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ABSTRACT 

 The Army makes extensive use of simulation models to obtain data on the 

operational effectiveness of future capabilities to inform acquisition decisions. A key step 

in this process is understanding how the key performance parameters of a new system 

impact the system’s performance in the operational environment. This enables decision 

makers to set threshold and objective values of these parameters to provide to industry as 

system requirements. Another challenge faced with new technology is understanding how 

tactics are potentially impacted by the new capability. This requires the exploration of 

new methods of employment. Efficiently exploring the interaction between key 

performance parameters and tactics within its simulation models remains a challenge for 

the analytic community. 

 The analytic community makes use of some methods from the design of 

experiments literature but continues to require more efficient methods of searching the 

design space. Methods from the adaptive sequential design of experiments community or 

the field of machine learning could potentially be leveraged to address this need. These 

methods make use of the results of previous experimentation to inform the subsequent 

trials, potentially resulting in fewer costly simulation experiments. TRAC has identified 

the Logistics Battle Command (LBC) model as a candidate for proof-of-principle work in 

this area. 

 The end result is a metamodel of LBC for the selected factors with significant 

factors highlighted. 
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EXECUTIVE SUMMARY 

Military planners and strategists have a difficult change in planning for the future 

combat environment. They need to ensure the military modernizes in a way that will 

provide the U.S. with a decisive advantage in tactics and equipment against a near-peer 

adversary in any location in the world. Computer simulations provide a glimpse of what 

the potential battle space will look like and allows analysts to modify certain aspects to 

different outcomes. The complexity of the simulations continues to increase, which 

increases the computational cost for a simulation. This can increase time for analysis as 

well as operation costs. Utilizing design of experiments (DOE) methodologies, allows 

analysts to examine thousands of parameters in a complex simulation to determine the 

important parameters for a simulation. Analysts iterating creating DOEs to find the optimal 

meta-model of a simulation. We propose using DOE within a batch adaptive sequential 

design process to develop meta-models with consistent prediction error across the range of 

factors explored.  

 The adaptive design of experiments (ADOE) process in this thesis builds off the 

current DOE and ADOE methodologies, multivariate linear regression and tabu search 

method, and utilizes high-performance computers (HPCs). The process creates a meta-

model, based on selected factors, of the Logistics Battle Command (LBC) simulation.   The 

analyst identifies the analysis questions that must be addressed as well as the simulation 

factors that relate to it and creates the initial DOE, using a nearly orthogonal Latin 

Hypercube (NOLH) design. The analyst establishes stopping conditions which inform the 

process to end iterating and display the final meta-model. The primary stopping condition 

is to limit the percentage of residuals outside of two standard deviations of the residual 

mean. In addition, the process will stop if it reaches too many iterations or successive meta-

models fail to show improvement in decreasing the number of residuals outside of the 

acceptable range. Each of the design points from the DOE is executed in LBC and generates 

an output measures.  

 The ADOE process searches the results finds the response variable value for each 

replication. This creates a data set to use for linear regression. The lm function in R takes 
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the data and creates a meta-model. The process evaluates the meta-model and determines 

if it meets a stopping condition. If the meta-model meets a stopping conditions, the process 

will display the final meta-model. If not, the process will create another DOE using the 

residual with the highest residual value as the base and perform another iteration. 

 
Flowchart for ADOE Process 

 
 The ADOE process created a meta-model from the selected factors. Each iteration 

decreased the percentage of residuals outside of the acceptable range. As the range 

decreases the confidence interval range for the predicted values for the meta-model. The 

final meta-model showed a 21% decrease in  range from the initial meta-model and a 7% 

reduction in the percentage of residuals outside of the acceptable range.  

Using the HPC, the ADOE process takes about 3.5 to 4.5 hours to complete an 

iteration, depending on the HPC node available for computing. The proof of principle for 

this thesis took 12 iterations, which took about two days to complete.   The ADOE process 

generates a final meta-model but the percentage of residuals outside of the acceptable range 

is higher than 5%. The process stopped due to little improvement in reducing the 

percentage of residuals between meta-models over 11 iterations. 

 We created a process that can create a meta-model of LBC simulation using 

selected factors. An analyst can adapt several sections of the process to utilize for other 

simulations. The performance of the process varies depending on the simulation, number 

of factors selected, and the computational  power available. Improving factor selection or 
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modifying the process to search for the most significant factor could increase the 

explanatory power of the meta-models. An analyst could use another method for regression 

analysis and compare how each one performs with a given data set. 
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I. INTRODUCTION 

A. INTRODUCTION 

The Army must modernize to keep the advantage against peer or near peer 

adversaries. The Army makes use of approved Defense Planning Guidance (DPG) 

scenarios represented within a suite of combat simulations to gather data on the 

effectiveness of current and future capabilities in simulated combat. The knowledge gained 

from the simulation experimentation provides operational effectiveness measures that 

inform comparative analysis in support of the acquisition process. As U.S. Army Futures 

Command reorganizes the Army Modernization Enterprise, the need exists to identify 

methodologies and emerging technologies to gain greater insights from combat simulation 

output to identify challenges and opportunities for the future force through a greater 

exploration of the impact of potential changes to concepts of operation (CONOPs) and to 

identify threshold key performance parameters (KPP) for future capabilities. The 

identification of these threshold KPPs through objective analysis will aid in the 

documentation of requirements—the first step in the acquisition process.  

Developing and executing simulation experiments to efficiently explore the 

interaction of key performance parameters and tactics within tight study timelines presents 

challenges for the analytic community. Analysts require methodologies to both effectively 

and efficiently explore the design space for future capabilities within these simulation 

models. By leveraging advances in computational power and experimental design, they can 

conduct experiments to generate data that can inform future capabilities and concepts 

development (Institute of Land Warfare 2018). The value of such data increases when used 

to construct compact meta-models of performance of operational effectiveness of a given 

system. These models enable sensitivity analysis and greater understanding of a 

capabilities impact on operational effectiveness of the overall force under a variety of 

conditions. Study teams can leverage these models to quickly answer questions regarding 

the impact of KPPs. Adaptive design of experiments (DOE) methods, used to efficiently 

develop meta-models in other domains, show great potential to enable this use case.    
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The increased capabilities of adversaries and other threats require the military to 

find ways to maintain the advantage. The Army Futures Command (AFC) provides a 

“unified, responsive, efficient modernization enterprise” (Institute of Land Warfare [ILW] 

2018). The AFC will change the way the Army modernizes the forces and attempt to regain 

overmatch over near-peer threats in the future (ILW 2018).  

B. PROBLEM STATEMENT 

Combat simulations allow analysts to explore future combat environments and 

provide important insight on future needs of the military. These simulations attempt to 

model as many aspects of the battlefield as possible, however that comes with a cost. These 

simulations often require from 3–6 months to instantiate a new scenario. Given the sunk 

cost of developing these simulation scenarios, the Army could benefit from leveraging the 

output data to the greatest extent possible and the quality and timeliness of subsequent 

analysis could benefit from the use of this data to develop meta-models capable of 

supporting questions from decision makers regarding the potential trade space between 

alternative capabilities or CONOPS. 

We develop and apply a batch adaptive design of experiments process to generate 

data to develop meta-models of simulation output with consistent prediction error across 

the range of factors explored. We develop a proof of principle use case applying these ideas 

to a scenario within the U.S. Army’s Logistics Battle Command (LBC) simulation.  

C. THESIS ORGANIZATION 

Chapter II provides background information about Logistics Battle Command 

(LBC) and the structure of the data used for analysis and a brief review of the relevant 

literature. Chapter III provides the methodology developed to address the problem 

statement above. It discusses the plan to execute the adaptive experimental design based 

on the studies found in the literature review. Chapter IV contains the operational results 

and lessons learned from the development of the adaptive sequential process. Chapter V 

summarizes the research findings and provides potential topics for future research. 
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II. BACKGROUND

This section provides background information on the Logistics Battle Command 

simulation used in the proof of principle application as well as a brief review of the methods 

and techniques used in this research.  

A. LITERATURE REVIEW 

1. Design of Experiments (DOE)

In an experiment, the analyst changes one or more factors to see the effect on the 

outcome or response variable: “A DOE is an efficient procedure for planning experiments 

so that the data obtained can be analyzed to yield valid and objective conclusions” 

(National Institute of Standards and Technology [NIST] 2012). For any DOE the analyst 

must choose both the number of factors and the values for each of the selected factors to 

access. Choosing to examine all factors at all possible values of each factor is called a full 

factorial design. 

