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ABSTRACT

This thesis presents a Fortran program that numerically solves the

steady-state matrix Riccati equation of the quadratic cost optimal

control problem. Each step of the program is presented, analytically

and computationally. The check points incorporated in the program and

the input parameters that can be used to assure a correct solution are

identified and discussed. Difficulties encountered when verifying the

program, and the suggested solutions, are also presented.
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I. INTRODUCTION

The Fortran computer program presented in this thesis provides a

relatively quick and reliable means for determining the unique,

symmetric, steady-state solution P of the nonlinear matrix Riccati

equation:

P = = - PA - A'P - C'C + PBR
_1

B'P (1)

occurring in optimal control theory. The remaining equation variables

are defined in the following statement of the quadratic cost optimal

control problem.

Given the linear, time-invariant, completely controllable system

defined by the state equations:

x (t) = Ax(t) + Bu(t) (2)

x (0) = x
Q (3)

where:

x(t) is an n x 1 state vector

u(t) is an m x 1 unconstrained control vector

A is an n x n matrix

B is an n x m matrix,

determine the control vector u*(«) which minimizes the quadratic cost

functional

:

J(x
Q
;u(-)) - / [ x'(t)C'Cx(t) + u'(t)Ru(t) ] dt (4)

o

where:

C is an m x n matrix

R is an m x m symmetric, positive definite matrix

and the matrix pair (A,C) is completely observable.





It has been shown [Ref. 1] that u*(-) is given by the linear feed-

back law:

u*(t) = -R"
1
B'Px(t) = -L*x(t) (5)

where P is the unique solution to matrix equation (1).

For the system of equation (2) to be completely controllable, the

n x mn augmented matrix G,

G = (B
|
AB

|
A
2
B

|

•••
|
A
n " ]

B ), (6)

must contain n linearly independent column vectors, or equivalently,

the rank of G must be n. For the matrix pair (A,C) to be completely

observable, the n x mn augmented matrix H,

H = ( C |
A'C

|

(A')
2C

|

•••
|

(A')
n "

1 C ),

must contain n linearly independent column vectors or the rank of H

must be n.

When u*(-) is given by equation (5), equation (2) can be rewritten

as:

x(t) = Ax(t) - BL*x(t) = (A - BL*)x(t) (7)

which, using equation (3), has the general solution:

x(t) - e<
A " **>»

x . (8)

Because the system is completely controllable, as time approaches

infinity x(t) must remain bounded. To satisfy this requirement, the

matrix (A - Bl_*) must be a stable matrix or, alternatively, all the

eigenvalves of the matrix (A - BL*) must have negative real parts. As

a consequence of this:

!
im

x(t) = * l
im

e
(A " BL*> - . (9)





To evaluate the quadratic cost associated with the optimal con-

trol u*(t), substitute equation (5) into equation (4) and write:

/oo
[x'(t)C'Cx(t) + x'(t)L*'RL*x(t)] dt. (10)

Substituting equation (8) for x(t), expanding L*'RL*, and factoring out

the common terms:

j* = x
/-

e
(A-BL*)'t

[c
,

c + pBR
-l

B
, p]e (A-BL*)t dt

oJ v <">

-1 D .From equation (1) C'C = -PA -A'P + PBR B'P or:

C'C + PBR'Vp = -P(A - BL*) - (A - BL*)'P (12)

Substituting equation (12) into equation (11) and integrating by parts

the first term of the resulting integral expression, we get:

re
(A-BL*)'t

r _ p(A _ BL* )]e (A-BL*)t dt
oJ

(A - BL*)'t
[p] e

(A - BL*)t
= - e

t=0

f (A-BL*)' e
(A " BL* },t

[P] e

oJ

(A - BL*)t
dt . (13)

Using equation (9) to evaluate the upper limit of the first term, the

first term reduces to P. Recognizing:

Ze
Zt

= Z I Jf-zV =eZt
Z

i=0
1 "

(14)

we see that the second term in equation (13) will cancel the second

term in equation (11) when equation (12) is substituted. Thus:

J* = x'Px^ . (15)

8





II. ANALYTICAL METHODS OF SOLUTION

A. ANALYTICAL METHOD OF KLEINMAN

The main computer program of this thesis is based upon a method for

solving the steady-state Riccati equation published by David L. Kleinman

[Ref. 2] in 1968. The iteration scheme for solving euqation (1) is

presented in the following theorem by Kleinman.

1

.

Kleinman 's Theorem

Let V. , k = 0, 1 , 2, . . . be the n x n (unique) positive definite

matrix solution of the linear algebraic matrix equation:

= A£V
k

+ V
k
A
k

+ C'C + L^RL
k

(16)

where, recursively,

L
k

= R"
1
B

,

V
k_ 1

k = 1,2,3,...

A
k

- A - BL
k

k = 0,1,2,...

and where L„ is chosen such that the matrix A = A - BL„ has eigenvalues
o o o 3

with negative real parts.

Then: 1) P < V
k+1

< V
k

< • • k = 0,1,2,...

2)
lim

v = p

The notation X > Y [X > Y] means that the matrix X - Y is

positive [semi] definite.

2. The Cost Matrix

The proof of this theorem requires the introduction and defini-

tion of a cost matrix V, . Assume that u.(x(t)) = - Lx(t) is an arbitrary

feedback law, with feedback gains of L, and u. (x(t)) is applied to the





system of equation (2). Following a development similar to equations

(7), (8) and (15), the resulting quadratic cost function is:

J(x ;u
L
(x(t))) = x^V

L
x
o

where V, is the cost matrix associated with the feedback gains L and is

given by:

V, = f e
(A " BL),t

[C'C + L'RL] e
(A ~ BL)t

dt . (17)

V. is bounded if and only if the closed-loop system control matrix (A - BL)

is stable. If V. is bounded, it becomes the unique (positive definite)

solution of the linear matrix equation:

= (A - BL)'V
L

+ V
L
(A - BL) + C'C + L'RL . (18)

Examining the first term of equation (18) and substituting

equation (17) for V. , we can verify this relationship:

(A - BL)'V = / (A - BL)' e
(A " BL)

^[C'C + L'RL] e
(A " BL)t

dt.

