y^{2}

ANNEVAR \& CO

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

THE MODERN MATHEMATICAL SERIES

L.UCIE.N At'GUSTUS WATT . . . Gexeral Embtob

The Modern Mathematical Series.

LUCIEN AUGUSTUS WAli.
(Sumber Prufessor of Malbomasics on Cormell Umeviruly.)
general editor.

This meries includes the following works:
ANalytic geometry. By J. h. Tanner and Jorkrit Adeen.
differential Calculus. By James Mc:Mahon and Virbh, Snyder.
integral calculus. By D. A. Murbay.
differential and integral calculus. By Virgil Snyber and J. I. Hutchissos.
elementary algebra. By J. H. Tanner.
elementary geometry. By James Mcmahon.

The Analytic Geometry, Differential Calculus, and Integral Calculus (puls. liwhed in September of 1848) were written primarily to meet the needs of college students pursuing courses In Eingineerlug and Architecture; accordingly, practieal problems, in illustration of general principles under discussion, play an important part in each look.

Thene three bowks, treating their subjects in a way that is simple and practical. yet thoroughly rigorous, and attractive to both teacher and student, recejed sueli general and hearty approval of teachers, and have been so widely adopted In the beat eolleges and universities of the country, that other books, written on the aame general plan, are being added to the series.

The Differential and Integral Calculus in one volume was written especially for thone inatlutions where the time given to these subjects is not sufficient to ere ad vantageouly the two separate broks.

The more elementary books of this series are designed to implant the spirit of the nsber brokn into the secondary schools. This will make the work. from the chowole op through the university, continuons and harmonions, and free from the alirupt transition which the student so often experiences in changing from the preparatory to his college mathematics.

an elementary course

ANALYTIC GEOMETRY

BY

10

J. H. TANNER, Ph.D.
ABNIMTANT PROFESSOR OF MATHEMATICS IN CORNELL UNIVERSITY
A ND
JOSEPH ALLEN
FORMERLY INSTRUCTOR IN MATHEMATICS IN CORNELS UNIVERSITY INSTHUCTUR IN THE COLLEGE OF THE CITY OF NET YORK

Covthisnt, 1998, by
 J. II. TANNER AND JOSEPH ALLEN.
 ANA. GEN.
 w. P 10

PREFACE

Although in the writing of this book the needs of the students in the various departments of Engineering and of Architecture in Cornell lniversity havo reocived the first consideration, care has also been taken to make the work suitable for the general student and at the same time useful as an introduction to a more advanced course for those students who may wish to specialize later in mathematies.

Among the features of the book are:
(1) An extended introdnetion (Chaps. II, III, IV), in whech it is hoped that the fundamental problems of the subject are clearly set forth and sufficiently illustrated. The chief diffientey which the beginner in Analytic Geometry usually has to overcome is the relation between an equation and its locus; having really mastered this, he easily and rapidly acquires a knowledge of the properties to which this relation leads, and especial care has therefore been given to this matter. Analytic Geometry is broader than Conic Sections, and it is the firm conviction of the authors that it is far more important to the student that he should acquire a familiarity with the spirit of the method of the subject than that he should be required to memorize the various properties of any particular curve.
(2) The making use of some intrinsic properties of curves (see Arts. 106, 112, 118), which experience with many classes hus shown to give the student an unusually strong grasp on the equation of the second degree from which the $x y$-term is alsent.
(3) Introduction of the demonstrations of general theorems by numerical examples. This not only makes elear to the student what is to be done, but shows also the method to be employed, - it generalizes after the student is acquainted with the particular.
(4) Eitasy but rigorous proofs of all the theorems within the soope of the book. E.g., in Art. 67 it is proved, and
very simply, too, that the vanishing of the discriminant is not ouly a neccsary, but also the sufficient condition that the quadratic equation represents a pair of straight lines.

It may also be mentioned here that, in the early part of the book, two or more figures are given in connection with a proof and so lettered that the same demonstration applies to each. It is hoped that this will help to convince the student of the generality of the demonstration. A copious index which enables one almost instantly to turn to anything contained in the book has also been added.

The engineering students at Cornell University study Analytic (reometry during the first term of their freshman year, and experience has shown that it is best to devote a few lessons at the begimning of the term to a rapid review of those parts of the Algebra and Trigonometry that are essential to the reading of the Analytic Geometry. The first twenty-three pages are devoted to this matter, and may, of course, be omitted by those classes that take up the subject immediately after reading the Algebra and Trigonometry.

The book contains little more than can be mastered by a properly prepared student of average ability in from twelve to fourteen weeks; if less than that time can be devoted to the work, the individual 'eacher will know best what parts may be most wisely omitted by his pupils. A list of lessons for a short course of eleven weeks is, however, suggested on the next two pages.

A few specific acknowledgments of indebtedness are made in foot-notes in the appropriate places in the book. Of the large number of examples which are inserted, many are original, while many others have come to be so common in textbooks that no specific acknowledgment for them can be made. We take great pleasure in expressing here our thanks to the other authors of this series of books for their many helpful suggestions and criticisms; to our colleagues, Dr. J. I. Hutchinson and Dr. G. A. Miller, who have so greatly assisted us in reading the proof, and the latter of whom also read the manuscript before it went to press; to Mr. Peter Field, Fellow in Mathematics, and Mr. E. A. Miller for solving the entire list of examples; and to Mr. V. T. Wilson, Instructor in Drawing in Sibley College. for the care with which he has made the figures.

LIS' OF L.ESSONS SUGGESTED FOR A SHOR'T COURSE.

(From the varioun sets of exercies the teacher ts expected to make selec. liows for each lomon. The fifth day of each week whould bie devoted to reviewing the precoding four lesoun.]

CONTENTS

PART I. - PLANE INAI.YTIC GEOMETRY
CHAPTER I
Inthonictios
Alyeloruic and Trigononetric Conceptions
 PAOE

1. Number 1
2. Constants and variables 2
3. Functions 3
4. Identity, equation, and root 4
5. Functions classified 4
6. Notation 5
7. Continuous and discontinuons functions 6
8. The quadratic equation. Its solution 9
9. Yero and infinite roots 11
10. Properties of the quadratic equation 12
11. The quadratic equation involving two unknowns 13
Trigonometric Conceptions and Formulus
12. Directed lines. Angles 15
13. Trigonometric ratios 17
14. Functious of related angles 15
15. Other important formulas 19
16. Orthogonal projection 21
CHAPTER II
Gromethe Concrithons. The Poist
I. Coordinate Sywems
17. Coorrdinates of a point 24
18. Analytic Geometry 25
Anticen20. Positive and negative coordinates25
19. Cartexian coordinates of proints in a plane 26
20. Rectangular coördinates 27
21. Polar coordinates 29
22. Notation 30
II. Elementary Applications
23. $\}$ Distance between two points
(1) Polar coordinates 31
(2) Cartesian coördinates; axes not rectangular 32
(3) Rectangular coördinates 33
24. Slope of a line 33
25. Summary 34
26. The area of a triangle
(1) Rectangular coordinates 34
(2) Polar coördinates 36
27. To find the coördinates of the proint which divides, in a given ratio, the straight line from one given point to another 37
28. Fundamental problems of analytic geometry 40
CHAPTER III
The Locus of an Equation
29. The locus of an equation 43
30. Illustrative examples: Cartesian coördinates 43
31. Loci by polar coördinates 46
32. The locus of an equation 47
33. Classification of loci 48
34. Construction of loci. Discussion of equations 49
35. The locus of an equation remains unchanged: (a) by any trans- position of the terms of the equatio: ; and (β) by multiply- ing both members of the equation by any finite constant 52
36. Points of intersection of two loci 53
37. Product of two or inore equations 5
38. Locus represented by the sum of two equations 56
CHAPTER IV
Thr Equation of a Locus
39. The equation of a locus 61
40. Kquation of straight line through two given points 61
ABTVCL pan
41. Fquation of straight line through given poist and ln given direction 63
42. Fipuation of a circles : polar courdinateas 04
43. Rijuation of locus traced by a moving point 05
44. Eiquation of a circlo: second method as
45. 'The conic sections 6
46. The use of curves in applied mathematics 73
CHAPTER V
Tur Strabgit Lang。 Fquation of Fibet Deorkk
$A x+B y+C=0$
47. Recapitulation 81
48. Riquation of straight line through two given points 81
49. Equation of straight line in terms of the intercepts which it makes on the coürdinate axes 83
50. Fipuation of straight line through a given point and in a given direction 84
51. Fiquation of straight line in terms of the perpendicular from the origin upon it, and the angle which that perpendicular makes with the x-axis 86
52. Normal form of equation of straight line: second method 87
53. Summary 55
54. Fivery equation of the first degree between two variables has for its locus a straight line 89
55. Reduction of the general equation $A x+B y+C=0$ to the standard forms. Determination of a, b, m, p, and $c c$ in terms of A, B, and C. 1
56. To trace the locus of an equation of the first degree 94
57. Special cases of the equation of the straight line $A x+B y+C=0$ 95
58. To find the angle made by one straight time with another. 97
59. Condition that two lines are parallel or perpendicular 95
60. Line which makes a given angle with a given line 101
61. The distance of a given point from a given line 105
62. Bisectors of the angles between two given lines 108
63. The equation of two lines 110
64. Condition that the general quadratic expression may be factored 111
65. Equations of straight lines: courdinate axes oblique 115
66. Equations of straight lines : polar courdinates 118
CIIAPTER VI
Tbangrobmation of Coimpinater
page Antrele 123
I. Carlesinn Coirdinates Only
67. Change of origin, new axes parallel respectively to the original axes. 124
68. Transformation from one system of rectangular axes to another system, also rectangular, and having the same ori- gin; change of direction of axes 126
69. Transformation from rectangular to oblique axes, origin in- changed 127
i1. Transformation from one set of oblique axes to another, origin unchanged 128
70. The degree of an equation in Cartesian coördinates is not chauged by transformation to other axes 129
II. Polar Coïrdinates
71. Transformations between polar and rectangular systems. 130
CHAPTER VII
The Circle
Special Equation of the Second Degree
$A x^{2}+A y^{2}+2 G x+2 F y+C=0$
72. Introductory 135
73. The circle: its definition and equation 135
74. In rectangular coördinates every equation of the form $x^{2}+y^{2}$
$+2 G x+2 F y+C=0$ represents a circle 137
75. Equation of a circle through three given points 138
Secants, Tangents, and Normals
76. Definitions of secants, tangents, and normals 140
77. Tangents: Illustrative examples 141
78. Fiquation of tangent to the circle $x^{2}+y^{2}=r^{2}$ in terms of its slope 142
79. Fquation of tangent to the circle in terms of the coördinates of the point of contact: the secant method 144
Antice: Pats
8\%. Fapuation of a normal to a given cirele 147
80. Laengtles of taugenta and normals. Sublangenta and aub- normals. 119
81. Tangent and normal longths, subtangent and subnormal, for the circlo 150
82. To find the length of a tangent from a given external point to a given circle 151
83. From any point outaider of a circle two tangents to the circle can be drawn 152
84. Chord of contact 151
85. ['oles and polars $1: 6$
86. Fiquation of the prolar 1,6
87. Fundamental theorem 15%
88. Geometrical construction for the prolar of a given point, and for the pole of a given line, with regard to a given circle 158
89. Circles through the intersections of two given circles 160
90. Common chond of two circles 160
0\%. Radical axis; radical center 161
91. The equation of a circle: polar courdinates 102
92. Equation of a circle referred to oblique axes 103
93. The angle formed by two intersecting curves 184
CHAPTE:R VIII
Ture Conic Smetions
94. Recapitulation 170
I. The Parabola
Special Equation of Second Degree
$A x^{2}+2 G x+2 F y+C=0$, or $B y^{2}+2 G x+2 F y+C=0$
95. The parabola defineed 170
96. First standard form of the equation of the prarabola 171
97. To trace the parabola $y^{2}=4 p r$ 172
10\%. Latus rectum 173
98. Geometric property of the parabola. Second standard equa- tion 178
10\%. Frery equation of the form $A x^{2}+2 G x+2 F y+C=0$, or $P y^{2}+2 G x+2 F y+C=0$, representa a parabola whose axis is parallel to one of the coördinate axes 175
99. Reduction of the equation of a parabola to a staudard form 177
II. The EllipseSpecial Fquation of the Second Degree

$$
A x^{2}+B y^{2}+2 G x+2 F y+C=0
$$

antrice page
100. The ellipse defined 179
110. The first standard equation of the ellipse 180
111. To trace the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ 182
112. Intrinsic property of the ellipse. Second standard equation 183
113. Every equation of the form

$$
A x^{2}+B y^{2}+2 G x+2 F y+C=0
$$represents an ellipse whose axes are parallel to the coördi-nate axes, if A and B have the same sign186

114. Reduction of the equation of an ellipse to a standard form 183
III. The Hyperbola
Special Equation of the Second Degrea

$$
A x^{2}-B y^{2}+2 G x+2 F y+C=0
$$

113. The hyperbola defined 190
114. The first standard form of the equation of the hyperbola 191
115. To trace the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. 193
116. Intrinsic property of the hyperbola. Second standard equa- tion 195
117. Every equation of the form

$$
A x^{2}+B y^{2}+2 G x+2 F y+C=0
$$represents an hyperbola whose axes are parallel to the coör-dinate axes, if A and B have unlike signs197

120. Summary 199
IV. Tangents, Normals, Polars, Diameters, etc.
121. Introductory200
122. Taugent to the conic $A x^{2}+B y^{2}+2 G x+2 F y+C=0$ in terms of the coördinates of the point of contact : the secant method 200
123. Normal to the conic $A x^{2}+B y^{2}+2 G x+2 F y+C=0$, at a given point 203
124. Equation of a tangent, and of a normal, that pass through a giren point which is not on the conic 205
anvile FAGB
125. Through a given external point two tangenta to a conic can tre drawn 200
126. Equation of a chord of contact 207
127. Poles and polam 900
128. Fundamental theorem 210
129. Diameter of a conic section 211
130. Eiquation of a conic that parser through the intensections of two given conics 213
V. Potar E:quation of the Conic Sections
131. Polar equation of the conic 214
132. From the polar equation of a conic to trace the curve 215
CHAPTER IX
Tur. Parabola $y^{2}=4 p x$
133. Review 219
134. Construction of the parabola 220
135. The equation of the tangent to the parabola $y^{2}=4 p z$ in terms of its slope 221
136. The equation of the normal to the parabola $y^{2}=4 p_{x}$ in terms of its slope 222
13\%. Subtangent and subnormal. Construction of tangent and normal 222
137. Some properties of the parabola which involve tangents and normals 225
138. Diameters 230
139. Some properties of the parabola involving diameters 235
140. The equation of a parabola referred to any diameter and the tangent at its extremity as axes 233
CHAPTER X
Tu: Ftrumes: $\frac{x^{2}}{a^{3}}+\frac{y^{2}}{b^{2}}=1$
141. Review 237
142. The equation of the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in terms of its slope 238
143. The sum of the focal distances of any point on an ellijse is constant; it is equal to the major axis 238
Arymers PAGE
144. Conatruction of the ellipse 240
145. Auxiliary circles. Ficcentric angle 242
15\%. The subtangent and subnormal. Construction of tangent and normal 244
146. The tangent and normal bisect externally and internally, respectively, the angles between the focal radii of the point of contact 246
147. The intersection of the tangents at the extremity of a focal chond 247
148. The locus of the foot of the perpendicular from a focus upon a tangent to an ellipse 248
149. The locus of the intersection of two perpendicular tangents to the ellipse 219
150. Diameters 250
151. Conjugate diameters 252
152. Given an extremity of a diameter, to find the extremity of its conjugate diameter 253
153. Properties of conjugate diameters of the ellipse 251
154. Fiqui-conjugate diameters 257
155. Supplemental chords 259
1is. Equation of the ellipse referred to a pair of conjugate diam- eters 260
156. Ellipse referred to conjugate diameters; second method 261
CHAPTER XI
The Hyperboba $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
157. Review 265
158. The difference between the focal distances of any point on an hyperbola is constant; it is equal to the transverse axis 266
159. Construction of the hyperbola 267
160. The tangent and normal bisect internally and externally the angles between the focal radii of the point of contact 268
161. Conjugate hyperbolas 270
16.5. Asymptotes 272
162. Relation between conjugate hyperbolas and their asymptotes 275
163. Equilateral or rectangular hyperbola 277
164. The hyperbola referred to its asymptotes 278
165. The tangent to the hypertola $x y=c^{2}$ 280
166. Geometric properties of the hiyperbola 281
AnTOL LI TaE E
167. Diamulers. 25
168. Propertios of conjugate diameters of the hyperbola 265
169. Supplenental chords 967
170. 1quations repromenting an hyperbola, but issolving only one variable 288
CHAPTER XII
Ceneral. Fquation of tie Second Degheie
$A x^{2}+2 \| x y+L y^{2}+2 G x+2 F y+C=0$
171. General equation of the second degree in two variables 292
1it. Illustrative examples 294
172. Test for the species of a conic 297
1is. Center of a courc section 298
173. Transformation of the equation of a conic to parallel axes through its center. 290
174. The invariants $A+B$ and $I^{3}-A B$ 301
175. To reduce to its simplest standard form the general equation of a conic 303
176. Summary 806
177. The equation of a conic through given points 307
CHAPTER XIII
Higifer Plase Cerves
178. Deflutions 309
179. Algeliraic Curves
180. The cissoid of Diocles 309
18t. The conchoid of Nicomedes 312
18\%. The witch of Agnesi 314
181. The lemniscate of Bernouilli $: 115$
isna. The limaçon of Pascal 318
180 b. The cardioid 319
182. The Neilian, or semi-cubical parabola 320
II. Transcendental Curces
183. The oycloid 321
184. The hypocycloid 323

III. Spirals

A *ทาce: page
183. Definition 325
101. The spiral of Archimedes 325
19\%. The reciprocal, or hyperbolic, spiral 326
100. The parabolic spiral 328
197. The lituus or trumpet 328
198. The logarithmic spiral 329
PART II. - SOLID ANALYTIC GEOMETRY
CHAPTER I
Coördinate Systems. Tife Point
199. Introductory 331
200. Rectangular coördinates 332
201. Polar coördinates 333
202. Relation between the rectangular and polar systems 333
203. Direction angles : direction cosines 334
204. Distance and direction from one point to another; rectangu- lar coördinates 336
205. The point which divides in a given ratio the straight line from one point to another 337
208. Angle between two radii vectores. Angle between two lines 338
207. Transformation of coördinates; rectangular systems 339
CHAPTER II
The loces of an Equation. Surfaces
208. Introductory 342
209. Fquations in one variable. Planes parallel to coördinate planes 343
210. Fquations in two variables. Cylinders perpendicular to coür- dinate planes 344
211. Equations in three variables. Surfaces 346
212. Curves. Traces of surfaces 347
213. Surfaces of revolution 348

CHAPTER III

Equations of thr Fimet Degnek $A x+$ By $+C z+D=0$. Plaske
anio Sthaigut danka

1. The Plane

A MTEL畧 Taes
214. Fivery equation of the fint degrou represents a plane 343
215. Equation of a plane through three given points 304
216. The intercept equation of a plane $3 i 4$
217. The normal equation of a plane 345
218. Reduction of the general equation of first degree to a stand- and form. Determination of the constants $a, b, c, p, a, \beta, \gamma$ 350
210. The angle between two planes. Parallel and perpendicular planes 357
220. Distance of a point from a plane 359
II. The Straight Line
221. Two equations of the first degree represent a straight line 359
223. Standard forms for the equations of a straight line
(a) The straight line through a given point in a given direction 300
(b) The straight line through two given points 360
(c) The straight line with given traces on the courdinate planes 301
223. Reduction of the general equations of a straight line to a standard form. Determination of the direction angles and traces
I. Third standard form : traces 302
II. First standard form : direction angles 362
221. The angle between two lines; between a plane and a line 803

CHAPTER IV

Equations of the Secont Degrer. Quadric Surfaces
22\%. The locus of an equation of second degree 307
226. Sprecies of quadrics. Simplified equation of second degree 365
227. Standard forms of the equation of a quadric 370
225. The ellipsoid: equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{3}}=1$ 371
Anticle rage
220. The un-parted hyperboloid: equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{l^{2}}-\frac{z^{2}}{c^{2}}=1$ 373
230. The bi-parted hyperboloid: equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$ 375
231. The paraboloids: equation $\frac{x^{2}}{a^{2}} \pm \frac{y^{2}}{b^{2}}=z$ 376
239. The cone : equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$ 378
233. The hyperboloid and its asymptotic cone 379
APPENDIX
Note A. Historical sketch 381
Note B. Construction of any conic 382
Note C. Special cases of the conics 383
Note D. Every section of a cone by a plane is a conic 381
Note E. Parabola as a limiting form of ellipse or hyperbola 387
Note F. Confocal conics 388
Answers 391
lisdex 000

ANALYTIC GEOMETRY

PART I

CHAPTER I

INTRODUCTION

AlGEBRAIC AND TRIGONOMETRIC CONCEPTIONS

1. Number. A number is most simply interpreted as expressing the measurement of one quantity by another quantity of the same kind first chosen as a unit of measure ; it is positive, or + , if the measuring unit is taken in the same sense as the thing measured; and negative, or - , if this measuring unit is taken in the opposite sense.
E.If., the unit dollar may be regarded as a dollar of assets, or as a dollar of liabilities; if it is regarded as a dollar of assets, then assets measured by it produce positive numbers, while liabilities measured by it produce negative numbers.

The above definition is consistent with the one usually given; viz. that numbers are positive or negative according as they are greater or less than zero.

If the operations of addition, subtraction, multiplication, division, raising to integer powers, extracting roots, or any combination of these operations, are performed upon given numbers, the result in every case is a number ; it is imaginary

[^0]if it involves in any way whatever an indicated even root of a negative number; otherwise it is real.

Every imaginary number may be reduced to the form $a+b \sqrt{-1}$, where a and b are real, and $b \neq 0$.
2. Constants and variables. If $A B$ and $A C$ are two given
 straight lines making an angle α at the point A, and if any two points X and Y, on these lines, respectively, are joined by a straight line, then
Area of triangle $A X Y=\frac{1}{2} \cdot A X \cdot A Y \cdot \sin \alpha$,
i.e.,

$$
\Delta=\frac{1}{2} \cdot x \cdot y \cdot \sin \alpha,
$$

where x is the length of $A X, y$ is the length of $A Y$, and Δ is the area of the triangle.

If now the points X and Y are moved along the lines $A B$ and $A C$ in any way whatever, then Δ, x, and y will each pass through a series of different values, - they are variable numbers or variables; while $\frac{1}{2}$ and $\sin \alpha$ will remain unchanged,they are constant numbers or constants.

It is to be remarked that $\frac{1}{2}$ has the same value wherever it occurs, - it is an absolute constant; while μ, though constant for this series of triangles, may have a different constant value for another series of triangles, -it is an arbitrary constant.

Because x and y may separately take any values whatever they are independent variables; while Δ, whose value depends upon the values of x and y, is a dependent variable.

The illustrations just given may serve to give a elearer conception of the following more formal definitions.

An absolute constant is a number which has the same value wherever it occurs; such are the numbers $2,7, \frac{3}{5}, 6^{\frac{7}{2}}, \pi$, e
(where $\pi=3.14159265 \ldots$, approximately 22 , the ratio of the circumference of a circle to its diameter; and

$$
e=2.71828182 \ldots=1+\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots,
$$

approximately f , the base of the Naperian system of logarithms).

An arbitrary constant is a number which retains the same value throughout the investigation of a given problem, but may have a different fixed value in another problem.

An independent variable is a number that may take any value whatever within limits prescribed by the conditions of the problem under consideration.

A dependent variable is a number that depends for its value upon the values assumed by one or more independent variables.*

A number that is greater than any assignable number, however great, is an infinite number; one that varies and becomes and remains smaller (numerically, not merely algebraically less) than any assigned number, however small, is an infinitesimal number. All other numbers are finite.
3. Functions. A number so related to one or more other numbers that it depends upon these for its value, and takes in general a definite value, or a finite number of definite values, when each of these other numbers takes a definite value, is a function of these other numbers. E.g., the circumference and the area of a circle are functions of its radius; the distance traveled by a railway train is a function of its time and rate; if $y=3 x^{3}+52-8$, then y is a function of x.

[^1]4. Identity, equation, and root. If two functions involving the same variables are equal to each other for all values of those variables they are identically equal. Such an equality is expressed by writing the sign \equiv between the two functions, and the expression so formed is an identity. If, on the other hand, the two functions are equal to each other only for particular values of the variables, the equality is expressed by writing the sign $=$ between the two functions, and the expression so formed is an equation. The particular values for which the two functions are equal, i.e., those values of the variables which satisfy the equation, are the roots of the equation.
\[

$$
\begin{aligned}
& \text { E.g., }(x+y)^{2} \equiv x^{2}+2 x y+y^{2}, \quad(x+a)(x-a)+a^{2} \equiv x^{2} \text {, } \\
& \text { and } \quad x+\frac{3}{x-1} \equiv \frac{x^{2}-x+3}{x-1}
\end{aligned}
$$
\]

are identities ; while $3 x^{2}-10 x+2=2 x^{2}-4 x-6$, or, what is the same thing, $x^{2}-6 x+8=0$, is an equation. The roots of this equation are the numbers 2 and 4 .

Special attention is called to the fact that an equation always imposes a condition.
E.g., $x^{2}-6 x+8=0$ if, and only if, $x=2$ or $x=4$. So also the equation $a x+b y+c=0$ imposes the condition that x shall be equal to

$$
\frac{-b y-c}{a}
$$

5. Functions classified. A functional relation is usually expressed by means of an equation involving the related numbers. If the form of this equation is such that one of the variables is expressed directly in terms of the others, then that variable is called an explicit function of the others; if it is not so expressed, it is an implicit function.
E.g., the equations $y=\sqrt{5-x^{2}}, x^{2}+y^{2}=5$, and $x=\sqrt{5-y^{2}}$ express the same relation between x and y; in the first y is an explicit function
of x, in the second each is an implicit function of the other, while in the third x is an explicit function of y.

Tho word "function" is, for brevity, usually represented by a single letter, such as f, F, ϕ, ψ, \cdots; thus $y=\phi(x)$ means that y is a function of the independent variable x, and is read " y equals the ϕ-function of x "; so also $z=\boldsymbol{F}(u, v, x)$ means that z is a function of the independent variables u, v, and x, and it is read, " z equals the \boldsymbol{F}-function of u, v, and x."

A function is algebraic if it involves, so far as the independent variables are concerned, only a finite number of the operations of addition, subtraction, multiplication, division, raising to integer powers, and extracting roots. All other functions are transcendental.
E.g., $2 x^{3}-5 x-17, x y+y^{3}-7 x$, and $\frac{2 x^{2}-11 y^{2}}{x+x y-7 y^{2}}$ are algebraio functions; while $2^{2}, a^{*}, \sin x, \tan ^{-1} z$, and $\log \ell$ are transcendental functions.
6. Notation. In general, absolute constants are represented by the Arabic numerals, while arbitrary constants and variables are represented by letters. A few absolute constants are, however, by general consent, represented by letters; examples of such constants are π and e (Art. 2). Variables are usually represented by the last letters of the alphabet, such as u, v, v, x, y, z; while the first letters, a, b, c, \cdots are reserved to represent constants.

Particular fixed values from among those that a variable may assume are sometimes in question; e.g., the values. $x=2$ and $x=-1$, for which the function $x^{2}-x-2$ vanishes; such values may conveniently be denoted by affixing a subscript to the letter representing the variable. Thus $x_{1}, x_{2}, x_{3}, \cdots$ will be used to denote particular values of the variable x.

Similarly, variables which enter a problem in analogous
ways are usually denoted by a single letter having accents attached to it ; thus $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}, \cdots$ denote variables that are similarly involved in a given problem.

Again, each of the two equations, $y=3 x^{2}-4 x+10$ and $y=\phi(x)$, asserts that y is a function of x; but while the former tells precisely how y depends upon x, the latter merely asserts that there is such a dependence, without giving any information concerning the form of that dependence. If several different forms of functions present themselves in the same problem, they are represented by different letters, each letter representing a particular form for that problem, though it may be chosen to represent an entirely different form in another problem.
$E . g_{n}$, if the form of ϕ, in a given problem, is defined by the equation

$$
\phi(x)=\frac{3 x^{6}-x^{4}+5}{2 x+1}
$$

then, in the same problem,

$$
\phi(v)=\frac{3 v^{6}-r^{4}+5}{2 v+1}, \quad \phi(1)=\frac{7}{3}, \quad \text { and } \quad \phi(0)=5 .
$$

7. Continuous and discontinuous functions. In general a function takes different values when different values are assigned to its independent variable. If $y=\phi(x)$, then, for $x=a$ and $x=b$, the function becomes $y_{1}=\phi(a)$ and $y_{2}=\phi(b)$, and y_{1} is in general different from y_{2}. The function $\phi(x)$ is said to be a continuous function of x between $x=a$ and $x=b$, if, while x is made to pass successively through all real values from a to b, y remains real and finite and passes correspondingly through all values from y_{1} to y_{2}.

This definition may be more precisely stated, thus: If x_{1} and x_{2} are any real values of x which lic between the values a and b, and if the corresponding values of y, viz. $\phi\left(x_{1}\right)$ and $\phi\left(x_{2}\right)$, are real and finite; and if
a positive number η can be found, such that by taking, numerically,

$$
x_{1}-x_{3}<\eta_{1}
$$

it will follow that, numerically,

$$
\phi\left(x_{1}\right)-\phi\left(x_{8}\right)<e_{1}
$$

where e is any assigned poritive number, however amall; then $\phi(x)$ is a continuous function of x for values from a to b.

Or, in words: y is a continuous function of z for all values of z in the interval from a to b. it, by taking any two values of z in the interval sufficiently near together, the difference between the corresponding values of y can be made less than any assigned number, however small.

A discontinuous function is one that does not fulfil the conditions for continuity. It is, however, usually discontinuous for only a limited number of particular values of its independent variable, while between these values it is continuous.

As familiar examples of continuous functions may be mentioned: the length of a solar shadow; the area of a cross-section of a growing tree, or of a growing peach ; tho height of the mercury in a barometer; the temperature of a room at varying distances from the source of heat; and interest as a function of time.

So, also, $y=3 x^{2}+4 x+1$ is a continuous function of x for all finite values of x.

For, y remains real and finite so long as x remains real and finite, and, if x_{1} and x_{2} be any two finite values of x which differ from each other by η, i.e., if $x_{2}=x_{1} \pm \eta$, then

$$
\begin{aligned}
y_{2}-y_{1} & =3 x_{2}^{2}+4 x_{2}+1-\left(3 x_{1}^{2}+4 x_{1}+1\right) \\
& =3\left(x_{1} \pm \eta\right)^{2}+4\left(x_{1} \pm \eta\right)+1-\left(3 x_{1}^{2}+4 x_{1}+1\right) \\
& = \pm\left(6 x_{1}+4+3 \eta\right) \eta
\end{aligned}
$$

Now to show that $y=3 x^{2}+4 x+1$ is continuous for $x=x_{1}$, it only remains to show that, by taking η sufficiently
small, i.e., by taking x_{2} sufficiently near x_{1}, y_{2} can be made to differ from y_{1} by less than any assigned number (ϵ), however small. But this is evident; for η may be taken as near zero as desired, hence the factor $6 x_{1}+4+3 \eta$ as near $6 x_{1}+4$ as desired, and the product therefore as near zero as is necessary to be less than ϵ.

On the other hand, if, at regular intervals of time, apples are dropped into a basket, the combined weight of the basket and apples will increase discontinuously; i.e., their total weight is a discontinuous function of the time.

EXERCISES

1. If $A x+B y+C=0$, prove that y is a continuous function of x; and x, of y.
2. If $x^{2}+y^{2}-4=0$, prove that y is a continuous function of x, when $2>x>-2$.
3. If $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, prove that x is a continuous function of y, when $b>y>-b$.
4. If $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-1=0$, is x a continuous function of y ?
5. If $s t-9=0$, is s a continuous function of t ?
6. If $u^{2}-3 v=0$, is u a continuous function of v ? Is v a continuous function of u ?
7. Show that all functions of the form

$$
a_{0} x^{m}+a_{1} x^{n-1}+a_{2} x^{m-2}+\cdots+a_{n-1} x+a_{n}
$$

where $a_{0}, a_{1}, a_{2} \ldots a_{n}$ are constants, are continuous for all finite values of x.
8. If $\frac{y-1}{y-2}=5^{\frac{1}{2-1}}$, show that y is discontinuous for $x=1$.
9. Find the value of x for which $y_{1}=c \frac{e^{\frac{1}{x-0}}-1}{\frac{1}{e^{x-a}}+1}$, is discontinuous.
10. Intereat on money loneod is calculated by the formula

$$
I=P \cdot R \cdot T .
$$

Is the interest (1) a continuous or a discontinuous function of P ? of R ? of T ?
8. The present work will be concerned for the most part with algebraic functions involving only the first and second powers of the variable, i.e., with algebraie equations of the first and second degree. A review is therefore given of the solution and theory of the quadratic equation, presenting in brief the most important results which will be needed in the Analytic Geometry. The student should become thoroughly familiar with this theory, as well as with the review of the trigonometry which follows it.
9. The quadratic equation. Its solution. The most general equation of the second degree, in one unknown number, may be written in the form

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{1}
\end{equation*}
$$

where a, b, and c are known numbers. This equation may be solved by the method of "completing the square," which gives

$$
\begin{equation*}
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}=\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a} \text {. } \tag{2}
\end{equation*}
$$

i.e., $x+\frac{b}{2 a}= \pm \sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}}= \pm \frac{1}{2 a} \sqrt{b^{2}-!a c}$,
whence

$$
\begin{equation*}
x=-\frac{b}{2 a} \pm \frac{1}{2 a} \sqrt{b^{2}-4 a c} \tag{3}
\end{equation*}
$$

If x_{1} and x_{3} are used to denote the roots of eq. (1), they may be written

$$
\begin{equation*}
x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \text { and } x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \ldots \tag{5}
\end{equation*}
$$

The nature of the roots (5) depends upon the number under the radical sign, i.e., upon $b^{2}-4 a c$, giving three cases to be considered, viz.:
if $b^{2}-4 a c>0$, then the roots are both real and unequal,
if $b^{2}-4 a c=0$, then the roots are both real and equal, if $b^{2}-4 a c<0$, then the roots are both imaginary.

Thus the character of the roots of a given quadratic equation may be determined without actually solving the equation, by merely calculating the value of the expression $b^{2}-4 a c$. This important expression is called the discriminant of the quadratic equation; when equated to zero it states the condition that must hold among the coefficients if the equation has equal roots.

EXERCISES

1. Show which of the following equalities are identities:
(1) $x^{2}-4 x+4=0$;
(4) $(p+q)^{3}=p^{8}+q^{3}+3 p q(p+q)$;
(2) $(s+t)(s-t)=s^{2}-t^{2}$;
(5) $x^{2}+5 x+6=(x+3)(x+2)$.
(3) $\frac{\alpha^{3}+\beta^{3}}{\alpha+\beta}=\alpha^{2}-\alpha \beta+\beta^{3}$;
2. Determine, without solving the equation, the nature of the roots of

$$
3 x^{2}+8 x+1=0
$$

Solution. Since $b^{2}-4 a c=64-12=52$, i.e., is positive, therefore the roots are real and unequal; again, since a, b, and c are all positive, therefore both roots are negative (cf. eq. (4), Art. 9).
3. Without solving the equation, determine the character of the roots of $8 x^{2}-3 x+1=0$.
4. Given the equation $x^{2}-3 x-m\left(x+2 x^{2}+4\right)=5 x^{2}+3$.

Find the roots. For what values of m are these roots equal?
5. Determine, without solving, the character of the roots of the equations:
(1) $5 z^{2}-2 z+5=0$;
(2) $x^{2}+7=0$;
(3) $3 t^{2}-t=19$.
6. Determine the values of m for which the following equations shall have equal roots:
(1) $x^{2}-2 x(1+3 m)+7(3+2 m)=0$;
(2) $m x^{8}+2 x^{2}-2 m=3 m x-9 x+10$;
(3) $i x^{2}+(1+m) x+1=0$;
(4) $z^{2}+(6 z+m)^{2}=a^{2}$.
7. If in the equation $2 a x(a x+n c)+\left(n^{3}-2\right) c^{3}=0, x$ is real, show that n in not greater, in absolute value, than 2.
8. If z is real in the equation $\frac{x}{x^{3}-5 x+9}=a$, show that a in not greater than 1 , nor leas than - no
9. For what values of c will the following equations have equal roots?
(1) $3 x^{3}+4 x+c=0$;
(2) $(m x+c)^{2}=41 x$;
(3) $4 x^{2}+9(2 x+c)^{2}=30$.
10. Solve the equations in examples 2,3 , and 5 .
11. Solve the equations :
(1) $x^{4}-25 x^{2}=-144$;
(2) $\frac{3 x-2}{x-2}-\frac{2 x+1}{x+2}+\frac{12}{x^{2}-4}=0$.
10. Zero and infinite roots. In the following pages it will sometimes be necessary to know the conditions among the coefficients of a quadratic equation that will make one or both of its roots zero, or the conditions that will make one or both of the roots infinitely large. In equations (5) of Art. $9, x_{1}$ and x_{2}, i.e. the roots of $a x^{2}+b x+c=0$, were found; and it is at once seen that
$x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{equation*}
=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \frac{-b-\sqrt{b^{2}-4 a c}}{-b-\sqrt{b^{2}-4 a c}}=\frac{2 c}{-b-\sqrt{b^{2}-4 a c}} \tag{1}
\end{equation*}
$$

and that
$x_{3}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=\frac{2 c}{-b+\sqrt{b^{2}-4 a c}}$.
Equations (1) and (2) show that :
(1) If a and b remain unchanged while c grows smaller,
then x_{1} grows smaller and x_{2} grows larger ; and if $c \doteq 0$,* then $x_{1} \doteq 0$, while $x_{2} \doteq-\frac{b}{a}$.
(2) If a remains unchanged while $c \doteq 0$ and $b \doteq 0$, then $x_{1} \doteq 0$ and $x_{2} \doteq 0$.
(3) If b and c remain unchanged while $a \doteq 0$, then $x_{1} \doteq-\frac{c}{b}$ and x_{3} becomes infinitely large.
(4) If c remains unchanged while $a \doteq 0$ and $b \doteq 0$, then both x_{1} and x_{2} become infinitely large.
(5) If a and c remain unchanged while $l \doteq 0$, then $x_{1} \doteq \sqrt{\frac{-c}{a}}$ and $x_{3} \doteq-\sqrt{\frac{-c}{a}}$.
The student should translate (1), (2), (3), (4), and (5) into more general terms by reading "the absolute term approaches zero as a limit" instead of " $c \doteq 0$," etc.
11. Properties of the quadratic equation. By adding the two roots of

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{1}
\end{equation*}
$$

and also multiplying them together, the relations

$$
\begin{equation*}
x_{1}+x_{2}=-\frac{b}{a} \text { and } x_{1} x_{2}=\frac{c}{a} \tag{2}
\end{equation*}
$$

are obtained; or, if equation (1) is written with the coefficient of the term of the second degree reduced to unity, as

$$
\begin{equation*}
x^{2}+p x+q=0 \tag{3}
\end{equation*}
$$

these relations become

$$
\begin{equation*}
x_{1}+x_{2}=-p \text { and } x_{1} x_{2}=q \tag{4}
\end{equation*}
$$

Or, expressed in words: the coefficient of the term of the second degree being unity, the coefficient of the term of

[^2]the first degree is the negative of the sum of the roots, while the term free from x is the product of the roots.

If, therefore, the roots of a quadratic equation are not themselves needed, but only their sum or product is desired, these may be obtained directly from the given equation by inspection.
E.g., the half sum of the roots of the equation
is

$$
\begin{gathered}
m^{2} x^{2}+2(b m-2 l) x+b^{2}=0 \\
\frac{x_{1}+x_{2}}{2}=-\frac{2(b m-2 l)}{2 m^{2}}=\frac{2 l-l m}{m^{2}} .
\end{gathered}
$$

Moreover, if x_{1} and x_{2} are the roots of the equation

$$
x^{2}+p x+q=0
$$

then $x-x_{1}$ and $x-x_{3}$ are the factors of its first member.
For, by equation (t) above, this equation may be written
and

$$
x^{2}+p x+q \equiv x^{2}-\left(x_{1}+r_{2}\right) x+x_{1} x_{2}=0
$$

hence

$$
\begin{gathered}
x^{3}-\left(x_{1}+x_{3}\right) x+x_{1} x_{2} \equiv\left(x-x_{1}\right)\left(x-x_{2}\right) \\
x^{2}+p x+q \equiv\left(x-x_{1}\right)\left(x-x_{2}\right) .
\end{gathered}
$$

Conversely: if a quadrutic function can be separated into two factors of the first degree, then the roots can be immediately written by inspection.

For, if $x^{2}+p x+q \equiv\left(x-x_{1}\right)\left(x-x_{2}\right)$, then the first member will vanish if, and only if, $x-x_{1}=0$ or $x-x_{2}=0$; i.e. $x^{2}+p x+q=0$ if $x=x_{1}$ or $x=x_{2}$, hence x_{1} and x_{2} are the roots of the equation $x^{3}+p x+q=0$ (cf. Art. 4).
12. The quadratic equation involving two unknowns. One equation involving two unknown numbers eannot be solved uniquely for the values of those numbers which satisfy the equation; but if there is assigned to either of those num-
bers a definite value, then at least one definite and corresponding value can be found for the other, so that, this pair of values being substituted for the unknown numbers, the equation will be satisfied. In this fray an infinite number of pairs of values, that will satisfy the equation, may be found.

If, however, the equation is homogeneous in the two unknowns, i.e., of the form

$$
a x^{2}+b x y+c y^{2}=0
$$

then the ratio $x: y$ may be regarded as a single number, and the equation has properties precisely like those discussed in Arts. 9, 10, and 11.

To solve a system consisting of two or more independent simultaneous equations, involving as many unknown elements, it is necessary to combine the equations so as to eliminate all but one of the unknown elements, then to solve the resulting equation for that one, and, by means of the roots thus obtained, find the entire system of roots.

EXERCISES

1. Given the equation $x^{2}+3 x-4+m\left(3 x^{2}-4\right)-2 m x^{2}=0$, find the sum of the roots; the product of the roots; also the factors of the first member.
2. Factor the following expressions:
(1) $x^{2}-5 x+4$;
(3) $m x^{2}-3 x+c$;
(5) $3 w^{\frac{5}{3}}-94 w^{\frac{5}{8}}-64$;
(2) $x^{2}+2 x-8$;
(4) $a x^{2}+b x y+c y^{2}$;
(8) $11-27 y-18 y^{2}$.
3. Without first solving the equation

$$
x^{2}-3 x-m\left(x+2 x^{2}+4\right)=5 x^{2}+3
$$

find the sum, and the product, of its roots. For what value of m are its roots equal? For what value of m does one root become intinitely large? If all the terms are transposed to one member, what are the factors of that member?
4. Without first solving, determine the nature of the roots of the equation $(m-2)(\log x)^{2}-(2 m+3) \log x-4 m=0$. [Regard $\log x$ as the unknown element.]

For what valuen of m are tho routs equal? IRal? Oue infinitely great? Ono zero? fiud the factors of the firnt member of the equation.
5. Find five pais of numbern that satinfy the equation:
(1) $z+3 y-7=0$;
(3) $y^{2}=10 x ;$
(2) $x^{2}+y^{2}=4$;
(1) $3 x+6 x y-8 y^{2}+8 x^{3}=0$.
6. Without solviug, determine the nature of the roots of the equation:

$$
9 x^{2}+12 x y+4 y^{2}=0,3 u^{2}-u v+19 v^{2}=0
$$

7. Solve the following pairs of simultaneous equations:
(1) $3 x-5 y+2=0$, and $2 x+7 y-4=0$;
(2) $3 y+2 z+3=0$, and $7 y+4 z+2=0$;
(3) $y-3 x+c=0$, and $y^{2}=0 x$;
(4) $x^{2}+y^{3}=5$, and $y^{2}=6 x$;
(5) $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$, and $y=a x+b$;
(6) $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, and $\frac{x^{2}}{16}-\frac{y^{3}}{9}=1$.
8. Determine thone values of b for which each of the following pairs of equations will be satisfied by two equal values of y :
(1) $\left\{x^{2}+y^{2}=a^{2}, y=0 x+b\right\} ;$
(2) $\left\{y=m x+b, y^{2}=4 x\right\} ;$
(3) $\left\{3 y+2 x=b, 0 x^{2}+y^{2}=12\right\}$.
9. Determine, for the pairs of equations in Ex. 8, those values of 8 which will give equal values of x.

TRIGONOMETIBIC CONCEFTIONS AND FORMULAS

13. Directed lines. Angles. A line is said to be directed when a distinction is made between the segment from any point A of the line to another point B, and the opposite segment from B to A. One of these directions is chosen as positive, or + , and the opposite direction is then negative or - .

The angle formed by two intersecting directed straight lines is that relation between the positions of the two lines which is expressed by the amount of rotation about their point of intersection necessary to bring the positive end
of the initial side into coincidence with the positive end of the terminal side. The point in which the lines intersect is called the vertex of the angle. The angle is positive, or + , if the rotation from the initial to the terminal side is in counter-clockwise direction; the angle is negative, or - , if the rotation is clockwize.

The angle formed by two directed straight lines in space, which do not meet, is equal to the angle between two intersecting lines, which are respectively parallel to the given lines.

For the measurement of angles there are two absolute units :
(1) The angular magnitude about a point in a plane, i.e., a complete revolution. One fourth of a complete revolution is called a right angle, $\frac{1}{90}$ of a right angle is a degree $\left(1^{\circ}\right)$, $\frac{1}{60}$ of a degree is a minute (1^{\prime}), and $\frac{1}{60}$ of a minute is a second ($1^{\prime \prime}$);
(-) the angle whose subtending circular arc is equal in length to the radius of that arc; this angle is called a radian $\left\{1^{(r)}\right\}$; it is independent of the length of the radius. Since $\frac{\text { circumference }}{\text { diameter }}=\frac{\text { semi-circumference }}{\text { radins }}=\pi$, it follows that the angle formed by a half rotation, i.e., 180°, is π radians; i.e.,

$$
180^{\circ}=\pi^{(r)}=\left(\frac{22}{7}\right)^{(r)} \text { approximately } ;
$$

also $\quad 1^{(r)}=\frac{180^{\circ}}{\pi}=57^{\circ} 17^{\prime} 44.8^{\prime \prime}$ approximately.
A right angle is 90° or $\left(\frac{\pi}{2}\right)^{(r)}$.
When there is no danger of being misunderstood, the index (r) is omitted, and $\frac{\pi}{2}$ radians is written simply as $\frac{\pi}{2}$, and $\operatorname{not}\left(\frac{\pi}{2}\right)^{(r)}$.
14. Trigonometric ratios. If from any point P in the terminal side of an angle θ, at a distance r from the vertex, a perpendicular $M P$ is drawn to the initial side meeting it in

M, and if $M P$ be represented by y and $V M$ by x, then, by general agreement, y is + if $M P$ makes a positive right angle with the initial line, and - if this right angle is negative ; similarly, x is + if VM extends in the positive direction of the initial line, and - if it extends in the opposite direction.

The three numbers r, x, and y form with each other six ratios; these ratios, moreover, depend for their value solely upon the size of the angle θ, and not at all upon the value of r. These six ratios are known as the trigonometric ratios or functions of the angle θ, and are named as follows :

$$
\begin{array}{lll}
\text { sine } \theta=\frac{y}{r}, & \text { tangent } \theta=\frac{y}{x}, & \text { secant } \theta=\frac{r}{x}, \\
\operatorname{cosine} \theta=\frac{x}{r}, & \text { cotangent } \theta=\frac{x}{y}, & \operatorname{cosecant} \theta=\frac{r}{y} .
\end{array}
$$

The abbreviated symbols for these functions are $\sin \theta$, $\cos \theta, \tan \theta, \cot \theta, \sec \theta$, and $\csc \theta$, respectively. The functions are not all independent, but are connected by the following relations :
(1) $\sin \theta \cdot \operatorname{cosc} \theta=1$,
(5) $\cot \theta=\cos \theta: \sin \theta$,
(2) $\cos \theta \cdot \sec \theta=1$,
(6) $\sin ^{2} \theta+\cos ^{2} \theta=1$,
(3) $\tan \theta \cdot \cot \theta=1$,
(i) $\tan ^{2} \theta+1=\sec ^{2} \theta$,
(4) $\tan \theta=\sin \theta: \cos \theta$,
(8) $\cot ^{2} \theta+1=\csc ^{2} \theta$.

By means of thest eight relations all the trigonometric functions of any angle may be expressed in terms of any given function. E.g., suppose the sine of an angle is given, and the tangent of this angle, in terms of the sine, is wanted:

$$
\begin{equation*}
\tan \theta=\frac{\sin \theta}{\cos \theta} \tag{4}
\end{equation*}
$$

and by (6),

$$
\cos \theta=\sqrt{1-\sin ^{2} \theta}
$$

hence

$$
\tan \theta=\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}
$$

If the numerical value of $\sin \theta$ is given, this last formula gives the corresponding numerical value of $\tan \theta ;$ e.g., if $\sin \theta=\frac{8}{6}$, then

$$
\tan \theta=\frac{\frac{3}{6}}{\sqrt{1-\left(\frac{3}{5}\right)^{2}}}= \pm \frac{3}{4}
$$

15. Functions of related angles. Based upon the definitions of the trigonometric functions the following relations are readily established.

If θ is any plane angle, then*

$$
\begin{array}{ll}
\sin (-\theta)=-\sin \theta, & \cos (-\theta)=+\cos \theta \tag{1}\\
\tan (-\theta)=-\tan \theta, & \csc (-\theta)=-\csc \theta \\
\sec (-\theta)=+\sec \theta, & \cot (-\theta)=-\cot \theta
\end{array}
$$

(2) $\sin (\pi \pm \theta)=\mp \sin \theta, \quad \cos (\pi \pm \theta)=-\cos \theta$, $\tan (\pi \pm \theta)= \pm \tan \theta, \quad \csc (\pi \pm \theta)=\mp \csc \theta$,
$\sec (\pi \pm \theta)=-\sec \theta, \quad \cot (\pi \pm \theta)= \pm \cot \theta ;$
(3) $\sin \left(\frac{\pi}{2} \pm \theta\right)=+\cos \theta, \quad \cos \left(\frac{\pi}{2} \pm \theta\right)=\mp \sin \theta$,

$$
\begin{array}{ll}
\tan \left(\frac{\pi}{2} \pm \theta\right)=\mp \cot \theta, & \csc \left(\frac{\pi}{2} \pm \theta\right)=+\sec \theta \\
\sec \left(\frac{\pi}{2} \pm \theta\right)=\mp \csc \theta, & \cot \left(\frac{\pi}{2} \pm \theta\right)=\mp \tan \theta
\end{array}
$$

- The student should thoroughly familiarize himself with these formulas, and those of ATh. 16, as well as with the derivation of each.

16. Other important formulas. If θ_{1} and θ_{2} are any two plane angles, then

$$
\begin{aligned}
& \sin \left(\theta_{1} \pm \theta_{2}\right)=\sin \theta_{1} \cos \theta_{2} \pm \cos \theta_{1} \sin \theta_{2} \\
& \cos \left(\theta_{1} \pm \theta_{2}\right)=\cos \theta_{1} \cos \theta_{2} \mp \sin \theta_{1} \sin \theta_{2} \\
& \tan \left(\theta_{1} \pm \theta_{2}\right)=\frac{\tan \theta_{1} \pm \tan \theta_{2}}{1 \mp \tan \theta_{1} \tan \theta_{2}} .
\end{aligned}
$$

If θ is any plane angle, then

$$
\begin{aligned}
\sin 2 \theta & =2 \sin \theta \cos \theta, \\
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta=1-2 \sin ^{2} \theta=2 \cos ^{2} \theta-1, \\
\tan 2 \theta & =\frac{2 \tan \theta}{1-\tan ^{3} \theta} \\
\sin \frac{\theta}{2} & =\sqrt{\frac{1}{2}(1-\cos \theta)}, \\
\cos \frac{\theta}{2} & =\sqrt{\frac{1}{2}(1+\cos \theta)}, \\
\tan \frac{\theta}{2} & =\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\frac{1-\cos \theta}{\sin \theta}=\frac{\sin \theta}{1+\cos \theta} .
\end{aligned}
$$

If a, b, and c are the sides of a triangle lying respectively opposite the angles A, B, and C, and if Δ is the area of this triangle, then

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A, \text { and } \Delta=\frac{1}{2} b c \sin A
$$

EXERCISES

1. Express in radians the angles:
$15^{\circ} ; 60^{\circ} ; 135^{\circ} ;-252^{\circ} ; ~ \& ~ \mathrm{rt}$. angle; $10^{\circ} 10^{\prime} 10^{\prime \prime}$; $85^{\circ} 2^{\prime} ;(3 \pi)^{\circ}$.
2. Express in degrees, minutes, and seconds, the angles:
$\left(\frac{\pi}{1}\right)^{(n)}:\left(\frac{3 \pi}{3}\right)^{(n)} ;\left(\frac{1}{4}\right)^{(n)}:\left(\frac{2}{8}\right)^{(n)}: \frac{7}{10}$ of a revolution $; \frac{5}{4}$ rta angle.
3. Find the values of the other trigonometric functions, given :
(1) $\tan \theta=3$;
(2) $\sec x=-\sqrt{2}$;
(3) $\cos \phi=\frac{1}{\sqrt{3}}$;
(4) $\sin t=\$;$
(5) $\cot \psi=b$; and (15) csc $u=-2$.

Solution of (1). If $\tan \theta=3$, then substituting this value in (3) of Art. 14. gives $\cot \theta=\frac{1}{2}$; substituting these values in (7) and (8) of the same article gives the values of $\sec \theta$ and of $\csc \theta$; and substituting those values in (1) and (2) gives $\sin \theta$ and $\cos \theta$.

Another method: Construct a right triangle $A B C$ with the sides $A B=1$ and $B C=3$, then $\angle B A C$ is an angle whose tangent is 3. If $A B=1$ and $B C=3$, then $A C=\sqrt{10}$, and the other func-
 tions of the angle BAC are at once seen to be:

$$
\begin{gathered}
\sin \theta=\frac{3}{\sqrt{10}}, \quad \cos \theta=\frac{1}{\sqrt{10}}, \quad \csc \theta=\frac{\sqrt{10}}{3}, \\
\sec \theta=\sqrt{10}, \text { and } \cot \theta=1 .
\end{gathered}
$$

Fither of these methods may be employed to solve the other parts of this example; the second method is usually to be preferred.
4. By means of a right triangle, with appropriate acute angles, find the numerical values of the trigonometric ratios of the following angles:

$$
30^{\circ} ; 45^{\circ} ; 60^{\circ} ; 90^{\circ} ; 135^{\circ} ; \text { and }-45^{\circ} .
$$

5. Express the following functions in terms of functions of positive angles less than 90° :
$\tan 3500^{\circ} ;-\csc 290^{\circ} ; \sin \left(-369^{\circ}\right) ;-\cos \frac{11 \pi}{5} ;$ and $\cot \left(-1215^{\circ}\right)$.
6. Solve the following equations:
(1) $\sin \theta=-\cos 210^{\circ}$;
(2) $\cos \theta=\sin 2 \theta ;$
(3) $\frac{\cos x}{\sin x \cot ^{2} x}=\sqrt{3}$;
and (4) $\left(\sec ^{2} x-1\right)\left(\csc ^{2} x+1\right)=1$.
7. In the following identities transform the first member into the second:
(1) $\frac{\tan \theta-\cot \theta}{\tan \theta+\cot \theta} \equiv \frac{2}{\csc ^{2} \theta}-1 ; \quad$ (2) $\frac{\sec x+\csc x}{\sec x-\csc x} \equiv \frac{1+\cot x}{1-\cot x}$;
(3) $\csc x(\sec x-1)-\cot x(1-\cos x) \equiv \tan x-\sin x$;
(4) $(2 r \sin a \cos a)^{2}+r^{2}\left(\cos ^{2} a-\sin ^{2} a\right)^{2} \equiv r^{2}$;
(5) $(\cos a \cos b+\sin a \sin b)^{2}+(\sin a \cos b-\cos a \sin b)^{2} \equiv 1$; and
(6) $(r \cos \phi)^{2}+(r \sin \phi \cos \theta)^{2}+(r \sin \phi \sin \theta)^{2} \equiv r^{2}$.
8. Orthogonal projection. The orthogonal projection ${ }^{\text {b }}$ of a proint upon a line is the foot of the perpendicular from the point to the line. In the figure, M is the projection of I ' upon $A B$. The projection of a segment $J^{\prime} Q$ of a

line upon another line $A B$, is that part of the second line extending from the projection of the initial point of the segment to the projection of the terminal point of the segment. Thus $M N$ is the projection of $P Q$ upon $A B$, and $N M$ is the projection of $Q P$ upon $A B$.

The length of the projection can easily be expressed in terms of the length of the segment and the angle which it makes with the line upon which the segment is projected; for

$$
\begin{aligned}
& \frac{M N}{P Q}=\frac{P H}{P Q}=\cos a \\
\therefore M N & =P Q \cdot \cos a
\end{aligned}
$$

i.e., the projection of a segment of a line upon another line is equal to the product of its length by the cosine of the angle which it makes with that other line.

A line made up of parts $P Q, Q R, R S, \cdots$ (lig. $5 a, 5 b$), which are straight lines having different directions, is a broken line: and the projection of a broken line upon any line is the algebraic sum of the projections of its parts upon the same

[^3]line. Thus the projection of $P Q R S T$ ' upon $A B$ is the projection of $P Q+$ the projection of $Q R+\cdots$, upon $A B$; i.e., proj. $P Q R S T$ upon $A B=M N+N K+K L+L H=M H$;

but $M H$ is the projection of the straight line $P T$ which joins the first initial to last terminal point of the broken line. In the same way it may be shown that the projection of any broken line upon a straight line equals the projection, upon the same straight line, of the straight line which joins the extremities of the broken line. It follows, therefore, that the projection of the perimeter of any closed polygon upon any given line is zero.