Using a full factorial design can be computational taxing as well as take longer than 

humanly possible to evaluate. For instance, would it be possible to evaluate a full factorial 

design of 100 factors each with two levels, 2100? Given a petaflop computer and a 

simulation that runs in seconds, the process would take over 40 million years to run one 

replication of the experiment (Sanchez 2012). In LBC, there is over 1500 factors, so an 

analyst must create an efficient design to explore the design space and provide an answer 

using a meta-model. “A meta-model approximates the relationship between the simulation 

input and output parameters by computationally efficient mathematical models” 

(Syberfeldt, A., Grimm, H., Ng, A. 2008, p. 3). A meta-model takes a simulation and 

represents the simulation as a formula (Syberfeldt, A., Grimm, H., Ng, A. 2008). 

There are several methods to develop an optimal space filling design (Sanchez 

2012). Latin Hypercubes (LH) are one of the most common space-filling designs 

(Sanchez 2012). LH are good all-purpose designs because they offer the following: 
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1. “Design Flexibility: One can readily generate an LH for a combination of 

continuous k factors and a selected number of design points” (Sanchez 

2012). 

2. “Space-filling: LH sample over the entire experimental domain” (Sanchez 

2012).  

3. “Analysis Flexibility:  The output data allows for a fit of different models 

to several performance measures” (Sanchez 2012). 

Due to randomness in the construction, LHs can create substantial multicollinearity among 

the factors (Hernandez 2008). Multicollinearity affects the output for regression modeling 

and partition trees. Researchers look for design that mitigate or remove correlations among 

the factors (Hernandez 2008). “Multicollinearity generally occurs when there are high 

correlations between two or more predictor variables. In other words, one predictor 

variable can be used to predict the other. This creates redundant information, skewing the 

results in a regression model” (Statistics How To 2019). An orthogonal Latin hypercube is 

a design in which the correlation among all the factors is zero (Hernandez 2008). A nearly 

orthogonal latin hypercube (NOLH) design has a maximum absolute pairwise correlation 

less than 0.05 (Hernandez 2008). The NOLH design does not allow the regression analysis 

to suffer greatly from multicollinearity. NOLH designs allow the analyst to explore the full 

experimental design space with a fewer design points, if the number of factors is low 

(Sanchez and Sanchez, 2018). Figure 1 outlines the number of design points needed based 

on the number of factors for evaluation.  

https://www.statisticshowto.datasciencecentral.com/independent-variable-definition/
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Figure 1. Data Requirements for Nearly Orthogonal Latin 
Hypercubes. Source: Sanchez and Sanchez (2018). 

These designs will help ensure that the design space for a given scenario context is 

explored in an efficient manner to facilitate creation of the meta-model of the original 

simulation (Cioppa and Lucas 2007, p. 46). “Latin hypercube sampling is a statistical 

method for generating a sample of plausible collections of parameter values from a 

multidimensional distribution” (Jenkins 2015). According to Cioppa and Lucas, A good 

meta-model keeps the errors between the predicted and actual observations small. An 

example of a linear meta-model is y = mx +b, where y is the response variable, m is the 

coefficient, x is factor value and b is the y-intercept. A design matrix with orthogonal or 

nearly orthogonal values and with good space filling properties is used for fractional 

factorial analysis (Sanchez 2012).  

 Using the NOLH design to create a DOE is one method to create a set of data with 

good space filling properties. The DOE provides a set of design points (DPs) of different 

values for each of the factors that will be used to construct the meta-model. The analyst 

then runs the actual simulation for each design point. Once complete, the analyst can then 

take the results of the DOE and the simulation output to create a meta-model. A meta-

model is a simpler approximation of a model or simulation, a model of a model (Barton 

and Meckesheimer 2006, p. 538). Meta-models allow the analyst to explore a simulation 

or a model without using the same computational requirements as the parent simulation. A 

meta-model takes less time, money and computational power for analysis because it is a 

subset of the parent simulation or model.  
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High costs, time constraints, and computational demands are some reasons why an 

efficient DOE is important to gain understanding and insight from combat models. A good 

experimental design allows the analyst to gain insights, and systematically and efficiently 

explore outcomes within a model. Analysts need to continue to advance this work to make 

the most of the methods available in order to increase the effectiveness of meta-models to 

represent the real world. One method is to develop a way for the computer to conduct the 

analysis for the analyst using adaptive sequential designs. 

2. Adaptive Sequential Design of Experiments

Adaptive Sequential Design of Experiments goes by several names in analytic 

community; adaptive recursive approach, adaptive design of experiments (ADOE) or 

active learning (Blondet, Boudaoud, and Duigou 2015, p. 5). Figure 2 is a diagram of the 

meta-modeling process. An ADOE iteratively creates a DOE for a specific problem, model 

or simulation in order to maximize the DOE efficiency (Blondet, Boudaoud, and Duigou 

2015, p. 5). An efficient DOE gives the analyst a set of data to build a meta-model that 

represents the simulation output based on the selected factors. It takes two steps to build 

an accurate as possible global meta-model for a deterministic simulation-based model with 

a reasonable computational budget (Liu et al. 2017). The first step is sampling, by building 

a set of points within a specified domain and the second is meta-modeling, where a function 

is fitted to observed points (Liu et al. 2017). This process repeats until it reaches a stopping 

condition. Figure 3 is one method or strategy to create an ADOE. 

Figure 2. Meta-Modeling Fits in Simulation Analysis. Source: 
Jalal, Dowd, Sainfort, and Kuntz (2013). 



7 

 

Figure 3. “General Flowchart of an Adaptive Sampling 
Approach for Global Meta-Modeling.” Source: Liu et al. 

(2017).  

An adaptive design sequentially builds off previous DOEs by choosing a new set 

of DPs as the function of the DPs used to create the current meta-model (Picheny et al. 

2010, p. 3). A primary issue with developing dynamic ADOE is choice of infill criterion 

or stopping conditions (Blondet, Boudaoud, and Duigou 2015, p. 5). The infill criterion is 

value or formula from a meta-model that determines if another iteration is required. A 

widely used infill criterion is the Expected Improvement (EI) criterion, which involves a 

measure of possible improvement (Blondet, Boudaoud, and Duigou 2015, p. 6). Other 

methods are Efficient Global Optimization (EGO) and Particle Swarm Optimization 

Intelligent Sampling (PSIOS) (Blondet, Boudaoud, and Duigou 2015, p. 6). We will assess 

the quality of the meta-model by measuring the error between observed and predicted 

values. Each time the meta-model is created, the accuracy should improve. A meta-model 

improves as the error gets smaller. 

A successful ADOE process seeks to create an accurate meta-model by efficiently 

exploring the design space. The infill criterion is important in selecting the most efficient 
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DOE and adding new DOEs sequentially to the initial DOE. The DOE efficiency of an 

ADOE relies heavily on the meta-model and the infill criterion (Blondet, Boudaoud, and 

Duigou 2015, p. 7). There is still more research needed to improve selecting the correct 

meta-model or infill criterion. Improving these would reduce computational cost and 

increase the speed of the process. This thesis will build off the concepts seen in the 

flowchart in Figure 5.  

3. Multiple Linear Regression 

Multiple linear regression is one of the most widely used approaches to 

approximate a model or simulation (Jalal et al. 2013, p. 889). “Linear regression 

metamodeling involves defining a model outcome as a linear function of the model input 

parameters. For example, in a simple model with 2 input parameters, we can define the 

outcome as” (Jalal et al. 2013, p. 881): 

10 1 2 2 ... n ny x x xα α α α ε= + + + + +  

where y is the response variable or the outcome, 0α is the y-intercept, 1... nα α are the 

coefficients, 1... nx x are the values of factors, and ε accounts for the error between the 

observed and expected values. The magnitude of the coefficient represents how much of 

an effect the factor has on the outcome of a model. A meta-model with lower error is closer 

to modeling the simulation. An analyst attempts to develop the best meta-model without 

underfitting, overfitting, having high error, or a meta-model that works for the training data 

and no other case. 

