 9. Schematic illustrations of the proposed photocatalytic H_2 evolution mechanism for overall water splitting over the CoO/ g-C₃N₄ hybrid catalyst.

mode. It can be clearly observed that the transient photocurrent response of $0.6\% \text{ CoO/g-C}_3\text{N}_4$ composite is higher than that of the pure g-C₃N₄ sample, suggesting that the interfical electron transfer and electron-hole separation process between CoO and g-C₃N₄ is highly proven. The EIS measurements have been carried out to evaluate the photogenerated electron transfer in CoO/g-C₃N₄. Figure 8*b* presents the experimental Nyquist impedance plots for g-C₃N₄ and $0.6\% \text{ CoO/g-C}_3\text{N}_4$ samples in the dark. The Nyquist plot of $0.6\% \text{ CoO/g-C}_3\text{N}_4$ suggests an apparently smaller arc diameter than that of g-C₃N₄, indicating that the $0.6\% \text{ CoO/g-C}_3\text{N}_4$ system can efficiently migrate interfacial charge and separate the photogenerated electron-hole pairs at the heterojunction interface across the electrode/ electrolyte in agreement with the results of PL, contributing to the enhancement of photocatalytic hydrogen evolution activity [26].

Based on the above experimental results, a possible mechanism of photocatalytic H_2 evolution for the CoO/g-C₃N₄ hybrid system is proposed, as shown in figure 9. First, the electron-hole pairs [38,39] are generated in the conduction band [40] and valence band of g-C₃N₄ by light irradiation. Then, the photogenerated holes in the valence band of g-C₃N₄ will react with H₂O to generate H₂O₂. In contrary, the photogenerated electrons further transfer from the conduction band of g-C₃N₄ to the surface of CoO nanoparticles, which function as reduction catalysts to catalyse the reduction in protons (H⁺) to H₂. Therefore, the separation of electron-hole pairs and the charge transfer can effectively enhance the photocatalytic H₂ evolution activity from overall water splitting for the CoO/ g-C₃N₄ heterojunction photocatalyst.

4. Conclusion

The CoO/g-C₃N₄ hybrid catalysts with different CoO loading contents are facilely prepared to study the photocatalytic H₂ evolution activity. CoO/g-C₃N₄ composite with 0.6 wt% Co loading shows the highest

photocatalytic activity for H₂ evolution amount of 23.25 mmol g⁻¹ after 5 h, which is 57% higher than that of g-C₃N₄. The remarkably enhanced photocatalytic performance for H₂ evolution of CoO/ g-C₃N₄ composite is mainly due to the faster transfer of interfacial charge and more effective separation of electron–hole pairs. The photocatalytic H₂ evolution amount of 0.6% CoO/g-C₃N₄ reaches 0.39 mmol g⁻¹ by overall water splitting without sacrificial agent and noble metal. But the photocatalytic H₂ evolution rate of 0.6% CoO/g-C₃N₄ is very slow after 2 h because it is easily poisoned by H₂O₂ generation during the photocatalytic reaction to cause rapid inactivation. In future work, CoO/g-C₃N₄ material with the stability of photocatalytic H₂ evolution activity will be further designed to prevent H₂O₂ poisoning.

Data accessibility. Data available from the Dryad Digital Repository at: https://doi.org/10.5061/dryad.cs0sj00 [31]. Authors' contributions. X.L. and L.W. designed the study. L.L. and Q.Z. prepared all the samples for analysis. L.C., Y.W. and X.T carried out the statistical analyses. H.H. interpreted the results. All the authors gave their final approval for publication.

Competing interests. There are no conflicts to declare.

Funding. This work was supported by Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development (grant no. Y807s21001) and Research Foundation for Talented Scholars (grant no. 1856012). Disclaimer. We have read the information for authors and publish policy. We all agree with the policy and prepare the manuscript in accordance with the guidance.

