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The interaction between actin filaments and microtubules is
crucial for many eukaryotic cellular processes, such as, among
others, cell polarization, cell motility and cellular wound
healing. The importance of this interaction has long been
recognized, yet very little is understood about both the
underlying mechanisms and the consequences for the spatial
(re)organization of the cellular cytoskeleton. At the same time,
understanding the causes and the consequences of the
interaction between different biomolecular components are
key questions for in vitro research involving reconstituted
biomolecular systems, especially in the light of current interest
in creating minimal synthetic cells. In this light, recent in vitro
experiments have shown that the actin-microtubule interaction
mediated by the cytolinker TipAct, which binds to actin lattice
and microtubule tips, causes the directed transport of actin
filaments. We develop an analytical theory of dynamically
unstable microtubules, nucleated from the centre of a spherical
cell, in interaction with actin filaments. We show that,
depending on the balance between the diffusion of unbound
actin filaments and propensity to bind microtubules, actin is
either concentrated in the centre of the cell, where the density
of microtubules is highest, or becomes localized to the cell cortex.
1. Introduction
Microtubules and actin filaments are dynamic polymers and
components of the eukaryotic cytoskeleton. Both are involved in
spatial processes at the scale of the cell. Microtubules are best
known for their role in motor protein-mediated directed
intracellular transport and forming the mitotic spindle—the
machinery for segregating the duplicated chromosomes prior to
cell division, while actin is strongly associated with cell
locomotion and deformation, e.g. during many developmental
processes. Although historically, actin and microtubules have
been studied independently from each other, it has more
recently been acknowledged that the interaction between these
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two species is crucial in processes such as, among others, cell division, cell growth and migration, cellular

wound healing and cell polarization [1–5].
Actin and microtubules can interact in many different ways: examples are steric repulsion, passive

crosslinking and microtubule growth guidance by actin bundles [6,7]. The interaction between actin
filaments and microtubules has been shown to influence the spatial organization of each other [8].
Here, we focus specifically on the interactions mediated by a class of proteins collectively called
cytolinkers. Some cytolinkers, like, e.g. MACF1, have been observed to bind both to actin filaments
and microtubules [9–12], suggesting that the spatial organization of the former can be influenced by
the dynamics of the latter.

This possibility was explored in recent in vitro experiments [10,13,14] employing the engineered
protein construct TipAct [6] specifically designed to bind to both actin and microtubules. These
experiments revealed a dual action of TipAct. It was shown to bind to the plus-end of growing
microtubules mediated by the presence of end binding protein EB3. This results in a decrease of the
microtubule growth speed, and an increase in their catastrophe rate, both effects effectively shortening
the microtubule. On the other hand, TipAct also tracks the growing microtubule tip and, hence,
transports any bound actin in the direction of microtubule growth. Experiments in planar quasi-two-
dimensional geometries as well as spherical droplets revealed a distinct TipAct-dependent impact of
microtubules on the spatial distribution of the actin.

While experimental and theoretical studies aimed at understanding the underlying microscopic
mechanism behind the transport of actin through TipAct-mediated coupling to dynamic microtubules
are currently underway [15], the question of the macroscopic effects of the resulting actin transport
have to date not been addressed. Here, we consider the latter question in a minimal model consisting
of dynamic microtubules nucleated from a point-like microtubule organizing centre (MTOC) [16]
located at the centre of a spherical cell. This cell contains a finite amount of actin which either diffuses
freely in the cytosol or directly binds to microtubule tips, i.e. the presence of the cytolinker mediating
this coupling is implicit. Our primary aim is to elucidate the resulting spatial distribution of the actin
and to determine which of the model parameters are the main determinants of this distribution.