To use linear regression there must be a linear relationship between the factors and 

the predicted value. Plotting the data gives a quick assessment of the pattern in the 

relationship. Other assumptions for linear regression are the errors are independent, 

constant variance and normally distributed (Faraway 2005, p. 58). These can be observed 

through the behaviors of the residuals. In addition, one needs to assess data points that are 

potential outliers or have a high leverage, since they can influence the regression model 

(Faraway 2005, p. 69).  
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4. Tabu Search

“Tabu Search (TS) is a meta-heuristic that guides a local heuristic search 

procedure to explore the solution space beyond local optimality” (Glover et al. 2008, p. 

1). According to Glover, TS revolves around problem solving, and incorporates adaptive 

memory and responsive exploration. He continues that adaptive memory feature permits 

the execution of procedures to search a solution space efficiently and effectively. Glover 

states the responsive exploration feature comes from the idea even bad choices can 

provide valuable information. Any optimization problem, whether linear, nonlinear or 

stochastic may utilize TS (Glover et al. 2008).  

TS begins with a search for a local minimum solution and continues through 

iterations from one solution to another until termination criterion is satisfied (Glover et al. 

2008). A local minimum solution is a solution that is in the feasible area to solve a problem, 

but it is not the best optimal solution. A global solution is the optimal solution for the 

problem. The TS attempts to find new solutions by exploring new regions or neighbors in 

the solution space in order to find a global minimum, according to Glover. TS keeps a 

memory of already found solutions and stores them as tabu-active attributes, he 

continues, and the search should not revisit tabu-active attributes satisfied. When TS 

stops iterations, it produces a systematically obtained global solution satisfied (Glover et 

al. 2008). TS methods help find the ideal meta-model for the process in this thesis. 

B. LOGISTICS BATTLE COMMAND 

LBC is a simulation for studying alternative logistics systems and concepts and 

developed in a partnership between TRAC-LEE, TRAC-MTRY, the Naval Postgraduate 

School, and the Argonne National Library (Akers 2008). The model considers logistics 

assets as entities and tracks events as these entities interact over a logistics network (Akers 

2008). LBC models consumption, supply requests, resupply decisions, convoys and other 

logistics operations through a series of networked nodes connected by arcs (Akers 2008).  

Input and scenario data for LBC is stored as Excel spreadsheets that contain the 

information required to model logistics and maintenance in a given real-world scenario.  

The simulation monitors logistics operations over a network of roads and unit locations 
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(Akers 2008). LBC is a discrete-event simulation model (Akers 2008). “A discrete-event 

simulation concerns the modeling of a system as it evolves over time by representation in 

which the state variables change instantaneously at separate points in time” (Law and 

Kelton 1991, p. 7). LBC records any change in ammunition, fuel, cargo and water levels 

as an event. The output of the simulation is log describing the nature and time of these state 

changes organized by the time of the event. An example is shown in Appendix A. These 

changes in the simulation provide data to assess various measures of effectiveness, such as 

number of convoys during the operation or percent of supplies on hand, by supply class.    

This thesis used a corps level LBC scenario starting in phase 3 (major combat 

operations). The scenario includes four divisions with division 4 being the main effort. 

Division 4 consists of two Armored Brigade Combat Teams (ABCT), Combat Aviation 

Brigade (CAB), Division Artillery Battery (DIVARTY), Engineering Battalion (ENG BN), 

Maneuver Enhancement Battalion (MEB), Stryker Brigade Combat Team (SBCT), and a 

Sustainment Brigade (SUS BDE) to provide the necessary Brigade Support Battalions 

(BSBs) and Forward Support Companies (FSCs) (TRAC-LEE 2018). Figure 4 is an 

example of the logistics operations in support of an ABCT or SBCT. 
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Figure 4. Example of Logistics Operations for a BSB. Source: 
Burgdorf (2014).  
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III. METHODOLOGY PROCESS 

This section outlines the tools and functions the ADOE process uses to create the 

final meta-model of the simulation. Figure 5 depicts the process the thesis will use to find 

a meta-model of a simulation. 

 

Figure 5. Flowchart for ADOE Process 

A. DEVELOP INITIAL DOE 

The analyst begins by identifying the measure of effectiveness from the simulation 

required to address their issue for analysis. For this thesis, the measure of effectiveness 

(MOE) is the percentage of units in the division that fell below 60% of supplies on hand in 

ammunition, fuel, cargo, or water during the simulation. The ADOE process creates the 

initial DOE after the user sets the initial operating values for the ADOE process, stopping 

conditions, and the acceptable threshold for the residual range.  The analyst or the decision 

maker establishes the importance level or alpha, which varies the results or the significant 

factors that display.  

A function gathers and collects all possible factor values from the scenario file into 

a data frame. The analyst explores these factors for possible use in the designed 

experiments. From this set, the analyst selects the factors to be used in the meta-model. For 
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the proof of principle, we limit the number of factors to 29 and make use of an appropriate 

NOLH design.  

For this thesis, the focus is on a single division, Division 4 since they are the main 

effort in Phase 3 operations. In Phase 3, the forces dominate “by breaking the enemy’s will 

for organized resistance” (TRADOC Pamphlet 525–5-600, p. 32). This phase of the 

operation involves heavy offensive operations, so ammunition is important. The reorder 

point for combat units is a priority and effects resupply operations. We choose the 

ammunition reorder points for the 26 units of division 4 as the factors to include in our the 

ADOE process with a goal of developing a meta-model that helps the analyst understand 

how changes in these re-order points will impact Division 4’s supply levels. 

With the selected factors, the process extracts their starting values from the initial 

scenario file and finds a minimum and maximum range of +/- 15% of the base case values. 

This range reflects the region identified by the author, a former logistics officer and planner 

at the Brigade and Company level, as realistic for this scenario.  The range is adjustable by 

the analyst depending on the size of the design space they want to explore.  

The process creates an initial DOE with 257 design points based on a NOLH design. 

Recalling Figure 1, a NOLH design of 23–29 factors needs at least 257 levels to adequately 

fill a design space (Sanchez and Sanchez 2018). Using this space filling design method, 

the function creates the design points for processing through the simulation. Each design 

point is a different set of values for each selected factor. Figure 6 gives more detail on the 

steps of the process. 
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Figure 6. Flowchart for DOE Generation Function 

B. CREATE DESIGN POINTS 

Taking the output, the initial DOE, the write scenario function writes the eXtensible 

markup language (XML) input files representing different design points. The function 

rewrites the values of the selected factors in the xml files along with the number of 

replications. The function stores the created input files on the hard drive.  There are 257 

design points, each replicated 30 times for a total of 7,710 replications. 

C. RUN DESIGN POINTS THROUGH LBC 

The next function processes each of the 7,710 replications through LBC. LBC 

produces comma separated values (CSV) files storing the events of all replications in one 

file. Any time there is a change in the supply level in any commodity type for any unit an 

event is logged. The function stores the csv files to the user’s hard drive. 

D. DETERMINE RESPONSE VARIABLE VALUES 

We calculate the response variable for each replication. The response variable of 

interest to this analysis is the percentage of units that fell below 60% at any time during 

the simulation. According to Army Regulation (AR) 700–138, a unit reaches black status 

when supply levels fall below 60%. Black status means the unit is at grave risk and may 

not be able to continue with the mission (AR 700-138, p. 30). The process attaches the 
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response variable to the corresponding design point, for regression analysis. An analyst 

may change the response variable to support analysis of additional measures of 

effectiveness. 

E. REGRESSION ANALYSIS AND STOPPING CONDITIONS 

The getModel function fits a regression model of the response variable. There are 

several modeling methods available for future use through the R statistical language 

(multiple linear regression, random forests, neural networks, etc), but for this proof of 

principle we make use of multiple linear regression. The process uses the lm function in R 

to create a linear model from the data. The goal of our ADOE process is to build a meta-

model of the simulation that provides the user with an accurate predictive model over the 

region explored by the design of experiments. In order to achieve this goal, following the 

construction of each linear model, we seek to identify the region that the model displays 

the worst accuracy, as measured by the difference between the predicted and actual values, 

the residuals and target that area for more detailed exploration with the next design of 

experiments (Glover et al. 2008). These steps are repeated until stopping conditions related 

to model accuracy are achieved. For this proof of principle work, the user specifies the 

maximum percentage of residuals above a given threshold allowable. Once the percentage 

of residuals from the developed model above this threshold falls below the maximum 

allowable stopping conditions are met. 

