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ABSTRACT

The potential of a relatively new method to remotely measure near-surface cur-
rents and dominant wave spectra using Interferometric Synthetic Aperture Radar
(INSAR) is demonstrated. INSAR consists of a single conventional SAR augmented
by an additional receiving antenna. The phase difference between the correspond-
ing SAR image scenes observed by the antennas provides an interferogram that is
directly proportional to the ocean surface velocity field. This direct motion de-
tection by INSAR suggests a significant advance compared with conventional SAR
where the response to the moving ocean surface is indirectly related to the complex
modulation of the surface reflectivity by longer waves and currents.

An experiment using an airborne implementation of INSAR to measure ocean
surface currents and wave fields, compared with simultaneous ground truth measure-
ments using Lagrangian drifters and wave array data was conducted in Monterey
Bay. INSAR measured mean current magnitude estimates agree to within 10 per-
cent compared with conventional measurements. The INSAR image wavenumber
spectrum is consistent with the in situ directional spectrum and with predicted
numerical refraction model outputs. The wavelength of the observed swells are in
better agreement (correlation better than 0.9) than wave direction.

An attempt to estimate the scene coherence time for L-band SAR was made by
taking advantage of the almost simultaneously acquired SAR and INSAR images.
The obtained mean sane coherence time 0 (100 msec) is consistent with sparse
observed estimates in the literature. This limited radar temporal coherenre, caused
by the velocity spread of short waves, degrades the azimuthal resolution of SAR
and INSAR and depends on the sea state and radar wavelength. The experimental

* results show that the finite scene coherence time has a dominant role on the distor-
tion of the INSAR (and SAR) image spectrum relative to the ocean wave spectrum.
The present study introduces limitations cf ;nterferometric SAR configuration in
imaging nonstationary scenes like the ocean surface.
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I. INTRODUCTION

A. INTERFEROMETRIC RADAR REMOTE SENSING
OF OCEAN SURFACE VELOCITY FIELDS

Historically, oceanography has depended on sparse observations made from

ships. Now, orbiting platforms offer global coverage of the world's oceans using

various types of sensors in a broad spectrum (visible, IR, microwave). "How relevant

are these surface observations in understanding today's oceanographic problems?

How well matched to the oceanic time and space scales are the satellite samples?

What oceanic processes can be observed, and in what way? And, finally, what

instruments and systems exist to provide oceanic data from space?" (Stewart, 1985).

Some of the answers to these questions are addressed in this study by ap-

plying a new method of remotely measuring ocean surface velocity fields, using a

conventional Synthetic Aperture Radar (SAR) augmented with two spatially sep-

arated antennas (Goldstein and Zebker, 1987). By incorporating the physics of

interferometry, this unique remote sensing method offers an opportunity for esti-

mating synoptic spatial structures of ocean near surface currents and wavefields with

high grid nominal resolution (12 m in this work) and large coverage, never before

obtained.

The objectives of this research are to develop a theoretical foundation for

Interferometric SAR (INSAR) in imaging the free surface, distributed moving ocean

surface, to verify its feasibility with simultaneous ground truth experiments, and to

develop interferometric SAR image processing techniques to estimate spatial synop-

tic currents and wave spectra. An experiment was conducted to ground truth the



velocity field imagery of INSAR using surface Lagrangian drifters, wind measure-

ments, and a shallow water wave array.

B. STATEMENT OF OBJECTIVES AND PROBLEMS

Three specific objectives are outlined for this dissertation:

1. To develop a theoretical basis for the capability of SAR in an interfero-

metric mode to measure the ocean surface velocity field. The basic limitations in

correlating the backscatter radar echo with ocean phenomena is that the ocean sur-

face combines random fluctuating, non-stationary and non-homogeneous scattering

elements. In this study, a preliminary theoretical model is developed which repre-

sents the major physical parameters involved in remotely measuring near surface

currents and wavefields using synthetic aperture radar in an interferometric mode.

The decorrelation of the ocean surface scene (finite scene coherence time)

as a function of INSAR parameters is quantified. This allows to characterize the

sensitivity and capability of INSAR in terms of imaging near surface ocean currents

and wave fields. Noncoherent motion effects on airborne SAR (and hence, INSAR)

imagery, which is an area of controversy, is also addressed in the present study.

2. To develop analysis techniques to obiain quantitative spatial information

of near ocean surface currents and wave fields from INSAR imagery. Unlike SAR,

which has serious shortcomings in obtaining directional wave spectra, INSAR has

an inherent improved potential of measuring 2D wavenumber spectrum of the ocean

surface dominant wave field. This improvement is related to the direct motion de-

tection mechanism of INSAR when sufficient Bragg scatterers are present. In this

study, appropriate theoretical tools are developed to separate wave field velocities

from ocean currents. This separation allows accurate and unique information con-

cerning spatial structures of dominant ocean wavefields, currents, and other features.

2



3. TO ground truth the currents and wave fields measured by INSAR. A si-

multaneous in situ and radar remote sensing experriment was conducted to determine

the feasibility of INSAR to image near surface ocean dynamics compared with more

conventional measurements. The analyzed data also provide a unique study of wave

refraction and shoaling and currents in the complex nearshore region of Marina in

Monterey Bay.

C. SUMMARY

The present study demonstrates the feasibility of this unique technique to

provide reliable quantitative spatial information about dynamic processes at the

ocean surface. Realization of the potential of INSAR with spacecraft might make

it possible to routinely monitor global ocean wave spectra and surface currents. A

review of electromagnetic interaction with oceanic backscattering waves is presented

in Chapter II along with backscattering models which supports the interpretation

of the results. The principal mechanisms of SAR and INSAR and relevant theory

in imaging ocean surface dynamics are presented in Chapter III. In Chapter IV, a

preliminary theoretical analysis for INSAR in imaging ocean surface velocity fields is

presented for the first time. Based on the SAR two-scale model, a theoretical model

for estimating the temporal decorrelation of the ocean surface using simultaneous

SAR and INSAR observations is also developed. Chapter V describes oceanographic

relevant theory which is essential for the interpretation of the results. A numerical

refraction model (Dobson, 1967) is used to predict wave length and direction in

shallow water. These outputs are compared with INSAR spectral analysis estimates

(Chapter VII). Two-dimensional wavenumber spectra for in situ and interferometric

SAR are successively described. A description of the experiment, environmental

conditions, and data processing follows in Chapter VI. Data analysis methods and
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experimental results are presented in Chapter VII. Results, analysis, and discussions

are given in Chapter VIII. These findings are summerized and the major conclusions

and suggestions for further study are stated in Chapter IX.
J -
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II. LITERATURE REVIEW

A. INTRODUCTION

Due to rapid advances in microwave remote sensing of ocean surface during

the last decade, much progress has been made in understanding the physics of

scattering of microwave radiation from the ocean surface (Ilasselmann et al., 1985;

Thompson, 1989). The result of this -rogress yields a capability to observe in more

detail near-surface ocean features such as: wave height, wind speed, spatial wave

field data, tides, eddies and currents (Valenzuela, 1989).

The interpretation of microwave remote sensing data is done through the

physics of microwave scattering theories. Therefore, the discussion in this chapter

begins with the mechanisms of electromagnetic scattering from ocean surface for

real aperture radars, which is the basis of radar scattering theory. Next, the dis-

cussion extends to coherent synthetic aperture imaging radars, which in turn adds

the comple motion effects when sensing the ocean. The complexity is mainly a

result of the random uncorrelated motion of individual scatterers, smaller than the

spatial resolution cell of SAR and of the order of the radar wavelength. The inter-

action between different scales of waves and currents smear and defocus the SAlt

image, resulting in difficulties in correlating the image with the sensed phenomena

(see Chapter IV). In spite of the difficulties, considerable progress has been made in

understanding SAR imagery of ocean surface features. (Raney, 1971; Elachi, 1977;

Alpers and Rufenach, 1979; Valenzuela, 1980; Plant and Keller, 1983; Tucker, 1984;

Ilasselmann et al., 1985; Kasilingham and Shemdin, 1988).
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B. ELECTROMAGNETIC FIELDS SCATTERED

FROM THE OCEAN SURFACE

The interaction of electromagnetic waves with ocean surface is a complex

boundary value problem, for which exact solutions are not available to the present

time (Barrick, 1968; Valenzuela, 1971). This is because the ocean surface is a com-

plex distributed scatterer, varying in time and space, and also weakly nonlinear

behaving as a random rough surface. In the linear approximation, the statistics of

the ocean surface are homogeneous, stationary, and Gaussian. With these assump-

tions, several fundamental electromagnetic backscatter models, in good agreement

with observations, have been derived (Barrick and Peake, 1968; Barrick, 1968, 1972;

Hasselmann, 1971; Kirshen, 1971; Daley, 1973; Valenzuela, 1974, 1978; among oth-

ers). These models are based upon:

* The high frequency methods, including geometric atid physical optics which

yield specular point models for smooth and undulating surface (Kerr, 1951).

* The low frequency method, using the perturbation method for a slightly rough

surface yields the Bragg scattering model (Rice, 1951).

9 Combination of high and low frequency methods renders the two-scale com-

posite model for rough surfaces.

The purpose of these fundamental models of microwave scattering from the

ocean surface is to convert the received electric signal at the sensor into a mean-

ingful geophysical signal. These models (specular, Bragg-Rice, and composite) are

described extensively in a review paper by Valenzuela (1978), which remain the ba-

sis for studies of ocean surface dynamics sensed by microwave sensors even in the

present time (see Figure 2.1). Recently, the composite model has been extended to
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incorporate a third intermediate scale utilized specifically for SAR imagery appli-

cations. This theory is summarized in great detail in a consensus paper by Has-

selmann, Raney, Plant, Alpers, Shuchmann, Lyzenga, Rufenach, and Tucker, 1985.

The scattering of electromagnetic fields from random rough surface differs from de-

terministic surfaces scattering by being statistical in nature. Mean values of the

fields and power may be determined by ensemble averaging these quantities over

the assumed or known statistics of the rough surface (Beckmann and Spizzichino,

1963).

Incident
Wave

Slightly rough

Incident IncidentWave WaveW Scattering W Scattering
PatternPatr

Undulating surface Rough surface

Figure 2.1: Illustration of EM scattering from ocean surface.

Following Valenzuela (1978), the scattered power density is given by the mean

magnitude of the Poynting vector, which is a cross product of the electric and
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magnetic fields

P0 = Re(E. x HX ) (2.1)

where H; is the complex conjugate of the scattered magnetic field of the EM wave,

and E, is the scattered electric field of the EM wave. The brackets denote ensemble

average.

A measure of scattering power from a rough surface can be related to the

radar cross-section, which is proportional to the ratio of the scattered power from

the surface to the incident power. For the far field:

a = lim (4rR2(IE,12)/IEiJ') (2.2)

R-00o

where JEil2 and (IE. 12) are the incident and mean scattered power respectively. R

is the distance of the observation point from the scattering rough surface.

In the following sections the specular, Bragg-Rice, and the composite scat-

tering models are presented.

to radar

r:
Figure 2.2: Specular point backscatter (from Stewart, 1985).

1. Specular Point/Physical Optics Model

In this model, the reflections are from surface slopes which are oriented

normal to the line of sight of the radar (Hagfors, 1964). The principal assumptions
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of this model are that the surface radius of curvature is almost everywhere much

larger than the radar wavelength (physical optics or Kirchhoff method), and that

multiscattering and/or shadowing are negligible (see Figure 2.2). The range of

validity of physical optics, or the tangent plan approximation, was shown by Shmelev

(1972) as:
1

2rkR cos - > 1 and 1rkR cos' 7 > 1 (2.3)

where r is the local radius of curvature of the surface, - and kR are the incidence

angle and the wavenumber of the electromagnetic wave in free space respectively.

The backscatter power from a single facet (local tangent plan) is a func-

tion of the probability that the tangent plane/facet will be oriented perpendicularly

to the incidence direction of the electromagnetic wave. Summing up the contribu-

tions from all properly oriented facets within the resolution cell of the radar results

in the total backscatter specular power.

- Applying the physical optics approximation, Barrick (1968) derived a

specular model to predict tile normalized radar cross section for backscatter from a

finitely conductive rough surface:

ao = (7/ cos 47)p(j., q,)Ip(o)l 2  (2.4)

where p(71.,, ni) is the joint-probability density of orthogonal slopes n., and qy of the

sea surface q with respect to the incident EM wave and p(O) is the Fresnel reflection

coefficient for normal incidence. The slopes are the horizontal derivatives of the

local vertical displacements of water surface from mean level.

A simplified form of Equation (2.4) is achieved by assuming that the

ocean surface roughness has a Gaussian random distribution. Thus, for an upwind

looking radar, Equation (2.4) becomcs:

"r = 2SS sec (0) exp [- tan2 0/2S,] (2.5)
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where S' and S' are the mean square slopes of upwind and crosswind respectively.

Verified by observations, Equation (2.5) seems to be a good approximation for near

normal backscatter from an undulating surface.

Radar observations for the ocean indicate that the specular backscatter

is 2 to 3 times larger from a trough than from a crest (Yaplee, 1971; Valenzuela,

1978). This could be due to "compressibility" of the short gravity-capillary waves

at the crests of the long waves, resulting in a diffuse scatter which reduces the

specular backscatter. The reflection properties of a surface are known to be reduced

by increase in roughness. Away from normal incidence,' the backscatter is no longer

specular, but diffuse, being produced by shorter waves which have steeper slopes

(roughness).

2. The Bragg-Rice Model

For a slightly rough surface, to first order, the backscatter energy, in

directions of at least 20 degrees from normal incidence, is proportional to the ripple

-variance spectrum evaluated at the Bragg resonant wave number (Hasselmann et

al., 1985)

k = 2kR sin' (2.6)

where k is the ocean wavenumber, and kR sin - is the projection of the incident radar

wave number onto the ocean surface. This diffraction grating (resonant) backscat-

tering theory for e.m. waves, was first developed by Rice (1951) and demonstrated

experimentally by Crombie (1954) with an HF Doppler radar. The Doppler spec-

trum showed two peaks shifted from the EM frequency by the positive and negative

Bragg waves frequency, for waves propagating towards and away from the sensor.

Since the resonant (Bragg-Rice) backscattering mechanism has been

shown to be the dominant backscatter for the ocean surface for incidence angles
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ranging from 20 to 70 degrees, typical for SAR remote sensing, this backscattering

mechanism is reviewed in more detail, together with the composite surface model

introduced in the next section.

The main assumptions in deriving the first order Bragg-Rice model are:

9 Local matching of the fields at the surface with linearized boundary conditions.

Hence, the surface vertical perturbations, h, of the Bragg ripples are small with

respect to the radar wavelength (Rayleigh condition).

* The number of resonant scatterers is large enough to allow a proper statistical

description of the backscattered reflectivity.

* The slopes of the Bragg waves are assumed small. Jordan and Lang (1972)

argue that this condition represents the real ocean because water waves break

long before they become large enough to violate the linear boundary condition.

Based on these assumptions, the resonant scatter theory yields a nor-

* malized radar cross section (Wright, 1966; Barrick, 1972; Jordan and Lang, 1979):

oo = 87rk' Igi(') 2 t(2kR sin -, 0) (2.7)

where gij(-y) are the first order scattering coefficients and 0(k, ky) is the two dimen-

sional ocean wave number spectrum properly normalized. The indices, (ij) denote

transmitted and received polarizations respectively:

S[ ,,1() 9HV() (2.8)
gvH(-) gvv(Y) I

Depolarization effects for the ocean surface are generally smaller (of higher order)

than the copolarized contribution, therefore only scattering coefficients with un-

changed polarization with respect to the transmitted polarization are considered
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here:
g11(3') (6,- 1)cos'3 (2.9)

[cos -t + (cr - sin 2Y) 12

gvv(7Y) = (e, - 1)[c,(1 + sin 2 -y) - sin 2 7t] COS 2 y (2.10)

[cos -f + (c, - sin )] "
where cr is the relative complex dielectric constant.

Away from normal incidence, Bragg resonant scattering yields an in-

creasing polarization ratio with increasing incidence angle, with a larger vertical po-

larization scattering coefficient. For a surface with perfect conductivity, 6, = -ioo,

which is a reasonable assumption for the ocean surface for lower radar frequencies

(i.e., I-IF), Equations (2.9) and (2.10) simplify (Stewart, 1985):

gnll(O) - cos2 o (2.11)

gvv(O) -' 1 + sin2 0 (2.12)

Therefore, for increasing incidence angles, the horizontal polarization Bragg scat-

tering coefficient decreases in magnitude, and is more sensitive to incidence angles

relative to vertical polarization scattering coefficient except for near grazing inci-

dence where the trapped waves and shadowing become dominant.

The backscatter resonant cross-section is directly proportional to the

two-dimensional ocean wave number spectrum satisfying the Bragg resonant condi-

tion (Equation 2.7), which in turn suggests the usefulness of microwave backscatter

for probing ocean waves. If the Bragg water waves are not the dominant waves of the

ocean, higher order Doppler shifted backscatter will occur whenever the summation

of wavenumber pairs of long waves meet the Bragg resonant condition (Ilasselmann,

1966):

2kRsin 0 = ±k, + (±k2 ) (2.13)
1.
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WD = ±W1 + (±W2) (2.14)

where k, and k2 are the wave numbers of the waves. According to perturbation

mathematical constraints, the second order contribution should be smaller compared

with the first order Bragg contribution. In practice, some of these higher order

contributions representing initial manifestation of tilting and multiple scattering

can become comparable to the first order contribution or larger. Typical relative

amplitude Doppler spectra were observed by Barrick et al. (1974) using a HF

frequency Doppler radar (see Figure 2.3). The Doppler spectrum in Figure 2.3 also

shows a frequency shift of the first order Bragg lines due to advection of the waves

by currents.

80 F1 I I I
BARRICK ErAL.(1974) SHIFT DUE9.4 MHz -'- 7O

70 - CURRENTS-

FIRST-ORDER

60- BRAGG PEAK

SI[ SHIFT DUE HIGHER-
70 -T CURRENTS PEAKS

50-

" 8 40 - FIRST-ORDER HIGHER-

* BRAGG PEAK ORDER

O D I

c 1 I I I I LI

2-I 0 1 2
NORMALIZED DOPPLER FREoUENCY

Figure 2.3: Bragg phenomena in Doppler frequency domain (from Valen-
zuela, 1978).

Wind may induce surface advection drift, which will add to the Doppler

shift of the phase speed. Also, rotational (finite amplitude) effects may modify

the phase speed of short waves. At high winds as the ocean becomes rougher, the
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higher order contributions become significant, and the Doppler spectra becomes

broader. The broader Doppler spectra occur when the wind dominant waves are

longer than the Bragg waves on the ocean. When the Bragg resonant waves are

generated on longer dominant ocean waves, the mean surface for the Bragg waves

is no longer flat but undulating. For this typical ocean surface, a composite, or

two-scale hydrodynamic model is suggested in the literature.

3. Composite Surface Model

The observation that Bragg resonant theory by itself does not predict in-

creased radar backscatter in the presence of longer waves led Bass et al. (1968) and

Wright (1976) to suggest a more tractable two scale-composite surface backscatter

model. This model represents short Bragg waves riding on longer waves by ap-

proximating the ocean surface as a sum of infinite number of slightly rough patches

(Figure 2.4). The composite model predicts, therefore, the radar cross-section for a

single patch as given by (Wright, 1968; Valenzuela, 1978; Brown, 1978):
9 0/ g(0,)+ sin 6 2 2(0,)

=ai ((2ka,2k-ysin) (2.15)

where ai = sin -yi, i = cos(-y + T) cos 6, a = sin(-y + T) and -y = cos O, and T, b

are the local sea surface slopes (small angles), ghh(Oi) and gv,,(Oi) are the first order

scattering coefficients of a local patch. Uvv is computed with a similar formula, but

it is much less sensitive to variations in local facet tilts. Thus, the contribution from

all slightly rough patches over the distribution of slopes p(/z,h,) of the dominant

waves within the radar resolution cell, is given by:

H(O) = ' L ,HJ(Oi)p(tan Tl, tan b)d(tan T1)d(tan 6) (2.16)

Normally, the backscatter from a slightly rough surface modulated by

long waves is approximated including both the contribution from a specular point
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to radar

Figure 2.4: Illustration of composite surface approximation (from Stew-
art, 1985).

model and that predicted by the composite surface model (Hasselmann et al, 1985).

The tilted facets significantly modify the radar cross-section, especially for the hor-

izontally polarized radiation with a depolarized contribution (Stewart, 1985).

Towards grazing incidence the polarization ratio decreases as the sea ap-

pears rougher, a phenomenon which illuminated Wright to develop the .omposite

model. The cross-section polarization ratio as a function of incidence angle and

roughness parameter is illustrated in Figure 2.5. At grazing incidence a modified

model including a combination of composite surface and wedge scattering was sug-

gested by Kalmykov and Pustovoytenko (1976) to explain Doppler spectra from the

ocean. This combined backscatter model predicts larger backscatter and greater

Doppler shift for horizontal polarization (at grazing incidence), rather than for ver-

tical polarization.

4. Application of Composite Model to SAR

For purposes of interpreting coherent imaging observations, the actual

scattering from a moving surface like the ocean can be represented by a superposi-
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Figure 2.5: Cross-section ratio due to polarization (from Valenzuela,
1978).

tion of the specular and composite theories as described above (however, it is not

uncommon to include specular scattering in the definition of composite theories),

plus complex motion effects from a non-rigid distributed surface. The interpretation

of images from the ocean surface, is still an area of active research. Elachi (1977);

Hasselmann et al. (1985), and Alpers and Bruening (1986) have given some insight

to SAR imaging models of the ocean surface. Some of their considerations will be

described in Chapter III. D.
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III. PRINCIPAL MECHANISMS OF SAR
AND INSAR IMAGERY RELEVANT TO THE

OCEAN SURFACE

A. INTRODUCTION

In this chapter the fundamental principles of SARI imaging are briefly de-

scribed first, since the suggested interferometric technique is based on conventional

SAR. A synthetic aperture radar is an imaging sensor, with a high (two dimensional)

spatial resolution in azimuth (along track) and in range (across track) directions

(Ilarger, 1970; Ilovanessian, 1979). High azimuthal resolution is achieved by trans-

lating a coherent radar on-board a moving platform, storing the amplitude and phase

histories returned from the target, and subsequently processing the stored data to

remove known quadratic phase errors across the antenna beam. Improved range

resolution is achieved by using spread spectra techniques, such as pulse compression

or bi-phase modulation of the radar carrier frequency (Skolnik, 1980).

The range scanning is at the speed of light in air, but the azimuthal scanning

is at the speed of the carrier platform (Hasselmann et al., 1985). For processing

purposes this fact leads to substantial decoupling of the range and azimuth process-

ing. The azimuth channel is related directly to the dynamic distortions associated

with imaging of ocean surface features, because the time scales of the system and

the imaged wave fields are of the same order. Inherently, the range channel does not

have such problems. In this chapter, some fundamental parameters characterizing

SARI and INSAR operation are described.
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B. FUNDAMENTAL PARAMETERS

1. Azimuth Resolution

At any given time and range, the contributions to the radar image from

each stationary scattering point at that iange can be identified uniquely by its

Doppler shift, caused by the sensor motion. This allows the summation of different

contributions from different scattering points to produce a phase history in the

aperture synthesis.

An antenna with a real aperture D has an azimuthal coverage of (see

Figure 3.1)
AIRCRAFT
VELOCIIY V ANIENNA

V BEAMD

ALONG "file

1 RACK

-' ' - ACROSS

..... TRIACK

IILUMIAIED
PAICI4 OF
SURFACE

Figure 3.1: SAR geometry.

A,= - R (3.1)
D

where R is the radar target slant range, and A is the radar wavelength. AR., is the

real azimuth resolution with antenna of size D. The length of aperture which can

be synthesized depends on the distance the platform travels while a point scatterer

is still illuminated. The synthetic aperture for the geometry in Figure 3.1 is AR,
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and its maximum azimuth resolution for a stationary rigid point target is:

Pa.O = AR = D (3.2)

the factor of 2 enters because the effective synthetic aperture "beam-width" is half

of a real aperture. From Equation (3.2), the synthetic aperture resolution is inde-

pendent of the wavelength and range of the radar, and increases with a decrease

in the physical size of the antenna (Hovanessian, 1979; Robinson, 1984; Stewart,

1985).

2. Phase History (of stationary point target)

Since the resolution in azimuth direction is based on the local Doppler

shift due to aircraft motion, which in turn is the rate of change of phase, the phase

history is defined, which is the principle of synthetic aperture imaging radar. Con-

sider a moving SAR with velocity V as illustrated in Figure 3.2. By the time t, the

radar moved a distance L = Vt, and the range to a stationary point target changed

from R' to JRo to R1. Since the phase of the received signal is proportional to the

distance traveled, the phase of this signal will vary with time. The range R can be

written as:

R = [R + (Vt)2 ]'1 2  (3.3)

where ]o is target range of closest approach. By a Maclaurin series expansion

around t = 0 Equation (3.3) can be rewritten as:

R = 1?o + 18V2_ (VOI +.. (3.4)

Neglecting higher order terms, the phase shift of a stationary point target is (ov-

anessian, 1979):

27r (Vt) 2  
(3.5)

9 A Ro
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Figure 3.2: Top view of range to a point target as a function of aircraft
velocity (from Hovanessian, 1979).