This paper is structured as follows. We first introduce a stochastic model of microtubules undergoing
dynamic instability in a three-dimensional cell. Within this cell actin filaments can either diffuse free of any
driving forces or be bound to microtubule plus ends and subsequently transported towards the boundary
of the cell. We show that, under the assumption that the dynamics of microtubules is not influenced by the
binding of the actin filaments, the dynamic equations of the model decouple. Under this assumption, we
obtain numerical solutions for the spatial distribution of both the microtubules and the actin. We show,
supported by a dimensional analysis, that while the spherical geometry by default would promote the
actin to be concentrated in the cell centre where the density of microtubules is highest, a combination of
low actin diffusivity coupled to a high propensity to bind microtubules causes the actin distribution to
be cortical. Finally, we discuss why, for model parameters in the range of biological relevance, the
model cannot naively be approximated by an advective-diffusive model in which the microtubule
dynamics acts as an overall force field that pushes the actin filaments towards the surface of the cell.
2. Methods
In this section, we set up a stochastic model of dynamic microtubules undergoing dynamic instability in
a spherical cell, where actin filaments diffuse and can interact with the plus end of microtubules. Because
preliminary experiments have revealed that the interaction between actin and microtubules via TipAct
can change the dynamic properties of the latter [13], we first define a general model that accounts for
this change in the dynamics. Nevertheless, our main interest lies in the actin transport mechanism
observed in the experiments performed in the droplet, where no change in the dynamics of
microtubules has been recorded [14]. Therefore, we will provide a solution of the model under the
assumption that the dynamic properties of microtubules do not change as a consequence of the
interaction with actin filaments. Although we present a three-dimensional model, some of the results
presented in this work can easily be generalized to fewer dimensions.

2.1. The model: dynamic microtubules and diffusing actin
The model is based on the Dogterom and Leibler model for microtubules undergoing dynamic instability
[17]. It consists ofMmicrotubules undergoing dynamic instability in an homogeneous three-dimensional
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Figure 1. Schematic of the model. (a) Microtubules (green lines) undergoing dynamic instability and actin filaments (blue dots)
diffusing in a three-dimensional sphere. (b) Schematic of the dynamics of microtubules and their interaction with actin filaments.
(c) Boundary conditions at the cortex of the cell and at the centre.
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sphere of radius R, interacting with A actin filaments diffusing with diffusion constant D, and with
reflecting boundary conditions at the boundary r = |r| = R. As we are interested in studying the
interaction between actin and microtubules, and in particular in the transport of actin by the plus end
of microtubules, in our model we ignore both the polymerization/depolymerization and the
nucleation of the actin filaments, and we model them as dimensionless particles, see figure 1a.

All microtubules are isotropically nucleated at position r = 0 in the growing state, with growing
velocity vþ ¼ vþ r̂, where r̂ is the unit vector in the radial direction. Microtubules can switch from the
growing to the shrinking state with constant catastrophe rate kc. Then, microtubules shrink with
velocity v� ¼ �v� r̂. A shrinking microtubule either switches from shrinking to growing state with
constant rescue rate kr, or it completely depolymerizes. When complete depolymerization occurs,
reflective boundary conditions at r = 0 for microtubules implement their immediate re-nucleation in
the growing state. Finally, we impose reflective boundary conditions at r = R as well, with both
growing and bound microtubules switching to the shrinking state directly upon reaching the cortex of
the cell, see figure 1b,c.

When the plus-end of a microtubule is within a range of interaction s of an actin filament, the
microtubule tip and the filament can interact, leading the actin filament to bind with binding rate kb,
and the microtubule entering the bound state. The bound filament is subsequently transported by the
microtubule plus end towards the cortex of the cell, with transport velocity vb ¼ vbr̂, where vb < v+, in
accordance with experimental measurements [13]. These experiments also revealed that the interaction
between actin and microtubules has a second effect on microtubule dynamics, i.e. it increases the
catastrophe rate. Here, however, for simplicity’s sake we decide to ignore this effect. In fact, in the next
section we will show how this model always reaches the steady state and, as a consequence, the
properties of microtubules are solely defined by the ratio between growing speed and catastrophe rate.
We, therefore, decided to keep the catastrophe rate constant, and change the growing speed in order to
take into account the changed dynamics observed in the experiments. A bound actin filament can
unbind in three distinct ways: (i) it simply detaches with a constant unbinding rate ku, (ii) the
microtubule to which it is bound undergoes a catastrophe with rate kc and releases the filament, (iii) or
when the microtubule hits the surface of the cell, see figure 1b,c. The values of the dynamic parameters
used in the model were chosen in agreement with the experimental measurements, see table 1.
2.2. Dynamic equations
We assume that the interaction process which leads to actin binding is fast compared to both diffusion of
the actin and the growth of a microtubule. Moreover, we assume that the interaction range s is small
enough that the density distribution of growing microtubule plus ends is approximately constant
within it. Therefore, if m+ (t, r) is the distribution of the position of free growing microtubule tips, and
a (t, r) the distribution of the position of free actin filaments, the overall interaction strength can be
given by