For this work, we set the threshold for maximum allowable residual values at two 

standard deviations from the mean residual value over all design points. For the ADOE 

process, z is the threshold value that is one of the stopping conditions for the ADOE, which 

is the allowable percentage of residuals outside of the acceptable range. If percentage of 

residuals outside two standards deviations is greater than z, the process does another 

iteration.   

From the regression analysis, the ADOE process finds the design point with the 

highest mean residual value (after excluding extreme outliers), which becomes the base 

values for the next DOE. The design point with the largest mean residual allows analysts 

to explore more of the solution space in an effort to improve overall model performance, 
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and effectively avoiding a local minimum. This is a variation on the tabu search method. 

Choosing the design point with the largest mean residual will allow the algorithm to search 

another set of values to see if those values will be able to improve the meta-model as the 

process explores more of the design space (Glover et al. 2008). The next iteration begins 

by generating a new DOE, using the selected design point from previous iteration as the 

base values. The new DOE uses a smaller range for min and max values then the initial 

DOE in order to target the region of interest. The initial DOE used a range of plus or minus 

15% of the base values, the follow-on iterations’ ranges are 10%. Keeping the range 

smaller for follow-on iterations allows the subsequent design to generate additional 

samples from the target region.  

 

Figure 7. Heatmap of the Initial Residuals Values between 
the General Support Aviation Battalion (GSAB) and 

Aviation Support Battalion (ASB) 

The heatmap in Figure 7 shows the residual for each design point in the initial DOE. 

Each color block is residual value of the design point containing the pair of ammo reorder 

values for the GSAB and the ASB, with blue being a low residual value and red a high 
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residual value. The white space is unexplored value pairs for the GSAB and ASB. The 

ADOE process continues exploring the space until we end with a heatmap like in Figure 8. 

Figure 8 covers more values as the process moves around the design space generating 

additional data to inform the meta-model. 

 

Figure 8. Heatmap of the Final Residuals Values between the 
General Support Aviation Battalion (GSAB) and Aviation 

Support Battalion (ASB) 

Each follow-on iteration creates the same number of design points and the selected 

factors remain the same through the ADOE process. With each iteration, 30 replications of 

each new design point are added to the 7,710 from the original design. This increases the 

data set for each subsequent regression model. The process continues to iterate through 

DOE generation, simulating design points, and regression analysis until it reaches one of 

the stopping conditions.  

In order to allow the analyst to conduct experimentation within their time and 

computational budget, the user may specify the maximum number of DOE iterations to be 
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performed should stopping conditions not be met. This stops the model from iterating if 

each meta-model fails to meet the z threshold. Finally, the user may specify a third stopping 

condition to check model progress. Each iteration needs to show a minimum amount of 

change in the percentage of residuals above z - if the process is failing to demonstrate 

progress above a user specified threshold, the ADOE process stops. After observing 

different percentages of residuals outside of the acceptable range between each meta-

model, the analyst determines there must be at least a 0.4% change in the percentages for 

this proof of principle to work. 

F. FINAL META-MODEL 

When the process reaches one of the stopping conditions, it stops iterating and 

displays information about the final meta-model. Ideally when the iterations stop, the 

process has generated a stable meta-model to use for predicting the MOE with consistent 

accuracy across the region of interest for the model’s intended use. The ADOE process 

presents the analyst with appropriate model diagnostics such as a plot of the residuals, a 

QQ plot, and a list of the most significant factors.  
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IV. RESULTS 

This chapter discusses the results and performance of the ADOE process during our 

proof of principle demonstration 

We created a meta-model of the supply levels of all commodities in the units under 

study as a function of the reorder point of ammunition. The meta-model provides insight 

into the relationship between the re-order points and the percentage of units that fall below 

60% of supplies in any commodity during the operation. This model will allow the decision 

maker to conduct what if analysis and understand how changing re-order points for one 

unit might impact the division as a whole.  

We conducted our experiments on the high-performance computer (HPC) at the 

Naval Postgraduate School in order to parallelize the execution of simulation replications 

for each experimental design.  

To find the effect the reorder point has on the percentage of units in the division 

that fall below 60% of supplies on hand during the operation, the analyst selects factors of 

interest for inclusion in the DOE. In this case, the analysis concerns the impact of 

ammunition reorder points for a set of units on the overall measure of effectiveness Ao. 

The analyst establishes the range to explore for each of the 26 factors. We specify the goal 

for model accuracy by setting z to 5% - so our process will stop when less than 5% of the 

residuals are above this threshold. We further specify the maximum number of iterations 

at 12 and that we must see at least a 0.004 change in the percentage of residuals above z in 

order to continue. Finally, we set alpha to 0.05, limiting the number of factors presented to 

the analyst upon completion to those with a p-value less than 0.05. 

Using the NOLH space filling design, the process creates an initial DOE from the 

selected factors. Appendix C contains an example of the DOE generation function and 

appendix I is sample of the initial DOE design points the function produces.  

After processing the initial data through the process, Figure 9 shows the relationship 

between the observed and predicted average response value for each design in the initial 

iteration. The graph shows the how well the meta-model predicts the percentage of units 
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that fell below 60% of supply on hand. Ideally, if we look at an observed value of 0.11, 

then the corresponding predicted values are 0.11. Looking at the plot, this is not the case 

so there is some variance the meta-model does not account for. The goal is to find a meta-

model that will provide consistent model accuracy across the range values explored. 

Residuals that fall outside of two standard deviations range from the average of the residual 

values.  

 

Figure 9. Observed vs. Predicted Values for Initial DOE 
Meta-Model. 

The error in the meta-model is low, but the looking at the adjusted R squared values, at 

0.233, the model only explains about 23.3% of the percent of the variance in the response. 

The average residual value for the meta-model is nearly zero and has about 5.42% of 

residuals outside of the acceptable two standard deviation range. Stopping conditions are 

not met, so the next design iteration begins.    
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The function returns the design point with the highest residual and this is the 

baseline for the next DOE. This time 5.49% are outside of the acceptable range with a R 

squared value of 25.2%.  

The third iteration’s meta-model’s residual standard error is lower than the second 

meta-model, but the adjusted R squared value decreased to 18.9%. This meta-model has 

5.25% of the residuals outside of the acceptable range. The improvement is less than 0.4%, 

which means the process stops iterating after three iterations, since it reaches a stopping 

condition. Looking at Figure 10, there is some improvement from the initial iteration. The 

predicted values seem to concentrate around the expected values. 

  

Figure 10. Observed vs. Predicted Values for 3rd DOE Meta-
Model. 

Table 1 is a side by side comparison on each iteration’s meta-model outcome. The 

percentage of residuals outside of the acceptable range decreases with each iteration. In 

Table 1, there is steep decrease in R-squared values between iteration two and iteration 
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three.  The R-squared value measures the percentage of variance in the response accounted 

for by the factors in the meta-model. The R-squared value may decrease due to the increase 

in the number of data points that provide more information for the regression analysis to 

develop a meta-model. The goal is to produce a meta-model with a prescribed set of design 

factors and consistent predictive accuracy, rather than a model with strong explanatory 

power – other modeling approaches might be combined with this general methodology to 

develop models with greater explanatory power, but that is outside the scope of the current 

effort. 

Table 1. Result Data for Each Meta-Model Iteration 

 
 

We run the ADOE process for more iterations to see if the R squared value 

continues to decline after three iterations. The R squared value increases at iteration five 

and continues to climb for the remainder of the iterations. As the process generates more 

design points, each meta-model accounts for more variation and increases the explanatory 

power of the meta-model. However, the percentage of residuals outside of the acceptable 

range does not change much between the iterations. Figure 11 is a graph of the final meta-

model from the ADOE process. The final meta-model has more predicted values 

concentrating around the expected values. 

 

1 2 3 4 5 6
R-Sqaured Value 0.233 0.2522 0.1894 0.1573 0.1602 0.1505
% of Residuals Outside of Acceptable Range 0.0542153 0.05486381 0.05252918 0.0523022 0.0514008 0.0597276
Mean Squared Error 0.00005167 0.00005595 0.00006059 0.00006391 0.00006758 0.00006978
Design Point as Basis for DOE Initial Data 28 358 487 291 494

7 8 9 10 11 12
R-Sqaured Value 0.1529 0.1385 0.1841 0.1745 0.1584 0.147
% of Residuals Outside of Acceptable Range 0.5104688 0.05087549 0.05084306 0.05077821 0.05059545 0.05055123
Mean Squared Error 0.00006963 0.00007018 0.00007063 0.00007158 0.00007271 0.00007289
Design Point as Basis for DOE 1388 1067 1366 588 374 2734

Iterations

Iterations
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Figure 11. Observed vs. Predicted Values for Final DOE Meta-
Model. 