Equation (3.5) states that the Doppler shift from a stationary target is a linear

function of time (chirp). Two additional fundamental parameters which determine

SAR performance are the processor coherent integration time T and the Doppler

bandwidth B.

3. Coherent Integration Time

The upper limit of the theoretical coherent integration time is deter-

mined by the real aperture azimuth resolution or more precisely, by the real antenna

beamwidth:
T = R-- PR (3.6)

V V

where P is the real aperture beamwidth.

4. Doppler Bandwidth

Consider the scenario depicted in Figure (3.3). The Doppler shift of a

stationary point target B is:

fB = 2V cos 0 (3.7)
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Figure 3.3: SAR geometry with respect to azimuth resolution element

(after Hovanessian, 1979).

and the Doppler shift for stationary point target A is:

2V cos(O +/3)
fA= A

Using small angle approximations for the beamwidth /f, the available Doppler band-

width is:

B =fB - fA = 2 sin 0 (3.8)

5. Time Bandwidth Product

Combining Equations (3.6) and (3.8) the time bandwidth product is:

TB = 2Rfl2 (3.9)

Equation (3.9) implies that TB >> 1, a property which allows significant simplifica-

tions in analysis where the assumption of stationary phase is allowed (Kerr, 1951).
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Figure 3.4: Azimuth image shift.

C. EFFECT OF POINT TARGET MOTION

Raney (1971) and Alpers and Bruening (1986), among others, give a clear

description of the effect of point target motion on SAR image. Following Alpers

and Bruening (1986), consider a point target with radial velocity Ur in the cross

track (range) direction as depicted in Figure 3.5. The SAR carrier is moving at V

velocity and R is the distance between the SAR antenna and the point target.

A SAR which is tuned for stationary targets, locates targets in azimuth at

zero Doppler frequency. Hence, a stationary reasonable target will be located at

right angles to the carrier path. However, for the moving target (Figure 3.4), the

zero Doppler frequency position, will be shifted in azimuth at an angle a =il

relative to a position of a stationary target. Thus the azimuth image shift of a

target with radial velocity is:

Ax V Ur (3.10)

Evidence of this shift is found in SAR imagery for moving rigid targets with velocity

component in the range direction, like ships or trains. Their images are shifted in

azimuth direction compared to their wakes or tracks. Keeping in mind fundamental

principles of SAR, the imaging of the moving ocean surface is discussed next.
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Figure 3.5: Radar hydrodynamic and straining modulation transfer func-
tion and SAR velocity bunching azimuthal transfer function as a function
of azimuth angle (from Alpers et al., 1981).

D. APPLICATIONS TO IMAGING OF MOVING
OCEAN SURFACE

As described in section B of this chapter, microwave scattering from the ocean

surface for conventional radars is modeled to an acceptable extent. However, when

dcaling with imaging radars, two new parameters improving the radar performance

and in a way complicating the backscattering process are introduced:

* High spatial resolution (order of tens of meters).

* Doppler information for image generation.

23



The full implication of these two additional factors on the generation of ocean sur-

face imagery is still in active research (Elachi and Brown, 1977; Kasilingham and

Shemdin, 1988).

For a stationary surface, a SAR image is a spatial two-dimensional presenta-

tion of the variability of the local coherent backscatter cross section of the surface *

(Elachi and Brown, 1977). For the ocean surface which is nonstationary, SAR image

is a map of the covariance of complex reflectivity (Hasselmann et al., 1985; Kasil-

ingham and Shemdin, 1988). Due to the difficulties in interpreting SAR imagery

from the ocean surface, two major resolvable long wave imaging mechanism are

still recognized, though they represent conflicting view points. One theory is the

velocity bunching approach, which is based on the coherent particle orbital velocity

of the dominant wavefield (Elachi and Brown, 1977; Alpers and Rufenach, 1979;

Swift and Wilson, 1979; Keller and Wright, 1983; Hasselmann et al., 1985; Alpers

and Bruening, 1986). The other theory is the distributed surface theory which pre-

dicts that the SAR image is composed of amplitude modulation due to straining of

short backscattering waves and a phase modulation due to tilting by long waves.

It assumes that the ocean surface is correlated over distances larger than the SAR

intrinsic resolution. (Jain, 1978; Harger, 1986).

1. Velocity Bunching Imaging Mechanism

The velocity bunching theory is based on the fundamental assumption

that the scattering surface can be divided into individual and uncorrelated scattering

elements whose dimensions are small compared to the SAR resolution cell (-. 10-20

m) and large compared to the radar wavelength (5-7 times). Each scattering element

(facet) is associated with the local orbital velocity and acceleration of the long

underlying waves. This facet motion gives rise to alternating concentrating and

spreading of the position of the scattering facets causing amplitude modulation
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phase locked to the dominant waves. Following Vaclion et al. (1988), the radial

line of sight velocities of a monochromatic long wave associated with a scattering

element is given by

U(x,t) = wA(sin 2-y sin2 € + cos2 -y)'/sin(k . x - wt + ig-'(tg7cos¢)) (3.11)

where € is the angle between the aircraft velocity vector and the wavenumber vector

k on the ocean surface plane, and A is the wave amplitude. For swell with a

period much longer than tht SAR integration time, a scattering element originally

at azimuthal coordinate x will be shifted to (Raney, 1988)

x/= x + c sin(kcos Ox) (3.12)

A constant phase term was not included in Equation (3.12). c' is the

fractional amplitude of the azimuthal image shift of a scattering element and governs

the mapping character. c' is defined as (Alpers, 1983)

C' L *A(sin (sin) /  (3.13)

Under certain situations the processed SAR image can appear with

bright intensity patterns which have twice the spatial period of the actual long

wave on the ocean, which can confuse the interpretation of ocean wave analysis.

This critical situation is quantified by the parameter c and becomes critical for

' L/27r cos € (3.14)

for c' > L/27r cos € the scattering element redistribution becomes many-to-one and

results in two bright high reflectivity bands associated with one spatial period of

the actual ocean wave. For c' < L/27r cos 0, the scattering element redistribution

is oe to one and results in a single unambiguous high reflectivity band related to
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each spatial period of the actual ocean wave. The parameter c'r is defined by Alpers

and Rufenach (1979) as a measure of transition between linear and nonlinear SAR

imaging (see Figure 3.4). In terms of the significant ocean wave height, the critical

imaging occurs when

H = / V (3.15)
o = g1/2R cos q(sin2 y sin2 q + cos 2 1)1/2

In the above velocity bunching model the ocean surface was assumed commonly

(Vachon et al., 1988) to be invariant in its structure and scatter dynamics during

the SAR image formation period (coherent integration time). The integration time is

considered to be much less than the dominant imaged, wave period. This might not

be completely true, especially for airborne SAR. Kasilingam and Shemdin (1988)

and others suggest that the noncoherent scene motion (phase velocity) over the

image formation period should be explicitly considered in the velocity bunching

model.

Additional motion effects of the scattering elements that are sensed co-

herently by the SAR. radar is the dominant wave acceleration that corresponds to

the orbital motion and tile scattering element decorrelation time scale. Together

with the translation of wave patterns during the integration time which enters the

image noncoherently, these additional ocean surface dynamics blurs the image. The

scene coherence time effect is discussed in detail in Chapter IV. The acceleration

defocus is discussed in Chapter VIII.

2. Noncoherent Motion Effects

The translation of mean wave patterns of reflectivity during the course

of integration time enters noncoherently into the image in two ways: through distor-

tion in wave length and direction known as scanning distortion and through image
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smearing (defocus), also known as look misregistration for a multilook imaging sys-

tem.

For an monochromatic imaged swell, the noncoherent smearing can be

corrected by adjusting the processor focus perturbation to one half the projected

wave phase velocity. This operation will enhance the SAR ocean wave image (Jain

and Shemdin, 1983).

Scanning distortion is associated with imaging a moving scene from a

moving sensor. The along track motion of the scattering cross-section pattern mov-

ing at the long wave phase velocity distorts the azimuthal imaged wavenumber.

This noncoherent distortion is not related to the coherent phase history of individ-

ual scattering elements. If the dominant imaged wave is propagating only in the

cross-track direction, only a distortion in wave direction will be practically mani-

fested. The degree of distortion in either wave orientation is proportional to the

ratio between the wave phase velocity and platform velocity C/V. The distorted

azimuthal wavenumber is taken to be

k az = k, C k-  (3.16)V

The estimation of scanning distortion from two opposite flights provides

an opportunity to resolve the ambiguity of 1800 in propagation direction that is

inherent to remote sensors.

3. SAR Two-Scale Backscattering Model

Hasselmann et al. (1985) gives a rather complete theory for Bragg scat-

tering using the two scale approach in a review paper. They distinguish between

two types of two-scale models:

" The electromagnetic-hydrodynamic two-scale model.
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9 SAR two-scale model.

The basic difference between these models is the scale of separation between the two

wave regimes. In both models, the wave field is treated statistically for wave numbers

larger than the scale of separation and deterministically for lower wave numbers. In

the electromagnetic-hydrodynamic two-scale model, the scale of separation, kemh, is

defined by the expansion requirements of electromagnetic hydrodynamic theory. The

scale of separation has to be chosen one order of magnitude smaller than the Bragg

backscattering wavenumber, kb. On the other hand in the SAR two-scale model,

the scale of separation, k,,r, is determined by the inverse of SAR resolution scale.

The SAR two-scale imaging model is based on the physics of the more fundamental

two-scale electromagnetic-hydrodynamic model. Typically the kemih is one order of

magnitude larger than kar (see Chapter IV).

4. SAR Mapping Transfer Function

In addition to the Doppler induced modulations (velocity bunching) typ-

ical for coherent imaging radars, real radar cross-section modulation tilt and hydro-

dynamic modulation are commonly used to describe ocean surface imaging. These

imaging mechanisms govern the imaging process for waves propagating close to range

(cross-track) direction. In this orientation the velocity bunching is nil (see Figure

3.4). For moderate sea states the mapping of the wavefield might be described by a

linear transfer function

RSAR = R tilt + I d + Rbunchin g  (3.17)

Usually this situation does not occur, since the mapping is non-linear and the super-

position principle does not hold, i.e., the image spectrum is distorted from the actual

wavefield. Electromagnetic interaction, or tilt modulation of backscatter radar cross

section, is caused by the actual variation of local incidence angle. Hydrodynamic
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modulation of backscatter radar cross section is caused by the interaction of the

Bragg waves with the long waves on which they are superimposed. The long wave

orbital velocity strains the surface producing areas of current convergence and di-

vergence, resulting in hydrodynamic modulation of the amplitude and wavenumber

of the Bragg waves. The surfate displacement distorts the air flow over the sur-

face, causing short waves to grow at varying rates (modulated wind stress) for a

given wind speed, depending on their relative position on the long wave (private

communication, Valenzuela, 1989).

E. INTERFEROMETRIC SAR (INSAR)

1. Principle of Imaging of Ocean Surface Velocity Fields

Interferometric synthetic aperture radar (INSAR) is a relatively new

method for measuring ocean surface wave fields, spectra, and currents. Unlike

conventional SAR, INSAR has the potential for measuring unambiguously virtual

surface velocity fields. INSAR combines large coverage with high nominal spatial

resolution (,- 12 m in this work), good sensitivity and appears suitable for both

airborne and probably satellite implementation. The airborne INSAR technique

has been developed at Jet Propulsion Laboratories (JPL) by Goldstein and Zebker

(1987), and was installed first on a NASA CV990 aircraft and recently on a DC-8

for evaluation experiments.

Following Goldstein and Zebker (1987), the basic technique consists of

aligning two antennas along the radar flight path. Pulses are transmitted from the

rear antenna and are received simultaneously by both antennas. The resulting sig-

nals are converted, separately, into two complex images in the conventional manner

for SAR. Any line of sight motion of the identical imaged surface (resolution cell)

observed by both antennas is translated into phase difference when these resolution

29



cells are combined interferometrically. This phase difference, cc, is proportional to

the virtual measured radian Doppler shift, AWD, that occurs in the time it takes for

the rear antenna to move to a place of symmetry with respect to the front antenna

(see Figure 4.2), where

WD = 2k U (3.18)

and

a= wD At = r B Ur (3.19)
A V

where B is the baseline separation between antennas, V is the aircraft velocity, Ur is

the radial ., mponent of ocean surface motion and A is the radar wavelength. Equa-

tion (3.19) does not consider speckle contribution from the random ocean surface

and/or from the measurement and/or processing system errors. These limitations

are reviewed briefly in the next section and further discussed in the next chapter.

The resulting interferogram is a complex image with phase which is the

difference of the two original SAR image phases and magnitude which is the product

of the two original magnitudes. Practically, the phase and amplitude images are

processed into two separate images. For more details see Chapter IV. B.

2. INSAR Limitations

The limitations of INSAR for spatial imaging of ocean surface velocity

structure may be categorized into two types: 1) system dependent 2) the degree

of coherency of the imaged ocean scene within the inherent time measurement of

INSAR.

a. Platform Stability

In order to compare the phases of a rezel (resolution cell) which is

observed at two different times, the viewing aspects must be nearly the same. This

might not be fulfilled due to lack of accurate knowledge of relative antenna location,
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which in turn will result in non-zero velocities and acceleration in the radial direction

(antenna pattern disimilarity). For Equation (3.19) to extract accurately the radial

component of ocean surface motion, it is assumed that the two antennas are collinear

with the radar motion. Aircraft pitch and yaw will add phase difference between

corresponding pixels, since one antenna will be closer in range to the observed

resolution cell. The radar cannot distinguish between a slight sideways drift of

its carrier and the radial motion of the ocean surface. This contamination can be

compensated using readouts of aircraft inertial navigation system (INS), or to a

reasonable degree, by inclusion of land in the scene to give absolute reference, or

a combination of the two. The INS provides aircraft pitch, yaw, pitch and yaw

rates, horizontal and vertical velocity, and other flight parameters. With these

data, the expected error phase shifts from a stationary scene can be computed and

compensated accordingly. A yaw error of 0.01 degrees will yield an error in current

estimates of 4 cm s- ' (Goldstein and Zebker, 1987).

b. Backscattering Surface Roughness Coherence

The interferometric technique requires comparison of two samples

of a moving surface element (resolution cell) in a time interval At = B/2V required

for the rear antenna to move (the mean aircraft speed is 220 m/s) half the distance

between the antennas B/2 = 9.9 m. It is assumed that in this time increment, At

= 0.041 s, the surface wave field as a whole in the resolution cell ('- 6 + 8x 12 m)

does not decay or grow, i.e., the scattering patch is nearly stationary. A number of

hydrodynamic processes affect the lifetime of Bragg resonant waves. Among these

are viscous dissipation and their response (relaxation) to external forcing, such as

wind, currents, resonant nonlinear interactions, straining by orbital velocity of long

waves, and turbulence. The viscous half life time decay of a 10 cm wave is 63 s. But

the lifetime of wind waves are controlled by relaxation processes, which are inversely
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proportional to the wind growth rate. Therefore, as the wind speed increases, the

relaxation time decreases. For 10 cm waves, the relaxation time is about two seconds

for 6 m/s winds (Valenzuela and Wright, 1976). Hence, for moderate sea conditions

the ripples should remain nearly constant within the time interval used to measure

the phase difference. However, the spread of orbital velocities in the radial direction

within the resolution cell will also decorrelate the backscatter complex signal causing

an ambiguity of the phase as the ocean wave height changes. An initial attempt to

study the limitations of the INSAR technique due to finite scene coherence time is

made in the next chapter.
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IV. THEORETICAL ANALYSIS OF INSAR IN
IMAGING OCEAN SURFACE DYNAMICS

A. INTRODUCTION

In Chapter III. D, the known physical causes for the ocean surface decorre-

lation were described. The chapter ended with a recommendation that the velocity

spread of the scattering elements due to local orbital velocity of the subresolution

scale waves should be further analyzed. In this section for the first time, a prelim-

inary theoretical model for an airborne INSAR imaging the ocean surface is given.

This model is based on the accepted SAR theory of imaging the moving, nonrigid,

distributed ocean surface (e.g., Alpers and Rufenach, 1979: Swift and Wilson, 1979;

Valenzuela, 1980; Raney, 1981; Jain, .19 81; Rotheram, 1983; Plant a'Id Keller, 1983;

Tucker, 1985; Hasselmann et al., 1985; Monaldo and Lyzenga, 1986). It is shown

that the limited ocean surface temporal coherency due to the velocity spread of

SAR subresolution waves might limit the capability of INSAR in providing virtually

instantaneous high resolution snapshots of near ocean surface velocity patterns.

In the analysis given below the SAR two-scale model is assumed implicitly.

This model was introduced first by Tucker (1985) who modified the earlier two-scale

hydrodynamic model (Wright, 1968, Valenzuela, 1978). The model divides the ocean

surface waves into two scales, a subresolution short scale with wave numbers greater

than the SAR azimuthal cutoff wavenumber which are treated statistically, and a

long scale with wave numbers shorter than this wavenumber which are treated deter-

ministically (see Chapter III. D). It is found that the motions due to subresolution

waves produce an azimuthal smearing which can be represented by a Gaussian low

pass filter acting on the azimuthal component of wavenumber in the image (Tucker,
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1985). This degradation in azimuth resolution (smearing) is inversely proportional

to the scene coherence time and determines the nominal azimuth resolution for SAR

and INSAR. The scene coherence time for L-band radar will be estimated based on

the Pierson-Moskowitz ocean spectrum (350-600 msec) and the backscatter reflec-

tivity of simultaneous SAR and INSAR observations from the Marina experiment

on September 8, 1989 (- 110 msec).

A major accepted simplification of SAR imaging theory, both for mean image

and speckle statistics, follows from the hypothesis that the complex reflectivities at

different points on the sea surface are uncorrelated. The spatial separation of the

different scattering elements (facets) should be large in comparison with the Bragg

wavelength, but still small in comparison with the SAR resolution scale. The surface

reflectivity may therefore be regarded as spatially white (after Hasselmann et al.,

1985). This assumption will be used in the dirivation of the preliminary model of

the ocean surface cross-covariance of complex reflectivity for INSAR.

B. INSAR :MAGING OF THE OCEAN

The complex radar return signal at time t is given by (Kasilingam and

Shemdin, 1988):

S(t) = f. L' r(x, t)f(t - 2Ro/c)A(x - Vt, y)dxdy (4.1)

with x = x(x, y), see Figure 4.1.

where r(x, t) is the time variant ocean surface Bragg and specular reflectivity, f(t -

2Ro/c) is the radar pulse function and A(x - Vt, y) is the antenna pattern. We shall

ignore the compression effect in the pulse function since the time variation of the

returned signal within the pulse duraf ion (few microseconds) is negligible. The range

dependence of the pulse function introduces a quadratic phase term. For simplicity

assume that the pulse rate is high enough to fulfill the sampling criteria in azimuth
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and a continuous signal is transmitted. Therefore, only a quadratic phase term will

be introduced by the pulse function. An illustration of an airborne SAR imaging

the ocean surface is depicted in Figure 4.1 where k is the radar wave number in

the viewing direction, V is the platform velocity and Ro is the initial aircraft target

"- slant range (see Figure 4.1).

k

Figure 4.1: An artistic illustration of SAR geometry in imaging the ocean.

The recorded received signals are processed by convolving the records with a

matched filter, resulting in the SAR image. For a focused system (see Chapter III)
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with no focusing adjustments for wave pattern motions, the matched filter impulse

response is taken to be

h(x - Vt) = exp [ik(x - Vt)2/RO] (4.2)

The complex conventional SAR image of a pixel from a single antenna is

therefore obtained by convolving S(t) given by Equation (4.1) with the matched

filter (Equation (4.2)):

ii(t = X/V) = f0 S(t-r)h(r)dr = Lo O r(x,t -r)

• exp [-ik(x - V(t - r))2 Ro] A(x - V(t -,r))

• exp [ik(x - Vr)/Ro] dx dr (4.3)

where the first exponential term on the right hand side of Equation (4.3) is the

quadratic phase history for a stationary target. Similarly, the corresponding complex

pixel image for the second antenna taken at a slightly different time At = B/2V,

which is the time required for the rear antenna to move to a place of symmetry with

respect to the forward antenna, is given by:

i2(t + B/2V) = L S(t + B/2V - r')h((')dr'

-Lfrx, t +B2V7')

•exp [ik(x - V(t + B/2V- r'))2/R]A(x - V(t + B/2V- r'))

.exp [ik(x - VrT)21R] dx' dr' (4.4)

Equations (4.3), and (4.4) represent complex SAR images of the ocean surface

reflectivity of the same pixel. The goal is to extract reliably the mean Doppler shift

caused by the first order ocean surface motion. This phase information is included

entirely in the cross-covariance of the complex surface radar reflectivity (r l r2) (see
°I.

Equation (4.6) below). From a statistical analysis point of view, the averages of
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rr 2 (denoted by brackets) are defined for an infinite ensemble of different surfaces.

Practically, the averages are estimated over a finite surface region for a finite time.

By taking the cross-covariance of the corresponding complex images from the two

antennas, the phase difference, which is proportional to the virtual surface velocities,

is obtained. The interferometric operation is therefore given by:

Q(x) = (i1(t = x/V) i;(t + B/2V)) (4.5)

Substituting Equations (4.3), (4.4) into (4.5) yields:

Q W 1x) =0 L"7L 0  r, x, t -7r)r;*(x', t + B/2V - Ir')
.exp [-ik(x - V(t - r))2/Ro] A(x - V(t - r)) exp [ik(x - Vr)2/Ro]

•exp [ik(x' - V(t + B/2V - r')) AWx - V(t + B/2V - T'))

exp [ik(x' - VT') 2/Ro] dx dx' drdr' (4.6)

The first term on the right hand side of Equation (4.6) is the covariance of

complex reflectivity of the ocean surface, which is defined by the second moment

statistics of the ocean surface backscattered signal. As noted in the introduction

to this section, the averaged SAR mean image is directly related to these statistics,

namely, the covariance of complex reflectivity of the ocean surface. Figure 4.2

illustrates the geometry of INSAR.

The extraction of the phase information from the backscattered moving sur-

face by using Equation (4.5) is the essence of INSAR in imaging the ocean. This is

fundamentally different from the SAR image intensity, given by:

(Iii N) = (iliai) (4.7)

Equation (4.7) clearly illustrates the loss of the phase information in the SAR image,

which is retained in Equations (4.5), (4.6) for INSAR.
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Figure 4.2: Geometry of INSAR: a) top view, b) perspective view shows
the change in distance of the resolution element due to wave motion in
the time it takes for the rear antenna to more to a symmetric position
with respect to the front antenna.

The SAR System Transfer Function (STF) is not considered at the present

stage. It is assumed that the SAR is a perfect instrument that maps the covariance

of complex reflectivity into a two-dimensional complex image. The interest here is to

investigate the feasibility of INSAR in imaging the moving ocean surface. Therefore,

the interferometric ope'ation described by Equation (4.5) can be replaced by the

cross-covariance of complex reflectivity of an imaged ocean scene sensed by the two

INSAR antennas with a time difference At = B/2V.

C. DERIVATION OF THE CROSS COVARIANCE OF
THE COMPLEX RADAR REFLECTIVITY FOR
INSAR

The complex radar reflectivity for an individual scattering element moving

with velocity U(x, t) is given by:

r(x, t) = ro(x, t) exp [2ik. U(x, t) t] (4.8)
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where ro(x, t) is the instantaneous complex reflectivity of an ocean surface scattering

element within the SAR resolution cell. As noted earlier, these scattering elements

(facets) are assumed to be large relatively to the resonant backscattering Bragg

waves (5-10 times), but much smaller than the SAR resolution cell (rezel).

The cross-covariance of complex reflectivity of a time dependent backscat-

tering surface f.:om corresponding rezels as imaged by the two antennas is given

by:

(r,(x,t) r(x',')) = (roi(x,t)exp [2ik. U(x,t) tI r 2 x',t')

.exp [-2ik. U(x', t') t'])(x - x') ao(x, t) (4.9)

where t' = t + At = t + B/2V and b(x - x') represents the white spatial distribution

of the scattering elements within the SAR resolution cell (Hasselmann et al., 1985).

a0(x, t) is the variance of r and represents the modulation of the covariance of

short wave reflectivity by the slow time varying long wave tilt and hydrodynamic

modulation. a0 (x, t) represents the radar cross-section as imaged by conventional

SAR and real aperture radars.