If $\theta_{1}, \theta_{2}, \theta_{8}, \theta_{4}$, and θ_{5} be the angles that $P Q, Q R, R S$, $S T$, and $P T$ respectively make with the line ΛB, then the projection of the broken line upon $A B$ may also be expressed thus:
proj. $P Q R S T$ upon $A B=M N+N K+K L+L H=M H$

$$
\begin{aligned}
& =P Q \cos \theta_{1}+Q R \cos \theta_{2}+R S \cos \theta_{3}+S T \cos \theta_{4} \\
& =P T \cos \theta_{5} .
\end{aligned}
$$

The projections of two parallel segments of equal length upon any given line in space are equal. It therefore follows that:
(1) The projection of a segment of a line upon any straight
line in space equals the product of its leugth by the cosine of the angle between the two lines.
(2) The projection of any broken line in space upon any straight line equals the projection, upon the same line, of the straight line which joins the extremities of the broken line.

EXERCISES

1. Twe lines of lengths 3 and 7 reapectively meet at an anglo $\frac{\pi}{3}$; find the projection of each upon the other.
2. The center of an equilateral triangle, of side 5 , is joined by a straight line to a vertex; find the projection of this joining line upon each side of the triangle.
3. A rectangle has its sides respectively 4 and 6 ; find their projections upon a diagonal.
4. Find the length of the projection of each edge of a cube upon a chosen diagonal.
5. A given line $A B$ makes an angle of 30° with the line $M N$, and $B C$ is perpendicular to $A B$ and of length 15 ; find the projection of $B C$ upon $M N$.

Solve this problem if the given angle be a instead of 30°.
6. Two lines in space, of length a and b respectively, make an angle ω with each other; find the projection of b upon a line that is perpen. dicular to a.
7. Project the perimeter of a syuare upon one of its diagonals.

CHAP'TER II

GEOMETRIC CONCEPTIONS. THE POINT

I. COÖRDINATE SYSTEMS

18. Coördinates of a point. Position, like magnitude, is relative, and can be given for a geometric figure only by reference to some fixed geometric figures (planes, lines, or points) which are regarded as known, just as magnitude can be given only by reference to some standard magnitudes which are taken as units of measurement. The position of the city of New York, for example, when given by its latitude and longitude, is referred to the equator and the meridian of Greenwich, - the position of these two lines being known, that of New York is also known. So also the position of Baltimore may be given by its distance and direction from Washington; while a particular point in a room may be located by its distances from the floor and two adjacent walls.

If, as in the last illustration, a point is to be fixed in space, then three magnitudes inust be known, referring to three tixed positions. If, on the other hand, the point is on a known surface, as New York or Baltimore on the surface of the earth, then only two magnitudes need be known, referring to two fixed positions on that surface; while if the point is on a known line, only one magnitude, referring to one fixed position on that line, is needed to fix its position.

Those varions magnitudes which serve to fix the position
of a point, - in space, on a surface, or on a line, - are called the coordinates of the point.
19. Analytic Geometry. Courdinates may be represented by algebraic numbers; the relations of the various points, and the properties of the various geometric figures which are formed by those points, can be studied through the corresponding relations of these atgebraic numbers, or courdinates. expressed in the form of algelraic equations. This fact is the basis of analytic, or algelraic, geometry, the main object of which is the study of geometric properties by algebraic methods.

Analytic geometry may be conveniently divided into two parts: Plane Analytic Geometry, which treats only of figures in a given plane surface; and Solid Analytic Geometry, which treats of space figures, and Includes Plane Analytic Geometry as a special case. The plane analytic geometry, being the simpler, will be studied first, in Part I of this book, and Part II will be devoted to the study of the solid analytic geometry. In this first part of the subject it will therefore be understood that the work is restricted to a given plane surface.

Two systems of coördinates will be used, the Cartesian and the Polar. They are explained in the next few articles.
20. Positive and negative coordinates. If a point lies in a given directed straight line, its position with reference to a fixed point of that line is completely determined by one coördinate. E.g., let $X^{\prime} O X$ be a

Fio. 6 given directed straight line. and let distances from O toward X be regarded as positive. then distances from O toward X^{\prime} are negative. A point P
in this line and 3 units from O toward X may be designated by -3 , where the sign + gives the direction of the point, and the number 3 its distance, from 0 . Under these circumstances the point P^{\prime} lying 3 units on the other side of 0 would be designated by -3 .

In the same way there corresponds to every real number, positive or negative, a definite point of this directed straight line; the numbers are called the coordinates of the points; and O, from which the distances are measured, is called the origin of coördinates.
21. Cartesian coordinates of points in a plane. Suppose two directed straight lines $X^{\prime} O X$ and $Y^{\prime} O Y$ are given, fixed in the plane and intersecting in the point O. These two given lines are called the coordinate axes, $X^{\prime} O X$ being the x-axis, and $Y^{\prime} O Y$ being the y-axis; their point of intersection O is the origin of coördinates. Any other two lines,
 parallel respectively to these fixed lines, and at known distances from them, will intersect in one and but one point P, whose position is thus definitely fixed. If these lines through P meet the axes in M and L respectively, then the directed distances $L P$ and $M P$, measured parallel respectively to the axes, are the Cartesian coördinates of the point P. The distance $L P$, or its equal $O M$, is the abscissa of P, and is usually represented by x, while $M P$, or its equal $O L$, is the ordinate of P, and is usually represented by y. The point P is designated by the symbol (x, y), -often written $P \equiv(x, y)$, - the abscissa always being written first, then a comma, then the ordinate, and both letters being
inclosed in a parenthesis. Thus the point $(4,5)$ is the point for which $O M=4$ and $M P=5$; while the point $(-3,2)$ has $O M=-3$ und $M P=2$.
22. Rectangular coordinates. The simplest and most common form of Cartesian courdinate axes is that in which the angle $X O Y$ is a positive right angle; the abscissa (x) of a point is, in this case, its perpendicular distance from the y-axis, and its ordinate (y) is its perpendicular distance from the x-axis. This way of locating the points of a plane is known as the rec. tangular system of coordinates.

Fio. is b

The axes divide the entire plane into four parts called quadrants, which are usually designated as first (I), second (II), third (III), and fourth (IV), in the order of rotation from the positive end of the x-axis toward the positive end of the y-axis, as indicated in the accompanying figure.

These quadrants are distinguished by the signs of the coorrdinates of the points lying within them, thus :
in quadrant I the abscissa (x) is + , the ordinate (y) is + ; in quadrant II the abscissa (x) is - , the ordinate (y) is + ; in quadrant III the abscissa (x) is - , the ordinate (y) is - ; in quadrant IV the abscissa (x) is + , the ordinate (y) is - .

Four points having numerically the same coürdinates, but lying one in each quadrant, are symmetrical in pairs with regard to the origin, even though the axes are not at right angles; if, however, the axes are rectangular, then these points are symmetrical in pairs, not merely with regard to the origin as before, but also with regard to the axes, and
they are severally equidistant from the origin. Because of this greater symmetry rectangular coördinates have many advantages over an oblique system.

In the following pages rectangular coürdinates will atways be understood unless the contrary is expressly stated.

EXERCISES

1. Plot accurately the points: $(1,7),(-4,-5),{ }^{\bullet}(0,3)$, and $(-3,0)$.
2. Plot accurately, as vertices of a triangle, the points: $(1,3),(2,7)$, and $(-4,-4)$. Find by measurement the lengths of the sides, and the coorrdinates of the middle point of each side.
3. Construct the two lines passing through the points ($2,-7$) and $(-2,7)$, and $(2,7)$ and $(-2,-7)$, respectively. What is their point of intersection? Find the coördinates of the middle point of each line.
4. If the ordinate of a point is 0 , where is the point? if its abscissa is 0 ? if its abscissa is equal to its ordinate? if its abscissa and ordinate are numerically equal but of opposite signs?
5. Express each of the conditions of Ex. 4 ly means of an equation.
6. The base of an equilateral triangle, whose side is 5 inches, coincides with the x-axis; its middle point is at the origin; what are the coördinates of the vertices? If the axes are chosen so as to coincide with two sides of this triangle, respectively, what are the coordinates of the vertices?
7. A square whose side is 5 inches has its diagonals lying upon the coördinate axes; find the coördinates of its vertices. If a diagonal and an adjacent side are chosen as axes, what are the coördinates of the vertices? of the middle points of the sides? of the center?
8. Find, by similar triangles, the coordinates of the point which bisects the line joining the points $(2,7)$ and $(4,4)$.
9. Show that the distance from the origin to the point (a, l) is $\sqrt{a^{2}+b^{2}}$. How far from the origin is the point $(a,-b)$? $(-a, b)$? ($-a,-b$)? (cf. Art. 22.)
10. Prove, by similar triangles, that the points: $(2,3),(1,-3)$, and $(3,9)$ lie on the same straight line.
11. Solve exercises 1 to 4 and 10 if the coördinate axes make an angle of 60°. Also if this angle be 45°.

[^4]23. Polar coordinates. If a fixed point O is given in a fixed directed straight line $O R$, then the position of any point P of the plane will be fully determined by its distance

$O P=\rho$ from the fixed point, and by the angle θ which the line $O P$ makes with the fixed line.

The fixed line $O R$ is called the initial line or polar axis, the fixed point O the pole of the system, and the polar coordinates of the point P are the radius vector ρ and the directional or vectorial angle θ. The usual rule of sigus applies to the vectorial angle θ, and the radius vector is positive if measured from O along the terminal side of the angle θ. The point P is designated by the symbol (ρ, θ).

From what has just been said it is clear that one pair of polar coördinates (i.c., one value of ρ and one of θ) serve to determine one, and but one, point of the plane. On the other hand, if θ is restricted to values lying between 0 and 2π, then any given point may be designated by four different
pairs of coürdinates.

Fio.9.el

E.g., the polar coordinates $\left(3,60^{\circ}\right)$ determine the position of the point P, for which $O P=3$, and makes an angle of 60°
with the initial line $O R$, but the same point may be given equally well by the pairs of coördinates: $\left(-3,240^{\circ}\right)$, $\left(3,-300^{\circ}\right)$, and $\left(-3,-120^{\circ}\right)$; and so in general.

EXERCISES

1. Plot accurately the following points: $\left(2,20^{\circ}\right),\left(2, \frac{\pi}{9}\right),\left(-7, \frac{\pi}{2}\right)$, $\left(4 \pi, \frac{\pi^{(r)}}{3}\right), \quad\left(2,14 \pi^{\circ}\right), \quad\left(-1,-180^{\circ}\right),\left(7,-45^{\circ}\right),\left(-7,135^{\circ}\right),\left(5, \frac{3 \pi}{4}\right)$, $\left(0, \frac{\pi}{3}\right),\left(0, \frac{-\pi}{3}\right),\left(6,0^{\circ}\right)$, and $\left(-6,0^{\circ}\right)$.
2. Construct the triangle whose vertices are: $\left(2, \frac{\pi}{8}\right),\left(3, \frac{3 \pi}{4}\right)$, ($1, \frac{5 \pi}{4}$); find by measurement the lengths of the sides and the coordinates of their middle points.
3. The base of an equilateral triangle, whose side is 5 inches, is taken as the polar axis, with the vertex as pole; find the coördinates of the other two vertices.
4. Write three other pairs of coördinates for each of the points $\left(2, \frac{\pi}{4}\right) ;\left(-3,75^{\circ}\right) ;\left(5,0^{\circ}\right) ;\left(0,60^{\circ}\right)$.
5. Where is the point whose radius vector is 7 ? whose radius vector is -7 ? whose vectorial angle is 25° ? whose vectorial angle is $0^{(r)}$? whose vectorial angle is -180° ?
6. Express each of the conditions of Ex. 5 by means of an equation.
7. What is the direction of the line tbrough the points $\left(3, \frac{\pi}{4}\right)$ and $\left(3, \frac{3 \pi}{4}\right)$?
8. Notation. In the following pages, to secure uniformity and in accordance with Art. 6, a variable point will be desig-
nated by P, and its courdinates by (x, y) or (ρ, θ). If several variable points are under consideration at the same time, they will be designated by $P, P^{\prime}, P^{\prime \prime}, P^{\prime \prime \prime}, \cdots$, and their cooirdinates by $(x, y),\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right),\left(x^{\prime \prime \prime}, y^{\prime \prime \prime}\right), \cdots$. or by $(\rho, \theta),\left(\rho^{\prime}, \theta^{\prime}\right),\left(\rho^{\prime \prime}, \theta^{\prime \prime}\right),\left(\rho^{\prime \prime \prime}, \theta^{\prime \prime \prime}\right), \cdots$. Fixed points will be designated by P_{1}, P_{2}, \cdots, and their coördinates by $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots$, or by $\left(\rho_{1}, \theta_{1}\right),\left(\rho_{2}, \theta_{2}\right), \cdots$.

II. ELEMENTARY ApPLICATIONS

25. The methods of representing a point in a plane that have been adopted in the previous articles lead at once to several easy applications, such as finding the distance between two points, the area of a triangle, etc. The form of the results will depend upon the particular system of coördinates chosen, but the method is the same in each case. Here, as in the more difficult problems that arise later, to gain the full advantage of the analytic method the student should freely use geometric constructions to guide his algebraic work, but he should, at the same time, see clearly that the method is essentially algebraic.
26. Distance between two points.
(1) Polar coördinates. Let $O R$ be the initial line, O the pole, and let $P_{1} \equiv\left(\rho_{1}, \theta_{1}\right)$ and $P_{2} \equiv\left(\rho_{3}, \theta_{2}\right)$ be the two given

Fic. $10 .{ }^{9}$

- The demonstration applies to each figure.
fixed points. It is required to find the distance $P_{1} P_{2}=d$ in terms of the given constants $\rho_{1}, \rho_{2}, \theta_{1}$, and θ_{2}. In the triangle $O P_{1} P_{2}$ (ef. Art. 16)

$$
\begin{gather*}
\overline{P_{1} P_{2}^{2}}=\overline{O P_{1}^{2}+\overline{O P_{2}^{2}}-2 \cdot O P_{1} \cdot O P_{2} \cdot \cos P_{1} O P_{2}}, \\
d^{2}=\rho_{1}^{2}+\rho_{2}^{2}-2 \rho_{1} \rho_{2} \cos \left(\theta_{2}-\theta_{1}\right) \\
\quad d=\sqrt{P_{1}^{2}+\rho_{2}^{2}-2 \rho_{1} \rho_{2} \cos \left(\theta_{2}-\theta_{1}\right)} \tag{1}
\end{gather*}
$$

i.e.,
hence
(2) Cartesian coördinates; axes not rectangular. Let $O X$ and $O Y$ be the coördinate axes, meeting at an angle

$X \circ Y=\omega,{ }^{*}$ and let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ and $P_{2} \equiv\left(x_{2}, y_{2}\right)$ be the two given points ; it is required to find the distance $P_{1} P_{2}=d$ in terms of $x_{1}, x_{2}, y_{1}, y_{2}$, and ω.

Construction: Extend the abscissa $L_{1} P_{1}$ of the point P_{1} to meet the ordinate $M_{2} P_{2}$ of the point P_{2}, in Q; then in the triangle $P_{1} Q P_{2}$ (cf. Art 16)
$\overline{P_{1} P_{2}^{2}}={\overline{P_{1} Q}}^{2}+{\overline{Q P_{2}}}^{2}-2 \cdot P_{1} Q \cdot Q P_{2} \cdot \cos P_{1} Q P_{2}$, Fig. 11^{a}, $\bar{P}_{1} P_{2}^{2}=\bar{P}_{1} Q^{2}+\bar{P}_{2} Q^{2}-2 \cdot P_{1} Q \cdot P_{2} Q \cdot \cos P_{1} Q P_{2}$, Fig. 11^{b}, $\bar{P}_{1} P_{2}^{2}=\overline{Q P}_{1}^{2}+\bar{P}_{2} Q^{2}-2 \cdot Q P_{1} \cdot P_{2} Q \cdot \cos P_{1} Q P_{2}$, Fig. 11^{c}; which gives, for each figure,

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+2\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right) \cos \omega . t}
$$

[^5](3) Rectangular coōrdinates. If $\omega=\frac{\pi}{2}$, i.e. if the courdinate axes are rectangular, then $\cos \omega=0$, and the formula for the distance between the two given points becones
\[

$$
\begin{equation*}
d=\sqrt{\left(x_{1}-x_{3}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} . \tag{2}
\end{equation*}
$$

\]

Since either of the two points may be named P_{1}, this formula may be expressed in words thus: In rectangular coördinates, the square of the distance between two given points is the square of the difference between their abscissas plus the square of the difference between their ordinates.
27. Slope of a line. By the slope of a line is meant the tangent of the angle which the line makes with the positive end of the x-axis. ${ }^{*}$

From this definition it at once follows that the slope m of the line joining the two points $P_{1} \equiv\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, the axes being rectangular, is $m=\frac{Q P_{2}}{P_{1} Q}$; that is,

$$
\begin{equation*}
m=\frac{y_{2}-y_{1}}{x_{3}-x_{3}} \tag{3}
\end{equation*}
$$

EXERCISES

1. Find the distances between the points $(1,3),(2,7)$, and $(-4,-4)$, taken in pairs.
2. Find the distances for the points of Ex. 1, if the axes are obllique with $\omega=60^{\circ}$.
3. Prove that the points $(-2,-1),(1,0),(4,3)$, and $(1,2)$ are the vertices of a parallelogram.
4. Find the distance between the points $(a+b, c+a)$ and $(c+a, b+c)$; also between (a, b) and $(-a,-b)$.
5. Find the distances between the points $\left(2,30^{\circ}\right),\left(3, \frac{3 \pi}{4}\right)$, and $\left(1, \frac{5 \pi}{4}\right)$, taken in pairs.

- The alope of a roof or of a hill thas the same meaning. Thus if the slope of a hill (to the horizontal) is ifu, it rises 3 feet vertical in 100 feet horizontal.

$$
\text { TAS. AS. osor. }-3
$$

6. Prove that the points $\left(0,0^{\circ}\right),\left(3, \frac{\pi}{2}\right)$, and $\left(3, \frac{\pi}{6}\right)$ form an equilateral triangle.
7. One end of a line whose length is 13 is at the point $(-4,8)$, the ordinate of the other end is 3 ; what is its abscissa?
8. Express by an equation the fact that the point $P \equiv(x, y)$ is at the distance 3 from the point ($-2,3$); from the point (0,0).
9. Express by an equation the fact that the point $P \equiv(x, y)$ is equidistant from the points $(-2,3)$ and $(7,5)$.
10. Find the slopes of the lines which join the following pairs of points: $(3,8)$ and $(-1,4)$; $(2,-3)$ and $(7,9) ;(1,-4)$ and $(-3,5) ;(4,-2)$ and ($-2,-1$).
11. One great advantage of the analytic method of solving problems lies in the fact that the analytic results which are obtained from the simplest arrangement of the geometric figure with reference to the coördinate axes are, from the very nature of the method, equally true for all other arrangements. Thus formulas [1], [2], and [3] can be most readily obtained if the points are all taken in quadrant I, i.e., with their coördinates all positive ; but because of the convention adopted concerning the signs as essential parts of the coördinates, these formulas remain true for all possible positions of P_{1} and P_{2}. By drawing the figures and making the proofs when P_{1} and P_{2} are taken in various other positions, the student should assure himself of the generality of formulas [1], [2], and [3] of articles 26 and 27.

29. The area of a triangle.

1. Rectangular coördinates. Given a triangle with the vertices $P_{1} \equiv\left(x_{1}, y_{1}\right), P_{2} \equiv\left(x_{2}, y_{2}\right)$, and $P_{3} \equiv\left(x_{3}, y_{3}\right)$; to find its area in terms of $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}$, and y_{3}. Draw the ordinates $M_{1} P_{1}, M_{2} P_{2}$, and $M_{3} P_{3}$, in the second figure extend $M_{1} P_{1}$ and $M_{3} P_{3}$ to meet a line through P_{2} parallel to the x-axis. If Δ represents the area of the triangle in the first figure, then :

Fio. 128

Fro. 12 ㅇ

$$
\Delta=P_{1} M_{1} M_{3} P_{3}+P_{3} M_{3} M_{2} P_{8}-P_{1} M_{1} M_{2} P_{2}
$$

but $P_{1} M_{1} M_{3} P_{3}=\frac{1}{2}\left(M_{1} P_{1}+M_{3} P_{3}\right) \cdot M_{1} M_{3}=\frac{1}{2}\left(y_{1}+y_{3}\right)\left(x_{3}-x_{1}\right)$, and $P_{3} M_{3} M_{2} P_{2}=\frac{1}{2}\left(M_{3} P_{3}+M_{3} P_{2}\right) \cdot M_{3} M_{2}=\frac{1}{2}\left(y_{3}+y_{2}\right)\left(x_{2}-x_{3}\right)$, and $P_{1} M_{1} M_{2} P_{8}=\frac{1}{2}\left(M_{1} P_{1}+M_{3} P_{2}\right) \cdot M_{1} M_{2}=\frac{1}{2}\left(y_{1}+y_{2}\right)\left(x_{2}-x_{1}\right)$.
$\therefore \Delta=\frac{1}{2}\left\{\left(y_{1}+y_{3}\right)\left(x_{3}-x_{1}\right)+\left(y_{3}+y_{3}\right)\left(x_{2}-x_{3}\right)\right.$

$$
\begin{align*}
& \left.-\left(y_{1}+y_{2}\right)\left(x_{2}-x_{1}\right)\right\} \\
= & \frac{1}{2}\left\{\left(y_{1}+y_{2}\right)\left(x_{1}-x_{3}\right)+\left(y_{2}+y_{3}\right)\left(x_{2}-x_{3}\right)\right. \\
& \left.+\left(y_{3}+y_{1}\right)\left(x_{3}-x_{1}\right)\right\} \ldots \tag{4}
\end{align*}
$$

This may also be written in the form

$$
\Delta=\frac{1}{2}\left\{x_{1}\left(y_{3}-y_{8}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{3}\right\}^{\circ} \cdots[4 a]\right.
$$

So also if Δ_{1} represents the area of the triangle in the second figure, then

$$
\begin{aligned}
\Delta_{1}= & P_{1} H_{1} H_{3} P_{3}-P_{1} H_{1} P_{2} \quad P_{3} H_{3} P_{3} \\
= & \frac{1}{2}\left\{\left(H_{1} P_{1}+H_{3} P_{3}\right) \cdot M_{1} M_{3}-H_{1} P_{1} \cdot H_{1} P_{3}-H_{3} P_{3} \cdot P_{3} H_{3}\right\}, \\
= & \frac{1}{2}\left\{\left(y_{1}-y_{2}+y_{3}-y_{2}\right)\left(x_{3}-x_{1}\right)-\left(y_{1}-y_{3}\right)\left(x_{2}-x_{1}\right)\right. \\
& \left.\quad-\left(y_{3}-y_{3}\right)\left(x_{3}-x_{2}\right)\right\},\left[x_{1}, x_{3} \text { and } y_{2} \text { being negative }\right] \\
= & \frac{1}{2}\left\{x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{2}\left(y_{1}-y_{2}\right)\right\}, t \text { as above [4a]. }
\end{aligned}
$$

- In the determinant notation this may be written: area of the triangle $=1\left|\begin{array}{lll}x_{1}, & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{2} & 1\end{array}\right|$.
\dagger This is derived by another method in Ex. 12, p. 122.

If, instead of rectangular coördinate axes, oblique axes making an angle $X O Y=\omega$ had been used, it would have been necessary merely to multiply the second members in the results just found by $\sin \omega$ in order to express the areas of the triangles.

Fic. 13.
2. Polar coördinates. Let the vertices of the triangle be $P_{1} \equiv\left(\rho_{1}, \theta_{1}\right)$, $P_{2} \equiv\left(\rho_{2}, \theta_{2}\right)$, and $P_{3} \equiv$ $\left(\rho_{3}, \theta_{3}\right)$; to find its area Δ in terms of $\rho_{1}, \rho_{2}, \rho_{3}, \theta_{1}$, θ_{2}, and θ_{3}.
Manifestly, $\quad \Delta=O P_{2} P_{3}+O P_{3} P_{1}-O P_{2} P_{1}$,
but $O P_{2} P_{3}=\frac{1}{2} \rho_{2} \rho_{3} \sin \left(\theta_{3}-\theta_{2}\right), O P_{3} P_{1}=\frac{1}{2} \rho_{3} \rho_{1} \sin \left(\theta_{1}-\theta_{3}\right)$,

$$
\text { and } O P_{2} P_{1}=\frac{1}{2} \rho_{2} \rho_{1} \sin \left(\theta_{1}-\theta_{2}\right) \text {. }
$$

$\therefore \Delta=\frac{1}{2}\left\{\rho_{2} \rho_{3} \sin \left(\theta_{3}-\theta_{2}\right)+\rho_{3} \rho_{1} \sin \left(\theta_{1}-\theta_{3}\right)-\rho_{2} \rho_{1} \sin \left(\theta_{1}-\theta_{2}\right)\right\}$, which may also be written

$$
\begin{align*}
\Delta=\frac{1}{2}\left\{\rho_{1} \rho_{2} \sin \left(\theta_{2}-\rho_{1}\right)\right. & +\rho_{2} \rho_{3} \sin \left(\theta_{3}-\theta_{2}\right) \\
& \left.+\rho_{3} \rho_{1} \sin \left(\theta_{1}-\theta_{3}\right)\right\} . \tag{5}
\end{align*}
$$

The symmetry* in formulas [4], [4a], and [5] should be carefully noted; it may be remarked also, that in the application of these formulas to numerical examples, the resulting areas will be positive or negative according to the relative order in which the vertices are named.

[^6]
EXERCISES

1. Find the aroas of the following crianglen: (1) vertices at the points $(3,6),(4,2)$, and (1,3$)$; (2) vertices at the proints $(7,3),(4,6)$, and $(3,-2)$: (3) vertices at the points $(11,0),(6,-2)$, and $(-3,3)$.

Solvo withont using the formula, and then verify by substituting in the formula.
2. Prove that the area of the trianglo whose vertices are at the pointa $(2,3),(5,4)$, and $(-4,1)$ is zero, and hence that thene points all lie on the same straight line.
3. Do the points $(2,3),(1,-3)$, and $(3,0)$ lio on one straight line? (cf. Ex. 10, p. 28.)
4. Do the points $\left(\%, 30^{\circ}\right),\left(0,0^{\circ}\right)$, and $\left(-11,210^{\circ}\right)$ lie on one atraight line? Solve this by showing that the area of the triangle is zero, and then verify by plotting the figure.
5. Find the area of the triangle $\left(\pi, \frac{\pi^{(p)}}{2}\right),\left(2 \pi, \frac{\pi^{(p)}}{2}\right)$, and $\left(-\pi, \frac{2 \pi^{(p)}}{3}\right)$.
6. Derive formula [1] when P_{1} is in quadrant II, P_{3} in quadrant III, and P_{8} in quadrant \mathbb{N}°.
7. Find the area of the first two triangles in F.x. 1 if the axes make an angle of 60° with each other.
30. To find the coordinates of the point which divides in a given ratio the straight line from one given point to another. Let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ and $P_{2} \equiv\left(x_{2}, y_{2}\right)$ be the two given points, $P_{3}=\left(r_{3}, y_{3}\right)$ the required point, and let the

ratio of the parts into which P_{8} divides $P_{1} P_{2}$ be $m_{1}: m_{2}$; i.e., let $P_{1} P_{8}: P_{8} P_{3}=m_{1}: m_{2}$. Draw the ordinates $M_{1} P_{1}$,
$M_{2} P_{2}, M_{8} P_{8}$, and through P_{1} and P_{8} draw lines parallel to $O X$, meeting $M_{8} P_{8}$ and $M_{2} P_{2}$ in R and Q respectively.

To find $O M_{3}=x_{3}$ and $M_{8} P_{3}=y_{3}$ in terms of $x_{1}, x_{2}, y_{1}, y_{2}$, m_{1}, and m_{2}.

The triangles $P_{1} R P_{3}$ and $P_{3} Q P_{2}$ are similar;
therefore

$$
\frac{P_{1} R}{P_{8} Q}=\frac{R P_{8}}{Q P_{2}}=\frac{P_{1} P_{8}}{P_{3} P_{2}}
$$

But

$$
\frac{P_{1} P_{8}}{P_{3} P_{2}}=\frac{m_{1}}{m_{2}}
$$

and

$$
\begin{aligned}
& P_{1} R=x_{3}-x_{1}, \quad P_{3} Q=x_{2}-x_{3} \\
& R P_{8}=y_{3}-y_{1}, Q P_{2}=y_{2}-y_{3}
\end{aligned}
$$

[In Fig. $14(b), x_{1}, y_{1}, y_{2}$, and y_{3} are negative.]
therefore whence

$$
\frac{x_{3}-x_{1}}{x_{2}-x_{3}}=\frac{y_{3}-y_{1}}{y_{2}-y_{3}}=\frac{m_{1}}{m_{2}} ;
$$

$$
\begin{equation*}
x_{3}=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} \text { and } y_{3}=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} . \tag{6}
\end{equation*}
$$

The above reasoning applies equally well whatever the value of ω (the angle made by the coördinate axes), hence formulas [6] hold whether the axes be rectangular or oblique.

Formulas [6] were obtained on the implied hypothesis that P_{8} lies between P_{1} and P_{2}; i.e., that P_{8} is an internal point of division. If P_{3} is taken in the line $P_{1} P_{2}$ produced, and not between P_{1} and P_{2}, it still forms, with P_{1} and P_{2}, two segments $P_{1} P_{8}$ and $P_{8} P_{2}$, and P_{8} may be so taken that, numerically, the ratio of $P_{1} P_{3}: P_{3} P_{2}$ may have any real value whatever; but the sign of this ratio is negative when P_{8} is not between P_{1} and P_{2}, for, in that case, the segments $P_{1} P_{8}$ and $P_{3} P_{2}$ have opposite directions. Hence, to find the coördinates of that point which divides a line externally into segments whose numerical ratio is $m_{1}: m_{2}$, it is only
necessary to prefix the minus sign to either one of the two numbers m_{1} or m_{2} in formulas [6]. These formulas then become

$$
\begin{equation*}
x_{3}=\frac{m_{1} x_{3}-m_{3} x_{1}}{m_{1}-m_{2}}, y_{3}=\frac{m_{1} y_{3}-m_{2} y_{1}}{m_{1}-m_{2}} . \tag{7}
\end{equation*}
$$

Cor. If P_{8} be the middle point of $P_{1} P_{2}$, then $m_{1}=m_{2}$ and formulas [6] become

$$
\begin{equation*}
x_{3}=\frac{x_{1}+x_{2}}{2}, \quad y_{3}=\frac{y_{1}+y_{2}}{2} ; \tag{8}
\end{equation*}
$$

i.e., the abscissa of the middle point of the line joining two given points is half the sum of the abscissas of those points, and the ordinate is half the sum of their ordinates.

The remarks in Art. 28 are well illustrated by formulas [4] to [8].

EXERCISES

1. By means of an appropriate figure, derive formulas [7] independently of [6].
2. The point $P_{3} \equiv(2,3)$ is one third of the distance from the point $P_{1}=(-1,4)$ to the point $P_{3} \equiv\left(x_{g} y_{2}\right)$; to find the coürdinates of P_{r}

Here P_{1} and P_{3} are given, with $x_{1}=-1, y_{1}=4, x_{3}=2, y_{3}=3$, also $m_{1}=1$, and $m_{2}=2$; therefore, from [6],

$$
2=\frac{x_{3}+2(-1)}{1+2}, \text { and } 3=\frac{y_{2}+2(4)}{1+2},
$$

which give $x_{2}=8$ and $y_{3}=1$; therefore the required point P_{8} is $(8,1)$
3. Find the points of trisection of the line joining $(1,-2)$ to $(3,4)$.
4. Find the point which divides the line from $(1,3)$ to $(-2,4)$ externally into segments whose numerical ratio is $3: 4$.

Here $x_{1}=1, y_{1}=3, x_{3}=-2, y_{3}=4, m_{1}=3$, and $m_{2}=4$, but the point of division being an external one, the two segments are oppositely directed; therefore one of the numbers 3 or 4 , say 4 , must have the minus sign prefixed to it. Substituting these values in [6],

$$
x_{3}=\frac{3(-2)-4(1)}{3-4}=10, \text { and } y_{3}=\frac{8(4)-4(3)}{3-4}=0 ;
$$

the required point is, therefore, $P_{3} \equiv(10,0)$.

The same result would have been obtained had $m_{1}=3$, instead of $m_{8}=4$, been given the minus sign; or, again, formulas [7] could have been employed to solve this problem.
5. Solve Fx. 4 directly from a figure, withont using either [6] or [7].
6. Find the points which divide the line from $(1,5)$ to $(2,7)$ internally and externally into segments which are in the ratio $2: 3$.
7. A line $A B$ is produced to C, so that $B C=\frac{1}{1} A B$; if the points A and B have the coördinates $(5,6)$ and $(7,2)$, respectively, what are the coürdinates of C ?
8. Prove, by means of Art. 30, that the median lines of a triangle meet in a point, which is for each median the point of trisection nearest the side of the triangle.
31. Fundamental problems of analytic geometry. The elementary applications already considered have indicated how algebra may be applied to the solution of geometric problems. Points in a plane have been identified with pairs of numbers, - the coördinates of those points, - and it has been seen that definite relations between such points correspond to definite relations between their coördinates.

It will be found also that the relation between points. which consists in their lying on a definite curve, corresponds to the relation between their coördinates, which consists in their satisfying a definite equation. From this fact arise the two fundamental problems of analytic geom. etry :
I. Given an equation, to find the corresponding geometric curve, or locus.
11. Given a geometric curve, to find the corresponding equation.

When this relation between a curve and its equation has been studied, then a third problem arises:
III. To find the properties of the curve from those of its equation.

The first two problems will be treated in the two succeeding chapters, whilo the remaining chapters of Part I will be concerned chiefly with the third problem. In this application of analytic methods, however, only algehraic equations of the first and second degrees will for the most purt be considered. In Chapter XIII is given a brief stady of other important equations and curves.

EXAMPLES ON CHAPTER II

1. Find the area of the quadrilateral whose vertices are the points $(1,0),(3,1),(-1,16)$, and $(-1,2)$. Draw the figure.
2. Find the lengths of the sides and the altitude of the isosceles triangle $(1,5),(5,1),(-0,-9)$. Find the area liy two different inethods, so that the results will each bs a check on the other.
3. Find the coordinates of the point that divides the line from (2, 3) to $(-1,-6)$ in the ratio $3: 4$; in the ratio $2:-3$; in the ratio $3:-2$. Draw each figure.
4. One extremity of a straight line is at the point $(-3,4)$, and the line is divided by the proint $(1,6)$ in the ratio $2: 3$; find the other extremity of the line.
5. The line from $(-3,-2)$ to $(3,-1)$ is divided in the ratio $4: 5$; find the distance of the proint of division from the point $(-4,6)$.
6. Find the area and also the perimeter of the trianglo whose vertioes are the points $\left(3,60^{\circ}\right),\left(5,120^{\circ}\right)$, and $\left(8,30^{\circ}\right)$.
7. Show analytically that the figure formed by joining the middle points of the sides of any quadrilateral is a parallelograun.
8. Shore that the points $(1,3),(2, \sqrt{6})$, and $(2,-\sqrt{6})$ are equidistant from the origin.
9. Show that the points $(1,1),(-1,-1)$, and $(+\sqrt{3},-\sqrt{3})$ form an equilateral triaugle. Find the slopes of its sides.
10. Prove analytically that the diagonals of a rectangle are equal.
11. Show that the points $(0,-1),(2,1),(0,3)$, and $(-2,1)$ are the vertices of a square.
12. Express by an equation that the point (h, k) is equidistant from $(-1,1)$ and $(1,2)$; from $(1,2)$ and $(1,-2)$. Then show that the point $(1,0)$ is equidistant from $(-1,1),(1,2)$, and $(1,-2)$.
13. Prove analytically that the middle point of the hypotenuse of a right triangle is equidistant from the three vertices.
14. Three vertices of a parallelogram are (1,2), (-5, -3), and (7, -6) ; what is the fourth vertex?
15. The center of gravity of a triangle is at the point in which the medians intersect. Find the center of gravity of the triangle whose vertices are (2,3), $(4,-5)$, and ($3,-6$). (cf. Ex. 8, p. 40.)
16. The line from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ is divided into five equal parts; find the points of division.
17. Prove analytically that the two straight lines which join the middle points of the opposite sides of a quadrilateral mutually bisect each other.
18. Prove that $(1,5)$ is on the line joining the points $(0,2)$ and $(2,8)$, and is equidistant from them.
19. If the angle between the axes is 30°, find the perimeter of the triangle whose vertices are (2, 2), (-7, -1), and ($-1,5$). Plot the figure.
20. Show analytically that the line joining the middle points of two sides of a triangle is half the length of the third side.
21. A point is 7 units distant from the origin and is equidistant from the points $(2,1)$ and $(-2,-1)$; find its coördinates.
22. Prove that the points $(a, b+c),(b, c+a)$, and $(c, a+b)$ lie on the same straight line. (cf. Ex. 2, p. 37.)

CHAPTER III

THE LOCUS OF AN EQUATION

32. The locus of an equation. A pair of numbers x, y is represented geometrically by a point in a plane. If these two numbers (x, y) are variables, but connected by an equation, then this equation can, in general, be satisfied by an infinite number of pairs of values of x and y, and each pair may be represented by a point. These points will not, however, be scattered indiscriminately over the plane, but will all lie in a definite curve, whose form depends only upon the nature of the equation under consideration; and this curve will contain no points except those whose coordinates are pairs of values which when substituted for x and y, satisfy the given equation. This curve is called the locus or graph of the equation; and the first fundamental problem of analytic geometry is to find, for a given equation, its graph or locus.
33. Illustrative examples : Cartesian coorrdinates.
(1) Given the equation $x+5=0$, to find its locus. This equation is satisfied by the pairs of values $x_{1}=-5, y_{1}=2 ; x_{3}=-5, y_{2}=3$; $x_{4}=-5, y_{3}=-2$; etc., that is, by every pair of values for which $x=-5$. Such points as

$$
\begin{aligned}
& P_{1} \equiv\left(x_{1}, y_{1}\right) \equiv(-5,2), \\
& P_{3} \equiv\left(x_{8} y_{2}\right) \equiv(-5,3), \\
& P_{3} \equiv\left(x_{3}, y_{2}\right) \equiv(-5,-3), \text { ctc. }
\end{aligned}
$$

all lie on the line $M N$, parallel to the gaxis, and at the distance 5 on the negative side of it, - this line extending indefinitely in both direc.
tions. Moreover, each point of $M N$ has fer its abscissa - 5 , hence the coördinates of each of its points satisfy the equation $x+5=0$. In the chosen system of coördi-
 nates, the line $M N$ is called the locus of this equation.

Similarly, the equation $x-5$ $=0$) is satisfied by any pair of values of which x is 5 , such as $(5,2),(5,3),(5,4)$, etc.; all the corresponding points lie on a straight line $M^{\prime} N^{\prime \prime}$, parallel to the y-axis, at the distance 5 from it, and on its positive side ; i.e., $M^{\prime} N^{\prime}$ is the locus of the equation $x-5=0$.
(2) Giren the equations $y \pm 3=0$, to find their loci. By the same reasoning as in (1) it may be shown that the locus of the equation $y+3=0$ is the straight line $A B$, parallel to the x-axis, situated at the distance 3 from it, and on its negative side. Also that the locus of the equation $y-3=0$ is $C D$, a line parallel to the x-axis, at the distance 3 from it, and on its positive side.

More generally, it is evident that in Cartesian coorrdinates (rectangular or oblique), an equation of the first degree, and containing but one variable, represents a straight line parallel to one of the coördinate axes.)
(3) Given the equation $3 x-2 y+12=0$, to find its locus. In this equation loth the variables appear. By assiguing any definite value to either one of the variables, and solving the equation for the other, a pair of values that will satisfy the equation is obtained. Thus the following pairs of values are found:

$$
\begin{array}{ll}
x_{1}=0, y_{1}=6 & x_{5}=-1, y_{5}=4 \frac{1}{2} \\
x_{2}=1, y_{3}=7 \frac{1}{2} & x_{6}=-2, y_{6}=3 \\
x_{8}=2, y_{3}=9 & x_{7}=-3, y_{7}=1 \frac{1}{2} \\
x_{4}=3, y_{4}=10 \frac{1}{2} & x_{6}=-4, y_{8}=0 \\
x=+\infty, y=+\infty & x=-\infty, y=-\infty
\end{array}
$$

Plotting the corresponding points
$P_{1}, P_{2}, P_{3}, P_{4} \ldots$, where $P_{1} \equiv\left(x_{1}, y_{1}\right) \equiv(0,6)$, $P_{2} \equiv\left(x_{2}, y_{2}\right) \equiv\left(1,7 \frac{1}{2}\right)$, etc.,

Fig. 16.
they are all found to lie on the straight line $E F$, which is the locus of the equation $3 x-2 y+12=0$.

In Chap. V, it will be shown that, in Cartemian coürdinatos, an equation of the first degree in two variables always repremente a atraight live.
(4) Giren the equation $y^{3}=4 x$, to find its locus. This equation is natisfied by each of the following pairs of values, found as in (3) above:
$x_{1}-0, y_{1}=0$
$x_{2}=1, y_{3}=+2$
$x_{3}=1, y_{3}=-2$
$x_{4}=2, y_{1}=2 \sqrt{2}=2.8$, approximately
$x_{2}=2, y_{3}=-2 \sqrt{2}=-2.8$, approximately
$x_{6}=4, y_{6}=+4$
$x=+\infty, y= \pm \infty$
and for any negative value of x the corresponding value of y is imaginary.

The corresponding points are:
$P_{1} \equiv(0,0), P_{3} \equiv(1,2), P_{3} \equiv(1,-2)$, etc.

All these points are found to lie on the curve as plotted in Fig. 17. This curve is called a parabola, and will be studied in a later chapter.

The parabola is one of the curves obtained by the intersection of a circular cone and a plane. (cf. Appendix, Note D.) It will be shown in Chap. XII that in Cartesian courdinates, the locus of any alge-
 braic equation in two variables and of the second degree is a "conic section."
(5) Given the equation, $y=25 \log x$, to find its locus. A table of logarithmes shows that this equation is satisfied by the following pairs of values:
$x_{1}=0, y_{1}=-\infty \quad x_{z}=6, y_{z}=10.4$
$x_{2}=1, y_{3}=0 \quad x_{4}=7, y_{6}=21.1$
$x_{3}=2, y_{3}=7.5 \quad x_{3}=10, y_{2}=25$
$x_{1}=3, y_{1}=11.8 \quad x_{10}=15, y_{10}=29.4$
$x_{s}=4, y_{s}=15 \quad x_{11}=20, y_{11}=32.5$
$x_{6}=5, y_{6}=17.5$ etc. etc.
The corresponding points are:
$P_{1}=(0,-\infty), P_{3} \equiv(1,0), P_{8} \equiv(2,7.5)$, etc.; and the locus of the above equation is approximately given by the curve drawa through these points as shown in Fig. 18.
(B) Given the equation $y=\tan x$, 10 find its locus. By means of a tablo of "natural" tangents it is seen that this equation is satisfied by the following pairs of values of x and y :

The corresponding points are:

$$
P_{1} \equiv(0,0), P_{2} \equiv(0.17,0.18), P_{3} \equiv(0.35,0.36), \text { etc. }
$$

and the locus is approximately as shown in Fig. 19.

Fig. 19.
34. Loci by polar coördinates. Analogous results are oltained for a system of polar coördinates, as will be best seen from an example. Given the equation $\rho=4 \cos \theta$, to find its locus.

This equation is satisfied by the following pairs of values, found as in Art. 33 (3) and (4):

$\theta_{1}=0$	$\mathrm{P}_{1}=4$
$\theta_{2}=30^{\circ}$	$p_{3}=2 \sqrt{3}=3.48+$
$\theta_{3}=60^{\circ}$	$p_{s}=2$
$0_{0}=45^{\circ}$	$p_{1}=2 \sqrt{2}=2.8+$
$0_{3}=60{ }^{\circ}$	$\mathrm{P}_{\mathrm{s}}=0$
$\theta_{0}=-50^{\circ}$	$p_{0}=8.48+$
$\theta_{1}=-60^{\circ}$	$\mathrm{p}_{7}=2$
$\theta_{0}=-45^{\circ}$	$\mathrm{ps}_{\mathrm{s}}=2.8+$
$\theta_{0}=-90^{\circ}$	$\mathrm{P}_{0}=0$
etc.	etc.

The corresponding points are: $P_{8}=P_{0}$ 估 the pole $O \equiv\left(0, \pm 90^{\circ}\right) ; P_{\mathrm{s}} \equiv\left(3.46+,-30^{\circ}\right) ; P_{8} \equiv\left(2,-60^{\circ}\right)$; ete.

All these points are found to lie on the circumference of a circle whone radius is 2 , the pole being on the circumference, and the polar axis being a diameter. This circle is the locus of the equation $\rho=4 \cos \theta$.

EXERCISES

Ilot the loci of the following equations:
$1 \mathrm{x}=0$.
7. $x^{2}+y^{2}=4$.
2. $y=0$.
8. $x+y=4$.
3. $h x=0$
9. $x-y=0$.
13. $a^{2}+s^{2}=0$.
4. $3 x=7$.
10. $x^{2}-y^{2}=4$.
14. $u^{2}+c=0$.
11. $2 x^{3}+y^{3}=4$
15. $s=16 \rho$.
5. $2 y+5=0$.
12. $v=32$!.
16. $\frac{x}{2}+\frac{y}{3}=1$.
6. $x+y=0$.
17. $\rho=3$.
18. $\rho \cos \left(\theta-40^{\circ}\right)=5$.
19. $y=-x^{3}$.
35. The locus of an equation. By the process illustrated above, of constructing a curve from its equation, the first conception of a locus is obtained, viz.:
(1) The locus of an equation containing tico variables is the line. or set of lines, which contains all the points whose cosirlinates satiaf!! the given equation, and which contains no other points. It is the place where all the points, and
only those points, are found whose coördinates satisfy the given equation.

A second conception of the locus of an equation comes directly from this one, for the line or set of lines may be regarded as the path traced by a point which moves along it. The path of the moving point is determined by the condition that its coördinates for every position through which it passes must satisfy the given equation. Thus the line $E F^{\prime}$ (the locus of eq. (3), Art. 33) may be regarded as the path traced by the point P, which moves so that its coördinates (x, y) always satisfy the equation

$$
3 x-2 y+12=0
$$

Thus arises a second conception of a locus, viz.:
(2) The locus of an equation is the path traced by a point which moves 80 that its coördinates always satisfy the given equation.

In either conception of a locus, the essential condition that a point shall lie on the locus of a given equation is, that the coördinates of the point when substituted respectively for the variables of the equation, shall satixfy the equation; and in order that a curve may be the locus of an equation, it is necessary that there be no other points than those of this curve whose coördinates satigfy the equation.
36. Classification of loci. The form of a locus depends upon the nature of its equation; the curve may therefore be classified according to its equation, an algebraic curve being one whose equation is algebraic, and a transcendental curve one whose equation is transcendental. In particular, the degree of an algebraic curve is defined to be the same as the degree of its equation. The following pages are
concerned chiefly with algebraic curves of tho first and second degrees.
37. Construction of loci. Discussion of equations. The process of constructing a locus by plotting separate points, and then comnecting them by a smooth curve, is only approximate, and is long and tedious. It may often be shortened by a consideration of the peculiarities of the given equation, such as symmetry, the limiting values of the variables for which both are real, etc. Such considerations will often show the general form and limitations of the curve ; and, taken together, they constitute a discussion of the equation.

The points where a locus crosses the courdinate axes are almost always useful ; in drawing the curve, they are given by their distances from the origin along the respective axes. These distances are called the intercepts of the curve.

The following examples may serve to illustrate these conceptions.
(1) Discussion of the equation $3 x-2 y+12=0$ [see (3) Art. 33].

Intercepts: if $x=0$, then $y=6$; hence the y-intercept is 6
(see Fig. 16) ; if $y=0$, then $x=-4$; hence the x-intercept is 4 .
The equation may be written: $x=\{y-4$, which shows that as y increases continuously from 0 to ∞, x increases continuously from -4 to ∞; therefore the locus passes from the point P_{8} through the point P_{1}. and then recedes indefinitely from both axes in the first quadrant. Written as above, the equation also shows that as y decreases from 0 to $-\infty$. x also decreases from -4 to $-\infty$; therefore the locus passes from P_{8} into the third quadrant, receding again indefinitely from both axes. Since for every value of y, z takes but one value (i.e., each value of y corresponds to but one point on the curve), therefore the locus consists of a single branch. The pronf that the locus of any first-degree equation, in two rariables, is a straight line is given in Chap. V.
(2) Discussion of the equation $y^{3}=4 x$. [See (4) Art. 33.]

Intercepts (see Fig. 17) : if $x=0$, then $y=0$, and if $y=0$, then $x=0$;
hence the locus cuts each axis in one point only, and that point is the origin. The equation may be written in the form $y= \pm \sqrt{4} \bar{x}$, which shows that if x be negative y is imaginary; hence there is no point of this locus on the negative side of the y-axis.

Again : for each positive value of x there are two real values of y, numerically equal, but opposite in sign; hence this locus passes through the origin, lies wholly in the first and fourth quadrants, and is symmetrical with regard to the x-axis.

The equation shows also that x may have any positive value, however great, and that y increases when x increases; these facts show that the locus recedes indefinitely from both axes, -that it is an open curve of one branch. It is called a parabola and has the form shown in Fig. 17.
(3) Discussion of the equation $x^{2}+y^{2}=a^{2}$.

Intercepts: if $x=0$, then $y= \pm a$, and

Fia. 21. if $y=0$, then $x= \pm a$; hence for each axis there are two intercepts, each of length a, and on opposite sides of the origin; i.e., four positions of the tracing point are: $A \equiv(a, 0), A^{\prime} \equiv(-a, 0), B \equiv(0, a)$, and $B^{\prime} \equiv(0,-a)$.

This equation may also be written

$$
y= \pm \sqrt{a^{2}-x^{2}}
$$

which shows that every value of x gives two corresponding values of y which are numerically equal, but of opposite sign; the locus is, therefore, symmetrical with regard to the x-axis. It also shows that, corresponding to any value of x numerically greater than a, y is imaginary; the tracing point, therefore, does not move further from the y-axis than $\pm a$, i.e., further than the points A and A^{\prime}. Moreover, as x increases from 0 to a, y remains real and changes gradually from $+a$ to 0 , or from $-a$ to 0 ; i.e., the tracing point moves continuously from B to A, or from B^{\prime} to A.

Again, if x decreases from 0 to $-a, y$ remains real and changes continuously from $+a$ to 0 , or from $-a$ to 0 ; i.e., the tracing point moves continuously from B to A^{\prime} or from B^{\prime} to A^{\prime}.

Similarly, the equation may be written $x= \pm \sqrt{a^{2}-y^{2}}$, which shows that the curve is also symmetrical with regard to the y-axis, and that the tracing point does not move farther than $\pm a$ from the x-axis.

From these facts it follows that this locus is a closed curve of only one branch. It is a circle of radius a, with its center at the origin ; this curve will be studied in detail in Chap. VII.
(1) Discussion of the equation $y^{2}=(s-2)(s-3)(s-4)$.

Intercepten: if $s=0$, then y is imaginary; if $y=0$, then $z=2,3$, or 4 ; hence the locus cromes the s-axas at the three points: $A=(2,0)$. ifis $(3,0)$, and $C i=(4,0)$, and it dow not eut the graxis at all. Moreover, slice y is imaghary if z is negative, the locus lies wholly on the ponitive side of the y-axis.

This locus is symmetrical with regard to the saxin; it has no point niearer to the y-axis than A; between A and B it consists of a closed branch; and it has no real points between B and C, but is again real leyond C. The entire locus consists, then, of a closed oval, and of an open branch which recedes indefinitely from toth axes (see Fig. 22).

(5) Discussion of the equation $y=\tan x$. This equation has already been examined in (6) Art. 33, but in practice it may be much more simply ploteal by the following method:

Descrite a circle with unit radius; draw the diameter $A O C$, and the lines $O B_{1}, O B_{9} O B_{3}, \cdots$, meeting the tangent $A T$
 in the points $T_{1}, T_{3}, T_{3}, \cdots$; then the tangent of the angle $A O B_{1}$ is $M_{1} B_{2}: O M_{1}=A T_{1}: O A$ (drt. 14), and, since $O A=1$, its value is graphically represented by $A T_{3}$. So also

$$
\tan A O B_{2}=M_{2} B_{2}: O M_{3}=A T_{2}: O A=A T_{3}: 1,
$$

and may be graphically represented by $A T_{9}$. In the same way, $A T_{5} A T_{c} A T_{\infty} \cdots$ are the tangents of the angles $A O B_{8} A O B_{8} A O B_{0} \ldots$. Again, since angles at the center of a circle are proportioual to the arcs intercepted by their sides, $A T_{1}$, $A T_{s}, \ldots$ may be said to the the tangents of the ares $A B_{1}, A B_{2}, \cdots$; i.e., $A T_{1}=\tan A B_{1}, A T_{8}=\tan$ $A B_{9} \cdots$. Therefore the coobrdinates of the points $P_{1} \equiv\left(A B_{1}, A T_{1}\right), P_{3} \equiv\left(A B_{3} A T_{3}\right), \cdots$ eatisfy the given equation, and if a sufficient number of points, whose coürdinates are thus determined, he plotted, they will all lie on a curve like that in Fig. 10.

From what has just been said it is clear that $y=0$ if $x=0$, hence the curve goes through the origin; when x increases continuously from 0 to $\frac{\pi}{2}, y$ increases continuously from 0 to ∞, but when x increases through $\frac{\pi}{2}$, y passes suddenly from $+\infty$ to $-\infty$, and the curve is discontinuous for that value of x. So also when x increases continuonsly from $\frac{\pi}{2}$ to $\frac{3 \pi}{2}$, y increases continuously from $-\infty$ through 0 to $+\infty$, and is again discontinuous for $x=\frac{3 \pi}{2}$. The locus consists of an infinite number of such infinite, but continuous brancles, separated by the points of disconlinuity for which $x= \pm \frac{\pi}{2}, x= \pm \frac{3 \pi}{2}, x= \pm \frac{5 \pi}{2}, \ldots$.

The other trigonometric functions, $y=\sin x, y=\sec x$, etc., can all be plotted by a method analogous to that above.

EXERCISES

Construct and discuss the loci of the following equations:

1. $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$.
2. $y=\sec x$.
3. $v=\sin u$.
4. $x^{2}-y^{2}=a^{2}$.
5. $x^{2}+y^{2}=0$.
6. $\frac{x^{2}}{4}+\frac{y^{2}}{y}=1$.
7. $x^{2}-y^{2}=0$.
8. $4 x^{2}-y^{2}=0$.
9. $\frac{y-1}{y-2}=5^{\frac{1}{x-1}}$
(cf. Ex. 8, p. 8.)
10. The locus of an equation remains unchanged: (a) by any transposition of the terms of the equation; and $(\boldsymbol{\beta})$ by multiplying both members of the equation by any finite constant.
(a) If in any equation the terms are transposed from one member to the other in any way whatever, the locus of the equation is not changed thereby ; for the coördinates of all the points which satisfied the equation in its original form, and only those coördinates, satisfy it after the transpositions are made. [See Art. 35 (1).]
(β) If both members of an equation are multiplied by any finite constant k, its locus is not changed thereby. For if the terms of the equation, after the multiplication has been performed, are all transposed to the first member, that member may be written as the product of the constant k and a
factor containing the variables. This product will vanish if, and only if, its second factor vanishes ; but this fuctor will vanish if, and only if, the variables which it contains are the cobrdinates of points on the locus of the original equation. Hence the cobrdinates of all points on the locas of the original equation, and only those coordimates, satisfy the equation after it has been multiplied by k; henee the locus remains unchanged if its equation is multiplied by a finite constant.
11. Points of intersection of two loci. Since the points of intersection of two loci are points on each locus, therefore the coordinates of these points must satisfy each of the two equations ; moreover, the coördiuates of no other points can satisfy both equations. Hence, to find the coordinates of the points of intersection of two curves, it is only necessary to regard their equations as simultaneous and solve for the coordinates.
E.g., Find the coordinates of the points of intersection, P_{1} and P_{8} of the loci of $x-2 y=0$, and $y^{2}=z$. The point of intersection $P_{1}=\left(x_{1}, y_{1}\right)$ is on boch curves,

$$
\therefore x_{1}-2 y_{1}=0, \text { and } y_{1}{ }^{2}=x_{1} .^{\circ}
$$

Solving these two equations,

$$
x_{1}=0 \text {, or } 4, \text { and } y_{1}=0 \text {, or } 2 ;
$$

i.e., $P_{1} \equiv(4,2)$ and $P_{2} \equiv(0,0)$ are two points, the courdinates of which satiafy each of the two given equar tious; therefore they are the points of intersection of the loci of these equations.

EXERCISES

Find the prints of intersection of the following pairs of curves:

1. $\left\{\begin{array}{l}7 x-11 y+1=0, \\ z+y-2=0 .\end{array}\right.$
2. $\left\{\begin{array}{l}x+y=3, \\ x-y=3 .\end{array}\right.$
[^7]3. $\left\{\begin{array}{l}y=3 x+2, \\ x^{2}+y^{2}=4 .\end{array}\right.$
4. $\left\{\begin{array}{l}x+y=2 a, \\ b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2} .\end{array}\right.$
5. $\left\{\begin{array}{l}2 y-5 x=0, \\ x^{2}-y^{2}=5 .\end{array}\right.$
6. $\left\{\begin{array}{l}x^{2}+y^{2}=16, \\ x^{2}-2 y^{2}=1 .\end{array}\right.$
7. $\left\{\begin{array}{l}x^{2}+y^{2}=9, \\ x^{2}+6 x y+y^{2}\end{array}\right.$
8. $\left\{\begin{array}{l}y^{2}=4 x, \\ y-x=3 .\end{array}\right.$
9. $\left\{\begin{array}{l}x^{2}+y^{2}=a^{2}, \\ 3 x+y+a=0 .\end{array}\right.$
10. $\left\{\begin{array}{l}y^{2}=4 p x, \\ y-x=0 .\end{array}\right.$
11. $\left\{\begin{array}{l}\rho=9 \cos \theta, \\ \rho \cos \theta=4 .\end{array}\right.$
12. $\left\{\begin{array}{l}\rho=9 \cos \left(45^{\circ}-0\right), \\ \rho \cos \left(\frac{\pi}{2}-\theta\right)=1 .\end{array}\right.$
13. Trace carefully the above loci ; by measurement, find the coördinates of the points in which each pair intersect; and compare these results with those already obtained by computation.
14. Product of two or more equations. Given two or more equations with their second members zero;* the product of their first members, equated to zero, has for its locus the combined loci of the given equations.

