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PREFACE

Althouor in the writing of this book the need« of the

Btutlentii ill Uio vurioiis (le^mrtinciiU of Engineering and of

Ari-hitocture in Cornell I nivemity have received the finrt

conHidenition, care has aliio been taken to make the work
Huitable for tlie ^^enerul Htudent and at the tame time uaefnl

iw an introduction to u more advanced course for thoae

Htudents who niuy wixh to 8|)eciaUze later in matheniatica.

Antong the features of the book are

:

^1^ An extended introduction (Chap8. II, III, lAT), in

which it is hoped that the fundamental problems of the 8ub-

J6ct are clearly set forth and HuHiciently illust rated. The
chief difficulty which the l>eginner in Analytic Geometry
usually has to overcome is tlie relation between an eouation

and its locus; having really mastered this, he easily and
ranidly acquires a knowledge of the pro])erties to which this

relation leads, and especiid care has therefore been g^ven to

this matter. Analytic CJenmetry is broader than Conic Sec-

tions, and it is the firm conviction of the authors that it is

far more im{K>rtant to the student that he should ai*quire a

familiarity with the spirit of the method of the subject than

that he should be required to memorize the various properties

of any narticular curve.

(2) The making use of some intrinsic properties of curves

(see Arts. 106, 112, 118), which exj^erience with many
classes has shown to give the student an unusuallv strong

grasp on the equation of the second degree from which the

xy-tenn is absent.

(3) Introduction of the demonstrations of general theorems
by numerical examples. This not only maikes clear to the

student what is to be done, but shows also the method to

Im> employcHl,— it generaliif after the student is acquainted
with \\\M pgrticular.

(4) Easy but rigorous proofs of all the theorems within
tiie scope of the book. Jv.^., in Art* 07 it is proved, and
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very Rimply, too, that the vaiUHhinf^ of tlio discriminant is

not only a necrnnary^ but alno the sufficient condiLioii that the

quadratic vquation rfpresentw a \mv of straijjht lines.

It may alHo be mentioned here that, in tlie early part of

the book, two or more figures are given in connection ^vith

a pnnif and so lettered tnat the same demouHtration applies

to each. It is hoped that this will help to convince the

student of the ^eiiendity of tlie demonstration. A copious

index which enables one almost instantly to turn to anything
contained in the book has also been added.

The engineering students at Cornell University study
Analytic (Jeometry during the first term of their freshman
year, and experience hiis shown that it is best to devote a

tew lessons at the beginning of the term to a rapid review

of those parts of the Algebm and Trigonometry that are

essential to the reading of the Analytic Geometry. The first

twenty-three pages are devoted to this matter, and may, of

course, be omitted by those classes tliat take up the subject

immediately after reading the Algebra and Trigonometry.
The book contains little more than can be mtistered by a

properly prepared student of average ability in from twelve
to fourteen weeks ; if less than that time can be devoted to

the work, the individual '.eacher will know best what parts

may be most wisely omitted by his pupils. A list of lessons

for a short course of eleven weeks is, however, suggested on
the next two pages.

A few specific acknowledgments of indebtedness are made
in foot-notes in the appropriate places in the book. Of the

large numl>er of examples which are inserted, many are origi-

nal, while many others have come to be so common in text-

books that no specific acknowledgment for them can be
made. We take great pleasure in expressing here our
thanks to the other authors of this series of books for their

many helpful suggestions and criticisms ; to our colleagues.

Dr. J. I. Hutchinson and Dr. G. A. Miller, who have so

greatly assisted us in reading the proof, and the latter of

whom also read the manuscript before it went to press;

to Mr. Peter Field, Fellow in Mathematics, and Mr. E.

A. Miller for solving the entire list of examples ; and to

Mr. V. T. Wilson, Instructor in I)ra\ving in Sibley College.

for the care with wliirli he has made the figures.
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AxNALYTIC GEOMETRY

PART I

CHAPTER I

IVTRODUCTIOK

AUfEIIKAIC AND TRIGONOMETRIC CONCEPTIONS

1. Number. A number is most simply interpreted as

expresniiig the measurement of one quantity by another

quantity of the same kind first chosen as a unit of measure

;

it is positive, or 4-« if the measuring unit is taken in the

same sense as the thing measured; and negatiTe, or ->, if

this measuring unit is taken in the opposite sense.

£.g,^ the unit dollar may be regarded as a dollar of assets,

or as a dolhir of liabilities ; if it is regarded as a dollar of

assets, then assets measured by it produce positive numbers,

-while liabilities measured by it produce negative numbers.

The above definition is consistent with the one usually

given; viz. that numbers are positive or negative according

as they are greater or less than zero.

If the operations of addition, subtraction, multiplication,

division, raising to integer powers, extracting roots, or any

combination of these operations, are performed upon given

numbers, the result in every case is a number ; it is imagiaary

T k« A«. f:|:i»i«
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if it involves in any way whatever an indicated even root of

a negative number; otherwise it is real.

Every imaginary number may be reduced to the form

a -^h V^^, where a and h are real, and 6^0.

2. CooBtants and variables. If AB and AC are two given

straight lines making an angle a at

the point A^ and if any two points

X and y, on these lines, respectively,

^^-^ are joined by a straight line, then

Area of triangle AXY = \ • AX* ilF • sin a,

t.e., A = J-z-y-sino,

•where x is the length of AX, y is the length of A F, and A is

the area of the triangle.

If now the points X and F are moved along the lines AB
and AC in any way whatever, then A, x, and y will each pass

through a series of different values,— they are variable num-

bert or variables ; while J and sin a will remain unchanged,

—

they are constant numbers or constants.

It is to Ixi renmrked that \ has the same value wherever it

occurs,— it is an absolute constant; while a, though constant

for this series of triangles, may have a different constant

alue for another series of triangles,— it is an arbitrary

constant.

Because x and y may separately take any values what-

ever they are independent variables; while A, whose value

depends upon the values of x and y, is a dependent variable.

The illustrations just given may serve to give a clearer

conception of the following more formal definitions.

An abfolute constant is a number which has the same value

wherever it occurs; such are the numbers 2, 7, \, 6^ tt, e
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(where ir « d.l4159266***, approximately y, the ratio of tbo

oiroumferenoe of a olrole to it« diameter; and

•-2.71ft2R182...-l+|+||+|J+ ....

approximately -y* ^ ^^'^^'^ ^^ ^® Naperian ayatem of log^

rithmtt).

An arbitrary constant in a number which retaina the aamo

value thruughuut the inve8tigatiun of a given problem, but

may have u different fixed value in another problem.

An independent variable in a number that may take any

value whatever within limits prescribed by the conditiona of

the problem under consideration.

A dependent variable is a number tliat depends for ita

value upon tlie values asaumed by one or more independent

variables.*

A number that is greater than any assignable number,

however great, is an infinite number; one that varies and

becomes and remains sniuUer (numerically, not merely alge-

braically letfi) thain niiy assigned number, however small« is

an infinitesimal number. All other numbers are finite.

3. Functiona. A number so related to one or more other

numbers that it depends upon these for its value, and takes

in general a definite value, or a finite number of definite

values, when each of these other numbers takes a definite

value, is a function of these other numbers. B,g,^ tlie cir-

cumference and the area of a circle are functions of its radius;

the distance traveled by a railway train is a function of ita

time and rate; if y « Sx* 4- 5jt — 8, then y is a function of «.

• All UieM kinds of nombern will be met and better Qlutnted in

ingchapleiB of this book. S,g^ eee Art. 66, Nota.
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4. Identity, equation, and root. If two functions involv-

ing the name variableti are equal to each other for all values

of those variables they are identically equal. Such an

equality is expressed by writing the sign = between the

two functions, and the expression so formed is an identity.

If, on the other hand, the two functions are equal to each

other only for particular values of the variables, the equality

18 expressed by writing the sign = between the two func-

tions, and the expression so formed is an equation. The

particular values for which the two functions are equal, i.e.,

those values of the variables wliich satisfy the equation, are

the roots of the equation.

E.g., (x + y)»=x« + 2xy + y^ (x + a)(x - a) + a^=x^,

and ,+ « ^£l.l£±i
x-i x-i

are identities ; while 3x* — lOx -f 2 = 22* — 4 x — 0, or, what is the same

thing, X* - 6x + 8 = 0, is an equation. The roots of this equation are

the numbers 2 and 4.

Special attention is called to the fact that an equation

always imposes a condition,

E»g^ r* - 6x + 8 = if, and only if, x = 2 or x = 4. So also the equa-

tion ax + iy -I- e = imposes the condition that x shall be equal to

-by-c
a

5. Functiona classified. A functional relation is usually

expressed by means of an equation involving the related

numbers. If the form of this equation is such that one of

the variables is expressed directly in terms of the others, then

that variable is called an explicit function of the others; if

it is not so expressed, it is an implicit function.

E^.t the equations f = V5-x«, x* + y« = 6, and x = V5 - y« express

between x and y ; in the first y is an explicit function
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of r, in i\m Moond aaeh li an IroplioU fnneikm of Um oUmt, wbtU In

Um tblnl X b An Mplieii faooikMi of y.

The word ** function " iji, for brevity, unually represented

by a Kinglo letter, hucIi um/, F, ^ V^«***; thim y ^(j:) meatin

that y bi a function of tlie inde|jendeat vmrUbie x^ and in read

^y equals the ^-function of s**; so alao a » F(tf, v, x)

meana that t in a function of the independent variables m, r,

and X, and it is read, ''s equals the /'•function of «, v, and x/'

A function is algebraic if it involves, so far as the inde-

pendent variables are oonoemed, only a finite number of the

oi)erations of addition, subtraction, multiplication, division,

raising to integer iK)werH, and extracting roots. All other

functions are transcendental.

E.g. 2x» - 6x - 17. xy + y« - 7x. and ^^^]}^ •^ algebrmls

functions; while 2*, a*, sin x, tAu~*s, and loglara transoendental fiiD»>

6. Notation. In general, absolute constants are repre-

sented by the Arabic numerals, while arbitrary constants and

variables are represented by letters. A few absolute con-

stants are, however, by general consent, represented by let-

ters; examples of such constants are ir and e (Art. 2).

Variables are usually represented by the last letters of the

alphabet, such as u, v, tf, a^ y, i ; while the first letters,

a, 6, c,**« are reserved to represent constants.

Particular fixed values from among those that a variable

may aM8ume are sometimes in question; «.^., the values,

a- =3 2 and x =» — 1, for which the function a*— x — 2 vanishes;

such values may conveniently be denoted by affixing a sub-

script to the letter representing the variable. Thus x,, x^ a^—
will 1)0 used to denote particular values of the variable x.

Similarly, variables which enter a pmblem in analogous
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w»j8 are usually denoted by a single letter having accents

attached to it; thus a/, r", a/",— denote variables that are

sinularly involved in a given problem.

Again, each of the two equations, y=3a:*— 4a;-|-10 and

yaB^(J*), asserts that y is a function of x\ but while the

former tells precisely how y depends upon Zy the latter

merely asserts that there i$ such a dependence, without

giving any information concerning the form of tliat depend-

ence. If several different forms of functions present them-

selves in the same problem, they are represented by different

letters, each letter representing a particular form for that

problem, though it may be chosen to represent au entirely

different form in another problem.

E»g^ if the form of ^ in a given problem, u defined by the equation

then, in (he game problem^

(«') = ^^^^^. <^0) = |. and <^(0) = 5.

7. Continuous and discontinuous functions. In general a

function takes different values wlien different values are

assigned to its independent variable. If y = 4>ix)y then,

for r = a and x = by the function becomes y^ = <^(a) and

y^ ts ^(6), and y^ is Ir general different from y,. The func-

tion ^(r) is said to be a continuous function of x between

x=: a and ^r b 5, if, while x is made to pass successively

through all real values from a to 5, y remains real and finite

and passes correspondingly through all values from y^ to y^.

Thb deAnition may be more precisely stated, thus : If r, and x, are

aoy real valttea of x which lie between the values a and 6, and if the cor-

refpoodiDg valuet of y, vir. ^(x^) and ^(x^, are real and finite ; and if
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% po«iUT« number f eta be foaad, meh thai bj Ukiag; MUMrioal^

it will follow thai, oumeriamj,

wberv c U any aMignad poalUve nurobtr, bowavar tnallt than ^x) la a
ooniiiiuuuji function of x for Taluoe from a to ft.

Or, in worda: y ii a continuous function of x for all valoat of x in tha

int«rval from a to 6. if, by taking any two Taluai of x in the intenral

aaflkiantly near together, the difference between the eorreeponding valaee

of jr can be made le« than any aaeigned number, howatar smaU.

A discontinuous function is one that does not fulfil the

ooiHlitiuiii) for continuity. It is, however, ummUtf discoa-

tiiiuous for only a limited number of particular values of its

independent variable, while between these values it is con*

tinuoua.

As familiar examples of continuous functions may be

mentioned: the length of a solar shadow; the area of a

cross-section of a growing tree, or of a growing peach ; tho

height of the mercury in a barometer ; the temperature of a

room at varying distances from the source of heat; and

interest as a function of time.

So, also, y»82* + 4:r + l isa continuous function of »

for all finite values of x.

For, y remains real and finite so long as x renudns real and

finite, and, if Tj and x, be any two finite values of x which

differ from each other by 17, {.«., if 2^ i* r, ± if, then

y,- y, = 8V + 42^ + 1 -(8^ + 4*, + 1),

= ±(6x1 + 4 + 811)^.

Now to show that y«i82^ + 494-l is continuous for

s s j-|, it only remains to show that, by taking ly suflictenUj
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small. I.e., by taking a^ sufficiently near a;,, y, can be made

to differ from y, by less than any assigned number (c), how-

ever small. Hut this is evident; for 17 may be taken as near

leroM desired, hence the factor G ir, + 4 + 3 17 as near G Xj + 4

M desired, and the product therefore as near zero as is neces-

sary to be less than e.

On the other hand, if, at regular intervals of time, apples

are dropped into a basket, the combined weight of the basket

and apples will increase discontinuously ; t.e., their total

weight is a discontinuous function of the time.

EXERCISES

1. U Ax-^ Bjf +C = 0, prove that ^ is a continuous function of x\

and X, uf jf.

2. If x*+ jf*- 4 = 0, prove that y is a continuous function of x, when
2>x>-2.

3. If -^ + ^= 1» prove that x is a continuous function of y, when

*>f>-6.

4. If-- —^— 1=0, isxa continuous function of y?

5. Ifff — 9 = 0, ista continuous function of t ?

6. If u* - 8 V = 0, is u a continuous function of t» ? Is y a continu-

ous function of u?

7. Show that all functions of the form

a^ + o,x«-> + a^-« -I-
... + an-\X + a„,

wlnsre a^ Op a^-- a^ are constants, are continuous for all finite vahies

ofx.

•• W ^—- = *" *, show that y is discontinuous for x = 1.

jr - 2 '

_i_

9. Find the value of x for which y, = c
^*^~

, is discontinuous.

ei^ + 1
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10. lotorttt on moMj loMMd b eateuUtod bj Um formaU

If the iolarMt (f^m oooiiououi or » diMootinuoiu funrtuw. of />?

of i??or r?

& The present work will be conoemed for the u.

with algobraio functions involving only the Hmt ami second

powers of the variable, 1.0., with algebraic equations of the

first and second degree. A review is therefore given of the

solution and theory of the quadratic equation, presenting in

brief the most iniiM)rtaiit results which will be needed in the

Analytic Geometry. The student should become thoroughly

familiar with thiii theory, as well as with the review of the

trigonometry which follows it

9. The quadratic equation. Its solution. The most general

e(ination of the Mectiiul degree, in one unknown number, may
be written in the form

a*« + 6x 4- <? = 0, (1)

where a, &, and e are known numbers. Tliis equation may
be solved by the method of '^ completing the square,** which

"""
--!-(fJ-(l:T-? •

•
<»>

l.f., X -n-'V^^i-^i^"'^- ">
whence « = - -L ^ JL >/P"^^Ta7. ... (4)

\i 1*, and x^ are used to denote the roots of eq. (1), they

may l)e written

*i- — ,and*^- — (5)
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The nature of the root« (5) depends upon the number

under the radical sign, t.e., upon 6* — 4 ac, giving three

cases to be considered, viz.:

if 6* — 4 a<? > 0, then the roots are both real and unequal,

if 5* — 4 (ic = 0, then the roots are both real and equal, (6)

if 6* — 4 a<? < 0, then the roots are both imaginary.

Thus the character of the roots of a given quadratic equa-

tion may be determined without actually solving the equation,

by merely calculating the value of the expression i^ — 4 ac.

This important expression is called the discriminant of the

quadratic equation ; when equated to zero it states the con-

ditian that must hold among the coefficients if the equation

has equal roots.

EXERCISES

1. Show which of the following equalities are identities

:

(1) x«-4x + 4 = 0; (4) (p 4- 7)* = />' + 7« + •V-7(/> + <?);

(2) (« + /)(* - = *• - r«; (5) xa + 5x + 6 = (X + 3)(x + 2).

o + p

2. DetermiDe, without solving the equation, the nature of the roots of

3x« + «x+ 1 =0.

SuLUTiox. Since 6* - 4 ac = 64 - 12 = 52, ».«., is positive, therefore

the roots are real and unequal ; again, since a, h, and c are all positive,

therefore both roote are negative (cf. eq. (4), Art. 0).

3. Without solving the equation, determine the character of the

rooU of 8x* - 8x + 1 = 0.

4. Given the equation x« - 8 x - m (x + 2 x« + 4) = 5 x* + 3.

Find the roots. For what values of m are these roots equal?

5. Determine, without solving, the character of the roots of the

equations

:

(1) 5i«-2« + 6 = 0; (2)x«4 7=0; (3)3t«-r=19.
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6. rvt^rinine Um teImi of m for whleh the foUovUig

have eqiuU rooU:

(I) s«-2x(14Sm)4.7(S + 2m)*0;
(9) MS*42s*-2M-8MX-0x-f 10;

(8) 4j(*-I-(1-»-m)x^.1sO; (4) jr«^.(«x + •)•»«•

7. If in Um •qoAtkm 2w(«r-f iitf) + (ii>-2)c*s0,x U rMUaliov

ihmt M U noi grafter, in nbaolute value, than 2.

a li X it real in the aquation a^
& 4. q

"^ ^ '^'^'^ ^^''^ a i« not

graalar than 1, nor laaa than - |if. '

9. For what valuea of c will the following eqoatioiM hare equal rooliT

(1) 3i«-|.4x4-e»0; (2) (mx-^ey^ilx; (3) 4x<4-9(2x4c)«-8aL

la Solve tha aqnationa in ayawplaa 2, 8, and 5.

U. Solve the aqnationa:

(l)x--28x« = -144; (2)^-^ + -J?^«a

10. Zero and infinite roots. In the following pages it will

8oiiHt lines be necessary to know the conditions among the

coetlicients of a quadratic equation that will make one or

both of its roots zero, or the conditions that will make one

or both of the roots infinitely large. In equations (5) of

Art. 9, T, and x^ i.e, the roots of <w* + 6x + c=sO, were

found j and it is at once seen that

_64.V5»-4a£

: _A_^/Jii_-i-- o-
(1)

2a

2a -«6-.VP=4^ -6-V4»-4iw
and that

6-VjrZTfltf 2tf
^2)

2a -64-V4»-4«c

E^inations (1) and (2) show that

:

(1) If a and 6 remain unchanged while c gtom smaller,



12 ANALYTIC OEOMBTRT [Ch. I.

then Xx grrows smaller and ar, grows larger ; and if c = 0,*

then X| — 0, while a:^ «fc - -•

(2) If a remains unchanged while caO and 6 = 0, then

jTi ^ and j:^ s 0.

rl /• r(*inAin iinnliAncred while a =s 0. then le. == —(3) If 6 and c remain unchanged while a = 0, then a;i= —
^

and J-, hecomes infinitely large.

(4) If (T remains unchanged while a = and 5 = 0, then

both rj and 2^ become infinitely large.

(5) If a and c remain unclianged while 1 = 0, then

a^i =\^ anda:, =-V^-
The student should translate (1), (2), (3), (4), and (5)

into more general terms by reading "the absolute term

approaches zero as a limit" instead of "c = 0," etc.

U. Properties of the quadratic equation. By adding the

two roots of

aa^ + 6x + <? = . . . (1)

and also multiplying them together, the relations

a:j + T« = and x^x^ = - ... (2)
a a

are obtained; or, if equation (1) is written with the coeffi-

cient of the term of the second degree reduced to unity, as

2^^px-{-q = Q, ... (3)

these relations become

arj + ar, = — /? and x^th^ = 9, . . . (4)

Or, expressed in words : the coeflicient of the term of the

second degree being unity, the coefficient of the term of

• The sign = is rcail '* approaches i^ a limit** It was introduced by the *

late I*rofessor Oliver of Cornell University.
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tlie fintt tlef^reo \m the negative of the turn of the roots,

while tlie term free from x is the product of the rooU.

If, therefore, the ruotii of a quadratic equation are not

tlitMiutelves needed, but bu\y tlioir lum or product ia de-

8ired« tlieee may be obtained directly from the given equa-

tion by inspection.

E.g.^ the half aum of the roots of the equation

x^-^x^ 2(bm'-2t) Zl'-hm
*'

2 " 2m» " n^ '

Moreover, if r, and x^ are the roots of the equation

ihenx — jTj and x — r^ are the factors ot hb first nienuHT.

For, by equation (4) above, tliis equation may be written

lad «*-(ari + x,)x + x^x^ = ix - x^Xx -x,),

hence a^ + px •{ q s{x — Xi^x — j^).

Conversely : if a quadratic function can be separated into

two factors of the first degree, then the roots can be imme-

1 lately written by in8|>ectioii.

For, if j:* -- />x •+ 9 = (x — ^iJK.J' — J'f\ then tnr nrst mem-

l>er will vanisli if, and only if, x — Xj = or x — x, = ; i.e.

j^-^px-^-q^O ii X BXi or x ^ x^ hence X| and x^ are the

roots of the equation j^ + /m? + 9 = (cf. Art. 4).

12. The quadratic equation involving two unknowns. One

((uation involving two unknown numbers cannot be solved

uniquely for the values of those numbers which satisfy the

equation ; but if there is assigned to either of thoee num-
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ben a definite value, then at least one definite and corre-

sponding value can be found for the other, so that, this pair

of values being substituted for the unknown numbers, the

equation will be satisfied. In this Vay an infinite number of

pairs of values, tliat will satisfy the equation, may be fuund.

If, however, the equation is homogeneous in the two un-

knowns, t.«., of the form

cu^ \- bxy -\- cy^ =^ 0,

then the ratio x : y may be regarded as a single number, and

the equation has properties precisely like those discussed

in Arte. 9, 10, and 11.

To solve a system consisting of two or more independent

simultaneous equations, involving as many unknown ele-

ments, it is necessary to combine the equations so as to

eliminate all but one of the unknown elements, then to solve

the resulting equation for that one, and, by means of the

roots thus obtained, find the entire system of roots.

EXERCISES

1. Given the equation x^ -|- 3 x - 4 -f m (3 x^ - 4) - 2 mx^ = 0, find the

sum of the root«; the product of the roots; also the factors of the first

member.

2. Factor the following expressions

:

(1) z«-6x+4; (3) mx«-3x+c; (5) 8io^-94ic^-64;

(2) x«+2x-8; (4) ax«+tey+cy«; (6) ll-27y-18y«.

8w Without first solving the equation

x«-3x-m(x + 2x«+4) =5x« + 3

find the sum, and the product, of its roots. For what value of m are its

rooU equal? For what value of m does one root become iiiHnitely

large? If all the terms are transposed to one member, what are the

faetori of that member?

4. Without first solving, determine the nature of the roots of the

equation (m - 2) (log x)« - (2m + 3) log x - 4 to = 0. [Regard log x as

the unknown element.]
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For what taIum of m art Um rooto •qiul? Bad? Qua iiiflail4)r

gnwt^ One aoroT Find tha faelora of \km Aral inambar 6L tba

tiuiu

9. Find five pairs of numbam that latiify tha aqutioii i

(1) x + Sy-7=0; (3) f«»I«x;
(3) x*>f*«4; (I) 3x-f6ry-Sf<48<««0.

d. Without lolviug, datarroiiia tha nature of tha roola of tha

Ox^ + 13iy -f 4f*sO, 8M*-iMr-f lOv^sa

7. 8ohra tha following pain of aimultanaoua aquaUona

:

(1) 8x-5f -t-3sO, and 2x + 7y-4B0|
(2) 5f -f 2S-I-8 bO, andTjf + 4«-f 2e0{

(8) y - 3jr •(- tf sO, and ^ssOjr;

(4) z* + y*=ft, and ^aOx;
(6) Mx< + aV = aV, and f = ox + *|

8. Determine thoaa Taluat of b for which each of the following paira

of equatiuiiti will be satisfied by two equal values of jr:

(1) ix« + y« = a«. y = 6x + 6}; (2) {y = «x +6. jr* = 4x};

(3) {3y + 2x = *. «x« + y« = 12}.

9. Determine, for the pairs of equations in Ex. 8, thoaa raloaa of h

which will give equal values of x.

TRIGONOMETRIC CONCEPTIONS AND FORMULAS

13. Directed lines. Angles. A line is said to be directed

when a iliMtiiiction is made between the segment from any

point A of tlie line to another point B, and the opposite seg-

ment from B to A. One of these directions is chosen ss

poHitive, or +« and the opposite direction is then negative

or —

.

The angle formed by two intsFeeoting directed straight

line 4 is that relation between the positions of the two lines

wliich is expressed by the amount of rotation about their

point of intersection necessary to bring the positive end



16 ANALYTIC QEOMBTRT [Ch. L

of the initial side into coincidence with the positive end

of the terminal side. The point in whicli the lines in-

tersect is called the vertex of the angle. The angle is

po$Uive^ or + if the rotation from the initial to the ter-

minal side U in coufUer-clockwise direction; the angle is

negative^ or — , if the rotation is clockwise.

The angle formed by two directed straight lines in si)ace,

which do not meet, is equal to the angle between two inter-

secting lines, which are respectively parallel to the given

lines.

For the measurement of angles there are two absolute

units

:

(1) The angular magnitude about a point in a plane^ i.e.,

a complete revolution. One fourth of a complete revolution

is called a right angle, ^ of a right angle is a degree (1°),

j^ of a degree is a minute (1'), and ^ oi a minute is a

second (1") ;

(^j,) the angle whose subtending circular arc is equal in

length to the radius of that arc; this angle is called a

radian )1^''M ; it is independent of the length of the radius.

Since
"cumference^se.ni-ciroumference^ ^^ j^ j^„^^^ ^^^

diameter radius

the angle formed by a half rotation, t.«., 180°, is ir radians;

Y) approximately

;

abo !<••> = 1^ = 57^ 17' 44.8" approximately.

A right angle is 90° or (^
(r)

When there is no danger of being misunderstood, the index

(r) is omitted, and - radians is written simply as ^, and

not
(r)
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14. Trigonometric radoe. If from nny point P in Uie ter-

iiiinul Hiiie of an angle 0^ at a diiitaiic<5 r fnim tlio vert«x« a

perpendicular MP in drawn to the initial Mida meeting it ia

P.

ria.ia

A/, and if MP be represented by y and VM by x, then, by

general agreement, y in + if 3fP makes a positive right

angle with the initial line, and — if this right angle ia

negative ; nimilarly, x ia + if VM extends in the positive

direction of the initial line, and — if it -extends in the

opposite direction.

The tliree numbers r, x, and y form with each other six

ratios; these ratios, moreover, depend for their value solely

uyton the size of the angle ^, and not at all upon the value uf

r. These six ratios are known as the trigonometric ratiot or

functions of the angle ^, and are named as follows :

Bxned =a^,

(M»sine

tangent ^ = ^,

cotangent ^ s-.

secant^

coeecant^

The abbreviated symbols for these functions are sin ^,

cos 6n tan ^, cot 0^ sec ^, and esc ^, respectively. The func-

tions are not all independent, but are connected by the fol-

lowing relations

:

(1) mn^-i-.Htr^=i 1,

(2) cos^-sec^a 1,

(3) tan ^ . cot ^ = 1,

(4) tan ^asin 6:co%$^
TAX. AM. OftOM.—

8

(5) cot ^ a cos ^ : sin ^,

(6) sin< ^ + cos* ^ « 1,

(7) tan* ^ + 1 = set-* ^,

(8) cot*^ + 1 =csc«^.
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By means of these eight relations all the trigonoinetrio

functions of any angle may be expressed in terms of any

g^ven function. E.g,y suppose the sine of an angle is given,

and the tangent of this angle, in terms of the sine, is wanted:

bjr(4). taiitf = ?ii4

and by (6), cos ^ = Vl — sin^rf,

, * /I sin^
benoe tan 6 = — j

Vl-8in«^

If the numerical value of sin^ is given, this last formula

gives the corresponding numerical value of tau^; e.y., if

sin ^ = |, then ^ I 3
tan^ =— & =*T'

Vl-a)« 4

15. Functions of related angles. Based upon the defini-

tions of the trigonometric functions the following relations

are readily established.

If ^ is any plane angle, then *

(1) sin(-^)=~ sin^, cos(- ^)= + cos^,

tan(--^)=-tan^, csc(- ^)=- csc^,

sec(-^)= + sec^, cot(— ^)= — cot^;

(2) sin (7r ± ^) = T sin 0, cos (tt ± ^) = - cos 0,

tan('jr±^)=±tan^, C8c(^±^)= 1^ csc^,

sec(7r±^)= — sec^, cot(7r±^)= ± cot^;

(8) sin^l ± e\^ + cos^, cos^^l ± e\= T sin 6,

tan^l ± e\=:. T cot ^, csc/^l ± e\= + sec^,

sec/'l ± e\=^ T csc^, cot/^l ± e\= T tan 6.

* The student sliuuld Uiorougbly familiarize himaelf with ttieae formulaa,

aad tboM of Ait. 10, as well as with the derivation of each.
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16. Other important formulas. If ^| aiid $^ are mny two

plane auglea, then

sin (^1 ± 0^) • sin ^1 oos ^, ± oos ^, sin 0^

0011(^1 ± ^,) « oos^l COS ^, 7 sin 6^ sin $^

. ^ Unf,±tiui^.
'^ * 1^ l:Ftan^itan^,

If ^ is any plane angle^ then

sin2^-2sin^co«^,

cos 2 ^ « COS* ^ - 8in* ^ « 1 - 2 Min* ^ » 2 oos^0^1^

tan isr«« T j-x*
l-tan«^

sin^- VJ(l-cos^

C08^= VjO+COsJ),

— cos^ sin^
•2 ^1+C08^ 8in^ 1+cos^

If A, 6, and c are the sides of a triangle lying respeotiTely

np{Mi8it« the angles A^ B^ and C, and if A in the area of this

triangle, then

oSk^s^-cS — 25c COM A^ and ^ = \he sin A.

EXERCISES

1. Ezprem in rsdisiu the angles

:

15^ 6(f; 186"»; -2IW; | rt angle; lO^lClO"; WV\ (Sw)».

2. BzprMi in degrees, minutes, and seconds, the angles

:

(r'('fr'ar''{r'fo <•'---- 1-"«^

3. Find the Taloes of the other trigonometric fnnctlooB, gfren

:

(I) tan0 = 3; (2) «ec* = -V5; (8) oos4 = -i-; (4) 8lnr«|;

(5) cot ^ = 4 ; and (lO t^ u = - 2.
"^^
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Solution of (1). MXawO — '\ tiicii huUHlitutin^ this value in (3) of

Art. 14, Rivcw colB = \\ Bulwtilutiiig these vahie« in (7) and (8) of the

nine Mticle gires the valaes of see and of esc 0; and substituting those

alueti in (1) and (2) gives sin B and cos $.

Another method: Construct a right triangle ABC with the sides

AH -\ and HC = 3, then ^BAC is an angle whose tangent is 3. If

AB = \ and BC = a, tiien A C = VlU, and the other fuuc-

tC tioiis of the angle BA C are at once seen to be

:

ain$ = COB^ = 1
CSC^

VIO VlO

sec ^ = \/l0, and coiO=\.

3 *

Either of these methods may be employed to solve the

other iwrts of this example ; the second method is usually

to be preferred.

4. By means of a right triangle, with appropriate acute

angles, find the numerical values of the trigonometric

ratios of the following angles

:

30*>; 45*; 60*»; 90*»; ISS*; and - 45<».

5. Express the following functions in terms of functions of positive

angles less than 00* :

tan 8500*; - esc 290*; sin (- 369*); - cos H^; and cot(- 1215*).

6. Solve the following equations

:

(1) sintf = -coe210*; (2) cosd = 8in2tf; (8)
cosx

sin X cot^ X

and (4) (sec^x - l)(c8C«x + 1)= }.

= V3;

7. In the following identities transform the first member into the

second:

2
0)

tan d - cot I -1; (2)
sec T 4- CSC z 1 -»- rot r

,

tan ^ + cot
^~ csc^ tf

"' '^"''
secx - cscx^ 1 - cotx*

(8) escT(secx~ 1)- cotx(l - coex) = tanx - sinz;

(4) (2 r sin a 006 a>« + r* (cos*a - sin« o)*= r«

;

(5) (cosacosfr + sin a sin ft)* + (sin a cos 6 - cosrtsinA)2=l ; and

(6) (rcos^y*+ (rsiu^cosd)^ + (rsiu <^8in ^)«=f«.
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17. Orthogonal projection. The ortho((oiiitl |irujecttuii * of

a |>t)iiit u|M>ii u lint) im thu fcNit of the peqieiidicuUr from

thu |Hiiiit to the Hilt*. Ill the tigure« M b the |irtijec*tioii

of P upon AB. Thu projection of a MgiDeut PQ of a

\H

line upon another line AB, is that part of the second line

extending from the projection of the initial jxiint of the seg-

ment in the projection of the terminal (>oint of the segment.

ThiLs MX is the projection of PQ npon AB. and JV3f is the

projection of QP upon AB.

The length of the projection can easily be expressed in

terms of the length of tlie segment and the angle which it

mukeM with the line ufxiu which the segment is projected ; for

MX PR ^^
PQ PQ

.-. MN=:PQ cosa;

i.e., the prcjeeti<m of a Begment qf a line upon another line

it equal to the product of it$ length by the coeine qf the angle

which it maket with that other line.

A line made up of jMirtn PQ, QR, RS, — (Fig. 5«, />5\ which

art* straight lines having different directions, is a broken line

;

and the projection of a broken line u|)on any line is the

algebraic sum of the projections of ita parta upon the same

• Ilfrraftcr, un1c« ottM*rwiM auUad, pr^O^eUom will be

mean nrth<>,ifnttil unnectiUH.
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line. Thus the projection of PQHST upon AB is the pro-

jection of PQ + the projection of QR -f •••, upon AB\ i.e.,

proj. PQRST upon AB ^ MN ^- NK^KL -k- LH = MH;

T

but Afffis the projection of the straight line PT wiiich joins

the first initial to last terminal point of the broken line. In

the same way it may be 8ho\vn that the projection of any

broken line upon a straight line equals the projection, upon

the same straight line, of the straight line which joins the

extremities of the broken line. It follows, therefore, that

the projection of the perimeter of any closed polygon upon

any given line is zero.

If ^p ^,, ^8^ ^4, and 6^ be the angles that PQ. QR. RS,

ST, and PT re8i)ectively make with the line AB, then the

projection of the broken line upon AB may also be expressed

thus:

proj. PQRST upon AB = MN-h NK-^- KL -h Lff= MH
« PC cos ^1 + QR cos e^ + RSco% 6^ + aS'T'cos 0^

= PT cos Oy

The projections of two parallel segments of equal length

upon any given line in space are equal. It therefore fol-

lows that:

(1) The projection of a segment of a line upon any straight
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line iu spAoe equals the pmcluct of iU Icii^li by the

of the angle between the two lines.

(2) The projection of any broken line in space upon any

htruight line equals the projection, u|x>ii the luimu line, of

the straight line which joins the extremities of the broken

line.

EXERCISES

1. Two lines of Isogths 8 and 7 rwpeeUTtly meet at an angle |; find

the projection of each apon the other.

a. The center of an equilateral triangle, of side S, b joinsd hj a

straight line to a Tertex ; find the projection of thi« joining line upon

each side of the triangle.

3. A rectangle hat iU eidea reepeetively 4 and 6; find their projee>

tious upon a diagonal.

4. Find the length of the pr(*j«oiiun of each edge uf a cu)>e u{>oa

a chosen diagonaL

5. A glren line A B makes an angle of SO* with the line MS^ and

BC is perpendkular \o AB and of length 15; find the projection of

BC upon MN,
Soke this problem if the given angle be a instead of 30°.

a. Two lines in space, of length a and b respectively, make an angle

M with each other; find the projection of b upon a line that is perpen*

dicular to a.

7. Project the fwrimeter of a square upon one of its diagonals.
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GEOMETRIC CONCEPTIONS. THE POINT

I. COiiRDINATE SYSTEMS

18. Coordinates of a point. Position, like magnitude, is

relative, and can be given for a geometric figure only by

reference to some fixed geometric figures (planes, lines, or

points) wbich are regarded as known, just as magnitude

can be given only by reference to some standard magni-

tudes which are taken as units of measurement. The posi-

tion of the city of New York, for example, when given by its

latitude and longitude, is referred to the equator and the

meridian of Greenwich,— the position of these two lines

being known, that of New York is also known. So also

the position of Baltimore may be given by its distance and

direction from Washington; while a particular point in a

room may be located by its distances from the floor and

two adjacent walls.

If, as in the last illustration, a point is to be fixed in space^

then three magnitudes must be known, referring to three fixed

positions. If, on the other hand, the point is on a known

surface, as New York or Baltimore on the surface of the

earth, then only two magnitudes need be known, referring to

two fixed positions on that surface ; while if the point is on

a known line, only one magnitude, referring to one fixed

position on that line, is needed to fix its position.

These various magnitudes which serve to fix the position

24
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of a point,— in tpaoe, on a surface, or on a line,— are called

tliL* coordinates of the point.

19. Analytic Geometry. Coord timteii iimy bo repreaentad

by ulgebraiu muubem ; the relatione of the various [xiinU,

and the properties of the various geometric flgureti which are

formed by those points, can be studied through the corre-

ttpoiidiiig relations of these algebraic numbers, or coordinates,

expressed in the form of algebraic equations. This fact is

the basis of analytic, or algebniic, geometry, the main object

of which is the study of gfeometric properties I>\ alL'ihruic

methods.

Analytic geometry may be conveniently divided into two

parts: Plane Analytic Geometry, which treats only of figures

ill u ^nveii plane surface ; and Solid Analytic Geometry, which

treats of sjiace figures, and Includes Plane Analytic Oeametry

as a 8(>ecial case. The plane analytic geometry, being the

simpler, will l>e studied first, in Part I of this book, and

Part II will l>e devoted to the study of the solid analytic

geometry. In this first part of the subject it will therefore

be understood that the work is restricted to a given plane

surface.

Two systems of coordinates will be used, the Cartesian

and the Polar. They are explained in the next few articles.

20. Positive and negative coordinates. If a point lies in a

given directed straight line, its position with reference to a

fixed point of that line is com-

pletely determined by one coor- X f
i P X

diiiate. E.g.. let JT'OX be a **""*
r.^e^'^*"^

given directed straight line,

and let distances from toward X be r^arded as positive,

then distances from O toward X* are negative. A point P
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ill this line and 8 uniU from toward X may be designated

by "8, where the sign -f gives the direction of the point,

and the number 8 its distance, from 0. Under these cir-

cumstances the point P' lying 8 units on the other side of

would be designated by "8.

In the same way there corresponds to every real number,

positive or negative, a definite point of this directed straight

line; the numbers are called the coordinates of the points;

and 0, from which the distances are measured, is called the

origin of coordinates.

21. Cartesian coordinates of points in a plane. Suppose

two directed straight lines X' OX and Y' OY are given,

fixed in the plane and intersecting in the point 0. These

two given lines are called the coordinate axes, X* OX being

the X-axis, and Y'OY being the y-axis ; their point of inter-

section is the origin of coordinates. Any other two lines,

parallel respectively to these fixed

lines, and at known distances from

tiiem, will intersect in one and but

one point P, whose position is thus

definitely fixed. If these lines

through P meet the axes in JHf and

L respectively, then the directed

distances LP and MP^ measured

parallel respectively to the axe«, are the Cartesian coordinates

of the point P, The distance ZP, or its equal OJtf, is the

abscissa of P, and is usually represented by a:, while JfP, or

its equal OL^ is the ordinate of P, and is usually represented

by y. The pointP is desii^nated by the symbol (a;, y),— often

written P = (x, y), — the abscissa always l)eing written first,

then a comma, then the ordinate, and both letters being

rio.7.A
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iiii'^ci 111 a pArantbetis. Thus the point (4, 5) it tha

I)oiiit for which OM « 4 and MP ^ 5 ; while the point

(-3, 2) han OM - J and MP - 2.

22. Rectangular coordinatet. Thu Himplest and minit com-

mon form of ( urtesiun counliimte axea ia that in which the

angle XOY in u iM)8itivc right

angle; the ulNk:i88u (z) of a

point ia, in thia caae, ita perpen- ^
dicular tlistance from the y-axia.

And il8 ordinate (y) ia ita perpen-

dicular distance from the :r-axiM.

This way of locating the points
^' '^•

of a plane is known as the rec-

tangular aystem of coordinates.
rta.iM

The axes divide the entire plane into four parte called qnad-

rants, wliich are usually designated aa first (I), second (II),

third (III), and fourth (IV), in the order of rotation from

the positive end of the x-axis toward the positive end of the

y-axia, aa indicated in the accompanying figure.

These quadranta are distinguished by the 9ign$ of the

codrdinatea of the points lying within them, thus

:

in quadrant I the abscissa (x) ia +, the ordinate (y) is 4-

\n quadrant II the abscissa (r) is — , the ordinate (y) is +
ill quadrant III the abscissa (x) is — , the ordinate (y) i.H~

in quadrant IV the abscissa (x) is +« the ordinate (y) is —

.

Four pointa having numerically the same coordinates, but

lying one in each quadrant, are symmetrical in pairs with

regard to the origin, even though the axes are not at right

iingles; if, however, the axes are rectangular, then these

|N)inta are symmetrical in pairs, not merely with regard to

the origin as before, but also with regard to the axes, and
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they are severally equidiHtant from the origin. Because of

this greater symmetry rectangular coordinates have many

advantages over an oblique system.

In the following pages rectangular cod'rdmates will always

be understood unless the contrary is expressly stated.

EXERCISES

1. Plot •ccurately the poinU : (1, 7), ("4, -5),» (0, 3), and (-3, 0).

2. Plot accurately, as verticea of a triangle, the points : (1, 3), (2, 7),

and (-4, -4). Find by measurement the lengths of the sides, and the

coordinates of the middle point of each side.

3. Construct the two lines passing through the points (2, -7) and

(-2, 7), and (2, 7) and ("2, -7), respectively. What is their point of

intersection? Find the coordinates of the middle point of each line.

4. If the ordinate of a point is 0, where is the point? if its abscissa

is 0? if its abscissa is equal to its ordinate? if its abscissa and ordinate

are numerically equal but of opposite signs ?

5. Express each of the conditions of Ex. 4 by means of an equation.

6. The base of an equilateral triangle, whose side is 5 inches, coincides

with the X-axis ; its middle point is at the origin ; what are the coordinates

of the vertices? If the axes are chosen so as to coincide w ith two sides of

this triangle, respectively, what are the coordinates of the vertices?

7. A square whose side is 5 inches has its diagonals lying u]>oi) the

coordinate axes; find the coordinates of its vertices. If a diagonal and

an adjacent side are chosen as axes, what are the coordinates of the

vertices? of the middle points of the sides? of the center?

8. Find, by similar triangles, the coordinates of the point which

biaects the line joining the points (2, 7) and (4, 4).

9. Show that the distance from the origin to the point (a, //) is

Va* + 6*. How far from the origin b the point («, -fc)? (-a, 6)?

(a, by. (cf. Art 22.)

10. Prove, by similar triangles, th.at the points: (2. 3V H. -'•\'), and

(3, 0) He on the same straight line.

11. Solve exercises 1 to 4 and 10 if the coordinate axes make an angle

of 60°. Also if this angle be 45\

* These minus signs ara written high merely to indicate that they are

dgns of quatUff and not of operation.
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23. PoUr coordinatet. If % fixed point \m given in a

fixed diriTttHl Htraiglit lino OR, then the position of anjr

point P (if the plane will be fully determined by iU dirtanoe

OP » p from the fixed point, and by the angle which the

linu OP makes with the fixed line.

The fixed line OR ia called the initial line or polar axis, tho

fixed point the pole of the83r8teni, and the polar coordinates

of the |)oint P are the radius vector p and tlie directional or

vectorial angle 6, The usual rule of signs applies to the

vectorial angle $^ and the radius vector is positive if meas-

ured from along the terminal side of the angle 0. Tlie

IK)int P is designated by the symbol (/^ By
From what has just been said it is clear that one pair of

fjolar coordinates (i.e., one value of p and one of 6) serve to

determine one, and but one, point of the plane. On the

other hand, if $ is restricted to values lying between and

2 ir, then any given point may be designated by /oar diflferenl

|>air8 of ctMirdinates. P

.*N

rio.».A

E.g,^ the polar cocifdinates (8, fiO*) determine the position

of the point i^ for which OP a 8, and makes an angle of 60^
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with the initial line 0/?, but the same point may be given

equally well by the pairs of coordinates: (3, 240°),

(8, -800®), and ("8, "120®); and so in general.

/
f
As

EXERCISES

1. Plot accurately the following points: (2, 20°), ^2, ^V ( "7, *\

(*''X)* ^^' ^*''^' (-1,-180°), (7, -45°), (-7, 135°), (•%—),

(0.f). (0,=^). (6,0°), and (-6,0°).

2. Construct the triangle whose vertices are: (2,
-J, f'^* -^)

(1, -j-\\ find by measurement the lengths of the sides and the codrdi>

DAtes of their middle points.

3. The base of an equilateral triangle, whose side is 5 inches, is taken

M the polar axis, with the vertex as pole; find the coordinates of the

other two vertices.

4. Write three other pairs of coordinates for each of the points

(2,f); (-3,75°); (5,0°); (0,60°).

5. Where is the point whose radius vector is 7? whose radius vector

18-7? whose vectorial angle is 25°? whose vectorial angle is ©<•'>? whose
vectorial angle is -180°?

6. Express each of the conditions of Ex. 5 by means of an equation.

7. What is the direction of the line through the points ( 3, j ) and

24. Notation. In the following pages, to secure uniformity

and in accordance with Art. 6, a variable point will be desig-
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natod by P, and iu codrdinatcs by (js, jf) or (^ 9). If

Heveral variable points are under connideration at the same

liiMts they will be deugnated by P, P*, P", /»"', ..., and

their ccHirdinatea by (*, y), (j/. y'), (j/', y")* (*"'• y'")* •-.

r by 0>, ^). (/>', ^), 0>", ^'), (p'", ^"). ••• Fixed poinU

will be designated by Pp P^'-% and their coordinates by

i'v yi)' ('r yi)»
•••' or ^'y 0>p ^i)* (Pr ^O* •• •

IL ELEMENTARY APPLICATIONS

2S The methods of representing a point in a plane that

liave been adopted in the previous articles lead at once to

Heveral easy applications, such as finding the distance be-

tween two j)oint8, the area of a triangle, etc. The form of

the results will depend upon the particular system of coordi-

nates chosen, but the method is the same in each case.

Here, as in the more difficult problems that arise later, to

gain the full advantage of the analytic method the student

should freely use geometric constructions to guide his alge-

braic* work, but he should, at the same time, see dearly that

the method is essentially algebraic.

26. Distance between two points.

(1) Polar eodrdinaUB. Let OR \\e the initial line,* the

jM)le, and let P, s (p^, 6^) and P^=(p^ B^) be the two given

FM.ia'

• Tb« deaKMiiUBtkMi sppUM to Mcb
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fixed points. It is required to find the distance PiP^ =• d

in terms of the given constants pp p^s 0^, and O^. In the

triangle OPjP, (of. Art. 16)

F^^dP^+OP^-2' OP^' OPj.cosPiOPy

' ''
. cP = p^^ + pf - 2f>jp, coa (^, - ^i),

Let

hence d = Vp|« + p«* - 2PiP8eM (•, - Bi) . .

(2) Carte$ian codrdinates; axes not rectangular.

OX and OF be the coordinate axes, meeting at an angle

Y

7 ^ a^«
/ no. u*

XOV=a)* and let P^ = (ar^, y^) and P^ = (xj, ^j) be the two

given points ; it is required to find the distance PiP^ = d

in terms of Xj, x^, y^, i/^^ and 6).

Construction : Extend the abscissa L^P^ of the point Pj

to meet the ordinate M^P^ of the point P^, i\i Q ; then in

the triangle PiQP^ (cf. Art 16)

P^^P;^ +QP^-2'P,Q'QP^' cos P,QP^. Fig. 11«,

^P;^^ = P;^ + /^ - 2 . PjC . P^e . cos PjGP^ Fig. 11*,

l\Pt ^-QP^-^P^ -2 QP^.P^Q cos P,QP^. Fig. 11-

which gives, for each figure,

d= Vixt - ac,)* + (pi - y»)*+ 2 (xi - x,)(yi - y«)c08«».t

• The demonstnuioD applies to each figure.

t By examining other possible constructions the student should assure

himself of the generality of this formula.
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(8) Rectangular evdniinaUB. If • • ^« ••«• if the ooortli-

iiatu uxcM uru rfctun^iilar, then con « a U, and the formula

fur tliu iliiitanco Ixjlween the two given i>ointii beoomea

fl=:V(»|-«,)» + (|f|-.ra)^ • • [2]

> ! ilier of the two |M)intii may be nuiiiiMl P„ thiM foriiiiila

I rxprefiited in wonLi thmt : Jn rectangular codrJinatet^

V of the di$tane€ b$tw€9n two giwen paints it the tquare

>/ the dti f»eticeen their ab$ci$»at plus tJU %ipuKr% of tki

Hfftrencf otcwcvn their ordinaUM.

27. Slope of a line. By the slope of a line is meant thf

tangent of the angle which the line makes with the (KJhiii\o

end of the x-axia.*

From this definition it at once follows that the slo|ie m of

the line joining the two points Pi = (xi, tf{) and P^s (,Jh*!fi)^

QP
the axes being rectangular, is m ^^-A'* ^^^ i^

EXERCISES

1. Find the distanoM between the poiuU (1, 3), (2, 7), and (4. -4),

taken in pairs.

2. Find the distaooee for the pointo of Ft 1 if the axes are oblique

with u^W,
3. Prore that the poinU ( 2,-1). (1,0), (1,3), and (1.2) are tbt

vertices of a parallelogram.

4. Find the distance between the points (a -f A, e -^ a) and
(c -f- <i, 6 + c) ; also between (a, b) and (-«, -6).

5. Find the distanoee beiweeo Uie pobU (2, 90»), ^3, *^)*Mid

(1, Y J,
taken in pairs.

• The slope of a roof or of a hlU has the same meaning. Thns If tba

l<ipe of s hlU (to the horiiontal) Is jf,, It rtoes 3 feet veitkal in 100 fsei

horizontal.

TA«. AX. OaOM.—

a
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6. Prove that the pointo (0, (K), l\ ^V and (3, ^ J
form an equi-

Utentl triangle. ^ ^^' ^ ^'

7. One end of a line whose length In 13 is at the point (~4, 8), the

ordinate of the other end is 3 ; what is its abscissa?

8. Express by an equation the fact that the point P=(x, y) is at the

distance 3 from the point (~2, 3) ; from the point (0,0).

9. Kxpress by an equation the fact that the point P=(x, y) is

equidistant from the points (-*2, 3) and (7, 5).

10. Find the slopes of the lines which join the following pairs of

poinU : (3, 8) and (1, 4) ; (2, -3) and (7, 9) ; (1, -4) and (-8, 5) ; (4, -2)

and (-2, 1).

28l One great advantage of the analytic method of solv-

ing problems lies in the fact that the analytic results which

are obtained from the simplest arrangement of the geometric

figure with reference to the coordinate axes are, from the

very nature of the method, equally true for all other arrange-

ments. Thus formulas [1], [2], and [3] can be most readily

obtained if the points are all taken in quadrant I, t.e., with

their coordinates all positive ; but because of the convention

adopted concerning the signs as essential parts of the coordi-

nates, these formulas remain true for all possible positions of

Pi and P,. By drawing the figures and making the proofs

when Pi and P, are taken in various other jxjsitions, the

student should assure himself of the generality of formulas

[1], [2], and [3] of articles 26 and 27.

29. The area of a triangle.

1. Rectangular cod'rdinates. Given a triangle with the

vertices P, = (a:,, y,), P, *= (x^ y,), and P, = (x^ y^) ; to find

its area in terms of a;|, a^ ar,, yi, y^ and y^. Draw the ordi-

nates lfiP|, MiPi, and i/,Pj,— in the second figure extend

MxPx and MiPi to meet a line through P, parallel to the

j^axis. If A represents the area of the triangle in the first

figure, then

:



aj-w.j

!'

UEiiJit: 1 1(1' itJ\ f Kl' I iOjUH S6

Jl

but P,lf,lf,P.- J(^,A+ ir,/',)- iV,.V,= J(y.+y,)('i-'i).

and PJdJi^,^\iM,P,-k-MrP,)^M^M,^\i!,^-^yt)i',^'t^,

and P,3f,ir,P,- l(if,P,+ ir,P,; . if|^,- JO, 4-y,)(x,-x,).

.'. A-J!(yi+y,)(«t-x,) + (y,+y,)U,-ii)

-(yi+y,)(«i-*,)|

-HCyi+yt)(*|-x,)+ Cy, + y,)(j^-.a^)

+(yt4-yiX«t-*i)(

This may also be written in the form

A - 4 Ixi(y, - ys) +r/y, - y,) + T/y, - y,| •

.

So also if At represents the area of the triangle in the

second figure, then

- \ \iff,Pt + E,P^) . M,»f,-EiPi • H,Pt-E,P, . PAU
- I10'i-y»+yi-y«) (*i-'i)-('yi-yt") (*.-*i)

- Oi- y>) ('I- *j) I . [a^i. 'j. W"! yt being negative]

= II *iO'i-y«") +'«(y.-y«'> +«»0'i-jrOl.t •• •bove [4 «].

• [4]

[4 a]

• In Iba dsunnluant noutkm this may be

writtan: ana of the trteogle » i «*•

I. ri. 1

1

tlltfs b darifvd bj

anocbtr BMthod la Bi. 41,

p. Itt.
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FlO.lSL

If, instead of rectangular coordinate axes, oblique axes

making an angle XOY^^to had been used, it would have

been necessary merely to multiply the second members in

the results just found by sin o> in order to express the areas

of the triangles.

2. Polar cod'rdinates.

Let the vertices of the

triangle bo Pi=(pi, ^,),

A = (/>2> ^2), and P,=

(P3» ^a); to find its area

A in terms of /^j, pj, pa, 6\t

$2, and 6i.

Manifestly, A = OP^P^+ OP,A- OP^P,,

but OPiP.^i p2Pi 8in(^,-^2), OPiPi= i ptoi sin (^,- ^3),

and OP^Pi^i P2P1 sin (^1-^2)-

which may also be written

^ = i \P1P2 sin (^2—^0 + ^spi sin (0, — ^2)

+p,pi8in(^,-^,)i. . . . ra
The symmetry* in formulas [4], [4a], and [5] should bo

carefully noted ; it may be remarked also, that in the appli-

cation of these formulas to numerical examples, the resulting

areas will be positive or negative according to the relative

order in which the vertices are named.

• Tbia kind of symmetry is known as qfclie (or circular) symmetry. If

the numbers 1, 2, and 3 be arranged thus \L)f « then the subscripts in the

first term (In [4<i] say) begin with 1 and follow the arrow heads around the

circle (i.e. their order Is 1, 2, 3), those of the second term bej^in with 2 and

follow the arrow heads (their orrler is 2, 3, 1), and those of the third term

begin with 8 and follow the arrow heads.
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cxcRcites

1. Find th« Ar«M of the following trUiigl«: (1) fwtioas ftl Um
.. 5), (4, 1»). a»»«l (1. »); (•-*) Tertloet at the i«>inU (7. .1). (4. «).

, -') : (») vrrlicM At Um poiiiU ( 1 1. 0). (0, "J), and (
-\ 3).

8olvo without lining the fortnuU, and tlien verify by luUtituting in

the formula.

a. IVove that the arva of the triangle wboae Tertieat are at the points

(2. .1), (.\ 4). and (-4. 1) to tero» and heooa that theaa poinU aU lie on

thtf aatne straight line.

3. Do Uie poinU (2, 3), (1, -3), and (3, 0) lie on CM straight lineT

(cf. Kx. 10, p. 2a.)

4. I)o the poinU (7, 3(f), (0, (T), and (-11, 210^) lie on one straight

line ? Solve this by showing that the area of the triangle to sero, and
then verify by plotting the figure.

5. Kind the area of the triangle (w. ?"''), (2w, |*'*y and (-r,^'*).

6. Derive formula [4] when /*, is in quadrant II, /», in quadrant III,

and P^ in quadrant IV.

7. Find the area of the first two tnangieft in hx. 1 if the axes make
an angle of 60* with each other.

aa To find the coordinates of the point which divides in

a given ratio the straight line from one given point to

another. I^t P|S(jrj, yj) and P, =(jy y,) be the two

given iK)int8, P^s(r^, y,) the required pointy and let the

rw.14.-

nitio of the jMirt^ into which P, divides PiP^ ^*^ m^: m^;

!.«•., let i\/', : P,/*, a iMj : m,. Draw the ordinates J/|Pi,
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M^P^ -^a^r ^^^ through Pj and P3 draw lines parallel to

OX^ meeting M^P^ and M^P^ in B and Q respectively.

To find OAf, = z^ and M^P^ = yg "^ terms of x^, r^. y^, y^
ntp and m,.

The triangles P^RP^ and P^QP^ are similar;

therefore

But .^-^ = _i,
-P3P, TWj

and Pj/J = ajj — arp ^8^ = 2-2 — iPg,

-'^A = ^8 - ^r CA = ^2 - yz-

[In Fig. 14 (5), arp y^, ^j, and ^g are negative.]

therefore — - — - -^ >

^3 - ^8 ^a - ^8 ^2
whence

^ = —^>. . ^, and tfs = —^ . ^— . . . Id
I

The above reasoning applies equally well whatever the

•value of a) (the angle made by the coordinate axes), hence

formulas [6] hold whether the axes be rectangular or oblique.

Formulas [6] were obtained on the implied hypothesis

that Pg lies between Pj and P^ ; t.e., that Pg is an internal

point of division. If Pg is taken in the line P^Pz produced,

and not between Pj and Pj, it still forms, with Pj and Pj,

two segments PjPg and PgPj, and Pg may be so taken that,

numerically, the ratio of PjPg : Pg-^a niay have any real

value whatever ; but the sign of this ratio is negative when

Pg is not between Pj and P^, for, in that case, the segments

PjPg and PgPj have opposite directions. Hence, to find

the coordinates of that point which divides a line externally

into segments whose numerical ratio is tWj : mj, it is only
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iitMcHsury to prefix the minus sign to either one of the two

iiuiiiImth ritj or m, in formulas [6]. These formulas thaD

liccuiuu

• *ll| — IHj •'• Wlj — M^

Cor. If Pg be the middle point of P|Pt« then m| « 114.

and formulas [6] become

-%.?liS.
ir. =!^; ... [8]

!.#., the abscissa of the middle point of the line joining two

given points is half the sum of the abscissas of those points,

and the ordinate is half the sura of their ordinates.

The remarks in Art. 28 are well illustrated by formulas

[4] to [8].

EXERCISES

1. By means of an appropriate figure, derive fortnulaa [7] indepeiid-

ently of [6].

2. The point P«5(2, 3) is one third of the distaoos from the point

PiSC"!, 4) to the point P,=(x, ^,) ; to find the codrdinates of P^
Here P^ and P, are given, with Xj = - 1, jfj = 4, x, = 2; j^ = 3, also

M, = 1, and 114 = 2 ; therefore, from [tf],

^hich give x^ s 8 and jr^ = 1 ; therefore the required point P, is (8, 1)

3. Find the points of triseetion of the line joining (1, -2) to (3, 4).

4. Find the pofait which divides the line from (1, 8) to (-% 4)

externally into aagmeots whose nnroerieal ratio is 3 : 4.

Here X| = 1, jfj = 3, x, a -2, jf« 3 4, Mi = 3, and Mg » 4, bttt the

point of division heing an external one, the two segiiwuti bm oppo>

«iu>ly tiireetsd ; therefore one of ths nvmbsn 8 or 4, ny 4, Bust haw
the ininus sign prefixed to it Sobttitatiiif these vmlues in [f],

the required point is, therefore, P«s(lO, 0).
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The same result wuuld have been obtained had m, = 3, instead of

114 = 4, Iwen given the minus sign ; or, again, formulas [7] could have

been employed to solre this problem.

5. Solve Ex. 4 directly from a figuro, without using either [0] or [7].

6. Find the points which divide the line from (1, 5) to (2, 7) inter-

nally and externally into segments which are in the ratio 2 : :3.

7. A line s4B is produced to C, so that BC = \AB; if the |)oint8 A
and B have the coordinates (5, 6) and (7, 2), respectively, what are the

coordinates of C?

8. Prove, by means of Art. 30, that the median lines of a triangle

meet in a point, which b for each median the point of triitection nearest

the side of the triangle.

31. Fundamental problems of analytic geometry. The

elementary applications already considered have indicated

how algebra may be applied to the solution of geometric

problems. Points in a plane have been identified with pairs

of numbers,— the coordinates of those points,— and it has

been seen that definite relations between such points corre-

spond to definite relations between their coordinates.

It will be found also that the relation between points,

which consists in their lying on a definite curve, corre-

s|)onds to the relation between their coordinates, which

consists in their satisfying a definite equation. From this

fact arise the two fundamental problems of analytic geom-

etry :

I. Given an equation^ to find the corresponding geometric

curvBy or locu$.

H. Given a geometric curve, to find the corresponding

equation.

When this relation between a curve and its equation has

been studied, then a third problem arises :

III. To find the properties of the curve from those of its

equation.
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The first two problems will be treated in the two

in^ clmptem, while the reinaiiiitig oliaptert of Part I will

be ooocernvcl chiefly with the third prublciii. In thia appli-

cation of analytic tuothodis however, only algebraic e(|ua-

tiona of the Hmt and second degrees will for the moHt pari

bo conMidered. In Chapter XIII ia given a brief study of

other important equations and curves.

EXAMPLES ON CHAPTER II

1. Find the arm of the qaadrilalerml who«e rwtiem are th« point*

(1. 0), (3, 1). (-1, 16). and (-4. 2). Draw Uie figurv.

9. Find the lengths of the tidet and the altitude of the boeeelet

triangle (1, 5), (5, 1), (-0, -0). Find the area l»y two different method^

•o that the resulto will each ha a check on the other.

3. Find the coordinates of the point that dirides the line from (2, 9)

to (1, -6) in the ratio 3:4; in the ratio 2: -3; in the ratio 8: -2.

Draw each figure.

4. One extremity of a straight line is at the point (-3, 4), and the

lim> IN flivuled by the point (1, 6) in the ratio 2:3; find the other ex-

tremity of the line.

5. The line from (-^, -0) to (3, -1) is divided in the ratio 4 : 6; find

the distance of the point of division from the point (-4, 6).

0. Find the area and also the perimeter of the triangle whoee vertices

aro the poinU (3, 60»), (5, 120«), and (8, 30°).

7. Show analytically that the figure formed by joining the middle

|)oints of the sides of any quadrilateral is a paraUelogram.

a Shov? thai the poiuU (1. 3). (2. V8). and (2,->/B^ are #»€^niai»-

tant from the origin.

9. Show that the points (I, 1), (-1. -l),and (+ V3, -V5) form an

equilateral triangle. Find the slopes of its sides.

la Prove analytically that the diagooala of a reetaagle are mfuJL

U. Show that the pomto (0, "X), (2» 1). (0, 3), and (-2, 1) are the

vartioes of a square.
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12. ExprMS by an equation that the point (A, k) is equidistant from

(-1, 1) and (1, 2) ; from (1, *i) and (1, -*2). Then show that the point

(I, 0) is equidisUnt from ("1, 1), (1, 2), and (1, -2).

13. Prova analytically that the middle point of the hypotenuse of

a right triangle is equidistant from the three vertices.

14. Three vertices of a parallelogram are (1, 2), ("5,-3), and (7, -6)

;

what is the fourth vertex ?

15. The center of gravity of a triangle is at the point in which the

medians intersect Find the center of gravity of the triangle whose

vertioes are (2, 3), (4, -5), and (3, -6). (cf. Ex. 8, p. 40.)

16. The line from (x,, y{) to {Xp y,) is divided into five equal parts

;

find the points of division.

17. Prove analytically that the two straight lines which join the

middle points of the opposite sides of a quadrilateral mutually bisect

each other.

la Prove that (1, 5) is on the line joining the points (0, 2) and (2, 8),

and is equidistant from them.

19. If the angle between the axes is 30**, find the perimeter of the

triangle whose vertices are (2, 2), (-7, -1), and (-1, 5). Plot the figure.

20. Show analytically that the line joining the middle points of two

sides of a triangle is half the length of the third side.

21. A point is 7 units distant from the origin and is equidistant from

the points (2, 1) and (-2, -1) ; find its coordinates.

22. Prove that the points (a, h + c), (6, c + a), and (c, a + 6) lie on

the same straight line. (cf. Ex. 2, p. 37.)



CHAPTER III

LOCUS OF AN EQUATION

32. The locus of an equatloQ. A pair of numbers «» jf is

represented geometrically by a point in a plane. If these

twu numbers (j% y) are variables, but connected by an equa-

tiun, then this equation can, in general, be satisfied by an

iufiuito number of pairs of values of x and jf, and each pair

may be represented by a point. These points will not,

however, be scattered indiscriminately over the plane, but

will all lie in a definite curve, whose form depends only

upon the nature of the equation under consideration ; and

this curve will contain no points except those whose co-

unlinates are pairs of values which when substituted for

T und y, satisfy the given equation. This curve is called

the locus or graph of the equation ; and the first funda-

mental problem of analytic geometry is to find, for a given

equation, its graph or locus.

33. lUustratiTO exAmples : CftrtMUn oodrdinates.

(1) Gittn tkt equation x + 5 s 0, to Jind its locus. This equation in

tstiffied bj the psirt of raluet x, s -> 5, fi = ^ t <« = - 5, jr, = 3

;

T, s - 5, y, = — 2; ete^ that is, by every psir of vmliiea for which x s — &.

Such poinia aa

P,5(x,,y,)a(-5,a).

P,= (x^3f,)a(-M).

all U« on th« line A/.V, parallel to the jhazia, and at the diatanea 6 on
the negatiTe aide of it,~Uiia line attisittn IndaAiiiteiy ia both

4S
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X

li

Fio.U.

tlonn. Bloreover, each point of ^fN has fcr its abeoiasa ~'5, hence

the coordinates of each of its points satisfy the equation x + 5 = 0.

In tlie chosen system of coordi*

at' uateSf the line MN in called the

locus of this equation.

Similarly, the equation x—b
=0 is satisfied by any pair of

values of which x is 5, such as

(5, 2), (5, 3), (5, 4), etc. ; all the

corresponding points lie on a

straight line AfN'f parallel to

the ^axi.s, at the distance 5 from

it, and on its positive side; t.e.,

A/'AT is the locus of the equa-

tion X — 5 = 0.

(2) Giren the equations y ± 3 = 0, to find their loci By the same

reasoning as in (1) it may be shown that the locus of the equation

jf + 8 = is the straight line A B, parallel to the x-axis, situated at the

distance 3 from it, and on its negative side. Also that the locus of the

equation y — 3 = is CD, a line parallel to the x-axis, at the distance

3 from it, and on its positive side.

More generally, it is evident that in Cartesian coordinates {rectangxdar

or oblique), an equation of the first degree, and containing but one variable,

represents a straight line parallel to one of the coordinate azes.^

(3) Given the equation 3x - 2y + 12 = 0, to find its locus. In this

equation both the variables api»ear. By assigning any definite value to

either one of the variables, and solving the equation for the other, a pair

of values that will satisfy the equation is ob-

tained. Thus the following pairs of values

are found

:

X, = 0, y, = 6 *« = - i» ys = ^
X, = 1, y, = 7J Xe = - 2, ye = 3

ar, = 2, y, = 9 Xj = - 3, y, = l\

*, = 3,y,= 101 x, = -4,y, =
. » • . . < •

r = +ao, y = +oD x = -», y = -oo

Plotting the corresponding points

Pp P,. P„ P, ... , where P, = (x„ y,) = (0, 6),

P,= (x„y,) = (l,7J),etc.,

tbey are all found to lie on the straight line EF, which is the locus of

Ihe equation 3 x - 2 y + 12 = 0.

Fio. 16.
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In Chap. V, it will tm shown thtt, in CviailMi oobrdinatai, m tqq**

ion of th«« fimt <l«gft« in two Ttriablat Alwayi reprtMnU » itraifht lias.

(4) Girtn tk§ 9qittHitm jf* « 4 x, to /n^ itf (ocmc Thb •qnatioo it

bjT MMh of the following pairt of raliMt, foood m in (3) abov*

:

jf^m%y/im 2.8, •pprozimattlj

2, jf« s - S>^a -2.8, approximUelj

4. f«- + -«

X4-2.

r s ^. 00, If s ± OD

and for Any nef^atire rmltie of x th« oorr^

•ponding Talu« of jr ia imaginary.

The oorrwponding pointa are

:

/*iH(0. 0), P,a(l, 2), P,s(l. -^). ete.

All these points are found to lie on the oonre as plotted in Fig. 17.

This ouire is called a parabola^ and will be studied in a later ehapler.

The parabola is one of the eunres obtained by the inten^etioa of a

eireuUr cone and a plane, (of. Appendix, Xot« D.) It will be shown

in Chap. XII that in Cartesian coordinates, the locus of any alge*

braic equation in two Tariables and

of the second degree is a **conio aeo»

tion."

(5) Given the equation^ y = 25 iby x,

to JSnd its locus. A table of logarithms

shows that this equation is satisfied bj

the following pairs of raluet:

X, = 6, y, = 19.4

X, = 7,y, =21.1

X| = 0, yj = - ao

X, = 1. y, =
i^ = 2,y, = 7.6

»4 = 8, y^= 11.9

*t = •*! y» = IS

x.s=5.y,= 17.6

The corresponding points are

:

P,3(a.-flo).P,s(1.0).P,3(2.7.5).

etc ; and the locus of the abore equa^

tioo is approximately given by tba

X. = 10. y, = 25

x^=l^y^ = 29.4

'II = 20. yu = 82^
etc etc

curve drawn through these points as shown in Fig. 1&
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(6) Given the equation p = tanz, to Jind iti locus. By means of a table

of ** natural** tangents it is seen that this equation is satisfied by the

following pain of Talues of x and y

:

Dmum Uaoiam*

Xi = = 0.00 yi =0
x,=10 = 0.17 y, =0.18

X, =20 = 0.35 y, =0.36

X, =30 = 0.52 y^ =0.58

X, =40 = 0.70 ^5=0.84
X. =60 = 0.87 y. = 1.19

X, =60 = 1.05 y, = 1.78

xi=70 = 1.22 y, =2.75

X. =80 = 1.40 y. =5.67

Xjo = »0 = 1.57 yio = «>

'11 = -10 = - 0.17 yu = -0.18

Xu = -20 = - 0.35 y« = -0.36

Xj, = -30 = - 0.52 y« = -0.58

etc. etc. etc.

The corresponding points are:

Pi= (0, 0), P,= (0.17, 0.18), P3= (0.35, 0.36), etc.,

and the locus is approximately as shown in Fig. 19.

Y

+f +ir

Fio. 19.

3C Loci by polar coordinates. Analogous results are obtained for a

syttero of polar coordinates, as will be best seen from an example.

Given the equation p = icos$t to Jind its locus.
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This •qaaUoQ \b flJifUd by Um foUowmg p*ira ol raloM, (oaod m in

Alt. 83 (9) and (4) :

•, = p,-4
^«aO* ^-i9%/3«S.464>

B^m^dtf ft^m 8.40 -f

*--«• p,-2
^,--4fiP /II-2.84.

•le. eie.

TIm corwpopding poinU ara

:

F^A
/»,«(4,0»); P,a(8.4«+,80»); P,«(2,W); P4b(2.8+. 4»0;

P^aPtBtbepolaOaCO. ±W); P,«(8.4«+. -8(y»); Pra(2, -600;
etc

All tbete points are found to lie on the eireamferenoe of a circle

whoee radius is 2, the pole being on the circumference, and the polar axis

being a diameter. This circle is the locus of the equation p = 4 cos 0.

EXERCISES

Plot the loci of the following equations:

1. ysra

3. ltr =

7. 2« + yi»4.

a x + Jf = 4.

a x-y = a

4. 8xa7. 10. x«-f« = 4.

6. X + Jf = 0.

11. 2x« + y« = 4

12. r = 82l.

la (• + •*»&
14. M«+r=:a
15. « = i8r>.

la '+?=J.
2 3

17. p = 8.

la poos(^-4<n = 5,

19. f = -x«.

35. The locus of an equation. By the process illustrated

above, of constructing a curve from its equation, the tirat

conception of a locus is obtained, vuu:

(1) The locuM of OH eqruatiim eomiaifdi^ two pariahUM u
the line^ or set of linee, tthieh containt all the points ickooe

eod'rdinatee $ati»fy the jjiven equation^ and which contains

no other points. It is the place where all the points, and
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only those points, are found whose coordinates satisfy the

given equation.

A second conception of the locus ot an tMjuatioii coiiu's

directly from this one, for the line or set of lines may l)e

regarded as the path traced by a point which moves along

it. The path of the moving point is determined by the

condition that its coordinates for every position through

which it passes must satisfy the given equation. Thus the

line EF (the locus of eq. (8), Art. 33) may be regarded

as the path traced by the point P, which moves so that

its coordinates (x, y) always satisfy the equation

3a:- 2y + 12 = 0.

Thus arises a second conception of a locus, viz.:

(2) The locus of an equation is the path traced hy a point

which moves so that its coordinates always satisfy the given

equation.

In either conception of a locus, the essential condition

that a point shall lie on the locus of a given equation is,

that the coordinates of the point when substituted respectively

for the variables of the equation^ shall satisfy the equation

;

and in order that a curve may be the locus of an equa-

tion, it is necessary that there he no other points than those

of this curve whose coordinates satisfy the equation.

36. Classification of loci. The form of a locus depends

upon the nature of its equation ; the curve may therefore

be classified according to its equation, an algebraic curve

being one whose equation is algebraic, and a transcendental

curve one whose equation is transcendental. In particular,

the degree of an algebraic curve is defined to be the same

as the degree of its equation. The following pages are
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uncurnod chiefly witli algebraio otirTat of the first and

second degrees.

37. Constraction of loci. DiKussion of equstions. The
proi-eMM (if cuimtruotiiig a loous by plotting separate points,

and then euiuiectiuf^ them by a smooth curve, is only ap-

proxiniute, and in long and tedious. It may often be short-

ined by a conaideratiun of the peculiarities of the given

' «)uation, such as symmetry, the limiting values of the vari-

ibles fur which both are real, etc. Snch considerations will

•fton 8how the general form and limitations of the curve;

iiid, taken together, they constitute a discuMnon of tks equa-

tion.

liie points where a locus crosses the coordinate axes are

ilmost always useful ; in drawing the curve, they are given

by their distances from the origin along the respective axes.

These dbtanoes are called the intercepts of the curve.

The following examples may serve to illustrate these

omceptions.

(1) DiacMMMum oftlu equation 8x - 2^ + 13 s [see (3) Art 88].

InteroeptA : if x = 0, th«n jf a 6 ; henoe the y-intercept b 6

(sM Fig. 16) ; if jf = 0, then x = — 4 ; henoe the x^iniercepi b 4.

The equation may be written : x = f jf — 4, whieh showt that ts jr

inereaaee oontinuotuilj from to oo , x iocresaet ooatinaotuly from - 4

to QD ; therefore the loens panes from the point P, through the point /*,,

and then reeedes indefinitely from both axes in the first quadrant Writ-

ten as abore, the equation abo shows that as y deeresaes from to - «

,

X abo decreases from - 4 to - oo ; therefore the loeus pastes from P, into

the third quadrant, receding again indefinitely from both axes. Since

for erery value of jf« x takes but one value {Lt^ each raloe ol f oorre-

spoods to but one point on the oorre), therefore the locus eoBsbte of a

singb branch. The pronf that the locus of any first<legree equation, in

two rariables, b a straight line b giren in Chap. V.

(2) DiMcutsion of Ike equation y* = 4x. [See (4) Art. 88.]

IntercepU (see Fig. 17) : if x s 0, then f s 0, and if f = 0, then x = 0;

TAX. AK. OBOM.^4



60 ANALYTIC OEOMETRT [Ch. III.

henoe the locus cuts esch axis in one point only, and that point is the

origin. The equation may be written in the form y = ± V4lc, which

shows that if x be negative jf m imaginary ; hence there is no point of

this locus on the negative side of the y^ucis.

Again: for each positive value of x there are two real values of y,

numerically equal, but opposite in sign ; hence this locus passes through

the origin, lies wholly in the first and fourth quadrants, and is symmetri-

cal with regard to the x4txis.

The equation shows also that x may have any positive value, however

great, and that y increases when x increases ; these facts show that the

locus recedes indefinitely from both axes,— that it is an open curve of

one branch. It is called a parabola and has the form shown in Fig. 17.

(3) Discussion of the equation x* + y* = a*.

Intercepts : if x = 0, then y = ± a^ and
if y = 0, then x = ±a; hence for each

axis there are two intercepts, each of length

a, and on opposite sides of the origin;

I.e., four positions of the tracing point are

:

A=(n, 0), A' = (~a, 0), B=({\ a), and

This equation may also be written

y = ± Va" - x\

which shows that every value of x gives

two corresponding values of y which are

numerically equal, but of opposite sign

;

the locus is, therefore, symmetrical with regard to the x-axis. It also

shows that, corresponding to any value of x numerically greater than a,

jr is imaginary; the tracing point, therefore, does not move further from

the jNucis than ± a, t>., further than the points A and A '. Moreover,

as X increases from to a, y remains real and changes gradually from

+ a to 0, or from - a to 0; t.tf., the tracing point moves continuously

from Bio Ay or from B' to A.

Again, if x decreases from to — a, y remains real and changes con-

tinuously from + a to 0, or from — a to ; t>., the tracing point moves
continuously from Bio A' or from B' to A'.