It, Equation (4.9), the t -ne lag At represents only the constant time interval

required for INSAR measurement. The additional time difference of r - r' (see

Equation (4.6)), which is of the order of the SAR integration time, is not considered

here explicitly (except when determining the effective azimuth resolution). This

time difference is not relevant for INSAR operation once the two corresponding

complex SAR images are formed. For more detail on the covariance function for

SAR, see for instance Hasselmann et al. (1985). The discussion here (Equation

(4.9)) is based on analyzing the second order statistics of the fluctuating reflectivity

represented by the ensemble term in Equation (4.9) on the time scale relevant for

INSARL (.t = B/2V).
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The SAR two-scale model is invoked resulting in the ocean surface velocities

decomposed as

U(x, t) = Uo(x, t) + U'(x, t) (4.10)

where Uo(x, t) is the long scale velocity and U'(x, t) is the subresolution short scale

velocity. Uo(x, t) can be extracted by INSAR if the temporal variability of the

backscattering surface, defined by the radar scene coherence time, is small relative

to the time difference At = B/2V required to obtain the phase image of INSAR

which is directly proportional to the mean radial surface velocity.

The limits of the temporal decorrelation of the ocean surface on INSAR in

obtaining the surface velocity UO(x, t), are now addressed. The variation of the

ocean surface velocity U(x, t) in the time At = B/2V can be described by using

the Taylor expansion

aU(x' t)B2V4.1U(x,t + B/2V) = U(x,t) + at B/2V (4.11)

Substituting Equations (4.10) and (4.11) into Equation (4.9) and factoring out the

deterministic long scale contributions yields

(r,(x,t) r2(x,i + B/2V)) = exp[-2ik. Uo(x,t) B/2V]
exp[1-2ik. -2Uo (x, t) B B

.(roI(Xt) r 2 (Xlt+ B/2V) (4.12)

2 (x, t OU'(xt) B

Equation (4.12) represents the fundamental basis of the present study in evaluating

the feasibility of INSAR in imaging the ocean surface. It combines the relevant

physics of the backscattering surface as a function of INSAR physical configuration.
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The second exponential term on the right hand side of Equation (4.12) can

be neglected if
1 O-0 (t + B/2V) < 1 (4.13)

where t is of the order of the SAR integration time. Since t > B/2V and the

absolute value of the acceleration of the dominant wave is given by OUo/Ot = wUo,

inequality (4.13) can be rewritten as:

wt < 1 (4.14)

or

T > 21rt (4.15)

where T is the period of the imaged dominant wave. Equation (4.15) specifies the

limiting condition for the integration time when imaging dominant waves by SAR

and INSAR. The effective processing integration time for mean incidence angles

(300) is almost 1.7 sec. In practice, the scene coherence for a given radar wavelength

dictates the effective integration time, which is substantially less than 1 sec (e.g.,

Tucker, 1985). This crucial issue is discussed in the next two sections.

The first term on the right hand side of Equation (4.12) is the required phase

shift to be determined by INSAR. It represents the first order ocean surface radial

velocities. Uo is a vector sum of

Uo = UCp + UOB + UCR + UAR (4.16)

The individual contributions are identified as:

• UCp phase velocity of the backscattering resonant Bragg waves;

* UOB mean orbital velocities of waves substantially longer than the character-

istic dimension of the resolution cell.
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* UCR material velocity of any near surface currents underlying the backscat-

tering Bragg waves.

V UAR aircraft attitude error velocity due to yaw and pitch bias of the INSAR

antennas (see Chapter III. B).

Practically, the ensemble average factor in Equation (4.12) expresses the ad-

ditional fading in the cross covariance of complex reflectivity due to the slight time

difference At when the same scene is imaged separately with a small time delay

by the two INSAR antennas. This phenomena is defined here as c(x, t, At). These

modifications in Equations (4.13), (4.15) substituted into Equation (4.12) yield:

(r, (x, t) r;(x, t + B/2V)) = exp [-2ik. Uo(x, t) BI2V] c(x, t, B/2V)ao(x, t) (4.17)

Both are shown to be quantified as a function of the finite scene coherence

time. c(x, t, At) can be rewritten as (see Equation (4.12) (4.17)):

c(x,t,B/2V) = exp [2i-k. (U'(xt) + OU'(Xt) + c'(x,t,B/2V)

(4.18)

with

c'(x,t,B/2V) = (ro1(x, t) r02 (x, t + B/2V)) (4.19)

where c(x, t, B/2V) is the temporal cross-correlation function value for the INSAR

time difference At = B/2V. The phase term in Equation (4.17) can be rewritten in

terms of radian Doppler frequency

w., = 2k . U'(x,t) (4.20)

where w, is the perturbation in radian Doppler shift associated with the velocity

spread of modulating the subresolution scale wave scattering elements. Substituting

42



Equation (4.20) into Equation (4.18) yields:

c(x,t,B/2V) = exp B (w,,(t) + Ow. (t) t)] c'(x,t,B/2V) (4.21)

where 0. 8/Ot (B/2V)2, which is O(10-2), is neglected.

In contrast with SAR image intensity which ignores phase information (Equa-

tion (4.7)), INSAR imagery represents the virtual phase difference between the two

corresponding SAR images. Therefore, the present model (Equations (4.14-4.21))

takes into account additional complex terms which were not considered explicitly in

SAR models. We shall further concentrate in evaluating the complex disturbance

to INSAR in sensing ocean surface velocities introduced by c(x, t, At). This dis-

turbance includes cross section attenuation and additive phase noise, both caused

by the subresolution intermediate waves modulating randomly the backscattering

elements (facets). The finite temporal coherence of the ocean scene is of special im-

portance since it defines the maximum coherent radar integration time for a given

radar wavelength, and therefore the maximum azimuth resolution achievable. In the

p. esent study, the effect of the finite scene coherence in the time interval (B/2V)

required to obtain the interferometric information based on the corresponding inte-

grated SAR images from the two antennas is discussed.

When considering the radar scene coherence time, two time scales should be

looked at:

* The decorrelation time of an individual facet within the SAR resolution cell.

This fading in the mean complex reflectivity can be described by a temporal

decorrelation function.

# Intrinsic coherence time in which the Bragg waves of a single scattering el-

ement (facet) preserve their structure. It is assumed that this time scale is
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long compared with the coherent integration time (Hass., 1985, Vachon et al.,

1988).

The temporal correlation function is the inverse Fourier transform of the

reflectivity variance Doppler spectrum. Based on theory (e.g., Tucker, 1985) and

the TOWARD experiment (1984), it can be assumed that this Doppler broadening

of short wave reflectivity has a Gaussian shape. After removing the mean Doppler

shift due to long wave and current velocities, the velocity power spectrum of the

short wave reflectivity from a given pixel is

P(w) = L (roI(t) r02(t + r)) exp[-iwr]dr = Poexp [-w°,/2a.], (4.22)

where a, is half Doppler bandwidth of P(w).

The inverse Fourier transform of Equation (4.22) yields the temporal cross-

correlation function of short wave reflectivity at a given point.

c'(r) = T P(w) exp [iwr] do (4.23)

Substituting Equation (4.22) into Equation (4.23) yields

c'(r) = ex [w/2o,,,] exp [iwr dw, (4.24)c'('r) = /f exp

where w = w3o.

Performing the integration in Equation (4.24) renders

_________. P 22 0"aP0  r_22
C'(") = 2 exp 'T /2] - V-7r -ep _,r/2] (4.25)

The standard deviation o of the Doppler broadening of short wave reflec-

tivity represents the inverse of the correlation time of the subresolution scattering

elements (facets), namely, the finite scene coherence time.

_= = 1 (4.26)
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Substituting Equations (4.25) and (4.26) into Equation (4.21) yields

c(x, t,r) = PO exp [- 2c] exp rir ( o + t (4.27)

where PO = a,'Po(27r)- 1/ 2 and r = B/2V.

The phase term in Equation (4.27) expresses the Doppler spread of the scat-

tering element (facet) bandwidth, which is assumed to be the same for all facets.

Thus
w,. + - O(Aw) = 2r (4.28)

Substituting Equation (4.28) into Equation (4.27) yields

c(x,t,r) ;, PO exp - 1 exp [!,3T] (4.29)

Equation (4.29) represents explicitly the previously mentioned complex dis-

turbance to INSAR remotely sensing the ocean surface. Substituting Equation

(4.29) into Equation (4.17) yields the explicit expression of the cross-covariance of

complex reflectivity for SAR interferometry.

(r, (x, t) r(x, t, At)) =a(x, t) exp [2At]

*exp tAt2 -- ,I exp IJ~Ift At] (4.30

where At = B/2V. Equation (4.30) illustrates the sensitivity in measuring the line

of sight velocity component Uo of an unsteady rough ocean surface. It is shown

that the key limiting parameter is the ratio between the inherent interferometric

time delay (At = B/2V) and the scene coherence time r, which is analyzed next.

The first phase term in Equation (4.30) represents the additive phase noise to

the mean surface velocity Uo, which is attempted to be measured by INSAR. This

noise term is required to be small relative to the mean phase term. This implies

12k.UoAtI >27rAt[ (4.31)
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which results in
'". > A (4.32)

For the NASA/JPL DC-8 airborne configuration, the range of measurable velocities

U0 is 11.25 m/s and for the L-band radar wavelength of A = 24 cm, Equation

(4.32) indicates that the scene coherence time r, should be at least 0.1 sec for the

additive phase noise term to be neglected. The known observed estimates of the

scene coherence time for L-band radar are equal and smaller than the order of 102

msec (Lyzenga and Shuchman, 1983, Kasilingam and Shemdin, 1988).

Next to be examined is the attenuation of the radar cross-section caused by

the slightly different time in imaging a given scene by the two physically separated

INSAR antennas. This attenuation is represented by the second exponential in

Equation (4.30). The radar cross-section for INSAR can be expressed as:

a'(x,t, At) = ao(x,t)exp(-At 2/2r2,) (4.33)

In order to extract the phase information representing the surface velocity

(last term on RHS of Equation (4.30)), one needs a sufficient signal o'(x, t, At)

above the noise level. A 3 dB attenuation of the cross-covariance 'signal' is allowed,

ensuring accurate measurements of the backscattering surface velocity. The required

scene coherence time r in Equation (4.30) is taken to be

B 1
- 2V (2 In 2)1/2 (4.34)

Once r, is known, the upper limit on At = B/2V is defined, which in turn prescribes

the necessary INSAR set up. Conversely, for a given INSAR set up the minimum

allowable scene coherence time is determined. For the DC-8 INSAR configuration

(B = 19.8 m, platform velocity V ; 200 m/s), using criterion (4.34) yields the

minimum required scene coherence time r, = 20 msec. Combining the phase and
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amplitude constraints on the radar scene coherence time, the temporal correlation

of the short wave reflectivity should be substantially greater than 100 msec for the

given INSAR system.

Finally, the model can estimate the range of variability of the complex re-

flectivity within the inherent INSAR measurement time, which will still allow the

extraction of ocean surface resolvable motion with minimum contamination.

D. ESTIMATION OF SCENE COHERENCE TIME

The next step in the study is to estimate the actual scene coherence time for

an L-band imaging radar using two different approaches:

* Theoretically, assuming the Pierson Moskowitz ocean spectrum.

* Experimentally, using for the first time simultaneously SAR and INSAR imag-

ing records.

1. Estimation of Scene Coherence Time Based on
Pierson-Moskowitz Spectrum

The finite scene coherence time may be one of the most important factors

in constraining SAR's ability to image azimuthally traveling waves (see Section IV.

B). In this section, the analysis will follow recent attempts to quantify this parameter

(see e.g., Tucker, 1985b, Alpers and Bruening, 1986, Vachon et al., 1988) using the

Pierson-Moskowitz ocean spectrum for fully arisen sea. Kasilingam and Shemdin

(1988) point out the uncertainty in the validity of this approach, which might lead to

differences by order of magnitudes in estimating the scene coherence time -r. Due to

the complexity of the temporal ocean surface decorrelation r,, the theory associated

with the ocean scattering motion effects is still under extensive research. Owing to

the lack of experimental evidence and more profound theoretical understanding of

the small scale roughness of the sea surface, this approach still remains acceptable.

47



The classical approach is to relate the azimuth image smear

(6(X)2)1/2 (which is inversely proportional to the scene coherence time), to the rms

facet surface velocities (U'2 )1 / 2 caused by the random material velocities of subres-

olution scale waves (see Equation 4.20).

(b(X) 2)11 2 = (U, 2) 1/2R/V (4.35)

where (U, 2)1/2 is the radial component of (U' 2)1/2.

The shape of the Doppler broadening spectrum associated with the ran-

dom facet velocities U' is assumed to be Gaussian (see Equation (4.22)), resulting

in a SAR azimuthal imaging transfer function with a low-pass filter character. The

bandwidth of this filter is inversely proportional to the decorrelation time scale,

which is interpreted as the scene coherence time. In the wave number domain, the

width of this filter (transfer function) is inversely proportional to the azimuthal im-

age smear. It is important to note that the loss of resolution due to finite scene

coherence time is not a defocusing effect, and is therefore not recoverable by focus

adjustment in the processing or integration time setting (see Chapter III).

Based on the relation between the scene coherence time and rms surface

velocity (U'2)1/2 spread, the subresolution velocity spread is first estimated. (U'2) 1/ 2

may be computed by integrating the orbital velocity power spectrum between the

appropriate wave frequencies

(Ur2) - w2 S,(w) f 2(_,) dw, (4.36)

where S.(w) is the omnidirectional surface elevation frequency power spectrum and

f(y) is the geometric function

f 1Y) Jr/2 (sin 2 , sin 20 + cos 2 Y)1/2dO (4.37)
= J J-i/2
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where 0 is the angle between the wave train and the aircraft attitude and -Y is the

incidence viewing angle (Figure 4.1). The geometric function f(Y) represents the

projection of the moving scene in the radial viewing direction. f(Y) is always smaller

than 1.

A rather crude assumption is next made about the ocean wave spectrum

in calculating (U 2)1/ 2, which is in fact sensitive to local sea conditions. In the

absence of relevant experimental data, it is assumed that the ocean wave spectrum

for a fully arisen sea can be described by a Pierson-Moskowitz spectrum (e.g., Alpers

and Bruening, 1986, Tucker, 1985b). Substituting the Pierson-Moskowitz spectrum

into Equation (4.36) yields:

(U12) = W2 2 w exp5 [_#(glu,)I] f2(-y)dW (.8

where a = 8.1 x 10- ' is the Phillips constant, P = 0.74, and U, is the wind speed

at a height of 19.5 m.

After integration,

(U:.) = - /U erf [W1 (Uw)-] (4.39)

with p = (#)112g2 = 82.78 m2 sec- 2 .

The lower limit of integration is associated with the shortest resolvable

ocean wavelength 0 (10 m) and is determined by the Nyquist criterion. The upper

limit is determined by the fundamental subresolution scattering elements (facet)

with size of the order of Bragg wavelength (,-, 0.2 m) which can be replaced for

computational convenience by w2 -; oo with a small error.

The lower limit is controversial since the actual SAR (and INSAR) az-

imuth resolution is not known a priori, being a function of the scene coherence

time. A few choices based on different physical considerations will be discussed
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below. The lower integration limit w, in Equation (4.39) is replaced by a cutoff

resolvable wavelength L, using the dispersion relation for water waves,

W1 = (27rg/L)/ 2  (4.40)

Since the shortest resolvable wavelength is 0 (10 m), the surface tension effects are

neglected and only gravity waves are considered. By inserting the integration limits

into Equation (4.39), it is found

(U2)= ~)(~ 11 u~erf [ U'() 2  Qy (4.41)

with /i' = u/g27r = 1.35 m sec - 2. For strong winds 1'Li/U2 < 1, the radial velocity

spread from Equation (4.41) simplifies to:

(u/2)1)2 = [a L] (-Y) (4.42)

which is independent of the sea-state. For weak wind speeds 1 'L1/U2 > 1 and

Equation (4.41) simplifies to:

(u/2)1/2 - 1/2U f) (4.43)

Surprisingly, the rms velocity spread for weak winds, Equation (4.43), is indepen-

dent of the cutoff wavelength LI, which is determined in this case mainly by the

SAR system. This wavelength represents the scale limit of waves which are treated

deterministically (L > L1) and waves which are treated statistically (L < L1). This

statistical region is of interest since the unresolved wave (L < LI) modulate ran-

domly the fundamental scattering elements. The temporal variability in the surface

reflectivity is determined by the scene coherence time,

Two related choices for the cutoff wavelength L, have been considered.

The first choice is based upon the processor coherent integration time for a wave
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with a period equal to T. This wave and shorter waves will propagate at least

one cycle over the time of image formation contributing only to the rms velocity.

Using again the deep water dispersion relation for gravity waves, this cutoff scale is

(Vachon et al., 1988):

"L 1 = -LT2 (4.44)

The second choice used by some investigators (e.g., Alpers and Bruening, 1986,

Tucker, 1985a) is L1 = 2p, twice the matched filter processor resolution. For a mov-

ing ocean surface, the azimuth resolution is degraded and is practically unknown.

It could be much larger than 2p, which is the nominal azimuth resolution for an

unmoving scene. Noting that the mean Doppler broadening due to the velocity of

the intermediate unresolvable waves is given by:

fdc = 2(U"2)1/2  (4.45)

A

leads to the finite radar scene coherence time

S1 (4.46)

*r = fdc

For strong wind (Uw > 10 m/s) substituting Equation (4.44) into Equa-

tion (4.39) and the result into (4.45) and (4.46), yields the scene coherence time.

A
Tc = 5.04 Tf( (4.47)

and for L1 = 2p

T, = 4.45 ( A)/2f() (4.48)

For weak winds (Uw 5 m/s) substituting Equation (4.43) into Equa-

tion (4.45), (4.46) gives:

7.7 f() (4.49)
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TABLE 4.1: Estimates for Scene Coherence Time as a Function of Wind
Speed and Cutoff Wavelength for NASA/JPL DC-8 L-Band Radar withf(-y) = 1

Equation L, U. (m/sec) r, (msec)

(4.47)1 -LT2  > 10 600
27r

(4.48)2 2p > 10 610
(4.51) 3  350

1 T=2sec 2 p=3.03m 3 H,=0.6m.

Since for fully developed wind seas, the wind speed U., at the height of 19.5 m is

related to the significant waveheight (inks uDits) by

U' = 47.4H.,, (4.50)

Equation (4.49) can be rewritten as

= 1.12 . f(y)' (4.51)

The estimated values of the scene coherence time in Table 4.1 using

Equations (4.47), (4.48), (4.51) and f(7y) = 1 are rather long compared to the

sparse estimates based on observations in the literature (30-100 msec for L-band

radar). The decrease in f(y) with increasing incidence angle will increase even more

the scene coherence time r, as computed by the equations used in Table 4.1. The

dependence of r, on the spreading function f(,y) is illustrated in Figure 4.3. This

dependence was not considered explicitly in other works and its importance rises

from analysis of observed data (see Chapter VII).

Variability of several hundred msec in the estimates of coherence time

scales is noted in Table 4.1. The first two estimates are computed using the DC-8
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SAR parameters and are independent of sea state, a situation which seems to bt

unlikely. The third estimate seems to be more sensitive to the real ocean situation,

namely, dependence of scene coherence time on sea state and hence wind speed. It

will b' shown through the experimental approach adopted in the next section that

the shortest coherence time estimate of the present method is rather longer than

that which is observed. This might indicate the inadequacy of the present approach

to estimate the scene coherence time, mainly because of a lack of comprehensive

understanding of short wave radar reflectivity (Hasselmann et al., 1985). To have a

more reliable estimate of this parameter, it is crucial to obtain more direct measure-
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ments of the coherence time which determines the effective azimuthal resolution of

the SAR and hence INSAR imagery.

2. Estimation of Radar Scene Coherence Time Based on SAR and
INSAR Simultaneous Images

The temporal coherence of the ocean scene can be investigated by using

simultaneous SAR and INSAR records. As described in section B of this chapter,

the image intensity of SAR is a map of the covariance of the complex reflectivity.

The mean image intensity obtained by a single antenna is computed by ensemble

averaging neighboring pixels, and is directly related to the covariance of complex

reflectivity:

(r,(x,t)r,(x,t + r)) = a,(x,t) exp [-r2/2,r2] (4.52)

Similarly, for the second antenna separated physically by a distance B from the first

antenna, the covariance of complex reflectivity is taken to be:

(r2(x, t + At)r(x, t + At + r)) = a2(x, t, At) exp 2/2r,] (4.53)

where At = B/2V and a is the radar cross section which represent the covariance

of short wave reflectivity modulated mainly by long wave tilt. Since the temporal

variations of these waves are slow compared to the interferometric time interval At,

it is reasonable to assume that the radar cross-section does not vary during the time

At. Therefore

a,(x, t) - a 2(x,t + At) _ a(x, t) (4.54)

When corresponding pixels from the two images are combined to extract

the interference phase, the temporal cross-correlation between the corresponding

pixel scattering elements introduces an additional cross-section modulation due to

the random velocity spread of subresolution intermediate waves modulating the

short wave reflectivity. This relatively fast time decorrelation of the scene in a given
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time interval At = B/2V attenuates the INSAR signal (see Equation (4.33)). The

magnitude of the cross-product of the complex images is directly related to the

cross-covariance of complex reflectivity, and is given by:

. (r, (x, t)r;(x, t + At + T)) = 0.2, 2(x,t + At)exp [-.2/2r2] (4.55)

where

al,(x, t, At) = a(x, ,) exp [-At2/271 (4.56)

Substituting Equation (4.56) into Equation (4.55) yields:

(h1(x, t)r(x, t + At + r)) = u(x, i) exp P At2/27-,2] exp [ 2 /2Tr,,2 (4.57)

Neglecting for a moment the additive noise effects, the effective radar

cross-section obtained by INSAR (Equation 4.56) normalized to the product of the

square root of both corresponding SAR radar cross-section by invoking Equation

(4.54) yields

K (ri(x,t)r2(x,t + At))(,,((x, t)x ), (, x t),-*(x, t)),/2

= exp[-At2/2r] (4.58)

with

At = B/2V

Equation (4.58) expresses the ratio between the INSAR ocean surface cross-covariance

of complex reflectivity and the two individual SAR covariance of complex reflectiv-

ities.

Coherent radars such as SAR are inherently subject to speckle or fading

noise. By averaging neighboring pixels the speckle noise is reduced at the expense

of nominal resolution. This operation is similar to the multiple look-operation, in
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which the processor optimal (maximum) integration time is divided into shorter

integration periods, and by averaging similar images with a time shift, the fading

noise is retuced at the expense of resolution.

In the data analysis, relatively large identical areas (> 10' pixels) for the

two SAR and INSAR intensity images were chosen for averaging. The noise power

is reduced by:
(n2)(4.59)

where N is the number of averaged pixels. The speckle and system noise are further

reduced by normalizing the ratio K in Equation (4.58) by a similar ratio Ko obtained

from a stationary scene, like land, which fortunately was in the images. The scene

coherency of land varies between fields with objects like plants and trees moving

with the wind, and urban regions, which should be absolutely stationary and hence

should ideally have infinite scene coherence time. Due to speckle noise and system

errors the apparent coherency of urban regions is not infinite; thus normalizing

K from Equation (4.58) with KO obtained from the urban regions of Marina, will

further reduce the noise resulting in a better estimation of ', using this method.

Based on this assumption, Equation (4.58) is modified to be:

K /Ko = exp[-At2 /2r,] (4.60)

and the scene coherence is taken to be
At

r, = -21n(K/Ko) (4.61)

Equation (4.61) demonstrates the sensitivity of the scene coherence time estimation.

A change in the ratio K/Ko of 2% will change the estimation in the scene coherence

time by almost 20% (see Figure 4.4). The estimates of r, using the above experi-

mental method yields a more credible L-band scene coherence time 0 (100 msec),
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Figure 4.4: Dependence of scene coherence time on K/Ko.

which is consistent with the few earlier known estimates based on observations (e.g.,

Plant and Keller, 1983).
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V. REFRACTION SHOALING AND
DIRECTIONAL SPECTRA OF NEARSHORE

OCEAN WAVES

A. INTRODUCTION

This chapter presents a brief review of linear ocean surface waves theory in

shallow waters. A numerical refraction modei (Dobson, 1967), followed by wave

spectral analysis and measurement methods, are described. The behavior, analysis,

and in situ observation of ocean surface waves are well developed subjects. How-

ever, many of the concepts presented are difficult to interpret in terms of coherent

and noncoherent radar ocean surface imagery. The content of the present chap-

ter is essential for interpretation of the experimental results and interdisciplinary

understanding of the issues involved.

B. TRANSFORMATION OF NEARSHORE OCEAN
WAVES

When waves propagate from deep to shallow water they are transformed as

they begin to 'feel' the bottom. The transformation includes shoaling, refraction,

diffraction, reflection, and dissipation. In the present analysis only shoaling and

refraction phenomena are considered, since we ignore reflection (beach slope less

than 1/20) and assume energy is conserved at steady state and is not translated

lateraly along the wave crest (ignoring dissipation and difraction). The experimental

site at Marina provides an opportunity to study wave refraction and shoaling as

imaged by INSAR and ground truthed by a shallow water array off Marina.
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1. Wave Refraction and Shoaling

Starting with the wave energy flux balance assuming an idealized situa-

tion in which wave energy is conserved at steady state and not transferred lateraly,

yields the simplified energy flux equation:

.. O= O~ = 0(5.1)a, + 
=0

where F(x,y) is the wave energy flux and is constant. Given a monochromatic

deep water gravity wave field propagating shoreward as depicted in Figure 5.1, the

following energy flux balance applies

EoCgobo = E1Cgibl (5.2)

where E, El are wave energy Cgo, Cgi are group velocities and bo, b, are distances

between wave rays in deep and shallow water respectively. We further discu:s the

derivation of a wave height relationship for shoaling waves from Equation (5.2) based

on linear wave theory.