Integrating by parts and using equation (14) we have:

oo

(A - BL)'V
1

e
(A BL),t

[C'C + L'RL] e
(A " BL)t

t=Q

- Te (A - BL>Vc + L'RL]e(
A - BL)t

(A - BL)

o
J

Using equation (9) to evaluate the upper limit of the first term, the

first term reduces to C'C + L'RL and we have,

(A - BL)'V
L
=-C'C - L'RL - V

L
(A - BL) ,

the desired result.

dt

10





Recalling the result of equation (15) we see that for the

optimal control of equation (5) we have:

V
L
* = P • (19)

If Li and L_2 are the gain matrices associated with the cost

matrices V\ and V
2

, it can be shown [Ref. 3] that:

V
l

" V
2

=
J

e(A "
BL2)t

[(L
1

' L2)' R ( L
1

" L
2

)

o

- (L
1

- L
2
)'(B'V

1

- RL
2

)

- (B'V
1

- RL
2
)'(L

1

- L
2
)] e

(A " BL
2

)t:
dt (20)

or:

V
1

- V
2

=
J e

(A " Bl
i

yt
[(L

1
- L

2
)'R(L

1

- L>)

- (L
1

- L
2
)'(B'V

2
- RL

2 )

- (B'V
2

- RL
2
)'(L

1

- L
2
)] e

(A ' BL
l

}t
dt. (21)

If either matrix (A - Bl_
2

) or matrix (A - BL-. ) is unstable, V,

or Vp, respectively, will be unbounded and care must be exercised in

using the above formulas.

3. Proof of Kleinman's Theorem

1) P < V
k+1

< V
k

s •• k = 0,1,2, •••. Let V
Q

be the cost

matrix for L , the initial guess that yields a stable closed-loop

system control matrix, and let V-, be the cost matrix for L-. = R~ B'V .

Substituting V and V-, into equation (20) and noting:

e
A
'k

t
= (e

A
k
t
)'

R = Y'Y, where Y is unique

B'V - RL-| =

11





we have:

V
o " V

l

=
/ ^ [(L

o
L

l
),R(L

o " L
l
)]

eA]t dt *

Define Z(t) = Y(L
Q

- L-
)

)e
A

l
t

. It has been shown [Ref. 4] that for

Z(t) a real matrix:

Z'(t)Z(t) ;> for all t * 0.

/oo
Z'(t)Z(t) dt > or:

V * V
1

. (22)

Let V^ be the cost matrix associated with L*, use equation (19)

and substitute into equation (21). Noting that:

B'P - RL* =

we have:

V
]

- P = / e^ [(L
]

- L*)'R(L
1

- L*)] e
A

l

t
dt.

o

This time define Z(t) = Y(L
1

- L*)e
A

l
t

and we have:

IV
1

- P = / Z'(t)Z(t) dt > or:

V
1

;> P . (23)

Combining the results of equations (22) and (23) we get:

meaning that V-. is bounded above by P and below by V . Thus, A-| is a

stable matrix and V, satisfies equation (16) with k = 1. Similar

arguments can be made for k = 2,3,4,... yielding:

the desired result.

12





2) J
lm

V w
= P. The J

1m
V. = V exists by a theorem on monotonic

convergence of positive operators [Ref. 5]. Thus, in the limit V|< =

V
k+1

and A
k

= A - BL
k

= A - BR~Vv
k

= A - BR'Vv^. Since A£ =

A' - V|BR~ B' equation (16) becomes, in the limit as k approaches

infinity,

= A'V
k

- V
k
BR"Vv

k
+ V

k
A - V

k
BR

-1
B'V

k
+ C'C + V

k
BR""Vv

k

which is equation (1), the desired result.

B. BASS'S METHOD OF DETERMINING A STABLE INITIAL GUESS

Kleinman's method requires an initial guess of the feedback gain

that yields a stable closed-loop system control matrix. Kleinman

remarks [Ref. 2] that, if the system of equation (2) is completely

controllable, then the desired initial guess will always exist. A

method that could be programmed for a general, controllable system to

yield this correct initial guess was sought.

Bass [Ref. 6] presented, but did not publish, a general method for

determining a stable initial guess for a completely controllable system

in 1961. The method was published in a paper by Wonham and Cashman

[Ref. 7] and a proof can be found in a subsequent paper by Bass [Ref. 8].

Given the controllabe matrix pair (A,B), the matrix:

k = A - BL„
o o

will be stable when L = B'X" , where X is the (unique) positive definite

solution to the linear matrix equation:

- (A + BI) X - X(A + 61)' + 2BB' = (24)

where 6 is defined by:

3 >
I IAI I

13





where |-| is the Euclidean norm. According to Wonham [Ref. 7] the

results are also valid if:

, MAX r
,

3 > /IT .

I a..
J fa ' U

where a. . are the elements of A,

C. SOLVING THE MATRIX EQUATION Y'X + XY = Z

Equations (16) and (24) are in the form of the Lyapunov equation:

Y'X + XY = Z (25)

The methods found in the literature for solving this equation fall into

two general categories: series solutions and simultaneous linear

equation solutions.

In the series solutions, X is found from the sum of a converging

matrix series, i.e., Ref. 9. For the series to converge the matrix Y

must be a stable matrix. In solving equation (16) this condition is

met; A. is stable by the definition of a bounded cost matrix. In

general, however, the matrix (A + pi)' of equation (24) is not stable,

and the series method fails to solve equation (24) properly.

Since the unique solution, X, is symmetric, equation (25) represents

n(n + l)/2 unknowns. The second category of solutions expands equation

(25) into a set of n(n + l)/2 simultaneous linear equations. An

economical way of recursively expanding equation (25) was given by

Bingulac [Ref. 10], using an integer coefficient matrix to expand the

equation. This is the method used to expand equations (16) and (24)

to the form Ax = B, which can be solved by a variety of simultaneous

equation solvers.

14





D. ALTERNATE ANALYTICAL METHODS

There are several alternate methods found in the literature for

solving the steady-state matrix Riccati equation (1).

A method developed by Bass [Ref. 11] obtains the solution from a

2n-dimensional Hamiltonian, H, and the terms of the polynomial expansion

of the stable roots of H. This scheme is considered too sensitive to

finite numerical computations to be of practical use.

MacFarlane [Ref. 12] shows that the solution can be obtained from

the eigenvectors corresponding to the unstable eigenvalues of a

similar Hamiltonian. The scheme requires that the system have distinct

eigenvalues and that the corresponding eigenvectors be determined (this

is difficult for high order systems).