References

- Liao L *et al.* 2013 Efficient solar water-splitting using a nanocrystalline Co0 photocatalyst. *Nat. Nanotechnol.* 9, 69. (doi:10.1038/nnano.2013. 272)
- Lu Y, Yin WJ, Peng KL, Wang K, Hu Q, Selloni A, Chen FR, Liu LM, Sui ML. 2018 Selfhydrogenated shell promoting photocatalytic H₂ evolution on anatase TiO₂. *Nat. Commun.* 9, 2752. (doi:10.1038/s41467-018-05144-1)
- Zhang P, Song T, Wang T, Zeng H. 2017 In-situ synthesis of Cu nanoparticles hybridized with carbon quantum dots as a broad spectrum photocatalyst for improvement of photocatalytic H₂ evolution. Appl. Catal. B 206, 328–335. (doi:10.1016/j.apcatb.2017.01.051)
- Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M. 2008 A metal-free polymeric photocatalyst for hydrogen production from water under visible light. *Nat. Mater.* 8, 76. (doi:10.1038/nmat2317)
- Zhao S, Zhang Y, Zhou Y, Wang Y, Qiu K, Zhang C, Fang J, Sheng X. 2018 Facile one-step synthesis of hollow mesoporous g-C₃N₄ spheres with ultrathin nanosheets for photoredox water splitting. *Carbon* **126**, 247–256. (doi:10.1016/j. carbon.2017.10.033)
- Xu Q, Cheng B, Yu J, Liu G. 2017 Making cocondensed amorphous carbon/g-C₃N₄ composites with improved visible-light photocatalytic H₂-production performance using Pt as cocatalyst. *Carbon* **118**, 241–249. (doi:10. 1016/j.carbon.2017.03.052)
- Chen X, Shen S, Guo L, Mao SS. 2010 Semiconductor-based photocatalytic hydrogen generation. *Chem. Rev.* **110**, 6503-6570. (doi:10.1021/cr1001645)
- Xu F, Shen Y, Sun L, Zeng H, Lu Y. 2011 Enhanced photocatalytic activity of hierarchical ZnO nanoplate-nanowire architecture as environmentally safe and facilely recyclable photocatalyst. *Nanoscale* 3, 5020–5025. (doi:10.1039/C1NR11033K)

- Martin DJ, Qiu K, Shevlin SA, Handoko AD, Chen X, Guo Z, Tang J. 2014 Highly efficient photocatalytic H₂ evolution from water using visible light and structure-controlled graphitic carbon nitride. *Angew. Chem. Int. Ed.* 53, 9240–9245. (doi:10.1002/anie. 201403375)
- Zhang Y, Liu J, Wu G, Chen W. 2012 Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlightdriven photocatalytic hydrogen production. *Nanoscale* 4, 5300-5303. (doi:10.1039/ C2NR30948C)
- Fettkenhauer C, Clavel G, Kailasam K, Antonietti M, Dontsova D. 2015 Facile synthesis of new, highly efficient SnO₂/carbon nitride composite photocatalysts for the hydrogen evolution reaction. *Green Chem.* **17**, 3350–3361. (doi:10. 1039/C5GC00021A)
- Yan J, Wu H, Chen H, Zhang Y, Zhang F, Liu SF. 2016 Fabrication of TiO₂/C₃N₄ heterostructure for enhanced photocatalytic Z-scheme overall water splitting. *Appl. Catal. B* **191**, 130 – 137. (doi:10. 1016/j.apcatb.2016.03.026)
- Fu Y et al. 2018 High-performance NiO/g-C₃N₄ composites for visible-light-driven photocatalytic overall water splitting. *Inorg. Chem. Front.* 5, 1646–1652. (doi:10.1039/C80[00292D)
- Chen J, Shen S, Guo P, Wang M, Wu P, Wang X, Guo L. 2014 In-situ reduction synthesis of nanosized Cu₂O particles modifying g-C₃N₄ for enhanced photocatalytic hydrogen production. *Appl. Catal. B* **152 – 153**, 335–341. (doi:10. 1016/j.apcatb.2014.01.047)
- Zou W et al. 2018 Crystal-plane-dependent metal oxide-support interaction in CeO₂/g-C₃N₄ for photocatalytic hydrogen evolution. Appl. Catal. B 238, 111–118. (doi:10.1016/j.apcatb. 2018.07.022)
- Li J, Yin Y, Liu E, Ma Y, Wan J, Fan J, Hu X. 2017 In situ growing Bi₂M00₆ on g-C₃N₄ nanosheets with enhanced photocatalytic hydrogen