2. Refraction

Assuming the gravity waves are linear and dispersive yields the relation-

ship.

W = gktanh kh (5.3)

whcre w is the wave frequency, g is the acceleration of gravity, k = 27r/L is the

wavenumber magnitude (L is the wavelength) and h is the water depth. The group

velocity for a surface gravity wave train is defined as

c9 =W (5.4)

Substituting Equation (5.4) into Equation (5.3) yields the group wave velocity for

gravity waves
C (1 2kh (5.5)

(JC= 2 +sinh 2kh(
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Figure 5.1: Wave refraction and shoaling.

where C is the wave phase velocity.

The instantaneous surface elevation of a monochromatic wave is given

by:

n(x, t) = a sin(k • x - wt) (5.6)

where a is the wave amplitude and x = (x, V) is the position vector. The variance

of this wave is

2 fL( = (5.7)17 L q (x, 0)- q(x, t) )x 2 57

where L is the ocean wavelength. Therefore the energy of a monochromatic wave

in an irrotational and incompressible fluid given by:

1 21 2
E = 2 pga = - pgH2  (5.8)

where II = 2a is the wave height.
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Substituting Equation (5.8) into Equation (5.2) yields the wave height

variation equation for shoaling waves (Mei, 1980)

H = Ho [- 1i = HO k, kR (5.9)

where k, is the shoaling coefficient

s [--g ]1/ (5.10)

and kR is the refraction coefficient

kn LO 1/.2

Within the limits of linear wave theory, the wave frequency w must re-

main constant as waves propagate from deep water ashore. Using this approximation

in the dispersion relationship rcwritten in a wavelength form results in

L 1 tgh (,0 Lo tgh L, (5.12)

* Equation (5.12) illustrates the variation in wave length with depth for shoaling waves

to preserve the invariant wave frequency. For deep water waves

27rhoL7 -- 00 (5.13)

and Equation (5.13) can be rewritten as (Shuchman and Kasischke, 1981)

L, = Lo tgh (5.14)kL,/

For straight and parallel of bathymetric contours, a simplified refraction

formula based on Snell's low can be stated as:

CI = CO si a (5.15)sin ao
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where C = w/k is the wave phase speed. Using Equation (5.3) to compute the phase

speed and substituting the result in Equation (5.15) results in the refraction angle

a between the wave rays and bottom contours for waves propagating from deep to

shallow water

a1 = sin-1 sin ao tanh (] (

In the data analysis described in Chapter VII, the shoaling effect is

estimated by using Equations (5.12) and (5.14), and the refraction effect is estimated

using Equation (5.16) for straight and parallel contours only. An attempt to estimate

refraction and shoaling of coastal gravity waves using SEASAT SAR data was done

by Shuchman and Kasischke (1975). The method presented in this study is seen to

be more accurate.

3. The Ray Trace Model

For complex bathymetric contours which are not straight and parallel to

the shoreline, a linear numerical refraction and shoaling model by Dobson (1967) is

used in our analysis. Following the approach established by Munk (1952) on wave

refraction, Dobson developed a linear refraction model using the characteristics of

the propagation of curving wave rays. Considering the geometry illustrated in Figure

5.2 the ray curvature equation in Cartesian coordinates is given by:

R(x,y,t) = 1 sin oCr(t) Cos a(t) 1 (5.17)C(X, Y) Isax O

and the ray separation factor P3 is stated by Dobson to be:

dt- + p(t) - + q(t), = 0

with oc(x,y) oc(x,y) 1
p(x,y,t) = 2 cosa 9a +sin a Oy . (5.19)
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a2C(Xy) 2sncoa+C 2 9Ce.qoxcy,~))Cxoy)[sin)
s OX 2sinacosa Oxdy +' a y2

(5.20)

The wave ray path dcfined by R and a is computed with Equations (17)-(20),

* provided the wave phase speed C(x, y) is known. C(x,y) is constructed grid to grid

over the ocean bathymetry as propagating to the required position. For more details

of this method see reference (Dobson, 1967).

In this study, the bathymetry used in Dobson's refraction model is based

on data collected originally by NOAA and projected onto a six second (lat, long)

Modified Universal Transverse Mercator (UTM) grid. The data was screened and

interpolated using linear triangulation to fill missing points onto a 200 meter rect-

angular grid (Kalid, 1989).
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C. OBSERVATION METHODS OF OCEAN WAVE
SPECTRA

The relation between the distribution of energy in sea surface waves and the

direction of propagation is of great interest from the forecasting point of view and

the understanding the generation processes. For the case presented in this study,

shoaling wave transformations such as diffraction , refraction and reflection (see

next section) are greatly influenced by the directional spectral characteristics of the

waves. However, measurements of directional wave spectra requires greater effort

than that of frequency power spectra. While the latter can be obtained from a wave

record at a single point, the former requires simultaneous recording of several wave

components.

The measuring techniques which are known to be applied can be classified

into two categories (Goda, 1985)

1) In situ measurement method

* Wave gauge array

e Directional buoy

Two axis current meter

2) Remote sensing method

* Optical technique (sterophotogrametry, holography)

* Microwave technique

In Chapter VII, frequency and directional spectra obtained from a wave gauge

array are compared with two-dimensional wavenumber spectra obtained by a remote

sensing interferometric SAR. Therefore, in the present section a synopsis of the basic
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theoretical and observational background of direct and remote sensing methods are

described.

1. Ocean Surface Wave Field Spectra

The characteristics of wave field properties can be determined from the

observed sea surface elevation and the irrotational surface velocity. From linear wave

theory there is a direct relationship between the sea surface elevation, velocity and

pressure spectrum. The horizontal component of the wave orbital velocity can be

described by a product of the ocean surface elevation tl(x, t) and a transfer function

u(t) = H,(w) v/(x, t) (5.21)

where

71(x, t) = a cos(k , x - wt) (5.22)

cosh k(h + z)
14(w) = w sinli kh '(5.23)

where z is the depth of observation. The wave amplitude a is assumed to be small

compared with wavelength and depth of water as required by linear theory. Similarly,

the vertical velocity component is given by

w() = H,.(w) q(x,t) (5.24)

where

HI(w) = -iw sinh k(h + z) (5.25)
sinh kh

The pressure wave form at depth z is taken to be

P(t) = Hp(w) q (x, t) (5.26)

where
ho cosh k(h + z) (5.27)

cosh kh

65



In the direct method, time series records are acquired from the random

ocean processes. Assuming a stationary ocean surface, the classical analysis ap-

proach is the spectral technique, i.e., linear superposition of an infinite number of

sinusoidal components with small amplitude and slope. Considering the water col-

umn as a constant parameter linear system, the input-output frequency is invariant.

For input surface elevation spectra, Equations (5.21), (5.24), and (5.26) can be ex-

pressed in terms of input output power spectra related by the corresponding linear

frequency invariant transfer function H(w):

S.,,t(w) = IH(w)12S,(w) (5.28)

Equation (5.28) reflects the fundameatal idea of measuring the ocean wave frequency

power spectra. The random sea surface elevation is considered as the input and the

pressure or velocities as output. Next we discuss relevant statistical characteristics

of the sea surface elevation related to the ocean wave spectra.

The random ocean surface is characterized by the autocovariance, p(r, r),

of the surface displacement, q as:

p(r, ,r) = (q (x, t) q(x, -r + r, t + r)) (5.29)

where r is the displacement vector.

The ensemble average of the autocovariance surface elevation in Equa-

tion (5.29) defines the decorrelation time and space scales of the sea surface. The

Wiener-Khinchin theorem states that for any ergodic stationary random process

(e.g., r(x,,r)) with zero mean, the wavenumber-frequency spectrum is given by

the Fourier transform of the autocovariance function p(r, T) of the random process

tq(x,, ).

S(k, w) =p(r) exp [-i(k. r -w)] dr dr (5.30)
(2r)3 r eif
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with the inverse Fourier transform

p(r,,r) =JS(k, w) exp [i(k.- r - wr)] dk dw (5.31)

The mean square of surface elevation (q 2(r, r)) is obtained from Equation (5.30) for

* r = 0 and r = 0. This variance term is proportional to the wave energy.

Under the above approximations the Fourier transform of the autoco-

variance of the surface elevation is computed as a function of wavenumber and

frequency, with position and time as parameters.

2. Relation to Measurement Methods

The computation of the fiequency wavcnumbcr spectra requires simul-

taneous measurements of surface displacement in space and time. This requires an

array of wave sensors and an enormous data processing effort. Tile omni-directional

frequency spectrum is obtained with less effort and therefore more common, since

it requires only a single wave sensor at a point, collecting temporal data with no

- spatial information about the wave field. At a given position r = 0, the frequency

spectra is given by

S(w) = JS(k,w) dk = f p(0, r) exp[iwrldr (5.32)

Since only positive circular frequencies have physical meaning and S(w) is symmetric

about w = 0, Equation (5.32) can be rewritten as:

S(w) =_ () cos w- d- (5.33)S(W) " JO P

Since the total energy for a given sea state is unique, the integration areas

of the frequency and wavenumber spectra are related by the Jacobian, yielding the

unidirectional wavenumber spectrum

S(k) = S(w) (5.34)
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where k IkI and dw/dk = 09 the group wave velocity. Using the linear dispersion

relation w = w(k) in computing C,, S(k) is obtained. This transformation can not

be used in the high wavenumber, short waves part of the spectrum, since the intrinsic

frequency of the shortest waves wo(k) are Doppler shifted due to modulation by the

underlying dominant waves and/or currents on which the short waves are borne.

Therefore the circular frequency of the short waves is given by

w(k) = wo(k) + k. (UoB(x,t) + UcR(, )) (5.35)

whete UOB(X, t) is the slowly varying orbital velocity and Ucn(X, t) could be any

underlying varying currents. Equation (5.35) illustrates the nonuniqueness of the

relationship between frequency and wavenumber.

For high resolution microwave radar sensors the backscattering energy

is determined by the short scale (cm) surface roughness which is borne on an ad-

vecting surface. Equation (5.35) replaces the linear dispersion relationship between

frequency and wavenumber (Equation (5.3)).

3. Wave Directional Spectrum

As noted in the literature review (Equation (2.7)) the normalized radar

cross-section ao is directly proportional to the two dimensional wavenumber spectrum.

b(k) = J S(k,w)dw (5.36)

The instantaneous autocovariance can be expressed as:

p(r,O0) = J (k exp [-i(k -r)] dk (5.37)

and inversely

(k) fp(r) exp [i(k, r)] dr (5.38)
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To obtain O(k), one needs spatial observations of the surface elevation autocovari-

ance (Equation (5.38)). Attempts to measure this phenomena are still under exten-

sive research using remote sensing techniques such as sterophotogrametry (Shemdin,

et al., 1988) laser optics (Keller and Gotwols, 1983) or Doppler radars (Plant and

Keller, 1983).

The two-dimensional wavenumber spectrum is also claimed to be com-

puted from SAR images. However, there is still doubt about the precise mechanisms

whereby waves are imaged by SAR. Therefore, the question remains whether the

SAR image intensity spectrum bears much resemblance to the directional wave spec-

trum. In this study, a new approach is suggested for obtaining a two-dimensional

wavenumber spectrum using interferometric SAR imagery. This method has a

clearly observed imaging mechanism based on the measurement of the varying or-

bital velocity UOB(X, t) of the dominant surface ocean waves. The two-dimensional

wave number spectrum of INSAR's phase image represents the spatial distribution

of the surface velocity power in the viewing direction. In describing this spectrum,

assume for the moment a monochromatic dominant wave oriented at an arbitrary

angle 0 relative to the flight direction (see Figure 4.1) and an incidence viewing

angle -f. The surface elevation of this wave as seen by the imaging platform is given

by:

r(x,t) = a g(-y,q) cos(k, x-wt) (5.39)

where a is the wave amplitude and

g(-y, 0) = (cos2 - + sin 2 y sin2 2)1/2 (5.40)

After removing the current and phase velocities, the residual imaged

radial velocity component UOBT can be computed. Using deep water linear wave
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theory
UoBT(x) = ~(x)_

U---7- = a w g(r, ¢) sin(k , x - wt) (5.41)

Then the two-dimensional wavenumber spectra for the orbital velocity is

1 +L/12 +L,12
O10PBr(kZ'ky) = UL/2 -L/2 OB, (X, y) exp[-i(k~x + ky)] dxdy (5.42)

The spectrum described in Equation (5.42) is tested against directional spectra

obtained from a wave pressure array. A synopsis review on the theory of in situ

measurement of directional spectra is described next.

Longuet-Higgins, Cartwright and Smith (1963) developed a directional

wave bouy based on measuring the angles of pitch and roll and the heaving accel-

eration of the ocean surface. The heave is directly related to the surface elevation,

while the pitch and roll are related to the two horizontal orthogonal components of

wave surface slope namely, Oqlux, 0-1/Oy. The directional spectrum S(f, 0) can be

expressed as a product of the one-dimensional frequency power spectrum S(f) and

an angular spreading function D(f, a)

S(f,a) - S(f) D(f,a) (5.43)

where a is the wave direction. D(f, a) is associated with the distribution of energy

in the frequency power spectrum, over direction and has a unit area over direction,

f2f D(f, a) d = 1 (5.44)

An objective of measurements is to determine the characteristics and criteria in

selecting D(f, a) which most closely match the observed angular distribution of

wave energy density. Using the most common in situ measurement technique - a

floating buoy or slope array of four sensors in a square, one has to address their

limited spatial capabilities in defining directionality, namely D(f, a). ""
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Following Longuet-Iliggins et al. (1963), the directional spreading func-

tion D(f, a) can be expanded as a Fourier series:

D(f, a) = - + Z[a, cos(nx,) + b, sin(na,)I) (5.45)
7r (2 n=l

For the previously discussed bouys or slope arrays which measure only the surface

slope and displacement, only the first two harmonics can be estimated. The hori-

zontal sea surface slopes are obtained by taking the corresponding spatial derivative

of the sea surface elevation (Equation 5.6)

nt)t= = (-ik cos c) q (t) = HI)(f (t) (5.46)

=(t) =Oi = (-ik cos a) = Hy(f) q(t) (5.47)

Five Fourier coefficients can be determined from the co(C) and quad (Q) spectra of

the surface elevation and surface slope. The spectrum of t/h(t) is given as

CII.(f) = j0 IgI(f)I2S(f, a)da (5.48)

Substituting Equations (5.43), (5.46) into Equation (5.48) yields

S7,7.(f W= j0 k 2 cos2 cS(f)D(f, a) da = k2S(f) cos2 aD(fa) da (5.49)

Similarly the rest of cross-spectral quantities are obtained

C,70, = (f) k2S(f)] sin2 a D(f, a) dca (5.50)

C,,(f)= S(f)j D(f,cx) da = S(f) (5.51)

C,7 =(f k2S(f)j cosa sin aD(f,a) dc (5.52)

Q,7,(f) = kS(f)] cos a D(f, a) dca (5.53)

Q717(f) = kS(f) sin a D(f, a) dca (5.54)
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From Equations (5.49)-(5.54) Longuet-Iliggins et al. (1963) computed the Fourier

coefficients of D(f, a) as follows:

ao  D(f,,) dcia (5.55)
7ro 0 T

1 fo21 1
al = - D(f,a) cosa dca = T Q,7,,(f) (5.56)

b= 1 D(fa) sina da = 1 Q,1,(f) (5.57)

1 o2r 1
a2 = D(f,a) cos2a dt= - (C,7,Z.(fC)- ( (5.58)

1 21r 2
- D(f,a) sin2a da =- C ,Un(f) (5.59)
7ro 0i -k2

Longuet-Higgins et al. (1963) used these five Fourier coefficients to de-

scribe an assumed cosine bell angular energy distribution function. This method

can only describe a unimodal energy distribution with limited resolution, which is

frequently not realistic. These coefficients can be represented by an infinite number

of angular spreading functions. It is therefore desirable to seek a technique (if pos-

sible) to match the coefficients obtained from the data to a more realistic angular

distribution function.

Grauzinis (1990) improved the Longuet-Higgins et al. (1963) method

in matching analytically a more realistic angular distribution function D(a) to the

obtained Fourier coefficients. The technique is based on representing the Fourier

coefficients of D(a) as the superposition of a weighted sum of symmetric unit area

density functions oriented at different direction

ak + ibk = Zwj mk(j) exp(jkj) (5.60)

where wi is the weighting parameter, mk is the canonical coefficient of the even unity

spreading function and Pj is the angular orientation of component j. For a typical

pressure array (four sensors) or pitch and roll buoy, the obtained cross spectral wave
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quantities result in the Fourier coefficients of Equation (5.60) through the second

order and are taken to be

a1 + ib1 = mI [w, exp(if 1 ) + w2 exp(iJ 2)] (5.61)

a2 + ib2 = m 2 [w, exp(i2, 1) + w2 exp(i2 2)] (5.62)

To solve the system represented by Equations (5.61), (5.62), further as-

sumptions have to be made. The most sufficient assumption made by Grauzinis

(1990) is that the two canonical coefficients are related by a power law r

M2 = 71 (5.63)

where r defines the broadening (r increase) or the sharpness (r decrease) of the

distribution function defined initially by the canonical coefficients. For a unimodal

wave field and m = 0.9 and r = 4, the half power distribution is 12 degrees, which

is about one third of the Longuet-Higgins et al. (1963) cosine bell resolution. The

improvement of this technique relative to the Longuet-Higgins et al. (1963) method

is the variability in the sharpness of the model distribution function, which enables

it to be matched with better directionality to the observed energy distribution func-

tion. Also. Equations (5.61), (5.62) introduce two distributions of wave energy with

different orientations and weights. This allows the model to represent a bimodal

wave system which is not possible by the Longuet-Higgins et al. (1963) method.

This exact method of matching the Fourier coefficients to a wave spread-

ing function is not unique. The question that remains is how to optimize the selec-

tion of the distribution that best matches the real data. Cartwright (1963) suggests

that a criteria to improve the selection of the distribution function can be obtained

from the ratio of the magnitude of the Fourier coeffients. 'rauzinis (1990) further

suggests a beam separation index criteria to indicate the best distribution function
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fitting. This criteria aids the selection of the canonical coefficients which fulfills the

analytic solution to give zero beam separation from the required distribution. For

different r's, the bimodal distribution with the minimum peak separation is selected

as the best fit. Despite the analytical efforts to improve the directional resolving

wave power obtained from pitch and roll buoys or pressure/current limited arrays,

an rms resolution of 4-6 degrees appears to be the best that can be achieved using

this method.
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VI. THE MONTEREY BAY WAVE FIELD
AND CURRENTS '89 REMOTE SENSING

EXPERIMENT

A. INTRODUCTION

The primary objective of the experimental part of this study is to verify the

feasibility of an airborne INSAR method to reliably spatially sense ocean surface

wave and current fields. The verification is done by comparing the results of this

unique technique with simultaneous in situ conventional temporal and local spatial

measurements including directional wave spectra from an array, local wind and sur-

face drifters measurements. To simplify the interpretations, the time of the year

and the site of the experiment were selected so as to provide near linear condi-

tions of wave imaging (narrow band wave spectrum of low to moderate variance)

and a moderate sloping beach (approximately 20 m/km) allowing sufficient locally

* homogeneous conditions for linear spectral analysis.

The relatively shallow water provides an opportunity to study for the first

time wave refraction and shoaling using INSAR. Four partially overlaped areas

12 km x 6 km) were imaged by INSAR from four different directions centered on

the shallow water wave array off Marina. Results from three legs are reported in

this study.

Overall, three field tests were performed in the vicinity of Monterey Bay:

* On June 1, 1989, several prototypes of passive radar drifters were Aed at

sea to measure ocean surface currents using Lagrangian bouys. The drifters

were designed and built at the Naval PostGraduate School and were tested
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from the Research Vessel (R/V) Ricketts in the vicinity of Moss Landing (see

Appendix C).

* On July 23-24, 1989, a preliminary coordinated simultaneous airborne and

ground truthing experiment was performed. The experimental scene was cen-

tered on the wave and wind stress NDBC pitch and roll buoy off Monterey Bay

(see Figure 6.2). NASA/JPL DC-8 radar overflights were conducted on July

24, 1989 between 1000 and 1040 Pacific Day Time (PDT). The R/V Point Sur

on a cruise from 232200 to 242400 July 1989 acquired ground truthing data

for comparison with the following near ocean surface phenomena:

- Vertical profile of current vectors within the mixed layer measured by

Acoustic Doppler Current Profile (ADCP).

- Surface currents sensed by Lagrangian floating buoys which were posi-

tioned by Loran-C and Mini-Ranger navigation systems (see Section E4).

- Wind speed and direction which generates the short ocean surface wave

field patterns responsible for the resonant radar backscatter (Bragg waves).

- Vertical density gradients at the depth between 10 and 250 m measured

by Conductivity Temperature Depth (CTD), which might affect surface

dynamical processes.

Wind stress and dominant wave time series records were acquired from the NOAA

pitch and roll buoy. Unfortunately, the Interferromatric SAR images could not be

obtained from this experiment. An error in setting up the fore and aft radar anten-

nas with different polarizations (vertical and horizontal), instead of being identical

(both vertical or horizontal), prevented fringes formation essential for creating an

interferogram.
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Based on these preliminary experiments, the experimental plan was modified

for a following experiment. The field test site was moved to an area close to the shore

to include stationary land in the INSAR imaging scene to assist aircraft attitude

corrections in addition to the aircraft Inertial Navigation System (INS) (see Chapter

III). A second modification was to replace the passive radar drifters with thin floating

plywood sheets (see section F3) to minimize windage effects. The following and final

experiment for this study was carried out on September 8, 1989 in Monterey Bay

centered on the shallow water wave array off Marina Beach. An illustration of the

July and September experimental scenarios is depicted in Figure 6.1. A detailed

description of the Marina experimental site is given in section B, followed by a

description of the Marina experiment in section C. The environmental conditions

for the experiment are given in section D.

B. THE EXPERIMENTAL SITE

The Monterey Bay is characterized by variable bathymetric features including

• the largest submarine canyon in the western hemisphere bisecting the Bay (Figure

6.2). These bottom features cause substantial perturbations on the near shore wave

fields and tidal currents. The experimental site for data acquired during this study

is in tile nearshore region of Marina within Monterey Bay. This region is shadowed

by Point Santa Cruz in the northwest and Point Pinos in the southwest.

The Marina site was selected because of the location of a wave array for

ground truthing and the required inclusions of land in the scene. Also, the site

has a relatively continuous, though moderate, alongshore bottom slope (about 20

m/km) rcsulting in a relatively small but sufficient region of locally homogeneous

bathymetry. This fact constrained the spectral analysis to be applied to small
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Figure 6.2: Bathymetry and ground truthing assets in Monterey Bay.
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spatial regions to meet the required homogeneous conditions. This area presents an

interesting problem in predicting directional wave spectra.

The sloping bottom introduces additional various dynamic ocean features

like gradients in the tidal flows. The present study concentrates on the dominant

surface waves spectra and currents. Shoaling waves undergo refraction, reflection

and diffraction influenced by the wave approach angle and bathymetry. The complex

bathymetry of Monterey Bay is shown in Figure 6.2, and the detailed bathymetry

near Marina in Figure 6.3. Wave refraction at the Marina array site is shown in

Figure 6.4 for different frequencies (0.03 lIz to 0.13 l1z). Linear refraction theory

(see Chapter V) predicts that lower frequency waves (longer waves) experience more

refraction. All possible incoming ray traces with wave angles at increments of 0.20

using Dobson's model (see Dobson, 1967) are plotted from shallow to deep water.

High frequency waves of at least 0.11 Iz are limited to directions from 234*-311*,

whereas lower frequency waves may arrive also from southerly directions since they

experience more refraction.

An important feature in the experimental site is the Salinas River, which was

blocked from the sea at this time of the year (June-September) providing a natural

closed basin. This allowed the study of Bragg backscattering waves only, without

the contamination by interactions with long waves or any underlying currents.

C. THE MARINA EXPERIMENT

The Marina experiment consisted of four SAR and INSAR overflights in the

interferometric mode on September 8, 1989. Radar data were acquired about an

area centered on the shallow water wave array (see Figure 6.5) with the antenna
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beams aimed at the in situ wave array with a depression angle of 450 and mean alti-

tude of 8250 m. The radar overflights were conducted around 1300 Pacific Daylight

Savings Time close to the time of maximum tidal flood current. The flight pattern

and the scene locations of radar data collection are illustrated in Figure 6.5. Some

key system and flight characteristics are depicted in Table 6.1. More detailed SAR

system characteristics are given in the next chapter.

The Lagrangian floating drifters for tracking the very top surface currents

were deployed and tracked by the R/V Ricketts with the aid of a Piper Cherokee

Arrow (PCA) light aircraft (Figure 4.15). A portable LORAN-C enabled the light

aircraft to locate roughly the drifters while the vessel, and hence the drifter positions,

were recorded using a high accuracy Motorola Mini-Ranger Falcon 484 system.