Similarly, the equation may be written x = i >/a*^-y^ which shows
that the curve is also symmetrical with regard to the y-axi.s, and that

the tracing point does not move farther than ± a from the x-axis.

From these facts it follows that this locus is a closed curve of only one

branch^ It is a circle of radius a, with its center at the origin ; this curve

will be studied in detail in Chap. VII.
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•i Um Uitm poinU: A m(% 0),

ii) X^acia»uMi</a«#fMCiMf*-U'-3)(x~S)(x-4).
Inlaraepte: If jr 0, Umo f ki ImagiiiAry ; If jr « 0, Umh »

4; baooo Um loom era

i9B(S, 0), Mid Ca(4, 0), And
it tlcMM ttoi out the jHab At aIL

Moreorer, sinw jf b JmigtnArj if

X b MgAtive, thd loeoA Um wholly

cm the potitivt tide of tht f-Axii.

Thb loout b qrmmetrieAl wHh
r«gAid to tho jNub; U luu no

I*oiiit naArar to the jf-Axb

.1; botw«ea A And B It

of A oloMd bnuieh ; And it hAii no

rtsAl poinU botWMQ B Aud C, but

i« AgAin iaaI beyond C. The
(entire loeos contiitA, then, of a
rioied otaI, And of An open brAnch

^vhlch reoedoA indefinitely from

lK>ih Axat (tee Fig. 33).

(5) JXtruMJon of the equation y s tAu x. Hib aqiiAtioo Iiaa Already

been exAminod in (6) Art. 3a, but in pfActioe it niAy be mueh mora eimply

plottMl by the following method:

Deecribe a eirde with unit rAdioi; drAw the diAineter AOCt And the

lines OBp OB, OB^ —, meeting the tAngent A T
in the poinU T^, T, r„ — ; then the tangent of

the Angle AOB^ \i M^B^iOM^zz AT^xOA (Art.

14), And, Hinoe OA = 1, iu taIuo b grAphicAlly rep-

resented by A Ty So Abo

tan iiOfi, = M^B^'.O.lf^ - AT^:OA = AT^.h

And niAy be gniphicAlly repreeented by A T^ In

the sAme WAy, AT^ AT^ AT^ — Are the tAngenU

of the Angles AOB^ AOB^ AOB^ .... Again,

since Angles At the center of a circb Are propor-

tionnl to the atos intercepted by their sides, A Tp
AT^ ..• msy be ssid to be the tangenU of the

arcs .4B,, AB^"*; U^AT^:stan ABp if T, = tan

ABp*'-. Therefore the coSrdinates of the points

P^3(AB^, at;), Pte(AB^ ilT,),... sAtbfy the

given equntion, And if a sufficient number of points,

whose cotfrdinAtes atb thus determined, be plotted,

they wIUaU lie oo aonnra lUn that in Fig. 10.
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From what has just lM»on said it w clear that y = if x = 0, hence the

carve goes through the origin ; when x increa»ea continuously from to

^ jf inereases oontinuouiily from to oo, but when x increases through ^,

y paaaes suddenly from + co to — oo, and the curve is discontinuous for

Uiat value of z. So also when x increases continuously from - to ^,
jr increases continuously from — oo through to -l- <»» and is again dis-

continuous for X s -^. The locus consists of an infinite number of

Huch infinite, but continuous branches^ separated by the points of discon-

tinuity for which x = ±^ x = ± —, x = ± ^, •.-.

The other trigonometric functions, y = sin x, y = sec x, etc., can all be

plotted by a method analogous to that above.

EXERCISES

Construct and discuss the loci of the following equations

:

- £? _ ^ _ 1 3. y = sec X. 7. v = sin u.

^ ® 4. x2-y«=a«. 8. x* + y« = 0.

a.£! + y-? = l.
«-^'-y' = 0-

9. 2^ll=5-^ (cf.Ex.8,p.8.)
4 U 6. 4x«-yi»=0. y-2 ^ ' i

.»

38. The locus of an equation remains unchanged: (a) by

any transposition of the terms of the equation ; and ( p) by

multiplying both members of the equation by any finite con-

stant.

(a) If in any equation the terms are transposed from one

member to the other in any way whatever, the locus of the

equation is not changed Uiereby ; for the cotirdi nates of all

the pointH which satisfied the equation in its original form,

and only those coordinates, satisfy it after the transpositions

are made. [See Art. 35 (1).]

(yS) If both members of an equation are multiplied by any

finite constant ky its locus is not changed thereby. For if

the terms of the equation, after the multiplication has been

performed, are all transposed to the first meml)er, that mem-

ber may be written as the product of the constant k and a
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fat tor rontainiii^ the variablai. ThU product will vanUh if«

uii«l tiitly if, iu soconrl fnctnr vaniJiheii ; but thin factor will

vuiitHh if, unci only if, tlio variabluM which it ooiiUiiiM are the

<MMinliiiate8 of {MinU on tho looua of the original equation.

i IcniH) tho cocmlinates of all poinU on thu locuii of the ori-

ginal oqnation, and only thoae coordinaUsa, aatiafy tho equation

(^tr it had been multiplied by k ; henoo the looua remaina

unchanged if iU equation in multiplied by a finite oonatant.

39. Points of intersection of two loci. Since the iKiinta of

tntornoction of two loci are jiointa on each looua, therefore

tho ccNtnlinatefl of theoe points must satiafy each of the two

i^quatiotiH ; moreover, the oodrdipates of no other points can

>;iti8fy both equations. Hence, to fuid the codrdinates of the

I>oints of intersection of two curves, it is only neoeasary to

regard their equations as simultaneous and solve for the

coordinates.

E.g^ Find the coordinates of the poinU of inlarawtioo, P, and P^ of

the loci of X - 2jr 8 0, and jf^ = x. Tho point of intenection P,= (jrp jf|)

b on both curves,

X, 2y, = 0.*ndy,« = X|.«

Solving these two equations,

x, = 0, or 4, and jf| = 0, or 2

;

!>., P| = (4, 2) and P,s(0,0) are

two points, tbe coordinates of which

satisfy each of the two given equa>

tioti^; therefore they are tbe points

uf inierseotion of the lod of these

equations.

cxERCiaes

Fiud the itoinU of interseotion of the following pairs of cunrat;

7x-llf+l-0, ^ J' + f = ».

ffesJM.

<7x-lljf
U + y-2 t*-f

• If X and y are regarded as the ooOidlBatat of the point of inlemctioo,

Um subscripts may be omitted heta.
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_ _ < p = cos ^,

l3x + , + « = 0.

.J = 9eo.(45»-,J).

13. Trace carefully the above loci ; by measurement, find the coordi-

of the points in which each pair intersect; and compare these

results with those already obtained by computation.

40. Product of two or more equations. Given two or more

equatianM with their second memhers zero ; * the product of their

firnt members^ equated to zerOy has for its locus the combined

loci of the given equations.

This follows at once from the fundiimental relation be-

tween an equation and its locus (see Art. 35 (1)), for the

new equation is satisfied by the coordinates of those points

which make one of its factors zero, but it is satisfied by

the coordinates of no other points; t.6., this new equation

is satisfied by the coordinates of points that lie on one or

another of the loci of the given equations.

The following example illustrates this principle in the

case of two given equations.

Let the given equations be

:

z 4- y = . . . (1) and a: - y = . . . (2)

• If equations whoee second members are not zero are multiplied together,

member by member, the resulting equation is not satisfied by any points

of the loci of the given equations except those in which they intersfct each

other ; the new equation therefore represents a locus through the points of

>D of the loci of the given equations.
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Tm,WL

Equution (1) repreaenta ilie

Mtmight line C'A and equation

i'l) the line AB^— biaeoting re-

{Kutively the angled between the

ixeti. It is to be ahowu that the

• |iaition

(* + y)(*-y)-o. . . (8)

(or, what la the same, j>— ^=s 0),

formed from equations (1) and (2),

hiui for ita locus both Uiese lines.

Proof. If Pi a(*|, y,) is any point on CD, then ita co-

ordinates satisfy equation (1), hence Xj + y, « 0, and there-

I ire (ir, -f yi)(*i — yi)= ^ ? which shows that P| is a point

•f the locus of equation (8). But since P, was amy point

'f CA therefore the coordinates of every point on CD satisfy

i(uation (8); i.e., all points of CD belong to the locus of

quation (8).

In the same way it is shown that AB belongs to the

loous of equation (8).

Moreover, if Pg = (x,, y,) be any point not on AB nor

M!i CD, then 2, + y^ ^ 0, and r, — y, «^ 0, hence

I.0., P, does not belong to the locus of equation (3).

Hence the locus of equation (8) contains the loci of equa-

tions (1) and (2), but contains no other fioints.

The above theorem may be stated briefly thus : if «, v, w,

tc, be any functions of two variables, then the equation

uvw ' '" aO has for its looua the combined loci of the

equations ii » 0, v a 0, 19 « 0, etc.

Note. Wben possible, factoring tlie iint member of an eqostkm,
whoee Meond member is sero, simplifies the work of finding the loeat oC

the given equation.
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EXERCISES

What loei are represented by the following equations?

1. xf = a a. ^-*? = 0. 3. 3x« + 2zy-7x = 0.

4. 6jy-2x«y= 0. 5. x*-2x+l=0. 6. (x«+ y«-4)(y«-4x«)=0.

CL Locus represented by the sum of two equations. Sup-

pose the equations

2y-x = . . . (1), and y»-a;=0 ... (2)

are given. Their loci are respectively AB and DP^P^C
(Art. 39), and it is required to find the locus of their sum ;

I.e., of 2 y — a; + y2 — a: = 0,

or, what is the same thing, of

^2^2y-2a: = ... (3)

The locus of this last equa-

tion passes through ail the

points in which AB anci

DP^PiC intersect each other.

For let Pi=(arj, yj) be one of

these points, then since P,

lies on AB^ its coordinates satisfy equation (1); i.e.,

2yi-a:i = 0; . . . (4)

and since P^ lies on DP^P^C^ its coordinates satisfy equa

tions (2); i.e.,

y,«-a:i = 0; ... (5)

therefore, by adding equations (4) and (5),

y,3_,.2yj-2a:i = 0. ... (6)

This \a^\. equation pmves (Art. 35 (1)) that P^ = (xi^ y{)

is on the locus of equation (3); i.e., the locus of equation

(8) passes through Pi=ix^, y{).

Similar reasoning would show that the locus of equation

Fig. 26.
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(3) paaaes through every other {K>int in which the loci of

quatioiui (1) and (2) intersect each other.

Ill precisely the same way it may be proved generally that

the loeuM of ths »um of hffo $quaiifmi pa$M€i tkrougK all ths

poinU in which the loci of the two given equationa intereeei

leh other.

If either of the given equationii {^i) or (*J) )i.i<i )h«(i intiiti-

pUe<l by any conatant factor before adding, tin* alntvc nNuton-

iiig would still have led to the same conclusion ; in fact,

tlii8 theorem may be brielly, and more generally, stated thus

:

if u anJ V are OMjf funeiUnu ^ the two wariabUe x and y, and

k u ani/ eomtant^ then the heu$ of

u-^kv^O

fuiMM^a through fvery pointy of interoection of th^ loei qf

II B and V a 0.

For, let the locus of the equation u s be the curve

ABC^ the locus of v a be the curve DBF, and let

/': = («b yi) be any one of

')ie points in which these

iirves intersect each other.

Then the equation

is satisfied by the coordi-

tates of the point P| =
r„ y,), because if these

• »6rdinate8 be substituted for x and y in the functions u and

r they must make both these functions separately equal to

zero. Therefore the locus of m 4- ^ « passes through

very point in which the loci of u < and v • intersect

each other.
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EXERCISES

1. Verify Art 41 by first finding the coordinates of tho i^ints of

intersection of the loci of equations (1) and (2), and then substituting

these coordinates in equation (3).

2. Find the equation of a curve that passes through all the points in

which the following pairs of curves intersect

:

W
J;B« + 2x + y« = 0. f

^^^ iy = 2cosx. f

8. Find the equation of a curve through all the points comnaon to the

following pairs of curves

:

5x« = 4y,)
f.

3p=2cos^,)

Note. It is to be observed that the method g^ven in Art. 39, for find-

ing the point of intersection of two curves, is an application of tho

theorem of Art. 41. For the process of solving two simultaneous equa-

tions, at least one of which involves two variables, consists in combining

them in such a way as to obtain two simple equations, each involving

only one variable. Now each of these simple equations represents an

elementary locus,— one or more straight lines parallel to the axes, if the

coordinates are Cartesian ; circles about the pole, or straight lines through

the pole, if the coordinates are polar,— and these elementary loci deter-

mine, !>., pass through, the points of intersection of the original loci.

To determine the points of intersection, then, of two loci, the original

loci are replaced by simpler ones passitig through the same common
points. E.g.t the points of intersection of the loci of Art. 39,

2y-x = . . . (1), and y«=r, ... (2)

are g^ven by the equations

(.V*-x)-(2y-x)=0 and [(2y)a - x^] - 4 (y^ - x) = 0,

that is, by y« - 2 y = 0, and x« - 4 x = 0,

which may be written

y(y-2) = . . . (3), xfx-4) = 0. ... (4)

Bat the locus of equation (3) is a pair of straight lines parallel to the

x-axlB, and the locus of equation (4) is a pair of straight lines parallel

to the y-axis ; and these loci have the same points of intersection as the

loci (1) and (2).
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EXAMPLES ON CHAPTER III

1. An> the poinU (3, D), (4. 0), sod (ft, 5) on llMloeutof 3«-f2f*S6f

a. U the i»int /?. 1^ oniheloeusof 4jr«49/«2a«?

3. The ordinato of % MrUin point on tho loent of«*-l-y'v2ftit4;

wliAt it iu AbwiiHiT What b the ortlinata if tho nbteiMi it «•?

Find by the method of Art. 80 whero the foUowiog loei out th« nam
•( X and jf.

4. f (jr-2)(x-3). ft. 102« + 0f*=il44.

6. «*+Ox-f jf'B4jf-»-3.

Find by the method of Art. SO where the following loei ent the polar

axis (or initial line).
*

7. p«.4sin*^. a pSs<i*ooe2^.

9. The two looi ^-^= 1, _ + ^=4 interMot in tour pomu; ftad
4 4 « *

the lengths of the sides and of the diagonals of the quadrilateral formed

by these points.

10. A triangle is formed by the pointe of intersection of the loci of

x + y = a, x-2y = 4a, and y — x + 7o = 0. Find its area.

U. Find the distance between the points of interseetion of the ennres

:»x-2y + e = 0, andx< + y* = 0.

12. Does the locus of y* = 4 x intemect the locus of2x-f3y-f2aOT

13. Does the locus of x* - 4 y + 4 = cut the locus of x< •»• y« = If

14. For what values of m will the curves x^ -f y* = 9 and y = 6 x 4- ai

not intarteot? (cf. Art. 9.) Trace these curves.

15. For what value of h will the curves y* = 4 x and y = x •(- 6 iutei^

M«t in two distinct points? in two eoincident points? in two imaginary

l«oints (i.e., not intersect)?

16. Find those two values of c for which the points of intersection of

the curves y = 2 x + c and x* + y* = 25 are eoincident.

17. Find the equation of a curve which passes through all the pointa

of int4>nioction of x* -f y* = 25 and y* = 4 x. Test the eorreetoess of the

result by finding the coordinates of the pointa of intanaetioo and tnl^

stituting them in the equation just found.
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IOl Write an eqaatton which shall represent tho combiued loci of ( 1 ),

(2), aiid (3) of Art 87.

Discuss and construct the loci of the equations

:

19. (x«-y«)(y-tanx) = 0. 22. y = x«. 25. p« = a»co82d.

aO. ««-y« = 0. 23. y« = x«. 26. p =3^.

21. x«-y< = 0. 24. y =10". 27 p =a8in2d.

28. Show that the following pairs of curves intersect each other in

two coincident ix>ints; i.«., are tangent to each other.

(y»-10x-6y-31=0.)
(^>|2y-10x = 47. 1

(B^ JO'* - 4y« + 54;r - 16y -f 29 = 0,)

29. Find the points of intersection of the curves

2a » 25 9



TBI EQUATION OF A LOCUS

42. The equation of a locus. The seoond fundamental

problem f>f aniilytio geometry ia the reverse of the first

(of. Art. 31 )« and is usually more difficult. It is to find,

for a given geometric figure, or locus, the corresponding

«|uation, t.e., the equation which shall be satisfied by the

«M»rdinatcH of every point of the given locus, and which

iiall not be satisfied by the coordinates of any other point.

1 he geometric figure may bo given in two ways, viz.

:

(1) As a figure with certain known properties ; and

(2) As the path of a point which moves under known

conditions.

In the latter case the path is usually unknown, and the

oniplete pn>blem is, first to find the ecjuation of the path,

md then from this equation to find the properties of the

urve. This last is the third problem mentioned in Art. 31.

The two ways by which a locus may be ** given" corre-

>f>ond to the two conceptions of a locus mentioned in Art.

>5, and they lead to somewhat different methods of obtaining

the equation. The first method may be exemplified clearly,

and most simply, by first considering the familiar cases of

the straight line and the circle.

43. Equation of straight line through two given points.*

I^t Py s (8, 2), and P, s (12, 5) be two given poinU ; and

«^ 8m slw Art 61.

61
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let P s (ar, y) be any other point on the line through P,

andP,.

Draw the ordinates M^Py^ MPs and M^P^s and throujjh

P, dniw P^N parallel to the ar-axis, meeting MP in ii and

M^^ in ^.
r

A-^

3^J^ [....w;

•K %^
\

J
^

o it.

Fio.fflS

M,

Fia.aA

The triangles P^RP and P^R^P^ are similar, hence

RP_^P^ . MP-M,P, ^ OM^ OM,
R^P^ P^R; **^"

iltf^Pa - ifefiPi OJW, - OM^

Substituting for 3fP, OJ/, M^P^^ OM^^ etc., their values,

this equation becomes

y-2 a:-3
6-2 12-3'

which reduces to 3y 3 = 0. (1)

This is the required equation of the straight line through

Pj and P,, because it fulfills both the requirements of the

definition [cf. Art. 35 (1)]; i.e., it is satisfied by the coordi-

nates of any (i.e., of every) point of this line, Ixjcause x^y are

the coordinates of any such point ; and it is not satisfied by

the coordinates of any point which is not on this line, because

the corresponding constructions for such a {X)int would not

give similar triangles, and hence the proix)rtions which led

to this equation would not be true.

That equation (1) is not satisfied by the coordinates of
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any {loint not on the line thrtiii^h P^ and P^ may aIso be

seifD am followH

:

let /*as(^,y,)

lie any point not on the

line through P^ and P^^

the ordinate M^P^ will

iiHM't P^P^ in some jMiint

P^ B (X4, y^), for which

7^ X, but y^^lfi' Since P^ is <m tlie line P^P^ it*

co6rdiuatM satiafy equation (1), therefore

••• 8yg - *, - 8 ¥i 0;« [since r^ = r, and y^ ^ yj
hence the coordinates of P^ do not satisfy the equation

8y-jr=.8.

44. Equation of straight line passing through given point

and in given direction.! I^*t P^ s (5, 4) be the given fKiint,

let the given line through P^ make an angle of 30^ with the

r-axis, and let P s{z^ y) Ix) any other {)oint on thin line.

Draw the ordinates M^P^ and MP, and through P^ draw

/^i/2 parallel to the x-axis to meet MP in R. Then

• ThU pntnf iliow* dearly that if ttie oo6rdlnatcs of any point o« tbo

•iTAlRht line through P\ and P, are mibstitated for x and y in equation (1)

t!ir tinit member will be equal to aero ; if the ooOrdinatet of any point bdom
t!ii4 line are eo eubiiUtuted the llrM member will be negatlTe ; and if the ooOr-

linatea of any point ahowe this Une are to subetltnled the flnt member will bo

(KMlUte, This line may then be regarded aa the twnndary which aepaimlM

that part of the plane for which Sy - z ~ 3 is negative from the pcirt for

irhirh thla function ia poaiUve. Beoaaae of thia fact thai aide of Uiia line oa
whih A liea may be called the acfflCfMfltft, and the other the /MttieeaMt.

t Sea also Alt. 68.
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Substituting for M^Py MP, OM^y OM, and angle RP^P
their values, and remembering that tan 30® =?— = |^8
this equation becomes V5

»^»-f^ t.e., a: - VB y - 6 -f 4V3 = 0.*

The equation just found is satisfied by the coordinates of

any point on the given line, but is not satisfied by the coor-

dinates of any point that is not on this line (cf. Art. 43);

hence it .is the equation of the line (cf. Art. 35).

45. Equation of a circle; polar coordinates.! In deriving

tlii8 e(pijiti()!i, let polar coordinates be employed, merely for

variety, and let the pole be taken

on the circumference, with a di-

ameter OA extended for the ini-

tial line. Let P = (p, ^) l>e any

point on the circle,J and let r be

the radius of the circle.

Connect P and ^4 by a straightFio.a.

• The positive side of this line is that side on which the origin lies (cf.

footnote, Art. 43).

t See also Art. 08.

t Except in elementary geometry, the word "circle " is employed by most
writers on mathematics to mean ** circumference of a circle.*' It will be so

used in this book.
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Hue; then, iu triangle AOJ\ angle OPA in a right aogla^

AOPwmB, OPw^p, and OP . OX - coa ^ ; U.,

luMlCO pwm2ro(M$, (1)

liquation (1) ia aatiafied by the fxilar courtlinat<» of every

]H>iiit on the circle ; but U not aatbfied by tho coordinates

of a jMiint Q not on the circle, ainco angle AQO is not a

right angle. Therefore Va\, (1) iH the equation of this circle

(of. Art. 35).

EXERCISES

1. i' i.ul tho equation of the straight line through the two points 0' ^)

and (0, 1 1 ) ; through the pointo (-% 5) and (3, 8). Whkh is the poti-

tivt aids of eaeh line?

2. Find the equation of tho straight line through the two points (2, S)

and (~2, 3). Through what other point does this line pass? Dom
tho equation show this fact?

3. Find the equation of the straight line through the point (5,-7),

and making an angle of 45** with the x-axis ; making the angle - 45° with

thexHucis.

4. Find the equation of the line through the point (-«, "2). and

making the angle 150* with the r-axis.

9. Constmei the circle whose equation is p = 10 cos^.

6. With rectangular coordinates, find the equation of the circle of

radius 5, which passes through the origin, and has its oenter on the

N its positive side outside or inside?

46. Equation of locus traced by a moving point. In the

problems given above, the geometric figure in each case was

completely known ; and, in obtaining its equation, use was

inndo of the known proi>erties of similar triangles, triangles

inscrribed in a semicircle, and trigonometric functions. In

• >ii!\ I few cases, however, is the cur^'o so completely

known ; in a large class of important problems, the curve

TAK. AM. OaOM.—
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U known merely as tlie path traced by a point which moves

under given conditions or laws. Such a curve, for instance,

18 the path of a cannon ball, or other projectile, moving

under the influence of a known initial force and the force of

gravity. Another such curve is that in which iron filings

arrange themselves when acted upon by known magnetic

forces. The orbits of the planets and other astronomical

bodies, acting under the influence of certain centers of force,

are important examples of this class of ** given loci.**

In such problems as these, the method used in Arts. 43 to 45,

cannot, in general, be applied. A method that can often be

employed, after the construction of an appropriate figure, is:

(1) From the figure, express the known law, under which

the point moves, by means of an equation involving geo-

metric magnitudes ; this equation may be called the " geo-

metric equation."

(2) Replace each geometric magnitude by its equivalent

algebraic value, expressed in terms of the coordinates of

the moving point and given constants ; then simplify this

algebraic equation, and the result is the desired equation of

the locus.

47. Equation of a circle : second method. To illustrate

this second method of linding the equation of a locus, con-

sider the circle as the path traced by a

point which moves so that it is always

at a given constant distance from a fixed

point. From this definition, find its

equation.

-^:^
-^ Let C=(8, 2) be the given fixed

point, and let P = (x, y) be a point that

moves so as to be always at the distance 2J from C. Then

CP =
J, . . . [geometric equation]
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but CP - Vcjr-8>> + (y-2)» (Art. 26, [2]),

. . V^x — «>/ + (y — 2)* —
I

;

[algebraic equationJ

..#.. («-8)«+(y-2)«-y;

henoe 4a« + 4y«- 24«- 16y + 27 - 0.

which 18 the required equation.

The locus of this equation ciiti now Im? plotted by the

methods of Art. 87, and its form and limitutions can be

discuasad aa ia there done for other equations.

EXERCISES

1. Fhid the eqaation of the path traced by a point which moree ao

that it ia alwaya at the diatance 4 from the point (5, 0). Trace the

2. Fhid the equation of the path traced by a point which morea ao

that it ia alwaya equidiatant from the points (-*i, 3) and (7, A) (cf.

Ex. 0. p. 34).

S. A line ia 3 unite long; one end ia at the point (-?» 3). Find

the locua of the other end (cf. Ex. 8, p. 34)

4. A point moTea ao aa to be alwaya equuiisi - \

from the |x)iitt (4, 0). Find the equation of its
;

diacuaa the locua from ita equation.

5. A point morea m> that the sum of its diatancea from the two pointa

(0. v^), (0,- V5) ia alwaya equal to 0. Find the equation of the locua

traced by this moTing point

6. A point movea so that the difference of ito diatancea from the two

poinU (0, >/5), (0, ' Vh) ia alwaya equal to 2. Find the equation of the

lootia traced by thia moving point

46 The conic sections. Of the innumerable hni which

may U- ^mvcii by means of the law governing the motion of

the pMU' rating or tracing point, there is one class of |Mir-

ticular importance ; and it is to the study of this im)>ortant

olft88 that the following l>age» will be chiefly devot«Ml. Th€9€

eurvf$ are traced by a point which m4fP€$ $q that its dittanc*
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from a fixed point alwai/$ bears a constant ratio to its distance

from a fixed straitjht line. These curves are called the Conic

SectionSi or more brieBy Conics« because they can be obtained

as the curves of intersection of planes and right circular

cones ; * in fact, it was in this way that they first became

known. The last tliree examples just given belong to this

class, although it is only in No. 4 that this fact is directly

stated. These loci are the parabola, the ellipse, and the

hyperbola ; it will be shown later that they include as spe-

cial cases the straight line and the circle. f They are of

primary importance in astronomy, where it is found that the

orbit of a heavenly body is a curve of this kind.

The general equation, which includes all of these curves,

will now be derived, and the locus briefly discussed ; in a

subsequent chapter will be given a detailed study of the

properties of these curves in their several special forms.

(a) The eqttation of the locus. Let F be the fixed point,

— the focus (»f the curve ; D'D the fixed

line,— the directrix of the curve ; and e

the given ratio,— the eccentricity of

yP the curve.
' The coordinate axes may of course

^ be chosen as is most convenient. LetF
rio.33.

^'^ ^ ^^^® y-axis, and the perpendicu-

lar to it through F, i.e., the line OFX,
l)e the a:-axis. Let P = (x, y) be an}^ position of the generat-

ing iK)int, and let OF^ the fixed distance of the focus from

the directrix, be denoted by k ; then the coordinates of the

focus are (A:, 0). Connect F and P, and through F draw

LP ])erpendicular to the directrix.

Then FP : LP = e, [geometric equation]

• See Note D, Appendix. t See Note C, Appendix.
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but FP^y/ix-ky-k-^ (Art. 86),

Hid LP M X i [algebraic equivalenU]

1. no V(» - i?)« -h y» - ex

;

•.#., (l-i»«)i* + y»-2fa: + i:*-0. . . . (1)

which iB the equation of the given locos.

ThiB equation in of the second degree; in a later chapter

it will be shown tliat €V€ry equation of the second degree

lietween two variables represents a conic section. On this

account it is often spoken of as the ^second d^ree curve/*

(6) DUeuuion of equation (1).

If xa> 0, then y^ ±k V^^, which shows that this curve

does not intersect the y-axis as here choeen; t.e., a conic

does not intersect its directrix.

If y - 0, then (1 - €«)a* - 2 Jbc + it^ = 0,

k k
whence « —

r

, or a:=- , . . (2)

!.«., a conic meets the line drawn through the focus and per-

^hpendicular to the directrix (the a>axis as here chosen) in

^Baro points whose distance from the directrix are r and

, _ respectively ; these points are called the vertices of the

conic.

Equation (1) shows that for every value of x, the two

orresponding values of y are numerically equal but of

pposite signs, hence the conic is symmetrical with reganl

i«> the X-axis as here chosen. For this reason the line

drawn through the focus of a conic and perpendicular to

the directrix is called the prindpal axis of the conic.

Tho form of the locus of equation (1) depends upon the

value of the eccentricity, e; if « a 1, the conic is called a
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(1) The parabola,

Y

parabola; if «<!« an ellipse; and if e>l, an hyperbola.

Each of thene oases will now be separately considered.

f=l. If e=l, then FP:LP=\,
i.e., FP = LP for every position of

the tracing point,* hence the curve

passes through A,— the point mid-

way between and F^— but does not

again cross the principal axis (cf.

also equations (2), above).

Moreover, when e = 1, equation (1)

becomes
Flo. 34.

t.€. (3)

which is the equation of the parabola, the coordinate axes

being the principal axis of the curve and the directrix.

Equation (3) shows that there is no point of this parabola

k
2'

for which a:<^, and also that y changes from to ±qo

when X increases from - to ao ; hence the parabola recedes

indefinitely from both axes in the first and fourth quadrants.

Its form is given in Fig. 34.

(2) The ellipse, e<l. Equation (1) may be written in

the form

* This property enables one to confltruct any number of points lying on the

parabola, thus: with F as center, and any radius not less than ^ OF, describe

a circle, then draw a line parallel to O F and at a distance from it equal to

the choeen radius ; the points in which this line cuts the circle are points on

the parabola. Other points can be located in the same way. See also Note

B, Appendix.

t Equation (4) enables one to construct any number of points on the



48.J THK KQUATtON OF A LOCUS 71

which ftbowH, § being lets than 1, that y \» imafnnarjr for all

values of » except those which satiafy the condition

i+,<*<rr7'
hence the ellipae lies wholly on the poaitive side of ita direc-

trix, and between two linea which are panllel to the directrix

T
BP^^—

1

L X
-J

/' Vx
A > C J

and distant from it

l+€
and

Fio.35.

k

1-0
ion (4) shows that as x increases from t-^— to

respectively. Equa-

eUlpn. J:#., !•( X s OJT : than the facton /x - --^^ and ^-it x\ ut

tiM two Mfmenta AM
and MA' of the Une
AA\ and faomeiri-

ally their prodooi

<}aals the aqoare of

Ue ordinate if^ of
' he eentioirole of whioh

til' ii the diameter.

U now the point Pon
MQ be eo conatnicted
Uat MP= Vnnii . Jf^. then P b a point on the elUpM whoee eqaatUm le

4) abovv.

9linnarly, any nambei of points on the curve can be oonatnictcd. Thb
method Ahowt aleo that the ordlnates of an eUlpee are leae than, bot In acoo-

ant ratio to, the corretpooding ordlnates of the eirole of which the dUneler
b the line Joining the fwtlOM of the eUipte. See slao Note B, Appendli.
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increases from to — ^
(which value it reaches when

X a ' -j) and then decreases again to 0. The form of the

curve is therefore as shown in Fig. 35, where 0F= k^

OA^
1+e

. OC *
, OA = -A_, and CB = ^^

l-e« 1-e VT-^
(8) TA« hyperbola^ e>l. Equation (1) may also be

written in the form

^ = (.._l)(.__A_)(,__±_), . . (5)

which, when e > 1, shows that y is imaginary for all values

k k
of X between x = and a; = , and that y is real for

1 +e 1 —e
all other values of x. Equation (5) also shows that, as x

T

increases from
1 + ^

to 00, y changes from to ±oo, and

that, as X decreases from
1-e

to — cx>, y changes from to

±00. The form of the curve is therefore as shown in

Fig. 37, where OA = -A_ and OA' = -A_ = _ -i_.
'^ 1+e l~e e-1
Although these three curves difiPer so widely in form, they

are really very closely related as will be further shown in

Chap. XII, and in Note D of the Appendix.
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49. The use of curves in applied mathematics.* Id Chap-

r III it wiiH Hhowii that whenever the relation lietween two

'•IcH, whose values defiend upon each other, can be defi-

.... Mtated, t.«., when the variables can be connected by

!i ei|Uution, then the geometric or graphic representation of

thia relation is given by means of a curve. Such a curve

ften gives at a glance, information which would otherwise

quire considerable computation to secure; and in many

ines it brings out facts of peculiar interest and importance

which might otlierwise escape notice.

The use of graphic methods in the study of physics and

Mgineering, as well as in statistics and many other branches

! investigation, is already extensive and is rapidly increas-

it^. Under the name ** graphic methods** there arc in-

lulcd, however, not only such examples as those already

: veil, where the equation connecting the variables is known,

lit also those where no such equation can be found ; in

t hese latter cases the curves constitute almost the only prac-

tical way of studying the relations involved.

As a simple example of this kind, suppose the temperature

t a patient to be accurately observed at intervals of one hour

;

the numbers representing the hours, t.«., 1, 2, 3, — are

uken as abscissas, and the corresponding numerical values of

the temperatures be taken as ordinates, then a smooth curve

• Irawn through the |)oints so determined will express graphi-

illy the variation of the temperature of this patient with

the time. This curve will also show to the physician what

,
was the greatest and least temperature during the inter-

1 val of the observations, as well as the time when each of

^L« For mo6t ol Uic suggcsUons in this article, and in the eiampkn ibst

^Hlow it, the authors are Indebted to Mr. J. 8. Shearer of the
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these WHS attained. In this problem the curve gives no

new information, but it presents in a much more concise

and forcible form the information given by the tabulated

numbers.

Again, if the distances passed over by a train in successive

minutes during the run between two stations are taken as

ordinates, and the corresponding number of minutes since

starting, as abscissas, a smooth curve drawn through the

points so determined will show at a glance, to an experi-

enced eye, where and when additional steam was turned into

the cylinders, brakes applied, heavy grades encountered, etc.,

etc.

In all such cases the coordinates of the points are taken to

represent the numerical values of related quantities, such as

time, length, weight, velocity, current, temperature, etc., and

the curve through the points so determined usually gives, to

an experienced person, all the information concerning the

relations involved that is of practical importance. It is

in the study of such curves that much of the value of train-

ing in analytic geometry becomes apparent to the physicist

and the engineer. The student should early learn to trans-

late physical laws into graphic forms, and he should give

careful attention to the interpretation of all changes of form,

intercepts, intersections, etc., of such curves.

EXERCISES

1. In simple interest if ;>= principal, /=time, r=rate, and a=amounty

then a =p (1 -f rt). If now particular numerical values are given to

p and r, and if the values of the variable a be taken as ordinates, and

the corresponding values of t as abscissas, then the locus of this equa-

tion may be drawn. Draw this locus. What line in the figure repre-

sents the principal? What feature of the curve depends upon the rate

per cent? Interpret the intercepts on the axes.



«•] TIIR MQUATtOS OF A UiCUH 76

8. GiTe to p and r In mnrrim 1 differviic ralnat and, with tba miim
axes, draw ibt oorwapoadiaf looaa. How do Umm lod diff«rt Wbai
dots Ihair point of intanaetkNi maanf

S. With tho aaoM axM at before draw the eunre for whieh Inlfnttr and
timt are the ooMinatMs how ie it reUtMl to tho eonraa of

1 and 2f

4. Draw and dleeoM the eonre ahowing the rebtioQ between
primeipolt ralt^ and ri«« in the oaae of eompound intereii.

(a) When interett ia oompoonded annually.

09) When interett la oonipound«d quarterly,

(y) Whan intaiesl it ooropounded inatantaneooaly.

A. A wage earner has already been working 10 dayi at fLSO pi»r day,

and oontinnea to do ao SO daya longer, aft«r which he ia idle during 8 days

;

he then worka 14 daya mors at the aame wagee, after which hia emplojer

raiaee his wagaa to ^.50 per day for the next 20 days : using the amonnta
earned aa ordinatea, and the time (in days) as abeoiasas, draw carefully

the broken line which states the abore facta.

W^hat modification of the drawing would be neoeesary to show that

earner forfeited 50 cents per day during his idleness?

C The following table shows the production of steel in Great Britain

and the United Statea from 1878 to 1881.*

1878

1^7l)

1660

1881

VA.

7U> (100,000

long tons)

12.5

15.9

17.4

18.7

15.5

O.B.

10.6 (100,000

long tons)

10.9

18.7

1&6

214)

20.9

18JS

1885

1888

1887

1889

1890

1891

U.8.

17.1

25.0

83.4

29.0

88.8

42.8

89.0

O.B.

19.7

23.4

3141

34.0

36.7

32.5

Utbg time (in years) as abieiMaa, and quantity of steel prodneed

iOObOOO tons per unit) as ordinatea, the aeparate pointa repreeented by

•TUtenby fkon Lambeit*a AnalytSo Geometry.
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the Uble hare been plotted (Pig. 38) and then joined by straiglit lines,

dotted for Great Britain and full for the United States.*

Interpret fully the figure.

tf

u.N
4D

r^AV
/x:y

r \

SB t
/

^ /
f

JBO

A
^ "^^ f

15

^^16^ ^

1878'7»'80-81'88*88*84'85'86'87*88'8»WW
Fio.38.

7. Exhibit graphically the information contained in the following

table on the expense of moving freight per " ton-mile
" on N. Y. C. &

n. R. R. R. from 1866 to 1893.

1866 2.16^ 1873 1.03^ 1880 .54^ 1887 ..56 f

1867 1.95 1874 .98 1881 .56 1888 .59

1868 1.80 1875 .90 1882 .60 1889 .57

1869 1.40 1876 .71 1883 .68 1890 .54

1870 1.15 1877 .70 1884 .62 1891 .57

1871 1.01 1878 .60 1885 .54 1892 .54

1872 1.13 1879 .55 1886 .53 1893 .54

8. The following table gives the population of the countries named
between 1810 and 1896 : f

* In ihe figure the linear unit on the x-axis is 5 times as lon^ as the linear

unit on the y-axis. It will, however, be noticed that the esst'ntlal feature of

a system of coordinates, the "one-to-one correspondence" of the symbol

(2, y) and the points of a plane, is not disturbed by using different scales for

ordinates and abscissas.

t The authors are Indebted to Professor W. F. Wlllcox of Cornell Univer-

sity for these data, which are compiled from the StatefmarCs Year Book for

1897, and from Statistik des DeuUchen Beicha, Bd. 44, 1892.
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BHfTISN bLSl Ijuiim »uw ufc&ODBp nr rsa
QssMAX BHriBa

t '- FbH-ti« T«ir ff^y-im.

W 1801 16,896,000 1816 24^1,000
1811 17,906,000 1837 81,640,000

1821 20,894,000 1817 84,758,000

1831 24,029,000 1856 86,180,000

1S41 26,709,000 1865 89,899/M)0

1851 27,869,000 1872 41A)28/KN>

1881 28,927,000 1876 42,n5,000

1871 81,486,000 1885 46.856,000

1881 84,88^000 1895 62,280,000

1891 87,738,000

Fbajicb Ukitkd Statbs

Ymt Popolatlmi Tmt I'opaUilon Y««r PbpalatiM

1821 80,462,000 1811 6,938,000 1810 7,240.000

1841 84,280,000 1821 6,802,000 1820 9,634/KX)

1881 87,886,000 1831 7,767.000 1830 12.866,000

• 1886 88,067,000 1841 8.175.000 1840 17.069.000

1872 86,108,000 1851 6;»^ooo 1850 23.102.000

1876 86,906,000 1861 5.799.000 1860 31.443,000

1881 87,672,000 1871 5.412.000 1870 88,558,000

1880 38,219,000 1881 5.175.000 1880 ^156.000
1891 88,843,000 1891 4,705^000 1890 62.622.000

1896 88^18,000
1 L

Employing the number of ytwn M ahtciiiitM, and the population

[500.000 per unit,— numbera at left of figure repreaeot millioos) aa ordi>

the aeparate poinU repreaented by the abore table have baeo

(Fig. 39) and then joined by straight lines. The figure gi?ea all

information contained in the UbuUtad resulta. besidea ahowing at a
the relative population of the different ooontriea at any giren

The student may account historically for the abrupt fall in the

reprMwnting the population of Prance ; and for the gradual down-
lendenoj in Um line repraaenting the popuUtion of Ireland.
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EXAMPLES ON CHAPTER IV

X, Kind the e<|UAtioiis of (lit* Aidra of the Irkuiglo wboM
Um poiuu (J, 3). (4. -A). (.). -0) (cf. Art. 4S). TmI Ui

equatiooi by laUilitutioii of Uie given oodrdinalM.

a. Find the equAtionii of Um Mm of tba iqumrB wboee vwrtioat m«
(0. -1). (2, 1), (0, 3), (-.>, 1). Compare Uie equAtiooa of Uie parallrl

*uU>ji ; of perpoiidiottUur tidM.

3. Find the cottrdiiwtM of Um oeotfer of Uie equAre in Kx. 2. Th«'H

t'tn«l the nuliuii of the ciroumioribed eirole, mod (Art. 47) the etiuation of

that cirvlo. Test the retult by finding the oodrdinmtet of the poinU of

iuUsrBection of one of the sidae with circle (Art. 39).

4. Fin<l the equation of the path traced by a point which hi alwaya

equidistant from the pointa

(a) (2,0) and (0.-2): (fi) (3, 2) and (fi. «)

;

(y) («i + *, rt - <») and ((I - ft, a -)- h).

5. A point moreii so that its ordinate alwaya exceeds } of its abarinft

by ft. Find the equation of its locus, and trace the conre.

6. A point moTes so that the square of its ordinate is alwaya 4 tioMa
'1 altsoissa. Find the equation of its locus and trace the cunre.

7. Finl the equation of the locus of a point which mores so that the

sum of its di.Mances from the iiointii (1, 3) and (4,2) is always 5. Trace

and discu.vi the curve.

& Find the equation of the locus of the point in example 7, if the

lifTerenoe of its distances from the fixed points is always 2.

9. Express by a single equation the fact that a point mores ao thafc

t^ distance from the x-axis is always numerically 3 times its djitanoe

I rom the jHUcis.

10. A point moves so that the square of its distanee from tha point

I, 0) is 4 times iu ordinate. Find the equation of its locus, and trace

; lie curve.

U. A point moves to that its distance from the jr^axis is | of its die-

-:uice from the origin. Find the equation of its locus, and trace the

12 A \io\ni moves so that the difference of the squares of its dis>

tanora from the poinU (1, 8) and (4. 2) b ft. Find the equation of its

loeus and trace the curve.
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13. SoIto example 12 if the word "sum*' is substituted for << differ-

enoe."

14. Let i4 = (a, 0), B={h, 0), and A' = {-a, 0) be three fixed poinUi;

find the equation of the locus of the point P = (x, y) which moves so

ihatra* + pi^ = 2ra^.

15. A point moves so that \ of its abscissa exceeds | of its ordinate

by 1. Find the equation of its locus and trace the curve.

16. Find the equation of the locus of a point that is always equi-

distant from the points ("3,4) and (5,3); from the points (~3,4) and

(2,0). By means of these two equations find the coordinates of the

point that is equidistant from the three given points.

17. Let ^ = (-1, 3), fi=(-3, -3), C= (l, 2), D=(2, 2) be four

fixed points, and let P=(x, y) be a point that moves subject to the con-

dition that the triangles PA B and PCD are always equal in area ; find

the equation of the locus of P.

IB. If the area of a triangle is 25 and two of its vertices are (5, - 6)

and (3,4), find the equation of the locus of the third vertex.

19. A point moves so that its distance from the pole is numerically

equal to the tangent of the angle which the straight line joining it to the

origin makes with the initial line. Find the polar equation of its locus

and plot the figure.



CHAI»TER V

THE STRAIGHT LIVX. EQUATION OF FIRST DEGREE
^OD -I- By 4- C s

50i In Chapter III it was shown that to every equatioo

^ between two variables there corresponds a definite geometrio

^ locus, and in Chapter IV it was shown that if the geometric

l(x;ii8 be given, its ec|nation may be found. It still remains

to exhibit in greater detail some of the more elementary loci

ind their equations, and to apply analytic methods to the

btudy of the properties of these curves. Since the straight

r line is a simple locus, and one whose properties are already

well understood by the student, its equation will be ex-

k amined first.

^k In studying the straight line, as well as the circle and

^ftcher second degree curves, to be taken up in later chapters,

^Bt will be found best first to obtain the simplest equation

which represents the locus, and to study the properties of

the curve from that simple or ttandard equation. Then it

^ remains to find methods for reducing to this standard form

.my other equation that represents the same locus.

51. Equation of straight line through two given points. A
nuineriral example of the equation of the line through two

lixiMl |M>iiitH luiH already been given in Art. 43 ; in the pres-

ent article the equation of a straight line thrtiugh imjf two

i^iven points will be derived ; the method, however, will be

precisely the same as that already employed in the numerical

example.

TAN. AH. OBOM.—

6

81
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Let the two given fixed points be P|=(xi, y{) and P.^s

(^ ya), and let p2(x, y) l>e any other point on the line

through Px and P,. Draw the ordinates MxP^, M'J^^ts and

rio.«.^

IfP ; also through P, draw P1R2 parallel to the ai-axis, and

meeting MP in R and M2P2 iii ^2- Then the triangles

PiRP and P1R2P2 are similar ;

RP__P^ . MP-M,Px _ OM-OM,

R^Pt" PxR^'
*'^" M2P2-MxPx'' OM2-OMX

Substituting in this last equation the coordinates of P,.

P^ and P, it becomes

Vi-yi aj^-xi' • • • L-

J

and since P= (x, y) is any point on the line through Pj and

P„ therefore equation [9] is satisfied by the coordinates of

every point on this line. That equation [9] is not satisfied

by the coordinates of any point except such as are on the

line PiPj may be proved as was done in Art. 43.

Equation [9] then fulfills both requirements of the defi-

nition in (1) of Art. 35, and is therefore the equation of

the straight line through the two points (a^i, yi) and (a^, y^.

This equation will be frequently needed and will be referred

to as a standard form ; it should be committed to memory.*

* Throngfaoat this book the more important formulas are printed in bold-

faced type ; they should be committed to memory by the learner.
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S2. Equation of straight liae in terms of the intercepu

which it makes on the coordinate axes, if the two givwi

y y

\mnis in Art. 51 are those in which the line cut« the axes

>f rtWiriiinates, t.s., A 9(0, 0) and Bs(0, 6) (Fig. 41), then

< <iuutiuii [9] beoomes
-0

tliat is.

5-U 0-a

a 6 [10]

where a and b are the intercepts which the line cuts from

the axes.

This is another standard form of the equation of the

t might line; it is known as the symmetrical or the inter-

cept form.

K(|U5ition [10] may also Iki derived inde|>cndently of equa-

tion [*J] thus: let the line MX (Fig. 42), whose equation

JH to be found, cut the axes at the ])oint8 A=((l, 0) and

^a(0, 6), and let P s(^x^ y) be any other point on this

Ime. Connect and P\ then

area OPB + area OAP « area OAB ;

< iiai is, \bx -{• \ay ^ \ab^

iiid, dividing by \ab^ this equation becomes -+^h1, as

.il*ove.

EXERCISES

1. Show that equation [10] ui not utLnficii by the roortlinatet of soy
point except thoee lying on MS.
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2. Write down the equatioiis of the lines through the following

pain of poiuta

:

(a) (3, 4) and (6.2); (y) ("6, 1) and ("2, ~6);

(« (3, 4) and (6, -2); (8) (-16, -3) and (?. =1^

3. Write the equations of the lines which make the following inter-

cepts on Uie X- and y-axes respectively.

(a) 4 and 7; {fi) "3 and 5; (y) 1 and -1; (S) -? and 3 a.

4. What do equations [0] and [10] become if one of the given

points is the origin?

5. By drawing, in Fig. 42, a perpendicular PM fnuu P to the x-axis,

derive equation [10] from the similar triangles MAP and OAB.

6. Is equation [10] true if P is on MN but not between A and JB?

7. Are equations [ft] and [10] true if the coordinate axes are not

at right angles to each other?

8. Is the point (3, 4 J) on the line through the points (2, 3) and

(5,7)? On whicli side of this line is it? Which is the negative side

of this line?

9. What intercepts does the line through the points (1, -6) and
(-3, .')) make on the axes ?

10. The vertices of a triangle are : (4, -5), (2, 3), and (3, -6). Find

the equations of the sides; also of the three medians; then find the

coordinates of the point of intersection of two of these medians, and

show that these coordinates satisfy the equation of the other median.

What proposition of plane geometry is thus proved?

U. Find the tangent of the angle (the " slope,*' of. Art. 27) which

the line in exercise 9 makes with the x-axis.

12. Draw the line whose equation is - -f 2f = i^ and then find the

equations of the two lines which pass through the origin and trisect that

portion of this line which lies in the first quadrant.

53. Equation of straight line through a given point and

in a given direction (cf. Art. 44). Let l\={x^^ y^) be

the given point, and let the direction of the line be given

by the angle XAP = 6 which the line makes with the

ar-axis; also let P=(x^ y) be any point on the given line

and denote the slope, i.«., tan ^, by m. Draw the ordinates
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m.taD^--^^^-^^—

^

f/|P| and AfP, and through

l\ draw P,/J parallel to

lie X-axis and meeting the

niinate MP in H,

Then, in triangle RP^P,

the angle AP,/"-^;

P.i? x-x,

[Since RP^y^y^ and P,/J-x-x,];

that im If - Ifi =«»(»- »i)f

which in the desired equation.

Cor. If the given point be ^s(0, h\ i.e., the point in

which the line meets the y-axis, then equation [11] beoomes

y = msD^b. [12]

Equation [12] is usually 8ix)ken of as the slope form of

the equation of the straight line.

["]

EXERCISES

1. What do the ooiiiit«nt« m and b in eqoaUon [12] ni«mn? Draw
Xhti line for which m s 4 and 6 = 8; also that for which m = - 1 and

A = - |.

a. What it the effect on the line [12] of a change in b while m
n>n)»ini the same? What if m he changed and 6 left unchanged?

3. Ueaeribe the effect on the line [11] of changing m while x, and y,

irmain the same ; also the effect resulting from a change in X| while •
and jf, remain the same.

4. Wnt« the equation of a line through the point (~S, 7), and mak-

ing with the x^is an angle of 30»; of "Zff; of f^)*'• ®'
C'^'Y'

5. Write the equations of the following lines

:

(a) slope a, jf-interoept 8 ; (/?) sk>pe |, jf4nieroept -3;

(y) slope '2^ y-interoept -|.
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6. A line has the slope 6 ; what is its y-interoept if it passes through

the point (7, 1)?

7. What must be the slope of a line whose y-intercept is -8, in order

that it may pass through the point (-5, 5) ?

8. Is the point (1,1) on the line passing through the point (-2, "14),

and making an angle tan~' V ^'^^ ^^^ x-axis?

9. How do the lines y = 3x-l, y = 3x + 7, and 2y-0x+ 15 =
differ from each other? What have they in common ? Draw these lines.

10. What is common to the lines y=:3z-l, 2y = 5x-2, and

7x-3y = 3?

U. What is the slope of Une [9] ? of line [10]?

12. l>erive equation [12] independently of equation [11].

54. Equation of straight line in terms of the perpendicular

from the origin upon it, and the angle which that perpendicular

makes with the x-axis. Let HK be the line whose equation

K
^ Y

TiQ,ub. ^Si/

is sought, and let the perpendicular (^ON=p) from upon

this line, and the angle (o) which this perpendicular makes

with the a:-axi8, be given. Also let P = (z, y) be any point

on HK\ then by projection upon OiV(Art. 17),

Oitfcos o ^- MP sin a = ON,

«*•«•» a?cosa + f/fiina = ;>, . [13]

which is the required equation.

Equation [13] is known as the normal form of the equa-

tion of the straight line.

In the following pages/? will always be regarded as posi-

tive, and a as positive and less than 360°.
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55i Normal form of equation of straight line : second method,

riie studttiit hIiuuUI bear in mind that to get the equation of

.1 curve, he has merely to obtain an equation that ia aatiifled

l»y tlie eoiirdinatea of every point on the curve, and not

itistietl by the coordinates of any other ix>int; and that it

i> wholly immaterial what particular geometric property be

in.iy employ in the uccompliiihmeiit of this purpoee. Tliia

Uil in already illustrated in Art. 62, where equation [10]

was obtained in two ways, while Ex. 5, p. 84, gives still a

third method by which the same equation may be found.

So also it is {KMsible to derive equation [18] by other

methoils than that employed in Art. 54.*

R.tj,^ in Fig. 41 draw a perpendicular from to the line

AB^ let its length be denoted by />, and let a be the angle

which it makes with the x-axis, then

acoeas|>, and 6sinaa/>,

P P
wUviur a = , and ^^-tt—*COM a Hin a

Substituting these values of a and b in equation [10], it

U'comcH
J.

-.

4-—2_sal, t.tf., arcosa + ^sinaao,
P P

cosa sin a

which iM the form already derived in Art. 54

Note. In Art. 2, constant*, rariablM, etc., wore iUusiraied by roeans

of a triangle. Now that the student has learned thai the eqaaticii

^ -»- f s 1, for example, represents a straight line, U^ that this equation
a o
!•« ^ati<<ti(*(l by all those pairs of valuee of x and f which are the cotfrdi-

iiatfs «>t {loinU on this Une, a somewhat better illustration can be given.

Both X ami jr are variables, but are not independent; each is an implicit

function of tho other. For any particular line a and 6 are ooosUnts, but

they may reprvaent other constants in the equation of another line, Le^

ihey are arbitrary constants, and are often called parameters of the line.

• See also Bz. 6 below.
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EXERCISES

1. The perpendicular from the origin upon a certain line ia 5; this

perpendicular makes an angle of ^ with the x-axis ; what is the equation

of the liue ?
^

2. If in equation [13] p is increased while a remains the same, what
is the effect upon the line? If a be changed while /> remains the same,

what is the effect?

3. A certain line is 3 units distant from the origin, and makes an angle

of 120° with the z-axis ; what is its equation ?

4. Given a = 30°, what must be the length of p in order that the line

HK (see Fig. 44 a) shall pass through the point (7, 2) ?

5. A line passes through the point (-3, -4), and a perpendicular upon
it from the origin makes an angle of 225° with the z-axis. What is the

equation of this line?

6. In Fig. 44 a draw through M a line parallel to IIK^ meeting ON in

R; then draw through P a perpendicular to MR, meeting it in Q; by

means of the figure so constructed derive equation [13] anew.

56. Summary. The results of Arts. 61-55 may be briefly

summarized thus

:

The position of a straight line is determined by : (1) two

points through which it passes ; (2) one point and the direc-

tion in which the line passes through this point. Under (1)

there is the special case in which the two given points are

one on the ar-axis and the other on the y-axis. Under (2)

there are two special cases : (a) when the given point is on

an axis (the y-axis say), and (/S) when the point is given by

its distance and direction from the origin, while the line

whose equation is sought is perpendicular to the line which

connects the given point to the origin.

Corresponding to these two general and three special cases,

there have been derived five standard forms of the equation

of the straight line, viz.: equations [9], [10], [U], [12],

and [13].

It may be remarked that equations [9] and [10] are inde-

pendent of the angle between the coordinate axes, while [11],
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[12], ami [13] (im a, and p reUiniiig tlteir proMOt meuiiiigs)

are true unly when the azat are rectangular. It may alio bo

ointed out that, from the nature of ita derivation^ equa-

lun [9] 18 inapplicable when the line is parallel to either

.xi8; ei|uatiim [10] in inapplicable when the line paaacM

lirough the origin; and equations [11] and [12] are not

Pplicable when the line ia parallel to the y-axia.

57. Every equation of the first degree between two variables

has for its locus a straight line, it will probably not have

**Hcaped the reader's notice that the five '* standard ** eqoa-

lons (equations [9] to [18]) of the straight line, which have

Iteen derived in Arts. 51 to 54, are each of the first degree.

It will now be shown that every equation of the first degree

Uaween two variables has a straight line for its locus. The

Mist general equation of this kind may be written in the

•rm Ac + ^y + CaO, . (1)

where ii, B, and C are constants, and neither A nor B is

ro.*

Let P,s(ari, y{), P,s(«r y%>- ^"^ ^8-('r y%) ^ «"y

three points on the locus of equation (1). Draw the ordi-

nates M^Py. M^^ and ifgP,; also draw HP^ and JKP,

arallel to the x-axis. vJ^'

Then, by Art. 85 (1), /SC
.4x, +Byi + (7=0...(2) / W-^^*^
^i', + By, + C=0...(3) / / ir/..?N^

• If either A or B.My A^ it aero, tbta tiM eqiuuloo may be wnuen in the

m : y = - -^ wbieh is Um eqnaUon of a straight Une paimllal totte
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By subtracting eq. (8) from eq. (2), and also eq. (4) from

eq. (8), the two equations

aod A (a:, - z^) -{-Biy^- y^) = 0,

are obtained. These give

yuiya^.^, ^„d ^'i^^» = -t-, ... (5)
Zj - a:, B x^- ^z o

hence, y\-Jl^y±Zll. ... (6)
^1 — ^a ^2 "" ^8

But yi-Vi^ HP^, arj - a^2 = - itfi Afa = - ^Pj,

y^-y^ = KP^, and arj - a-g = -M^M^ = - KP^ ;

hence, from eq. (6),
^^i = -^2.

Also, by construction,

AP^HP^=/.P^KP^,

hence, triangle HP^P^ is similar to triangle KP^P^,

and Z PjPjF = Z P^Pj^K;

.'. Z P^P^H -f ZEP^K ^ZKP^P^
= Z P^P^K^Z P^KP^ -^Z KP^P^ = 2 rt. ^

;

!.«., P, lies on the straight line joining P^ and Pg. But,

since P, is any point on the locus of Ax -^ By -^C = 0, hence

att points of this locus lie on the same straight line PiPgi

which, therefore, constitutes the locus of Ax + By -j- (7 = 0.

Since this demonstration does not depend upon the angle

fl», therefore it applies whether the axes are oblique or ree-

tangular ; hence the theorem : every equation of the first

degree between two variables^ when interpreted in Cartesian

coSrdinaieSy represents a straight line.
*

o ThiB conclusion may abo be drawn thus : clear equation (6) of frac-

tions, trmnspoae all the terms to the first member, and multiply by ^ sin w

;
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liecaiiHc i)f thi« fact, tnoh an eqiuiUoa ui ofUn tpokan of

an u linear equation.

NoTB. In Um equation A* ^ Ajf 4- C 0, tbartf appartntlj UirM
eoosUnU ; in rnUity, there are but two indtpeodeoi eonetAutA, rii. the

nitloe of the eoaOeienU (cf. Art 98). Thie oorreepoade to the (act that

a ttraight line is determined geonMtrieally by two coodiiiona.

58. Reduction of the general equation AX'¥By^C = o to

the standard forms. Determination of a, ft, im, p, and a in

terms of .1. /I, and C*

(1) Reduction to the ittmdard form --f ^s1 {9ymmetrie

or intercept form),

Tluit tlie equation

Ar+^y + C-O . . . (1)

tapreaenta $ofne straight line has just been ahown (Art. 57);

again, since multiplication by a constant, and transposition^

do nut change the locus (Art. 38), therefore

7?-^7c/=it ... (2)

A B
repreaenta the same Une. But equation (2"^ i^ in the re-

quired form (Art. 52), and its interoepta are

a---, and 6---.
i4' B

(2) Bsdmetion to the $tandard form y tBrnx-^-h (Mlope

form).

rtanlting equation aiaeru [see Art. 80, (1)} that the area of the triangle

by the points Pi, P^ and A, is tero; t^^ these three poinu Ue on a
stimight Une ; bat they are oay three points oo the locus of Ax-i- Bg-k- C s 0,

bsnoe that locus is a straight line.

• These reductions oonstltate a seoood proof of the theovsa of Art. 67.

t If C = 0, die line wprsssnted by (1) goes throimh the orfgbi, and the

•ymmetric form of the equation to inapplioable (Art 66); but, in that

the above n>«luctioa also fails, shioe it to not ptnaissibto to divide the i
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The equation Ax + By + (7 =» has the same locus as has

the equation

(see Art. 88); but this is the equation (Art. 58) of a line

drawn through the point (0, — -^ N and making with the

ar-axis the angle ^ = tan-M —— j; hence equation (3) is in

the required form, and

^ = _4 and 6i=-^.B B

(8) Reduction to the standard form xcosa-^y Bin a=s p
(normal form).

If equation (1) and

X cos a + y sin a = /> . . . (4)

represent the same line, then they differ merely by some

constant multiplier, say k (cf. Art. 88). Then

kAx + kBy 4-A:(7=a;cosa + ysina — p = 0;

. • . kA-s^ cos a, kB = sin a, and kC = —J9

;

.'. l^A^^ )fc2^=cos«a4-8in2a = li

1
whence k =

VA^-{-B^

A
hence cos a =— , sin a =

and p =
o

• If B = 0, the line represented by equation (1) ib parallel to the y-axis.

And the Blope form of the equation is inapplicable (Art. 66); but, in that case,

the above reduction also fails.
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wberviti the algebraic sign of V^' -f /A* is to be ohoaen io

an to make ::— |)oiiitivcs miiico /i in to be always posl-

tive (Art, 54); 1.*^ the sign of Vi4' -f // in to Im? opiKwite to

tluit of tlie numlNsr represented by C,

Henoe« to reduce equation (1) to the normal ftirm, i.^., to

the form of equation (4), it is only necessary to divide equa-

tion (1) by y/A^ + ^, with the sign properly chosen, and

transpose the constant term to the second member. Tliis

giTsa

VSm* VSTiTB^ ^A^+~»

(4) Another methodfor reduction to the normalform.

If the equation Ax •\' By -¥ CaO and xcosa + y sinas^^

represent tlie same line, then they must have the same

y-interoept and the same slope, t.0.,

C

Squaring eq. (6), and adding 1 to each member, gives

i4» 4-^ ^ cos»a -h sin»a

B^ sin' CI

sin*a

sin a M
VjPTV'

A — C
whence oosa — ——=r=^ and »«

—

.
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as before. These, then, are the values of /?, sin a, and cos a^

which are to be substituted in z cos a -h y sin axsp,

A . B C
Hence

V^» +^
x + ^-^y-

Y M

is an equation representing the same locus as ^x+ ^y + (7=0,

and having the normal form.

59. To trace the locus of an equation of the first degree. In

Art. 57 it was proved that the locus of an equation of the

first degree in two variables is a

straight line; but a straight line

is fully determined by any two

points on it; hence, to trace the

locus of a first degree equation it

is only necessary to determine two

of its points, and then to draw the

indefinite straight line through them. The two points most

easily determined, and plotted, are those in which the locus

cuts the axes ; they are therefore the most advantageous

points to employ. If the line is parallel to an axis, then

only one point is needed.

E.g.y to trace the locus of the equation

2a;-3y4-12 = 0:

the ordinate of the point in which this line crosses the a^-axis

is ; let its abscisvsa be Zj, then (a;j, 0) must satisfy the equa-

tion 2i;-3yH-12 = 0;

hence 2a;i - 3 • + 12 = 0,

whence arj = — 6,

».e., the line crosses the a;-axis at the point (""6, 0). In like

manner it is shown that it crosses the y-axis at the point

(0, 4). Therefore LM is the locus of 2 a; - 3 y + 12 = 0.

I
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(1)

60. Special cases of the equation of the straight line

Ajo-^ ii^-^ C» O. This equation, writtan in the int«roepi

form [Art. 58 (1)] beoomea

"a B
If in equation (1), A is made smaller and smaller in

m with (7, then the x-intercept (
—

-j) beoomes larger

larger ; if ii s in comfMuison with C the jMntercept

m% infinitely lurge, the line (1) becomes parallel to the

and its equation becomes

y

B

1 ; !.«., y =a -
B'

^hich agrees with the foot-note of Art. 57.

Similarly, if ^= in comparison with C, the line (1) be-

oomes parallel to the y-axis, and its equation becomes

—i
If both A and B approach zero simultaneously m riiiii(Miri-

m with (7, then IxHh the intercepts become indefinitely

laige, and the line (1) recedes farther and farther from the

In accordance with what has just been said, a line that is

wholly at infinity might have its equation written in the

form O-x + O ,y+ C-0, . (2)

^r, as it is sometimes written, Ca> 0; . (3)

equations (2) and (8) are merely abbreviations for the

itement :
'' As both A auid B approach zero in comparison

ith Cy the line moves farther and farther from the origin.**
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EXERCISES

1. Reduce the following equations to the intercept (symmetric)

form, and draw the lines which they represent:

(o) 3x-2y+ri = 0; (fi) 3x-2y+ 1 =5x + 3;

(y) 2y = 15-y + 6x; («) £-Z-|l^=9.

2. Redaoe to the slope form, and then trace the loci

:

(a) 7x-5y + 6(y-3x)=- lOxi-4; (fi) 3x + 2y + fl = 0;

(y) 3x+5 = 3-y.
Which is the positive side of the line (fi) ? (cf. foot-note, Art 43.)

3. Ileduce to the normal form, and then trace the loci

:

(a) 3x + 4y=15; (^3) 3x-4y + 15 = 0;

(y) x-3y = 5 + 6x; (S) |x = y-5.

4. Show that the lines 3x + 5 = y and 6 x - 2y = 81 are parallel.

5. What is the slope of the line between the two points (3, -1) and

(2, 2)? What is its distance from the origin? Which is its negative

side?

6. A line passes through the point (5, 6) and has its intercepts on

the axes equal and both positive. Find its equation and its distance

from the origin.

7. A straight line passes through the point (1, -2) and is such that

the portion of it between the axes is bisected by that point. What is the

slope of the line ?

8. What are the intercepts which the line through the points (-1, 3)

and (6, 7) makes on the axes ? • Through the points (a, 2 a) and (6, 2 A) ?

9. What system of lines obtained by varying the parameter b is rep-

resented by the equation y = 6 x \- b'i

10. ^Vhat system of lines obtained by varying the parameter m is

represented by the equation y = mx + 6 ?

11. What family (system) of lines obtained by varying the parameter

a is represented by the equation xcosa + ysina = 5? To what curve is

each line of the family tangent?

12. Find cos a and sin a for the lines

(a) y = mx + 6, (/S) ^ + f
= l»

(y) ? = ?, (8) 7x-6y+l=0.
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13. Find by mtaiia of eot • and tin • what qiuulrmiil b
•sell of UMlioti:

(a) 3«^3-3f; {fi) fiT4 8yflft«0; (y) x->/3f-10«a

14. What mtui be Um tlope of Uio Um 4» > Ir^ b 17 in ordor UiAi il

•HaU |i«m through the point (1, .1)? 11m L a Anile velucf for which thb

liii« will peat through the origin?

15. Deiermiiie the valuee of v4, B, C in order thai the line

Ax + Bg^CsO
ihaU peM through the polnU (.% 0) and (0, - 12). [Art S7, Note.]

16 I>eriTe equation [0] by supponing (X|, jr^) and (x^ jr,) to be two

puiiiU on the line jf s mx •» A; and theiioe finding valuei fur m and b,

1?. Find the slopee of the linea 3y-Sx = 7 and 3jr-t-2x-n«0;
and thenoe show that theee linee are perpendicular to each other.

28. Find eoi a for each of the lines 7x + y - = and x-7jf-)-2 = 0.

and then show thai the two liuee are perpendicular to each other.

19. Show by means of: (1) the slopes; (2) the angles; that the lines

^ 2f-8xs7, 2y-8x + 6 = 0, lOy - 15x-)- csO

^ure all parallel

^H aa Reduce the equation Ax -^ B$ -i-C ssO to the normal form,

^He., to the form xcosa + jfsina =/». Suggeelion : the two eqnataona, •
^BfepraaAntiDg the same line, make the same interoepts on the

9L To find the angle made by one straight line with another.

I^t the equations of the lines be

y = m,T4-^, . . . (1)

and y>Bfif^ + &2, ... (2)

xrhere iiii » tan ^1,111,=* tan ^„

nn<l ^1, ^1 are the angles which

these lines make, respec-

tively, with the X-axis. It is

roqiiirctl to find the angle ^
lueiisured fnmi line (2> to line (1)

TA^. A*. l2C<>M.-~7

k
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Since ^ = ^i — ^j,

tan A ^

t>^"^i-^»^2
^ (Art. 16)^ 1 + tan ^i • tan 6^2

If the angle were measured from line (1) to line (2) it

would be the negative^ or else the supplement, of ^; in

either case its tangent would be the negative of that given

by formula [14].

If the equations of the lines had been given in the form :

^a: + ^iy + C, = 0, . . . (3)

and A^ + Biy-hCi^O, , . (4)

A A
then mi = — —*, mj = — -^, and formula [14] becomes

Bi Bi

B1B2

EXERCISES

Find the tangent of the angle from the first line to the second in each

of the following cases, and draw the figures

:

1. 3ar- 4y-7 = 0, 2x-y-3 = 0;

2. 5x + 12y + l=0, x-2y + 6 = 0;

3. 2x = 3y + 9, 6y = 4x+2;

a a b

5. X cos a + y sin a = p, ? + ^ = 1.

a b

62. Condition that two lines are parallel or perpendicular.

From formula [14] can l>e Keen at once the relations that
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iuu«t hold between m, luid m, if the linee (1) and (2)

(Art. 61) are parmllel or iwr|N;ndicuUr. If theee lines are

fiarallel, then ^ » 0, and therefore tan ^ > ;

hence

.U.

1 4- mifn.

Mt K*

rhioh ia the condition that lines (1) and (2) are parallel.*

condition ih altio evident from a mere inspecti<m of

[•qoations (1) and (2).

If the lines (1) and (2) (Art. 61) are perpendicular, then

^ - OO"" and tan ^ - 00

,

t.«..

fe..

J^ ^ « « , hence 1 + mxm^
1 4- fMim,

0,

which \a the condition that (1) and (2) are perpendicular.

So also from [15] the lines

ilir + -fiiy + C7i = and .4,r + B^ + Ci«0

parallel if (and only if) A^x-AxBt^(i^

•#•« if ^1 : By iff : Bf ;

id they are perpendicular if (and only if) ^|il,4-B|B,aO,

lie., if AxiBx^-B^iAr

The condition just found enables one to write down readily

the equations of lines that are parallel or perpendicular to

given lines, and which also pass through given points.

• It mast not be foryotteii that this coocloskwi b drawn only for UiMa

Uiat are mot perpendicular to the »4uda ; beeaoee If the Unas are pan^en-

dtoilar to the x-axk then equatftooa (1) and (S) are InappUoabIa (et Ait. 60).
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J?.</m let it be required to write the equation of a line that is

IMiniUel to the line

y = 8a: + 7. . . . (1)

The 8lo(>e of this line is 3, hence any otlier line whose slope

is 3 is |)arallel to the given line,

t.«., y = 3a:-h6, . . . (2)

is, for all values of 6, parallel to line (1).

If it be required that the line (2) shall also pass through

a given ix)int, (1, 5) for example, it is only necessary to

determine rightly the value of h. This is done by remem-

bering that if the line (2) passes through the point (1, 5),

then these coordinates must satisfy equation (2),

t.«., 6 = 3 • 1 -h 6, whence 5 = 2.

Therefore the line y = 3 a; -h 2 is not only parallel to the

line y = 82; + 7, but also passes through the point (1, 5).

Similarly y = — ^x-{-h^ whatever the value of ft, is per-

pendicular to y = 3 a; + 7.

Again, the line 3a; + 5y-|-A: = 0, whatever the value of k,

is parallel to the line 3a;-|-5y — 15 = 0; and the line

62; — 3y-hAr = is perpendicular to 8 a: 4- 5 y — 15 = 0.

Here again the arbitrary constant k may be so determined

that this line shall pass through any given point. So also

the lines A^x -h B^jf 4. C^ = and A^x^- B^y 4- (7j = are

parallel, while A^x + B^y 4- Cj = and ByX — A^y 4- C'j =
are perpendicular to each other.

This condition for parallelism and for perpendicularity

of two lines may also be stated thus : two lines are parallel

if their equations differ (or may be made to differ) only in

their constant terms ; two lines are perpendicular if the coeffi-

cients of x and y in the one are equal (or can be made equal),

respectively^ to the coefficients of —y and x in the other.
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exERCises

1. WriUd«vnUie«iaBliootof tlMMiof UnotpAralklloUialiiMi

(a) f-«jr-2; (fi) S*-7jf-aj

(y) xootacr4-ftin80*-8; («) j-j-L

a. KxplAio why it U thai the oooiUai lenn in the AOtwwi to Ex. 1

M l«fi undetanniuad or arbiUary.

a. Kind Um Uagoni of the angle between the linee («) and 09) in

Ex. 1 ; al«o for the linee (/8) and (<), and (a) and (5) of Ex. I.

4. Write the equatiowi of linee pelpendicular to thoee given tn Ex. 1.

5. RJ the method of Art 62 And the eqaation of the line that paitee

through the point (~0, 1), and b parallel to the line y = 6x - 2.

6. Solve Ex. 4 by means of equation [11], Art. 5:v

7. Find the equation of the line that in parallel to the line .Ix 4- Ay

+ C s and that paaees through the point (xp y,) ; make two solu-

tions, one by the method of Ex. 6, and the other by Ex. 5.

Find the equation of the straight line

a through the point (2, -ft) and parallel to the line y = 2 x -t- 7.

9. through the point ("It'l) snd perpendicular to ys2x-f 7;

•olve by two methods.

10. through the itoint (0, 0) and parallel to the line

3 7 x-y+1

U. perpendicuUr to the line 2y-|-7x-l =0« and passing through

the point midway between the two points in which thb line meets the

€Otfrdtnate axes.

12. Find the foot of the perpendicular from the origin to the line

fjr-7y = 2.

63l Line which makes a given angle with a given line.

The formula

^ - tAii ^, — tan ^, .._^ ^,^

ties the relation existing between the tangents of the

lea ^|, 6^ and ^ (see Fig. 47) , hence if any two of these
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angles are known, this equation determines the value of the

third. Thus this formula may be employed to determine

the slope of a line that shall make a given angle with a

given line.

E.g.^ given the line 8y — 6a; + 7 = 0, to find the equation

of a line that shall make an angle of 60® with this line.

Here ^ = 60®, t.«., tan<^ = V3, and if ^j be the angle which

the given line makes with the rr-axis, and 6^ that made by

the line whose equation is sought, then tan 6^ = J. Substi-

tuting these values in the above formula, it becomes

^^ -
1 +|tan5j

whence

^ 3 — 5V3 3 - 5V3

is the equation of a line fulfilling the required conditions,—
k may be so determined that this line shall also pass

through any given point.

It is to be remarked that through any given point there

may be drawn two lines, each of which shall make, with a

given line, an angle of any desired magnitude.

E,g.^ through P^= (zp y^ the lines (1) and (2) may be

80 drawn that each shall make an angle ^ with the given
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line LM. Let line (1) make an angle ^|, line (2) an ani^le

0^ uiul £3f an angle B^ with the x-axis ; then

^ « ^^ - ^^ and 180- ^ «> ^, - ^,

.

which gives

^ . tan ^i — tan ^a , ^ . tan^a-tan^.
tan ^ — a-r—J—3——|-^ and — tand»« . '

ii . I

In these equations ^ and 0^ are known, hence tan ^, and

tan^, can be found. Having found tan^j and un^, the

equations of lines (1) and (2) may at once be written down,

either by means of equation [1 1 j, or oy ttib method employed

in Art. 62.

EXERCISES

1. Find the equations of the two liiiea which pMS through the point

(ft, 8), and esch of which makes an angle of 45" with the line 2 x-3 y s6.

a. Show that the equations of the two straight lines passing through

L the point (3, -H) and inclined at60<*tothelioex>/3 + y=:lara

Mk jf + 2=:0andy-x>/3 + 2 + 8>/3sa

^H Find the equation of the straight Una

^H t. making an angle of + ^ with the line 3x - 4 jr s 7; oonslnMl ths

^Igiire. Why is there an undetermined constant in the resulting equation ?

^F 4. making an angle of - 60^ with the Ime 5x + 12y + 1 s 0; ooo-

y stmet the figure.

5. making an angle of + 30* with the line x-2jf+l=0, and

passing through the point (1,8); making an angle of — 80", and passing

through the same point.

6. making an angle of ± 135" with the Une x -f jf s 2, and
through the origin.

7. making the angle tan^M -
-J

with the line - + J
= 1, and

through the point
^,^^y

8. Find the equation of a line through the point (4, 5) forming wjlh

the lines 2x-y-i-3 = and 8y + 6x = 7a rightHUigled triangle. Find

the vertiosa of the triangle (two solutions).



104 ANALYTIC OEOMETHY [Ch. V.

9. Show thai the triangle whose vertices are the points (2, 1 ), (3, ~2),

(-4, -1) is a right triangle.

10. Prove analytically that the perpendiculars erecUid at the middle

points of the sides of the triangle, the equations of whose sides are

X + y + 1 = 0, 8ar + 5y + 11 = 0, and X + 2y + 4 = 0,

meet in a point which is equidistant from the vertices.

11. Find the equations of the lines through the vertices and perpen>

dicular to the opposite sides of the triangle in exercise 10. Prove thai

these lines also meet in a common point.

12. A line passes through the point (2, -3) and is parallel to the

line through the two points (4, 7) and ("1, -0) ; find its equation.

13. Find the equation of the line which passes through the point of

intersection of the two lines 10x-|-5y-fll=0, and x + 2y + 14 = 0,

and which is perpendicular to the line a:4-7y4-l=0.
This problem may be solved by first finding the point of intersection

(V» - V) of tJ^e t-wo given lines, and then, by formula [11] (see also

Art. 62), writing the equation of the required line, viz.

;

y + V = 7(x-Jrfl),

which reduces to 7 x — y = 31.

The problem njay also be solved somewhat more briefly, and much
more elegantly, by employing the theorem of Art. 41. By this theorem

the equation of the required line is of the form

lOx + 5y + 11 + k{x + 2y -f 14) = 0,

i.e^ (10 + il)x + (5 + 2it)y + 11 + Uk = 0.

It only remains to determine the constant k^ so that this line shall

be perpendicular tox + 7y+l=0. By Art. 62 its slope must be

-— = 7, hence -^5_±^=:7, whence it = -3.
" \ 5 + 21-

Substituting this value of k above, the required equation becomes

7 X — y = 31, as before.

14. By the second method of exercise 13 find the equation of the line

which passes through the point of intersection of the two lines 2x + y = 6

and X = 8y - 8, and which is: (1) parallel to the line 4y = ^a: + 1;

(2) perpendicular to this line; (3) inclined at an angle of 60° to this

lint; (4) passes through the point ("1, 3).

