Rob 501 - Mathematics for Robotics Recitation #4

Abhishek Venkataraman (Courtesy: Wubing Qin)

Oct 1, 2018

1 Linear Operator and Matrix Representation

Let \mathcal{X} and \mathcal{Y} be two vector space over the same field \mathcal{F} . A mapping $\mathcal{L} : \mathcal{X} \to \mathcal{Y}$ is a linear operator if $\forall \alpha_1, \alpha_2 \in \mathcal{F}$ and $\forall x_1, x_2 \in \mathcal{X}$: $\mathcal{L}(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 \mathcal{L}(x_1) + \alpha_2 \mathcal{L}(x_2)$.

Note: A linear map must satisfy $\mathcal{L}(0) = 0$.

A matrix representation of a linear operator $\mathcal{L} : \mathcal{X} \to \mathcal{Y}$, with a basis $U = \{u^1, u^2, \ldots, u^m\}$ for the space $(\mathcal{X}, \mathcal{F})$ and a basis $V = \{v^1, v^2, \ldots, v^n\}$ for the space $(\mathcal{Y}, \mathcal{F})$, is an $n \times m$ matrix A such that

$$[L(x)]_V = A[x]_U,$$

where $[x]_U$ is the coordinates of x expressed in the basis U, $[\mathcal{L}(x)]_V$ is the coordinates of $\mathcal{L}(x)$ expressed in the basis V, and the *i*-th column of A is $[\mathcal{L}(u^i)]_V$.

Ex: Let $(\mathbb{P}^n, \mathbb{R})$ be the space of polynomials of degree less than or equal to *n* over the field \mathbb{R} . Define the map $\mathcal{L}: \mathbb{P}^2 \to \mathbb{P}^3$ as:

$$(\mathcal{L}(p))(x) = \int_0^x p(s) \mathrm{d}s$$

1. Is \mathcal{L} a linear operator?

2. Find the matrix representation A_1 of \mathcal{L} with respect to the bases $U_1 = \{1, x, x^2\}$ for \mathbb{P}^2 and $V_1 = \{1, x, x^2, x^3\}$ for \mathbb{P}^3 .

3. Change the basis in \mathbb{P}^2 to $U_2 = \left\{1, x, \frac{1}{2}(3x^2 - 1)\right\}$. Find the new matrix representation A_2 .

4. Keep the basis U_1 in \mathbb{P}^2 , but change the basis in \mathbb{P}^3 to $V_2 = \left\{1, x, \frac{1}{2}(3x^2 - 1), \frac{1}{2}(5x^3 - 3x)\right\}$. Find the new matrix representation A_3 .

2 Similarity Transform

- 1. Let $A, B \in \mathbb{C}^{n \times n}$. A and B are <u>similar</u> if there exists an invertible matrix $P \in \mathbb{C}^{n \times n}$ such that $B = PAP^{-1}$.
- 2. If A is similar to a diagonal matrix, A is said to be diagonalizable.

Ex: Check whether the following matrices are diagonalizable. If they are, calculate A^{100} .

 $(1) A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, (2) A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}.$