The actual time schedule and sequence of events in the Marina experiment

on September 8, 1989 were as follows:

081000 Departure of R/V Ricketts from Moss Landing home base.

081050 On station (Marina shallow water array) to test the navigation system

(Mini-Ranger) and to estimate local surface currents by deploying and

positioning two drifters. This pre-measurement was done in order to op-

timize the deployment pattern of the drifters to obtain maximum coverage

of variable surface currents within the expected airborne radar scene for

data collection. The variability of the bathymetry was part of the concern

in ground truthing the radar surface current estimates at variable depth.

081120 Termination of initial test, vessel steaming westward to the first deep

water deployment station.

081145 - 081230 Buoy deployment from west to east in three distinct groups,

each group consisting of five drifters for a total of fifteen (see Figure
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TABLE 6.1: System and Flight Data for the Different Aerial DC-8 Air-
craft Coverage During Marina Experiment, September 8, 1989

900 2700 3600
EAST- WEST- NORTH-

* WARD WARD WARD
LEG LEG LEG

Initial data collection 12:40 13:01 12:51

time, PDT

Aircraft velocity, m/s 214 216 214

Aircraft altitude, m 8285 8273 8178

Pulse repetition frequency , llz 283 285 282

Near incidence angle, degrees 17 Nadir Nadir

Far incidence angle, degrees 52.7 50.2 50.7

Ground pixel range spacing, m 8 7 6

Azimuth pixel spacing, m 12.1 12.1 12.1

Effective coverage 6 x 14 5.1 x 14 5.8 x 14
range x azimuth, km2

6.6). Group one drifters, numbered 1 thru 5, were deployed furthest

offshore approximately 3.4 nm west of the shore where the mean water

depth is 71 m. This group was positioned four times during the three

hour observation period. Group two drifters, 6 thru 10, were deployed

closer to the shore, approximately 1.6 nm west of the beach where the

mean water depth is 44 m. These were positioned three times. Group

three drifters, 11 thru 15, were deployed less than 0.6 nm from the beach

and washed ashore before a second position could be obtained. Within
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each group, the drifters were deployed roughly 0.1 nm apart as the vessel

steamed eastward toward the beach.

081220 The Piper Cherokee Arrow light aircraft arrived on station Monterey Air-

port and started to position and photograph the drifters from west to

east.

081230 - 081515 Drifters chased, with vessel heading west to position the drifters

first deployed. The initial detection of the Lagrangian drifters was quite

tedious. Applyirg Direction and Range (DR) estimates based on the

early test results, the drifters were not detected. The light aircraft was

very helpful in detecting the drifters initially, although the radio com-

munications broke down. Therefore the actual communication was done

by turning on the landing lights and heading towards the R/V Ricketts

once the Piper overflew a group of drifters. As predicted, the onshore

tidal current became more intense close to the time of midtide range

(1320), yielding a stronger eastward component, which was measured by

the drifters. The second DR prediction based on the initial physical po-

sitioning was close to the actual positions of the drifters.

081240 - 081310 SAR overflight acquired data in the INSAR mode.

081405 The Piper light aircraft heads home to Monterey.

081515 R/V Ricketts heads home to Moss Landing after retrieving ten of the

drifters from the two most western groups. The most eastward group of

drifters, which were washed ashore, were collected four days later from

Marina Beach.
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D. ENVIRONMENTAL CONDITIONS

1. Introduction

The environmental conditions which occurred during the Marina exper-

iment on September 8, 1989 were typical late summer conditions for Monterey Bay.

Light westerly winds (less than 4 knots), surface air temperature of 14-16°C and

clear skies up to 1000 feet blocked by a stratus cloud deck, were observed during

the 1000-1500 Pacific Daylight Time (PDT) experiment period (see Table 6.2).

The mild local meteorological conditi, as during this period resulted in

almost no local generation of sea. The sea surface was predominantly long crested,

narrow-band waves propagating shoreward. Therefore, the scene was linear in char-

acter, yielding a linear Modulat;on Transfer Function (MTF) of the ocean surface

for imaging radars.

Due to the lack of predicted tidal current information for Marina Beach,

the time of maximum tidal current was estimated using predicted information of

tides at Monterey Harbor and Moss Landing, which are located almost in equal

distance (17 km) south and north off Marina Beach. Predicted tidal high and low

water times (NOAA 1978 Tide Tables) of Monterey Harbor and Moss Landing are

plotted in Figure 6.7. Based on the figure, the maximum flood tidal current was

probably at 1320 PDT.

The summer climatological atmosphere surface circulation in the eastern

North Pacific consists of a high east-west pressure ridge stretching from west coast

California to almost 1400 E (east longitude). The ridge extends to approximately 200

N (north latitude). Below 200 N, the atmosphere has tropical characteristics. This

late August high pressure system was deformed in shape and orientation (see Fig-

ure 6.8) by a series of northwest lows, which might be the source of the northwesterly
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TABLE 6.2: Environmental Conditions During the WAFICIN Marina
Experiment

Time and date 1030-1500 PDT,
September 8, 1989

Air temperature 14 to 16'C

Surface Water temperature - 13'C (est.)

Relative humidity - 60% to 70% (est.)

Wind direction Varying between northeast
and southeast

Wind speed < 2 m/s

Visibility Up to 1000 ft 7 miles.
Above 1000 ft overcast by
low stratus cloud deck.

Significant wave height < 0.6 m

Dominant swell periods a. 9.1 sec

b. 15.9 sec

Expected time of maximum 1320 PDT
flooding tidal current

Swell directions a. East Northeast
(long swell)

b. East Southeast
(short swell)
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9.1 sec. swell with travel time of almost 4 days observed in the Marina experiment

on September 8, 1989. The 15.9 sec. long crested westerly swell is postulated to be

generated by a late winter southern hemisphere storm located at 400 S to 600 S in

the South Pacific. The travel time for the swell from this storm to Monterey Bay is

almost 8 days (see Figures 6.8 and 6.10).

2. Evolution of Environmental Conditions

When investigating the possible sources of the observed swell waves in

the Marina experiment, three different sources of process data were analyzed:

e Surface winds and pressure field patterns between August 31 and September

8, 1989, based on NORAPS/SAC model outputs processed by Fleet Numerical

Ocean Center (FNOC) in Monterey (see Figures 6.8, 6.9).

* Wave group velocity vectors and significant wave height contours, based on

Global Spectral Ocean Wave Model (GSOWN) outputs, between August 31

and September 8, 1989, also processed by FNOC in Monterey (see Figures

6.10, 6.11).

e Geostationary Operational Environmental Satellite (GOES) visible imagary

(Figure 6.12).

3. Surface Winds and Pressure Fields

The surface pressure field pattern on August 31, 1989 in the eastern

North Pacific was in good agreement with climatology. From the 1st of September

1989, the east-west orientation of the ridge axis shifted to a northeast, southwest

orientation. This shift was caused by the development of a strong low pressure

system south of the Aleutian Islands and the development of an induced trough
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over California and the Pacific Northwest. These pressure field conditions were

maintained through September 8, 1989 yielding stable conditions with light winds

parallel to the coast and westerly light winds between 350 N to 380 N (Figure 6.9).

These computed wind fields based on NORAPS/SAC model are in agreement with

the observed wind tendancy during the Marina experiment.

The migration of the pressure ridge northward inducing stable light wind

conditions over the west coast enabled wave systems produced by northwest Pacific

storms to propagate eastward without local air-sea disturbances. As mentioned

previously, these developing storms appear to be the source of the shorter period

swell (9.1 sec.) observed on September 8 in the Marina experiment.

4. Satellite Data

Analysis of GOES imagery confirms the presence of an induced trough

over California and Pacific Northwest (see Figure 4.12). The low pressure system

south of the Aleutian Islands, which is believed to be the source of westerly winds,

* caused the 1000 foot ocean stratus deck to approach the central and North California

. coast. The winds were not strong enough to advect the clouds over the land. The

cloud deck prevented the collection of satellite sea surface temperature data for the

region of interest on the experiment day, September 8, 1989.

E. INSTRUMENTATION CHARACTERISTICS
AND PERFORMANCES

The relevant performance of assets which aided the collection of data in the

simultaneous experiments are described in the first part of this section. The proce-

(lures of data acquisition and initial sorting are described in the second part of this

chapter.
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The sensors which were used in the Marina experiment on September 8, 1989

include remote and in situ assets measuring synoptic spatial variations and Eulerian

and Lagrangian temporal variations of the ocean surface, respectively.

1. Platforms

9 NASA/JPL DC-8 airborne INSAR and SAR imaging radar remotely selsing

ocean surface velocity fields and surface intensity reflectivity.

* R/V Ricketts for deploying and tracking Lagrangian floating drifters following

the very near surface currents. High accuracy Mini-Ranger navigation system

(- 5m RMS error) for positioning the vessel, and hence drifter positions,

was installed on board of R/V Ricketts in addition to the inherent Loran-C

navigation system with lower accuracy (,-, 65 m RMS error).

* Light aircraft Piper Cherokee Arrow (Figure 6.15) for detecting and observ-

ing the wooden sheet floating drifters, which were undetectable initially by

conventional means (radar, visible) from the surface platform (R/V Ricketts).

2. In situ Assets

* Ocean wave directional spectra and surface wind data acquired from:

- Shallow water pressure gauge array located at a depth of 16 m off Marina

Beach at:

36042' North Latitude

121048.9 ' West Longitude

- Anemometer on Marina Beach located at 36042' N. Lat, 121048.9 W.

Long from which directivity of the Bragg waves may be inferred.

* Lagrangian drifters following the very near surface currents tracked by the

Motorola Mini-Ranger navigation system.
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* NAVSTAR Global Positioning System (GPS) extremely accurate positioning

system for ground truthing the geographic coordinates of SAR and INSAR

images (see Chapter VII. B3).

3. Platform Characteristics

a. NASA/JPL DO-8

The NASA/JPL DC-8 (Figure 6.13) has a multifrequency, multipo-

larization airborne SAR system operating at L, C and P-Band (Held et al., 1988)

with a full digital recording capability and an inertial navigator system for measur-

ing three dimensionally the aircraft attitude. Detailed performance of the system

characteristics are given in in Table 6.3.

At L and C-Band the radar can operate in an along track interfer-

ometer mode by using the physically separated fore and aft antenr.as mounted on

the left looking side of the aircraft fuselage. In this experiment, the L-Band inter-

ferometer was used in vertical polarization since the ocean reflectivity at moderate

incidence angles 20'-70' (Bragg resonant backscatter) is more intense as compared

with horizontal polarization.

The receiver has no Sensitivity Time Control (STC) or Automatic

Gain Control (AGC) capabilities. Instead a wide dynamic gain range (30-56 dB)

is implemented to compensate for signal saturation. This is achieved using 8 bit

Analog to Digital Converters (ADC) which are clocked together to ensure registered

samples. Due to the high digitizing rate of the ADC's (45 MHz), real data samples

(the imaginary part is not recorded) are produced at a total data rate of 20 to 60

MBytes/second. The data from each receiving channel is multiplexed together to

form an extended "range line" for recording onto any of the three available High
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Density Digital Recorders (HDDR) at a rate of 80 MBits/s (see Fig. 6.15). No high

resolution processing capabilities exist onboard the aircraft (Held et al., 1988).

b. R/V Ricketts

R/V Ricketts (see Figure 6.16) is a 35 foot light craft suited for day

cruises on Monterey Bay. The vessel is owned and operated by Moss Landing Marine

Laboratories. For her size the R/V Ricketts is reasonably equipped with naviga-

tion and deck handling equipment to function as a field station for oceanographic

observations.

4. In Situ Assets Characteristics

a. Shallow Water Wave Array

The Marina shallow water wave array consists of four pressure gauges

configured in a square, six meters on a side, aligned 60 off true North (see Figure

6.16). The pressure sensors are located 0.5-1 m above a mean bottom depth of

16.2 m. The northern sensor is a parascientific model 2100AS, digiquartz pres-

sure sensor which produces output voltage signal proportional to the absolute water

surface elevation. The other three pressure sensors are based on a piezo-resistive

gauge transducer manufactured by Kulite Semiconductor. The array was developed

to provide wave directivity in shallow water. The azimuthal resolution of the ar-

ray depends on processing methods, and was 4-6 degrees for the range of resolved

wave periods between 5-20 sec. Data from the shore station is acquired and ini-

tially screened by a computer based control station located at Scripps Institution of

Oceanography, La Jolla, California.

b. Wind Speed and Direction from Skyvane Wind Sensor

A 2102 Skyvane four bladed, low threshold propeller wind sensor is

mounted on the beach at Marina at an altitude of 27 m from MSL (see Figure 6.17).
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Figure 6.13: NASA/JPXJ DC-S research aircraft. Top: overall view; Bot-
tom: SAR antennas.



TABLE 6.3: N*ASA/JPL DC-8 Airborne Imaging Radar Parameters
Employed During Marina Experiment, September 8, 1989

Data L-Band

Frequency, MHz 1237-1260

Center frequency, MHz 1248.75

Wavelength, cm 24

Chirp length, ps 11.25

PRF/V, Hz / m/s 1.32

Band width, MHz 20

Peak power, kW 6

Azimuthal beamwidth, deg 8

Vertical beamwidth, deg 44

Antenna beamcenter gain, dB 18.3

Azimuthal pixel spacing, m 3.03 x 4

Slant range spacing, m 6.6

Polarization VV

Receiver dynamic range (dB) 30-56

Number of bits per sample 8

Number of looks 1

Available number of pixels 750 x 1024

(range x aximuth)
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Figure 6.16: R/V Ricketts participated on the final experiment on
September 8, 1989.

The accuracy of wind speed measurement is - 0.5 m/sec for wind speeds less than

15 m/sec. The accuracy for wind direction is 4 1% of the full scale (±180').

c. Lagrangian Drifters

Two types of drifters were tested in our experiments to measure near

surface currents. In the preliminary experiment on July 24, 1989, a passive radar

free floating drogue was used. It was tracked by a surface navigation radar installed

on R/V Point Sur and positioned accurately by the Mini-Ranger navigation system.

A prototype test of various drogue types were tested on June 1, 1989. For further

details see Appendix C.

Based on the results of the preliminary experiments, a Lagrangian

drifter, made of a 2 cm thick plywood sheet and 0.4 x 1.2 m in dimension was used
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for ground truthing in the analysis of this study. The dimensions of the drifters

were selected after considering the measurements by Stewart and Joy (1974) and

Goldstein et al. (1989), in which radar measurements of near surface currents were

compared with simultaneous measurement by drifters. At L-band the corresponding

ocean resonant Bragg waves (21-25 cm at 30' viewing angle) mostly feel currents

in the upper 2 cm of the ocean surface. Therefore, the drifter's thickness insured

measurement of the near surface flows experienced by the Bragg backscattering

waves while the horizontal dimension reduced the sensitivity to vertical motion

of short waves (Goldstein et al., 1989). The drifters were painted red with an

identification number on both sides in case of rolling over in the surf zone (see

Figure 6.19).

d. Mini-Ranger Navigation System

Vessel positions, and hence drifter positions, were determined using

' the Motorola Mini-Ranger Falcon 484 system. The system is widely used for precise

* positioning in a variety of nearshore marine applications. The system consists of a

transceiving master station borne on a vessel, and up to four stationary reference

stations (see Table 6.4) along the shore. The range to each reference station is com-

puted at the master station based on the measured round trip travel time of the

microwave transmitted pulse. The system operates on the principle of a pulse coded

transponder. The master and reference stations transmit on different frequencies in

the microwave band, 5510 and 5480 MHz to avoid interference. The standard system

has a maximum range of 37 km (20 nm) with reference station gain antenna of 13

dB, and a master station omni-directional antenna gain of 6 dB. Ranges from up to
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Figure 6.17: Marina shallow water wave array. Top: hardware configu-
ration; Bottom: geometric orientation.
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Figure 6.18 Wind anemometer at Marina Beach.
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Figure 6.19 Plywood drifter used to Lagrangianly follow surface cur-
rents during the Marina experiment, September 8, 1989. Top: perspec-
tive view; Bottom: apparent drifter.
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TABLE 6.4: Station and Equipment Data

Horizontal Datum: North American Datum of 1983 (NAD 83)

Computational Grid: Universal Transverse Mercator (UTM)
Zone 10, central meridian 1230 W

Grid Scale Factor
Used in Computations: 0.999743

Source of Station Surveys by NPS Hydrographic Sciences
Positions: 1988-1989

Reference Station Positions
(see Figure 6.6):

N Latitude UTM Coordinates
Nick- W Longitude Easting (m) Elevation
Name (deg min sec) Northing (m) MSL (m)

WATS 36 54 26.895 602947.7 23.1
121 50 39.819 4085231.4

HAY S 36 38 33.826 607621.3 137.2
121 47 45.895 4055915.3

DOP 36 36 5.601 600434.0 10.0
RM1 121 52 37.479 4051260.0

MBARI 36 37 6.868 597861.5 30.7
RM 121 54 20.156 4053118.5
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four reference stations, with an rms triangulation position of -, 5 m, were recorded

onboard (see next section).

F. DATA ACQUISITION AND INITIAL DIGITAL
PROCESSING

In this section, the initial processing methods of the data acquired in the

Marina experiment on September 8, 1989 are discussed. The processing of the

airborne radar data at JPL, the shallow water wave array data initially processed at

Scripps Institute of Oceanography, and the processing of the drifter and GPS data

acquisition are described.

1. Airborne Radar Data

The onboard high density digitally recorded radar data is processed into

a two dimensional imaging map at JPL. The Airborne Imaging Radar (AIR) off-line

processor is run on a VAX 11/730 minicomputer assisted by an array processor FPS-

5210. The AIR processor is able to provide two main products: a survey product

and a high resolution product. The survey processor is a quick look processor,

scanning the raw data tape to determine the quality of the data and whether the

data is suitable for futher processing. The high resolution processor provides a high

quality complex image. The functions which were used to process the data in the

present study are as follows (Nguyen, 1987, Held et al., 1988).

a. Range Compression

The range complex matched filter to the transmitted signal is gen-

erated from a real range offset signal whose spectrum is the complex conjugate of

the transmitted signal. In order to suppress sidelobes, the range reference function

is weighted by a cosine function. The range compression is done by inverse Fourier

transforming the product of two Fourier transform sequences of the match filter and
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the data. In order to reduce spectrum oveilap, the data were subjected to a four-fold

decimation by applying a bandpass prefilter in the azimuth dimension centered at

the Doppler centroid frequency. This decimates the azimuth resolution by a factor

of 4 relative to the nominal SAR resolution.

b. Azimuth Transform

The temporal range history, that is, the phase history of a station-

ary synthesized target, is a function of the instantaneous range difference between

the airborne radar and the target. Therefore, the range of this target can be approx-

imated as a quadratic function of time over the synthetic radar aperture. This effect

is known as range curvature, or range migration, and has to be corrected so that the

energy of a point target will be contained only in range bias parallel to the azimuth

dimension. This correction is done in the frequency domain. The range compressed

data are first read into azimuth direction format and then Fourier transformed using

a 8192 point FFT.

c. Range Cell Migration (RCM) Correction

The R1CM correction algorithm rearranges the data so that the

quadratic phase history effect in the range dimension is mitigated.

d. Azimuth Compression

The data is compressed in the azimuth dimension by convolving

the data with an azimuth matched filter. This operation is done in the frequency

domain by taking the FFT of the azimuth matched filter, multiplying it with the

FFT of the range compressed data, and taking the inverse FFT to produce the one

look complex image.

For each of the three legs processed for this study, four separate complex

image files of the same scene for each antenna are received from the high rcsolution
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AIR processor. The size of these files are 750 range lines with 1024 azimuth pixels

in each line. The initially processed pixel spacing are approximately 6.7 m in the

viewing direction (range) and 3 m in the azimuth direction. In order to reduce

*" speckle noise, the corresponding pixels of each set of the four files are averaged

incoherently in azimuth. The resulting image from each antenna has therefore a

degraded azimuth pixel size by a factor of 4, namely 12 m. These two sets of

files are further registered and combined pixel by corresponding pixel to obtain

a phase and intensity INSAR image. The phase of each pixel in the combined

interferogram is the phase difference between the corresponding pixels obtained

by the two antennas, while the magnitude image represents the product of the

amplitudes of the corresponding pixels. A brief description for obtaining the INSAR

images is depicted in Appendix A.

Further, the aircraft yaw and pitch, which cause sideways motion errors

were subtracted from the interferogram resulting in pixel phases which represent

spatial ocean surface velocity fields only.

The image processed from each flight leg (see Figure 4.5) was received

from JPL on computer compatible 6250 BPI magnetic tapes. The analysis of

these images was done at the Air-Ocean Interactive Digital Environmental Analysis

(IDEA) Lab, which is a remote sensing image processing laboratory for geophysical

data at the Naval Postgraduate School.

2. Pressure Array Data

Time series records of 2048 samples of pressure data from all four chan-

nels (sensors) were processed for the required experimental period 1000-1500 PDT.

These records were examined for data gaps and signal interference. Some of the

relevant recognized errors which were taken care of in the initial preprocessing by

Scripps Institute of Oceanography are: Spikes - Any value of the time series that
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is more than five times the standard deviation from the mean is considered as a

spike. Spikes are replaced with the previous value in the time series. Absence of

zero crossing - a wave time series (after detranding and demeaning) that does not

cross the zero mean level for a specified number of points is considered unacceptable.

Filtering - the tidal component is removed.

The initially processed data by Scripps Institute of Oceanography was

recorded on a 9 track magnetic tape. Further data analysis was done at the Naval

Postgraduate School (NPS) and described in the next chapter.

3. Lagrangian Drifter Data

Ranges from up to four Mini-Ranger shore stations were logged onboard

the It/V Ricketts on a mini-computer at 5-second intervals while the vessel ma-

neuvered slowly alongside each drifter. The positioning records indicate that vessel

speeds while passing the drifters were typically less than 2 m/sec. Hence, vessel po-

sitions were measured at a spacing of 10 meters or less alongtrack (during the Group

One de'loyments, data logging was at 10-second intervals which implies positioning

data about every 20 meters alongtrack).

Times when each drifter was abeam the Mini-Ranger antenna were hand-

logged for later interpolation of vessel position from the Mini-Ranger data file. The

drifters always were passed down the starboard side at a distance of about 2 to 3

meters from the vessel (antenna).

Drifter positions were assumed to be the same as the vessel position,

linearly interpolated between successive Mini-Ranger fixes to the time when the

drifter was abeam. This procedure does introduce some uncertainty in drifter po-

sition, because (1), the drifter actually was 2 to 3 meters off the antenna position,

and (2), the interpolation assumes the vessel followed a straight line during the 5 to
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10 seconds between recorded fixes. However, these assumptions do not practically

degrade the surface velocity estimates as discussed in the next chapter.

4. Global Positioning System (GPS) Data

A set of eleven ground points, visible in the SAR images, were selected

and positioned to determine their ground coordinates in latitude and longitude.

Typical points were road intersections and fence line corners. Because the pixel

size on the images being used was on the order of 201 meters, it was felt that the

positioning technique did not need geodetic survey quality precision. A single CPS

receiver was ued with the antenna set as close as practical to the imaged point.

Once the receiver had acquired the satellites and the readings stabilized (about 15

minutes), a single position and PDOP value (precision indicator) was recorded and

the equipment moved to the next point.

The CPS receiver was operated in the point positioning mode, tracking

at least four satellites. It should be noted that the observations were made in early

December 1989, using Block I satellites before "sclective availability" was activated,

* which otherwise could have degraded the accuracy of this point positioning t-hnique

significantly. The standard error in ground coordinates was estimated to be 30

mcters, based on prior experience using GPS for geodetic surveys in the area.

The ground coordinates obtained from the CPS receiver were latitudes

and longitudes on the World Geodetic System 1984 (WGS 84) datum, essentially the

same as the North American Datum of 1983 (NAD 83). Knowledge of the datum

was important because the bathymetric data was provided on an earlier datum,

NAD 27, and the shift between the two is significant.

'The rectified image is of size 1024 . 1024 pixel (see Chapter VII. B) monitored cn a screen of
512 x 512 (lines x columns). Therefore, the azimuth and range pixel size are doubled (e.g., 12.1
x 2 m in azimuth) due to this constrain.
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Elevations of the g-ound points also were needed, to compute a small

correction to the range (y) pixel numbers. The elevations were scaled from a to-

pographic map of the area, specifically the MARINA quadrangle published by the

United States Geological Survey. Image coordinates for each ground control point

were scaled from compressed versions of the three images. It was necessary to use

compressed images in order to fit the original 1024 x 1024 pixel format on the

512 x 512 display available. The standard error in picking image coordinates was

estimated to be three pixels (0.6%) on the 512 pixel format.

Of the eleven ground control points originally selected, five were dis-

carded because of unresolved blunders, most probably mistaken identification of the

ground point in the image. This left a set of six ground points to use in the adjust-

ments. A listing of these points and their coordinates is given in Table 1, Appendix

C, along with other constants pertinent to the adjustment process.