Kint(t, r) ¼ kbsmþ(t, r)a(t, r): (2:1)



Table 1. Model parameters. (The choice for the numerical values is in agreement with the experimental measurements of the
same quantities [13].)

parameter description numerical value units

v+ free-growth speed 0.05 mm s�1

vb transport speed 0.03 mm s�1

kc catastrophe rate 0.005 s�1

kb binding rate 0.8 s�1

s actin-microtubule interaction volume 0.002 mm3

ku unbinding rate 0.009 s�1

D free actin diffusion coefficient 0.5 mm2 s�1

R radius of the cell 10 mm

M total number of microtubules 104 —

A total number of actin filaments 5 × 104 —
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Then, the dynamic equations for actin filaments and microtubules—including shrinking m− (t, r) and
bound b (t, r) microtubules as well, are:

4pr2
@mþ(t, r)

@t
¼ �vþ � r4pr2mþ(t, r)� kc4pr2mþ(t, r)

� kbs 4pr2mþ(t, r)a(t, r)þ ku4pr2b(t, r)þ kr4pr2m�(t, r),
(2:2)

4pr2
@m�(t, r)

@t
¼ �v� � r4pr2m�(t, r)

þ kc4pr2[mþ(t, r)þ b(t, r)]� kr4pr2m�(t, r),
(2:3)

4pr2
@b(t, r)

@t
¼ �vb � r4pr2b(t, r)� (kc þ ku)4pr2 b(t, r)

þ kbs 4pr2mþ(t, r)a(t, r),
(2:4)

@a(t, r)
@t

¼ Dr2a(t, r)� kbsmþ(t, r)a(t, r)þ (ku þ kc)b(t, r): (2:5)

The first three equations are the evolution transport equations for the radial distributions of the plus
end of growing microtubules, shrinking microtubules and bound microtubules, respectively. The last
equation is a diffusion equation for the free actin particles with a loss term due to the capture of actin
filaments by microtubule tips, and a source term due to the release of actin from the microtubule tip
to the pool.

Because the system possesses spherical symmetry, wemake use of spherical coordinates, i.e. r = (r, θ, ϕ).
Note that, given our assumptions of homogeneity and isotropy, all quantities of the model only depend on
the radial coordinate r. Furthermore, it has been shown that the length distribution of microtubules
undergoing dynamic instability in a confined volume always reaches a steady state, regardless of the
choice of the dynamic parameters [18]. More generally, the length distribution of microtubules
undergoing dynamic instability in the presence of any limiting factor such as, e.g. finiteness of free
tubulin, always reaches a steady state [19]. Hence, we reasonably assume that our system always
reaches the steady state, and we restrict the study of equations (2.2)–(2.3) to that situation. Finally,
because in the experiments no rescues have been observed [13], we set kr = 0. In this way, once a
microtubule undergoes a catastrophe, its fate is determined as it cannot be rescued. Therefore, we make
the final assumption that v−≫ v+, i.e. as soon as a microtubule undergoes a catastrophe, it suddenly
completely depolymerizes, and then, it is immediately re-nucleated again. In this way, the number of
microtubules in the shrinking state—and hence the related distribution, vanishes and equation (2.3) is
redundant. This choice is also motivated by the fact that backward transport of actin filaments by
shrinking has been very rarely observed. Therefore, including shrinking microtubules would only raise
the complexity of the model without providing further insight.
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Under these assumptions, we can rewrite equations (2.2)–(2.3) in the steady state as:

