Mathematik für Anwender I

Arbeitsblatt 23

Übungsaufgaben

Aufgabe 23.1. Drücke in \mathbb{Q}^2 den Vektor

$$(2, -7)$$

als Linearkombination der Vektoren

$$(5, -3)$$
 und $(-11, 4)$

aus.

Aufgabe 23.2. Drücke in \mathbb{C}^2 den Vektor

als Linearkombination der Vektoren

$$(3+5i, -3+2i)$$
 und $(1-6i, 4-i)$

aus.

Aufgabe 23.3. Es sei K ein Körper und V ein K-Vektorraum. Beweise folgende Aussagen.

- (1) Zu einer Familie v_i , $i \in I$, von Elementen in V ist der erzeugte Untervektorraum ein Untervektorraum.
- (2) Die Familie $v_i, i \in I$, ist genau dann ein Erzeugendensystem von V, wenn

$$\langle v_i, i \in I \rangle = V$$

ist.

AUFGABE 23.4. Es sei K ein Körper und V ein K-Vektorraum. Es sei v_i , $i \in I$, eine Familie von Vektoren in V und w_j , $j \in J$, eine weitere Familie von Vektoren in V. Dann gilt für die aufgespannten Untervektorräume die Beziehung $\langle v_i, i \in I \rangle \subseteq \langle w_j, j \in J \rangle$ genau dann, wenn $v_i \in \langle w_j, j \in J \rangle$ für alle $i \in I$ gilt.

AUFGABE 23.5. Es sei K ein Körper und V ein K-Vektorraum. Es sei v_i , $i \in I$, eine Familie von Vektoren in V und $w \in V$ ein weiterer Vektor. Es sei vorausgesetzt, dass die Familie

$$w, v_i, i \in I$$
,

ein Erzeugendensystem von V ist und dass sich w als Linearkombination der v_i , $i \in I$, darstellen lässt. Zeige, dass dann schon v_i , $i \in I$, ein Erzeugendensystem von V ist.

Aufgabe 23.6. Wir betrachten im \mathbb{Q}^3 die Untervektorräume

$$U = \langle \begin{pmatrix} 2\\1\\4 \end{pmatrix}, \begin{pmatrix} 3\\-2\\7 \end{pmatrix} \rangle$$

und

$$W = \langle \begin{pmatrix} 5 \\ -1 \\ 11 \end{pmatrix}, \begin{pmatrix} 1 \\ -3 \\ 3 \end{pmatrix} \rangle.$$

Zeige U = W.

Aufgabe 23.7. Zeige, dass die drei Vektoren

$$\begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 3 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 7 \\ 0 \\ -1 \end{pmatrix}$$

im \mathbb{R}^4 linear unabhängig sind.

AUFGABE 23.8. Finde für die Vektoren

$$\begin{pmatrix} 7 \\ -5 \\ 3 \end{pmatrix}, \begin{pmatrix} -4 \\ 1 \\ -6 \end{pmatrix}, \begin{pmatrix} 2 \\ 8 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ -5 \\ 8 \end{pmatrix}$$

im \mathbb{Q}^3 eine nichttriviale Darstellung des Nullvektors.

AUFGABE 23.9. Man gebe im \mathbb{R}^3 drei Vektoren an, so dass je zwei von ihnen linear unabhängig sind, aber alle drei zusammen linear abhängig.

AUFGABE 23.10. Es sei K ein Körper, V ein K-Vektorraum und v_i , $i \in I$, eine Familie von Vektoren in V. Beweise die folgenden Aussagen.

- (1) Wenn die Familie linear unabhängig ist, so ist auch zu jeder Teilmenge $J\subseteq I$ die Familie v_i , $i\in J$, linear unabhängig.
- (2) Die leere Familie ist linear unabhängig.
- (3) Wenn die Familie den Nullvektor enthält, so ist sie nicht linear unabhängig.
- (4) Wenn in der Familie ein Vektor mehrfach vorkommt, so ist sie nicht linear unabhängig.
- (5) Ein Vektor v ist genau dann linear unabhängig, wenn $v \neq 0$ ist.
- (6) Zwei Vektoren v und u sind genau dann linear unabhängig, wenn weder u ein skalares Vielfaches von v ist noch umgekehrt.