5. Summary

This chapter has described the methods, asset performance and data

collection of the Wave Field and Surface Currents Marina 1989 experiment. The

digital remote sensing data sets of the L-band INSAR and SAR images from the

orthogonal and/or opposite legs are further processed to analyze surface currents

and wavefields. These results will also be compared with conventional data sets

processed from in situ observations of drifters and wave array data (see Chapter

VII).
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VII. DATA ANALYSIS METHODS AND

-. RESULTS

A. INTRODUCTION

Methods by which the raw data were processed to obtain radar remote sensing

spatial images and in situ temporal records were described in the previous chapter.

In this chapter, the SAR and INSAR digital images are further processed to obtain

two-dimensiona! wave number spectra of dominant waves, nearshore surface current

vectors, and estimations of the decorrelation time of the backscattering ocean sur-

face. INSAR wavenumber spectra (wavelength and direction) are compared for the

first time with in situ wave array spectra and theoretical refraction and shoaling

predictions. The INSAR measured ocean surface current field is compared with

Lagrangian drifting buoys following surface currents. The results are in agreement

and demonstrate the feasibility of INSAR to measure ocean surface wave spectra

and currents.

B. SAR AND INSAR IMAGE PROCESSING

The SAR initial processing at JPL basically generates the two-dimensional

digital image with a number of inherent geometric and radiometric distortions. Usu-

ally a number of corrections needs to be applied in order to have a correct represen-

tation of the imaged scene. The major post processing methods which were applied

to the data presented in this study are described below. Digital image data sets

obtained from flight paths (Figure 6.5) in the Marina experiment September 8, 1989

are presented.
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1. Geometric Rectification

Since the image has equal pixel spacing in the slant range, the data

have to be interpolated in order to get equal pixel spacing in the ground range

format. The raw image of 750 lines (in range direction) of equal slant spacing and

1024 pixels in each lines (in azimuth direction) is first scanned to find the number

of initial unprocessed lines in the image provided by JPL. Next, the meaningful

nonzero lines are linearly interpolated with equal slant range pixel spacing into 1024

equal ground range spacing.

A(Si+,) - A(Si) (gj _ Si) = 1,2,...,750 (7.1)A'(j)=A(S)+ Si+I - Si 9-i j =1,2,...,1024

where A'(gj) is the new interpolated pixel value, Si, gj are the slant and ground

range coordinates of a given pixel with a fixed azimuth coordinate before and after

rectification, and A(Si) is the original pixel value centered at Si. Since the images

cover relatively small regions (,-' 12 kin x 7 kin) the effect of Doppler shift due to

the Earth's rotation which might skew the image in the azimuth dimension is not

considered.

2. Radiometric Rectification

As described in the previous chapter, each image processed data set

obtained from the three different flight lines in the Marina experiment consists of:

two complex SAR images and two interferometric 1024 x 750 phase and amplitude

images. The amplitude or brightness of the INSAR image is similar in a way to the

conventional SAR image except that it was obtained by taking the modulus of the

product of corresponding complex pixel images from the two antennas. The image

pixel brightness Ii is a function of the reflectivity or the backscatter cross section a

of the corresponding imaged surface area

Ii- f(0,), (7.2)
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where f(ai) is a function of the radar transmitted power, the antenna gain pattern,

the effect of range attenuation, and the transfer functiol of the radar receiver and

the post processor. For an airborne imaging radar (low altitude, small swath) it is

assumed that the main contribution to brightness attenuation is the range parame-

ter, which attenuates the two way transmitted signal by the fourth power R 4 . In

". order to mitigate this effect in the amplitude (or intensity) images, each range line

is normalized in the image pixel brightness by

Ri ) (7.3)
Ri

where R, is the slant range to the first line and Ri is the range of line i (i =

1,2,...,1024). This operation yields a more uniform brightness image in the range

direction. Figure 7.1 illustrates two brightness images from the northern flight path

3600 before and after radiometric rectification; the difference between the two images

is clearly observed. Figure 7.2 shows a rectified brightness image from the western

and eastern flight lines, legs 270* and 90'.

3. Computation of Image Coordinates

Ground coordinates for each flight path for SAR, and hence INSAR,

images were found by computing parameters of a best-fit transformation between

image and ground coordinates using a small set of GPS surveyed ground points

visible in each image. A least-squares, minimum-variance adjustment technique

was used to solve for the five parameters describing a simple rescaling rotation and

translation transformation:

k" = pixel size scale in the azimuth direction (along track);

Y = pixel size scale in the range direction (cross track);

a = geographic azimuth of the flight line;

117



Eo = easting ground coordinate of image origin; and

No = northing ground coordinate of image origin.

Hence, the image coordinates, expressed as (x, y) pixel number pairs, were treated

as an orthogonal coordinate system with constant, although different metric scales

in the x and y directions, the azimuth and range directions, respectively.

A priori values for the first three parameters k, ktv, a were provided with

the image data from JPL, or alternatively were computed from information provided.

These a priori values were used as additional "observations" in the adjustment

process, and were accepted as the best values for computations using image data.

Consequently, the adjustment process served two purposes. First, it

confirmed that the a priori pixel scale sizes and flight path directions (azimuth

values) were reasonably correct. Second, the adjustment estimated values for the

ground coordinates of the image or origin, which was needed in order to register each

image against the bathymetric data set, surface current ground truth measurements,

ray traces, and station positions (Figure 7.9).

4. Interferometric Phase Images

The interferometric phase images (interferograms) are further processed

to reduce the speckle noise and to obtain image pixels with equal size in azimuth

and range dimension. The phase image contains the radial component of ocean

surface velocity. This physical information has to be carefully preserved throughout

the image; for instance, smoothing methods of the speckle noise have to consider

this requirement. The extreme dark and bright pixels representing high positive

and negative velocities are screened out carefully after determining the dynamic

range of image pixel values. The upper and lower limits of this dynamic range is
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Figure 7.1: Conventional synthetic aperture radar image of the Marina
Beach region in Monterey Bay; Top: before radiometric rectification; Bot-
torn: after radiometric rectification. The aircraft attitude was Eastward
(900).
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Figure 7.2: Conventional SAR image of similar area as Figure 7.1 with
aircraft attitude in: Top: Northward (3600) and Bottom: Westward (270').
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determined by scanning the dark and bright pixel values over the image relative

to the "normal" pixel values. Any pixel image value which is beyond or under the

determined threshold is replaced by a mean pixel value of its four or eight nearest

neighbors in azimuth and range dimension. The interpolation of pixels for equal

size in both dimensions assists the extraction of wavenumber in the two-dimensional

wavenumber spectra (see below). Figures 7.3, 7.4 are phase images corresponding

to the subswaths illustrated in Figure 6.5.

C. MEAN SURFACE WIND DIRECTION
ESTIMATION

Fortunately, the imaged scene in the Marina experiment included the Salinas

River. The phase images (Figures 7.3, 7.4) illustrate the difference between the

stationary coast and moving water surface. This contrast is significantly enhanced

as compared with the conventional SAR image. The image of the coast is nearly

uniform with the expected zero velocity except for the moving surface of the Salinas

River. As can be seen in Figures 7.3, 7.4, and in more detail in Figure 7.5, the river is

blocked off from the ocean at this time of the year and constitutes a basin of standing

water in which waves are only generated by local wind with no contamination by

long fetch dominant waves or advecting currents. The apparent nonzero surface

velocity in this basin was measurcd and compared with Bragg phase velocity and

wind direction. Anemometer wind measurements at the time of the radar airborne

overflights taken close to the shoreline of Marina Beach at a height of 27 m show

clearly an eastward wind component of almost 2 m/sec. This indicates that for leg

3600 the radar was looking at upwind Bragg waves. The measured mean surface

velocity obtained from the Salinas River is estimated by INSAR phase difference

expressed by
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Figure 7.3: Radar interferograms off Marina Beach in Monterey Bay,
September 8, 1989. Brightness represents surface motions. The aircraft
flight path is from right to left along the top of the image (Northward
(360) attitude). A narrow band long crested swell from south-southwest
together with a wider band wave field from north-northwest are clearly
observed as they propagate ashore. Top: before filtering; Bottom: after
Gaussian filtering.
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Figure 7.4: Radar interferograms of the similar area as in Figure 7.3
but for flight paths: Top: 900 and Bottom: 270".
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Figure 7.5: Salinas River interferograms: Top: for flight path 3600; Bot-
tom: for flight path 2700.
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= 2 r (7.4)

The radial velocity Ur is in this case directly proportional to the net contribution

by the Bragg wave phase velocity propagating towards and away from the radar

in the viewing direction. The radial component of the phase velocity contribution

is rectified by the local incidence angle to obtain surface components in the range

direction:

c U = r (7.5)sin -

The phase difference a, which can vary between 0 and 27r radians, is repre-

sented by 0-255 image pixel gray shades with zero velocity at pixel value of 128.

The estimated surface phase velocity CPSR in the Salinas River from the image pixel

values is given by
(PIXVAL - 128) AV

CPSR = 128 2B sin 7 (7.6)

where PIXVAL is the actual pixel image value. From linear theory, the phase

velocity of a surface gravity wave is taken to be:

c, g -(7.7)

Substituting the Bragg resonant condition (Equation 2.6) into Equation (7.6) results

in

CP =V m_- -(7.8)
27r 2 sin7 

Using Equations 7.5, and 7.7, the estimated apparent INSAR Bragg waves phase ve-

locity is computed from two observations and compared with theoretical prediction.

The results are shown in Table 7.1.
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TABLE 7.1: Surface Bragg Wave Phase Velocity Estimated from INSAR
Interferogram and Linear Theory Phase Velocity

Flight
Path [deg] UPSR [cm/secl CPTH [cm/sec]

3600 46 53±2 51

2700 33 -41'± 7 58

1 The minus sign indicates Bragg waves propagating away from the aircraft in range direction.

Based on these results, the surface wind is infered to have had mainly an

eastward component with a weaker ambiguous northerly component. The result

clearly supports the assumption that in flight path 3600 the radar was looking at

an upwind surface roughness while in flight path 270 ° the radar looked at a weakly

crosswind scene. This indicates that the resonant Bragg waves responsible for the

radar reflectivity travelled ambiguously in both directions (for flight path 2700),

towards and away from the radar, resulting in difficulties in estimating their apparent

contribution to the observed radial velocity from the ocean surface.

D. CORRELATION OF OCEAN SURFACE
REFLECTIVITY WITH WIND DIRECTION

The estimate of the surface wind pattern from the Salinas River interfero-

grams (Table 7.1), are further infered regarding the mean surface reflectivity ob-

tained from the conventional SAR amplitude images from the three flight paths.

The surface wind direction as estimated in the previous section had mainly an east-

ward component with a weaker component southward. The image intensity, which
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is a function of the backscatter cross-section of the corresponding surface, should in

turn be most intense when looking upwind and weaker when looking crosswind.

Corresponding mean image intensities from the three flight paths were taken.

The results are not surprising and are consistent with the estimates of the Bragg

phase velocity in Salinas River.

1360 =4- 7 (7.9)
79o.

190,--- = 1.5 3 (7.10)

These results clearly show that the surface reflectivity is strongest when looking

upwind, weaker when the radar is looking cross-upwind, and weakest when looking

cross-downwind. This might be one of the reasons for the difference in the quality

of the phase images of opposite flights (90* and 270*) covering similar scenes (see

Figure 7.3). The eastward 900 interferogram seems to be less noisy because the

essential backscatter signal is sufficient enough to extract the phase information.

The radar signal obtained from the Bragg backscattering waves is probably less than

the minimum required in the 2700 flight path to obtain a meaningful interferogram

representing ocean surface dominant waves and currents.

E. ESTIMATION OF SCENE COHERENCE TIME

The estimation of the radar scene coherence time of the ocean surface is

processed following the method described in Chapter IV. D2. Image intensities of

similar subscenes obtained separately from the two antennas and from the product

of the two were averaged. The scene coherence time was computed using Equation

(4.61)

= (-2 InK/Ko)-"/2
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The scene coherence time was computed for all the three flight paths for different

subscenes. The corresponding averaged subsccnes were chosen from near to far

incidence angle. The results are depicted in Table 7.2. For the Northern flight path

(360'), the viewing ocean scene is only between 40o-50' of incidence angle; the scene

coherence time first increases slightly (until 460) and then remains almost constant.

For further discussion of these results, see Chapter VIII. B.

F. AMBIENT SURFACE CURRENT ESTIMATES
FOLLOWING DRIFTING BUOYS

Vessel positions were computed from the Mini-Ranger ranges using a least-

squares technique called "variation of coordinates". Descriptions of the procedure

can be found in most surveying texts. The presentation in Cross (1981) is virtually

identical to that used in the present analysis.

Although the Mini-Ranger system computes and logs a position on line, all

range data were reprocessed in order to eliminate errors caused by erratic reception

from the station at MBARI RM (Table 6.6). In fact all data from that station were

eventually rejected.

1. Positional Accuracy

The two-dimensional random errors in vessel position are estimated as

part of the "variation of coordinates" procedure. These errors are primarily func-

tions of the relative geometry between the ship and shore stations, and the esti-

mated precision of a single range measurement. This random error is expressed as

a variance-covariance matrix computed as follows:

= Tor(ATPA) - ' (7.11)
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Table 7.2: Estimates of Scene Coherence Time as a Function
of Incidence Angle Obtained from Three Flight Paths in the Marina
Experiment, September 8, 1989

Mean Incidence Scene Coherence Time r [msec]
. Angle -y leg 900 leg 2700 leg 3600

250 136 121

290 146 123

330 139 134

360 117 116

400 121 105 119

420 114 97 134

450 96 95 133

480 109 95 138

500 112 94 140

Mean 121 109 132.8

Standard Deviation, a 15.2 13.2 7.35
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where C is the 2 x 2 symmetric variance-covariance matrix with the diagonal elements

being the variances of easting and northing coordinates and the off-diagonal being

their covariance. The quantity ao is the "a priori variance of unit weight" which

scales C. Practically, o2 is assumed to be unity in these computations and checked

with an "a posteriorti estimate derived from the actual range measjrements in each

fix.

The matrix A, is th N x 2 Jacobian for the transformation from the

N-dimensional range coordinate system to the two-dimensional UTM coordinate

system. In this case N typically was 3 for the ranges from reference stations WATS,

HAYS, and DOP RM1 finally used (see Table 4.6).

Aij = (Xi - Sij)/Ri i = 1,2,3; j = 1,2; (7.12)

where X is the ship position, Si is the i-th station position, and Ri is the horizontal

distance on the UTM grid between X and Si.

The matrix P is the N x N weight matrix which is the inverse of the

variance-covariance matrix for the N range observations. It is assumed the range

measurements are all irz ependent with equal variances (it is assumed here a = 3

meter., for any single range measurement). Hence P becomes a simple identity

matrix times the scalar quantity 1/a 2, or 1/9.

Because the drifters were offset from the Mini-Ranger antenna, an ad-

ditional random error must be included. The offset distance was between 2 and 3

meters, but the direction was not known. In theory, the course-made-good derived

from successive fixes could be used to estimate the ship's heading, and hence the

direction to the drifter. However, uncertainty in direction still would be very large

because of the relatively slow speeds and inherent "crabing". It was simpler to just

add a circular random error of 2 meters to the variance-covariance matricies derived
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above. It can be shown this is accomplished by simply increasing the easting and

northing variances by 4 m2 each.

This additional circular random error also serves to represent an uncer-

tainty due to the linear interpolation assumption. No theoretical approaches could

be found in estimating the random error in the interpolation, however, based on

simulation runs, the maximum error due to interpolation between fixes of 10 m

apart would be about 2 m.

In Appendix D, the variance-covariance matrices computed for each ob-

servation of drifters from Group One and Two are presented. Only one matrix was

computed for each group of observation because the drifters were so closely bunched

that the relative geometry did not change significantly and hence, the random errors

were essentially the same for all.

In general, errors increased slightly closer towards the shore. Circular

errors increased from about 11 m to 13 m (CE 95%), going from the most offshore

positions where Group One was deployed to the nearshore area where Group Two

was recovered. Also note that the northing coordinate was determined more pre-

cisely than the easting, by a factor of about 3. Both effects are due to the fact that

the reference shore stations lay essentially along a north-south line passing close to

the experiment region.

2. Accuracy of Velocity Estimates

Drifter velocities vvere computed by the difference of positions divided

by time interval. Standard error propagation techniques were used to estimate a

variance-covariance matrix for the U and V velocity components. The reader is

refered to the MATHCAD documentation for a description of the math and the

actual computation of the estimates given below.
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The error estimates of the sorted data are small, of the order of 0.1

cm/sec as shown in Table 7.3. The errors depicted are small primarily because

of the relatively long time intervals between drifter position observations, typically

about 40 minutes. The relatively large time period of drifter positioning is allowable

since the environmental conditions on September 8, 1989 were almost steady for this -

time interval. Also note that these error estimates assume that U and V components

are constant over the period between drifter positionings. In other words, these are

estimates of the error in the mean velocities.

TABLE 7.3: Standard Deviation of Velocity Components (cm/sec)

o.U OV

Group One: Obs 1 to 2 0.13 0.08
Obs 2 to 3 0.19 0.11
Obs 3 to 4 0.22 0.12

Group Two: Obs 1 to 2 0.14 0.07
Obs 2 to 3 0.20 0.10

G. INSAR MEASUREMENT AND GROUND
TRUTHING OF NEARSHORE OCEAN SURFACE
CURRENTS

INSAR phase images (Figures 7.3, 7.4) were further processed to obtain esti-

mates of very near ocean surface currents. The radial component of surface velocity

Ur of each pixel is rectified from the incidence angle dependence resulting in the hor-

izontal component of ocean surface velocity in the viewing (range) direction. The

bias introduced by the Bragg wave phase velocity estimated from the Salinas River
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(see Chapter VII. C) is then subtracted. The resulting phase image is averaged

two-dimensionally to mitigate the quasi-periodic wave orbital velocity. The scale of

averaging is the orbital motion scale of the largest observed wave. All smaller wave

multiples of this scale are averaged out. The surface velocity image from one flight

path represents only one component of the surface current vector in the viewing di-

rection. Two orthogonal flight paths observing the same area are needed to estimate

the full current vector. The phase image data from flight paths 3600 and 90* were

selected to obtain interferometric virtual estimates of ocean surface current fields.

These estimates are compared with simultaneous observations of the Langrangian

floating drifters, and good agreement is obtained.

1. Additional Considerations and Processing

When computing current estimates from INSAR phase images, the fol-

lowing additional considerations were taken:

e When using the interferometric SAR technique to measure surface velocities,

one has to consider sideways motion of the antennas, introducing a phase shift

" making the imaged scene appear to move when it is stationary. The prominent

errors in the image phase data were corrected at JPL (see Chapter VI. F) using

the Inertial Navigation System (INS) data and land imagery as a stationary

reference (Goldstein et al., 1989).

* Mini-Ranger positions of the floating drifters were transformed to image pixel

coordinates using the GPS adjustment method (see section B3). Image sub-

areas from flight paths 90' and 360' containing the observed path of the La-

grangian drifters were selected to match the current estimates as spatially

similar in nature as possible to the in situ observation.
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* The image constructed from the 3600 flight path looking upwind is less noisy

compared with images constructed from flight paths 900 and 2700 looking

crosswinds (see section C, D). Therefore, prior to the computation of current

estimates, the phase image from the eastward flight path was smoothed. Pixel

phabe values, which deviate by more than two standard deviations from the

mean phase value of a selected subarea, were rejected, resulting in a less noisy

phase image for current computation.

An additional problem is the appearance of slicks (seen as dark regions

in the conventional SAR amplitude image, Figures 7.1, 7.2) in the selected area. In

these areas the essential backscattering amplitude is probably too weak, i.e., very

noisy, to extract a reliable interferometric phase due to surface motion. Nearby

regions with no slicks were selected to compute current estimates for areas observed

by drifters 3, 4.

2. Comparison of INSAR Current Estimates with Lagrangian
Drifter Measurements

The simultaneous in situ surface current estimates are shown in Figure

7.6. Three groups of five Lagrangian drifters each were deployed close to the time of

INSAR aircraft overflights (see Chapter VI. C). Radar data was initially acquired 30

minutes before the predicted time of maximum flood tide current (1320 PDT). This

timing was predicted on observing the stronger flows to make the current estimates

more reliable in an area (Marina Beach) which is known to have unpredictable weak

tidal currents.

The Lagrangian drifters (Figure 7.6) experienced a dominant eastward

component and a much weaker northward component. Some estimates of surface

current derived from interferometric SAR data and Lagrangian drifters are tabulated

in Table 7.4. It is shown that the dominant eastward components are in better agree-
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• Figure 7.6: Direct observation of surface currents following Lagrangian
drifters near Marina Beach in Monterey Bay, California. Th,. arrows
point in the direction of the current and the length of each arrow is
proportionz'l to the observed ,'eed.

ment (correlation 0.9) than the weaker and hence, difficult to determine, northward

component (correlation 0.5). The velocity magnitudes are most consistent with a

correlation of 0.94. The reasons for these results are assumed to be associated with

the physical difference between the two types of measurements, Lagrangian versus

spatial synoptic observation, and are further discussed in Chapter VIII. C.

The drifter velocity estimates with almost nil standard deviations (o",

0.18 cm/s, c', = 0.1 cm/s) were discussed in the last section. The INSAR mea-

surements had a larger standard deviation of 20-30 cm/sec computed from selected
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TABLE 7.4: INSAR Estimates and In Situ Observation of Ocean Surface
Currents (in cm/sec). Subscript d Denotes Drifter and s for INSAR.

Zonal Meridional Velocity

Drifter Component Component Magnitude
Number Ud Us (3600) Vd V, (90') Ud U

1,2 20 - 5 - 21 -
3,4 18 15 5 4 19 16

5 18 16 4 5 18 17
6,7 22 17 5 9 23 19

8 21 17 5 8 22 19
9,10 22 18 4 5 22 19

Average 20 17 5 6 21 18

rms error (cm/sec) 0.5. 1.7 0.5

subareas, which were averaged to estimate INSAR current components. This large

velocity deviation is believed to be primarily associated with the orbital velocity of

the quasi-periodic surface gravity waves which are averaged out. To get an estimate

of the order of magnitude of this assumption, consider a a deep water surface gravity

wave propagating in the cross-track (range) direction of a moving radar platform.

For this geometry, the observed radial component is the actual wave orbital veloc-

ity. For waves propagating in the along track (azimuth) direction, only the vertical

particle velocity is observed. Therefore, the largest observed orbital velocity in deep

water is given by

UOB :-- H gT' (.3I1gT (7.13)

where II is the wave height. The orbital velocity of a shoaling wave increases with

decreasing wavelength; hence, the expected dominant contribution to the observed
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mean orbital velocity is from the shorter observed swell component (see Chapter IV.

C).

For a wave with L = 97 m, period T' = 9.1 sec and a rms wave height

H, = 0.32 m (the wave height and period are estimated from the in situ power

* spectrum, see Figure 7.10) as observed in the Marina experiment, UrOB = 0.20

m/sec. This result is consistent with the computed standard deviation from the

estimated mean surface currents. It indicates that most of the contribution to the

standard deviation is from the quasi-periodic orbital velocity of dominant waves

which are averaged out. Additional contribution to the standard deviation of the

mean surface current component estimates is attributed to speckle noise. Estimates

of current velocity vectors for radar and direct observed measurements are shown

in Figure 7.7. The agreement is felt to be encouraging. For further discussion on

these results, see Chapter VIII. C.

36*42'N

•/ /.- " ,/ -
4  

j

2- .... M ARINA
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121 ° 53'W LONGITUDE 121048'W

50 CM/S

Figure 7.7: Detailed presentation of Figure 7.6 together with INSAR
current estimates (dashed arrows).
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H. OBSERVATION OF SPATIAL AND TEMPORAL

NEARSHORE OCEAN WAVE SPECTRA

Shoaling and refraction of waves can be characterized by two dimensional

spectral analysis. The two-dimensional wavenumber (k = (ks, ky)) spectra obtained

by INSAR imagery are tested against the conventional measurement of directional

spectra computed from time series records obtained from the pressure wave array

in the shallow water off Marina Beach. In addition, the two swell components

observed by the shallow water array were used as inputs to compute wave ray traces

using Dobson's numerical model (see Chapter V. B). Two-dimensional INSAR wave

number spectra were computed for subscenes along the ray traces. The results

are consistent with the refraction model outputs and with the shallow water array

directional spectra.

1. INSAR Two-Dimensional Wavenumber Spectra

Following the description in Chapter V. C, a software package was de-

veloped to calculate two-dimensional wavenumber spectra from INSAR images.

The rectified phase images illustrated in Figures 7.3, 7.4 were further

processed by linear interpolation (see Equation 7.1) to equalize the azimuthal pixel

size with the range size resulting in square pixels. This operation was done to

simplify the computation of the wave lengths and directions of the peaks of the

wave number spectra.