Blackburn [Ref. 13] programmed a method based on a Newton-Raphson

iterative solution for simultaneous nonlinear equations. This scheme

requires an initial guess that yields a stable closed-loop system con-

trol matrix. The user must determine this initial guess so that it is

close enough to the final solution for the local Newton-Raphson method

to converge.

A fourth method integrates the full, nonsteady-state Riccati

equation (1) backwards in time, from a set of zero initial conditions,

until each element of the P matrix reaches a satisfactory, small value.

For systems of even moderate order, this method is prohibitive with

respect to computation time.

15





III. COMPUTATIONAL METHOD OF SOLUTION

A. SUBROUTINE RICATS

1

.

General

Subroutine RICATS is the subroutine that the user will call to

solve equation (1). The program language is FORTRAN IV for the Operat-

ing System / 360 which is compatible with, and encompasses USASA

FORTRAN. The calling arguments, in the required sequence, are explained

in the comment cards at the beginning of the subroutine. It should be

noted that IA = n and JB = m. Basically the subroutine iterates on

equation (16), using equation (24) to calculate the initial guess, until

the solution converges.

For first order systems (n = 1), the nonlinear equation (1)

becomes a quadratic equation. For these systems, subroutine RICATS

solves the resulting quadratic and returns the largest root in the

first element of the P matrix .

2. The System Controllability Check

An analytical requirement of Bass's method of determining the

initial guess is that the matrix pair (A,B) be completely controllable.

To check this requirement the augmented matrix G of equation (6) is

formed and subroutine GMRANK is called to determine the rank of G. If

the rank equals n, execution continues, otherwise subroutine RICATS

returns with IER = 2.

3. The Initial Guess Stability Check

Kleinman's iteration scheme requires that the eigenvalues of the

closed-loop system control matrix of the initial guess have negative

real parts in order for the initial cost matrix V to be bounded.

16





In subroutine RICATS, when the stability check is requested, the matrix

A - BL is copied into a work matrix and then passed to the IBM/SSP

subroutines HSBG and ATEIG. The eigenvalues computed by ATEIG are then

individually tested to be algebraically less than minus the absolute

value of EIGMAX, where EIGMAX is set by the user. If any eigenvalue

fails the check RICATS returns with IER = 3.

4. The Solution Positive Definite Check

Kleinman's iteration scheme is supposed to converge to a positive

definite solution. The iterations can converge to a nonpositive definite

solution if all of Kleinman's theorem requirements are not numerically

met. Therefore, for the user's convenience, a check to verify that the

solution is positive definite is included. In subroutine RICATS, when

the positive definite check is requested, the solution is factored by

the Cholesky square-root method. A nonpositive term on the diagonal

of the factorized matrix constitutes a nonpositive definite solution

and RICATS returns with IER = 4 + KL, where KL = is for a converged

solution and KL = 1 is for NTRY iterations without convergence.

5. The Steps of Subroutine RICATS

Calling subroutine RICATS causes the following sequential

steps to be executed.

1. Check input parameters IA, JB, IER, NTRY to insure they are

within proper bounds. If check fails IER = 6, NN = and RICATS returns.

2. If the user requests, check the controllability of the

inputed system. If check fails IER = 2, NN = and RICATS returns.

3. Set NN = 0.

4. If this is a first order system (n = 1), go to step 30.

5. Form E = - BR"
]

B'.

17





6. Form F = 2BB\

7. Form P = (A + el)' using equation (24) to define 3 where

the "greater than" magnitude is provided by the variable FIX or:

3= FIX^T^ X
I I

a..
|

•

8. Solve (A + 3l)X + X(A + 3l)' = 2BB\

9. If subroutine SIMQ, through subroutine MLIAPS, returns a

nonzero error flag, NN = 1.

10. Form L = BX"
1

.

o

11. Form P = A - BL
Q

.

12. If the user requests, check the stability of the system

matrix of the initial guess. If the check fails, IER = 3 and RICATS

returns.

13. Form F = - Q - L'RL .^ oo
14. Solve (A - BL

o
)'V

1

+ V
1
(A - BL

Q
)

= - Q - L^RL
Q

.

15. If subroutine SIMQ, through subroutine MLIAPS, returns a

nonzero error flag, NN = NN + 1

.

16. Set k = 1, KL = 0.

17. Form P = EV
k<

18. Form F = - Q + V
k
P.

19. Form P = A + P.

20. Solve (A + EV
k
)'V

k+1
+ V

k+1
(A EV

k
) - - Q + V

k
EV

k
.

21. If subroutine SIMQ, through subroutine MLIAPS, returns a

nonzero error flag, NN = NN + 1 . If NN > (n + l)/2, go to step 29.

22. Check each element of V.
+

, by ABS ( (v^ - v. +-i)/v k
)

< TOLER. If all elements of V,
+

, pass this test, go to step 27.

23. Form V
R

= V
k+ ,

.

18





24. If k > NTRY; go to step 26.

25. Set k = k+1; go to step 17.

26. Set KL = 1.

27. If the user requests, check to see if V.
+

, is a positive

definite matrix. If check fails IER = 4 + KL and RICATS returns.

28. Set IER = KL and RICATS returns.

29. Set IER = 7 and RICATS returns.

30. If the user requests the controllability check and B(l) is

zero, IER = 2, NN = and RICATS returns.

31. Set P = AR/BB + ^AR/BB) 2
+ C'CR/BB

32. If the user requests the positive definite check and P <,

0.1E-35, IER = 4, NN = and RICATS returns.

33. Set IER = and RICATS returns.

B. SUBROUTINE MLIAPS

Subroutine MLIAPS is an auxiliary routine used by subroutine RICATS.

The subroutine expands the equation in steps 8, 14 and 20 of subroutine

RICATS into n(n + l)/2 simultaneous linear equations of the form Ax = B.

The method used was presented by Bingulac [Ref. 10] in 1970. These

n(n = l)/2 simultaneous linear equations are then solved by subroutine

SIMQ. Upon return from subroutine SIMQ, MLIAPS immediately returns to

subroutine RICATS and any error codes returned by SIMQ are passed,

unchanged, to RICATS.