AUFGABE 23.11. Es sei K ein Körper, V ein K-Vektorraum und sei $v_i, i \in I$, eine Familie von Vektoren in V. Es sei $\lambda_i, i \in I$, eine Familie von Elementen $\neq 0$ aus K. Zeige, dass die Familie $v_i, i \in I$, genau dann linear unabhängig (ein Erzeugendensystem von V, eine Basis von V) ist, wenn dies für die Familie $\lambda_i v_i, i \in I$, gilt.

Aufgabe 23.12. Bestimme eine Basis für den Lösungsraum der linearen Gleichung

$$3x + 4y - 2z + 5w = 0.$$

Aufgabe 23.13. Bestimme eine Basis für den Lösungsraum des linearen Gleichungssystems

$$-2x + 3y - z + 4w = 0$$
 und $3z - 2w = 0$.

Aufgabe 23.14. Zeige, dass im \mathbb{R}^3 die drei Vektoren

$$\begin{pmatrix} 2\\1\\5 \end{pmatrix}, \begin{pmatrix} 1\\3\\7 \end{pmatrix}, \begin{pmatrix} 4\\1\\2 \end{pmatrix}$$

eine Basis bilden.

Aufgabe 23.15. Bestimme, ob im \mathbb{C}^2 die beiden Vektoren

$$\begin{pmatrix} 2+7i \\ 3-i \end{pmatrix}$$
 und $\begin{pmatrix} 15+26i \\ 13-7i \end{pmatrix}$

eine Basis bilden.

Aufgabe 23.16. Es sei K ein Körper. Man finde ein lineares Gleichungssystem in drei Variablen, dessen Lösungsraum genau

$$\left\{ \lambda \begin{pmatrix} 3\\2\\-5 \end{pmatrix} \mid \lambda \in K \right\}$$

ist.

AUFGABE 23.17. Es sei K ein Körper und sei

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in K^n$$

ein von 0 verschiedener Vektor. Man finde ein lineares Gleichungssystem in n Variablen mit n-1 Gleichungen, dessen Lösungsraum genau

$$\left\{ \lambda \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \mid \lambda \in K \right\}$$

ist.

Aufgabe 23.18.*

Es sei K ein Körper und V ein K-Vektorraum mit endlicher Dimension $n = \dim(V)$. Es seien n Vektoren v_1, \ldots, v_n in V gegeben. Zeige, dass die folgenden Eigenschaften äquivalent sind.

- (1) v_1, \ldots, v_n bilden eine Basis von V.
- (2) v_1, \ldots, v_n bilden ein Erzeugendensystem von V.
- (3) v_1, \ldots, v_n sind linear unabhängig.

AUFGABE 23.19. Es sei K ein Körper und sei K[X] der Polynomring über K. Sei $d \in \mathbb{N}$. Zeige, dass die Menge aller Polynome vom Grad $\leq d$ ein endlichdimensionaler Untervektorraum von K[X] ist. Was ist seine Dimension?

AUFGABE 23.20. Zeige, dass die Menge aller reellen Polynome vom Grad ≤ 4 , für die -2 und 3 Nullstellen sind, ein endlichdimensionaler Untervektorraum in $\mathbb{R}[X]$ ist. Bestimme die Dimension von diesem Vektorraum.

Aufgabe 23.21.*

Es sei K ein Körper und es seien V und W endlichdimensionale K-Vektorräume mit dim (V) = n und dim (W) = m. Welche Dimension besitzt der Produktraum $V \times W$?

AUFGABE 23.22. Es sei V ein endlichdimensionaler Vektorraum über den komplexen Zahlen, und sei v_1, \ldots, v_n eine Basis von V. Zeige, dass die Vektorenfamilie

$$v_1, \ldots, v_n$$
 und iv_1, \ldots, iv_n

eine Basis von V, aufgefasst als reeller Vektorraum, ist.