Due to the complex shallow water region in which the experiment was

conducted, relatively small subscenes had to be selected to fulfill the homogeneity

requirement for spectral analysis. Trade off is between satisfying the requirement

of homogeneity and obtaining confidence in the spectral estimates. To obtain con-

fidence in the spectral estimates, a minimum sea surface area equivalent in size to

approximately 6-10 wavelengths on a side must be used to calculate INSAR image
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spectra to provide reasonable estimates of wavelength and direction. Therefore, a

flexible 2D FFT code was developed which allows a selection of any number of pix-

els in either dimension resulting in rectangle sub-areas for spectral analysis of any

size. If the number of pixels in the sub-area is not a power of 2, the sub-area is

zero paded to the nearest power of 2 number of pixels. This increases artificially

the effective resolution for wavelength and angle computations. The edges of the

subscenes were cosine tapered to reduce spectral leakage and demeaned. Figure 7.8

shows some of the sub-areas that were subjected to spectral analysis. The INSAR

image spectra of the corresponding sub-areas are illustrated in Figures 7.12 to 7.15.

They are smoothed with a Gaussian smoothing kernel providing spectral estimates

with 25-30 degrees of freedom.

2. Shallow Water Array Directional Spectra

Computation of shallow water array directional spectra was done us-

ing the Grauzinis (1989) method (see Chapter V. C). The available Fourier coeffi-

cients of the wave field angular distribution function were computed using Equations

(5.31)-(5.35). The model distribution function that was used to match the Fourier

coefficients is the wrapped Cauchy distribution

D(O) = 1-m
TrI-27ni cos; 0 + m? }

This distribution gives suitable narrow estimates and allows for bimodal directional

spectra.

The spectral analysis was performed for a one hour time series 1200-

1308 PDT on September 8, 1989 with subsequent FFT's computed over 128 second

intervals with a sampling rate of 0.5 Iz. The averaged spectral estimates have ap-

proximately 64 degrees of freedom. As mentioned in Chapter VI. F2, the data were

detrended and demeaned before being Fourier transformed to eliminate contamina-
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AB 1

Figure 7.8: Radar interferogram of Marina Beach area, September 8,
1989. The indicated sub-areas were subjected to spectral analysis with
results appearing in Figures 7.12-7.15.

tion of the wave frequency bands due to leakage of low frequency signals. The wave

pressure power spectrum is calculated and transformed into surface elevation and

surface slopes spectra by applying linear wave theory transfer functions as described

in Chapter V. C, and subsequently converted from a frequency angle presentation to

a directional wavenumber presentation via intermediate water linear wave equations.

3. Comparison of INSAR 2D Wavenumber Spectra with Temporal
Wave Array Spectra

Wave refraction rays for the two dominant waves observed by the Ma-

rina shallow water array were constructed using the Dobson model. The rays at

these peak frequencies (0.063, 0.109 Hz) were propagated offshore. The predicted

140



tN

MARINA

36041'N

S WAVE ARRAY

S-------- 20 INSAR SPECTRA
I 1 PREDICTED

121049.6'W

Figure 7.9: Observed ray traces - from INSAR spectral analysis versus
predicted wave orthogonals for the two swells measured by the shallow
water array of Marina Beach. The numbers are the centers (stations) of
the 2D FFT sub-areas.
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wavelength and direction along the refracted ray (about every 800 m) were compared

with the actual wavelength and direction of the two dimensional INSAR image

wavenumber spectra from the Northern (360*) flight path image (see Figure 7.8).

The analysis is summarized in Figure 7.9 and Table 7.5.

The effects of tides and coastal currents on wavelength and propagation

direction were ignored and considered negligible when constructing the ray traces.

The comparison between the predicted and INSAR results clearly demonstrate the

feasibility of INSAR in imaging ocean wave spectra in a complex region under the

given experimental environmental conditions.

An inherent limitation in applying the refraction model to INSAR's data

is that the bathymetry used in the model is not as accurate as would be desired.

The density of depth data varied based on various ship tracks and was available

only every 6 seconds.

The in situ wave array spectral results are more reliable for comparison

with INSAR's measurements. The surface elevation power spectrum obtained by the

wave sensors is illustrated in Figure 7.10. The two observed peaks in the spectrum

correspond to wave periods of T, = 15.9 sec and T2 = 9.1 sec. The wavelengths

(Station 1, Table 7.5) are calculated at the appropriate sensor depth (16 m) using

the linear wave dispersion relation (Equation 5.3). The higher energy region around

the short wave peak (T1) shows a range of spectral average (0.1 to 0.17 Hz), while

the region around the lower energy peak (T2 long swell) is much narrower; thus, the

spectrum indicates the existence of two swells with the shorter wave field having a

broader spectrum.

The directional wave spectrum computed using the exact Fourier co-

efficient representation method (Grauzinis method) is presented in Figure 7.11.
The shorter wave field propagates from west-northwest to east-southeast, while
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the longer swell propagates from south-westsouth to east-northeast. The wave-

length estimates from the spectral analysis of the two data are identical while the

directions are in good agreement (see Table 7.5).

0

uJN0

U

0.00 0:05 0.10 0.15 0.20 0.25
Freq 5'lz

Figure 7.10: In situ surface elevation power spectrum measured by the
Marina shallow water array on September 8, 1989, 1200-1308 PDT, at a
depth of 16 m.

In order to reduce bathymetric constraints, two typical sizes of image

sub-areas were selected for computing the 21) wavenumber spectra. For the shorter

wave field, sub-areas of -, 1400 x 700 m were selected for computing wavelength

and direction depicted inl Table 7.5, while for the long crested swell sub-areas of

- 1400 x 1400 m with overlap between the sub-areas were used. The variation of

bottom topography over the subscene changes the wavelength and direction. This

distortion is reflected in the 21) wavenumber spectra. Table 7.5 illustrates the 2D

wavenumber spectra of INSAR along the ray traces depicted in Figure 7.9.

The compu', d spectra (Figures 7.12-7.15) illustrates shoaling and re-

fraction of the two dominant swells over a wide imaged region (, 12 x 6 km). For
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region A, B where the ocean is relatively deeper, shoaling and refraction are less

pronounced compared to the southern regions C, D.

In spite of the limitations mentioned above, INSAR image spectra veri-

fied by wave array measurement and compared with model predictions are encour-

aging, and demonstrate the feasibility of this unique technique to estimate ocean

wave spcctra cvcn in a complcx occonographic rcgion. For further discussion, see

Chapter VIII. D.
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Figure 7.11: In situ directional wave spectrum taken at Marina Beach
for the same time interval as Figure 7.8; Top: 3D representation; Bottom:
contour presentation.
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Figure 7.12: Top: Shallow and Bottomn: deeper water INSAR image
wavenumber spectra of sub-area Al, A2 indicated in Figure 7.8. The
circles represent wavelengths as depicted in Figure 7.11.
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Figure 7.13: Same as Figure 7.12, but for sub-area Bi, B2.
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Figure 7.14: Same as Figure 7.13, but for sub-area C1, C2. The topimage spectra is obtained frori a sub-area close. to the Marina shallow
water array.
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Figure 7.15: INSAR image spectra of sub-area D indicated in Figure 7.8.
The excessive refraction of the long crested swell in this region smears
the spectra.
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VIII. RESULTS AND DISCUSSION

A. INTRODUCTION

The aim of the experimental part of this study has been to verify the capabil-

ities of INSAR to image near surface ocean dynamics. The method was to compare

ocean wave spectra and surface current measurement obtained remotely by INSAR

with conventional in situ observations.

A discussion of the processed results from Chapter VII is presented in this

chapter. It is shown that the interferometric technique appears to offer considerably

improved imagery of ocean surface waves as compared to conventional SAR. The

additional capability relative to SAR, in imaging ocean surface currents, seems to

be reliable for oceanographic studies.

B. TEMPORAL RADAR COHERENCY OF THE

OCEAN SURFACE

The fluctuations in the short wave reflectivity of the ocean surface during a

given observation time caases the temporal correlation function of its reflectivity to

have a width r,. The azimuth resolution p.z is degraded as compared to that of a

stationary scene (see Equation 3.2) to

Paz= A +[1+(#) 2]1/2 (8.1)

In addition to the degradation in azimuthal resolution due to finite scene

coherence time, the SAR (and hence INFAR) azimuthal resolution is smeared also

by dominant wave motions. The azimuthal wave pattern translation and the range

component of the wave acceleration during the integration time primarily degrades

the azimuthal resolution. For an imaged swell, the wave pattern translation smearing
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can be corrected by focus adjustment of the processing matched filter (Raney, 1980)

and therefore will not be discussed further. As was noted in Chapter IV. C, the

finite scene coherence time determines the effective integration time and hence the

azimuthal resolution. The L-band radar scene coherence time estimation from image

intensities (Chapter VII. E, Table 7.2) is of the order of 0(102) msec.

The range component of acceleration of a deep water gravity wave is given

by

a(x, t) = 2H ( 7r)2exp [2jr] sin(k -x - wt) cos -y (8.2)

where H is the wave height, T' is the wave period, and z is the water depth. At the

surface z = 0. The degradation in azimuth resolution due to wave acceleration is

taken to be (Alpers and Bruening, 1986)

r R Rx, )Tcos R (.r ))
paz= x2H T sin(k x-wt) T cos-y (8.3)

For typical JPL/DC-8 parameters, wave height of 0.7 m, wavelength of 100 m,

effective integration time of 0.1 sec. and incidence angle of 300, Paz 5 0.7 m.

Therefore, the degradation in azimuth resolution due to long wave acceleration is

neglected.

It is important to note once again that the loss in azimuthal resolution due

to finite scene coherence time associated with the random motion of scattering el-

ements within the resolution cell, results in a consistent azimuth image smear and

not defocus, and is therefore not recoverable by focus adjustment or integration

time settings (Lyzenga and Schuchman, 1983). Therefore, the estimation o; scene

coherence time remains a key parameter in determining the azimuthal cutoff wave-

length of SAR and INSAR azimuthal resolution. If the coherence time rc is much

smaller than the post processing integration time T, the azimuthal resolution can
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be approximated (Lyzenga and Shuchman, 1983) to be:

Paz A (8.4)
2Vr,

Based on the results depicted in Table 7.2 and Equation (8.4), the degradation

in azimuth resolution due to finite scene coherence time for the three flight path

images in the Marina experiment is illustrated in Figure 8.1.

to , o 90* image

a 2700 image 0

-rD 3600 image
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Figure 8.1: Degradation in azimuth resolution for the NASA/JPL DC-8
L-band SAR for the three flight path images in the Marina experiment,
September 8, 1989.

These estimates of L-band scene coherence times are consistent with con-

ventional radar observations (100 msec) during the TOWARD experiment (Plant

and Keller, 1984). The theoretical estimates of the scene coherence time using the

Pierson- Moskowitz spectrum (Table 4.1) gives larger estimates (3-4 times) com-

pared with the more realistic direct observation estimates. Tile estimates of the

ratio K/Kfo in Equation (4.61) for all three flight path images were close to 0.9 and
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larger. This result suggests that for the estimation of the scene coherence time only,

the measurement sensitivity can be increased by increasing the effective baseline

separation (9.9 m) between the antennas. Variation of the effective baseline sepa-

ration will allow to investigate the distribution of the temporal correlation function

which was assumed to be Gaussian in the present study.

For rougher sea state, it is expected that the observed scene coherence time

will be shorter. This is because the waves become steeper with higher orbital veloc-

ities resulting in a larger velocity spread of the scattering elements. When break-

ing occurs, the backscattering mechanism is specular in nature (not Bragg). The

backscattering slopes are propagating at the dominant wave phase velocity (Lyzenga

et al., 1983). The transformation of the advecting velocity of the backscattering sur-

faces, from orbital to phase velocity when breaking occurs, further reduces the scene

coherence time. A cusped region is the surf zone, the estimated scene coherence time

from this region is 30% less relative to estimates from nearby sea surface regions

with similar incidence angle.

The difference in azimuth resolution between three flight path images is not

fully understood at the moment and is probably determined by the speckle and

random noise and look direction (upwind crosswind). Based on the estimates of

azimuth resolution (40-70 m) in Figure 8.1, the largest unresolvable azimuth waves

are of wavelength between 80-140 m (increasing with incidence angle). The orbital

velocity of these waves modulating the fundamental scattering elements mainly de-

termine the finite scene coherence time (see Chapter IV. C).

The degradation in azimuth resolution is one of the major reasons for the less

pronounced wave patterns in the INSAR images obtained from flight paths 2700 and

90°. The azimuthal orientation of the dominant swells makes them less resolvable

with increasing range as the azimuthal resolution decreases (Figure 8.1 and Chapter
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VIII. D. 2c). The wave patterns in the 90° and 2700 SAR images were more affected

by velocity bunching compared to the 360 ° SAR image. This might contribu., to

additional azimuthal degradation of the INSAR image.

In shallow water shoaling and refraction probably also play a role in de-

termining the scene coherence time. Due to refraction, waves tend to propagate

perpendicular to the bathymetric contours (refraction) which are mainly aligned

alongshore, while shoaling results in increased wave amplitude and elliptic particle

orbits. The change in the radar observed orbital velocity due to shoaling is believed

to be small. The more pronounced effect is probably the refraction effect in which

wave crests tend to align with the bathymetric contours in shallow water before

breaking occurs. In deeper water, the wave length and direction are less affected by

the bathymetry and the direction of wave propagation might be affected by local

winds. In the Marina experiment the mild wind (< 2 m/sec) had no influence on

the direction of propagation of the larger unresolved waves (80-140 m) which are

of our interest since these waves determine the azimuth resolution. Therefore, the

- direction of the larger unresolved waves in deeper water was unknown. For flight

path 3600, the refraction effect caused waves to be range oriented near the shore

(smaller incidence angles) and hence the full magnitude of the orbital velocity should

be observed by the radar, resulting in a faster decorrelation time of the surface. An

indication of this effect can be noticed through the results depicted in Table 7.2

for the 360' image. Additional evidence using the present technique and in situ

observations is needed to get a better understanding of the determination of scene

coherence time in shallow water.

An important application of the knowledge of the scene coherence time is in

defining the optimum physical baseline separation between the two antennas which

determines the sensitivity of interferometric measurements of ocean surface velocity
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fields. For a mean estimate of 0.1 sec. of the scene coherence time, it is required

that the platform travel time through the effective baseline separation (9.9 m) will

be less than 50 msec. Using the expression for the time delay for interferometric

measurement At = T,/2 and L-band NASA/DC-8 parameters yields a maximum

baseline separation of:

Bmax = At 2V = 21.4 m (8.5)

This result shows that the actual baseline separation (19.8 m) used in the Marina

experiment was almost optimal for the given environmental conditions. For rougher

sea state and/or higher radar frequencies, the scene coherence time will be shorter

and hence the baseline separation between the antennas should be reduced. The

requirement for At = r/2 probably could be more flexible allowing At < r, and

hence B.,, could be increased resulting in an improved sensitivity in the INSAR

phase measurement (given r, > 0.1 sec.). The effects of increasing of the antenna

baseline separation should be inferred in future experiments.

C. INTERFEROMETRIC SAR REMOTE SENSING OF

OCEAN SURFACE CURRENTS

A primary objective of the present study is the verification of the feasibility

of INSAR to estimate reliably ocean surface currents with high resolution over large

regions. The Marina experiment demonstrates this feasibility by comparing INSAR

estimates with almost simultaneous in situ Lagrangian drifter estimates (see Chapter

VII. G). A scatter diagram of current magnitude estimates derived from the two

sensors is illustrated in Figure 8.2. Simple statistical analysis shows a significant

degree of linear correlation (R = 0.94), with a small consistent bias of 2.5 cm/sec.

However, due to the relatively small number of compared estimates the statistical

significance is rather low.
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Figure 8.2: Lagrangian drifter versus INSAR surface currents estimates.

1. Limitations of Measurement Methods

In the eastward (900) flight path image (from which the meridional cur-

rent component was estimated) the radar was looking crosswinds. The estimation of

the ambiguous phase velocity associated with the Bragg waves was derived from the

western (2700) flight path image (see Chapter VII. C, G), which included the Sali-

nas River. Unfortunately, the less noisy 900 phase image did not include a nearby

calm region like the Salinas River to estimate the phase velocity bias. The 2700

image was not selected for computation of meridional current estimates because it

was the most noisy image obtained in the Marina experiment (see Chapter VII. D).

T:erefore, the substruction of the velocity bias introduced by the Bragg wave phase

velocity for the meridional component was not straightforward, resulting in a less

accurate estimation of this component.
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Another difficulty that was addressed in estimating current components

from INSAR phase images was the presence of slicks, which are clearly seen in the

amplitude SAR images (see Figures 7.1, 7.2). These slicks are believed to be observed

due to local dampening (straining) of the wind generated surface ripples which are

responsible for the essential Bragg radar backscatter. Ocean surface straining can

be introduced by various oceanographic phenomenas, one probable driving force to

create slicks is that the surface signature is related to the convergence of surface

particle velocities associated with internal waves. The internal waves might be

generated by tidal flow variabilities over topographic features causing fluctuations

in the thermocline. The local convergence zones introduce concentration of surface

organics which dampen the surface ripples due to increased surface tension. Another

mechanism creating regions of surface convergence are Langmuir cells in which the

slicks are oriented in the direction of the wind. Because some of the slicks are aligned

along the bathymetric contours and the wind was weak, it is believed that they are

related to internal waves rather than Langmuir cells.

Mean temporal Lagrangian estimates are physically different in character

from the synoptic instantaneous spatial observation of the surface currents, which

could be described as a grid of Eulerian snapshots. The Lagrangian drifter trajectory

would not necessarily follow the spatial current pattern measured instantaneously

by INSAR, which is evident in Figure 8.2. Averaging of imaged subareas make the

two different current estimates more comparable. This difference might be one of

the reasons for the better agreement in the computed current magnitude estimates

rather than current direction (see Table 7.4).

2. Current Measurement Conclusions

The results of the experiment in estimating surface currents with INSAR

shown in Table 7.4, Figures 7.7, and 8.2, together with the discussion above, suggest

158



a number of conclusions which are basically consistent with those pointed out by

Goldstein et al., 1989.
I.

* The method seems to be most reliable when the radar observation is along the

direction of the strongest current component (flight path 3600).

* The magnitude, rather than the direction of current estimates, is more con-

sistent with conventional observation, probably because of the fundamental

difference between the two measurement techniques.

* The interferometric technique seems to be more accurate when the radar is

looking upwind (and probably also downwind). In these cases, the Bragg

waves phase velocity responsible for the radar signal are less ambiguous, and

the returned amplitude signal is strongest resulting in a better signal over

. noise.

e The estimates of the bias phase velocity (when looking upwind) are consistent

* with those expected theoretically.

* The interferogram contains numerous additional features in the ocean flow

field which were neglected in the present study. Spatial nearshore current

patterns is one phenomena which should be further analyzed.

D. OCEAN WAVE SPECTRA

The results of INSAR image spectral analysis tested against conventional

wave array spectra estimates and refraction model predictions (Chapter VII. H)

demonstrate that interferometric SAR under certain geometric orientations appears

to offer considerably improved (relative to conventional SAR) imaging of waves also
in complex nearshore regions.
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1. Results Comparison

The predicted (Dobson's model) ray traces expressing the relationship

between the water depth h and wavelength L and between the depth and direction

of arrival a (Figures 8.3. 8.4) are such that the refraction model becomes insensitive

to changes in h when I

h > 0.4Lo, (8.6)

where L0 is the deep water wavelength. For the two observed swells in the Marina

experiment this requirement results in a depth of 54 m for the shorter swell (9.1

sec) and 163 m for the longer swell. The western edges of the Northern flight path

(3600) INSAR image which was mainly subjected to spectral analysis (Figure 7.8)

represents a mean depth of 53 m. This indicates that bcth waves experience shoaling

and refraction through the entire imaged scene.

The constructed wave refraction diagram (Figure 7.9) is consistent with

the INSAR derived orthogonals. As mentioned previously, wave propagation an-

gles can be sensitive to other oceanographic phenomena such as tides and coastal

currents. Wavelengths are also subject to these effects but to a much lesser extent

(Shuchman and Kasischke, 1981, Hayes, 1980). These effects were not considered

in our refraction model. The observed weak currents (Chapter VII. G) and the

consistent INSAR spectral results consistent with model predictions, indicate that

these effects were minor during our experiment.

Figure 8.5 presents a plot of wave directions a,, a 2 determined from

INSAR 2D FFT versus a1 , a2 calculated from Dobson's refraction model. The

plot shows a significant degree of linear correlation (0.88) for the long crested swell

which experience more significant refraction compared to the shorter observed swell
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Figure 8.3: Relationship between water depth h and predicted wave-
length in Monterey Bay based on Dobson's refraction model: Top: for
the shorter observed swell L0 - 129 m; Bottom: for the long crested swell
Lo = 395 m.
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Figure 8.4: Relationship between water depth h and predicted direction
of wpve arrival a in Monterey Bay based on Dobson's refraction model:

Top: for the shorter swell Lo = 129 m; Bottom: for the longer swell L0

395 m.
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(correlations of 0.43). The reason for the better agreement of the narrow band long

crested swell is probably because this swell is more monochromatic in character

relative to the shorter swell and hence more comparable to the theoretical model,

which is based on the analysis of monochromatic waves as input

The results for INSAR observed wavelengths compared with model pre-

dictions are depicted in Figure 8.6. The linear correlation is better ',han 0.9 for both

swells. This is mainly because shoaling is less sensitive than refraction to oceano-

graphic constrains and remote sensing imaging geometry. The measured wavelength

from INSAR's image spectra compared with the in situ wave array wavelength esti-

mates and model predictions, i5 in better agreement than wave direction (see Table

8.1).

It is felt that more advanced spectral analysis techniques like maximum

entropy might improve the data analysis results in shallow water. This and other

techniques offer the potential of reducing the number of wavelengths required in a

sub-area which is subjected to spectral analysis (Schuchman and Kasischke, 1981).

Together with more accurate bathymetric information the potential of improving

the analysis of refraction and shoaling in shallow water can be obtained.

TABLE 8.1: Deviation of INSAR Image Spectra Wavelength and Direc-

tion from Wave Array and Model Prediction Output

Wave Direction Wavelength

T = 9.1 sec. T = 15.9 sec. T = 9.1 sec. T = 15.9 sec.

Correlation 0.43 0.88 0.96 0.99

rms error 6.20 6.40 3.9 m 4.7 m
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2. Effects of Airborne SAR System on the Study of Ocean Surface

Waves

Since the INSAR technique is based on SAR imagery, some key fun-

damental shortcomings of SAR in imaging ocean surface waves were described in

Chapter III. D. Through examples from the acquired remote sensing data the effect

of these shortcomings on INSAR wave imagery is discussed in this section. The

known SAR coherent motion effects include velocity bunching, acceleration defo-

cus and scene coherence time limitation. The noncoherent scene motion effects,

which are only important for relatively slow scanning platforms like aircraft, include

scanning distortion and smearing (look misregistration for multi-look processing).

a. Scanning Distortion

Scanning distortion arises due to the relative motion between the

projected translation of the mean pattern of image reflectivity by the wave phase

velocity C, and the imaging radar platform velocity V. Therefore, this relative

velocity effects during the observation time is in general proportional to the ratio

C/V.

The image patterns should be corrected if the projected azimuthal

component of the phase velocity is significant compared to the platform velocity. In

this case the image contrast can be improved by adjusting the processor focus by

C/2. The spectral energies have to be corrected in the azimuthal direction by kC/V.

Using this method suggested by Vachon et al. (1988), the inherent 1800 ambiguity

(for all imaging radars) in the wave peak directions can be resolved. Artifact spectral

contours obtained from opposing flight directions will diverge after this correction,

while the actual contours will converge. Using Equation (3.16) and the computed

INSAR wavelength and direction from spectral analysis (see Table 7.5), the scanning

distortion effect is estimated. Longer waves with higher phase velocity are relatively
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more distorted. Therefore, the longest swell (310 m) computed from station 4 (3600

image, Table 7.5) was selected to demonstrate the scanning distortion effect. The

calculated wavelength distortion is of the order of 2% and 50 in direction. For

shorter waves observed in 3600 image where the waves were mainly range oriented,

the scanning distortion for both.swells is practically negligible. Figure 8.7 illustrates

INSAR image spectra computed from sub-areas in the wave array and in deeper

water centered 2000 m west from the wave array zone for the eastern 900 flight

path. Shoaling and refraction effects are observed for the shorter swell only (peak

P1) since the long crested swell is less, much less energetic in deeper water and was

not observed. In shallow water the long crested swell becomes more energetic due

to shoaling and a relatively weak peak with a wavelength of 212 m and direction of

740, 140 norther from the computed tdirection 2600) wave array directional spectra,

was measured. Due to the azimuthal orientation of the swells in the 900 flight path

the wavelengths are distorted by almost 6-7%, which is relatively a large effect

compared with the corresponding 3600 flight path image in which these swells had

a range orientation. Correction for scanning distortion will make these swells more

comparable to the wave array wavelength estimated (192 m, Table 7.5).