0 ¼ �vþ
d
dr

[r2m(r)]� kcr2m(r)� kbs r2m(r)a(r)þ kur2b(r), (2:6)

0 ¼ �vb
d
dr

[r2b(r)]� (kc þ ku)r2b(r)þ kbs r2m(r)a(r), (2:7)

0 ¼ D
1
r2

d
dr

r2
d
dr

a(r)
� �

� kbsm(r)a(r)þ (ku þ kc)b(r), (2:8)

where m(r)≡m+(r). This set of ordinary differential equations is supplemented by the boundary
conditions defined by the properties of the model. Indeed, the sudden renucleation of every
microtubule that undergoes a catastrophe implies

vþm(0) ¼ vþm(R)þ vbb(R)þ kcM (2:9)

and

b(0) ¼ 0: (2:10)

The release of actin filaments from bound microtubules when they reach the cell surface, together with
the reflective boundary condition for the free diffusing actin, imply

Dra(r) �brjr¼R ¼ vbb(R): (2:11)

Finally, conservation of probability implies a normalization condition for both actin filaments and
microtubules:

4p
ðR
0
dr r2[m(r)þ b(r)] ¼ M (2:12)

and

4p
ðR
0
dr r2[a(r)þ b(r)] ¼ A: (2:13)

2.3. Solution
Multiplying equation (2.6) by r2 and adding it to equation (2.5) yields

D
d
dr

r2
d
dr

a(r)
� �

¼ vb
d
dr

[r2b(r)], (2:14)

which implies

r2
d
dr

a(r)� vb

D
b(r)

� �
¼ const:, (2:15)

and, using the boundary condition (2.9),

d
dr

a(r) ¼ vb

D
b(r) 8r [ [0, R]: (2:16)

Because b(r) is a distribution and therefore, always positive, from equation (2.14) it follows that a(r) is
monotonically increasing in the radial direction. Similarly, if we add equation (2.4) to equation (2.5), we find

d
dr

r2[vþm(r)þ vbb(r)] ¼ �kcr2[m(r)þ b(r)]: (2:17)

Given that we are interested in the transport mechanism rather than in the change of microtubule
dynamics, we will hereafter work under the assumption that the dynamic properties of the
microtubules do not change upon binding actin filaments. This means that we assume

vþ ¼ vb ; v: (2:18)

In this regime, equation (2.15) is solvable for m(r) + b (r), and the solution is

m(r)þ b(r) ¼ m0

4pr2
e�(kc=v)r, (2:19)
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where we used the normalization condition (2.10), i.e.M ¼ 4p

Ð R
0 dr r2[m(r)þ b(r)], to find the integration

constant:

m0 ¼ kc
v
(1� e�(kc=v)R)�1M: (2:20)

As equation (2.17) is the steady-state length distribution for non-interacting microtubules [17], we
observe that if the interaction between actin filaments and microtubules does not affect the dynamic
properties of the latter, the microtubule steady-state length distribution remains the same as in the
non-interacting system. Interestingly, this result is not dependent on the kind of process behind the
switching from the growing to the bound state and vice versa, as it only depends on the growing
speed and the catastrophe rate of microtubules.

Therefore, equations (2.14) and (2.17) allow us to disentangle the set of differential equations
(2.4)–(2.6), and to write a closed-form expression for a (r):

a00(r)þ 2
r
þ ku þ kc

v
þ kbs

v
a(r)

� �
a0(r)� kbs

D
m0

4pr2
e�(kc=v)ra(r) ¼ 0: (2:21)

Even though equation (2.19) is still not analytically solvable, its non-dimensionalization highlights
relevant features. Indeed, we first set the unit of length for microtubules:

l ¼ v
kc
: (2:22)

Then, we define the dimensionless parameters: transport length τ = kc/(ku + kc), binding rate b ¼ k2c kbs=v
3

and diffusion coefficient δ = kc D/v2. We also introduce the dimensionless length x ¼ r=l, and its
distribution f(x) ¼ l

3
a(r). The equation for f becomes

f 00(x)þ 2
x
þ 1

t
þ bf(x)

� �
f 0(x)� b

d

m0

4px2
e�x f(x) ¼ 0, (2:23)

where m0 ¼ lm0. Equation (2.21) shows that once the typical length for microtubules and the radius of the
cell are set, the behaviour of the distribution of the actin filaments is uniquely determined by three
parameters, namely the transport length τ, the binding rate β and the diffusion coefficient δ.