This follows at once from the fundamental relation between an equation and its locus (see Art. 35 (1)), for the new equation is satisfied by the coördinates of those points which make one of its factors zero, but it is satisfied by the coördinates of no other points ; i.e., this new equation is satisfied by the coördinates of points that lie on one or another of the loci of the given equations.

The following example illustrates this principle in the case of two given equations.

Let the given equations be :

$$
\begin{equation*}
x+y=0 \quad \text {. . . (1) and } x-y=0 \tag{2}
\end{equation*}
$$

[^8]Equation (1) represents the straight line $C \cdot D$, and equation (2) the line $A B$, -bisecting respectively the angles between the axes. It is to be shown that the equation

$$
\begin{equation*}
(x+y)(x-y)=0 \tag{3}
\end{equation*}
$$

(or, what is the same, $x^{2}-y^{2}=0$), formed from equations (1) and (2),

Fio. 2 s . has for its locus both these lines.

Proof. If $P_{1} \equiv\left(x_{1}, y_{1}\right)$ is any point on $C D$, then its coordinates satisfy equation (1), hence $x_{1}+y_{1}=0$, and therefore $\left(x_{1}+y_{1}\right)\left(x_{1}-y_{1}\right)=0$; which shows that P_{1} is a point of the locus of equation (3). But since P_{1} was any point of $C D$, therefore the coorrdinates of every point on $C D$ satisfy equation (3); i.e., all points of $C D$ belong to the locus of equation (3).

In the same way it is shown that $A B$ belongs to the locus of equation (3).

Moreover, if $P_{8} \equiv\left(x_{3}, y_{8}\right)$ be any point not on $A B$ nor on $C D$, then $x_{3}+y_{8} \neq 0$, and $x_{8}-y_{8} \neq 0$, hence

$$
\left(x_{3}+y_{8}\right)\left(x_{3}-y_{3}\right) \neq 0 ;
$$

i.e., P_{8} does not belong to the locus of equation (3).

Hence the locus of equation (3) contains the loci of equations (1) and (2), but contains no other points.

The above theorem may be stated briefly thus: if u, v, w, etc., be any functions of two variables, then the equation wow. $\cdot .=0$ has for its locus the combined loci of the equations $u=0, v=0, v=0$, etc.

Nots. When possible, factoring the first member of an equation, whose second member is zero, simplifies the work of findiug the locus of the given equation.

EXERCISES

What loci are represented by the following equations?

1. $x y=0$.
2. $\frac{x^{2}}{4}-\frac{y^{2}}{y}=0$.
3. $3 x^{2}+2 x y-7 x=0$.
4. $5 x y^{2}-2 x^{2} y=0$.
5. $x^{2}-2 x+1=0$.
6. $\left(x^{2}+y^{2}-4\right)\left(y^{2}-4 x^{2}\right)=0$.
7. Locus represented by the sum of two equations. Suppose the equations

$$
\begin{equation*}
2 y-x=0 \quad . \quad . \quad . \quad(1), \text { and } y^{2}-x=0 \tag{2}
\end{equation*}
$$

are given. Their loci are respectively $A B$ and $D P_{2} P_{1} C$ (Art. 39), and it is required to find the locus of their sum;

Fia. 20. i.e., of $2 y-x+y^{2}-x=0$, or, what is the same thing, of $y^{2}+2 y-2 x=0$

The locus of this last equation passes through all the points in which $A B$ and $D P_{2} P_{1} C$ intersect each other. For let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ be one of these points, then since P_{1} lies on $A B$, its coördinates satisfy equation (1); i.e.,

$$
\begin{equation*}
2 y_{1}-x_{1}=0 ; \tag{4}
\end{equation*}
$$

and since P_{1} lies on $D P_{2} P_{1} C$, its coördinates satisfy equa tions (2); i.e.,

$$
\begin{equation*}
y_{1}^{2}-x_{1}=0 ; \tag{5}
\end{equation*}
$$

therefore, by adding equations (4) and (5),

$$
\begin{equation*}
y_{1}^{2}+2 y_{1}-2 x_{1}=0 \tag{6}
\end{equation*}
$$

This last equation proves (Art. 35 (1)) that $P_{1} \equiv\left(x_{1}, y_{1}\right)$ is on the locus of equation (3); i.e., the locus of equation (3) passes through $P_{1} \equiv\left(x_{1}, y_{1}\right)$.

Similar reasoning would show that the locus of equation
(3) passes through every other point in which the loci of equations (1) and (2) intersect each other-

In precisely the same way it may be proved generally that the lovus of the sum of two equations passes through all the points in which the loci of the tico given equations intersect each other.

If either of the given equations (1) or (2) had been multiplied by any constant factor before adding, the above reasoning would still have led to the same conclusion; in fact, this theorem may be brietly, and more generally, stated thus: if u and v are any functions of the two variables x and y, and k is any constant, then the locus of

$$
u+k v=0
$$

passes through every point of intersection of the loci of

$$
u=0 \text { and } v=C
$$

For, let the locus of the equation $u=0$ be the curve $A B C$, the locus of $v=0$ be the curve DEF , and let $P_{1}=\left(x_{1}, y_{1}\right)$ be any one of the points in which these curves intersect each other.

Then the equation

$$
u+k v=0
$$

is satisfied by the coorrdinates of the point $P_{1} \equiv$ $\left(x_{1}, y_{1}\right)$, because if these
 coordinates be substituted for x and y in the functions u and v they must make both these functions separately equal to zero. Therefore the locus of $u+k v=0$ passes through every point in which the loci of $u=0$ and $v=0$ intersect each other.

EXERCISES

1. Verify Art. 41 by first finding the coördinates of the points of intersection of the loci of equations (1) and (2), and then substituting these coordinates in equation (3).
2. Find the equation of a curve that passes through all the points in which the following pairs of curves intersect:
(a) $\left\{\begin{array}{l}x^{2}+y^{2}=2, \\ x^{2}+2 x+y^{2}=0 .\end{array}\right\}$
(β) $\left\{\begin{array}{l}y=\sin x, \\ y=2 \cos x .\end{array}\right\}$
3. Find the equation of a curve through all the points common to the following pairs of curves:

$$
\text { (a) } \left.\left\{\begin{array}{l}
x^{2}=4 y, \\
y^{2}=4 \\
x
\end{array}\right\} \quad \text { (} \beta\right)\left\{\begin{array}{l}
\rho=2 \cos \theta, \\
\rho \cos \theta=1 .
\end{array}\right\}
$$

Note. It is to be observed that the method given in Art. 39, for finding the point of intersection of two curves, is an application of the theorem of Art. 41. For the process of solving two simultaneous equations, at least one of which involves two variables, consists in combining them in such a way as to obtain two simple equations, each involving only one variable. Now each of these simple equations represents an elementary locus, - one or more straight lines parallel to the axes, if the coördinates are Cartesian; circles about the pole, or straight lines through the pole, if the coördinates are polar, - and these elementary loci determine, i.e., pass through, the points of intersection of the original loci. To determine the points of intersection, then, of two loci, the original loci are replaced by simpler ones passing through the same common points. E.g., the points of intersection of the loci of Art. 39,

$$
2 y-x=0 \text {....(1), and } y^{2}=x \text {, . . (2) }
$$

are given by the equations

$$
\left(y^{2}-x\right)-(2 y-x)=0 \quad \text { and } \quad\left[(2 y)^{2}-x^{2}\right]-4\left(y^{2}-x\right)=0,
$$

that is, by

$$
y^{2}-2 y=0, \quad \text { and } \quad x^{2}-4 x=0
$$

which may be written

$$
\begin{equation*}
y(y-2)=0 \ldots(3), \quad x(x-4)=0 \tag{4}
\end{equation*}
$$

But the locus of equation (3) is a pair of straight lines parallel to the x-axis, and the locus of equation (4) is a pair of straight lines parallel to the y-axis; and these loci have the same points of intersection as the loci (1) and (2).

EXAMPLES ON CHAPTER III

1. Are the points $(3,0),(1,8)$, and $(3,5)$ on the locus of $3 x+2 y=25$?
2. Is the point $\left(\frac{a}{2}, \frac{a}{3}\right)$ on tho locus of $4 x^{2}+9 y^{3}=2 a^{3}$?
3. The ordinate of a certain point on the locus of $x^{3}+y^{2}=25$ is 4 . what is its almecisas? What is the ortinate if the abscima is a^{3} ?

Find by the method of Art. 39 where the following locl cut the axes of x and y.
4. $y=(x-2)(x-3)$.
5. $16 x^{2}+9 y^{2}=144$.
6. $x^{2}+6 x+y^{2}=4 y+3$.

Find by the method of Art. 39 where the following loci cut the polar axis (or initial line).
7. $\rho=I \sin ^{2} \theta$.
8. $\rho^{2}=a^{2} \cos 20$.
9. The two loci $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1, \frac{x^{2}}{4}+\frac{y^{2}}{y}=4$ intersect in four points; find the lengths of the sides and of the diagonals of the quadrilateral formed by these points.
10. A triangle is formed by the points of intersection of the loci of $x+y=a, x-2 y=4 a$, and $y-x+7 a=0$. Find its area.
11. Find the distance between the points of intersection of the curves $8 x-2 y+6=0$, and $x^{2}+y^{2}=9$.
12. Does the locus of $y^{2}=4 x$ intersect the locus of $2 x+3 y+2=0$?
13. Does the locus of $x^{2}-4 y+4=0$ cut the locus of $x^{2}+y^{2}=1$?
14. For what values of m will the curves $x^{2}+y^{2}=9$ and $y=6 x+m$ not intersect? (cf. Art. 9.) Trace these curves.
15. For what valne of b will the curves $y^{2}=4 x$ and $y=x+b$ intertect in two distinct points? in two coincident points? in two imaginary poinks (i.e., not intersect)?
16. Find those two values of e for which the points of intersection of the curves $y=2 x+c$ and $x^{2}+y^{2}=25$ are coincident.
17. Find the equation of a curve which passes through all the proints of intersection of $x^{2}+y^{2}=25$ and $y^{2}=4 x$. Test the correctness of the reault by finding the coirdinates of the points of intersection and substituting them in the equation just found.
18. Write an equation which shall represent the combined loci of (1), (2), and (3) of Art. 37.

Discuss and construct the loci of the equations:
19. $\left(x^{2}-y^{2}\right)(y-\tan x)=0$.
22. $y=x^{3}$.
25. $\rho^{2}=a^{2} \cos 2 \theta$.
20. $x^{3}-y^{3}=0$.
23. $y^{2}=x^{2}$.
26. $\rho=3 \theta$.
21. $x^{4}-y^{4}=0$.
24. $y=10^{z}$.
$27 \rho=a \sin 2 \theta$.
28. Show that the following pairs of curves intersect each other in two coincident points; i.e., are tangent to each other.

$$
\begin{aligned}
& \text { (a) }\left\{\begin{array}{l}
y^{2}-10 x-6 y-31=0, \\
2 y-10 x=47 .
\end{array}\right\} \\
& \text { (} \beta \text {) }\left\{\begin{array}{l}
9 x^{2}-4 y^{2}+54 x-16 y+29=0, \\
15 x-8 y+11=0 .
\end{array}\right\}
\end{aligned}
$$

29. Find the points of intersection of the curves

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1 \text { and } \frac{x^{2}}{25}-\frac{y^{2}}{9}=1 .
$$

CHAPTER IV

THE EQUATION OF A LOCUS

42. The equation of a locus. The second fundamental problem of analytic geometry is the reverse of the first (ef. Art. 31), and is usually more difficult. It is to find, for a given geometric figure, or locus, the corresponding equation, i.e., the equation which shall be satisfied by the courdinates o! every point of the given locus, and which shall not be satisfied by the coürdinates of any other point. The geometric figure may be given in two ways, viz. :
(1) As a figure with certain known properties; and
(2) As the path of a point which moves under known conditions.

In the latter case the path is usually unknown, and the complete problem is, first to find the equation of the path, and then from this equation to find the properties of the eurve. This last is the third problem mentioned in Art. 31.

The two ways by which a locus may be "given" correspond to the two conceptions of a locus mentioned in Art. 35, and they lead to somewhat different methods of obtaining the equation. The first method may be exemplified clearly, and most simply, by first considering the familiar cases of the straight line and the circle.
43. Equation of straight line through two given points.* Let $P_{1} \equiv(3,2)$, and $P_{8} \equiv(12,5)$ be two given points ; and
let $P \equiv(x, y)$ be any other point on the line through P_{1} and P_{2}.

Draw the ordinates $M_{1} P_{1}, M P$, and $M_{2} P_{2}$, and through P_{1} draw $P_{1} N$ parallel to the x-axis, meeting $M P$ in R and $M_{2} P_{2}$ in R_{2}.

The triangles $P_{1} R P$ and $P_{1} R_{2} P_{2}$ are similar, hence

$$
\frac{R P}{R_{2} P_{2}}=\frac{P_{1} R}{P_{1} R_{2}}, \text { i.e., } \frac{M P-M_{1} P_{1}}{M_{2} P_{2}-M_{1} P_{1}}=\frac{O M-O M_{1}}{O M_{2}-O M_{1}}
$$

Substituting for $M P, O M, M_{1} P_{1}, O M_{1}$, etc., their values, this equation becomes

$$
\begin{equation*}
\frac{y-2}{5-2}=\frac{x-3}{12-3} \tag{1}
\end{equation*}
$$

which reduces to $\quad 3 y-x-3=0$.
This is the required equation of the straight line through P_{1} and P_{2}, because it fulfills both the requirements of the definition [cf. Art. 35 (1)]; i.e., it is satisfied by the coördinates of any (i.e., of every) point of this line, because x, y are the coördinates of any such point; and it is not satisfied by the coördinates of any point which is not on this line, because the corresponding constructions for such a point would not give similar triangles, and hence the proportions which led to this equation would not be true.

That equation (1) is not satisfied by the coördinates of
any point not on the line through P_{1} and P_{2} may also be seen as follows :
let $\quad P_{3}=\left(r_{3}, y_{8}\right)$
be any point not on the line through P_{1} and P_{3}, the ordinate $M_{8} P_{8}$ will meet $P_{1} P_{2}$ in some point
 $P_{4}=\left(x_{4}, y_{4}\right)$, for which $x_{4}=x_{3}$ but $y_{4} \neq y_{3}$. Since P_{1} is on the line $P_{1} P_{2}$ its coordinates satisfy equation (1), therefore

$$
\begin{gathered}
8 y_{4}-x_{4}-3=0 \\
\therefore 3 y_{8}-x_{3}-3 \neq 0 ; \quad\left[\text { since } x_{4}=x_{3} \text { and } y_{4} \neq y_{8}\right]
\end{gathered}
$$

hence the cöordinates of P_{3} do not satisfy the equation

$$
3 y-x=3
$$

44. Equation of straight line passing through given point and in given direction. \dagger Let $P_{1} \equiv(5,4)$ be the given point, let the given line through P_{1} make an angle of 30° with the r-axis, and let $P \equiv(x, y)$ bo any other point on this line.

Draw the ordinates $M_{1} P_{1}$ and $M P$, and through P_{1} draw $P_{1} R$ parallel to the x-axis to meet $M P$ in R. Then

$$
\tan R P_{1} P=\frac{R P}{P_{1} R}=\frac{M P-M_{1} P_{1}}{O M-O M_{1}}
$$

[^9]Substituting for $M_{1} P_{1}, M P, O M_{1}, O M$, and angle $R P_{1} P$ their values, and remembering that $\tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{1}{3} \sqrt{3}$, this equation becomes

$$
\frac{1}{8} \sqrt{3}=\frac{y-4}{x-5} ; \text { i.e., } x-\sqrt{3} y-5+4 \sqrt{3}=0 . *
$$

The equation just found is satisfied by the coördinates of any point on the given line, but is not satisfied by the coördinates of any point that is not on this line (cf. Art. 43); hence it is the equation of the line (cf. Art. 35).
45. Equation of a circle; polar coördinates. \dagger In deriving this equation, let polar coördinates be employed, merely for variety, and let the pole be taken

Fic. 31 . on the circumference, with a diameter $O A$ extended for the initial line. Let $P \equiv(\rho, \theta)$ be any point on the circle, \ddagger and let r be the radius of the circle.

Connect P and A by a straight

[^10]line; then, in triangle $A O P$, angle $O P A$ is a right angle, $A O P=0, O P=\rho$, and $O P: O A=\cos \theta$; i.e.,
\[

$$
\begin{align*}
\rho: 2 r & =\cos \theta ; \\
\rho & =2 r \cos \theta . \tag{1}
\end{align*}
$$
\]

Equation (1) is satisfied by the polar courdinates of every point on the circle; but is not satisfied by the conjrdinates of a point Q not on the circle, since angle $A Q O$ is not a right angle. Therefore Eq. (1) is the equation of this circle (cf. Art. 35).

EXERCISES

1. Fiad the equation of the straight line through the two points $(1,7)$ and $(6,11)$; through the points $(-2,5)$ and $(3,8)$. Which is the positive side of each line?
2. Find the equation of the atraight line through the two points $(2,3)$ and $(-2,-3)$. Through what other point does this line pass? Does the equation show this fact?
3. Find the equation of the straight line through the point $(5,-7)$, and making an angle of 45° with the x-axis; making the angle $-45^{\prime \prime}$ with the e-axis.
4. Find the equation of the line through the point ($-6,-2$), and making the angle 150° with the x-axis.
5. Construct the circle whose equation is $\rho=10 \cos \theta$.
c. With rectangular coordinates, find the equation of the circle of radius 5 , which passes through the origin, and has its center on the x-axis. Is its pravitire side outside or inside?
6. Equation of locus traced by a moving point. In the problems given above, the geometric figure in each case was completely known ; and, in obtaining its equation, use was made of the known properties of similar triangles, triangles insoribed in a semicircle, and trigonometric functions. In only a few eases, however, is the curve so completely known ; in a large class of important problems, the curve tan. an. grow. - 6
is known merely as the path traced by a point which moves under given conditions or laws. Such a curve, for instance, is the path of a cannon ball, or other projectile, moving under the influence of a known initial force and the force of gravity. Another such curve is that in which iron filings arrange themselves when acted upon by known magnetic forces. The orbits of the planets and other astronomical bodies, acting under the influence of certain centers of force, are important examples of this class of "given loci."

In such problems as these, the method used in Arts. 43 to 45, cannot, in general, be applied. A method that can often be employed, after the construction of an appropriate figure, is:
(1) From the figure, express the known law, under which the point moves, by means of an equation involving geometric magnitudes; this equation may be called the "geometric equation."
(2) Replace each geometric magnitude by its equivalent algebraic value, expressed in terms of the coürdinates of the moving point and given constants; then simplify this algebraic equation, and the result is the desired equation of the locus.
47. Equation of a circle: second method. To illustrate this second method of finding the equation of a locus, consider the circle as the path traced by a
 point which moves so that it is always at a given constant distance from a fixed point. From this definition, find its equation.

Let $C \equiv(3,2)$ be the given fixed point, and let $P \equiv(x, y)$ be a point that moves sn as to be always at the distance $2 \frac{1}{2}$ from C. Then

$$
C P=\frac{5}{2}, \quad . \quad . \quad \text { [geometric equation] }
$$

$$
C P=\sqrt{(x-3)^{2}+(y-2)^{2}} \quad(\text { Art. 26, [2]). }
$$

$$
\therefore \sqrt{(x-0)^{2}+(y-2)^{2}}=\frac{1}{2} ; \quad \text { [algebraic equation] }
$$

i.e.,

$$
(x-3)^{2}+(y-2)^{2}=\frac{28}{3} ;
$$

hence

$$
4 x^{2}+4 y^{2}-24 x-16 y+27=0
$$

which is the required equation.
The locus of this equation can now be plotted by the methods of Art. 37 , and its form and limitations can be discussed as is there done for other equations.

EXERCISES

1. Find the equation of the path traced by a point which moves so that it is always at the distance 4 from the point $(5,0)$. Trace the locus.
2. Find the equation of the path traced by a point which moves so that it is always equidistant from the points $(-2,3)$ and $(7,5)$ (ef. Ex. 9, p. 34).
3. A line is 3 units long; one end is at the point ($-2,3$). Find the locus of the other end (cf. Ex. 8, p. 34).
4. A point moves so as to be always equidistant from the y-axis and from the point $(4,0)$. Find the equation of its path, and then trace and dincuss the locus from its equation.
5. A point moves so that the sum of its distances from the two points $(0, \sqrt{5}),(0,-\sqrt{5})$ is always equal to 6 . Find the equation of the locus traced by this moving point.
6. A point moves so that the difference of its distances from the two points $(0, \sqrt{5}),(0,-\sqrt{5})$ is always equal to 2. Find the equation of the locus traced by this moving point.
7. The conic sections. Of the innumerable loci which may be given by means of the law governing the motion of the generating or tracing point, there is one class of partieular importance; and it is to the study of this important class that the following pages will be chiefly devoted. These curves are traced by a point which moves so that its distance
from a fixed point alvays bears a constant ratio to its distance from a fixed straight line. These curves are called the Conic Sections, or more briefly Conics, because they can be obtained as the curves of intersection of planes and right circular cones ; * in fact, it was in this way that they first became known. The last three examples just given belong to this class, although it is only in No. 4 that this fact is directly stated. These loci are the parabola, the ellipse, and the hyperbola; it will be shown later that they include as special cases the straight line and the circle.t They are of primary importance in astronomy, where it is found that the orbit of a heavenly body is a curve of this kind.

The general equation, which includes all of these curves, will now be derived, and the locus briefly discussed; in a subsequent chapter will be given a detailed study of the properties of these curves in their several special forms.
(a) The equation of the locus. Let \boldsymbol{F} be the fixed point, - the focus of the curve ; $D^{\prime} D$ the fixed
 line, - the directrix of the curve; and e the given ratio, - the eccentricity of the curve.

The coördinate axes may of course be chosen as is most convenient. Let $D^{\prime} D$ be the y-axis, and the perpendicular to it through F, i.e., the line OFX, be the x-axis. Let $P \equiv(x, y)$ be any position of the generating point, and let $O F$, the fixed distance of the focus from the directrix, be denoted by k; then the coördinates of the focus are $(k, 0)$. Connect \boldsymbol{F} and P, and through P draw $L P$ perpendicular to the directrix.

$$
\text { Then } \quad F P: L P=e, \quad \text { [geometric equation] }
$$

but

$$
F P=\sqrt{(x-k)^{3}+y^{2}} \quad(\text { Art. 26). }
$$

and
$L P=r, \quad$ [algebraic equivalents]
hence
i.e.,

$$
\begin{equation*}
\left(1-e^{2}\right) x^{2}+y^{2}-2 k x+k^{2}=0 \tag{1}
\end{equation*}
$$

which is the equation of the given locus.
This equation is of the second degree; in a later chapter it will be shown that every equation of the second degree between two variables represents a conic section. On this account it is often spoken of as the "second degree curve."
(b) Discussion of equation (1).

If $x=0$, then $y= \pm k \sqrt{-1}$, which shows that this curve does not intersect the y-axis as here chosen ; i.e., a conic does not intersect its directrix.

If $y=0$, then $\left(1-c^{3}\right) x^{2}-2 k x+k^{2}=0$,
whence

$$
\begin{equation*}
x=\frac{k}{1+e}, \text { or } x=\frac{k}{1-e}, \tag{2}
\end{equation*}
$$

i.e., a conic meets the line drawn through the focus and perpendicular to the directrix (the x-axis as here chosen) in two points whose distances from the directrix are $\frac{k}{1+e}$ and $\frac{k}{1-e}$ respectively; these points are called the vertices of the conic.

Equation (1) shows that for every value of x, the two corresponding values of y are numerically equal but of opposite signs, hence the conic is symmetrical with regard (1) the x-axis as here chosen. For this reason the lime drawn through the focus of a conic and perpendicular to the directrix is called the principal axis of the conic.

The form of the locus of equation (1) depends upon the value of the eccentricity, e; if $e=1$, the conic is called a
parabola; if $e<1$, an ellipse; and if $e>1$, an hyperbola. Each of these cases will now be separately considered.
(1) The parabola, $e=1$. If $e=1$, then $F P: L P=1$, i.e., $F P=L P$ for every position of
 the tracing point,* hence the curve passes through A, - the point midway between O and F, - but does not again cross the principal axis (cf. also equations (2), above).

Moreover, when $e=1$, equation (1) becomes

$$
\begin{gather*}
y^{2}-2 k x+k^{2}=0 \\
y^{2}=2 k\left(x-\frac{k}{2}\right) \tag{3}
\end{gather*}
$$

which is the equation of the parabola, the coördinate axes being the principal axis of the curve and the directrix. Equation (3) shows that there is no point of this parabola for which $x<\frac{k}{2}$, and also that y changes from 0 to $\pm \infty$ when x increases from $\frac{k}{2}$ to ∞; hence the parabola recedes indefinitely from both axes in the first and fourth quadrants. Its form is given in Fig. 34.
(2) The ellipse, $e<1$. Equation (1) may be written in the form

$$
\begin{equation*}
y^{2}=\left(1-e^{2}\right)\left(\frac{k}{1-e}-x\right)\left(x-\frac{k}{1+e}\right), \ldots \tag{4}
\end{equation*}
$$

[^11]which shows, e being less than 1, that y is imaginary for all values of x except those which satisfy the condition
$$
\frac{k}{1+e}<x=\frac{k}{1-e}
$$
hence the ellipse lies wholly on the positive side of its direc. trix, and between two lines which are parallel to the directrix

and distant from it $\frac{k}{1+e}$ and $\frac{k}{1-e}$ respectively. Equation (4) shows that as x increases from $\frac{k}{1+e}$ to $\frac{k}{1-e}, y$
ellipae. E.g., let $x=O M$; then the factors $\left(x-\frac{k}{1+e}\right)$ and $\left(\frac{k}{1-e}-x\right)$ are the two segments AM and $M A^{\prime}$ of the line A. A^{\prime}, and geometrically their product equals the square of the ordinate $M Q$ of the semicircle of which $A A^{\prime}$ is the diameter. If now the point P on MQ be so constructed

that $M P=\sqrt{1-e^{3}} \cdot M Q$, then P is a point on the ellipse whose equation is (4) above.

Similarly, any numbet of points on the curve can be constructed. This methot shows also that the ordinates of an ellipme are leas than, but in a constant ratio to, the corresponding ondiuates of the circle of which the diameter is the llue jolning the vertices of the ellipse. See also Note B, Appendix.
increases from 0 to $\frac{e k}{\sqrt{1-e^{2}}}$ (which value it reaches when $\left.x=\frac{k}{1-e^{2}}\right)$ and then decreases again to 0 . The form of the curve is therefore as shown in Fig. 35, where $O F=k$, $O A=\frac{k}{1+e}, O C=\frac{k}{1-e^{2}}, O A^{\prime}=\frac{k}{1-e}$, and $C B=\frac{e k}{\sqrt{1-e^{2}}}$.
(3) The hyperbola, $e>1$. Equation (1) may also be written in the form

$$
\begin{equation*}
y^{2}=\left(e^{2}-1\right)\left(x-\frac{k}{1+e}\right)\left(x-\frac{k}{1-e}\right), \tag{5}
\end{equation*}
$$

which, when $e>1$, shows that y is imaginary for all values of x between $x=\frac{k}{1+e}$ and $x=\frac{k}{1-e}$, and that y is real for all other values of x. Equation (5) also shows that, as x

increases from $\frac{k}{1+e}$ to ∞, y changes from 0 to $\pm \infty$, and that, as x decreases from $\frac{k}{1-e}$ to $-\infty, y$ changes from 0 to $\pm \infty$. The form of the curve is therefore as shown in lig. 37, where $O A=\frac{k}{1+e}$ and $O A^{\prime}=\frac{k}{1-e}=-\frac{k}{e-1}$.

Although these three curves differ so widely in form, they are really very closely related as will be further shown in Chap. XII, and in Note D of the Appendix.
49. The use of curves in applied mathematics. ${ }^{*}$ In Chapter 111 it was shown that whenever the relation between two sariables, whose values depend upon each other, can be definitely stated, i.e., when the variables can be connected by an equation, then the geometric or graphic representation of this relation is given by means of a curve. Such a curve often gives at a glance, information which wonld otherwise require considerable eomputation to secure; and in many cases it brings out facts of peculiar interest and importance which might otherwise escape notice.

The use of graphic methods in the study of physies and engineering, as well as in statisties and many other branches of investigation, is already extensive and is rapidly increasing. Under the name "graphic methods" there aro included, however, not only such examples as those already given, where the equation connecting the variables is known, but also those where no such equation can be found; in these latter cases the curves constitute almost the only practical way of studying the relations involved.

As a simple example of this kind, suppose the temperature of a patient to be accurately observed at intervals of one hour ; if the numbers representing the hours, i.e., $1,2,3, \cdots$ are taken as abscissas, and the corresponding numerical values of the temperatures be taken as ordinates, then a smooth curve drawn through the points so determined will express graphically the variation of the temperature of this patient with the time. This curve will also show to the physician what was the greatest and least temperature during the interval of the observations, as well as the time when each of

[^12]these was attained. In this problem the curve gives no new information, but it presents in a much more concise and forcible form the information given by the tabulated numbers.

Again, if the distances passed over by a train in successive minutes during the run between two stations are taken as ordinates, and the corresponding number of minutes since starting, as abscissas, a smooth curve drawn through the points so determined will show at a glance, to an experienced eye, where and when additional steam was turned into the cylinders, brakes applied, heavy grades encountered, etc., etc.

In all such cases the coördinates of the points are taken to represent the numerical values of related quantities, such as time, length, weight, velocity, current, temperature, etc., and the curve through the points so determined usually gives, to an experienced person, all the information concerning the relations involved that is of practical importance. It is in the study of such curves that much of the value of training in analytic geometry becomes apparent to the physicist and the engineer. The student should early learn to translate physical laws into graphic forms, and he should give careful attention to the interpretation of all changes of form, intercepts, intersections, etc., of such curves.

EXERCISES

1. In simple interest if $p \equiv$ principal, $t \equiv$ time, $r \equiv \mathrm{rate}$, and $a \equiv \mathrm{amount}$, then $a=p(1+r t)$. If now particular numerical values are given to p and r, and if the values of the variable a be taken as ordinates, and the corresponding values of t as abscissas, then the locus of this equation may be drawn. Draw this locus. What line in the figure represents the principal? What feature of the curve depends upon the rate per cent? Interpret the intercepts on the axes.
2. Give to p and r in exercise 1 different values and, with the name axes, draw the corrosponding locus. How do theso loci differ? What does their point of intersection thean?
3. With the same axes as before draw the curve for which interest and time aro the courdinates; how is it related to the curves of exercien 1 and 2 ?
4. Draw and discusa the curve ahowing the relation between amount, principal, rate, and time in the case of compound interest.
(a) When interest is compounded annually.
(β) When interest is compounded quarterly.
(y) When interest is compounded instantaneously.
5. A wage earner has already been working 10 days at 81.50 per day, and continues to do 8020 days longer, after which he is idle during 8 days; he then works 14 days more at the same wages, after which his emploger raiven his wages to 82.50 jer day for the next 20 days: using the amounts carued as ordinates, and the time (in days) as abscissas, draw carefully the broken line which states the above facts.

What modification of the drawing would bo necessary to show that the wage earner forfeited 50 cents per day during his idleneas?
6. The following table shows the production of steel in Great Britain and the United States from 1878 to $1891 .{ }^{\circ}$

	u.s.	6.8.		cs.	G.18.
1578	$\begin{gathered} 7.3 \text { (100,000} \\ \text { long tons) } \end{gathered}$	$\begin{gathered} 10.6 \text { (} 100,000 \\ \text { loug tons) } \end{gathered}$	1855	17.1	19.7
1879	9.3	10.9	1856	25.6	23.4
1680	12.5	13.7	1857	33.4	31.5
1881	15.9	18.6	1888	29.0	34.0
1882	17.4	21.9	1859	33.8	30.7
1883	18.7	20.9	1890	42.8	30.8
1584	15.5	18.5	1891	30.0	32.5

Using time (in years) as abscissas, and quantity of ateel produced (100,000 tons per unit) as ordinates, the separate points represented by

[^13]the table have been plotted (Fig. 38) and then joined by straight lines, dotted for Great Britain and full for the United States.*

Interpret fully the figure.

7. Exhibit graphically the information contained in the following table on the expense of moving freight per "ton-mile" on N. Y.C. \& H. R. R. R. from 1866 to 1893.

1866	$2.16 申$	1873	$1.03 q$	1880	$.54 申$	1887	.569
1867	1.95	1874	.98	1881	.56	1888	.59
1868	1.80	1875	.90	1882	.60	1889	.57
1869	1.40	1876	.71	1883	.68	1890	.54
1870	1.15	1877	.70	1884	.62	1891	.57
1871	1.01	1878	.60	1885	.54	1892	.54
1872	1.13	.	1879	.55	1886	.53	1893
84							

8. The following table gives the population of the countries named between 1810 and $1890: \dagger$

- In the figure the linear unit on the x-axis is 5 times as long as the linear unit on the y-axis. It will, however, be noticed that the essential feature of a system of coorrdinates, the "one-to-one correspondence" of the symbol (x, y) and the points of a plane, is not disturbed by using different scales for ordinates and abscissas.
\dagger The authors are indebted to Professor W. F. Willcox of Cornell University for these data, which are compiled from the Statesman's Year Book for 1897, and from Statistik des Deutschen Reichs, Bd. 44, 1892.

Burtish lveme		Gemmax Fimpike	
Year	Population	Year	Popalation
1801	15,898,000	1516	21,831,000
1811	17,008,000	183%	$31,540,000$
1821	20,891,000	181%	31,733,000
1831	21,029,000	18.03	30,130,000
1811	26,709,000	1803	30,309,010
1851	27,360,000	$15 \% 2$	41,028,000
1501	28,927,000	1876	42,775,000
1571	31,485,000	1885	$46,836,000$
1851	$31,885,000$	189.5	32,250,000
18.91	37,733,000		

Frases		Imkland		Unted States	
Year	P'opulation	Year	P'opulation	Year	Population
1521	30,462,000	1511	5,938,000	1810	7,210,000
1811	34,230,000	1821	6,502,000	1820	0,6834,000
1861	37,350,000	1831	7,767,000	1830	12,513,000
1866	38,067,000	1841	8,175,000	1840	17,069,000
15.2	36,103,000	1851	6,552,000	1850	23,192,000
18.0	36,001,000	1801	5,709,000	1860	31,443,000
1781	37,072,000	1871	5,412,000	15\%0	35,458,000
1530	38,219,000	1881	5,175,000	1880	, $50,156,000$
1391	38,343,000	1591	4,705,000	1890	62,022,000
1806	38,518,000				

Employing the number of years as abscissas, and the population (500,0010 per unit, - numbers at left of figure represent millions) as ordinates, the separate points represented by the above table have been plotted (Fig. 39) and then joined by straight lives. The figure gives all the information contained in the tabulated results, besides showing at a glance the relative population of the different countries at any given time. The student may account historically for the abrupt fall in the line representing the population of Fratice; and for the gradual downward tendency in the line representiag the propulation of Ireland.

Fig. 89.

EXAMPLES ON CHAPTER IV

1. Find the equations of the sidees of the triangle whome vertices are then pointa ($\because, 3),(4,-3),(3,-4\})$ (cf . Art, 43). Tiest the resulting equations by subatitution of the given coordinateas.
2. Find the equations of the sides of the square whome vertices are $(0,-1),(2,1),(0,3),(-2,1)$. Compare the equations of the parallel adew; of perjendicular sides.
3. Find the coorndinates of the center of the square in Fix. 2. Then find the radius of the circumscribed circle, and (Art. Ti) the equation of that circle. Teat the result by finding the coordinates of the points of istersection of one of the sides with circle (Art. 39).
4. Find the equation of the path traced by a point which in always equidistant from the proints
(a) $(2,0)$ and $(0,-2)$; (β) $(3,2)$ and $(6,6)$;
(y) $(a+b, a-b)$ and $(a-b, a+b)$.
5. A point moves so that its ordinate always exceedn $\frac{1}{f}$ of its abecisas by 6. Find the equation of its locus, and trace the curve.
6. A point moves so that the square of its ordinate is always 4 times its alsecissa. Find the equation of its locus and trace the curre.
7. Fim l the equation of the locus of a point which moves so that the atim of its distances from the points $(1,3)$ and $(4,2)$ is always 5 . Trace afod discuss the curve.
8. Find the equation of the locus of the point in example 7 , if the difference of its distances from the fixed points is always 2.
9. Express by a single equation the fact that a point moves so that its dintance from the x-uxis is always numerically 3 times its distance frum the y-axis.
10. A point moves so that the square of its distance from the point $(a, 0)$ is 4 times its ordinate. Find the equation of its locus, and trace the curve.
11. A point moves so that its distance from the x-axis is $\frac{1}{d}$ of its diso tunce from the origin. Find the equation of its locus, and trace the curve.
12. A point moves so that the difference of the squares of its dis tances from the points $(1,3)$ and $(4,2)$ is 5 . Find the equation of its locus and trace the curve.
13. Solve example 12 if the word "sum" is substituted for "difference."
14. Let $A \equiv(a, 0), B \equiv(b, 0)$, and $A^{\prime} \equiv(-a, 0)$ be three fixed points; find the equation of the locus of the point $P \equiv(x, y)$ which moves so that $\overline{P B}^{2}+\overline{P A}^{2}=2{\overline{P A^{\prime}}}^{2}$.
15. A point moves so that $\&$ of its abscissa exceeds \& of its ordinate by 1. Find the equation of its locus and trace the curve.
16. Find the equation of the locus of a point that is always equidistant from the points $(-3,4)$ and $(5,3)$; from the points $(-3,4)$ and $(2,0)$. By means of these two equations find the coördinates of the point that is equidistant from the three given points.
17. Let $A \equiv(-1,3), B \equiv(-3,-3), C \equiv(1,2), D \equiv(2,2)$ be four fixed points, and let $P \equiv(x, y)$ be a point that moves subject to the condition that the triangles $P A B$ and $P C D$ are always equal in area; find the equation of the locus of P.
18. If the area of a triangle is 25 and two of its vertices are $(5,-6)$ and $(-3,4)$, find the equation of the locus of the third vertex.
19. A point moves so that its distance from the pole is numerically equal to the tangent of the angle which the straight line joining it to the origin makes with the initial line. Find the polar equation of its locus and plot the figure.

CHAPTER V

THE STRAIGHT LINE. EQUATION OF FIRST DEGREE $d x+15 y+C=0$

50. In Chapter III it was shown that to every equation between two variables there corresponds a definite geometric locus, and in Chapter IV it was shown that if the geometric loous be given, its equation may be found. It still remains to exhibit in greater detail some of the more elementary loci and their equations, and to apply analytic methods to the study of the properties of these curves. Since the straight line is a simple locus, and one whose properties are already well understood by the student, its equation will be examined first.

In studying the straight line, as well as the circle and other second degree curves, to be taken up in later chapters, it will be found best first to obtain the simplest equation which represents the locus, and to study the properties of the eurve from that simple or standard equation. Then it remains to find methods for reducing to this standard form any other equation that represents the same locus.
51. Equation of straight line through two given points. A numerical exumple of the equation of the lime through two fixed points has already been given in Art. 43; in the present article the equation of a straight line through any two given points will be derived; the method, however, will be precisely the same as that already employed in the numerical example.

Let the two given fixed points be $P_{1} \equiv\left(x_{1}, y_{1}\right)$ and $P_{2} \equiv$ (x_{2}, y_{2}), and let $P \equiv(x, y)$ be any other point on the line through P_{1} and P_{2}. Draw the ordinates $M_{1} P_{1}, M_{2} P_{2}$, and

$M P$; also through P_{1} draw $P_{1} R_{2}$ parallel to the x-axis, and meeting $M P$ in R and $M_{2} P_{2}$ in R_{2}. Then the triangles $P_{1} R P$ and $P_{1} R_{2} P_{2}$ are similar ;
$\therefore \quad \frac{R P}{R_{2} P_{2}}=\frac{P_{1} R}{P_{1} R_{2}}$, i.e., $\frac{M P-M_{1} P_{1}}{M_{2} P_{2}-M_{1} P_{1}}=\frac{O M-O M_{1}}{O M_{2}-O M_{1}}$.
Substituting in this last equation the coördinates of P_{1}. P_{2}, and P, it becomes

$$
\begin{equation*}
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}} \tag{9}
\end{equation*}
$$

and since $P \equiv(x, y)$ is any point on the line through P_{1} and P_{2}, therefore equation [9] is satisfied by the coördinates of every point on this line. That equation [9] is not satisfied by the coördinates of any point except such as are on the line $P_{1} P_{2}$ may be proved as was done in Art. 43.

Equation [9] then fulfills both requirements of the definition in (1) of Art. 35, and is therefore the equation of the straight line through the two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. This equation will be frequently needed and will be referred to as a standard form; it should be committed to memory.*

[^14]52. Equation of straight line in terms of the intercepts which it makes on the coordinate axes. If tho two given

points in Art. 51 are those in which the line cuts the axes of coordinates, i.e., $A \equiv(a, 0)$ and $B \equiv(0, b)$ (Fig. 41), then equation [9] becomes
$$
\frac{y-0}{b-0}=\frac{x-a}{0-a} ;
$$
that is,
\[

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}=1 \tag{10}
\end{equation*}
$$

\]

where a and b are the intercepts which the line cuts from the axes.

This is another standard form of the equation of the *traight line ; it is known as the symmetrical or the intercept form.

Equation [10] may also be derived independently of equation [9] thus: let the line MN (Fig. 42), whose equation is to be found, cut the axes at the points $A \equiv(a, 0)$ and $B=(0, b)$, and let $P \equiv(x, y)$ be any other point on this line. Connect O and P; then

$$
\text { area } O P B+\text { area } O A P=\text { area } O A B ;
$$

that is,

$$
\frac{1}{2} b x+\frac{1}{2} a y=\frac{1}{2} a b
$$

and, dividing by $\frac{1}{\frac{1}{2}} a b$, this equation becomes $\frac{x}{a}+\frac{y}{b}=1$, as above.

EXERCISES

1. Show that equation [10] is not ratisfied by the coordinates of any proint except those lying on M.N.
2. Write down the equations of the lines through the following pairs of points:
(a) $(3,4)$ and $(5,2)$;
(γ) $(-6,1)$ and ($-2,-5)$;
(β) $(3,4)$ and $(5,-2)$;
(8) $(-15,-3)$ and $\left(\frac{8}{3}, \frac{-7}{9}\right)$.
3. Write the equations of the lines which make the following intercepts on the x and y-axes respectively.
(a) 4 and 7 ; (β) -3 and 5 ; (γ) $\frac{4}{3}$ and $-\frac{1}{2}$; (() $-\frac{a}{2}$ and $3 a$.
4. What do equations [9] and [10] become if one of the given points is the origin?
5. By drawing, in Fig. 42, a perpendicular $P M$ from P to the x-axis, derive equation $[10]$ from the similar triangles $M . A$ and $O A B$.
6. Is equation [10] true if P is on $M N$ but not between A and B ?
7. Are equations [9] and [10] true if the coördinate axes are not at right angles to each other?
8. Is the point $\left(3,4 \frac{1}{2}\right)$ on the line through the points $(2,3)$ and $(5,7)$? On which side of this line is it? Which is the negative side of this line?
9. What intercepts does the line through the points $(1,-6)$ and $(-3,5)$ make on the axes ?
10. The vertices of a triangle are: $(4,-5),(2,3)$, and $(3,-6)$. Find the equations of the sides; also of the three medians; then find the coordinates of the point of intersection of two of these medians, and show that these coördinates satisfy the equation of the other median. What proposition of plane geometry is thus proved?
11. Find the tangent of the angle (the "slope," cf. Art. 27) which the line in exercise 9 makes with the x-axis.
12. Draw the line whose equation is $\frac{x}{2}+\frac{y}{3}=1$, and then find the equations of the two lines which pass through the origin and trisect that portion of this line which lies in the first quadrant.

53. Equation of straight line through a given point and

 in a given direction (cf. Art. 44). Let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ be the given point, and let the direction of the line le given by the angle $X A P=\theta$ which the line makes with the x-axis; also let $P \equiv(x, y)$ be any point on the given line and denote the slope, i.e., $\tan \theta$, by m. Draw the ordinates$M_{1} P_{1}$ and $M P$, and through P_{1} draw $P_{1} R$ parallel to the x-axis and meeting the ordinate $M P$ in R.

Then, in triangle $R P_{1} P_{\text {. }}$ the angle $R P_{1} P=\theta$;

hence

$$
m=\tan \theta=\frac{R P}{P_{1} R}=\frac{y-y_{1}}{x-x_{1}}
$$

[Since $R P=y-y_{1}$ and $P_{1} R=x-x_{1}$];
that is,

$$
\begin{equation*}
y-y_{1}=m\left(x-x_{1}\right), \tag{11}
\end{equation*}
$$

which is the desired equation.
Cor. If the given point be $B \equiv(0, b)$, i.e., the point in which the line meets the y-axis, then equation [11] becomes

$$
\begin{equation*}
y=m x+b \tag{12}
\end{equation*}
$$

Equation [12] is usually spoken of as the slope form of the equation of the straight line.

EXERCISES

1. What do the constants m and b in equation [12] mean? Draw the line for which $m=4$ and $b=3$; also that for which $m=-1$ and $b=-\frac{1}{2}$.
2. What is the effect on the line [12] of a change in b while on remains the same? What if m be changed and b left unchanged?
3. Describe the effect on the line [11] of changing m while x_{1} and y_{1} remain the same; also the effect resulting from a change in x_{1} while m and y, remain the same.
4. Write the equation of a line through the point $(-3,7)$, and making witt: the x-axis an angle of 30°; of -30°; of $\left(\frac{2 \pi}{3}\right)^{(1)}$; of $\left(\frac{7 \pi}{6}\right)^{(1)}$.
5. Write the equations of the following lines :
(a) slope $3, y$-intercept 8 ; (β) slope $\frac{1}{2}$, -intercept -3 ;
(γ) slope -2 , y-intercept -f.
6. A line has the slope 6; what is its y-intercept if it passes through the point (7,1)?
7. What must be the slope of a line whose y-intercept is -3 , in order that it may pass through the point $(-\overline{5}, 5)$?
8. Is the point $\left(1, \frac{1}{1}\right)$ on the line passing through the point $(-2,-14)$, and making an angle $\tan ^{-1} \frac{18}{2}$ with the x-axis?
9. How do the lines $y=3 x-1, y=3 x+7$, and $2 y-6 x+15=0$ differ from each other? What have they in common? Draw these lines.
10. What is common to the lines $y=3 x-1,2 y=5 x-2$, and $7 x-3 y=3$?
11. What is the slope of line [9]? of line [10]?
12. Derive equation [12] independently of equation [11].
13. Equation of straight line in terms of the perpendicular from the origin upon it, and the angle which that perpendicular makes with the x-axis. Let $H K$ be the line whose equation

is sought, and let the perpendicular ($O N=p$) from O upon this line, and the angle (a) which this perpendicular makes with the x-axis, be given. Also let $P \equiv(x, y)$ be any point on $H K$; then by projection upon $O N$ (Art. 17),

$$
O M \cos a+M P \sin a=O N
$$

i.e.,

$$
\begin{equation*}
x \cos a+y \sin a=p \tag{13}
\end{equation*}
$$

which is the required equation.
Equation [13] is known as the normal form of the equation of the straight line.

In the following pages p will always be regarded as positive, and a as positive and less than 360°.
55. Normal form of equation of straight line: second method. The studene should bear in mind that to get the equation of a curve, he has merely to obtain an equation that is satisfied by the coirdinates of every point on the curve, and not mitisfied by the coordinates of any other point ; and that it is wholly immaterial what particular geometric property he may empluy in the accomplishment of this purpose. This faet is already illustrated in Art. 52, where equation [10] whe obtained in two ways, while Ex. 5, p. 84, gives still a third method by which the same equation may be found. So also it is possible to derive equation [13] by other methorls than that employed in Art. 54.*
E.g., in Fig. 41 draw a perpendicular from O to the line $A B$, let its length be denoted by p, and let a be the angle which it makes with the x-axis, then
whence

$$
\begin{aligned}
a \cos a & =p, \text { and } b \sin a=p, \\
a & =\frac{p}{\cos a}, \quad \text { and } \quad b=\frac{p}{\sin a} .
\end{aligned}
$$

Substituting these values of a and b in equation [10], it brecomes

$$
\frac{x}{\frac{p}{\cos \alpha}}+\frac{y}{\frac{p}{\sin \alpha}}=1 \text {, i.e., } x \cos \alpha+y \sin \alpha=p
$$

which is the form already derived in Art. 54.
Nors. In Art. 2, constants, variables, etc., were illustrated by means of a triangle. Now that the student has learned that the equation $\frac{x}{a}+\frac{y}{b}=1$, for example, represents a straight line, i.e., that this equation is satisfied by all those pairs of values of x and y which are the coördiuates of points on this line, a somewhat better illustration can be given. Both x and y are variables, but are not independent; each is an implicit function of the other. For any particular line a and b are constants, but they may represent other constants in the equation of another line, i.en they are arbitrary constanta, and are often called parameters of the line.

[^15]
EXERCISES

1. The perpendicular from the origin upon a certain line is 5 ; this perpendicular makes an angle of $\frac{\pi}{3}$ with the x-axis; what is the equation of the line?
2. If in equation [13] p is increased while α remains the same, what is the effect upon the line? If a be changed while p remains the same, what is the effect?
3. A certain line is 3 units distant from the origin, and makes an angle of 120° with the x-axis; what is its equation?
4. Given $a=30^{\circ}$, what must be the length of p in order that the line $H K$ (see Fig. 44a) shall pass through the point $(7,2)$?
5. A line passes through the point $(-3,-4)$, and a perpendicular upon it from the origin makes an angle of 225° with the x-axis. What is the equation of this line?
6. In Fig. $44 a$ draw through M a line parallel to $H K$, meeting $O N$ in R; then draw through P a perpendicular to $M R$, meeting it in Q; by means of the figure so constructed derive equation [13] anew.
7. Summary. The results of Arts. 51-55 may be briefly summarized thus:

The position of a straight line is determined by : (1) two points through which it passes ; (2) one point and the direction in which the line passes through this point. Under (1) there is the special case in which the two given points are one on the x-axis and the other on the y-axis. Under (2) there are two special cases: (a) when the given point is on an axis (the y-axis say), and (β) when the point is given by its distance and direction from the origin, while the line whose equation is sought is perpendicular to the line which connects the given point to the origin.

Corresponding to these two general and three special cases, there have been derived five standard forms of the equation of the straight line, viz.: equations [9], [10], [i1], [12], and [13].

It may be remarked that equations [9] and [10] are independent of the angle between the coördinate axes, while [11],
[12], and [18] (m, c, and p retaining their present meanings) are true only when the axes are rectangular. It may also be pointed out that, from the nature of its derivation, equation [9] is inapplicable when the line is parallel to either axis; equation [10] is inapplicable when the line passes through the origin ; and equations [11] and [12] are not applicable when the line is parallel to the y-axis.
57. Every equation of the first degree between two variables has for its locus a straight line. It will probably not have escaped the reader's notice that the five "standard" equations (equations [9] to [18]) of the straight line, which have been derived in Arts. 51 to 5t, are each of the first degree. It will now be shown that every equation of the first degree between two variables has a straight line for its locus. The most general equation of this kind may bo written in the form

$$
\begin{equation*}
A x+B y+C=0 \tag{1}
\end{equation*}
$$

where A, B, and C are constants, and neither A nor B is zero. ${ }^{\text {. }}$

Let $P_{1} \equiv\left(x_{1}, y_{1}\right), P_{2} \equiv\left(x_{2}, y_{2}\right)$, and $P_{8} \equiv\left(x_{3}, y_{8}\right)$ be any three points on the locus of equation (1). Draw the ordinates $M_{1} P_{8}, M_{2} P_{3}$, and $M_{8} P_{8}$; also draw $H P_{2}$ and $K P_{8}$ parallel to the x-axis.

Then, by Art. 85 (1),

$$
\begin{aligned}
& A x_{1}+B y_{1}+C=0 \ldots(2) \\
& A x_{2}+B y_{3}+C=0 \ldots(3) \\
& A x_{3}+B y_{3}+C=0 \ldots(4)
\end{aligned}
$$

[^16]By subtracting eq. (3) from eq. (2), and also eq. (4) from eq. (3), the two equations
and

$$
\begin{aligned}
& \boldsymbol{A}\left(x_{1}-x_{2}\right)+B\left(y_{1}-y_{2}\right)=0, \\
& A\left(x_{2}-x_{8}\right)+B\left(y_{2}-y_{3}\right)=0,
\end{aligned}
$$

are obtained. These give

$$
\begin{equation*}
\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=-\frac{A}{B}, \text { and } \frac{y_{2}-y_{8}}{x_{2}-x_{3}}=-\frac{A}{B} ; \tag{5}
\end{equation*}
$$

hence, $\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{y_{2}-y_{3}}{x_{2}-x_{3}}$.
But

$$
\begin{array}{ll}
y_{1}-y_{2}=H P_{1}, & x_{1}-x_{2}=-M_{1} M_{2}=-I P_{2}, \tag{6}\\
y_{2}-y_{3}=K P_{2}, \text { and } & x_{2}-x_{3}=-M_{2} M_{3}=-K P_{3} ;
\end{array}
$$

hence, from eq. (6), $\quad \frac{H P_{1}}{H P_{2}}=\frac{K P_{2}}{K P_{3}}$.
Also, by construction,

$$
\angle P_{2} H P_{1}=\angle P_{3} K P_{2}
$$

hence, triangle $H P_{2} P_{1}$ is similar to triangle $K P_{3} P_{2}$,
and $\quad \angle P_{1} P_{2} H=\angle P_{2} P_{3} K$;
$\therefore \angle P_{1} P_{2} H+\angle H P_{2} K+\angle K P_{2} P_{3}$

$$
=\angle P_{2} P_{3} K+\angle P_{3} K P_{2}+\angle K P_{2} P_{3}=2 \mathrm{rt} . \triangle ;
$$

i.e., P_{2} lies on the straight line joining P_{1} and P_{3}. But, since P_{2} is any point on the locus of $A x+B y+C=0$, hence all points of this locus lie on the same straight line $P_{1} P_{3}$, which, therefore, constitutes the locus of $A x+B y+C=0$.

Since this demonstration does not depend upon the angle ω, therefore it applies whether the axes are oblique or reetangular; hence the theorem : every equation of the first degree between two variables, when interpreted in Cartesian coördinates, represents a straight line.*

[^17]Because of this fact, such an equation is often spoken of as a linear equation.

Nork. In the equation $A z+B y+C=0$, there are apparently three constants; in reality, there aro but two independent constants, viz. the ratlos of the coufficients (cf. Art. 38). 'This corresponds to the fact that a straight line is determined geometrically by two conditions.
58. Reduction of the general equation $A x+B y+C=O$ to the standard forms. Determination of a, b, m, p, and a in terms of $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C}. ${ }^{*}$
(1) Reduction to the standard form $\frac{x}{a}+\frac{y}{b}=1$ (symmetric or intercept form).

That the equation

$$
\begin{equation*}
A x+B y+C=0 \tag{1}
\end{equation*}
$$

represents some straight line has just been shown (Art. 57); again, since multiplication by a constant, and transposition, do not change the locus (Art. 38), therefore

$$
\begin{equation*}
\frac{x}{-\frac{C}{A}}+\frac{y}{-\frac{C}{B}}=1 \dagger \tag{2}
\end{equation*}
$$

represents the same line. But equation (2) is in the required form (Art. 52), and its intercepts are :

$$
a=-\frac{C}{A}, \text { and } b=-\frac{C}{B} .
$$

(2) Reduction to the standard form $y=m x+b$ (slope form).
the resulting equation auserts [see Ar. 29, (1)] that the area of the triangle formed by the points P_{1}, P_{8}, and P_{3}, is zero; f.e., these three points lie on a straight line ; but they are any threo potnts on the tocus of $A x+B y+C=0$, hence that locus is a straight line.

- These reductions constitute a second proof of the theorem of Art. 37.
if $C=0$, the line represented by (1) goes through the origin, and the tymmetric form of the equation is inapplicable (Art Bit); but, in that case, the above reduction also fails, since it is not permissible ω divide the membera of an equation by zero.

The equation $A x+B y+C=0$ has the same locus as has the equation

$$
\begin{equation*}
y=\left(-\frac{A}{B}\right) x+\left(-\frac{C}{B}\right) \tag{3}
\end{equation*}
$$

(see Art. 38); but this is the equation (Art. 53) of a line drawn through the point $\left(0,-\frac{C}{B}\right)$, and making with the x-axis the angle $\theta=\tan ^{-1}\left(-\frac{A}{B}\right)$; hence equation (3) is in the required form, and

$$
m=-\frac{A}{B}, \text { and } b=-\frac{C}{B} .
$$

(3) Reduction to the standard form $x \cos \alpha+y \sin \alpha=p$ (normal form).

If equation (1) and

$$
\begin{equation*}
x \cos \alpha+y \sin \alpha=p \tag{4}
\end{equation*}
$$

represent the same line, then they differ merely by some constant multiplier, say k (cf. Art. 38). Then

$$
\begin{aligned}
& k A x+k B y+k C \equiv x \cos \alpha+y \sin \alpha-p=0 ; \\
& \therefore k A=\cos \alpha, k B=\sin \alpha, \text { and } k C=-p ; \\
& \therefore k^{2} A^{2}+k^{2} B^{2}=\cos ^{2} \alpha+\sin ^{2} \alpha=1 ;
\end{aligned}
$$

whence

$$
k=\frac{1}{\sqrt{A^{2}+B^{2}}}
$$

hence

$$
\cos \alpha=\frac{A}{\sqrt{A^{2}+B^{2}}}, \sin \alpha=\frac{B}{\sqrt{A^{2}+B^{2}}}
$$

and

$$
p=-\frac{C}{\sqrt{A^{2}+B^{2}}}
$$

- If $B=0$, the line represented by equation (1) is parallel to the y-axis, and the slope form of the equation is inapplicable ($\boldsymbol{A r t . 5 6}$); but, in that case, the above reduction also fails.
wherein the algebraic sign of $\sqrt{A^{2}+b^{2}}$ is to be chosen so as to make $\frac{-C}{\sqrt{A^{2}+b^{2}}}$ positive, since p is to be always posilive (Art. 54) ; i.e., the sign of $\sqrt{A^{2}+B^{2}}$ is to be opprosite to that of the number represented by C.