C. SUBROUTINE GMRANK

Subroutine GMRANK is a general subroutine for determining the mini-

mum row or column rank of an arbitary real matrix. The method used is

simple row and column interchanges for maximum pivoting, with successive

19





reduction on the remaining matrix elements [Ref. 14]. When the absolute

value of a pivot element is less than 0.1E-35, or when the final pivot

element has been determined, the subroutine returns the integer K,

where K is the number of successfully determined nonzero pivot elements

or, equivalently, the rank of the inputed matrix.

20





IV. OPERATIONAL ASPECTS OF USING SUBROUTINE RICATS

A. CONVERGENCE PROPERTIES

Kleinman suggests that equation (16) will converge to a satisfactory

solution within seven to ten iterations, using an initial guess generated

by hand or from a previous solution. Subroutine RICATS, using a correct

set of input parameters and Bass's method of generating an initial guess,

converged within forty iterations for e^ery system tested.

To test subroutine RICATS, over seventy-five systems were run and a

satisfactory solution was returned for each one. As a test of how

accurate the solutions were, the average absolute value of the matrix P

of equation (1) was determined. For the satisfactory solutions the

average values were of the order of 10"
. The standard input parameters

were:

NTRY = 50

TOLER = 0.1E-03
FIX = 1.1

EIGMAX = 0.001
IER =

and the usual error flag returned was IER = (see the discussion of

the parameter IER for high order systems).

B. INPUT PARAMETERS

Through its input parameters subroutine RICATS was written to be as

flexible as possible for the user. For any system, the five parameters

NTRY, TOLER, FIX, EIGMAX, IER influence the final returned solution.

It is hoped that the user can tailor these input parameters to meet

his particular needs.

In the following discussion, "high" or "higher order systems,"

refer to systems of the eighth order and above (n > 8).

21





1. NTRY

NTRY is the maximum number of iterations the user desires to

be attempted, before returning to the user's program without a converged

solution. A recommended value is fifty and the user is usually assured

that a solution that is going to converge, will converge within fifty

iterations. It should be noted that some initial guesses generated may

yield marginally stable system control matrices, and these solutions will

require a larger number of iterations to converge. From experience, one

hundred and fifty iterations was considered to be a sufficient practical

upper limit.

2. TOLER

TOLER is the maximum percentage difference, between each element

of the solution, on successive iterations for the convergence criterion

to be satisfied. The accuracy of single-precision computations is about

five significant digits, so decreasing TOLER beyond 0.0001 will not

result in an appreciably more accurate solution. Decreasing the magni-

tude of TOLER (up to this limit) will tend to increase the accuracy

and the number of iterations required for the desired solution.

3. FIX.

FIX is the constant used to insure the magnitude of $ in equa-

tion (24) is greater than the Euclidian norm of the A matrix.

Analytically then, FIX should be greater than one and the suggested

value of 1.1 worked well for the majority of systems. However, for

some systems equation (24) generates a singular initial guess, evidenced

by an underflow error message from subroutine MINV. These singular

initial guesses can still yield quite satisfactory solutions within

five or six iterations. However, the user can, by varying FIX through

22





the suggested range, remove this underflow from his execution. From

practical experience, the range of FIX is from 0.1 up to about three

or four.

4. EIGMAX

Once the initial guess L is calculated, the user has the option

through IER of verifying that the associated control matrix is stable.

If the user asks for the stability check, the eigenvalues of the control

matrix are determined. Each must have its real part more negative than

minus the absolute value of EIGMAX. From the discussion on cost matrices,

theoretically EIGMAX could be set to zero. Numerically though, an

eigenvalue that is yery close to zero can induce numerical instability

in the iteration scheme. From experience, the suggested value is 0.001.

The user can also use FIX to modify the control matrix of the initial

guess in an attempt to make the real parts of the eigenvalues negative

enough to pass the stability check.

5. IER

The most informative parameter of the group is IER. On return

from RICATS, IER can inform the user of the validity of the solution.

When speicfying IER as in input parameter, the user can, by bypassing

various combinations of the three checks available in RICATS, overcome

some system deficiencies, save execution time, or obviate decks for

the subroutines GMRANK, ATEIG, HSBG (see note 6 in comment cards at the

beginning of subroutine RICATS). By bypassing any or all of the three

checks (if the user is fairly certain that the circumvented checks

would have been passed ) the user can save execution time, although

the savings are neglibile except for high order systems.
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Care must be exercised when not checking controllability and

or stability. For systems that are uncontrollable, neglecting the

controllability check may lead to a convergent solution, if the stability

check were passed. Such a solution could be positive definite and yield

a stable final-solution control matrix, but the user should keep in

mind that there may be modes of the system that cannot be controlled.

For the case of unstable control matrices corresponding to the initial

guess, the stability check should be bypassed only after FIX has been

varied through the suggested range of values without success. The

danger in attempting to generate a solution for a system that would fail

the stability check is that successive iterations are no longer bounded

by a lower positive [semi] definite iteration. The iterations will

probable not converge to a satisfactory answer. This is the most

dangerous of the three checks to bypass, by far.

The positive definite check of the solution is included as a

convenience for the user, to verify that the final solution is indeed

positive definite. A note of caution should be sounded when solving

high order systems. The positive definite check is subject to numerical

problems when evaluating the high order solutions, and thus a solution

will be flagged as not being positive definite, when for all practical

purposes it is. Refinements in the solution, from introducing iterative

routines for solving equation (16) (see subroutine SIMQ below), have

shown that the difference between passing and failing the check can

depend solely on numerically insignificant digits in a few elements of

the solution. Therefore, to give confidence to a solution that has been

flagged as not being positive definite, the user can: (1) determine

the eigenvalues of the final solution, closed-loop system control
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matrix and check for all negative real parts; or (2) calculate the value

of the optimal quadratic cost function for an arbitrary set of initial

conditions using equation (15), and check for a positive, finite result.

The positive definite check will yield the same result as the IBM/SSP

subroutine MFSD.

C. HIGH ORDER SYSTEMS

As the order of the system increases, the problems due to finite

numerical calculations increase considerably. One means of trying to

maintain sufficient accuracy is to have a double-precision version of

subroutine RICATS. Since this would nearly double the storage require-

ments (prohibitive for systems of order higher than twenty) it was felt

that this was not a feasible means of achieving the goal. The suggested

procedure for systems of higher order is for the user to introduce his

own dummy subroutines MINV and SIMQ. Care must be exercised when writing

your own subroutines. The variables passed to and returned from your

subroutine must correspond exactly to the variables as handled by the

subroutine you are replacing.