We can make equation (2.21) suitable for numerical integration by working with the cumulative
function

F(x) ¼
ðx
0
dy 4py2f(y), (2:24)

from which it follows:

f(x) ¼ 1
4px2

F0(x): (2:25)

Indeed, equation (2.21) becomes

F000(x)þ � 2
x
þ 1

t
þ b

F0(x)
4px2

� �
F00(x)þ 2

x2
� 2
tx

� 2b
x

F0(x)
4px2

� b

d

m0

4px2
e�x

� �
F0(x) ¼ 0, (2:26)

with boundary conditions

F00(x)� 2
x
F0(x)

� �
x¼0

¼ 0, (2:27)

and

F(R=l) ¼ q, (2:28)

coming from equations (2.8) and (2.11), respectively, and where q is the number of free actin filaments.
Note that, although q is an unknown quantity, we can numerically find its value by observing that

q ¼ A�
ðR=l
0

dx 4px2df 0(x): (2:29)
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Figure 2. Distribution of the positions of (a) growing microtubule plus ends, (b) bound microtubule plus ends, (c) free actin filaments
and (d ) all actin filaments (free and bound). (e–h) The above distributions in the centre of the cell, when r∈ (0, 0.1 R).
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As equation (2.24) is a third-order differential equation, a third boundary condition is in principle
required for its solution. However, any integration constant provided by the third condition would be
cancelled out by subsequently taking the derivative to find f(x).
 30
3. Results
Here, we show the results of our model under the assumption that microtubules do not change their
dynamic properties when they are bound to actin filaments, i.e. with the parameter choice in equation
(2.16). The were obtained through numerical integration of equation (2.24), with dynamic parameters
listed in table 1. In particular, our choice for the growing speed is vþ ¼ vb ¼ v ¼ 0:05mms�1.

Figure 2 shows the distribution of the positions of the tips of the growing and bound microtubules, the
free actin filaments, and all actin filaments (both free and bound), respectively. The figure shows that in the
biologically relevant range of parameters, the interaction between actin and microtubules plays a minimal
role in changing the steady-state distribution of the free actin filaments, as the resulting distribution is
roughly uniform (figure 2c,g). However, if we consider the total distribution of actin filaments—i.e.
including both free and bound filaments, the resulting distribution exhibits a marked peak at the centre
of the cell (figure 2d,h). The peak is caused by the very high density of microtubule tips at r→ 0 owing
to the divergence of the density of growing microtubules at the origin. This high density implies an
overall high binding rate for the free actin filaments that, therefore, are trapped at the centre of the cell
and cannot diffuse away from it. The roughly uniform distribution for the free actin filaments, instead,
is a consequence of the high value of the diffusion constant of the system. Indeed, under these
conditions any transported filaments, can very quickly redistribute all over the cell volume, without
exhibiting a clear localization at the cortex as we could expect in a transport mechanism of this kind.
Finally, owing to the dilution of microtubule plus ends caused by their radial orientation from the
centre of the cell, we observe that the distribution of microtubules—both growing and bound, very
quickly decreases to low values, see figure 2a,b,e,f. This, however, does not mean that microtubules are
short compared to the radius of the cell. Indeed, for our choice of model parameters, the typical length
of microtubules actually equals the radius of the cell, i.e. v/kc =R. The observed diluted microtubule
density at the cortex is solely a consequence of the three-dimensional geometry.