Henee, to reduce equation (1) to the normal form, i.e., to the form of equation (4), it is only necessary to divide equation (1) by $\sqrt{A^{2}+B^{2}}$, with the sign properly chosen, and transpose the constant term to the second member. This gives

$$
\frac{A}{\sqrt{A^{2}+B^{2}}} x+\frac{B}{\sqrt{A^{2}+B^{2}}} y=\frac{-C}{\sqrt{A^{2}+B^{2}}}
$$

(4) Another method for reduction to the normal form.

If the equation $A x+B y+C=0$ and $x \cos a+y \sin a=p$ represent the same line, then they must have the same y-intercept and the same slope, i.e.,

$$
\begin{align*}
& -\frac{C}{B}=\frac{p}{\sin a} \tag{5}\\
& -\frac{A}{B}=-\frac{\cos a}{\sin a} \tag{6}
\end{align*}
$$

Squaring eq. (6), and adding 1 to each member, gives

$$
\begin{aligned}
\frac{A^{2}+B^{2}}{B^{2}} & =\frac{\cos ^{2} a+\sin ^{2} a}{\sin ^{2} a} \\
& =\frac{1}{\sin ^{2} a} ; \\
\therefore \sin a & =\frac{B}{\sqrt{A^{2}+B^{2}}} ; \\
\cos a & =\frac{A}{\sqrt{A^{2}+B^{2}}} \text { and } p=\frac{-C}{\sqrt{A^{2}+B^{2}}}
\end{aligned}
$$

whence
as before. These, then, are the values of $p, \sin a$, and $\cos a_{1}$ which are to be substituted in $x \cos a+y \sin a=p$.

Hence $\frac{A}{\sqrt{A^{2}+B^{2}}} x+\frac{B}{\sqrt{A^{2}+B^{2}}} y=-\frac{C}{\sqrt{A^{2}+B^{2}}}$,
is an equation representing the same locus as $A x+B y+C=0$. and having the normal form.
59. To trace the locus of an equation of the first degree. In Art. 57 it was proved that the locus of an equation of the
 first degree in two variables is a straight line; but a straight line is fully determined by any two points on it; hence, to trace the locus of a first degree equation it is only necessary to determine two of its points, and then to draw the indefinite straight line through them. The two points most easily determined, and plotted, are those in which the locus cuts the axes; they are therefore the most advantageous points to employ. If the line is parallel to an axis, then only one point is needed.
E.g., to trace the locus of the equation

$$
2 x-3 y+12=0:
$$

the ordinate of the point in which this line crosses the x-axis is 0 ; let its abscissa be x_{1}, then ($x_{1}, 0$) must satisfy the equation $2 x-3 y+12=0$;
hence

$$
\begin{gathered}
2 x_{1}-3 \cdot 0+12=0, \\
x_{1}=-6,
\end{gathered}
$$

i.e., the line crosses the x-axis at the point $(-6,0)$. In like manner it is shown that it crosses the y-axis at the point $(0,4)$. Therefore $L M$ is the locus of $2 x-3 y+12=0$.
60. Special cases of the equation of the straight line $\boldsymbol{A}+\boldsymbol{B} y+\boldsymbol{C}=\mathbf{O}$. This equation, written in the intercept form [Art. 58 (1)] becomes

$$
\begin{equation*}
\frac{x}{-\frac{C}{A}}+\frac{y}{-\frac{C}{B}}=1 \tag{1}
\end{equation*}
$$

If in equation (1), A is made smaller and smaller in comparison with C, then the x-intercept $\left(-\frac{C}{A}\right)$ becomes larger and larger; if $A \doteq 0$ in comparison with C, the x-intercept grows infinitely large, the line (1) becomes parallel to the x-nxis, and its equation becomes

$$
\frac{x}{\infty}+\frac{y}{-\frac{C}{B}}=1 ; \text { i.e., } y=-\frac{C}{B}
$$

which agrees with the foot-note of Art. 57.
Similarly, if $B \doteq 0 \mathrm{in}$ comparison with C, the line (1) becomes parallel to the y-axis, and its equation becomes

$$
x=-\frac{C}{A}
$$

If both A and B approach zero simultancously in comparison with C, then both the intercepts become indefinitely large, and the line (1) recedes farther and farther from the origin.

In accordance with what has just been said, a line that is wholly at infinity might have its equation written in the form

$$
\begin{equation*}
0 \cdot x+0 \cdot y+C=0 \tag{2}
\end{equation*}
$$

or, as it is sometimes written, $C=0$; . . .
but equations (2) and (3) are merely ubbreviations for the statement : "As both A and B approach zero in comparison with C, the line moves farther and farther from the origin."

EXERCISES

1. Reduce the following equations to the intercept (symmetric) form, and draw the lines which they represent:
(a) $3 x-2 y+12=0$;
(ß) $3 x-2 y+1=5 x+3$;
(y) $2 y=15-y+5 x$;
(8) $\frac{x-2 y+1}{3+7 y}=0$.
2. Reduce to the slope form, and then trace the loci:
(a) $7 x-5 y+6(y-3 x)=-10 x+4$;
(β) $3 x+2 y+6=0$;
(y) $3 x+5=3-y$.
Which is the positive side of the line (β)? (ef. foot-note, Art. 43.)
3. Reduce to the normal form, and then trace the loci:
(a) $3 x+4 y=15$;
(ß) $3 x-4 y+15=0$;
(r) $x-3 y=5+6 x$;
(8) $\quad x=y-5$.
4. Show that the lines $3 x+5=y$ and $6 x-2 y=81$ are parallel.
5. What is the slope of the line between the two points $(3,-1)$ and $(2,2)$? What is its distance from the origin? Which is its negative side?
6. A line passes through the point $(5,6)$ and has its intercepts on the axes equal and both positive. Find its equation and its distance from the origin.
7. A straight line passes through the point $(1,-2)$ and is such that the portion of it between the axes is bisected by that point. What is the slope of the line?
8. What are the intercepts which the line through the points $(-1,3)$ and $(6,7)$ makes on the axes? . Through the points $(a, 2 a)$ and $(b, 2 b)$?
9. What system of lines obtained by varying the parameter b is represented by the equation $y=6 x+b$?
10. What system of lines obtained by varying the parameter m is represented by the equation $y=m x+6$?
11. What family (system) of lines obtained by varying the parameter a is represented by the equation $x \cos a+y \sin \alpha=5$? To what curve is each line of the family tangent?
12. Find $\cos \alpha$ and $\sin \alpha$ for the lines

$$
\begin{array}{ll}
\text { (a) } y=m x+b, & \text { (阝) } \frac{x}{a}+\frac{y}{b}=1, \\
\text { (y) } \frac{3}{x}=\frac{2}{y}, & \text { (ठ) } 7 x-5 y+1=0 .
\end{array}
$$

13. Find by means of \cos a and sin a what quadrant is crosed by each of the lines:
(a) $3 x+2=2 y$;
(及) $5 x+3 y+15=0$;
(y) $x-\sqrt{8} y-10=0$.
14. What must be the slope of the line $4 x-1 y=18$ in order that it shall pases through the proint $(1,3)$? Has $\&$ a finite value for which this line will pass through the crigin?
15. Determine the values of A, B, C in order that the line

$$
A x+B y+C=0
$$

shall pass through the points $(3,0)$ and $(0,-12)$. [Art. 57, Note.]
16. Derive equation [9] by supprosing $\left(x_{1}, y_{1}\right)$ and $\left(x_{y}, y_{2}\right)$ to be two points on the line $y=m x+b$; and thence finding values for m and b.
17. Find the slopes of the lines $2 y-3 x=7$ and $3 y+2 x-11=0$; and thence show that these lines are perpendicular to ench other.
18. Find cos a for each of the lines $7 x+y-9=0$ and $x-7 y+2=0$, and then show that the two lines are perpendicular to each other.
19. Show by means of: (1) the slopes; (2) the angles; that the lines

$$
2 y-3 x=7, \quad 2 y-3 x+5=0, \quad 10 y-15 x+c=0
$$

are all parallel.
20. Reduce the equation $A x+B y+C=0$ to the normal form, i.e, to the form $x \cos a+y \sin a=p$. Suggestion : the two equations, as representing the same line, make the same intereepts on the axes.
61. To find the angle made by one straight line with another. Let the equations of the lines be

$$
\begin{equation*}
y=m_{1} x+l_{1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y=m_{2} x+b_{2} \ldots \tag{2}
\end{equation*}
$$

where $m_{1}=\tan \theta_{1}, m_{2}=\tan \theta_{2}$ and θ_{1}, θ_{2} are the angles which these lines make, respectively, with the x-axis. It is required to find the angle ϕ, measured from line (2) to line (1).

[^18]Since

$$
\begin{gather*}
\phi=\theta_{1}-\theta_{2}, \\
\tan \phi=\frac{\tan \theta_{1}-\tan \theta_{2}}{1+\tan \theta_{1} \cdot \tan \theta_{2}}, \tag{Art.16}\\
\tan \phi=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}} .
\end{gather*}
$$

i.e.,

If the angle were measured from line (1) to line (2) it would be the negative, or else the supplement, of ϕ; in either case its tangent would be the negative of that given by formula [14].

If the equations of the lines had been given in the form :

$$
\begin{array}{ll}
& A_{1} x+B_{1} y+C_{1}=0, \\
& A_{2} x+B_{2} y+C_{2}=0, \tag{4}
\end{array}
$$

then $m_{1}=-\frac{A_{1}}{B_{1}}, m_{2}=-\frac{A_{2}}{B_{2}}$, and formula [14] becomes

$$
\begin{equation*}
\tan \phi=\frac{-\frac{A_{1}}{B_{1}}+\frac{A_{2}}{B_{2}}}{1+\frac{A_{1}}{B_{1}} \frac{A_{2}}{B_{2}}}=\frac{A_{2} B_{1}-A_{1} B_{2}}{A_{1} A_{2}+B_{1} B_{2}} \tag{15}
\end{equation*}
$$

EXERCISES

Find the tangent of the angle from the first line to the second in each of the following cases, and draw the figures:

1. $3 x-4 y-7=0, \quad 2 x-y-3=0$;
2. $5 x+12 y+1=0, \quad x-2 y+6=0$;
3. $2 x=3 y+9, \quad 6 y=4 x+2$;
4. $\frac{x}{a}+\frac{y}{b}=1, \quad \frac{x}{a}-\frac{y}{b}=1$;
5. $x \cos a+y \sin a=p, \quad \frac{x}{a}+\frac{y}{b}=1$.
6. Condition that two lines are parallel or perpendicular. From formula [14] can be seen at once the relations that
must hold between m_{1} and m_{3} if the lines (1) and (2) (Art. 61) are parallel or perpendicular. If these lines aro parallel, then $\phi=0$, and therefore tan $\phi=0$;
hence

$$
\begin{gathered}
\frac{m_{1}-m_{3}}{1+m_{1} m_{2}}=0 \\
m_{1}=m_{6}
\end{gathered}
$$

which is the condition that lines (1) and (2) are parallel.* This condition is also evident from a mere inspection of equations (1) and (2).

If the lines (1) and (2) (Art. 61) are perpendicular, then $\phi=90^{\circ}$ and $\tan \phi=\infty$,
i.e..

$$
\begin{gathered}
\frac{m_{1}-m_{3}}{1+m_{1} m_{2}}=\infty \text {, hence } 1+m_{1} m_{2}=0, \\
m_{2}=-\frac{1}{m_{1}}
\end{gathered}
$$

which is the condition that (1) and (2) are perpendicular.
So also from [15] the lines

$$
A_{1} x+B_{1} y+C_{1}=0 \text { and } A_{2} x+B_{2} y+C_{2}=0
$$

are parallel if (and only if) $A_{2} B_{1}-A_{1} B_{2}=0$,
i.e. if $\quad A_{1}: B_{1}=A_{2}: B_{2}$;
and they are perpendicular if (and only if) $A_{1} A_{2}+B_{1} B_{2}=0$,
i.e., if

$$
A_{1}: B_{1}=-B_{2}: A_{2}
$$

The condition just found emables one to write down readily the equations of lines that are parallel or perpendicular to given lines, and which also pass through given points.

[^19]E.y., let it be required to write the equation of a line that is parallel to the line
\[

$$
\begin{equation*}
y=3 x+7 \tag{1}
\end{equation*}
$$

\]

The slope of this line is 3 , hence any other line whose slope is 3 is parallel to the given line,
i.e.,

$$
\begin{equation*}
y=3 x+b \tag{2}
\end{equation*}
$$

is, for all values of b, parallel to line (1).
If it be required that the line (2) shall also pass through a given point, $(1,5)$ for example, it is only necessary to determine rightly the value of b. This is done by remembering that if the line (2) passes through the point (1,5), then these coördinates must satisfy equation (2), i.e., $\quad 5=3 \cdot 1+b$, whence $b=2$.

Therefore the line $y=3 x+2$ is not only parallel to the line $y=3 x+7$, but also passes through the point $(1,5)$.

Similarly $y=-\frac{1}{3} x+b$, whatever the value of b, is perpendicular to $y=3 x+7$.

Again, the line $3 x+5 y+k=0$, whatever the value of k, is parallel to the line $3 x+5 y-15=0$; and the line $5 x-3 y+k=0$ is perpendicular to $3 x+5 y-15=0$. Here again the arbitrary constant k may be so determined that this line shall pass through any given point. So also the lines $A_{1} x+B_{1} y+C_{1}=0$ and $A_{1} x+B_{1} y+C_{2}=0$ are parallel, while $A_{1} x+B_{1} y+C_{1}=0$ and $B_{1} x-A_{1} y+C_{2}=0$ are perpendicular to each other.

This condition for parallelism and for perpendicularity of two lines may also be stated thus: two lines are parallel if their equations differ (or may be made to differ) only in their constant terms; two lines are perpendicular if the coefficients of x and y in the one are equal (or can be made equal), respectively, to the coefficients of $-y$ and x in the other.

EXERCISES

1. Write down the equations of the set of lines parallol to the lines:

$$
\begin{aligned}
& \text { (a) } y=6 x-2 \text {; } \\
& \text { (阝) } 3 x-7 y=3 ; \\
& \text { (y) } x \cos 30^{\circ}+y \sin 30^{\circ}=8 \text {; } \\
& \text { (8) } \frac{x}{2}-\frac{y}{3}=1 \text {. }
\end{aligned}
$$

2. Explain why it is that the constant term in the answers to Ex. 1 is left undetermined or arbitrary.
3. Find the tangent of the angle between the lines (α) and (β) in Ex. 1; also for the lines (β) and (δ), and (α) and (δ) of Ex. 1.
4. Write the equations of lines perpendicular to those given in Ex. 1.
5. By the method of Art. ©2 find the equation of the line that pasmes through the point $(-9,1)$, and is parallel to the line $y=6 x-2$.
6. Solve Ex. 4 by means of equation [11], Art. 53.
7. Find the equation of the line that is parallel to the line $A x+B y$ $+C=0$ and that passes through the point $\left(x_{1}, y_{1}\right)$; make two soluLions, one by the method of Ex. B, and the other by Ex. 5.

Find the equation of the straight line
8. through the point $(2,-5)$ and parallel to the line $y=2 x+7$.
9. through the point $(-1,-1)$ and perpendicular to $y=2 x+7$; solve by two methods.
10. through the point $(0,0)$ and parallel to the line

$$
\frac{3}{2} x-\frac{7}{5} y=\frac{x-y+1}{9}
$$

11. perpendicular to the line $2 y+7 z-1=0$, and passing through the point midway between the two points in which this line meets the coirdinate axes.
12. Find the foot of the perpendicular from the origin to the line $5 x-7 y=2$.
13. Line which makes a given angle with a given line. The formula

$$
\begin{equation*}
\tan \phi=\frac{\tan \theta_{1}-\tan \theta_{2}}{1+\tan \theta_{1} \tan \theta_{2}} \tag{Art.61}
\end{equation*}
$$

states the relation existing between the tangents of the angles θ_{1}, θ_{2}, and ϕ (see Fig. 47), hence if any two of these
angles are known, this equation determines the value of the third. Thus this formula may be employed to determine the slope of a line that shall make a given angle with a given line.
E.g., given the line $3 y-5 x+7=0$, to find the equation of a line that shall make an angle of 60° with this line. Here $\phi=60^{\circ}$, i.e., $\tan \phi=\sqrt{3}$, and if θ_{1} be the angle which the given line makes with the x-axis, and θ_{2} that made by the line whose equation is sought, then $\tan \theta_{1}=\frac{5}{3}$. Substituting these values in the above formula, it becomes

$$
\sqrt{3}=\frac{\tan \theta_{2}-\frac{5}{3}}{1+\frac{5}{3} \tan \theta_{2}},
$$

whence

$$
\tan \theta_{2}=\frac{5+3 \sqrt{3}}{3-5 \sqrt{3}}, \text { and } y=\frac{5+3 \sqrt{3}}{3-5 \sqrt{3}} \cdot x+k
$$

is the equation of a line fulfilling the required conditions, k may be so determined that this line shall also pass through any given point.

It is to be remarked that through any given point there may be drawn two lines, each of which shall make, with a given line, an angle of any desired magnitude.

E.g., through $P_{1} \equiv\left(x_{1}, y_{1}\right)$ the lines (1) and (2) may be so drawn that each shall make an angle ϕ with the given
line LM. Let line (1) make an angle θ_{1}, line (2) an angle θ_{3}, and $L M$ an angle θ_{3}, with the ε-axis ; then

$$
\phi=\theta_{1}-\theta_{3}, \text { and } 180-\phi=\theta_{2}-\theta_{3} \text {. }
$$

which gives

$$
\tan \phi=\frac{\tan \theta_{1}-\tan \theta_{3}}{1+\tan \theta_{1} \tan \theta_{3}} \text {, and }-\tan \phi=\frac{\tan \theta_{3}-\tan \theta_{3}}{1+\tan \theta_{3} \tan \theta_{3}} \text {. }
$$

In these equations ϕ and θ_{3} are knswn, hence $\tan \theta_{1}$ and $\tan \theta_{2}$ can be found. Having found $\tan \theta_{1}$ and $\tan \theta_{2}$ the equations of lines (1) and (2) may at once be written down, either by means of equation [$1 i j$, or oy the method employed in Art. 62.

EXERCISES

1. Find the equations of the two lines which pass through the point $(5,8)$, and each of which makes an angle of 45° with the line $2 x-3 y=6$.
2. Show that the equations of the two straight lines passing through the point $(3,-2)$ and inclined at 60° to the line $x \sqrt{3}+y=1$ are

$$
y+2=0 \text { and } y-x \sqrt{3}+2+3 \sqrt{3}=0 .
$$

Find the equation of the straight line
3. making an angle of $+\frac{\pi}{4}$ with the line $3 x-4 y=7$; construct the figure. Why is therean undetermined constant in the resulting equation?
4. making an angle of -60° with the line $5 x+12 y+1=0$; construct the figure.
5. making an angle of $+30^{\circ}$ with the line $x-2 y+1=0$, and passing through the point (1,3); making an angle of -30°, and passing through the same point.
6. making an angle of $\pm 135^{\circ}$ with the line $x+y=2$, and passing through the origin.
7. making the angle $\tan ^{-1}\left(-\frac{b}{a}\right)$ with the line $\frac{x}{a}+\frac{y}{b}=1$, and passing through the point $\left(\frac{a}{2} \frac{b}{2}\right)$.
8. Find the equation of a line through the point (4,5) forming with the lines $2 x-y+3=0$ and $3 y+6 x=7$ a rightangled triangle. Find the vertices of the triangle (two solutions).
9. Show that the triangle whose vertices are the points $(2,1),(3,-2)$, $(-4,-1)$ is a right triangle.
10. Prove analytically that the perpendiculars erected at the middle points of the sides of the triangle, the equations of whose sides are

$$
x+y+1=0,3 x+5 y+11=0, \text { and } x+2 y+4=0
$$

meet in a point which is equidistant from the vertices.
11. Find the equations of the lines through the vertices and perpendicular to the opposite sides of the triangle in exercise 10. Prove that these lines also meet in a common point.
12. A line passes through the point $(2,-3)$ and is parallel to the line through the two points $(4,7)$ and $(-1,-9)$; find its equation.
13. Find the equation of the line which passes through the point of intersection of the lines $10 x+5 y+11=0$, and $x+2 y+14=0$, and which is perpendieular to the line $x+7 y+1=0$.

This problem may be solved by first finding the point of intersection ($\mathbf{y}_{5}^{2},-\frac{42}{y^{2}}$) of the two given lines, and then, by formula [11] (see also Art. 62), writing the equation of the required line, viz.:

$$
\begin{gathered}
y+\frac{y 8}{\delta}=7\left(x-\frac{18}{8}\right), \\
7 x-y=31 .
\end{gathered}
$$

which reduces to
The problem may also be solved somewhat more briefly, and much more elegantly, by employing the theorem of Art. 41. By this theorem the equation of the required line is of the form

$$
\begin{aligned}
& 10 x+5 y+11+k(x+2 y+14)=0 \\
& \text { i.e., } \quad(10+k) x+(5+2 k) y+11+14 k=0 .
\end{aligned}
$$

It only remains to determine the constant k, so that this line shall be perpendicular to $x+7 y+1=0$. By Art. 62 its slope must be $-\frac{1}{-k}=7$, hence $-\frac{10+k}{5+2 k}=7$, whence $k=-3$.

Substituting this value of k above, the required equation becomes $7 x-y=31$, as before.
14. By the second method of exercise 13 find the equation of the line which passes through the point of intersection of the two lines $2 x+y=5$ and $x=3 y-8$, and which is: (1) parallel to the line $4 y={ }^{R} x+1$; (2) perpendicular to this line; (3) inclined at an angle of 60° to this linte; (4) passes through the point $(-1,3)$.

15. Solve exercise 10 by the method of exercise 14 .

16. Do the linean $2 x+3 y=13,5 z-y=7$, and $z-4 y+10=0$ meet in a common point? What are the anglea they make with each other?
17. Find the angles of the triangle of exercise 10.
18. When are the lines

$$
x+(a+b) y+c=0 \text { and } a(x+a y)+b(x-b y)+d=0
$$

parallel? when perpendicular?
19. Find the value of p for each of the two parallel lines

$$
y=3 x+7 \text { and } y=3 x-5 ;
$$

and hence find the distance between these lines [cf . Art. 58 (3) and (4)].
20. What is the distance between the two parallel lines

$$
5 x-3 y+6=0 \text { and } 6 y-10 x=7 ?
$$

21. Find the cosine of the angle between the lines

$$
y-4 x+8=0 \text { and } y-6 x+9=0 .
$$

22. What relation exists between the two lines

$$
y=3 x+7 \text { and } y=-3 x-3 ?
$$

23. Find the angle between the two straight lines $3 x=4 y+7$ and $5 y=12 x+6$; and also the equations of the two straight lines which pass through the point $(4,5)$ and make equal angles with the two given lines.
24. Find the angle between the two lines

$$
3 x+y+12=0 \text { and } x+2 y-1=0 .
$$

Find also the coordinates of their point of intersection, and the equations of the lines drawn perpendicular to them from the point $(3,-2)$.
64. The distance of a given point from a given line. This problem is easily solved for any particular case thus: find the equation of the line which passes through the given point and which is parallel to the given line (Art. 62), then find the distance (p) from the origin to each of these two lines [Art. 58, (3) and (4)], and finally subtract one of these distances from the other: the result is the distance between the given line and the given point.
E.g., find the distance of the point $P_{1} \equiv\left(2, \frac{3}{2}\right)$ from the line

$$
\begin{equation*}
3 x+4 y-7=0 \tag{1}
\end{equation*}
$$

Let line (1) be the locus of equation (1), and P_{1} be the given point. Through P_{1} draw the line (2) parallel to line (1), also draw $Q P_{1}$ perpendicular to line (1), $O R_{1}\left(=p_{1}\right)$ perpendicular to line (1), and $O R_{2}\left(=p_{2}\right)$ perpendicular to line (2). Then $d=Q P_{1}=p_{2}-p_{1}$. The equation of a line parallel to line (1) is of the form $3 x+4 y+k=0$; this will represent line (2) itself if k he so determined that the line shall pass through the point

$$
P_{1} \equiv\left(2, \frac{3}{2}\right), \text { i.e., if } 3 \cdot 2+4 \cdot \frac{3}{2}+k=0, \text { i.e., if } k=-12 .
$$

The equation of line (2) is then

$$
\begin{equation*}
3 x+4 y-12=0 \tag{2}
\end{equation*}
$$

Therefore [by Art. 58, (3) or (4)]

$$
p_{s}=\frac{12}{+\sqrt{4^{2}+3^{2}}}=\frac{12}{5}, \text { and } p_{1}=\frac{7}{+\sqrt{t^{2}+3^{2}}}=\frac{7}{5}
$$

hence the requ \cdot red distance is $d={ }^{\circ} Q P_{1}=\frac{12-7}{5}=1$.
Similarly, in general, to find the distance of any given point $P_{1} \equiv\left(x_{1}, y_{1}\right)$ from any given line

$$
\begin{equation*}
A x+B y+C=0 \tag{1}
\end{equation*}
$$

let line (1) be the locus of equation (1) and let P_{1} be the given point. The equation of a line parallel to (1) is of the form $A x+B y+K=0$; this will be the line (2) if
$A x_{1}+B y_{1}+K=0$ i.e., if $K=-\left(A x_{1}+B y_{1}\right)$. The equation of lme (2) is then

$$
\begin{equation*}
A x+B y-\left(A x_{1}+B y_{1}\right)=0 \tag{2}
\end{equation*}
$$

Therufore $\quad p_{2}=\frac{A x_{1}+B y_{1}}{\sqrt{A^{2}+B^{2}}}, p_{1}=\frac{-C}{\sqrt{A^{2}+B^{2}}}$,
wherein the sign of the radical is to be chosen opposite to that of the number represented by C;
hence

$$
\begin{equation*}
a=\frac{A x_{1}+B y_{1}+C}{\sqrt{A^{2}+B^{2}}} \tag{16}
\end{equation*}
$$

If the equation of the given line is so written that its second member is zero, this formula may be translated into words thus: To get the distance of a given point from a given line, write the first member of the equation alone, substitute for the variables therein the coordinates of the given point. and divide the result by the square root of the sum of the squares of the coefficients of x and y in the equation, - the sign of this square root being chosen opposite to that of the number represented by C.

If, in formula [16], d is positive, then $p_{2}>p_{1}$, and P_{1} and the origin are on opposite sides of the given line; if d is negative, $p_{2}<p_{1}$, and P_{1} and the origin are on the same side of the given line.

EXERCISES

1. Find the distance of the point $(2,-7)$ from the line $3 x-6 y+1=0$.

By formula [16], $d=\frac{3 \cdot 2-6(-7)+1}{-\sqrt{3^{2}+6^{2}}}=-\frac{49}{3 \sqrt{5}}$.
This result, besides giving the numerical value of the distance, shows also that the point $(2,-7)$ and the origin are on the same side of the live $3 x-6 y+1=0$.
2. Find the distance of the point $(1,5)$ from the line $4 y+5 x=20$.
3. Find the distance of the point $(2, i)$ from the line $3 y-2 x=10$.
4. Find the distance of the point (a, b) from the line $\frac{x}{a}+\frac{y}{b}=1$.
5. Find the distance of the intersection of the two lines, $y+4=3 x$ and $5 x=y-2$, from the line $2 y-7=9$. On which side of the latter line is the point?
6. Find the distance of the point of intersection of the lines $2 x-5 y=11$ and $4 x=3 y+15$ from the line $\frac{1}{2} x+\frac{y-5}{4}=6$. On which side of the latter line is the point? Plot the figure.
7. How far is the point $(-6,-1)$ from $3 y=7 x+8$? On which side?
8. By the method of Art. 64, find the distance of the origin from the line $5 x-2 y=7$; also from the line $A x+B y+C=0$. Check the results by Art. 58 (3).
9. Find the distance of the point $(-4,-5)$ from the line joining the two points $(3,-1)$ and $(-4,2)$. On which side is it ?
10. Find the distance of the point $\left(x_{1}, y_{1}\right)$ from the line $y=m x+b$.
11. Find the altitudes of the triangle formed by the lines whose equations are $x+y+1=0,3 x+5 y+11=0$, and $x+2 y+4=0$. Check the result by finding the area of the triangle in two ways.
12. Show analytically that the locus of a point which mores so that the sum of its distances from two given straight lines is constant is itself a straight line.
13. Express by an equation that the point $P_{1} \equiv\left(x_{1}, y_{1}\right)$ is equally distant from the two lines $2 x-y=11$ and $4 x=3 y+5$. (Give two answers.) Should P_{1} move in such a way as to be always equidistant from these two lines, what would be the equation of its locus?
14. Find, by the method of exercise 13 , the equations of the bisectors of the angle formed by the lines $3 x+4 y=12$ and $4 x+3 y=24$.
65. Bisectors of the angles between two given lines. The bisector of an angle is the locus of a point which moves so that it is always equally distant (numerically) from the sides of the angle. From this property its equation may easily be found.
E.g., find the equations of the bisectors of the angles between the lines

$$
\begin{equation*}
3 x+4 y-1=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
12 x-5 y+6=0 \tag{2}
\end{equation*}
$$

Let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ be any point on the bisector (3).

Then $Q_{1} P_{1}=-R_{1} P_{1}$ [since O and P_{1} are on opposite sides of line (1) and on the same side of (2): or vice veraa].

But $Q_{1} P_{1}=\frac{3 x_{1}+4 y_{1}-1}{+\sqrt{y^{2}+4^{2}}}$

$$
=\frac{3 x_{1}+4 y_{1}-1}{5},(\text { Art. 64 })
$$

and

$$
\begin{array}{r}
R_{1} P_{1}=\frac{12 x_{1}-5 y_{1}+(i}{-\sqrt{12^{2}+5^{2}}}=\frac{12 x_{1}-5 y_{1}+6}{-13} ; \\
\quad \therefore \frac{3 x_{1}+4 y_{1}-1}{5}=\frac{12 x_{1}-5 y_{1}+6}{13} ;
\end{array}
$$

$$
\begin{equation*}
\text { i.e., } 21 x_{1}-7 \pi y_{1}+43=0 . . \tag{5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
21 x-77 y+43=0 \tag{6}
\end{equation*}
$$

is the equation of the bisector (3), for equation (5) asserts that if $\left(x_{1}, y_{1}\right)$ be the coördinates of any point on this bisector they satisfy equation (6).

Similarly, let $P_{2} \equiv(h, k)$ be any point on line (4), the other bisector, then $Q_{2} P_{2}=R_{2} P_{2}$ [since O and P_{2} are on opposite sides of the lines (1) and (2), or else both on the same side of each of these lines];

$$
\frac{3 h+4 k-1}{5}=-\frac{12 h-5 k+6}{13}
$$

i.e., $99 h+27 k+17=0$. . .

Hence

$$
\begin{equation*}
99 x+27 y+17=0 \tag{i}
\end{equation*}
$$

is the equation of the bisector (4), for the same reason as given above.

Geometrically it is well known that two such bisectors, (3) and (4), are perpendicular to each other: their equations also prove that fact.

The equations of the bisectors of the angles between any two lines, as $A_{1} x+B_{1} y+C_{1}=0$ and $A_{2} x+B_{2} y+C_{2}=0$, are found in precisely the same way as that employed in the numerieal example just considered.

EXERCISES

1. Find the equations of the bisectors of the angles between the two lines $x-y+6=0$ and $\frac{3 x-4}{2}=5 y-7$.
2. Show that the line $11 x+3 y+1=0$ bisects one of the angles between the two lines $12 x-5 y+7=0$, and $3 x+4 y-2=0$. Which angle is it? Find the equation of the bisector of the other angle.
3. Show analytically that the bisectors of the interior angles of the triangle whose vertices are the points $(1,2),(5,3)$, and $(4,7)$ meet in a oommon point.
4. Show analytically, for the triangle of Ex. 3, that the bisectors of one interior and the two opposite exterior angles meet in a common point.
5. Find the angle from the line $3 x+y+12=0$ to the line $a x+b y$ $+1=0$, and also the angle from the line $a x+b y+1=0$ to the line $x+2 y-1=0$.

By imposing upon a and b the two conditions: (1) that the angles just found are equal, and (2) that the line $a x+b y+1=0$ passes through the intersection of the other two lines, determine a and b so that this line shall be a bisector of one of the angles made by the other two given lines.
66. The equation of two lines. By the reasoning given in Art. 40, it is shown that if two straight lines are represented by the equations
and

$$
\begin{align*}
& A_{1} x+B_{1} y+C_{1}=0 \tag{1}\\
& A_{2} x+B_{2} y+C_{2}=0
\end{align*}
$$

then both these lines are represented by the equation

$$
\begin{equation*}
\left(A_{1} x+B_{1} y+C_{1}\right)\left(A_{2} x+B_{2} y+C_{2}\right)=0 \tag{3}
\end{equation*}
$$

i.e., two straight lines are here represented by ath equition of the second degree.

Conversely, if an equation of the second degree, whose second member is zero, can have its first member separated into two first degree factors, with real coefficients, as in equation (3), then its locus consists of two straight lines

Thus the equation

$$
2 x^{2}-x y-3 y^{2}+9 x+\frac{1}{1} y+i=0
$$

may be written in the form

$$
(2 x-3 y+i)(x+y+1)=0
$$

which shows that it is satisfied when $2 x-3 y+7=0$, and also when $x+y+1=0$. Its locus is therefore composed of the two lines whose equations are :

$$
2 x-3 y+i=0, \text { and } x+y+1=0
$$

67. Condition that the general quadratic expression may be factored. The most gencral equation of the second degree between two variables may be written in the form

$$
\begin{equation*}
A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0 . \tag{1}
\end{equation*}
$$

It is required to find the relation that must exist among the coefficients of this equation in order that its first member may be separated into two rational factors, each of the first degree, i.e., it is required to find the condition that the equation may be written thus:

$$
\begin{equation*}
\left(a_{1} x+b_{1} y+c_{1}\right)\left(a_{3} x+b_{2} y+c_{2}\right)=0 . \tag{2}
\end{equation*}
$$

Evidently if equation (1) can be written in the form of equation (2), then the values of x obtained from equation (1) are rational, and are either

$$
x=\frac{-c_{1}-b_{1} y}{a_{1}} \text { or } x=\frac{-c_{2}-b_{2} y}{a_{2}}
$$

Solving equation (1) for x in terms of y, hy completing the square of the x-terms, it becomes

$$
\begin{gathered}
\quad A^{2} x^{2}+2 A(H y+G) x+(H y+G)^{2} \\
=-A B y^{2}-2 A F y-A C+(H y+G)^{2} \\
A x+H y+G \\
i . e ., \quad \\
=\sqrt{\left(H^{2}-A B\right) y^{2}+2(H G-A F) y+G^{2}-A C^{\prime}}
\end{gathered}
$$

and finally,
$x=-\frac{H}{A} y-\frac{G}{A} \pm \frac{1}{A} \sqrt{\left(H^{2}-A B\right) y^{2}+\because(H G-A F) y+G^{2}-A C}$.
But since x is, by hypothesis, expressible rationally in terms of y, therefore the expression under the radical sign is a perfect square, and therefore

$$
\begin{align*}
& (H G-A F)^{2}-\left(H^{2}-A B\right)\left(G^{2}-A C\right)=0 \\
& \text { i.e., } \quad \boldsymbol{A B C}+2 \boldsymbol{F} \boldsymbol{G} \boldsymbol{H}-\boldsymbol{A} \boldsymbol{F}^{2}-\boldsymbol{B} G^{2}-\boldsymbol{C} \boldsymbol{H}^{2}=0 . \tag{17}
\end{align*}
$$

If this condition among the coëfficients is fulfilled, then equation (1) has for its locus two straight lines.

The expression $A B C+2 F G H-A F^{2}-B G^{2}-C H^{2}$ is called the discriminant of the quadratic, and is usually represented by the symbol Δ.

Note. The analytic work just given fails if $A=0$. In that case equation (1) may be solved for y instead of solving it for x, and the same condition, viz. $\Delta=0$, results. If, however, both A and B are zero, then the above method fails altogether. In that case equation (1) reduces to

$$
\begin{equation*}
2 H x y+2 G x+2 F y+C=0 . \tag{3}
\end{equation*}
$$

If the first member of equation (3) can be factored, then evidently the equation must take the form

$$
\begin{equation*}
(a x+b)(c y+d)=0 \tag{4}
\end{equation*}
$$

which shows that equation (3) is satisfied for all finite values of y provided $x=-\frac{b}{a}$, a constant. Let $-\frac{b}{a}$ be represented by k, then equation (4)
becomes
i.e.,

$$
\begin{aligned}
2 H k y+2 G k+2 F y+C & =0, \\
2(H k+F) y+2 G k+C & =0,
\end{aligned}
$$

and in matisfied for all finter values of y;
$\therefore \quad H t+F=0$, and $2 G k+C=0$;
hence, oliminating t,

$$
2 F \cdot G-C H=0 .
$$

But thin is the expression to which Δ reduces when $A=B=0$ and $11 \neq 0$; hence, in all caws, $\Delta=0$ is the necesoury condition that the above quadratic may be factored.

That $\Delta=0$ is also the sufficient condition is readily seen by retracing the steps from equation [$1 i$] when at least one of the coefficients A, B diffors from zero. But it is also sufficient when $A=B=0$; for, in that con, $\Delta=0$ becomes $2 F G-C H=0$, which may bo written $\frac{F}{H} \cdot \frac{G}{H}=\frac{C}{2 H}$. Under the same chemmstances equation (1) becomes equation (3), which may be written

$$
\begin{equation*}
x y+\frac{G}{H} x+\frac{F}{H} y+\frac{C}{2 H}=0 . \tag{4}
\end{equation*}
$$

Substituting $\frac{F}{H} \cdot \frac{G}{H}$ for $\frac{C}{2 H}$ in equation (4), it becomes

$$
\begin{equation*}
x y+\frac{G}{H} x+\frac{F}{H} y+\frac{G}{H} \cdot \frac{F}{H}=0 \ldots \tag{5}
\end{equation*}
$$

i.en

$$
\left(x+\frac{F}{H}\right)\left(y+\frac{G}{H}\right)=0,
$$

which establishes the sufficiency of the condition for this case also.
To illustrate the use of equation [17] examine the equation of Art. 60 :

$$
2 x^{2}-x y-3 y^{2}+9 x+4 y+7=0 .
$$

[^20]This locus cuts the x-nxis at the points $(3,0),(-4,0)$ and the y-axis at $(1, f),(0, \xi)$; hence the two lines are either

$$
\frac{x}{1}+\frac{y}{1}=1 \text { and } \frac{x}{-4}+\frac{y}{1}=1 \text {, or } \frac{x}{1}+\frac{y}{1}=1 \text { and } \frac{x}{-4}+\frac{y}{1}=1 \text {; }
$$

therefore the factors are either

$$
2 x+3 y-1 \text { and } x-6 y+4 \text {, or } 8 x+6 y-4 \text { and } x-12 y+4 \text {. }
$$

Inspection shows that they are $(2 x+3 y-1)$ and $(z-6 y+4)$.
taN. AN. GEOM. -8

Here

$$
A=2, B=-3, C=7, H=-\frac{1}{2}, \quad G=\frac{9}{2}, \text { and } F=2 ;
$$

hence

$$
\Delta=-42-9-8+\frac{243}{4}-\frac{7}{4}=0 ;
$$

therefore the first member can be factored.
The factors may be found as follows: transposing, dividing by 2 , and completing the square of the x-terms, the equation may be written in
the form $\quad x^{2}+\frac{9-y}{2} x+\left(\frac{9-y}{4}\right)^{2}=\frac{25}{16}\left(y^{2}-2 y+1\right)$;
i.e.,

$$
\left(x+\frac{9-y}{4}\right)^{2}=\left\{\frac{5}{4}(y-1)\right\}^{2} ;
$$

therefore the given equation, divided by 2 , may be written in the form,

$$
\left(x+\frac{9-y}{4}\right)^{2}-\left\{\frac{5}{4}(y-1)\right\}^{2}=0 ;
$$

i.e., $\quad\left\{\left(x+\frac{9-y}{4}\right)+\frac{5}{4}(y-1)\right\}\left\{\left(x+\frac{9-y}{4}\right)-\frac{5}{4}(y-1)\right\}=0$,
i.e., $\quad(x+y+1)\left(x-\frac{3}{2} y+\frac{1}{2}\right)=0$;
hence the locus of the original equation consists of the straight lines

$$
x+y+1=0 \text { and } 2 x-3 y+7=0,
$$

which agrees with the result of Art. 66.

EXERCISES

Prove that the following equations represent pairs of straight lines ; find in each case the cquations of the two lines, the coördinates of their point of intersection. and the angle between them.

1. $6 y^{2}-x y-x^{2}+30 y+36=0$.
2. $x^{2}-2 x y-3 y^{2}+2 x-2 y+1=0$.
3. $x^{2}-2 x y \sec a+y^{2}=0$.
4. $x^{2}+6 x y+9 y^{2}+4 x+12 y-5=0$.
5. For what value of k will the equation

$$
x^{2}-3 x y+y^{2}+10 x-10 y+k=0
$$

-epresent two straight lines?
Suggestion : Place the discriminant (Δ) equal to zero, and thus find $k=20$.

Find the values of k for which the following equations represent pairs of straight lines. Find also the equation of each line, the point of intersection of each pair of lines, and the angle between them.
6. $6 x^{2}+2 k x y+12 y^{2}+22 x+31 y+20=0$.
7. $12 x^{2}+36 x y+k y^{2}+6 x+6 y+3=0$.
8. $4 x^{2}-12 x y+9 y^{2}-1 z+6 y+1=0$.
9. The equations of the opposite siden of a parallelogram are

$$
x^{2}-7 x+6=0 \text { and } y^{2}-14 y+40=0 .
$$

Find the equations of the diagonals.
10. Find the conditions that the straight lines represented by the equstion $A x^{2}+2 B r y+C y^{2}=0$ may bo real; imaginary; coincident; perpendieular to each other.
11. Show that $6 x^{2}+6 x y-6 y^{3}=0$ is the equation of the bisectors of the angless made by the lines $2 x^{2}+12 x y+7 y^{3}=0$. Does the first set of lines fulfil the test of exercise 10 for perpendicularity?
68. Equations of straight lines: coordinate axes oblique. Since in the derivation of equations [9] and [10] (Arts. 51 and 52) only properties of similar triangles were employed, therefore these two equations are true whether the coördinate axes are rectangular or oblique.

The other three standard forms however, viz. $y=m x+b$, $y-y_{1}=m\left(x-x_{1}\right)$, and $x \cos a+y \sin a=p$, the derivation of which depends upon right triangles, are no longer true if the axes are inclined to each other at an angle $\omega \neq \frac{\pi}{2}$. Equations which correspond to these, but which are referred to oblique axes, will now be derived.
(1) Equation of straight line through a given point and in a given direction. Let $L L_{1}$ be the straight line through the fixed point $P_{1} \equiv\left(x_{1}, y_{1}\right)$ and making an angle θ with the x-axis, let $P \equiv(x, y)$ be any other point on L / L_{1}, and let ω be the angle between the axes.

Draw $P_{1} R$ parallel to the

Fio.st. x-axis, also draw the ordinates $M_{1} P_{1}$ and $M P$. Then

$$
\theta=\angle X A L=\angle R P_{1} L \text { and } \angle P_{1} P R=\omega-\theta
$$

Hence $\quad \frac{R P}{P_{1} R}=\frac{\sin \theta}{\sin (\omega-\theta)}$. [law of sines]
Substituting in this equation the coördinates of P_{2} and P, it becomes
i.e.,

$$
\begin{gather*}
\frac{y-y_{1}}{x-x_{1}}=\frac{\sin \theta}{\sin (\omega-\theta)} \\
y-y_{1}=\frac{\sin \theta}{\sin (\omega-\theta)}\left(x-x_{1}\right) \tag{18}
\end{gather*}
$$

which is the required equation.
When $\omega=\frac{\pi}{2}$ this equation reduces to equation [11], i.e., to $y-y_{1}=m\left(x-x_{1}\right)$, where $m=\tan \theta$; but it must be observed that if $\omega \neq \frac{\pi}{2}$, then the coefficient of x in equation [18] does not represent the slope of the line. If, however, the slope of the line [18], i.e., the $\tan \theta$ for this line, is desired, it is easily found thus : let $\frac{\sin \theta}{\sin (\omega-\theta)}=k$, from which is obtained $\tan \theta=\frac{k \sin \omega}{1+k \cos \omega}$.

If, in the derivation of equation [18], the given point is that in which the line $L L_{1}$ meets the y-axis, i.e., if $P_{1} \equiv(0, b)$, then equation [18] reduces to

$$
\begin{equation*}
y=\frac{\sin \theta}{\sin (\omega-\theta)} x+b \tag{19}
\end{equation*}
$$

which corresponds to equation [12], but the coefficient of x is not the slope of the line.
(2) Equation of a straight line in terms of the perpendicular upon it from the origin, and the angles which this perpendicular makes with the axes.

Let $L_{2} L_{1}$ be the straight line whose equation is sought, let the perpendicular from the origin upon it ($O N=p$) make the angles a and β respectively with the axes, " and let $P=$ (x, y) be any point on $L L_{1}$.

Draw the ordinate $M P$; then,
 by Art. 17,
i.e.,

$$
\begin{gather*}
O M \cos a+M P \cos \beta=O N \\
x \cos a+y \cos \beta=p \tag{20}
\end{gather*}
$$

which is the required equation.
If ω is the angle between the axes, then $\beta=\omega-a$, and equation [20] may be written $x \cos a+y \cos (\omega-a)=p$. If $\omega=\frac{\pi}{2}$, then this equation reduces to $x \cos a+y \sin a=p$, which agrees with equation [13].

EXERCISES

1. The axes being inclined at the angle 60°, find the inclination of the line $y=2 x+5$ to the x-axis.
2. The axes being inclined at the angle $\frac{\pi}{4}$, find the angles at which the lines $3 y+7 x-1=0$ and $x+y+2=0$ cross the $x-a x$ is.
3. Find the angle between the lines in exercive 2.
4. The center of an equilateral triangle of side 6 is joined by straight lines to the vertices. If two of these lines are taken as coordinate axes, find the coordinates of the vertices, and the equations of the sides.
5. Prove that for every value of α, the lines $x+y=c$ and $x-y=d$ are perpendicular to each other.

[^21]69. Equations of straight lines: polar coördinates.
(1) Line through two given points. Let $O R$ be the initial line, O the pole, P_{1} $\equiv\left(\rho_{1}, \theta_{1}\right)$, and $P_{2} \equiv$ $\left(\rho_{2}, \theta_{2}\right)$, the two given points, and let $P \equiv$ (ρ, θ) be any other point on the line through P_{1} and P_{2}.
Then (if Δ stands for 'area of triangle')
$$
\triangle O P_{1} P_{2}=\triangle O P_{1} P+\triangle O P P_{2}
$$
i.e., $\quad \frac{1}{2} \rho_{1} \rho_{2} \sin \left(\theta_{2}-\theta_{1}\right)=\frac{1}{2} \rho \rho_{1} \sin \left(\theta-\theta_{1}\right)+\frac{1}{2} \rho_{2} \rho \sin \left(\theta_{2}-\theta\right)$,
hence $\quad \rho \rho_{1} \sin \left(\theta-\theta_{1}\right)+\rho_{1} \rho_{2} \sin \left(\theta_{1}-\theta_{2}\right)$
\[

$$
\begin{equation*}
+\rho_{2} \rho \sin \left(\theta_{2}-\theta\right)=0 . * \tag{21}
\end{equation*}
$$

\]

This equation may also be written in the form

$$
\frac{\sin \left(\theta_{1}-\theta_{2}\right)}{\rho}+\frac{\sin \left(\theta_{2}-\theta\right)}{\rho_{1}}+\frac{\sin \left(\theta-\theta_{1}\right)}{\rho_{2}}=0 . *
$$

(2) Equation of the line in terms of the perpendicular upon it from the pole, and the angle which this perpendicular makes with the initial line. Let $O R$ be the initial line, O the pole, and $L K$ the line whose equation is sought. Also, let $N \equiv(p, a)$ be the foot of the perpendicular from O upon $L K$, and let $P \equiv(\rho, \theta)$ be any other point on $L K$. Draw $O N$ and $O P$; then

$$
\begin{array}{ll}
& \frac{O N}{O P}=\cos N O P \\
\text { i.e., } \quad & \rho \cos (\theta-a)=p
\end{array}
$$

which is the required equation.

[^22]
EXERCISES

1. Construct the lines:
(a) $\rho \cos \left(\theta-30^{\circ}\right)=10$;
(c) $p \cos \left(0-\frac{\pi}{4}\right)=0$;
(b) $p \sin \theta=2$;
(d) $\mathrm{p} \cos (\theta-\pi)=\sigma$.
2. Find the polar equations of straight lines at a distance 3 from tho pole, and : (1) parallel to the initial line; (3) perpendicular to the initial line.
3. A straight line passes through the points $\left(5,-45^{\circ}\right)$ and $\left(2,00^{\circ}\right)$; find its polar equation.
4. Find the polar equation of a line passing through a given point $\left(\rho_{1}, \theta_{1}\right)$ and cutting the initial line at a given angle $\phi=\tan ^{-1} k$.
5. Find the polar coordinates of the point of intersection of the lines

$$
\rho \cos \left(\theta-\frac{\pi}{2}\right)=2 a, \quad \rho \cos \left(\theta-\frac{\pi}{6}\right)=a .
$$

EXAMPLES ON CHAPTER V

1. The points $(-1,2)$ and (3, -2) are the extremities of the base of an equilateral triangle. Find the equations of the sides, and the courdinates of the third vertex. Two solutions.
2. Three of the vertices of a parallelogram are at the points $(1,1)$. (3, 4), and (5, 2). Find the fourth vertex. (Three solutions.) Find also the area of the parallelogram.
3. Find the equations of the two lines drawn through the point $(0,3)$, such that the perpendiculars let fall from the point $(0,6)$ upon them are each of length 3 .
4. Perpendiculars are let fall from the point $(5,0)$ upon the sides of the triangle whose vertices are at the points $(4,3),(-4,3)$, and $(0,-3)$. Show that the feet of these three perpendiculars lie on a straight live.

Find the equation of the straight line
5. through the origin and the point of intersection of the lines $x-y=4$ and $7 x+y+20=0$. Prove that it is a bisector of the angle formed by the two given lines.
6. through the intersection of the lines $3 x-4 y+1=0$ and $5 x+y=1$, and cutting off equal intercepts from the axes.
7. through the point (1,2), and intersecting the line $x+y=4$ at a distance $f \sqrt{6}$ from this poink.
8. A line drawn through the point $(4,5)$ makes an isosceles triangle with the lines $3 x=4 y+7$ and $5 y=12 x+6$; find its equation.
9. Prove analytically that the diagonals of a square are of equal length, bisect each other, and are at right angles.
10. Prove analytically that the line joining the middle points of two sides of a triangle is parallel to the third side and equal to half its length.
11. Find the locus of the vertex of a triangle whose base is $2 a$ and the difference of the squares of whose sides is $4 c^{2}$. Trace the locus.
12. Find the equations of the lines from the vertex $(4,3)$ of the triangle of Ex. 4, trisecting the opposite side. What are the ratios of the areas of the resulting triangles?
13. A point moves so that the sum of its distances from the lines $y-3 x+11=0$ and $7 x-2 y+1=0$ is 6 . Find the equation of its locus. Draw the figure.
14. Find the equation of the path of the moving point of Ex. 13, if the distances from the fixed lines are in the ratio $3: 4$.
15. Solve examples 13 and 14 , taking the given lines as axes.
16. The point $(2,9)$ is the vertex of an isosceles right triangle whose hypotenuse is the line $3 x-7 y=2$. Find the other vertices of the triangle.
17. The axes of coördinates being inclined at the angle 60°, find the equation of a line parallel to the line $x+y=3 a$, and at a distance $\frac{a \sqrt{3}}{2}$ from it.
18. Find the point of intersection of the lines

$$
\rho=\frac{2 a}{\cos \left(\theta-\frac{\pi}{2}\right)} \text { and } \rho \cos \left(\theta-\frac{\pi}{6}\right)=a
$$

For what value of θ, in each line, is $\rho=\infty$? At what angles do these lines cut their polar axes? Find the angle between the lines. Plot these lines.
19. Find the equation of a straight line through the intersection of $y=7 x-4$ and $2 x+y=5$, and forming with the x-axis the angle $\frac{\pi}{3}$.
20. Find the equation of the locus of a point which moves $s 0$ as to be always equidistant from the points $(2,1)$ and $(-3,-2)$.
21. Find the equation of the lucus of a proint which moves an as to be always equidistant from the proints $(0,0)$ and $(3,2)$. Show that the prints $(0,0),(3,2)$, and ($1,-1$) are the vertices of an isosceled triangle.
22. Find the center and radius of the circle cireumserited about the trianglo whoso vertices are the points $(2,1),(3,-2),(-4,-1)$.
23. Find analytically the equation of the locus of the vertex of a triangle having its base and area constant.
24. Prove analytically that the locus of a point equidistant from two given points $\left(x_{1}, y_{1}\right)$ and $\left(x_{z} y_{2}\right)$ is the perpendicular bisector of the line joining the given points.
25. The hase of a triangle is of length 5 , and is given in position: the difference of the squares of the other two sides is 7 ; find the equarthon of the locus of its vertex.
26. What lines are represented by the equations :

$$
\text { (a) } x^{2} y=x y^{2} \text {; (} \beta \text {) } 14 x^{2}-5 x y-y^{2}=0 \text {; (} \gamma \text {) } x y=0 \text { ? }
$$

27. What must be the value of c in order that the lines $3 x+y-2=0$, $2 x-y-3=0$, and $5 x+2 y+c=0$ shall pass through a common point?
28. By finding the area of the triangle formed by the three points ($3 a, 0$), $(0,3 b)$ and ($a, 2 b$), prove that these three points are in a straight line. Prove this also by showing that the third point is on the line joining the other two.
29. Find, by the nuethod of Art. 39, the point of intersection of the two lines $2 x-3 y+7=0$ and $4 x=6 y+2$; and interpret the result hy means of Arts. 41 and 60 .
30. Prove by Art. 10 (cf. also Arts. 41 and 60), that the equations of two parallel lines differ only in the constant term.
31. Find the equations of two lines each drawn through the point $(4,3)$, and forming with the axes a triangle whose area is -8 .
32. Find the equation of a line through the point $(2,-5)$, such that the portion between the axes is divided by the given point in the ratio $7: 5$.
33. Find the equation of the perpendicular erected at the middle point of the line joining $(5,2)$ to the intersection of the two lines

$$
x+2 y=11 \text { and } 9 x-2 y=50
$$

34 A point moves so that the square of its distance from the origin equals twice the square of its distance from the x-axis; find the equation of its locus.
35. Given the four lines

$$
x-2 y+2=0, x+2 y-2=0,3 x-y-3=0 \text { and } x+y+6=0
$$

these lines intersect each other in six points; find the equations of the three new lines (diagonals), each of which is determined by a pair of the above six points of intersection.
36. Find the points of intersection of the loci :

$$
\begin{aligned}
& \text { (a) } \rho \cos \left(\theta-\frac{\pi}{3}\right)=a \text { and } \rho \cos \left(\theta-\frac{\pi}{4}\right)=a \\
& \text { (ß) } \rho \cos \left(\theta-\frac{\pi}{2}\right)=\frac{3 a}{4} \text { and } \rho=a \sin \theta
\end{aligned}
$$

If two sides of a triangle are taken as axes, the vertices are $(0,0)$, $\left(x_{1}, 0\right),\left(0, y_{2}\right)$. Prove analytically that:
37. the medians of a triangle meet in a point;
38. the perpendicular from each vertex to the opposite sides meet in a point;
39. the line joining the middle points of two sides of a triangle is parallel to the third side.
40. Show that the equation $56 x^{2}+441 x y-56 y^{2}-79 x-47 y+9=0$ represents the bisectors of the angles between the straight liues represented by $15 x^{2}-16 x y-48 y^{2}-2 x+16 y-1=0$.
41. Two lines are represented by the equation

$$
A x^{2}+2 I I x y+B y^{2}=0
$$

Find the angle between them.
42. Using the product of a side by half the altitude derive the formula [4] for the area of the triangle whose vertices are at the points $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$. Wherein is this demonstration more general than that given in Art. 29 ?

CHAPTER VI

TRANSFORMATION OF COÖRDINATES

70. That the coordinates of a point which remains fixed is a plane are changed by changing the axes to which this fixed point is referred, is an immediate consequence of the detinition of coürdinates.

It is also evident that the different kinds of coördinates of any given point (Cartesian and polar, for example) are connected by definite relations if the elements of reference (the axes) are related in position. E.g., the point Q, when referred to the polar axis $O X$ and the pole O, has the coördinates $\left(5,30^{\circ}\right)$, but when it is referred to the rectangular axes $O X$ and
 OY the coördinates of this same point are $\left(\frac{8}{3}, \sqrt{3}\right)$; and generally, if (ρ, θ) be the ooordinates of a point when referred to $O X$ and O, then $(\rho \cos \theta, \rho \sin \theta)$ are its coördinates when it is referred to the
rectangular axes $O X$ and $O Y$.
Again: while a curve remains fixed in a plane, its equation may often be greatly simplified by a judicious change of
the axes to which it is referred. E.g., the line $L_{1} L$, when referred to the axes $O X$ and $O Y$, has the equation

$$
y=\tan \theta \cdot x+b
$$

but when referred to the axes $O^{\prime} X^{\prime}$ and $O^{\prime} Y^{\prime}$, the former of which is parallel to the given line, its equation is $y=c$.

For these, and other reasons, in the study of curves and surfaces by the methods of analytic geometry, it will often be found advantageous to transform the equations from one set of axes to another.

It will be found that the coördinates of a point with reference to any given axes, are always connected by simple formulas with the coördinates of the same point when it is referred to any other axes. These relations or formulas for the various changes of axes are derived in the next few articles.