Figure 12 plots the predicted values for the reorder points for the Aviation Support 

Battalion (ASB) from the initial meta-model. The red lines are the upper and lower 

confidence interval while the blue line is the predicted value. The upper and lower 

confidence interval appear to fit evenly spaced around the predicted values. As the ADOE 

process creates more data, the red lines should get closer to the predicted values, which 

means there is less variation in the predicted values. Figure 13 is the same plot but for the 

final meta-model. The plot shows how the process assessed different values for the ASAB, 

as seen in the different scale of the x axis between Figure 12 and Figure 13. Figure 13 

shows how the ADOE process decreases the variation in the predicted values. The process 

appears to improve over all predicted values. The upper and lower confidence values, the 

red lines in Figures 12 and 13 change as the ADOE process improves the meta-model. The 

difference between the upper and lower confidence values gets smaller with each meta-

model iteration. We see the difference when looking at ASB reorder value is 115.076. In 
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the initial meta-model, the prediction interval range for this point is 0.00282 and in the 

final meta-model, the range is 0.00223, which is a 21% reduction. The author used JMP to 

produce the graphs and the meta-model data for the graph comparison. The meta-models 

in JMP are very similar to the ones in R.  

 

Figure 12. Graph of Initial Predicted Values for the ASB 
Threshold Values, with the Red Lines Representing the 

Confidence Interval for the Predicted Values 
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Figure 13. Graph of Final Predicted Values for the ASB 
Threshold Values, with the Red Lines Representing the 

Confidence Interval for the Predicted Values 

Each iteration takes 3.5 – 4.5 hours, depending on how fast the HPC processes the 

simulation and the ADOE process takes about two days to complete 12 iterations when 

replicating each design point 30 times.  Figure 14 is a chart of the first ten significant factors 

ordered by coefficient value. The factors returned are the reorder points the decision maker 

should watch since they have the greatest effect on the number of units that fall below 60% 

of supplies on hand for any commodity during the simulation. The analyst could use this 

model to make a recommendation on re-order point settings to minimize the number of 

units that fall below 60%.    
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Figure 14. Chart of Top 10 Significant Factors Produced by the 
ADOE Process 

Looking at the coefficient, out of the 26 factors and 326 two-way interactions of 

the factors in the linear model, these ten are the most significant.  The ones with a negative 

value will reduce the response variable, which means increasing the reorder point value 

should lower the percentage of units that fall below 60% supplies on hand during the 

simulation and the opposite for factors with positive coefficients. For instance, each unit 

increase of the reorder point for General Support Aviation Battalion (GSAB) increases the 

response variable by that the coefficient value if all other values remained the same. The 

analyst verifies meta-model has a linear relationship, no multicollinearity, 

homoscedasticity, and residuals that are normally distributed.  Once the meta-model passes 

all the assumptions, the analyst uses this meta-model to inform the decision maker on 

which units need to be a priority. Based on my analysis, the ASB and the GSAB reorder 

points can be lower and increase the reorder point for ADA battery for 8 ABCT.  The 

analyst can adjust the reorder values and input those values into the meta-model and 

determine the percentage of units that will fall below 60%. The decision maker can use this 

information to determine if they can delay a supply request in favor of another unit.  

The ADOE process creates a meta-model of the simulation. The meta-model does 

not account for all of the variance in the response, but provides a consistent level of 

prediction accuracy across the range of input values desired. The methodology and 
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supporting workflow provide analysts with a set of tools to develop meta-models to support 

decision analysis in a variety of settings. Leveraging the data produced from extensive 

computational experimentation with the developed simulation model, analysts can make 

use of a relatively fast meta-model of the output measure of interest to support decisions in 

real time. 
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V. CONCLUSION 

A. CONCLUSION 

Simulations are important tool for military planning. The military will only increase 

their use of simulations for planning for future operations or conducting analysis of new 

capabilities designed to address operational gaps. The process of building DOEs and 

developing meta-models is a time intensive and iterative process. This thesis leverages 

techniques from the adaptive sequential design of experiments literature and ideas from 

tabu search to develop a simple yet innovative workflow to provide analysts with a meta-

model of a complex simulation model to the desired level of predictive accuracy to support 

the use case (Glover et al. 2008). This thesis demonstrated a proof of principle application 

of this methodology to develop a meta-model intended to answer a specific analysis 

question. The results show the ADOE process creates a meta-model from a complex 

simulation that narrows the prediction interval with each iteration. As the prediction 

interval decreases the error in predicting the response accurately based on the selected 

factors decreases. The analyst informs the decision maker the reorder values for the ASB 

and the GSAB have the greatest effect on the response variable, using the results from the 

final meta-model in the proof of principle.  

B. FUTURE RESEARCH 

Future work could examine methods that also seek to adjust the experimental 

design in a manner that incorporates different factors in an effort to account for variance in 

the response. The current approach requires the analyst to identify a set of decision 

variables in the initial step and these variables are fixed throughout the adaptive design 

process. The proof of principle made use of multiple linear regression, but there are other 

modeling approaches that could be explored in future work such as random forests or 

neural networks. The adaptive framework could be configured to explore a number of 

different modeling approaches, providing recommendations to the user on the model with 

the best performance for a given data set. Future builds of the ADOE process can make 

this a product more user friendly. The development of an R Shiny application that allows 
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the user to make the use of drop-down menus to select the factors of the ADOE process 

could provide access to users without a coding experience in R.  
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APPENDIX A. SNIPPET OF LBC RESULTS 

 

replication time entityName eventNamepropertyName data oldValue newValue
1 5.03 DIV-4_MEB-4_ENG-BNConsume balanceOnHand CARGO 46392.49 44121.75
1 5.03 DIV-4_MEB-4_ENG-BNConsume balanceOnHand FUEL 52180.8 50985.8
1 5.03 DIV-4_MEB-4_ENG-BNConsume balanceOnHand WATER 7731 7573.2
1 5.034 CORPS_AVNGR-BN-3 Consume balanceOnHand AMMO 7312.14 7155.14
1 5.034 CORPS_AVNGR-BN-3 Consume balanceOnHand CARGO 10149.61 9746.07
1 5.034 CORPS_AVNGR-BN-3 Consume balanceOnHand FUEL 11057 10991
1 5.034 CORPS_AVNGR-BN-3 Consume balanceOnHand WATER 2328.22 2296.94
1 5.035 DIV-4_EN-BDE-4_ENG-Consume balanceOnHand AMMO 2853 2732
1 5.035 DIV-4_EN-BDE-4_ENG-Consume balanceOnHand CARGO 21686.85 20717.02
1 5.035 DIV-4_EN-BDE-4_ENG-Consume balanceOnHand FUEL 22998.6 22346.6
1 5.035 DIV-4_EN-BDE-4_ENG-Consume balanceOnHand WATER 3699.58 3635.44
1 5.036 DIV-4_SUST-BDE-8 Consume balanceOnHand AMMO 459.07 440.07
1 5.036 DIV-4_SUST-BDE-8 Consume balanceOnHand CARGO 188719.5 181287.8
1 5.036 DIV-4_SUST-BDE-8 Consume balanceOnHand FUEL 243835.3 240037.3
1 5.036 DIV-4_SUST-BDE-8 Consume balanceOnHand WATER 34487 33983.83
1 5.039 BasicConvoy15 Move location arc277 SITE-273
1 5.039 M1120A4_HEMTT_LHSReceiveRestotalAmountUnloadeAMMO 13802.62 1400.265
1 5.039 DIV-4_ALLIED-BDE-1_AReceiveResbalanceOnHand AMMO|M 47128.86 59531.21
1 5.039 M1120A4_HEMTT_LHSReceiveRestotalAmountUnloadeCARGO 247.4205 0
1 5.039 DIV-4_ALLIED-BDE-1_AReceiveResbalanceOnHand CARGO|M1 22968.88 23216.3
1 5.039 M1076.5889.TRAILER ReceiveRestotalAmountUnloadeCARGO 4476.489 0
1 5.039 DIV-4_ALLIED-BDE-1_AReceiveResbalanceOnHand CARGO|M1 23216.3 27692.79
1 5.039 M978A4_HEMTT_Fuel ReceiveRestotalAmountUnloadeFUEL 2250.306 0
1 5.039 DIV-4_ALLIED-BDE-1_AReceiveResbalanceOnHand FUEL|M97 10836.7 13087.01
1 5.039 CAMEL-II.5909.TRANSPReceiveRestotalAmountUnloadeWATER 269.626 0
1 5.039 DIV-4_ALLIED-BDE-1_AReceiveResbalanceOnHand WATER|CA 2668.15 2937.776
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APPENDIX  B. MAIN R CODE – ADOE 

######################################################################## 
##################                ADOE Code                     ########################## 
######################################################################## 
 
# Purpose: Aid analyst in analysis by allowing the program to determine the best range 
# the factor inputs should be to obtain an objective. 
 