To test whether the binding rate and the diffusion coefficient play an important role in the
distribution of the actin filaments, we numerically solve equation (2.21) for different τ, β and δ. As
expected, figure 3a,b shows that both a high binding rate and a low diffusion constant have the effect
of localizing free acting filaments closer to the cell surface, while changing the transport length τ does
not seem to have a significant influence on f(x), see figure 3c. Figure 3a,b highlights another interesting
fact: except for very high values of β, scaling β with a certain factor z, has roughly the same effect on
the actin distribution as scaling δ with the factor 1/z. This means that there exists a range of values
for parameter β such that

bf(x) � 2
x
þ 1

t
, (3:1)
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see figure 4. As a consequence, for small β, equation (2.21) can be approximated with

f 00(x)þ 2
x
þ 1

t

� �
f 0(x)� b

d

m0

4px2
e�x f(x) ¼ 0, (3:2)

without significant loss of accuracy in the solution. Intriguingly, the biologically relevant limit for β is the
limit in equation (3.1). Therefore, from equation (3.2) and figure 3c, we can observe that the system is fully
characterized by only one parameter: the binding/diffusion ratio γ≡ β/δ. Figure 5 shows the distribution
of all actin filaments—both free and bound to microtubules, for different choices of γ. In particular, we
can observe that a high binding/diffusion ratio increases the actin density at the surface of the cell, while
decreasing the effect of the spherical geometry of trapping actin at the centre of the cell. In fact, for γ =
0.032, free actin filaments can no longer redistribute over the whole volume of the cell after their release
from microtubule tips. The consequence is that, although the distribution of growing microtubules
remains divergent for r→ 0, there are no free actin filaments close to the origin to attach to. Thus, a
high binding rate, promoting the transport of the filaments towards the cortex as it enhances the
interaction of the latter with the microtubule tips, coupled to a low diffusion coefficient, preventing
the actin redistribution over the whole volume of the cell including the central volume, can create an
actin density profile with a maximum at the cortex.
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4. Comparison to an advection–diffusion model
At first sight, one could argue that our proposed transport mechanism could well be approximated by a
diffusive–advective mechanism with a velocity field directed towards the cortex of the cell with a speed
proportional to the density of microtubules. In this case, microtubules act as a position-dependent
background that push actin filaments towards the external volume of the cell.

Thus, the steady-state dynamics of the system is described by the equation

0 ¼ Dr2a(r)�r � [V(r)a(r)], (4:1)

with V(r) ¼ um(r)̂r, and where u is an appropriate constant. The density of microtubules, in the absence
of binding and unbinding to actin filaments, is the steady-state density

m(r) ¼ m0

4pr2
e�(kc=v)r,

already discussed in equation (2.17). Conservation of the number of actin filaments imposes the following
boundary and normalization conditions for a (r):

Dra(r) �brjr¼R ¼ um(R)a(R) (4:2)

and

A ¼
ðR
0
dr 4pr2a(r): (4:3)

By combining equations (4.1), (4.2) and (4.3), we find the expression for the density of actin filaments, i.e.

a(r) ¼ a0 exp
u
D

ðr
0
dt

m0

4pt2
e�(kc=v)t

� �
, (4:4)

where

a0 ¼ A
ðR
0
dr exp

u
D

ðr
0
dt

m0

4pt2
e�(kc=v)t

� �� ��1

: (4:5)

The integral in equation (4.4) diverges at r = 0. Therefore, the density of actin filaments approaches
zero as r→ 0 in contrast with the observed finite density of free actin filaments of the transport-
diffusion model where the presence of actin filaments at the centre of the cell was ensured by the
release of trapped filaments by microtubule tips, see figure 6. Intriguingly, this discrepancy is purely a
consequence of the three-dimensional geometry of the system. Indeed, in one dimension, it is possible
to show that the advective–diffusive model can very well approximate the transport-diffusion
mechanism for a suitable choice of u, as we show in appendix A.2.
5. Discussion
We introduced a minimal model for the interplay between actin filaments and dynamical microtubules,
based on the experimentally observed TipAct-mediated interaction between actin filaments and
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microtubule plus ends, and the subsequent transport of the former by the latter during microtubule

polymerization. Focusing on the question to what extent such a transport mechanism could spatially
reorganize the cytoskeleton, we identified the ratio of the binding propensity of actin filaments to the
microtubules over their free diffusion coefficient as the key parameter determining the spatial
organization of actin filaments. Our analysis showed that a high binding/diffusion ratio can overcome
the default trapping of actin filaments at the microtubule-dense centre of the cell, causing actin re-
localization to the cell cortex.