I. CARTESIAN COÖRDINATES ONLY

71. Change of origin, new axes parallel respectively to the original axes. Let $O X$ and $O Y$ be the original axes, $O^{\prime} X^{\prime}$ and $O^{\prime} Y^{\prime}$ the new axes, and let the coördinates of the new
 origin when referred to the original axes be h and k, i.e., $O^{\prime} \equiv(h, k)$, where $h=O A$ and $k=A O^{\prime}$. Also let P, any point of the plane, have the coördinates x and y when it is referred to the axes $O X$ and $O Y$, and x^{\prime} and y^{\prime} when it is referrea to the axes $O^{\prime} X^{\prime}$ and $O^{\prime} Y^{\prime}$.

Draw $M M^{\prime} P$ parallel to the y-axis; then

$$
O M=O A+A M=O A+O^{\prime} M^{\prime}
$$

i.e.,
and similarly,

$$
\left.\begin{array}{l}
x=x^{\prime}+h \tag{23}\\
y=y^{\prime}+k
\end{array}\right\}
$$

which are the equations (or formulas) of transformation from any given axes to new axes which are respectively parallel to the original ones, the new origin being the point $O^{\prime}=(h, k)$. These formulas, moreover, are independent of tho angle between the axes.

As a simple illustration of the usefulness of such a change of axes, suppose the equation

$$
\begin{equation*}
x^{2}-2 h x+y^{2}-2 k y=a^{2}-h^{2}-k^{2} \tag{1}
\end{equation*}
$$

given, in which x and y are coordinates referred to the axes $O X$ and $O Y$.

Now let $P \equiv(x, y)$ be any point on the locus $L_{1} L$ of this equation, and let $\left(x^{\prime}, y^{\prime}\right)$ be the coordinates of the same point P when it is referred to the axes $O^{\prime} X^{\prime}$ and $O^{\prime} Y^{\prime}$; then

$$
x=x^{\prime}+h \text { and } y=y^{\prime}+k
$$

Substituting these values in the given equation for the x and y there involved, an equation in x^{\prime} and y^{\prime} is obtained which is satisfied by the coördinates of every point on $L_{1} L$, i.e., it is the equation of the same locus. The substitution gives:
$\left(x^{\prime}+h\right)^{2}-2 h\left(x^{\prime}+h\right)+\left(y^{\prime}+k\right)^{2}-2 k\left(y^{\prime}+k\right)=a^{2}-h^{2}-k^{2}$,
which reduces to

$$
x^{\prime 2}+y^{\prime 2}=a^{2} ;
$$

a much simpler equation than (1), but representing the same locus, merely referred to other axes.

EXERCISES

1. What is the equation for the locus of $3 x-2 y=6$, if the origin the changed to the point $(4,3)$, - directions of axes unchanged?
2. What does the equation $x^{2}+y^{2}-4 x-6 y=18$ become if the origin be changed to the point (2,3), -directions of axes unchanged?
3. What does the equation $y^{2}-2 x^{2}-2 y+6 x-3=0$ become when the origin is removed to (2,1), -directions of axes unchanged?
4. Find the equation for the straight line $y=3 x+1$ when the origin is removed to the point $(1,4)$,-directions of axes unchanged.
5. Coustruct appropriate figures for exercises 1 and 4 .
6. Transformation from one system of rectangular axes to another system, also rectangular, and having the same origin : change of direction of axes.

Let $O X$ and $O Y$ be a given pair of rectangular axes, and let $O X^{\prime}$ and $O Y^{\prime}$ be a second pair, with $\angle X O X^{\prime}=\theta$, the

Fig. 58 angle through which the first pair of axes must be turned to come into coincidence with the second. Also let P, any point in the plane, have the coördinates x and y when it is referred to the first pair of axes, and x^{\prime} and y^{\prime} when referred to the second pair. The problem now is to express x and y in terms of x^{\prime}, y^{\prime}, and θ. Draw the ordinates $M P, M^{\prime} P$, and $Q M^{\prime}$, and draw $M^{\prime} R$ parallel to the x-axis; then
i.e.,
and similarly,

$$
\left.\begin{array}{l}
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \tag{24}\\
y=x^{\prime} \sin \theta+y^{\prime} \cos \theta,
\end{array}\right\}
$$

which are the required formulas of transformation from one pair of rectangular axes to another, having the same origin but making an angle θ with the first pair.

Note 1. These formulas are more easily obtained, - in fact, they can be read directly from the figure, - if one recalls Art. 17, and considers that the projection of $O P$ equals the projection of $O M+$ the projection of $M^{\prime} P$, upon $O X$ and $O Y$ in turn.

Note 2. The reader will observe that a combination of the transformation of Art. 71 with that of Art. 72 will transform from one pair of rectangular axes to any other pair of rectangular axes.

EXERCISES

Turn the axen through an anglo of 45°, and find the new equationn for the following loci:

1. $x^{2}+y^{2}=16$;
2. $x^{3}-y^{3}=10$;
3. $y=x-1$;
4. $17 x^{2}-10 x y+17 y^{2}=225$.
5. If the axes are turned through the angle $\tan ^{-1} 2$, what does the njuation $4 x y-3 x^{3}=a^{3}$ thecome?
6. Transformation from rectangular to oblique axes, origin unchanged. Let $O X^{-}$and $O Y$ be a given pair of rectangular axes, let $O X^{\prime}$ and $O Y^{\prime}$ be the new axes making an anglo ω with ench other, and let the angles $X O X^{\prime}$ and $X O Y^{\prime}$ be denoted by θ and ϕ, respectively. Also let P, any point in the
 plane, have the coorrdinates x und y when referred to the first pair of axes, and x^{\prime} and y^{\prime} when referred to the second pair.

Draw the ordinates $M P, M^{\prime} P$, and $Q M^{\prime}$, also draw $M^{\prime} R$ parallel to the x-axis.

Then $O M=O Q+Q M=O M \cos \theta+M^{\prime} P \sin (90-\phi)$; i.e., and similarly, $\left.\quad y=x^{\prime} \sin \theta+y^{\prime} \sin \phi_{1}\right\}$ which are the required formulas of transformation from rectangular to oblique axes having the same origin.

If $\omega=90^{\circ}$, and consequently $\phi=90^{\circ}+\theta$, then formulas [25] reduce to [24], and Art. 73, therefore, includes Art. i2 is a special case.

By first solving for x^{\prime} and y^{\prime}, formulas [25] may also be employed to transform from oblique to rectaugular axes.

[^23]
EXERCISES

1. Giren the equation $9 x^{2}-16 y^{2}=144$ referred to rectangular axes; what does this equation become if transformed to new axes such that the new x-axis makes the angle tan ${ }^{-1}\left(-\frac{1}{4}\right)$, and the new y-axis the angle $\tan ^{-1}\left(\frac{1}{4}\right)$, with the old x-axis, - origin unchanged?
2. If the old and new x-axes coincide, and the new axes are rectangular while the old axes are incliued at an angle of 60°, what are the equations of transformation from the old axes to the new? From the new axes to the old? Origin unchanged in each case.
3. If the first two of the three sides of a triangle whose equations are $2 y+x+1=0,3 y-x-1=0$, and $2 x+3 y=1$, are chosen as new axes, find the new equations of the sides.
4. Transformation from one set of oblique axes to another, origin unchanged. Let $O X$
 and $O Y$ be a given pair of axes, $O X^{\prime}$ and $O Y^{\prime}$ the new axes, and let the angles $X O Y$, $X^{\prime} O Y^{\prime}, X O X^{\prime}$, and $X O Y^{\prime}$ be denoted by $\omega, \omega^{\prime}, \theta$, and ϕ, respectively. Also let P, any point in the plane, have the coördinates x and y when referred to the first pair of axes, and x^{\prime} and y^{\prime} when referred to the second pair.

Draw $M^{\prime} P$ parallel to $O Y^{\prime}, M P$ and $Q M^{\prime}$ parallel to $O Y$, and $M^{\prime} R$ parallel to $O X$.

Then, from the triangle $O Q M^{\prime}$,

$$
O Q=x^{\prime} \frac{\sin (\omega-\theta)}{\sin \omega} \text { and } Q M^{\prime}=x^{\prime} \frac{\sin \theta}{\sin \omega}
$$

and from the triangle $R M^{\prime} P$,

$$
R M^{\prime}=y^{\prime} \frac{\sin (\phi-\omega)}{\sin \omega} \text { and } R P=y^{\prime} \frac{\sin \phi}{\sin \omega}
$$

But $O M=O Q-R M^{\prime}$, and $M P=Q M^{\prime}+R P$;

$$
\left.\begin{array}{l}
\therefore x=x^{\prime} \frac{\sin (\omega-\theta)}{\sin \omega}+y^{\prime \prime} \frac{\sin (\omega-\phi)}{\sin \omega}, \\
\text { and } y=x^{\prime} \frac{\sin \theta}{\sin \omega}+y^{\prime} \frac{\sin \phi}{\sin \omega} \tag{26}
\end{array}\right\}
$$

which are the required formulas of transformation from one pair of oblique axes to another having the same origin.

Nors. If it is desired to change the origin, and also the direction of the axes, the necessary formulas may be obtained by combining Art. il with Art. 72, Art. 73, or Art. 74, depending upon the given and required axes.