15. Solve exercise 10 by the method of exercise 14.
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16. Do the linM 9x •»• 8y 18, fts - f • 7, and x - 4f 4 10 >
(leei in a oommon point? What are the aoglM they naka with aaah

therY

IT Find the angle* of the triangia of aatdiaia

la When are the Unea

X •)- (a -f 6)y -t- c s and a(x -f ajf) -f fr(x - Af) •»- if s

i>4rallel? wheu perpendicular t

19. Find the value of p for each of the two parallel Unaa

f a 3 X -f 7 and y ts 8 x - 5

;

and henoe find the diatanoe between thaee Unee [cf. Art 58 (3) imd (4)].

aa What it the distance between the two parallel Unea

5x- 8jf -f =0 and Oy- lOx = 7?

11. Find the coaine of the angle between the lines

y-4x-f8sOandjf-6x + 0sO.

82. What relation exists between the two lines

y = 3 X -h 7 and y = -3x-87

33. Find the angle between the two straight lines 8 x s 4 y + 7 and

fijf
= rix + 6; and also the equations of the two straight lines which

through the point (4, 5) and make equal angles with the two given

IC Find the angle between the two lines

8x -t- y + 12 s and x + 2y - 1 s 0.

id also the eoordinatM of their point of intersection, and the equations

lines drawn perpendicular to them from the point (3, -*2).

. The distance of a given point from a given line. This

>lem is easily solveil for aiiy particular cauic thus : find

equation of the line which passes through the given

It and which is parallel to the given line (Art. 62), then

the distance (/») from the origin to each of these two

[Art. 58, (8) and (4)]« and finally subtract one of these

loes from the other ; the result is the distance between

^l^ven line and the given point.
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Fio.49.

E,g,^ find the distance of the point Pj=(2, J) from the

^®
82;-H4y-7 = 0. . . . (1)

Let line (1) be the locus

of equation (1), and P^ he

the given point. Through

/*! draw the line (2) par-

allel to line (1), also draw

QP^ perpendicular to line

(1), OR^(^= p{) perpen-

dicular to line (1), and

0R^(^ =P2) perpendicular to line (2). Then d = QP^ =P2-'Pv
The equation of a line parallel to line (1) is of the form

32: + 4y-hAr=0; this will represent line (2) itself if A: be

so determined that the line shall pass through the point

Pi=(2, I), I.e., if3.2 + 4.f + ^ = 0> i.e., if A: = - 12.

The equation of line (2) is then

3a; + 4y-12 = ... (2)

Therefore [by Art. 58, (3) or (4)]

12 12 , 7
Pt =

+ VPT32 5

12 ,= —-, and /?! =
+V4^

7
5*

hence the requ red distance is d=QPy = 12-7 = 1,

Similarly, in general, to find the distance of any given

point Pj = (a:i, yj) from any given line

Ax + By^C=^0 . . . (1)

let line (1) be the locus of equation (1) and let P^ be the

given point. The equation of a line parallel to (1) is of

the form Ax -^ Bi/-\-K=Oi this will be the line (2; if
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Ij-, 4- By^ 4- Kwm 0, •.*., if if- -(iljfi + By0. The equ«-

uou uf liue (2) U then

iir + i?y-(Ar, + i?yi)-0. ... (2)

wherein tho sign of the nulical is to be chosen opposite to

tluit of the number represented by C

i

Ucuce a = dEl^M^. . . . nC]

B If the equation of the given line is so written that its

K lecond member i8 zero, thin fonnula may be transUted into

Kwortis thuM : To get the diitanee of a given point from a given

^bM, write the fir$t member qf the eqwUian atone, mbeiiiute

'V the variabUi therein the eodrdinatee of the given point,

and divide the reeuU by the square root of the turn of the

nquarei of the eoeffidente of x and y in the equation^— the

i^n of til is square root being chosen opposite to that of

the number represented by C.

If, in formuhi [16], d is positive, then p%> Px^ and P^

lud the origin are on opposite sides of the given line; if

</ is negative, Pt<Pi% and P^ and the origin are on the

tame side of the given line.

EXERCISES

1 Find the distance of the point (2, -7) from the line Sx-6y-|>l=0.

This result, besides giving the noneriesl valiie of the distanoe, shows
also that the point (S, "7) and the oriifin sra on the iuuna sida of ihn

line 3x~6jf + 1 aO.

2. Find the dbtanoe of the point (4, 5) from the line 4y -I- 5x«S0.
3. Find the diiUnce of the point (2, 7) from the line 3f - 3x a 17.
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4. Find the distance of the point (a, b) from the line - + ^ = 1*
a

5. Find the distance of the intersection of the two lines, y+ 4 = 3x
and 5x= y - 2, from the line 2 jf - 7 = 0. On which side of the latter

line is the point ?

6. Find the distance of the point of intersection of the lines

2x-0y=ll and 4x = 3y + 15 from the lineix + ^^-=-5= 0. On

which side of the latter line is the point? Plot the figure.

7. How far is the point (-6, -1) from ay= 7x-h8? On which side?

8. By the method of Art. 64, find the distance of the origin from

the line 5 x - 2y = 7 ; also from the line Ax + By+ C = 0. Check the

resulU by Art. 58 (.J).

9. Find the distance of the point ("4, -5) from the line joining the

two points (3, -1) and ("4, 2). On which side is it?

10. Find the distance of the point (jj, y^) from the line y = mx + b.

11. Find the altitudes of the triangle formed by the lines whose equa-

tions are x + y + 1 = 0, 3x + 5y + U = 0, and x + 2y + 4 = 0. Check

the result by finding the area of the triangle in two ways.

12. Show analytically tliat the locus of a point which moves so that

the sum of its distances from two given straight lines is constant is itself

a straight line.

13. Express by an equation that the point JP, = (x,, y,) is equally

distant from the two lines 2x — y= 11 and 4x = 3y + 5. (Give two

answers.) Should P^ move in such a way as to be always equidistant

from these two lines, what would be the equation of its locus ?

14. Find, by the method of exercise 13, the equations of the bisectors

of the angle formed by the lines 3 x + 4 y = 12 and 4 x + 3 y = 24.

65. Bisectors of the angles between two given lines. The

bisector of an angle is the locus of a point which moves

80 that it is always equally distant (numerically) from the

sides of the angle. From this property its equation may

easily be found.

E.ff., find the « equations of the bisectors of the angles

between the lines

32r + 4y-l = 0, ... (1)

and 12a;-5y + G = 0. . . . (2)
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l^t P|H(j^« yi) be any point

on thu bUector (8).

Then Q^P^wm^R^P^ [nince

•od P, are on oppoiuU) iiideii of

line (1) and on tlie same aide of

(2) ; or VMV mtm].

But Ci^'i

8^|-^|.V|-^ (Art. 64),
5

and R,P,

Hence

^y/WT^ -13

8 art 4-4^1-1 12x,-6y,-H6
5 18

i.e.. 21«i-77yjH-48 = 0. . .

21*-77y + 48 = . .

(6)

(6)

ia tbe e<puition uf tbe bisector (8), for equation (5) aaaerts

that if (X|, y{) be the coordinates of any point on thia bisec-

tor they satisfy equation (6).

Similarly, let P, = (A, Ar) be any point on line (4), the

other bisector, then Q^P^ = -^^t^s [^^ince and P^ are on

opposite sides of the lines (1) and (2), or else both on the

same side of each of these lines]

;

8A-H4ib-1 12A-5ib4-6
6

"
18

'

•.«., 99A + 27* + 17-0. ... (7)

Hence 99ar-f 27y + 17-0 . . . (8)

is the equation of the bisector (4), for the

i^ven above.

L
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Geometrically it is well known that two such bisectors,

(3) and (4), are perpendicular to each other : their equa-

tions also prove that fact.

The equations of the bisectors of the angles between any

two lines, as A^x -f B^y -t- Cj = and A^ + B^ + 0^ = 0^

are found in precisely the same way as that employed in the

numerical example just considered.

EXERCISES

1. Find the equations of the bisectors of the angles betwetn the two

lines jr - y + 6 = and ^JLzJ. = 5y -7.

2. Show that the line llx + 3y + 1 =0 bisects one of the angles

between the two lines 12x — 5y + 7 = 0, and 3 x + 4 y - 2 = 0. Which
angle is it? Find the equation of the bisector of the other angle.

3. Show analytically that the bisectors of the interior angles of the

triangle whose vertices are the points (1, 2), (5, 3), and (4, 7) meet in a

•ommon point.

4. Show analytically, for the triangle of Kx. 3, that the bisectors of

one interior and the two opposite exterior angles meet in a common
point.

5. Find the angle from the line 3x + y + 12 = to the line nx + by

+ 1=0, and also the angle from the line ax + 6y + 1 = to the line

x + 2y- 1 =0.
By imposing upon a and h the two conditions: (1) that the angles

just found are equal, and (2) that the line nx -|- />y + 1 = passes through

the intersection of the other two lines, determine a and b so that this line

shall be a bisector of one of the angles made by the other two given

lines.

66. The equation of two lines. By the reasoning given in

Art. 40, it is shown that if two straight lines are represented

by the equations

Aix + B^y+C^=^0 . . . (1)

and ^yT -h i^ay 4- Ci = 0, . . . (2)

then both these lines are represented by the equation

(^jz + ^jy -f-Ci)(Arr4-^2y+C2) = 0; . . . (3)
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.«., two straifi^ht lines are hare reprMent«<l by ah e<|imlioQ

• f the aeeoHii degree.

r.iiiverHely, if an equation of the mn'ond ilc^ri*e, wlifine

• c4)nil member in xero, can have iU tirMt iiieiiil>er fie|>arate<l

tito two finit degree factors, with reul tuieflicienU, om in

^nation (3), then iU locus consists of two straight lines

Thus the equation

may be written in the form

which shows that it is satisfied when 2x — dy+7»0, and

also when x 4- y + 1 ~ 0. Its locus in therefore composed

•f the two lines whose equations are :

2ar-8y + 7 = 0, and jr + y + 1 =0.

67. Condition that the general quadratic expression may be

factored. The most general equation of the second degree

between two variables may be written in the form

Ar« -f 2 J^xy + ^y« 4- 2 (7x + 2 /> 4 C= 0. . . . (1)

It iH required to find the relation that must exist among the

coeflicients of this equation in order that itM first member

may be separated into two rational factors, eaeh of the first

degree, t.^., it is required to find the condition that the equa-

tion may be written thus

:

(<i,x-|-*iy4-tf,)(a^ + A,y 4- r^=0. ... (2)

Kvuluntly if equation (1) can be written in the form of

equation (2), then the values of x obtained from equation

(1) are rational, and are either

..rJiriiiy or ^_-«i-»iy.

L
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Solving equation (1) for x in terms of y, by completing

the square of the x-ternis, it becomes

AV-\-2A(^Hy+ G)x+{Hy+ Gy
= _ AJ5y» - 2AFt/ -AC+ ifff/ + Oy,

t.«., Ax + Ify+ G

= V(^ - AB)y* + -^ iffG - AF)y + G'^ ^ aC\

and finally,

//.. ^ .
1x= -0.y-^±JL^(^Ri^AB)t/+^l(,HG-AF)y{'G^--AC.

A A A
But since x is, by hypothesis, expressible rationally in

terms of y, therefore the expression under the radical sign

is a perfect square, and therefore

iHG - AFy-(IP- ABXO^ - AO)=0,

t.e„ ABC^2FGH-AF^-BG^-CH'^0. . . [17]

If this condition among the coefficients is fulfilled, then

equation (1) has for its locus two straight lines.

The expression ABC-\-2 FGff - AF^- BG^- CH^ is

called the discriminant of the quadratic, and is usually

represented by the symbol A.

Note. The analytic work just given fails if ^ = 0. In that case

equation (1) may \te solved for y instead of solving it for x, and the same

condition, viz. A = 0, results. If, however, both A and B are zero, then the

above method fails altogether. In that case equation (1) reduces to

2 //xy + 2 (7x + 2 Fy + C = (3)

If the first member of equation (3) can be factored, then evidently the

equation must take the form

(ax -f 6)(cy + rf) = (4)

which shows that equation (3) is satisfied for all finite values of y provided

X =— , a constant. Let— be represented by k, then equation (4)
a a

becomes 2 Hky + 2 ^*: + 2 Fy + f = 0,

ue., 2(,Hk + F)y + 2 <?*: + C = 0,
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and ii atiffled for m\\ Hnito taIum of jr

;

Hk-^FmO, mm] QOk-i-CmOi

. . eliiiiinAUng ^. 2F6* ->CHmO.

iwii thw It tbe exprtMioo to wbieb A rsdneas when A » BmO mad
It ^ ; li«no«, in all omm, A « it the neetamurp eoodiiioo the( the

above quedreiio mey be feelortd.

That A a u aleo the t^Jleient ooodition if reedilj teen by retraeinf

the steps from equation [17] when at least one of the oo^Oetents A, B
differs from aero. But it u aUo sufficient when A s 8 = 0; for, in thai

ease, A = beoomea 2 Fa - CH = 0, which may be written ji'^^Sy
Under tbe same eiteinrtanoas equation (1) beoomea equation (S), which

lay be written

"^'-S'^-if-'' w
Sabeiituting ^ . ^ for -^ in equation (4). it

U li 2 H

"^P^^'^^h' <'^>

(-^)(-2) = '^

which establishes the sufficiency of the condition for this case also.

To illustrate the use of equation [17]* examine the equation of

Art 66:

• As an Ulttstratlon of another practical method of factoring a quadntic

I, «*ea yMoHag is poss^Me, ts., if equation [17] holds, find the

of
2««-7«f-16fi + 7x+17r-4.

This locus euu the x-axis at the polnu (i, 0), (-4, 0) and the iNiziB at

(Oi i)« (0, I); hence the two lines are either

5 + f=l and-2L+r=i. or5 + «=:l and-5^ + J=l;

the fsetora are either

2x + 3y- 1 and z-6y-|-4, or 8a-f Sy-I and a- 12y-f 4.

Inspection shows that they ars (2a -f Sf - 1) and (a - 6y -f 4).

TAK. ». OBOM.—

8
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Hera .4 = 2, i?= - 3, r = 7. // = - i, G'= ?. and /•' = 2;

henco A = - 42 - 9 - 8 + *45 - ^=0;
4 4

therefore tiiu tirst member can be factored.

The factors may be found as follows : transposing, dividing by 2, and

completing the square of the z-terms, the equation may be written in

theform x* + !^J!, + (!LzLi!y = |(y. _ 2, + 1),

therefore the given equation, divided by 2, may be written in the form,

(-^r-]t^-'>['=«'

i.e., (x + y+ \){x- Jy+ i) =0;
hence the locus of the original equation consists of the straight lines

X + y + 1 = and 2x - 3y + 7 = 0,

which agrees with the result of Art. 66.

EXERCISES

Prove that the following equations represent pairs of straight lines
;

find in each case the equations of the two lines, the coordinates of their

point of intersection, and the angle between them.

1. 6ya- zy - a:«-+- 30y + 36 = 0.

2. X*- 2ary- 3y« + 2z - 2y + 1 =0.

3. z« - 2 xy sec a + y'* = 0.

4. x» + 6 xy -»- 9y2 + 4 X + 12 y - 5 = 0.

5. For what value of k will the equation

x«-3xy + y«+ lOx- lOy + it =
represent two straight lines?

Suggestion : Place the discriminant (A) equal to zero, and thus find

I- = 20.

Find the values of k for which the following equations represent pairs

of straight lines. Find also the equation of each line, the point of inter-

section of each pair of lines, and the angle between them.

6. 62« + 2fcry + 12y« + 22x + 31y + 20 = a
7. 12x> + 36xy + 4;y*-|-6x + 6y + 3 =0.
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9. The •quAtiont of Um oppotito tidM of a pArmllelogrmm are

jr« - 7x ^ 6 a Aod f* - Uf -I- 40 « 0.

Kind the equations of the diagooala.

10. Find the condition! that tlie straight linet repwaentod bjr tbe aqo^
t ion ^ jr< + 2 Aiy •»• Cjr* b inajr be real ; imaginary; ooineklMii;

liouUr to each dhar.

U. Show that «i« 4- ftxy - 6^ = is the equation of the biaeeion o<

ttie angles made bj the lioea 3x* + 12xy 4-7^ = 0. Doaa tba inl iti

f linea fuUU the test of ezereise 10 for perpendicularity?

68l EqiutioiiB of straight lines: coordinate axes oblique.

>ince in the derivation of equutionM [*J] and [10] (Artii. 51

and 52) only properties of similar triangles were employed,

therefore these two equations are true whether the coordi-

nata axes are reotangular or oblique.

The other three standard forms however, viz. y « wur + ^
^y^eafH(^z —7,), and X cos a 4>y sin a ss /), the derivation of

rhich depends upon rtjht triangles, are no longer true if

axes are inclined to each other at an angle <» ^ ^- Equa-

ma which correspond to these, but which are referred to

clique axes, will now be derived.

(1) Equation of Mtraight line through a given point and in

^iven direction. Let LL^ be the straight line through the

ced point P,a(arj, y,) and

tking an angle 6 with the

»axis, \etPs(x^ y) be any

other point on ZLp and let

«» be the angle between the

axes.

Draw P^R i)arallel to the

also draw the ordinates MiP^ and }fP.

O^ZXAL^^RP^L and jLP^PR--

Then
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Hence -^ = -:- f"^^ . [law of sines]

Substituting in this equation the coordinates of P| and P,

it becomes

y - .Vi ^ ^'" ^

a? — a:| sin {^<o — ^)'

which is the required equation.

When o) = ^ this equation reduces to equation [11], i.«.,

to y — i/i— m (x — a:,), where m = tan ; but it must be

observed that if © :^^, then the coefficient of x in equation

[18] does not represent the slope of the line. If, however,

the slope of the line [18], i.e., the tan for this line, is

desired, it is easily found thus : let —— = A:, from

which is obtained tan = P—-—

.

1 + A: cos <o

If, in the derivation of equation [18], the given point is

that in which the line LL^ meets the y-axis, i.e., if P| =(0, 6),

then equation [18] reduces to

sm {co — 0)

which corresponds to equation [12], but the coefficient of x

is not the slope of the line.

(2) Equation of a straight line in terms of the perpendic-

ular upon it from the origin^ and the anr/les which this perpen-

dicular makes with the axes.
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IasI LL^ bo the straight line whoee equation i« toughi,

let the perpendicular from tlie

!i u|Km it (ON^p) nuUce

.... .;ugleti a and respectively

with the axes,* and let Pm
(jp,y) be any fioint on LLi*

Dmw tliu ordinateMP ; then,

hv Art 17,

Oif cos a 'h MP COS /9 -* 0^;

t,*., «oo8a+yoos/8 = />, . . . [20]

which in the required equation.

If M is the angle between the axes, then /9 « «* — a, and

equation [20] may be written x cos a + y cos (m — a) i"p.

If «» a ^, then this equation reduces to x cos a +y sin aiv /^

which agrees with equation [13].

EXERCISES

1. The axet being inclined at the angle fKf, And the inclination of

tlM line y=2x + 5tothe j>axi«.

2. The axes being inclined at the angle j, 6nd the anglei at which

the lines 8y-|-7x~l=0 and x + jr + 2 = eroaa the »«zis.

3. Find the angle between the lines in exercise 2.

4. The center of an equilateral triangle of side 6 is joined by straight

Unas to the vertices. If two of these lines are taken as oodfdinaie axes,

^Bad the coordinates of the TeKioes, and the equations of the sidaa.

9. Prove that for every value of m, the lines x -^ $ ^ e and x - $^d
perpendicular to each other.

The angles • and /I are the direttton mmfUt of the line O.V, and tbdr

an the dUrttiton eo^iiu* of that Unsw
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69. Equations of straight lines: polar coordinates.

(1) Line through two given points. Let OR be the initial

line, the pole, Pi

s(Ph ^i)i and -^2 =
(/32, ^2)» ^'^'^ two given

poinU, and let P =

(/?, ^) be any other

point on the line

through Pi and Pj.
Fia.5a.

Then (if A stands for ' area of triangle ')

A OP1P2 = A OPiP 4- A ()PPj,

t.tf., ^ f)i/)2
8in(^2-^,)= J/3p,sin(^-^,)4- J/o^ sin (^2-^)»

hence ppi sin (^— ^i)4-/3i/?2 sin (^0i — 6^
+ P2P sin (62- 6) = 0.*, . . [21]

This equation may also be written in the form

sin (61 - ^g)
^
sin (O^ - 0) sin (6 - Oi) ^q »

P Pi Pi

'

(2) Equation of the line in terms of the perpendicular upon

it from the pole^ and the angle which this perpendicular makes

with the initial line. Let OR be the initial line, the pole,

and LK the line whose equation is ^,

sought. Also, let N= (p^ a) be the

foot of the perpendicular from

upon LK, and let P=(p', 0) be any

other i>oint on LK. Draw ON' and

OP ; then F10.54.

— = COS NOP,

t.e p cos (^ — a) = p,

which is the required equation.

[22]

• Observe the symmetry here ; cf . foot-note, Art. 29.
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cxcRcises

1. CoDiktniet the linM

:

(«) pOM(^-aO*)-IO; (r) pc«(^-j)»«;

(6) /I tin ^> 2; (i/) peotc^-v)»0.

2. Find ibo poUr equmiioof of ttrmiglii Hum at a dbUitoe 3 from Uw
(1) {MmOld to ibo initial line; (2) perpeodkakr to the initial

3. A ttraigUt line paMea through the poinU(ft, -|5«) and (2. 00*);

find iU polar e<|uation.

4. Find the |)ular equation of a line paaaing through a giviMi \n,\ut

(p,, ^|) and cutting the initial line at a given angle ^stao'U-.

9. Find the poUr eoordinates of the point of inteneoUoo of the Unea

pcoa(^-?J = 2a, pcoe(tf-^J=a.

EXAMPLES ON CHAPTER V

1. The pointa (~1, 2) and (.1, -'2) are the extremities of the baee of

(uilateral triangle. Find the e<piationA of tlie sides, and the oodrdi-

Ird rertex. Two solutions.

2. Kit the Tertioes of a parallelogram are at the points (1, 1).

(.%4). and (JV, 2). Find the fourth vertex. (Three aolntions.) Find

alio the area of the parallelogram.

9. Find the equatkma of the two lines drawn through the point (0, S),

inch that the perpendiculars let fall from the point (6, 6) upon them are

•aeh of length 3.

4. Perpendicuhuv are let fall from the point (5, 0) upon the aidet of

the triangle whose vertices are at the poinU (4, 3), (-4, 3), and (0, -5).

Bhow that the feet of these three perpendioulan lie on a straight line.

Find the equation of the straight line

5. through the origin and the point of interteeiion of the line«

IT - jf = 4 and 7x + y + 20 = a Prove that it is a bisector of the angle

formed by the two given lines.

6. through the intemectioii of the lines 3 x - 4 y + 1 s and

6x + jf = 1, and cutting off equal interoepte from the axea.

7. through the point (I, 2), and intameting the line jr •!> f s 4 at a

I VO from this {wiut^
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8. A line dravm through the point (4, 5) makeii an isosceles triangle

with the lines 3x = 4 ^ + 7 and 5y = 12 x + ; find its equation.

9. Prove analytically that the diagonals of a square are of equal

length, bisect each other, and are at right angles.

10. Prove analytically that the line joining the middle points of two

sides of a triangle is parallel to the third hide and ecjual to half its length.

11. Find the locus of the vertex of a triangle whose base is 2 a and

the difference of the squares of whose sides is 4 c^. Trace the locus.

12. Find the equations of the lines from the vertex (4, 3) of the tri-

angle of Ex. 4, trisecting the opi)Osite side. What are the ratios of the

areas of the resulting triangles ?

13. A point moves so that the sum of its distances from the lines

y-8x+ 11 =0 and 7x-2y + l = is 6. Find the equation of its

locus. Draw the figure.

14. Find the equation of the path of the moving point of Ex. 13, if

the distances from the fixed lines are in the ratio 3:4.

15. Solve examples 13 and 14, taking the given lines as axes.

16. The point (2, 9) is the vertex of an isosceles right triangle whose

hypotenuse is the line 3x - 7y = 2. Find the other vertices of the

triangle.

17. The axes of coordinates being inclined at the angle 60**, find the

equation of a line parallel to the line x + y = 3 a, and at a distance

aV3,
' "Ij— from it

18. Find the point of intersection of the lines

P- 77777 ^"^ f>cos(^-^) = a.

For what value of 6, in each line, is p = qo ? At what angles do these lines

cut their polar axes? Find the angle between the lines. Plot these lines.

19. Find the equation of a straight line through the intersection of

f = 7x - 4 and 2 x + y = 5, and forming with the x-axis the angle -•

20. Find the equation of the locus of a point which moves so as to be

always equidistant from the points (2, 1) and (-3, ^2).
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ai. Find tiM •qtiAiion of Um loetia o( a point whieh moTM ao m to t»

•ant from tbe poiuU (0. 0) and (S, 2). Show tlial tU
< i, 3), and (1, -1) are Um vertioM ol ad iiOMtl« triaogk.

22. Find the oentor and radius of the drda drtimaoribad about tha

triangle wlioM miioaa ara tba poinU (2, 1), (3, -2). (-4, '1).

83. Find analytically the equation of the locus of the Yeriez of a

triangle having ita base and area oomtant.

24. pTOTe analytically that the locus of a point equidistant from two

given poinU (x^ y,) and {x^ y,) is the perpendicuUr bisector of the line

Joining the given points.

25. The base of a triangle is of length 8, and is givmi in poaitkNi;

the differenoe of the squares of the other two sidea is 7 ; find the equa^

tiou of tlie locus of its vertex.

26. What lines are represented by the equations

:

(a) x*y = xjr«; (/J) 14x«-5xy-y« = 0; (y) xy^O?

27. What must be the value of e in order that the linea 8x -l- y > 2 s 0.

2x- y -3 « 0, and 5 X •)> 2y + csO shall pass through a common point?

2a Ry finding the area of the triangle formed by the three poinU

(3 a, 0), (0, 3 b) and (o, 2 6), prove that these three poinU are in a straight

Une. Prove this also by showing tliat the third point ts on the line join-

ing the other two.

29. Find, by the method of Art. 39, the point of interseetlon of the

two lines 2r-3y + 7s0 and 4xeey + 2; and int«rprei tba rasoH

by means of Arts. 41 and 60.

ao. Prove by Art. 10 (cf. also Arts. 41 and 30), *hat the aquatioiia of

two parallel lines differ only in the constant term.

31. Find the equations of two lines each drawn through the point

(4, 3), and forming with the aies a triangle whose area b -8.

32. Find the equation of a line through the point (2, -5), such thai

the portion between the axes is divided by the given point in the ratio

7:6.

33. Find the equation of the perpandieular erected at the middle

point of the line joining (3, 2) to the inleneeiioo of the two lines

x-|-2yBll and 0x-2ya60.
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34 A point moves so that the square of its distance from the origin

equals twice the square of its distance from the x-axis ; find the equation

of its locus.

33. Given the four lines

x-2y + 2 = 0, x + 2y-2 = 0, 3x-y-8 = and x4-y + 6 = 0;

these lines intersect each other in six point8; find tlie equatioiin of the

three new lines (diagonals), each of which is determined by a pair of the

above six points of intersection.

36. Find the points of intersection of tlie loci

:

(a) pcosf ^ -^j = a and pcosf d-
7J

= a;

(P) pcosfd-|j) =^ and p = a8iud.

If two sides of a triangle are taken as axes, the vertices are (0, 0),

(Xj, 0), (0, y,). Prove analytically that

:

37. the medians of a triangle meet in a point

;

38. the perpendicular from each vertex to the opposite sides meet

in a point;

39. the line joining the middle points of two sides of a triangle is

parallel to the third side.

40. Show that the equation 56 x« + 441 r^ - .")« y* - 79 r - 47.v + =
represents the bisectors of the angles Iwtween the straight lines repre-

sented by 15x« - 16xy - 48 y« - 2x + 10// -1=0.

41. Two lines are represented by the equation

Ax^ + 2Ilxy + %» = 0.

F'ind the angle between them.

42. Using the product of a side by half the altitude derive the formula

[4] for the area of the triangle whose vertices are at the poiiitA (Xp y,),

i'r ^s)* ^"^ ("^3* ^.i)' Wherein is this demonstration more general than

that given in Art. 'Ji) 'i



CHAPTER Vf

TRANSFORMATION OF COORDINATES

ruA

70. That the coordiuates of a point which remains fixc<l

ill a plane are ohanged by changing the axes to which tliis

fixed point is referred, is an immediate

consequence of tlie definition of coordi-

nates.

It is also evident that the different

kindi of codrdinates of any given point

(Cartesian and i)olar, for example) are

connected by definite relations if the ele-

menta of reference (the axes) are related in position. JB.g.^

the point Q, when referred to the polar axis OX and the pole

0, has the coordinates (5, 80^), but when it is referred to

the rectangular axes OX and

y the co6rdinate8 of this same

ix)int are (| V3, j) ; and gen-

erally, i( Qy, 0) he the co-

ordinates of a point when

referred to OX and 0, then

(p cos $^ p sin ^) are its coordi-

nates when it is referred to the

fectangular axes OX and OF.

Again : while a curve remains fixed in a plane, its r^iM-

may often be greatly simplified by a judicious change of

US

\
\0'

K
o

WmM
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the axes to which it is referred. E.g., the line L^L, when

referred to the axes OX and Y, has the equation

y s= tan 0*x + 6,

but when referred to the axes O'X' and 0' V\ the former

of whicli is parallel to the given line, its equation is y = c.

For these, and other reasons, in the study of curves and

surfaces by the methods of analytic geometry, it will often

be found advantageous to transform the equations from one

set of axes to another.

It will be found that the coordinates of a point with

reference to any given axes, are always connected by simpU;

formulas with the coordinates of the same point when it is

referred to any other axes. These relations or formulas

for the various changes of axes are derived in the next few

articles.

I. CARTESIAN CObRDINATES ONLY

71. Change of origin, new axes parallel respectively to the

original axes. Let OX and Oy be the original axes, O'X'

and O'V the new axes, and let the coordinates of the new

origin when referred to the

original axes be h and k, i.e.,

0' = (A, Ar), where h = OA and

k = AO'. Also let P, any point

of the plane, have the coordi-

nates X and t/ when it is referred

to the axes OX and F, and a/

and y' when it is referrea to the axes O'X' and 0' Y'>

Draw MM'P parallel to the y-axis ; then

OM^OA^ AM^ OA + O'M',

Fio. 57

I.e.,

and similarly.
[23]
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whicli Are the equations (or fortnuUui) of trmnsfomuiUoii

from any given axes to new axes which are respectively

parallel t4> the original ones, the new origin being the point

^ a (A, k). These formulas, moreover, urn mdeijendent

>f tlie angle between the axes.

As a simple illustration of the usefulness of such a change

of axes, suppose the equation

;i«-2Air + y*-2*y-a«-A«-Jt« . . (1)

given, in which x and y are oodrdinates referred to the axes

OX and OF.

Now let P s (a y) be any point on the locus L^L of this

equation, and let (x', y') be the coordinates of the same

point P when it is referred to the axes 0*X^ and O' P ;

then
x^a^ -{-h and y = y* 4. 4r.

Substituting these values in the given equation for the

X and y there involved, an equation in 7^ and y^ is obtained

which is satisfied by the coordinates of every point on Z|Z,

t.«., it \a the equation of the same locus. The substitution

gives:

i^ + A)« - 2 A(2r' + A) + (y' + hy - 2ilr(y'+ il:)-a«-A*- A«,

which reduces to

a much simpler equation than (1), but representing the

same locus, merely referred to otlier axes.

EXERCISES

1. What i« th« equation for the loeut ol 8s - S jr a 6, if the origin

be changed to the point (4, 3),— direetlona of axee uoohanged ?

a. What does the equation z* + ^-44r-8f=18 beeome if the

origin be changed to the point (2, 8),^direotiont of aiee
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3. What does the equation y»-2x* — 2y + 6x-8 = become when

the origin m removed to (|, 1),— directions of axe8 unchanged?

4. Find the equation for the straight line y = 3 x + 1 when the origin

ia removed to the point (1, 4),— directions of axes unchanged.

5. Construct appropriate figures for exercises 1 and 4.

72. Transformation from one system of rectangular axes

to another system, also rectangular, and having the same

origin : change of direction of axes.

Let OX and OF be a given pair of rectangular axes, and

let OX' and OF' be a second pair, with Z XOX' = 6, the

angle through which the first pair

of axes must be turned to come

into coincidence with the second.

Also let P, any point in the

plane, have the coordinates x

and y when it is referred to the

first pair of axes, and a/ and y'

The problem now is to

express x and y in terms of x\ y\ and Q. Draw the or-

dinates MP, M'P, and QM', and draw M'R parallel to the

ir-axis; then

0M= OQ-{-QM= OM' cos 6 - M'P sin 6,

x = x' COS e - 1/' sin e,

M Q

Fio.58

when referred to the second pair

[24]

t.e.,

and similarly, y = x' sin e + y' eos 6,

which are the required formulas of transformation from one

pair of rectangular axes to another, having the same origin

but making an angle with the first pair.

Note 1. The«ie formulas are more easily obtained,— in fact, they can
be read directly from the figure,— if one recalls Art. 17, and considers

that the projection of OP equals the projection of OAT + the projection

of AfP, upon OX and OK in turn.

Note 2. The reader will observe that a combination of the trans-

formation of Art. 71 with that of Art. 72 will transform from one pair

of rectangular axes to ani/ other pair of rectangular axes.
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exERcites

Turn the axes through so angto of 45% Aod
fur the following loci

:

1. j« + ftBlfl; 8. <«-f<«16;
4. 17x«-iex5 + 17f«-a«l.

8. If the azM are turned through the angle

•quation 4 rjf — 3 1* a a* beoomef

the new equaUoaa

».f-- 1.

-12, what does the

73. Trangformation from rectangular to oblique axes, origin

ichanged. I^t OX uiul OK be a given pair of rectangular

let OX' and OY' be

new axes making an an-

m with each otlier, and

the angles XOX* and

rOF' be denoted by $

id ^ refl|)ectively. Also

P, any point in the

plane, have the coordinates

X uiiil y when referred to the first pair of axes, and if and y'

when referred to the second pair.

Draw the ordinates MP, M' P, and QM\ also draw M^R
Llel to the x-axis.

Then OM^ OQ + QM^ OM' cos^ + M'P sin (90 - ^);

« « j/ cos ^ + y' cos ^,

r .... [251
id similarly, y 8 2/ sin ^ + y' sin ^, J

which are the required formulas of transformation from

leotangular to oblique axes having the same origin.

If •i90^ and consequently ^»1H)'' + ^, thcMi formulas

I] reduce to [24]. and Art. 73, thertifon-. inclmlca Art. 72

a special ca.se.

By first solving for a/ and y, formulas [25] may also be

iployed to transform from oblique to rectangular axes.

• See Hon 1, Art. 71.
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EXERCISES

1. Given the equation Ox* - 16 y' = 144 referred to rectangular axes;

what does this equation become if transformed to new axes such that the

new x-ax\a makes the angle tan-* ( - }), and the new y-axis the angle

tan~*(f), with the old z-axia,— origin unchanged?

2. If the old and new oMixes coincide, and the new axes are rectan-

gular while the old axes are inclined at an angle of 60% what are the

equations of transformation from the old axes to the new? From the

new axes to the old ? Origin unchanged in each case.

3. If the first two of the three sides of a triangle whose equations are

2y + x + l=0, 3y-x-l=0, and 2x + 3y = 1} are chosen as new axes,

find the new equations of the sides.

M Q
Fio.60.

74 Transformation from one set of oblique axes to another,

origin unchanged. Let OX
and OF be a given pair of

axes, OX' and OY' the new

axes, and let the angles XOV^,

X'OY\ XOX', and XOY'
be denoted by o), a>\ 0^ and ^,

respectively. Also let P, any

point in the plane, have the

coordinates x and y when referred to the first pair of axes,

and a/ and y' when referred to the second pair.

Draw M'P parallel to 0Y\ MP and QM' parallel to

or, and MR parallel to OX.

Then, from the triangle OQM^

sincD sin CO

and from the triangle RM!P^

Jti»f'=y'
^'"<»-''> and RP = y'^^.

sino) smo)

But 03f= OQ - RM\ and MP=Q3f + RP;
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and ^^x^'

ttlll

isin^ . » 8in^

8in sill

189

. [26]

ioh are the required formulas of trannformation from one

of oblique axes to another having the same origin.

KoTB. If it is datirad to ehaoge the origim, and alio the direction of

siee, the neneetery formulee msj be obuined bj oombiniog Art 71

Art. 73, Art 78, or Ait 74, depending upon the given and required

EXERCISES

1. Show, by epeeialising tome of the angles m» •/. B* and ^ U\ Art 74,

that formulas [36] include both [25] and [24] as special cases.

8. The equation of a certain locus, when referred to a pair of axes

that are inclined to each other at an angle of 60", is 7x* - 2xy + 4y* = 5;

what will this equation become if the axes are each turned through an

sn^le of 30"? What if the x-axis is turned through the angle -30*

while the y-azia is turned through +30"?

^L 7& The degree of an eqaation in Cartesian codrdinates is

^Mtt changed by transformation to other axes. Every fonuula

^Bf transformation obtained ([23] to [26]) has replaced x and

^B^ respectively, by expressions of the first degree in the new

^HbSrdinates j/, y'. Therefore any one of these transforms-

^feons replaces the terms containing x and y by expressions

>f the same degree, and so cannot rais^ the deg^ree of the

::iven equation. Neither can any one of these transforma-

tions lower the degree of the given equation ; for if it did,

Hisee formulas can aleo be read directly from Fig. 60 by first prqjeei*

0.1/ and then the broken line OWPM upon a line perpendicular lo 0Y\
afterwards projecting ifPand also the broken line JfOJTP'upon a per-

to OX The reeulu being equated In each case, and diflded by
glfe [26].

TAJt. AK. OBOM. —
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then a transformation back to the original axes (which must

give again the original equation) would raUe the degree,

whicli has just been shown to be impossible ; hence all these

transformations leave the degree of an equation unchanged.

IL POLAR COORDINATES

76. Transformations between polar and rectangular sys-

tems. (1) Transformation from a rectangular to a polar

system^ and vice versa^ the origin and

p X-axis coinciding respectively with the

pole and the initial line. . Let OX
^ and F be a given set of rectangular

axes, and let OX and be the initial

• * line and pole for the system of polar

coordinates. Also let P, any point in the plane, have the

coordinates x and y when referred to the rectangular axes,

and p and 6 in the polar system (Fig. 61), then

OM = OP cos XOP;

i.e.,

similarly. l/ = pglne. J

[27]

These are the required formulas of transformation when, but

only when^ the rectangular and polar axes are related as

above described.

Conversely, from formulas [27], or directly from Fig. 61,

p = Va? + »A cos e = ^
and sin 6 = ^ [28]

which are the required formulas of * transformation from

polar to rectangular axes, under the above conditions.
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I

^2^ Slams «« (1) ereepl that the initiil tine OR makei an

with the X'axU, It

•iico oviiletit tliiit the fomiulaii of

timnsformatiun for tliis case are

:

x«pcoii(^ + a)>pcoii(9 + a),
j

and If

The converne formuba for thin

;iaeare:

(8) TTan^for1nation from any Cartesian $y$tem to any polar

9i/9tem^ Transform firHt to rectanguhir uxen whone origin i»

xUv propoaed pole; this is accompHnhed by Arts. 71 and 78.

Then by formula [27] or [29] tninsform from tho rectanguUr

< !i to the pohir coordinates.

EXERCISES

Change the following to the oorretponding polar eqaationn; draw a

ttgare showing the two related systems of axes in each ease. Take the pole

St the origin, the polar axis coincident with the axis of x, in exercises 1 to 4.

1. jr« + y«=o« 3. x« + y«a9(jc«-f«).

Xjf*-x4-3ay3 0. 4. ysxtaoa.

5. X - y/ijf + 2 = 0, taking pole at origin, polar axis making the

angleW with the iHU[is.

e. x«-y«-4x-6y-M = 0, Ukine the pole at the point (2, -S),

and the polar axis parallel to the iHtxin.

Change the following to corresponding recungular equations. Take
the origin at the pole and the x^uus coincident with the polar axis.

7. p so. 9. p<sin2^= la

a p* cos 2 ^ = a*. 10. p< = a*8in *2$.

SuaoKATioN. In Ex. 10 multiply by p* and i«ul>!«titute 2 sin ^oostf for

sin 20; the equation then becomes p* = 2 o*p* sin $eo»$.

Il.p = 4rco80. 12. tf = 3tan-i2. 13. p^ cos ^ » i^.
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EXAMPLES ON CHAPTER VI

1. Find the equation of the locus of 2xy-7x + 4ys30 referred to

parallel axes through the point (~t2, }).

2. Transform the equation x* — 4xy + 4y* — 6x + 12y = to new
rectangular axes making an angle tan~* | with the given axes.

3. Transform y*-xy-5a: + 5y = to parallel axes through tlie

point (-5, -5). Draw an appropriate figure.

4. Transform the equation of example 3 to axes bisecting t)i

between the old axes. Trace the locus.

5. To what point must the origin be moved (the new axes being

parallel to the old) in order that the new equation of the locus

2x« - Sxy _ 3y« - 2x + 13y - 12 =

shall have no terms of first degree ?

Solution. Let the new origin be (A, k) ; then x = jf + h, y — if •{ k^

and the new equation is

2(x' + *)«-5(x' + /0(y' + it)-3(y'4-X:)«-2(x' + A) + 13(y' + il-)-12 = 0,

i.e., 2x'« - 5xV - Sy'" + (4 A - 51: - 2)x' - (5A + 6^• - 13)^

+ 2A« - bhk ^ 3ifc2 - 2A + 131- - 12 = 0;

but it is required that the coefficients of x' and y' shall be ; i.e., h and

k are to be determined so that

4A-5ifc- 2 = 0,

and 5A + 6fc-13 = 0;

hence A = V and /: = f
Therefore the new origin must be at the point (V> f)» and the new
equation is

2x'«-5xy -3^2-8 = 0.

6. The new axes being parallel to the old, determine the new origin

so that the new equation of the locus

x« - 3xy + y2 4- lOx - lOy + 21 =
shall have no terms of first degree.

7. Transform the equations x + y — 3 = and 2x — 3y + 4 = to

parallel axes having the point of intersection of these lines as origin.

X V
8. Transform the equation ^ + ^ = 1 to new rectangular axes through

the point (2, 3), and making the angle tan ~^(— 1) with the old axes.

9. Through what angle must the axes l)e turned that the new equa-

tion of the line 6x + 4y-2l = shall have no y-term? Show this

geometrically, from a figure.
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XO. Through what aogto mifl Um aim bt toniad in order thai Um
DOW oqtuUion of tho Una 6 x •«• 4 f 24 thall havo no MarmT Show
aoalyiieallj (of. also oiamplai 8 aod 0).

8oLtJTioif. Lot tf bt ibo roquirad aofla; than tba aqualiona of traaa*

formatlou ara

xayeoa^-j<ain^ and yaj^tintf^-j^costf;

tha new eqoaikm b
(6oot^ + 4ainQ<'-(Osiiitf-4oo8Q/s34;

il b rsquired thai tha ooalBoient of x be 0,

Oooatf -f 4tintf = 0, t«n taotf a-|;

^ = tan-»(-|>,

iba miiiatifwi baoomaa

(6Bin^-4ooaQf' + 24aO^

to vl^y' + iasO.

Through what angle must the axes be tamed to remore tha

from tha equatioa of the locus Ax -^ Bjf -^ C = 01 to remova

y>tarm?

12. Show that to remove the xy>terra from tha equation of tha loeiii»

9x* -. 6xy - 8y> = 8 (cf. Ex. 5), the axes must be turned through tba

aogia ^ s or 80', U., so that tan 2^ = - 1. ^Vhat is the new eqnationt

IS. Through what angle must a pair of rectangular axes be tumad

thai tha new x«xis may pass through the point ( -2, —5) ?

14. What point must be tha new origin, the diraetloii of axes being

vwhanged, in order that the new equation of tha Una AS'^Bg+C =:0

shall have no constant term?

15. To what point, as origin of a pair of parallel axes, most a trana-

formation of axes be made in order that the new equation of tha loeoa,

xy~^~x + y = 0, shall have no terms of ftrstdagrea? Conatniol tha

locus.

IC Find tha new origin, the direction of axes remaining unchanged,

so that tha equation of tha locus, x* + x3f-8x-jf + 2sO, shall hava

no oonstant term. Construct tha flgure.

IT. Transform the equation 4x* + 2\/fxy + 2jr* = 1 to new rectan-

gular axes making an angle of 80* with tha given axes,— origin unchanged.
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18. Transform y* = 8x to new rectangular axes having the point

(18, 12) a« origin, and making an angle cot->3 with the old.

19. Transform to rectangular coordinates, the pole and initial lino

being coincident with the origin and x-axis, respectively:

(o) p« = a«co82^, 08) p«cos2d = a«, (y) p=:Arsin2^.

Transform to polar coordinates, the jc-axis and initial line being coin-

cident :

aO. (or* + y«)* = fc«(i« - y«), the pole being at the point (0, 0)

;

ML Of* + y* = Tax, pole being at the point (0, 0)

;

22. X* + y* = 16 X, the pole being at the point (8, 0).

23. Transform the equation y^ + 4 ay cot 30** — 4 ax = to an oblique

system of coordinates, with the same origin and x-axis, but the new
y-axis at an angle of 30^ with the old x-axis.

X' mS
24. Transform the equation Ta + g = ^» ^ °®^ &x^i making the

positive angles tan -* } and tan "*(— |), respectively, with the old x-axis,

the origin being unchanged.

25. Transform the equation

8x« + lOVSxy - 7y« = (18 - 30\/3)x + (42 + 30>/3)y + (42 + 90>/3)

to the new origin (3, -3), with new axes making an angle of 30° with

the old.

26. Transform the equation 3 x' + 8 xy — 3 y* = to the two straight

lines which it represents, as new axes.

27. Transform ^— ^ = 1 to the straight lines -— — = 0, as new

28. Transform to polar coordinates the equation y* (2 a - x) = x*.

29. Transform to rectangular coordinates the equation

p = a(cos2d + sin 2d).

30. Prove the formula for the distance in polar coordinates [1] by
iransformi^tion of the corresponding formula [2] in rectangular coordi-

nates.

31. Transform the equation xco8a + y8ina=/»to polar coordinates.



CHAPTER VII

THX CIRCLE

Sptdal Bqiction of tte Saooad DigrM

77. It muiit be kept clearly in mind tliat one of the chief

aiuiB of an elementary course in Analytic Geometry ia to

leaoh a new msthod for the study of geometric properties of

curves and surfaces. Power and facility in the use of such

a new method are best acquired by applying it first to those

loci whose properties are already best understood. Accord-

ingly* the straight line having already been studied in

Chapter V, the circle will next be examined.

It will ap{>ear later that the circle is only a special case of

the conic sections already referred to in Art. 48, and might»

therefore, be advantageously studied after the general pro|>-

es of those curves had been examined ; the present order

adopted, however, because the student is already familiar

th the chief properties of the circle.

In solving the exercises of this chapter the student should

the analytic methods, even when purely geometric methods

might suffice,—he is learning to use a new instrument of

investigation, and is not merely studying the properties of

circle.

7a The circle : its definition, and aquation. The circle may
defined m tho path traced by a point which moves in such

way as to bo alwayn at a constant diHtanee from a given

ixed iK>int. This fixed point is the center, and the constant

ice is tho radius, of the circle.

1»
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To derive the equation from this definition, let (7= (h, k)

be the center, r the radius, and P = (a;, y) any point on the

curve. Also draw the ordinates

M^C and MP, and the line CR
parallel to the x-axis ; then

CP = r ; [geometric equation]

but (Art. 26),

CP = V(^z-hy + Q/^k)^

hence V(a; — hy + (j/ — k^ = r ;

t.e., (aJ-*)» + (y-*)« = r«,» . . . [31]

which is the equation of the circle whose radius is r, and

whose center has the coordinates h and k.

With given fixed axes, equation [31] may, by rightly

choosing A, k, and r, represent any circle whatever ; it is,

therefore, called the general equation of the circle. Of its

special forms one is, because of its very frequent applica-,

tion, particularly important ; this form is the one for which

the center coincides with the origin : in that case A = yt = 0,

and equation [31] becomes

a.2 + y« = r2.t . . . [32]

Equation [31] may be written in the form

the first member then becomes positive if the codrdinates of any point outside

of the circle are substituted for x and y, it becomes negative for a point inside

of the circle, and zero for a point on the circle. Hence the circle may be

regarded as the boundary which separates that part of the plane for which

the function (x — hy + (y — it)* — r* is positive from Uie part for which this

function is negative. The inside of the circle may therefore be called its nega-

tive side, while the outside is its positive side (cf. foot-note, Art. 43).

t If one is unrestricted in his choice of axes, then an equation of the form

of [32] may represent any circle whatever,— the axes need merely be chosen

perpendicular to each other and through its center;— equation [31] Is more

general in that, the rectangular axes being determined by other considera-

tions, it may still represent any circle whatever.
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CXCRCISet

Flnl eonftroot the eirele, then find iU tqaatloB, betof fivwi t

1. the oentor (^ -3). the radiui 4;

a. iheeenter(0,'J), theradiiui;

a. the center (3, -3), the radiua 8{

C the oeoter (0, 0), the raditu 5;

8. the center (-4, 0), the rwiiue 1.

C How ATS circlet rekted for which A and 4: »re the Muae, while r k
liferent for aaohT for which k And r are the mum, while k diflers for

7 What form doee the equation of the circle aname whan the oanler

n on the x«zis and the origin on the circumference? when the diela

tonehet each axis and has it« center in quadrant II?

79. In rectanguUr coordinates every equation of the form

jp*+ y* + 2 «jt + 2 /^y + C = represents a circle. The equa-

tiotiM of the circles already obtained (equations [31] and

[32], as well as the answers to examples 1 to 5 and 7) are all

nf tliH form

;r» + y« + 2(3^+21ir+C=0; . . . (1)

it will now be shown that, for all values of (?, F^ and C,

for which the locus of equation (1) is real, this equation

represents a circle.

To prove this it id only necessary to complete the square

in the f-terms and in the y-terms, by adding ^4- F* to each

iiember of equation (1), and then transpose Cto the second

member. Equation (1) may then he written in the form

(r + (?)« +(y + i*)* = (?«+ F«-

C

-CV(^ + i^-tO« . . (2)

which is (cf. equation [81]) the equation of a circle \\ li<»se

center is the point (— 6^, — JP)« and whose radius is
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NoTK 1. This circle is real only it G* + F* - C>0\ for, if

(?!+/«_ C<0,
Us sipKiro root is iiiuiginary, and no real values of xand vcan then aatiitfy

equation (2) \ while if(7* + F*-C = 0, then equation (J) reduces to

(x+(7)« + (y + F)« = 0, (3)

which may be called the equation of a " point circle," since the coordi-

nates of but one real point, viz. (-G^, -F), will satisfy equation (3).

If, however, G^ -f F* -OO, then equation (1) represents a real circle

for all values of 6*, F, and C, subject to this single limitation.

Note 2. Every equation of the form Ax^ + Af + 2 Gx -^ 2 Ft/ + C =
represents a circle, for, by Art. o8, this equation has the same locus as

C F (^

has x* + y* + 2— x + 2---y + — = 0, and this last equation is of the
A A A

form of equation (1).

Hence^ interpreted in rectangular cod'rdinates^ every equation

of the second degree from which the term in xy in absent, and

in which the coefficient of a^ equals that of y^^ represents a

circle,

80. Equation of a circle through three given points. By

means of equation [31], or of the equation

3^ + f-\-2ax + 2Fy-{-C=0,. . . (1)

which has been shown in Art. 79 to be its equivalent,

the problem of finding the equation of a circle which shall

pass through any three given points not lying on a straight

line can be solved ; i.e.^ the constants A, A:, and r, or G, JP,

and Cy may be so determined that the circle shall pass

through the three given points.

To illustrate : let the given points be (1, 1), (2, "1), and

(3, 2), and let x^ + y^ + 2Gx -f 2 i> + C = be the equa-

tion of the circle that passes through these points ; to find

the values of the constants G^ F, and C. Since the point

(1, 1) is on this circle, therefore (cf. Art. 35),

l + l + 2a-h2J^+C7 = 0;
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iiiiilurly, 4-».l4>4(7-2i'-fC'-(H

ami 9-hi-f6a-h41'4-C -0).

These equations give: (7ai— |, #v—^ and 0^4,
^ulMtituting these values, the equation of the required

trcle becomes

lU center \h at the point (|, |), while its radius is |VTo.

NoTK. The fact th«i the matt general equation of the drele onnuins

iiree parameter* (A, I; and r, or G, F, and C, abore) oorreapoodi to tlie

property that a oirole it uniquely determiiMd by three of ita pointt.

EXERCISES

ill, aud thu coordinates of tlie centen^of the following

tw the circles.

1. it + |i-4x-8f-41=0. 4. 2(x«4.y«) = 7f.

a. 8*« + 83f«-5x-7f + 1 =0. 5, ar< + ^s&x + cy.

a. x« + y« = 3(x + 3). «. (' + y)« + (' - f)« = 8a«.

7. What loci are repreeented by the equationt

(x-A)« + (y-l:)« = 0.

•Dd jt« + f«-2x + 6y + S8 = 0?

Find the equation of the circle through the pointt t

a (1. J), (3. -4). and (5,-6);

9. (0.0), (a,&).and(&.ii);

10. (-8.-1). (0.1). and (1,0);

U. (10, 2). (3. 3), and having the radhit S.

12 Find the equation of the circle which hat the line joining the

points (4, 4) and (-1. 2) for a diameter.

13. Find the equation of the circle which tonebet each axis, and
[vanei through the point ( -2, 8).

14. A circle hat itt center on the line 8x -r 4 ,v = 7. an<i touchea the

vo linee x + jf = 8 and x - jf = 8; find itt equation, radius, aud oeatar;

alto draw the circle.
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Fio.64.

SECANTS, TANGENTS, AND NORMALS

81. Definitions of secants, tangents, and normals. A straight

line will, in general, intersect any given curve in two or more

distinct points ; it is then called a

secant line to the curve. Let Pj

and Pj be two successive points of

intersection of a secant line P1P2Q
with a given curve LP^P^ ••• K\
if this secant line be rotated about

the point Pj so that P^ approaches

Pj along tlie curve, the limiting

position P^T which the secant approaches, as P^ approaches

coincidence with Pj, is called a tangent to the curve at that

point. This conception of the tangent leads to a method, of

extensive application, for deriving its equation,— the so-

called "secant method." *

Since the points of intersection of a line and a curve are

found (Art. 39) by considering their equations as simulta-

neous, and solving for x and y, it follows that, if the line is

tangent to the curve, the abscissas of two points of intersec-

tion, as well as their ordinates, are equal. Therefore, if the

line is a tangent, the equation obtained by eliminating x or

y between the equation of the line and that of the curve

must have a pair of equal roots.

If the given curve is of the second degree, then the equa-

tion resulting from this elimination is of the second degree,

and the test for equal roots is well known (Art. 9) ; but if

the given equation is of a degree higher thah the second,

other methods must in general be used.

A straight line drawn perpendicular to a tangent and

* For illuslration, see Art 84.
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The

rta.fli

through the point of tangency i» called a aormal line to the

curve at tlmt point. Thua, in Fig. 64, PiPp PxP% are m-
cant), P,r ia a tangent, and P^N a normal to the curve at Py

82. TABgenU : lUtutrativt tJumplM.

( 1 ) Tu find the tH^uutiuti of that tangeot to tb« drcto 2* -f f* 6
which makea an angle of 45** with the iHisia. Since thb Hoe makM an
angle of 45* with the x-azb iu equation b f as x 4. ^ wbara ^ it to be
determined ao that this line ahall touch the eirels.

Clearly, from the figure, there are two valoei of h (OB^ and OBJ for

which this line will be tangent to the

eirele. According to Art. 81, tbeae

values of 6 are thoae which make the two
pointa of interaeetion of the line and the

eircle become coincident.

Conaidering the et^uationa x* -f jr* = 5

and jf ss X -)- 6 simuluueous, and elimi-

nating jf, the resulting equation in x is

<*-)-(x+A)*a5» U^ 2x«+2&x+fr*-5=0.

roota of this equation will become

ual, iV, the abeciasas of the points of

ion will become equal (Art. 0),

l» - 2 (6» - 6) ^ 0. !.«., itb±± vTo.

The equations of the two required tangent lines are, therefore,

jf ss X + vlo, and y = * - Vlo.

(2) To fiud the equations of those tangents to the circle x* 4 f* » 6 f
that are parallel to the line x + 2y + 11 = 0.

The equation of a line parallel tox + 2jf+ll =0isx + 2jr + lr = Q,

\^here 4: is an arbitrary constant (Art. 02), and this line will become
iugent to the circle, if the value of the constant i- be so chosen that the

iwo points in which the line meets the circle shall become coincident.

flonsidcring
the equations x* 4- ^ = 6jf and x-f2jf+l: = simulta>

IS, and eliminating x, the resulting equation in jr is

(- Ir - 2yV + *•= «y» '^M 5y« + (4 I: - «)y -^ I« = a
The two values of jf will become equal if (Art. 0)

(4i . 6)* - 20H = 0, !.«., if it* + 12it - = a
If *=-6i:8V5,

x-|-2jr~6 •|-3>/5aB0, and x •(- 2f - 8 - SViS sa
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EXERCISES

Find the equations of the tangenlA

:

1. to the circle x* + y* = 4, parallel to the line x + 2y + 3 = 0;

2. to the circle 3(x* + y^ = 4 y, perpendicular to the line x 4- y = 7

;

3. to the circle x> + y' + 10x-6y-2 = 0, parallel to the line

y = 2x-7;

4. to the circle x* + y* = r*, and forming with the axes a triangle

whose area is r^.

5. Show that the line y = x + c>/2 is, for all values of c, tangent to

circle x^ + y* = c^\ and find, in terms of c, the point of contact

6. Prove that the circle x* + y*4-2x + 2y + l=0 touches both

coordinate axes ; and find the points of contact.

7. For what values of c will the line 8x — 4y + c = touch the

circle x« + y^ - 8x + 12y - 44 = 0?

8. For what value of r will the circle x'^ -\- tj* = r^ touch the line

y = 3x-5?

9. Prove that the line ax = 6 (y — i) touches the circle x (x — a)

+ y(^y — h) = ; and find the point of contact.

10. Three tangents are drawn to the circle x* + y^ = 9 ; one of them

is parallel to the x-axis, and together they form an equilateral triangle.

Find their equations, and the area of the triangle.

83. Equation of tangent to the circle a;^ + y* = r« in terms

of its slope. The equation of the tangent to a given circle,

in terms of its slope, is found in precisely the same way as

that followed in solving (1) of Art. 82. Let m be the

given slope of the tangent, then the equation of the tangent

is of the form

y = mx\-hy . . . (1)

wherein 5 is a constant which must be so determined that

line (1) shall intersect the circle

a^ + f^r^ ... (2)

in two coincident points.
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Klimiiiatiug y betwecMi equutiutiM (1) aiid (2) gives

a« + (iiur + 6)«-r«,

I lid the two valucH of x obtained from thia equation will

1 (Art. 9) if

...if 5-±rVl + m«.

SubHtituling tluM valuo'of b in equation (1), it becomes

y = fwjt ± ry/\ + !••*,• [88]

A Inch is thou, for all valuen tif m, tangent to the circle (2).

This equation [33] enablcH tme to write down immediately

(uation of a tangent, of given slope, to a circle wkoH
0. uff-r 19 at the origin,

/.'v., to find the equation of the tangent whoee slope m = 1 = tan 4fl^

!•• Uiti circle x* -f Jf* = &t it is only necessary to substitute 1 for si and
• 5 for r in equation [33]. This gives as the required equation

y s X ± vTo [cf. (1) Art 82].

KoTi 1. If the center of the given circle is not at the origin, Lt^

' iU equation is of the form x* -f y< + 2 (7x + 2 f> + C = 0, instead of

.
: +y>=r*, then the same reasoning as that employed above woald lead to

y+F=iii(x + C)±V(;«+F«-C. VI +•« . . [84]

u tlie equation of the required tangent.

This equation might have been obtained also by first inmntoriniiig

the equation x> + y<-f2Gx-f2Fy + C = 0to parallel axes through the

point (-G. -F); this would have given x'« + y^ = f7« + F«--C = r«

&.<« the equation of the sosm circle, but now referred to axes through ito

•nter. Referred to these new axes y = six' ± rVTTsi* (see eq. [*«])

. for all values of m, tangent to this circle; transforming this b^t

justion back to the original axes, U,^ wibsUtnting for x', /, and r their

Mils via., X + tf, y + F, and VG* + F* - C, it becomes

y + F = m (x + O) ± V(5« + F« - C . vT+i?

* Hits equation laaomrtimes qwkeu uf ss tlie Magical
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M before, which ia, for all values uf my tangent to the circle whose

center is at the point (~C?, "F) and whose radius is VG^ + F^ — C.

Note 2. liecause of its frequent occurrence, it is useful to memorize

equation [33]. On the other hand, it is not recommended that equation

[34] be memorized, but it should be carefully worked out by the student.

Instead of employing either of these formulas, however, the student

may always attack the problems directly, as was done in Art. 82.

EXERCISES

Find the equations of the lines wiiich are tangent:

1. to the circle x* + y^ = 16, and whose slope is 3

;

2. to the circle x^ + y^ = 4, and which are parallel to the line x -f 2 y
+ 3 = (cf. Ex. 1, Art. 82);

3. to the circle x* -f y' = 9, and which make an angle of 60° with the

X-axis ; with the y-axis

;

4. to the circle x'^ + y* = 25, and which are perpendicular to the line

joining the points ("3, 7) and (7, 5)

;

5. to the circle x* + y* = 2 x + 2 y — 1, and whose slope is "1.

84. Equation of tangent to the circle in terms of the coordi-

nates of the point of contact : the secant method.

(a) Center of the circle at the oriyin. Let Pj= (a:|, y^) be

the point of tangency, on the given circle

a? + y» = A . . . (1)

Through P^ draw a secant line LM^ and let P.^ = {oc^, y^
be its other point of intersection with the circle. If the

point Pj moves along the circle

until it comes into coincidence

with Pi, the limiting position of

the secant LM is the tangent

P,T, (Art. 81.)

The equation of the lineLM is

y^y^„!b:il\(x^xr) (2)

Fio.06. If now Pj approaches Pi until
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^x. uiid u.=^u., (H|iiuti(>ii ^2^ taken the iiidetemiiiiAta form

Thill itidet^rmiiuitenemi ariaes beoauae aooount baa not jei

lieen taken of the |>uth (or direction) by which P, ahall

>iioh Pi, and it diaappeara immediately if the c<»iidition

.... y% ia to approach Pi along the cireU (1) ia introduced.

Since the lixed |M)int P| ia on the circle (1), therefore

^I' + yi'-r*; ... (4)

aid aince P^, while approaching P|, always remaiiia un circle

1), therefore

«,' + y,'-r*; ... (6)

hence, aubtractiiig equation (4) from equation (5)«

^»at ia, (yi-yi)(yi+yi)-"-(*f-^i)(^+*i) i

..hence, i^=ifl=-^±a.
*i-«i yi+yi

^uUitituting thia reault in equation (2) givea

y-^»--?z!'('-^^'* ... (6)
yi+yi

whiob ia the equation nf the secant line LM of the given

ircle (1).

• The (Ufferenoe !>etw««n eqnatloiii (S) and (0) eonslits in this : do matp

trr mhtn the pointa (zi« pi) and (xt, ri) <na7 ^« cquaUon (S) lapneeBte

-h« gtralghi line peesing Uirough them ; bai e(|oaUoQ (6) is the eqaalkm of

he line through theee points only when thej nre on the circle »« .f |^ = ?«.

iti other words, equation (i) ia the equation of the line p—

i

ng through any

vfo poinu whatever, while equation (6) ia the equation of the Un

Uirough any two poinU on the olronmfereiioe of the circle.

TA». AX. OKOM.— 10
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Now let Pi move along the circle until it coincides with

Pn t.«., until x^^Xiy and ^2=^1* then equation C6) becomes

yi

whicli, by clearing of fractions and transposing, may be

written in the form

t.e., a?ia; -f i/iy = r«, . . . [35]

which is the required equation of the tangent to the circle

a? '\- y^ = r^^ x^ and yi being the coordinates of the point of

tangency.

(/9) Center of circle not at origin. If the equation of the

given circle be

a^ + y^+2Gx-\-2Fy + O=0, . . . (7)

then, Pj and P^ being on this circle,

x^ + y^^2ax^ + 2Fy^ + 0=y), ... (8)

and x^^y^ + 2ax^ + 2Fy^^-C==(i. ... (9)

Subtracting equation (8) from equation (9),

x^^^x^^ + 2a(ix^-x{) + y^-y^^-^2F(iy^^y,)=^(i,

which may be written in the form

(ya - yi)(y2 +yi + 2^)= -(xj-arOC^a + ^i + 2G^);

whence ^^~ ^^ - -^^ "^3 + '^^

.

whence,
^^ _ ^^

- y,^y,^2F'

Substituting this result in equation (2) gives

^ + ^1 + 2(3^, \ r^(\\
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ait tho oquatinn of the teoant through the two poinU (j;|, y|)

Mid (jr,, y,) on thu circle (7). If, now, the point (r^ y,)

movttt alon^ the curve until it ooniee into coincidence with

(X|, ^1 ), tlii8 Hci-unt line beoomee a tangent, and itn equation i«

y-y.--^^(*-*i)- • • (")

Clearing equation (11) of fraotions, and tranapoatDg, it

may be written thuii

:

^i*+yiy +^ + -^y-V+yi*+^i + -^yi; • • • 02)

but, by equation (8), the second member of equation (12)

ecjuals

Putting this value for the second member in equation (12),

and transposing, that equation becomes

«i« + yiy+0(a5 + aP|)+l^(y + yi) + C = 0, . . . [86]

which is the required equation of the tangent to the circle

^7), X| and y| being the coordinates of the point of contact.*

Note. Equation [80] may be easily remembered if it be obeenred

thai it differs from the equation of the circle [eqwition (7)] only In

h.i%ing x,x, jfijf, X + Tp and y + jr, in pUce of x« y«, 2*, and 2f, respeo-

tivrly. It will be found later that any equation of the second degree

( from which the xjf-term b absent) bears this same relation to the equa-

tion of a tangent to its locus, x^ and jf^ being the coordinates of the point

of eontact Compare, also, equation [35] with equation (1).

It must also be carefully kept in mind that equations [^] and [96]

represent tangents on/jf if (x,, y,) m <i point on the eirele. It will be seea

Uter that thaae equations represent other lines if ('i* jfi) is nof on thedreie.

8S Equation of a normal to a given circle. By definition

(Art. 81) the normal at a given point, P^=(jr|, ^i), on any

* RqnatkMtt (11) and (12) are, of eoorse, but different forms of the

tkm of the same tangent as that reprMeatrd by equation [80}.
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curve is the line through Pj, and perpendicular to the

tangent at Py Hence, to get the equation of the normal

at any given point, it is only necessary to write the equation

of the tangent at this point (Art. 84), and then the equa-

tion of a line perpendicular to this tangent (Arts. 53, 02)

and passing through the given point. Thus the equation

of the normal to the circle

a:a-fy»4-2ax+2JV + (7 = 0, . . . (1)

at the point Pj =(a;i, y^), is

y-^» = jT?^*"''»^' • • • (2)

The coordinates — G and — jP of the center of the given

circle (1) satisfy equation (2); hence^ every normal to a circle

passes through the center of the circle.

If the center of the circle be at the origin, then 6? = 0,

P = 0, and C = — 7^, and the equation (2) of the normal

becomes

y-yx = ^ii=o-x{), . . . (3)

which reduces to x^y — xy^ = 0,— an equation which could

have been derived for the circle x^ \- y"^ = r^ in precisely the

same way that equation (2) was derived from equation (1),

EXERCISES

1. Derive, by the secant method, the equation of the tangent to the

circle x* -f y* = 2rx, the point of contact being Pj = (Xj, y^.

2. Write the equation of the tangent to the circle

:

(a) X* + y* = 25, the point of contact being (3, 4) ;

{P) x« + y* - 3 X + lOy = 15, the point of contact being (4, -11)
;

(y) {x - 2)« + (y - 8)» = 10, the point of contect being (5, 4)

;

(8) 3 x« + 8 y* - 2 y - 4 X = 0, the pomt of contact being (0, 0).
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3. Find the equation of the normal to eaeb of Um eirolM of Ex. I;

(iirough the given poioL

4. A tangent it perpandienlar to tha radlui drawn to lla point of

. ..utaet By nieaiM of thia fact, deriT« the equation of the tangent to

irt}|e(x-o)»+(f-*)«=r« at the point (xpjf,) (cf.equation pW)).

5 Kruui the fact that a lUMrmal to a circle paaaaa throogh ita canter,

• M.l (i.< ..luation uf the normal to tha eirele I'-fr- jf'-Ox-f ()jf -f 31 sO
al lltf |M*lllt (1,'4).

6. Find the equationa of the two tangenta, drawn through the cs-

tamal point (1 1, 3) to tlie circle x< -f jf* » 40.

St^ooBSTioic. Uae the equation of the tangent in terms of ita alope.

7. What b the equation of the circle whoee center b at the point

(\ S), and which tondifla the line 3t + 2y - 10 = 0?

a Under what condition will the line - + f s 1 touch the circle

9. Find the equation of a circle inacribed in the trian|^ whoae aidea

are tlie lines x = 0, jf = 0, and ' + J = I.
a b

la Solve Ex. 6 by assuming x, and jr, as the eottrdinates of tha point

of contact, and then finding their numerical values from the two equa-

tbns which they satisfy.

86. Lengths of tangents and normals. Subtangents and

subnormals. The tan^nt and normal lines of any curve

\t<iid indefinitely in both

tlirections ; it is, however,

convenient to consider as the

length of the tangent tlie

length T/'p measured from

the point of intersection (7)
of the tanj^nt with the r-

axiH to tlie point of tangency

(Pi), and similarly to consider as the length of the normal

the length /^iV, measured from P, to the point of interaeo-

tion (iV) of the normal with the x-axis.
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The subtangent is the length TM^ where M is the foot of

the ordinute of tlie point of tangency P^ ; and the subnormal

is the corres|)onding length MN. As thus taken, the sub-

tangent and the subnormal are of the same sign ; ordinarily,

however, one is concerned merely with their absolute values,

irrespective of the algebraic sign. The subtangent is the

projection of the tangent length on the ar-axis, and the sub-

normal is the like projection of the normal length.

87. Tangent and normal lengths, subtangent and subnor-

mal, for the circle. The definitions given in the preceding

article furnish a direct method for finding the tangent and

normal lengths, as well as the subtangent and subnormal,

for a circle. JE.g.^ to find these values for the circle

a^-\-y^ = 25, and correspond-

ing to the point of contact

(3, 4), proceed thus:

The equation of the tan-

gent P^r is (Art. 84)

3a; -h 4^ = 26;

hence the a;-intercept of this

tangent, i.e., OT, = ^

;

therefore the subtangent TM, which equals OM— OT, is

8 — •^, i.e.., — 5J. The tangent length

Fio.68.

TP^ =^MT + MF^=Vi^y -f 4* = 6|.

To find the normal length, and the subnormal, first write

the equation of the nonmal at the point (3, 4); it is (Art.

85) 4 a: — 3 y = 0. Hence its a?-intercept is zero, and the

subnormal, MO in this case, is — 3 ; the normal length Pj

is 5.
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SiinilArly, corrMpuiitliiig to the pciiiit (xp y^) uii the oirolo

j:* +^ « f^« the 8ubtaugt)Ut — ^, the tangent length
'\

aa !jU, tb»» -M^'Mimml — a-j, ami tho iiormiil len^h r.

*l

'Hie derivuuuu of these values is left as an exercise for the

Mtudeut, as is also the derivation of the oorresponding

expressions for the circle j*4-/4-2(7j; + 2iV+C«0, the

point of contact being (r^ y{),

EXERCISES

Find the lengths of the tangent, lubtangent, normal, and nboonnal,

1. for the point (4, -11) on the circle x* •»- ^ - 3x + lOjf a 15;

a. for the point (1, 3) on the circle x*-hjf*-10x=s0;

3. for the point wboee abeoina la V7 on the eirole <* + f* = 35.

4. Tlio nubtangent for a certain point on a oirele, whose center b at

tlie origin, is 5|, and ita subnormal is 8. Find the equation of the circle,

and the point of tangency.

8& To find the length of a tangent from a given external

point to a given circle. Let P^^{x^^ y{) be the given

external point, and let

a:« + y» + 2fl4j + 2iV+ C«0
be the given circle. The center of tliis circle (Art. 79) is

("G^, "jP), and its radius is

VCP+l^-C. Join P^ to the

center K^ draw the tangent

P|9, and also the radius KQ,

Then F^^^KF^^Ri^;
but

(Art. 26)

and Ei^^O^-k-F^-Ci (Art. 79)
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•'.«., the square of the length of the tangent from a given

external point to the circle a^-\-g^ + 2Gx + 2Fg-{-C=^0*

18 obtained by writing the first member only of this equation^

and substituting in it the coordinates of the given point,]

89. From any point outside of a circle two tangents to the

circle can be drawn, (a) I^et the equation of the circle be

a^ + ya = ,^, . . . (1)

then (Art. 83) the line

g = mx + rVl 4- m^ ... (2)

is, for all values of ?n, tangent to this circle. Let P^= (x^^ g{)

l)e any given point outside the circle (1); then the tangent

(2) will pass through P^ if, and only if, m be given a value

such that the equation

yj = mx^ + rVl -f m^ . . (3)
shall be satisfied.

Transposing, squaring, and rearranging equation (3), it

is clear that it will be satisfied if, and only if, 7» is given a

value such that the equation

(r^ — x^')m^ + 2 x^y^m + r^ — yi =

is satisfied; t.«., equation (3) is satisfied if, and only if,

m ^ - a^i^i ± ry/x^^ 4- .Vi^ - r»

r^-x^
(4)

Equation (4) gives two^ and only two, real values for m
when (zj, yi) is outside of tlie circle, for then x^ -k-yi—f^ is

• If the circle i« given by the equation Ax* + Aj/^ + 2Gfa5 + 2fV+^==®t
it must first be divided by A before applying this theorem.

t The expression T\* + yi^ + 2 Ozi + 2 Fyx + C is called the pov>er of the

point Pi= (xi, Vl) with r^ard to the circle x«+y« + 2(/x + 2i^+C7 = 0.



<-S0,} TUB CIRCLE 15$

{KMitive (Art. 78, foot-note) ; tboM value* of m, being fob-

tituted in turn in ec|uiition (2), give Uie two tangents

through 7*1 to the circle (1).

If P, in on the circle (1;, then J?|* + Jfi*
— f* «0; hence the

I wo valucM uf m from equation (4; coincide, and the two

t.in^'out^ ulHt> coincide, i.f., there ie in this caie but oim

i.iiii^ent. If /'i i^ within the circle, then the two values

•t m from equation (4) are both imaginary and no tangent

ilirough P| can be drawn to the circle (1).*

If either value of m from equation (4) in subetituted in

• <|uatiun (2), and thfii e<iuation8 (2) and (1) are considered

iH 8imultaneciu8 and solved for x and y, the coordinates of

I he corresponding {X)int of contact are obtained.

KoTB. The propertien of tba t^matienM of the line and circle hare thus

•ttablisbed a geometric property of the circle [cf. Art. 31, (HI)]*

(/9) If the equation of the given circle had been

:r* + ^4.2(7a:4-2iV+C-0, ... (6)

it could, by Art. 71, have been transformed to new axes

through itA center (~(7, "F') and parallel respectively to

the given axes ; its equation would thus have become

3^ + y««fa, • • • (6)

where ar' and y refer to the new axes.

This transformation, however, leaves the circle and all its

intrinsic proi)ertie8 unchanged ; but (a) applies to circle (6),

hence it is proved that circle (5), which is circle (6) merely

referred to other axes, has the same properties.

* Theee concloriont may alio be tutcd ihos : \t Pi \m trnttUt of the

circle, equation (4) gitee two ivaI and dUtinci Tmluee for m ; eonvtpoodiBf
to tbeee there are two real and disUnct uuigenu ; If J^ is on the ciiele, the

two Talnee of m are real but coincident, and there are two real bat cninrldeBt

tan^nu ; if Pi is insfde oi the circle, the two Talaee cf m are

and the two coriiipoiidinf taofenu are therefore alw
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90. Chord of contact. If two tangents are drawn from any

external point to a circle, the line joining the two corre-

sponding points of tiingency is called tlie chord of contact for

the point from which the tangents are drawn.

The equation of this chord of contact may be found by

first finding the points of tan-

gency and then writing the

equation of the straight line

through those two points. It

may, however, be found more

briefly, and much more ele-

gantly, as follows:

Let Pj = (2?!, ^i) be the

given external point from

which the two tangents are]

drawn ; and let T^ = (2:,, y^) and T^ = (xg, yg) be the points

of tangency on the circle

a^ + i/^-\-2ax-h2Ft/+C=0; . . . (1)

it is required to find the equation of the line passing through

T^ and ^g. The equation of the tangent at T^ is (Art. 84)

a^rc-f yay 4- ^(2:4-2:2) -+-i^(y4-ya)-f (7= 0, . . . (2)

and the equation of the tangent at T^ is

a^8^ + y8y+^(^-+-^8) + ^(y+y8)-+-^=0-- • -(3)

But each of these tangents passes through the point Pj

;

hence its coordinates, x^ and y^, satisfy equations (2) and (3),

therefore

^i^2 + yiy2 + ^(^i + ^2) + ^(yi + y2) + C= 0,.. . (4)

and x^x^ + i/^i/^ + GC^i + x^) -\-F(^y^ •\-yz^ + O=0 (5)

Equations (4) and (5), however, assert respectively that

(^r y%) *"^ (^8' Vz) *'*® pf>ints on the locus of the equation

^ia^ + yiy + a(a:i+a;)+ jP(yi + y) + C7=-0. . . . (6)
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Rut equation (6) ui of the first degi-M in th« two Tsri*-

bleH X and y, hcneo (Art. 67) iU locu« is a stniij^ht lino, An«l«

• it pasfiM through both T^^(t^ IfO ^^ ^•C'r^a)*
.. i^ the equation of the chord of cont^ict

;

t.«^ T^T + y,y + 0(x + ri)-fJ(y + yi)+ C- . . . [37]

•4 the equation of the chord of contact correniMMiditi^ to the

• xtemal point Pja(r,, yj).

It is to be noticed tliat if P| in on the circle, then the two

tangents drawn through it coincide with each other and with

the chord of contact; the equation of the chord of con-

: ict [87] then becomes the equation of the tangent at P|, as

It Hhould (cf. equation [86]).