evolution and disinfection of bacteria under visible light irradiation. *J. Hazard. Mater.* **321**, 183–192. (doi:10.1016/j.jhazmat.2016.09.008)

- Shi J, Cheng C, Hu Y, Liu M, Guo L. 2017 Onepot preparation of porous Cr₂0₃/g-C₃N₄ composites towards enhanced photocatalytic H₂ evolution under visible-light irradiation. *Int. J. Hydrogen Energy* **42**, 4651–4659. (doi:10.1016/j.ijhydene.2016.07.030)
- Zhao Z, Sun Y, Dong F. 2015 Graphitic carbon nitride based nanocomposites: a review. *Nanoscale* 7, 15–37. (doi:10.1039/ C4NR03008G)
- Xu J et al. 2019 Visible-light-driven overall water splitting boosted by tetrahedrally coordinated blende cobalt(II) oxide atomic layers. Angew. Chem. 131, 3064–3068. (doi:10. 1002/ange.201807332)
- Qin Y, Wang G, Wang Y. 2007 Study on the photocatalytic property of La-doped CoO/SrTiO₃ for water decomposition to hydrogen. *Catal. Commun.* 8, 926–930. (doi:10.1016/j.catcom. 2006.11.025)
- Zhang J *et al.* 2017 Porous TiO₂ nanotubes with spatially separated platinum and CoO_x cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production. *Angew. Chem. Int. Ed.* 56, 816–820. (doi:10.1002/anie. 201611137)
- Shi W et al. 2017 New insight of water-splitting photocatalyst: H₂O₂-resistance poisoning and photothermal deactivation in sub-micrometer Co0 octahedrons. ACS Appl. Mater. Interfaces 9, 20585–20593. (doi:10.1021/acsami.7b04286)
- Shi W, Guo F, Zhu C, Wang H, Li H, Huang H, Liu Y, Kang Z. 2017 Carbon dots anchored on octahedral CoO as a stable visible-lightresponsive composite photocatalyst for overall water splitting. *J. Mater. Chem. A* 5, 19 800 – 19 807. (doi:10.1039/C7TA06077G)
- 24. Neaţu Ş, Puche M, Fornés V, Garcia H. 2014 Cobalt-containing layered or zeolitic silicates as

photocatalysts for hydrogen generation. *Chem. Commun.* **50**, 14 643 – 14 646. (doi:10.1039/ C4CC05931J)

- Han M, Wang H, Zhao S, Hu L, Huang H, Liu Y. 2017 One-step synthesis of CoO/g-C₃N₄ composites by thermal decomposition for overall water splitting without sacrificial reagents. *Inorg. Chem. Front.* 4, 1691–1696. (doi:10.1039/C7QI00380C)
- Guo F, Shi W, Zhu C, Li H, Kang Z. 2018 CoO and g-C₃N₄ complement each other for highly efficient overall water splitting under visible light. *Appl. Catal. B* 226, 412–420. (doi:10. 1016/j.apcatb.2017.12.064)
- Wang N, Li X. 2018 Facile synthesis of CoO nanorod/C₃N₄ heterostructure photocatalyst for an enhanced pure water splitting activity. *Inorg. Chem. Commun.* 92, 14–17. (doi:10.1016/j. inoche.2018.03.025)
- Yatsuya S, Tsukasaki Y, Mihama K, Uyeda R. 1978 Preparation of extremely fine particles by vacuum evaporation onto a running oil substrate. J. Cryst. Growth 45, 490–494. (doi:10.1016/0022-0248(78)90481-5)
- Dong F, Wu L, Sun Y, Fu M, Wu Z, Lee SC. 2011 Efficient synthesis of polymeric g-C₃N₄ layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 21, 15 171 – 15 174. (doi:10.1039/C1JM128448)
- 30. Yang X, Chen Z, Xu J, Tang H, Chen K, Jiang Y. 2015 Tuning the morphology of g-C₃N₄ for