EXERCISES

1. Show, by specializing some of the angles e, \&, θ, and ϕ in Art. 74 , that formulas [20] include both [25] and [24] as special cases.
2. The equation of a certain locus, when referred to a pair of axes that are inclined to each other at an angle of 60°, is $7 x^{2}-2 x y+4 y^{2}=5$; what will this equation become if the axes are each turned through an angle of 30° ? What if the x-axis is turned through the angle -30° while the y-axis is turned through $+30^{\circ}$?
3. The degree of an equation in Cartesian coobrdinates is not changed by transformation to other axes. Every formula of transformation obtained ([23] to [26]) has replaced x and y, respectively, by expressions of the first degree in the new courdinates x^{\prime}, y^{\prime}. Therefore any one of these transformations replaces the terms containing x and y by expressions of the same degree, and so cannot raise the degree of the given equation. Neither can any one of these transformations lower the degree of the given equation; for if it did,
[^24]```
TAN, AN, GRON,-9
```

then a transformation back to the original axes (which must give again the original equation) would raise the degree, which has just been shown to be impossible; hence all these transformations leave the degree of an equation unchanged.

## II. POLAR COÖrdinates

76. Transformations between polar and rectangular systems. (1) Transformation from a rectanyular to a polar system, and vice versa, the origin and
 $x$-axis coinciding respectively with the pole and the initial line. . Let $O X$ and $O Y$ be a given set of rectangular axes, and let $O X$ and $O$ be the initial line and pole for the system of polar coördinates. Also let $P$, any point in the plane, have the coördinates $x$ and $y$ when referred to the rectangular axes, and $\rho$ and $\theta$ in the polar system (Fig. 61), then

$$
O M=O P \cos X O P
$$

i.e.,
similarly.

$$
\left.\begin{array}{l}
x=\rho \cos \theta ;  \tag{27}\\
y=\rho \sin \theta .
\end{array}\right\}
$$

These are the required formulas of transformation when, but only when, the rectangular and polar axes are related as above described.

Conversely, from formulas [27], or directly from Fig. 61,
$\rho=\sqrt{x^{2}+y^{2}}, \cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}}$, and $\sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}$.
which are the required formulas of transformation from polar to rectangular axes, under the above conditions.
(2) Same as (1) except that the initial line Oll matrs an angle a with the x-axis. It is at once evident that the formulas of transformation for this case are:
and $\left.\quad \begin{array}{l}x=\rho \cos (\theta+z) . \\ y=\rho \sin (\theta+\pi) .\end{array}\right\} \ldots[29]$
The converse formulas for this case are :


$$
\begin{equation*}
\rho=\sqrt{x^{2}+y^{2}} \tag{80}
\end{equation*}
$$

and $\theta=\cos ^{-1}\left(\frac{x}{\sqrt{x^{3}+y^{2}}}\right)-u=\sin ^{-1}\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)-u$.
(3) Tranąformation from any Cartesian system to any polar system. Transform first to rectangular axes whose origin is the proposed pole; this is accomplished by Arts. 71 and 73. Then by formula [27] or [29] transform from the rectangular Cartesian to the polar coördinates.

## EXERCISES

Change the following to the corresponding polar equations; draw a figure showing the two related systems of axes in each case. Take the pole at the origin, the polar axis comeident with the axis of $x$, in exercises 1 to 4 .

1. $x^{3}+y^{4}=a^{3}$.
2. $y^{2}-x+2 a y=0$.
3. $x^{2}+y^{8}=9\left(x^{2}-y^{2}\right)$.
4. $y=x \tan a$.
5. $x-\sqrt{3} y+2=0$, taking pole at origin, polar axis making the angle $60^{\circ}$ with the $x$-axis.
6. $x^{2}-y^{2}-4 x-6 y-54=0$, taking the pole at the point $(2,-3)$, and the polar axis parallel to the $x$-nxis.

Change the following to corresponding rectangular equations. Take the origin at the pole and the $x$-axis coincident with the polar axis.
7. $\rho=a$.
8. $\rho^{2} \cos 2 \theta=a^{2}$.
9. $\rho^{2} \sin 2 \theta=10$.
10. $p^{2}=a^{2} \sin 2 \theta$.

Suggratios. In Ex. 10 multiply by $\rho^{2}$ and suhatitute $2 \sin \theta \cos \theta$ for $\sin 2 \theta$; the equation then becomes $\rho^{4}=2 a^{2} \rho^{3} \sin \theta \cos \theta$.
11. $p=t \cdot \cos \theta$.
12. $\theta=3 \tan ^{-1} 2$.
13. $\rho^{\frac{1}{2}} \cos \frac{\theta}{2}=L^{\frac{1}{3}}$.

## EXAMPLES ON CHAPTER VI

1. Find the equation of the locus of $2 x y-7 x+4 y=0$ referred to parallel axes through the point ( $-2, \frac{3}{2}$ ).
2. Transform the equation $x^{2}-4 x y+4 y^{2}-6 x+12 y=0$ to new rectangular axes making an angle tan ${ }^{-1} \frac{1}{2}$ with the given axes.
3. Transform $y^{2}-x y-5 x+5 y=0$ to parallel axes through the point $(-5,-5)$. Draw an appropriate figure.
4. Transform the equation of example 3 to axes bisecting the angles between the old axes. Trace the locus.
5. To what point must the origin be moved (the new axes being parallel to the old) in order that the new equation of the locus

$$
2 x^{2}-5 x y-3 y^{2}-2 x+13 y-12=0
$$

shall have no terms of first degree?
Solution. Let the new origin be (h,k); then $x=x^{\prime}+h, y=y^{\prime}+k$, and the new equation is

$$
\begin{aligned}
& 2\left(x^{\prime}+h\right)^{2}-5\left(x^{\prime}+h\right)\left(y^{\prime}+k\right)-3\left(y^{\prime}+k\right)^{2}-2\left(x^{\prime}+h\right)+13\left(y^{\prime}+k\right)-12=0 \\
& \text { i.e., } \quad 2 x^{\prime 2}-5 x^{\prime} y^{\prime}-3 y^{\prime 2}+(4 h-5 k-2) x^{\prime}-(5 h+6 k-13) y^{\prime} \\
& +2 h^{2}-5 h k-3 k^{2}-2 h+13 k-12=0
\end{aligned}
$$

but it is required that the coefficients of $x^{\prime}$ and $y^{\prime}$ shall be 0 ; i.e., $h$ and $k$ are to be determined so that

$$
4 h-5 k-2=0
$$

and

$$
5 h+6 k-13=0
$$

hence

$$
h=\frac{y}{f} \text { and } l:=\frac{6}{7} .
$$

Therefore the new origin must be at the point ( $\mu, \frac{p}{7}$ ), and the new equation is

$$
2 x^{\prime 2}-5 x^{\prime} y^{\prime}-3 y^{\prime 2}-8=0
$$

6. The new axes being parallel to the old, determine the new origin so that the new equation of the locus

$$
x^{2}-3 x y+y^{2}+10 x-10 y+21=0
$$

shall have no terms of first degree.
7. Transform the equations $x+y-3=0$ and $2 x-3 y+4=0$ to parallel axes having the point of intersection of these lines as origin.
3. Transform the equation $\frac{x}{4}+\frac{y}{6}=1$ to new rectangular axes through the point $(2,3)$, and making the angle $\tan ^{-1}\left(-\frac{i}{2}\right)$ with the old axes.
9. Through what angle must the axes be turned that the new equation of the line $6 x+4 y-24=0$ shall have no $y$-term? Show this geometrically, from a figure.
10. Through what anglo must the axes be turned in order that the new equation of the line $6 x+4 y=21$ shall have no $z$-term? Show analytically (ef. also examples 8 and 0 ).
solutios. Let 0 be the required angle; then the equations of trame formation are

$$
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \text { and } y=x^{\prime} \sin \theta+y^{\prime} \cos \theta ;
$$

and the new equation is

$$
(6 \cos \theta+4 \sin \theta) x^{\prime}-(6 \sin \theta-4 \cos \theta) y=24 ;
$$

but it is required that the coefficient of $a$ be 0 ,
$\therefore \quad 6 \cos \theta+4 \sin \theta=0$, i.e., $\tan \theta=-\frac{f}{}$;
whence

$$
\theta=\tan ^{-1}(-1),
$$

and the equation becomes

$$
(6 \sin \theta-4 \cos \theta) y^{\prime}+24=0
$$

which reduces to

$$
\begin{aligned}
& \frac{26}{\sqrt{13}} y^{\prime}+24=0, \\
& \sqrt{13} y^{\prime}+12=0 .
\end{aligned}
$$

11. Through what angle must the axes be turned to remove the s-term from the equation of the locus $A x+B y+C=0$ ? to remove the yterm?
12. Show that to remove the xyterm from the equation of the locus, $2 x^{2}-5 x y-3 y^{2}=8$ (cf. Ex. 5), the axes must be turned through the angle $0=67^{\circ} 30^{\circ}$, i.e., so that tan $20=-1$. What is the new equation?
13. Through what angle must a pair of rectangular axes be turned that the new $x$-axis may pass through the point $(-2,-5)$ ?
14. What point must be the new origin, the direction of axes being unchanged, in order that the new equation of the line $A x+B y+C=0$ shall have no constant term?
15. To what point, as origin of a pair of parallel axes, must a transformation of axes be made in order that the new equation of the locus, $x y-y^{2}-x+y=0$, shall have no terms of first degree? Construct the locus.
16. Find the new origin, the direction of axes remaining unchanged, so that the equation of the locus, $x^{2}+x y-3 x-y+2=0$, shall have no constant term. Construct the figure
17. Transform the equation $4 x^{2}+2 \sqrt{3} x y+2 y^{2}=1$ to new rectangular axes making an angle of $30^{\circ}$ with the given axes, -origin unchanged.
18. 'Iransform $y^{2}=8 x$ to new rectangular axes having the point $(18,12)$ as origin, and making an angle cot ${ }^{-13}$ with the old.
19. Transform to rectangular coordinates, the pole and initial line being coincident with the origin and $x$-axis, respectively:

$$
\text { (a) } \rho^{2}=a^{2} \cos 2 \theta, \quad \text { ( } \beta \text { ) } \rho^{2} \cos 2 \theta=a^{2}, \quad \text { ( } \gamma \text { ) } \rho=k \sin 2 \theta
$$

Transform to polar coordinates, the $x$-axis and initial line being coincident:
20. $\left(x^{2}+y^{2}\right)^{2}=k^{2}\left(x^{2}-y^{2}\right)$, the pole being at the point $(0,0)$;
21. $x^{2}+y^{2}=7 a x$, pole being at the point $(0,0)$;
22. $x^{2}+y^{2}=16 x$, the pole being at the point $(8,0)$.
23. Transform the equation $y^{2}+4 a y \cot 30^{\circ}-4 a x=0$ to an oblique system of coördinates, with the same origin and $x$-axis, but the new $y$-axis at an angle of $30^{\circ}$ with the old $x$-axis.
24. Transform the equation $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, to new axes, making the positive angles $\tan ^{-1} \frac{8}{1}$ and $\tan ^{-1}\left(-\frac{3}{4}\right)$, respectively, with the old $x$-axis, the origin being unchanged.
25. Transform the equation
$3 x^{2}+10 \sqrt{3} x y-7 y^{2}=(18-30 \sqrt{3}) x+(42+30 \sqrt{3}) y+(42+90 \sqrt{3})$ to the new origin $(3,-3)$, with new axes making an angle of $30^{\circ}$ with the old.
26. Transform the equation $3 x^{2}+8 x y-3 y^{2}=0$ to the two straight lines which it represents, as new axes.
27. Transform $\frac{x^{2}}{25}-\frac{y^{2}}{9}=1$ to the straight lines $\frac{x^{2}}{25}-\frac{y^{2}}{9}=0$, as new axes.
28. Transform to polar coördinates the equation $y^{2}(2 a-x)=x^{2}$.
29. Transform to rectangular coördinates the equation

$$
\rho=a(\cos 2 \theta+\sin 2 \theta)
$$

30. Prove the formula for the distance in polar coördinates [1] by transformation of the corresponding formula [2] in rectangular coördinates.
31. Transform the equation $x \cos a+y \sin a=p$ to polar coördinates.

## CHAPTER VII

## THE CIRCLE

## Special Equation of the Second Degree

$$
A x^{2}+A y^{2}+2 G x+2 F y+C=0
$$

77. It must be kept clearly in mind that one of the chief aims of an elementary course in Analytic Geometry is to teach a new method for the study of geometric properties of curves and surfaces. Power and facility in the use of such a new method are best acquired by applying it first to those loci whose properties are already best understood. Accordingls, the straight line having already been studied in Chapter V, the circle will next be examined.

It will appear later that the circle is only a special case of the conic sections already referred to in Art. 48, and might, therefore, be advantageously studied after the general properties of those curves had been examined ; the present order is adopted, however, because the student is already familiar with the chief properties of the circle.

In solving the exercises of this chapter the student should use the analytic methods, even when purely geometric methods might suffice, - he is learning to use a new instrument of investigation, and is not merely studying the properties of the circle.
78. The circle: its definition, and equation. The circle may be defined as the path traced by a point which moves in such a way as to be always at a constant distance from a given fixed point. This fixed point is the center, and the constant distance is tho radius, of the circle.

To derive the equation from this definition, let $C \equiv(h, k)$ be the center, $r$ the radius, and $P \equiv(x, y)$ any point on the
 curve. Also draw the ordinates $M_{1} C$ and $M P$, and the line $C R$ parallel to the $x$-axis; then
$C P=r$; [geometric equation] but (Art. 26),

$$
C P=\sqrt{(x-h)^{2}+(y-k)^{2}},
$$

hence $\sqrt{(x-h)^{2}+(y-k)^{2}}=r$;
i.e., $\quad(x-h)^{2}+(y-k)^{2}=r^{2}$, . . . [31]
which is the equation of the circle whose radius is $r$, and whose center has the coördinates $h$ and $k$.

With given fixed axes, equation [31] may, by rightly choosing $h, k$, and $r$, represent any circle whatever; it is, therefore, called the general equation of the circle. Of its special forms one is, because of its very frequent application, particularly important; this form is the one for which the center coincides with the origin : in that case $h=k=0$, and equation [31] becomes

$$
\begin{equation*}
x^{2}+y^{2}=r^{2} . t \tag{32}
\end{equation*}
$$

- Equation [31] may be written in the form

$$
(x-h)^{2}+(y-k)^{2}-r^{2}=0 ;
$$

the first member then becomes positive if the coördinates of any point outside of the circle are substituted for $x$ and $y$, it becomes negative for a point inside of the circle, and zero for a point on the circle. Hence the circle may be regarded as the boundary which separates that part of the plane for which the function $(x-h)^{2}+(y-k)^{2}-r^{2}$ is positive from the part for which this function is negative. The inside of the circle may therefore be called its negatire side, while the outside is its positive side (cf. foot-note, Art. 43).
$\dagger$ If one is unrestricted in his choice of axes, then an equation of the form of [32] may represent any circle whatever, - the axes need merely be chosen perpendicular to each other and through its center; - equation [31] is more general in that, the rectangular axes being determined by other considerations, it may still represent any circle whatever.

## EXERCISES

Finat construct the circle, then find fte equation, being given :

1. the center $(3,-3)$, the radius 4 ;
2. the center $(0,2)$, the radius 1 ;
3. the center $(3,-3)$, the radius 3 ;
4. the center $(0,0)$, the radius 5 ;
5. the center $(-1,0)$, the radius 1 .
6. How are circles related for which $h$ and $t$ are the same, while $r$ is different for each? for which $h$ and $r$ are the same, while t differs for each?
7. What form does the equation of the circle assume when the center is on tho maxis and the origin on the circumference? when the circle touches each axis and has its center in quadrant II?
8. In rectangular coordinates every equation of the form $x^{2}+y^{2}+2 G x+2 F y+C=0$ represents a circle. The equations of the circles already obtained (equations [31] and [32], as well as the answers to examples 1 to 5 and 7) are all of the form

$$
\begin{equation*}
x^{2}+y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

it will now be shown that, for all values of $G, F$, and $C$, for which the locus of equation (1) is real, this equation represents a circle.

To prove this it is only necessary to complete the square in the $x$-terms and in the $y$-terms, by adding $G^{2}+F^{2}$ to each member of equation (1), and then transpose $C$ to the second member. Equation (1) may then be written in the form

$$
\begin{align*}
(x+G)^{2}+(y+F)^{2} & =G^{2}+F^{2}-C \\
& =\left(\sqrt{\left(^{\prime 3}+F^{\prime 3}-C^{\prime}\right.}\right)^{2} \tag{2}
\end{align*} .
$$

which is (cf. equation [31]) the equation of a circle whose center is the point ( $-G,-\boldsymbol{F}$ ), and whose radius is

$$
\sqrt{G^{\prime}+f^{\prime 2}-C}
$$

Note 1. This circle is real ouly if $G^{2}+F^{2}-C>0$; for, if

$$
G^{2}+F^{2}-C<0,
$$

its square root is imaginary, and no real values of $x$ and $y$ can then satisfy equation (2); while if $G^{2}+F^{2}-C=0$, then equation (2) reduces to

$$
\begin{equation*}
(x+G)^{2}+(y+F)^{2}=0, \tag{3}
\end{equation*}
$$

which may be called the equation of a "point circle," since the coördinates of but one real point, viz. ( $-G,-F$ ), will satisfy equation (3). If, however, $G^{2}+F^{2}-C>0$, then equation (1) represents a real circle for all values of $G, F$, and $C$, subject to this single limitation.

Note 2. Every equation of the form $A x^{2}+A y^{2}+2 G x+2 F y+C=0$ represents a circle, for, by Art. BS , this equation has the same locus as has $x^{2}+y^{2}+2 \frac{G}{A} x+2 \frac{F}{A} y+\frac{C}{A}=0$, and this last equation is of the form of equation (1).

Hence, interpreted in rectangular coördinates, every equation of the second degree from which the term in xy is absent, and in which the coefficient of $x^{2}$ equals that of $y^{2}$, represents a circle.
80. Equation of a circle through three given points. By means of equation [31], or of the equation

$$
\begin{equation*}
x^{2}+y^{2}+2 G x+2 F y+C=0, \tag{1}
\end{equation*}
$$

which has been shown in Art. 79 to be its equivalent, the problem of finding the equation of a circle which shall pass through any three given points not lying on a straight line can be solved; i.e., the constants $h, k$, and $r$, or $G, F$, and $C$, may be so determined that the circle shall pass through the three given points.

To illustrate : let the given points be $(1,1),(2,-1)$, and $(3,2)$, and let $x^{2}+y^{2}+2 G x+2 F y+C=0$ be the equation of the circle that passes through these points; to find the values of the constants $G, F$, and $C$. Since the point $(1,1)$ is on this circle, therefore (cf. Art. 35),

$$
1+1+2 G+2 F+C=0
$$

similarly, $\quad 4+1+4 G-2 F+C^{\prime}=0$,
and

$$
9+1+6 G+4 F+C=0
$$

These equations give: $G=-\frac{1}{2}, F=-\frac{1}{3}$, and $C=4$. Substituting these values, the equation of the required circle becomes

$$
x^{2}+y^{2}-5 x-y+4=0 ;
$$

its center is at the point $\left(\frac{1}{2}, \frac{1}{2}\right)$, while its radius is $\frac{1}{2} \sqrt{10}$.
Note. The fact that the most general equation of the circle contains three parameters ( $h, l$; and $r$, or $G, F$, and $C$, above) corresponds to the property that a circle is uniquely determined by three of its points.

## EXERCISES

Find the radii, and the courdinates of the centers, of the following circles; also, draw the circles.

1. $x^{2}+y^{2}-4 x-8 y-41=0$.
2. $3 x^{2}+3 y^{2}-5 x-7 y+1=0$.
3. $x^{2}+y^{2}=3(x+3)$.
4. $2\left(x^{2}+y^{2}\right)=7 y$.
5. $a x^{2}+a y^{2}=b x+c y$.
6. $(x+y)^{2}+(x-y)^{3}=8 a^{2}$.
7. What loci are represented by the equations
and

$$
\begin{aligned}
(x-h)^{2}+(y-k)^{2} & =0 \\
x^{2}+y^{2}-2 x+6 y+38 & =0 ?
\end{aligned}
$$

Find the equation of the circle through the points:
8. $(1,2),(3,-4)$, and $(5,-6)$;
9. $(0,0),(a, b)$, and $(b, a)$;
10. $(-6,-1),(0,1)$, and ( 1,0$)$;
11. $(10,2),(3,3)$, and having the radius 5 .

12 Find the equation of the circle which has the line joising the points $(3,4)$ and $(-1,2)$ for a diameter.
13. Find the equation of the circle which touches each axis, and pastes through the point $(-2,3)$.
14. A circle has its center on the line $8 x+4 y=7$, and touches the two lines $x+y=3$ and $x-y=3$; find its equation, radius, and center; also draw the circle.

## SECANTS, TANGENTS, AND NORMALS

81. Definitions of secants, tangents, and normals. A straight line will, in general, intersect any given curve in two or more


Fig. 64. distinct points; it is then called a secant line to the curve. Let $P_{1}$ and $P_{2}$ be two successive points of intersection of a secant line $P_{1} P_{2} Q$ with a given curve $L P_{1} P_{2} \ldots K$; if this secant line be rotated about the point $P_{1}$ so that $P_{2}$ approaches $P_{1}$ along the curve, the limiting position $P_{1} T$ which the secant approaches, as $P_{2}$ approaches coincidence with $P_{1}$, is called a tangent to the curve at that point. This conception of the tangent leads to a method, of extensive application, for deriving its equation, - the socalled "secant method."*

Since the points of intersection of a line and a curve are found (Art. 39) by considering their equations as simultaneous, and solving for $x$ and $y$, it follows that, if the line is tangent to the curve, the abscissas of two points of intersection, as well as their ordinates, are equal. Therefore, if the line is a tangent, the equation obtained by eliminating $x$ or $y$ between the equation of the line and that of the curve must have a pair of equal roots.

If the given curve is of the second degree, then the equation resulting from this elimination is of the second degree, and the test for equal roots is well known (Art. 9) ; but if the given equation is of a degree higher than the second, other methods must in general be used.

A straight line drawn perpendicular to a tangent and

[^25]through the point of tangency is called a normal line to the curve at that point. Thus, in lig. 64, $P_{1} P_{2}, P_{1} P_{8}$ are secanta, $P_{1} T$ is a tangent, and $P_{1} N$ a normal to the curve at $P_{1}$.

## 02. Tangents: Illustrative examples.

(1) To find the ecguation of that tangent to the circle $x^{3}+y^{3}=5$ which makes an angle of $45^{\circ}$ with the z-axis. Since this line makes an auglo of $45^{\circ}$ with the $x$-axis its equation is $y=x+b$, where $b$ is to be determined so that this line shall touch the circle.

Clearly, from the figure, there are two values of $b\left(O B_{1}\right.$ and $\left.O B_{2}\right)$ for which this line will be tangent to the circin. According to Art. 81, these values of $b$ are those which tnake the two points of intersection of the line and the circle become coincident.

Considering the equations $x^{2}+y^{2}=5$ and $y=x+b$ simultaneous, and eliminating $y$, the resulting equation in $x$ is $x^{2}+(x+b)^{2}=5$, i.e., $2 x^{2}+2 b x+b^{2}-5=0$. The roots of this equation will become equal, i.e., the abscissas of the points of ittersection will become equal (Art. 9),


Fio. 65. if $b^{3}-2\left(b^{3}-5\right) \doteq 0$, i.e., if $b \doteq \pm \sqrt{10}$.

The equations of the two required tangent lines are, therefore,

$$
y=x+\sqrt{10}, \text { and } y=x-\sqrt{10} .
$$

(2) To find the equations of those tangents to the circle $x^{2}+y^{2}=6 y$ that are parallel to the line $x+2 y+11=0$.

The equation of a tine parallel to $x+2 y+11=0$ is $x+2 y+i=0$, where $t$ is an arbitrary constant (Art. 62), and this line will hecome tangent to the circle, if the value of the constant if be so chosen that the two points in which the line meets the circle shall become coincident.

Considering the equations $x^{2}+y^{2}=6 y$ and $x+2 y+t=0$ simultareous, and climinating $x$, the resulting equation in $y$ is

$$
(-k-2 y)^{2}+y^{2}=6 y, \text { i.e., } 5 y^{2}+(4 k-6) y+k^{2}=0 \text {. }
$$

The two values of $y$ will hecome equal if (Art. 0)

$$
(4 k-6)^{2}-20 k^{2} \doteq 0 \text {, i.e., if } k^{3}+12 k-9 \doteq 0
$$

i.e., if

$$
k \doteq-6 \pm 3 \sqrt{5}
$$

and the two required tangent lines are:

$$
x+2 y-6+3 \sqrt{3}=0, \text { and } x+2 y-6-3 \sqrt{3}=0
$$

## EXERCISES

Find the equations of the tangents:

1. to the circle $x^{2}+y^{2}=4$, parallel to the line $x+2 y+3=0$;
2. to the circle $3\left(x^{2}+y^{2}\right)=4 y$, perpendicular to the line $x+y=7$;
3. to the circle $x^{2}+y^{2}+10 x-6 y-2=0$, parallel to the line $y=2 x-7$;
4. to the circle $x^{2}+y^{2}=r^{2}$, and forming with the axes a triangle whose area is $r^{2}$.
5. Show that the line $y=x+c \sqrt{2}$ is, for all values of $c$, tangent to circle $x^{2}+y^{2}=c^{2}$; and find, in terms of $c$, the point of contact.
6. Prove that the circle $x^{2}+y^{2}+2 x+2 y+1=0$ touches both coördinate axes; and find the points of contact.
7. For what values of $c$ will the line $3 x-4 y+c=0$ touch the circle $x^{2}+y^{2}-8 x+12 y-44=0$ ?
8. For what value of $r$ will the circle $x^{2}+y^{2}=r^{2}$ touch the line $y=3 x-5$ ?
9. Prove that the line $a x=b(y-b)$ tonches the circle $x(x-a)$ $+y(y-b)=0$; and find the point of contact.
10. Three tangents are drawn to the circle $x^{2}+y^{2}=9$; one of them is parallel to the $x$-axis, and together they form an equilateral triangle. Find their equations, and the area of the triangle.
11. Equation of tangent to the circle $x^{2}+y^{2}=r^{2}$ in terms of its slope. The equation of the tangent to a given circle, in terms of its slope, is found in precisely the same way as that followed in solving (1) of Art. 82. Let $m$ be the given slope of the tangent, then the equation of the tangent is of the form

$$
\begin{equation*}
y=m x+b \tag{1}
\end{equation*}
$$

wherein $b$ is a constant which must be so determined that line (1) shall intersect the circle

$$
\begin{equation*}
x^{2}+y^{2}=r^{2} \tag{2}
\end{equation*}
$$

in two coincident points.

Wiminating $y$ between equations (1) and (2) gives
i.e.,

$$
\begin{aligned}
& x^{2}+(m x+b)^{2}=r^{2} \\
& x^{2}\left(1+m^{2}\right)+26 m x+b^{2}-r^{2}=0
\end{aligned}
$$

and the two salues of $x$ obtained from this equation will become equal (Art.9) if

$$
\begin{gathered}
(m b)^{2}-\left(1+m^{2}\right)\left(b^{2}-r^{3}\right) \doteq 0 \\
b \doteq \pm r \sqrt{1+m^{2}} .
\end{gathered}
$$

Substituting this ralue of 8 in equation (1), it becomes

$$
y=m x \pm r \sqrt{1+m ะ}, \quad \text {. . [33] }
$$

which is then, for all values of $m$, tangent to the circle (2).
This equation [33] enables one to write down immediately the equation of a tangent, of given slope, to a circle whose onter is at the origin.
E.g., to find the equation of the tangent whose slope $m=1=\tan 45^{\circ}$, to the circle $x^{3}+y^{2}=5$, it is ouly necessary to substitute 1 for $m$ and $\sqrt{8}$ for $r$ in equation [33]. This gives as the required equation $y=z \pm \sqrt{10}$ [cf. (1) Art. 82].

Nots 1. If the center of the given circle is not at the origin, i.e., If lise equation is of the form $x^{2}+y^{2}+2 G x+2 F y+C=0$, instead of $x^{4}+y^{2}=r^{2}$, then tho same reasoning as that employed above would lead to

$$
y+F=m(x+G) \pm \sqrt{G^{2}+F^{2}-C} \cdot \sqrt{1+m^{2}} \cdot \quad \cdot[34]
$$

as the equation of the required tangent.
This equation might have been obtained also by first transforming the equation $x^{2}+y^{2}+2 G x+2 F y+C=0$ to parallel axes through the point $(-G,-F)$; this would have given $x^{\prime 2}+y^{2}=G^{2}+F^{2}-C=r^{3}$ a the equation of the same circle, but now referred to axes through its chiter. Referred to these new axes $y^{\prime}=m x^{2} \pm r \sqrt{1+m^{2}}$ (see eq. [ [3: 3 ]) is, for all values of $m$, tangent to this circle; transforming this last equation hack to the original axes, i.e., suhatituting for $x^{\prime}, y^{\prime}$, and $r$ their equals, viz., $x+G, y+F$, and $\sqrt{G^{2}+F^{2}-C}$, it becomes

$$
y+F=m(x+G) \pm \sqrt{G^{2}+F^{2}-C} \cdot \sqrt{1+m^{2}}
$$

[^26]as before, which is, for all values of $m$, tangent to the circle whose center is at the point $(-G,-F)$ and whose radius is $\sqrt{G^{2}+l^{2}-C}$.

Note 2. Because of its frequent occurrence, it is useful to memorize equation [33]. On the other hand, it is not recommended that equation [34] be memorized, but it should be carefully worked out by the student. Instead of employing either of these formulas, however, the student may always attack the problems directly, as was done in Art. 82.

## EXERCISES

Find the equations of the lines which are tangent:

1. to the circle $x^{2}+y^{2}=16$, and whose slope is 3 ;
2. to the circle $x^{2}+y^{2}=4$, and which are parallel to the line $x+2 y$ $+3=0$ (cf. Ex. 1, Art. 82);
3. to the circle $x^{2}+y^{2}=9$, and which make an angle of $60^{\circ}$ with the $x$-axis; with the $y$-axis;
4. to the circle $x^{2}+y^{2}=25$, and which are perpendicular to the line joining the points $(-3,7)$ and $(7,5)$;
5. to the circle $x^{2}+y^{2}=2 x+2 y-1$, and whose slope is -1 .
6. Equation of tangent to the circle in terms of the coördinates of the point of contact: the secant method.
(a) Center of the circle at the origin. Let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ be the point of tangency, on the given circle

$$
\begin{equation*}
x^{2}+y^{2}=r^{2} \tag{1}
\end{equation*}
$$

Through $P_{1}$ draw a secant line $L M$, and let $P_{2} \equiv\left(x_{2}, y_{2}\right)$ be its other point of intersection with the circle. If the
 point $\boldsymbol{P}_{2}$ moves along the circle until it comes into coincidence with $P_{1}$, the limiting position of the secant $L M$ is the tangent $P_{1} T$. (Art. 81.)

The equation of the line $L M$ is

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \ldots \text { (2) }
$$

If now $P_{2}$ approaches $P_{1}$ until
$x_{3}=x_{1}$ and $y_{3}=y_{1}$, equation (2) takes thos indeterminate form

$$
\begin{equation*}
y-y_{1}=\frac{0}{0}\left(x-x_{3}\right) \tag{3}
\end{equation*}
$$

This indeterminateness arises because account has not yet been taken of the path (or direction) by which $P_{2}$ shall approach $P_{1}$, and it disappears immediately if the condition that $P_{3}$ is to approach $P_{1}$ along the circle (1) is introduced.

Since the fixed point $P_{1}$ is on the circle (1), therefore

$$
\begin{equation*}
x_{1}^{2}+y_{1}^{2}=r^{3} \tag{4}
\end{equation*}
$$

and since $P_{5}$, while approaching $P_{1}$, always remains on circle (1), therefore

$$
\begin{equation*}
x_{3}{ }^{2}+y_{3}{ }^{2}=r^{2} ; \tag{5}
\end{equation*}
$$

hence, subtracting equation (4) from equation (5).

$$
x_{2}^{2}-x_{1}^{2}+y_{2}^{2}-y_{1}^{2}=0
$$

that is, $\quad\left(y_{3}-y_{1}\right)\left(y_{2}+y_{1}\right)=-\left(x_{2}-x_{1}\right)\left(x_{2}+x_{1}\right)$;
whence,

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=-\frac{x_{3}+x_{1}}{y_{2}+y_{1}} .
$$

Substituting this result in equation (2) gives

$$
\begin{equation*}
y-y_{1}=-\frac{x_{2}+x_{1}}{y_{2}+y_{1}}\left(x-x_{1}\right) \tag{6}
\end{equation*}
$$

which is the equation of the secant line $L M$ of the given eircle (1).

[^27]Now let $P_{2}$ move along the circle until it coincides with $P_{1}$, i.e., until $x_{2}=x_{1}$, and $y_{2}=y_{1}$, then equation (6) becomes

$$
y-y_{1}=-\frac{x_{1}+x_{1}}{y_{1}+y_{1}}\left(x-x_{1}\right)
$$

i.e.,

$$
y-y_{1}=-\frac{x_{1}}{y_{1}}\left(x-x_{1}\right)
$$

which, by clearing of fractions and transposing, may be written in the form

$$
\begin{array}{ll} 
& x_{1} x+y_{1} y=x_{1}^{2}+y_{1}^{2} \\
\text { i.e., } & x_{1} x+y_{1} y=r,
\end{array}
$$

which is the required equation of the tangent to the circle $x^{2}+y^{2}=r^{2}, x_{1}$ and $y_{1}$ being the coördinates of the point of tangency.
( $\beta$ ) Center of circle not at origin. If the equation of the given circle be

$$
\begin{equation*}
x^{2}+y^{2}+2 G x+2 F y+C=0 \tag{7}
\end{equation*}
$$

then, $P_{1}$ and $P_{2}$ being on this circle,
and

$$
\begin{align*}
& x_{1}^{2}+y_{1}^{2}+2 G x_{1}+2 F y_{1}+C=\tilde{U},  \tag{8}\\
& x_{2}^{2}+y_{2}^{2}+2 G x_{2}+2 F y_{2}+C=0 . \tag{9}
\end{align*}
$$

Subtracting equation (8) from equation (9),

$$
x_{2}^{2}-x_{1}^{2}+2 G\left(x_{2}-x_{1}\right)+y_{2}^{2}-y_{1}^{2}+2 F\left(y_{2}-y_{1}\right)=0
$$

which may be written in the form

$$
\left(y_{2}-y_{1}\right)\left(y_{2}+y_{1}+2 F\right)=-\left(x_{2}-x_{1}\right)\left(x_{2}+x_{1}+2 G\right)
$$

whence,

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=-\frac{x_{2}+x_{1}+2 G}{y_{2}+y_{1}+2 G} .
$$

Substituting this result in equation (2) gives

$$
\begin{equation*}
y-y_{1}=-\frac{x_{2}+x_{1}+2 G}{y_{2}+y_{1}+2 b^{\prime}}\left(x-x_{1}\right) \tag{10}
\end{equation*}
$$

as the equation of the secant through the two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the circle ( 7 ). If, now, the point $\left(x_{2}, y_{2}\right)$ moves along the curve until it comes into coincidence with $\left(x_{1}, y_{1}\right)$, this secant line becomes a tangent, and its equation is

$$
\begin{equation*}
y-y_{1}=-\frac{x_{1}+G}{y_{1}+b^{\prime}}\left(x-x_{1}\right) \tag{11}
\end{equation*}
$$

Clearing equation (11) of fractions, and transposing, it may bo written thus:

$$
\begin{equation*}
x_{1} x+y_{1} y+G x+F y=x_{1}^{2}+y_{1}^{2}+G x_{1}+F y_{1} ; \ldots \tag{12}
\end{equation*}
$$

but, by equation (8), the second member of equation (12) equals

$$
-G x_{1}-F y_{1}-C
$$

Putting this value for the second member in equation (12), and transposing, that equation becomes

$$
x_{1} x+y_{1} y+G\left(x+x_{1}\right)+F\left(y+y_{1}\right)+C=0, \ldots[36]
$$

which is the required equation of the tangent to the circle ( 7 ), $x_{1}$ and $y_{1}$ being the coördinates of the point of contact.*

Notr. Equation [36] may be easily remembered if it be observed that it differs from the equation of the circle [equation ( $\bar{i}$ )] only in having $x_{1} x, y_{1} y, x+x_{1}$, and $y+y_{1}$ in place of $x^{2}, y^{2}, 2 x$, and $2 y$, respectirely. It will be found later that any equation of the second degree (from which the xy-term is alsent) bears this same relation to the equmlion of a tangent to its locns, $x_{1}$ and $y_{1}$ being the coürdinates of the point of contact. Compare, also, equation [35] with equation (1).

It must also be earefully kept in mind that equations [35] and [30] mprowent tangents only if $\left(x_{1}, y_{1}\right)$ is a point on the circle. It will be seen later that these equations represent other lines if $\left(x_{1}, y_{1}\right)$ is not on the circle.
85. Equation of a normal to a given circle. By definition (Art. 81) the normal at a given point, $P_{1} \equiv\left(x_{1}, y_{1}\right)$, on any

[^28]curve is the line through $P_{1}$, and perpendicular to the tangent at $P_{1}$. Hence, to get the equation of the normal at any given point, it is only necessary to write the equation of the tangent at this point (Art. 84), and then the equation of a line perpendicular to this tangent (Arts. 53, 62) and passing through the given point. Thus the equation of the normal to the circle
\[

$$
\begin{equation*}
x^{2}+y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

\]

at the point $P_{1} \equiv\left(x_{1}, y_{1}\right)$, is

$$
\begin{equation*}
y-y_{1}=\frac{y_{1}+F}{x_{1}+G}\left(x-x_{1}\right) \tag{2}
\end{equation*}
$$

The coördinates $-G$ and $-F^{\prime}$ of the center of the given circle (1) satisfy equation (2); hence, every normal to a circle passes through the center of the circle.

If the center of the circle be at the origin, then $G=0$, $F=0$, and $C=-r^{2}$, and the equation (2) of the normal becomes

$$
\begin{equation*}
y-y_{1}=\frac{y_{1}}{x_{1}}\left(x-x_{1}\right) \tag{3}
\end{equation*}
$$

which reduces to $x_{1} y-x y_{1}=0$, -an equation which could have been derived for the circle $x^{2}+y^{2}=r^{2}$ in precisely the same way that equation (2) was derived from equation (1).

## EXERCISES

1. Derive, by the secant method, the equation of the tangent to the circle $x^{2}+y^{2}=2 r x$, the point of contact being $P_{1} \equiv\left(x_{1}, y_{1}\right)$.
2. Write the equation of the tangent to the circle:
(a) $x^{2}+y^{2}=25$, the point of contact being $(3,4)$;
( $\beta$ ) $x^{2}+y^{2}-3 x+10 y=15$, the point of contact being $(4,-11)$;
( $\gamma$ ) $(x-2)^{2}+(y-3)^{2}=10$, the point of contact being $(5,4)$;
( $\delta) 3 x^{2}+3 y^{2}-2 y-4 x=0$, the point of contact being $(0,0)$.
3. Find the eqnation of the normal to each of the circles of Ex. i, throagh the given peitat.
4. A tapgent is perpendicular to the radius drawn to fte point of contact. By means of this fact, derive the equation of the tangent to the circle $(x-a)^{2}+(y-b)^{2}=r^{2}$ at the point $\left(x_{1}, y_{1}\right)$ (ef. equation [36]).
5. From the fact that a normal to a circlo panses through its center, find the expuation of the normal to the circle $x^{2}+y^{2}-6 x+8 y+21=0$ at the point $(1,-4)$.
6. Find the equations of the two tangents, drawn through the external point $(11,3)$ to the circle $x^{2}+y^{2}=40$.

Stogkstios. Use the equation of the tangent in terms of its slope.
7. What is the equation of the circle whome center is at the point $(5,3)$, and which touches the line $3 x+2 y-10=0$ ?
8. Under what condition will the line $\frac{x}{a}+\frac{y}{b}=1$ touch the circle $x^{2}+y^{2}=r^{2}$ ?
9. Find the equation of a circle inscribed in the triangle whose sides are the lines $x=0, y=0$, and $\frac{x}{a}+\frac{y}{b}=1$.
10. Solve Ex. 6 by assuming $x_{1}$ and $y_{1}$ as the coördinates of the point of contact, and then finding their numerical ralues from the two equatimus which they satisfy.
86. Lengths of tangents and normals. Subtangents and subnormals. The tangent and normal lines of any curve extend indefinitely in both directions ; it is, however, convenient to consider as the length of the tangent the length $T P_{1}$, measured from the point of intersection ( $T$ ) of the tangent with the $x$ axis to the point of tangency
 $\left(P_{1}\right)$, and similarly to consider as the length of the normal the length $P_{1} N$, measured from $P_{1}$ to the point of intersection $(N)$ of the normal with the $x$-axis.

The subtangent is the length $T M$, where $M$ is the foot of the ordinate of the point of tangency $P_{1}$; and the subnormal is the corresponding length $M N$. As thus taken, the sub)tangent and the subnormal are of the same sign ; ordinarily, however, one is concerned merely with their absolute values, irrespective of the algebraic sign. The subtangent is the projection of the tangent length on the $x$-axis, and the subnormal is the like projection of the normal length.
87. Tangent and normal lengths, subtangent and subnormal, for the circle. The definitions given in the preceding article furnish a direct method for finding the tangent and normal lengths, as well as the subtangent and subnormal, for a circle. E.g., to find these values for the circle $x^{2}+y^{2}=25$, and correspond-
 ing to the point of contact $(3,4)$, proceed thus:

The equation of the tangent $P_{1} T$ is (Art. 84)

$$
3 x+4 y=25
$$

hence the $x$-intercept of this tangent, i.e., $O T,=\frac{25}{3}$; therefore the subtangent $T M$, which equals $O M-O T$, is $3-\frac{25}{3}$, i.e., $-5 \frac{1}{3}$. The tangent length

$$
T P_{1}=\sqrt{M T^{2}+M P_{1}^{2}}=\sqrt{\left(\frac{16}{3}\right)^{2}+4^{2}}=6 \frac{2}{3}
$$

To find the normal length, and the subnormal, first write the equation of the nomal at the point $(3,4)$; it is (Art. 85) $4 x-3 y=0$. Hence its $x$-intercept is zero, and the subnormal, $M O$ in this case, is -3 ; the normal length $P_{1} O$ is 5 .

Similarly, corresponting to the puint $\left(r_{1}, y_{1}\right)$ on the circle $x^{2}+y^{2}=r^{2}$, the subtangent $=-\frac{y_{1}^{2}}{x_{1}}$, the tangent length $=\frac{r y_{1}}{x_{1}}$, the subnormal $=-x_{1}$, and the normal length $=r$. The derivation of these values is left as an exercise for the student, as is also the derivation of the corresponding expressions for the circle $x^{2}+y^{2}+2 G x+2 F y+C=0$, the point of contact being $\left(x_{1}, y_{1}\right)$.

## EXERCISES

Find the lengths of the tangent, subtangent, normal, and subnormal,

1. for the point $(4,-11)$ on the circle $z^{2}+y^{2}-3 z+10 y=15$;
2. for the point $(1,3)$ on the circle $x^{2}+y^{2}-10 x=0$;
3. For the point whose abscissa is $\sqrt{7}$ on the circle $x^{2}+y^{2}=25$.
4. The subtangent for a certain point on a circle, whose center is at the origin, is $3 \mathfrak{j}$, and its subnormal is 3 . Find the equation of the circle, and the point of tangency.
5. To find the length of a tangent from a given external point to a given circle. Let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ be the given external point, and let

$$
x^{2}+y^{2}+2 G x+2 F y+C=0
$$

be the given circle. The center of this circle (Art. 79) is $\left(-G,-F^{\prime}\right)$, and its radius is $\sqrt{G^{2}+F^{2}-C}$. Join $P_{1}$ to the center $K$, draw the tangent $P_{1} Q$, and also the radius $K Q$. Then $\overline{P_{1} Q^{2}}=\overline{K P_{1}^{2}}-\overline{K Q^{2}}$; but

$$
K P_{1}^{2}=\left(x_{1}+G\right)^{2}+\left(y_{1}+F\right)^{2}
$$ (Art. 26)

and

$$
\begin{equation*}
\overrightarrow{h^{\prime} V^{2}}=G^{2}+F^{2}-C ; \tag{Art.79}
\end{equation*}
$$

$$
\begin{aligned}
\therefore \quad \bar{P}_{1} Q^{2} & =\left(x_{1}+G\right)^{2}+\left(y_{1}+F\right)^{2}-\left(G^{2}+F^{\prime 2}-C\right) \\
& =x_{1}^{2}+y_{1}^{2}+2 G x_{1}+2 F y_{1}+C,
\end{aligned}
$$

i.e., the square of the length of the tangent from a given external point to the circle $x^{2}+y^{2}+2 G x+2 F y+C=0$ * is obtained by writing the first member only of this equation, and substituting in the coördinates of the given point. $\dagger$
89. From any point outside of a circle two tangents to the circle can be drawn. (a) Let the equation of the circle be

$$
\begin{equation*}
x^{2}+y^{2}=r^{2} \tag{1}
\end{equation*}
$$

then (Art. 83) the line

$$
\begin{equation*}
y=m x+r \sqrt{1+m^{2}} \tag{2}
\end{equation*}
$$

is, for all values of $m$, tangent to this circle. Let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ be any given point outside the circle (1); then the tangent (2) will pass through $P_{1}$ if, and only if, $m$ be given a value such that the equation
shall be satisfied.

$$
\begin{equation*}
y_{1}=m x_{1}+r \sqrt{1+m^{2}} \tag{3}
\end{equation*}
$$

Transposing, squaring, and rearranging equation (3), it is clear that it will be satisfied if, and only if, $m$ is given a value such that the equation

$$
\left(r^{2}-x_{1}^{2}\right) m^{2}+2 x_{1} y_{1} m+r^{2}-y_{1}^{2}=0
$$

is satisfied ; i.e., equation (3) is satisfied if, and only if,

$$
\begin{equation*}
m=\frac{-x_{1} y_{1} \pm r \sqrt{x_{1}^{2}+y_{1}^{2}-r^{2}}}{r^{2}-x_{1}{ }^{2}} \tag{4}
\end{equation*}
$$

Equation (4) gives two, and only two, real values for $m$ when $\left(x_{1}, y_{1}\right)$ is outside of the circle, for then $x_{1}^{2}+y_{1}^{2}-r^{2}$ is

[^29]praitive (Art. 78, foot-note) ; these values of $m$, being substituted in turn in equation (2), give the two tangents through $P_{1}$ to the circle (1).

If $P_{1}$ is on the circle (1), then $x_{1}{ }^{2}+y_{1}{ }^{2}-r^{2}=0$; hence the two values of $m$ from equation ( $t$ ) coincide, and the two tangents also coincide, i.e., there is in this case but one tangent. If $P_{1}$ is within the circle, then the two values of $m$ from equation (4) are both imaginary and no tangent through $P_{z}$ can be drawn to the circle (1).*

If either value of $m$ from equation ( 4 ) is substituted in equation (2), and then equations (2) and (1) are considered as simultaneous and solved for $x$ and $y$, the coordinates of the corresponding point of contact are obtained.

Nots. The properties of the equations of the line and circle have thus established a geometric property of the circle [cf. Art. 31, (III)].
$(\beta)$ If the equation of the given circle had been

$$
\begin{equation*}
x^{2}+y^{2}+2 G x+2 F y+C=0 \tag{5}
\end{equation*}
$$

it could, by Art. 71, have been transformed to new axes through its center ( $-\boldsymbol{G},-\boldsymbol{F}$ ) and parallel respectively to the given axes; its equation would thus have become

$$
\begin{equation*}
x^{\prime 2}+y^{\prime 2}=r^{3} \tag{6}
\end{equation*}
$$

where $x^{\prime}$ and $y^{\prime}$ refer to the new axes.
This transformation, however, leaves the circle and all its intrinsic properties unchanged ; but (a) applies to circle (6). hence it is proved that circle (5), which is circle (6) merely referred to other axes, has the same properties.

[^30]90. Chord of contact. If two tangents are drawn from any external point to a circle, the line joining the two corresponding points of tangency is called the chord of contact for the point from which the tangents are drawn.

The equation of this chord of contact may be found by first finding the points of tan-
 gency and then writing the equation of the straight line through those two points. It may, however, be found more briefly, and much more elegantly, as follows:

Let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ be the given external point from which the two tangents are drawn; and let $T_{2} \equiv\left(x_{2}, y_{2}\right)$ and $T_{3} \equiv\left(x_{3}, y_{3}\right)$ be the points of tangency on the circle

$$
\begin{equation*}
x^{2}+y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

it is required to find the equation of the line passing through $T_{2}$ and $T_{8}$. The equation of the tangent at $T_{2}$ is (Art. 84)

$$
x_{2} x+y_{2} y+G\left(x+x_{2}\right)+F\left(y+y_{2}\right)+C=0, \ldots \text { (2) }
$$

and the equation of the tangent at $T_{3}$ is

$$
\begin{equation*}
x_{3} x+y_{3} y+G\left(x+x_{3}\right)+F\left(y+y_{3}\right)+C=0 . \tag{3}
\end{equation*}
$$

But each of these tangents passes through the point $P_{1}$; hence its coördinates, $x_{1}$ and $y_{1}$, satisfy equations (2) and (3), therefore

$$
\begin{align*}
&  \tag{4}\\
&  \tag{5}\\
& \text { and } x_{2}+y_{1} y_{2}+G\left(x_{1}+x_{2}\right)+F\left(y_{1}+y_{2}\right)+C=0, \ldots \\
& x_{1} x_{8}+y_{1} y_{3}+G\left(x_{1}+x_{3}\right)+F\left(y_{1}+y_{3}\right)+C=0 \ldots
\end{align*}
$$

Equations (4) and (5), however, assert respectively that $\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are points on the locus of the equation

$$
\begin{equation*}
x_{1} x+y_{1} y+G\left(x_{1}+x\right)+F\left(y_{1}+y\right)+C=0 \ldots \tag{6}
\end{equation*}
$$

But equation (6) is of the first degree in the two varinbles $x$ and $y$, hence (Art. 57 ) its locus is a straight lise, ant, since it passes through both $T_{2}=\left(x_{2}, y_{2}\right)$ and $T_{3}=\left(x_{3}, y_{3}\right)$, it is the equation of the chord of contact ;
i.e., $\quad x_{1} x+y_{1} y+G\left(x+x_{1}\right)+F\left(y+y_{1}\right)+C=0 \ldots[3 i]$
is the equation of the chord of contact corresponding to the external point $P_{1} \equiv\left(x_{1}, y_{1}\right)$.

It is to be noticed that if $P_{1}$ is on the circle, then the two tangents drawn through it coincide with each other and with the chord of contact; the equation of the chord of contact [37] then becomes the equation of the tangent at $P_{1}$, as it should (cf. equation [36]).

If, then, $\left(x_{1}, y_{1}\right)$ is a point on the circle (1), equation [3i] is the equation of the tangent to the circle at that point ; if, on the other hand, $\left(x_{1}, y_{1}\right)$ is outside of this circle, then equation [37] is not the equation of a tangent, but of the chord of contact corresponding to that external point.

## EXERCISES

1. Find the length of the tangent from the point $(8,10)$ to the circles:
(a) $x^{2}+y^{2}-3 x=0$;
( $\beta$ ) $2 x^{2}+2 y^{2}=5 y+6$.
2. (a) Write the equation of the chord of contact corresponding to the point $(5,6)$ for the circle $x^{2}+y^{2}-6 x-4 y=1$.
$(\beta)$ Find the coordinates of the points in which this chord cuts the sircle.
$(\gamma)$ Write the equations of the tangents to the circle at these points of intersection; show that these lines pass through the given point $(5,6)$.
3. By the method of exercise 2, find the equations of the tangents drawn to the circle $(3 x-2)^{2}+(3 y+5)^{2}=4$, from the origin; from the point (1, 2).
4. Find the locus of a point from which the tangents drawn to the two circles

$$
2 x^{3}+2 y^{2}-10 x+14 y+35=0 \text { and } x^{2}+y^{2}=9
$$

are of equal length. Show that this locus is a straight line perpendicular to the line joining the centers of the given circles.
5. For what point is the line $3 x+4 y=7$ the chord of contact with regard to the circle $x^{2}+y^{2}=14$ ?
6. Find the chord of contact for the circle $x^{2}+y^{2}=25$, corresponding to the point ( 3,7 ); to the point ( 3,2 ).
7. By means of the equation $y-y_{1}=m\left(x-x_{1}\right)$ prove that two tangents can be drawn through the external point $\left(x_{1}, y_{1}\right)$ to the circle whose equation is $x^{2}+y^{2}=r^{2}$.
8. Solve $(\beta)$ and $(\gamma)$, of exercise 2, by means of the equation

$$
y-6=m(x-5)
$$

91. Poles and Polars. If through any given point. $P_{1} \equiv\left(x_{1}, y_{1}\right)$, outside, inside, or on the circle, a secant is drawn, meeting the circle in two
 points, as $Q$ and $R$, and if tangents are drawn at $Q$ and $R$, they will intersect in some point as

$$
P^{\prime} \equiv\left(x^{\prime}, y^{\prime}\right)
$$

The locus of $P^{\prime}$, as the secant revolves about $P_{1}$, is called the polar of $P_{1}$ with regard to the circle; and $P_{1}$ is the pole of that locus. It will be proved in the next article that the locus of $P^{\prime}$ is a straight line whose equation is of the same form as that of the tangent (Art. 8t), and as that of the chord of contact (Art. 90) already found.
92. Equation of the polar. Let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ be the given point, the equation of whose polar, with regard to the circle

$$
\begin{equation*}
x^{2}+y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

is sought. Also let $P_{1} Q R$ be any position of the secant through $P_{1}$, and let the tangents at $Q$ and $R$ intersect in $P^{\prime} \equiv\left(x^{\prime}, y^{\prime}\right)$; then the equation of $P_{1} Q R$ (Art. 90) is

$$
\begin{equation*}
x^{\prime} x+y^{\prime} y+G\left(x+x^{\prime}\right)+F\left(y+y^{\prime}\right)+C=0 \tag{2}
\end{equation*}
$$

Since $P_{1}$ is on this line, therefore

$$
\begin{equation*}
x_{1} x^{\prime}+y_{1} y^{\prime}+G\left(x_{1}+x^{\prime}\right)+F^{\prime}\left(y_{1}+y^{\prime}\right)+C=0 \ldots \tag{8}
\end{equation*}
$$

Equation (3) asserts that the coorrdinates, $x^{\prime}$ and $y^{\prime}$, of $P^{\prime}$ satisfy the equation

$$
x_{1} x+y_{1} y+G\left(x+x_{1}\right)+F^{\prime}\left(y+y_{1}\right)+C=0 ; \ldots[88]
$$

i.e., this variable point $P^{\prime}$ always lies on the locus of equation [38]; in other words, [38] is the equation of the polar of $P_{1}$ with regard to the circle (1).

Moreover, since equation [38] is of the first degree in the variables $x$ and $y$, therefore (Art. 5i) its locus is a straight line; that is, the polar of any given point, with regard to any given circle, is a straight line.

That equations [36] and [37] have the same form as equation [38] is due to the fact that the tangent and the chord of contact are only special cases of the polar.
93. Fundamental theorem. An important theorem concerning poles and polars is: If the polar of the point $P_{1}$, with regard to a given circle, pusses through the point $P_{2}$, then the polar of $P_{3}$ passes through $P_{1}$. Let the equation of the given circle be

$$
\begin{align*}
& x^{2}+y^{2}+2 G x+2 F y \\
& \quad+C=0 . \tag{1}
\end{align*}
$$

and let the two given points bo $P_{1}=\left(x_{1}, y_{1}\right)$,
and $P_{3} \equiv\left(x_{2}, y_{3}\right)$;

then (Art. 92) the equation of the polar of $P_{1}$ is

$$
\begin{equation*}
x_{1} x+y_{1} y+G\left(x+x_{1}\right)+F\left(y+y_{1}\right)+C=0 . \tag{2}
\end{equation*}
$$

If this line passes through $P_{2}$, then

$$
\begin{equation*}
x_{1} x_{2}+y_{1} y_{2}+G\left(x_{2}+x_{1}\right)+F^{\prime}\left(y_{2}+y_{1}\right)+C=0 \ldots \tag{3}
\end{equation*}
$$

But the equation of the polar of $P_{2}$ (Art. 92) is

$$
\begin{equation*}
x_{2} x+y_{2} y+G\left(x+x_{2}\right)+F^{\prime}\left(y+y_{2}\right)+C=0, \ldots \tag{4}
\end{equation*}
$$

and equation (3) proves that the locus of equation (t) passes through $P_{1}$, which establishes the theorem.

## EXERCISES

1. Find the polar of the point $(6,8)$ with reference to the circle $x^{2}+y^{2}=14$.
2. Find the polar of the point $(1,2)$ with regard to the circle $x^{2}+y^{2}+4 x-6 y=10$.
3. Find the pole of the line $4 x+6 y=7$, and of the line $a x+b y-1=0$, with regard to the circle $x^{2}+y^{2}=35$.
4. Find the equations of the two tangents to the circle $x^{2}+y^{2}=65$ from the point $(4,7)$; from the point $(11,3)$.
5. Show that if the polar of $(h, k)$ with respect to the circle $x^{2}+y^{2}=c^{2}$ touch the circle $4\left(x^{2}+y^{2}\right)=c^{2}$, then the pole $(h, k)$ will lie on the circle $x^{2}+y^{2}=4 c^{2}$.
6. Show that the pole of the line joining $(5,7)$ and $(-11,1)$ is the point of intersection of the polars of those two points with reference to the circle $x^{2}+y^{2}=100$.
7. Find the pole of the line $2 x-3 y=0$ with respect to the circle $x^{2}+y^{2}=9$.
8. Show what specialization of a polar converts it into a chord of contact, and what further specialization converts it into a tangent.
9. Geometrical construction for the polar of a given point, and for the pole of a given line, with regard to a given circle. Since the relation between a polar and its pole (see def. Art. 91) is independent of the coördinate axes, therefore the given circle may, without loss of generality, be assumed to have its center at the origin.

If $P_{1} \equiv\left(x_{1}, y_{1}\right)$ is any given point, and

$$
\begin{equation*}
x^{2}+y^{2}=r^{2} \tag{1}
\end{equation*}
$$

is a given circle, whose center is at the point 0 , then the equation of $O P_{1}$ (Art. 51) is


Let $L L_{1}$ be the polar of $P_{1}$, with regard to the given direle, and let it meet $O P_{1}$ in $K$. The equation of $L L_{1}$ (Art. 92) is

$$
\begin{equation*}
x_{1} x+y_{1} y=r^{2} \tag{3}
\end{equation*}
$$

Equations (2) and (3) show (Art. 62) that $L L_{1}$ and $O P_{1}$ are perpendicular to each other; i.e., the line joinixg the giren point $P_{1}$ to the center of the circle is perpendicular to the polar of $P_{1}$ with regard to the circle.
The distance (OK) from the origin to the line $L L_{1}$ (Art. 64) is

$$
\begin{equation*}
\frac{r^{3}}{\sqrt{x_{1}^{2}+y_{1}^{2}}}, \tag{4}
\end{equation*}
$$

and the length of $O P_{1}$ (Art. 26) is

$$
\begin{equation*}
\sqrt{x_{1}^{2}+y_{1}^{2}} \tag{5}
\end{equation*}
$$

Wherefore $O K \cdot O P_{1}=\frac{r^{3}}{\sqrt{x_{1}{ }^{2}+y_{1}{ }^{2}}} \cdot \sqrt{x_{1}{ }^{2}+y_{1}{ }^{3}}=r^{2}$.
Hence, to construct, with regard to a given circle, the polar of any given point $P_{1}$, join that point to the center of the circle, then on $O P_{1}$ (produced if necessary) find a point $K$ such that the rectangle $O P_{1} \cdot O K$ is equal to the square
on the radius of the circle, and through $K$ draw a line perpendicular to $O P_{1}$; this line is the required polar.

Similarly the pole may be constructed, if the polar and the circle are given.
95. Circles through the intersections of two given circles. Given two circles whose equations are
and

$$
\begin{align*}
& x^{2}+y^{2}+2 G_{1} x+2 F_{1} y+C_{1}=0  \tag{1}\\
& x^{2}+y^{2}+2 G_{2} x+2 F_{2} y+C_{2}=0 \tag{2}
\end{align*}
$$

These circles intersect, in gencral, in two finite points $P_{1} \equiv\left(x_{1}, y_{1}\right)$ and $P_{2} \equiv\left(x_{2}, y_{2}\right)$, and (Art. 41) the equation $x^{2}+y^{2}+2 G_{1} x+2 F_{1} y+C_{1}$

$$
\begin{equation*}
+k\left(x^{2}+y^{2}+2 G_{2} x+2 F_{2} y+C_{2}\right)=0 \tag{3}
\end{equation*}
$$

where $k$ is any constant, represents a curve which passes through these same points $P_{1}$ and $P_{2}$.

The locus of equation (3) is, moreover, a circle (Art. 79); hence, a series of different values being assigned to the parameter $k$, equation (3) represents what is called a "family" of circles; each one of these circles passing through the two points $P_{1}$ and $P_{2}$ in which the given circles (1) and (2) intersect each other.
96. Common chord of two circles. If in equation (3). Art. 95 , the parameter $k$ be given the particular value -1 , the equation reduces to

$$
\begin{equation*}
2\left(G_{1}-G_{2}\right) x+2\left(F_{1}-F_{2}\right) y+C_{1}-C_{2}=0, \tag{4}
\end{equation*}
$$

which is of the first degree, and therefore represents a straight line ; but this locus belongs to the family represented by equation (3) of Art. 95, hence it passes through the two points $P_{1}$ and $P_{2}$ in which the circles (1) and (2) intersect. This line (4) is, therefore, the common chord * of these circles.

To obtain the equation of the common chord of two given circlen it is, Lien, only necesary to eliminate the terms in $s^{3}$ and $y^{3}$ between their equationn. E.g., to find the common chord of the circles

$$
\begin{align*}
& 2 x^{3}+2 y^{2}+3 x+3 y-0=0  \tag{a}\\
& 6 x^{2}+6 y^{2}+11 x+13 y-23=0
\end{align*}
$$

and
multiply equation (a) by 3 and subtract the result from equation $(\beta)$; this gives

$$
\begin{equation*}
x-y+2=0 \tag{y}
\end{equation*}
$$

an the equation of the common chord of the given circles.
This renult may be verified by finding the points of intersection (Art.39) of the circles (a) and ( $\beta$ ), and then writing the equation of the straight line through those two points.

Since the common chorl of two circles intenncts each of thene circles in the points in which they intersect each other, therefore the points of intensection of two circles may be found by finding the points in which their common chord intersects either of then. Fig., to find the points in which the circles (a) and ( $\beta$ ) intersect each other, it is only nmossary to find the points in which $(\gamma)$ cuts either $(\alpha)$ or $(\beta)$.
97. Radical axis; radical center. The line whose equation is ohtained by eliminating the $x^{3}$ and $y^{3}$ terms between the equations of two given circles, as in Art. 96, whether the circles intersect in real points or not, is called the radical axis of the two circles. If the two given circles intersect each other in real points, then this line is also called their common chord ; that is, the common chord of two circles is a special case of the radical axis of two circles.

- Eiquation (3) of Art. $90^{\circ}$, which for every value of 4 representa a circle Fraing through the two points In which the given circles (1) and (2) interFich, may be written in the form

$$
x^{2}+y^{3}+2 \frac{G_{1}+k C_{2}}{1+k} x+2 \frac{F_{1}+k F_{3}}{1+k} y+\frac{C_{1}+k C_{3}}{1+k}=0 .
$$

The coordinates of the center of this circle are ( 1 Irt i9)

$$
-\frac{G_{1}+k \cdot G_{2}}{1+k} \text { and }-\frac{F_{1}+k \cdot F_{3}}{1+k} .
$$

If then t be made to approach -1 , both of these corrdinates approach infinity, but the circle always passes through the two fixed puints in which the given circles intersect ; hence the common chonl of two given circles may be regarted as an infinitely large circle whose center is at infinity.

Three circles, taken two and two, have three radical axes. It is easily shown that these three radical axes pass through a common point ; this point is called the radical center of the three circles.

## EXERCISES

1. Find the equation of the common chord of the circles

$$
x^{2}+y^{2}-3 x-5 y-8=0, x^{2}+y^{2}+8 x=0 .
$$

2. Find the points of intersection of the circles in exercise 1 , and the length of their common chord.
3. Find the radical axis, and also the length of the common chord, for the circles $x^{2}+y^{2}+a x+b y+c=0, x^{2}+y^{2}+b x+a y+c=0$.
4. Find the radical center of the three circles

$$
\begin{gathered}
x^{2}+y^{2}+4 x+7=0, \\
2\left(x^{2}+y^{2}\right)+3 x+5 y+9=0, \\
x^{2}+y^{2}+y=0 .
\end{gathered}
$$

5. Show that tangents from the radical center, in exercise 4 , to the three circles, respectively, are equal in length.
6. Prove analytically that the tangents to two circles from any point on their radical axis are equal.
7. Find the polar of the radical center of the circles in exercise 4, with respect to each circle.
8. Prove analytically that the three radical axes of three circles, the circles being taken in pairs, meet in a common point.
9. The equation of a circle : polar coördinates. Let $O R$ be the initial line, $O$ the pole, $C \equiv\left(\rho_{1}, \theta_{1}\right)$ the center of the circle, $r$ its radius, and $P \equiv(\rho, \theta)$
 any point on the circle. Draw $O C$, $O P$, and $C P$; then, by trigonometry, $r^{2}=\rho^{2}+\rho_{1}^{2}-2 \rho \rho_{1} \cos \left(\theta-\theta_{1}\right)$, i.e., $\rho^{2}-2 \rho_{1} \rho \cos \left(\theta-\theta_{1}\right)$

$$
+\rho_{1}^{2}-r^{2}=0, \ldots[39]
$$

which is the equation of the given circle.

Depending upon the relative positions of the polar axis, the pole, and the center of the circle, equation [39] has several special forms :
(a) If the eenter is on the polar axis, then $\theta_{1}=0$, and quation [39] becomes

$$
\rho^{2}-2 \rho_{1} \rho \cos \theta+\rho_{1}^{2}-r^{2}=0 ;
$$

( $\beta$ ) If the pole is on the circle, then $\rho_{1}=r$, and equalion [39] becomes

$$
\rho-2 r \cos \left(\theta-\theta_{1}\right)=0 ;
$$

$(\gamma)$ If the pole is on the circle and the polar axis a diameter, then $\rho_{1}=r$ and $\theta_{1}=0$, and equation [39] becomes

$$
\rho-2 r \cos \theta=0
$$

( $\delta$ ) If the center is at the pole, then $\rho_{1}=0$ and equation [89] becomes

$$
\rho=r
$$

99. Equation of a circle referred to oblique axes. Let the axes $O X$ and $O Y$ be inclined at an angle $\omega$; let $C \equiv(h, k)$ be the center of the circle, $r$ its radius, and $P=(x, y)$ any point on the circle. Draw the ardinates $M_{1} C$ and $M P$, connect $C$ and $P$, and draw $C H L$ parallel to the $x$-axis ; then

$$
C P^{2}=C H^{2}+H P^{2}
$$

$$
+2 C H \cdot H P \cos \omega
$$

hence $r^{2}=(x-h)^{2}+(y-k)^{2}+2(x-h)(y-k) \cos \omega$, i.e.. $(x-h)^{2}+(y-k)^{2}+2(x-h)(y-k) \mathrm{cos} \omega-r^{2}=0 ; \ldots[40]$ which is the equation of the given circle.

It is to be observed that this equation [40] is not of the form

$$
x^{2}+y^{2}+2 G x+2 F y+C=0
$$

which was discussed in Art. 79 ; it differs from that equation in that it contains an $x y$-term. If, however, the axes are rectangular, as in Art. 79, then $\cos \omega=0$, and equation [ 40 ] reduces to the standard form of Art. 79, viz.:

$$
x^{2}+y^{2}+2 G x+2 F y+C=0,
$$

which is a special case of equation [40].
100. The angle formed by two intersecting curves. By the angle between two intersecting curves is meant the angle formed by the two tangents, one to each curve, drawn through the point of intersection.

Hence to find the angle at which two curves intersect, it is only necessary to find the point of intersection, then to find the equations of the tangents at this point, one to each curve, and finally to find the angle formed by these tangents.

## EXERCISES

1. Find the polar equation of the circle whose center is at the point $\left(7, \frac{\pi}{4}\right)$ and whose radius is 10 ; determine also the points of its intersection with the initial line.
2. Find the polar equation of a circle whose center is at the point $\left(15, \frac{\pi}{2}\right)$ and whose radius is 10 . Find also the equations of the tangents to the circle from the pole.
3. A circle of radius 3 is tangent to the two radii vectores which make the angles $60^{\circ}$ and $120^{\circ}$ with the initial line: find its polar equation, and the distance of the center from the origin.
4. Find the equation of a circle of radius 5 , with center at the point $(2,3)$, if $\omega$ is $60^{\circ}$.
5. Find the equation of a circle of radius 2 , with center at the origin, if $\omega$ is $120^{\circ}$.
6. Deternine the equation of the circle circumseribing an equilatoral triangle, - the courdiuato axes being two sides of the triangle.
7. A circle is inseribed in a square. What is ite equation, if a sidfo and adjacent diagonal of the muare are chowen as the y - and raxin, rempetirely? What are the coobrdinates of the point of tangency?
8. Find the angle at which the circle $x^{2}+y^{2}=0$ internects the circle $(x-4)^{2}+y^{2}-2 y=15$. At what angle does the socond of these circles meet the line $x+2 y=4$ ?

## EXAMPLES ON CHAPTER VII

1. Find the equation of the cirele cireumscribing the triangle whose vartices are at the points $(7,2),(-1,-4)$, and $(3,3)$. What is its center? its radius?
2. Determine the center of the circle

$$
(x+a)^{2}+(y+b)^{2}=a^{2}+b^{2} .
$$

What family of circles is represented by this equation, if $a$ and $b$ vary under the one restriction that $a^{2}+b^{2}$ is to remain constant?
3. What must be the relations among the coefficients in order that the circles
and

$$
x^{3}+y^{2}+2 G_{1} x+2 F_{1} y+C_{1}=0
$$

thall be concentrio? that they shall have equal areas?
4. Under what limitations upon the coefficients is tha circle

$$
A x^{2}+A y^{2}+D x+E y+F=0
$$

tangent to each of the axes?
5. Find the equation of the circle which has its center on the $x$-axis, and which passes through the origin and also through the point $(2,3)$.
6. Find the points of intersection of the two circles

$$
x^{3}+y^{2}-4 x-2 y-31=0 \text { and } x^{2}+y^{2}-4 x+2 y+1=0 .
$$

7. Circles are drawn having their centers at the vertices of the trianglo $(7,2),(-1,-4)$ and $(3,3)$, respectively, and each passing through the center of a fourth circle which circumseribes this triangle; find their muations, their common chorts, and their radical center.
8. Circles having the sidea of the triangle $(7,2),(-1,-4),(3,8)$ as dismeters are drawn; find their equations, their radical axes, and their relical center.
9. Find the equation of the circle passing through the origin and the point $\left(x_{1}, y_{1}\right)$, and having its center on the $y$-axis.
10. The point $(3,-5)$ bisects a chord of the circle $x^{2}+y^{2}=277$; find the equation of that chord.
11. A circle tonches the line $4 x+2 y+5=0$ at the point $(-3,3)$ and passes through the point $(5,9)$; find its equation.
12. A circle, whose center coincides with the origin, touches the line $7 x-11 y+2=0$; find its equation.
13. At the points in which the circle $x^{2}+y^{2}-a x-b y=0$ cuts the axes, tangents are drawn; find the equations of these tangents.
14. A circle, whose radius is $\sqrt{74}$, touches the line $5 y=7 x-1$ at the point $(8,11)$; find the equation of this circle.
15. A circle is inscribed in the triangle ( $3,-2$ ), ( 3,3$),(3,3)$; find its equation; find also the equations of the polars of the three vertices with regard to this circle.
16. Through a fixed point $\left(x_{1}, y_{1}\right)$ a secant line is drawn to the circle $x^{2}+y^{2}=r^{2}$; find the locus of the middle point of the chord which the circle cuts from this secant line, as the secant revolves about the given fixed point ( $x_{1}, y_{1}$ ).
17. Prove analytically that an angle inscribed in a semicircle is a right angle.
18. Prove analytically that a radius drawn perpendicular to a chord of a circle bisects that chord.
19. Show that the distances of two points from the center of a circlo are proportional to the distances of each from the polar of the other.
20. Two straight lines touch the circle $x^{2}+y^{2}-5 x-3 y+6=0$, one at the point $(1,1)$ and the other at the point $(2,3)$; find the pole of the chord of contact of these tangents.
21. Find he condition among the coefficients that must be satisfied if the circles

$$
x^{2}+y^{2}+2 G_{1} x+2 F_{1} y=0 \text { and } x^{2}+y^{2}+2 G_{2} x+2 F_{2} y=0
$$

shall touch each other at the origin.
22. Determine $F$ and $C$ so that the circle

$$
x^{2}+y^{2}+20 x+2 F y+C=0
$$

shall cut each of the circles

$$
x^{2}+y^{2}-4 x-2 y+4=0 \text { and } x^{2}+y^{2}+4 x+2 y=1
$$

at right angles (cf. Art. 100).
23. Given the two circlen

$$
x^{2}+y^{3}-4 x-2 y+4=0 \text { and } x^{2}+y^{3}+4 x+2 y-4=0
$$

find the equations of their common tangenta.
24. Find the radical axis of the circles in example 23 ; show that it is perpendicular to the line joining the centers of the giren circles, and find the ratio of the lengths of the segments into which the radical axis divides the line joining the centers. How is this ratio related to thes rutii of the circles? Is this relation true for any pair of circles whatever?
25. Given the three circles:

$$
x^{3}+y^{3}-16 x+60=0, \quad 3 x^{2}+3 y^{2}-36 z+81=0
$$

and

$$
x^{2}+y^{2}-10 x-12 y+84=0
$$

find the point from which tangents drawn to these three circles are of efual length, also find that length. How is this point related in position to the radioal center of the given circles? Prove that this relation is the same for any three circles.
26. Find the locus of a point which moves so that the length of the tangent, drawn from it to a fixed circle, is in a constant ratio to the distance of the moving point from a given fixed point.
27. Let $P$ be a fixed point on a given circle, $T$ a point moving aloug the circle, and $Q$ the point of intersection of the tangent at $T$ with the perpendicular upon it from $P$; find the locus of $Q$.

Suciekstion. Use polar coördinatea, $P$ being the pole, and the diaineter through $P$ the initial line.
28. Find the length of the common chord of the two circles

$$
(x-a)^{2}+(y-b)^{2}=r^{2} \text { and }(x-b)^{2}+(y-a)^{2}=r^{2}
$$

From this find the condition that these circles shall tonch each other.
29. If the axes are inclined at $60^{\circ}$, prove that the equation

$$
x^{2}+x y+y^{2}-4 x-5 y-2=0
$$

represents a circle; find its radius and center.
30. What is the obliquity of the axes if the equation

$$
x^{2}+\sqrt{3} x y+y^{2}-4 x-6 y+6=0
$$

represents a circle? What is its radius?
31. For what point on the circle $x^{2}+y^{2}=9$ are the subtangent and the subnormal of equal length? the tangent and normal? the tangent and subtangent?
32. An equilateral triangle is inscribed in the circle $x^{2}+y^{2}=4$ with its base parallel to the $x$-axis; through its vertices tangents to the circle are drawn, thus forming a circumscribed triangle; find the equations, and the lengths, of the sides of each triangle.