In deeper water a relatively large rotation of the shorter swell to-

wards range direction is observed. This additional rotation (also of the long swell

in shallow water) is not well understood at the momeut. The noncoherent scene

motion effects are negligible for spacecraft since the ratio C/V is small.

b. Velocity Bunching

For azimuthaly oriented waves, the velocity bunching imaging mech-

anism is significant. Though the INSAR image formation is not based on this

mechanism it is formed from complex SAR images, which might be distorted due to
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Figure 8.7: INSAR Eastern 900 flight path image spectra computed from:
Top: Shallow water sub-area close to the Marina wave array; Bottom:
Deeper sub-area centered 2000 m west from the shallow sub-area.
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bunching effects. For INSAR imagery it is felt that velocity bunching might con-

taminate the image formation. This imaging mechanism becomes less significant as

the wave direction become more range oriented, the wavelength increases and/or

the wave height decreases. Based on the theory described in Chapter III. D and

INSAR orbital velocity estimates, the velocity bunching effect is evaluated.

The fractional amplitude of the azimuthal image shift is estimated

using Equation 3.13. The wave amplitude is computed from the INSAR image

data, using linear wave theory and simple geometry considerations. The mean

estimated orbital velocity obtained from 3600 INSAR image for the 9.1 sec. swell

varies between 20-23 cm/sec. This velocity is consistent with the rough estimate

of UOQ using Equation (7.13). The shorter swell was selected for a test case since

it has a relatively larger orbital velocity and hence experience a stronger bunching

effect. The imaged area is considered as intermediate water depth, therefore the

orbital wave particle velocity pattern is elliptic rather than circular. The equation

of this pattern is given by:

U2  
W 2

(8.7A1/2 + A 2tgh2kh

where A' = AgT'/L, and U, and W are the horizontal and vertical velocity compo-

nents. Transforming Equation (8.7) into polar coordinates after simple manipulation

the wave amplitude is obtained

Lr sin C 21 (8.8)A=~ ~ tgh2kh cos 8

with

UOB (8.9)
(sin 2 -f sin 2 4 + cos 2 0)1/2

where 7 is the incidence angle and 4 is the angle between the wave direction and

the radar platform attitude. For both swells estimated from INSAR image spectra
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close to the Marina wave array, C,, and C' are computed using Equations (8.8),

(8.9), (3.13), and (3.14). Table 8.1 shows that both swells are far from being crit-

ical. The shorter swell is more influenced by velocity bunching. The highest ratio

of C' C' = 0.3 is obtained for the eastward 90* flight path due to an increased

azimuthal orientation of the imaged swell. This might be one of the reasons for the

more smeared INSAR image obtained from the eastward flight path relative to the

northward 3600 flight path image. The results depicted in Table 8.1 mainly show

that the imaged scattering elements redistribution is one to one resulting in single

unambiguous brightness patterns in the SAR imagery representing the actual ocean

waves.

TABLE 8.2: Actual Velocity Bunching Parameters (C, C,) Estimates Ob-
tained from INSAR Imagery (Northern Flight Path 3600)

Wave
Period T' Flight h L UOB A

(sec) Path - € (m) (m) (cm/sec) (m) C,, C'

9.1 3600 400 690 16 97 23 0.3 43 10

15.9 3600 400 840 16 192 15 0.2 292 0.4

9.1 900 450 120 16 120 16 0.23 19 6

c. Coherent Motion Effect

The degradation in azimuthal resolution due to finite scene coher-

ence time has a low pass filter effect on the SAR image. It shifts the azimuthal wave

number to lower values. An example of this effect is inferred by comparing the wave

array spectra (Figure 7.11, Bottom) and the corresponding INSAR image derived
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spectra (Figure 8.7, Top). The in situ wave array spectrum clearly shows another

peak with a wavelength of almost 70 m and direction of 3000. For flight path 900

this relatively short swell is basically azimuthally oriented and is not seen in the

INSAR image spectra. It is concluded that the wave patterns in the INSAR images

obtained from flight paths 900 and 2700 are less pronounced mostly due to the az-

imuthal smear caused by the finite scene coherence time limitation. An evidence of

this conclusion can also be observed in Figure 7.4. At low incidence angles where

the degradation in azimuth resolution is relatively small waves are clearly observed

in the INSAR image. At higher incidence angles where the degradation is larger,

wave patterns are hardly seen. This evidence illustrates the importance of the finite

scene coherence time in determining the SAR and INSAR capability to image ocean

surface waves.

3. INSAR Derived Spectra Conclusions

9 The experimental results show how interferometric SAR may be used to image

ocean surface waves. Given the problems associated with imaging waves using

conventional SAR, this unique technique represents a significant advance. The

agreement between INSAR image spectra and in situ derived spectra (Figures

7.11, 7.14) is encouraging. In spite of this potential, this section illustrated

some of the problems that might arise with an airborne INSAR in imaging

ocean surface waves.

* Noncoherent scene motion effects are dependent upon C/V. For a relatively

slow airborne SAR (and INSAR) platform, noncoherent motion effects might

lead to wave imaging complications that include scanning smear and distor-

tion, which might result in ambiguous image wave patterns. This effect is

neglibile for a fast moving platforms like spacecraft. Focusing adjustment and
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scanning distortion correction methods are not reliable for multimodal wave

fields, which is usually the actual situation of the ocean surface (Vachon et al.,

1988).

o The finite scene coherence time degrades the azimuth resolution which is pro-

portional to R/V and was shown to have an important role for ocean wave

imaging for aircraft and spacecraft. Another coherent motion effect is the ve-

locity bunching. The observed wave field (flight path 3600) contained mainly

range-oriented waves. This orientation is favorable for radar imagery since it

minimizes image distortion due to azimuth image shift (velocity bunching).

The imaged waves in the Marina experiment did not experience significant

coherent azimuth image shift (Table 8.2).

o Several effects degrade the INSAR image wave patterns (see Figure 7.4). The

dominant effects are believed to be: the degradation in azimuth resolution

due to finite scene coherence time, looking crosswinds rather than upwind

and speckle and random noise. The lesser effects for the Marina experiment

conditions were scanning distortion and probably velocity bunching.

o In shoaling waters the area of the image being subjected to spectral analy-

sis should be reduced to allow the waves to be represented locally without

refraction and shoaling effects.

E. SOURCE OF SWELLS

The Global Spectral Ocean Wave Model (GSOWM) outputs for August .1,

and September 8, 1989 clearly illustrate the possible sources and directions of dom-

inant wave propagation (see Figures 6.8-6.11). A GSOWM 2D spectrum taken at

a grid point about 60 miles southwest off Monterey Bay (Figure 8.8) indicates a
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9.5 second northwesterly wave system together with a narrow-band southerly swell

(16 sec.). The propagation of the long crested southerly swell into Monterey Bay

is consistent with the increasing importance of refractive features with decreasing

wave frequencies in the southern edge of Monterey Bay.

0 OEG

* II, Itl 332. DEG

Figure 8.8: GSOWM directional frequency spectrum obtained from a grid
point at 35' N Lat and 122.50 W Long on September 8, 1989. A southerly
16 sec. swell and a 9.5 sec. northwest wave system are observed.

The characteristics of southerly swells in the northern hemisphere are not

well understood. Munk et al., in a series of papers, established the source as high

latitude storms in the South Pacific and Indian Oceans. These swells are usually less

energetic (smaller amplitude after traveling 10,000 km) and longer in pcriod than

swells originating in the North Pacific (Guza, 1986 and Semdin, 1986). Based on the
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global models of pressure fields, winds and spectral analysis, it is assumed that the

south-southwest long crested swell observed in the Marina experiment, September

8, 1989, was generated by a high latitude southern hemisphere storm and that the

west-northwest shorter period swell was generated by a northwest Pacific storm.
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IX. CONCLUSIONS

The present study reveals the considerable ability of this novel technique

to provide reliable quantative spatial information about dynamic processes at the

ocean surface. Realization of the potential of Interferometric SAR with spacecraft

might make it possible to monitor global ocean wave spectra and surface currents.

The mean estimate of the L-band scene coherence time 0 (100 msec) obtained

from INSAR and SAR imagery during the Marina experiment, on September 8, 1989,

is consistent with the sparse known observational estimates obtained under similar

moderate sea state and ambient conditions. This parameter is shown to be the

dominant limiting factor in determining the SAR and INSAR azimuth resolution

and hence the azimuthal cutoff wavenumber for imaging ocean surface dominant

waves. Waves with azimuthal component shorter than 0 (100 m) could not be

observed. The azimuth image shift (velocity bunching) caused by the coherently

sensed radial component of the orbital velocity of the long waves might disturb the

INSAR phase measurement. It is shown that th. noncoherent scanning distortion

effect is important if the projected phase velocity of the imaged wave is significant

relative to the platform velocity. This effect is negligible for fast scanning platforms

like spacecraft. It is concluded that range oriented waves are favorable for INSAR

(and SAR) where the undesired motion effects like the temporal decorrelation of the

ocean surface and velocity bunching do not distort the image. Also, range waves

project a larger radial component of orbital velocity (which is sensed by INSAR),

compared with azimuthal waves. Additional theoretical and experimental studies

are required to quantify and to provide better understanding of these issues in terms

of INSAR performance to image ocean surface wave fields.
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The results of this experiment in estimating ocean surface currents, together

with earlier work by Goldstein et al. (1989), and for the first time ocean wavenumber

spectra suggest some additional conclusions:

* The method is shown to be most reliable when the radar observation is along

the direction of the strongest current component.

o The interferometric technique appears to be more accurate when the radar is

looking upwind (and probably downwind). In these cases, the phase velocity

bias from the Bragg waves responsible for the radar signal is less ambiguous,

and the returned amplitude signal is strongest.

o Shoaling and refraction effects are clearly observed in the INSAR phase images.

In shoaling waters, the area of the image being interpreted via spectral analysis

should be reduced to insure homogeneous waves.

o The interferograms contain numerous additional ocean surface features which

* were not pursued in the present study, such as convergence, divergence, and

vorticity fields and internal and other long waves.
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APPENDIX A

INTERFEROGRAM PROCESSING

The recorded SAR data from each antenna consists of a set of four files. Each

file consists of 1024 azimuth by 750 range pixels. Pmij and Qjij are the corre-

sponding complex compressed pixel values in the imaging map as processed from

the recordred data received from each of the two antennas. The subscripts m,iJ,

are the file number, row, and column of a pixel, respectively. I,, is the complex

image value of a pixel in the interferogram. Aij, Zij is the magnitude and phase of

ij .

Processed Imaging Files from each Antenna

-- ]024]

7~Z ___

Plij P2il P3ij P4ij Qij 02ij 03ij 04ij

1024 1024

INTERFEROGRAM 750 750

A..
1i Ij

Iij is derived by taking the complex conjugate product of the sum of the four

corresponding original complex image pixels obtained from each antenna.
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4
Iij = E PmijQ ij (A.1)

m=1

or

Ii. = Aij exp[ij,] (A.2)

The interferogram file as received from JPL is processed to a 2048 azimuth

by 750 range pixels. The first 1024 azimuth pixels are magnitudes of the complex

reflectivity (A/j) and the other 1024 pixels are phases which consists of information

of surface velocity.

The pixel averaging in Equation A.1 is in expanse of azimuth resolution. The

pixel size is the resulting interferogram is 12.1 m is azimuth and 6.6 m in the viewing

direction.
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APPENDIX B

ESTIMATION OF RANDOM ERROR IN
LAGRANGIAN DRIFTER VELOCITY

A. THEORETICAL BACKGROUND

Drifter velocity is a simple function of distance traveled divided by time,

where distance is found by differencing positions. Thus, random errors in the posi-

tions do propogate into the velocity.

The velocity, V, is a function of the starting and ending position, X1 and X 2,

and the time difference AT = T2 - T,

V = F(X1,X 2, AT) (B.1)

where V, X, and X 2 are all vector quantities with east and north components given

by:

V = (u,V) X1 = (x1 ,y,) X 2 = (X2,y 2 ) (B.2)

Specifically,

u = (X2 - v)AT V = (Y2 - y,)/AT (B.3)

The error propagation equation can be set up with E(V) being the 2 x 2

variance-covariance matrix of the velocity components

>"(V) = G >"(XIX 2 )GT a= 2 ,U (B.4)

where G is the 2 x 4 Jacobian of partial derivatives and is defined as

= OF,(u,v) i= 1,2 (B.5)

G S, (X 1,X2 ) j = 1,2,3,4

or simply in our case

1 0(B.6)
S1 o -1 AT
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and E is the 4 x 4 combination of variance-covariance matrix for the variable

positions and is taken to be

22 aX2Y2 0 0

E(X 1,X 2) O 2 0 0 (B.7)
-. 0 0,X 2

B. OBSERVATION ERROR ESTIMATES

Using Equations (B.1) through (B.7), the velocity error estimates are com-

puted:

1. Group I: Between observation 2 and 1

T, = 11,49,30 (hours, minutes, seconds) PDT

T2 = 13,15,44 PDT

AT = 86.2 min

(Xi) = [20.07 2.69] 2

1 2.69 8.24]

E(X2) = [22.76 2.69 1

1 2.69 8.03 
]

1.610-2 210 cm 2 sec-2
1 2.10-3 6.10 - 3

o,. = 0.13 cm/sec

a, = 8. 10-2 cm/sec

2. Group I: Between observations 3 and 2

T3 = 14,16,12 PDT
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T2 = 13,15,44 PDT

AT = 60.5 min[ 25.59 2.7 1 m2
= 2.7 7.88J

E(X2 ) = 22.76 2.69 ] m2

X 2.69 8.03

E(V) = 4.10- 3 1.2.10- 3  cm 2sec-2

a. = 0.19 cm/sec

0" = 0.11 cm/sec

3. Group II: Between observations 2 and 1

T, = 12,05,28 PDT

T2 = 13,36,08 PDT

AT = 90.7 min

[ 27.2 2.13 1 2

( 2.13 7.67

32.26 1.49 1 2
E(X1) = 1.49 7.44

[2.10-2 10-  1] -

E(V) = 2 .10- j cm 2sec- 2

110- 3 5.10- 3

o, = 0.14 cm/sec

o, = 7.10 - 2 cm/sec

4. Group II: Between observations 3 and 2

T3 = 14,42,39 PDT
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T?2 = 13,36,08 PDT

AT = 6.65 min

Eal = [33.78 0.24 1 m 2
Z(X1  - [0.24 7.33J

EX)= 32.26 1.491 M 2

11.49 7.44J

E (V) [ 4.1 .10-2 10-3 ]m 2 se-2
E(V) 10i-3 9.10- cmse

= 0.2 cm/sec

av= 0.1 cm/sec
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APPENDIX C

IMAGE COORDINATES GROUND
TRUTHING USING GPS DATA

A. IMAGE ADJUSTMENT PREPARATION

A modified Transverse Mercator projection was used to convert the latitude

and longitude ground coordinates to a plane coordinate grid of eastings and nor-

things, (E, N) coordinate system (Floyd, 1985). The projection was centered in

the image area in order to minimize grid distortions. GRS 80 ellipsoid values were

used which are essentially the same as for the WGS 84 geometric ellipsoid. The

projection parameters are:

Ellipsoid Semi-Major Axis, 6378137.0 meters
an Inverse Flattening, 1/f 298.257222101

Central meridian (longitude) W 1210 47.0'
False latitude N 360 40.0'
False easting 3000 meters
Scale factor, central meridian 1.00000

The range pixel number (y) of the image control points needed a small cor-

rection for elevation distortion (Ulaby, 1982). The corrected range pixels, y,, were

computed as follows:

Y = Iky (k(y-1) + r,)2 + 2Hz- z2-r) +1 (C.1)

where
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TABLE C.1: Ground and Image Coordinate Data

Plane Image
Coordinates Coordinates (pixels)

(m) X
Latitude (d m s)1 y

Point Longitude (d rn s) Easting
ID Type Elevation (m) Northing A90 A270 A360

1 Bridge N 36 43 58.34 3204.3 313 197
abuttment W 121 46 51.77 7347.1 139 69

6.1

3 Road N 36 43 15.46 2630.4 146 295 245
intersection W 121 47 14.89 6025.0 484 222 104

15.2

4 Fence N 36 42 47.87 4169.5 82 360
corner W 121 46 12.88 5174.9 434 280

30.5

5 Fence N 36 42 37.74 3645.5 104 339 296
corner W 121 46 33.99 4862.4 415 305 24

33.5

7 Fence N 36 42 12.89 4091.3 86
corner W 121 46 16.03 4096.4 364

42.7

10 Road N 36 41 15.95 1568.8 190 250 397
intersection W 121 47 57.65 2341.3 261 493 182

3.0

IMAGE Azimuth Scale, k, (meters/pixel) 24.20 24.20 24.20
PARAMETERS
(a priori values) Range Scale, k. (meters/pixel) 16.14 14.54 12.34

Flight azimuth, a (degrees) 900 2700 0000

IMAGE Flying height, H (meters) 8285 8273 8178
CONSTANTS

Ground range to 1st pixel, r. 2601 2918 4015
from nadir (meters)

1 d m s = deg min sec
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y= range pixel number (uncorrected)

ky = a priori range scale (meters/pixel)

r, = ground range from nadir to y = 1 pixel (meters)

h = flight altitude (meters)

z = elevation of ground point (meters)

The magnitude of these corrections was small, generally less than 2 pixels. However,

for a few points at elevations of 30 meters or more near the flight line, the corrections

ranged from 3 to 5 pixels. The correction always increased the pixel number, moving

the point further from the flight line. Only the control points needed this correction,

the imaged water surface assumed to .be at zero elevation were not subjected to

elevation distortion.

B. IMAGE ADJUSTMENT COMPUTATION

The adjustment can be viewed as solving for the best mathematical mapping

between the image and ground coordinate systems, between (x, y) and (E, N), sub-

ject to assumptions about the underlying form of the mathematical transformation.

The adjustment used a least-squares technique in which the observed data are

weighted inversely proportional to their variances, as described in most surveying

or photogrammetry texts. This weighting strategy results in a minimum variance

solution, which is generally considered the best solution when using data of unequal

precision. The specific form applied here is called the "combined observation and

condition equation" method (Uotila, 1986).

The assumed transformation was a simple scaling, rotation, and translation

between the (x, y) and (E, N) coordinates systems, with the addition of separate
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scales in the x and y directions (i.e., the pixels were assumed to be rectangular, not

square). The assumed form of the transformation equations was:

Ei - E. + xik= sin a + yik, cos a = 0 (C.2)

Ni - No + xik. cos a - yik, sin a = 0 (C.3)

where

Ei, Ni = ground coordinates of ith control point,

xi, y, = image coordinates of ith control point,

kx, ky = scales (meters/pixel) in x and y directions,

a = azimuth of the flight line and rotation between

coordinate systems(a = 0 points to north),

E,, N, = ground coordinates of image origin, (x, y) = (0, 0).

Note that the x-axis points are opposite to the flight line direction because of the

way the image processing hardware loaded the image data. This accounted for the

unusual appearance of the signs in these equations (C.2, C.3). Also note that a is

measured clockwise from north, which causes the role of the sine and cosine factors

to be reversed in comparison with some other presentations.

In the adjustment terminology, the quantities k,, ky, a, E,, and N, are pa-

rameters to be solved for. Hence there were 5 parameters in each image. For each

control point, one pair of condition equations (C.2 and C.3) were formed. As long

as the number of condition equations exceeded the number of parameters, the least

squares solution was possible.

Three addition condition equations were used, reflecting the a priori estimates

of the parameters k,, ky, and a:

k -k =0 (C.4)
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kv - k1o = 0 (C.5)

a-a.=0 (C.6)

where kxo, kyo, and ao were the a priori values of the respective parameters.

Five control points were used on images A90 and A270, and four control

points on image A360. Hence, 13 condition equations were used for A090 and R270,

and 11 for A360; more than enough for the least squares adjustment. Weighting

required estimation of the standard errors (precision) on each observation. The

ustimated values'were as follows:

"E = "N = 30 meters

a, = = 3 pixels

ao = 1 degree

ak.o = 0.1 meters/pixel

ak,o = 0.2 meters/pixel

The adjust proceeded as follows. Define the set of condition equations as F(L, X.) =

0, where the vector L, represents the adjusted values of the observables (El, Ni, xi,

yi, kxo, kyo, ao) and the vector X. represents the adjusted values of the parameters

(k,, kl, a, Eo, No). The set of condition equations F(L,, X,) has the form of

Equations (C.2) through (C.6).

With,

N = number of control points on the image

R = number of condition equations

U = number of parameters = 5

then,

R=2N+3 (C.7)
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which is the number of condition equations in the set F(L., X.). The length of L

is 4N + 3. The degrees of freedom in the adjustment is R - U,

dof = 2N +3-5= 2N-2= 2(N- 1) (C.8)

Because the set F(Lo, X.) 0 0 when L. is the raw observations and X. is the

approximate values of the parameters, define a non-zero vector W, length R,

W = F(LO, X).

The adjusted parameters are found by iterating the following matrix equation until

the X. vector converges,

X, = X, + dX (C.9)

dX = -(AiM- A) - AM - W (C.10)

where matrix A = dF/dX (R rows by U columns), matrix M = BCB ' (R by R),

matrix B = dF/dL (R by L), and matrix C = covariance matrix of observables (L

by L).

In this case, C was a simple diagonal matrix of estimated variances of each

observed quantity, and provides the relative weighting of the observations in the

adjustment. The traditional weight matrix is called P, where P = C- 1.

For analysis of the quality of the adjustment, residuals on the observed quan-

tities were computed, as a vector

V = L. - L0 = C B tM-(AdXa + W) (C.11)

and the "variance of unit weight" was computed as the scaler

(V tP V)/dof. (C.12)
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The adjustment also computed precisions for the derived values of the parameters,

expressed as a covariance matrix of the parameters, Cx,

C. = (AM-lA) -1  (C.13)

Each of these adjustment results, Equations (C.9) through (C.13), were com-

puted for each image. The results are summarized in Table C.2.

C. POST-ADJUSTMENT IMAGE SHIFT

Normally, an adjustment process like that described would be sufficient to

accurately align an image with ground coordinates. In this case, however, the ad-

justed results might have been degraded by the lack of available control points. In

typical image adjustment problems the control points are selected to span the en-

tire image area. Because most of each image was over water, the control points

were concentrated in a relatively small land portion. Hence, the danger the results

might not be reliable in the water area. Essentially, the danger was one of using

extrapolation rather than interpolation.

Examination showed that the adjusted scale and azimuth values agreed rea-

sonably well with their a priori values - but not exactly (most within 1 standard

deviation). But because these three parameters determined the overall size and ori-

entation of the image, it was decided to accept the a priori values rather than the

adjusted values. The a priori values were derived from flight navigation data and

known characteristics of the SAR instrument. Consequently, it was felt they better

represented the true values for the entiie image area.

This left the adjustment to determine the location of the images. The im-

age origin coordinates (Eo, NO) solved for in the adjustment reflected the adjusted
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TABLE C.2: Image Adjustment Results

k, ky a E, No
Image Parameter (m/pix) (m/pix) (deg) (m) (m)

A90 Initial 24.20 16.14 90.0 - -

Adjusted 24.20 16.20 89.9 6173 -1864

a (0.04) (0.07) (0.3) (35) (33)

Post adjustment origin shift -8 5
Final origin coordinates 6165 -1859

Variance of unit weight 0.14

Latitude limits N 36-39-00 to N 36-43-28
Longitude Limits W 121-44-54 to W 121-53-12

A360 Initial 24.20 12.34 000.0 - -
Adjusted 24.23 12.51 001.3 4129 11988

a (0.12) (0.22) (0.8) (91) (60)

Post adjustment origin shift -384 68
Final origin coordinates 3745 12056

Variance of unit weight 1.76

Latitude limits N 36-39-49 to N 36-46-30
Longitude limits W 121-46-30 to W 121-50-44
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TABLE C.2: Continued

k, k a E, N,
Image Parameter (m/pix) (m/pix) (deg) (m) (m)

A270 Initial 24.20 14.54 270.0 - -

Adjusted 24.19 14.34 271.0 -4416 9437

a (0.09) (0.14) (0.7) (68) (105)

Post Adjustment origin shift -69 -58
Final Origin coordinates -4485 9379

Variance of unit weight 1.39

Latitude limits N 36-41-03 to N 36-41-03
Longitude limits W 121-43-42 to W 121-52-01

rather than a priori image size and orientation. The further the origin point from the

actual control points used, the less precise its ground coordinates were determined.

To compensate for this effect, ground coordinates of the four image corners were

computed in two ways, using (1) the adjusted and then (2) the a priori parameter

values. The origin coordinates were then shifted to align the centers of the two

versions. In other words, any systematic errors were forced to the edges of the

image and minimized near the center.

The amount of this post-adjustment origin shift was barely significant on im-

ages A90 and A270, in comparison with the standard error of the adjusted coordinate

values (see Table C.2).

On image A360, however, this shift was large, about 180 meters westward,

which was twice the estimated standard error. No obvious explanation for this

discrepancy was found, and subsequent comparisons of the predicted wave gage po-

sition with the distance from the shoreline in the image indicated that an additional
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200 meter westward shift was needed; for a total shift of about 380 meters west of

the adjustment derived position. Whatever the error, it did not appear to affect the

north-south direction.

9.1
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