Aufgabe 23.23.*

Es sei K ein endlicher Körper mit q Elementen und sei V ein n-dimensionaler K-Vektorraum. Es sei v_1, v_2, v_3, \ldots eine Aufzählung (ohne Wiederholung) der Elemente aus V. Nach wie vielen Elementen kann man sich sicher sein, dass diese ein Erzeugendensystem von V sind?

Aufgaben zum Abgeben

Aufgabe 23.24. (3 Punkte)

Drücke in \mathbb{Q}^3 den Vektor

$$(2,5,-3)$$

als Linearkombination der Vektoren

$$(1,2,3), (0,1,1)$$
 und $(-1,2,4)$

aus. Zeige, dass man ihn nicht als Linearkombination von zweien der drei Vektoren ausdrücken kann.

Aufgabe 23.25. (4 Punkte)

Wir betrachten im \mathbb{Q}^4 die Untervektorräume

$$U = \langle \begin{pmatrix} 3 \\ 1 \\ -5 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -2 \\ 4 \\ -3 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 3 \\ 2 \end{pmatrix} \rangle$$

und

$$W = \langle \begin{pmatrix} 6 \\ -1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ -2 \\ -7 \end{pmatrix}, \begin{pmatrix} 9 \\ 2 \\ -1 \\ 10 \end{pmatrix} \rangle.$$

Zeige U = W.

Aufgabe 23.26. (2 Punkte)

Bestimme, ob im \mathbb{R}^3 die drei Vektoren

$$\begin{pmatrix} 2\\3\\-5 \end{pmatrix}, \begin{pmatrix} 9\\2\\6 \end{pmatrix}, \begin{pmatrix} -1\\4\\-1 \end{pmatrix}$$

eine Basis bilden.

Aufgabe 23.27. (2 Punkte)

Bestimme, ob im \mathbb{C}^2 die beiden Vektoren

$$\begin{pmatrix} 2-7i \\ -3+2i \end{pmatrix} \text{ und } \begin{pmatrix} 5+6i \\ 3-17i \end{pmatrix}$$

eine Basis bilden.

Aufgabe 23.28. (4 Punkte)

Es sei \mathbb{Q}^n der *n*-dimensionale Standardraum über \mathbb{Q} und sei $v_1, \ldots, v_n \in \mathbb{Q}^n$ eine Familie von *n* Vektoren. Zeige, dass diese Familie genau dann eine \mathbb{Q} -Basis des \mathbb{Q}^n ist, wenn diese Familie aufgefasst im \mathbb{R}^n eine \mathbb{R} -Basis des \mathbb{R}^n bildet.

Aufgabe 23.29. (4 Punkte)

Zeige, dass die Menge aller reellen Polynome vom Grad ≤ 6 , für die -1, 0 und 1 Nullstellen sind, ein endlichdimensionaler Untervektorraum in $\mathbb{R}[X]$ ist. Bestimme die Dimension von diesem Vektorraum.

Aufgabe 23.30. (2 Punkte)

Es sei K ein Körper und V ein K-Vektorraum. Es sei v_1, \ldots, v_m eine Familie von m Vektoren in V und sei

$$U = \langle v_i, i = 1, \dots, m \rangle$$

der davon aufgespannte Untervektorraum. Zeige, dass die Familie genau dann linear unabhängig ist, wenn die Dimension von U gleich m ist.

Abbildungsverzeichnis

Erläuterung: Die in diesem Text verwendeten Bilder stammen aus	
Commons (also von http://commons.wikimedia.org) und haben eine	
Lizenz, die die Verwendung hier erlaubt. Die Bilder werden mit ihren	
Dateinamen auf Commons angeführt zusammen mit ihrem Autor	
bzw. Hochlader und der Lizenz.	۲
Lizenzerklärung: Diese Seite wurde von Holger Brenner alias	
Bocardodarapti auf der deutschsprachigen Wikiversity erstellt und	
unter die Lizenz CC-by-sa 3.0 gestellt.	7