######################################################################## 
# Packages used: 
 
library(XML)        # Tools for parsing and generating XML within R 
library(stringr)    # Common string operations 
library(dplyr)      # Data manipulation 
library(DiceDesign) # Generates a DOEs 
library(tidyr)      # Easily tidy data with the spread() or gather() function 
library(data.table) # Extension of data frame 
library(bestglm)    # Best subset GLM and regression utilities 
library(gtools)     # Order string experssions; mixedsort() 
library(parallel)   # Allows for parallel computing 
# library(DT)         # Function to print datatable 
print('Libraries loaded...') 
 
# Set initial working directory 
setwd("/home/jestream/LBCv5/ADOE/") 
 
### Load DoE Generation Functions 
# Functions here include loading base case XML, creating experimental design, and 
generating XML scenarios for exection 
source('DOEGen.R')  # Loads DoE Generator Function (newDOE) based on 'DiceDesign' 
NOLH function.   
source('scenCreator.R') # Loads function to take design and base XML (makeXMLs) to 
create required number of XMLs to run  
source('gatherxmls.R') # Creates a list of XMLs to process through the simulation 
source('runSim.R') # Loads function that runs DoE in parallel. 
source('remove.R') # Remove scenarios files to clear room on hard drive 
source('response4.R') # Gets the response variable from the data 
source('modeling3NRAgg.R') # generates the model 
source('adaptDOEGen2.R') # DOE generator for the adaptive portion of the program 
source('newadptFolder3.R') # Creates new folder for storage of each iterations data 
source('finalModel.R') # Displays the results and the final plot of the found meta-model 
source('sigFactors.R') # Displays the found significant factors from the meta-model 
print('Functions loaded...') 
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# Location of LBC or Simulation to use 
lbcFolder <- "/home/jestream/LBCv5/" 
 
# xml files location 
setwd("/home/jestream/LBCv5/data/excel/") 
 
# The xml file to parse for analysis 
xmlfile = "SCEN7-Phase-3-5NOV2018-90.v2.xml" 
 
# Where to store the data 
StorageLoc <- "/home/jestream/LBCv5/data/" 
 
# Name of the files for storage 
namefile <- 'LR2Agg' 
 
# identify the directory where the files are to be located 
Dir = paste0(StorageLoc,namefile,"/") 
Dir2 = paste0(StorageLoc,namefile,"/") 
 
# the number of replications per design point 
numReps = 30      
 
# Sets the initial range of value for the first DOE 
p = 0.15  
 
# Sets the range of min amd max values for follow on DOEs 
p2 = 0.10 
 
# Starting value for iterations, should remain at 1 unless starting from a different iteration 
k = 1                            
 
# Stopping condition for adaptive process 
z = 0.05 # percent of residuals outside of acceptable range 
stopVal <- 0.004 # minimum change needed to continue iteration 
iterThres = 11   # number of iterations in a row the model is allowed to iterate wwithout 
improvement 
maxIter = 12 
 
# Values for displaying significant factors 
alpha = 0.05  # The minimum p-value a factor must have to be considered significant 
n = 10        # The max number of significant factors to return  
 
######################################################################## 
##################       Search Parameters in XML files          
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######################################################################## 
pstart = Sys.time() # starts the clock to time how long the program takes to complete 
print('Parsing XML file...') 
# Breaks the xmlFile into sections and saves a temp version for data extraction 
xmldata <- xmlTreeParse(xmlfile, useInternal = TRUE) 
 
# Locates the a number of replications value 
numReplications = getNodeSet(xmldata, "//LBCAssembly[@numReplications]")  
 
# find all ThresholdReorderLogic Nodes 
ReorderNodes=getNodeSet(xmldata, "//ThresholdReorderLogic") 
 
# Locates all the reorder point data (this section can be adjusted to look for other  
#                         areas of interest such as consumption rate or truck capacities) 
ReorderValueNode = getNodeSet(xmldata, "//ThresholdReorderLogic//*[@value]") 
numNodes = length(ReorderValueNode) 
 
# Create lists to collect information from xmlFile 
numNodesName=character() 
nodeNum = integer() 
reps = character() 
name = character() 
Company = character() 
UnitId = character() 
Consumable =character() 
value = character() 
 
# this loop will return all required information from the parent nodes in reference  
# to the attribute value name 
for (i in 1:numNodes){ 
  parent = xmlParent(ReorderValueNode[[i]]) 
  child = xmlChildren(ReorderNodes[[1]])[i] 
  grandParent = xmlParent(xmlParent(ReorderValueNode[[i]])) 
  nodeNum[i] = i 
  name[i] = xmlAttrs(parent) #gets the methodName of the parent node in reference to the 
attribute value name 
  reps[i] = xmlAttrs(numReplications[[1]])['numReplications'] 
   
  # use the name to find the Company Name 
  providerNode = getNodeSet(grandParent, ".//*[@refId]") 
   
  # extract the consumable 
  Consumable[i]= xmlAttrs(providerNode[[1]])['refId'] 
   
  # extract the Company Name 
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  UnitId[i]= xmlAttrs(providerNode[[2]])['refId'] 
   
  # extract the value 
  valueNode = getNodeSet(parent, ".//*[@value]") 
  value[i]= xmlAttrs(valueNode[[1]])['value'] 
   
} 
# Data frame of collected nodes from entire xmlFile 
ReorderDf = data.frame(nodeNum, reps, name, UnitId, Consumable, value) 
print('Parsing complete...') 
######################################################################## 
##################      Locating Factors of Interest             
######################################################################## 
# Choose the units or factors of interest through the use of dplyr filters 
 
# This can be changed to look for any unit or factor based on the information available  
# from the xml data collection 
 
Div4 <- ReorderDf %>% select(nodeNum, reps, name, UnitId, Consumable, value) %>%  
  filter(str_detect(UnitId, "DIV-4")) %>% filter(!str_detect(UnitId, paste(c("BSB", "FSC", 
"DISTRO", "ALLIED", "SUST", "EN-BDE",  
                                                                             "HHC", "HHB", "HQ", 
"BEB","MEB","MI-BN"), collapse = "|"))) %>% filter(!str_detect(Consumable, 
paste(c("CARGO", "WATER"),collapse = "|"))) 
 
# Enusre that MASS is not running at the same time as dplyr or else it will mask the select 
function in dplyr 
 
mainFactors <- Div4 %>% filter(str_detect(Consumable, "AMMO"))          # replace with 
your choosen data set 
mainFactors$value <- as.numeric(levels(mainFactors$value))[mainFactors$value] # 
values to vary to create a range 
# Code found at 
# https://stackoverflow.com/questions/3418128/how-to-convert-a-factor-to-integer-
numeric-without-loss-of-information 
 
# Now set the range of min and max values 
 
# add those values to the data frame 
mainFactors['min'] <- (mainFactors$value - mainFactors$value*p) 
mainFactors['max'] <- (mainFactors$value*(1+p)) 
 
# From DOEGen.R  
ammoDOE <- newDOE(mainFactors) 
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# Creates folder for initial storage of data, it is based on the Dir set at the beginning 
dir.create(Dir) 
 
writeScenarios(ammoDOE) 
files <- getXMLs(Dir) 
 