If, then, (X|, y,) is a point on the circle (1), equation [87]

i.H the equation of the tangent to the circle at that point; if,

•a the other band, (xp y^) is outside of this circle, then

• quation [87] b not the equation of a tangent, but of the

honl of cuutaet correHjHintlin^ to that external point.

EXERCISES

1. Find the length of the tangent from the point (8, 10) to the circles:

(a) x« + ^-8x = 0; (/5) 2x* + 2y« = 5f + «.

2. (a) Write the equation of the chord of contact eorwupondfaig to

ihe point (5, 6) for the circle x«-ff*-flx-4y=l.
ifi) Find the coordinates of the points in which this chord eots the

circle.

(y) Write the equations of the tangents to the circle at theM poiats

<f inteTMctiou ; show that these lines pass through the gtren point (S, 0).

3. By the method of exercise 2, find the equations of the taageoto

irawn to tlie circle (-Ix — 2)* +(3y + 5)* = 4, from the origin; from ths

point (I, 2).

C Find the loeos of a point from which the tangents drawn to Iha

two circles

2ir« + 2y*-10x + 14yf85sO and x«4-f« =

sr« of equal length. Show that this locos is a straight line perpendicular

to the line Joining the oaatsrs of the ghrso drolas.
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5. For what point is the line 8 jr + 4jf = 7 the chord of contact with

rpj;ard to the circle z« + y« = 14 ?

6. Find the chord of contact for the circle ^^ + y* = 25, corresponding

to the point (3, 7) ; to the point (3, 2).

7. By means of the equation y — y, = »w(jr— t,) prove that two tan-

gents can be drawn through the external point (r,, Vi) to thu circle

whose equation is x* + y* == r*.

8. Solve {p) and (y), of exercise 2, by means of the equation

y — 6 = m{x — 5).

91. Poles and Polars. If through any given poinf;

/>j = (ar^, yj), outside, inside, or on the circle, a secant is

drawn, meeting the circle in two

points, as Q and 72, and if tan-

gents are drawn at Q and i2, they

will intersect in some point as

The locus of P\ .as the secant

revolves about Pj, is called the

polar of Pj with regard to thdj

circle ; and P^ is the pole of tl

locus. It will be proved in th<

next article that the locus of P*\

is a straight line whose equation is of the same form as that

of the tangent (Art. 84), and as that of the chord of contact

(Art. 90) already found.

92. Equation of the polar. Let P^ = (x^, y{) be the givei

|K)int, the equation of whose polar, with regard to the circl

a:2 + y^+2(7j: + 2iV-f (7=0, . . . (1]

is sought. Also let P^QR be any position of the secant

through Pj, and let the tangents at Q and R intersect ii

P'3(a;', y); then the equation of P^QR CArt. 90) is

a^'ar+yV-f a(a: + a/) + PCy + y) + (7=0. . . . (2)]

Fio.n.
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Since P, in on thiii lino, thoivfore

Equation (8) aaserU tliat ilia coordiiuitea, j^ uiul y, of

/'' ^atirtfy the (H|tmtion

'i^ + yi^ + ^(' + 'i)+^Xi^ + yi)+^-<>; ... [88]

<*., tliin variable jKiint P' always lies on the Iocua of equa-

lon [^]; in other wortU, [88] is the equation of the polar

f Pj with rej^nl to the circle (1 ).

Moreover, since equation [88] is of tlie first degree in the

~ \hles X anil y, tlierefore (Art. 57) its locus is a straight

that is, the polar of any given pointt with regard to ang

circle^ i$ a $traight line.

i iiit <(|uationH [lM\] and [37] have the same form asequa-

Miii 1,^6] is due to the fact that the tangent and the chord

•f contact are only special cases of the polar.

An important theorem con-

ff the polar of the point P,,

93. Fundamental theorem

•Tiling (Miles and polars is

ith regard to a given eirelet

issf't through the point P^
rhen the polar of P, paeeee

through Py Let the equa-

tion of the given circle be

j* + y« + 2Gjr + 2i>

+ e«0, . (1)

and let the two given points

be Pj s (xp y{)y

and Pt^iH^Vt)'*

then (Art. 92) the equation of the jwlar of P, is

(2)



158 ANALYTIC OKOMKTBT [Cu. VII.

If thii» lino piisses through P^ tlien

But the equation of the polar of P^ (Art. 92) is

arp+yay + ^(^+^2)+^(y+ya)+^=^' • • • (4)

and equation (3) proves that the locus of equation (4) passes

through Pj, which establishes the theorem.

EXERCISES

X. Find the polar of the point (0, 8) with reference to the circle

2. Find the polar of the point (1, 2) with regard to the ci

** + y* + 4a:-6y = 10.

3. Find the pole of the line 4x+ 6y=7y and of the hue az+6y— 1=<

with regard to the circle x^ + y* = 35.

4. Find the equations of the two tangents to the circle x* + y* = 651

from the point (4, 7); from the point (11, 3).

5. Show that if the polar of (A, it) with respect to the circle x^+y^= c*

touch the circle 4 (x* + y^) = c\ then the pole {h, k) will lie on the circle

x« + y2 = 4c«.

6. Show that the pole of the line joining (5, 7) and (~11, 1) is the

point of intersection of the polars of those two points with re/erence to

the circle x^ + y" = 100.

7. Find the pole of the line 2x—3y=0 with respect to the circled

x« + y2 = 9.

8. Show what specialization of a polar converts it into a chord o£j

contact, and what further specialization converts it into a tangent.

94. Geometrical construction for the polar of a given point,

and for the pole of a given line, with regard to a given circle.

Since the relation between a polar and its ix)le (see def.

Art. 91) is independent of the coordinate axes, therefore
|

the given circle may, without loss of generality, be assumed^

to have its center at the origin.

If Pi = {xy^ yj) is any given point, and

^-{•y^^f^ ... a)
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a ^ivon oirole, whose center b at the point 0, tlien the

[imtiuu of OPi (Art. 61) in

(2)

y
/^>0\
f

«-^^ \ ^

^J \

r». (8)

I.ft LLj be the polar of Pj, uith regard Ui i n'ivon

:ilts and lot it meet OP^ in if. The equation •>! /,Z|

\rt. 92) ia

^I' + yii^

Equations (2) and (3) show (Art. 62) that LLy^ and 0P|
ro per()endiculur to each other; t.f., ike Uh€ joinituj the

'I'en point P^ to the eenter of the eirde it perpendicular to

'if* polar of Pj with regard to the circle.

The distance (jOK) from the origin to the line LL^
Art. 64) ia

... (4)

una I lie length of OPj (Art. 26) ia

(6)

therefore OK OP, Vari« + yi«-f*.

Henoe, to conatnict, with regard to a given circle, the

>lar of any given point Pp join that point to the center of

the circle, then on OP^ (produce<l if neoesBary) find a point

K such that the rectangle 0P| • OK ia equal to the square



160 ANALmC QEOMETHY [Cii. VII.

on the radius of the circle, and through K draw a line

perpendicular to OP^ ; this line is the required polar.

Similarly the pole may be constructed, if the polar and

the circle are given.

96. Circles through the intersections of two given circles.

Given two circles whose luiuations are

2?'\-y'-\-2a,x+2F^ + C, = 0, , . . (1)

and a:» + y»+26^^-h2i^jy-f Ci = 0. . . . (2)

These circles intersect, in general, in two finite points

P, =(ar,, y{) and P^mijt^ y,)* and (Art. 41) the equation

^-kix'+i/+2G^^2F.jf+C^) = 0, ... (3)

where k is any constant, represents a curve which piisses

through these same points P^ and P^.

The locus of equation (3) is, moreover, a circle (Art. 79);

hence, a series of different values being assigned to the param-

eter A:, equation (3) represents what is called a "family

of circles ; each one of these circles passing through the twc

points Pi and Pj in which the given circles (1) and (2]

intersect each other.

96. Common chord of two circles. If in equation (3)^

Art. 95, the parameter k be given the particular valu<

— 1, the equation reduces to

2 (a, - a^yx 4- 2 (Pi - F^)y + C,- (72=0, . . .. (4]

which is of the first degree, and therefore represents

straight line ; but this locus belongs to the family repi

sented by equation (3) of Art. 95, hence it passes through th<

two points P| and P^ in which the circles (1) and (2) inter-"

sect. This line (4) is, therefore, the common chord* ol

these circles.
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To obUin Um eqiiaUou of llie ouiniiion chonl of two gifmi clrvlai il b,

than, oiiljr uBOMtiry to «limiuml« tho U)riiui in ^ ami f* beiwMo Ui«ir

]ttatioii». B.g.t to And the oouimon chonl uf tlie oireJoi

2*«-|.2/+ 3x+ 5y- U=«, («)

' >) by 8 and tubirMi the rwuli from equation \fi)\

x-jf + 2 = a (y)

iiinon chord of the given cirelM.

This rMult may be Terifled by finding the pointa of interaeeUoii

(Art, 80) of the circlea (a) and (/9), and then writing the aquation of

the straight line through those two points.

Since the eommon ebord of two circles interseeta eaeb of thasa eirelaa

the pointa in which they intersect each other, therefora the pointa

intersection of two circles may be found by finding tlie poinU in

iiich their common chord interseeta either of them. E.g.<,io find the

]>i)intii in which the circles (a) and (fi) intersect each other, it is only

t^^snary to find the pointa in which (y) cuts either (a) or (fi).

97. Radical axis ; radical center. Tho lino who8o equation

(ihtaiiieil by eliminating tiio a:* and y* terms between the

Illations of two given circles, as in Art. 90, whether the

rcles intersect in real {mints or not, is called the radical axis

f the two circles. If the two given circles intersect each

(licr in real points, then this line is also called their com-

I lion chord ; that is, the common chord of two circles is a

lical axis of two circlea.

rl

^>r every valoe of k ivprssenta a drela

I lich the given circlea (1) and (S) biter-

ay be written in the form

>^>fdlnatea of the eent«r of this circle are (Art. 70)

-CL±2^ and ^^L±Jl».
l + * 1+lr

If tii.-n k be made to approach -1, both of tbfse eoSrdloatsa approach

V, hot the circle always pansa through the two fixed points in which

u >ven ctrdsa totemect; hence the eooimoQ ehoid of two givan drolca

tn.iy u* regarded m an Infinitely Urge drela whoaa oantsr la at fadhUty.

TAK. AV. OKOM. — 11
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Three circlej*, tHken two and two, have tlirec radical axes.

It is easily shown that these three radical axes pjuss through

a common point ; this point is called the radical center of the

three circles.

EXERCISES

1. Find the equation of the coiniiion chord of the circles

x« + y« - 3x - 5y - 8 = 0, x^ + y" + 8x = 0.

2. Find the points of intersection of the circles in exercise 1, and the

length of tlieir common chord.

3. Find the radical axis, and also the length of the common chord,

for the circles x* + y* + ax + 6y + c = 0, x* + y* + 6x + ay + c = 0.

4. Find the radical center of the three circles

x« + y2 + 4x + 7 = 0,

2(x« + y2) + 3x + 5y + 9 = 0,

x« + y« + y = 0.

5. Show that tangents from the radical center, in exercise 4, to the

three circles, respectively, are equal in length.

6. Prove analytically that the tangents to two circles from any point

on their radical axis are equal.

7. Find the polar of the radical center of the circles in exercise 4,

with re.«*pect to each circle.

8. Prove analytically that the three radical axes of three circles, the

circles being taken in pairs, meet in a common point.

98. The equation of a circle : polar coordinates. Let OR
be the initial line, the pole, C=(^pi^ ^j) the center of the

circle, r its radius, and P = (p, 0)

any point on the circle. Draw 0(7,

OP, and CP ; then, by trigonometry,

r^ = p^+p^^2pp^ cos (6 - ^,), U.,

p^-2p,pvo^ie-e,^

+ p2_r2^(^^ . . . |-39]

Yyf^ii,
' which is the equation of the given

circle.
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Dopendinfl^ upon the rulattve jiotfitiouji of tlio |M>Ur axU,

tilt* iM>lt\ and the center of the circle, equation [39] has

-I'venil M|KTiiil fonnH :

(a) If the center in un the p«iUr axiM, then ^, » 0, and

,)ii iti.in I'M)'] beoomea

p» - 2 /)|p e» M» ^ + f)i«
- f« - ;

(^) If the pole ia on the circle, then p^ > r, and e()ua-

tion [89] becomes

/>-2rco8(^-^i)=.0;

(7) If the pole in on the circle and the fjolar axiM a diame-

ter, then
f>|
» r and 0^ a 0, and equation [39] becomes

p-2rcos^«0;

(2) If the center in at the pole, then P| s and equation

[39] becomes ^ ^

99. Equation of a circle referred to oblique axes. Ix*t the

OX and OK be inclined at an angle o» ; let Cs(A, k')

iio center of the circle, r

»»> iiulius, and Ps(a% y) any

(Hunt on the circle. Draw the

•rdinat<>8 3f^0 and MP,, connect

Cand P, and draw CBL paral-

lel to the T-axi8 ; then

(^^CIP^HP'
+ 2 Ci/iJP WHItIi

hence r« - (jr - A)« + (y - ib)« + 2(ir- AXy - *) ^'•^ -^

•.€., (r-A)«+(y-ir)«+2(x-A)(y-lr)coiii»-r*-0; . . . [40]

which 18 the equation of the given circle.
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It is to be observed that this equation [40] is not of tlie

form

which was discussed in Art. 79 ; it differs from tliat equa-

tion in tliat it contains an a;y-term. If, however, the axes

are rectangular, as in Art. 79, then cos oo =3 0, and equation

[40] reduces to the standard form of Art. 79, viz.:

wliich is a special case of equation [40].

100. The angle formed by two intersecting curves. Hy the

angle between two intersecting curves is meant the angle

formed by the two tangents, one to eacli curve, drawn

through the point of intersection.

Hence to find the angle at which two curves intersect, it

is only necessary to find the point of intersection, then to

find the equations of tlie tangents at this point, one to each

curve, and finally to find the angle formed by these tangents.

EXERCISES

1. Find the polar equation of the circle whose center is at the point

(7, -J
and whose radius is 10; determine also the points of its inter-

flection with the initial line.

2. Find the polar equation of a circle whose center is at the point

f 15, -
J
and whose radius is 10. Find also the equations of the tangents

to the circle from the pole.

3. A circle of radius 3 is tangent to the two radii yectores which

make the angles 60® and 12(>° with the initial line: find its polar equa-

tion, and the distance of the center from the origin.

4. Find the equation of a circle of radios 5, with center at the point

(2, 3), if o) is 6()*.

5. Find the equation of a circle of radius % with center at the origin,'

if « is 120°.

I
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6. itUm of Um eifote drasmeriblBg an equilateral

triauglc, — Um coorUmata aiM beiiif Iwo liclts of Um triangle.

T* A circle it iiiioribed in a tqnare. What it iu equaliou, if a ride

and adjaoeot diagoual of the wjuare aru elioeeu ai Um jf luid »aiia,

ifelyT What are the oobnliiialee of Um poinli of tengeney?

a Find Um augle ai whieb Um eirole z* -f jf^ s 9 inteneeU Um dicle

-4)<-f jf*-2f sl5. Ai what angle does UMtaeood of UMMeiivlee
Ibelinex + ^f «4T

EXAMPLES ON CHAPTER Vlt

1. Find the «M)ualiou of the circle oircuiiiaeribing tbe triangle whoee
^riieee are at the poinU (7, 2), {'\, -4), aiid r^ :\\ What b lu eenter?

u nuiiiu ?

1. Determiue the center of the circle

What family of circles i» repreeeuied by this equation, if a and b

under the one reitrietion thai a* + 6* b to remain coiuUnt?

What most be the relations among the ooeflkients in order thai

X* + y« + 2 G,x 4- 2 F,y + C, = 0.

x« + jf« + 2 6y + 2 F^ + C, = 0,

be eoooentrio? thai they shall hare equal areas?

4. Under what liraitaUons upon the ooeflleienta b th^ eirole

It to each of the axes?

9. Find the equation of the circle which has its center on the xHUiis,

which passes through the origin and also through the point (2, 8).

Find tba points of intersection of the two drolas

««-|.f>-4z -2y-81r=0 and i«-|-f*-4x + 2f + 1 =0.

Cifdes are drawn having their centers ai the Tertices of the

(7, 2), (-1, -4) and (3, 3), respectiTcly, and each passing through

er of a fourth circle which circumscribes thb triangle; ftnd their

their common chords, and their radical center.

Circles having the sides of the tHangle (7, 2), (-|. -4), (S. 8) tu*

Iters are drawn ; find their equations, their radical axes, and their
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9. Find the equation of the circle parsing through the origin and

the i>oint (r^ ^|), and having its center on the y-axis.

10. The point (3, -.">) bisect* a chord of the circle a:' + y' = 277 ;• find

ilie equation of that chord.

11. A circle touches the line 4x + ^y + S = at the point (-3, 8)
and passes through the point (5, 0); find its equation.

12. A circle, whose center coincides with the origin, touches the line

7jc — lly + 2 = 0; find its equation.

13. At the points in which the circle a:^ + y^ — ox — Ay = cuts the

axes, tangents are drawn : find the equations of these tangents.

14. A circle, whose radius is V74, touches the line 5y = 7x — 1 at

the point (8, 11); find the equr.tion of this circle.

15. A circle is inscribed in the triangle (8, -2), (y, 3), (3, 3) ; find

its equation; find also the equations of the polars of the three vertices

with regard to this circle.

16. Through a fixed point (ar,, y^ a secant line is drawn to the circle

x' + y' = r^; find the locus of the middle point of the chord which the

circle cuts from this secant line, as the secant revolves about the given

fixed point (a-p yj).

17. Prove analytically that an angle inscribed in a semicircle is a

right angle.

18. Prove analytically that a radius drawn perpendicular to a chord!

of a circle bisects that chord.

19. Show that the distances of two points from the center of a circle

are proportional to the distances of each from the polar of the other.

20. Two straight lines touch the circle a:' + y^ - 5 x - 3 y + 6 = 0,

one at the point (I, 1) and the other at the point (2, 3); find the pole

of the chord of contact of these tangents.

21. Find he condition among the coefficients that must be satisfied

if the circles

ar« + y« + 2^jX + 2F,y = and a:« + y« + 2 6?^ + 2i5Vy a
shall touch each other at the origin.

22. Determine F and C so that the circle

X* + y* + 20 ar + 2 Fy + C =
shall cut each of the circles

a:« + y«-4*-2y + 4 = and x^ + y* + 4ar + 2jf = I

at right angles (cl Art 100).
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23. GiTto Um two eiroitt

x«4-y*-44r-2f •1-4-0 tnd j(<-«-jf*4 4s-f2f - 4aOt
And Ibe equAtioot of Uwir oommoii Ungento.

S4. Find the nd\oa\ azU of tbe eirolat In eimmple 38; thorn UmI il

. fMrpniidicular to tbe litio Joining CIm eentan of tho gi^en drolM, and
f the leugtha of the •giuenta into whieh the radieel ezis

' Joining the oentert. How ia thi« ratio related to the

idii of the oireleaY It thia relation true for any pair of circlet what-

ever?

M SS. Given the three eirdeex

L|d X* + y* - 18x - 125 + 84 s 0;

^^M the point from which tangente drawn to theae three circlet are of

iual length, alto find that length. How b thit point reUted in potition

Ui the radical center of the giren circlet ? ProTe that thit relation it the

tame for any three, circlet.

96. Find the locua of a point which roovet to that the length of the

t tngent, drawn from it to a fixed circle, is in a constant ratio to the die*

ince of the moring point from a given fixed point

27. I^t P be a fixed point on a given circle, T a point moving along

tlie circle, and Q tbe point of intersection of tbe tan^fiit at T with lb«i

-rpendicultr upon it from P ; find tbe locus of Q.

SrooRSTioy. Use polar codrdinatea, P being the pole, aud tbe diam-

et«r tbrougii P tbe initial line.

28. Find the length of tbe common chord of tbe two circlet

(x-a)«+(y-6)« = r« and (x - &)« + (y - o)« = r«.

From this find tbe condition that these circlet thall touch each other.

29. If the axes are inclined at 80^, prove that the equatioii

x« + xjf + jf« - 4 X -5f - 2 a
rcpraeenta a circle; find its radius and center.

30. >Vbat ia the obliquity of the axea if the equation

x«+ v^xy + y«-4x-8f + 6-0
lepteeenta a circle T What ia its radiuaT

31. For what point on tbe circle x* + jf* s are the tiiblangent and
the subnormal of equal length? ttie tAntTBut and normal? tlie tangent

andsubtangeut?
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32. An equilateral triangle U inscribed in the circle 2* + y^ = 4 with

its base parallel to the x-axis ; through its vertices tangents to the circle

are drawn, thus forming a circumscribed triangle; find the equations,

and the lengths, of the sides of each triangle.

33. The poles of the sides of each triangle in example 32 are the

vertices of a triangle ; find the equations of its sides, and draw the figure.

34. A chord of the circle x* + y* - 22 x - 4 y + 25 = is of length

4 V5, and is parallel to the line 2x + y + 7 = 0; find the equation of the

chord, and of the normals at its extremities.

"35. Find the equation of a circle through the intersection of the

circles x*+ y*-4 = 0, x* + y* — 2x — 4y+5 = 0, and tangent to the line

X + y - 3 = 0.

36. The length of a tangent, from a moving point, to the circle

x*+y*=6 is always twice the length of the tangent from the same point

to the circle x* + y^ + 3 (x + y) = 0. Find the equation of the locus of

the moving point.

37. Find the locus of the vertex of a triangle having given the base '

= 2 rt, and the sum of the squares of its sides = 2 l/K

38. Find the locus of the middle points of chords drawn through a

fixed point on the circle x* + y* = a*.

39. Through the external point Pj = (xj, yj), a line is drawn meeting

the circle x* + y^ = a^ in Q and R\ find the locus of middle point of P,Q
as this line revolves about Py

40. A point moves so that its distance from the point (1, 3) is to its

distance from the point ("4, 1) in the ratio 2:3. Find the equation

of its locus.

41. Do the circles

4x«-|-4y« + 4x- 12y + l =0 and 2x2 + 2y«4-y =
intersect? Show in two ways.

42. Find the equation of a circle of radius V85 which passes through

the points (2, 1) and ("3, 4).

43. AMiat are the equations of the tangent and the normal to the

circle x* + y^=13,— these lines passing through the point (2,-3)?
through the point (0, 6) ?

44. Find the equations of the tangents through (2, 3) to the circle

9(** + y*)+6x-12y + 4 = 0.

I
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4S. At what Migl* do Um dfdit s*4f*-f «x-9f 4-5«0 uA
^'fjr*->-4jr-f*if-ftaO intorwei each other?

4e. A diamelor of the eircle 4 x< -h 4^ -f 8x - IJy + 1 ^ fioMM
tlmtugh the point (1, ~1). Fiud ita oquatioo, and tlui m|u«tk>n of

thu chords which It blaaota.

47. Find the loeua of a polot foeh that tangvuui imm it t.

••ntric oirolea ara ioveraoly proportional to the radii of the circl

48. Find the Iocun of a point which mores eo that its distaoeea fron
'--•* IioinU are in oonataot ratio t, DiMcoaa the loena and draw

49. A point moTes so that the square of its distance from the hasa

f an isosceles triangle is equal to the prodoot of its diitinnns from tha

ihttr two sidea. Show that the kwas is a drale.

50. ProTe that the two circles

/5^jr« + 26?,x + 2Fjy+C, =0 and x« + y« + 2/7^ + 2 F^+C,=xO
are ooooentric if G^= G^ and F, = F,; that they are tangent to eaeh
therif

v^(^i -<>,)*+ <^. - ^.)* = >/<^.* + /*,* - <^, ± V^(?,* + >V - <?,;

und find the condition among the constants that these circles intarseei

My, !.«., at right angles to each other.



CHAPTER VIII

THE CONIC SECTIONS

101. Ill Art. 48, which should now be carefully re-read,

a conic section was defined; its general equation was de-

rived ; its three species, viz., the parabola, ellipse, and hyper-

bola, were mentioned ; and a brief discussion of the nature

and forms of the curve was given. In the present chap-

ter, each of these three species will be examined somewhat

more closely than was done in Chapter IV, and some general

theorems concerning its tangents, normals, diameters, chords

of contact, and polars will be proved.

The general equation (Art. 48) of the conic section

might here be assumed, and the special forms for the parab-

ola, the ellipse, and the hyperbola be derived from it ; but,

partly as an exercise, and partly for the sake of freedom

to choose the axes in the most advantageous ways, the equa-

tions will here be re-derived, as they are needed, from the

definitions of the curves.

I. THE PARABOLA

Special Equation of Second Degree

Ax* •\-2Gx + 2ry^C = 0, or By- + tOx -¥2 Fy + C =

102. The parabola defined. A parabola is the locus of

a point which moves so that its distance from a fixed point,

called the focus, is equal to its distance from a fixed line,

170
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iiUod thu directrix. It U the conic «eotioii with eocentricity

^ - 1 (of. Art. 48).

Tho equation of a parabola, with any given fociui and

iUrectrix, can be obtained directly from thitf definition.

ExAHHLB. To And the equatioii of the parabolm whose dtrectriz

b the lino x-2jf^lmO^ Mid whoee foom ie the point (3, -8).

Let Pa(x, jf) be aoj point on the parmhoU(eae Pig. 79)

;

then
^-^y-i b the dietaooe of P from the direetriz (Art. 54)^

and V{M - 2)« + (y + «)• ie the distance of P from the foeus (AK. 20);

fc«»« ^ "^'^^"'
^
= V(x-.2)« + (5 + a)« by definition;

that is, 4x< + 4jy+y*-lSx + 3(Sy + e4B0;

which is the required equation.

The equation obtained in this way is not, however, in the

meet suitable form from which to study the pro|)ertie8 of the

curve, but can be simplified by a proper choice of axes.

In Art. 48 it was shown that the parabola is symmetrical

witli respect to the straight line through the focus and per-

idicular to the directrix, and tliat it cuts this line in only

point. If this line of symmetry is taken as the jHixia,

equation will have no y-term of first degree [cf. Art. 48,

(8)]; while if the point of intersection of the curve with

axis be taken as origin, the equation will have no con-

it term, since the point (0, 0) niU8t satisfy the equation.

ith this choice of axes, the equation of the parabola will

dure to II simple form, which is usually called the Jir$t

lard equation of the parabola.

103. First standard form of the equation of the parabola.

)t D'D be the directrix of the parabola, and F its focus

;
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O WW X

Fio.TC.

also let the line ZFX^ iHjrpeiulicular

to the directrix, be the z-axis ; deiioU'

the fixed distance ZF hy 2p, and let

ft its middle point, be the origin of

coordinates; then the line OF, per-

pendicular to OX^ is the y-axis. Let

P= (a;, y) be any point on the curve,

and draw LQP perpendicular to OF,

also draw the ordinate ilfP, and the

line FP. The line FP is called the focal radius of P.

Then Z0= OF=p,

and the eqiuUion of the directrix is x + p = 0^ . . . Cl)

'while the focus is the point (p^O). . . . (2)

Again, from the definition of the parabola,

FP = LP; [geometric equation]

but FP = V(x - p)^ + y\ and LP=ZO+ OM^p + x ;

hence V(a; — p)'^ -\- y^ = (a: + jo),

whence y* = 4i>a5, . [41]

which is the desired equation.

This first standard form [41] is the simplest equation of

the parabola, and the one which will be most used in the

subsequent study of the curve. It will be seen later

(Chapter XII) that any equation which represents a parab-

ola can be reduced to this form.

104. To trace the parabola y* = 4pa5. From equation

[41] it follows :

(1) That the parabola passes through the point 0,

way from the directrix to the focus. This point is callc

the vertex of the curve.

(2) That the parabola is symmetrical with regard to the
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xHixis ; t.«'., with regard to the line Uirough the focai per-

peiidioukr to the directrix; thin Hue ib called the azit* of

th«- curve.

(3) That jr has always the same sign as the oonstaot jh

if., tliut the entire curve and itii focus lie on the same side

a line imrallel to the directrix, and midway between the

dirt*ctrix and the focus.

(4) That X may vary in magnitude from to oo, and when

• increases, so also does y (numerically); henoe the parabola

is an open curve, receding indefinitely from its directrix and

its axis.

The parabola is then an open curve of one branch which

on the same side of the directrix as does the focus;

constmeted it has the form shown in Fig. 76.

106. Latus rectum. The chord through the focus of a

.0, parallel to the directrix, is called itM latus rectum. In

figure this chord in RR,
R'R=-2FR=^2SR^2ZF^4p.

Henoe tht Ungth of the latu$ rectum of the parabola U Ap;
t is, it is equal to the eoefficiefU qf x in the firet iUmdard

mtien,

106. Geometric property of the parabola. Second standard

luation. Kquutiun [41] may be interpreted as stating

intrinsic property of the parabola,— a property which

igs to every point of the parabola, whatever cocinlinate

be chosen. For (see Fig. 76) the equation ^^\px
\ the geometric relation

fiP* = 4 OF' OM^ RR'OM,
r« expressed in words.

The 9*U qf a curve ahoold be caivfolly dktlagiilfihrd from an axis qf
fMlat; though they ofiaa wn oolnctitent tiam Ui ihe flguTM to he
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Iffrom any point on the parabola, a perpendimdar u drawn

to the axis of the curve^ the square on this perpendicular in

equivalent to the rectangle formed by the latus rectum atid the

litu from the vertex to the foot of the perpendicular.

This geometric property enables one to write down immedi-

ately the equation of the parabola, whenever the axis of

the curve is parallel to one of the coordinate axes.

E,g.^ if the vertex of the parabola is the point A = (A, A:),

and its axis is parallel to the ar-axis, as in the figure, let

F be the focus and P^(x, y)
be any point on the parabola ;

draw MP perpendicular to the

axis AK. Then

t.«.

MI^'^AAF'AM,

{y - k)i = 4tp{x - h), . [42]

which is the equivalent algebraic

equation. This may be taken as

a second standard form of the equation, representing the

parabola with vertex at the point (A, A:), with axis parallel

to the a:-axis, and, if p is positive, lying wholly on the posi-

tive side of the line x = h.

Equation [42] evidently may be reduced to equation [41]

by a transformation of coordinates to parallel axes through

the vertex (A, Ar), as the new origin.

Again, suppose the position of the parabola to be that

represented in Fig. 78. Tlie vertex is A = (^h, A:), and the

axis of the parabola is parallel to the y-axis. Let P^(x, y)
l)e any point on the curve, and draw MP perpendicular to

the axb of the curve.

Then MJ^ = 4 AF- AM [geometric property]

= \ p ' AMn [here p is negative]
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s hvnce, lubstituUng the oodrdiiiateii of A and P.

(»-*)•« 4 p(y-

A

[48]

whirli iM unothor form for the socoml .staii<lat«i etiuatioii of

the parabola*

EXERCISES

Construct tiie toilowiug parabolas, and find their eqnations:

1. having the foeas at thr point (-1, 3), and for directrix th« line

r.5f = 2(cf. Art. 10l»)

2. having the focua at tiio origin, and for directrix the line

2x-y + 3 = 0;

3. with the Tertez •X, the origin, and the focus at the point (3, 0);

4. with the vertex at the origin, and the focUs at the point (0, -8);

5 x^iti, the vertex at the point ( 2, 5), and the focus at the point

6 v%iUi the vertex at the point (2,^4), and the focos at the

i»t(l. 4);

7. having the footis at the point (2p, 0), and for directrix the line

flL Whatistbelatnsreetomof eachof theparahoUsofexerdsMStoS.

9. Describe tlie effect produced on tlie form of a paraboU by increa^

.; or decreasing the length of its latus rectum.

107. EYeryequatioiiof theform Jx<^2^x + 2J> + C = o,

or liy* + 2<7j? + 2fV + r = 0, represents a paraboU whose

axis is parallel to one of the coordinate axes.

Equations [41], [42], ami [48] are of the form
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that is, each has one and only one term containing the

square of a variable, and no term containing the product

of the two variables. Conversely, it may be shown tliat

an equation of either of these forms represents a parabola

whose axis is parallel to one of the coordinate axes.

A numerical example will first be discussed, by the

method which has already been employed in connection

with the equation of the circle (Art. 79), and which is

applicable also in the case of the other conies. It is the

method of reducing the given equation to a standard form,

and is analogous to "completing the square" in the solu-

tion of quadratic equations.

Example. Given the equation

25 ya - 30y - 50x + 89 = 0,

to show that it represents a parabola ; and to find its vertex, focus, and

directrix.

Divide both members of the equation by 25, and complete the square

of the y-ternis ; the equation may tlien be written

that is, (y-!)^ = 2(x-f),

whence {y - \Y = ^'\'ix - \).

Now this equation is in the second standard form (cf. equation [42]),

and therefore every point on its locus has the geometric property given

in Art. 106; and the locus is a parabola. The vertex is at the point

(I. I) ; its axis in parallel to the x-axis, extending in the positive direc-

tion ; and, since f>
= i, ite focus is at the point (f J, ?)» ^^^ the directrix

is the line x — \l.

Consider now the general equation, and apply the same

method, taking for example the second form, viz.

:

Ax^^2Gx-^2Fy+ (7=0.

Dividing both numbers of the equation by A, completing the

square of the ar-terms, and transposing, the equation becomes
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Coiii|)aring thi« equation with the standard equation [48],

it M neon that iU looua ia a parabola^ whose axis ia parallel

to the y-axia, extending in the negative direction if A and P
have like signs, and in the ixMitivo direction if A and F have

unlike signs. Its vertex is at the point (— -i*

—

o"jp )'

p
and, since p ^ — -^% iU focus is at the point

Ha a*-F*-A cr\

T Taf /
O* 4- F* — AC

and iU directrix is tlie line y = ^TTv '

Note. The tnuKforroatkm just given faibi if i4 = or if F = 0, for

in that case some of the terms in the Isst equation are infinite. If. how-

ever, A =0, the given equation beoomes 2 Crx + 2Fjf + 0'= 0; antl, this

being of the first degree, represents a straight line. If, on the other

hand, f=0, the given equation redooes to^jH + 2Gx + C = 0,and repre-

sents two straight lines each parallel to the jf-axi« ; they are real and

distinct, real and coincident, or imaginary, depending upon the value of

<?*- A C, These lines may be regarded as limiting forms of the parab-

oU (see Chapter XII).

EXERCISES

r>«t>riiiiiio the vertex, focuA, IstUM ivctum, equation of the directrix

.^!iil of the axis for each of the following parabolas; al»o sketch each

of the figures:

1. /-6x+4y-10=0; a 5y-l=Sf« + 4x;

1. 8t«+ 12x + 4f -8 = 0; 4. y* + 2y - 12x - 11 =a

10& Reduction of the equstion of s parabola to a staadard fora^ In

Art. 102 it was shown that the equation of a parabola having any

TAV. AK. OKOM.— 18

L
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given directrix and focus is in general not m simple as the standard equa-

tioD. It will now be shown that if the coordinate axes be transformed

so as to be parallol to the axis and

directrix of the curve, the equation will

bo reduced to a standard form. For ex-

ample, the equation of the )>arabola with

focus at (2, ~3), and having for directrix

the line x — 2y — 1=0, was found to be

4 x« + 4 xy + y« - 18a: + 26y + 64 = 0.

The axis of the curve is a line through

(2, -''\) and perpendicular to

x-2y-l = 0;

its equation is 2x + y = 1, and it cuts

the X-axis at the angle d = tan-*(-2).

The point Z is the intersection of the directrix and axis, and may be

found from the two linear equations representing these lines ; the vertex

A is the point bisecting ZF. If, then, the axes are rotated through

the angle d = tan-^(-2), the equation will be reduced to the second

standard form, [42] ; and if the origin be also removed to the vertex

i4, the equation will be further reduced to the first standard form, [41].

Fio.79.

I) ; hence, pzz AF = —i—, and trans-
2^5

tan-^(-2), to the new origin

14

The point Z U (f, -J), A is (H,

forming the axes through the angle

(H» ~S)' ^^^^ equation of the parabola reduces to y* = -^x.
"n/5

The problem of reducing any equation representing a parabola to its

standard form is taken up more fully in Chap. XII.

EXERCISES

Find, and reduce to the first standard form, the equation of each of

the following parabolas ; also make a sketch of each figure

:

1. with focus at the point (-1, 3), and having for directrix the line

3x-5y = 2;

2. with focus at the point (-8, -^), and having for directrix the line

2x-f7y-8 = 0;

3. with focus at the point (a, 6), and having for directrix the line

2 + 2=1.
a b

i
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II. TIIK 1. 1. 1. 11 si:

SpeeUl EqtuiUoa of the Second Dtgrtt

109. The ellipse defined. An elHiMo \h the li>cuM of a

point which uiuvutt au tliut thu ratio of itii diiitancv from

a tixetl |>oint, called tlio focus, to its distance from a fixed

line, called the directrix, m eonntant and lens than unity.

The constant ratio is called tlio eccentridtj of thu ellipse.

This curve is the conic section uitli eccentricity e<1.

(cf. Art. 48.)

The equation of an ellipse with any given focus, directrix,

and eccentricity may be readily obtained from this definition.

Example. An ellipse of eccentricity | has its focus st (2, -1), and

has the line x + 2y = 6 for directrix. Ut P= (x, y) (Fig. S-j) I»c any

point on the ounre, P the focus, and PQ the perpendicular from P to

the directrix.

Then FP = |QP;

but FP = y/(s - 5)i + (y + 1)«, QP = 1±?JLZ^ (Arts.20.M),
+ v6

hence (x - 2)« + (f + 1)« = A (' + 2f - *)*;

that is, 41 JK* - lOsy + 29y* - 140x + 170y + 125 = 0;

which is the equation of the given ellipse.

As in the case of the parabola, so also here, a particular

choice of the coordinate axes gives a simpler form for the

equation of the ellipse ; an equation which is more suitable

for the Htudy of the curve, and to which every equation

representing an ellipse can be reduced. As has been seen in

Art. 48, the curve is symmetrical with respect to the line

thrcmgh the focus and perpendicular to the directrix : and

outs that line in two points, one on either side of the fmMis.

The equation of the ellipse will be in a simpler form if this
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line of symmetry is chosen as the 2;-axis, with the origin hiUf

way between its two points of intersection with the curve.

The resulting equation is the/r«f standardform of the equa-

tion of the ellipse.

HO. The first standard equation of the ellipse. LetF be the

focus, D'D the directrix, and ZFX the perpendicular to D'D
through -F, cutting

the curve in the two

points A' and A
(Art. 48)*. Denote

by 2 a the length

of AA\ and let

be its middle point,

80 that

AO=OA' = a.

Let ZX be the a^axis, the origin, and OF, perpen-

dicular to OX^ the y-axis. Then, by the definition of the

elliose

AF=eZA, and FA'=^eZA'\

. •. AF-{-FA' = eiZA + ZA') = e^ZA + ZA + AA%
i.e., AA' = e(2ZA-^AA').

whence 2 a = 2e(^ZA + A0)=2 eZO ;

therefore
e

and the equation of the directrix t« a; H- - = 0.
e

Again, FA' -AF=e (^ZA' - ZA) ;

i.e., FO -h OA' - iAO - FO) = eAA\

whence 2FO=^2ae\

(1)

• This equation may also be easily derived independently of Art. 48,—
of. Arta. 108, 116.
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therefore FO^a$,

nd iliG focuM F i» ths point (^^ at, Oy . < 2)

Now, for any point P on the curve, draw the ordinate MP
id the perpendicular LP to the directrix ; then

FP « fLP, [geometric equation] . . . (8)

In.. (fl«4-»)« + /-4f«(T+^Y, 4)

I Ml equation (6), the intercepts of the curve on the y-axia

10 ±11 VI — «*. Both intercepta are real, since e < 1 ; hence

It) ellipse cuts the y-axis in two real points, B and B'^ on

upixKiite sides of the origin and equidistant from it. If

OB lA denoted by + 6, so that

*»-«•(!-«»), ... (7)

[nation (6) takes the form

g + 5=».- . . . [44]

is the simplest equation of the ellipse, and will be

used in the subsequent study of the properties of that

re. As will be seen in Chapter XII, every equation

mting an ellipse can be reduced to this form.

a B 5 (U., If « a 0) this eqoatloB wpmita a efade. Th» Hllpw,

faioliidM the drole m a special osm. In other woidi : a circle it aa
whow eooentridtj it teia
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HI. To trace the ellipse ^^ + ^ =" !• From equation [44]

it follows that

:

(1) The ellipse is symmetrical with regard to the 2;-axis ;

%,e.y with regard to the line tlirough the focus and perixjn-

(Hcular to the directrix ; this line is therefore called the

principal axis of the curve

;

(2) The ellipse is symmetrical with regard to the y-axis

also ; t.0., with regard to a line parallel to the directrix and

passing through the mid-point of the segment AA* (Fig« 81)

which the curve cuts from its principal axis

;

(8) For every value of x from —a to -f-a, the two cor-

responding values of y are real, equal numerically, but

opposite in sign ; and for every value of y from — 6 to 5,

the two values of x are real and equal numerically, but

op()osite in sign ; and that neither x nur y can have real

values beyond these limits.

The ellipse is, therefore, a closed curve, of one branch,

which lies wholly on the same side of the directrix as the

focus ; and the curve has the form represented in Fig. 80,

— which agrees with the foot-note on p. 71.

The segment AA* (Fig. 81) of the principal axis inter-

cepted by the curve is called its major or transverse axis J]
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he corresponding segment £*£ is iu minof or conjugate axis.

i rum the symmetry of the curve with respect to these axes

it foUowa that it is also symmetrical with respect to their

iiitf i-saotlou 0, the center of the elliiMie. It follows also that

Uipae has a second focus at F's^ae, 0) (Fig. 81) and

ond directrix IXiDi— the line x— -asO— on the post-

u\i' Hide of the minor axis, and symmetrical to the original

>cu8 and directrix, respectively.*

The latns rectum of the ellipse, t.s., the focal chord parallel

> the directrix (Art. 105), is evidently twice tlie ordinate

*t the point whose abecissa is ae.

! But if j^ otf, yi « 6 VI — e* ; or, since 5 a VI — #",

yi - . Hence the latus rectum is—

.

a a

HZ Intrinsic property of the ellipse. Second standard

equation. Equatiun [44] states a geometric proj^erty which

lielongs to every point of the ellipse, whatever the coordi-

nate axes chosen, and to no other point : viz., if P be any

jHiint of the ellipee (Fig. 80), then

that IS, in words :

• To ahow this aomlytlcally, let OP* = <u>, and OZ' = ?, and let P=(s, f

)

be any point on the elUpae, as befbre. Eqoation (4), of Art. 110. givts the

fetation between x and y ; expanding equation (4), and subtracting 4 ass
from each member, It beoomea

oM - J fleat + *• + !(• = «•- 2 ««t 4-A^
which may be written

(as-x)« + r« = .«(?-«y,

ts., FF^xz^H^i
which ahows thai P la on an ellipse whose fbeoa la P* and wbose dlnctiii

UITxDi,
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If from any point on the ellipse a perpemJicnlar he drawn

to the traniverse axis; then the square of the distance from the

center of the ellipse to the foot of this perpendicular^ divided by

the square of the semi-transverse axis^ plus the square of the

perpendicular divided by the square of the semi-conjugate axis,

equals unity.

This geometric or physical property belongs to no point

not on the curve, and therefore completely determines the

ellipse. It enables one to write immediately the equcation of

any ellipse whose axes are parallel to the coordinate axes.

For example : if, as in Fig. 82, the major axis of an ellipse

is parallel to the a;-axis, and the center is at the point

F

,z:

B
P

—

,

i \X C Mr
P' X

Fifl .8..
'f'

(7=(A,^), let P= {x^y) be any point on the curve, and

a, 6 be the semi-axes, then

CM^ . MP"
ca" US'

1,

that is [46]

which is the equation of the given ellipse.

Or again, if, as in Fig. 83, the major axis is parallel to

the y-axis ; then, as before

US' MP .

I
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w tiit'h is the equation of the given

mtion [45] may he oonaidered

nd Btandard furm of the equa-

»D of the ellipHe ; hy a change of

•ortlinates to a set of parallel axes

trough the center Cm(Ji^ k)^ at

It) new origin^ it can be redaoed

tlio first standard form.

Hy Art. 110 the distance from

t)ic center of an elliiwe to its focus

as ; but since ^ = a\l — e*)*

\rt. 110, eq. (7)], therefore ae

i .> 82 and 88,

Again, the equation of an ellipse, in either standard form,

'Hves the semi-axes as well as the center of the curve, there-

re the iKwitions of the foci are readily determined from

ther stuiuianl form of the equation.

EXERCISES

Conitmet the following ellipses, and find their equstiofit

:

1. given the focun at the point ( - 1, 1), the equation of the direetriz

x-jr^.S = 0,aiMltbe eooentricity | (cf . Art. 109)

;

a. given the foetu at the origin, the equatioo of the directrix x s -8,

and the eooentricity \ ;

rm.m.

Vo* — 6*
I henoef in

•The itiident abould obMnre that 6 la the «m^Ml«or«e<0 and ool nee-

-«arily the denominator of y* In the standaid forma of the equation of the

ii|)ei>~[44], [45], or [40]; he aboald alK> obaerve tbU the foci aiv alw^jra

II tlM« mtfjor axh.
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3. given the focuB at the point (0, 1), the equation of the directrix

y - 25 = Of and the eccentricity \ ;

4. given the center at the origin, and the seniiaxes V2, V5. Find

alAO the latus rectum.

Find the equation of an ellipse referred to its center, whose axes are

the coordinate axes, and

5. which passes through the two points (2, 2) and (3, 1).

6. whose foci are the points (3, 0), (3,0), and eccentricity \.

7. whose foci are the points (0, 6), (0, -G), and eccentricity f

.

8. whose latus rectum is 5, and eccentricity }.

9. whose latus rectum is 8, and the major axis 10.

iO. whose major axis is 18, and which passes through the point 6, 4.

Draw the following ellipses, locate their foci, and find their equations

:

11. given the center at the point (3, "2), the semi-axes 4 and 3, and

the major axis parallel to the x-axis (of. Art. 112) ;

12. given the center at the point ("8, 1), the semi-axes 2 and 5, and

the major axis parallel to the y-axis

;

13. given the center at the point (0, 7), the origin at a vertex, and

(2, 3) a point on the curve

;

14. given the circumscribing rectangle, whose sides are the lines

x + l=0, 2x-3 = 0, y + 6 = 0, 3y + 4 = 0; the axes of the curve

being parallel to the coordinate axes.

15. If b becomes more and more nearly equal to a, what curve does

the ellipse approach as a limit?

113. Every equation of the form Ax^ + By- + 2Git + 2Fy

+ C = O, in which A and B have the same sign, represents

an ellipse whose axes are parallel to the coordinate axes.

Equations [44], [45], and [4(3], obtained for the ellipse, are

all, when expanded, of the form

Ar»-f^y*4-26^ + 2i^^-f C = 0, . . . (1)

where A and B have the same sign, and neither of them is zero.

Conversely, an equation of this form represents an ellipse
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whottj axes are parallel to the ooordiiiate axes. A« in

I. 107, a numerical caae will finit bo examined, and then

i:«iieral equation taken up in a similar manner.

KxAMPLB. Girmi Ibe •qostion 4<< •»• 0/ - l«x 4- 18f - U = 0, to

ibow tliAt it reprii—ntii au eUiiMH*. aiid to find \\m elements. Completing

2)« (y + lV_.

Thb •qoAiion U of the form [4Ji], and, therefore, i\m locus hat the

oioetrie property giren in Art. U'J, and is an ellipse. Its eenter is

ihe point (2,-1); its major axis is parallel to the x-axis, of tongth 8;

iu minor axis is of length 4 ; the fooi are the points

F=(2-V5,-l), F=(2 4-V5.-l);

and the equations of the direotrioea are, respectively,

x = 2 +
vi'

2-4:.

Following the method illustrated above, of completing

the Hquares, the general equation (1) may be written

K^A^AVKB^^E^J ^ A^ B'
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that is.

^("S-K'-S- AB

which becomes, if the second member be represented by A^

T7 1 77 = !• .K K -'
• - ' C2)

A B

Comparing this ecjuation with [45] or [46], it is seen to

express the geometric relation of Art. 112, and therefore

represents an ellipse. Its axes are parallel to the coordinate

axes, its center is at the point
(
— -j» — p)» *^^^ t^® lengths

of the semi-axes are

A^. >/l

The foci and directrices may be found as above.

Note. If ^4 = B, then equation (1) represents a circle (Art. 79). If

ABC>BG^ + AF\ equation (1) having been written with .4 and /I

positive, then no real values of x and yean satisfy equation (2), whicli

is only another form of equation (1), and it is said to represent an

imaginary ellipne. If ABC = BG* + ^F*, then a: = - ^, and y = - j
are the only real values that satisfy equation (2) ; in that case, this equa

tion is said to represent a point ellipse ; or, from another point of vie\N

.

two imaginary lines which intersect in the real point [--jt ~
7; )• ^*^^'

of the above may be regarded as a Umiting form of the ellipse.

EXERCISES

Determine, for each of the following ellipses, the center, semi-

foci, vertices, and latus rectum ; then sketch each curve.
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1. 9i«-»'0f'-6«-97f -f 2-a

I. 4x«-f ^-8s-f 3f -t-l »a

t. H^ t.-if' + lx^-OOy •»- 15» a

4. Hjr eompleUog Iho aquarw of Um »4enDi and of the jr^^mu, and •

viiuble Inuitforiiiatioii of eotfrdinatM, ftdoM tbo •quAliooi of ii rqiwi

1, ^ and 8 to Um tUndard fonn [44].

114. Radnctioo of th« •qiuUoii of aa tUipat to a ataadard form.

It b now erident thai, if the directrix and focus of an ellipae an
known, aa in the azampla of Art. 100, the trmoaformatioo of eodrdinaloa

riojs

which i« neoMiary to reduce the equation to a standard form can easily

\» detonnined. To illustrato : the ellipse of eooeiitrtcity |, with focus ai
Fs(2, -1). and having for directrix the line I/D^ whoae equation is
JT + 2jr = 5. has fur iu equation (Art. lOQ)

4l2«-l«jfy + a9/-140x+170f + 125 = 0.

Ito axis FZ, perpendicuUr to I/D, haa the equation 2x - ^ = &, and
euU the jcHu^is at the angle tan-> 2. If then the oo6rdinat« axes are rotated
through the angle tan->2. the equation will be radooed to the aeeood
tandard form. Again. Z may be found as the interaeeiion of the
lireotrix and axis; it is the point (8, 1). Then A and A\ the vertiosa
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of the eUips:*, divide FZ internally and externally in the ratio }; hence

(Art. 30) these coordinates are (V. "i)» (^» "•''O- -^J**" ^> ^^^^ center

of the eilipMe, is the point (f, ~V)- If the origin he next transfornH^d

to the point C, the equation will be reduced to the first standard form.
10

Since the axi.s A A is of length —^, and the eccentricity is f, the semi-

6
^^

axes are — and 2 ; hence the reduced equation, with C as origin and

CA as X-axis, will be

V *

. The problem of reducing to standard form the equation of an ellipse,

when the directrix is not known, will be postponed to Chapter XII.

EXERCISES

Find, and reduce to the first standard form, the equation of the ellipse

:

1. with focus at the point (1, -3), with the line x + y = 7 for direc-

trix, and eccentricity \ ;

2. with focus at the point (a, h), the line - -|- ^ = 1 for directrix,
a b

and eccentricity — (where / < n).

IlL THE HYPERBOLA

Special Equation of the Second Degree

Ax*— Bi/*^2Gx + 2Fy + C =

115. The hyperbola defined. An hyperbola is the locus of

a iK)iiit which moves so that the ratio of its distance from a

fixed point, called the focus, to its distance from a fixed line,

called the directrix, is constant and greater than unity. The

constant ratio is the eccentricity of the hyperbola. Thia

curve is the conic section with eccentricity e > 1 (cf.

Art. 48).
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Siiio4) the hjperboU dlfTerN from the ellipse only in the

ign of 1—0*, which in -f in the oUiiMe and - in tlie hjrper-

ixila, the standard equation of the hyperboU can be deriTed

>>y the method of Art. 110 ; and it will be found that with

)ioice of axes and notation om there given, the reaultit given

111 ei|tt. (1), (2), and (8) of that article apply equally to the

)> I. If now, since 1 — 0* is negative, the substitution

/' - 1) is made, equation (6) (p. 181) will become

[47]

which is the simplest equation of the hyperliola. For variety,

this equation will be obtained by a different method.

k:
1I6L The first standard form of the equation of the hyper-

r-'>

Let F be the focus,

fhe directrix, and e the

iricity of the curve.

1 D'D as the jr-axis, with

i'l'rjKjndicular O/'Xnpon

! I rough the focus, as the

axis. I^t 2p denote the

^'iven distance OF^ and let

1 'int of the locus, with coordinates LP and MP.

Then FP = eLP ; [geometric equation]

»nit FP = V(a? - 2/>)« + ^, and LP^x;
(«-2;>)« + y«-A»,

It is, (•^-.l):r»-y» + 4pjr-4/i»=.0, . . . (1)

which is the equation of the hjrperbola referred to its

lUrectrix and principal axis as oodrdinate axes (cf. Art. 48).
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The curve cuts the :r-axis in two points, A = (a;p 0),

and il's(a^, 0),— the vertices of the hyperbola,— whose

abscissas are determined by the equation

The abscissa of (7, the middle point of the segment AA\
is, therefore,

0C = 5l±^ =^ (Art. 11);

hence the center is on the opposite side of the directrix from

the focus.

Now transform equation (1) to a parallel set of axes

through (7; the equations for transformation are (Art. 71)

substituting these values, and removing accents, eq. (1)

becomes

which reduces to (J^ — V)x^ — y'^ = "2^'

u .

^ y' -1 ... (2)
that IS, 4^e2 4/?V ^- ^ ^

If these denominators are represented by a* and 6^ respec-

tively, I.e., if

^^ = (i^--^^ =^' ... (3)

then ^=aV-l)» • • • W
and equation (2) may be written in the simple form

^-^» = l.
. . .

[4T]
a" b'
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till) Ktiuidard equation of the hyperbola Ererj equation

:«*|>ivMeiitiii); nil liyi>erbi>la can be reduced to thiji form« an i«

iiown in Chapter XII.

Tlio distance from the eeut4*r to tlie fooua of the hyperbola

—^ a 1 ia easily found thuM

:

CF^CO-^OF

but, from equation (8),

henoe CF^ae^

therefore the foeu$ Fu the point (ae^di), . . . (4)

Similarly for the directrix :

f*— 1 e

henct) IKb directrix i# the line x— =a 0. . . . (6)

lod, b is real, and its value is known when a

and e are known. In Fig. 86,

CB^b, CE^^^K and ^ = aV?"=^.

117. To trace the hyperbola !-, = >• Equation [47]
lows that

:

*• *

(1) The hyperbola is symmetrical with regard to the

lis; that is, witli respect to the line through the focus

I)eq>endicular to the directrix. This line is therefore

led the principal axis of the h^'perbola

;

(2) The iiyi>erlK>la is symmetrical with reganl to the

also ; t.0., with regard to the line parallel to tlie di-

and passing through the mid-point of the

It by the curve from its priiici])al

TAN. AM. OBOM. — 18
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(8) For every value of x from — a to a, y is im-iginary

;

wliile for every other value of x, y is real and has two

values, C()ual numerically but opposite in sign. But for

every value of y, x has two real values, ecjual numerically

and opposite in sign. When x increases numerically from a

to 00, then y increases also numerically from to oo.

These facts show that no part of the hy})erbola lies

between the two lines perpendicular to its prin(;ipal axis and

dra\vn through the vertices of the curve ; but that it has

two open infinite branches, lying outside of these two lines.

Tlie form of the hyperbola is as represented in Fig. 86.

The segment A'A of the principal axis, intercepted by the

curve, is called its transverse axis. Tlie segment B'B of the

second line of symmetry (the

y-axis), when; J^'O = OB = by

is called the conjugate axis;

and althougli not cut by the

hyperbola, it bears impor-

tant relations to the curve.

From the symmetry of the

liyperbola, with respect to

these axes, it follows that it

is also symmetrical with re-

spect to their intersection 0,

the center of the curve. It follows also that there is a sec-

ond focus at the point ( — ae^ 0), and a second directrix in

the line a: 4- - = on the negative side of the conjugate axis,

and 83rmmetrical to the original focus and directrix. (See

Art. Ill, foot-note.)

The latus rectum of the hyperbola is readily found to be

— (cf. Art«. 105, 111).

Fio.87
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11& Intrinsic property of the hyperboUu Second standard

•quttion. F^iimtioii [47] Htiit4*M a ^MMunutric |iro|jerty which

beloll^^s t4) every |M>iiit of fiii hy|)erlN>lii, whatever the cocinli-

iwte ii\i*H chcNieii, and to no other point ; unci which therefore

oonijiletely detineM the hyperbola. With the figure and

notation of Art. 117, equation [47] sUteit (Fig. 87)

iOP MP
OA^ .Oh'

h

a property entirely analogous to that of Art. 112 for the

ellipse. It enables one to write at onoe the equation of an

/'

B

c a/f m

X
1

B

J/. !^ X
II'

r

A

rbola >vith given center and semi-axes, and axes parallel

the cofirtlinate axes.

For example, if the transverse axis is parallel to the

as in Fig. 88, and the center at the point C3 (A, ib),

P s (i% y) is any jwint on the curve , then

C7f (W
-1,

[48]
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which is the equation of the hy{)erbola, with a and h as semi-

axes.

Again, if the transverse axis is parallel to the ^-axis, as in

Fig. 89, with the center at the jx)iut (A, A:), the equation of

the hyjjerbola will be found to be

1,

%,€,

UL
b*

{X -»)«
»» a*

= -1. . . . [49]

NoTK 1. That the expressions obtained on p. 193 for the distances

from the center to the focus and the directrix, of hyperbola [47], are

equally true for hyperbolas [48] and [49] follows from the fact that

those expressions involve only a, ft, and e; moreover, equation (4) of

Art 11« determines e in terms of a and b\ hence, for all ttiese hyper-

bolas, c=» = ^-^—, the dbtances from the center to the foci are given by

and those to the directrices by

a a^

Note 2. It should be noticed that in equations [47], [48], [49], the

nep^ative term involves that one of the coordinates which is parallel to

the conjugate axis.

EXERCISES

1. Find the equation of the hyperbola having its focus at the point

(-1, -1), for its directrix the line 3 x — y = 7, and eccentricity |. Plot

the curve (cf. Art 102, and Art. 109, Ex.).

Find the equation of the hyperbola whose center is at the origin and

2. whose semi-axes equal, respectively, 6 and 3 (cf. Art 116, [47] ) ;

3. with transverse axis 8,—the point (20, 5) l>eing on the curve;

4. the distance between the foci 5, and eccentricity "v^;

5. with the distance between the foci equal to twice the transverse

Find the equation of an hyperbola

6. with center at the point (3, -2), semi-axes 4 and 8, and the trans-

verse axis parallel to the x-axis. Plot the curve (cf. Art. 118)

;



\

118-110.] TUK CONIC SKVTiOyH 197

7. with oeutor al the point (-•% -4), Minl-ftiM 6 tod % aod tb*

limntTerM axis p*r«U«l to the f-udt. Plot the may,

B. Find the foci aiid Utua reeiam for the hjperbolat of •Mmdtm
lod 7.

9. By A suitablo trmnsfomuUkNi of oottrdiuAtet, rednoe the •qoatiooi

«Mid7 to tho ilMMlAitl form i!-^.!.
a* 6*

I Um fod of th* hyptrbolM

«)t the ounres (/9) and (y).

119. Every equation of the form Ax* -k- By* -^ t Gjd -k- 9 P)^

C = 0, in which A and B have unlike signs, represents an

hyperbola whose axes are parallel to the coordinate axes.

When cleared of fractions and expanded^ the three equatioiis

found for the hyperbola are of the form

Ar«+B^-f2(/ar + 2/V+C=rO, . . . (1)

here A and B have oppoeite eigne^ and neither of them is Mero.

aiversely, it will now be shown that every equation of this

rin represents an hyperbola^ whose axes are parallel to the

Minlinate axes. A numerical case will be examined first,

1(1 then the general equation.

Example. To show that the equation 0jr*-4jf*-18jr-h34y- 68sO
preeenta an hyperbola, and to find ita eleroenta. Tranapoaiug the

:4nt term, and completing the squares of the ^termt and
equation may be written

9(x-l)«-4(y-3)«=8«,

2« gi

Since this equation is of the form [48]. its loeos has tha

opertj giren in Art 118, and therefore represents an hyperboUi Its

center is at the point (1, 3), iU transverse axis is parallel to the Muds,
nf length 4, and its conjugate axis is of length 8. The eccentricity is

-• \ vlB. the foci are at the poUiU (1 - vlB. 3) and (i + ^13, 3); and
tiie direotrieea are tfas lines whose equations am
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Following the method illustrated in the nuincncal example,

the general equation (1) may be written in the form

A B

wherein (cf. Art. 113, p. 188),

^"^
AB

Since A and B have opposite signs, the two terms in the

first member of this equation are of opposite signs ; the

equation is therefore in the form of [48] or [49], and repre-

sents an hyperbola. Its axes are parallel to the coordinate

——, — "5 )i and its semi-axes

±^*and ^±1".

Note. Since A and B have opposite signs, equation (2), which is

only another form of equation (1), always represents a real locus; it is an

hyperbola proper except when A BC = BG^ \- AF^y and it then represents

a pair of intersecting straight lines (cf . Art. 67).

It is clear that the method shown for the ellipse in Art. 114

can be applied equally well to the hyperbola, to reduce any

equation of this curve to the standard form, when the direc-

trix is known. The problem of reducing to the standard]

form the general equation of an hyperbola, when thedirectri:

and focus are not known, is considered in full in Chapter XIL]

« That sign (•(- or — ) which makes the fraction positive is to be used.
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excRcitu

I he following hyparbolM Um ototar* MuiiHUbM*

•oi, irvritoMi mtui Uiua r«ci4tni

:

1. 10i«-8V-|.04x-3«y-»-10«O;

a. 2« - 5ys + Iftf - lOx + 1 a 0;

4. RmIqw Um •qnOloM of awroiMS 1, 2, a, lo Um tondArd form

— f =r 1. SkaiAh Mush cunrs.

120. Summary. In the preoeding articles it hiM been

II that the special equation of the second degree,

always represents a conic section, whose axes are parallel to

the coordinate axes. There are three oaoca, corresponding

to the three species of conic.

(1) The parabola : either ^1 or B is zero. In exceptional

this curve degenerates into a pair of real or imaginary

1 irailel straight lines, and these may coincide. [Art. 107]

(IJ) The ellipse : neither A nor B is zero, and they have

like signs. In exceptional cases this curve degenerates into

. circle, a point, or an imaginary locus. [Art. 118, Note]

(3) The hyperbola : neither A nor B is zero, and they

have unlike signs. In exceptional cases this curve degener-

ates into a pair of real intersecting lines. [Art. 119]

The ellipse and hyperbola have centers, and therefore are

iIIimI central conies, while the parabola is said to be non-

eatral; altluMigli it is at times more convenient to consider

lat the latter canre has a center at infinity, on the princi-

Y^\ ixis (cf. Appendix, Note E).

i lie equation for each conic Iuuh two standard forms, which

state a characteristic geometric property of the curve, and to

which aU other equations representing that species can be
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reduced. These standard forms are the simplest for study-

ing the curves ; but the student must discriminate carefully

between general results and those which hold only when the

equation is in the standard form.

IV. TANGENTS, NORMALS, POLARS, DIAMETERS, ETC.

121. Since the equation

always represents a conic whose axes are parallel to th(

coordinate axes, and since by giving suitable values to the

constants A^ B, G^ F, and (7, equation (1) may represent a7ii/

such conic, therefore, if the equations of tangents, normals,

polars, etc., to the locus of equation (1) can be found, inde-

pendent of the values that A, By etc., may have, these equa-

tions will represent the tangents, etc., when any special

values whatever are given to the constants involved.

In the next few articles such equations will be derived.

122. Tangent to the conic

in terms of the coordinates of the point of contact : the secant

method. The definition of a tangent has already been given

(Art. 81), and the method to be employed here in finding

its equation is the one which was used in Art. 84. That

article should now be carefully re-read.

Let the given conic, t.«., the locus of the equation,

^l2:»-f %' + 2G^4-2JV-f (7=0, . . . (1)

be represented by the curve BHK\ and let Pj = (xi, yO be

the point of tangency.
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kTiiruugli
P,B(jr|, |f,) draw n

MUit line X»il^ and let P|B(2^ y,)

ita other {Mint of intenieotiou

th the locutf of equation (1). If

B point I\ luovea along the curve

iitil it conies into coincidence with

/',, tHe limiting position of the ac-

ciiut LMxn the tangent 7^71

The equation of the line LM is

r,). r2)

If now P, approacheii Pi until x^ — xx and y, = yi« equa-

tion r^"^ {lAMumes the inclptormiriAt^* form

B\ K-' - •'i^' (8)

lis indcterminateness arises because account has not yet

taken of the path (or direction) by which P, shall

Pi, and it disappears immediately if the condition

P\ and P) are points on the conic (1) is introduced,

ice P| and P, are on the conic (1),

jfore j2-i» + J?y,»+2C^x, + 2Pyj + C=0, ... (4)

iiri*-H-5y,' + 2ax, + 2Py, + e=0, ... (5)

Subtracting equation (4) from equation (5), transposing,

iring, and rearranging [cf. Art. 84, equations (8), (9),

(10)], the result may be written

r, - X, ^(yi + y,)+2i'

If this value of ^—^ is substituted in equation (2), the

It 18
*i-x,

(7)
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which is the equation of the secant line LM uf the given

conic (1).

If now this secant line Ik? revolved about P^ until P^

comes into coincidence with Pj, t.<;., until x^=Xi and y2=yi»

this equation becomes

^-^ = -t^<*-^>'- • •
(«>

which is, therefore, the equation of the tangent line PxT at

the point P^, This equation (8) can be put in a much

simpler and more easily remembered form, thus :

Clearing equation (8) of fractions, and simplifying, it may

be written

Ax,x-^By^ + Gx + Fy=^Ax,'-^By,^+Gx,+Fy,', ... (9)

but, from equation (4),

Ax,^ -h By,^ -f Gx, ^Fyi= - Gx, - Fy, - C,

hence substituting this value in the second member of equa-

tion (9) that equation becomes

Ax^x +By^ -\-Gx-\-Fy^ -Gx^-Fy^-C, . . . (10)

and, by transposing and combining, this may be written,

^xia5+Byiy + €?(ap+a5i) + -F(y + yi) + C = 0.» . . . [50]

This is, then, the equation of the tangent to the conic

A^-^By'^ \'^Gx'^^Fy-\- C=0,

whatever the values of the coefficients A^ jB, 6?, F^ and

may be ; the point (a*], y^) being the point of contact.

If ^= 0, ^=1, G= -2;?, ^^=0 and (7=0, then the equa-j

tion of this conic becomes y' = 4j9a;, and the equation of the!

tangent becomes, yytf^'i^'p{x-Vx{)\ similarly for any other]

special form of the equation of the conic.

• Compare note, Art. 84, (/?).
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123. Normal to the co&ie <idD*4 0|f''*>S<'^<t'9'FV-i'C«O»

At a giyen point. Tho Dormal to a curve has been de-

iied (Art. 81) aa a ntraight line perpendicular to a tan-

^•nU aiid {utMHing through the iMiiiit of oontaot. Therefore*

t * obtain the equation of a normal to a conic, at a given

>tnt on the conic, it hi only neoeauary to write the equation

• *f the tangent to the conic at that point (by Art. 122), and

then find the equation of a per|)endicular to the tangent

wliieh paases through thu fMiinl of i-ontact (vi. Ari^. T^X

Example. To find the equation of the normal to the

Ii|>8e

t the point (8, 2).

The equation of the tangent

the point (8, 2) ia

^ + 2^-1.18^ 8
•

2j; + 8yal2.

. a (H t jHindicular line through (8, 2) ia

8j?-2y«5,

\\\\\v\\ im therefore, the required normal.

Similarly, to find the normal to the conic whoee equation

Xi* -h ^y« + 2 ^1? 4- 2 iV + C - 0, (1)

• the point Pj a (iTj, y,) on the curve. The equation of the

ntatP, in (Art. 122)

lT,r 4- By^y + (? (jp + «j)+ Fiy + y,) + C - (2)
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and its slope is, therefore, (Art. 58 (2))

By^ + F'

Hence the required equation of the corresponding normal

at Pj is (Arte. 68, 62)

y-y^-£^^'-'^^-' tsi]

EXERCISES

1. I« the lino ;J X + 2 y = 17 tangent to the ellipse 16 x* + 25y* = 400 ?

2. Find tlie equation of a tangent to the conic x^ + 5y^ - Zx + 10//

-4=0, parallel to the line y = 3 z + 7 (cf. Art. 82).

Write the equations of the tangent and normal to each of the follow*

iiig conies, through a point (xj, y^) on the curve (cf. Art. 122 [50]).

*•
a« 6«

^'

5. x' = 4/> (y — 5) ; sketch the figure.

6. 3x« - 5y« + 24x = 0; sketch the figure.

7. x« + 5y« - 3x + lOy - 4 = 0; sketch the figure.

8. Derive, by the secant method (cf. Art. 122), the tangent to the

parabola y* = 4/)x; the point of contact being (x,, y,).

9. Derive, by the secant method, the tangent to the ellipse x^ + 4y*

— 8x + 20y = 0; the point of contact being (x,,
;/i)-

Write the equations of the tangents and normals to each of the fol-

lowing conies, at the given point : also sketch each figure

:

10. 9x»+ 5y« + 36x + 20y + 11 = 0, at the point (-2, 1);

11. 9 X* + 4y* + 6x + 4y = 0, at the point (0, 0) ;

12. y« - 6y - 8x = 81, at the point ( -8, 1);

•Since the e<|uation of the normal [51] is so readily deduced, in evei

particnlar caae, from that of the tangent, and since the latter is so easil;!

remembered, it is not recommended that equation [61] be memorized.
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IS. J -fJ" 1, Ai Um point (U Vi){

14. 8H . 4 ..« r in, at Ui«» fM.Int ^'^ -1).

LM. Kqtuiioo Of a undent, and of a nomiai, that paaa tl

fiven point whlck la not oa tlM cook.

Dif* ineihod to bo followed in finding tho oqnatton of o taofsot, or of

'\ uurmal, that poaaoo through a giron point which b noT om fA* eomie,

itkj Iw iUoatrstod by the following ozanple; the mam OMthod ia appll-

.ible to any conio whateTer.

Let it be required to find the equation of that tangent to tlte parabola

^.gy.Sx-SlaO, . . . (1)

whieh paaaea through the point (-4, ~1). Thia point not being on tha

fiarmboU, the method of Art. 12S doea not apply ; but, aaauming for tha

iiionient that it ia poasible to draw such a tangent, let (x,, jr|) be ita poinl

of oontact. The equation of this tangent ia (Art. 122)

jrjr-80f + jr,)-4(T + Xi)-31=a ... (2)

Since thia tangent paaaea through the point (-4, -\), therefore eqnap

' on (2) ia saUafiad by the ooiSrdinatea -4 and ~1,

-fi-«(-l+5i) --*(-* + '!) -31=0. . . . (.1)

A hich reducea to x, + y, + 8 = 0. . (4)

Kquation (4) fumlahea one reUtion between the two unknown eoo-

iDts Tj and y,; another equation between theae two unknowna ia fur>

.ishvd by tho fact that (x,. y,) b a point on the parabola (1); thb

•Miuatiou is

y,«~ey,-8r,-81=a ... (5)

^
^ .juations (4) and (5) girea

X, =-2i:2>/5 and y. =-l5F2>^|

there are two pointa on the giren paraboU the tangenta at which

through the point ("4. -1); their codrdinataa are (-2 + 2v^
- 2v^) and(-2-2V2,-l+ 2\^:;)i and anbstituting either pair

theae Taluea for x, and fj In equation (2) girea the equation of a

ht line that b tangent to the paraboU (1), and that paaaea throogji

point (-4, -1).

too, if it b deaired to find the equation of a normal through a

t moi en the cunre, it b only neooaaary to aaniaM temporarily tha coBi^

of the point on the cunro through which thb normal paaaaa, and
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then fnd these ooMinates by solving two equationR, corresi)onding to

equations (4) and (5) above.

The problem of finding the above tangent could also Iiave been solved

by writing the equation of a line through the point (-4, -1) (Art. 5:J)

and having the undetermined slope m, and then so determining m that

the two points in which this line meets the parabola should be coincident.

12S Through a given external point two tangents to a conic

can be drawn. This theorem can be proved in precisely the

same way as the corresponding theorem in the case of

the circle (Art. 89) was proved. It may also be proved by

the method already applied to the parabola in the preceding

article. Let the latter method bo adopted. Supi)ose the

equation of the conic to be

^r* + %' + 2 6;^a? + 2 J>-f (7=0; . . . (1)

let the locus of this equation l)e represented by the curve

LPiPiL'y and let Q^(ht Ic) be the given external point.

If Pi = (a^i, yi) is a point

on LP^P^L^ then the equa-

tion of the tivngent at Pi is

+^(y+y,) + C7=0, (2)

and this tangent will pass

through the point Q if

-hi'C^+yO+C^O. (8)

But Pi being on the locus of equation (1), its coordinates

Tx and yi also satisfy equation (1);

i.e., ATx^-^-Byi^^^Ox^JflFyi+C^O, . • • (4)

If now equations (3) and (4) are solved for Xi and yi, two

values of each are found ; these values are both imaginary]

if (^ is within the conic, they are real but coincident if Qn
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n tlio contr, and they are roal luul ilUtiiict if ^ U outnds of

thr r.iiK . riiin ]m>veif not only tliu above propoaitiun but

li4> tlio fact lliiit no real tangent can be drawn to a conio

tlin>ugli an internal i>oint, and that only one tangent can bo

(Iniwn to a oonio thn>ii|^)i ii ^iveii {xiint on the curve.

12GL Bqtiatioo of a chord of contact If the two tangenta

are drawn from an ej-Unml |>oint to a conio aeotion^ tho

•traight line through the corre-

aponding |X)int.s of tan^ency is

oalleil the chord of contact cor-

reaponding to tlio point from

which the tangenta are drawn

(of. Art. 90).

I-#t?t Pj 3 (xj, y,) be the ex-

ternal point from wliich the

wo tungenta are drawn; T^s

< ^\. '/,) and T^ s (r,, y,), tho

;>MititM of tungency of Uietie tangenta to the conio whoao

luation m
iii* + J?y«4-2ax+2iV + (7-0; . (1)

t U rtHpiired to find the equation of the line through 2^

ud r,.

The e<|uati(>n of the tangent at T^ (cf. Art. 122) ia

Ji-^+/?y,y + t?(aJ + «,)+F(y4-y,)+ C-0,
the e<|iuition of tho tangent at T| \h

Ax^ + By^ + C^(jr + x^-^-Fiy + y,)+ C- 0.

Since each of these tangenta, by hypotheeia, paaaea tlimu^'h

^l«
therefore the coordinates x^ and y^ satisfv both ih) nation

and equation (8) ; t.e .,

Ax^r^ 4- 5//,v, + CHr^ + 3^,)+ /'(y, + y,)+ C » 0.. . . (4)

id Arjx, + Bif^y^ + G(x^ + r,)+ -P(yi + y,) + C- 0. (6)

(2)

(8)
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Equations (4) and (5), respectively, assert that the points

are each on the locus of the equation

u4a;ia? + Byi|/ + O(aB + a5i) + F(y + yi) +C = 0, . . [52]

But equation [52] is of the first degree in the two vari-

ables X and y, hence (Art. 57) its locus is a straight line

;

t.<?., [52] is the equation of the straight line through T^ and

T^ which was to be found.

XoTE 1. The equation [52] ot the chord of contact corresponding to

a given external point (x,, y,), and the equation [50] of the tangent

whoee point of contact is (Xj, y^ are identical in form. This might have

been expected because the tangent is only a special case of the chord of

contact, since the chord of contact, for a given point, approaches more

and more nearly to coincidence with a tangent when the point is taken

more and more nearly on the curve.

Note 2. The present article furnishes another method of treatment

for the question of Art. 124. To get the equations of the two tangents

that can be drawn through a given external point to a given conic, it is

only necessary to write the equation of the chord of contact correspond-

ing to this point; then find the points in which this chord of contact

intersects the conic. These are the points of contact of the required

tangents, whose equation may then be written down.

EXERCISES

1. By first finding the chord of contact (Art. 126) of the tangents

drawn from the point (-|, V) ^ the conic

4 x2 + y'* + 24 X - 2 y + 17 = 0,

find the points of contact, and then write the equations of the tangents

to the conic at these points; verify that these two tangents intersect in

the point (-J, V)-

2. Solve Ex. 1 by the method of Art. 124.

3. Solve Ex. 1 by the method of Art 83, using equation [11], p. 85.

4. Find the equation of a normal through the point (7, 5) to the

conio
. 4x» 4- y* + 24x - 2y + 17 = 4.
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Ib !t po<cnihIn to draw mnro tlisa ooa oortual throaj^ (7. r») to th« ffiv«ii

d. h^- lilt* iii<*ifi(Hii of KxA. 1, 2, And S, fin<l Uie equMloot of Um
langvnU through th« origin to the oooie

3x<-Sf«-0jr4>8f + 6.

•. Bj the method* of Rsk. 1, 2. and \ ftod th« aqiuUiout of tht

tanfinta Ihrongh the point (-1, 1) to the eouie

dx* + &/ 4- 80^ + 20f ^> 11 B a
7. Sketeh the eonice whoee equations are given in Ex. 1, 5. and tt.

8. Find tha equations of the tangenta to the conic, r< -f 4 jr* a 4»

from the point (3, 2).

9. Find the normals to the conic «• + 4 jr* s 4« through the point

(1.0).

10. Solve Exs. 8 and 0, by assuming the slope m of the required

lin<» (Art. 53), and then determining m so that the two points in which'

the line meets the given curve shall be coincident

127. Poles and poUrt. If through any given point

P| ^(j'p yj), outside, inside, or on a given conic, a secant

s drawn, meeting the conic in two points Q and R, and

f tangents at Q and R are drawn, they will intersect in

-«>me |x)intv as P' s (jr', y'). The locus of P* as the secant

revolves about P^ is the polar of the point Pj (cf. Art, 91)

vitli regard to the given conic ; and P^ is the pole of that

IiKSUS.