1 . Subroutine MINV

Using a common statement from the user's main program to provide

the additional storage required, the user can write a routine to convert

the matrix to be inverted to double-precision storage, invert the matrix

in double-precision, then convert the inverted matrix back to the

single-precision mode. When this is done, the inverted matrix is

passed back to the subroutine RICATS as if the IBM/SSP subroutine MINV

had done the inverting. A logical way to invert the matrix in the double-

precision mode is to use the IBM/SSP subroutine DMINV. It might appear
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that this type of routine would make no noticeable change in the

execution of subroutine RICATS. However, for some systems tested,

particularly those with singular initial guesses (FIX = 1.1), the number

of iterations required for solution was halved.

2. Subroutine SIMQ

Again using a common statement, recognizing that work areas can

be declared single-precision in one subroutine and double-precision in

another, the user can write his own simultaneous linear-equation-solving

routine. The IBM/SSP subroutine SIMQ has been found to yield satis-

factory results for a maximum of about forty-five equations (n = 9).

For systems of higher order, the solutions did converge, but they were

usually accompanied by an error flag indicating that they were not

positive definite solutions. However, iterative refinement of the

solution to equation (16) at each iteration can yield error-free

results. The user can either write his own routine for the iterative

refinement, or pass the set of equations to the IBM/SSP subroutines

FACTR and RSLMC. It is suggested that the common statement also contain

a relative tolerance parameter, not necessarily the same as TOLER

inputed to RICATS, in either name or magnitude. As was previously

mentioned, this subroutine technique was used to remove error flags

from the solutions returned by subroutine RICATS.

26





c
c
c
C SUBROUTINE RICATS
C
C P URPCSE
C TO 1TERATIVELY DETERMINE THE UNIQUE, SYMMETRIC,
C POSITIVE-DEFINITE SOLUTION P TO THE NONLINEAR,
C STEADY-STATE MATRIX RICCATI EQUATION
C . -1
C P = = - P*A - A»*P - C«*C + P*B*R *B«*P
C OF OPTIMAL CONTROL THEORY. SEE NOTE 10.
C
C USAGE
C CALL RICATS ( A ,6 ,Q ,R ,P ,D , E ,F , V ,L ,L I , MI , I A, JB , KQ,
C 1 NTRY,TOLER,FIX, E IGMAX, I ER ,NN

)

C
C DESCRIPTION OF PARAMETERS
C A - GENERAL IA BY IA INPUT MATRIX. SEE NOTE
C 3 •

C B GENERAL IA BY JB INPUT MATRIX.
C Q - LOWER TRIANGULAR (OR UPPER TRIANGULAR,
C SEE KQ) PART OF A SYMMETRIC, PCSITVE
C SEMIDEFINITE IA BY IA INPUT MATRIX.
C Q = C • *C

•

C R - GENERAL PART OF A SYMMETRIC, POSITIVE
C DEFINITE JB BY JB INPUT MATRIX.
C P - IA BY IA WORK MATRIX. ON RETURN P CON-
C TAINS THE GENERAL FORM OF THE SOLUTION.
C D - MM BY MM WORK MATRIX. SEE NOTE 1.
C E - MM BY 1 WORK VECTOR.
C F - MZ BY 1 WORK VECTOR. SEE NOTE 1.
C V MM BY 1 WORK VECTOR.
C L - IA BY IA INTEGER WORK MATRIX.
C LI - IA BY 1 INTEGER WORK VECTOR.
C MI - IA BY 1 INTEGER WORK VECTOR.
C IA - ROW AND COLUMN DIMENSION OF MATRICES A,
C Q AND RETURNED SOLUTION P. ROW
C DIMENSION OF MATRIX B.
C JB - COLUMN DIMENSION OF MATRIX 3. ROW AND
C COLUMN DIMENSION OF MATRIX R. JB <= I A.
C KQ - INTEGER INPUT CONSTANT.
C = - Q MATRIX IS STORED COLUMNWISE IN
C LOWER TRIANGULAR FORM.
C = 1 - Q MATRIX IS STORED COLUMNWISE IN
C UPPER TRIANGULAR FORM (SEE
C I3M/SSP SUBROUTINE MSTR).
C NTRY - MAXIMUM NO. OF ITERATIONS TO BE TRIED.
C 2 > NTRY > 151.
C TOLER - INPUT CONSTANT WHICH IS USED AS A
C RELATIVE TOLERANCE FOR TEST OF
C CONVERGENCE.
C FIX - INPUT CONSTANT. THEORETICALLY SHOULD BE
C >= 1.0. SUGGESTED VALUE IS 1.1. SEE
C NOTE 7.
C EIGMAX - MINIMUM ACCEPTABLE MAGNITUDE OF THE
C NEGATIVE REAL PARTS OF THE EIGENVALUES
C OF THE CONTROL MATRIX ( A - B*V(0) ) OF
C THE INITIAL GUESS V(0). SUGGESTED VALUE
C OF EIGMAX IS OF ORDER 0.001 . SEE NOTE
C 5. EIGMAX USED ONLY FOR I ER = 0,1,4,5.
C IER - INTEGER INPUT/OUTPUT PARAMETER.
C THE FOLLOWING NOTATION IS USED BELOW :

C C.A,B. - FOR NUMERICAL CONTROLLABILITY
C OF THE MATRIX PAIR (A,B1.
C SEE NOTES 4,6.
C S.C.M. - FOR A STABLE CONTROL MATRIX FOR
C THE INITIAL GUESS. SEE NOTES 5,6.
C P.D.S. - FOR A POSITIVE-DEFINITE SOLUTION.
C SEE NOTE 8.
C
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c
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c
c
c
c
c
c
c
c
c
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c
c
c
c
c
c
c
c
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c

INPUT

1

2
3
4
5
6
7

- THE VALUE OF IER DETERMINES WHICH
OF THE 3 ABOVE PROPERTIES RICATS
IS TO CHECK DURING EXECUTION. SEE
NOTE 9.

S.C.M. ; P.D.S.
; S.C.M.

CHECK
CHECK
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CHECK
CHECK
MAKE

.A T B,

.A,B

. A,B,
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CM.

P.D.S
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OUTPUT - ON R
FLAG
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ALL CHE
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S.C.M.
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MORE TH
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=
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. IF ANY CHECK
WITH IER = 3.
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6. IF THE
SUBROUTINE
DOES NOT H
& HSBG ARE
NECESSARY
ROUTINES.