######################################################################## 
# Runs each scenario through LBC, this takes awhile since it has to shut down and restart 
LBC each time 
setwd(lbcFolder) 
 
runEx(files, Dir) 
removeFiles(files) 
 
######################################################################## 
################   Gather the information for the response varialbe    
######################################################################## 
 
# Finds all the csv files and then puts the names in a list 
csvL <- list.files(path = Dir, pattern = '*.csv') 
csvL <- mixedsort(csvL) 
 
# Creates an empty data frame for information collection,  
# this can be modified based on what desired information the user is looking for 
results <- data.frame(matrix(ncol = 5)) 
colnames(results) <-c('DP', 'REP', 'Bad', 'Total', '%') 
 
 
test <- getResponse(csvs = csvL, DOE = ammoDOE) 
write.table(test, file = paste0(Dir,'test.csv'), sep = ',') 
######################################################################## 
# need to include code that saves each linear model and test data to the folder holding the 
data 
 
# this value is initial value to prevent repeating the same design point in consecutive 
iterations 
prevDPs <- list() 
# prevDP = 0   
 
par(mfrow = c(2,2)) 
test.mod <- getModel(test) 
 
# takes on value of the design point with the highest residual 
prevDPs <- append(prevDPs, test.mod[3]) 
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# Save the current DOE 
curDOE <- test[,1:nrow(mainFactors)] 
curDOE <- as.data.frame(t(curDOE)) 
write.table(curDOE, file = paste0(Dir,'DOE for initial .csv'), sep = ',') 
 
######################################################################## 
# Storing percent values for additional stopping criteria 
percents <- list() 
percents <- append(percents, test.mod[1]) 
c = 0 
 
######################################################################## 
################   Adaptive Portion, as long as it meets conditions    
######################################################################## 
while (test.mod[1] > z && k < maxIter && c < iterThres ){ 
  if(k == 1){ 
    print(paste('Now executing iteration',k)) 
     
    DOE <- aDOE(test, test.mod[2], mainFactors) 
     
    drive <- newFolder(StorageLoc, k) 
     
    Dir = paste0(drive[1],'/') 
    Dir2 = paste0(drive[2],'/') 
     
    setwd(lbcFolder)  
     
    writeScenarios(DOE) 
     
    files <- getXMLs(Dir) 
     
    runEx(files, Dir) 
     
    removeFiles(files) 
     
    # Finds all the csv files and then puts the names in a list 
    csvL <- list.files(path = Dir, pattern = '*.csv') 
     
    # Creates an empty data frame for information collection,  
    # this can be modified based on what desired information the user is looking for 
    results <- data.frame(matrix(ncol = 5)) 
    colnames(results) <-c('DP', 'REP', 'Bad', 'Total', '%') 
     
    newTest <- getResponse(csvs = csvL, DOE = DOE) 
    test <- rbind(test,newTest) 
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    curDOE <- test[,1:nrow(mainFactors)] 
    curDOE <- as.data.frame(t(curDOE)) 
    write.table(curDOE, file = paste0(Dir,'DOE_for_turn ',k,'.csv'), sep = ',') 
     
    par(mfrow = c(2,2)) 
    test.mod <- getModel(test) 
     
    prevDPs <- append(prevDPs, test.mod[3]) 
    # prevDP = test.mod[3] 
     
    percents <- append(percents, test.mod[1]) 
    diff <- abs(percents[[k+1]] - percents[[k]]) 
    if(diff > stopVal){ 
      c = 0 
    }else{ 
      c = c + 1 
    } 
     
     
    k = k + 1 
     
  } else { 
     
    print(paste('Now executing iteration', k)) 
    DOE <- aDOE(test, test.mod[2], mainFactors) 
    drive <- newFolder(StorageLoc, k) 
     
    Dir = paste0(drive[1],'/') 
    Dir2 = paste0(drive[2],'/') 
     
    setwd(lbcFolder)  
     
    writeScenarios(DOE) 
     
    files <- getXMLs(Dir) 
     
    runEx(files, Dir) 
     
    removeFiles(files) 
     
    csvL <- list.files(path = Dir, pattern = '*.csv') 
     
    results <- data.frame(matrix(ncol = 3, nrow = length(csvL))) 
    colnames(results) <- c('All','Total', 'All%') 
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    newTest <- getResponse(csvs = csvL, DOE = DOE) 
    test <- rbind(test,newTest) 
     
    curDOE <- test[,1:nrow(mainFactors)] 
    curDOE <- as.data.frame(t(curDOE)) 
     
    write.table(curDOE, file = paste0(Dir,'DOE_for_turn ',k,'.csv'), sep = ',') 
     
     
    par(mfrow = c(2,2)) 
    test.mod <- getModel(test) 
     
    prevDPs <- append(prevDPs, test.mod[3]) 
    # prevDP = test.mod[3] 
     
    percents <- append(percents, test.mod[1]) 
    diff <- abs(percents[[k+1]] - percents[[k]]) 
    if(diff > stopVal){ 
      c = 0 
    }else{ 
      c = c + 1 
    } 
     
    k = k + 1 
  } 
}   
 
final.mod <- finalModel(test) 
 
sigFactors(final.mod) 
 
# End program 
print('Program complete') 
pend = Sys.time() 
print(pend - pstart) 
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APPENDIX  C. DOEGEN FUNCTION 

For example, a factor value from the xml value is 200, which means the min and 

max is 170 and 230, respectively.  This gives a value range of 60.  And the nolhDesign() 

function for this factor at a certain design point is .65, then the process takes 60 * .65 = 39.  

Next the process takes 39 and adds it to the min value of the factor and gives a new reorder 

value of 209.   

 
####################################################################### 
##################       Function to create new set of DOE      
######################################################################## 
  
newDOE <- function(df){ 
  # Create a list of list of percentages to use and output a set of design points for the model 
  print('Creating DOE...') 
  set.seed(1234)    # sent seed for the NOLH creation 
  blank <- nolhDesign(nrow(df)) 
  # Code found at 
  # https://rdrr.io/cran/DiceDesign/man/nolhDesign.html 
   
  # Create a data frame of ranges for each factor 
  ammo <- data.frame(matrix(ncol = blank$n, nrow = nrow(df))) 
  for (i in 1:nrow(df)){ 
    ammo[i,] <- df$max[i] - df$min[i] 
  } 
   
  # transpose NOLH percentages for matrix math operations 
  blank2 <- as.data.frame(t(blank$design)) 
   
  # create a data frame of ranges * NOLH percentages values to get value to add to min of 
each range of each factor  
  add2min <- as.data.frame(ammo * blank2) 
   
  # create a data frame of all the min value ranges for each factor 
  ammoMin <- data.frame(matrix(ncol = blank$n, nrow = nrow(df))) 
  for (i in 1:nrow(df)){ 
    ammoMin[i,] <- df$min[i] 
  } 
   
  # create the DOE 
  ammoDOE <- as.data.frame(as.matrix(ammoMin) + as.matrix(add2min)) 
   



44 

  # Change the Row names of the DOEs 
  designPoints <- NULL 
  for (i in  1:blank$n){ 
    designPoints[i] <- paste("DP",i, sep = " ")   
  } 
  colnames(ammoDOE) <- designPoints 
  row.names(ammoDOE) <- df$UnitId 
  print('DOE created') 
  return(ammoDOE) 
} 
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APPENDIX  D. SCENARIO WRITER FUNCTION 

########################################################################
##################    Function to create xml scenarios for LBC   
######################################################################## 
writeScenarios <- function(DOE){ 
  # this function takes the DOE and creates new scenarios 
  # majority of this code came from MAJ Jim Jablonski and TaLena Fletcher 
  start_time = Sys.time() 
  print('Writing scenarios...') 
  for(DesignRow in seq(ncol(DOE))){ 
     
    for (i in seq(nrow(DOE))){ 
       
      # identify the node containing the value and replace it with the value contained in the 
Design 
      index = mainFactors$nodeNum[i] 
      xmlAttrs(ReorderValueNode[[index]])[2] <- paste0(DOE[i,DesignRow]) 
      xmlAttrs(numReplications[[1]])['numReplications'] <- numReps              
       
    } 
     
    # access only the //SimEntityDataLogger that contains the file attribute name   
    SaveFileNodes=getNodeSet(xmldata,"//SimEntityDataLogger[@file]") 
    for (j in seq(length(SaveFileNodes))){ 
       
      loggerName=xmlAttrs(SaveFileNodes[[j]])['propertyName'] #cycles through to 
capture the name of the csv file 
       
      xmlAttrs(SaveFileNodes[[j]])=c(file=paste0(Dir2, 'design_output_',DesignRow,'_', 
loggerName, '.csv')) #appends the correct filename to the csv file in the XML document 
       
    } 
     
    cat(saveXML(xmldata), file=paste0(Dir,"design_point_", DesignRow  ,".xml")) #saves 
the filename based on the design point number 
  } 
  print('Scenarios created...') 
  end_time = Sys.time() 
  total = end_time-start_time 
  print(total) 
  return(total) 
} 
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APPENDIX  E.  RUNSIM FUNCTION 

### Runs Scenarios through simulation using parallel computing 
 
runEx <- function(xmls, Dir){ 
  no_cores<-detectCores() 
   
  print(paste("detected", no_cores, "cores.")) 
   