To find the equation of the

|H)Iur of a given point

with regard to a given conic

whose equation is

-<ir8 + J5y« + 2(?2?+21V
+ C-0, . . . (1)

let QP^R be any position of

he secant through Py and
CAS. AM. oaoiL^U
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let the tangenU nt Q and R intersect in P* s (j/, y'). Then

the equation of QP^R (Art. 126) is

A^x + By'y + a(x + ar') + /'(y + 5^') -f C=0. . . . (2)

Since this line passes through P^, therefore the coordinates

a?! and yj satisfy equation (2),

t.«., Aria/ + 5yy+(3^(a:i-|-ar') + /'(yi + y)4-C'= 0,. ..(8)

and equation (3) asserts that the variable point P' s(a?', y')

lies on the locus of the equatio**

AxyX -\-By^y^ G(^z-{-x{)^- F(if ^- y;)^- C =:0 (4)

Equation (4) is of the first degree in the variables x and y,

4ience (Art. 67), its locus is a straight line ; the polar of P^,

with regard to the conic (1), Le.^ the locus of P\ is then

the straight line whose equation is

Axix { Byiy -{ Gix+xi) -{ Fiv -^ yi)-\-C ^ O.
. , . [53]

Note. That the equation of a tangent [50] and of a chord of con-

tact [52] have the same form as equation [53] is due to the fact that a
tangent, and a chord of contact, are but special cases of a polar.

12a Fundamental theorem. An important theorem con-

cerning poles and polars is : If the polar of the point P^, with

no. 95.
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T$gard to a given eome^ paues tkrouyh ths poini P^ then the

polar of P^ with regard to the $ame evnie pa—ea through Py
I^t the e<|iiatioii of the given conic be

ilx« + J?^ + 26b + 2iy + e-0, (1)

and let the two given i>oint« bo

P\ i'v !fi> an<l -Pf ('v yi>-

Then the equation of the polar of Pj with regard to the

oonio (1) in (Art. 127)

Arjjj+^y,y+(?(ar+2rj)+i'(y+yi)+ C-0; ... (2)

if this line pnnsen tlirougli P^ then

Ar^j+jBy,yj+a(i-,+ari)+i'(y,+yi)+(7=0. . . (8)

But tlie polar of P, with regard to the conic (^1) is

iia:r«^+-8y,y+(7(ar+a^)+P(y+y,) + C=0, ... (4)

and equation (8) shows that the locus of equation (4) pamoi

through the point P| ; which proves the proposition.

129. Diameter of a conic section. The locus of the middle

int^ of any system of parallel chords of a given conic is

>ed a diameter of that conic, and the chords which that

iter bisects are called tlie chords of that diameter.

For a given conic, it is required to fni<l the equation of

diameter bisecting a system of chords whose slope is m.

the equation of the given oonio (HJK, Fig. 96) be

Ar^ + 5y«+2(?ir + 2JV + C'=.0, . . . (1)

let the equation of any one of the parallel chords of slope

tn, L^f far example, lie

g=»tHX + b, r2)

and let the two points in which it meets the given ocnic be

^i 3 (*i» yi) »nd ^1 («r y«)-
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Fio.88.

Then (Art. 122, eq. (6)),

If es(A, A:) be the mid-

dle point of the chord

P^Pj, then

^ = ?i+ f^andifc=^»-Ji^;

substituting these values of

x^ + Xj and i/i + ^2 in equa-

tion (3), then clearing of

fractions and transposing,

that equation becomes

Ah + mBk + a +mF = 0, ... (4)

But equation (4) asserts that the coordinates (A, A:) of

the middle point of any one of this system of parallel chords

satisfy the equation

Ax-\'mBt/'\- G + mF=0, . . . [54]

which is therefore the equation of the diameter whose chords

have the slope m,

EXERCISES

1. Find the polar of the point (2, 1) with regard to the hyperbola

ar* - 2 (y« + x) - 4 = 0. Show that this polar passes through (12, 3),

and then verify Art. 128, for this particular case, by showing that the

polar of (12, 3), with regard to the given hyperbola, passes through (2, 1).

2. Write the equation of the chord of contact of the tangents drawn

through (2, 1) to the hyperbola x^ -2y^ -2x - i=0, then find the

points in which it meets the curve, get the equations of the tangents at

these points, and verify that they pass through the given point (2, 1).

3. By specializing the coefficients in equation [54], prove that the

diameter of a circle is perpendicular to the chords of that diameter.
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HuLUTioir. If MiuAilon (1) of Art 138 iiprmiiti • eiroK

A m Bf aud tbao •quAiiou [M] btoomt

1 a-^mF

1^^ th« Klnpe of thedkiMlM'ii— -; but tlie aloiw of Um fhwi

r obonU U ai, benoe iha dUinetor it perpeadieuUr to iU chonU.

i. By meaufl of eq. [54], iA, 1^ vpeeUUtiog ito ooaOeifloU, pror*

tlmt the diameter of a circle paant through the eentfer of the drole.

5. By roeane of equation [51] prove thai any diameter of the eUipee

tljr -f 2jf s paieet through the center of the ellipee. Uoee
ty belong to all eUipsee ? To all coniosT

6. Find the equation of that diameter of the hyperbola

x«~4y«+16y + «*-15 = 0,

ohorde are parallel to the line y s= 2x -f 10. Doee thie diameter

through the center of the curve?

7. Find the angle between the diameter and ite chordji in ezereiae 8.

8. Show that every diameter rf the parabola 3y* — lOx -(- 12y = 4

parallel to its axis. Is this a property belonging to all parabolas?

9. Derive, by the method rf Art 129, the equation of that diameter

of tha hyperboU «• - 4y* -f 16y + 0' - 15 = 0, which bisecU chords

parallel to the line 8s - 4y rr 12.

130. Equation of a conic that passes through the intersec-

tioos of two given conies. I^t the given conies be

iyiS^jiJ + ^j.y«4-2(?,2r + 2/',y+C, = 0, . . . (1)

and iS;sil^+B^4-2G^ + 2/'^+Ci-0; ... (2)

then, if ^ be any conntant whatever,

5, + it5;=o ... (8)

represents a oonic whose axes are parallel to the coTmlinate

ixes (.\rt. 120), and which passes through the points in

which the conic8 i9, = and iS^ m intersect each other

r Art. 41); i.e., S^ + kS^ = () represents a family of oonics,

ich menilxT of which |Hiit8eii through the interseotioiis of

^
J
^ and iS^ a 0. The parameter k may be so chosen thai
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the conic (3) shall, in addition to passing through the four

points in which S^rsO and ^^j = intersect, satisfy one other

condition ; e.y., that it shall ptiss through a given fifth point.

Moreover, if Sy^ = and aS^j = are both circles, then

S^ + kS^ = is also a circle (cf. Arts. 95 and 96).

V. POLAR EQUATION OP THE CONIC SECTIONS

13L Polar equation of the conic. Based upon the '* focus

and directrix" definition already given in Art. 48, the polar

equation of a conic section is easily derived.

Let D'D (Fig. 97) be the given line (the directrix) and

the ffiven point (the focus); draw ZOR througli and per-

pendicular to D'i), and let be chosen

as the pole and OR as the initial line.

Also let P=(j)^ 0) be any point on the

locus, and let e be the eccentricity.

Draw MP and OK parallel, and LP
and ^if perpendicular, to D'D^ and let

OK=l; then

OP = e • XP, [definition of the curve]

^e(^ZO+ OM)i

FiQ. 97,

f-^/jcosA

This equation, when solved for />, may be written in the

form
'

. . [55]p =
1 — eoosO*

which is the polar equation of a conic section referred to

its focus and principal axis ; e being the eccentricity and I,

the semi-latiLs-rectum. If « = 1, equation [55] represents aj

parabola ; if e < 1, an ellipse i and if « > 1, an hyperbola.
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NoTB. EqtuUkm [55] ahowt UuU If « < 1, (a, II Um •quaibn r«pr»

•aU Ail elUpM, there b no value of B for whieb p heoomee ioflnilap

i lierefore there b no dlreetion iu which a line may he drawn to meet aa

ItpM at iiulnity. If # s 1, i^,, if the e(|ualion rtprtwota a parabola

tere la one value of ^ vhu, tf 0, for which p beoomee Inflnlte. Ther^

•re there b ene direetioo in whleh a line may be drawn to meet a parab*

\jk at infinity. If e>l, i^^ if the equation repreeente an hyperboU»

>«r« art* two values of $, viz^ $ ^± ooe-> (1 :0t f<»' which p beeowee

I finite. Therefore there are two directions in which a line may be drawn

lo meet an hyperboU at infinity.

The threo apeebt of conio tectione may therefore be distinguished

from each other by the number of directions in which lines may be drawn

through tlie focus to meet the curve at infinity. Or, since paralbl lioea

meet ct infinity, any point of the plane may be used instead of the fioeoa.

132L From the polar equation of a conic to trace the curve.

•> 1, t.«n suppose equation [55] represents an hyperbola. When 9

l-t
> henoe p b negative ; as 9 increases, oos 9 Uid€Com$

becomes numerically more and more near^ equal to 1; Iharafbre p ra>

mains negative and be*

oooes larger and Urger;

p a — 00 when

1 -ecoetf sbO^

ie~ when

••(1)

lay; as ^ increases

throngh thu value, p
+ 00 and then

but remains

ive, and becomes

to / when 9 = DO"; as 9 inoreasee throngh MT to 180*. p
itive, but continues to decrease, reaching Its imaHeat value, vb.

-L^ when 9 = 180"; as 9 increasee from 180* to 970*, p remains

ive and increases from --^— to /; as ^ incraaaea from S7tf* to
1 +«

— a, p increases from /to •(• «o ; es tf incraaaea through 800^ — e, p
— 00 ; and finally, as 9 increases' from 800^ — a to 880^ p re-

negative, but decreases nuaarically, reaching the value •

when 9 beeomea 860*. ^ " *
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These deductionn from equation [5r)] nhow that the hyperbola has

the form repreAented in Fig. 08, and Uiab, as $ increases from to a, the

lower half A'Woi tiio infinite branch at the left is traced ; as $ increases

from a to 360** — a, the right hand branch VA U is traced ; and as 6 in-

creases from 360^ - a to d6(P, the upper half SA^ of the left hand branch

is traced.

If $ increases beyond 300^ the tracing point moves along the same

curve; this is also true if clianges from 0° to — 300**.

NoTR. To show the identity of the curve as traced lu the present

article and in Art. 117, it need only be recalled that

e = , and that / =—
a a

These values substituted above show that

a = co6"'( \ = tan-« f -V that OA = - (a + \/?i«+P), etc.

EXERCISES

1. From equation [55], trace the parabola.

2. From equation [55], trace the ellipse.

3. By means of equation [5.5], pfove that the length of a chord

tiirough the focus of a parabola, and making an angle of 30° witli the

axis of the curve, is four times the length of the latus-rectum.

4. By transforming from rectangular to polar coordinates, derive the

polar equations of the conic sections from their rectangular equations.

EXAMPLES ON CHAPTER VIII

1. Find the equations of those tangents to the conic 9x*— 16y*=144,
which pass through the point (0, 1).

2. What b the polar of the point (7, 2) with reference to the conic

ICy* + 9x' = 144? Find the equation of the line which is tangent to

the conic and parallel to this polar.

3. Find the polars of the foci of the ellipse —+^ = 1, with
9 lo

regard to this ellipse. Also for the parabola y^ = ipx,

4. What is the equation of ths polar of the center of the conic

itx* + By* + 2 Gx + •J Fy + C = 0, with reference to the conic ?

5. What is the pole of the directrix of the hyjjerbola x* — 4y^ = 18,

with reference to that curve ?
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6. TIm Um y«M(x-M) IMMM throuch Um

aio ^db ^ a 1. On what Um doM iu pol« lie? Find tha IIm Join-

>); iu polo to the foouA. What rBUtiun ezbU betwoea this Una and

iii« given focal chord?

7. What in th« fxilar of tha Tartez of the oooio

witli reference to the cunre?

a Whtkt U the equation of aaeh common ehord of the two oonice

16 x« + Oy« a 144. 10i« - 9/ = 144 ?

Ihsr. L'ae Art. ISO, equation 8; find k eo that S^ + kS^ can be

J.K.turod.

9. Prove that the perpendicular dropped from any point of the

rectrix, to the polar of that point, paaeet through the focus

(«) forf« = 4/«. (P) for^±^=l.

t;.ting the aimplett standard equations of the conies, find for each

10. tlie polar of the focus

;

U. the pole of the directrix

;

12. the pole of each axis; and, for the ellipse and hyperboU, the

plar of the center.

13 Find a conic through the intersections of the ellipse 4 x*-f jr*sl9

«< parabola jr* = 4 r + 4, and also passing through the point 2, 2.

' kind of a conic is it?

114.

Show that the curves i^ + ^=l and^-^=l have the same
16 7 4 6

ti, and that they cut each other at right angles.

IS. Find the vertices of an equQateral triangle eircumseribed about

I elliitfto Ox' + 10 V* = 144. one side being parallel to the major axis

the curv<

16. Find the normal to the conic Sx^ + jf* — 2jr-jf = ^, making the

|le Un->(0 with the xHUtis.

IT. Show that the locus of the pole, with respect to the paraboU jr*= 4 ax,

a tangent to the hyperbola x< - y> s o<, is the ellipee 4 x< + jr* = 4 o*.

(is. Show that +^ = 1, where ifc is an arbitrary oon-
o«-*« t^-k* «• *• 1 k-.

il, rapivMniA an elliftaa havin|( the same foci as ^ "*"
ii ~ * ^•a
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A*<6«; but repreaenta a confocal hyperbola when a*>l-*>6*; given

Determine the nature of the followim. cotiics; and alfio their fuel,

directrices, centers, semi-axes, and latera recta:

19. y« = (x + 8)(x + 4);

20. jc«-4y« + z + 3f-f leO;
21. x« = 4x + lly + 75

22. 3a:« + y»-6x + 8y + l=0}
23. 3jc* + 6y = 3y«-f 5x;

24. 9(x«-y) = 3y(l+2x-3y).

25. Show that the polar equation of the parabola, with its vertex at the

26. Show that if the left hand focus be taken as pole, the polar equation

of the ellipse is p = P^-^^

27. Derive the polar equation of an hyperbola, with its pole at the

focus, eccentricity 2, and the distance of the focus from the directrix

equal to 6.



CHAPTER IX

THX PARABOLA y<»4iND

133w Review. In tlio preceding diapter (ArU. 102 to 108)«

.o uuture uf the purubula has been examined, and iU eqiui*

in derived in two Btuiidard forms. These equations are :

/- '-ipj^ if the axis of the curve coincides with the r-axis,

!td the tangent at the vertex with the y-axis; and

(y — ib)*=s4/)(x — A), if the axis of the curve is parallel

> the 2--axiH, and the vertex b at the point (A, k). In the

resent chapter, some of the intrinsic properties of the parab-

la are to be studied, t.e., properties which belong to the

—V'- "Vfl are entirely independent of the |)08ition of the

:«; axes. For this purpose, it will, in general, be

: to use the simplest fonn of the equation of the curve*

siit., y> = 4/«r.

In every parabola, the value of the eccentricity is « = 1.

f the equation of the j^arabola is y* a 4px^ then the focus

s the i>oint (/>, 0), the directrix is the line jta— p, and

I lie axis of the curve is the line y = 0. The equation

•presents the polar of the point Pj3(rp y,) with respect

> the parabola, for all positions of Py If P| be outside

:ie curve, this polar is the chord of contact corresponding

» tangents from P^; if Pj be upon the curve, this fM^lar

> the tangent at that point. These facts, shown in the

S19
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previous chapter, will be assumed in the following dis-

cussion.

134. Construction of the parabola. Tlio two conceptions

of a locus given in Article 35 lead to two methods for con-

structing a curve, viz., by plotting points to be connected

by a smooth curve, and by the motion of a point constrained

by some mechanical device to satisfy the law which defines

the curve. These two methods may be used in constructing

a parabola.

(a) By separate points. Given the focus F and the vertex

0, draw the axis OFX^ the directrix D'D cutting this axis

in Z, and Jilso a series of lines

p.^^ perpendicular to the axis at

My, M^y M^, etc., respectively.

With F as center and ZM^
as radius, describe arcs cut-

ting the line at M^ in two

points Pj and Q^ ; similarly,

withF as center and ZM^ as

radius, cut the line at M^ in

P3 and Q^ ; and so on. The

points thus found evidently

satisfy the definition of the parabola (Art. 102), In this

way, as many points of the curve as are desired may be

found. If these be then connected by a smooth curve, it

will be approximately the required parabola (cf. Note B,

Appendix).

(y8) By a continuously moving point. Let D'D be thi

directrix and F the focus. Place a right triangle wit

its longer side KH in coincidence with the axis of tl

curve, and its shorter side KJ in coincidence with the

trix. Let one end of a string of length KH be fastened
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//, ttiiil the uilittr ttnd at #*. If

now a pencil point lie prewied

LTHinst the string, keeping it

iut while the triangle in

moved along the directrix, an

idicated in the figure, then,

111 every poeition of P,

t lierefure the pencil will trace

111 arc of a parabola.
*10. lAK

135l The equation of the tangent to the parabola y* = 4jn0

1 terms of its slope. The equation of a line having the

riven ttloi)e m in

y«iiu: + *; . . . (1)

it is desired to find tliat value of k for which this lintr will

1m , Mine tangent to the parabola whoMe equation is

y^=\pj. (2)

Considering equations (1) and (2) aM siinuituneouH, and

limiiiHting y, the resulting equation, which is

(iiix + ib)««4;w, ... (8)

uis for its roots the aliscissas of the two |)oints in which the

ItHji of equations (1) and (2) intersect. Thene roots will

'<*come e<)ual (cf. Art. 9), and therefore the points of inter-

action will become coincident, if

U., if ib = ^. . . (4)

Therefore [56)

-. for all values of m, the equation of a tangent to the

iinilwla y«-i4px.

k
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The abscissa of the point of contact of the loci of equa

tioiis (2) and [56] may be found from equation (3), by sub-

stituting in it the value of k given in equation (4) ; it is -i^

.

m*
The ordinate may then be found from equation (1); it iH

2p-J- . The point of contact is then
m

irom equ£

\n? m J

136. The equation of the normal to the parabola y^ =^ipx

in terms of its slope. Since, by definition, the normal to a

curve is perpendicular to the tangent at the point of con-

tact, the equation of a normal to the parabola

is, if m' be the slope of the tangent [Arts. 62, 135],

(1)

{y-^i)=-h{''-A (2)

If m be the slope of the normal, then

1

m
and equation (2) may be written

y = rnx — 2pm — prn^, , . . [57]

This is the equation of a normal in terms of its own
slope m.

137. Subtangent and

subnormal. Construction

of tangent and normal.

Let Pi = (a:i, i/{) hv

any given point on the

parabola whose equa-

tion is

f/^ = 4px (1)

Draw the ordinate

MP^, the tangent TPy
and the normal P^N.Fiu. 1 ji
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Then by Uie deftnitionii uf Art. 86, the MubUngent b TM, the

Huhiiortiml in MN, Xlw Ungent length TPp and the nuruuil

1. iiurth P|iV. The tangent at P^ liaa for tU equation (Art.

^*-^'
yiy-2K* + 'i (2)

hence itn ar-intercept w ^4 T-i — X|. but AM j» Xp

therefore TM^2x^.

Thb proven that (A« m^toii^eii/ ^ <A« parabola Jf*«>4/Nr

it bUeeted at ths verUx; and that iU /eii^A »• eguoi to twiet

ths ab$ci$§a of the point of oontaet.

The normal at P^ haa for ita equation (Art. 128)

hence ita x-interoept i« AN^ Tj + 2/>. But AM^ /-j,

therefore i£2V= 2p.

That in, in worda, fA^ tubnormal of the parabola y^ s=4px

i$ eonetant; it if equal to half the latue rectum.

Thette properties of the subtangent and 'nubnormal give

two simple methods of constructing the tangent and normal

to any parabola at a given point, if the axis of the parabola

u given.

First metliod : from the g^ven point, let fall a perpendicu-

P^M to the axis of the parabola, meeting it in M, The

)X of the curve being at A, construct the point T on the

produced, so that TA = AM. The straight line 77*, is

required tangent at Pp and a line through P, at right

flee to this tangent is the required normal.

Second method . from the foot of the perpendicular MPi
truct the point N, ho that IflV equals twice the distance

vertex to the focus (2p^2AF); then PjiV is the

[oired normal, and a line through P| at right angles to

^|i^is the required tangent.
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EXERCISES

1. Construct a parabola with focus 2*» from the directrix.

2. Construct a parabola with latus rectum equal to 6.

3. Find the equations of the two tangents to the parabola y* = 4/>x,

which form with the tangent at the vertex a circum8cril)ed equilateral

triangle. Find also the ratio of the area of this triangle to the area of

the triangle whose vertices are the points of tangency.

4. Find the equation of a tangent to the parabola y^ = Apx, perpen-

dicular to the line 4y — a; + 3 = 0, and find its point of contact.

5. Find the equations of the two tangents to the parabola y^ = 5ar

from the point (1, 1), iLsing formula [5fi].

6. Write the equations of the tangents to the parabola y* = 10 z, at

the extremities of the latus rectum. On what line do these tangents

intersect? (cf. Art. 138 (o), p. 228.)

7. Write the equations of the tangent and normal to the parabola

y« = 9 X, at the point (4, 6).

8. Write the equation of the normal to the parabola y' = 6 x, drawn

through the point (|, 3).

9. Write the equation of the tangent to the parabola y^ — ipx^ for

the point for whi(*h the normal length equals twice the tangent; for the

point for which the normal length is equal to the difference between the

subtangent and subnormal.

10. Two equal paralwlas have the same vertex, and their axes are at

right angles : find the equation of their common tangent, and show that

the points of contact are each at the extremity of a latus rectum.

11. Find the locus of the middle point of the normal length of the

paral>ola y* = 4px.

12. The subtangent of a parabola for the point (.'>, 4) is 10; find the

equation of the curve, and length of the subnormal.

13. Find the subtangent, and the normal length, for the point wh<

abscissa = — 6, and which is on the parabola y^ = — 6 x.

14. Find the equation of the tangent parallel to the polar of ("1,

with respect to the parabola y* = 12 x; also find the point of cont

the length of the tangent, and the subtangent

15. Find the equation of a parabola which is tangent to 2y - 3 x = Ij

whose vertex is at the origin, and whose axis is parallel to the x-axis.
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I

16. Show th«i th« MUfn of Ui« tubUngetii and ftobttomud for aujr

point oil lh« parmboU jr*=4/»x, equaU one ludf the toogth of foMl
|i«raUei to tiM oorrwpoodiog Unfent.

1?. Show thai •• the abteiiM b tlie intraUU ^< = 4;>x inci

from to «P, tiM abaolultf rmloa of tlie iilti|w of th«? ungmt cliangM from

• to 0; boDOt the eonro b oouoave towanl it« asU.

13a Some propertiet of the parabola which involve ungenu
and nornudf. Let F be the foctim A the vertex, AX the

Flo.lOt.

axia, and D^D the directrix of the parabola whose eqnatiou is

/=4 DJ-. (1)

Through any point P| = (uj, y, > on the curve draw the

tanj^ent TVp cutting the y-axis in R^ the directrix in «S^ and

the x-axia in T; also draw the normal P^N; the focal chord

P^FPil the tangent at P,; the lint»« L^P^Q and L^P^, per-

|>en(licular to the directrix ; and the lines SF and XgF.

Then the following pro|>ertiea of the parabola are readily

obtained :

TAM. AN. OttOM. — 16
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(1) The focus t« equidistantfrom the points /'j, T^ and N.

For Fl\ = L^l\ ^ZA + AM^ = /^j + p,

TF^ TA 4- AF== x^ +;;, Art. 137

and FN=AM^'\-(^M^N-AF) = x^'\-p\ Art. 137

hence FP^=TF=Fy,
The point F is the midpoint of the hypotenuse of the

right triangle TP^Ny and is therefore equidistant from the

vertices T^ Pj, and N, Thus a third method is suggested for

constructing the tangent and normal at Pp viz. : by means of

a circle, with the focus JP as center, and the focal radius FPi
as radius, which cuts tlie axis in Tand N.

(2) The tangent and normal bisect internally and externally^

respectively^ the angle between the focal radius to the point of

contact and the perpendicularfrom that point to the directrix.

For /LL^P^T=Z.P^TF, since L^P^ \\ TF\

and Z TP^F=Z Pj TF, since TF= FP^ ;

^L^P^T=^TP^F,
Also, ZFP^N=Z.NP^Q, since P^Nl^P^T.

(3) Hirough any point in the plane two tarigents can b§

draum to the parabola (cf.* Arts. 89, 125).

The line y = mx-\-^ (!>'
m

is tangent to the parabola y^ = 4 px for all values of m. If|

P'= (x\ y') be any given point of the plane, then the tan-

gent (1) will pass through P' if, and only if, m satisfy tho^

equation
, , »>

y' = mx' -\- ^,

•.e.,if m^ y'^^y^y^ P̂ . . . . (2)

Therefore two, and only two, values of m satisfy the giveal

conditions; and therefore through any point of the plane two!
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UiigenU can be drawn to the pimibolA. If, however, P* u
OQ the curve, then jf^ » 4 /itx' 0, the two valuee of m mre

•qiml, i.f., the two ijuigentii ooiuoide. If P' in iuHitle this

parabola, then y'' — 4 jm/ < 0, and the two valuee of m aru

imaginary, i.«., there are no real tangent linea. Therefore

H b only when P* in outaide the parabola that two real and

different tangent lines may be drawn from it to the parabola.

(4) Through «fijf point in ih§ plan§ three normaia can U
drmwn to the parabola.

The lino tfrnmrnz—^pm—pni^ (1)

>H normal to the parabola y* • 4 /ke for all values of m
Art. 186). If i*' C**, y) Ihj any point of the plane, then

ilio normal (1) will pass through P* if, and only if, m has a

value that will satinfy the equation

y mm a/m- 2pm- pm\ . . (2)

equation (2) iM a cubic in m, there are three values of

which satisfy the given conditions, and therefore, in gen-

tliree normals may be drawn to a parabola from a given

int. Special cases may, however, ariHe in which two of

roots of equation (2) are equal, when there would be

dy two different normal lines; or all the roots may be

I,* or two imaginary and one real, in both of which

there would l)o only one normal line. Through every

int at least one normal line can be drawn to the parabola.

(5) TTie tangent$ at the ertremitieg of a focal chord interwoet

the directrix, and at right antflee (cf. (6), IhjIow).

W, if Ss^jr^n Jf') is the |K)int of intersection of the

mts at the extremities of the focal chord, then the chord

the polar of S^ and its equation is

1>'9-^P(' + '')- . . . O)
oul7 uiM point, Tte.1 r'miip, O), >n all Ih* laotoof aqiiatlao (S) mfuL
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But since this line passes througli tlio focus Fs{p^ 0),

t.«., r' = -jo. . . . (2) :

Ilence the point 7*' is on the locus a; =3—/?, i.e^ on the

directrix.

Again, the tangent line

i/ = mx-h^ . . . (3)

passes tiirough the point P' =( — ^>, y)

if y = -^^+£, i

i.e., if 7„2 ^. .y_ ^^ _ 1 = 0. . . . (4)
P

But the roots of equation (4) are the slopes m' and m" of

the two tangents at Pj and Pj ; and by Art. 11,

mW= -1.

Hence, the tangents at Pi and P2 intersect at right angles.

(6) 5f%« line joining any point in the directrix to the focu9\

of a parabola is perpendicular to the chord of contact cot*

renpondinff to that point.

For A ^Z,P, = A SFPyy

since X.Pi= PP„ SP^ is common, ZL^P^S^ Z. SP^F\

hence. Z. SFP, = Z SL,P, = 90^.

The property of (5) may now be shown geometrically.

Draw the tangent at P^, and suppose it to meet the directrix

in SP\ then, by what has just been proved, Z S^FP2 is a

right angle ; then FS' must coincide with FS ; and the tan-

gents at P| and P, meet on the directrix.
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Moreover, Z P^P\ b a right angle, for SP liuuHttii

, . , . i ^ rprndieular Ut fall from the foeut upon a tanqeui

P Imm rneeU that tamjtnt upon the tantjent at ths vertex.

For the e<|uatioii of the Uiigeut at P| ia

yjf - 2/» + 2;>r„ . . . (1)
i

and tlie equation of tlie perpend iouhir throu^li the fooua

Kogarding equations (1) and (2) as simultaneoua* and

Bolving to find the point of intersection R^ its abaoiflsa ia

determined by tlie equation

(•*/»* 4- y,Oi? + pOpr^ - yiO - ;

or, since yi' a 4pxi^

'-«: (8)

.ijitl A* In tliri. f..;-.' i.;i thf t.iii^tnt at A.

NiiTK. I'he prvceding [iru|N>rlieii of tb« paraboU hare for nriety

been giren in aome cmm a geometric, in others sn analytic, proof. The
Mt is sdriaed to use both methods of proof for each propoeitioo.

: properties of the parabola are gireu below is exercises for the

8iu«ittiit, snd should be derired by analytic methods.

t

EXERCISES

1. Write the equations of the normals drawn through the point (S, S)

the parabola jr* = 6 x

.

2. The focal distance of any point of the parabola jf* = 4/u'isp-|>x.

3. The circle on a focal chord as diameter touebee the directrix.

4. The angle between two tangents to a parabola b one half the

between the focal radii of the points of taogency.
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5. The polars of all points on the latus rectum meet the axU of the

parabola in the same point; find its coordinates, for tho parabola

6. The product of the segments of any focal chord of the parabola

jf* = Apx equals p times the length of the chord.

7. Two tangents are dravn from an external point P, = (r,, y,) to

a parabola, and a third b drawn parallel to their chord of contact. The^

intersection of the third with each of the other two is half way between^

P, and the corresponding point of contact.

8. The area of a triangle formed by three tangents to a parabola is

one half the area of the triangle formed by the three points of tangency.

9. The tangent at any point of the parabola will meet the directrix

and latus rectum produced, in two points equidistant from the focus.

10. The normal at one extremity of the latus rectum of a parabola is

parallel to the tangent at the other extremity.

11. The tangents at the ends of the latus rectum are twice as %u
from the focus as they are from the vertex.

12. The circle on any focal radius as diameter touches the tangent

drawn at the vertex of the parabola.

13. The line joining the focus to the pole of a chord bisects the ang]0J

subtended at the focus by the chord.

14. Prove, geometrically, that a perpendicular let fall from the focus I

upon a tangent line of a parabola meets that tangent upon the tangent]

drawn at the vertex (cf. (7) of Art. 138, p. 220).

139. Diameters. A diameter has been defined as the]

locus of the middle points of a system of parallel chords.

Its equation may be found as follows (cf. Art. 129):

Let m be the common slope of a system of parallel choi

of the parabola whose equation is

f = \px, ... (1]

then the equation of one of these chords is

yssmx-\-k^ . . . (2)]
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<iit<l till- (Mpiation nf any other chord of the sjritem will differ

fruiii thin only in the value _
• *f the coiuiUnt term k.

The chord (*2) raeete the

liaraboU (1) in two points

-Pi«(^»yi)

iml P,a(j^y,),

and the coordinaten of the

middle point P* s (y, y*)

lire therefore

^r'.^Lt^l. and y-tL+ll. . . . CS)

Considering (1) *^"<^ (^) ^ simultaneous equations, and

eliminating x, it follows that the ordinates of P| and P^ are

the roots of the equation

<....of y._i£y + iE*= o. ... (4)
HI HI

Therefore, by Art. 11,

III fM

ice whaiever the value of kt the coordinates of the middle

It of the chord satisfy the equation

y.ie- ... (6)

This in, therefore, the equation of the diameter oorrespond-

to the system of chords whose slope is m.*

• qiisikm (6) miglit ha?* been obtained si oooe m a tprcial fonD of

[54], Aft. ISO, by giTing appropcials nOiMS to Um ooeOdeBtt ^ J^

^ and C there need.
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140. Some properties of the parabola involving diameters.

The equatiou of tho diameter of the parabola (Art. 13U),

y = ^, ... (1)m

shows at once that every diameter of the parabola is ptfra/Ze/

to the axis of the curve. (See also Ex. 8, p. 213.)

Conversely, since any value whatever may be assigned

to f», each value determining a system of parallel chords,

equation (1) may represent atii/ line parallel to tho ar-axis,

and therefore every line parallel to the axis of a parabola bisects

some set ofparallel chords^ and is a diameter of the curve.

Again, each of the chords cuts the parabola in general in

two distinct points, and the nearer these chords are to the

extremity of the diameter the nearer are these two points

to each other and to their mid-point. In the limiting posi«

tion, when the chord passes through the extremity of the

diameter, the two intersection points and their mid-point

become coincident, and the chord is a tangent. Therefore

the tamjent at the end of a diameter is parallel to the bisected

chords.

It follows from the preceding properties, or directly from

equation (1), that the axis of the parabola is the only diameter

perpendictdar to the tangent at its extremity.

The student will readily perceive how the al)ove properties

give a method for constructing a diameter to a set of chords,

and in particular how to construct the axis of a given parab-

ola. Thus the problem of Art. 137, to construct a tangent

and normal to a given parabola at a given point, can now be

solved even when the axis is not given.

If any point on a diameter is taken as a pole, its polar

will be one of the system of bisected chords, of slope in.
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1 ! ! jKiie liii" s ry, —^ L hence tlio equaUon of lU xaAtkt

An. I:i7) b

which in the equation of u chonl of 8U>|>e m. In other wonln,

the tangents at the extremitiet of a chord of the parahoia inter'

Beet upon the corrtepondintf diameter.

141. The eqiution of « paraboU referred to saj dUaeter and tho

tangent at its tztrMiiity at axea. lu the stinploat form of the equation

.f tif parabola. Tic,

jf« = 4px. ... (I)

iiale axea are the jnincip*il <li;iiiiot<>r aiul the tan^'*•ni at iu

Thene are the only pair of suAi lineti that un* {MriteiidicuUr

to each other (Art. 140)* It \a now deeired to find the equation of the

f«raho1a« when referred t'> anv ilintnct«*r <if tho rurvi* ami till* txiiefiit at

it.t extremity aa axes.

I>»t any diameter C/X' oi iii«« paraiH)ia ^i^ ih; tii** new x-axi*, and ih«

tangent 0"^ at O" be the new
5f-axU, meeting the old x-*xia at

an angle $.

If » = tAnd. . . . (2)

Oien (Art. 135) the coordinateo

f a ai« \ and ?^, and the

•quation for trmnafonnbig the

<ination from the old axea to a
{•arallel set through the point (/

are (Art 71), Fi.i.la.

Subatitttting thoaa Taluea in equation (1) given

jr^ + ^jf'«4iW.

(«)

w
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To turn the y^ucis to the final position, making; an angle B with the

X-axis, the equations for transfortnatioii are (Art. 78, [25]),

jc' = X" + y" coe tf, y = y" Hin ^,

or, by equation (2),

x' = x" + --:£=r-, and •= ^^'
. . . . f5)

>/l+m«' ^ Vl+m« ^
-^

Substituting these values in equation (4), it becomes

or, dropping now the accents,

which is the required equation of the parabola.

This equation may, however, be written more simply. Observing

(Art. 103) that pi "^

^

J
is the focal distance of the new origin O', and

representing that distance by //, equation (0) becomes

y^ = ip'x. . . . [58]

This equation is of the same form as equation (1), but is referred to

oblique axes. In general, therefore, the equation

y^ = kx
I.

represents a parabola, and - is the distance of its focus from the origin.

Equation [58] states the following property for every point P of the

parabola

:

a property entirely analogous to that of Art. 106.

EXERCISES

1. Find the diameter of y*= — 7x, which bisects the chords parallel

to the line x -- y + 2 = 0.

2. A diameter of the parabola y' = 8 x passes through the point

(2, -3) ; what is the equation of its corresponding chords ?

3. Find the equation of the diameter of the parabola y* = 4 x 4- 4|

which bisects the chords 2 y — 3 x = i*.

4. Find the equation of the tangent to the parabola (y— C)«=8(x+2),j

which is perpendicular to the diameter y — 4 = 0.
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3 Show UiJii the pol« ol Any ebord U on the ithmtif whteh eorr»>

^liontii to ilM» chord.

e. WhAl U iho equAiioa of Ibe |iar%boU |r*«8x, whmi rrforvid

'(» iu diAin«t«r jf - 6 s and Um oorranpoodiof tMifnil m ooordimilt

aXM?

7. What b Um aquatloD of the parabola (. •!• 8)<« I2(f - 1),

vHbeo reft^rrMi to a diamwitfr through ih« point (8, 4) and the corr»>

{•onding tangent aa oo6fdinate axeeY

a Find Um pole of Um diameter $mk with refereooe to the parab-

ola jr** 4/ur.

•. The poUur of any point on a diameter ia parallel to the oorreiiKMMl-

Sag tangent of that diameter.

EXAMPLES ON CHAPTER IX

Find the equation of a |>ttru)Hilii with axis jiarallel to the »azia:

1. paaiing through XXw jwinU (0, 0), (3, 2). (3, -2)

;

a. paming through the poinU (|, 1), (-3, 4), (-1, 2)

;

a. through the point (4, -5), with the Tertex at the point (3. -7).

4. A paraboU whoae axis ia parallel to the jHUiis, paaiea throogh the

^inta (1, 2), (7, 10), and (-3, 5); find iU equation.

5. Find the Tertex and axi« of the paraboU of EIx. 4.

Find the eqaation of a paraboU

6. if the axia and directrix are taken as codrdinate axes.

7. with the focus at the origin, and the j^axis parallel to the direetrix.

L tangent to the line 4 jr = 8x - 12, the equation being in the sim*

tandard form.

9. if the axis of the parabola coincides with the x^axis, and a focal

ladius of length 10 ooineides with the line 4 x - 8jf « &
10. Two equal parabobs have the same vertex, and their axea are per>

mlar ; find their common chord and common tangent (cf. Ex. 10,

224).

21. At what angle do the parabolas of Ex. 10 interaect

la. Two tangeota to a paraboU are pstpeiidkiiUr lo each other; And
product of the eoi reuMmding sub-tangeaA&

Find the loena of the middU point

IS. of all the ordinates of a parabola.

14. of all chords passing through the vertex.
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15. From any point on the latus rectum of a parabola, perpendiculars

are drawn to the tangents at iU extremitieM ; show that the line joining

the feet of these perpendiculars is a tangent to the parabola.

16. If tangents are drawn to the parabola y^ = iax from any point

on the line x + 4 a = 0, their chord of contact will subtend a right angle

at the vertex.

Two tangents of slope m and m', respectively, are drawn to a parab-

ola ; find the locus of their intersection

:

17. if mm' = k
;

18. «i-;^-'
19. ifi-i=*.

m nv

20. Find the locus of the center of a circle which passes through a

given point, and touches a given line.

21. The latus rectum of the parabola is a third proportional to any

abscissa and the corresponding ordinate.

22. Find the locus of the point of intersection of tangenUs tirawii at

points) whose ordinates are in a constant ratio.

23. What is the equation of the chord of the parabola y*=3x whose

middle point is at (2, 1)?

24. A double ordinate of the parabola y^ = ipx is 8p; prove that

the lines from the vertex to its two ends are perpendicular to each other^

25. Find the locus of the center of a circle which is tangent to a givf

circle and also to a given straight line.

26. Find the intersections of a normal to the parabola with the cui

and the length of the intercepted i)ortion.

27. Prove that the locus of the middle point of the normal interce]

between the parabola and its axis is a parabola whose vertex is the foci

and whose latus rectum is one fourth that of the original parabola.

2a Prove that two confocal parabolas, with their axes in opposit

directions, intersect at right angles.

29. Find the equation of the parabola when referred to tangent

at the extremities of the latus rectum as coordinate axes.

30. The product of the tangent and normal lengths for a certain poii

of the parabola y^ = ipx is twice the square of the corresponding ordi

nate -, tind the point and the slope of the tangent line.



CHAPTFT? X

THE ELUPSE. "'>!'.= *

142. Review. In Chapter VIII Uie nature of the ellipee

hail been briefly discussed, and its equation found in the two

standard forms

:

when the axes of the curve are coincident with the oo5rdi>

aate axes; and

nil* 11 the axes of the curve are parallel to the coordinate

.i\'^, and the center is the point (A, k). In the present

• hapter it is desired to study some of the intrinsic properties

>f the ellipse, t.e., properties which belong to the curve but

are independent of the coordinate axes ; and these can for the

iiin^t part be obtained most easily from the simpler equation^

The ellipse -2 +^=1 has its eccentricity given by the

fl* — A*
relation i* « a*(l — «*), i.«., «• ——^— ; its foci are the

two points ( ± a«, 0), and its directrices the lines x » ±

'

(Art. 110). If the axes are equal, so that 6 « a, the curve

takes the special form of the circle, with eccentricity $^0%
SS7
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the two foci coincident at the center, and the directrices

infinitely distant.

The equation -^ -f^ = 1 represents the polar of the

point (xp y,) with respect to the ellipse; if the j^oint is

outside the curve, this polar line is its chord of contact;

if upon the curve, the polar is the tangent at that point

(Art«. 122, 126, 127).

These facts will be assumed in the following work.

143. The equation of the tangent to the ellipse ^ +^=1
or o'

in terms of its slope. The equation of a line having the

given slope mi8
y = mx+ ki . . . (1)

it is desired to find that value of k for which this line will

become tangent to the ellipse whose equation is

^ + ^' = 1. ... (2)

Considering equations (1) and (2) as simultaneous, and

eliminating y, the resulting equation

Clf^-^a^m^)2?^'^2ahnkx + aV'-a^lr^ = . . (3)

determines the abscissas of the two points of intersection of

the curves (1) and (2). When the curves are tangent, these

abscissas are equal ; therefore

oM^k^ - (62 4- a2m2)(a2yfc2 _ a^^^ = 0,

t.€., k^ = dhn^-i-l^,

and k==± Vo^mM^.

Hence y = mx±^/a^m^^hf^ . . . [59]

the equati

values of m.

is the equation of a tangent to the ellipse -o + ^ = 1» ^or all



14;<.144.J TIIK KLLIPSK 289

Kquation [59] thowi that there are two tangenU to an

lli|)(ie imralbr to any given line; and ahio (Art. 1*25), that

there are two tangenU to an ellipee from any external point.

144. The turn of the focal distanoet of any point on an

etlipoe is constant ; it is equal to the major axis.

The ellipse ;3 +^ ^ ^uw iU foci at the poinui

i^mC-M, 0) and F^m(a€^(i)\

wiUi M - a« - tfV. (Cf. Art. 110.)

Let Px^{X\^ yi) be any point on the ctirve« so Uiat

h

Thtn,

I.*.,

1^ = (n -f<w)' + yi'-a»«« + 2asx, + *,*-». yi«

cr

B a* + 2 aexx + Atf :
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Again, F^^ = l.-^i
- ««;* + yi*=aV- '1 aex^ +a:,*+yi*

Hence, by addition,

i.e., tA« *um of the focal distances of any point on an ellipse

is constant; it is equal to the major axis.

This property gives an easy method of finding the foci of

an ellipse when the axes A'A and B'B are given.

For F^B + F^B = 2 a

but Ffi = OF<t,

F^B = FiB = a,.

Hence, to find the foci, describe arcs with B as center and

a = OA as radius, cutting A'A in the points Fi and F-y,

these points are the required foci.

145. Construction of the ellipse. The property of Art.

144 is sometimes given as the definition of the ellipse ; viz.

the ellipse is the locus of a point the sum of whose distances

from two fixed points is constant. This definition leads at

once to the equation of the curve (cf. Ex. 5, p. 67); and

also gives a ready method for its construction.

(a) Qpnstmction by separate points. Let A'A be the

given sum of the focal distances, f«., the major axis of the

ellipse ; and 1\ and jPj ^ ^^^ given fixed points, the foci.

With either focus as center, and with any radius A'R< A'A
describe an arc ; then with the other focus as center, and

radius RA^ describe an arc cutting the first arc in two

points. These are points of the ellipse. In the same way
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M nmny i>oinU as desired maj be oonttmoted ; a •mooth

curve connecting these points is approximately an ellipse.

^ (5 # 5 K

(/9) ChnttrueHon hy a eontinuauMly numng point. Fix two
upright pins at the foci, and over them place a loop of string,

equal in length to the major axis plus the distance between

the foci. Press a pencil point against the cord so as to

kkeep
it taut. As the pencil moves around the foci, it will

Irace an ellipse.

EXERCISES

1. Construct an ellipM with 8emi<«xeft d>* and 0*.

2. Comtmet an ellipse with semi-axes 6^ and 12^.

3. Construct an ellipse with the distanoe between the fed 34, and
the minor axis of length 10.

4. Write the equation of the polar of the left-hand focus of the

^ + ^=1. What Une is this?

5. By employing equation [50], find the tangent to the ellipse

^62* + 25y* = 400, and passing through the point (S, 4).

By the method of Ex. 17, p. 22&, show that an ellipse is coooaT*

its center.

f. Through what point of the ellipse -; +^ s 1 must a tangent and
Or hr

be drawn, to form with the >axtii an isosceles triangle ?

8. Write the equations of the tangent and normal at the poeitive end

the latus rectum of the ellipse «* -f 4 jr< = 4. Where do
I?

TAX. AX. UBUM.— 10
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9. Tangenta to the ellipM 4 z* + 3 y* = 5 are inclined at 60*' to the

jP4U[i8; find the points of contact

10. Find the equation of an ellipse (center at the origin) of eccen-

tricity |, such that the Bubtangent for the point (3, V) i^ (~ V)*

11. Find the chord of contact for tangents from the point (3, 2) to

the ellipse x* + 4 y* = 4. Find also the equation of the line from (:), 2)

to the middle point of this chord.

12. Find the tangents to the ellipse 72* + 8y* = 66 which make the

angle tan-* 3 with the line a: + y + 1 = 0.

13. Find the product of the two segments into which a focal chord is

divided by the focus of an ellipse,— using Art. 131.

14. Find the equation of a tangent, and also of a normal, to the ellipse

ar« -f 4 y* = 18, each i)arallel to the line 3 x — 4 y = 5.

15. Find the pole of the line 3 x — 4 y = 5 with reference to the ellipse

X* + 4 y^ = 16; also the intercepts on the axes made by a line through the

|>ole and perpendicular to the polar.

16. Find the points on the ellipse 6*x* + a^ = aVt^f such that the tau«

gent makes equal (numerical) angles with the axes; such that the

subtangent equals the subnormal.

146. Auxiliary circles. Eccentric angle. The circum-

scribed and inscribed circles for the ellipse (Fig. 107) are

called auxiliary circles, and bear an important part in the

theory of the ellipse. Let the equation of the ellipse be

f.+g=i. . . . (1)

The circle described on its major axis as diameter is called'

the major auxiliary circle ; its equation is

a? + ya = aa; ... (2)

and the circle on the minor axis as diameter is the minor

auxiliary circle ; its equation is

a:3+ya=6«. ... (3)
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If Z AOQ ui any angle ^ at tha oonter of tha allipae, with

the initial Mide on the major axiM, and the terminal side cut-

ting the auxiliary oirolea in R and Q^ renpeotively ; and if

rio.107.

P 18 the intersection of the abeoiwa LB with the ordinate

\MQ<, then P is a point on the ellipse.

For the oodrdinates of P are

OM^ OQcw<fnuid MP ^ AfB^ OA?Rin<^,

j; M a eo8^ y = 6 sin ^. [60]

Now these values satisfy the equation of the ellipse ; for,

ihstituting them in equation (1), gives •

g^cos^^ . ^sin*^
fl« "^ 5»

cos* ^ + Kin' ^ s> 1

P is a point of the ellipse.

The points P, Q^ and R are calleil corresponding points.

he angle ^ is the eccentric angle of the |Kuiit P;* and tlie

Tbe eooentrio angle of soy gUrtn point P on an dlipw is wdJly eon-

thoi : prodnoe the oidinete MP to meet^the mMJor aniilisiy

9; Um angle AOQ it the eooeaivio angto of the point P,
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two equations [60] are equatioiiH of the ellipse in terms of

the eccentric angle, for together they express the condition

that the point P is on the ellipse (1).*

Since, in the figure, A OM'R and OMQ are similar, it

follows that

MP:MQ=OR: OQ=b:a,

and 03f: 0M= OR: OQ = b:a;

that is, the ordinate of any point on the ellipse is to tin nr>I/-

nate of the corresponding point on the major auxiliary circir in

the ratio (ft : a) of the semi-axes. Similarly for the abscissas

of the corresponding points R and P.

Construction of tan-

(1)

147. The subtangent and subnormal.

gent and normal.

Let ^ + ^' = 1

be a given ellipse.

then f +M = l, . . (2)

is the tangent to it at a point Py= (xy, y^. Let this tangent

cut the a;-axi8 at the point T. Draw the ordinate MPy
Then the subtangent is, by definition, TM\ and its numer-

ical value is

MT=OT^ OM;

but, from equation (2), 0T=^; and OM=Xj^;
«i

hence MT= x,,

• The equations [60] are. of great service in studying the ellipse by the

methods of the differential calculus.
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Heuue tht* valae of the labUiigenti oorresponding to anjr

point of the ellipM whoie equation in (1)« depends only upon

the major axia, and the abeciwa of the point ; thereforv, if a

$in0$ qf elUpMM kmve tM$ mum m^fwr axU^ Um(f€nU drawn to

thtm at the point§ hafnng a eommtm ab$ei$$a wiU cut tk4 mt^0r

iudt (juet€nd€d) in a annmon point.

This fact anggesta a method for oonstmoting a tangent

and normal to an ellipse, at a given point : draw the major

ixiliary circle ; at Q on this circle, and in IfP, extended,

iw a tangent to the circle. This will cut the axis in T\
id Pj^wiU be the required tangent to the ellipse at P,.

le normal P,iVmay then be drawn perpendicular to P^T,

The equation of the normal through P^ is (cf. eq. [51])

y-y>-5^(*-*t>»

irefore the x-iutercept of the normal at that point is
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But the subuoriiiai cDrrespondiug to P, is

ify=: ON- OM,

and 0M= x^

;

a^ — l>^

therefore MN=—T-^i — ^

[Ch. X.

NoTR. From the vahie of ON it follows that the normal to an ellipse

doe8 not, in general, pass through the center, hut passes hetween the

center and the foot of the ordinate; the extremities of the axes of the

curve being exceptional (K)ints. If, however, a = 6, then c = 0, the curve

is a circle, and every normal passes through the center (cf. Art. 85).

148. The tangent and normal bisect externally and inter-

nally, respectively, the angles between the focal radii of the

point of contact.

fio.lOO.

^
.

.y^

I^t the equation of the given ellipse be -g + '^ = 1 ; also

let F^ and F^ be the foci, and Pj = (x^, y^) any given point

on the curve. Draw the tangent TP^, the normal P^N, an<

also the lines F^P^ and PjP, W.
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[AH. 147]Then F^N ^F^O-^ ON^as^Azy

-«(« + «?,;,

NF^ ^OF^^ON^as-'t^

-i<a-«S|)l

vlsO l-iPj-a + erj,

lid F^P.^a^ex,.

[Art. 144]

Hence F^N: NF^ » F^P^ : P,F,

;

and, by a theorem of phuie geometry, thb proportion proTes

that the normal P,iV biiiecU the angle FiP^F^ (between the

ocal radii. Again, since the tangent i« perpendicuUr to

I he normaU the tangent PiT will bisect the external angle

This proposition leads to a second method of constructing^

tangent and normal to an ellipse at a given point

^cf. Art. 147). First determine the foci, F^ and i*, (Art.

144), then draw the focal radii to the given point and

}t the angle thus formed,— internally for the normal,

externally for the tangent.

149. The intersection of the timgenU At the extremity of a focal chord.

If /**H(x', jfO he the intersection of two tangenU to the eliijue

equation of their chord of oootaet it (Art. 138)

$+$^=' • 0)

If this chord paiM through the focoa P^s (oe, 0), its equation miHl

by the ootfrdinates of F,; therefore

x'oe t . ^ «
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n
aod the point of iiiterHection P' U on the line, x= -; i.r., on the directrix

oorresponiling to the focus l'\ Similarly, if the chord passes through

the focus F|= (— ae, 0), the point <P is on the directrix x = —

•

Hence, the tangents at the extremities of a focal chord intersect upon the

corresponding directrix.

Again, the line joining the intersection P' =f -, y' j to the focus has

the slope

X, - u,

while the slope of the focal chord (1) is

".-at
e

a(l- «0

ord (1) is

62

m' = '
1

"F'

hence

and therefore the line joining the focus to the intersection of the tangents <U

the ends of a focal chord is perpendicular to that chord.

150. The locus of the foot of the perpendicular from a focus upon a

tangent to an ellipse. T^t the equation of a tangent to the ellipse

(Art. 143), whose equation is

be written in the form y=mx + Vnhn*+1^. ... (2)

Then the equation of a perpendicular to (2), through the focus (ac, 0), is

y = (x — a«). I.e., x + my = ae. . . . (3)m

If P'= (x', y') is the point of intersection of (2) and (3), it is re-

quired to find the locus of P ; i.e., to find an equation which will be

satisfied by the coordinates x*, y, whatever the value of m; this must

be an equation involving zf and y, but free from m. Since P' is on

both lines (2) and (3),

therefore j/ - mx' = Vahn* + 6«, ... (4)

and a/ + mt^ = a«.
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Tbe elimiii»iion of m it aoooitiplUlMMl nuMit eatily by «io*riog «tdi

itember of equAtions (4) and (ft), and Adding:

ihit giv« (1 + ••) J^ +(l + m^f^ m •%• ^ «v + b^,

(l + i««)(«^ +/«)-••(••+ I).

Ilouoe, the point I" la uii Um dfd*

1 jr* -I- jf* B a*;

^^^UU ia, 'A« loCUt o/tk4/ool of a perpendicuior fmm either fnruM unnn n tan-

^^mi to (Atf W/i/»M w lA« Mo/or oiui/iorjf cirr/tf.

B X5L Th« locus of the interMction of two perpendicuUr tangeots to tlit

tUlpse.

^k Lei th«i equation of any tangoni to tho ellipeo i^-^^ 1 be written

^Rh the form f Art, 143) ____
y - mx = V5WTP, (0

: lieo the equation of a perpendicular tangent ia

wy + x=v^TMii«. ... (2)

letting P' — (x'.y') be the point of int«rmction of these two tangenta.

1) and (2), it is required to find tlie locua of f*' aa m varies in value;

ii, to find an equation between x' and y which does not iuTolve m.

PhMeeding as in Art. IjO; since P* is on both lines (1) and (2),

I y'-iiix'=Va«si« + 6«.

To eliminate ^ square both equations, and add : this givaa

(m* + l)y^ +(«•• + 1) jr^ =(•• + l)o« +(si« + 1)A»,

x^ + y^ = o« + 6»

Therefore, the point of intersection of perpendicular tangenu is on
circle

j44y« = a*4ft*. [«1]

is called the director drdt for the ellipse. Th€ locus of fA« k/der-

of two pirpti^ieuiar tangtnU to on Mipoe u, rA«f^ itt director circio»
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EXERCISES

1. Prove that the two taiigentH drawn to ati ollipw* from any external

point subtend equal angles at the focus.

2. Each of the two tangents drawn to the ellipse from a point on the

directrix subtends a right angle at the focus.

3. A focal chord is perpendicular to the line joining its pole to the

foctu. Show that this is also true for a parabola.

4. The rectangle formed by the perpendiculars from the foci upon any

tangent b constant; it is equal to the square of the semi-minor-axis.

5. The circle on any focal distance as diameter touches the major

auxiliary circle.

6. The perpendicular from tlie focus upon any tangent, and the line

joining the center to the point of contact, meet upon the directrix.

7. The peri>endicular from either focus, upon the tangent at any point

ot the major auxiliary circle, equals the distance of the corresponding

point of the ellipse from that focus.

8. The latus rectum is a third proportional to the major and minor

axes.

9. The area of the ellipse is wab.

Suggestion. Employ the fact, proved in Art. 146, that the ordinate

of an ellipse is to the corresponding ordinate of the major auxiliary

circle as 6 : a, and thus compare the area of the ellipse with that of its

major auxiliary circle.

152. Diameters. As already shown in Articles 129 and

139, the definition of a diameter as the locus of the middle

points of a system of parallel chords leads directly to its

equation.

Let m be the slope of the given system t)f parallel chords

of the ellipse whose equation is

^ + ^-1

and let y = mx-\-c ...
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Ih' itiv c«j(ialitiii «M I'll'

111 die two puiiitM J\ ^. ^,^

/^ (j/, y), be the middle point of this chord, to that

s, which maeU the eunre

r/,, aiiii /',a(2^ jfj). Let

«--
2 ' ^ 2 •

(8>

kTha oodrdinatee of P| and P, are found by solving (1)

d (2) as simultaneous equations, therefore the

r, and x^ are the roots of the equation

and the ordinates y| and y, are roots of the equation

(a«m« + 5»)y«-2^y + AM-aVw«-0. .

Hence, by Art. 11, the cotmlinates of P* are

Now, by varying the value of <r, equation (6) gives the

oordinates of tlie middle point for each of the chords of the

^'iven set. It is required to find the locus of P' for all

values of e, t.<., to find an equation satisfied by tf and y'.

C4)

C5)

(6)
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= --pm. . . . (7)

and not dependent upon the value of c. If z' be divided by

y, the c is eliminated from the equations (6), giving

F
Therefore the coordinates of the middle point of every

chord of slope m satisfy the equation

or, y=--^x; . . . [02]

which is therefore the equation of the diameter bisecting

the chords of slope m.

The form of equation [62] shows that everi/ diameter of

the ellipse passes through the center,

153. Conjugate diameters. Since every diameter passes

through the center of the ellipse, and since, by varying the

slope m of the given set of parallel chords, the corresponding

diameter may be made to have any required slope, therefore

it follows that every chord which passes through the center of

an ellipse is a diameter^ corresponding to some set of parallel

chords. In particular, that one of the set of chords given

by equation (2), Art. 152, which passes through the center,

—i.e., the chord whose equation is

y = mx, . . . [08]

is a diameter. This diameter bisects the chords parallel to

the line [62]; for if m' be the slope of the line [62],

then 7w' = —

,

hence, mm' = :

a'
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iintl this equation expremM the condition tliat Una [62],

which has the Hlo|)e m\ hIuiII bisect the chorda of alope m
(Art. 152). But convenelyt it expreaaea alao the ooodition

(lilt the line [68] which haa the Hlo|>e m iiluill biaeet the

I** nf Hlofje m'. Henoe each uf tiie linea [02] and [68]

the ctiortU ijarallel to the other. Hence, \f <ms

diameter hiMeet* the ehorili paraiUl to a ueond^ then ai$o ths

^tUects ths ehordi parallel to the firU, Sucli

u 1* •! conjugate to each other.

K.: 't of (mruUel chorda in general cuta the

elliiMte in two distinct points, and the further the chord ia

from the cent*?r, the nearer these two |Kjints are to each

other, and to their tnid-|)oint. In the limitin^i^ position^ the

chord beoomee a tangent, with the two intersection points

d their mid-imint coincident at the point of tangency.

refore, the tangent at the end of a diameter in parallel to

eon^ugate diameter » This property, with tliat of Art. 152,

soggeata a method for constructing conjugate diameters:

first draw a tangent at an extremity of a given diameter

CArt. 147), then a line drawn parallel to this tangent thnniph

the center of the ellipse is the required conjugate diameter.

rSiH» Fig. HI.)

154. GiTen an extremity of a dUmeter, to iad tlM extremity of its

coDjugAte diameter.

Let /^|= (/'j,jf|) be an extremity of s given diameter (Fig. Ill), then

P,s(-Xp -y^) will be the other extremity. Lei P{s(x^\ yi') and

;V= (-'i'« -y/) *« the extremitiae of tbaoonjogate diameter. Ut the

equation of the eliipoo be

^+^=1, ... (I)

then the equation of the given diameter P,P| Is

# = ?«. ... (2)
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aiid that of the conjugate diameter P/P/, through the center and parallel

to the tangent at Pj is

^ +f = 0. ... (8)

Fio.lU.

The coordinates of P/ and P,', in terms of a:,, »/|, a, and 6, are given by

equations (1) and (3), considered a.s simultaneous; hence, eliminating

y between the.se equations}, and remembering that the point Pj is on the

ellipse (1) and that therefore lAx^^ -\- ah/^ - aHI^, the abscissas of tho

points Pj' and P,' are given by the equation

t.e^ ^\ = - hVi and a:/ = ^.y,.6^* „ j:

Substituting these values in equation (:{), gives for the corresponding
|

ordinates,

yj' = -ar, and y,'=--Xi.

Therefore the required extremities of the conjugate diameter are

P.-(->.|x,)a„d/>.'.(|,..-|x.).

156. Properties of conjugate diameters of the ellipse.

(a) It has been seen (Art. 153) that two diameters are

conjugate when their slopes satisfy the relation

mm' = (1)
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It followH, sinc« the product of their tlopef is negative,

tlmt with the exception of the cttue where one diAineter in

the minor axiit itnelf, eo^fwgaU dia9H€t€r$ do not both lis in

tAo 9amo quadrant formed bff th$ ax€$ qf tho eurvo.

(/9) From the definition (Art. 158) it in evident that the

minor and major axoa of the ellipse are a pair of conjugate

• liametera, and they are at right angles to each other. Per-

pendicuhir lines, however, in general, fulfill the condition

fnm'--l; (2)

htMue, in generaU equation (2) is not consistent with equa-

tiuu (1) for other values of m and nt' than and oo,— the

slopes for the axes of the curves. But for ^ a a*, t.^., for

(he circle, it is dear that every pair of conjugate diameters

Matisfy equation (2), and are therefore perpendicular to each

other. HenciN the major and minor axe$ of the ellipse are

the only pair of conjugate diametere that are perpendicular to

each other.

(7) If, in Fig. 111. the Icngtlis of the conjugate semi-axes

be a' - CPy b' m CPj', then, since

therefo.. «'«+&'«- «?ll^« +a^^
-a« + ^; ... (8)

\.v..the mm of the $quare$ qf two eo^fuffote eemi-diametere ie

constant ; it ie equal to the sum ^ the squares qf the (wo semi-

axei.
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(5) Referring again to Fig. Ill, where CN is perpen-

dicular to the tangent at Pp the conjugate diameters PiP%

and PiP^ intersect at an angle ^ such that

y^^^P^CP^ = 90« +/ Pi CN\

CN
am "^ S3 cosZ P^CN--

CP,

But, by Art. 64, since the equation of the tangent at

Pi is If^XyX + aViy = <*^^»

a^l^ ah ah

V0^^ ... - - - -Ar>

^ ^ *
a*

but CPi = a',

hence sin'Jr = —— , ... (4)
a

and the angle hetween two conjugate diameters is sin'^-yjj.
a

(«) Tangents at the extremities of a pair of conjugate

diameters form a parallelogram circumscribed about the

ellipse ; its sides are parallel to, and equal in length to,

the conjugate diameters. Since the area of a parallelogram

is equal to the product of its adjacent sides and the sine of

the included angle, therefore the area of this circumscribed

parallelogram is 4a'6' sin-^, which, by (4), equals 4 ah.

That is, the area of the parallelogram constructed upon any

two conjugate diameters is constant; it is equ^al to the area of

the rectangle upon the axes,

(X) A simple relation exists between the eccentric angles

of the extremities of two conjugate diameters.

Let the eccentric angle of Pi= (x^^y^) be <^i (Fig. 112),

and of Pi = (ajj, y,) be 0, ; then the slopes of the conjugate

diameters may be written (cf. Art. 146),
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for CP^

aud for CP»

But
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xi aoos^

x^ aocNi^

r V

867

[Art- 166 (a)]

no. lis.

y BJn ^ sin^ _^ (^

a* C08^ C06^ o^*

. . sin ^ sin ^ «
giving 5* 21«-1;

COS^ cos^
;
that is, sin^ sin ^1 4- cos^ cos^ « 0^

meiioe co6(^ — ^)«0.

[Therefore <^ - ^ - 90*,

and tJu eeeentrie antfle$ of the extremities of tiro eoi\fugai$

aUuMUre differ by a right angle,

1S6L Iqni-coBJafate dlAinettra. If two conjogmto diameUn be eqwU
toMch other, e.g., if CI\ = CP,(8ee Pig. U2), then the propwtiM gifra

In the preceding article lead to other simple ones.

Let ^1 be the eccentHe angle of /*,. then ^-l-M^ b the eeeentrie angle

for P^\ henoe the codrdinatei of P^ and i*, are (a oos ^. 6 tin^ and
(-0 sin ^. 6 oos ^j), and since

YAM. A«. OBOM.— 17
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therefore o* ooe«^ + 6* sin*^ = a* aui*^ 4- 6* ooe»^

Henoe <^, = J5° or 135»

for the extremities of equi-conjugate diameters, and the extremities are

P^z..*-x,). /'.3(-x„*«,).

The equations of these diameters are

y= I, and y = - - «.
a a

Evidently these lines are the diagonals of the rectangle formed on the

of the curve.

By Art. 155, (-y), the length of each equi-conjugate semi-diameter is

=>F?

EXERCISES

1. Find the diameter of the ellipse ^ + ^ z= 1 which bisects the

chords parallel to the line 3x + 5y-f7 = 0.

2. Find the diameter conjugate to that of exercise 1.

3. Show that the lines 2x — y = 0, x + 3y = 0are conjugate diame*

ters of the ellipse 2 «* + 3 y* = 4.

4. For the ellipse b^x^ + a*y* = o%*, write the equations of diameters

conjugate to the line

(a) ax = 6y, (/?) bx = ay.

5. Prove that the angle between two conjugate diameters is m
maximum when they are equal.

6. Show that the pair of diameters drawn parallel to the chords join-

ing the extremities of the axes are equal and conjugate.

7. ^^^lat are the equations of the pair of equi-conjugate diameters

of the ellipse 16y« -f 9z« = 144?

& Two conjugate diameters of the ellipse
f^ + ^ = 1 have the

A>pe8 \ and — }, respectively ; find their lengths.

9. Given the ellipse x*-f 5y* = .5, find the eccentric angle for the

point whose abscissa is 1. Also find the diameter conjugate to the o
passing through this point
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10. Givtn Um tUipM 8j«-f 4f> » 12, flod Um ooojifite

(or the point wlioM Moentrie angle U SO*.

11. Find Um iMgtbt of Um diMMlMi in awdn la

12 TliM t«ngUM oC Um ebord Joining Um oxImibIUw of nnj tvo tim-

« of Uie ellipee ^ + ^ » 1 i« Va«+ *» ^ oM iui .^
cr e*

1 vlue. Wliat is Um oorreeponding tbIoo of ^?

13. III. art** of n triangle ineeribed in an ollipMy if ^p ^ ^ be the

oooeulrto aiigios of tlM vertioee, is

14. Oiren the point (-8, -1) on the ellipee «• + 8y<s 12; find the

oorreeponding point on the major auxiliary eirele, and abo find the

eeeentrio angle of the giren poinU

19. Find tlM poUu- of the focus of an ellipse with reference to each

auxiliary oirole.

16. Find the po1« of the directrix of the ellipae with reference to each

auxiliary circle.

17. Prore analytically that tangents at the ands of any chord intersect

on the diameter which bisects that chord.

157. Sapplemeotal chords. The chords drawn from snv point «*{

an elli{iM to tiie extremities of a diameter are called supplemental chorin

Such chords are always parallel to a pair of conjugate diaoMterSi sinne

their slopes satisfy the relation

Ntsr ^ — —^
o*

For if P^s(t^, y,) and Pf3(-Xy -y,) be the extremities of .\

diameter, and P' =(j^, y) be any other point of the ellipee, and m atid

mf the slopes of the chords P'P^ and P'P^ respeeUvely,

Umo m =^ «' =^.
therefore wmf ° jJi~ i

'

and



£l
a<
^%^';^'=o.

that is.

henoe mm' = —
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heiioe, by suhtractioii,

Therefore, supplemental chordi are parallel to a pair of conJugaU

diameters.

For the special case when a = b, the product of the slopes becomes

mm' = — 1, and therefore the supplemental chords are perpendicular; in

other words, the angle inscribed in a semicircle is a right angle.

158. Equation of the ellipse referred to a pair of conjugate diameters.

In the simplest form for tlie equation of the ellipse, viz.,

^:.^=i. . . . 0)

the coordinate axes are the axes of the curve. These axes are conjugate

diameters, and they are the only pair which are at right angles to each

other (cf. Art. 155, fi). It is desired now to find the equation of the

curve referred to any pair of conjugate diameters, as P^P^ and Pj'^i » ^^

Fig. HI. With the notation of Art. 154, let and & be the angles the

new X-axis, CP,, and the new y-axis, CP^^ make with the old x-axis, re-

spectively; they satisfy the relation [64],

tan^tan^ = --^. ... (2)

The lengths of the conjugate semi-diameters are a' = CP, and

y = CP/.

Then, by Art. 73, the equations for transformation to the new axes are

z = x' cos ^ + y' cos ^, y = y sin d + y* sin ^, . . . (3)

and after transformation equation (1) becomes

/cos^ . 8in^\^, 2 /cos ^ cos ^ sing sin ^\yy
\ a* 6* / \ a* b' }
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From equaikNi (5) it b mm UuU the eunr* it obUquelj •jnitnetried

iUi rafpeoi to tlie uew axot. Moraormr, liiioe ± a' and ± 6' ar» Um
•tirotptt on the new axat, oquAiioo (5) may be further tiinplilled

:

and aquAlion (5) may be written

^ +^ = 1. («S]

Thin it tli«' rt'ipiirod e<iuAtion of the elHpee when referred to anj pair of

tom. It u evident that propoeitions which were derired

1 foriu (1) without reference to the fact that the axee

rn rectangular, hold equally for equation [65] ; e.g^ the equation of a

ingent at the point (x,, jf|) of the eunre i* -^ +^ = 1*

Equation [65] states a geometrio property <tf the ellipee entirely

iftlogons to that of Art. 112. It is left to the student to ezpreee this

operty in words.

If the ellipse is referred to equi-conjugate diameters, so that a' ^V,
^ equation will lie

x« + y« = a'«. [M]

This b the same fonn as the simplest equation of the circle, hut here

the axes are oblique, and the equation repreaente, not a circle, but an

ellipse.

159. Kllipee referred to conjugate diameters; eeoood method.

If the ellipee

$*$-' ... (I)

transformed to a pair of conjupite diameters, its equation after tran^

rmation (Art. 7^1) must Iw of the form

ifx- + 2i7jcy+By'=l. (2)
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But, since each chord parallel to either axis is bisected by the other,

therefore, if (x,, y,) is a point on the curve, then (-Xp -|- y{) must also

be on the curve

;

w., if Ax* + 2 Hz^y, + By|« = 1,

then Az^^-2 Hx^y^ + Byf = 1,

and, consequently, // = 0.

Again, (a^ 0) and (0, 1/) are points on the curve

;

hence Aa'^^l, Bb'* = l;

therefore, equation (2) becomes

This method illustrates how analytic reasoning may often be used

to shorten or perhaps obviate the algebraic reductions involved in a

proof. With the similar methods of Arts. 39 and 40, it will suggest

to the reader the power and interest of what are called the modem
methods in analytic geometry.

EXAMPLES ON CHAPTER X

1. Find the foci, directrices, eccentricity of the ellipse 4 z^ + 3 y' = 6.

2. Find the area of the ellipse 4 z^ + 3y« = 5 (cf. Art. 151, Ex. 9).

3. Show that the polar of a point on a diameter is parallel to the

conjugate diameter.

4. Find the equations of the normals at the ends of the latus rectum,

and prove that each passes through the end of a minor axis if e^ + e*= 1.

5. Show that the four lines from the foci to two points P| and Pg

on an ellipse all touch a circle whose center is the pole of P^Pr

6. Tangents are drawn from the point (3, 2) to the ellipse

x« + 4y« = 4.

Find the equation of the line joining (3, 2) to the middle point of tt

chord of contact.

7. Find the locus of the center of a circle which passes through th(

point (0, 3) and touches internally the circle z'* + y^ = 25.

8. Find the length of the major axis of an ellipse whose minor as

is 10, and whose area is equal to that of a circle whose radius is 8.



I

o9.] THE MLLIP8E 26S

9. Th« minor tads of mi ellipM b 6, and Um ram of the foed radU

T a oTUin point on tb* eiinro U 10; ftnd it« major axU, dirtanoa

.iviwtwii fuel, and aiwu

la A line of flxed laogth nofaa ao that Ita anda remain In the

coordinate axee; find the locua ganaraled bj any point of the line.

IX Find tlte locua of the middle polnta of eborda of an ellipae drawn
through the positire end of the minor azia.

12. With a giren focus and directrix a leriei of ellipeea are drawn

;

«bow that the looua of the aztremitiea of their minor azea is a parabola.

U. Shovthaithaliiiavooaa-l-yaina-ptotteheatheelUpaa

5? + «!,l

if p« = a*oo««a-f &'rin«a.

14. Find the loena of the foot of the perpendicular drawn from the

center of the ellipee ~ + ^ = 1 to a Tariable tangent.
Or tr

15. ProTe, analytically, that if the normals to an ellipee pase through

Ha eanter, the ellipee ia a eirde.

It. Find the locos of the vertex of a triangle of base 2a, and such

that the product of the tangents of the angles at its base is •-

•

17. The ratio of the subnormals for corresponding points on the

ellipee and major auxiliary circle is -^
a*

18. Find the equation of the ellipee x* -f 25 y* s 225 when referred

to its equi-conjugate diametere.

19. Normals at corresponding points on the ellipee, and on the major

auxiliary circle, meet on the circle x* •)• jr* = (o + &)*.

20. Two tangents to an ellipee are perpendicular to each other ; find

tlte locus of the middle point of their chord of contact.

21. If P, is a point on the director circle, tha product of the distances

of the center and the pole, reapeotively, from its polar with reaped to

the ellipee is oooatant

The tangenta drawn from the point P to an ellipm make anglea $^

and $^ with the major axis; find the locus of P
22. when ^, + 0, = 2 a, a constant

23. when tan tf, + tan ^, s c, a
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Find the Iocua of the intersection P of two tangents

24. if the sum of the eooentric angles of their points of contact is a

constant, equal to 2 a.

25. if tlie difference of the eccentric angles be 120^.

26. Find the locus of the middle points of chords of an ellipse \%liic1i

pass through a given pobt (A, JL*).

27. Find the tangents common to the ellipse ^ + ^ = ^ <^°d i^ ^^^'

circle x« + y« = aA.
^



CHAPTER XI

The HyperboU, —-^^-l
Or br

IGO. Review. The definition of the hjrperbola given in

^ '
' \' 111 led at once to two standard forms for iU equ*-

i^of. Arts. 116. 118):

'
' curve are coincident with the coordi-

ii(Mi the axes of the curve are parallel to the codrdinate

.i\i>.s and its center is the point (A^ A:).

A brief discussion of the first standard form ^ ~^ »

1

or ir

lowed that the curve has its eccentricity given by the rela-
_i , If

n 6««a«(««-l), !.«., by g»= ^ ; its foci are the

two points (±a«, 0), and its directrices the lines a: = ±-

\rt. 116). These results are entirely analogous to the

rreH}>onding ones for the ellipse, if it be remembered that

- f* iH |K)sitive for the ellipse, while «• — 1 is positive for

<• hyperbola.

The similarity of the equations of the hyperbola and the

ellipse leads to various corresjxindences in the analytic prop-

erties of the curves. For example, the equation
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represents the polar of the point (zj, y^) with respect to the

hyperbola ; it represents the chord of contact if the point is

outside the hyperbola, and the tangent if the point is upon

the curve (Arts. 126, 122). Again, by the method shown

in Art. 143, merely replacing ^ by — ^, it is evident tliat

y = mx ± 'yJahn'^ — U^ , , . [oTj

is the equation of a tangent to the hyperbola in terms of its

slope m. The student will be able in like manner to prove

other properties of the hyperbola, analogous to those already

shown for the ellipse, using the same methods of derivation.

It was shown, however, in the discussion of Chapter VIII,

as also in Art. 48, that the nature of the hyperbola appar-

ently differs widely from that of the ellipse, consisting, as

it does, of two open infinite branches instead of one closed

oval. It is desired in the present chapter to show some of

the most important properties of the hyperbola which corre-

spond to similar properties in the ellipse ; and also to prove

some special properties which are peculiar to the hyperbola.

For the most part, these will be derived for the hyperbola

— —^ = 1 ; and the facts summarized above will be assumed.

161. The difference between the focal distances of any point

on an hyperbola is constant ; it is equal to the transverse axis.

The hyjierbola -3 —^=1 has its foci at the point

-F, sC- a«, 0), ^3 = (ae, 0), with 6^ = aV - a^.

Let P^ = (x^, y{) be any given point on the curve, so tl

« a _ ^-^L _ A2
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Then !",/>,*- (jr, + «#)« + yj« - jr|« + 2 fl«rj -f- aM ->• y,«

«., /"iPj -«?! + «. . . . (1)

Similarly, F^^^$x^^a. ... (2)

Thene expraeuoiui for the focal dkUnoes of a point on the

hyperbola are of the same form as those for the ellipse

Art. 144); here, however, e>l.

Subtracting equation (2) from equation (1) gives

F beiu'f. the iUi}\'ren»'e hetween the focal dUtaneeM i(f any point

0n an hyperhola i» comifant; it u equal to the tran»per$e om.
» If the foci are not given, they may be constructed as

! follows, provided the semi-axes of the curve are known : plot

^
tlie points ^B (a, 0) and Bs{0, b); then with the center

I of the hyperbola as center, and the distance AB as radios,

describe a circle ; it will cut the transverse axis in the

required foci Fi and F^ for

162. Construction of the hyperl>oU. The property of the

preceding article might be taken as a aew definition of the

J hyperlwla, \'iz. : the hyperbola if the locue of a point the d^f-

\ ferenee of who$e di$tanee$ from two fxed points it constant,

^ This definition leads at once to the equation of the curve

(cf. Ex. 6, p. 67), and also to a method for its constroo-

» Hon.

i
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(a) Qmstructian by separate points. Let A'A be the given

difference of the focal distances,— t.e., the transverse axis

of the hyperbola,— and J\ and jP, the given fixed point

the foci. With eitht i

'-tA.. ^"'V*- focus, say ^i, as a center.

X A R and a radius -4'i2>-4'yl.

F^* ^
F, describe an arc; then

Pio.us. -l--' *-/.^ with the other focus iis

a center, and a radius

AR describe an arc cutting the first arcs in the two points

Pi. These are points of the hyperbola. Similarly, as many

points as desired may be obtained and then connected by a

smooth curve,— approximately an hyperbola.

O) Construction by a continuously moving point ; the foci

being given. Pivot a straight edge LM at one focus JPj, ^

that F^M is greater than the trans-

verse axis 2a; ?A> M and the other

focus F^ fasten the ends of a string

of length U such that F^M=l-\-2a\

then a pencil P held against the ^^'

string and straight edge (see Fig.

114), so as to keep the string always taut, will, while the

straight edge revolves about F^^ trace one branch of tin

hyperbola. By fastening the string at the first focus an

the straight edge at the second, the other branch of the cur\ i

can be traced.