At first sight, one might naively argue that this transport mechanism could well be approximated
by a diffusion mechanism with a velocity field directed towards the cortex of the cell with an
advective speed proportional to the density of microtubules. However, it is readily seen that this
system would exhibit a divergent pushing force at r→ 0, as m(r) diverges at the centre of the cell
because of the three-dimensional geometry. That would result in a complete absence of free actin
filaments at the centre of the cell, and in a monotonic increase of the total actin distribution from
the centre to the boundary. This is in contrast with our full transport model, where for low
binding/diffusion ratio, we observe trapping of actin at the centre of the cell owing to the high
density of microtubules.

However, it is important to underline that the very high peak in the total actin distribution close to r =
0 is purely the consequence of divergence of the distribution of free microtubules. This divergence,
mathematically inherent to the design of our model, could be in principle be removed by assuming a
finite size for the centrosome located at r = 0, and treating microtubules as objects with a finite
diameter of about 25 nm [20] rather than one-dimensional entities. Further analytical investigations
should therefore aim at testing to what extent the details of the geometry influences the result.

Although our model gives us insights about how to tune the binding/diffusion ratio in order to
obtain localization of actin at the cortex of the cell, it as yet fails in giving a complete description of
the spatial organization of the cytoskeleton that includes the interaction among its components.
Indeed, we limited ourselves to microtubules in the bounded-growth regime and in particular in the
limit of fast depolymerization. Including shrinking microtubules and rescues from the shrinking to the
growing state in the system, would add a further degree of complexity to the set of equations
(2.4)–(2.6), making them no longer analytically tractable. Furthermore, in our model, we have ignored
both actin–actin interactions, driving the organization in networks at the cortex, as well as the
dynamic instability and the nucleation of actin filaments. Therefore, a full description of the system,
including shrinking microtubules and interaction between different actin filaments, most likely
requires a more brute-force simulation approach.

Nevertheless, our theoretical predictions on the response of the system to the change of the binding/
diffusion ratio, could in principle be validated by experiments, as transport in the three-dimensional
domain has recently been observed in droplets [14]. While directly manipulating the transport and
binding rates may be harder to achieve experimentally, tuning the diffusion coefficient by changing
the viscosity of the medium seems feasible. Another possibility could be to change the typical length
of actin filaments. Indeed, it has been observed that the diffusion coefficient of an actin filament
is inversely proportional to its length [21]. Engineering longer or shorter actin filaments could then
test our hypothesis that a high diffusion coefficient is correlated to the localization of actin close to
the cortex.

While our model is neither aimed at nor able to describe currently known mechanisms of microtubule-
actin organization in vivo, we hope that our work could serve as an inspiration for future more integrated
analytical, computational and experimental research on how the interactions between different cytoskeletal
components determine spatial structure of the cytoskeleton. At the very least, it may provide useful insights
towards the design of reconstituted minimal systems aimed at reproducing some traits of living cells, which
are dependent on a properly organized actin cortex. In that light it would also be interesting in future to
consider, e.g. the role of actin nucleators such as formins, which have been observed to interact with
microtubules, and specifically with growing microtubule plus ends [22].
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Figure 7. Distribution of the position of free actin filaments, for the transport-diffusion model (black dashed line), and for the
advection–diffusion model (red solid line), for model parameters from table 1, and u = 10−4 μm2 s−1.
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Appendix A
In this section, we show that, in one dimension, our model can well be approximated by an advective–
diffusive model where microtubule density acts as an overall velocity field that pushes actin filaments
towards the cortex of the cell.
01730
A.1. One-dimensional transport of actin filaments
In the one-dimensional case, the steady-state dynamic equations (2.4)–(2.6), under the assumption that
no changes occur to the dynamics of microtubules when they bind actin filaments, can be rewritten as:

0 ¼ �v
d
dx

m(x)� kcm(x)� kbsm(x)a(x)þ kub(x), (A 1)