SUB
IA
RET
END

THE REQUIR
SUB
SUB

7. CHANGI
VARYING FI
YIELD SATI
ERROR FLAG
8. THE IT
POSITIVE D
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CHECK THE
SQUARE-ROO
MENT OF TH
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IER = 4 OR
ERROR FLAG
POSITIVE D
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GMRANK IS NOT NEEDED. IF THE USER

AVE S.C.M. CHECKED, SUBROUTINES ATEIG
NOT NEEDED. THE USER CAN OBVIATE UN-
DECKS BY SUPPLYING HIS OWN DUMMY SUB-
AS AN EXAMPLE, GMRANK IS SHOWN BELOW.
ROUTINE GMRANK ( D, I A , KL , TOL ER, K

)

= IA
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EXPE
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ST CAS
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USER C
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BE
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*P,
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TS

(SEE NOTES 4,5,
FAILED CHECK AND
ORE BYPASSING
VARIED FROM 0.1

RICCATI EQN. ARISES
DIFFERENTIAL EQN.

X(T) = A*X(T) + B*U(T) , WHERE U(T) IS CHOSEN
TO MINIMIZE THE QUADRATIC COST FUNCTIONAL J;
J = INTEGRAL FROM ZERO TIME TO INFINITE TIME OF
( X' (T)-C'-C-X(T) + U'(T)*R*UIT) ) DT . U(CPTIMAL)

IS GIVEN BY UIOPTIMAL ) =
-1

R *B , *P*X(T)

SUBROUTINES
MINV
SIMQ

AND FUNCTION SUBPROGRAMS REQUIRED
ATEIG SEE NOTE 6.
HSBG SEE NOTE 6.
GMRANK SEE NOTE 6.
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SUBROUTINE RICATS ( A ,B , Q ,R , P ,D , E , F , V,L , LL , M I , I A, JB , KQ,
1 NTRY,TOLER,FIX f EIGMAX,IER,NN)
DIMENSION A(l) ffBCl)fR(l) «Q(1)«V (lit E(l)yP(l).F(l) 9

1 D ( 1 ) , L { i ) , L L ( 1 ) , M I ( 1 )

IF ( JB.LT.l .OR. JB.GT.IA ) CO TO 6
IF ( IER.LT.O .OR. IER.GT.7 ) GO TO 6
IF ( NTRY.LT.2 .OR. NTRY.GT.150 ) GO TO 6
GO TO 15

6 IER = 6
NN =
RETURN

15 CONTINUE
DIVCK = 0.1E-30
NN =0
12 = (IA+D/2
IAI = IA + 1
IA2 = IA + 2
MM = I A* (IA+D/2
IAS = IA*IA
MMP = MM* MM
EIGMAX = - ABS(EIGMAX)
IF ( IA.EQ.l ) GO TO 805
IF ( IER.GT.3 ) GO TO 375

C
C IF CONTROLLABILITY CHECK REQUESTED, FORM AUGMENTED
C CONTROLLABILITY MATRIX AND DETERMINE ITS RANK.

KL = IA*JB
DO 300 1=1, KL
D( I) = B( I J

300 P( I) = B(I )

IR = KL
DO 320 M=2,IA
LI =
LJ = - IA
DO 310 J=1,JB
LJ = LJ + IA
DO 310 I = 1,1 A
KI = I - IA
KJ = LJ
LI = LI + 1

Ft LI ) = O.OEO
DO 310 K=1,IA
KI = KI + IA
KJ = KJ + 1

310 F(LI) = F(LI) + A(KI)*P(KJ)
DO 320 1=1, KL
IR = IR + 1

D( IR) = F( IJ
320 PI I ) = F{ I )

CALL GMRANK ( D , I A, KL , TOL ER , K)
IF { K.E3. IA ) GO TO 375
NN = K

2 IER = 2
RETURN

C END CHECK ROUTINE
C

375 IF ( KQ.EQ.O ) GO TO 35
DO 2 3 1=1, MM

20 D(I ) = Q( I

)

IR =
KJ = 1
DO 30 J=l, IA
KJ = KJ + J - 1

KI = KJ
DO 30 I=J,IA
KI = KI + I - 1

IR = IR + 1

30 Q( IR) = DIKI )

30





c
c

35

40

50

45

55

60
C
C

70

80

90

C
C
C

Q = (LOWER TRIANGULAR) Q

IR =
KL = -2*IA
KJ =
DO 40 J=1,IA
KL = KL + IAI
KI = KL
KJ = KJ + J - 1

DO 40 I = J , I A
IR = IR + 1

KI = KI + IA
L(KI ) = IR
LUR +KJ) = IR
IF ( JB.GT.l ) GO TO 45
D(l) = l.OEO/RU)
GO TO 55
KL = JB*JB
DO 50 1=1, KL
D(I) = R(I )

CALL MINV (D, JS,DF,LL,MI)
IR =
DO 60 J=l, IA
LJ = J - IA
DO 60 I=J,IA

IALI
KJ
IR

= I
-

= LJ
= IR

E(IR) =
1
OEO

KL =
DO 60 M=1,JB
KI = LI
KJ = KJ + IA
DO 60 K=1 T JB
KI = KI + IA
KL = KL + 1
EUR) = EUR)

E = (LOWER
- B(KI)*D(KL)*B(KJ)*1.0D0
TRIANGULAR) - B*R (INVERSE)

IR =

DO 7
LJ =
DO 7
KI =

KJ =
IR =

F( IR
DO 7
KI =

KJ =

FUR
DO 8
F(I)
IR =
VU)
SAVE
DO 9
KI =

IF (

SAVE
DO 9
KI =

IR =
PUR
SAVE
IF {

SAVE

J
J

I

I

LJ
IR

)
=
K

KI
KJ

) =
I

= 1 , I

A

- IA
= J,IA
- IA

+ 1

O.OEO
= lt
+
+
F(

= 1,

JB
IA
IA
IR)
MM

+ B(KI )*B(KJ)*1.0D0

= 2.0E0*F(I)

J
J
V(

I

KI
IR

) =

V(

) V(l) = SAVE

O.OEO
O.OEO
= 1, IA
- IA
U.LT.SAVE
O.OEO
= 1,IA
+ IA
+ 1
A(KI )

SAVE +
1).LT
FIX*V(1)* SQRT( FLOAT (I A))