163. The tangent and normal bisect internally and exter-

nally the angles between the focal radii of the point of contact.

Let JPi and F^ be the foci of the hyperbola -5—75=!^

PiT the tangent, and PiN the normal at the point
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Then the equation of /'jrU^-^- 1, and thw lifiitrih of

the intercept 07* of the taogwit is

or-^.

Now. in the triangle FiPiPf,

and

hut JiP, =: rx, + a, [Art, 161]

and P,/*, = exx — a.

Hence FxT : TFf = I'lP, : P,ii

and, by elementarj geometry, the tangent biaeota internally

the angle between the focal radii. Then, since the nonnal ia

pcrfiendicular to the tangent, the nonnal P^N biaeota the

external angle F^^ W. Theee faoU suggest a method, anal-
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ogous to that of Art. 148, for constructing the tangent and

normal to an hyperbola at a given point.

164. Conjugate hyperbolas. A curve bearing very close

relations to the hyperbola

is that represented by the equation

a? y2

0)

«.«., by
<^ A"

= -1, (2)

Fjo.116.

in which a and h have the same values as in equation (1).

This curve is evidently an hyperbola, and has for its trans-

verse and conjugate axes, respectively, the conjugate and

transverse axes of the original, or primary hyperbola. Two
such hyperbolas are called conjugate hyperbolas ; they are

sometimes spoken of as the x- and ^-li^'perbolas, respectively.



163-104.] TBM HYPERBOLA 271

It follows at oiio<} thftt the hyperliolji (2), ooojiig»t« to

the hyiwrbolm (1), hoa for it« eccentricity

•-—J

—

for f(X3i the point« (0, ± h^\ and for dir^trtces the lines

Two conjugate hyperbolas have a oommon center, and

their foci are all at the common distance V7+7 from this

oenter; t.^., the foci all lie on a circle about the center,

having for radius the semi-diagonal OS of the rectangle

upon their common axes, and whose sides are tangent to the

onrves at their vertices. Moreover, when the curves are

eonstructed it will be found that they do not interHect, but

are separated by the extended diagonab OS and OK of this

i!ircumscribed rectangle, which they approach from opposite

ides. These diagonals are examples of a class of lines of

\i interest in analytic theory ; they are called aMymptaU9

i. Art. leS, also Art. 87, (5)).

EXERCISES

1. Construct an hyperbola, given the dwUnce hptwfH*n im lori m
t em. and « = 2.

1. Constniei an hyperbola, giren the dittanes from directrix to foens

as 2 em. How many such hy])erlH>hu are poeaible?

9. Write the equation of an hyperbobi ooajngate to the hyperbola

ix* - 16 jf* = 144, and find tU axes, foci, and Utos rectum. Skateh tbe

Write the equations of tbe tangent and normal to the hyperbola

lex* - Oy* s 112 at the point (4, 4), and find tbe subtangent and sub-

i\.

0. Write the equations of the polars of tbe point (S. 4) with

the hyperbola jc* ~ 16y' = 144 and ila conjugate, raspeolifely.
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6. For what points of an hyperbola are the subtangent and sub-

normal equal ?

7. Given the hyperbola Oy* — 4x* = 30, find the focal ra<ln «)t the

point whose ordinate 18 (4), and abscissa positive.

a. A tangent which is parallel to the line 5x - 4 y + 7 = 0, is drawn

to the hyperbola x* — y^= ; what is the subnormal for the point of con-

tact?

9. What tangent to the hyperbola j- -^ = 1 has its y-intercept 2?

10. Find, by equation [67], the two tangents to the hyperbola

4x* — 2y* = 6 which are drawn through the point (3, 5).

11. Find the polars of the vertices of an hyi>erbola with respect to its

conjugate hyperbola.

12. Prove that if the crack of a rifle and the thud of the ball on the

target are heard at the same instant, the locus of the hearer is an

hyperbola.

13. An ellipse and hyperbola have the same axes. Show that the

polar of any point on either curve is a tangent to the other.

14. Find the equation of an hyperbola whose vertex bisects the dis-

tance from the focus to the center.

15. If e and e' are the eccentricities of an hyperbola and its conjugate,

then
<f2 -I- C'2 = tfV«

16. If e and e' are the eccentricities of two conjugate hyperbolas,

then
ae = be'.

17. Find the eccentricity and latus rectum of the hyperl>ola

y2 = 4 (x2 + a2).

18. Find the tangents to the hyperbola 8x*— 16y' = 144, which,

with the tangent at the vertex, form a circumscribed equilateral triangle.

Find the area of the triangle.

19. Find the lengths of the tangent, normal, subtangent, and sub-

normal for the point (3, 2) of the hyperbola x^ - 2y2 = 1.

165. Asymptotes. If a tangent to an infinite branch of

curve approaches more and more closely to a fixed straight

line as a limiting position, when the point of contact move

further and further away on the curve and becomes infinitelj
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(li^iuui, then tho fixed line i« called an aaymyW of the

curvo.* More briefly, though leaa aoourately, thia dafini-

tiou may be stated aa foUowas

in asymptote to a ourvo is a

tangent wlioiie point of contact

is at infinity, but which Is not

itself entirely at infinity. It ia

evident that to have an asymp-

tote a curve must have an infi-

nite branch ; and this branch

may be considered aa having

two coincident, and infinitely

(liHtunt, points of intersection with its asymptote. Thb
pro{K>rty will aid in obtaining the equation of the asymptote.

\
r

K /
,>Xhy

'k X
/^^\

/
rr\

ricUT

1 ho hyperbola 1. (1)

(2)is out by the line jfw mm 4- «,

in two i>oints whose absciasaa are given by the equation

(««m»-^a* + 2a»nitir + aV + aV«0. . . (8)

If line (2) b an asymptote, the' two roots of equation (3)

niU8t both become infinite ; therefore, by Art. 10,

aW-^-0 and 2a'tfm-0, ... (4)

h
e » and fit

Siilisf itutiiiir (]io8e valuer in twinutioD (2), givea

h
niKi

5
y=-j*. (6)

•Thb deflniUon ImpUes UuU tlie disunoe belwwji a cun-e and iu

aqrnpiote beooiMS Inflnltolj tmsU. lleMsboQ 4 Snyder, Differentiil CsW
Chap. XIV.

TAH. AX. oaoM. — 18
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and these equations represent the asymptotes of the hyper-

bola ; they ai-e tlie lines OS and OK in Fig. 117. Therefore,

the hyperbola has two asymptotes ; they pass throu{fh its center,

and are the diagonals of the rectangle described upon its axes.

Since the equation of the hyperbola conjugate to (1) is

|-g = -l, ... (6)

and thus differs from equation (1) only in the sign of the

second member, which affects only the constant term in

equation (3), therefore the equations (4) determine the

value of m and c for the asymptotes of the conjugate hyper-

bola also. It follows that conjugate hyperbolas have the same

asymptotes,

A second derivation of the equation of the asymptotes of an hyper*

bola ( 1 ) is as follows

:

The equation of the tangent to (1) at the point {Xi,y^ is

-^ -p--i, ... (7;

which may be written in the form

Wx = a«y?^ +— ... (8)
Xj Xj

Since (Xj, yj is on the curve (1),

therefo™ '^_|?= 1. .•... |. =^ . . („)

Substituting; this value of ^ in equation (8), it becomes

which is only another form of the equation of the tangent represented

by equations (7) or (8). If now the point of contact (x,, y,) movei

further and further away, so that Xj = oo , then the limiting position

the line (10) is represented by hh = ahf f ± _
J
= ± aby.

Henoe the equations of the asymptotes are : y =±^x (cf. Art. 156).
a
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Tlio LHiuuiKMit 111 the MyiuptoUM may be combined* by

Art. 40, into tlie one eqtutiuii which repreeenU both lines,

\ i/. :

2-^-0. ... [68]

166. Relation between conjugate hyperbola! and their

asymptotes. It liu8 liecn hccii tliut the litundard forma for

ihf equatioiui of the primary hyperbola, ita aaympioiee,

ita conjugate hyperbola are, respectively.

0)

3-^-0. ... (2)

t-i"-^ (8)

It will be noticed at once that these three equations differ

«»nly in their constant terms; and that the equation of the

primary hyperbola (1) differs from that of the asymptotes

(2) by the negative of the constant by which the equation

of the conjugate hyperbola (8) differs from equation (2).

Moreover, this relation between the equations of the three

loci must hold when not in their standard forms, t.e., what-

ever the co5rdinate axes. For, any transformation of co5r-

dinatea will affect only the first member of equations (1),

(2), and (8), and will affect these in precisely the same way.

After the tranaformation, therefore, the equations of the loci

will differ only by a constant (not, however, usually by 1);

and the value of the constant in the equation of the

asymptotes will be midway between the values of tlie con-

stants in the etjuations of the two hyperbolaa.
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Example 1. An hyperbola having the lines

(1) a; + 2y + 3 = aud (2) 8a; + 4y + 5=:0

for asymptotes, will have an equation of the form

(x + 2y-h3)(8a: + 4y4-5) + Ar = 0, . . (3)

while the equation of its conjugate hyperbola will be

(« + 2y + 3)(3a: + 4y + 5)-A: = 0. . . (4)

If a second condition is imposed upon the hyperbola,

«.^., that it sliall pass through the point (1, "1), then the

value of k may be easily found thus : since the curve passes

through the point (1, ~1), therefore by equation (3),

(l~24-3)(3-44-5)H-A: = 0; .-. A: = -8,

aud the equation of the hyperbola is

(a: + 2y + 3)(3a; + 4y + 5)-8 = 0,

that is, 3r» + 102:^ + 8^24. 14a; 4- 22^ + 7 = 0; . (5)

and the equation of the conjugate hyperbola is

3ar» + \^xy + 8/ + 14a: + 22^ + 23 = 0.

Example 2. The equation of the asymptotes of the

hyperl>ola

3a?-14a:y-5y2 + 7a: + 13y--8 = . . . (1)

differs from equation (1) by a constant only, hence it is of

the form
Zn^-^Uxy-by^^-lx + Uy + k^O. . . (2)

Now equation (2) represents a pair of straight lines, there-

fore its first member can be factored, and, by Art. 67, [17]

_ 15 A: -1^ - i^lJ^ +^ - 49 Jt = ;

i.e., 64 A: = -884, whence A: = - 6.

Therefore the equation of the asymptotes is

82^- 14a:y - 5y2 4. 1x + 13y - 6 = 0,

t.e., (8a: + y-2)(a:-5y + 3)=0;
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I
i.ition «u tiiv cuiijugate hy{M*rboU ii

167. EquiUtMrai or rectangnUr hjperboU. If the axes of

all liyiierlKihi are equaU ao that a»b, iiM equation haa the

form ja-y«-a«, (1)

I

and ita eccentricity #hV2. Itii conjugate hy|ierli<*hi has

khaeqoation ia-^-i-a«; ... (2)

Irith the aame eccentricity and tlio aaine ahape; while ita

ieymptotee have the equations

I x = ±y, . . . (3)

bid are therefore the bisectoro of tlio angles formed by the

axea of the curves ; hence the asymptotes of these hyper-

bolaa are perpendicular to each other. Thu hyj^erbola whose

axes are equal is therefore called an equilateral, or a rec-

tangular hyperboUu according as it is thought of as having

equal axea or asymptotes at right angles.

EXERCISES

1. Find the Mymptotot of the hyperboU Ox< - 10f« s 2A» and tbs

igle between them.

2. WIhtm are the poles of the asymptotes of th* )i\ iit>rlK>U

iih reference to the eunre?

S. If the Tertsx lies two thirds of the dtstanoe from the center to

focus, find the aquations of the hyperbola, and of its ssymptotes.

a. If a line jf = aix <t* e meets the hyperbola r| ~ It = ^ i» on*

and one infinitely distant point, the line is parallel to an asymplol«b

a. Show that, in an equilateral hyperbola, the distaoee of a point

the center b a mean proportional twtween its foeal distaoeas.

a. Find the equation of the hyperboU passing through the point

(0, 7), and having for asymptotes the lines

Jx - V s 7, and Sx 4- 8f s & (cf. Art. IM).
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7. Write the equation of the hyperbola conjugate to tiiat of Kx. 6.

8. Find the equations of the asymptoteA of the hyperbola

also find the equation of the conjugate hyperbola.

9. Kind the equation of the asymptotes of the hyperlK>]a

3x« + 84xy+ lly«-x + 21y = 0.

10. Find the equation of the hyperbola conjugate to

Ox« - 16y« + 36x + 160y = 508.

11. Prove that a perpendicular from the focus to an asymptote of an

hyperbola is equal to the semi-conjugate axin.

12. The asymptotes meet the directrices of the x-hyperbola on the

x-auxiliary circle, and of the conjugate hyperl>ola on the y-auxiliary circle.'

13. The circle descril>ed about a focus, with a radius equal to half the

conjugate axis, will pass through the intersections of the asymptotes

and a directrix.

14. The line from the center C to the focus F of an hyperlwla is the

diameter of a circle that cuts an asymptote at P; show that the chords

CP and FP are equal, respectively, to the semi-transverse and semi-

oonjugate axes.

168. The hyperbola referred to its asymptotes. If the

asymptotes of an hyperbola are chosen as the coordinate

axes, their equations will be a: = and y = 0, respectively ;

or, combined in one equation,

a:y = 0. . . . (1)1

By the reasoning of Art. 166, it follows that the equation!

of the hyperbola,— which differs from that of its asymptotes]

by a constant,— is

xy = k, . . . (2;

wherein the value of the constant Ar is to be determined byj

an additional assigned condition concerning the curve ; e.g,^\

that it shall pass through a given point.
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The value of thii ooottant, in terms of a and ^ oan in

Ipeneral be found inost easily by making the proper trant-

furmatiou of coordinates upon the equation of the hyperbola

4^ i*
1. («)

no. US.

Tlie new 9-axis makes the angle 6^ the new y-axis the

anj^le 6*^ with the old ar-axis, such that

b
tan ^ =3— , tan ^

a a

Henoe

and

sin ^ H — sin ^ ~

oos^» + coe^

^b
VSTTP

therefore the formulas [25] for transformation^

a?— x' cos ^ 4- y cos ^, y = j/ sin ^ +y sin ^,

become in this case

' (x'+y). y- "*
v?+?» V?+l»

(4)
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Applying this transformation, equation (8) becomes

that is, dropping the accents,

as + ^a a» + /^
^

ay = —^, . . . [09]

which is the desired equation of the hyperbola when referred

to its asymptotes as coordinate axes.

The equation of the conjugate hyperbola is then

a2 + 52
a-y =

4

Remembering the relation t^ = a\e^ — l)i it will be seen

that the value of the constant term in equation (2) may be

written

^"""'4
T"'^'

80 that e is half the distance of the focus from the center of

the curve. Again, the coordinates of the foci, a: = ±ae, y = 0,

become after the transformation (4),

x=^y = ±—^—; ... (6)

and the equations of the directrices, a; = ± -, become
e

x+i/ = ±a. . . . (7)

169. The tangent to the hyperbola xy - c*. The equation

of the tangent to the hyperbola

xt/ = c^, . . . (1)1

at any given point C^i, yi), may be easily derived by the]

secant method (cf. Arts. 84, 122). Let P, = (a^i, yO andj

P,= (a?y yj) be two points on the curve ; then

aj,y, = c^, . . (2) and x^^ = c^. . . (8)]
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riiu equation of the line througli /^, utkI T', is

wherein ^^ * * nui8t huve a value detemiiued by equations

(2) and (8), hence

*""'!-
'i "*i^**i - 'i " *i'i*

The equation of tlio sftant line P^P^ in ihenfnre

y-yj=i - J^^^X-JTj;. ... (4)

If now the point P, becomes coincident with P|, equation

( 4) becomes

which may be reduced by equation (2) to

£+^^-2. . . . f70]

or to ^ti; + x^y a 2 <;*,

which is the required eciuation of the tangent at the point

/*,3(j?j, yj) of the curve.

170. Geometric properties of the hyperbola. Equation [69]

>tat**8 the foHowing intrinsic pro|ierty for the hyperbola,

/*,3(«j, yj) being any j>oint on the curve (Fig. 119).

\MP^'LP^^ 6P\
that lA, for every point of the hyperMa^ four timeB the product

<*f itM dUtaneet from the atymptotf^ meoMwrtd paralUl to tki

i^ymptoteM TtMptdively, it equal to the $quar€ ^ the diwit

f'rom the center to the focus; and it tker^ore con$tanL
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Again, 2B being the angle between the asymptotes, equa-

tion [69] may be written

(1)

rio.119.

Now xy sin 2 ^ is the area of the parallelogram OMP^L^
constructed upon the coordinates of the point P^ of the

hyperbola; and since the coordinates of the vertex A are

X = y = ~— , the second member of equation (1) is the

area of the rhombus ORAS^ constructed upon the coordinates^

of the vertex. Therefore, the area of the parallelogram

formed by the asymptotes and lines parallel to them drat

from any point of an hyperbola^ is constant; it is equal ti

the rhombus similarly drawn from the vertex of the curve.

The equation of the tangent to the hyperbola

a:y = c3, . . . (2)i

at the point P, is ^ + i^ = 2. (8)

The a;-intercept of this tangent is 0T= 2x^', hence if OTH
be the y-intercept, and M the foot of the ordinate of P^,!

then from the similar triangles MTP^ and OTT\

TP^ : TT' = MTi OT^x^ 12x^^1:2.
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Hence, fA# Btgrnent of anp iangeni to an kjfptrhola hefteoom

(he a9jfmptot$i u H$ooUd by tko poifU <^ oontaoL

The Undent (8) hat the tnteroepU on the jHude sod y*«jiiis

rrH|>ectively,

or-2rj, or-2y,.
TImm or. Or-4i^iy,. ... (4)

Hut since (x,, y|) in a |)oint of the hy|)erbol»

4ar,yi-a« + 5»,

henee Or- Or'-a« + 4*, (6)

I.e., ths roei4ingU formed by the inUreopte tmtcn any tawjent

to the hyperbola makee upon the atympUUM it comUmi; it is

o^uai to the eum of the equarse upon the $eml^u$.

Moreover, equation (5) mry b. written

Or.(>r'5^-21±^«n2tf; ... (6)

but Bin 2 ff - 2 sin ff coe tf - 2 *
* ^ "*

henoe (6) bcomee
^^
^8in2^« a6; .... (7)

that is, the triangle formed by any t :ngent to an hyperbola

and ite aeymptotee ie constant; U i$ equal to the reetangU

upon the eemi-axee,

EXERC'Ses

1 > the e({iiatio& of the hyperbola 9 z* - 18 jr* = 25 when rvferml

a. Fiud the teini-Azet, eeoeotHeity, and the Tertieee, of the hyperboUt

xy s 4, the angle between the axes (asymptotes) being 00".

S. Find the semi^u^es, eooentrieity, vertieee, and the foci, of the hyper-

bola xjf = - 12, the angle between the axes being 00*.

4. Prove that the segments of any line which ars intaroepied betweeo

an hyperbola and its asymptotes are eqoaL
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5. KxpresB the angle between the asymptotes of an hyperbola in terms

of e ; I.e., in terms of the ecoentricity of the hyperbola.

6. The segment of a tangent to an hyperbola intercepted by the

conjugate hyperbola is bisected at the point of contact.

7. Show that the pole of any tangent to the rectangular hyperbola

2y = r*, with respect to the circle z^ + y* = a^ lies on a concentric and

similarly placed rectangular hyperbola.

8. Prove that the asymptotes of the hyperbola xy = hx •\- Icy are

x^h, and y = A.

9. Derive the equation of the tangent to the curve ary = Ax + Icy at

the point P= {x^t y^) on the curve.

171. Diameters. A diameter has already been defined

(Art. 129) as the locus of the middle points of a system of

parallel chords, and in Art. 152 the equation was derived

for a diameter of an ellipse. By the same method, if a sys-

tem of parallel chords of the hyperbola

^-^ = 1
a2 IP'

have the common slope w, the equation of the corresponding

diameter will be found to be

y = —x, . . . [.1]

This equation shows that everi/ diameter of the hyperbola

passes through the center.

Conversely, it is true, as in the case of the ellipse, that

every chord of the hyperbola through the center is a diame-

ter. That chord of the original set which passes through

the center is the diameter conjugate to [71]; and its equa-

tion is

y=:wa;. . . . [72]
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Letting m' be the slope of a dunneter, and m thai of itji

»iijug»te, the eesentwl condition that two diameters should

• conjugate to each other is tluit (cf. Art. 158)

172. Properties of conjugate diameters of the hyperbola.

(a) It in cluur tliat the condition

mm' = — . . . [78]

hohU uIho for Uie hyjM^rlHiIu

which is conjugate to the given hyperbola ; for, replacing a*

•y — 0* and — 5* by ^ leaves equation [78] unchanged.

I once, diameteri which are eonjugatt to each other for a given

hjfperbola art c9f^mgaU9 aUo for the conjugaU qf that h^per-

Mo.

(/9) The axes of the hyperbola are clearly diameters of

he curve. Tliey are perpendicular to each other, and

iierefore satisfy the relation

mm' = — 1.

Comparing this condition with that of equation [78], it

follows that the traneverte and eot^ugatt ajre§ of the hyper-

da are the only pair of perpendicular conjugate diametere

Ccf. ip) p. 2i>5).

If a = 6, the condition [78] reduces to

•RHi'-l;

therefore (Art. 16), in the rectangular hyperbola the sum
of the angles which a pair of oonjugate diameters

with the transverse axis is 90"* (cf. Art. 156).
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(7) Since in equation [78] the product mm' is jwsitive,

it follows that the angles which conjugate diameters make

^nth the transverse axis are both acute, or both obtuse.

Moreover,

II m < ± -, then w > ± -
;

a a

and the diameters lie on opposite sides of an asymptote.

Two conjugate diameters lie in the same quadrant formed by

the axes of the hyperbola^ on opposite sides of the asymptote

(cf. Art. 155 (a)).

(5) An asymptote passes through the center of an hyper-

bola, hence may be regarded iis a diameter. Its slope is

h , b

a a

hence, an asymptote regarded as a diameter is its own conju-

gate ; it may be called a self-conjugate diameter.

This is a limiting case of (7) above.

(c) It follows from this last fact that if a diameter inter-

sects a given hyperbola, then the conjugate diameter does

not intersect it, but cuts the conjugate hyperbola. It is

customary and useful to define as the extremities of the

conjugate diameter its points of intersection with the conju-

gate hyperbola. With this limitation, it follows from (a)

of this article, that, as in the ellipse, each of two conjugate

diameters bisects the chords parallel to the other.

(f) As a limiting case of this last j)rop()sition, also, it is

evident that the tangent at the end of a diameter is parallel

to the conjugate diameter.

By reasoning entirely analogous to that given in Art. 155,

for the ellipse, proj)erties similar to those there given may

l)e derived for the hyperbola. They are included in the

following exercises, to be worked out by the student.
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EXERCIMt

1 Find th«* equAtlon of Um dUiii9l«r of U» bypOTboU

s\i.i' II uiMcta Uie obonii f m$s -^ L
^ iixl alio tbo eoojiigato dbuneler.

2. Find, for Uie byporboU of Ex. 1, a dbuMlar tbroogb the poini

I I. 1), aud iU oonjuffste.

«•
3. Find tbe dbuoeler of iIm b>iwrboU tz ~ ov = ^ wirK-H U rnn.

^.;to to tbe dUmetor x - 8jf = 0.

4. Find tb« equation of a chord of tlio byperboU 12i* ~ Of* k 108»

wbkb b buwct«d at tbe point (4, *J).

9. Lines from any point of an equilateral bjrperbola to tho extrvmi-

ties of a diameter make equal angles witb tbe asyiuptolrs.

•. Sbow tbat, in an equiUteral byperbob^ conjugate diameters make
•qoal angles witb tbe asymptotes.

7. Tbe diflference of tbe squares of two conjugate semi^iiameters is

li; it is equal to tlie diibrenoe of tbe squares of tbe semi-Azes.

& Tbe angle between two conjugate diameters is sin i-—-.

9. TbepoUrof one end of a diameter of an byperbola, witb refaraoee

to tbe conjugate byperbola, is tbe tangent at tbe otber end of tiM

riven diameter.

10. Tangents at tbe ends of a pair of conjugate diameters interseoi

II an asymptote.

173. Sapplemental chords. As prerionsly deflned, cbords of a cnnre

sn> Mippleniental wben drawn from any point of tbe enrre to tbe ex-

tnemtties of a diameter. If, in tbe analytic work of Art. 157, A* b
••pUced by -6*, then, if m and m' are tbe slopes of two supplemental

Uords of tbe byperboU, tbey inu»t satisfy tbe rektkm

But thi'

• >p«»H of r w

inilUl to

K.-r tl.

mm'^ 0)

[7.1]) the cnndition I

Therefore,

that fxwui i^-tween tbe

>•.. wben a =

sun'-l.

&, tbiA relation bas tbe

(2)
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and, therefore^ the Kutn of the acute angles which a pair of supplemenUry
chorcU of the equilateral hyperbola make with its transverse axis is dOP

(cf. Art. 172 i/i)).

174. Equations representing an hyperbola, but involving only one

variable.

(tt) Eccentric angle. In the theory of the hyperbola, the auxiliary

circles described upon the axes of the curve as diaineteni are not as

useful as the corresponding circles for the ellipse, since the ordinate for

a point on the hyperbola does not cut the x-auxiliary circle, and, there-

fore, there is no simple construction for the eccentric angle. It is, how-

ever, sometimes desirable to express by means of a single v.iriable th«*

condition that a point shall be on an hyperbola; and for tliis purpose

the equations
X = a sec ^, y = 6tan ^, . . . [74]

similar to equations [00], may be used ; for these evidently satisfy the

equation of the hyperbola
x« //«_,

^

smce 8ec^<l> - tan«<^ = 1.

The angle 4> '»ay be defined as the eccentric angle for the hyperbola,

and the corresponding point of the curve may be constructed as follows

:

Draw the auxiliary circles, and any Z A OQ =
<f>.

At the points R and Qt

where the terminal side of
<f>

cuts the circles, draw tangents cutting the

transverse axis in the points M' and M, respectively. Erect at M an



ordiiiftttf .1//* equal to KM , t. ^ . \c..>..>iv /» m n point of iba bjperbob.
For, ill the right trUiigle (KUQ,

and, in the right triangle OyH,
MR a Oil tail ^ !>., .1/'A s 6 tan^

Hut for the poiut P,

M^OM, p^MPz= M'Ri
•

hanoe saaiee^ jr as 6tan4*

and P b a point on the hyperbola.*

The eccentric angle for any given point, P. of an hyperboU la eaaily

obtained. Draw the ordinate MP, and from it* foot, M, draw a taogeoi

MQ to the »«uxiliary circle ; then the angle MOQ ii tba eeoeotrie angla

oorraaponding to P.

(fi) The equation of the hyperboU referred to ita aaymplolaa, ria.

rgr = r*, ia aatisAed by the oodrdinaiea x^d, jf s ^, whaierer the Talnaa

of f. The nue of this single independent variable I ia lonMilimaa cooTaniaat

in dealing with p«>inta on the hyperboU.*

EXAMPLES ON CHAPTER XI

1. \\ rii<« the equation of an hyperbola whose tranirem axia is 8»

and tlie conjugala azia one half the diatanoe between the foci

2. Find the equation of that diameter of the hyperboU 10x'-0y*=144
which paiiea through the point (5, V); "^ ^^d the oodrdinatea of the

extremitiea of the conjugate diameter.

3. Assume the equation of the hyperbola, and show that the dilfereoea

of the focal distances is constant.

4. Find the locus of the vertex of a triangle of given base 2 r, if the

iifference of the two other sides U a constjuit, and equal to 2 a.

5. Find the locus of the vertex of a triangle of given base, if the

diffemnce of the tangente of the baae anglea ia oooslant.

6. Find an expression for the angU between any pair of conjugate

diameters of an hyperbola.

7. Show that two concentric rectangular hyperbolas, whoee axaa

tneet at an angU of 45^ ont each other orthogonally.

• The forms of thte article are uaeful in the differential

TA». A». OBOM.— 10
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& The portions of any chord of an hyperbola intercepted between

the curve and its conjugate are equal.

SuooBSTioN. Draw a tangent parallel to the line in question.

9. The coordinates of a point are a tan (^ + a) and b tan {$ + (i) ;

prove that the Iocuh of the point, as $ varies, is an hyperbola.

10. Prove that the asymptotes of the hyperbola zy = 3 x + 5 y are

X = 5 and y = 3.

11. If the coordinate axes are inclined at an angle (u, find the equa-

tion of an h)T)erbola whose asymptotes are the lines x = 2 and y = — 3,

respectively, and which passes through the point (2, 1).

12. Find the coordinates of the points of contact of the common
tangents to the hyperbolas,

x«-ya = 3a2, and xy = 2a«.

13. If a right-angled triangle be inscribed in a rectangular hj'perbola,

prove that the tangent at the right angle is perpendicular to the

hypothenuse.

14. Show that the line y = mx + 2 ky/ - m always touches the hypei^

bola xy = A-*; and that its point of contact is
(

. kV^ny

15. Find the point of the rectangular hyperbola xy = 12 for which

the subtangent is 4. Find the subnormal for the same point.

16. Find the polar of the point (5, 3) on the hyperbola x^ - 2y« = 7,

with respect to the conjugate hyperbola. Show that this line is tangent

to the given hyperlwla, at the other end of the diameter from (5, 3).

17. If an ellipse and hyperbola have the same foci, they intersect at

right angles.

18. Find tangents to the h3rperbola 2y* -- 16 x* = 1 which are perpen-

dicular to its asymptotes.

19. Find normals to the hyperbola ^^ ~ ^— v/ ~ ^/ = 1 which are^^
16 9

parallel to its asymptotes. Find the polar of their point of intersection.

20. Show that, in an equilateral hyperbola, conjugate diameters are

equally inclined to the asymptotes.

21. Show that two conjugate diameters of a rectangular hyperbola

are equal.
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22. Show ih»^ in an 0qttikiltral hjrperboU, two diuamimn At riglit

angiet to Moh othw art •qwU. Show abo that thk (bllowt from Ex. 21.

II. A variabia drele b alwaya tangant to ea«h ei two Aaed cirelaa;

ore that the looua of ita oaotar b eitbar ao bn^rboU or an aUlpae.

24. Kind the oumuton tangenta to tha bjparbola ^ -^^ " ^ ^<1 ^

S9. In the hyparbola 25x' — lOf* v 400. find the (?on!ii(r&tc (IlAtn<*t«rB

that cut aach other at an angb of 45*.

as. The Utui roetum of an hyperbola b a thirtl proportkMal to the

twoaxea.

ST. The polars of any point (A, k) with respect to oonjagate hyperbohM

areparaUel.

M. Tha tum of the eooentrb angbaof the extremities of two eooj»>

gate diameters of an hyperboU b equal to 90*; U^ ^ -k- 4f s 90*.

29. Find the equation of a line through the focus of an hyperbola

and the focus of its conjugate, and And the pob of thai line.

aa Find the asymptotes of the hyperboU xy-Sx- 2jrsO. What
the equation of the conjugate hyperboU?

31. Show that the jr-axb b an asymptote of the hyperboU

2xy + dx*-f 4x = 9.

What b the equation of the other asymptote T Of the conjugate

hyperboU?

82. If two tangents are drawn from an external point to an hyperbola^

ley will touch the same or opposite branches of the cunre aoooctUng aa

the given point Iba between or outaide of the asymptotea.



CHAPTER XII

GENERAL EQUATION OF THE SECOND DEGREE

Ax* + 2 Uxy + By* + 2C?x + 2i^|/+C7 =

175. General equation of the second degree in two variables.

Thus far only special equations of tlie second degree have

been studied ; they have all been of the form

.l2:a + 5/+2ax + 2^y+C=0, . . . (1)

t.«., they have been free from the term containing the

product of the variables. In Arts. 107, 113, and 119 it is

shown that equation (1) represents a conic section having

its axes parallel to the coordinate axes. It still remains to

be shown, however, that the most general equation of the

second degree, viz.

A3?^r'lHxy-\-By'^-\-1Gx^-1Fy^-C=^, ... (2)

also represents a conid. section. To prove this it is only

necessary to show that, by a suitable change of the coordi-

nate axes, equation (2) may be reduced to the form of

equation (1).

If equation (2) be referred to new axes, OX' and OP,

say, making an angle 6 with the corresponding given axes

;

and if the new coordinates of any point on the curve be oi

and y\ the old coordinates of the same point being x and y ;

then (Art. 72)

a; = a/ cos 6 — y'. sin 6^ and y = a/ sin ^ -h y' cos 6. . . (3)

202
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Subftituting tlicHe valuat (8) in oqtuitioD (2), it beoomet

+ ^(^ ttiii ^ + y' c«i^)« + 2 (?(j/ oot^ -y sin 0)

+ 2F(x'Hin^ + y'co«^)+e-0, ... (4)

which, being ex|»uiided and r^^minged, beoomes

:

\Acot^0'^2EH\n0cm0'^ 3^111^0)

-k'3^y'C'~2Aam0ooB0-2lfmi*0'^2ffcoi^0'^2BBin0<xM0)

-^y\A»iii*0''2fftiin0 00^0-^30x^0)

+ a/(2 Gc(M0^2 Fsin 0)

4-y'(-2a8in^ + 2i'ooe^)+C7-0. ... (6)

This transformed equation (5) will be free from the term

taining the product j/y' if ^ be so chosen that

-2ii8in^co8^-2irsin>^+2^cos^e^-|-2^8in^coe^>-0,

I.e.. if 2ir(coii^^-8inS^)-(ii-^)28in^oo8^t

<?., if 22r-co82^a(ii-J9)Bin2^,

T finally, if tan2^«-l^. ... (6)A — M
Moreover, it is always possible to choose a positiTe aevta

angle ^ so as to satisfy this last equation whatever may be

the niimliers represented by A^ B^ and H,

Having chosen ^ so as to satisfy equation (6), and having

sulwtituted the values of sin^ and oos^ in equation (5),

that equation reduces to

il'x'« + ^y^+2(?V + 2Fy'+e=0, . . (7)

(wherein A\ B^ — represent the new coefficients)

and therefore represents a conic section with its axes parallel

•> the new coordinate axes. But equation (7) represents
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the same locus as equation (2); hence it is proved tliat, in

rectangular coordinates, everi/ equation of the form

Ax* + ^Hxy + By* +2G'x + 2JV + C =

represenU a conic section whose axes are inclined at an angle 6

to the given cod'rdinate axes^ where is determined by the

equation o 77-* tan2e= /^ •

A — B
It is to be noted that the constant term C has remained

unchanged by the transformation given above.

Tiie next article will illustrate the application of this

method to numerical equations. It is to be observed that

this method is entirely general, and enables one to fully

determine the conic represented by any given numerical

equation of the second degree.

Note. In the proof just given that every equation of the second

degree represents a conic section, it is assumed that the given axes are at

right angles. This restriction may, however, b^ removed; for if they are

not at right angles, a transformation may be'^lnade to rectangular axes

having the same origin (cf. Arts. 74, 75), and the equation will have its

form and degree left unchanged; after which the proof already given

applies.

176. Illustrative examples. Example 1. Given the equation

-x2 + 4xy-ya-4v^a: + 2v^y-ll=0, . . . (1)

to determine the nature and position of its locus.

Turn the axes through an angle 6, i.e., substitute for x and y, respeo*

lively, x' cos d — y' sin 6 and z' sin d -f- y cos d; equation (1) then becomes

x'«(-co8«tf + 4sindcos^ - sin«^)

+ ^y(+ 2 sin ^ cos ^ + 4 cos^d - 4 sin^d - 2 sin ^ cos &)

- y* (sin^ d + 4 sin ^ cos ^ + cos^ 6)

-«'(4 V2cosd-2V2sintf)

+ y'(+4\/28intf + 2v^cosd)-ll=0. ... (2)

J
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»«^; It

will UMfvfora bo Mro if viu () ^ cim ^, i>., it$m 4fiP.«

If tf»4A>. UMn liii^-eos^-JUMid ihit valat of tin ^ and oot^
y/H

ubrtitotMl in eqiuUion (2), it

(^)

whieli rpprvnenta the HUM loew M it ftpwwiilaJ bj equAiion (i); the

dUTtrenoe in the form of the two oqnmtkNit being daa to tho faet \htX the

AIM to wbieh aqwOion (3)itre£errad mnln an aogla of 4fi^ with the axm
lo wbioli equation (1) is referred.

Equation (3) luay be written in the tarm

(x'-l)t-3(y-l)«-«,

(£i
(4)

which rppmanli an hyperbola (cf. Art 118). Tta center b aft the point

(1, 1) ; the transrerae axis is parallel to the x'-axis ; the eeml-azes are of

length S and V3, respeo-

ly ; the eooentricity is

|V^; the foci are at

ipolnUf^l+2v'5.1)
F«(l-2v^a,l).».

peetively; the directricee

hare the equations

•Bd *' = 1-|V^.

reepeeti?e]y; and the latos

reetom is 2. All these

resolts refer to the new
axes, of course, and the

loeus is that represented

in Fig. 121. Fta.UL

1

1

^r
1

•'

""

'»

».
L>' /

N. .B y^^^y^—

^

\ X ^r ,'*

V V' 'i^•»«•X Xb^ X
*****

—

*l>o^' y a.
F''^\/ \

••j \
.' 1

''' / \
\

• This a«scords wiih a resnlt of the preceding artieie, tIs. that to free an
equaUon from iu xy-ienn it is only neoesaaiy to turn the axes Ihioogh a

In theposItlTe aeote angle delennined by tan S# ss -^
// = + a and .d =B 3 - I, hsooe tanS# = oD and #38 4fi*.
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ExAMPLK 2. Given the equation

4«« + 4«y + y« - 18a: + 2fly + 64 = 0. . . . (f,)

to determine the nature and poHitioii of its locus. Turn the axes througli

an angle d^ i-e-i substitute for x and y, respectively, x" cos $ — j/ sin $ and

x' sin ^ + / oos^i equation (5) then becomes

s^4oo6<tf + sin«d + 48in^co8d)

+ x'yX - 8 cos ^ sin d + 2 cos d sin d - 4 sin^d + 4 cos^ 6)

+ y"^(4 sin- 6 + cos^d - 4 sin $ cos ^)

+ a:'(-18cos^ + 26 8in^)

+ y'(18sin^ + 26costf)+64 = 0, . . (6)

in which ^ is to be so determined that the coefficient of x'lf shall be zero.

On placing this coefficient equal to zero, it is at once seen that tan 2d=|,

from which it follows (cf. exercise 3, Art 16, second method) that

sin 2d = I and C08 2d = |;

remembering that cos 2 d = cos^ - sin^ $ = 2 cos^ d - 1 = 1 - 2 sin*

it is easily deduced that sin = .— and cos = -=^

Substituting these values in equation (6), it becomes

5a/2 - 2V5x' + HVT)/ + 64 = 0,

which is the equation of a parabola whose vertex is at the point

W5 I4V5/

whose foeus is at the point (—,
], whose axis is parallel to the

negative end of the y'-axis, and whose latus rectum is . All these
Vf)

results refer to the new axes ; the locus of the above equation is given in

Fig. 79, p. 178 (ArL 108).

EXERCISES

1. For the hyperbola in Fig. 121 find the coordinates of the center

and of the foci, and also the equations of its axes and directrices, all

referred to the axes OX and OK.
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By finit remuriiif; the Tjr>l«rm, detormioo Um naturB aim! pmttlon of

ihm loei rtpnMuied by Ibe fdUawiag •qoAUocis. Alio plot Uw eurfw.

ft. j<-2xy4*f*-ejr-6f 4-9-a

177. Test for the tpedes of a conic. It ui often deiinUA

to know tliu species of a coiiio represented by a giveo equa-

tion even when it may not bo necessary to determine folly

the iKisition of the curve. Remembering that every equa-

tion of tlie second degree represents a conic (Art. 175)« and

ilao that the three species of conies may be distinguisbed

from each otlier by the number of directions in which lines

meeting tlie curve at infinity may be drawn through any

given point (Art. 131, Note), it is easy to find a test that

will enable one to distinguish at a glance the kind of conic

represented by a given equation.

I^t the given equation be

Ar« + 2iJxy + JJy» + 2(3^-r + 2Fy+C-0. . (1)

If thiH equation Ije tninHfonne<l to polar coordinates, the

>rigin l>eing the i)olo and the x-iixis the initial line, so that

r — p cos $ and y a p sin 0^ it becomes

p»r i4 coi^ ^ + 2 jy sin ^ cos ^ + ^ 8in« ^)

-f 2p(acos^ + F8in^)4-C-0. . . (2)

One value of p, detennineii by this equation, will be infinite

if its direction be such that

^oos^^ + 2i7Hin^cos^ + B8in*^-0; [Art. 10]

t.s., if Btan>^ + 2FUn^4-^-0;

.....if t^e^=B±2^^^ZM.
. . (8)
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Equation (8) shows that tan 6 will have

two imaginary values, if JST* — ylB < ;

two real and coincident values, if H^ — AB = ;

two real and distinct values, if JSP — AB > 0.

Therefore, there is no direction, one direction, or there

are two directions, respectively, in which a line meetinj]^

the curve in an infinitely distant point may be drawn

through the origin, according as

iP-^^is <0, =0, or >0;
and hence,

if J?^ — AB < 0, equation (1) represents an ellipse,

if iP — AB — 0^ equation (1) represents a parabola,

if ff^ — AB>0^ equation (1) represents an hyperbola.

178. Center of a conic section. As already defined (Arts.

Ill, 117, 120), the center of a curve is a point such that all

chords of the curve passing through it are bisected by it.

It has also been shown that such a point exists for the

ellipse and hyperbola, i,e., that these are central conies.

If the equation of the conic is given in the form

Ax^-h2ffxj/ + Bi/^-{'2Gx+2Fi/-\- C=0, . (1)

the necessary and sufficient condition that the origin is at

the center, is 6!^ = and ^=0.
For if the origin be at the center, and (zj, yj) be any

given point on the locus of equation (1), then (-arj, i/j)

must also be on this locus (because these two points are on

a straight line through the origin and equidistant from it);

hence the coordinates of each of these points satisfy equa-

tion (1),

t.e., Ax^* + 2 Ex^i -f %!» -^2ax^ + 2 Fyj -f C= 0, . (2)
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unci il(-J?i)« + 2i7(-j»,)(-y,)

+ i^(-yi)« + 2a(-*i) + 2i'(-y|)+C-0; (8)

ml (H|uation (8) may be writt4}n thiui:

.4jr,« + 2ifojy, + J?y,«-2(fe,-^iVl+C-0. . (4)

Sulitroetiug equation (4) from equation (2) gives

4asti + 4i>|-0;

t.#M ^jTi + lVi-O. (6)

But equation (5) is to be satiafied by the cuordinate« x^

and y, of every point on the Iocuh of e<ination (1), and the

nei*(>HMary and sufficient conditions for this are

6^*0 and i'sO.

179. Transformation of the equation of a conic to parallel

axes through its center. I^t the equation of the given

•nic be

il2«+2JJxy4-i?y*-h2(7ar + 2JF'y+e=0, . (1)

11(1 let the coordinates of its center be a and fi. Then to

tninsfonn equation (1) to parallel axes through the point

I, /9) it is only necessary to substitute in that equation

> 4- a and y' -¥ for x and y. This sulwtitution gives

/irr' 4- a )« + 2 /rcx' + axy + /8) + B(y + /?)«

+ 2 G^Cy +a)4- 21'(y' +/9)+ C=0;

Ax^ + 2/rxy + By^-^2x'(iAa -^ffff+G)

+ 2y'(^a + B^4-F) + v4a« + 2 Ha/3 4- Bfi^

+ 2Ga-^2Fl3'^V^0, ... (2)

Since a and are the coordinates of the center (Art. 178),

Aa + E0+G:=>O and ffa-^-B0 + F=»O; . (8)

• It Is to be noted liora that the new afaeohite tens, U., the term five from
I Mitl ir' In equation (S), may be obtaliMd Iqr subsUtuUng • and fi for z and

y in Uie flnt luember of equation (1).
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solving these equations gives

which are the coordinates of the center of the locus of

equation (1).

The constant term in equation (2) is,

= a(^Aa '\-Hp+ G^ + ffC^a + B0 -\- F)+ Ga + Fff + C,

=: Ga -h FjS -h C, [by virtue of equations (3)] . . (5)

ABC-{- 2 FGff- AF'-BG^- Cm^ A .g.

H^ - AB U^ - AB' ^ ^

wherein

A = ABC-\- 2FGH- AF^ - BG^ - Cm (cf. Art. 67).

Equations (4) show that the center of the locus of equa-

tion (1) is a definite point, at a finite distance from th(

origin, if ff^ — AB^O, but that the coordinates of this

center become infinite if ff^ — AB =0. Hence (cf. Art.

177), while the ellipse and hyperbola each have a definite

jQnite center, the parabola may be regarded as having ;•

center at infinity.

By making use of equations (3) and (6), equation (2)

may be written

Ar" + 2 ffx'y' + By'-'' - ji^tAB ^^' ' ' ^"^^

hence, if the general equation of an ellipse or hyperbola 1)

transformed to parallel axes through the center of the coni(

.

the coefficients of the quadratic terms remain unchanged,

I
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tluNM) of the firnt degree termii vanbh, and Uie new aliaoluU

toriii beoouMW 4
""

//» - AB'

NoTK. Two tpedil omm should be noted -

1) K(]UJitiuii (It) tbowt ih«i if A « 0, Um Iocim of MiQAtion (1) eoa

Uu uf two tnugbt Hum through the now origin (of. Art. 07).

2) TIm point (a, /3) U the tnl«nootkNi of the two itrmight Uiim

i4X + Hy + (7 - tad Ax 4 Bf 4- F a (cf. oq. (3) abotm)

If 4= (; = 7* ^h«n ^1>M6 UoM are oolneident (Art 88, (fi)), and the

oourdinatM a and /3 become indeterminate. In this caee, it may
be shown that A = 0; that the locua of equation (1) oonaiaUi of two

lines parallel to, on opposite sides of, and equidistant from, the lin.

Ax -¥ iijf + (f s 0; hence any point of the Utter line may be eoosidersd

as a center, since chords drawn through such a point are biaseted by it,

U^ the curve has a iine of centers. Again, since ff*- AB = 0, this

locus may be considered a special form of a parabola.

18

fc was I

18a The invariants A-^B and Ji* - AB. In Art. 175 it

shown that a transformation of coimlinates by rotating

axes through an angle $ changes the ooeflSeients oi the

tion

Ac« + 2irry + ^^ + 2(7x + 2/V+^-0^ • O)
with the exception of the constant tenn. It is true, how-

ever, that certain functions of these coefficients are not

tlumged by this transformation, e.g,y the sum ^ + B of tlie

ccxMlicients of the j* and ^ terms is the same after trans-

format iun as before. If the transfonueil equation be written

yrx» + 2iir'xyH-ir/ + 2(3f'x + 2i^y+e-0, . (2)

wherein, as in Art. 175,

ii'H^cofl^^ + 2J78in^cos^ + B8iu*^, . (3)

2^a>^sin*^-2ir8in^cos^-f-^cos^^, . (4)

and 2iy' = 2J7co62d-(^-^)ain2^, C^)
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then the addition of equations (3) and (4)

gives A' + B' = A + B (since sin' 6 + cos* ^ e= 1). (6)

Again, ^'-^ - 2ir8in2^-f (^ - J5)co82^ . . (7)

hence »

(^' - ^)« + 4 ff'^ = j(^ - ^)2 4- 4 iPj (sin» 2 0-\- cos« 2 6),

= (^-^)2 + 4^, . . . (H)

i.e., A^-^AB + B'^'^4ff'^ = A^--2AB-hB^ + ^IP'

But by (6),
^'2 + 2^'J?'+^'2 = ^« + 2^if4-J52i

hence, by subtraction,

ira - ^ B = jr« - ^B, ... (9)

and the function H^ — AB is also unchanged by the trans-

formation of coordinates, through the angle 6. Moreover,

if a transformation of coordinates to a new origin be per-

formed as in Art. 179, A, B, and if are not changed,

nor, therefore, the functions A-hB and H^ — AB. Such

functions of the coefficients, which do not vary when the

transformations of Arts. 175 and 179 are performed, arc

called invariants of the equation for those transformations.

If, as in Art. 175, ^ be chosen so that

tan2^ = -^^, . . . (10)

then ZT' = 0, and equation (9) becomes

-A'B'=-ff^'-AB. . . . Cll)

2ff
Again, from eq. (10), sin 2 ^ =

and cos 2 ^ s

V(A-^)» + 4J^
A-B

V(X=i?7Trs^'

hence, equation (8), A'-B'= ^ ^^ . . (12)
sin ^ u ^_

Since sin 2 ^ is positive (Art. 175), therefore the sign o|H
A* — B* is the same as the sign of if.

I
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I

Thetto resulU mr« UMfol in reducing an equation of a conic

I iU simiilent standard form, as will bo illustrated in the

lullowing article.

18L To reduce to Its timplett standard form the giiral eqiiaUoo

af A cook. u. Central comie, 1 ho result of Art. XHO snablM ouc to

to iU ticplwl form a giren eqiuUioo of the seeoud degree, hi

MM //«-. J/?^0,miieh more eaiUjr than bjr the msChod ol Art. 17A.

: tlto eqnaUou of the oonie,

v4x« + 2 77x5 + Bg* + 2 C;^ + 2 Fy + C = 0, (!)

be flrtt traoeformed to tbe center of the cunre m origin, the nseolting

equation beoomee (Art. 170)

i«x< + 2//xf + /l5<+Csa ... (2)

ttion (2) be

: •rmed to

.t" end OT'. making
o angle $ with aX*
d or, reepeotively,

ftuoh that

will beoome( Art. 175)

*«+B'jr«+C=iO, (3)

}iereui the new
c.onta are easily detei^

mill* <i hy the relations

. .4_.

(Art 17P),<

il' + jy^rj +^
and ^AB^H'^AB

(Art. 180).

ExAMpLB. Suppose the giren equation to bs

8s* + 2xy + 3f< - lOf + 90 s (V

which i4 « 3, // =1 1, B = 3. {7 a 0, f*= - 8» and C
i iten if* - JB s ~ 8, and the loeoe is an eUipee.

no. HI

W



804 A^ALirW GEOMETRY [Cii. Xll.

The oodrdinatefl of the center are a= ^1, ^=3.

Therefore. C = C;a+F/3+ C= -4; /l' + B' = 6, -^'5'=-8;

and, since A' is larger than By H being positive (Art. 18U),

hence ^' = 4, J5' = 2;

while tan 2 ^ = oo , and therefore ^=45^ The transformed equation is

therefore

4x« + 2y«-4 = 0,

*.«., 1+2=^' • • • ^^^

when referred to the axes (yX"y(yT'\ and the locus is approximately as

given in Fig. 122.

h. Non-central conic. \i H^ — AB = 0, the relations of equations (6)

and (11), Art. 180, may still be used to simplify the reduction of equa-

tion (1) to the standard form for the equation of a parabola, if, as in

Art. 170, the xy-term be removed first. In this case, however, a better

method of reduction is as follows

:

Since the first three terms of equation (1) form a perfect square, that

equation may be written

(>/Tx+ V5*y)2 + 2C?x + 2/y+C = . . . (6)

wherein the sign of the VB is the same as that of //.

Equation (2) may now be transformed to new axes OX' and OV^
which are so chosen that the equation of OX' referred to the given axes

shall be

VAx-\- VBy = 0;

hence, if tf be the angle between OX and OX', then

tan tf = -^ whence sin g =

-

=1^^^ and cosg =—^^H— . (7)
y/B VA +B y/A+B

Equation (7) shows that $ is negative (if the positive value of VA + B
be used), and acute or obtuse according as VB is positive or negative.

The formulas for transforming to the new axes are (cf. Art. 72)

» =-^.' + -^,'and, =^;^y+-^=y. . (8)
y/A-^B Va -\-B y/A+B y/A + B

Substituting these values for x and y in equation (6), it becomes

(A+B'\^ + -'^^f2a^ + 2
GVA+FVB^^C = 0. . (9)

y/ATB VA+B
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lly dirkUng equaUon (0) by {A 4 B). eomptortng Um
y'*t«rio«, and iniiis|iutiiig, it may b« wriUen in Um form

B - FVJ
j J. ,

(Gy/l ! Fv1!)« - CjA !>)• ?

I + B)i ' 2(.4 + B)i(/;VB - /v;i)

6VB

of Um

(10)

( .. .

J
i ,

- .Min.-ttion (10) with equation [42] (Art, 106), it ia iwrii mai
th«< !• i.^tli of titr l.itu>« rectum, aa well at the coOrdinatM of the vortaz

and focus (with refereooe to the axoa OX* and OT), and other impor-

tant facta, may be read directly from the equation.

The advantage of equation (10), over that reuniting from the redoetioa

of Ex. 2, Art. 170, ia that, in connection with equation (7), it givea all the

facU neoettary for the immediate location of the cunre, and givea thoae

facta in terma of the coeAcieota of the original equation.

ExAMfLB. I^et it be required to determine the petition and parametf

of the paraboU represented by the equation19 x« - 24 xy + 16y« - 18x - 101 y + 10 = a
The given equation may be writ*

(8x-4y)*-18x-101y + 10sa
If the line 8x-4y=0 be choeen

x'-axia, then tan ^ = f,
whence

rintf = -|, and ooa^ = -f The
lormulaa of tranaformation then

5 5

8ubatituting theee valuea in equik

lion (1), it becoroea

25y'« + 70y' = -75x'-19;
thin equation majf be written

(y + j)« = -»(''-i). " ^^
which nhnwn that the latua rectum ia 8, and the oodrdinates of the vertex

and focus (with reference to the new axea) are, raepectively, i» -{ and
" 1^ ~ i' '^ <^^ shows that the axia of the cunre b parallel to the

negative end of the x'-axts.

Recalling the remark about the angle $ determined by equations (7)

above, it is seen that the geometrio repreeentatiou of the above equatioa

ia shown in Fig. 128.

TAX. AX. OBOM.— 90
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182. Summary. It has been shown in the preceding

articles that every equation of the second degree in two

variables represents a conic section, whether the axes are

oblique or rectangular ; and that its species and position

depend upon the values of the coefficients of the equation.

The various criteria of the nature of the conic represented

by such an equation, in rectangular cod'rdinates^ appear in

the following table :

The General Equation of the Second Degree

A = ABC+2FGH- AF^ - BO^ - Cm
I. n^- AB< 0. The ellipse.

(1) if ^ = j5, and J5r= 0, a circle.

(2) if A is +, imaginary.

(3) if A is -, real.

(4) if A is 0, a pair of imaginary straight lines,

or, a point.

II. m-AB = 0. The parabola.

(1) if iT is +, axis is the new y-axis.

(2) if ^ is — , axis is the new a:-axis.

(8) if A is 0, pair of parallel straight lines, which

are real and different, real and coincident,

or imaginary, according as G^ — AC >^
= , or <0.

III. m-'AB>0, The hyperbola.

(1) if -A = — ^, a rectangular hyperbola.

(2) if A is +1 principal axis is the new y-axis.

(3) if A is — , principal axis is the new a:-axis.

(4) if A is 0, a pair of real intersecting straight

lines.
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NoTK. TIm above rwulu hav* Doi aU bMn ibowii, Iwt tra mmUj
• l«auceU from Ute work Alrvaily giv«o. Thus the loeus of eqiuUkm (3),

Art. 181, if an ellipM, b imafciiiary if C U - ; bat, by winaikm (0), Aft.

179» r la - U A U •)• ; bMMO tha tail I (2), givao abova. And ao lor

Iba otbar taata, which tba atodaot abould rarif/. Tba aogla $ wbiab

tba naw azaa naka with tba old, raapaeUvaly, ia eboiao aa in Art. 17&,

Stf Willi? takaii always iMMitir«s and not graaier than 180^.

183. The equatioa of a conic through given points. The

guiiorul oiiuatiuu uf a cunic may be written

At«-h2iCry + -fiy* + 2(?x + 2iV+(7-0, . (1)

and containa five parametera, the five ratioe between the

ooefllicienta A^ A By G^ f, C, Since five equations, or con-

ditions, will determine those parameters, in general five

ix>ints will determine a conic. That is, in general, a comic

may he made to pose through five^ and onlu /fft«, ffi»en

points.

If, however, the conic is to be a parabola, one equation is

f' ' - AB ^Oy henoe only four additional con*

led. In general, a parabola may he made ic

y
:'t four points^ Cfdy,

A circle has two conditions given, viz. A^ B^ ff^O;

till nfore, in general, a circle may he made to pau ikrougk

three points^ only,

A [Niir of straight lines has one condition given, A » ;

therefore, in general, a pair of straight lines may he made

to pass through four points^ only,

Tlie method to be followed in obtaining the equation of

the requiretl conic has been used in Art. 80, and may be

indicate<l for finding the equation of the parabola through

four given points,

P^ =(Xp y^h Pt s(x... .7, u P, =(r,. jf,), and P^ =(x^, y^).

The ei|uutiuu must be of the form (1),
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therefore, Ar,«+ 2 Hx^^ + By^-^-^Gh^^^ Fy^ + C"- 0,

Ax^^-\-2Ux^^^By^'\-2 ax^-^2Fy^-{-C=:0,

Ax^^-h2IIx^^+ Byj'+2 Gx^-h2Fy^+C=0,

Ax^^'^2Ex^^-^By^^+2Gx^+ 2Fy,-^C=0;

alao, ff^-AB^O.

The required ratios between the coefficients of equation

(1) may be found from these equations.

EXAMPLES ON CHAPTER XII

Without transforming the equations to other axes, find the center

or the vertex, the axes, and the nature of the following conies:

1. x« + 6ary + y2 + 8x-.20y + 15 = 0;

2. (x-y)2 + 2x-y = l;

3. 3z« + 2y2_2x + y-l = 0;

4. 3x« - 8xy - 3y« + X + 17 y - 10 = 0;

5. 4x* — 4xy + y* + 4ax — 2ay s=0;

6. 5x« + 2xy + 5y« = 0;

7. 3x« + 3y2 + iix-5y + 7=0;
8. x« + 2xy-y« + 8x + 4y--8 = 0;

9. y2-a:y-6x2 + y-3x = 0;

10. y2-.ary-5x + 5y = 0.

Trace the following conies :

11. 3x« + 2xy + 3y2-16y + 23 = 0;

12. lx2 + 9y2 + 8x + 30y + 4 =0;
13. 3x«-3y2 + 8xy-10y + 0x + 5=:0;

14. (x~y)(x-y-6)+9 = 0.

15. What conic is determined by the points (0, 8), (1, 0), (2, 1),

(-1,-3), and (3, -3)?

16. Find the equation of the parabola through the points (3, 2),

(l.i). (-6,8),and(-2, 5).

17. Find the equation of the conic through the points (9, 2), (0, 3),

(3, 2), (1, -2), (2, 1).



CHAPTER XIII

HIOHBR PLAn CURYBS

IM. DefinidoBt. A ounre, in CMlattmn oofirdinatat, whoM
I

nut ion in reducible to a finito number of terms, each iuvolv-

/ nly poHitive integer powers of the coordinates, is called

ail algebraic curve ; all other curves are called tranacendental

curves.

Algebraic curves the degree of whose equations exceeds

^ o, and all transcendental corves, are (if they lie wholly in

{ilane) caUed higher plane curres* On account of their

I'oat historical intereMt, and because of their frequent ose

I the Calculus, a few of these curves will be examined in

tiie present chapter.

I. Air.EBRAIC CURVIB

185. The dssoid of Diodes.* The ciasoid may be defined

follows : let OFAK be a fixed circle of radius a, OA a

• This curve wm lovenUHl, by a Greek mathemattctin ommed Diodes, for

tlie purpoee of olTlng the celebrated problem of the inaertioii of two mean
'oportionals between two giTenetnight lines. The sohitlon of this pvoblsM
rrles with it the solution of the even more fiunoas DsUaa pfoWsui of ood-

n? a cube wboee volume shall be equal to two times the vohune of a
tbr. For, let a be the edge of the giren cube ; construet the two

ill* rtlooalsx and y between a and Sa; then o:X! :x :|r!:| :Sfl,
^

'

S • 0*, t«., X b the edge of the required cube. If a a l, thea

. hence the Insertion of two mean proportloosli snabiss obs to oon-

^ line equal to the cube root of S. The elswld amj also be amploysd
tract a line equal to the cube root of any given number (see Klein,

- ometrie, 8. 36, or the English transUtion bj

I

itirely known Just whsB DIoeles Hved ; It Is reiy probaMty
sas in the last half of the ssoood esntniy ».c
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diameter, AT ti tangent ; draw any lino as OQS through 0,

meeting the circle in Q and the tangent in S^ and on this

line lay off the distance OP = QS : the locus of the point

P, as the line OS revolves about 0, is the cissoid. *

From this definition, the equation of the cissoid, referred

to the rectangular axes OX and OF, is readily derived.

Let the coordinates of P be x

and y, and let C be the center

of the circle so tliat

OC^CA= CK=a.

Since triangles OMP and

ONQ are similar,

.'.MP:OM::NQ: OiVT, . (1)

and since OP = QS\ therefore

NA = OM = X ; moreover,

Substituting these values in

equation (1) gives

• • (2)

(3)whence

z: : V(2a-a;>:(2a-a;),

a — X

which b the required rectangular equation of the cissoid.

The definition of the cissoid, as well as the equation just

derived, shows that the curve is symmetric with regard to

• Diocles named his curve * cissoid'* (from a Greek word meaning

"ivy," because of its resemblance to a vine climbing upwards. The name

"cissoid'' is sometimes, though rarely, applied to other curves which are

generated as stated in the definition given above, except that some other

basic curve is employed instead of a circle. For other, but equivalent, defini-

tions of the cissoid see Note 3, below.
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the asaxis ; that it lies wholly between the jf-axia and the

lino X mm2a; tlmt it paiHieM through the extrviuities Fmud K
<i the diameter perpendicular to OA ; and tliat it haa two

iifinite branobea to each of which the line x^^a ia an

isyuiptote.

Note 1. The poUr equaUon of the datold raferrMl to tho Initial Um
'.Y. and pole O, b abo eiuily found. Lei the polar oourdinalee of P be

/i and $\ then,

pmOP^QSmOS^OQ, . (4)

l.ui 05 = 2a Mo^ and OQ a 3aooe6l

^ B 2a aeo^ - 2aooe^ K 2a(aeetf - eoa^,

U^ p-2aiMXi$9\n$,. • (&)

which is the polar equation lougbL

XoTB 2. To ** duplicate the cube** bj meaof of the ciaeoid,* eztood
' K to //, makuig UK = CK = a, draw the line UA cutting the ctaaoid

> J, and draw the ordinate BJ. Since CU s 2 C/4 , therefore EJm2EA,
ut from equation (3),

^ EA \EJ*

.-. Rr = 2OT'. ...(«)
^ .nren cube, and let it be required to

i K) on n ahall be equal to the double ol

the cube on m. Construct n so that

OE'.EJ'.:m'.n\

then (5B*:Ky* = in«:n«,

and, stnee JS7* s 2. dS*, therefore n* s 2iii«.

Note 3. The ciasoid may also be deflnad in oHher of the following

ways: (1) as the locus of the point {P) in which the ehord OQS inter-

'^'Hsts that ordinate {ML) uf the circle which is equal to NQ\ and (2) a«

lie locus of the foot of the perpendicular let fall from the rertez of a

;
ireboU upon a tangent The deriration of the eqoatioo of the

laed upon these definitions is left as an ezereise for tha

• Td hiaen two mean propottloQalB between two ghren IIom by
).e cUsold. See Ckntor, Qeeoblobta der Maihrmaiik, Bd. L, & S3i
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For Xewton'8 mctlRHl uC drawing the cirsoid by contitnious motion,

see Salmon's Higher Tlune Curves, p. 183, or Lardner's Algebraio

Geometry, p. 196.

186. The conchoid of Nicomedes.* The conchoid may be

deliiied as follows : Let PUP' Q be a given circle of radius

a whose center S moves along a fixed straight line OX ; lei

LK be a straight line drawn through a fixed point A and

the center ^S^ of this moving circle, and let P and P' be the

intersections of this line and the circle ; then the locus

traced by P (and by P'^ as S moves along OX is a conchoid.

1'

—X

Fio. 126

This definition may also be stated thus : If ^ is a fixed

point, OX a fixed line, and S the point in which OX is

intersected by a line LK revolving about -4, then the locu-

of a point P on XJT, so taken that SP is always equal to a

given constant a, is a conchoid.

The fixed j)oint A is called the pole, the constant parameter

a the modulus, and the fixed line OX the directrix of the

conchoid.

• The coitc'ioid wa« invented by a Greek matbeuiatician named Nicomedcs

probably in the second century b.c. Like the cissoid, it was invented for tlx

purpose of solving the famous problem of the "duplication of the cube''; i'

is, however, easily applied to the solution of the related, and no less famnuK,

problem of the trisection of a given angle (see Note 3, below).
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To derive the rectangular equation uf tlie conchoid draw

AOY perpendicular* and AH parallvl, to OX, and let OA»e\
l»t Pm(x^y) be any position of the gencratin^^ I>oint« and

iraw the ordinate JIMP; then* from the aimilar thanglat

AHP and SJIP,
AH I HP I, SM I MP,

[ainoe SM^^SI^ - MJ^ - V?^^:^*),

whence «*^ - (y •• <?)*(<»* - y*)«

which ia the equation sought.

The definition of the conchoid, as well aa the equation just

derived, shows that the curve ia symmetrio with regard to

the jf-axis ; that it lies wholly between the two lines y >

«

and y M — a ; and that it has four infinite branohet to each

f which the z-axis is an asymptote.*

NoTR 1. The polar equation of the ooochoid. Let A be Uio pole, A ¥
initial line, and I's(p, 0) (or P) any position of the ftnsrating

•int; then
p'=AP = AS±SP^ OA*M>e$± SP,

p r=caee^±a,

\^ ion.

..v.... _. .1 may also be readily eonstmetod b]r eootinoous

motion as follows : By means of a slot in a mler, fitting over a pin at A,

the motion of the line LK is properly controlled ; if now a guide pin st

S, and a tracing point at P^ be attached to this ruler, then the point P
- ill trace out the conchoid wtien the guide point 5 is moved along the

le OX.

Note 3. By means of a conchoid, any given angle may be triseeied.f

i^t ABC be any angle, on one side {BA) take any distanoe, as BH, and

•It Is evident that. If ilO< OB, U., if c<a, theenrvehassaoval below

1 as shown inFlg.lS6; If e = a, this oval doses up to a polat ; and if c>a,
both parts of the curve lie wholly sbovs A*

t For the Insertion of tvro meaa propoftkaisls between two given lines by

nesns of the oonchoid, see Cantor, Gesohtebls dar Mstlwmstilr, Bd. L,



814 ANALYTIC GEUMETUY [Cu. WIL

draw OHX perpendicular to the other side of the angle {BC) ; titeii lay

off OK =: IBHy and couHtruct the conchoid KEF with H as pole and

2 BU = OK as modulus, and OX as directrix. Draw UL parallel to BC
and counact J3 with L, then the angle LBC.=i\ABC\ for, join />, the

Fio. 126.

middle point of ML, to //, then A/A = 0K = 2BH = 2 HD, and the

three angles marked a are all equal, as are also the two marked /S; more«

over, /3 = 2 a, being the exterior angle of the triangle HLD, which proves

that angle LBC = \ABC.

187. The witch of Agnesi.* The witch may be defined as

follows : Let OKAQ be a given fixed

circle of radius a, OA a diameter, and Q
any point on the circle ; if now the ordi-

nate MQ be produced to P, so that

MQ: MP, I MA I OA, (1)

then the locus of -P, as Q moves around

the circle, is the witch. To derive the

rectangular equation of the witch, let

P = (a:, y) be any point on the curve

;

then, since

MQ = ^OM'MA= Va:(2a-a:),

• The witch was invented by Donna Maria Gaetana Agne«i (1718-1790),

an Italian lady who was appointed profeasor of mathematics at the University

of Bologna, in 1750.
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iiUtituting in equation (1) gives

Vj;(2a - jr) :y :: (2a -O : 2a, ... (2)

which ifl the equation sought.

The* definition of the witcli, as well as the equation just

derived, shows that the curve is symmetrical with regard to

the r-axis; that it lies wholly between the jf-axis and the

line f Mi 2 a ; and that it has two infinite branches to each of

which the line x 2 a is an asymptote.

186. The lemniscate of Bernouilli.* The lemniscate may
defined as follows: let LTARNA'K be a rectangolar

)rbola, its center, OJTand OF its axes, and TB^ tau-

mt to the curve at any point T. Also let OG be a perpen-

mlar from the center \x\x>n this tangent, and let P be the

it of their intersection ; then the locus of P as T moves

»ng the hyperbola is called the lemniscate.

To derive the rectangular equation of this curve, let

a, and let the coordinates of T\^ x^ and |f| ; then the

[uation of tlie tangent TE is

ice the equation of OG^ the per{)endicular upon this tan-

it (Art. 62), is

• The lemniarate wm Invented by Jae(|iiet BernoailU (10M>1706), a nolad

mathematician and profoMor In the Univvnity of Baale. It te, how-

'^Ter, only a special oaae of tlie Cartnlan oTala ; tIs., of the loeoa of the f<er-

X of a triangla wboie baw la ghrso In lenfth and pacition« and the prodoet

o( whose other two ddea is a constant See Salmon's Higher Plaae CWfSi,
p. 44, Gregory's Bnmplea, or Cramer's Intiodoolloii to Um Aaslyrii of
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Regarding equations (1) and (2) as simultaneous, the

and y involved arc the coordinates of the point F ; more-

over, since the point Ts(Xyi/{) is on the hyperbola, tlierefor

Eliminating x^ and y^ between equations (1), (2), and (»^)

gives

which is, therefore, the equation sought.

/

The definition of the lemniscate, as well as the equation

just derived, shows that the curve is symmetrical witli

regard to both coordinate axes ; that it lies wholly betwe*

the two lines whose equations are x = — a and a; = + a ; that

it passes through the origin and the two points (—a, 0) and

(4- a, 0); and that y is never larger than x\ hence tli<'

lemniscate is a limited closed curve as represented in Fig. 12

Note 1. The polar equation of the lemniscate is easily derived from

equation (4) if the x-axis be chosen as initial line and the origin as pole

;
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•r then s m p9tm$ ftiid jr < pftiii 9, uA •qoalloa (4) st cntm f^mum to

^ « a«(eQfl*# - tin^^)- «>om3^. (5)

which U th«*r(*foi« the roquirvd poUr eqiuUioit of Um Itmoitetla.

K4]tuition (5) fthowi \h»i: when Bm%pm±a\ wImo #< 4M, |i hat
Ao (N|ual but oppcMita valiiet, «ieh of whieh is mmIWt Uian a; vImb

e> a 4ft", p a 0, i.«n ^^ Migle whieh the eunrt nakw with tlie Initial IIm
i« 450; when 45<*<^<lS5^pb iouigiiiary ; whmi 135 <tf< 180*,phM
two equal but opposite Taloei, each of wbioh it tmallM' than a ; ftod whan
3 18(r, p a i: a. The eunre, therefore, eoutitla of two oraltiMaliiifia

'. each lying in the tame angle between the aiymptotee of the hyperbola

a« does the ooireeponding branch of that oonre^ mod theM aqriBpColM um
tangent to the lemnisoale at the point 0.

^L Hots 2. If the two pointa F, and F be ao located thai

^H0« 0Fa^>/3; and if 5s(x, f) be any point on the

F5-^(^V5-x)%y«,

F,S>PS « V(5^ + ')'+y* • V(|^- ')*+ 1^

= V('*+»'>*-«*<**-^ + i"y [byeq. (4)J.

V, F,5.F5 = ^
' the loeuA of a |x)tnt which

t oin two fixtnl |ioiiiU id con-

•4nt, and the square of half the dktaoce between the fixed

j>«iinU (cf. L'^'v-ww;. . p. 315).

Thifl definition of the cunre easily leads to the equation already

1 rived; it also enables one to readily eonstmci the cunre thus: wUh
/' as center, and any conTenient radius F5, describe an are; then, with

h\ as center, and a thini proportional to FS and OF as radius, describe

another arc cutting the first in 5; thia intersection 5 is a point on the

xTus, and as many poiuU as desiivd way be contlraeled in the mam
%»sy
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Fio.120

189 /. The limacon of Pascal.* The limaQon uuiy be defined

as generated from a circle by adding a constant length t.

each of the radii vectort

drawn from a point on it

circumference as origin,

—

proper account being taken

of negative radii vectores.f

E.g.^ let OLA^NhQ a given

circle of radius a, any

point on it, A^A = h any

constant ; then if any

radius vector as OPj be

drawn from 0, and P^P
= A^A c= A: be added to

it, then P is a point on the limacon ; and as Pj is made to

describe a circle, P will trace the limagon.

The polar equation of the curve is at once written down
from this definition ; for, if the diameter OCX be taken as

initial line, then the polar equation of the circle is

/) = 2acos^, . . . (1)

whence the polar equation of the limaQon is

/) = 2acos^ + ^. ... (2)

If A: be taken equal to a, the radius of the given circh .

this equation may be written in the more common form

/) = a(l + 2co8^). . . . (n)

* This curve was Invented and named by Blaise Pascal (1623-16^*2),

celebrated French geometrician and philosopher. It is, however, a special

case of the so-called Cartesian ovals.

\ Tin lima^nn may also be defined as the locus of the intersection of tl

two lines OP and CP which are so related during their revolution about <>

and C, respectively, that the angle XCP is always equal to | times the angl*;

XOP. This definition easily leads to the polar equation already derived.
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The definition of the limavon, m well m the equation jti«t

•lerivoil, nhuwii that the curve in •ymmetrical with regard to

thu initial Hne^ and tliat it Ium the form shown in Fig. 129.

Note. Tho reetanguUr aquiUiou of ibo 1111111900 for which Ir a a te

uiily derivod from 0qQatioa (S). ChootioK Um Initial Hoa otid a ptrpMH
.iiouUr to it through O as rsslangnlar axosi to thai gmpcm$, and

y a ptin $t equation (3)

>

Rationalising equation (4) gives

(x« + y«-.2ax)« = at(^ + f«). ... (5)

which is the usual fonn for the rectangular equation of the lime^on.

280^. The cardioid. The oardioid may be defined aa a

(tecial case of the lima^on ; viz., it is a lima^n in which

he constant Ar, which is added to each of the radii vectorea,

^ taken equal to the diameter of the fundamental circle.

it ill the equation of the limavon [Art. 189a, equation (2)]

!ie constant k be taken equal to 2 a, that equation becomes

P p-2a(l + cos^, . 0)
which is the polar equation of the cardioid.

Tho more usual form in which the equation of ilic latuioid

IS written is r^ ,^ ^_ p-2a(l-cosO, . . (2)

^Hit this amounts merely to turning the figure thnnigh 180^

Hft its own plane.

Note 1. The rectangular equation of the 1

K Otrdloid is obtained as in Art. I880.

" IlLi(x« + y« + 2ax)« = 4oHx<+y«). (3)

The cunre represented by equations (2)

and (3) has the form Rhowti in Fig. laa ~^{ fdi—N^ jf
The cardioid is unuslly defined as the

•ouA traced by a point on a giTen circle

1^.1 |iU which rolls on an equal but ftzad

rclf« OMAyH. Tht4 definition ah» leads lo

oqumtious (2) and (t) already derhred.
'^

^



820 ANALYTIC GEOMETRY [Ch. XIII.

190. The Neilian, or semi-cubical, parabola.* This curve

may be defined an followH ; let HTASKL be a given parab-

ola whose equation is

ya = 4jt?a;; . . . (1)

let TMS be any double ordinate of

the curve, TTj a tangent at the point

T=(x^^ ^i), and AQ?l perpendicular

from the vertex upon this tangent

;

/ '\\J if QA intersects TS in P, then tlie

^
locus of P as ^ moves along the

parabola is called a semi-cubical or

Neilian parabola.

Its rectangular equation is derived as follows : the equa-

tion of TT^ is

yi^ = 2^^ + ajj), ... (2)

hence the equation of AQ \^

Fio.131

^=-ft^-
(3)

The equation of TS is

x^x,. ... (4)

If now equations (3) and (4) be regarded as simultaneous,

then X and y tire the coordinates of the point P in which the

two lines intersect, and if x^ and y^ be eliminated by means

of the equation

Vi^^P^v • • • (5)

an equation connecting x and y is obtained.

* This curve is historically interesting, because it is the first one which

was rectified^ t'.«., it is the first one the length of an arc of which was
expressed in rectilinear unite. This celebrated rectification was performed,

without the aid of the modem Calculus methods, by William Neil, a pupil of

Wallis (see Cantor, Geschichte der Mathematik, Bd. II., S. 827), in 1657 ; the

cur\-e is therefore called the Neilian parabola. It is also called the semi-

eubical parabola because its equation may be written in the form y = az^.
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SiilMtitutiug fur J*! uii«l ^|, in cqimtioii (5), tlieir viiliiet in

wnwA of X and y a« found from equationii (8) and (4), gives

-^5^ = 4/w,

i.«.

•-F-
(6)

which ia tho equation Bought.

TliiM equattiun shown that the curve panini through the

origin and is aymmethcal with regartl to the ar-axia; that

it lies wholly on the same aide of the y-axb aa does the

riven parabola; and that it baa two infinite branches.

n. TRANSCENDENTAL CURVES.*

191. The cydoid.t The cycloid (OPKA) is the path

1 1 .1. t(l by a j>oint P on the circumference of a circle {HNSP)

• A few Tcry oommoo traotoendfliital onrvaa haw alfaadj

in Chapter III ; among these are the eonre of liiMS, the onnrs of

and the loguithmlo cQire.

t Becuee of the elsfftiioe of lu propertiee, and beoauee of lie muDerooi
applicetione In mechanlce, the cycloid to the moHL Impoftant of the traneeea*

tentnl conree. It hat the added historical Intemt of befaig the ercood ewre
><u waa recuaed (of. Art. 100« foocnotr). lie rwtlllcatJoo was flm aoeoa-

Pltohed by Sir Christopher Wren (l(l&l-17:0) and pobltohed bj htan la leTS.

TAN. AN. OBOM. —SI
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which rolls, without sliding, upon a fixed right line (OX).

The point P is called the generating point; the circle PHNS,
the generating circle; the points and A^ the vertices; iho

line EK^ perpendicular to OA at its middle point, the axis;

and the line OA^ the base of the cycloid.

To derive the rectangular equation of the cycloid let a be

the radius of the generating circle, and OX the fixed straight

line on which it rolls ; also let P be the generating point,

and let PN8 be any position of the generating circle.

Draw the radius CP, the ordinate MP, the line PL parallel

to OX and the radius OH to the point of contact of the

generating circle and the line OX. Let OX and OY (the

perpendicular to it through 0) be chosen as axes, and let

e be the angle PCH.