improvement of Z-scheme photocatalytic water oxidation. *ACS Appl. Mater. Interfaces* **7**, 15 285 – 15 293. (doi:10.1021/acsami.5b02649)

- Li M, Zhang L, Wu M, Du Y, Fan X, Wang M, Zhang L, Kong Q, Shi J. 2016 Mesostructured CeO₂/q-C₃N₄ nanocomposites: remarkably enhanced photocatalytic activity for CO₂ reduction by mutual component activations. *Nano Energy* **19**, 145–155. (doi:10.1016/j. nanoen.2015.11.010)
- Gao D, Xu Q, Zhang J, Yang Z, Si M, Yan Z, Xue D. 2014 Defect-related ferromagnetism in ultrathin metal-free g-C₃N₄ nanosheets. *Nanoscale* 6, 2577 – 2581. (doi:10.1039/ C3NR04743A)
- Liu C, Jing L, He L, Luan Y, Li C. 2014 Phosphate-modified graphitic C₃N₄ as efficient photocatalyst for degrading colorless pollutants by promoting 0₂ adsorption. *Chem. Commun.* 50, 1999–2001. (doi:10.1039/ C3C(47398H)
- Wang S, Li C, Wang T, Zhang P, Li A, Gong J. 2014 Controllable synthesis of nanotube-type graphitic C₃N₄ and their visible-light photocatalytic and fluorescent properties. *J. Mater. Chem. A* 2, 2885–2890. (doi:10.1039/ C3TA14576J)
- Mao Z, Chen J, Yang Y, Wang D, Bie L, Fahlman BD. 2017 Novel g-C₃N₄/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H₂ evolution. ACS

Appl. Mater. Interfaces **9**, 12 427 – 12 435. (doi:10.1021/acsami.7b00370)

- 36. Sun Y, Zhou Y, Zhu C, Hu L, Han M, Wang A, Huang H, Liu Y, Kang Z. 2017 A Pt-Co₃O₄-CD electrocatalyst with enhanced electrocatalytic performance and resistance to CO poisoning achieved by carbon dots and Co₃O₄ for direct methanol fuel cells. *Nanoscale* **9**, 5467-5474. (doi:10.1039/C7NR01727H)
- Carrasco J et al. 2015 In situ and theoretical studies for the dissociation of water on an active Ni/CeO₂ catalyst: importance of strong metal – support interactions for the cleavage of O-H bonds. Angew. Chem. Int. Ed. 54, 3917–3921. (doi:10.1002/anie.201410697)
- Liang Y *et al.* 2018 Enhanced dye photocatalysis and recycling abilities of semi-wrapped Ti0₂@carbon nanofibers formed via foaming agent driving. *Ceram. Int.* 44, 1711–1718. (doi:10.1016/j.ceramint.2017.10.101)
- Xu Z et al. 2016 Microstructure and photocatalytic activity of electrospun carbon nanofibers decorated by TiO₂ nanoparticles from hydrothermal reaction/blended spinning. *Ceram. Int.* 42, 15 012 – 15 022. (doi:10.1016/j. ceramint.2016.06.150)
- Xu Z et al. 2016 Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO₂ for water treatment. J. Membr. Sci. 520, 281–293. (doi:10.1016/j. memsci.2016.07.060)

10