ABS(A(KI) )

SAVE ) V(l) = SAVE

SAVE = FIX*SQRT( IA)*(MAX OVER I OF SUM OVER J ABS(A(I,J)))
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100
c
c
c
c

110

120

130

c
c
c

500

510

520

KI = - IA
DO 100 1=1, IA
KI s KI + IAI
P(KI) = P(KI) + SAVE

SOLVE
<A+SAVE*I)*S + S*(A+SAVE*I ) = 2*8*6*
INITIAL GUESS V(OJ = B« *S { INVERSE )

CALL
IF (

DO 1
P(I)
CALL
IR =
LJ =

DO 1
LJ =

KI =
DO 1
KJ =
IR =

D(IR
DO 1
KI =
KJ =
D( IR
IR =
LJ =
DO 1
LJ =
DO 1

KI =

KJ =
IR
P(
DO
KI
KJ =

P( IR
IF {

IR
1

ML I A
I S • N

10 1 =
= F(
MIN

IAS
- IA

20 J =

LJ +

20 1 =

LJ
IR +

) =
20 K =
KI +
KJ +

) = D

IAS
30 J =
LJ +

30 1 =

I
-

LJ
IR +

) = A
30 K=
KI +
KJ +

) - P
IER.

PS (P,D,L,F,IA,MM, IS,MMP, IA2)
E.O ) NN = 1

l.IAS
L(I) )

V (P,

I

A,DF,LL,MI)

lflA
I

A

1,JB

1
.GEO
1,IA
1

1

( IR)

- JB
1,IA
JB

ltlA
IA

1

(IRJ
ltJB
IA
1

( IR)
GT.l

+ B(KI)*P(KJ)*1.0D0

B(KI)*DIKJ)*1.0D0
.ND. IER.LT.4 .OR. IER.GT.5 ) GO TO 525

GUESS STABILITY CHECK REQUESTED, FORM
AND CHECK ITS EIGENVALUES.

C
c

525

140

IF INITIAL
CONTROL MATRIX
KI = - IA
V(2) = O.OEO
DO 500 1=1 ,IA
KI = KI + IAI
V(2) = V(2) + P(K1 )

IF ( V(2).GT.IA*EIGMAX ) GO TO 3
DO 510 1=1, IAS
D( I J = P( I )

CALL HSBG (IA,D,IA)
CALL ATE1G ( I A ,D , V , F , LL , I A)
DO 520 1 = 1, IA
IF ( V( I) .GT.EIGMAX ) GO TO 3
CONTINUE
GO TO 525

l IER = 3
KL = 3
GO TO 275

END CHECK ROUTINE

CONTINUE
DO 140 1=1, MM
Q( I) = -Q(I)
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150
C
c
c

160

210

220

IR =
LJ = IAS - JB
DO 150 J=l t IA
LJ = LJ + J8
DO 150 I = J , I A
LI = ( I-1)*JB + IAS
KJ = LJ
IR = IR + 1
F( IR) = Q(IR)
KL =
DO 150 M=1,JB
KI = LI
KJ = KJ + 1

DO 150 K=1,JB
KI = KI + 1
KL = KL + 1
FUR) = FUR) - D(KI)*R(KL)*D(KJ)*1.0D0

SOLVE
{A-B*V10))'*V(1) + VU)*(A-B*V(0) ) = - Q - V(0)*R*V(0)

CALL MLIAPS ( P , D, L , F,

I

A,MM , I S, MMP, I A2

)

IF ( IS.NE.O ) NN = NN + 1

DO 160 1=1, MM
IF ( FU).EQ. O.OEO ) F(I) = DIVCK
IF ( ABS(FU) ).LT. DIVCK ) FU) = S IGN ( D I VCK , F( I ) )

V( I) = F(I )

DO 255 M=2,NTRY
KL =
IR =
LJ = - IA
DO 210 J=1,IA
LJ = LJ + IA
KI =
DO 210 I =1,1 A
KJ = LJ
IR = IR + 1
PUR) = O.OEO
DO 210 K=i,IA
KI = KI + 1
KJ = KJ + 1

PUR) = PUR)
IR =
LJ = - IA
DO 220 J=1,IA
LJ = LJ + IA
DO 220 I=J ,1 A
KI = ( I-1)*IA
KJ = LJ
IR = IR + 1
FUR) = Q(IR)
DO 220 K=1,IA
KJ = KJ + 1

KI = KI + 1

F( IR) = F( IR)
DO 230 1=1, IAS
P(I) = All) + P( I

)

SOLVE
VCM+U* (A+E*V(M)) = -

+ E( L(KI ) )*V( L(KJ) 1*1. ODO

+ V( L(KI ) )*P(KJ)*1.0D0

V(M+1) Q + V(M)*E*V(M)

230
C
C (A+E*V(M) )

'

C
CALL MLIAPS (P , D ,L , F , I A, MM , IS , MMP, I A2)
IF ( IS.EQ.O ) GO TO 235
NN = NN + 1

IF ( NN.GT.IZ ) GO TO 7
235 DO 240 1=1, MM

IF { FU) .EQ. O.OEO ) FU) = DIVCK
IF ( ABS(F( I) ) .LT.DIVCK ) FU) = S IGN ( D I VCK , F U ) )

IF ( ABSd.OEO - FU)/V(I ) ) .GT.TOLER ) GO TO 245
240 VII) = FU )

GO TO 265
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245

250
255

265

270
275

280

DO 25
IF (

IF (

VU)
CONTI
KL =
CONTI
DO 27
QU)
IF (

28
I)

29

290
295

999

C
C
C I

605

610

615

620

DO
D(
IR
KJ
DO
KJ =

DO 29
KI =
IR =

QUI )

CONTI
DO 99
P(I)
IF (

J = I ,MM
(J).EQ.O.OEO ) F(J) = DIVCK
ABS(F( J) ) .LT.DIVCK ) F(J) =
F(J)

UE

SIGN(DIVCK,F( J)

)

UE
1=1, MM
-Q( I)
O.EQ.O )

1=1, MM
Q(I )

GO TO 295

J =
J +
J

1 =

I +
R +
= D
UE

1 =
V<
ER-

ltlA
J - 1

J,IA
I - 1

1

( IR)

l.IAS
LCI) )

2*( IER/2) .NE.O ) GO TO 645

I
: ACTO

63
64

C
C

IF
IF
IF
GO
IR
SAVE
DO 6
IR =
D( IR
IR =

I =
IR =

SAVE
LI =
DO 6
LI =

SAVE
IF (

IF (

SAVE
LI =
LJ =

IZ =

M =

DO 6
KI =

LJ =
KJ =

IZ =
D( IZ
DO 6
KI =

KJ
D(
Dl
I =

GO T
IER
RETU

(

(

(

Tl
= 1

POSITIVE-DEFINITE CHECK REQUESTED, ATTEMPT TO
THE SOLUTION BY CHOLESKY SQUARE ROOT METHOD.