Then, if P=(a:, y).

x= 0M= OH-ME
= OH-PL
= ad — a sin ^, [since OH= arc PH= aO] .

i.e., x = a(d—sin6). . . . (1)

Similarly, y = a(l — cos 6). , . . (2)

Solving equation (2) for 6 gives

cos d = ^,
a

%.€., e = cos"'(^^)= vers-'g) ;

and substituting this value of 6 in equation (1) gives

z = a vers-»r^V V2 ay - y\ ... (3;

which is the rectangular equation sought.
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k
0)*»a(2)Note 1. It U lutuUly ftimpler to ragard

wpmenting Um myeloid ; $ it Umi Um
f ara both fnaetioiit of it.

NoTK 2. The eyeloid bolooga to the kind of

Tlt««w cwrrm are geoenUod by a poiut whioh it inYarisbly

with A ourre whioh rolls, without iliding, upoo A girto fljMd

it both tho rolling and the tUod oonrw tiw eirtU*, than tho

'^nmni^d b dttignaled by th« gMiaril mom of trochoid. If thogMi*

w' point it on the cirem^femtet of the rolling drele, end lldt drele

>ii the outsidt of t fixed drole, then the eunre dtearibtd it ealled ea

•piqrcloid ; but if it rolls on thf« inside of the Used droit, the ftoertted

eunre it celled t hypocydoid. The oydoid may be regarded either at

tj) rpioydoid or a liy|>uc>'cloid, for which the flxtd drde hat lit eeol«
al infinity and an infinite radius.

192. The hTpocydoid. I^t the liypooyoloid APRST*''
Ih* tniced by the point P on the oircutnferenoa of the circle

PQHt whose radius is 6, uud which rolls uu the inside of the

Y
s

i:ed

circle AQE, whoee radius is a. Also let P (ae, jf)

any position of the jjeneratinjj point. Draw the line—
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line KP parallel to OA, where A is the point with which P
coincided when in its initial position. Let OAX and 0}\

the perpendicular to it throuft;h 0, be chosen as coordinate

axes; also let the angles AOQ, POQ and aPK be desig-

nated, respectively, by By & and 0.

Then OM^ OH -\- HM=- OU ^ KP

= OO'cos^ + PO'cos^^

= Oa cos d + pa cos (6' - 6),

[since <^ = ^' - ^]

f.«., a;= (a-6)cos^ + 6cos(^' -^). . . . (1)

But since arc AQ = Vivc PQ, therefore a6 = b6\ whence

$' =j6^ and equation (1) becomes
6

a: = (a - 6) cos^ -h 6 cos ^^
"" ^) ^

. ... (2)

Similarly, y =(a — 5) sin^ — ^sin ^^ ~ ^ . . . . (3)

Equations (2) and (3) are together the equations of the

hypocycloid. A single equation representing the same

curve may be found, as in the case of the cycloid (Art. 191),

by eliminating 6 between equations (2) and (3).

Note. If the radii of the circles be commensurable, i.e., if b equals a

fractional part of a, then the hypocycloid will be a closed curve ; but if

these radii are incommensurable, then the curve will not again pass

through the initial point A.

In particular, if a : 6 = 4 : 1, then the circumference of the fixed circle

is 4 times that of the rolling circle, and the hypocycloid becomes a closed

curve of four arches, as shown in Fig. 134. In this case, equations (2)

And (3) become, respectively,
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'.]and jf = f• tin tf - I a nin 3

But, by trigonometry,

Aod Still tf - tin 9 tf a 4ftiii«^,

bMoa •qoatiomi (4) bMome

jraaeot*^,
I

and Jf =s a tin* tf ; /

a**xt + y« I)

whleh it the oomiiion form ui Uie

fyjiiatioii of tbt Cour-outped bjrpooy-

8PIRAL8

19a A spiral is a tranaoendental curve traced by a point

whicli, while it revolves about a fixed point called the center,

•lao continually recedes from this center, according to some

definite law.

The portion of the spiral generated during one revolution

of the tracing point is called a spire ; and the circle whose

radius is the radius vector of the generating point at the

end of the first revolution is called the measuring drde of

the spiral. Thus, in Fig. 185, ABODE ia the measuring

oircle, OQSUWA is the first spire, and APHLN is the sec-

ond spire.

191. The spiral of Archimedes.f This curve is traced by

a point which moves about a tixtMl |>oint in a plane in such a

• If this equatkui be nUiomUised, It bcoooMB

Altbongb the hypoejeloid ie. In general, a tnmaoendental corre. It

ibraic for parttenUir Talnee of tbe tatlo of the nuiil of the drclee.

Tliit carve Is woaUy mppoaed to have been dieoofeied by
Its principal piopertlas waie iafsailgaiad hf the «o—ier «
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Fio. 136.

way that any two radii

vectores are in the same

ratio as are the angles tliey

make with the initial line.*

From this definition it

follows that the equation

of the curve is

p=^ke, . . . (1)

where A: is a constant.

This equation shows that

the locus passes through the origin, and that the radius

vector becomes larger and larger without limit as the num-

ber of revolutions increases without limit. Moreover, if

(pj. ^j) be any point on the curve, and if (pg, ^j + 27r) be

the corresponding point on the next spire, then

pj = kd^ and /jj = k(e^ -f- 2 tt),

whence /j^ = /»! + 2 Arw

;

but 2 Attt = OA^ hence the distance between the successive

points in which any radius vector meets the curve is constant

;

it is always equal to the radius of the measuring circle. This

follows also directly from the definition.

The locus of equation (1), for positive values of ^ is rep-

resented in Fig. 135 ; for negative values of 6 the locus is

symmetrical with the part already drawn, the axis of sym-

metry being the line LF.

195. The reciprocal or hyperbolic spiral. This curve is

traced by a point which moves about a fixed point in a

plane in such a way that any two radii vectores are in the

• Thla curve may also be defined thus : It is the path traced by a point

which moves away from the center with uniform linear velocity, while its

radius vector revolves about the center with uniform angular velocity.
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same ratio m the reoiprocala of Uia anglaa which ihty form

witli tiie initial Hnu.

From tliin detiuitiuu it fullowa tlimt Uio oqiiatiun uf the

urve [a

k

p-r 0)

wlu'ir K Is a i-Miist .lilt

I

I

Thin equation ahowa that the ourre hegins at infinitj

when ^ • and winda round and round the center, always

approaching it, but never quite reaching it ; §.#•« p only

after an infinite number of spirea have heen deacribecL

Equation (1) also ahowa that the constant k is the ciiv

umferenoe of the measuring circle. For the radius of the

tueasuring circle (Art. 198) is the radius vector of the gener-

ating (x)int of the curve at the end of tho first revolution^

I.e., when ^ a 2ir ; but, from equation (1), this radius vector

is ;;— , and the circumference of the circle of which this is
2w

the radius is k.

Again, if P
tion (1), then

(p, ^ be any point on the locus of equa-

pO^^k
wm circumference of measuring circle

;

but pB equals the length of the circu-

lar arc described with radius p and

subtending an angle ^, therefore the

length of any circular arc as HP,
•lescribed about 0, with radius p, and

extending from the initial line to

the curve, is equal to the circum-

ference of the measuring circle.

Tlie locus of equation (1), for positive values of ^, is

represented in Fig. 186.
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196. The parabolic spiral. This curve is traced by a

point which moves around a fixed point in a plane in such

a way that the squares of any two radii vectores are in the

same ratio as are the angles which they form with the

initial line.

From this definition it follows that the equation of the

•^"'^^
p'^ke, . . . (1)

where A; is a constant.

This equation shows that the curve begins at the center

when ^ = 0, winds round and round

this point, always receding from it,

the radius vector becoming infinite

when 6 becomes infinite, i.e., when

B it has described an infinite number

of spires.

The locus of equation (1), for

positive values of p, is represented
Fio.137 in Fig. 137.*

197. The lituus f or trumpet. This curve is traced by a

point which moves around a fixed point in a plane in such

a way that the squares of any two radii vectores are in the

same ratio as the reciprocals of the angles which they form

with the initial line.

From this definition it follows that the equation of the

curve is f^ "=
nr • • • (^)
o

where X; is a constant.

This equation shows that the curve begins at infinity,

when ^ = 0, and winds round and round the center, always

• See also Rice and Johnaon^s Differential Calculus, p. 307.

1 Thijtt curve was invented and named by Cotes, who died in 171A.
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approaching it, but nerer quit« reaohing it, ^«., ^ » onljr

aft45r an intinita number uf spires liave boen described.

The locus of equation (1) is shown in Fig. 188; the hbkrj

rto.188

le being the part of the locus obtaineil from the positive

lues of py while the dotted part belongs to the negatiTe

lues of p.

Note. Th« four spinds ju«t diaoimed, and wboM formt ara gltwi in

186 to 138i, aro all included under the moie gtnsral eaie of the aura
b7tb.«,uU>oa ^^^. .. (2)

N = 1, this Is the spiral of Archimedes; if m = - 1, it It the hjperbolk

; if n = I, it U the parabolic spiral; while ifaa-^Uialha
lUUfl.

19a The logarithmic spb-al.* Tliis curve is traoed hj a

»int which moves around a fixed point in a plane in aoch

• This conre might have beea deflmd bj Mjiag that the nMUns
In a feonMlrie ratio whOe the vedoriil angle Incrseew In aa

ratio. An important property of this eorre is (see McSIsIkni and
>r*s UUIerential Calculus* Art. ISO) that It cols aU the nuUi

same angle, and the tangvnt of this angle is the modolnsof the i

logarithms whloh the partktwlar iplial
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a way that the logarithms of any two radii vectores are in

the same ratio as are the angles which these lines form with

the initial line.

From this definition it follows that the equation of the

curve is

lo^psakOy , , . (1)

where ^ is a constant.

If A: be unity, and logarithms to the base a be employed,

this equation may be ^vTitten in the form

p = «'. ... (2)

This equation shows that if ^ = — oo, /) = 0; that p in-

creases from to 1, while

increases from — oo to

; and that p continues

to increase from 1 to oo,

while increases from

to + 00 ; the curve has,

therefore, an infinite number of spires.

If the constant a equals 2, then p takes the values •••^,
J,

1, 2, 4, 8, •••, when is assigned the values (in radians),

..., — 2, — 1, 0, 1, 2, 8, ••• ; Fig. 139 represents the locus of

equation (2), a being equal to 2, for values of from — 2 tt

to + 3. In this figure Z FOE =Z EGA =ZAOB=Z BOO
==.ZC0D^5r.S, and 0F^\, 0E=^^, OA^l, 0B=^%
f'^/=4, and 02>=8.

Fio.iao



PART II

BOLJD ANALYTIC OEOMETRY

CHAPTER I

C06RDIKATE STSTEMS. THE POIHT

199. 5>olid Analytic Geometry treats by analytic methoda

problems which concern figures in space, and therefore in-

volves three dimensions. It is evident that new systems of

oo5rdinates must be chosen* involving three variables ; and

that the analytic work will therefore be somewhat longer

than in the plane geometry. On the other hand, since a

plane may be considered as a special case of a solid where

one dimension has the particular value zero, it is to be

expected tliat the analytic work with three coordinate vari-

ables should be entirely consistent with that for two vari-

ables ; merely a simple extension of the hitter. The student

sliould not fail to notice this close analogy in all cases.

In the present chapter will bo connidered some Dimple and

useful systems of coordinates for duttirinining the position of

a point in space, some elementary problems concerning points,

and the transformations of coordinates from one system to

mother. Later chapten will treat briefly of surfaces, par*

ticularly of planes and of surboes of the second order« and

of the straight line.

m
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200. Rectangular coordinates. I^t three planes be given

fixed in space and perpendicular to each other,— the coordi-

nate planes XOY, YOZ, and

ZOX, They will intersect

by pairs in three lines, X'X^

yy, and Z'Z, also perpen-

dicular to each other, called

the coordinate axes. And
these three lines will meet

in a common point 0, called

the origin. Any three other

planes, LP, MP, and iVP,

parallel respectively to these

coordinate planes, will intersect in three lines, N'P^ L'P,

M'P^ which will be parallel respectively to the axes ; and

these three lines will meet in, and completely determine,

a point P in space. The directed distances N'P, L'P, and

M'P thus determined, i.e., the perpendicular distances of

the point P from the coordinate planes, are the rectangular

coordinates of the point P. They are represented respec-

tively by iF, y, and z. It is clear that

x^WP^LV =NW^OM\
y = L'P =MM' = LN' = ON;
z^M'P = NN' ^MU = OL.

It is generally convenient, however, to consider

x= 03f, y^MM', 2Lndz=M'P.
The point may be denoted by the symbol P =(x, y, z).

The axes may be directed at pleasure ; it is usual to take

the positive directions as shown in the figure. Then the

eight portions, or octants, into which space is divided by the

cocirdinate planes, will be distinguished completely by the

signs of the coordinates of points within them.
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If tlio chosen coordinate pljuiM were oblique to each

i , a iM5t of oblitiue eodrdinaies for any point in apaoe

....^.it bo fuuiul iu an entirely analogooa way.

I Unleea otlierwiae aUted, reoUngular oodrdinatea will be

Hied iu tho Bubaequent work*

^U 20L Polar coordinates* A aeoond method of fixing the

^Boaition of a point iii apaoe is by meana of iu distance and

direction from a given fixed point. Let .

be a fixed point in space, called the

pole; and let p be the distance from

to any other point P. To give the

(Uroction of p, let OR and OS be two

hoeen directed perpendicular lines

ihrough 0, determining the plane

nOS; then the direction of p will be
J^w. Ml

riven by the angle from tho plane KOS to the plane POM^
and the angle ^ from the line OS to p. The point P in

completely determined by the values of its radiua TSCtor p
nd it8 vectorial angles 6 and ^ and may be deaoled aa

Pb(p, 0, ^). The elements p, ^^ ^ are called the polar

coordinates of the point P.

It is to be noted that for convenienoe the poaitive values

(6 and ^ are those for rotation in doekwim direction from

ROS and OS^ respectively. And altliough a given aei of

< (Mirdiuates fixes a single point, yet any point may have sixteen

( U of coordinates in a polar aystem, if, as uaual, the values

f the angles are less than 800**.

202. Relation between the rectangular and polar systems.

If tlie axes OH and OS of a polar nyaumi coincide with

tho axes OX and OZ, n-siR-ctivelw of u rectangular ays-
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and

that is.

Again,

tem, the pole and origin therefoif

being coincident, then simple rela-

tions exist InHween the two sets of

c(M)rdinateH for any point. For, since

Z OMM' = 90^ and Z 03/'P= 90^

therefore OM = OJkT con 6

= OP sin
<l>

cos 0,

MM' = OM' Bind =^ OFsm<l>8m0,

M'P== 0Pcos4>;

ir = pco89sin^,

y = pKine8in<^, • • • [1]

2; = pros ^.

OP" = 03/'' 4- MH^ = mP -h MM^ 4- M^,

[2]

I.e., p2 = X* + y* + »*,

also t-.e =
J^,

and mrA *

^x* + v* + '*.

The above relations give formulas for transformation

from the one coordinate system to the other.

203. Direction angles : direction cosines. A third useful

method of fixing a point in space

is a combination of the two

methods already considered.

The axes of reference are chosen

as in rectangular coordinates,

and any point P of space is fixed

by its distance from the origin,

called the radius vector, and the

angles «, y3, 7, which this radius

Fio. 143
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vector makes with the c<M>r(liiuit« axes, reapeeiiYelj. Theio

> are calltMl tliu direction angles of the line OP, and

ItM direction coaines. Tiie point may be oon-

I an llu* jMjiiit P«(p, «, A 7).

SinipU* tMiimtioii.H connect these oo6rdinates with those of

' ivctangular system; for, projecting OP u|M>n the axes

^V, OK, and OZ, respectively,

T^ptm^ If-^cssp, M^ptmj, [8]

^ + y* + «* as in equations [2J.

Monuver, the direction cosines are not indefiendent, hut

' by an equation ; for, by combining the above

p*— p^C08*« + p^C08'/9 + f)*COH*7,

.'., ess"« + ets*p + eii*t=l« ... [4]

Such a relation was to have been expected, since only

!«••> magnitudes are necessary to determine the iKwition of

IKiiut, and therefore the four numbera
f>,

«, /9, 7 could not

' independent.

Any three numbeni, a, 6, <*, are proportional to the direc-

>i) oosines of some line ; because if these numbers arc con-

Icred as the coordinates of a i)oint, then the direction

>tiines of the radius vector of tliat |ioint are, by eq. [3],

eos^=
, *, ^,ess7»-—g—y [6]

Va«+6<+e« Va«+6«+«« v^i^Tffn?

I
' •><' direction cosines are proportional to a, 6, e; and are

: aii'l by dividing a, K <?, respectively, by the same constant*

Direction cosines are useful in giving the direction of any

line in space. The direction of any line in the same as

hat of a parallel line through the origin, therefore the direc-

um of a line may be given by the direction angles of
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|)oint whose radius vector is parallel to the liiie. Sometimes,

as an equivalent conception, it is convenient to consider the

direction angles jus those formed by the line with three lines

which pass through some point of the given lino, and are

parallel, respectively, to the coordinate axes.

204. Distance and direction from one point to another ; rec-

tangular coordinates. A few elementary problems concerning

points can now be easily solved

;

for example, the problem of find-

ing the distance between two

points. Let OX, OY, OZ he

a set of rectangular axes, and

be two given points. Then the

planes through P^ and P^, paral-

lel, respectively, to the cwirdi-

nate planes, form a rectangular

parallelopiped, of which the required distance PjPg ^ *

diagonal. From the figure,

since Z P^QP^ = 90° and Z M^RM^ = 90*,

therefore P^ =P^ -h QP^=M^M^+ QP^

= MYl^ + mQ^-\-QP^

= (^2 - ^lY + O2 - yi^ + (^2 - ^lY'

That is, if (f be the required distance,

€l=V(ar,-»,)« + (y,-yi)« +(«,-«,)« . . . [G]

Moreover, since the direction of the line PjPj is given b\

the angles a, /8, 7, which it makes, respectively, with the line

P^X', P^Y\ and P^Z', drawn through P^ parallel to the

Fio. 144.

J
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ixois therefore the projootioti of d(^^P^P^ upon

1 turn giveit

Hd, finaUj,

••••—3— • 9mpm—
ji
— , tmym—^—. . . . LU

Thaae oqnations give tlie required direction angles of

aO& The point which divides in a given ratio the straight

line from one point to another. Let

PiS (xp y,, fi) and P,3 (r^ y^ z^
J two given points, and let

/'ib(X|^ yr 'a) ^ a thinl point

hick divides the line PiP^ in the

fit,
iven ratio —l, so that

wu

P,P, a.
m.

Let PjPg
« r

(fj, and PjPj = <^j

;

then by Art. 204, if a, /9, 7 be the direction angles of PjP^

oo8«-5^L£i-5^ia5

id

'similarly,

and

^w^ *t* '^S

[8]

It will be noticed, as in the similar problem in Part I,

Art. 80, that if P» divides the line externallv, the ratio
*"<

must be negative ; and the above formulas still apply.

TA«. AW. QKOM.—S3
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If Pj bisects the lino I^iP%^ formulas [8] take the simpler

forma

«• =
_ag|-f ar^

» y« =
Vx-^Vt

, «8
^^1 +

[^^]

206. Angle between two radii vectores. Angle between two

lines. Let P^ s (pj, a^ ^j, 7i) and P, = Oj, o^, ^j, 7a) bi^

two given points, and 6 the angle included by the radii vec-

tores /3j and Py Then the pro-

jections upon OP
I
of the line

OPj and of the broken line

OM^M^P^ are equal (Art. 17);

hence,

proj. 0P3 = proj. OM^M^P^,

t.e., p2 cos 6 ssOM^ cos «i

+ J^fjilfj' cos iSj 4- Jtfa'Pj cos 7i.

But OM^ = p2 cos 02,

M^M^ = />2 cos ygj, and M^P^ = /^j cos 7, ;

hence,

p^ cos ^=/»2 cos oj cos «i+/52 COS fi^ COS /Sj-f/Og cos 72 cos 7j }

fA, cos = cos a| cos 02 + cos Pi cos P2 + cos Yi cos Y2» [10]

and this relation determines the required angle Q,

It follows, since any two straight lines in space have their

directions given by the direction angles of radii vectores

which are parallel to them, respectively, that formula [10]

applies as well to the angle 6 between any two straight lines

in space, whose direction angles are given.

Two special cases arise, that of parallel and that of perpen-

dicular lines. If the two given lines are parallel, evidently

•i = S' Pi = ^» Tri=Yi; [11}
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nnd formula [10] reduoet to eq. [4]. If tho linm tut |jer*

peiidiculju', ccM ^ 0, ami eq. [10] reduces to

«M«|eM«f4eMP|eMPg-»-CMV|C«MYt«#* [12]

207. Transformation of coordinates; rectan^lar

The relatiutih fuuiul in Art. '20'2 to uxut Iwtwucii rectangti-

lur and polar coordinates of a point may bo used as formulas

of transformation from one system to the other if the origin,

the pole, and the reference axes are coincident. Two other

simple transformations may be useful, (1) from one set of

<rtaiigular axes to a parallel set, that is, a change of

riffin only; and (2) from one set of rectangular axes to

mother set through the same origin, t.0., a ehange of direc'

'ion of axes. Then any transformation between rectangular

iiid polar systems can be {ler-

fonned by a combination of

ihvsQ three elementary trans-

formations.

(1) Change qf origin onlg,

I^t the new origin be the |Miint

0's(A, it, y); then, construct-

ing the coordinates of any

I»oint P with reference to

• ;ich set of coordinate planes, it is evident, by analogy with

Art. 71, that

a 7"

/

Fio. 147

I

i

V

m^ae^-¥hy p^p'-^k^ m»wf-¥j. [18]

(2) Change of direction <^ aree. Let a second set of reo-

taiigular axes, 0X\ OV^ 0Z\ have the direction angles «|,

0y 7p <S* 0r 7r ^^ *^ ^r 7r respectively, with the old

axes OX, OY, OZ,
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z Then if the coordinates

/

k
of any point P in the two

systems are

y = MM\
z = M'P,

and x! = OQ,

y' = QQ!.

z' = ^P,
I

Fio. U

V'
£'

8

A

[14]

[15]

then projections of OP and the broken line OQQ'P ui)on OX,

OY^ OZ, in turn, will be equal; hence,

y = x' cos ^l + y' cos pg + «' cos Pa,

« = 05' COSYi + y' cos 72 + Z' COS -yg.

These formulas are for transformation from the first sys-

tem to the second. But, also, by projecting OP and

OMM'P upon OX', 0Y\ 0Z\ respectively,

7^ = X COS «! + y cos ^1 + z cos 7|,

y = a: costtg + y cosySj + z cos 73,

Z' = X cos ^8 + y C^S /^8 + 2! <^08 7g,

and these formulas are for the reverse transformation, from

tlie second system to the first.

Note. It is to be remembered that in the transformations of [14] and

[15], twelve conditions exist, by eq. [4] and eq. [12], three of each of

the following types,

cos*ei, + 008^ oj + 008*03 = 2,

COS'O, + cos* ft + C08*y, = 1,

0080} COS C4 + COS ft cosft + COS 71 COS y, = 0,

coeaiCO«ft+cosa,co8ft+ cos a, cos ft = 0.

These equations are not independent, however, but reduce to six

independent equations.
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It is oImt, by rMtonlng simiUr to that of Art, 75, Part I,

tlmt nono of tlio transfomnitioiin [13], [14], and [15], neitlier

•eparatoly nor in combiiintion, cuii alt«r the dagroo of mo

equation to which tlxey may bo applied.

EXAMPLES ON CHAPTER I

1. Prove UuU tli« irUnglo formed by Joining the poitiU (1, 2, S),

(9, 8, 1), and (3, 1, 2). in pain, b eqoilaieraL

a. The direction ooeiQ«i of a itraigbt line are proportional to 1, S; S|

find th«tr raluee.

3. Fiiid Uie angle between two ftraigbt lioee wboee dirsetioo eoslnee

are proporiioiuU to 2, 2, 2, and ft, '4, 7, reepeetiTely.

4. Tbe rectangular cotfrdinatee of a point aie (\^ 1, SV3); find

ite poUr ooSrdinatee.

5. The poUr ooardinatec of a polui are f 3, ^, ?]; find ita rectaiv

fiUar codrdinatee. \ o 4/

e. Kzpraet tbe distance between two points in terms of tbeir polar

eotfrdinmtes.

7. Find the codrdinates of the points diriding tbe line from

(-9, -3, 1) to (3, -2, 4) eztemaUy and internally in tbe ralio 2: A.

a What U tbe length of a line whose projectione oo tbe ooardlnite

axes are 4, 1, 3, respeetifely?

9. Find the radiuii vector, and its direction cosines, for each of tbe

poiuU (-7. 1, 5). (1, -1. -L>). (a, 0. h),

10. Find the center of gravity * of tbe triangle of Ei. 1.

IX. Find the direction angles of a straight line which makes equal

angles with tbe three coordinate axes.

12. A straight line makes tbe angle 80* with tbe Muris, and 79P

with tbe aaxis. At what angle does it meet tbe jr-azist

13. Prove analyticaUy that tbe straight lines Joining tbe tni«i|<tiiiiui

tbe opposite edges of a tetrahedron pass tbroogb a common point,

are bisected l^ it

14. Prove analytically that the straight lines joining tbe mid-pointa

eC the oppodite sides of any quadrilateral pass through a common point,

are bisected by it.

•See Ex. 16,11.11



CHAPTEU II

THE LOCUS OF AN EQUATION. SURFACES

208. Attention has been called to the close analogy

between the corresponding analytical results for the geom-

etry of the plane and of space. It is evident that in

geometry of one dimension, restricted to a line, the point is

the elementary conception. Position is given by one vari-

able, referring to a fixed point in that line ; and any alge-

braic equation in that variable represents one or more points.

In geometry of two dimensions, however, it has been shown

that the line may be taken as the fundamental element.

Position is given by two variables, referring to two fixed

lines * in the plane ; and any algebraic equation in the two

variables represents a curve, i.e., a line whose generating

point moves so as to satisfy some condition or law. Corre-

spondingly, in geometry of three dimensions the surface is the

elementary conception. Position is given by three variables,

referring to three fixed surfaces, since any point is the inter-

section of three surfaces ; f and it can be shown that any

algebraic equation in three variables represents some surface.

* With polar codrdinates, these lines are a circle about the pole with

radius = p^ and a straight line through the pole making the angle with the

IniUal line (Art 23).

t With polar coordinates, these surfaces are a sphere, about the origin at

center, determined by the ratlius rector p, a right cone about the e-axis, with

vertex at the origin, determined by the angle ^, and a plane through the

s-axis determined by the angle (Art 201).

842

I
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The study of the tpeoial equationii of firit and

logree will be taken up in the two •uoeee«lin(( cha|>ieri.

Here it is desired to show that an algebrmio equation in throe

variables represents a surface* and to consider briefly two

simple clauses of surfsoes : (1) cjlinders, i.^., surfaces which

are generated by a straight line moving parallel to a fixed

ight litu% ill 1(1 always intersecting a fixed curve ; and (2)

of revolution, !.«., surfaces generated by revolving

plane curve about a tixed straight line lying in its plane.

309. Equations in one yariable. Planes parallel to coordi-

nate planes. Frum the (ietiiiitiun of ruct^uigulur cuuniiuatea,

it follows that the equations

x-O, y-0, f-0,

represent the coordinate planes, respectively, and that any

.ilgebraic equation in one variable and of the first degree

represents a plane imnillel to one of them. Similarly, an

quation in one variable and of degree n will represent ti

such parallel planes, either real or imaginary. For, the first

member of any such equation, as

p^ + ;>!«"-> -^Pt^'* + •• +/>.-,* +f. - 0, . . (1)

can be factored into n linear factors, real or imaginary,

Po('-'iX'-»i)(-X*-*.)-0; ... (2)

and by the reasoning of Part I, Art. 40, eq. (2) will repre-

sent the loci of the n equations

X — Xj — 0, X — a^ <^. ~ - T. = 0,

each of which is a pUne, parallel lu the yj-pUme, and real if

the corres}Mending root is real. In the same way, an equa*



a44 ANALYTIC OEOMBTRY [Ch. II.

lion in ^ or 2 only will represent planes parallel to the zz- or

aiy-plane.

Any algebra''c equation in one variable represents one or

more planes parallel to a coordinate plane.

It follows at once by Art. 39, that two simultaneous

equations of the first degree in one variable represent the

intersection of two planes parallel to coordinate planes

;

therefore, represent a straight line parallel to the coordi-

nate axis of the third variable ; «.^., y = ft, 2 = c, considered

as simultaneous equations, represent a straight line parallel

to the X-axis.

210. Equations in two variables. Cylinders perpendicular

to coordinate planes. Consider the equation

2T4-3y=:6, (1)

with two variables only. In the a-^-plane it represents a

straight line AB, If, now, from any point P of AB a

Pio. 140.

straight line be drawn parallel to the z-axis, the x and y
cofirdinates of every point Q on this line will be the same as

for P^ and therefore satisfy equation (1). Moreover, if the

line PQ moved along AB, and always parallel to the a-axis,
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Mtill the cotirtlinatM of every point in it aatiify equation (1).

As the line PQ im thiM moved, it traeeii a plane iiurfaoe per-

|N?ii(liculiir to the xy-pluiie ; and, a« evidently the eoordiiiatea

of a |)oint not on thiM Hurface do not satisfy equation (1),

thiii plane iM the Iucud of tMiiiaiitm (\^,

Again: the equation

^ + i»-r« ... (2)

repreaenta in the yi-plane a circle. It is therefore satb6ed

by the coordinates of any point Q^ in a line parallel to the

jr-axia, through any \yo\ni P of this circle; and alao by

the coordinates of ^ aa thia line PQ is niuved^ parallel to

xis and along the circie. The circular cylinder thus

uy the lino PQ^ perpendicular to tlie i/z-i»1.imi'. m
the locus of the given equation.

Similarly, it may be shown that the locus of the equation

t-%'^ ... (8)

is a cylindrical surface traced by a straight line parallel to

the y-axia, and moving along the hyperbola whoae equation

in the xs-plane is equation (8). And, in general, it is clear

by analogy that any ahjehraie equation in ttro variahleM repf^

»iut$ a cylindrical $urfaoe who9e tUnunU are paralUl to tke
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axU of the third variable, and having 0$ form and posi-

tion determined by the plane curve repreiented by the same

equation.

As a direct consequence, it is clear that if a cylinder has

its axis parallel to a coordinate axis, a section made by a

plane, perpendicular to that axis, is a curve parallel to and

equal to the directing curve on the coordinate plane, and is

represented in the cutting plane by the same equation.

Thus, the section of the elliptical cylinder whose equation is

3a^ H- y^ = 5, cut by the plane « = 7, is an ellipse equal and

parallel to the ellipse whose equation is 3 a:^ -f y^ = 5.

211. Equations in three variables. Surfaces. A solid

figure has the distinctive property that it can be cut by a

straight line in an infinite number of points, while a sur-

face or line can, in general, be cut in only a finite number.

A line has the distinctive property that it can be, in gen-

eral, cut by a plane in only one point, while a surface may

be cut in a curve. To show that the locus of an algebraic

equation in three variables is, in general, a surface, it is suf-

ficient to show that, in general, a plane will cut it in a curve,

while a straight line will cut it in a finite number of points.

Let the given equation be

/(;r,y, z)=0, . . . (1)

and let z = c . . . (2)

be a plane parallel to the a:y-plane. The points of inter-

section of these two loci will be on the locus of the equation

/(a:,y,O=0; . . . (3)

and, by Art. 210, they lie, therefore, upon a plane curve, cut

from the cylinder whose equation is (3), by the plane whose

equation is (2). Hence the locus of equation (1) is not a line.
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Again, let jf « 5, g m « (4)

be the equations of a straight line (Art. 209), pdrallel to the

j>axis. The points of intersection of loous (1) and the line

(4) will be also on the loous of the equation

/(x.5,0-0: (6)

wluctu HiiH 1* tlio (Mpiation is in one variable, of Unite degree,

will repreiieut a tlnite number of planes parallel to the jfs-

plane, and therefore having a finite number of points of

intersection with the line (4). Hence the locus of equation

(1) is not a solid.

Therefore, tJU locut qf any algehraic §quaUon in three pari'

MeM i$ a $uffti€$.

2X2. Curves. Traces of surfaces. Two surfaces intersect

in a curve iu space , and since every algebraic equation in

solid analytic geometry represents a surface, a curve may be

represented analytically by the two equations, regarded as

simultaneous, of surfaces which pass through it. Thus it

has been seen that the equations y k 6, t » tf separately rep-

resent planes, but considered as simultaneous represent the

straight lino which is the intersection of those planes. But

by the reasoning of Art. 41, the given equations of a curve

may be replaced by simpler ones which represent other sur-

faces passing through the same curve. In dealing with

curves it is often useful to obtain, from the equations given,

equations of cylinders through the same curve; Le^ it is

generally useful to represent a curve by two equations eaoh

in two variables only.

Example : The curre of inierteciion of the two tarfaoea,

(l)x* + y' + c*-35«0 and (S)i« + f>-16>0^
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ia also the inieraection of the surfaoes

:rt 4. yi + ,t» 25 - (x«+ y« - 16)= 0, 1.*., « =± 8, (3)

with the surface (2). The curve is therefore composed of two circles of

radius 4, parallel to the x^-plane at distances + 8 and — 3 from it.

Conversely, the curves of intersection of a surface with

the coordinate planes may be used to help determine the

nature of a surface. These curves are called the traces of

the surface.

Thus, the surface a? + y^ -{- z^ = 2^ lias the traces

on the yz-plane, where a: = 0, y^-{-z^=2bi

on the 2a;-plane, where y = 0, x^-\- 1^=25;

on the a-y-plane, where 2 = 0, st^-^ 1/^= 25.

Each of these traces is a circle of radius 5, about the

origin as center; the surface is a sphere of radius 5 with

center at the origin.

Since three surfaces in general have only one or more

separate points in common, the locus of three equations, con-

sidered as simultaneous, is one or more distinct points.

213. Surfaces of revolution. Analogous to the cylinders

are the surfaces traced by revolving any plane curve about

a straight line in the plane as axis. From the method of

formation, it follows that each plane section perpendicular

to the axis is a circle,— the path traced by a point of tlie

generating curve as it revolves ; and the radius of the circle

is the distance of the point from the axis in the plane before

revolution begins. These facts lead readily to the equation

of any surface of revolution, as a few examples will show.

(a') The coneformed by revolving about the z-axis the line
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Any point P of the line (1) traoM during^ the revolution

i oirclo of radiim LP, parallel to the jy-pUne. The equa-

tion ot that path ia

Fm. Iftl.

But in the 2:f-plane, before revolution in begun, LP is the

abeciaaa 2 of P i hence, by equation (1),

so that the equation of the path of P ia

^ +^,IH^. . (2)

But P ia any point of line (1); hence equation (2) is sat-

isfied by every point of the line, and represents the surfuce

generated by the line, which is the required conical surface.

(6) 2VU $phere formed by revolving about tho B-^txU the

circle

x« + «*-25. ... (8)

In this case, any point P of the cur\'e traces durin^r the revo-

cation a circle ot radius NP, parallel to the xy-plane. The

equation of thia path is therefore
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Fio. 1&2.

But in the a»-plane, by

equation (3)

Hence, substituting above,

a:» + y» = 25-za,

i.e., a:» +/ + «a=25;
(4)

which is the equation of the

required spherical surface.

(c) The surface formed

hy revolving about the x-axia

the curve

«B= (aj-l)(a;-2)(a:-3)[cf. Art. 37, (4)]. . (5)

Any point P of the generating curve traces a circle parallel

to the yz-plane, witli

a radius MP equal to ^
the z-abscissa in equa-

tion (5). Hence the

equation of its path is

(x-2)(:r-3), ...(6)

which is the equation

of the required surface,

(c?) Of the various

surfaces of revolution

those of particular interest are generated by revolvin-

about their axes the various conic sections, giving tli

cones, spheres, paraboloids, ellipsoids, and hyperboloids ot

revolution.
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Tlie gtudent mmy verify Uie eqtuitioiit of the foUuwing

•urfaceM :
*

The sphere : witli cont^r nt thu urigtii, ttiid nuliti« r,

*« + 3^ + J«-r*; . (7)

wiih .
.
Miri at (a, 6, c), by Art. 207» eq. q7; bccumcfl

The cone : the mirfaoe generated by the right line : => mjr -^e^

rotated about the i-axia,

;,. + y.= £l^*. ... (9)

The oblate spheroid : the Burface genemtcd by the ellipoe

— + .. s 1, rotated about the minor axin,

— +^ + -e 1. . . . no^

The prolate spheroid : the surface generated by the ellipee

rr + ^ » 1« rotated about the nu^V axis,

£!4.«! + ^„l. . . . (11)
6« 6> a* ^ ^

The hyperboloid of one nappe: tlie surface generated by

the hyperbola ^ — ^ = !« rotated about the em^ugaU axia,

The hyperboloid of two nappes : the surface generated by

the hyperbola :^~ n™ ^« rotated about the tran^vtru axis,
11* It

^_g_g_,. . . . (,8)

• See Chap. IV, where diagnuat are givaa for the

€l the generml quadrio, with elUpCteal famead ol eirenUr
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The paraboloid of revolution : the surface generated by the

parabola 2:^ = 4 pzj rotated about its axis,

2^ + y3 = 4;?z. . . . (14)

EXAMPLES ON CHAPTER II

What is the locus of each of the following equations?

1. x« - 6 x + 9 = 0. 4. ax« + ftxy + <?y« = 0.

2. 2 T + 4 = 0. 5. 4 »/2 + 6y - 82 + 1 = 0.

3. x3-2xy+y«+2x-2y+l=0. 6. z^-dy = 9.

What are the curves of intersection of the surfaces represented by

the equations

7. y + l=0, 3xa + 3y2 + 322 = 20?

8. x«-y« = 0, z^af
9. x« + y« + z« = 9, 4x« + ya = 4?

10. 9(x« + y2)-2« = 25-102, 2=±6?

11. 3x«-4y>-2« = 12, ^ + 1^ = 1?

Determine the traces upon the codrdinate planes of the following

surfaces:

12. x* + y« + 4z« = 26; 13. 3x^ - iy^ - z^ = 12.

Find the equation of

14. the paraboloid of revolution one of whose traces is y* = — 5x + 3.

15. the cone of revolution one of whose traces is y = — 5x + 3 and

whose axis is the axis of y. Find its vertex.

16. the oblate spheroid one of whose traces is ^ + ^ = 1.

V* z'
17. the prolate spheroid one of whose traces is 7 + •« = 1-

IS. the surface of revolution whose axis is the axis of x and one of

whose traces is x^ — 1 = 0.

19. the hyperboloid of two nappes one of whose traces is

16z2-9«« = l.

20. the sphere described about the major axis of the ellipse

4x* + 9y<->24x=:0 as diameter.



CHAPTER III

EQUATIOKS OF THK FIRST DEORU

planes and straight unis

1. The Plane

214. Every equation of the first degree represents a plane.

A plaiK' is u surfaco such that it contains every point ou a

struight line joining any two of its points.

Let Pj = (jr,, yj, «j) and Pf ^(^ ^r ^t) ^ '^J ^^ l>oinU

of the surface whose equation in

BO that iLr^ + ^y, +Cii + 2>«0 . (1)

and iii:^ + By, + C?, + 2>-0. . . . (2)

Now, if P^s(^x^ ^r H) ^ '^y point on the straight line

from P| to P, at a distance d^ from P| and d^ from P^ then«

by Art. 205,

But tliis point lies on the surface represented by equation

[16] ; for, substituting its coordinates from (8) in equation

[16], the latter becomes

:

TAir. AM. osoM.— S3 86S
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wliich is a true equation, since each parenthesis vanishes

separately by equations (1) and (2). Hence every point of

the line PiP^ is on the locus of equation [16], and that

locus is therefore a plane. Every algebraic equation of the

first degree in three variables represents a plane,

215. Equation of a plane through three given points. The

general equation of the first degree,

Ax + Bi/ + Cz-^I) = 0, . . . (1)

has only three arbitrary constants, viz. the ratios of the

coefl&cients. If three given points in the plane are

then these ratios may be found from the three equations,

Ax^ + %i + Czi + I) = 0,

Ax^ + By^-\-Cz^-\-D = 0, . . . (2)

M + %8 + ^23 + i> = 0,

.

considered as simultaneous.

In solving equations (2) for the required ratios, two special

cases may occur : (a) The value of one of the coefficients

may be zero, then the ratios determined must not have that

coefficient in the denominator. Eg^, if 2> = 0, solutionABC A B
should not be made for —, —, --, but for ~, — (say).

JJ U JJ c c
(h) The equations may differ only by constant factors, then

the three equations have an infinite number of solutions.

This is explained by the fact that the points are on a straight

line, and any plane through the line will pass also tlirough

the points.

21a The intercept equation of a plane. A plane will in

general cut each coordinate axis at some definite distance
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111 tho origin, iiml thiii disUuioa b oallod tho intercept of

thu plane on the mxiB, If a, 6, e be the intercepts on the JS

y-« and f-axat, reepectively, of the pUne whose equation ti

iir-f By + C%-f D-O, . . . (1)

then the iigintji (a, 0, 0), (0, 5, 0), (0, 0, e) are poinU of ih«

plane, and therefuru (cf.'Art. 215)

^a + 2> - 0, B6 -f X> » 0, A ^ 2> « 0«

a e

Hence equation (1) may be written

a b e

t.€^

0.

(«)

1.0.
09 W U [17]

and this is the equation of tho plane in terms of its intercepts.

217. The normal equation of a plane. A plane w wholly

iletermined in position if the length and direction be known

f a perpendicular to it
^

i rem the origin ; and this

method of fixing a plane

leads to one of the most

iseful forms of its equa-

lion. Let OQ be the

l>erpendicular from the

rigin to the plane

ABC^ let p be its length,

always considered as

positive, and let a^ fi, y V

be its direction angles. Let P (x, jf, s) be any point of

the plane, and draw its coordinates Oitf, ifAT, M^P, Then,

projecting upon OQ^
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proj. OifilTP = proj. OP,

hence proj. Oitf + proj. 3f2Jr 4- proj. HTP = proj. OP,

that is, a?co8a + yco9P + 2CosY = p* . . • [1^]

This is called the normal equation of the plane.

There are two special cases to be .considered :

(1) If the plane is perpendicular to a coordinate plane,

e.^., to the ary-plane (of. Art. 210), then 7 = 90°, cos 7=0,
and equation [18] reduces to

a; cos a + y cos /9 = j[?. . . . [li>]

(2) If the given plane is parallel to one of the coordinate

planes, c.^., to the a-y-plane (cf. Art. 209); then a=y9 = 90°,

7 = 0°, and eq. [17] reduces to

z=jp. . . . [20]

218. Reduction of the general equation of first degree to a

standard form.* Determination of the constants a, fr, c, p,

a, p, -y I- Intercept form. In Art. 216 a method has been

indicated for reducing the general equation

Az-hBy-^Cz-{-D=0 . . . (1)

to the intercept form. Since the points (a, 0, 0), (0, b, 0),

and (0, 0, c) are on the plane (1), it follows that the inter-

cepts are

II. Normalform. If equation (1) and the equation

a;co8a + ycos^4-« cos 7 — jt? = . . . (3)

represent the same plane, then their first members can differ

• The reduction of this article gives a second proof that the general alge-

braic equation of first degree always has for its locus a plane.
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only by a ooiuUnt factor, m (of. Art. S08» eqs. £5]; alto

Art. 68);

therefore

iiui«ooe«, mBaoosA mO^coBy^ mD^'^p^

but, by [4], cot^a^oot^ff^oot^y^l^

hence fH^CA* + ^ + C<)« 1, and tn
^

Then ciaa——- -^ cw^

C -D [21]

Equation (1) written in the normal form ia

therefore, to reduce equation (1) to the normal form, it is neo-

eesary only to tran9po9€ the eonstant term to the eeeond mem-

ber of the efitatum^ and th$n divide both mmnben by the equare

root qf the 9um of the e^uaree if ike eoeffieiemU <f the veaiMe

terme. The sign of the radical ia determined by the fact

(Art. 217) that p is taken positive ; hence, the eign ef the

radical u the oppoeite ff the eign qf ike eemtUmi term,

219. The angle between two planet. Parallel and perpen-

dicular planes. The angles formed by two intersecting

planes are the same as the angles formed by two straight

lines perpendicular to them respectively i ft.«^ are the
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as the angles between the respective normals from the origin

to the planes. If

A^x + ^ly + Ci« 4- Di = 0, . . . (1)

and ^ + 5jy + (7,« + Dj = 0, . . . (2)

be two planes, then the direction cosines of their normals

are respectively (eqs. [21])

5l
V^iHW+C'i" vQIhTbT+c? V^ia+^i^+Ci«*

CQgg^a- ^ etc,

and by equation [10], if ^ be the angle between the two planes,

and hence between the two normals,

^^^ A,A,^ByB, + C,C^
. . .

There are two cases of special interest.

I. Parallel planes. If the planes (1) and (2) are parallel,

their normals from the origin will have the same direction co-

sines, and differ only in length ; therefore, by equations [21],

the equations of the planes must be such that the coefficients

of the variable terms are the same in the two equations, or

can be made the same by multiplying one equation by a

constant. In other words, if the planes (1) and (2) are

parallel, then

^=»' = g-, . . . [23]
ulf -^2 ^2

and the plane Az-\'By + C2-^ K^ ... (3)

is parallel to the plane

^ + -By -I- C72 -f 2> = 0, . . . (4)

for all values of the parameter K,
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II. Perpendieular pUm$9. If the pUnen (1) aiid (2) are

I)eri>vndicuUr to each other, then coe^ « 0,

ind AiAt ¥ BiBt •«- C%Ct - Of . . . [24]

and conversely.

220. Distance of n point from a plane. Let

be a given point, and

iir + ^y + C^ + D-O . . . O)
a given plane. The perpendicular distance of P^ from the

plane ia equal to the distance from the plane (1) to a parallel

plane through the point , t.«., ia equal to the difference in

tlie lengths of the normals, from the origin, to these two

parallel planes.

The parallel plane through P^ has for its equation by

Art. 219, equation (3),

itr+^y + Ck-ilxi + ^yi + Cii. . . . (2)

By [21], the lengths of the normab to planes (1) and (2)

are, respectively,

therefore, it d=p' ^phe the required distance,

In formula [25], the sign of the radical b taken opposite

to the sign of 2> (Art 218) ; and the sign of d shows on

which side of the given plane lies the given point.

II. The Straight Lism

22L Two equations of the first degree represent a straight

line. Every equation of first degree represenU a pUne
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(Art. 214), and two equations considered as simultaneous

represent the intersections of their two loci (Art. 89).

Therefore since two planes intersect in a straight line, the

locus of the two simultaneous equations of firat degree,

^ia:+5iy + Ci« + 2)j = 0, A^ + B^ + C^-^-D^^O,. . . (1)

is a straight line. As suggested in Art. 212, it is generally

more simple to represent the straight line by equations in

two variables only, standard formsy to which equation (1)

can always be reduced.

222. Standard forms for the equations of a straight line,

(a) The straight line through a given point in a given direction.

Let Pj = (a-j, ^j, 2j) be a given point, and <<, ^, y the direo-

tion angles of a straight line through it. Let P = (x^ y, z)

be any point on the line, at a distance d from Pj. Then by

equation [7],

(fees a = x — ar^, dcos^ = y ~ Vit dco^y = z — z^^ . , . (1)

hence
x^^^^ ^Vj-j^ ^z^^z, ^

^ ^ ^^^-^
cos a cosp cos-y *• -^

which are the equations of a straight line in the first standard

form, called the symmetrical equations.

(h) The straight line through two given points. Let Pj =
(2?!, yj, z{) and P^ s (a-j, g^, z^ be the given points. Any

straight line passing through Pj has [26] for its equations.

If the line passes also through Pj, then

cos a cos)S cos 7 » • • • ^ ^^

and hence from equations [26] and (2), by division to

eliminate the unknown direction cosines.

«-«! y-Vx »-»i
apg-a?i Vt-Vi »2-«i

[27]
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TheMo nro Uie second nUudiutl foruw for the oqiuUion of a

ttraight line.

(0) TKb Mtraigkt line uith given iraeee mi tk§ eedrdimaU

ptana. One of the simplest set of planes for detaimining a

straight line is a pair of planes through the line and perpen-

dicular respectively to the oodrdinate planes (cf. Art. 212).

Tlien the equation of these planes will be the same as the

•f the traces of tho line on the corresponding ooftr-

->^ Art. 210). Thus, if the equation of the traces

upon the sj>- and ^plaues are* respeotiTely,

Jf.lU + i,
[28]

then, considered an simultaneous, these are also the equa-

tions of the given line in

ppjice.

In Fig. 155 the given

traces are ABI/ in tlie

saD-plane, and CDN' in the

^plano P is any point

in the given straight line,

and Q.R^Stae the points

where the line pierces the

2y-, yi-, tr-planes, respec-

tively. Then it is clear

that in equations [28]

la « tan Z OAB.

fioitauZ0(7A

Also, since, by equations [28],

b M n dm — hn
OJ. - - "

, AR OCmm^ csr.^SLnis,
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therefore the points where the given line pierces the coordi-

nate planes are

« s(6, * 0), B=(0, ±«=^,-L\ ^=f*!^^ri?», 0, -^. (4)
\ m my \ ^ w/

223. Reduction of the general equations of a straight line

to a standard form. Determination of the direction angles

and traces.

I. Third standardform: traces. The traces of a straight

line have the same equations as have the planes of projec-

tion of the straight line upon the coordinate planes, respec-

tively. They may be obtained, therefore (Art. 210), by

eliminating in turn each of the variables z, y, x from the

given equations.

This may be illustrated by a numerical example.

Given the equations

8x + 2y + 2-5 = 0, a; + 2y-22 = 3, . . . (1)

representing a straight line. Eliminating 2, y, and x, successively, the

equations

7a: + 6y-13 = 0, 2x + 32-2=0, 4y-.7z-4 = ... (2)

are obtained, each representing a plane through the given line and per-

pendicular to a coordinate plane. Therefore these equations are also the

equations of the traces of the line, in the xy-, zx-, and yz-planes, respectively.

II. Ftri<t standardform : direction ant/les. The method of

reducing the general equations of a straight line to the first

standard form, and finding its direction angles, can also be

illustrated by a numerical case.

Considering still the line whose equations are (1) above, and whose

traces are given by equations (2); and taking the equations of any two

of its traces, e.^.,

2« + 82-2 = 0, 4y-72-4 = 0; . . . (3)
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iImm have ooe Tmriabk, t, ia eommon. t'U|UAtibg Um toIum o( UUt
onminmi TarUlito fron Um two •qoAlkicit, fiTw

8 7 •

w hich uiAjT be wriUen, to oorrafpood with equationt [M],

—-—-V '*'

Now, ftltbougb the dtoomlMlon 1. - §. | of oqiuUkm (4) are nol

direoiioo ootiiiM of any Um, jot, by oqiutkNit [5], tboy diflor from
aoob diraotioo ootiiMt only by tho dWiaor

Rewriting oqiuilkmt (4) in tho form

X - 1 y - I « - ,^^^ = -j- = -£-. ... (5)

Vioi y/m Viol

^ entirely to equmtioos [26]. Therefore the lino poieeo

.-oint (1, 1, 0), aiid ite direction aoglee are giren by the

relations

oo«« = ==> coe/Jsi—^—, eosys—-=.
vioT vToi vioi

The method given aboro k eridantly perfectly generaL

224. The angle between two lines ; between a plane and a

line. If the equations of two straight lines b« written iu the

form

IziZi^lLzJL^LUii, (1)
a, 6j tfj

^-^i»y-yi-*-^ (2)
a, 6, <^

then by Art. 22S, II, their direction ooaiiiaa are, reapeotiTely*

coii «. =3 ^1 —

^

gQai4»
, ^ ^^ —

^

oosft«——^i===.etc., (3)
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and therefore, by equation [10], the angle between the two

lines is given by the equation

eog9 = aiOa + ^i^i + ^t^
, . . . [29]

Again, the angle between the straight line

and the plane
Aa: +% + Ci -h 2)= . . . (5)

is the complement of the angle between the line (3) and the

perpendicular to the plane (4) from the origin. Therefore,

by equations [10] and [21], and Art. 223, II, the required

angle is given by the equation

Conditions for perpendicularity and parallelism precisely

like those of Art. 219 may be obtained from equations [29]

and [30].

EXAMPLES ON CHAPTER III

1. Find the equations of a line through the points (1, 2, 3) and

(3, 2, 1).

2. Find the equation of a plane through three points (1, 2, 3),

(3, 2, 1), and (2, 3, 1).

3. Write the equations of the straight line through the point

(1, 2, 3), and having its direction cosines proportional to V3, 1, 2V3.

4. What are the traces of the line of Ex. 1 upon the coordinate

planes? Where does the line pierce those planes?

5. Find the equations of a straight line through the point (1, 2, 3)

and perpendicular to the plane z + 2y + 3c = 6.

Reduce to the intercept and normal formS) and determine which

octant each plane cuts

:

6. 2x-3y-2 = 7; 7. 5y + 22-l=x.
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a B«liie0 iha tqiuilkNUi of Um Um

to U»e •ymmelrioal form, aiid dctormiiM iU dtnietion imrfntfc

9. Find the anglo betwwii the pUnee

2jr-8f -f-T, 6jf -f Sx-1 «&
10. Find the angle between Um line

x-l-f-fSs-O^ Ss-f-2t-lr«0
and the plane 8x4*8s->Sf'flai0l

11. Write the equation of a pbne parallel to the plane

3x-jf -l-Ts-ft-iO,

and paving through the point (0, 0, 0); throogh the point (-1, 1, '1).

12. Write the equation of a pbwe perpendleiUar to the plane

Sx + Sjf-s + tfaO^

and paasing through tlie two pointa (8, 1, 2) and (0, -% -4).

13. Find the diatanoes of the pointo (7, -3, 8) and (8, 8, 1) from the

plane Sx + 5jf-a-9 = a Are they on the lanie tide of the pUne ?

14. At what angle doee the pUne or -|-^ + cs + <f = Oettteaeh eobrdi-

nate plane? Each oodrdinate axk?

15. Find the equation of a pUuie through the point (1, 1, 1) and

perpendicular to each of the planes

2z-3y + 7s = l, x-f-2t«2.
16. Write the equation of a plane whose distance from the point

(0, 2, 1) is 3, and which is perpendienlar to the radine vector ci the

point (2. -1. -1).

17. Write the equation of a straight line throogh the point (&, 2, 6)

which b parallel to the line

3x-8s + jf ~2sO, x-f Jf + S'I-1 =0l

18. Find the traces on the oodrdinate planes of the line

2x-8s + jr-SB0, x-i-fl-s-flaa

19. Prore that the planes

2x-8f -f s + l«i<V

6x+s-l«a
93x-|-8jr-f 4s-8a0^

have one line in common.
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20. What is the equation of the plane determined by the line

2x-8z + y-2 = 0, x + y + 2+l=0,

and the point (5, 2, 6) ?

21. Show analytically that the locus of a point equidistant from three

given points is a straight line perpendicular to the plane determined by

those three points.

22. Derive equation [17] directly from a figure, without using equa-

tion [16],



CllAlTKK IV

EQUATIONS OF THB SIOOHD DBORIX

QUADRIC SVKWACES

22Si The locus of an equation of second degree. Tlie mott

general algebraic equatiuu of second degree in three Tariablea

may be written

AiK^ -f By< 4^ Ca< -K t F^m + fl Gw» + 8 Hjty + t lo) -i- fl Jfy
+ 8Aa + K=:0. [31]

Any surface whicli \h tlie locua of an equation of second

degree is called a quadric surface, and is of particular

interest because of its close connection with and analogy to

tlie conic sections. In fact, every plane section of a quadrio

is a conic, as nuiy be easily shown as follows.

By Art. 207, any plane may be chosen as a coordinate plane,

and the transformation of coordinates to the new axes will

leave the degree of equation [31] unchanged; t.^., the new
equation of the locus will still tw of the form [31], though

witli different values for the coeflicients. To find the nature

of any plane section, choose the given plane as (say) the ry-

plane of referen(*e, and transform to the new axes ; the new
equation will \te of form (1). Then let f « 0. The equa-

tion of the section of the quadric is

JLf» + By« + 2^x^ + 21^+ ^-Vy-r A'-O;. . (1)

and this, by Art. 176, repreeenta a oonio.

187
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Moreover, the trace of the surface on any parallel plane,

as s =s o^ is given by the equation

At* + i5y« + 2 Hxy + 2(2; + (ia)a: + 2(JW+ai^)y

+ (Cba4-2iVa4-ir)=0. ... (2)

Now, by Arts. 177, 181, the loci of equations (1) and

(2) are conies of the same species, and with semi-axes pro-

portional; therefore their eccentricities are equal, and the

curves are similar. Hence, all parallel plane sections of a

quadric are similar conies,

226. Species of quadrics. Simplified equation of second

degree. As will be seen in the following sections, quadric

surfaces may be conveniently classed under four species.

For, although different plane sections of any surface will in

general be conies of different species, still the general form

of the surface may be characterized most strikingly by those

plane sections which are ellipses, hyperbolas, parabolas, or

straight lines. These species are called, respectively, ellip-

soids^ hyperholoids^ paraboloids^ and cones; and each species

has special varieties, depending upon the nature of a second

system of plane sections. To study these species it will be

well to simplify the general equation of second degree as

much as possible by a suitable transformation of coordinates.*

A transformation of coordinates changing to a new

rectangular system having the same origin as the old, by

equations [14], will transform the given equation of second

degree to

A'3^ + B'y^ 4- C'z^ + 2 F'yz + 2 Q'xz + 2 ITxy + 2 Ux

+ 23ryH-2iV^z-f jr=0, . . . (1)

where A\ B\ — N' are functions of the nine direction angles

• Compare with Art. 176.
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<(p <4« "* of the new axes, which nrv limited by tlie six tode-

I
londent equiitioim noted in Art. 207. These angleii, therefore,

IV be BO ohoeen that thre< ' ional oonditicinii nhall be

! lulled; henoe, so that the < iiU F\ 0\ and //' »Utd\

vanish. Then tlio new equation of Uie quadric will be

A'i»+ 3*^+ e'j«+ 2L'x + 2 M'tf + 2 N'n + JT- 0. (2)

Now a aeoond tranaformation may be made to a parallel

system of axes through a new origin (A, i^y), by equations

[1*^]« giving for the new equation

Aj^^Bfy^ + (Ti* + 2X"r + 2 J/"y + 2 A^'s + iT' - 0, (8)

in which X", M'\ N'\ and K' are fonotions of the oodrdi-

nates A, i, and J ; and these oo5rdinatea may be chosen so that

X", M"^ and N" will vanish, giving for the simplified form

of the equation of the given quadric,

^'i^ + ^3^+C'j«+/r = 0. ... (4)

It may hapiien, however, tliat the choice given above for

the direction angles ap ttg, •••, of the new axes is soch that

the coefficient of one more term of second degree, as C, will

also vanish ; then equation (4) woifld reduce to

ii'j' + ^y^ + ir-O, ... (5)

and the surface is a cylinder (Art. 210). Again, if also X",

iT', i\r' are not independent, and the values of A, 4r, y as

given above are therefore indeterminate, then K k^ j may

be chosen so that, for example, Z", JT', and K' shall vonisli

;

and the equation of the quodrio becomes

^'i* + i^y« + 2iVr"s-0.* ... (6)

• If the ooeflteients of two qnsdiatie tonns tsaidi, as IT sad C, a
of orifia flnt, tbra of dlrectkm of axM, omj bs oho—i so that tbs

will redooe to the form (S).

TAX. Alt. OBO».^S4
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The two forms of the quadric, not already discussed,*

have therefore for their equations, when simplified (dropping

the accents),

and .4ar»4-%^ + 2iVi = 0. . . . [88]

A center of a surface is a ix)int such that it bisects every

chord of the surface which passes through it. It is clear

that the locus of equation [32] is a central quadric, while

the locus of equation [33] is non-central (cf. Art. 178).

227. Standard forms of the equation of a quadric. For

convenience of discussion, the intercepts of the locus of

equation [32] on the coiirdinate axes may be represented by

a, 6, <r, respectively, so that

Then, since Ay B^ (7, and K cannot be all of the same sign,

there will be three types of equation [32], according to the

signs of -4, -B, (7, and K\ viz.:

S+^S-'- • «
^2 + ^ ^-^' • • • vV

a2 yi ^-^' • • • ^v

Similarly, equation [33] may be written for convenience in

the typical forms

g +g= ^. . . . (6)J

^-g=.. . . . (6)-

* An exceptional case occurs where the general equation can be fact

{nto linear factors, and therefore represents two planes.
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wherein« however, a and 6 are no longer inleroepU an in

(2), (8), and (4).

Again, if tlio cquntton [32] has iU consUnt term lero, it

may be written in two typical forma,

2* «* «
-,+5-j,-0. . . . (H)

Theee seven equatioiui are $tandard JormM of the etiuation

of second degree, and will be discwised in turn.

22a The ellipsoid: equation ^i
'' ^ + J " *• ^tfnoi the

equation

g +g + 5=l ... [84]

the follow iiig pro|)ertiai of itii locua may be derived

:

( 1) The traoes on each oo5rdlnate plane are ellipses, having
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the semi-axes a and h in the ary-plane, b and c in the yz-

plane, and e and a in the zz-piane,

(2) The traces on planes parallel to any coordinate plane

are similar ellipses (Art. 225).

(3) The equation may be written

= 1;

a«
'

a*

hence for a plane section parallel to the y«-plane, the semi-

axes are real if the value of x lies between — a and 4- a,

imaginary if beyond those limits, and zero ii x= ± a. More-

over, the length of the axes diminish continuously from the

values b and c, respectively, when a: = to the value zero,

when a: = ± a.

Similarly for sections parallel to either of the other

cocirdinate planes.

(4) The surface is symmetrical with respect to each co-

orlinate plane.

Tills quadric surface, the locus of equation [34], is called

ail ellipsoid. It may be conceived as generated by a variable

ellipse, which has its vertices upon, and moves always per-

pendicular to, two fixed ellipses, which in turn are perpen-

dicular to each other and have one axis in common.

From this definition equation [34] can be easily derived. Let

CRA and A SB be fixed ellipses perpendicular to each other, and having

the semi-axis OA in common,

and the second axes OC and

OB, respectively ; and let SPR
be the variable ellipse, with

semi-axes MS and MR, If

OA, OB, OC be taken as the

X, y, z axes, respectively; and

P be any point on the moving

ellipse, with coordinates OM,
rio.-157 MAf, M'P, then (by Art. 112),



Uj •qoAiloiu (3) antl (.i),

8tt1»iitiitIoiiiii(l)giv<» d^^^^^l,
o* 6* c*

Every al^'elua'u* (Mjiuition of tli« fona

repraeents an elliiMoid. If two of the ooeffidenU of the

variiible terms are equal it Is an ellipsoid of revolution,

either an oblate or prolate spheroid; and if the three oo-

eflicienta of the variable terms are equal, U Is a sphere

(cf. Art. 213, eqs, (10), (11), and (8)).

gM yi ^
229. The un-parted hyperbolold : equation i

"^ li ~ -^ " *•

From the equation

the following properties of its locos may be deriTed

:

(1) The traoe on the jry-plane is an ellipse, with semi-azes

a and h ; while the traces on the yi- and sj?-planes are hyper-

bolas, having the semi-axes b and e, c and a, respeotivelj,

and the conjugate axes along the s-axis.

(2) The traces on planes parallel to any coordinate plane

are similar conies, elllpees or hyperbolas, respectively

(Art. 225).
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(3) Tlie traces on the planes x = a^x^^a^a^ y^h^y^^b
are in each case a pair of intersecting straight lines.

F10.U8

(4) The equation may be written

or

(1)

(2)

From equation (1) it appears that the trace on the

a?y-plane is the smallest of the system of ellipses parallel

to that plane, and that the sections increase continuously

and indefinitely as z increases from to ± 00.

From equation (2) it appears tliat the transverse axis

of the hyperbolas parallel to the y^-plane is parallel to the

y-axis. Similarly, for the aanaections the transverse axia

is parallel to the 2>axis.
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(6) The turfaoe ii symroetrtcal with raspeoi to each oo-

ordinate plane.

TliiM (iiuulrio Mtirfaoe, whoae equation in [35], bt calkii on

un-parted hyperboloid, or an hyperboloid of one sheet. It

may be cunceivcni an ^neraUnl by a variable ellipse, which

iiaii iU vorticeti upon and moveti alwavH peqiendicular to twu

fixed hy{)erbolaa, which in tuni are perpendicular to each

other, and have a comniuu conjugate axis. I fit iHiimiinn

can be readily obtained from thin definition.*

Every equation of the form Aji^ + B^ — CV — K^O
repreaents an un-parted hyperboloid. If the two poattive

coeilioienta are equal, t.«*« if a wm b^ the quadric in tho Mimfile

hyperboloid of revolution (Art. 21S, eq. (12)).

230. The bi-parted hyperboloid: equatloa I^"^'^"^*
Fruiu the equation

. . [86]
•« 6« e^

the following propertied of itn Iooum may be derived

•ct Aft. »s.
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(1) The traces on the zy- and aa^-planes are hyperboltos,

with semi-axes a and hy e and a, respectively, and with the

transverse axis along the z-nxis, while the traces on the

planes parallel to the y^-plane are imaginary if x lies

between a and — a, real ellipses if x is beyond those limits,

and pomts if 2; « ± a.

(2) The traces on planes parallel to any coordinate piano

are similar (Art. 225).

(3) The elliptical sections parallel to the yz-plane increase

continuously and indefinitely as x varies from + a to +00,

or from — a to — 00.

(4) The surface is symmetrical with respect to each

coordinate plane.

This quadric surface, whose equation is [3C], is called a

bi-parted hyperboloid, or hyperboloid of two sheets. It may
be conceived as generated by a variable ellipse which has

its vertices upon, and moves always perpendicular to, two

fixed hyperbolas which in turn are perpendicular to each

other, and have a common transverse axis. This definition

leads readily to the equation [30],

Every equation of the form Ar^ — By^ — Cz^ — JT = rep-

resents a bi-parted hyperboloid. If the coefficients of the

two negative variable terms are equal, t.«., if 5 = c, the sur

face is the double hyperboloid of revolution (cf. Art. 213,

eq. (13)).

23L The paraboloids: equation ^a^^"** ^ discussion

of the equation *i'^^ = * * * t^*^]

similar to that of the preceding articles shows that its locos
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in as reprotentod in Fig. 100«

>yiiiiuetri(Md with retpeei to

the yi- and aavplane, but not

' -'h respect to the jry-pluni*.

^ quadric is the elliptic

paraboloid, and may be eon*

ceived as being generated by

a variable parabola which has

its vertex upon, and moves

always perpendicular to, a

fixed parabola, the axes of the two parabolas bein^f parallel

and lying in the mum direction. This definition leads

directly to equation [37].

•

Every equation of the form Aj* + B^ — 2 JVi repre-

sents an elliptic paraboloid. If the t>vo ponitive coeflSotents

are equal, the quadric is a paraboloid of revolution (cf. Art.

218,eq. (14)).

Similarly, the equation ^-«?-. [88]

no. in

• 8m Aft.
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has for its Ukjus a surface as represented in Fig. 161. This

quadric is the hyperbolic paraboloid, and may be conceived as

generated by a variable ptirabola which has its vertex upon

and moves always i)erpendicular to a fixed parabola, the axes

of the two parabolas bemg parallel, but lying in opposite

clirections. Equation [38] may be derived at once from

this definition.*

Every equation of the form Aj^ — jBy* — 2Nz^ repre

gents an hyperl)olic paraboloid.

232. The cone: equation ^ + 2^-??
a 6«

+ f-f

^' The equation

, , . „ evidently is sat-
a* h^ <r

isfied by the coordinates of only

one real point, viz. the origin.

No further discussion of this

equation is necessary. But the

equation

€? 0^ C^
[39]

has a locus of importance, hav-

ing the following properties

.

(1) The origin is a point of

the locus.

(2) The trace on the xy*

plane is a point. The traces

on planes parallel to the a-y-plane are similar ellipses, whose

semi-axes increase continuously and indefinitely as z increases

from to ± 00.

(3) The trace on each of the other coordinate planes is a

pair of straight lines which intersect at the origin.

•See Art. 228.
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( i) Tbo iiurfuL'o b Nyitimetrical with res|HH;t ioeaoh ooOrdi-

iiaio pluiio, henoe tltfo with retpeot to the on^iu,

( o) The stimight line Uiruiigli tho origin aud any other

{K)int of the locuii lies wholly in tlic locu*.

This quadrio surfaoe is called a cooSy and the origin la ita

vertex. It may be conceived as generated by a straight line

uliiih luoTCs along a fixed elllpae aa directrix, and paaiei

tlitough a fixed point in a straight line which is perpen

dicular to the plane of the ellipse at its center.

Every equation of tho form Aj^ + Bt/^ ~ d* a repre-

sents a cone. If the two |K>8itive coefficients are equal, it is

a cone of revolution, or circular cone (cf. Art. 218, eq. (9)).

The reasoning of Art. 225, applied to the special equation

of tlie fonn [31] which represents a cone, gives an analytic

proof of tho fact that every plane section of a cone im a

second degree curve (cf. Art. 48; Appendix, Note D).

233. The hyperboloid and its

asymptotic cone. Tho h} [>erbuloid

.f« *« s»

and the uout.

a« ^ c«

are closely related. It is clear

that, since the equations differ

only in the constant terms, tne

surfaces can have no finite points

in common ; while as tho values

of y and s are increased indefi-

nitely, tlie corre8|M)tiding values

ior X from the two equations be* Flu Id
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come relatively nearer. In fact, the hyperboloid may be

said to be tangent to the cone at infinity, and bears to

the cone a relation entirely analogous to that between

the hyperbola and its asymptotes. In the same way,

the cone j +C — ^ = ^ is asymptotic to the hyperboloid

EXAMPLES ON CHAPTER IV

1. Derive the equation [35] directly from tlie definition of Art. 229.

2. Derive the equation [36] directly from the definition of Art. 230.

3. Derive the equations [37], [38] directly from the definitions of

Art. 231.

4. Derive the equation [39] directly from the definition of Art. 232.

5. Show analytically that the intersection of two spheres is a circle.

6. Find the equation of the tangent plane to the sphere (x — a)*

+ (y — by + (z — cy = r*, at any point of the sphere.

7. Show that the equation A r^a: + %,y + Cz^z -\- K = represents

a plane tangent to the quadric, Ax^ + I^//^ + Cz^ + K ==0^ at the point

(x,, yj, 2j) on the quadric.

8. Find the equation of the cone with origin as vertex and the ellipse

— + 4 = 1 ill the plane z = — 2, as directrix.
9 4

9. Find the equation of a sphere having the line from P|= (r,. Vj. -i)

to Pj— (xy y^ 2J as a diameter.

10. Show that a sphere is determined by four points in space.

Write the equation of the quadric whose directing curves have tlie

equations

:

11. |Vf =1. and f+f = t

14. ««=ie«, and y« = 9x.

15. x*-4^ = 0, and z^ + 3ffs(k



appf;xi>ix

Noii: A

HittoricAl sketch.* Analyse OtooMtry, in Uw form in wliieh iife

liiivt kuowu, WAA uiveuted by Kmi4 DttonitM (1206-1650) ind tni pob-
lialied liy him in 10S7, in Um thifd aeeiioo of a trMiiM on anifwnl
-cianot entitled ** DiBooon de U method pour biea eoodairem niaon ei

tieroher la verity dans la teimomr He made the ioveotloii while

ittempting to eolre a certain problem, propoted by Pkppot, the oioel

Miiportant caee of which in: to And the loene of a point lueh thai the

product of the perpendiotUari drawn from it upon m giren ttraigbt lin«a

hali bear a constant ratio to the product of the perpendieuhua drawn
> om it upon n other given ftraight lines. By pore geome&y this prob-

lem had already been sol?ed for the qwcial cases when m s 1 and a = 1

'>r 2. Pappus had also asserted, but without proof, that wlien m = n = 2,

ten the locos of this point is a cooie. In his effort tc prore thb fact

i K*scaries introduced his system of eotfrdinatss and found the equation

L>f the locus to be of the second degrse, thus proring tliat it is a cooie.

Anal>'tio geometry does not oonsist merely (as is sometimes loosely

lul) in the applieatlon of algebra to geometry: that had been done by
riiedes and many others, and had become the nsnal method of pro*

- in the works <^ mathemstiirisns of the sixteenth oentory. But in

1 these earlier applications a special set of axes were required for each

•liridual curve. The great adranoe made by Descartes was that he
ivr that a point could be completely determined If its distances, say m

II two Axed lines, drawn at right angles to eadi other, in the

{^en : and that though an equation /(x, f)aO is indelermi-

vOisfled by an infinite number of Talnsa of x and f, yet

r and jf determine the eotfrdinatas of a number of points

Itich form a curve of which the equation f(x, y) = expraeses some
ometrio property, i.e., a property true for every point of the cunre.

loreover, he saw that this method enables one to refer all the conrea

hat may be under investigation to the «ni# set of axes; and that In

• TaksQchisfly ln>m BaU*s Uisloiy of

aai
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order to inTestlgate the properties of a cunre it is sufficient to select any
characteristic geometric property, as a definition, and to expiesM it tis an

equation by means of the (current) coordinates of any point on tii*>

curve; ue^ to translate the definition into the language of analyti<

geometry— the equation so obtained contains implicitly every property

of the curve, aud any particular property can be deduced from it by

ordinary algebra.

While the earlier geometry is an admirable instrument for intellectual

training, and while it frequently affords an elegant demonstration of

some proposition the truth of which is already known, it requires a

special procedure for each individual problem; on the other hand,

analytic geometry lays down a few simple rules by which any property

can l>e at once proved. It is incomparably more potent than the

geometry of the ancients for all purposes of research.

NOTE B

ConBtrnction of any conic, given directrix, focus, and eccentricity. I^t

lyO l>e the directrix, F the focus, and e the eccentricity of a conic ^

(gL Part 1, Art. 48), to plot the curve.

CoKSTRUCTiON : Draw ZFX perpendicular to Z^A and ZWho that,

if a = Z \Z IK, tan a = e. Now draw FR i>erpendicular to Z F, cutting

Z \V at R ; then i2 is a point of the conic ; it is the end of the latus rectum.

Hisect the right angles at F by Fff| and FH^ intersecting Z W in H,

and H^ and draw //, I and H^A' perpendicular to ZX\ then A and A*

are points on the curve ; they are the vertices of the conic.
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Again, from any pobi O batVMo H^uiA U^on ZW. draw MO pai^

peodieuUr lo ZX^ eoltliif il ai M\ aimI from F a« a eanter villi 1/(7

iut mditui dflMoribe an are cuUin(^ Mfi al /'. Theti P \» m. pouit of Um

proof: for Uhi |)uini /^, *7»^ Una « «|

for tlM point ^, ^°i^-teo«««; [^^F//|«4y]

forthepolntP. ^^ = -^- tana »#;

Imuoo the pointa /?, ^|, and /* am iiuch thai their dJrtincei from tha

directrix and from Uie fucim are in th« ratio « ; and aaeh ia

according to the definition given in Art. M, a point of the eonie. By
plotting Tarioua points P (and the fymroetrical poinU P) and

.<^m l^ a amooth curve, the oonio may be plotted to any reqnirad

! aeonracy.

If a<45^ then tana<l, i^^ •<!, and the eooie ia an ellipae; if

- 45^ the conic \n a paraboU; and if a> 45% the oodIo ia an hyperbola

i. Part I, ArU 4»).

NOTE C

The special cases of the conies. The locos of the eeeond degree eura
tH lieen seen to havf three speeies, aooording as « < 1. « = 1, or « > 1.

If r = 0, then, since b is defined by the equation ft* = a*(l - «*), Asa,
uxl the cunre is an ellipm with e<]ual axea, Le.^ it b a circle; in this

-o, the directrix is at infinity and the focus at the center, for the

>n of the directrix is x = -, and the diatanee from the eeiilar to the
e

us is OS (cf. Part I, Arts. 110, 116).
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Again, suppose the focus F to be on the directrix. Then, if P is any
point of the locus, and LP perpendicular to FD^

FP = e'LP, . . . (1)

and sinZPFL=^ = l; ... (2)

hence the angle PFL is constant, with two supplementary values for a

given value of e.

The locus consists therefore of two straight lines intersecting at Ft

and equation (2) shows that

:

if «> 1, the lines are real and different;

if tf = 1, the lines are real and coincident

;

and if tf < 1, the lines are imaginar\', and the real part of the locus

consists of the point F.

Suppose now the directrix, with the focus upon it, to be at infinity

;

then, if « > 1, the locus is a pair of parallel lines.

These results agree with those already summarized in Art. 182.

NOTE D

Sections of a cone made by a plane. The following proposition is

due to Hamilton, Qu^telet, and others (see Taylor's Ancient and Mod-

ern Geometry of Conies, p. 204).

If a right circular cone is cut by a plane, and two spheres are inscribed

in the cone and tangent to this plane, then the section of the cone made

by the plane is a second degree cur\'e (cf. Part I, Arts. 48, 175), of which

the foci are the points of contact of the spheres and the plane, and the

directrices are the lines in which this pliine intersects the planes of the

circles of contact of the spheres and the cone.

Construction : Let O-VW he a right circular cone cut by the plane

HK in the section RPSQ, P being any point of the section. Inscribe

two spheres, C-ABF and C'-A'BF, whose circles of contact with the

cone are AEB and A'E'B, respectively, and which are tangent to the

plane HK in the points F and F. Through P draw the element OP of
j

the cone, cutting the circles of contact in the points E and E\ Also]

pass a plane MN through the circle A EB, and therefore perpendicular

(o the axis OCC of the cone ; it will intersect the plane HK in a straight



lin« ODL, which is

tierptndiottUr to QDL,

AVPKSDIX S85

lo Um tlnichl liM PF. Draw PL

Then PL makes a oonttani angla $ (mZPDA) with Um plane ifiV

•> P£ is parallal to FF], and, if p repraMota tha diitanw from tha

1 I P to tha pUuia A/.V,

pmPL%\n$, . 0)

Alio PE, beinf^ an clement of tha oooa» makes a oonstant aogia m
with the plane ^fy, and

pmPS^tL . . . (S)

Again, sinoa tangents from an externa) point to a uphcre are aqnal,

PKmPP. . . . (S)

TAX. AK. OKOM.— i6
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Ilenoe, from equations (1)» (2), aud (3)

^ = ?Hii = «, a constant, ... (4)PL sin a »
-^ v /

i.tf., tlie ratio PF : PLj for every point /' of tlio section SPRQ, is coimtant,

and (Part 1, Arts. 48, 175) the section ia a s<*coiid de^ee cur\'e, with a fociu*

at F, directrix GDL, and eccentricity ^^.
sin a

Similarly, P is the other focus, and the line of intersection of the

planes JJK and A'E'B' is the other directrix of the conic SPIiQ\ hence

the theorem is established.