0 ¼ �v
d
dx

b(x)� (kc þ ku)b(x)þ kbsm(x)a(x), (A 2)

0 ¼ D
d2

dx2
a(x)� kbsm(x)a(x)þ (ku þ kc)b(x), (A 3)

with boundary and normalization conditions:

vm(0) ¼ vm(R)þ vb(R)þ kcM, (A 4)

b(0) ¼ 0, (A 5)

D
d
dx

a(x)
����
x¼R

¼ vb(R), (A 6)

ðR
0
dx [m(x)þ b(x)] ¼ M, (A 7)ðR
0
dx [a(x)þ b(x)] ¼ A: (A 8)

Similarly to the three-dimensional case, equations (2.4)–(2.6) can be disentangled to find a closed-form
expression for the density of free actin filaments, i.e.

a00(x)þ ku þ kc
v

þ kbs
v

a(x)
� �

a0(x)� kbs
D

kc
v
M

e�(kc=v)x

1� e�(kc=v)R
a(x) ¼ 0: (A 9)

The latter equation can be numerically solved to obtain the density of actin filaments, see figure 7.
A.2. One-dimensional advection–diffusion model
We now show that this result can be well approximated by an advective–diffusive mechanism in which
microtubules act as a velocity field that pushes actin towards the cortex of the cell. Hence, in this case, we
can consider actin undergoing a diffusive process with a drift force proportional to the microtubule
density m(x), and with reflective boundary conditions at both boundaries x = 0, R.
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Therefore, steady-state dynamic equations for microtubules and actin are

0 ¼ �v
d
dx

m(x)� kcm(x) (A 10)

and

0 ¼ D
d2

dx2
a(x)� d

dx
[um(x)a(x)], (A 11)

where u is an appropriate constant. Normalization and boundary conditions are

M ¼
ðR
0
dxm(x), (A 12)

A ¼
ðR
0
dx a(x) (A 13)

and

d
dx

a(x)
����
x¼0

¼ 0 ¼ d
dx

a(x)
����
x¼R

: (A 14)

From equations (A 10) and (A 12), it follows that

m(x) ¼ m0 e�(kc=v)x, (A 15)

where

m0 ¼ kc
v
(1� e�(kc=v)R)�1M:

From equation (A 11), instead, it follows that

D
d
dx

a(x)� um(x)a(x) ¼ const., (A 16)

i.e. a first-order linear differential equation, the solution of which is

a(x) ¼ exp � u
D

v
kc
m0 e�(kc=v)x

� �
c1 � c2

u
D
Ei

u
D

v
kc
m0 e�(kc=v)x

� �� �
, (A 17)

where c1 and c2 are integration constants and

Ei(z) ¼
ðz
�1

dy
ey

y
(A 18)

is the exponential integral. Reflecting boundary conditions at x = 0 and x =R imply

c2 ¼ 0, (A 19)

while, from the normalization condition,

A ¼
ðR
0
dx a(x) ¼ c1

v
kc

Ei � u
D

v
kc
m0

� �
� Ei � u

D
v
kc
m0 e�(kc=v)R

� �� �
, (A 20)

we obtain

c1 ¼ A
(v=kc)[Ei(� (u=D)(v=kc)m0)� Ei(� (u=D)(v=kc)m0 e�(kc=v)R)]

: (A 21)

The distribution of the actin filaments is then

a(x) ¼ A
v=kc[Ei(� (u=D)(v=kc)m0)� Ei(� (u=D)(v=kc)m0 e�(kc=v)R)]

exp � u
D

v
kc
m0 e�(kc=v)x

� �
: (A 22)

Figure 7 shows that in one-dimension, the approximation of considering the transport of actin as the
result of a velocity field that drives the filaments towards the surface of the cell is reasonable,
suggesting that the discrepancy observed in the three-dimensional case emerges from the geometry of
the system. Unfortunately, at present, we lack a mechanistic description of the system that would
enable us to derive a suitable value of the velocity u from the other model parameters, which would
be a useful avenue of further research.
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