LT.DIVCK ) GO TO 4
.2 ) GO TO 605
P(3)*P(3)/P(1) .LT.DIVCK ) GO TO 4

(1)
A.GT
14)-
645

10
I

)

1

2
I

I

20
L

SQRT(Pd) )

J=2,IA
R + IA
= P(IR)/SAVE

IZ
IZ

R + IAI
P( IR)

R - I

K=2,I
I + 1

= SAV
SAVE.
I .GE.
= SQ
IR -
LI
IR
I + 1

40 J=M
LI
LJ +
LJ
IZ + IA

) = P(IZ)
30 K=2,I
KI + 1

KJ + 1

) = D(IZ)
) = D(IZ)/SAVE
I + 1

615
= 4 +
RN

E - DILI )*D(LI

)

LT.DIVCK ) GO TO
IA ) GO TO 645
RT(SAVE)
I

,IA

IA

- D(KI)*D(KJ)*1.0D0

KL

END CHECK ROUT INE
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c
c

645 IER = KL
RETURN

7 IER = 7
KL = 7
GO TO 265

FOR IA = 1, SOLVE THE RESULTING QUADRATIC EQUATION.
805 KL =

IF ( IER.LT.4 .AND. ABS (B { 1 ) ) . LT. DI VCK ) GO TO 2
D(l) = R(1)/B(1)*B(1)
D(2) = A(1)*D( 1)
P(l) = D(2) + SQRT{ D(2)*D(2) + Q(l)/D(l) )

IF ( IER-2*( IER/2) .EQ.O .AND. P ( 1) .LT.O.OEO ) GO TO
IER = KL
RETURN
END

10

15

SUBR
DIME
DO 5
Oil )

IR

OUTINE ML I APS IP ,D,L t F , IA, MM, I S , MMP, I A2)
NSION P(1),D(1),L(1),F(1)
1=1, MMP
= O.OEO

=
DO
LI
DO
KJ
KI
IR
DO
KI =

KJ =

LJ =

D(LJ
KI =

DO 1
KI =
KJ =
DO 1
KJ =

D(KJ
CALL
RETU
END

10
= I

10
= J
= L

I

K
K
L

10

~)

5
K
K

5
K

)

S
RN

1=1,
- I

J=l,
- I

I

R +
K=l,
I +
J +
(KI )

= D(
IA

1 = 1,
I +
I

-
J = l,
J +
= 2.
IMQ

IA
A
IA
A

1

IA
IA
IA
+

LJ)
(L(KJ }-l)*MM
+ P( IR)

IA
IA2 - I

MM
MM
MM
OEO-D(KJ)
(D,F,MM, IS)
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c ,

c
C SUBROUTINE GMRANK
C
C PURPOSE
C TO DETERMINE THE NUMERICAL ROW (COLUMN) RANK OF
C A GENERAL MATRIX.
C
C USAGE
C CALL GMRANK ( D, I A, KL , TOL ER ,K

)

C
C DESCRIPTION OF PARAMETERS
C D GENERAL INPUT MATRIX (DESTROYED).
C IA - ROW DIMENSION OF MATRIX D.
C KL COLUMN DIMENSION OF MATRIX D.
C TOLER - INPUT CONSTANT USED AS A RELATIVE
C TOLERANCE FOR LOSS OF SIGNIFICANCE.
C K - ON RETURN, K = RANK OF MATRIX D.
C
C REMARKS
C NONE
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
C REFERENCES
C PENNINGTON, RALPH H., "INTRODUCTORY COMPUTER
C METHODS AND NUMERICAL ANALYSIS", PUBLISHED BY
C MACMILLAN COMPANY, NEW YORK, 1965.
C
C
c

SUBROUTINE GMRANK ( D , I A , KL , TOL ER ,K

)

DIMENSION Dll)
IAI = I A + 1

NN = MINOl IA,KL)
IR = - IA
K = 1

325 CONTINUE
IR = I R + IAI
SAVE = ABS(DUR))
LI = K
LJ = K
KJ = K - 1

KI = IR - K
DO 330 J=K,KL
KI = KI + KJ
DO 330 I=K,IA
KI = KI + 1

IF ( ABS(D(KI)

)

.LE.SAVE ) GO TO 330
LI = I

LJ = J
SAVE = ABSID(KI))

330 CONTINUE
IF ( SAVE.LT.0.1E-35 ) GO TO 365
IF ( K.GE.NN ) GO TO 375
IF ( LI.LE.K ) GO TO 345
KI = IK - IA
KJ = KI + LI - K
DO 340 J=K,KL
KJ - KJ + IA
KI = KI + IA
SAVE = D(KI

)

D(KI ) = D(KJ)
340 D(KJ) = SAVE

345 CONTINUE
IF ( LJ.LE.K ) GO TO 355

36





350
355

360

365

375

KI
KJ
DO
KI
KJ =
SAVE
D(KI
D(KJ

= IR - 1
= KI + (LJ-K)*IA
350 I=K,IA
= KI + 1
= KJ + 1

= D(KI)
) = DtKJJ
) = SAVE

CONTINUE
LI = K + 1
LJ = IR
KJ = IR + I A - K
DO 360 J=LI ,KL
LJ = LJ + IA
KI = IR
KJ = KJ + K
D(LJ ) = D(LJ)/D( IR)
DO 360 I=LI, IA
KI = KI + 1
KJ = KJ + 1

SAVE = D(LJ)*D(KI

)

D(KJ) = D(KJ) - SAVE
IF ( ABS(D(KJ ) ) .GE.TOLER*
D(KJ) = O.OEO
CONTINUE
K = K + 1

GO TO 325
CONTINUE
K = K — 1

CONTINUE
RETURN
END

ABS(SAVE) ) GO TO 360
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