Moreover, the plane VW, being perpendicular to the axis of the cone,

and OVW^ being a section made by a plane passing through the axis,

a = ZOrir, and is constant for a given cone, while $ = AOSHt and

varies only with the plane HK.
Hence the eccentricity varies with the inclination of the plane ///T,

and there are the three following cases

:

if ^< a, then e < 1, and the section is an ellipse

;

MB z=0L, then « = 1, and the section is a parabola;

if ^> a, then e> 1, and the section is an hyperbola.

Again, if the cutting plane HK passes through the vertex O of the

cone, then the focus F Is on the directrix GDL, and the section will be

either a pair of straight lines or a point

:

if ^ < a, the section is a point, the vertex O of the cone.

if ^ = a, the section is a pair of coincident straight lines, an element of

the cone

;

if ^>a, the section is a pair of intersecting straight lines, two elements

through the vertex (cf. Note C).

It is, of course, evident that for every elliptic section of the focal

spheres both lie in the same nappe of the cone, and touch the plane of

the section {HK) on opposite sides; while for every hyi)erbolic section

these focal spheres lie one in each nappe of the cone, and both on the

same side of the plane of the section.

In the above proof, for the sake of simplicity, a right circular cone

was employed; it is easy to show (see Salmon's Conic Sections, p. 329)

that every section of a second degree cone (right or oblique) by a plane

is a second degree curve.
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The derooiutrAlloti Joil Khrvti how* eUo UiaI

iug esM of AH ollipte (of. Nol« K).

897

Um parahoiA U % limii-

KOTB B

P«r«boU the limit of an eUipoe,* or of aa liyptrbola. If a T«rtoi

and tlM oorrofpoadtii^ fucun of an ellipie rornain fixed in poaitton «hib»

the oeolar niovca furtluT and furtbor away, tht oiajor axta brcoining

inflnit«ly long, tlien tli*i form uf tho olUpoa appfOAflhaw mora and mora

nearly to that u( a part&bola having tho aama vartax and fbeua.

^ n

c ^.
\r ^^

I7

:!y shown aa follows:

I p It of the ellipne referred to its major axis and Um UDfaol
It its left-hand vertex, as ooordinate axes, is (Part I, Art. 112)

which may be written in the form

O «•

If now the fixed distance OP be reprsaeoted by p, tbao

p = OF = oc - Fc a o -vsrr^

whence 6's2iip->p*;

(I)

(2)

• TUi bet li of ImpoitMiM la
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Substitutiiig thtaeTftliMS in equation (2) it becomes

and the limit of this equation as a approaches oo, p remaining constant, is

y* = 4/)z; . . . (4)

which is the equation of a parabola, and the proposition is proved.

In the same way it may be shown that the parabola is the limit to

which an hyperbola approaches when its center moves away to infinity,

a vertex and the corresponding focus remaining fixed in position

(cf. also Note D).

NOTE F

Confocal conies.— Two conies having the same foci, Fj and F^ are

called confocal conies. Since the transverse axis of a conic passes through

the foci and its conjugate axis is perpendicular to, and bisects, the line

joining the foci, therefore confocal conies are also coaxio/,* i.e., they have

their axes in the same lines. If the equation of any one of such a system

of conies is

^:+^-=i. . . . (1)

and if X is an arbitrary parameter, then the equation

i^=l . . . (2)
a2 + \ 6!»-fX

will represent any conic of the system. For, a and h being constant, and

a > 6, equation (2) represents ellipses for all values of \ between oo

and - h\ hyperbolas for all values of X between — 6* and - a\ and

imaginary loci when X < — a^ ; moreover, the distance from the center

O to either focus for each of these curves is

V(a2 + X) - (6^ + X),

which equals Va* - 6^, and is therefore constant.

The individual curves of the system represented by equation (3) are

obtained by giving particular values to X, each value of X determining

one and but one conic. If any one of these conies is chosen as the

• Coaxial conies are, however, not necessarily confocal

J
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fuD<Um«nUl eonie, and reprattntod by tqaAlloo (1),

othor eoolot of Um fjniein mi^ b« darign«t<d bj ita

of A.

of Um
alat

Tbrougli any aatigned point* P, s(x,, yj), o£ Umb pUoa, tiMrt]

ellipae and one hyperbola o( the system lepteaapted by eqoatioD (2).

For substituting the eotfrdinatea x, and jfj of P, in equation (2). H givee

the quadratic equatloo

.-^**!^='' . . .
(S,

for the determination of X. Equation (S) givee two Taloea of X
two eonioe of this oonfooal syilem paM through P,. That one of theae

is an ellipse and the other An hvtwrbolA \a shown sa follows: the quad-

ratic function in A

«s + x *« + A

is negatiTe when A s -t- ee, and. as A deeraaaaa from <f od to - od, this

function becomes positire juil before A = - H negatlTe again Jnai after

A = ~ 6*, and positive again jnai befors A a ~ at; boBoa, of the two

rooto of equation (3), one lies between - ft* and ao, and the other

- a* and - 6*; and therefore of the two confbeal eonks whieh

through Pp one b an ellipse and the other an hyperboU. Moreover, the

two confocal conies which pass through any givan point, ae P|B(a^» jTi).

of the plane interMHTt at right angles. Thto ia ead|y seen gaoMlricaUy

thus : connect P, with the foci P^ and F,, then the tangant PiPi to tbt
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hyperbola through P^ bisects the interior angle between F,P, and F^P^
while the tangent P^T^ to the ellipse through this same point bi.sects the

extenial angle formed by theHe two lines (cf. Part I, Arts. 148, 103);

these tangents are therefore at right angles, hence (of. Part I, Art 100)

the oonics intersect at right angles.

This fact could also have been readily proved analytically by compar-

ing the equations of the two tangents.

Remark 1. It is easily seen that as X approaches — 6* from the positive

side, the ellipses represented by equation (2) grow more and more flat

(because the length of the semi-minor axis Vb'^ -f A approaches 0),

approaching, as a limit, the segment /•"jF, of the indefinite straight line

through the foci. On the other hand, if A approaches — 6* from beloWf

then the hyperbolas grow more and more flat, approaching, as a limit,

the other two parts of this line. Again, if A approaches — a* from

abovcy the hyperbolas approach the y-axis as a limit.

Remark 2. Since through every point of a plane there passes one

ellipse and one hj'perbola of the confocal system represented by equation

(2), and but one of each, therefore the two values of A which determine

these two curves may be regarded as the coordinates of this point ; they

are known as the elliptic coordinates of the point. If the rectangular

coordinates of a point are known, the elliptic coordinates are easily found

by means of equation (2).

E.g.f let P, = (xp y,) be the point in question, then the elliptic coor-

dinates of Pj are the two values of A, which ai*e the roots of equation (3).

So, too, if the elliptic coordinates are given, the Cartesian coordinates can

be found.

Remark 3. The above observations concerning confocal conies are

easily extended to confocal quadrics, i.e., to quadric surfaces whose

principal sections are confocal conies. They are represented by the

equation
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^•^•B, Alt. 7.

4. Y«i. 1. Yw. 6. Yg«, U V U posiUve ; yw. t. x • «.

10. Yea; jm; y«.

Pat* 10. Art. 9.

1- (>)• (8)* (4)* And (6) an IdenUUM. t. RooU imiiciittnr.

1. (1) imaginary ; (S) imagiiiary ; (8) rral and nneqoaL

t. (1) » = Sor -VJ («) ••=-|Vi:Hv^^«'; (8) - = a«r -6;
(4) m s ± a \/37.

10. Ex. 2. xs-|:fc|ViH; Ex. 8. sss^dr^^/^^;

SX.&. |a=±V^.

U. JBaB:fe4or:fcS; za-Sor-6.

Pa<a 14. Art. IX

I. «|4.iQ|S-—-.; «,jBiB-4;

^^^l «(l + ~) 8(l + «) »

i,+_l_+v«Sl«±Jt^l.

i. (l)(x-4)(x-l); (2)(x+4)(*-J);

(6) (8 iirl + 2) (!•»-»); («) (11 + Of) (I -8f).
801
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one root becomes infinite if m = — |

;

'I 4(m + 2) 4cm + 2) /

/x + -2L±i_ + ! V-31m«-82m-80l.
I 4(m + 2) 4(m+2) /

4. The roots are equal if m = * ^ *v-- o
. ^h^ roots are real for all real

alues of m ; one root becomes infinitely great if m = 2 ; one root becomes

lero if m = ; the factors are

(. Real and equal ; imaginary.

(8)« =0or-J^, j, = 6or*^f^; (fl)x = ±4, » = 0.
0* + a* 6^ + <p

8,9. (l)6 = ±aV37; (2)6=1; (3)6 = ±2V29.

Page 19. Art. 16.

1. 16<» = -2|^'^=0.2618C) approximately; 60* =^^'^= 1.04720 approxi-

mately; etc.

2. (^)'''=45^ (^)^''=108- (l)^'^=14» + 19' + 26.2^etc.

8. 8intf=±-^, costf=±-^, cottf=4, sectf= ±\/T0, C8C^= ±^^;
VYO ViO 3

sinx =±— , co8x= , tanac = T It cota! = T 1, cscx = ±v^; etc.

4. 8in30*= J, cos 30<* = i\/5, etc. ; sin 46*' = cos 45* =— , etc. ; sin 60*=

eoeSO* = iV8, cos60* = J, etc. ; sin 90* = 1, cos 90* = 0, etc. ; sin 135* =

-L, cos 186* = ^, etc. ; sin (- 46^)=—^, cos (- 46*) = -!-, etc.

y/2 y/2 y/2 y/2
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.ila0*; -ootii:--ca»|;MC(-Uli*)aoo(4ft*.
5 ft

t. (1) dii#«-eaitlO'«eQtaOf*«tUiair,lMaotOMTmliMof#ltacr;
(S) #-aa»i (8) .-ao-j (4) s.^ao*.

Pii« as. Alt. 17.

t 1. 1. 1. 1, 0. |. ';%• vn
4. -^lfalfllM«dftolUi6eiibt. 1. V* 16iin«.

vi
IL dda«. t. a

Page 2a. Alt. 22.

t. rotnt of Intdwelloii it (0, 0); middle polot hi (0, 0).

C On Uw Mtto of itMelii (»-ifa); on the tjdi o< owtlnrtw QHtfk); oo
Um line bliacUng the lA Aod 8d angles formed by Ibe eofiidlimte asm ; on

the line bieecUng the 9d eiui 4th englee fomMd hf the coflcdlnete ezM

1. y ss 0« z = 0, X - y s 0, X + y s 0.

«.(-!. 0), (I, 0), and (0. 1^/5); (0, 0), (6, 0). and (0. «).

T. (|v^, 0), (0, |v^), (-|Vi. 0), and (0, -|Vi); (0.0), (0,5),

(6V5. 0), and (6^/5, "6).

t. (3, 6i). t. V^TP; V«« + 6«.

Page 30. Alt. 23.

t. (6,0-). (6,00«^. 4. (-i, 5Z), (-«, =|i),
(2,

=Ii). (a.S5«^,

(S, -i06«). (-8. -«0; («. «0. (6. -a«n. (6. -0^); (o, mo^.
(0. -wa»). (0. -wn-

ft. On droomf^rsnee of a drde of ladhia 7 and center at the pole ; mum
circle ; on the line throogh the pole making an angle ol S0* with the biltial

\\x\t* ; on the initial line ; on the initial line.

7. Parallel to the initial line.

Page 33. Ait. 27.

1. >/l7. >/iS7, y/n. t. '^. >/«!, >/TO

4. V(6 ~ e)« Ke'^^ry. ^^^-ft».

ft. \'l8-.12coeLl. Vi5. Jft-Tcoel^. 7. 8 or - 10.
' la ^ 18

8. V(«+8)«+(y-8)«»8. te. j^+|^+4x-8y+4a0; i^+y«=».

8. l8x + 4ya«L lA l| Vs -|5 -*•
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Page 37. Art. 29.

L (1;4; (2)18J; (8)78. 8. Yen. 4. Yen. 5. '^ 7. ^VTli^Vn.
4

Page 39. Art. 30.

t. (i 0) and (}, 2). 6. (J, V) and ("L !)• T. C=(8, 0).

Pages 41, 42. Examples on Chapter 11.

L 66). 8. alt. iu 12 V2, base is 4\/2, sides are 2 V74, area is 48.

». 0. -0; (8, 21); (-7, -24). i. (7, 9). 6. iVl237.

6. l4-i^\/3; Vl0 + \/89+V78~-24>/8.

9. Slopesaie:!, L±^, L^^^.
1 _v^ 1 4.V3

18. V(A+l)H(A:-l)''=V(A-l)«'+CA:-2)a, i.e. 4A+2fc=3; *=0.

14. (1, -11), (-11, 6) or (13, -1). 16. (3, - 1)

16. (ill±J^ ^yi + ytV /3£lL±l£2, ^Jli±lM\ etc.

19. 3V1O + 3V3 + 6V2 + V3 + 3V2-V3. 21. (±J>/6, =FVv^)-

Pages 53, 54. Art. 39.

I. a. i)-_ «• (3, 0). 8. (0, 2), (-5, -i).

i. Twoofthefourpolnteare:
(

^^^0+^-^>. ^^«0- -̂l).

a (0, -a), (-§^, ^y 7. (0, 0). (4p, 4p).

•• (^C2a»±6>/^^r3Ta -^J2 6TV6n-8a^).

9. (±vTl, ±\/6). 10. (-l±2v^=^, 2±2V:r2).

11. (p = 6, ^ = C06-1 1).

18. p and d of the points of intersection satisfy the equations

:

p2v/2=9(l+v'?"^I^) and tf = 8ln-»^-V

Page 56. Art. 40.

1. The two axes, i.e. the loci of y = and x = 0.

8. Thelociof - + ? = and ?~y = 0. 8. ac = and 3r + 2»/ = V.

2 3 2 3

4, X = 0, y = 0, and 5 »/ - 2 ar = 0. 6. x — 1 = and x - 1 = 0.

a, ai* + y* = 4, y + 2 X = 0, and y - 2x = a
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PM* M Ast. 41.

Pa<«« 59. 60. BxamplM oo OhapTf nz.

I. Hm flnl two ans luii i a»« Uiinl U. t. Y«k ^ ±^i ± V3^7.
«. 'riilfl curve oou the jhulIi In lb* polou («, 0) Aod (S, 0); H ouli llM

y uxi' 111 the polni (0, **),

6 11m »4nteroepU are ^ S, and the y-lnteftvpU •!« ^ 4.

6 The x-lnlAToetito ara - 8 ^ SVi, and the jMaltfSiVU ara S ^ ^^.

T. (0.0). a. (±a, 0).

9. The four poUiu tan : (± Vl?S, ± | Vo) ; the toogtba of tte iUta arat

J v'lo and SVO; and the lengtha o( Um dlafnoala are y/9L

la l:ia*. 11. )|V11 1& Tea. It. TeiL

{Dtetiiict polnu If 6< U
Coloddent poinu If 6 « 1.

InuiKliiary potoulf 6>1.

a C:i*-2f + 12)(f«-4*)(«« + y«-d«)=a 1^ (6,0)aiid(-«,0>.

Pa«« 65. Alt. 45.

1. 4z-6if + 3l sO; 8s-6y4-SlB0i tiM origtal li oa the podUft
tiile of each of theee linea.

t. :tx-2|f = 0; throaghUieorlglii; yea.

r x-y= 12; x+y -HSsO. 4. s-|'>/'8f -t-Stv^-t-C^Ql

6. z*i:10x-f|f'sO; oatalde.

Pac« 67 Art. 47.

1. x«-10x-(-f*-)-0«0. t. 18s-f4y«6L
8. z' + 4x + y«-0y-f 4aO. 4. y*=r8(x~2).

ft. OX> + 4y*3aO. 6 4y«-x« = 4.

Pages 79, 80. ITiaiimlw on Chapter IT.

t 4x-»-y= 11, x-ysO, and 9s-f f aBtl.

S. r -y a 1, x-f y s8, y ~xs8, and ••f y 4 1 vO.
3. Center U at (0, 1), radiua to S, eq. of olrele tos«-t-y*-Sy«&
4 fa)x + yaO; (^)«x + 8y«M; (7) «-» = «.

ft. y = |x-»-6, f.#. Sy-8xslS. i. y*s4s.
7 (Mx« + O0y*4-2lxy-S8Ox-MOy4-776sO.
8. 6jdi-8y*-0xy-10x + a0y-81«a t. y«a9i«.

la (s>a)<-«.y<«4r- U* J^-8|^«a 18. 0x-8y«lAi
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18. 2r« + 2|^-10T-10y + 26 = 0. 14. 0«iaj + 2ftx = 6* - rt«.

16. 6z-4y = 20. 16. lOx - 2y = ; lOx - 8y + 21 = 0; (||, ||).
17. 6x~8if + 14 = 0. 18. 6x + 4|r + 24 t=0, or 6a: + 4y-26 = 0.

19. pstantf.
Page 84. Art. 52.

2. (o) « + y = 7; (p) jr + 8ar=13; (7) 3« + 2y+16 = 0; («) 160y
-20x+ 177 = 0.

6. Yes. 7. Yes.

8. No ; this point and the origin are on opposite sides of Uie line.

9 (=J^ -13\
•'In' ~)

= 1.

10. Equations of the sides are

Equations of the medians are

:

(4a: + v=ll,
9a: + y = 21,

«-y = 9.

7a; + 3y = 13,

17a; + .3y = 43.

Medians intersect in the point [ 3, — j
•

U. -V* W- 8a;-y = 0, 8x-4y = 0.

Pages 85, 86. Art. 53.

4. jf=^+7 + V3; y= 5_+7-V3; y -.

\/3 V8
f =:-*-+7+V5.

V8

5. («)y=8x + 8; (^) y =|- (7)y=-2x
6. -41. 7. -f. 8. Yes.

9. They differ in their y-intercepts, but have the same slope.

10. The y-intercept. 11. ^^ ~ y'
;
-^

Xa — xi a

V3l4-7-8\/3;

|.

Page 88. Art. 55.

L « + >/3jr = 10. 8. rV3 + y = 6. 4. 1 + }>/5. 5. xW- y + 7 = 0.

Pages 96, 97. Art. 60.

I. (.):^+g=i; (/.)fj+f^=i; (.)f3+|=i; (^)^ + f-^=i.

«. («)ir = « + 4; (^) y = -|x-3; (7) y = -3x-2.
«. Ca)x| + yt-=3; (/S) x(- |) + y | = 3

; (7) -44-4^=-!^

vil Via vis'
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S. MoiMto -S|

''^
otND ofMn li •

6. X f y

•. A •xfun of pMmlM Warn of tlopo d.

la All ibe lUiM pMiliif throaghllM polni (0, 0).

11. All Um UBfMlli to UM drato of IMllUI 6, MU Ottitrr ! Uw

U. (•) OOtaa

Wool b

vTTi?

, irin«

(y) COS « a—=— « aln • 8

It. (•)

1ft. 4t~l:

VT5' via*

; (^)lhlnl; (>) fouitlL

(l)ooi«-^, rtn.
s

u. -H;«».
12.

I. +i. i. +H.

17. |aiul-i.

Pii«o 98. Art. ei.

. -2a6

It.

6Vi 6V1

S. 0. 61-^
— 5ito« 4- geoi«
beostt-t- ado*

*

Page 101. Art. 62.

1. (.)|f = «x + *; (/8) Sx-7|f = A; (y) zeotSOo 4- y<4n80>«iifci

(a) f ~ I
~ it,— where k may hky% any valna whaterer.

2 8

*• H; -H: A: 'rointbeMooiMlUiietotlMflminMehetM.
A («)> + 6y86; 0l)7s + Sya6: (7) SiiBair-yeQs30»s 6;

(a) 2x + Sy = 6.

ft. 02 -If-t.66s0. T. .Ar + 1^ = vljrt 4 Blri. ft. ysfs-fli
9. x + 2y + 3 = 0. 10. I2Ax-110y = O.

lL66x-196, + 46»a If. (A, rJJ.

Pi«M 103. 104. Art. 63.

L «^.6y«i6» 6*-f =17. a.yB7x + 6. A >»l^-±i«4.ft.

2VI-.I SVS.fl
(x-l). A x«0; y«A

M'-l)=*^('-l)' A x-f 2yBU or x~2f ^6aa
11. |f = 2T-.lO, 6x-.n|f=l9. x-y+laO. lA I«x-6f347.
lA (I) 3x-2y + S = 0; (2)2x + 3rBll;

(8) (2Vi- 3)x -1.(8^9 + 2)y»llVS^ 3; (4' y«A
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17. uui-i(J), un-» (,>,), Un->(-l)-
II. PwmUel If 6 = ; perpendicular if W = a« + 1

It. DIrtance between line* Is-^. M. -4=' "^
vlo 2VSi

IS. They make numerically equal but opposite angles with the x-axia.

SS. t*n-»(-H); 7y = 9z-l, 7x-f9y = 73.

•A. 46°; (-6,3); 2a; = y + 8, x = 3y + 9.

Pages 107, 108. Art.

3. 0. 4. ^'' 6. 21.

64.

6.
_-24 ^ Jl_^

10. yl-«»^l-^
v^ V^« + 5« \/68 Vl + m^

11. Altitudes are : -^» —, and y/2 ; the area is 1.

V34 >/6

It.
2xi-yi-11^_^_4ri-3yi-.6 ^^ ar-y=12. and 7x+7y=86.

Page 110. Art. 65.

I.
x-y-i-6^_^Sz'10j^\0 2 Other bisector is 21 «-77y+61=0.
V2 VlOO

^-=^-il^)-'-----iiTTi)-'
^_ 38±16V2 5_16_± 26>/2

142 142

Page 114. Art. 67.

1. 8y + x + 6 = 0, 2y-x + 6 = 0; (?, - V); «**•

2. X - 3 y + 1 = 0, X + y + I = ; (-1, 0) ; tan"* 2.

8. X — y(8eca + tano)=0, x — y(8eca — tano) = 0; (0, 0); o.

4. x + 3y + 5 = 0, x-t3y— 1=0; lines are parallel.

6. i = y or J^ ; the lines corresponding toA: = V are3x + 4y + 6 = 0,

2x + 3y + 4 = 0, and the angle between them is tan-> (i»j), their point of

intersection is (1, -2).

7. For it = 28 this equation represents a pair of imaginarj- lines.

8. Ar = 4 ; the two lines coincide, the equation is (2 x — 3 y - 1)^ = 0.

9. 6x-5y+14 = 0and0x + 6y = 60.

10. nenWt B^-AC>0; imaginary if .B«-^C<0; coincident if B^=^r7;

perpendicular if A + C = 0.
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4v^

111. Art.

t. ua#i
7-S^

.-lib—!
1-^

1. UD#

*v^-IO
4. Ths veitkm m« : (S^^ 0), (0, 1^), (*tVi, tVl); aoii lo* ««iaii>

Uoiu of Um ridM are : x-|-y«a>/3, ts-y f sVisO, x-Xf sSVi.

4. ^iln(#-#)a^rin(#-#,).

Aft. 69.

i. (M.#l)i (....).

PaC*« 119-122. BBHBplM oo Chapter V.

1. TbeUiiitlTertexto(l±sVi, ^iVi); wiaatioMof ilMMoilitoBMVt

(l±v^y+(lTV3)x-l78ViB0, Mid(l±\/S)x4(l7>/i)y-l76VI«0.

1. The are* to 18 and the fourth rertes to at any one of the foUowiof

poinu: (8,-6), (7, 1). (M. 7).

8. 8y-4xs9, and y-8s0. i. y = Sx. «. iSz4 9Sf sll.

7. y=(S±v'S)x7V3. 8. 9x- 7ys 1, or 7z<f9ys78.

IL If the baee be oho«n •• JHUtto, and ha middle pofaii m odgla, thao

the equation of the loooa of the fwtez to as - ^ = 9.

19. Ss-8y + 7s9, s-ysl; 1:1:1.

18. (7Vl5-8v^)x-f(>/i3-l>/iO)y+ll>/a + v^o6VOBl

U. 4v^(y-8x+ll)=8vlO(7z-Sy-»- I).»—^—'=» - (W« W)- (^- ^)-

17. xi^y =--i'fi, or x + y ^ 4<i. 18. (^, #i)b/s«, M; # « •, fal the

first line for # = ar (wbcrv a s 0, 1, 8, ••.). in the eeeond line for

' =? + 5(''*»^ "sil. ±«. ±8.-);
a o

the first line to parallel to the polar azia, the aeeood line makes an ai^ of

00" with the polar azto ; the lines make an angle of 60^ with each other.

19. y = v'Sx + S-v^. 89. 6z + 8y + 4>0. 91. 6s44ysl8.

99 Center to /^ ^Vndinstol^^
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n. If the iMae (= 2 a) coincides with the x-axis, \in middle point at the

origin, and if 4;= the area of the triangle, then the locus of the vertex is

ay - A: = 0.

t6. 10 X = 7 (axes chosen as in Ex. 23).

te. (a) x=0, y=0, ac-y=0; (/J) 7x+y=0, 2x-|f=0; (>) «=0, ys=0.

«7. c = - 8. 81. X - 4 y + 8 = ; X - 4 y = 24.

as. 25x-14y = 120. SS. x = 6. 84. xS-yS^O.

85. 8y-26x = 3, 122y-S7x= 10, 31x + 78y = 190.

* « ('•• '')=(^4-)' (« (^' '')=(i^'' i)-

Pages 125, 126. Art. 71.

L 8x-2y = 0. 2. x2 + y2 = 31. 8. 2ya - 4x2 + 1 = 0. 4. y = 3x.

Page 127. Art. 72.

1. x» + y«=10. 2. xy = -8. 8. v^y+l=0.
4. 9x« + 25y« = 225. 6. z^ - 4 y« = a«.

Page 128. Art 73.

1. 4xy = 26. 2. x = x'-X y = ^;x' = x + iy. y =:^y.
V3 _ \/3 2

8. y = 0, X = 0, and V2 x + 9 y = 8VlO.

Page 129. Art. 74.

2. 3x2 + «ya = 6; 12x2 - 18xy + 9y2 = 6.

Page 131. Art. 76.

I. P = a. 2. p sin d? - cot ^ + 2 a = 0. 8. 9 cos 2 ^ = 1.

4. tan ^ = tan a. 6. p(cos tf + V3 sin tf)= 2. 6. p«co82tf = 49.

7. x» + y2 = o*. 8. x* - y2 = a'. 9. xy = 6.

10. (x2 + y2)2 = 2 a«a^. 11. x^ + y* = te. 12. lly = 2x.

18. y« + 4Jfcx = 4*2.

Pages 132-134. Examples on Chapter VI.

1. xy + 7=0. 2. V6y2 + 6y = 8. y^ _ ^^ _ 0.

4. y«+xy + 6>/2y = 0. 6. ("2,2). 7. x + y = 0, 2x - 3y = 0.

8. y = 0. 9. tan^ = |. 11. tan^ = -4; t*n^ = v

J
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II. Uui#»|. 14. ^iiypalBloatlMttM^4^4>C«t. 1*. (!• I)

16. TIm new origin io«y Iw uts point oo Um loeoi of iIm gIfM tfMllMk
17. 6i«4^-1b0. It jt^^anr-f 0|^4iOv^i<5ir»a
It. (•) (**+f«)«-««(««-|f«)j ifi)l^^t^m^i (7) (••4|r»)*«44%V.
ttl #9aiA«0Mt#. tl. #-7«0««. ttL ^-t. tt. ^-ItCX
tl. S««4>t|^-t&. tl. 4je-6^«t. it. sy-O. r. tsf -t-n-o.

Psg* 137. Art. 79.

1. j^^.^-lOx40y+ IBsO. t. 4jr«4-4|^-16y47«0.
t. <«4|^-.0ae-f «y + 9«a 4. jif^^sSt.

PaC« 139 Aft. 80.

I. r = >/gT;(J,4). t. r=iv«j(|,|). t. r»|Vl; (|.0).

4 r = |;(O.J). I. r-±V5l+^;/±.JlLy t. r = !•; (0, 0).

7. A point circle ; imaginary elrele. t. j^ + y'-ttx~4|r-ftteO.
9. (a+ 6)(jt«+y«)-(««+6«)(«+y)=sO. la Sx« ^ Sy> + Ox -(. 9y s 11.

II. 2«-f y«-lSx4Sy + 18 = 0, or jt« + y«-14x-ltf-»-tO«a.
11 z« + y«-Sx-0y + 6 = 0.

18 x« + yt4.a(6±t>/3)(x-r)+(ft±«>/')* = o.

14. 9(3^ + 1^ _ 4_> r 4. 4? -. II. center la (|, 0), r =^ ; or

t(j^ + l^)-•4r-r-^»»y^;il0, oanter b (S, -|), r^~
142. Aft. 83.

1. x + Sy±Sv^>0. 8. tyaSx-f 2±SVi. tL y «9x4- 1S±6V1

4. «±y = ±rVi. t.(-^-4). C (-1,0) nod (0,-1).

7. c=:-a6±90V8. t. Iv^lS. 8. (0. t).

10. y = -8, ysV$s-f 8« ys-v/lx-f 0, nraa, t7VS, for oat of tbt

four trianglea.

Png« 144. Art. 83.

1. y=:3zi:4vld. 8. X -I- 9y ± 9v^6 a a t. ys>/ix±tw
4. yB6x^6>^ t. x-fyst^Vi.

PngM 148. 149. Art. 85.

t. (•)8x44yBt6; (^) 6x-19ytrltt: (» Sx4y«rl9: (I) 9x4y«a
t, (•)4x= 8y; (^) l9x + 6y+7«0; (t) «-8y+7»0; (I) x-iy«0.

TAN. AM. onoji. — 90
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». |r + 4=0. 6. 3c + 8y = 20;;)lx-27y = 2ea

1 = 17. J8ae«+13y«- 180«-78y + 821=0. t. 1 + 1 = 1.

10. («i, yi)*=(2, 6), or =(H, - H).

Page 151. Art. 87.

1. 28|; -26|; 11^; ~ 4^. 2. 3J, 2^, 5, 4.

8. Vvli. ^V7, 6, -v/7. 4. 2a;« + 2y« = 61; ^"8, ±VV).

Pages 155, 156. Art. 90.

1. (a) 2V36; (/3) 2V34.

«. (a):t + 2y = 14; (/J)
(22T|^, 2i^\

(7) (7T2V2r)a!+(14±v^)y = 119T4>/2T.

8. «=0, 21a: + 20y = 0; y -2 ==-^^^-^!^ (x-l).

4. 10«-14y = 63. 6. (6,8). 6. 3x + 7 y = 26 ; Sac + 2y = 26.

Page 158. Art. 93.

I. 3ac + 4y = 7. 2. 3x-y=14. 3. (20, 30); (36a, 36 6).

4. 4« + 7y = 66;7a;-4y = 66, 4x + 7y = 66.

7. Pole is at infinity, in the direction $ = tan-> (- |).

Page 162. Art. 97.

I. iix + 6y + 8 = o. 2. (rLi>^±^ioV«6
^ ^^^'|^

);
^VJi^m.

8. x-y = 0; iV2(a + 6)« - Iflc. 4. ("2, "1).

7. y = 8; 6a; = y + 7; 4jc + y+l = 0.

Page 164. Art. 100.

1. p»-7V2p(8lntf + co8<?)=61; 7V2:tV3^,

2. p«-30p8intf+126 = 0; 8in2tf= J. 8. p* - 12p8in ^ -f 27 = 0; n

4. x« + xy 4- y* - 7 x - 8 y = 0. 6. x^ + y* - xy = 4.

6. ac«+acy+y«-ajc-ay=0. 7. a^+ V^a^+y2-2>/2aa:-2ay+a2-0.

t. Un-»2V^; Un-» vT9.
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FacM 165-lM. IfeMiplM om Olmpim VZL

t. (-a. -6); Uile fuilly nmlm ol aO dvolv ol rvllw V7TP, Md
hAvlng thvlr otoliiB oa Iht ebelt whOM tqwHon lii^ 4- f* ««•»•R

T. The drelM are

;

••+jf«-ux-4jf=-irtw. «'+f*+«»+«r-W»*. ••+i^-«'-«r-fW
The ndioal ax« are I

4x-jfaO. 4« + 7f = 42. 4x + 3f«Sl; (H* V)-
•• ri(«^+f«)=jr(*i* + n«). W. Sx-6y«Si.
IL x* + f«-Sx-13y+lS80. U. s«^ytsA>
It. 6jf-axs6<, ax — ftysdi*, ax4ft|f»0.

14. (X - I/ + Of -!«)• = 74. (x-l6)« + (f-6)«-74.

1ft. (3x-.14)*'i^(3y-4)*sS6; 3x4 Oy= 17, 3x + y » 17, Sx-Sy«.
It. X* 4 y« « xix 4- yif

.

It. (i, §). tl. (7i: Z*. t xO,t />>

tt. 2x*-»-2y« + 40x-.86y-8 = 0.

tt. y»S, xsl, 4x-3yalO, 8x-f 4y«6.

tl ThanMlicalaxieU Sx + ysS, theraUob ts7.

M. (V« t), I i thto point to the radleal omtor.

tt. (r*-l)(x« + yO-«(0 + af«)x-f(F+ftr«)y-C + f«(e(« + tO»<^
where r to the givrn raUo and (a, 6) the fizad poinu tT. ^ s r(l 4 ooe#).

tt. V4f«-na-6)t; r«?^ tt. 3; (1. t).

ttl •«t(r»;f*-47-t4Vl tL (~.4:)j (4^4)5 <*•*>«
and for thrae other pointo in cadi eaae. ^v^S y/iJ Wt Vt/

tt. Bquationa of eidee of inacribed triangle ant y4lsO,yB:^V3x-ft;
eqnatiooe of eldea of drenmeeribed triangto are; yat. yB^^s->4; and
the langtha of the aUee are reipeeUfaty tVS and 4Vl

tt. OoDpare Bzample tt.

t4. Cbordaaret Sx<f yB4andSs-f>ya44. Nonnatoarst 4x — tyatt
aodys2.

tft. X*4.yi42x44yal3, ori^4y*-9x-4y46«a
tt. x*-f y«-f 4x + 4y43«a tT. x<-f y«=:^-#.
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U /x-|y f(jf-^y =^ Uie fixed point being Cx,» y,).

41. No. 42. x« + y«+ 10x+10y=86, or«a + y«-8x-20y + 81=0.

45. 2x-8y=1.3, 2y + 3* = 0; f = ±VHx + 6, x = 0.

i4. y-8=^^^^ (x-2). 46. 46°.

46. Kquation of diameter Lb 6 x+4 y= 1, equation of chords la 6 ys=4 x+ ik.

47. x* + ^ = ri« + r,«.

48. I'he locus is the circle (x - xi)« + (y - yi)« = *2[(x- x,)» + (y- y,)«].

60. The condition that the8e circles cut each other at right angles is

2(7,r?.j + 2F,F2 = C, + Co.

Page 175. Art. 106.

I. 26x« + 80xy + 9 y2 + 80x - 224 1/ + :}30 = 0.

3. x^ + 4 xy + 4 y2 - 12 X + 6 y - 9 = 0. 8. y* = 12 x. 4. a* = - 12y.

6. x« + 4x + 16y = 76. 6. y» + 8y-12x = 8. 7. I/»
= 4p(x-i)).

t. 12 ; 12 ; 16 ; 12.

Page 177. Art. 107.

1. (^.-2); (^. -2); 6; 20x + 81=0; y + 2=0.

S. (-2.6); (-2, V); I; 3y = 16; x + 2 = 0.

«. (\h I); (V»^ «); 1; 48x = 29; 6y = 5.

4. (-1, -1); (2, -1); 12; x + 4=0; y + 1 = 0.

Page 178. Art. 108.

1. y =—i^x. «. y»=—^x. 1. y» = --M=x.
V34 V63 Va« + 6a

Pages 185, 186. Art 112.

L 7x« + 2xy + 7y«+10x-10y + 7 = 0. «. 8x2 + 9y« - 18x = 81.

8. 26a« + 24y« = 600. 4. - + 1^ = 1 ; latus rectum = —•
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n. l»r«)!+ilL±2i:.i,tai«..(«iV»,-<>
10 V

4 lo

It. A
Fit^IM* Alt. US.

1. (I. -I); 6 - 1, a - 3 ; (I. -1 ± V^); (I. 1). (I, -S); L

V15

Pag« 190. Alt. 114.

I. ^ + ??-l. 1. r^ + JS^ -L18^ V *
*

q'W^ti*

PagM 19«. 197. Art. US.

1. 4l2*-64ary-Sly«-458x-».40y + S61 sO.

^^-?=^ ••S-lf-^- 4. 8(^.1^.9..

a« 8<l«
"^

16 9

7. i£±SL«.it^ = .,. t. (8±4,-^).|; (-8,-4ifVld).|.

9. ^-*f=l; ?"»""*• *^ (i:'^.^^)? (±>^0)j («, ±Vl5).

P«f« 199. Art. 119

I (-5, -f); €-|v^»-|Vi;(-«±|VS, -|); (-9 ± |V«, -|); fvt.

^ (&.I); •=^*. *"^» C*±A^^>75, I); (6±|Vll. I); jVSi.

S. (l.-l); aavfJ, 6»8; (I.Milv^); (I, "l ± VI); 6Vl

li H • V M •
9*8 *•
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Pagei 204. 205. Art. 123.

L Tee. 2. y = 3»- V±*V48.

a* ^ 6« • 6« a« '^' V a'ft^ )

6. «ix = 2p(y + y, -10); 2|a + Xiy = a;i(2p + y,).

6. 8(xi + 4)x-6y,y+ 12xi=0; 5yix + 3(Xi + 4)y = 4 y, (2xi 4- 3).

7. (2xi-3)x + 10(yi + l)y = 3x1-10^1 + 8; 10(j/i + l)x-C2xi - 3)y
r=10xi + 8xiyi + 3yi.

8. yiy = 2p(x + xO. 9- (xi -4)x + 2(2y, + 5)y = 4x, - lOyi.

10. y = 1 ; X + 2 = 0. 11. 3 x + 2 y = ; 2 x - .3 y = 0.

12.x + y + 4 = 0;y = x + 2. 18. x + V8y = 4; y = V8x;

14. 3x-2y = 8; 2x + 3y = l.

Pages 208, 209. Art. 126.

1. Chord of contact : 2 x + y = 1
;
points of contact : (-1, 3), ("2, 6);

equations of tangents : 4x + y+l=0, x + y = 3.

4. X + 4 y = 27 ; Yes. 6. 2y + 0x = 0; 2y + 3x = 0.

6. y~l=(-|±Ti5Vl02)(x+l). 8. y_2=5^^(x-3).

9. The four normals are : y^ = and y = ± V6 (x — 1).

Pages 212, 213. Art. 129.
1. x-2y = 6.

5. x-2y = 6; (-4 ± 2 VTs,J6 ± Vl6)

;

(6 T 2vT6)x -(10 T 2 Vl5) y ± 2>/l6 = 0.

6. «-8y+19=0; yes. 7. tan-»(±§). 8. It is. 9. x-3y+9=0.

Pages 216-218. Examples on Chapter VUX.

1. 4y = d:>/l0x+ 4.

2. 03x+32y = 144; 63x + 82y = ± 12\/506.

8. y=ivv^; x+P = 0.

4. O.x + O.y + ^BC-^F«--BGO = 0; cf. Art 60, p. 96.

8. The foci: (i2\/6, 0).

8. The directrix x=-; x + my=ae ; they are perpendicular to each other.

7. It is the tangent at the vertex. 8. x = ± 3, y* = 0.

10. The directrix. 11. The focus. 12. At infinity ; at infinity.
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It. 8jei4S^-4s-a6>a Aa

iV3 + Vitf, a) Mid (-^ - Via, S).

18. Il7p«bok; ^Il2i|Vi,0j; «--U|Vl| (-|,0); M; L

181 ThtotqaatSooiiuirlwwriiumi . <^€JJ2! 4. iLriT . 1, «Uoli

,

thai It to an hirptrboU ; thai the enter to »( (- |, |); thu Um
axto to SVH b |>/IB and to parallel to tba y-aito, Ht,

81. Thto equation may be written : (' - 8)* s 4 • V (f "f l)f—*
I

88. Thtoeq^iatlonmaybewritteni l^-=-l^4^^'^4-^"l*--<»
18

88. Thto aquation may be writtan x (s - f) (8s -f 8|r - 6) « 0,—a pair

olUnaa.

H Anellipee; (^-^^ *V^)» * + y-»*>^; d- D? I>^*^;
)>/a. Thto queation may be aolved by aeaamtnc that the fiiciM to at (A, ik)

and that the diraotrix to fx •»- My a I. and then fladii^ A, it, I, and « by a

oompariaoQ of aqoatkna ; et Ana. 108 and 114.

•r 18

Paga 224. Art. 137.

8. p«|>/Ss^.VS^ and j/m^^y/is^y/ip; lit.

4. 10s + 4y+ii-iO: l^ -|\. 8. 8p«(-l ±V»)C«+ l>+ 8.

8w as + Sy-f 6a0, 8x-Sy^6aO; thadlraetris.

T. 4ys3je-|> IS; 4je-f Sy = 34. 1 8«<»-8y«0.

8. 4x-8y + p = 0; y/^psx + Sp, 10. jr + y + paflL

IL yi-p(x-ii). 18. y<«V«;|. »• W; 3VJ.

14. y = 8x+l;(|, 8);|>/id;|. 18. y*-8&

Pa«ea 229. 230. Aft. 13a

t 9mV:rtM^HV-t^i). 8. (-^8>

Pagaa 234. 235. Alt. 141.

L ty + Taa 8. 4x^Sy«<>. 8.y«|. 4.S--1
t. 8y>a4l3c. T. s«-84y. A (oo, ce).
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Paces 235, 236. Bxamples on Chapter IX..

L 8y<s4x. «. y«-2x-8|f+l0 = 0. 8. (y + 7)« = 4(«- 3).

4. x«-2«-4y + 6 = 0. 8. (1,1); x-l=0. 8. y« = 4p(x-p).

7. y* = 4p(x+p). 8. y«=-Ox. 9. y« = 8x.

10. y = x; x + y+p = 0. U. 90° ; tan-»(l). 18. 4;)«.

IS. y« = px. 14. ya = 2/w.

17. Aa:=p. 18. y = kp. 19. y^ = 4px +p2jfc2.

90. A parabola whose focus is the giren point and whose directrix is the

giviMi line.

88. A:y* = p (1 + k)^ if k is the given constant ratio. 23. 2 y = 3x - 4.

86. A parabola whose focus is the center of the given circle, and wliose

directrix is a line parallel to the given line and at a distance from it equal to

the radius of the given circle.

SM. If m is the slope of the normal, these points are : {pm^^ — 2pm) and

/ £. (m« + 2)«, 2£ (^« ^ 2) I , and the length U i^ (1 + m*)*.
I m* m ) m*

to. X* ± jf^ = ± a*, where a = 4\^p. 80. (p, 2p) ; slope is 1.

Pages 241, 242. Art. 145.

4. X = - -^ ; the left-hand directrix. 6. y = 4 or 2y + 3x = 17.

7. Through the points for which x =—^-^

8. V3x + 2y = 4;4x-2V3y = 3V3;^; ^.
3 4

0. The points for which X = ± fVS. 10. ^ + ^-=1.

11. 3x + 8y = 4; 2x = 3y. 18. 2y = x±6.

18. 14. 4y = 3x±4vl3; 4V73y = 3\/73x±72.
a«(l -««coe*tf)

16. (Y, -V); 7i, 9|. 16. The points for which z= ^^*
: the same.

Pages 258, 259. Art. 156.

1. 16y=15x. 2. 3a;+ 6y=0. 4. (a) a«y+ 6*x=0
; (/3) ay+6x=0.

7. 4y±3x = 0. 8. 6v^. 9. ton-» 2 ; 2V6y + x = 0.

10. 2y = x; 3x + 2y = 0. 11. Vl6, Vl3. 18. av^ ; 45^

14. (-3, -\/3); 210°. 16. ex = a , aex = b^. 16. (a«, 0); (
— , oV
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PaCM 262-2M. BBHiplM M ChiptM X.

4. OMoftlMn«q«uuloo0bi y-^«i(s-M). C Ss-Sfsii

7. S6j^-»-l«y*-48y.64. t. tftf. t. 16; iVB; Mr.
10. If the fBoenuing poini divides tb« Uat to Um fsMo « ifr, Ito

of Um loctu b^ -f ^ B 1. •

T T
16. If UMbM0Ooiiieid«wUhtlM»4udi, Its middle polniM

eiiuation is 6V -f^ at «V.

It. x« + yial7. M. (a<-l-6S)(6M4-«V)'««^^-»>^.

it. (^•-(••|.<i*-6*)UuiS«-|>S<ysO. ta. Sxf «c(4e«-s^.

M. bx-<iyoot«ssO. m.^+ ^k4.

PaCM 271. 272. Ait. 164.

t. Iflr«-0*«al44; (0, ±6); V-
4. 16x-0y»t8; Ox+lOyslOO; |i y.

7. 8(Vi3dbl). •. ±6. t. 4«±V1dy7sVi$«ll.

10. y=A(i6i:vnP5)«-(i±-ij).

11. Ths polsr of oos Tsncx is the taofsot SI lbs oibsr.

14. 3a«-f«aSa«. 17. iVi; s.

It. ys^/JL.7^; V3(2S-tV7); tiMresrsthrtsoilMr

!•• V; I; IJ |.

277, 27a Aft. 167.

L y«l|s; tuii-*|«tsii-iV- i^ AtlafliiKjr.

t. 6a«-4f«c6««; 6x«-4|^ = 0.

t. ex* ) njry-t|«-8ls>l6y4-t6» = 0.
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7. 6x* + 8zy-dy*-Slx-16y-189sO.
t. 2x + y = 0, x-y = l; 2x2-xy-y*-2x-y + 6 = 0.

•. 3x + y + 2=0, x+ lly = 1. 10. 9x^ - 16y« + .•Wx+ 160y =220.

Pages 283, 284. Art. 170.

1. 676xy = 626. 2. li\/2, 2V^; \/2
; (2, 2), (-2, -2).

t. 2v^, 6 ; 2 ; (2\/8, 2 VS), ("2V3, -2v^); (4^/8, 4\/8), (-4V3, "iy/S).

Page 287. Art. 172.

I. 16y = 8x; y = 3x. 8. y=x; 16y = 9x. 8. 16v = 76a5.

4. 8x-3y = 26.

Pages 289-291. Examples on Chapter XL

L x«-3y« = 16. 2. 15y=16x; (4, Y). ("4, "¥).

^* ^—o
^

<.
= If i^ the middle point of the base is the origin and the

or c^ — a*

base of the triangle on the x-axls.

6. 2xy = k{c^ — x^), if i(; is the constant and axes chosen as in Ex. 4.

6. sin~M -^ 1, where a', b' are the conjugate semi-diameters.
\a'b'J

U. xy + 8x-2y-6 = 0.

16. (-4, -3); 2J. 16. 6y-6x = 7. 18. Bv^y ± 4x = ± 3>/7.

19. The four normals are

:

±vT75(4y- 3x4-1) + 300 = 0, ± vT76(4 y -»- 3 x - 17) + 300 = 0.

84. V6'-* + a6 X ± y/a^ -aby± y/ab^a^ -+- ^=' ) = 0.

86. 32y=^rV328l±41)x. 89. x-\-y = V^^T^; (
^

» -^l^V

10. x = 2, y = 8;xy-3x-2y+12 = 0.

81. 8x + 2y + 4 = 0; 3x*+2xy + 4x + = 0.

Pages 296, 297. Art. 176.

1. Centers (0, ^2); foci=(±V6, v^±V6); axes: y-x=v^,

y + « = V2; directrices: x + y = ?-±i2^
V2
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% PwmboU; #«airi miM, mfwrHllooldftni,liattb»potali

(^, l\; aDdtlMUuMiMaaililVl

t. HjrpvrboU; una#«4v^ t«., #ailB-K|);e«lir.f«fHi«dlo«U

to tttb. point ^iL^
ly.

.pdi^-^- *'-S*
4. EIUpw; imiST; o«iUrH(M, 8), iifOTwl to old Mxmi lod m om

the iMw iHucU, Um tml^MW boiaf ^ mmI |.

C PAimbolAi#ai46'*; UMT«1«s(iifKVidtookiAsai), iaUMpoiiii(|. 1);

8Vi

Paco aoe. ITninplM oa Cteptar

P= ,

1. IlyporboU; #8 46**; oofirdinAlM of tmntmr i^oIJ ^m^ ^nt (1^,

IL Fumbola; # a 46** ; the oew e<|aAUOD w i

('-7hy-'?{-'^)
t. RUIpM; # = 0; oentor (old ant)

(|» ^M; <^ = li. *» = H; ««*

on now y iTto
* *

C TwottfmightliiiM: Sx + y s:ft«andS|r>xsl.

6. Two parallel Unee : S x - y s 0, and Sx-y + SasO.

6. A *' point eUipee,** or two Inafinary suaight linea Uumigli tbt

7. Cirole; oenl«r(oldazee)B(-V*l)! ''^H*
t. HyperboU; center (old axes) B(-S.-l); #stti*; ^sft*«^
9. Two atralgbtUnea: Sx + y -f 1 =0, and Sx-ys

a

^
10. Two atraight Unee : x - y s 0, and y -f- 6 s 0.

U. Tbebyperbola48x*-llxy-.17y'-199x + t4y-|-8l3a

18. TlieparaboUl6x<-»-78xy-|-8lyi-Mx-S78y-f 144sO.

17. Tbedrele(x-8)*4-(y-l-8)*a8&.

Page 341. ItiaHHilii on Chapfev I, PMt U
8. eoaas-L-^ ooe/l8-JL, ooaira-iL^ 8. eoa#«>^V9i

• y/U \'M VU
4. (4.

8

0°, ay). 8. (tva. 1^5, jVl).

8. rf = V^« + ^-8^i^icoa(#,-^)«ta#,8to#, + ooa#,ooa#th

7. Internally: (-f. -V»V )J wt^MOy: (-¥• "V* "O- •- ^^
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«. ^=:6\/3, COiai=--L., C08/Ji=-i-, C0i7l=-7=J

V6 V« Vo

^ =s Va* + 6'» cos oj = -, cos /Ss = 0, cos 7s = -•

10. (2,2,2). 11. a=/5 = 7 = C08-»— 18. co8«/J sr2^-JL
V8 ^

Page 352. Examples on Chapter n, Part 11.

1. Two coincident phmes parallel to the yz-pUme and at the distance + 3

from it.

t. A plane parallel to the y^-plane and at the distance — 2 from it.

8. Two coincident planes parallel to the ;;-axi8 and intersecting the

j;y-plane in the line x — y + 1 = 0.

4. Two planes intersecting in the e-axis, and intersecting the xy-plane in

2 c

6. Hyperbolic cylinder with generators parallel to the a^-axiH.

6. A parabolic cylinder with generators parallel to the x-axi.s.

7. A circle whose plane is parallel to the xz-plane and wliose equation bf

8a!» + 3«« = 17.

8. A pair of lines respectively parallel to y = ± x.

9. The projection of this curve upon the x.j-plane is the hyperbola

3x*—z*+6=0, and its projection on the yxr-plane is the ellipse 3 y*+ 4z*=32.

10. For z = 5, the point (0, 0, 5); for 2 = — 6 it is a circle parallel to the

xy-plane, and whose equation Is 9 x'^ + 9 y^ = 100.

11. Solved like No. 9. 12. x^ + y2 = 26 ; x^ + 4 «2 = 25 ;
y- + 4 a:^ = 25.

18. Solved like No. 12. 14. y« + «« + 5 « = 3.

16. (y-3)2 = 25(x« + z«); vertex= (0, 3, 0).

'2±jd ^d^ 1. n. ^^Jll +
-J
= 1. 18. X* (y» + z^) = 1.

u 2 7 y
16.

19. 16 a^ - y« - 9 «« = 1. 90. x« + y^ + J?* = 6 x.

Page 364. Examples on Chapter m, Part II.

1. x + z = 4, y = 2. t. x + y + « = 6. Z. ^^- = ^^21 = ^.-^1.

VZ 1 2\/3

4. y = 2 (on xy-plane), y = 2 (on yi-plane), x + « = 4 (on x«-plane) ; it

pierces the xy-plane at (4, 2, 0), the y^r-plane at (0, 2, 4), and is parallel U
the aur-plane.

. x-l _ y-2 _<-8
•• "l 8 ""T^



t. ?+-«.+^.i. ii.JbL-.«,.-L

T.
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1 - 1 ' ? n'U VT4 ^(^U VTl

-1*4 V» V» V» V»
.. »^.«.lr«; -L, -L, :=J. • CO.#..Zj^

1 s -7 v«i v^6» via t^/m

6>/i4

It. lIx-Tf-fjatt. la. -=i -^; na

».pbiM, Bnd CM-» I— ^ ^ for Um jcy-^^MM ; ilii-*/ *_ V

the if'AxU, and the «-Axi«.

1ft. ISz^-lly + csSft. It. tj|-y-tB-S(t ±Vd).

IT. t=i = r,::i = €Ji«.
4 -5 1

It. y-l-6«-|-4s0, s-4«sS, 63E-|-4f-|>1»0.

ttL Its-fllf-ntslO.

Page 380. Examples on Chapter IV. Part XL

t. («, - «)(« - a)+ (jn - 6)(f - »)+ (»i - e)(. - €)= H h ibt

otane at (X|« yi, «i).

t. 4x« + tf« = tJ«.

•. (.-a^)%(r-«^)V(.-^)'

4

14. 10y* + 9i* = 144x. it. Sx«-4««e1ty.
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Conjugate, diameters of elli(«e, 252.

diameters of hjrperbola, 285.

hyperbolas, 270.

Constaoto, 2.

absolute, 2.

arbitrary 3.

Courdinates, of a point, 24.

axes of, 26, 332.

elliptic, auO.

origin of, 26, 332.

polar, 25. 29, 333.

positive and negative, 25.

rectangular, 27, 3:52.

relation between rectangular and
polar, 130, 333.

transformation of, 123, 339.

Cramer. 315.

Curve**, ;M7.

algebraic, 309.

higher plane, 300.

transcendental, .'521.

use of, in applied mathematics, 73.

Cycloid, 321.

Cylinders, 343.

perpendicular to coordinate planes,

344.

Diameter, of conic, 211.

conjugate, of ellipse, 252.

conjugate, of hyperbola- 285

of ellipse, 250.

of hyperbola, 284.

of parabola, 230.

Diocles, 309, 310.

Direction, angles, 334.

cosines. 334.

Directrix, of conchoid, 312.

of conic, 68.

of ellipse, 179.

of hyperbola, i90.

of parabola, 171.

Distance, between two points, 31, 336.

of point from a line, 105.

of point from plane, 359.

Eccentric angle, for ellipse, 243.

for hyperbola, 288.

Eccentricity, of conic, 68.

of ellipse, 179.

of hyperbola, 190.

EUipee, auxiliary circles of, 242.

center of, 183.

conjugate diameters of, 252.

Ellipae, construction of. 240.

defined, 70, 179, 237.

directrix o^, 179.

eccentric angle of, 243^

eccentricity of, 179.

focus of, 179.

imaginary, 188.

major or transverse axis of, 182.

minor or conjugate axis of, 183.

point, 188.

principal axis of, 182.

subtangent and subnormal of, 244.

sum of focal distances constant, 239.

Ellii>soid, 371.

Elliptic coordinates, 390.

Equation, 4.

condition that quadratic, represents

two lines, 111.

degree of, imchanged by transforma-

tion, 129.

discussion of, 49.

homogeneous, 14.

locus of an, 43.

locus of the product of two or more,

M.
locus of the sum of two or more, 56.

of a locus, 61.

of circle, 64, 6<>, 135.

of locus traced by moving point, 65.

of straight line, 61, 6:5, 81, 83, 84,

86.

of straight line in oblique co<)rdinates,

115.

of straight line in polar coordinates,

118.

of tangent to circle in terms of slope,

142.

of tangent to circle in terms of coor-

dinates of point of contatrt, 144.

of the form i4z + /?»/ + C' = repre-

sents a straight line, 81, 89.

properties of quadratic, 12.

quadratic, 9.

reduction of, to standard forms, 91.

special cases for strai>;ht line, 95.

to trace the locus of an, 91.

Focus, of conic, 68.

of ellipse, 179.

of hyperbola, 190.

of parabola, 170.

Formula, for area of triangle, 34, 36.

for angle between two lines, 97.
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Formnia, for oo8vdi«u«i of polat

vMliif Um Ui gIvM nolo, aiw

n.

for dlrtaiioi of a poUit froai m Hm.
100.

trigooo—

I

rta, Ml
KoaeiloM.a.
•Ifobffmto.O.

alMilflod.C
cotttioBooa, ft.

diteooUanoofl, T.

•spUelt,4.

tepUelt, 4.

of Mlaiod mikIm, 1&
tWMroiidinul, 5.

trigonoaHric. IT.

Qragory, SIA.

Hlfbor pbuM ettiTM, 900L

HypwboU.7S.
•qrmpcoiM of. ITS.

eoojofato, !f70.

eoMtraetlon of. V7
daflallioa of. 73, 1!W. «9.
dllf«r«aoo botwoan focal ladU eoo-

»uuit,9BS.

dlraetrix of. 190.

aeeaotrte angle for, ML
aeeantrkrity of. 190.

aqollalaral or rvctanfular. STT.

foeoa of, 19a
uoffsot and oorawl to. 980.

Hjrperbolold, bl-part«l. 375.

of one aappe or ilml , S70.

of two aappaa or huti, 9L
na-liaited, ns.

Hypoejelold, VS.

Id«iUty. 4.

lataieapi, form of af. of

OS.

of kwiM on asaa, 40.

Interawtlon of two lorl. OS.

InTmriaats, 901.

Klahi.S0O.

Lambert's Aaalytle Oeuwi li jr. 18w

Laios reetom. of elUpee, IIO

of hyperbole. UN.
of paraboU. 173.

Lemolerate, 310.

TAX. AX. uaoii«.— S7

offlBfolaraaialkMiaB, lUL
».

palaal.lOi.
pailllfaiUear.aL
•lopaof a, S.
eiralglit Uae aivlded ! givwi niW.

ST.

to tad aagle between twa. if.

o(.4&
of. 401

b9r.40L

ofaaiqaattoii,4S.47.»M
of aaeqaatloa
maltlpUeatloaaadi

of aa eqaalioa of iril ilitwn la

Tariahlea,:

of aa eqoatioa of eeeowl degraa te

tluee vmrlablae, aOT.

KaftaO.
Kl0D1lllM,ltt.
llbr«Ml.l40i

iorwofaqwMtear
laaitUi of. 140,1001

lCoCatkNi.0.00.

Orlcla,9S.
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Parabola, directrix of, 171.

focus of, 170.

latus rectum of, 173.

limit of ellipstf. :M7.

properties of, 22:*, 232.

•emi-cubical, .120.

Bubtanjcent aud subnonnal of, 222.

vertex of, 172.

Paraboloid. 376.

elliptic, 377.

hyperlwlic, 378.

of revolution, .'i52.

Parameter, 87.

Pancal, 318.

Point, coordinates of, 24.

distance between two, 31.

distance of, from line, 106.

lN>wer of, 1.^2.

Polar, construction of, 1S9.

equation of, 156.

Pole, 2!), 3;J3.

and polars, 209.

construction of, 159.

of a line, VAi.

of conchoid, 312.

Power of a point, 152.

Projection, 21.

formulas for transformation of co<">r-

diuat«s by, 126, 129.

Quadrants. 27.

Quacirics, :«>«, 370.

confocal, 31«0.

Badical, axis, 101.

center, 161.

Badius vector, 29, 333.

Rice and Johnson, 328.

Root. 4.

condition for equal, 10.

condition for zero and infinite, 11.

condition for real aud imaginary, 10.

Salmon, 315.

Secants, 140.

Semi-cubical parabola. 320.

Shearer, 73.

Slope, form of equation of straight line,

88.

Slope of a line, 33.

Sphere, 351.

Spheroid, oblate, 351.

prolate, 351.

Spiral, 325.

center of, 325.

logarithmic, 329.

measuring circle of, 325.

of Archimedes, 325.

parabolic, .Ti8.

recipHK-al or hyperbolic, 328.

spire of, 32.').

Subnormal, 149, 150.

Subtangent and subnormal, 149, 160.

for ellipse, 244.

for parabola, 222.

Surfaces, 342, Mfi.

of revolution, 343, 348.

traces of, 347.

Tangents, 140.

equation of, to circle in terms ot co<ir«

dinates of point of contact, 144.

equation of, to circle in terms ol

slope, 142.

lengths of, 149, 150, 151.

to circle, 141, 152.

to the conic,

Ax^-\-nyi+ 2Gx+2Fij-{-C = 0, 200.

two can be drawn to conic througl

external point, 206.

Transformation, of coiirdinates, 123.

of co<>rdinates i)y projection, 12(5, 129

Triangle, area of, M, 3(5.

Trigonometric ratios, 17.

Variables, 2.

dependent, 3.

independent, 3.

Vectorial angle, 29, 333.

Vertex, of an angle, 16.

of conic, 69.

of hy|)erlKjla, 192.

of parabola, 172.

Wallis, 320.

Willcox, 76.

Witch, 314.

W»en.3«J.
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Senior l*r tr—4M ot M«th«fii«iu» in Corovll Unlv«r*lt)r

ANALYTICAL GCONCTItY

Uy J. II. Tasmi.. i), II.. AMtejuit rvoleaor of MatlMudc*.
Cornell UnUcf%it). uiul jotcrii Ali^h. A.M.. Tutor to M«llw-

ouiks in The CoUtge ol the Clijr oT N«w York. OoiIl Svo.

40O|Mig«. . . . %2M
DirrCRENnAL calcvlvs

By Jamu McMaiio>(. A.M.. AMiMant riofiMorof Mithf!!«.
Cornell Univeraily. and Vikcil Smvdrk. PI1.D.. iMCmcior to

Mathematics. Cornell UnlrcrUty. Cloth. Svo. 536 pnfca . $2JH

INTEGRAL CALCVLVS
By Damkl Am ' 'rbav. Ph.D.. IwinKlor to Madw-
matics in Cornell Cloth. 8ro. yn paces . tl.M

DirrCRENTIAL AND INTEGRAL CALCVLVS

By ViRGII. S.NYUKR, Ph.D.. ln»truil<T m Mathematics. « iKnrll

Univenity, and joH.H Irwi.h IIl't< hin&o.n. rh.I>.. Instructor tn

Mathematics, Cornell Uoiverrity. Cloch. Svo. 3J0 pmgey . %t,S%

in Preparation

ELEMENTARY ALGEBRA. By J. II. Tajcj^rr.

PLANE GEOMETRY. Itv |ame» M< \U..<.v

The «diranc«d books of this series treat tbdr sab^ccta in a vaf that

b simple and practical, yet thorooffhiy ligoiotts and attractive to bock

teacher and stndent. They meet the needs of stndenls pnmtof oonnea

in engineering and architecture in any colkge or onivenhy. Siooe

their publication they have received the general and kaatiy approval of

teachers, and have been ^^ry widely adopted.

The elementary book« will be designed to implant the spirit of the

other books into secondary tchoola. and wlU make the work to

matics. from the ver^' «urt. continooos and harmonkms.

AMERICAN BOOK COMPANY. Poblishbks



Text-Books on Surveying

RAYMOND'S PLANE SURVEYING

By William G. Raymond, C.E., Member American Society

of Civil Engineers ; Professor of Geodesy. Road Engineer-

ing, and Topographical Drawing in Rensselaer Polytechnic

Institute $3.00

This work has been prepared as a manual for the

study and practice of surveying. The long experience of

the author as a teacher in a leading technical school and

as a practicing engineer has enabled him to make the

subject clear and comprehensible for the student and

young practitioner. It is in every respect a book of

modern methods, logical in its arrangement, concise in its

statements, and definite in its directions. In addition to

the matter usual to a full treatment of Land, Topograph-

ical, Hydrographical, and Mine Surveying, particular

attention is given to system in office work, to labor-saving

devices, the planimeter, slide rule, diagrams, etc., to co-

ordinate methods, and to clearing up the practical diffi-

culties encountered by the young surveyor. An appendix

gives a large number of original problems and illustrative

examples.

Other Text-Books on Surveying

DAVIESS ELEMENTS OF SURVEYING (Van Amringe) . $1.75

ROBINSON'S SURVEYING AND NAVIGATION (Root) 1.60

SCHUYLER'S SURVEYING AND NAVIGATION.... 1.20

Copies will be stni, prepaid^ to any address on receipt of tk: price.

Annerican Book Company

New York • Cincinnati • Chicago

(7<>)



Scientific Memoir Series

EuiTAi> BY J06EFIt & AMES. I%.D.

Johot llopUM Uahmfej

7H« ff^ Eiipaniiefi of Oam. Miotri bf Cmf^Lmme, losb,
and Jouto and TboMm. EdiMd by Dr. J. &. Amm . . fXn

PnwiMtic and OiffrtctioA SMCtft. Umukt bf JoMpb vm
Fraunboltr. Editad l>]r Dr. J. S. AMU , , . , MO

Rontoan Ravt. M«Doir« bjr ROotfca, Scolna, md J. J.
Lulled bjr Dr. Giobob F. Baeiuui

Tha Modarn Thao7 of Solution. Mtmolra bir PfHIcr.Vao*l lloff

.

Arrhcniut. and Raoult. Edllod bf Dr. II. C. jomu . . 1 00

Tka Laws of Gaiaa. Mcmolra by Doyla and AmafBt. Edkod bf
Dr. Carl Uabvs 73

Tka Sacond Law of Tharmodynamkt. McowiiB by Caraoc.
CUusios. and Tbomaoo. Edited by Dr. W. P. IIagib . JO

Tha Fundamantal Laws of Elactrolytic Conduction. Mcnoln by
Faraday. Hittorf. and Kohlraoach. Edited by Dr. II. M.
Goodwin 79

Tka EffacU of a Magnatic Fiald on Radiation. MaaoiiB by
Faraday. Kerr, and TainiBii Edited by Dr. E. P. Lswis . .79

Tka Law* of Gravitation. Mcmoira by Newton. Booforr, and
Cavendish. Edited by Dr. A. S. Mackbjvxib . . 1 00

Tka Wava Theory of Light Mcmoira by Hoygcna, Yooaf. mod
FreancL Edited by Dr. IIenby Cbbw .... IjOO

Tha OiKovery of Induced Elactnc Currents. Vol. I.

by Joseph Henry. Edited by Dr. J. S. Ambs ... .79

The Ditcovary of Induced Electric Currents. Vol. II. McowirB
by Michael Faraday. Edited by Dr. j. S. Amo. J9

Stereochemistry. Memoirs bv Pasteur. Le Bel. and Van't lloff.

Intogether with selectioos iroo later memoirs by Wj
aod others. Edited by Dr. G. M. Ricnabimom . 1.00

ThsEipansion of Cases. Memoirs by Gay-Losaac aad Refmaall,
Edited by Prof. W. \V. Randall 1.00

Radiation and Absorption. Memoir* by Pr^voat, Balfov Staarart,

Kirchholl. ami Kirc!:kofI and Bansan. Edliad by Dr.

DbWitt B. Bbace TOO

Cf^ stmt, prtfmd, 9§ mtf mdintim rttrifi •/ tkt /rte.

American Book Company

Now Yorti • CinciniNfli • OucaffO



Biology and Zoology

DODGE'S INTRODUCTION TO ELEMENTARY PRACTICAL
BIOLOGY
A Laboratory Guide for High School and College Students.

By Charles Wright Dodge, M.S., Professor of Biology

in the University of Rochester $1 .80

This is a manual for laboratory work rather than a
text-book of instruction. It is intended to develop in the
student the power of independent investigation and to

teach him to observe correctly, to draw proper conclusions
from the facts observed, to express in writing or by means
of drawings the results obtained. The work consists

essentially of a series of questions and experiments on
the structure and physiology of common animals and
plants typical of their kind—questions which can be
answered only by actual investigation or by experiment.
Directions are given for the collection of specimens, for

their preservation, and for preparing them for examination;
also for performing simple physiological experiments.

ORION'S COMPARATIVE ZOOLOGY, STRUCTURAL AND
SYSTEMATIC

By James Orton, A.M., Ph.D., late Professor of Natural

History in Vassar College. New Edition revised by

Charles Wright Dodge, M.S., Professor of Biology in

the University of Rochester $1.80

This work is designed primarily as a manual of

instruction for use in higher schools and colleges. It

aims to present clearly the latest established facts and
principles of the science. Its distinctive character con-

sists in the treatment of the whole animal kingdom as a
unit and in the comparative study of the development and
variations of the different species, their organs, functions,

etc. The book has been thoroughly revised in the light

of the most recent phases of the science, and adapted to

the laboratory as well as to the literary method of teaching.

Copies of eitJur of tfu above books will be sent, prepaid^ to any address

on receipt of the priee.

American Book Company

New York • Cincinnati ' Chicago

(167)



Standard lext-Books in Physics

ROWUNO AND AMES'S ELEMENTS OF PHYSICS

by Henry A. Rowland, Ph.D.. LL.IX.and J<

S. AMts. Ph.D., ProTeMom oi Physics in Joboft

Hopkins University.

Cloth. 12mo. 279 p^^M Ptic:%\JO0

This is designed to meet the requirements of high
schools and normal schools, and is simple but logical aod
direct, being divided into two parts—the 5rst treating of
the theory of the subject, aod the second coouiniog
suggestions to teachers.

AMES'S THEORY OF PHYSICS

By Joseph S. Amus, Ph.D.

Cloth. 8»o. 531 psg«t . Prico. $1JO

In this text-book, for advanced claM>e», the aim has
been to furnish a concise and logical sutement of the
fundamenul experiments on which the sk'irncc of Physics
is based, and to correlate thc&e cxt)criinei)ts with modern
theories and methods.

AMES AND BLISS'S MANUAL OF EXPERIMENTS IN PHYSICS

By Joseph S. Ames, Ph.D., Professor of Physics, aod
William J. A. Bliss, Ph.D., Associate in Physics^io

Johns Hopkins University.

Ctolh. 8iro. 560 pH^ Prico. $1 JO

A course of laboratory instruction for advaoce'* • '——s^

cmlK)dying the most improved methods of dem a

from a modem standpoint, with numerous qucMi<>n> .md
suggestions as to the value and bearing of the expehmenu.

C^'fs sat/, prt^mU, tm mmy miinu tm rtttifi 0/ /rwy Af <Ar PmUhkert:

American Book Company

New York • OnciiMioti • Chicago

OST)



Text- Hooks in Geology

Bv JAMES D. DANA. LL.D.

Late Professor of Geology and Mineralogy in Yale University.

DANA'S GEOLOGICAL STORY BRIEFLY TOLD $1.15

A new and revised edition of this popular text-book for beginners in

the study, and for the general reader. The book has been entirely

rewritten, and improved by the addition of many new illustrations and

interesting descriptions of the latest phases and discoveries of the science.

In contents and dress it is an attractive volume, well suited for its use.

DANA'S REVISED TEXT-BOOK OF GEOLOGY . $1.40

Fifth Edition, Revised and Enlarged. Edited by William North
Rice, Ph.D., LL.D., Professor of Geology in Wesleyan University.

This is the standard text-book in geology for high school and elementary

college work. While the general and distinctive features of the former

work have been preserved, the book has been thoroughly revised, enlarged,

and improved. As now published, it combines the results of the life

experience and observation of its distinguished author with the latest

discoveries and researches in the science.

DANA'S MANUAL OF GEOLOGY $5.00

Fourth Revised Edition. This great work is a complete thesaurus of

the principles, methods, and details of the science of geology in its

varied branches, including the formation and metamorphism of rocks,

physiography, orogeny, and epeirogeny, biologic evolution, and paleon-

tology. It is not only a text-book for the college student but a hand-

book for the professional geologist. The book was first issued in 1862,

a second edition was published in 1874, and a third in 1880. Later

investigations and developments in the science, especially in the geology

of North America, led to the last revision of the work, which was most

thorough and complete. This last revision, making the work substantially

a new book, was performed almost exclusively by Dr. Dana himself, and

may justly be regarded as the crowning work of his life.

CtfpUs ofany 0/ Dana's Geologies will be sent^ prepaid, to any address on

receipt of the price.

American Book Company

New York * Cincinnati • Chicago
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BOWNE'S THEISM
BY BOROEN P. BOWNE

FOR COLLBOB8 AND THEOLOGICAL tCHOOLS

FIUCE. fI.7S

THIS BOOK Is a revision and extension of the author's

previous work. •• Philosophy of Theism." In the

present volume the arguments, especially from episte-

mology and metaphysics, receive fuller treatment. The vork
has been largely rewritten, and about half as much additional

new matter has been included.

The author, however, still adheres to his ortglnaJ plan ci

giving the essential arguments, so that the reader may discern

their true nature and be enabled to estimate their rational

value. He does this from the conviction that the Important

thing in theistic discussion Is not to make bulky collections of

striking facts and eloquent illustrations, nor to produce learned

catalogues of theistic writers and their works, but to clear up
the logical principles which underlie the subject. From this

point of view the work might rightly be called the ** Logic of

Theism."
Special attention Is given to the fact that atheistic argu-

ment is properly no argument at all. but a set of Illusions which

inevitably spring up on the plane of sense-thought, and acquire

plausibility with the uncritical. The author seeks to lay bare

the root of these fallacies and to expose them in their base-

lessness. In addition, the practical and vital nature of the

theistic argument is emphasized, and it Is shown to be not

merely nor mainly a matter of syllogistic aiKi academic
inference, but one of life, action, and history.

AMERICAN BOOK COMPANY
PUBLISH ERS

NEW YORK CINCINNATI CHICAGO



A DESCRIPTIVE CATALOGUE OF HIGH

SCHOOL AND COLLEGE TEXT-BOOKS

A A /E issue a complete descriptive catalogue of our

^ ^ text-books for secondary schools and higher

institutions, illustrated with authors* portraits.

For the convenience of teachers, separate sections

are published, devoted to the newest and best books

in the following branches of study:

ENGLISH
MATHEMATICS

HISTORY AND POLITICAL SCIENCE
SCIENCE

MODERN LANGUAGES
ANCIENT LANGUAGES

PHILOSOPHY AND EDUCATION

If you are interested in any of these branches, we

shall be very glad to send you on request the cata-

logue sections which you may wish to see. Address

the nearest office of the Company.

AMERICAN BOOK COMPANY
Publishers of School and College Text-Books

NEW YORK CINCINNATI CHICAGO

Boston Atlanta Dallas San Francisco



A Complete System of Pedagogy

IM THRU VOLUMIS

Bt EMKiUiON E. WHITE. A.M.. L1«D.

THE ART OF TEACHING. Ootfi. )2I pt^M P«k«. $li»

This new work la Pwlifngy It • tdiwdic Mid
tiM of iSMTAiV <w« «^* lipmtBMiaaladdaMUMrtlM
pitecipMi of tMChlflf, MM tBMI ppIlM IIMB M
hMMlvo mtilMMk. Tlw dotioff dHpim dtaoMt te •
teaching of roadiiif, kuifuaf*,

clemenuiy brucbet. The Mithor aim
variout problaat conaactad vllb taadriaff, IndodlBg oval

book Mody, daM taitraeikm and
of papiU, etc

ELEMENTS OF PEDAGOGY. Clolh. 336 pagM . . Pika. $IjOO

This trtatt«e. bf iwianbaom vwdict of tbe iMcbew* pwifihwi. baa

been aoeepccd ai the leadinf Mandaid aathority oa tbe tob^. Fro*
Its firit poblkatioo It hat bmi with tbe freetcM favor, aad iu wide dr-

calatkm ever tlaoe baa been pbenoMMil. It bat baaa adopcad fai aMia
Normal Scboob. Teachera' loiticataa, and Scale Raadfaif CIrclat, dMa
anjr other book of its daat. Tbia wide dfcobdoa and popalaiiiy it

directly attribuubic to the latfioalc vahM and nMrIt of tbe book haelf

and the rtpoutton of lis aotbor, who b oeryabeia raoogaiMd aa paa>

eminently qualified to ipeak or write wicb ambathy on utaraHenal

subjects.

SCHOOL MANAGEMENT. Cloth. 320 pagaa . Pnca. %\M
The first part of thb work b devoted to acbool Offaaiaatleo and

discipline, and the teoood part to aoral traiafaif. PilncTpItt aia dearly

tutcd and aptly Ulostrttad by aaamptet drawn larfdy ffom tba anUMr't

own wide experience. A diear light b throwa on tbe nMat fanpottant

problems in school manafeatent. The lunnMhy for awral trdnlng.

whkh. in the minds of many, abo iovohrca rtUfiona Jntlinnhwi. will

make the second part of thb book a wsicomt eontribntlon to ptdifngiral

litrr.iture. The subject b tboroogbly and wbdy traated. and tbe maia-

tia!^ which are provided for moral liMont wOl be Ugbly apptidaiad bf
all tcachcfs who fed tba fanportanoe of tbb work.

Ofifs stmt, prtptU^ H mmy •dirtu m rwnifi 0/ tJU frin,

American Book Company

New York



A New Astronomy

BY

DAVID P. TODD, M.A., Ph.D.
Vto(tmo€ of Astrooomy and Director of the ObMrvatory, Amhertt CoUag*.

Cloth, 1 2mo, 480 pages. Illustrated - - Price, $1.30

This book is designed for classes pursuing the study in

High Schools, Academies, and Colleges. The author's

long experience as a director in astronomical observatories

and in teaching the subject has given him unusual qualifi-

cations and advantages for preparing an ideal text-book.

The noteworthy feature which distinguishes this from

other text-books on Astronomy is the practical way in

which the subjects treated are enforced by laboratory

experiments and methods. In this the author follows the

principle that Astronomy is preeminently a science of

observation and should be so taught.

By placing more importance on the physical than on

the mathematical facts of Astronomy the author has made
every page of the book deeply interesting to the student

and the general reader. The treatment of the planets and

other heavenly bodies and of the law of universal gravita-

tion is unusually full, clear, and illuminative. The mar-

velous discoveries of Astronomy in recent years, and the

latest advances in methods of teaching the science, are

all represented.

The illustrations are an important feature of the book.

Many of them are so ingeniously devised that they explain

at a glance what pages of mere description could not make
clear.

Co^s of Todd's New Astronomy will be sent, prepaid, to any address

on receipt of t}u price by the Publishers :

American Book Company
NEW YORK > CINCINNATI . CHICAGO
(i8x)
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