33. The poles of the sides of each triangle in example 32 are the vertices of a triangle; find the equations of its sides, and draw the figure.
34. A chord of the circle $x^{2}+y^{2}-22 x-4 y+25=0$ is of length $4 \sqrt{5}$, and is parallel to the line $2 x+y+7=0$; find the equation of the chord, and of the normals at its extremities.
-35. Find the equation of a circle through the intersection of the circles $x^{2}+y^{2}-4=0, x^{2}+y^{2}-2 x-4 y+5=0$, and tangent to the line $x+y-3=0$.
36. The length of a tangent, from a moving point, to the circle $x^{2}+y^{2}=6$ is always twice the length of the tangent from the same point to the circle $x^{2}+y^{2}+3(x+y)=0$. Find the equation of the locus of the moving point.
37. Find the locus of the vertex of a triangle having given the base $=2 a$, and the sum of the squares of its sides $=2 b^{2}$.
38. Find the locus of the middle points of chords drawn through a fixed point on the circle $x^{2}+y^{2}=a^{2}$.
39. Through the external point $P_{1} \equiv\left(x_{1}, y_{1}\right)$, a line is drawn meeting the circle $x^{2}+y^{2}=a^{2}$ in $Q$ and $R$; find the locus of middle point of $P_{1} Q$ as this line revolves about $P_{1}$.
40. A point moves so that its distance from the point $(1,3)$ is to its distance from the point $(-4,1)$ in the ratio $2: 3$. Find the equation of its locus.
41. Do the circles

$$
4 x^{2}+4 y^{2}+4 x-12 y+1=0 \quad \text { and } \quad 2 x^{2}+2 y^{2}+y=0
$$

intersect? Show in two ways.
42. Find the equation of a circle of radius $\sqrt{85}$ which passes through the points $(2,1)$ and $(-3,4)$.
43. What are the equations of the tangent and the normal to the circle $x^{2}+y^{2}=13$, -these lines passing through the point $(2,-3)$ ? through the point $(0,6)$ ?
44. Find the equations of the tangents through $(2,3)$ to the circle

$$
9\left(x^{2}+y^{2}\right)+6 x-12 y+4=0
$$

45. At what angle do the circles $z^{2}+y^{3}+6 z-2 y+5=0$ and $e^{4}+y^{2}+4 z+2 y-5=0$ internect each other?
46. A diameter of the circle $4 x^{3}+4 y^{3}+8 x-12 y+1=0$ panes through the point $(1,-1)$. Find its equation, and the equation of tie chords which it bisects.
47. Find the locus of a proint such that tangents from it to two cononstric circles are invernely proportional to tho radii of the circlea.
48. Find the locus of a point which moven so that its distances from two fixed points are in constant ratio 4 . Discuss the locus and draw the figure.
49. A point moves so that the square of its distance from the have of an insoceles triangle is equal to the product of its distances from the ether two sides. Show that the locus is a circle.
50. Prove that the two circles

$$
x^{2}+y^{2}+2 C_{1} x+2 F_{1} y+C_{1}=0 \text { and } x^{2}+y^{2}+2 G_{2} x+2 F_{y} y+C_{2}=0
$$

are concentric if $G_{1}=C_{3}$ and $F_{1}=F_{3}$; that they are tangent to each other if

$$
\sqrt{\left(F_{1}-G_{3}\right)^{2}+\left(F_{1}-F_{2}\right)^{2}}=\sqrt{G_{1}^{2}+F_{1}^{2}-C_{1}} \pm \sqrt{G_{3}^{2}+F_{3}^{3}-C_{3}}
$$

and find the condition among the constants that these circles intersect urthongonally, i.e., at right angles to each other.

## CHAPTER VIII

## THE CONIC SECTIONS

101. In Art. 48, which should now be carefully re-read, a conic section was defined; its general equation was derived; its three species, viz., the parabola, ellipse, and hyperbola, were mentioned; and a brief discussion of the nature and forms of the curve was given. In the present chapter, each of these three species will be examined somewhat more closely than was done in Chapter IV, and some general theorems concerning its tangents, normals, diameters, chords of contact, and polars will be proved.

The general equation (Art. 48) of the conic section might here be assumed, and the special forms for the parabola, the ellipse, and the hyperbola be derived from it; but, partly as an exercise, and partly for the sake of freedom to choose the axes in the most advantageous ways, the equations will here be re-derived, as they are needed, from the definitions of the curves.

## I. THE PARABOLA

## Special Equation of Second Degree

$$
A x^{2}+2 G x+2 F y+C=0, \text { or } B y^{2}+2 G x+2 F y+C=0
$$

102. The parabola defined, A parabola is the locus of a point which moves so that its distance from a fixed point, called the focus, is equal to its distance from a fixed line,
called the directrix. It is the conic section with ecoentricity $e=1$ ( of. Art. 48).

The equation of a parabola, with any given focus and directrix, can be obtaned directly from this definition.

Fixasprig. To find the equation of the parabola whome directrix is the tine $x-2 y-1=0$, and whose focus is the point $(2,-3)$.
tat $P=(x, y)$ be any point on the parabola(see Fig. 70);
then $\frac{x-2 y-1}{+\sqrt{5}}$ is the distance of $P$ from the directrix (Art. O4),
and $\sqrt{(z-2)^{2}+(y+3)^{2}}$ is the distance of $P$ from the focus (Art. 20);
Lence $\frac{x-2 y-1}{+\sqrt{5}}=\sqrt{(x-2)^{2}+(y+3)^{2}}$, by definition ;
that is,

$$
4 x^{2}+4 x y+y^{2}-18 x+26 y+64=0 ;
$$

which is the required equation.
The equation obtained in this way is not, however, in the most suitable form from which to study the properties of the eurve, but can be simplified by a proper choice of axes. In Art. 48 it was shown that the parabola is symmetrical with respect to the straight line through the focus and perpendicular to the directrix, and that it cuts this line in only one point. If this line of symmetry is taken as the $x$-axis, the equation will have no $y$-term of first degree [cf. Art. 48, eq. (3)]; while if the point of intersection of the curve with this axis be taken as origin, the equation will have no constant term, since the point $(0,0)$ must satisfy the equation. With this choice of axes, the equation of the parabola will reduce to a simple form, which is usually called the first standard equation of the parabola.
103. First standard form of the equation of the parabola. Let $D^{\prime} D$ be the directrix of the parabola, and $\boldsymbol{F}$ its focus;

also let the line $Z F X$, perpendicular to the directrix, be the $x$-axis ; denote the fixed distance $Z F$ by $2 p$, and let $O$, its middle point, be the origin of coördinates; then the line $O Y$, perpendicular to $O X$, is the $y$-axis. Let $P \equiv(x, y)$ be any point on the curve, and draw $L Q P$ perpendicular to $O Y$, also draw the ordinate $M P$, and the line $F P$. The line $F P$ is called the focal radius of $P$.

Then

$$
Z O=O F=p
$$

and the equation of the directrix is $x+p=0$, . . . (1)
while the focus is the point $(p, 0)$.
Again, from the definition of the parabola,

$$
F P=\cdot L P ; \text { [geometric equation }]
$$

but $F P=\sqrt{(x-p)^{2}+y^{2}}$, and $L P=Z O+O M=p+x$;
hence

$$
\sqrt{(x-p)^{2}+y^{2}}=(x+p)
$$

whence

$$
\begin{equation*}
y^{2}=4 p x \tag{41}
\end{equation*}
$$

which is the desired equation.
This first standard form [41] is the simplest equation of the parabola, and the one which will be most used in the subsequent study of the curve. It will be seen later (Chapter XII) that any equation which represents a parabola can be reduced to this form.
104. To trace the parabola $y^{2}=4 p x$. From equation [41] it follows :
(1) That the parabola passes through the point $O$, half way from the directrix to the focus. This point is called the vertex of the curve.
(2) That the parabola is symmetrical with regard to the
$x$-axis; i.e., with regard to the line through the focus perpendicular to the directrix ; this line is called the axis ${ }^{\circ}$ of the eurve.
(3) That $x$ has always the same sign as the constant $p$. i.e., that the entire curve and its focus lie on the same side of a line parallel to the directrix, and midway between the directrix and the focus.
(4) That $x$ may vary in magnitude from 0 to $\infty$, and when $x$ increases, so also does $y$ (numerically); hence the parabola is an open curve, receding indefinitely from its directrix and its axis.

The parabola is then an open curve of one branch which lies on the same side of the directrix as does the focus; when constructed it has the form shown in Fig. 76.
105. Latus rectum. The chord through the focus of a conic, parallel to the directrix, is called its latus rectum. In the figure this chord is $R^{\prime} R$.
Now

$$
R^{\prime} R=2 F R=2 S R=2 Z F=4 p .
$$

Hence the length of the latus rectum of the parabola is $4 p$; that is, it is equal to the coefficient of $x$ in the first standard equation.
106. Geometric property of the parabola. Second standard equation. Equation [41] may be interpreted as stating an intrinsic property of the parabola, - a property which belongs to every point of the parabola, whatever coürdinate axes be chosen. For (see Fig. 76) the equation $y^{2}=4 p x$ gives the geometric relation

$$
\overline{M P^{2}}=4 O F \cdot O M=R^{\prime} R \cdot O M,
$$

or, expressed in words,

[^31]If from any point on the parabola, a perpendicular is drau'n to the axis of the curve, the square on this perpendicular is equivalent to the rectangle formed by the latus rectum and the line from the vertex to the foot of the perpendicular.

This geometric property enables one to write down immediately the equation of the parabola, whenever the axis of the curve is parallel to one of the coördinate axes.
E.g., if the vertex of the parabola is the point $A \equiv(h, k)$, and its axis is parallel to the $x$-axis, as in the figure, let $\boldsymbol{F}$ be the focus and $P \equiv(x, y)$


Fig. 77. be any point on the parabola; draw $M P$ perpendicular to the axis $A K$. Then

$$
\begin{gathered}
\overline{M P^{2}}=4 A F \cdot A M \\
\text { i.e., } \quad(\boldsymbol{y}-\boldsymbol{k})^{2}=4 \boldsymbol{p}(\boldsymbol{x}-\boldsymbol{h}), \cdot[42]
\end{gathered}
$$

which is the equivalent algebraic equation. This may be taken as a second standard form of the equation, representing the parabola with vertex at the point $(h, k)$, with axis parallel to the $x$-axis, and, if $p$ is positive, lying wholly on the positive side of the line $x=h$.

Equation [42] evidently may be reduced to equation [41] by a transformation of coördinates to parallel axes through the vertex $(h, k)$, as the new origin.

Again, suppose the position of the parabola to be that represented in Fig. 78. The vertex is $A \equiv(h, k)$, and the axis of the parabola is parallel to the $y$-axis. Let $P \equiv(x, y)$ he any point on the curve, and draw MP perpendicular to the axis of the curve.
Then

$$
\begin{array}{rlrl}
\overline{M P}^{2} & =4 A F \cdot A M & {[\text { geometric property }]} \\
& =4 p \cdot A M, \quad[\text { here } p \text { is negative }]
\end{array}
$$

whence, substituting the courdinates of $A$ and $P$.

$$
\begin{equation*}
(x-h)^{z}=4 p(y-k) \tag{43}
\end{equation*}
$$

which is another form for the second standard equation of the parabola.


## EXERCISES

Construct the following parabolas, and find their equations:

1. having the focus at the point $(-1,3)$, and for directrix the line $3 x-5 y=2$ (cf. Art. 102) ;
2. having the focus at the origin, and for directrix the line

$$
2 x-y+3=0 ;
$$

3. with the vertex at the origin, and the focus at the point $(3,0)$;
4. with the vertex at the origin, and the focis at the point $(0,-3)$;
5. with the vertex at the print $(-2,5)$, and the focus at the point $(-2,1)$;
6. with the vertex at the point $(-2,-4)$, and the focus at the point ( $1,-4$ ):
7. having the focus at the point ( $2 p, 0$ ), and for directrix the line $x=0$.
8. What is the latus rectum of each of the paraholas of exercises 3 to 8 .
9. Describe the effect produced on the form of a parabola by inereasing or decreasing the length of its latus rectum.
10. Every equation of the form $A x^{2}+2 G x+2 F y+C=0$, or $B y=+2 G x+2 F y+C=0$, represents a parabola whose axis is parallel to one of the coordinate axes.

Equations [41]. [42], and [43] are of the form $B y^{2}+2 G x+2 F y+C=0$, or $A x^{2}+2 G x+2 F y+C=0$ :
that is, each has one and only one term containing the square of a variable, and no term containing the product of the two variables. Conversely, it may be shown that an equation of either of these forms represents a parabola whose axis is parallel to one of the coördinate axes.

A numerical example will first be discussed, by the method which has already been employed in connection with the equation of the circle (Art. 79), and which is applicable also in the case of the other conics. It is the method of reducing the given equation to a standard form, and is analogous to "completing the square" in the solution of quadratic equations.

Example. Given the equation

$$
25 y^{2}-30 y-50 x+89=0,
$$

to show that it represents a parabola; and to find its vertex, focus, and directrix.

Divide both members of the equation by 25 , and complete the square of the $y$-terms; the equation may then be written
that is,

$$
\begin{aligned}
y^{2}-\frac{3}{3} y+\frac{25}{25} & =2 x-\frac{18}{2}+\frac{25}{25}, \\
\left(y-\frac{3}{2}\right. & =2\left(x-\frac{5}{5}\right), \\
\left(y-\frac{8}{5}\right)^{2} & =4 \cdot \frac{1}{2} \cdot\left(x-\frac{3}{3}\right) .
\end{aligned}
$$

whence
Now this equation is in the second standard form (ef. equation [42]), and therefore every point on its locus has the geometric property given in Art. 106; and the locus is a parabola. The vertex is at the point $(\mathrm{B}, \mathrm{b})$; its axis is parallel to the $x$-axis, extending in the positive direction; and, since $p=\frac{1}{2}$, its focus is at the point ( $\{8$,$\} ), and the directrix$ is the line $x=18$.

Consider now the general equation, and apply the same method, taking for example the second form, viz. :

$$
A x^{2}+2 G x+2 F y+C=0 .
$$

Dividing both numbers of the equation by $A$, completing the square of the $x$-terms, and transposing, the equation becomes

$$
x^{2}+2 \frac{G}{A} x+\frac{G^{2}}{\Lambda^{2}}=-2 \frac{F}{A} y-\frac{C}{A}+\frac{G^{2}}{A^{2}},
$$

that is,

$$
\begin{aligned}
& \left(x+\frac{G}{A}\right)^{2}=-\frac{2 F}{A}\left(y-\frac{G^{2}-A C}{2 A F}\right) \\
& \left(x+\frac{G}{A}\right)^{2}=4\left(-\frac{F}{2 A}\right)\left(y-\frac{G^{2}-A C}{2 A F}\right)
\end{aligned}
$$

Comparing this equation with the standard equation [43], it is seen that its locus is a parabola, whose axis is parallel to the $y$-axis, extending in the negative direction if $A$ and $\boldsymbol{P}$ have like signs, and in the positive direction if $A$ and $F$ have unlike signs. Its vertex is at the point $\left(-\frac{G}{A}, \frac{G^{2}-A C}{2 A F}\right)$; and, since $p=-\frac{F}{2 A}$, its focus is at the point

$$
\left(-\frac{G}{A}, \frac{G^{2}-F^{2}-A C}{2 A F}\right)
$$

and its directrix is the line $y=\frac{G^{2}+b^{2}-A C}{2 A F}$.
Note. The transformation just given fails if $A=0$ or if $F=0$, for in that case some of the terms in the last equation are infinite. If. however, $A=0$, the given equation becomes $2 G x+2 F y+C^{\circ}=0$; and, this being of the first degree, represents a straight line. If, on the other hand, $F=0$, the given equation reduces to $A x^{2}+2 G x+C=0$, and represents two straight lines each parallel to the $y$-axis ; they are real and distinct, real and coincident, or imaginary, depending upon the value of $G^{2}-A C$. These lines may be regarded as limiting forms of the parabola (see Chapter XH).

## EXERCISES

Determine the vertex, focus, latus rectum, equation of the directrix and of the axis for each of the following parabolas; also sketch each of the figures :

1. $y^{2}-5 x+4 y-10=0$;
2. $3 x^{2}+12 x+4 y-8=0$;
3. $5 y-1=3 y^{2}+4 x$;
4. $y^{3}+2 y-12 x-11=0$.
5. Reduction of the equation of a parabola to a standard form. In Art. 102 it was shown that the equation of a parabola having any tax. AN. GRom. -12
given directrix and focus is in general not as simple as the standard equation. It will now be shown that if the coördinate axes be transformed so as to be parallel to the axis and
 directrix of the curve, the equation will be reduced to a standard form. For example, the equation of the parabola with focus at $(2,-3)$, and having for directrix the line $x-2 y-1=0$, was found to be

$$
4 x^{2}+4 x y+y^{2}-18 x+26 y+61=0 .
$$

The axis of the curve is a line through ( $2,-3$ ) and perpendicular to

$$
x-2 y-1=0 ;
$$

its equation is $2 x+y=1$, and it cuts the $x$-axis at the angle $\theta=\tan ^{-1}(-2)$.
The point $Z$ is the intersection of the directrix and axis, and may be found from the two linear equations representing these lines; the vertex $A$ is the point bisecting $Z F$. If, then, the axes are rotated through the angle $\theta=\tan ^{-1}(-2)$, the equation will be reduced to the second standard form, [42]; and if the origin be also removed to the vertex $A$, the equation will be further reduced to the first standard form, [41]. The point $Z$ is $\left(\frac{3}{3},-\frac{1}{8}\right), A$ is $\left(\frac{1}{8},-\frac{1}{3}\right)$; hence, $p=A F=\frac{7}{2 \sqrt{5}}$, and transforming the axes through the angle $\theta=\tan ^{-1}(-2)$, to the new origin $\left(\frac{18}{8},-\frac{f}{8}\right)$, the equation of the parabola reduces to $y^{2}=\frac{14}{\sqrt{5}} x$.

The problem of reducing any equation representing a parabola to its standard form is taken up more fully in Chap. XII.

## EXERCISES

Find, and reduce to the first standard form, the equation of each of the following parabolas; also make a sketch of each figure:

1. with focus at the point $(-1,3)$, and having for directrix the line

$$
3 x-5 y=2 ;
$$

2. with focus at the point $\left(-8,-\frac{1}{2}\right)$, and having for directrix the line

$$
2 x+7 y-8=0 ;
$$

3. with focus at the point ( $a, b$ ), and having for directrix the line

$$
\frac{x}{a}+\frac{y}{b}=1
$$

## 11. THF: EILIJPSF:

## Special Equation of the Second Degree

$$
A x^{2}+B y^{2}+2 G x+2 F y+C=0
$$

109. The ellipse defined. An ellipse is the locus of a point which moves so that the ratio of its distance from a fixed point, called the focus, to its distance from a fixed line, called the directrix, is constant and less than unity. The constant ratio is called the eccentricity of the ellipse. This curve is the conic section with eccentricity $e<1$. (cf. Art. 48.)

The equation of an ellipse with any given focus, directrix, and eccentricity may be readily obtained from this definition.

Example. An ellipeo of cocentricity $\%$ has its focus at $(2,-1)$, and has the line $x+2 y=5$ for directrix. Let $P \equiv(x, y)(F i g .85)$ be any point on the curve, $F$ the focus, and $P Q$ the perpendicular from $P$ to the directrix.

Then

$$
F P=j Q P ;
$$

but $F P=\sqrt{(x-2)^{2}+(y+1)^{2}}, Q P=\frac{x+2 y-5}{+\sqrt{5}} \quad$ (Arts. 20,64 ),
hence

$$
(x-2)^{2}+(y+1)^{2}=\frac{1}{5}(x+2 y-5)^{2} ;
$$

that is, $\quad 41 x^{3}-16 x y+29 y^{2}-140 x+170 y+125=0$;
which is the equation of the given ellipse.
As in the ease of the parabola, so also here, a particular choice of the courdinate axes gives a simpler form for the equation of the ellipse; an equation which is more suitable for the study of the curve, and to which every equation representing an ellipse can be reduced. As has been seen in Art. 48, the curve is symmetrical with respect to the line through the focus and perpendicular to the directrix : and cuts that line in two points, one on either side of the focus. The equation of the ellipse will be in a simpler form if this
line of symmetry is chosen as the $x$-axis, with the origin half way between its two points of intersection with the curve. The resulting equation is the first standard form of the equation of the ellipse.
110. The first standard equation of the ellipse. Let $F$ be the focus, $D^{\prime} D$ the directrix, and $Z F X$ the perpendicular to $D^{\prime} D$
 through $F$, cutting the curve in the two points $A^{\prime}$ and $A$ (Art. 48)*. Denote by $2 a$ the length of $A A^{\prime}$, and let 0 be its middle point, so that

$$
A O=O A^{\prime}=a
$$

Let $Z X$ be the $x$-axis, $O$ the origin, and $O Y$, perpendicular to $O X$, the $y$-axis. Then, by the definition of the ellipse,

$$
A F=e Z A, \quad \text { and } \quad F A^{\prime}=e Z A^{\prime}
$$

$\therefore \quad A F+F A^{\prime}=e\left(Z A+Z A^{\prime}\right)=e\left(Z A+Z A+A A^{\prime}\right)$,
i.e., $\quad A A^{\prime}=e\left(2 Z A+A A^{\prime}\right)$,
whence $\quad 2 a=2 e(Z A+A O)=2 e Z O$;
therefore $Z O=\frac{a}{e}$,
and the equation of the directrix is $x+\frac{a}{e}=0$.
Again, $\quad F A^{\prime}-A F=e\left(Z A^{\prime}-Z A\right)$;
i.e.,
whence

$$
F O+O A^{\prime}-(\Lambda O-F O)=e A A^{\prime}
$$

$$
2 F O=2 a e
$$

[^32]therefore
\[

$$
\begin{equation*}
F O=a c, \tag{2}
\end{equation*}
$$

\]

Ind tho focus $F$ is the point $(-a e, 0)$.
Now, for any point $P$ on the curve, draw the ordinate MP and the perpendicular $L . P$ to the directrix ; then

$$
\begin{equation*}
F P=e L P \cdot \quad[\text { geometric equation }] . \tag{8}
\end{equation*}
$$

but $F P=\sqrt{(x+a e)^{2}+y^{2}}, L P=\frac{a}{e}+r$;
hence

$$
\begin{equation*}
(a e+x)^{2}+y^{2}=e^{3}\left(x+\frac{a}{e}\right)^{2} \tag{4}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\left(1-e^{2}\right) x^{2}+y^{2}=a^{2}\left(1-e^{3}\right) \tag{5}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{3}}{a^{2}\left(1-e^{2}\right)}=1 . \tag{6}
\end{equation*}
$$

From equation (6), the intercepts of the curve on the $y$-axis are $\pm a \sqrt{1-e^{2}}$. Both intercepts are real, since $e<1$; hence the ellipse cuts the $y$-axis in two real points, $B$ and $B^{\prime}$, on opposite sides of the origin $O$ and equidistant from it. If $O 13$ is denoted by $+b$, so that

$$
\begin{equation*}
b^{2}=a^{2}\left(1-e^{2}\right), \quad . \quad . \tag{7}
\end{equation*}
$$

equation (6) takes the form

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 . \tag{44}
\end{equation*}
$$

This is the simplest equation of the ellipse, and will be most used in the subsequent study of the properties of that curve. As will be seen in Chapter XII, every equation representing an ellipse can be reduced to this form.

[^33]111. To trace the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. From equation [44] it follows that :
(1) The ellipse is symmetrical with regard to the $x$-axis; i.e., with regard to the line through the focus and perpendicular to the directrix; this line is therefore called the principal axis of the curve;
(2) The ellipse is symmetrical with regard to the $y$-axis also ; i.e., with regard to a line parallel to the directrix and passing through the mid-point of the segment $A A^{\prime}$ (Fig. 81) which the curve cuts from its principal axis;
(3) For every value of $x$ from $-a$ to $+a$, the two corresponding values of $y$ are real, equal numerically, but opposite in sign ; and for every value of $y$ from $-b$ to $b$, the two values of $x$ are real and equal numerically, but opposite in sign ; and that neither $x$ nor $y$ can have real values beyond these limits.

The ellipse is, therefore, a closed curve, of one branch, which lies wholly on the same side of the directrix as the focus; and the curve has the form represented in Fig. 80, - which agrees with the foot-note on p. 71.


The segment $A A^{\prime}$ (Fig. 81) of the principal axis intercepted by the curve is called its major or transverse axis;
the corresponding segment $B^{\prime} B$ is its minor or conjugate axis. From the symmetry of the curve with respect to thene axes it follows that it is also symmetrical with respect to their intersection 0 , the center of the ellipse. It follows also that the ellipse has a second focus at $F^{\prime} \equiv(a e, 0)(F i g .81)$ and a second directrix $D_{1}^{\prime} D_{1}$ - the line $x-\frac{a}{e}=0$ - on the positive side of the minor axis, and symmetrical to the original focus and directrix, respectively.*

The latus rectum of the ellipse, i.e., the focal chord parallel to the directrix (Art. 105), is evidently twice the ordinate of the point whose abscissa is ae.

But if $x_{1}=a e, y_{1}=b \sqrt{1-e^{2}}$; or, since $b=a \sqrt{1-e^{2}}$, $y_{1}=\frac{b^{2}}{a}$. Hence the latus rectum is $\frac{2 b^{3}}{a}$.
112. Intrinsic property of the ellipse. Second standard equation. Equation [44] states a geometric property which belongs to every point of the ellipse, whatever the coördiunte axes chosen, and to no other point : viz., if $P$ be any point of the ellipse (Fig. 80), then
that is, in words :

$$
\frac{\overline{O M}^{2}}{\overline{O A^{2 / 2}}}+\frac{\overline{M P^{2}}}{\overline{O B^{2}}}=1
$$

- To show this analytically, let $O F^{\prime}=a e$, and $O Z^{\prime}=\frac{a}{e}$, and let $P=(x, y)$ be any point on the ellipse, as before. Equation ( $\mathbf{1}$ ) of $\mathbf{A r t . 1 1 0}$. gives the relation between $x$ and $y$; expanding equation ( $(4)$, and subtracting $f$ are from each member, it becomes

$$
a^{2} e^{2}-2 a c x+x^{2}+y^{2}=a^{2}-2 a c x+e^{2} x^{2}
$$

which may bo writuen
ie.

$$
\begin{gathered}
(a e-x)^{2}+y^{2}=e^{2}\left(\frac{a}{e}-x\right)^{2} \\
F P^{2}=e^{3} \bar{P} J^{3}
\end{gathered}
$$

which shows that $P$ is on an ellipse whose focus is $F$ and whose directrix is $D_{1}^{\prime} D_{1}$.

If from any point on the ellipse a perpendicular be drawn to the transverse axis; then the square of the distance from the center of the ellipse to the foot of this perpendicular, divided by the square of the semi-transverse axis, plus the square of the perpendicular divided by the square of the semi-conjugate axis, equals unity.

This geometric or physical property belongs to no point not on the curve, and therefore completely determines the ellipse. It enables one to write immediately the equation of any ellipse whose axes are parallel to the coördinate axes.

For example : if, as in Fig. 82, the major axis of an ellipse is parallel to the $x$-axis, and the center is at the point

$C \equiv(h, k)$, let $P \equiv(x, y)$ be any point on the curve, and $a, b$ be the semi-axes, then
that is

$$
\frac{\overline{C M}^{2}}{\overline{C A}^{2}}+\frac{\overline{M P}^{2}}{\overline{C B}^{2}}=1,
$$

$$
\begin{equation*}
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1, \tag{45}
\end{equation*}
$$

which is the equation of the given ellipse.
Or again, if, as in Fig. 83, the major axis is parallel to the $y$-axis ; then, as before

$$
\frac{\overline{C M}^{2}}{\overline{C A}^{2}}+\frac{\overline{M P}^{2}}{\overline{C B^{2}}}=1,
$$

i.e.. $\frac{(y-f i)^{2}}{t^{2}}+\frac{(r-h)^{2}}{b^{2}}=1$. . [ffi] Which is the equation of the given ellipse.

Lquation [45] may be considered a second standard form of the equation of the ellipse ; by a change of coordinates to a set of parallel axes through the center $C=(h, k)$, as the new origis, it can be reduced to the first standard form.

By Art. 110 the distance from the center of an ellipse to its focus is ae; but since $b^{2}=a^{2}\left(1-e^{2}\right)^{\text {a }}$
 [Art. 110, eq. (7)], therefore $a e=\sqrt{a^{2}-b^{2}}$; hence, in rigs 82 and 83 ,

$$
F^{\prime} C^{\prime}=C F=a e=\sqrt{a^{2}-b^{2}}
$$

Again, the equation of an ellipse, in either standard form, gives the semi-axes as well us the center of the curve, therefore the positions of the foci are readily determined from either standard form of the equation.

## EXERCISES

Construct the following ellipses, and find their equations:

1. given the focus at the point $(-1,1)$, the equation of the directrix e-y $-y=0$, and the eccentricity ( $c$. Art. 109) :
2. given the focus at the origin, the equation of the directrix $x=-8$. and the eccentricity $\}$ :

[^34]3. given the focus at the point $(0,1)$, the equation of the directrix $y-25=0$, and the eccentricity $\frac{1}{8}$;
4. given the center at the origin, and the semi-axes $\sqrt{2}, \sqrt{5}$. Find also the latus rectum.

Find the equation of an ellipse referred to its center, whose axes are the coördinate axes, and
5. which passes through the two points $(2,2)$ and $(3,1)$.
6. whose foci are the points $(3,0),(-3,0)$, and eccentricity $\frac{1}{8}$.
7. whose foci are the points $(0,6),(0,-6)$, and eccentricity is.
8. whose latus rectum is 5 , and eccentricity $\frac{3}{3}$.
9. whose latus rectum is 8 , and the major axis 10 .
10. whose major axis is 18 , and which passes through the point 6,4 .

Draw the following ellipses, locate their foci, and find their equations:
11. given the center at the point $(3,-2)$, the semi-axes 4 and 3 , and the major axis parallel to the $x$-axis (cf. Art. 112) ;
12. given the center at the point $(-8,1)$, the semi-axes 2 and 5 , and the major axis parallel to the $y$-axis;
13. given the center at the point $(0,7)$, the origin at a vertex, and $(2,3)$ a point on the curve ;
14. given the circumscribing rectangle, whose sides are the lines $x+1=0,2 x-3=0, y+6=0,3 y+4=0$; the axes of the curve being parallel to the coördinate axes.
15. If $b$ becomes more and more nearly equal to $a$, what curve does the ellipse approach as a limit?
113. Every equation of the form $A x^{2}+B y^{2}+2 G x+2 F y$ $+\boldsymbol{C}=\boldsymbol{O}$, in which $\boldsymbol{A}$ and $\boldsymbol{B}$ have the same sign, represents an ellipse whose axes are parallel to the coördinate axes. Equations [44], [45], and [46], obtained for the ellipse, are all, when expanded, of the form

$$
\begin{equation*}
A x^{2}+B y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

where $A$ and $B$ have the same sign, and neither of them is zero. Conversely, an equation of this form represents an ellipse
whos axes are parallel to the coürdinate axes. As in Art. 107, a numerical case will first be examined, and then the general equation taken up in a similar manner.

Exashilis: Given the equation $4 z^{3}+9 y^{2}-18 z+18 y-11=0$, to show that it represents an ellipse, and to find its elements. Completing

the square for the terms in $x$, and also for those in $y$, and transposing, this equation becomes

$$
4 x^{2}-16 x+16+9 y^{2}+18 y+9=11+16+9
$$

that is,

$$
\begin{gathered}
4(x-2)^{2}+0(y+1)^{2}=36 \\
\frac{(x-2)^{2}}{3^{2}}+\frac{(y+1)^{2}}{y^{2}}=1
\end{gathered}
$$

This equation is of the form [45], and, therefore, its locus has the geometric property given in ArL. 112, and is an ellipse. Its center as the point $(2,-1)$; its major axis is parallel to the $x$-axis, of length 6 ; ite minor axis is of length 4; the foci are the points

$$
F=(2-\sqrt{5},-1), F=(2+\sqrt{3},-1) ;
$$

and the equations of the directrices are, respectively,

$$
x=2+\frac{9}{\sqrt{5}}, \quad x=2-\frac{9}{\sqrt{5}}
$$

Following the method illustrated above, of completing the squares, the general equation (1) may be written
$A\left(x^{2}+2 \frac{G}{A} x+\frac{G^{2}}{A^{2}}\right)+B\left(y^{2}+2 \frac{F}{B} y+\frac{F^{2}}{B^{2}}\right)=-C+\frac{G^{2}}{A}+\frac{F^{2}}{B}$.
that is,

$$
A\left(x+\frac{G}{A}\right)^{2}+B\left(y+\frac{F}{B}\right)^{2}=\frac{B G^{2}+A F^{2}-A B C}{A B}
$$

which becomes, if the second member be represented by $K$.

$$
\begin{equation*}
\frac{\left(x+\frac{G}{A}\right)^{2}}{\frac{K}{A}}+\frac{\left(y+\frac{F}{B}\right)^{2}}{\frac{K}{B}}=1 . \tag{2}
\end{equation*}
$$

Comparing this equation with [4i] or [46], it is seen to express the geometric relation of Art. 112, and therefore represents an ellipse. Its axes are parallel to the coördinate axes, its center is at the point $\left(-\frac{G}{A},-\frac{F}{B}\right)$, and the lengths of the semi-axes are

$$
\sqrt{\frac{K}{A}}, \quad \sqrt{\frac{K}{B}} .
$$

The foci and directrices may be found as above.
Note. If $A=B$, then equation (1) represents a circle (Art. 79). If $A B C>B G^{2}+A F^{2}$, equation (1) having been written with $A$ and $B$ positive, then no real values of $x$ and $y$ can satisfy equation (2), which is only another form of equation (1), and it is said to represent an imaginary ellipse. If $A B C=B G^{2}+A F^{2}$, then $x=-\frac{G}{A}$, and $y=-\frac{F}{B}$ are the only real values that satisfy equation (2); in that case, this equation is said to represent a point ellipse; or, from another point of view. two imaginary lines which intersect in the real point $\left(-\frac{G}{A},-\frac{F}{B}\right)$. Each of the above may be regarded as a limiting form of the ellipse.

## EXERCISES

Determine, for each of the following ellipses, the center, semi-axes, foci, vertices, and latus rectum; then sketch each curve.

1. $3 x^{3}+9 y^{3}-6 x-27 y+2=0$.
2. $4 x^{2}+y^{2}-8 z+2 y+1=0$.
3. $x^{2}+1 i y^{2}+4 x+60 y+1 i=0$.
4. By completing the squaren of the sterms and of the y-erma, and a suitable transformation of courdinaton, reduce the equations of exercises 1,2 , and is to the standard form [ $H$ ].

## 114. Reduction of the equation of an ellipse to a standard form.

It is now evident that, if the directrix and focus of an ellipse are known, as in the example of Art. 109, the transformation of coördinates


F70.8s
which is necessary to reduce the equation to a standard form can eassly le determined. 'Jo illustrate : the ellipse of eccentricity 3. with focus at $F=(2,-1)$, and having for directrix the lime $D^{\prime} D$, whose equation is $x+2 y=5$, has for its equation (Art. 109)

$$
41 x^{3}-16 x y+20 y^{2}-140 x+170 y+125=0 .
$$

Its axis $F Z$. perpendicular to $D$, has the equation $2 x-y=5$, and cuts the $x$-axis at the angle $\tan ^{-1} 2$. If then the coordinate axes are rotated through the angle tan ${ }^{-1} \underline{2}$, the equation will be reduced to the second standard form. Again, Z may he found as the intersection of the directrix and axis; it is the point $(3,1)$. Then $A$ and $A$, the vertices
of the ellipse, divide $F Z$ internally and externally in the ratio $\}$; hence (Art. 30) these coordinates are $\left(\hat{\gamma}^{2},-\frac{1}{8}\right),(0,-5)$. Also $C$, the center of the ellipse, is the point $(\xi,-\gamma)$. If the origin be next transformed to the point $C$, the equation will be reduced to the first standard form. Since the axis $A A$ is of length $\frac{12}{\sqrt{5}}$, and the eccentricity is $\frac{3}{}$, the semiaxes are $\frac{6}{\sqrt{5}}$ and 2 ; hence the reduced equation, with $C$ as origin and $C A$ as $x$-axis, will be

$$
\frac{x^{2}}{\frac{3}{3}}+\frac{y^{2}}{4}=1
$$

- The problem of reducing to standard form the equation of an ellipse, when the directrix is not known, will be postponed to Chapter XII.


## EXERCISES

Find, and reduce to the first standard form, the equation of the ellipse :

1. with focus at the point $(1,-3)$, with the line $x+y=7$ for directrix, and eccentricity $\frac{1}{2}$;
2. with focus at the point $(a, b)$, the line $\frac{x}{a}+\frac{y}{b}=1$ for directrix, and eccentricity $\frac{l}{n}$ (where $l<n$ ).

## III. THE HYPFRBOLA

## Special Equation of the Second Degree

$$
A x^{2}-B y^{2}+2 G x+2 F y+C=0
$$

115. The hyperbola defined. An hyperbola is the locus of a point which moves so that the ratio of its distance from a fixed point, called the focus, to its distance from a fixed line, called the directrix, is constant and greater than unity. The constant ratio is the eccentricity of the hyperbola. This curve is the conic section with eccentricity $e>1$ (cf. Art. 48).

Since the hyperbola differs from the ellipse only in the nign of $1-e^{2}$, which is + in the ellipse and - in the hyperbola, the standard equation of the hyperbola can be derived by the method of Art. 110 ; and it will be found that with choice of axes and notation as there given, the resulta gives in eqs. (1), (2), and (8) of that article apply equally to the hyperbola. If now, since $1-e^{2}$ is negative, the substitution $b^{2}=u^{2}\left(e^{2}-1\right)$ is made, equation (6) (p. 181) will become

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1,
$$

which is the simplest equation of the hyperbola. For variety, this equation will be obtained by a different method.
116. The first standard form of the equation of the hyperbola. Let $F$ be the focus, $I^{\prime} D$ the directrix, and $e$ the eccentricity of the curve. Take $D^{\prime} D$ as the $y$-axis, with the perpendicular OFX upon it, through the focus, as the $x$-axis. Let $2 p$ denote the given distance $O F$, and let

$$
P \equiv(x, y)
$$



Fio. 86
bo any point of the locus, with coördinates $L, P$ and $M P$.
Then

$$
F P=e L P
$$

[geometric equation]
but

$$
\begin{aligned}
& F P=\sqrt{(x-2 p)^{2}+y^{2}} \text {, and } L P=x ; \\
& \quad(x-2 p)^{2}+y^{2}=e^{2} x^{2},
\end{aligned}
$$

that is,

$$
\begin{equation*}
\left(e^{2}-1\right) x^{2}-y^{2}+4 p x-4 \gamma^{2}=0 \tag{1}
\end{equation*}
$$

which is the equation of the hyperbola referred to its directrix and principal axis as coördinate axes (cf. Art. 48).

The curve cuts the $x$-axis in two points, $A \equiv\left(x_{1}, 0\right)$, and $A^{\prime} \equiv\left(x_{2}, 0\right)$, - the vertices of the hyperbola, - whose abscissas are determined by the equation

$$
\left(e^{2}-1\right) x^{2}+4 p x-4 p^{2}=0
$$

The abscissa of $C$, the middle point of the segment $A A^{\prime}$, is, therefore,

$$
O C=\frac{x_{1}+x_{2}}{2}=\frac{-2 p}{e^{2}-1} \quad(\text { Art. 11 })
$$

hence the center is on the opposite side of the directrix from the focus.

Now transform equation (1) to a parallel set of axes through $C$; the equations for transformation are (Art. 71)

$$
x=x^{\prime}-\frac{2 p}{e^{2}-1}, \text { and } y=y^{\prime}
$$

substituting these values, and removing accents, eq. (1) becomes

$$
\left(e^{2}-1\right)\left(x-\frac{2 p}{e^{2}-1}\right)^{2}-y^{2}+4 p\left(x-\frac{2 p}{e^{2}-1}\right)-4 p^{2}=0
$$

which reduces to $\left(e^{2}-1\right) x^{2}-y^{2}=\frac{4 p^{2} e^{2}}{e^{2}-1}$,
that is,

$$
\begin{equation*}
\frac{x^{2}}{\frac{4 p^{2} e^{2}}{\left(e^{2}-1\right)^{2}}}-\frac{y^{2}}{\frac{4 p^{2} e^{2}}{e^{2}-1}}=1 \tag{2}
\end{equation*}
$$

If these denominators are represented by $a^{2}$ and $b^{2}$ respectively, i.e., if

$$
\begin{gather*}
a^{2}=\frac{4 p^{2} e^{2}}{\left(e^{2}-1\right)^{2}}, \text { and } b^{2}=\frac{4 p^{2} e^{2}}{e^{2}-1}  \tag{3}\\
b^{2}=a^{2}\left(e^{2}-1\right) \tag{4}
\end{gather*}
$$

then
and equation (2) may be written in the simple form

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \tag{47}
\end{equation*}
$$

the standard equation of the hyperbola Every equation representing an liyperbola can be reduced to this form, as is ahown in Chapter XII.
The distance from the center to the focus of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{l^{2}}=1$ is easily found thus:

$$
\begin{aligned}
C F & =C O+O F \\
& =\frac{2 p}{e^{2}-1}+2 p=\frac{2 p e^{2}}{e^{2}-1} ;
\end{aligned}
$$

but, from equation (3),

$$
a=\frac{2 p e}{c^{2}-1}
$$

hence

$$
\begin{equation*}
C F=a e, \tag{4}
\end{equation*}
$$

therefore the focus $F$ 'is the point ( $a e, 0$ ).
Similarly for the directrix :

$$
C O=\frac{2 p}{e^{2}-1}=\frac{a}{e}
$$

hence

$$
\begin{equation*}
\text { the directrix is the line } x-\frac{a}{e}=0 \text {. } \tag{5}
\end{equation*}
$$

As above defined, $b$ is real, and its value is known when $a$ and e are known. In Fig. 86,

$$
C B=b, C B^{\prime}=-b, \text { and } b=a \sqrt{e^{3}-1} .
$$

117. To trace the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. Equation [4i] shows that:
(1) The hyperbola is symmetrical with regard to the $x$-axis; that is, with respect to the line through the focus and perpendicular to the directrix. This line is therefore alled the principal axis of the hyperbola;
(2) The hyperbola is symmetrical with regard to the $y$-axis also; i.e., with regard to the line parallel to the direetrix and passing through the mid-point of the segment cut by the curve from its principal axis ;
(3) For every value of $x$ from $-a$ to $a, y$ is imugimary; while for every other value of $x, y$ is real and has two values, equal numerieally but opposite in sign. But for every value of $y, x$ has two real values, equal numerically and opposite in sign. When $x$ increases numerically from $a$ to $\infty$, then $y$ increases also numerically from 0 to $\infty$.
These facts show that no part of the hyperbola lies between the two lines perpendicular to its principal axis and drawn through the vertices of the curve; but that it has two open infinite branches, lying outside of these two lines. The form of the hyperbola is as represented in Fig. 86.

The segment $A^{\prime} A$ of the principal axis, intercepted by the curve, is called its transverse axis. The segment $B^{\prime} B$ of the


Fig. 87 second line of symmetry (the $y$-axis), where $B^{\prime} O=O B=b$, is called the conjugate axis; and although not cut by the hyperbola, it bears important relations to the curve. From the symmetry of the hyperbola, with respect to these axes, it follows that it is also symmetrical with respect to their intersection $O$, the center of the curve. It follows also that there is a second focus at the point ( $-a e, 0$ ), and a second directrix in the line $x+\frac{a}{e}=0$ on the negative side of the conjugate axis, and symmetrical to the original focus and directrix. (See Art. 111, foot-note.)

The latus rectum of the hyperbola is readily found to be $\frac{2 b^{2}}{a}$ (cf. Arts. 105, 111).
118. Intrinsic property of the hyperbola. Second standard equation. Equation [47] states a geometrie property which belongs to every point of an hyperbola, whatever the courdinute axes chosen, and to no other point ; and which therefore completely detines the hyperbola. With the figure and notation of Art. 117, equation [47] states (Fig. 87)

$$
\frac{O M^{2}}{O A^{2}}-\frac{. B^{2}}{O b^{2}}=1
$$

a property entirely analogous to that of Art. 112 for the ellipse. It enables one to write at once the equation of an


Fio. 88


Fio. 80.
hyperbola with given center and semi-axes, and axes parallel to the coordinate axes.

For example, if the transverse axis is parallel to the $x$-uxis, as in Fig. 88, and the center at the point $C=(h, k)$, and if $P=(x, y)$ is any point on the curve, then

$$
\begin{gather*}
\frac{C M^{2}}{C A^{2}}-\frac{M B^{2}}{C b^{2}}=1 \\
\text { i.e., } \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1, \tag{48}
\end{gather*}
$$

which is the equation of the hyperbola, with $a$ and $b$ as semiaxes.

Again, if the transverse axis is parallel to the $y$-axis, as in Fig. 89, with the center at the point $(h, k)$, the equation of the hyperbola will be found to be
i.e.,

$$
\begin{align*}
& \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1, \\
& \frac{(x-h)^{2}}{b^{2}}-\frac{(y-k)^{2}}{a^{2}}=-1 \tag{49}
\end{align*}
$$

Note 1. That the expressions obtained on p. 193 for the distances from the center to the focus and the directrix, of hyperbola [47], are equally true for hyperbolas [48] and [49] follows from the fact that those expressions involve only $a, b$, and $e$; moreover, equation (4) of Art. 116 determines $e$ in terms of $a$ and $b$; hence, for all these hyperbolas, $e^{2}=\frac{a^{2}+b^{2}}{a^{2}}$ the distances from the center to the foci are given by

$$
a e= \pm \sqrt{a^{2}+b^{2}}
$$

and those to the directrices by

$$
\frac{a}{e}=\frac{a^{2}}{ \pm \sqrt{a^{2}+b^{2}}}
$$

Note 2. It should be noticed that in equations [47], [48], [49], the negative term involves that one of the coordinates which is parallel to the conjugate axis.

## EXERCISES

1. Find the equation of the hyperbola having its focus at the point ( $-1,-1$ ), for its directrix the line $3 x-y=7$, and eccentricity ${ }^{\frac{1}{2} \text {. Plot }}$ the curve (cf. Art. 102, and Art. 109, Ex.).

Find the equation of the hyperbola whose center is at the origin and
2. whose semi-axes equal, respectively, 5 and 3 (cf. Art. 116, [47]);
3. with transverse axis 8, the point $(20,5)$ being on the curve;
4. the distance between the foci 5 , and eccentricity $\sqrt{2}$;
5. with the distance between the foci equal to twice the transverse axis.

Find the equation of an hyperbola
6. with center at the point ( $3,-2$ ), semi-axes 4 and 3 , and the transverse axis parallel to the $x$-axis. Plot the curve (cf. Art. 118);
7. with center at the point $(-3,-4)$, ami-axen 0 and 2, and the transverse axis parallel to the $y$-axis. Plot the curve.
8. Find the foci and latus rectum for the hyperbolas of exercises 6 and 7.
9. By a suitable tranmformation of coordinates, reduce the equations of exercisen 6 and 7 to the mtandard form $\frac{x^{2}}{a^{3}}-\frac{y^{2}}{b^{3}}=1$.
10. Find the foci of the hyperbolas
(a) $\frac{x^{2}}{25}-\frac{y^{2}}{0}=1$,
( $\beta$ ) $\frac{x^{2}}{4}-\frac{y^{2}}{0}=1$,
(y) $\frac{y^{2}}{0}-\frac{x^{3}}{4}=1$.

Ilot the curves $(\beta)$ and $(\gamma)$.
119. Every equation of the form $A x^{2}+B y^{2}+2 G x+2 F y$ $+C=0$, in which $A$ and $E$ have unlike signs, represents an hyperbola whose axes are parallel to the coördinate axes. When cleared of fractions and expanded, the three equations found for the hyperbola are of the form

$$
\begin{equation*}
A x^{2}+B y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

where $A$ and $B$ have opposite signs, and neither of them is zero. Conversely, it will now be shown that every equation of this form represents an hyperbola, whose axes are parallel to the coordinate axes. A numerical case will be examined first, and then the general equation.

Example. To show that the equation $0 x^{2}-4 y^{2}-18 x+24 y-63=0$ represents an hyperbola, and to find its elements. Transposing the constaint term, and completing the squares of the $x$-terms and yterms, the equation may be written
b.

$$
\begin{gathered}
9(x-1)^{2}-4(y-3)^{2}=36 \\
\frac{(x-1)^{2}}{y^{2}}-\frac{(y-3)^{2}}{3^{2}}=1 .
\end{gathered}
$$

Since this equation is of the form [48], its locus has the geonetric property given in Art. 118, and therefore represents an hypertola. Its enter is at the point (1,3), its transverse axis is parallel to the $x$-axis, of length 4 , and its conjugate axis is of length 6. The ecoentricity is $e=1 \sqrt{13}$, the foci are at the points $(1-\sqrt{13}, 3)$ and $(1+\sqrt{18,3})$; and the directrices are the lines whose equations are

$$
x=1 \pm \frac{4}{\sqrt{13}} .
$$

Following the method illustrated in the numerical example, the general equation (1) may be written in the form

$$
\begin{equation*}
\frac{\left(x+\frac{G}{A}\right)^{2}}{\frac{K}{A}}+\frac{\left(y+\frac{F}{B}\right)^{2}}{\frac{K}{B}}=1, \tag{2}
\end{equation*}
$$

wherein (cf. Art. 113, p. 188),

$$
K=\frac{B G^{2}+A F^{2}-A B C}{A B}
$$

Since $A$ and $B$ have opposite signs, the two terms in the first member of this equation are of opposite signs ; the equation is therefore in the form of [48] or [49], and represents an hyperbola. Its axes are parallel to the coördinate axes, its center is the point $\left(-\frac{G}{A},-\frac{F}{B}\right)$, and its semi-axes are $\sqrt{ \pm \frac{K^{*}}{A}}$ and $\sqrt{ \pm \frac{K}{B}}$.

Note. Since $A$ and $B$ have opposite signs, equation (2), which is only another form of equation (1), always represents a real locus; it is an hyperbola proper except when $A B C=B G^{2}+A F^{2}$, and it then represents a pair of intersecting straight lines (cf. Art. 67).

It is clear that the method shown for the ellipse in Art. 114 can be applied equally well to the hyperbola, to reduce any equation of this curve to the standard form, when the directrix is known. The problem of reducing to the standard form the general equation of an hyperbola, when the directrix and focus are not known, is considered in full in Chapter XII.

[^35]
## EXERCISES

Determine for each of the fultowing hyperbolas the censter, semi-axes, foci, vertices, and latus rectum:

1. $16 x^{3}-8 y^{3}+64 x-30 y+10=0$;
2. $x^{3}-5 y^{3}+15 y-10 x+1=0$;
3. $2 x+6 y+8 y^{2}=x^{2}+7$.
4. Reduce the equations of exercises $1,2,3$, to the ntandard form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. Sketch each curve.
5. Summary. In the preceding articles it has been shown that the special equation of the second degree,

$$
A x^{2}+B y^{2}+2 G x+2 F y+C=0
$$

always represents a conic section, whose axes are parallel to the coördinate axes. There are three cases, corresponding to the three species of conic.
(1) The parabola: either $A$ or $B$ is zero. In exceptional cases this curve degenerates into a pair of real or imaginary parallel straight lines, and these may coincide. [Art. 107]
(2) The ellipse : neither $A$ nor $B$ is zero, and they have like signs. In exceptional cases this curve degenerates into a circle, a point, or an imaginary locus. [Art. 113, Note]
(3) The hyperbola : neither $A$ nor $B$ is zero, and they have unlike signs. In exceptional cases this curvo degenerates into a pair of real intersecting lines.
[Art. 119]
The ellipse and hyperbola have centers, and therefore are called central conics, while the parabola is said to be noncentral; although it is at times more convenient to consider What the latter curve has a center at infinity, on the principhal axis (cf. Appendix, Note E).

The equation for each conic has two standard forms, which state a characteristic geometric property of the curve, and to which all other equations representing that species can be
reduced. These standard forms are the simplest for studying the curves ; but the student must discriminate carefully between general results and those which hold only when the equation is in the standard form.
iv. tangents, normals, polars, diameters, etc.
121. Since the equation

$$
\begin{equation*}
A x^{2}+B y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

always represents a conic whose axes are parallel to the coördinate axes, and since by giving suitable values to the constants $A, B, G, F$, and $C$, equation (1) may represent any such conic, therefore, if the equations of tangents, normals, polars, etc., to the locus of equation (1) can be found, independent of the values that $A, B$, etc., may have, these equations will represent the tangents, etc., when any special values whatever are given to the constants involved.

In the next few articles such equations will be derived.
122. Tangent to the conic

$$
A x^{2}+B y^{2}+2 G x+2 F y+C=0
$$

in terms of the coordinates of the point of contact: the secant method. The definition of a tangent has already been given (Art. 81), and the method to be employed here in finding its equation is the one which was used in Art. 84. That article should now be carefully re-read.

Let the given conic, i.e., the locus of the equation,

$$
\begin{equation*}
A x^{2}+B y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

be represented by the curve $B H K$; and let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ be the point of tangency.

Through $P_{1}=\left(x_{1}, y_{1}\right)$ draw a secant line $L, M$, and let $P_{8}=\left(x_{2}, y_{2}\right)$ be its other point of intersection with the locus of equation (1). If the point $P_{3}$ moves along the curve until it comes into coincidence with $P_{1}$, the limiting position of the secant $L M$ is the tangent $P_{1} T$.

The equation of the line $L, M$ is


Fio.90.

$$
\begin{equation*}
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) . \tag{2}
\end{equation*}
$$

If now $P_{2}$ approaches $P_{1}$ until $x_{2}=x_{1}$ and $y_{2}=y_{1}$, equation (2) assumes the indeterminate form

$$
\begin{equation*}
y-y_{1}=\frac{0}{0}\left(x-x_{1}\right) \tag{3}
\end{equation*}
$$

This indeterminateness arises because account has not yet been taken of the path (or direction) by which $P_{2}$ shall approach $P_{1}$, and it disappears immediately if the condition that $P_{1}$ and $P_{2}$ are points on the conic (1) is introdused. Since $P_{1}$ and $P_{2}$ are on the conic (1),
therefore $A x_{1}{ }^{2}+B y_{1}{ }^{2}+2 G x_{1}+2 F y_{1}+C=0$,
and $\quad A x_{2}{ }^{2}+B y_{2}{ }^{2}+2 G x_{3}+2 F y_{2}+C=0$.
Subtracting equation (4) from equation (5), transposing. factoring, and rearranging [cf. Art. 84, equations (8), (9), and $(10)$ ], the result may be written

$$
\begin{equation*}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=-\frac{A\left(x_{1}+x_{2}\right)+2 G}{B\left(y_{1}+y_{2}\right)+2 F} . \tag{6}
\end{equation*}
$$

If this value of $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ is substituted in equation (2), the result is

$$
\begin{equation*}
y-y_{1}=-\frac{A\left(x_{1}+x_{2}\right)+2 G}{B\left(y_{1}+y_{2}\right)+2 F}\left(x-x_{1}\right), \ldots \tag{i}
\end{equation*}
$$

which is the equation of the secant line $L M$ of the given conic (1).

If now this secant line be revolved about $P_{1}$ until $P_{2}$ comes into coincidence with $P_{1}$, i.e., until $x_{2}=x_{1}$ and $y_{2}=y_{1}$, this equation becomes

$$
\begin{equation*}
y-y_{1}=-\frac{A x_{1}+G}{B y_{1}+F}\left(x-x_{1}\right) \tag{8}
\end{equation*}
$$

which is, therefore, the equation of the tangent line $P_{1} T^{\prime}$ at the point $P_{1}$. This equation (8) can be put in a much simpler and more easily remembered form, thus :

Clearing equation (8) of fractions, and simplifying, it may be written
$A x_{1} x+B y_{1} y+G x+F y=A x_{1}^{2}+B y_{1}^{2}+G x_{1}+F y_{1} ; \cdot$
but, from equation (4),
$A x_{1}^{2}+B y_{1}^{2}+G x_{1}+F y_{1}=-G x_{1}-F y_{1}-C$,
hence substituting this value in the second member of equation (9) that equation becomes
$A x_{1} x+B y_{1} y+G x+F y=-G x_{1}-F y_{1}-C$,
and, by transposing and combining, this may be written,
$\boldsymbol{A} x_{1} x+\boldsymbol{B} y_{1} y+\boldsymbol{G}\left(\boldsymbol{x}+\boldsymbol{x}_{1}\right)+\boldsymbol{F}\left(\boldsymbol{y}+y_{1}\right)+\boldsymbol{C}=\mathbf{0}$.*
This is, then, the equation of the tangent to the conic

$$
A x^{2}+B y^{2}+2 G x+2 F y+C=0
$$

whatever the values of the coefficients $A, B, G, F$, and $C$ may be ; the point $\left(x_{1}, y_{1}\right)$ being the point of contact.

If $A=0, B=1, G=-2 p, F=0$ and $C=0$, then the equation of this conic becomes $y^{2}=4 p x$, and the equation of the tangent becomes, $y_{1} y=2 p\left(x+x_{1}\right)$; similarly for any other special form of the equation of the conic.

[^36]123. Normal to the conic $A x^{2}+B y^{2}+2 G x+2 F y+C=O$, at a given point. The normal to a curve has been defined (Art. 81) as a straight line perpendicular to a tathgent, and passing through the point of contact. Therefore, to obtain the equation of a normal to a conic, at a given point on the conic, it is only necessary to write the equation of the tangent to the conic at that point (by Art. 122), and then find the equation of a perpendicular to the tangent which passes through the point of contact (cf. Arts. 53, 62).

Examples. To find the equation of tho normal to the ellipse

$$
\frac{x^{3}}{18}+\frac{y^{2}}{8}=1
$$

at the point (3, 2).
The equation of the tangent at the point $(3,2)$ is

$$
\frac{3 x}{18}+\frac{2 y}{8}=1
$$


i.e.,

$$
2 x+3 y=12
$$

The perpendicular line through $(3,2)$ is

$$
3 x-2 y=5
$$

which is, therefore, the required normal.
Similarly, to find the normal to the conic whose equation is

$$
\begin{equation*}
A x^{2}+B y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

at the point $P_{1} \equiv\left(x_{1}, y_{1}\right)$ on the curve. The equation of the tangent at $P_{1}$ is (Art. 122)
$A x_{1} x+B y_{1} y+G\left(x+x_{1}\right)+F\left(y+y_{1}\right)+C=0$
and its slope is, therefore, (Art. 58 (2))

$$
-\frac{A x_{1}+G}{B y_{1}+F},
$$

Hence the required equation of the corresponding normal at $P_{1}$ is (Arts. 53, 62)

$$
\begin{equation*}
y-y_{1}=\frac{B y_{1}+F}{A x_{1}+G}\left(x-x_{1}\right) . * \tag{51}
\end{equation*}
$$

## EXERCISES

1. Is the line $3 x+2 y=17$ tangent to the ellipse $16 x^{2}+25 y^{2}=400$ ?
2. Find the equation of a tangent to the conic $x^{2}+5 y^{2}-3 x+10 y$ $-4=0$, parallel to the line $y=3 x+7$ (cf. Art. $8^{2}$ ).

Write the equations of the tangent and normal to each of the following conics, through a point ( $x_{1}, y_{1}$ ) on the curve (cf. Art. 122 [50]).
3.

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
\end{aligned}
$$

4. 
5. $x^{2}=4 p(y-5)$; sketch the figure.
6. $3 x^{2}-5 y^{2}+24 x=0$; sketch the figure.
7. $x^{2}+5 y^{2}-3 x+10 y-4=0$; sketch the figure.
8. Derive, by the secant method (cf. Art. 122), the tangent to the parabola $y^{2}=4 p x$; the point of contact being $\left(x_{1}, y_{1}\right)$.
9. Derive, by the secant method, the tangent to the ellipse $x^{2}+4 y^{3}$ $-8 x+20 y=0$; the point of contact being ( $x_{1}, y_{1}$ ).

Write the equations of the tangents and normals to each of the following conics, at the given point : also sketch each figure:
10. $9 x^{2}+5 y^{2}+36 x+20 y+11=0$, at the point $(-2,1)$;
11. $9 x^{2}+4 y^{2}+6 x+4 y=0$, at the point $(0,0)$;
12. $y^{2}-6 y-8 x=31$, at the point $(-3,-1)$;

[^37]13. $\frac{x^{2}}{4}+\frac{y^{2}}{4}=1$, at the point $(1, \sqrt{3})$;
14. $3 x^{3}+4 y^{2}=10$, at the point $(2,-1)$.
124. Equation of a tangent, and of a normal, that pass through a given point which is not on the conic.

The method to be followed in finding the equation of a tangent, or of a normal, that paswon through a given point which is not on the conic, may be illustrated by the following example; the same method is apppljcable to any conio whatever.

Let it bo required to find the equation of that tangent to the parabola

$$
\begin{equation*}
y^{2}-6 y-8 x-31=0 \tag{1}
\end{equation*}
$$

which pases through the point $(-f,-1)$. This point not being on the jarabola, the method of Art. 122 does not apply; but, assuming for the moment that it in possible to draw such a tangent, let $\left(x_{2}, y_{1}\right)$ bo its point of contact. The equation of this tangent is (Art. 122)

$$
\begin{equation*}
y_{1} y-3\left(y+y_{1}\right)-4\left(x+x_{1}\right)-31=0 . \tag{2}
\end{equation*}
$$

Since this tangent passes through the point $(-4,-1)$, therefore equation (2) is satisfied by the coördisates -4 and -1 ,
i.f., $\quad-y_{1}-3\left(-1+y_{1}\right)-4\left(-4+x_{1}\right)-31=0$,
which reduces to

$$
\begin{equation*}
x_{1}+y_{2}+3=0 \tag{3}
\end{equation*}
$$

Fiquation (1) furnishes one relation between the two unknown constants $z_{1}$ and $y_{1}$; another equation between these two unknowns is furmished by the fact that $\left(x_{8}, y_{1}\right)$ is a point on the parabola (1); this equation is

$$
\begin{equation*}
y_{1}^{2}-6 y_{1}-8 x_{1}-31=0 \tag{5}
\end{equation*}
$$

Solving between equations (4) and (5) gives

$$
x_{1}=-2 \pm 2 \sqrt{2} \text { and } y_{i}=-1 \mp 2 \sqrt{2} \text {; }
$$

hence, there are tiro points on the given parabola the tangents at which pank through the proint $(4,-1)$; their coordinates are $(-2+2 \sqrt{2}$, $-1-2 \sqrt{2})$ and $(-2-2 \sqrt{2},-1+2 \sqrt{2})$; and substituting either gatr of these values for $x_{1}$ and $y_{8}$ in equation (2) girea the equation of a straight line that is tangent to the parabola (1), and that passes through the proint $(-1,-1)$.

So, too, if it is desired to find the equation of a normal through a point not on the curve, it is only necessary to assume temporarily the courn dinates of the point on the curve through which this normal passes, and
then find these coördinates by solving two equations, corresponding to equations (4) and (5) above.

The problem of finding the above tangent could also have been solved by writing the equation of a line through the point $(-4,-1)$ (Art. 53 ) and having the undetermined slope $m$, and then so determining $m$ that the two points in which this line meets the parabola should be coincident.
125. Through a given external point two tangents to a conic can be drawn. This theorem can be proved in precisely the same way as the corresponding theorem in the case of the circle (Art. 89) was proved. It may also be proved by the method already applied to the parabola in the preceding article. Let the latter method be adopted. Suppose the equation of the conic to be

$$
\begin{equation*}
A x^{2}+B y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

let the locus of this equation be represented by the curve $L P_{1} P_{2} L^{\prime}$, and let $Q \equiv(h, k)$ be the given external point.

$$
\text { If } P_{1} \equiv\left(x_{1}, y_{1}\right) \text { is a point }
$$

 on $L P_{1} P_{2} L^{\prime}$, then the equation of the tangent at $P_{1}$ is

$$
\begin{align*}
& A x_{1} x+B y_{1} y+G\left(x+x_{1}\right) \\
& \quad+F\left(y+y_{1}\right)+C=0, \tag{2}
\end{align*}
$$

and this tangent will pass through the point $Q$ if

$$
\begin{align*}
A h x_{1} & +B k y_{1}+G\left(h+x_{1}\right) \\
& +F\left(k+y_{1}\right)+C=0 . \tag{3}
\end{align*}
$$

But $P_{1}$ being on the locus of equation (1), its coördinates $x_{1}$ and $y_{1}$ also satisfy equation (1);

$$
\text { i.e., } \quad A x_{1}^{2}+B y_{1}^{2}+2 G x_{1}+2 F y_{1}+C=0 .
$$

If now equations (3) and (4) are solved for $x_{1}$ and $y_{1}$, two values of each are found; these values are both imaginary if $Q$ is within the conic, they are real but coincident if $Q$ is
on the conic, and they are real and distinct if $Q$ is outride of the conic. This proves not only the above proposition but also the fact that no real tangent can be drawn to a conic through an internal point, and that only one tangent can be drawn to a conic through a given point on the curve.
126. Equation of a chord of contact. If the two tangents aro drawn from an external point to a conic section, the straight line through the corresponding points of tangency is culled the chord of contact corresponding to the point from which the tangents are drawn (cf. Art. 90).

Let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ bo the external point from which the two tangents are drawn; $T_{3} \equiv$
 ( $x_{3}, y_{2}$ ) and $T_{3} \equiv\left(z_{8}, y_{8}\right)$, tho prints of tangency of these tangents to the conic whose equation is

$$
\begin{equation*}
A x^{2}+B y^{2}+2 G x+2 F y+C=0 ; \tag{1}
\end{equation*}
$$

it is required to find the equation of the line through $T_{2}$ and $T_{3}$.

The equation of the tangent at $T_{2}$ (cf. Art. 122) is

$$
\begin{equation*}
A x_{2} x+B y_{2} y+G\left(x+x_{2}\right)+F\left(y+y_{2}\right)+C=0, \ldots \tag{2}
\end{equation*}
$$

and the equation of the tangent at $T_{8}$ is

$$
\begin{equation*}
A x_{8} r+B y_{2} y+C\left(x+x_{8}\right)+\boldsymbol{F}\left(y+y_{8}\right)+C=0 \ldots \tag{3}
\end{equation*}
$$

Since cach of these tangents, by hypothesis, passes thmugh $P_{1}$. therefore the coördinates $x_{1}$ and $y_{1}$ satisfy both equation (2) and equation (8) ; i.e.,

$$
\begin{equation*}
A x_{1} x_{2}+B_{1 / 1} 1_{2}+G\left(x_{1}+x_{2}\right)+F\left(y_{1}+y_{2}\right)+C=0 \ldots \tag{4}
\end{equation*}
$$

and $A x_{1} x_{8}+B_{1} y_{1} y_{8}+\boldsymbol{C}\left(x_{1}+x_{3}\right)+\boldsymbol{F}\left(y_{1}+y_{8}\right)+C=0$.

Equations (4) and (5), respectively, assert that the points

$$
\left.T_{2} \equiv x_{2}, y_{2}\right) \quad \text { and } \quad T_{8} \equiv\left(x_{8}, y_{8}\right)
$$

are each on the locus of the equation

$$
\begin{equation*}
A x_{1} x+B y_{1} y+G\left(x+x_{1}\right)+F\left(y+y_{1}\right)+C=0 \tag{52}
\end{equation*}
$$

But equation [52] is of the first degree in the two variables $x$ and $y$, hence (Art. 57) its locus is a straight line; i.e., [52] is the equation of the straight line through $T_{2}$ and $T_{3}$, which was to be found.

Note 1. The equation [52] of the chord of contact corresponding to a given external point ( $x_{1}, y_{1}$ ), and the equation [50] of the tangent whose point of contact is $\left(x_{1}, y_{1}\right)$ are identical in form. This might have been expected because the tangent is only a special case of the chord of contact, since the chord of contact, for a given point, approaches more and more nearly to coincidence with a tangent when the point is taken more and more nearly on the curve.

Note 2. The present article furnishes another method of treatment for the question of Art. 124. To get the equations of the two tangents that can be drawn through a given external point to a given conic, it is only necessary to write the equation of the chord of contact corresponding to this point; then find the points in which this chord of contact intersects the conic. These are the points of contact of the required tangents, whose equation may then be written down.

## EXERCISES

1. By first finding the chord of contact (Art. 126) of the tangents drawn from the point $\left(-\frac{1}{3}, \frac{1}{3}\right)$ to the conic

$$
4 x^{2}+y^{2}+24 x-2 y+17=0
$$

find the points of contact, and then write the equations of the tangents to the conic at these points; verify that these two tangents intersect in the point $\left(-\frac{1}{3}, \frac{1}{3}\right)$.
2. Solve Ex. 1 by the method of Art. 124.
3. Solve Ex. 1 by the method of Art. 83, using equation [11], p. 8.5.
4. Find the equation of a normal through the point $(7,5)$ to the conic

$$
-4 x^{2}+y^{2}+24 x-2 y+17=4
$$

Is it ponsihle to draw more than one normal through $(\overline{\%}, 6)$ to the given conle?
5. By the methoils of Fixa. 1, 2, and 3, find the equations of the tangents through the origin to the conio

$$
3 x^{2}-2 y^{3}=6 x+8 y+6 .
$$

6. By the methots of Fixx. 1, 2, and 3, find tho equations of tho tangents through the proint $(-1,1)$ to the conic

$$
2 x^{2}+5 y^{2}+30 x+20 y+11=0
$$

7. Sketch the conics whose equations are given in Exx. 1, 5. and 6.
8. Find the equations of the tangents to the conic, $x^{2}+4 y^{2}=4$, from the point (3, 2).
9. Find the normals to the conic $x^{3}+4 y^{2}=4$, through the point $(1,0)$.
10. Solve Exs. 8 and 9, by assuming the slope $m$ of the required line (Art. 53), and then determining $m$ so that the two points in which the line meets the given curve shall be coincident.
11. Poles and polars. If through any given point $P_{1} \equiv\left(x_{1}, y_{1}\right)$, outside, inside, or on a given conic, a secant is drawn, meeting the conic in two points $Q$ and $R$, and if tangents at $Q$ and $R$ are drawn, they will intersect in some point, as $P^{\prime} \equiv\left(x^{\prime}, y^{\prime}\right)$. The locus of $P^{\prime}$ as the secant revolves about $P_{1}$ is the polar of the point $P_{1}$ (cf. Art. 91) with regard to the given conic ; and $P_{1}$ is the pole of that locus.

To find the equation of the polar of a given point

$$
P_{1} \equiv\left(x_{1}, y_{1}\right)
$$

with regard to a given conic whose equation is

$$
\begin{align*}
A x^{2} & +B y^{2}+2 G x+2 F y \\
& +C=0 \tag{1}
\end{align*}
$$

let $Q P_{1} R$ be any position of she secant through $P_{1}$, and

let the tangents at $Q$ and $R$ intersect in $P^{\prime} \equiv\left(x^{\prime}, y^{\prime}\right)$. Then the equation of $Q P_{1} R$ (Art. 126) is

$$
\begin{equation*}
A x^{\prime} x+B y^{\prime} y+G\left(x+x^{\prime}\right)+F\left(y+y^{\prime}\right)+C=0 \ldots \tag{2}
\end{equation*}
$$

Since this line passes through $P_{1}$, therefore the coorrdinates $x_{1}$ and $y_{1}$ satisfy equation (2),
i.e., $\quad A x_{1} x^{\prime}+B y_{1} y^{\prime}+G\left(x_{1}+x^{\prime}\right)+F^{\prime}\left(y_{1}+y^{\prime}\right)+C=0, \ldots$
and equation (3) asserts that the variable point $P^{\prime} \equiv\left(x^{\prime}, y^{\prime}\right)$ lies on the locus of the equation

$$
\begin{equation*}
A x_{1} x+B y_{1} y+C\left(x+x_{1}\right)+F\left(y+y_{1}\right)+C=0 \ldots \tag{4}
\end{equation*}
$$

Equation (t) is of the first degree in the variables $x$ and $y$, Hence (Art. 57), its locus is a straight line; the polar of $P_{1}$, with regard to the conic (1), i.e., the locus of $P^{\prime}$, is then the straight line whose equation is

$$
A x_{1} x+B y_{1} y+\boldsymbol{G}\left(x+x_{1}\right)+\boldsymbol{F}\left(y+y_{1}\right)+\boldsymbol{C}=0 . \ldots[5 ;]
$$

Note. That the equation of a tangent [50] and of a chord of contact [52] have the same form as equation [53] is due to the fact that a tangent, and a chord of contact, are but special cases of a polar.
128. Fundamental theorem. An important theorem concerning poles and polars is: If the polar of the point $P_{1}$, with

regard to a given conic, passes through the point $P_{8}$, then the polar of $P_{2}$ with regard to the same conic passes through $P_{1}$.

Let the equation of the given conic tre

$$
\begin{equation*}
A x^{2}+B y^{2}+2 G x+2 F y+C=0, \cdot \cdot \tag{1}
\end{equation*}
$$

and let the two given points be

$$
P_{1} \equiv\left(x_{1}, y_{3}\right) \text { and } P_{2} \equiv\left(x_{2}, y_{3}\right)
$$

Then the equation of the polar of $P_{1}$ with regard to the conic (1) is (Art. 127)

$$
A x_{1} x+B y_{1} y+G\left(x+x_{1}\right)+F\left(y+y_{1}\right)+C=0 ; \ldots(2)
$$

if this line passes through $P_{2}$, then

$$
\begin{equation*}
A x_{2} x_{1}+B y_{2} y_{1}+G\left(x_{2}+x_{1}\right)+F\left(y_{2}+y_{1}\right)+C=0 \ldots \tag{3}
\end{equation*}
$$

But the polar of $P_{2}$ with regard to the conic (1) is

$$
\begin{equation*}
A x_{3} x+B y_{2} y+G\left(x+x_{2}\right)+F\left(y+y_{2}\right)+C=0, \ldots \tag{4}
\end{equation*}
$$

and equation (3) shows that the locus of equation (4) passes through the point $P_{1}$; which proves the proposition.
129. Diameter of a conic section. The locus of the middle points of any system of parallel chords of a given conic is called a diameter of that conic, and the chords which that diameter bisects are called the chords of that diameter.

For a given conic, it is required to find the equation of the diameter bisecting a system of chords whose slope is $m$. Let the equation of the given conic (H.JK, Fig. 96) be