  # sets a limit for the number of cores to be used 
  no_cores= 20 
  if (no_cores<1){no_cores=1} 
  cl <- makeCluster(no_cores) 
   
  print(paste("Cluster initiated, running on", no_cores, "cores.")) 
  Dir = Dir 
  start_time = Sys.time() 
   
  # Command Line code to execute LBC 
  runSim <- function(scenarios){ 
    # set.seed for ech rep 
    system2("java", args = c("-jar", "dist/LBCRunner.jar", paste0(Dir, scenarios))) 
  } 
   
  parLapply(cl, xmls, runSim) 
  stopCluster(cl) 
   
  end_time = Sys.time() 
  total = end_time - start_time 
  # print(total) 
  print(paste0("Total processing time")) 
  print(total) 
  } 
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APPENDIX  F.  GET RESPONSE FUNCTION 

#### One way to get a response from the data 
 
########################################################################
getResponse <- function(csvs,DOE){ 
  print('Generating Reponse for each experiment...') 
  start_time4 <- Sys.time() 
   
  for (i in 1:length(csvs)){ 
     
    outputData1 <- fread(paste0(Dir,csvs[i])) 
     
    # print(paste0('The number of replications imported ', 
length(unique(outputData1$replication)), '.')) 
     
    ## Get Data for Supply Minimum Supply Table, must be reactive value to avoid conflicts 
    supplyTable <- outputData1 %>% dplyr::filter(propertyName=="balanceOnHand") 
%>% filter(str_detect(`entityName`, "DIV-4")) %>% collect() 
     
     
    # Find minimum supply level reached by unit/commodity, excluding convoys 
    minsupplyTable <- supplyTable %>% filter(!str_detect(`data`,"Convoy")) %>%  
      group_by(replication, entityName, data) %>%  
      summarise(minOnHand=min(as.numeric(newValue), na.rm=TRUE)) %>% 
      ungroup() 
     
    # Find starting supply level by unit/commodity, excluding convoys 
    minPercentTable<-supplyTable%>% 
      filter(!str_detect(`data`,"Convoy")) %>% 
      filter(!str_detect(`entityName`,"UNLIMITED")) %>% 
      dplyr::select(-eventName, -propertyName, -oldValue) %>% 
      group_by(replication, entityName, data) %>% 
      mutate(minOnHand=min(as.numeric(newValue), na.rm=TRUE), 
minTime=min(time))  %>% 
      ungroup() %>% 
      filter(time==minTime) %>% 
      mutate(minPercOnHand=minOnHand/as.numeric(newValue)) %>% 
      dplyr::select(data,replication, entityName, minPercOnHand) 
     
     
    sub <- minPercentTable %>% group_by(replication) %>% filter(minPercOnHand < .60)  
%>% tally() 
    things <- data.frame(matrix(ncol=5)) 
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    colnames(things) <- c('DP ', 'REP', 'Bad', 'Total', '%') 
    for (j in 1:nrow(sub)){ 
      things[j,1]<- paste0('DP',i) 
      things[j,2] <- j 
      things[j,3] <- sub[j,2] 
      things[j,4] <- nrow(minPercentTable[minPercentTable$replication == j,]) 
      things[j,5] <- things[j,3]/things[j,4] 
    } 
    if (i ==1){ 
      results <- things 
    }else{ 
      results <- rbind(results, things) 
    } 
     
  } 
  # Applies response variables to the DOE  
  inputdf <- data.frame(t(DOE)) 
  repdf <- inputdf[rep(seq_len(nrow(inputdf)),each = numReps),]   
  test <- repdf[1:nrow(repdf),] 
  test$y <- results[,5] 
  print('Data complete for regression analysis') 
  end_time4 <- Sys.time() 
  print(total4 <- end_time4 - start_time4) 
  return(test) 
} 
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APPENDIX  G.  MODEL CREATION FUNCTION 

######################################################################## 
################   Gather the information for the response varialbe    
######################################################################## 
 
getModel <- function(data){ 
  print('Conducting regression analysis of the data...') 
  # This will find the resdiuals that fall within a certain range and return the number of  
  # residuals that are outside of the range and DP with the highest residual 
  lm.mod <- lm(y~(.)^2, data = data)  
  print('Model Complete..') 
  setwd(Dir) 
  print('Saving model to folder...') 
  save(lm.mod, file = 'lnmod.RData') 
  # https://stackoverflow.com/questions/14761496/saving-and-loading-a-model-in-r 
  print('Saving data frame to folder..') 
  write.table(data, file = 'model data.csv', sep = ',') 
  # https://datascienceplus.com/exporting-data-from-r/ 
 
  avg <- mean(lm.mod$residuals) 
  sigma <- sd(lm.mod$residuals) 
   
  ub <- avg + 2*sigma  
  lb <- avg - 2*sigma 
 
  resid <- sum(lm.mod$residuals>ub) + sum(lm.mod$residuals<lb) 
  percent <- resid/nrow(data) 
  print(paste0('The number of residuals outside of the accepted range is ',resid,'.')) 
  print(paste0('The current length of the DOE is ', nrow(data),'.')) 
  print(paste0('The percentage of residuals outside of the accepted range is ', 
round(percent,5), '.')) 
   
  # Section dismisses last used DP IOT avoid repeating similiar information 
  resValues <- data.frame(abs(lm.mod$residuals)) 
   
  dp <- rep(1:(nrow(data)/numReps), each = 30) 
  resValues$DP <- dp 
  
  aggValues <- aggregate(resValues[,1], list(resValues[,2]), mean) 
   
  ordAgg <- aggValues[order(-aggValues[,2]),] 
  filOrdAgg <- ordAgg[!ordAgg[,1] %in% prevDPs,] 
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  highAgg <- which.max(resValues$DP == filOrdAgg[1,1]) 
  newBaseDPAgg <- filOrdAgg[1,1] 
   
   
  #newCen <- which.max(abs(lm.mod$residuals)) 
  print(paste0('Building new DOE using design point ', newBaseDPAgg,'.')) 
  print('Modeling complete...') 
  return(c(percent, highAgg, newBaseDPAgg, plot(lm.mod))) 
} 
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APPENDIX  H. CHANGE DISTRIBUTION FUNCTION 

library(xlsx) 
 
setwd('location of file to modify') 
consum <- read.xlsx2('ConsumptionLogic.xlsx', sheetIndex = 1) 
consum2 <- consum 
 
str(consum) 
 
consum2$amountN <- gsub('Constant', 'Poisson', consum2$amount) 
 
consum2 
 
write.xlsx(consum2,'consum2.xlsx') 
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APPENDIX I. SAMPLE OF INITIAL DOE 
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APPENDIX J. TESTING THE ASSUMPTIONS OF THE FINAL 
META-MODEL 

Linear Relationship? 

 Looking at the residuals vs fitted plot for the final meta-model we can see there is 

no distinct pattern and the residual value is around 0.  We can assume there is a linear 

relationship between the dependent and independent variables. 

 
 

Multicollinearity?  

 Looking at the corrplot from R, there does not appear to be significant collinearity 

among any of the factors for the final meta-models. 
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Homoscedasticity?  

 Reviewing the fitted values vs the squared standardized residuals shows no clear 

pattern to indicate there is heteroscedasticity.   

Residuals that are normally distributed? 

 Looking at the QQ plot and the histogram of the residuals for the final meta-model, 

the residuals are normally distributed. 
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