$$
\begin{equation*}
A x^{2}+B y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

let the equation of any one of the parallel chords of slope $m, L, M$ for example, bo

$$
\begin{equation*}
y=m x+b, \quad \cdot \quad \cdot \quad . \tag{2}
\end{equation*}
$$

and let the two points in which it meets the given conic be

$$
P_{1} \equiv\left(x_{1}, y_{1}\right) \text { and } P_{2} \equiv\left(x_{3}, y_{2}\right)
$$

Then (Art. 122, eq. (6)),

$$
\begin{equation*}
m=-\frac{A\left(x_{1}+x_{2}\right)+2 G}{B\left(y_{1}+y_{2}\right)+2 F} \tag{3}
\end{equation*}
$$

If $Q \equiv(h, k)$ be the middle point of the chord $P_{1} P_{2}$, then
$h=\frac{x_{1}+x_{2}}{2}$ and $k=\frac{y_{1}+y_{2}}{2} ;$
substituting these values of $x_{1}+x_{2}$ and $y_{1}+y_{2}$ in equation (3), then clearing of fractions and transposing, that equation becomes

$$
\begin{equation*}
A h+m B k+G+m F=0 . \tag{4}
\end{equation*}
$$

But equation (t) asserts that the coördinates ( $h, k$ ) of the middle point of any one of this system of parallel chords satisfy the equation

$$
A x+m B y+G+m F=0, \quad \text {. . . }[54]
$$

which is therefore the equation of the diameter whose chords have the slope $m$.

## EXERCISES

1. Find the polar of the point $(2,1)$ with regard to the hyperbols $x^{2}-2\left(y^{2}+x\right)-4=0$. Show that this polar passes through $(12,3)$, and then verify Art. 128, for this particular case, by showing that the polar of $(12,3)$, with regard to the given hyperbola, passes through $(2,1)$.
2. Write the equation of the chord of contact of the tangents drawn through $(2,1)$ to the hyperbola $x^{2}-2 y^{2}-2 x-4=0$, then find the points in which it meets the curve, get the equations of the tangents at these points, and verify that they pass through the given point $(2,1)$.
3. By specializing the coefficients in equation [51], prove that the diameter of a circle is perpendicular to the chords of that diameter.

Solution. If equation (1) of ArL. 123 represents a circle, then $A=B$, and then equation [31] becomes

$$
y=\frac{1}{m},-\frac{G+m F}{A m},
$$

i.e., the alope of the dlameter is $-\frac{1}{m}$; but the slope of the given systern of chords is $m$, hence the diameter in perpendicular to its choris.
4. By means of eq. [54], ie., by specializing its coefficients, prove that the diameter of a circlo passes through the center of the circle.
5. By means of equation [34] prove that any diameter of the ellipe $3 x^{2}+y^{2}-6 x+2 y=0$ passes through the center of the ellipee. Does this property belong to all ellipses? To all conics?
6. Find the equation of that diameter of the hyperbola

$$
x^{2}-4 y^{2}+16 y+6 x-15=0
$$

whome chords are parallel to the line $y=2 x+10$. Does this diameter pae through the center of the curve?
7. Find the angle between the diameter and its chonds in exercise 6 .
8. Show that every diameter of the parabola $3 y^{2}-16 z+12 y=4$ in parallel to its axis. Is this a property belonging to all paraholas?
9. Derive, by the method of Art. 120, the equation of that diameter of the hyperbola $x^{2}-4 y^{2}+16 y+6 z-15=0$, which bisects chords parallel to the line $3 x-4 y=12$.
130. Equation of a conic that passes through the intersections of two given conics. Let the given conics bo

$$
\begin{align*}
& \quad S_{1}=A_{1} x^{3}+B_{1} y^{3}+2 G_{1} x+2 F_{1} y+C_{1}=0  \tag{1}\\
& S_{3}=A_{9} x^{2}+B_{2} y^{2}+2 G_{3} x+2 F_{2} y+C_{3}=0 \tag{2}
\end{align*}
$$

then, if $k$ be any constant whatever,

$$
\begin{equation*}
S_{1}+k S_{2}=0 \tag{3}
\end{equation*}
$$

represents a conic whose axes are parallel to the coirdinate axes (Art. 120), and which passes through the points in which the conics $S_{1}=0$ and $S_{2}=0$ intersect each other (Art. 41); i.e., $S_{1}+k S_{2}=0$ represents a family of conics, ench member of which passes through the intersections of $S_{1}=0$ and $S_{2}=0$. The parameter $k$ may be so chosen that
the conic (3) shall, in addition to passing through the four points in which $S_{1}=0$ and $S_{2}=0$ intersect, satisfy one other condition ; e.g., that it shall pass through a given fifth point.

Moreover, if $S_{1}=0$ and $S_{2}=0$ are both circles, then $S_{1}+k S_{2}=0$ is also a circle (ef. Arts. 95 and 96 ).

## v. polar equation of the conic sections

131. Polar equation of the conic. Based upon the "focus and directrix" definition already given in Art. 48, the polar equation of a conic section is easily derived.

Let $D^{\prime} D$ (Fig. 97 ) be the given line (the directrix) and $O$ the given point (the focus); draw $Z O R$ through $O$ and per-
 pendicular to $D^{\prime} D$, and let $O$ be chosen as the pole and $O R$ as the initial line. Also let $P \equiv(\rho, \theta)$ be any point on the locus, and let $e$ be the eccentricity. Draw $M P$ and $O K$ parallel, and $L P$ and $H K$ perpendicular, to $D^{\prime} D$, and let $O K=l$; then
F10, 87. $\quad O P=e \cdot L P$, [definition of the curve]

$$
=e(Z O+O M) ;
$$

$$
\therefore \rho=e\left(\frac{l}{e}+\rho \cos \theta\right) .
$$

This equation, when solved for $\rho$, may be written in the form

$$
\begin{equation*}
\rho=\frac{l}{1-e \cos \theta}, \tag{55}
\end{equation*}
$$

which is the polar equation of a conic section referred to its focus and principal axis; $e$ being the eccentricity and $l$ the semi-latus-rectum. If $e=1$, equation [55] represents a parabola; if $e<1$, an ellipse ; and if $e>1$, an hyperbola.

Nov. Equation [80] shown that if $e<1$, lee, it the equation repro mats an ellipse, there in so value of 0 for which $p$ becomes infinite. Therefore there is no direction in which a tine may be drawn to hues an attipeo at infinity. If $e=1$, ie., if the equation represents a paraliota, there is one value of $\theta$, viz., $\theta=0$, for which $p$ becomes infinite. Themfore there is one direction in which a line may be drawn to meet a pratIts at infinity. If e> 1 , ie., if tho equation represents an hyperbola, there arm two values of $\theta$, viz, $\theta= \pm \cos ^{-1}(1: e)$, for which $\rho$ becomes infinite. Therefore there are tire directions in which a line may be drawn to meet an hyperbola at infinity.

The three species of conic sections may therefore be distinguished from each other by the number of directions in which lines may be drawn through the focus to meet the curve at infinity. Or, since parallel lines moet et infinity, any point of the plane may be used instead of the focus.
132. From the polar equation of a conic to trace the curve. Suppose e $>1$, ie., suppose equation [ 35 ] represents an hyperbola. When $\theta=0$, $\rho=\frac{1}{1-e}$, hence $\rho$ is negative ; as $\theta$ increases, $\cos \theta$ decreases, and econ $\theta$ lincomes numerically more and more nearly equal to 1 ; therefore $\rho$ remains negative and becomes larger and larger; $p=-\infty$ when

$$
1-e \cos \theta=0,
$$

ie., when

$$
\theta=\cos ^{-1}\left(\frac{1}{e}\right)=a,
$$

say ; as $\boldsymbol{\theta}$ increases through this value, $\rho$ becomes $+\infty$ and then decreases, but remains


Foo. © positive, and becomes equal to $l$ when $\theta=00^{\circ}$; as $\theta$ increases through $90^{\circ}$ to $150^{\circ}$, $p$ remains positive, but continues to decrease, reaching its smallest value, viz $\rho=\frac{1}{1+0}$ when $\theta=150^{\circ}$; as $\theta$ increases from $150^{\circ}$ to $270^{\circ}, \rho$ remains positive and increases from $\frac{l}{1+\rho}$ to $l$; as 0 increases from 270 to $360^{\circ}-a, p$ increases from $l$ to $+\infty$; as $\theta$ increases through $360^{\circ}-a, p$ becomes - $\infty$; and finally, as 0 increases from $300^{\circ}$ - a to $300^{\circ}, \rho \mathrm{m}$ mains negative, but decreases numerically, reaching the value $\frac{1}{1-e}$ again when $\theta$ becomes $300^{\circ}$.

These deductions from equation [55] show that the hyperbola has the form represented in Fig. 98, and that, as $\theta$ increases from 0 to $a$, the lower half $A^{\prime} W$ of the infinite branch at the left is traced; as $\theta$ increases from a to $360^{\circ}-a$, the right hand branch $V A U$ is traced; and as $\theta$ increases from $360^{\circ}-\alpha$ to $360^{\circ}$, the upper half $S A^{\prime}$ of the left hand branch is traced.

If $\theta$ increases beyond $360^{\circ}$, the tracing point moves along the same curve; this is also true if $\theta$ changes from $0^{\circ}$ to $-360^{\circ}$.

Note. To show the identity of the curve as traced in the present article and in Art. 117, it need only be recalled that

$$
e=\frac{\sqrt{a^{2}+l^{2}}}{a} \text {, and that } l=\frac{l^{2}}{a} .
$$

These values substituted above show that

$$
a=\cos ^{-1}\left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)=\tan ^{-1}\left(\frac{b}{a}\right) \text {, that } O A=-\left(a+\sqrt{a^{2}+b^{2}}\right) \text {, etc. }
$$

## EXERCISES

1. From equation [55], trace the parabola.
2. From equation [55], trace the ellipse.
3. By means of equation [55], prove that the length of a chord through the focus of a parabola, and making an angle of $30^{\circ}$ with the axis of the curve, is four times the length of the latus-rectum.
4. By transforming from rectangular to polar coördinates, derive the polar equations of the conic sections from their rectangular equations.

## EXAMPLES ON CHAPTER VIII

1. Find the equations of those tangents to the conic $9 x^{2}-16 y^{2}=144$, which pass through the point $(0,1)$.
2. What is the polar of the point $(7,2)$ with reference to the conic $16 y^{2}+9 x^{2}=144$ ? Find the equation of the line which is tangent to the conic and parallel to this polar.
3. Find the polars of the foci of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$, with regard to this ellipse. Also for the parabola $y^{2}=4 p x$.
4. What is the equation of the polar of the center of the conic $A x^{2}+B y^{2}+2 G x+2 F y+C=0$, with reference to the conic?
5. What is the pole of the directrix of the hyperbola $x^{2}-4 y^{2}=16$, with reference to that curve?
6. The line $y=m(x-a e)$ puess through the focus of the central conic $\frac{z^{2}}{f^{2}} \pm \frac{y^{2}}{b^{2}}=1$. On what line does ite pole lie? Find the line joinsing its pole to the focus. What relation exista betweens this line and the given focal chord?
7. What in the polar of the vertex of the conic

$$
A x^{2}+B y^{2}+2 G x+2 F y+C=0 \text {, }
$$

with reference to the curve?
8. What is the equation of each common chord of the two conies

$$
16 x^{2}+9 y^{2}=141, \quad 16 x^{2}-9 y^{2}=144 ?
$$

Hist. Uso Art. 130, equation 3 ; find $k$ so that $S_{1}+k S_{3}$ can be factored.
9. Prove that the perpendicular dropped from any point of the directrix, to the polar of that point, passes through the focus

$$
\text { (a) for } y^{2}=4 p \text { r. ( } \beta \text { ) for } \frac{x^{2}}{a^{2}} \pm \frac{y^{3}}{b^{3}}=1 \text {. }
$$

Using the simplest standard equations of the conics, find for each
10. the prolar of the focus;
11. the pole of the directrix;
12. the pole of each axis; and, for the ellipse and hyperbola, the polar of the center.
13. Find a conic through the intersections of the ellipse $4 x^{2}+y^{2}=16$ and the parabola $y^{2}=4 x+4$, and also prassing through the point 2,2 . What kind of a conic is it?
14. Show that the curves $\frac{x^{2}}{10}+\frac{y^{2}}{7}=1$ and $\frac{x^{2}}{4}-\frac{y^{3}}{5}=1$ have the same foci, and that they cut each other at right angles.
15. Find the vertices of an equilateral triangle circumserihed about the ellipse $9 x^{2}+16 y^{2}=144$, one side being parallel to the major axis of the curve.
16. Find the normal to the conic $3 x^{2}+y^{3}-2 x-y=1$, making the angle $\tan ^{-1}\left(\frac{\xi}{}\right)$ with the $x$-axis.
17. Show that the locus of the pole, with respect to the parabola $y^{2}=4 a x$, of a tangent to the hyperbola $x^{2}-y^{2}=a^{2}$, is the ellipse $4 x^{2}+y^{2}=4 a^{2}$.
18. Show that $\frac{x^{3}}{a^{3}-t^{3}}+\frac{y^{2}}{b^{2}-t^{4}}=1$, where $k$ is an arbitrary consstant, represents an ellipse having the same foci as $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ when
$k^{2}<b^{2}$; but represents a confocal hyperbola when $a^{2}>k^{2}>b^{2}$; given $a>b$.

Determine the nature of the followinf: conies; and also their foci, directrices, centers, semi-axes, and latera recta:
19. $y^{2}=(x+3)(x+4)$;
20. $x^{2}-4 y^{2}+x+y+1=0$;
21. $x^{2}=4 x+11 y+7$;
22. $3 x^{2}+y^{2}-6 x+8 y+1=0$;
23. $3 x^{2}+5 y=3 y^{2}+5 x$;
24. $9\left(x^{2}-y\right)=3 y(1+2 x-3 y)$.
25. Show that the polar equation of the parabola, with its vertex at the pole, is $\rho=\frac{4 p \cos \theta}{\sin ^{2} \theta}$.
26. Show that if the left hand focus be taken as pole, the polar equation of the ellipse is $\rho=\frac{a\left(1-e^{2}\right)}{1-e \cos \theta}$.
27. Derive the polar equation of an hyperbola, with its pole at the focus, eccentricity 2, and the distance of the focus from the directrix equal to 6 .

## CHAPTER IX

## THE PARABOLA $y^{2}=4 p x$

133. Review. In the preceding chapter (Arts. 102 to 108), tho nature of the parabola has been examined, and its equation derived in two standard forms. These equations are :
$y^{2}=4 p x$, if the axis of the curve coincides with the $x$-axis, and the tangent at the vertex with the $y$-axis; and
$(y-k)^{2}=4 p(x-h)$, if the axis of the curve is parallel to the $x$-axis, and the vertex is at the point $(h, k)$. In the present chapter, some of the intrinsic properties of the parabola are to be studied, i.e., properties which belong to the curve and are entirely independent of the position of the coördinate axes. For this purpose, it will, in general, be easier to use the simplest form of the equation of the curve, viz., $y^{2}=4 p x$.

In every parabola, the value of the eccentricity is $e=1$. If the equation of the parabola is $y^{3}=4 p x$, then the focus is the point $(p, 0)$, the directrix is the line $x=-p$, and the axis of the curve is the line $y=0$. The equation

$$
y_{1} y=2 p\left(x+x_{1}\right)
$$

represents the polar of the point $P_{1} \equiv\left(x_{1}, y_{1}\right)$ with respect to the parabola, for all positions of $P_{1}$. If $P_{1}$ be outside the curve, this polar is the chord of contact corresponding to tangents from $P_{1}$; if $P_{1}$ be upon the curve, this polar is the tangent at that point. These facts, shown in the
previous chapter, will be assumed in the following discussion.
134. Construction of the parabola. The two conceptions of a locus given in Article 35 lead to two methods for constructing a curve, viz., by plotting points to be connected by a smooth curve, and by the motion of a point constrained by some mechanical device to satisfy the law which defines the curve. These two methods may be used in constructing a parabola.
(a) By separate points. Given the focus $F$ and the vertex $O$, draw the axis $O F X$, the directrix $D^{\prime} D$ cutting this axis
 in $Z$, and also a series of lines perpendicular to the axis at $M_{1}, M_{2}, M_{3}$, etc., respectively. With $F$ as center and $Z M_{1}$ as radius, describe ares cutting the line at $M_{1}$ in two points $P_{1}$ and $Q_{1}$; similarly, with $F$ as center and $Z M_{2}$ as radius, cut the line at $M_{2}$ in $P_{2}$ and $Q_{2}$; and so on. The points thus found evidently satisfy the definition of the parabola (Art. 102). In this way, as many points of the curve as are desired may be found. If these be then connected by a smooth curve, it will be approximately the required parabola (cf. Note B, Appendix).
( $\beta$ ) By a continuously moving point. Let $D^{\prime} D$ be the directrix and $F$ the focus. Place a right triangle with its longer side $K H$ in coincidence with the axis of the curve, and its shorter side $K J$ in coincidence with the directrix. Let one end of a string of length $K H$ be fastened at
$I$. and the other end at $F$ ? If $^{\text {a }}$ now a pencil point be pressed ugninst the string, keeping it taut while the triangle is moved along the directrix, as indicated in the figure, then, in every position of $P$.

$$
F P=K P
$$

therefore the pencil will trace an are of a parabola.

135. The equation of the tangent to the parabola $y^{2}=4 p x$ in terms of its slope. The equation of a line having the given slope $m$ is

$$
\begin{equation*}
y=m x+k \tag{1}
\end{equation*}
$$

it is desired to find that value of $k$ for which this line will become tangent to the parabola whose equation is

$$
\begin{equation*}
y^{2}=4 p x \tag{2}
\end{equation*}
$$

Considering equations (1) and (2) as simultaneous, and eliminating $y$, the resulting equation, which is

$$
\begin{equation*}
(m x+k)^{3}=4 p x \tag{3}
\end{equation*}
$$

has for its ronts the abscissas of the two points in which the loci of equations (1) and (2) intersect. These roots will become equal (ef. Art. 9), and therefore the points of intersection will become coincident, if

$$
(m k-2 p)^{2}-m^{2} k^{2} \doteq 0
$$

i.e., if

$$
\begin{equation*}
k \doteq \frac{p}{m} \tag{4}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
y=m x+\frac{p}{m} \tag{56}
\end{equation*}
$$

is, for all values of $m$. the equation of a tangent to the parabola

$$
y^{3}=4 p x
$$

The abscissa of the point of contact of the loci of equations (2) and [56] may be found from equation (3), by sub. stituting in it the value of $k$ given in equation (4); it is $\frac{p}{m^{2}}$. The ordinate may then be found from equation (1); it is $\frac{2 p}{m}$. The point of contact is then $\left(\frac{p}{m^{2}}, \frac{2 p}{m}\right)$.
136. The equation of the normal to the parabola $y^{2}=4 p x$ in terms of its slope. Since, by definition, the normal to a curve is perpendicular to the tangent at the point of contact, the equation of a normal to the parabola

$$
\begin{equation*}
y^{2}=4 p x \tag{1}
\end{equation*}
$$

is, if $m^{\prime}$ be the slope of the tangent [Arts. 62, 135],

$$
\begin{equation*}
\left(y-\frac{2 p}{m^{\prime}}\right)=-\frac{1}{m^{\prime}}\left(x-\frac{p}{m^{\prime 2}}\right) \tag{2}
\end{equation*}
$$

If $m$ be the slope of the normal, then

$$
m=-\frac{1}{m}
$$

and equation (2) may be written

$$
\begin{equation*}
y=m x-2 p m-p m^{8} \tag{57}
\end{equation*}
$$

This is the equation of a normal in terms of its own slope $m$.

137. Subtangent and subnormal. Construction of tangent and normal. Let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ be any given point on the parabola whose equation is

$$
\begin{equation*}
y^{2}=4 p x \ldots \tag{1}
\end{equation*}
$$

Draw the ordinate $M P_{1}$, the tangent $T P_{1}$. and the normal $P_{1} N$.

Then by the definitions of Art. 86 , the subtangent is TM, the subnormal is $M N$, the tangent length $T P_{1}$, and the normal length $P_{1} N$. The tangent at $P_{1}$ has for its equation (Art. 122),

$$
\begin{equation*}
y_{1} y=2 p\left(x+x_{1}\right) \tag{2}
\end{equation*}
$$

hence its $x$-intercept is $A T=-x_{1}$. But $A M=x_{1}$, therefore

$$
T M=2 x_{1} .
$$

This proves that the subtangent of the parabola $y^{2}=4 p x$ is bisected at the vertex; and that its length is equal to twice the abscissa of the point of contact.

The normal at $P_{1}$ has for its equation (Art. 123)

$$
\begin{equation*}
y-y_{1}=-\frac{y_{1}}{2 p}\left(x-x_{1}\right) \tag{3}
\end{equation*}
$$

hence its $x$-intercept is $A N=x_{1}+2 p$. But $A M=x_{1}$. therefore

$$
M N=2 p
$$

That is, in words, the sutnormal of the parabola $y^{2}=4 p x$ is constant; it is equal to half the latus rectum.

These properties of the subtangent and "subnormal give two simple methods of constructing the tangent and normal to any parabola at a given point, if the axis of the parabola is given.

First method: from the given point, let fall a perpendicular $P_{1}, M$ to the axis of the parabola, meeting it in $M$. The vertex of the curve being at $A$, construct the point $T$ on the axis produced, so that $T A=A M$. The straight line $T P_{1}$ is the required tangent at $P_{1}$, and a line through $P_{1}$ at right angles to this tangent is the required normal.

Second method. from the foot of the perpendicular $M P_{1}$ construct the point $N$, so that $M N$ equals twice the distance from vertex to the focus ( $2 p=2 A F$ ); then $P_{1} N$ is the required normal, and a line through $P_{1}$ at right angles to $P_{1} N$ is the required tangent.

## EXERCISES

1. Construct a parabola with focus 2 cm from the directríx.
2. Construct a parabola with latus rectum equal to 6 .
3. Find the equations of the two tangents to the parabola $y^{2}=4 p x$, which form with the tangent at the vertex a circmuscribed equilateral triangle. Find also the ratio of the area of this triangle to the area of the triangle whose vertices are the points of tangency.
4. Find the equation of a tangent to the parabola $y^{2}=4 p x$, perpendicular to the line $4 y-x+3=0$, and find its point of contact.
5. Find the equations of the two tangents to the parabola $y^{2}=5 x$ from the point ( $-1,1$ ), using formula [56].
6. Write the equations of the tangents to the parabola $y^{2}=10 x$, at the extremities of the latus rectum. On what line do these tangents intersect? (cf. Art. 138 (5), p. 228.)
7. Write the equations of the tangent and normal to the parabola $y^{2}=9 x$, at the point $(4,6)$.
8. Write the equation of the normal to the parabola $y^{2}=6 x$, drawn through the point $\left(\frac{1}{2}, 3\right)$.
9. Write the equation of the tangent to the parabola $y^{2}=4 p x$, for the point for which the normal length equals twice the tangent; for the point for which the normal length is equal to the difference between the subtangent and subnormal.
10. Two equal parabolas have the same vertex, and their axes are at right angles; find the equation of their common tangent, and show that the points of contact are each at the extremity of a latus rectum.
11. Find the locus of the middle point of the normal length of the parabola $y^{2}=4 p x$.
12. The subtangent of a parabola for the point ( 5,4 ) is 10 ; find the equation of the curve, and length of the subnormal.
13. Find the subtangent, and the normal length, for the point whose abscissa $=-6$, and which is on the parabola $y^{2}=-6 x$.
14. Find the equation of the tangent parallel to the polar of $(-1,2)$ with respect to the parabola $y^{2}=12 x$; also find the point of contact, the length of the tangent, and the subtangent.
15. Find the equation of a parabola which is tangent to $2 y-3 x=1$, whose vertex is at the origin, aud whose axis is parallel to the $x$-axis.
16. Show that tho sum of the sulitangent and subsormal for any point on the parabola $y^{2}=1 p^{5}$, equale one half the length of focal chord parallel to the corresponding tangent.
17. Show that as the abeciasa in the parabola $y^{3}=4 p^{2}$ increases from 0 to 0 , the abmolute valne of the alopee of the tangent changes from © to 0 ; hence the curve is concave towarl ita axin.
18. Some properties of the parabola which involve tangents and normals. Let $F$ be the focus, $A$ the vertex. $A X$ the

axis, and $D^{\prime} D$ the directrix of the parabola whose equation is

$$
\begin{equation*}
y^{2}=4 p x \tag{1}
\end{equation*}
$$

Through any point $P_{1} \equiv\left(x_{1}, y_{1}\right)$ on the curve draw the tangent $T P_{1}$, cutting the $y$-axis in $R$, the directrix in $S$, and the $x$-axis in $T$; also draw the normal $P_{1} N$; the focal chord $P_{2} F P_{1}$; the tangent at $P_{2}$; the lines $L_{1} P_{1} Q$ and $L_{2} P_{2}$ perpendicular to the directrix; and the lines $S F$ and $L_{1} F$. Then the following properties of the parabola are readily obtained:
(1) The focus is equidistant from the points $P_{1}, T$, and $N$.

For

$$
\begin{array}{rlr}
F P_{1} & =L_{1} P_{1}=Z A+A M_{1}=x_{1}+p, \\
T F & =T A+A F=x_{1}+p, & \text { Art. } 137
\end{array}
$$

and

$$
F N=A M_{1}+\left(M_{1} N-A F\right)=x_{1}+p ; \quad \text { Irt. } 137
$$

hence

$$
F P_{1}=T F^{\prime}=F ' N
$$

The point $F$ is the midpoint of the hypotenuse of the right triangle $T P_{1} N$, and is therefore equidistant from the vertices $T, P_{1}$, and $N$. Thus a third method is suggested for constructing the tangent and normal at $P_{1}$, viz.: by means of a circle, with the focus $F$ as center, and the focal radius $F P_{1}$ as radius, which cuts the axis in $T$ and $N$.
(2) The tangent and normal bisect internally and externally, respectively, the angle between the focal radius to the point of contact and the perpendicular from that point to the directrix.

For $\quad \angle L_{1} P_{1} T=\angle P_{1} T F$, since $L_{1} P_{1} \| T F$;
and

$$
\angle T P_{1} F=\angle P_{1} T F, \text { since } T F=F P_{1}
$$

$\therefore \quad \angle L_{1} P_{1} T=\angle T P_{1} F$.
Also, $\quad \angle F P_{1} N=\angle N P_{1} Q$, since $P_{1} N \perp P_{1} T$.
(3) Through any point in the plane two tangents can be drawn to the parabola (cf. Arts. 89, 125).

The line

$$
\begin{equation*}
y=m x+\frac{p}{m} \tag{1}
\end{equation*}
$$

is tangent to the parabola $y^{2}=4 p x$ for all values of $m$. If $P^{\prime} \equiv\left(x^{\prime}, y^{\prime}\right)$ be any given point of the plane, then the timgent (1) will pass through $P^{\prime}$ if, and only if, $m$ satisfy the equation

$$
\begin{equation*}
y^{\prime}=m x^{\prime}+\frac{p}{m} \tag{2}
\end{equation*}
$$

i.e., if $\quad m=\frac{y^{\prime} \pm \sqrt{y^{\prime 2}-4 p x^{\prime}}}{2 x^{\prime}}$.

Therefore two, and only two, values of $m$ satisfy the given conditions; and therefore through any point of the plane two
tangents can be drawn to the parabola. If, however, $P^{P}$ is on the curve, then $y^{\prime 2}-4 \mu x^{\prime}=0$, the two values of $m$ aro equal, i.e., the two tangents coincide. If $P^{P}$ is inside the parabola, then $y^{\prime 2}-4 p x^{\prime}<0$, and the two values of $m$ are imaginary, i.e., there are no real tangent lines. Therefore it is only when $P^{\prime}$ is outside the parabola that two real and different tangent lines may be drawn from it to the parabola.
(4) Through any point in the plane three normals ann be druen to the parabola.

The line

$$
\begin{equation*}
y=m x-2 p m-p m^{9} \tag{1}
\end{equation*}
$$

is normal to the parabola $y^{2}=4 p x$ for all values of $m$ (Art. 136). If $P^{\prime} \equiv\left(x^{\prime}, y^{\prime}\right)$ be any point of the plane, then the normal (1) will pass through $P^{\prime}$ if, and only if, $m$ has a value that will satisfy the equation

$$
\begin{equation*}
y^{\prime}=x^{\prime} m-2 p m-p m^{3} \tag{2}
\end{equation*}
$$

Since equation (2) is a cubic in $m$, there are three values of $m$ which satisfy the given conditions, and therefore, in general, three normals may be drawn to a parabola from a given point. Special eases may, however, arise in which two of the roots of equation (2) are equal, when there would be only two different normal lines; or all the roots may be equal, ${ }^{*}$ or two imaginary and one real, in both of which eases there would be only one normal line. Through every point at least one normal line can be drawn to the parabola.
(5) The tangents at the extremities of a focal chord intersect on the directrix, and at right angles (cf. (6), below).

For, if $S \equiv\left(x^{\prime}, y^{\prime}\right)$ is the point of intersection of the tangents at the extremities of the focal chord, then the chonl is the polar of $S$, and its equation is

$$
\begin{equation*}
y^{\prime} y=2 p\left(x+x^{\prime}\right) \tag{1}
\end{equation*}
$$

[^38]But since this line passes through the focus $F \equiv(p, 0)$,
$\therefore \quad 0=2 p\left(p+x^{\prime}\right)$;
i.e.,

$$
\begin{equation*}
x^{\prime}=-p \tag{2}
\end{equation*}
$$

Hence the point $P^{\prime}$ is on the locus $x=-p, i . e$., on the directrix.

Again, the tangent line

$$
\begin{equation*}
y=m x+\frac{p}{m} \tag{3}
\end{equation*}
$$

passes tirrough the point $P^{\prime} \equiv\left(-p, y^{\prime}\right)$
if

$$
\begin{gather*}
y^{\prime}=-m p+\frac{p}{m} \\
m^{2}+\frac{y^{\prime}}{p} m-1=0 \tag{4}
\end{gather*}
$$

i.e., if

But the roots of equation (4) are the slopes $m^{\prime}$ and $m^{\prime \prime}$ of the two tangents at $P_{1}$ and $P_{2}$; and by Art. 11,

$$
m^{\prime} m^{\prime \prime}=-1
$$

Hence, the tangents at $P_{1}$ and $P_{2}$ intersect at right angles.
(6) The line joining any point in the directrix to the focus of a parabola is perpendicular to the chord of contact corresponding to that point.

For

$$
\triangle S L_{1} P_{1}=\triangle S F P_{1}
$$

since $\quad L_{1} P_{1}=F P_{1}, S P_{1}$ is common, $\angle L_{1} P_{1} S=\angle S P_{1} F$;
hence, $\quad \angle S F P_{1}=\angle S L_{1} P_{1}=90^{\circ}$.
The property of (5) may now be shown geometrically. Draw the tangent at $P_{2}$, and suppose it to meet the directrix in $S^{\prime \prime}$; then, by what has just been proved, $\angle S^{\prime \prime} F P_{2}$ is a right angle; then $F S^{\prime}$ must coincide with $F S$; and the tangents at $P_{1}$ and $P_{2}$ meet on the directrix.

Moreover, $\angle P_{8} S P_{1}$ is a right angle, for $S P$. bisectus $\angle F S L_{1}$, and $S P_{3}$ bisects $\angle L_{2} S F$.
(7) A perpenilicular let fall from the focus upon a tanyenit line meets that tanyent upon the tangent at the vertex.

For the equation of the tangent at $P_{1}$ is

$$
\begin{equation*}
y_{1} y=2 p x+2 p x_{1} \tag{1}
\end{equation*}
$$

and the equation of the perpendicular through the focus $\boldsymbol{F}=(p, 0)$ is

$$
\begin{equation*}
2 p y=-y_{1} x+p y_{1} \tag{2}
\end{equation*}
$$

Regarding equations (1) and (2) as simultaneous, and solving to find the point of intersection $R$, its abscisse is determined by the equation

$$
\left(4 p^{2}+y_{1}{ }^{2}\right) x+p\left(4 p x_{1}-y_{1}{ }^{2}\right)=0 ;
$$

or, since

$$
\begin{align*}
y_{1}^{2} & =4 p x_{1} \\
x & =0 \tag{3}
\end{align*}
$$

and $R$ is therefore on the tangent at $A$.
Note. The preceding properties of the parabola have for variety been given in some cases a geometric, in others an analytic, proof. The student is adrised to use both methods of proof for each proposition. Other properties of the parabola are given below as exercises for the student, and should be derived by anatytic methods.

## EXERCISES

1. Write the equations of the normals drawn through the point $(3,3)$ to the parabola $y^{2}=6 x$.
2. The focal distance of any point of the parabola $y^{2}=4 p x$ is $p+x$
3. The circle on a focal chord as diameter tonches the directrix.
4. The angle between two tangents to a parahola is one half the angle between the focal radii of the points of tangency.
5. The polars of all points on the latus rectum meet the axis of the parabola in the same point; find its coördinates, for tho parabola $y^{2}=4 p x$.
6. The product of the segments of any focal chord of the parabola $y^{2}=4 p x$ equals $p$ times the length of the chord.
7. Two tangents are drawn from an external point $P_{1} \equiv\left(x_{1}, y_{1}\right)$ to a parabola, and a third is drawn parallel to their chord of contact. The intersection of the third with each of the other two is half way between $P_{1}$ and the corresponding point of contact.
8. The area of a triangle formed by three tangents to a parabola is one half the area of the triangle formed by the three points of tangency.
9. The tangent at any point of the parabola will meet the directrix and latus rectum produced, in two points equidistant from the focus.
10. The normal at one extremity of the latus rectum of a parabola is parallel to the tangent at the other extremity.
11. The tangents at the ends of the latus rectum are twice as far from the focus as they are from the vertex.
12. The circle on any focal radius as diameter touches the tangent drawn at the vertex of the parabola.
13. The line joining the focus to the pole of a chord bisects the angle subtended at the focus by the chord.
14. Prove, geometrically, that a perpendicular let fall from the focus upon a tangent line of a parabola meets that tangent upon the tangent drawn at the vertex (cf. (7) of Art. 138, p. 229).
15. Diameters. A diameter has been defined as the locus of the middle points of a system of parallel chords. Its equation may be found as follows (cf. Art. 129):

Let $m$ be the common slope of a system of parallel chords of the parabola whose equation is

$$
\begin{equation*}
y^{2}=4 p x \tag{1}
\end{equation*}
$$

then the equation of one of these chords is

$$
\begin{equation*}
y=m x+k \tag{2}
\end{equation*}
$$

and the equation of any other chord of the system will differ from this only in the value of the constant term $k$. The chord (2) meets the parabola (1) in two points

$$
P_{1} \equiv\left(x_{1}, y_{1}\right)
$$

and $P_{2} \equiv\left(x_{2}, y_{2}\right)$,
and the coordinates of the middle point $P^{\prime} \equiv\left(x^{\prime}, y^{\prime}\right)$ are therefore


$$
\begin{equation*}
x^{\prime}=\frac{x_{1}+x_{2}}{2} \quad \text { and } \quad y^{\prime}=\frac{y_{1}+y_{2}}{2} \tag{3}
\end{equation*}
$$

Considering (1) and (2) as simultaneous equations, and eliminating $x_{0}$ it follows that the ordinates of $P_{1}$ and $P_{2}$ are the roots of the equation
i.e., of

$$
\begin{gather*}
m y^{2}=4 p(y-k) \\
y^{2}-\frac{4 p}{m} y+\frac{4 p k}{m}=0 \tag{4}
\end{gather*}
$$

Therefore, by Art. 11,

$$
y_{1}+y_{2}=\frac{4 p}{m}, i . e ., y^{\prime}=\frac{2 p}{m}
$$

hence whatever the value of $k$, the coürdinates of the middle point of tho chord satisfy the equation

$$
\begin{equation*}
y=\frac{2 p}{m} \tag{5}
\end{equation*}
$$

This is, therefore, the equation of the diameter corresponding to the system of chords whose slope is $m$.*

[^39]140. Some properties of the parabola involving diameters. The equation of the diameter of the parabola (Art. 139),
\[

$$
\begin{equation*}
y=\frac{2 p}{m} \tag{1}
\end{equation*}
$$

\]

shows at once that every diameter of the parabola is parallel to the axis of the curve. (See also Ex. 8, p. 213.)

Conversely, since any value whatever may be assigned to $m$, each value determining a system of parallel chords, equation (1) may represent any line parallel to the $x$-axis, and therefore every line parallel to the axis of a parabola lisects some set of parallel chords, and is a diameter of the curve.

Again, each of the chords cuts the parabola in general in two distinct points, and the nearer these chords are to the extremity of the diameter the nearer are these two points to each other and to their mid-point. In the limiting position, when the chord passes through the extremity of the diameter, the two intersection points and their mid-point become coincident, and the chord is a tangent. Therefore the tangent at the end of a diameter is parallel to the lisected chords.

It follows from the preceding properties, or directly from equation (1), that the axis of the parabola is the only diameter perpendicular to the tangent at its extremity.

The student will readily perceive how the above properties give a method for constructing a diameter to a set of chords, and in particular how to construct the axis of a given parabola. Thus the problem of Art. 137, to construct a tangent and normal to a given parabola at a given point, can now be solved even when the axis is not given.

If any point on a diameter is taken as a pole, its polar will be one of the system of bisected chords, of slope $m$.

For the pole is $P^{\prime}=\left(x^{\prime}, \frac{2 p}{m}\right)$, hence the equation of its polar (Art. 127) is

$$
\begin{gathered}
\frac{2 p}{m} y=2 p\left(x+x^{\prime}\right), \\
y=m x+m x^{\prime},
\end{gathered}
$$

which is the equation of a chord of slope $m$. In other worls, the tangenta at the extremitics of a chord of the parabola interseet upon the correaponding diameter.
141. The equation of a parabola referred to any diameter and the tangent at its extremity as axes. In the simplest form of the equation of the prarabola, viz.,

$$
\begin{equation*}
y^{2}=4 p x, \tag{1}
\end{equation*}
$$

the coordinate axes are the principal diameter and the tangent at its exiremity. These are the only pair of such lines that are perpendicular to esch other (Art. 14(1). It is now desired to find the equation of thes prabola, when referred to any diameter of the curve and the tangent at ite extremity as axes.

Let any diameter $\sigma \boldsymbol{X}^{\prime}$ of the parabola (1) he the new $s$-axis, and the tangent $O r^{\prime \prime}$ at $O$ be the new paxis, meeting the old $x$-axis at an angle 0 .

$$
\begin{equation*}
\text { If } \quad m=\tan \theta \text {, } \tag{2}
\end{equation*}
$$

then (.1rt. 135) the coördinates uf $\sigma$ are $\frac{p}{m^{2}}$ and $\frac{2 p}{m}$, and the equation for transforming the equation from the old axes to a parallel set through the point $\sigma^{\prime}$ am (Art 71),


Fro. 104.

$$
\begin{equation*}
x=x^{p}+\frac{p}{n^{2}} y=y^{\prime}+\frac{2 p}{m} \tag{3}
\end{equation*}
$$

Suhatituting these values in equation (1) gives

$$
\begin{equation*}
y^{2}+\frac{4 p}{m} y=1 p^{2} . \tag{4}
\end{equation*}
$$

To turn the $y$-axis to the final position, making an angle $\theta$ with the $x$-axis, the equations for transformation are (Art. 78, [25]), or, by equation (2),

$$
x^{\prime}=x^{\prime \prime}+y^{\prime \prime} \cos \theta, y^{\prime}=y^{\prime \prime} \sin \theta,
$$

$$
\begin{equation*}
x^{\prime}=x^{\prime \prime}+\frac{y^{\prime \prime}}{\sqrt{1+m^{2}}} \text {, and } y^{\prime}=\frac{m y^{\prime \prime}}{\sqrt{1+m^{2}}} . \text {. . } \tag{5}
\end{equation*}
$$

Substituting these values in equation (4), it becomes

$$
\frac{m^{2}}{1+n^{2}} y^{\prime \prime 2}=4 p x^{\prime \prime} ;
$$

or, dropping now the accents,

$$
\begin{equation*}
y^{2}=4 p\left(\frac{1+m^{2}}{m^{2}}\right) x, \tag{6}
\end{equation*}
$$

which is the required equation of the parabola.
This equation may, however, be written more simply. Observing (Art. 103) that $p\left(\frac{1+m^{2}}{m^{2}}\right)$ is the focal distance of the new origin $O$, and representing that distance by $p^{\prime}$, equation (6) becomes

$$
\begin{equation*}
y^{2}=4 p^{\prime} x \tag{58}
\end{equation*}
$$

This equation is of the same form as equation (1), but is referred to oblique axes. In general, therefore, the equation

$$
y^{2}=k x
$$

represents a parabola, and $\frac{k}{4}$ is the distance of its focus from the origin.
Equation [58] states the following property for every point $P$ of the parabola :

$$
\overline{M^{\prime} P^{2}}=4 F O^{\prime} \cdot O^{\prime} M^{\prime} ;
$$

a property entirely analogous to that of Art. 106.

## EXERCISES

1. Find the diameter of $y^{2}=-7 x$, which bisects the chords parallel to the line $x-y+2=0$.
2. A diameter of the parabola $y^{2}=8 x$ passes through the point $(2,-3)$; what is the equation of its corresponding chords?
3. Find the equation of the diameter of the parabola $y^{2}=4 x+4$ which bisects the chords $2 y-3 x=k$.
4. Find the equation of the tangent to the parabola $(y-6)^{2}=8(x+2)$, which is perpendicular to the diameter $y-4=0$.

5 Show that the pole of any chord is on the diameter which corre "uronds to the chord.
6. What in the equation of the parabola $y^{2}=8 x_{0}$, when referred to fia diameter $y-5=0$ and the corronponding tangent an coonlinats axes?
7. What is the equation of the parabola $(z+3)^{2}=12(y-1)$, when referred to a diameter through the point $(3,4)$ and the corres quonding tangent as coordinate axes?
8. Find the pole of the diameter $y=k$ with reference to the parabola $y^{8}=4 \mu^{2}$.
9. The polar of any point on a diameter is parallel to the correspotse. iog tangent of that diameter.

## EXAMPLES ON CHAPTER IX

Find the equation of a parabola with axis parallel to the $x$-axis:

1. frasing through the proints $(0,0),(3,2),(3,-2)$;
2. pasaing through the points $\left(\frac{1}{2}, 1\right),(-3,4),(-1,2)$;
3. through the print $(4,-5)$, with the vertex at the point $(3,-\%)$.
4. A parabola whose axis is parallel to the $y$-axis, passes through the pints $(-1,2),(7,10)$, and $(-3,5)$; find its equation.
5. Find the vertex and axis of the parabola of Ex. 4.

Find the equation of a parabola
6. If the axis and directrix are taken as coordinate axes
7. with the focus at the origin, and the $y$-axis parallel to the directrix.
8. tangent to the line $4 y=3 x-12$, the equation being in the simflest standard form.
9. if the axis of the parabola coincides with the $x$-axis, and a focal radius of length 10 coincides with the line $4 x-3 y=8$.
10. Two equal parabolas have the same vertex, and their axes are pers Findicular; find their common chond and common tangent (ef. Fix. 10, [4 291).
11. At what angle do the parabolas of Ex. 10 intersect.
12. Two tangentis to a parabola are perpendicular to each other; find the product of the corresponding sub-tangents

Find the locus of the middle point
13. of all the ondinates of a parabola.
14. of all chords passing through the vertex.
15. From any point on the latus rectum of a parabola, perpendiculars are drawn to the tangents at its extremities; show that the line joining the feet of these perpendiculars is a tangent to the parabola.
16. If tangents are drawn to the parabola $y^{2}=4 a x$ from any point on the line $x+4 a=0$, their chord of contact will subtend a right angle at the vertex.

Two tangents of slope $m$ and $m^{\prime}$, respectively, are drawu to a parabola; find the locus of their intersection:
17. if $m m^{\prime}=k$;
18. if $\frac{1}{m}+\frac{1}{m^{\prime}}=k$;
19. if $\frac{1}{m}-\frac{1}{m^{\prime}}=k$.
20. Find the locus of the center of a circle which passes through a given point, and touches a given line.
21. The latus rectum of the parabola is a third proportional to any abscissa and the corresponding ordinate.
22. Find the locus of the point of intersection of tangents drawn at points whose ordinates are in a constant ratio.
23. What is the equation of the chord of the parabola $y^{2}=3 x$ whose middle point is at $(2,1)$ ?
24. A double ordinate of the parahola $y^{2}=4 p x$ is $8 p$; prove that the lines from the vertex to its two ends are perpendicular to each other.
25. Find the locus of the center of a circle which is tangent to a given circle and also to a given straight line.
26. Find the intersections of a normal to the parabola with the curve, and the length of the intercepted portion.
27. Prove that the locus of the middle point of the normal intercepted between the parabola and its axis is a parabola whose vertex is the focus, and whose latus rectum is one fourth that of the original parabola.
28. Prove that two confocal parabolas, with their axes in opposite directions, intersect at right angles.
29. Find the equation of the parabola when referred to tangents at the extremities of the latus rectum as coördinate axes.
30. The product of the tangent and normal lengths for a certain point of the parabola $y^{2}=4 p x$ is twice the square of the corresponding ordınate; find the point and the slope of the tangent line.

## CHAPTER X

$$
\text { THE ELLIPSE, } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

142. Review. In Chapter VIII the nature of the ellipse has been briefly discussed, and its equation found in the two standard forms :

$$
\frac{x^{3}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

When the axes of the curve are coincident with the coordinate axes; and

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

when the axes of the curve are parallel to the coordinate axes, and the center is the point $(h, k)$. In the present chapter it is desired to study some of the intrinsic properties of the ellipse, i.e., properties which belong to the curve but are independent of the coördinate axes; and these can for the most part be obtained most easily from the simpler equation,

$$
\frac{x^{3}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ has its eccentricity given by the relation $b^{2}=a^{2}\left(1-c^{2}\right)$, i.e., $c^{2}=\frac{a^{2}-b^{2}}{a^{2}}$; its foci are the two points $( \pm a e, 0)$, and its directrices the lines $x= \pm_{e}^{a}$ (Art. 110). If the axes are equal, so that $b=a$, the curve takes the special form of the circle, with eecentricity $e=0$.
the two foci coincident at the center, and the directrices infinitely distant.

The equation $\frac{x_{1} x}{a^{2}}+\frac{y_{y} y}{b^{2}}=1$ represents the polar of the point $\left(x_{1}, y_{1}\right)$ with respect to the ellipse; if the point is outside the curve, this polar line is its chord of contact; if upon the curve, the polar is the tangent at that point (Arts. 122, 126, 127).

These facts will be assumed in the following work.
143. The equation of the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in terms of its slope. The equation of a line having the given slope $m$ is

$$
\begin{equation*}
y=m x+k \tag{1}
\end{equation*}
$$

it is desired to find that value of $k$ for which this line will become tangent to the ellipse whose equation is

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{2}
\end{equation*}
$$

Considering equations (1) and (2) as simultaneous, and eliminating $y$, the resulting equation

$$
\begin{equation*}
\left(b^{2}+a^{2} m^{2}\right) x^{2}+2 a^{2} m k x+a^{2} k^{2}-a^{2} b^{2}=0 \tag{3}
\end{equation*}
$$

determines the abscissas of the two points of intersection of the curves (1) and (2). When the curves are tangent, these abscissas are equal; therefore
and

$$
\begin{array}{ll} 
& a^{4} m^{2} k^{2}-\left(b^{2}+a^{2} m^{2}\right)\left(a^{2} k^{2}-a^{2} b^{2}\right)=0 \\
\text { i.e., } & k^{2}=a^{2} m^{2}+b^{2}, \\
\text { and } & k= \pm \sqrt{a^{2} m^{2}+b^{2}} . \\
\text { Hence } & y=m x \pm \sqrt{a^{2} m^{2}+b^{2}}
\end{array}
$$

Hence
is the equation of a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, for all values of $m$.

Equation [59] shows that there are two tangents to an ellipse parallel to any given line; and also (Art. 125), that there are two tangents to an ellipse from any external point.
144. The sum of the focal distances of any point on an ellipse is constant ; it is equal to the major axis.

The ellipse $\frac{x^{3}}{a^{2}}+\frac{y^{3}}{b^{2}}=1$ has its foci at the points

$$
F_{1}=(-a e, 0) \text { and } F_{2}=(a e, 0) ;
$$

with $b^{2}=a^{3}-a^{2} e^{2} . \quad$ (Cf. Art. 110.)
Let $P_{1}=\left(x_{1}, y_{1}\right)$ be any point on the curve, so that

$$
y_{1}^{2}=b^{2}-\frac{b^{2} x_{1}^{2}}{a^{2}}
$$




$$
=a^{2} e^{2}+2 a e x_{1}+x_{1}^{2}+b^{2}-\frac{b^{2} x_{1}^{2}}{a^{2}}
$$

$$
=a^{2} e^{2}+2 a e x_{1}+\frac{\left(a^{2}-b^{2}\right)}{a^{2}} x_{1}^{2}+a^{2}-a^{2} e^{2}
$$

$$
=a^{2}+2 a c x_{1}+e^{2} x_{1}^{2}:
$$

ie.,

$$
F_{1} P_{1}=a+e x_{2}
$$

$$
\text { Again, } \begin{aligned}
\bar{F}_{2}^{\prime} P_{1}^{2}= & \left(x_{1}-a e\right)^{2}+y_{1}^{2}=a^{2} e^{2}-2 a e x_{1}+x_{1}^{2}+y_{1}^{2} \\
= & a^{2}-2 a e x_{1}+e^{2} x_{1}^{2}, \\
& F_{2} P_{1}=a-e x_{1} .
\end{aligned}
$$

Hence, by addition,

$$
F_{1} P_{2}+F_{2} P_{1}=2 a ;
$$

i.e., the sum of the focal distances of any point on an ellipse is constant; it is equal to the major axis.

This property gives an easy method of finding the foci of an ellipse when the axes $A^{\prime} A$ and $B^{\prime} B$ are given.

For

$$
F_{1} B+F_{2} B=2 a
$$

but

$$
F_{1} O=O F_{2}^{\prime}
$$

$\therefore$

$$
F_{2} B=F_{1} B=a .
$$

Hence, to find the foci, describe ares with $B$ as center and $a=O A$ as radius, cutting $A^{\prime} A$ in the points $F_{1}$ and $F_{2}$; these points are the required foci.
145. Construction of the ellipse. The property of Art. 144 is sometimes given as the definition of the ellipse ; vi\%. the ellipse is the locus of a point the sum of whose distances from two fixed points is constant. This definition leads at once to the equation of the curve (cf. Ex. 5, p. 67); and also gives a ready method for its construction.
(a) Comstruction by separate points. Let $A^{\prime} A$ be the given sum of the focal distances, i.e., the major axis of the ellipse; and $F_{1}$ and $F_{2}$ be the given fixed points, the foci. With either focus as center, and with any radius $A^{\prime} R<A^{\prime} A$ describe an are; then with the other focus as center, and radius $R A$, describe an are cutting the first arc in two points. These are points of the ellipse. In the same way
as many points as desired may be constructed; a smooth curve connecting these points is approximately an ellipse.

( $\beta$ ) Construction by a continuously moving point. Fix two upright pins at the foci, and over them place a loop of string, equal in length to the major axis plus the distance between the foci. Press a pencil point against the cord so as to keep it taut. As the pencil moves around the foci, it will trace an ellipse.

## EXERCISES

1. Construct an ellipse with semi-axes 8 em and $0^{00}$.
2. Construct an ellipse with semi-axes $5^{\mathrm{em}}$ and $12^{\mathrm{m}}$.
3. Construct an ellipse with the distance between the foci 24 , and the minor axis of length 10 .
4. Write the equation of the polar of the left-hand focus of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. What line is this?
5. By employing equation [59], find the tangent to the ellipse $16 x^{2}+25 y^{2}=400$, and passing through the point $(3,4)$.
6. By the method of Ex. 17, p. 223 , show that an ellipse is concave toward its center.
7. Through what point of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ must a tangent and normal be drawn, to form with the maxis an isosceles triangle?
8. Write the equations of the tangent and normal at the positive end of the latus rectum of the ellipse $x^{2}+4 y^{2}=4$. Where do these lines cut the maxis?
9. Tangents to the ellipse $4 x^{2}+3 y^{2}=5$ are inclined at $60^{\circ}$ to the $x$-axis; find the points of contact.
10. Find the equation of an ellipse (center at the origin) of eccentricity ${ }^{\text {s }}$, such that the subtangent for the point $\left(3, \gamma^{2}\right)$ is $\left(-\frac{1}{8}\right)$.
11. Find the chord of contact for tangents from the point ( 3,2 ) to the ellipse $x^{2}+4 y^{2}=4$. Find also the equation of the line from $(3,2)$ to the middle point of this chord.
12. Find the tangents to the ellipse $7 x^{2}+8 y^{2}=56$ which make the angle $\tan ^{-1} 3$ with the line $x+y+1=0$.
13. Find the product of the two segments into which a focal chord is divided by the focus of an ellipse, - using Art. 131.
14. Find the equation of a tangent, and also of a normal, to the ellipse $x^{2}+4 y^{2}=16$, each parallel to the line $3 x-4 y=5$.
15. Find the pole of the line $3 x-4 y=5$ with reference to the ellipse $x^{2}+4 y^{2}=16$; also the intercepts on the axes made by a line through the pole and perpendicular to the polar.
16. Find the points on the ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$, such that the tangent makes equal (numerical) angles with the axes; such that the subtangent equals the subnormal.
17. Auxiliary circles. Eccentric angle. The circumscribed and inscribed circles for the ellipse (Fig. 107) are called auxiliary circles, and bear an important part in the theory of the ellipse. Let the equation of the ellipse be

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

The circle described on its major axis as diameter is called the major auxiliary circle; its equation is

$$
\begin{equation*}
x^{2}+y^{2}=a^{2} ; \tag{2}
\end{equation*}
$$

and the circle on the minor axis as diameter is the minor auxiliary circle; its equation is

$$
\begin{equation*}
x^{2}+y^{2}=b^{2} \tag{3}
\end{equation*}
$$

If $\angle A O Q$ is any angle $\phi$ at the center of the ellipme, with the initial side on the major axis, and the terminal side cutting the auxiliary circles in $R$ and $Q$, respectively; and if


Fio. 107.
$P$ is the intersection of the abscissa $L R$ with the ordinate $M Q$, then $P$ is a point on the ellipse.

For the coördinates of $P$ are

$$
O M=O Q \cos \phi \text { and } M P=M^{\prime} R=O R \sin \phi
$$

i.e.,

$$
\begin{equation*}
x=a \cos \phi, \quad y=b \sin \phi \tag{60}
\end{equation*}
$$

Now these values satisfy the equation of the ellipse ; for, substituting them in equation (1), gives

$$
\frac{a^{2} \cos ^{2} \phi}{a^{2}}+\frac{b^{2} \sin ^{2} \phi}{b^{2}}=\cos ^{2} \phi+\sin ^{2} \phi=1 ;
$$

hence $P$ is a point of the ellipse.
The points $P, Q$, and $R$ are called corresponding points. The angle $\phi$ is the eccentric angle of the point $P ;{ }^{*}$ and the

[^40]two equations [60] are equations of the ellipse in terms of the eccentric angle, for together they express the condition that the point $P$ is on the ellipse (1).*

Since, in the figure, $\triangle O M^{\prime} R$ and $O M Q$ are similar, it follows that
and

$$
M P: M Q=O R: O Q=b: a
$$

that is, the ordinate of any point on the ellipse is to the ordinate of the corresponding point on the major auxiliary circle in the ratio ( $b: a$ ) of the semi-axes. Similarly for the abscissas of the corresponding points $R$ and $P$.
147. The subtangent and subnormal. Construction of tangent and normal.

Let

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

be a given ellipse,
then

$$
\begin{equation*}
\frac{x_{1} x}{a^{2}}+\frac{y_{1} y}{b^{2}}=1 \tag{2}
\end{equation*}
$$

is the tangent to it at a point $P_{1} \equiv\left(x_{1}, y_{1}\right)$. Let this tangent cut the $x$-axis at the point $T$. Draw the ordinate $M P_{1}$.

Then the subtangent is, by definition, $T M$; and its numerical value is

$$
M T=O T-O M
$$

but, from equation (2), $O T=\frac{a^{2}}{x_{1}}$; and $O M=x_{1}$;
hence
i.e.,

$$
\begin{aligned}
& M T=\frac{a^{2}}{x_{1}}-x_{1} \\
& T M=\frac{x_{1}^{2}-a^{2}}{x_{1}}
\end{aligned}
$$

[^41]Hence the value of the subtangent, corresponding to any point of the ellipse whowe equation is (1), depends only upon the major axis, und the abscissa of the point; therefore, if a series of ellipses have the same major axis, tangents draten to them at the points having a common abscissa will cut the major axis (extended) in a common point.


This fact suggests a method for constructing a tangent and normal to an ellipse, at a given point: draw the major anxiliary circle; at $Q$ on this circle, and in $M P_{1}$ extended, draw a tangent to the circle. This will out the axis in $T$ : and $P_{1} T$ will be the required tangent to the ellipse at $P_{1}$. The normal $P_{1} N$ may then be drawn perpendicular to $P_{1} T$.

The equation of the normal through $P_{1}$ is (cf. eq. [ $\overline{j 1}$ )

$$
y-y_{1}=\frac{a^{2} y_{1}}{b^{2} x_{1}}\left(x-x_{1}\right) ;
$$

therefore the $x$-intercept of the normal at that point is

$$
O N=\frac{a^{2}-b^{2}}{a^{2}} x_{1}=e^{2} x_{1}
$$

But the subnormal corresponding to $P_{1}$ is

$$
M N=O N-O M
$$

and

$$
O M=x_{1}
$$

therefore

$$
\begin{aligned}
M N & =\frac{a^{2}-b^{2}}{a^{2}} x_{1}-x_{1} \\
& =-\frac{b^{2}}{a^{2}} x_{1}=\left(e^{2}-1\right) x_{1}
\end{aligned}
$$

Note. From the value of $O N$ it follows that the normal to an ellipse does not, in general, pass through the center, but passes between the center and the foot of the ordinate; the extremities of the axes of the curve being exceptional points. If, however, $a=b$, then $e=0$, the curve is a circle, and every normal passes through the center (cf. Art. 85).
148. The tangent and normal bisect externally and internally, respectively, the angles between the focal radii of the point of contact.


Let the equation of the given ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$; also let $F_{1}$ and $F_{2}$ be the foci, and $P_{1} \equiv\left(x_{1}, y_{1}\right)$ any given point on the curve. Draw the tangent $T P_{1}$, the normal $P_{1} N$, and also the lines $F_{2} P_{1}$ and $F_{1} P_{1} W$.

Then

$$
\begin{align*}
F_{1} N & =F_{1} O+O V=a c+e^{2} x_{1}  \tag{Art.147}\\
& =e\left(a+e x_{1}\right) . \\
N F_{2} & =O F_{2}-O N=a e-e^{2} x_{1} \\
& =e\left(a-e x_{1}\right) ;
\end{align*}
$$

also

$$
F_{1} P_{1}=a+e x_{1}
$$

[Art. 144]
and

$$
F_{2} P_{1}=a-e x_{1} .
$$

Hence

$$
F_{1} N: N F_{2}=F_{1} P_{1}: P_{1} F_{2}
$$

and, by a theorem of plane geometry, this proportion proves that the normal $P_{1} N$ bisects the angle $F_{1} P_{1} F_{2}$ between the focal radii. Again, since the tangent is perperdicular to the normal, the tangent $P_{1} T$ will bisect the external angle $F_{2} P_{1} W$.

This proposition leads to a second method of constructing the tangent and normal to an ellipse at a given point (cf. Art. 147). First determine the foci, $F_{1}$ and $F_{2}$ (Art. 144), then draw the focal radii to the given point and bisect the angle thus formed, - internally for the normal, externally for the tangent.
149. The intersection of the tangents at the extremity of a focal chord.

If $P^{\prime} \equiv\left(x^{\prime}, y^{\prime}\right)$ be the intersection of two tangents to the ellipme

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text {. }
$$

the equation of their chord of contact is (Art. 126)

$$
\begin{equation*}
\frac{x^{\prime} x}{a^{2}}+\frac{y^{\prime} y}{b^{2}}=1 \tag{1}
\end{equation*}
$$

If this chord passes through the focus $F_{2} \equiv(a e, 0)$, its equation must be satisfied by the coördinates of $F_{3}$; therefore

$$
\frac{x^{\prime}(s e}{a^{2}}=1, \text { i.e.n } x=\frac{a}{e}
$$

and the point of intersection $P^{\prime}$ is on the line, $x=\frac{a}{e}$; i.e., on the directrix corresponding to the focus $F_{g}$. Similarly, if the chord passes through the focus $F_{1} \equiv(-a e, 0)$, the point $P^{\prime}$ is on the directrix $x=-\frac{a}{e}$.

Hence, the tangents at the extremities of a focal chord intersect upon the corresponding directrix.

Again, the liue joining the intersection $P^{\prime} \equiv\left(\frac{a}{e}, y^{\prime}\right)$ to the focus has the slope

$$
m^{\prime}=\frac{y_{2}-y_{1}}{x_{2}-y_{1}}=\frac{y^{\prime}}{\frac{11}{e}-a e}=\frac{e y^{\prime}}{a\left(1-e^{2}\right)}=\frac{a e y^{\prime}}{b^{2}} ;
$$

while the slope of the focal chord (1) is
hence

$$
\begin{gathered}
m=-\frac{b^{2} x^{\prime}}{a^{2} y^{\prime}}=-\frac{b^{2}}{a e y^{\prime}} ; \\
m^{\prime}=-\frac{1}{m^{\prime}}
\end{gathered}
$$

and therefore the line joining the focus to the intersection of the tangents at the ends of a focal chord is perpendicular to that chord.
150. The locus of the foot of the perpendicular from a focus upon a tangent to an ellipse. Let the equation of a tangent to the ellipse (Art. 143), whose equation is

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{3}}{b^{2}}=1, \tag{1}
\end{equation*}
$$

be written in the form $\quad y=m x+\sqrt{a^{2} m^{2}+t^{2}}$.
Then the equation of a perpendicular to (2), through the focus ( $a e, 0$ ), is

$$
\begin{equation*}
y=-\frac{1}{m}(x-a e), \quad \text { i.e., } x+m y=a e \tag{3}
\end{equation*}
$$

If $P^{\prime} \equiv\left(x^{\prime}, y^{\prime}\right)$ is the point of intersection of (2) and (3), it is required to find the locus of $P$; i.e., to find an equation which will be satisfied by the coördinates $x^{\prime}, y^{\prime}$, whatever the value of $m$; this must be an equation involving $x^{\prime}$ and $y$, but free from $m$. Since $P^{\prime}$ is on both lines (2) and (3),
therefore

$$
\begin{equation*}
y^{\prime}-m x^{\prime}=\sqrt{a^{2} m^{2}+b^{2}}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime}+m y^{\prime}=a e . \tag{5}
\end{equation*}
$$

Tho elimination of $m$ is acconplishod mont easily by mquaring each uember of equations ( 1 ) and (5), and adding:
this gives $\quad\left(1+m^{2}\right) r^{2}+\left(1+m^{2}\right) y^{3}=a^{2} m^{3}+u^{2} e^{3}+b^{3}$,
i.e., $\quad\left(1+m^{2}\right)\left(x^{2}+y^{2}\right)=a^{3}\left(m^{2}+1\right)$,
whence,

$$
x^{2}+y^{2}=a^{2}
$$

Hence, the point $F^{\nu}$ is on the circle

$$
x^{2}+y^{2}=a^{2}
$$

that is, the locus of the foot of a perpendicular from cither forus upon a tangent to the ellipse is the major auriliary circle.
151. The locus of the intersection of two perpendicular tangents to the ellipse.

Let the equation of any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ be written in the form (Art. 143)

$$
\begin{equation*}
y-m x=\sqrt{a^{2} m^{2}+b^{2}}, \tag{1}
\end{equation*}
$$

then the equation of a perpendicular tangent is
ien,

$$
\begin{align*}
& y+\frac{1}{m} x=\sqrt{\frac{a^{2}}{m^{2}}+11^{2}} \\
& m y+x=\sqrt{a^{2}+1 b^{2} m^{2}} \tag{2}
\end{align*}
$$

Letting $P^{P} \equiv\left(x^{\prime}, y^{\prime}\right)$ be the point of intersection of these two tangentes, (1) and (2), it is required to find the locus of $P$ as $m$ varies in value; that is, to find an equation between $r^{\prime}$ and $y^{\prime}$ ' which does not involve $m$.

Proceeding as in Art. 150 ; since $P^{\prime}$ is on both lines (1) and (2),
therefore
and $\quad m y^{\prime}+y^{\prime}=\sqrt{a^{2}+b^{2} m^{2}}$.
To eliminate m , square both equations, and add: this gives
i.e.,

$$
\begin{aligned}
& y^{\prime}-m x^{\prime}=\sqrt{a^{2} m^{2}+b^{2}}, \\
& m y^{\prime}+y^{\prime}=\sqrt{a^{2}+b^{2} m^{2}} .
\end{aligned}
$$

$$
\left(m^{2}+1\right) y^{3}+\left(m^{2}+1\right) x^{2}=\left(m^{2}+1\right) a^{2}+\left(m^{2}+1\right) l^{2},
$$

Therefore, the point of intersection of perpendicular tangents is on the circle

$$
\begin{equation*}
x^{2}+y^{2}=a^{2}+b^{2} \tag{01}
\end{equation*}
$$

which is called the director circle for the ellipse. The locus of the iuter section of two perpendicular tangents to an ellipue is, then, its director corcle.

## EXERCISES

1. Prove that the two tangents drawn to an ellipse from any external point subtend equal angles at the focus.
2. Fach of the two tangents drawn to the ellipse from a point on the directrix subtends a right angle at the focus.
3. A focal chord is perpendicular to the line joining its pole to the focus. Show that this is also true for a parabola.
4. The rectangle formed by the perpendiculars from the foci upon any tangent is constant; it is equal to the square of the semi-minor-axis.
5. The circle on any focal distance as diameter touches the major auxiliary circle.
6. The perpendicular from the focus upon any tangent, and the line joining the center to the point of contact, meet upon the directrix.
7. The perpendicular from either focus, upon the tangent at any point of the major auxiliary circle, equals the distance of the corresponding point of the ellipse from that focus.
8. The latus rectum is a third proportional to the major and minor axes.
9. The area of the ellipse is $\pi a b$.

Suggestion. Employ the fact, proved in Art. 146, that the ordinate of an ellipse is to the corresponding ordinate of the major auxiliary circle as $b: a$, and thus compare the area of the ellipse with that of its major auxiliary circle.
152. Diameters. As already shown in Articles 129 and 139, the definition of a diameter as the locus of the middle points of a system of parallel chords leads directly to its equation.

Let $m$ be the slope of the given system of parallel chords of the ellipse whose equation is

$$
\begin{align*}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1  \tag{1}\\
& y=m x+c \tag{2}
\end{align*}
$$

and let
be the equation of one of thene chords, which meets the curve in the two points $P_{1} \equiv\left(x_{1}, y_{1}\right)$ and $P_{2} \equiv\left(x_{2}, y_{2}\right)$. Let $P^{\prime} \equiv\left(x^{\prime}, y^{\prime}\right)$, be the middle point of this chord, so that

$$
\begin{equation*}
x^{\prime}=\frac{x_{1}+x_{2}}{2}, \quad y^{\prime}=\frac{y_{1}+y_{2}}{2} \tag{3}
\end{equation*}
$$



Fio. 110
The enördinates of $P_{1}$ und $P_{3}$ are found by solving (1) and (2) as simultaneous equations, therefore the abscissas $x_{1}$ and $x_{3}$ are the roots of the equation

$$
\begin{equation*}
\left(a^{2} m^{2}+b^{2}\right) x^{2}+2 a^{2} c m x+a^{2} c^{2}-a^{2} b^{2}=0, \tag{4}
\end{equation*}
$$

and the ordinates $y_{1}$ and $y_{2}$ are roots of the equation

$$
\begin{equation*}
\left(a^{2} m^{2}+l^{2}\right) y^{3}-2 b^{2} c y+b^{2} c^{2}-a^{2} b^{2} m^{2}=0 \ldots \tag{5}
\end{equation*}
$$

Hence, by Art. 11, the coordinates of $P^{\prime}$ are

$$
\begin{equation*}
x^{\prime}=-\frac{a^{2} c m}{a^{2} m^{2}+b^{2}} \quad y^{\prime}=\frac{b^{2} c}{a^{2} m^{3}+b^{2}} \tag{6}
\end{equation*}
$$

Now, by varying the value of $c$, equation (6) gives the coordinates of the middle point for each of the chords of the given set. It is required to find the locus of $P^{\prime}$ for all values of $e$, i.e., to find an equation satisfied by $x^{\prime}$ and $y^{\prime}$.
and not dependent upon the value of $c$. If $x^{\prime}$ be divided by $y^{\prime}$, the $c$ is eliminated from the equations (6), giving

$$
\begin{equation*}
\frac{x^{\prime}}{y^{\prime}}=-\frac{a^{2}}{b^{2}} m \tag{7}
\end{equation*}
$$

Therefore the coördinates of the middle point of every chord of slope $m$ satisfy the equation

$$
\frac{x}{y}=-\frac{a^{2}}{b^{2}} m
$$

or,

$$
\begin{equation*}
y=-\frac{b^{2}}{a^{2} m} x \tag{62}
\end{equation*}
$$

which is therefore the equation of the diameter bisecting the chords of slope $m$.

The form of equation [62] shows that every diameter of the ellipse passes through the center.
153. Conjugate diameters. Since every diameter passes through the center of the ellipse, and since, by varying the slope $m$ of the given set of parallel chords, the corresponding diameter may be made to have any required slope, therefore it follows that every chord which passes through the center of an ellipse is a diameter, corresponding to some set of parallel chords. In particular, that one of the set of chords given by equation (2), Art. 152, which passes through the center, -i.e., the chord whose equation is

$$
\begin{equation*}
y=m x \tag{63}
\end{equation*}
$$

is a diameter. This diameter bisects the chords parallel to the line [62]; for if $m^{\prime}$ be the slope of the line [62],
then

$$
m^{\prime}=-\frac{b^{2}}{a^{2} m}
$$

hence,

$$
\begin{equation*}
m m^{\prime}=-\frac{b^{2}}{a^{2}} \tag{64}
\end{equation*}
$$

and this equation expresses the condition that line [62]. which has the slope $m^{\prime}$, shall bisect the chords of slope $m$ (Art. 152). But conversely, it expresses also the condition that the line [63] which has the slope $m$ shall bisect the chords of slope $m^{\prime}$. Hence each of the lines [62] and [68] bisects the chords parallel to the other. Hence, if one diameter bisects the chords parallel to a second, then also the sccond diameter bisects the chords parallel to the first. Such diameters are called conjugate to each other.

Each line of the set of parallel chords in general cuts the ellipse in two distinct points, and the further the chord is from the center, the nearer these two points are to each other, and to their mid-point. In the limiting position, the chord becomes a tangent, with the two intersection points and their mid-point coincident at the point of tangency. Therefore, the tangent at the end of a diameter is parallel to the conjugate diameter. This property, with that of Art. 152, suggests a method for constructing conjugate diameters: first draw a tangent at an extremity of a given diameter (Art. 147), then a line drawn parallel to this tangent through the center of the ellipse is the required conjugate diameter. (Sce Fig. 111.)
154. Given an extremity of a diameter, to find the extremity of its conjugate diameter.

Let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ be an extremity of a given diameter (Fig. 111), then $P_{2} \equiv\left(-x_{1},-y_{1}\right)$ will be the other extremity. Let $P_{1}=\left(x_{1}{ }^{\prime}, y_{1}{ }^{\prime}\right)$ and $P_{3}^{\prime} \equiv\left(-x_{1}^{\prime},-y_{1}^{\prime}\right)$ the the extremities of the conjugate diameter. tet the equation of the ellipse be

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text {; } \tag{1}
\end{equation*}
$$

then the equation of the given diameter $P_{1} P_{8}$ is

$$
\begin{equation*}
y=\frac{y_{1}}{z_{1}} x_{1} \tag{2}
\end{equation*}
$$

and that of the confugate diameter $P_{1}^{\prime} P_{2}^{\prime}$, through the center and parallel to the tangent at $P_{1}$ is

$$
\begin{equation*}
\frac{x_{1} x}{a^{2}}+\frac{y_{1} y}{b^{2}}=0 . \tag{3}
\end{equation*}
$$



The coördinates of $P_{1}^{\prime}$ and $P_{2}^{\prime}$, in terms of $x_{1}, y_{1}, a$, and $b$, are given by equations (1) and (3), considered as simultaneous; hence, eliminating $y$ between these equations, and remembering that the point $P_{1}$ is on the ellipse (1) and that therefore $b^{2} x_{1}{ }^{2}+a^{2} y^{2}=a^{2} b^{2}$, the abscissas of the points $P_{1}^{\prime}$ and $P_{2}{ }^{\prime}$ are given by the equation

$$
x^{2}=\frac{a^{2} y_{1}{ }^{2}}{b^{2}} ;
$$

i.e.,

$$
x_{1}^{\prime}=-\frac{a}{b} y_{1} \text { and } x_{2}^{\prime}=\frac{a}{b} y_{1} .
$$

Substituting these values in equation (3), gives for the corresponding ordinates,

$$
y_{1}^{\prime}=\frac{b}{a} x_{1} \quad \text { and } \quad y_{2}^{\prime}=-\frac{b}{a} x_{1} .
$$

Therefore the required extremities of the conjugate diameter are

$$
P_{1}^{\prime} \equiv\left(-\frac{a}{b} y_{1}, \frac{b}{a} x_{1}\right) \text { and } P_{2}^{\prime} \equiv\left(\frac{a}{b} y_{1},-\frac{b}{a} x_{1}\right) \text {. }
$$

155. Properties of conjugate diameters of the ellipse. (a) It has been seen (Art. 153) that two diameters are conjugate when their slopes satisfy the relation

$$
\begin{equation*}
m m^{\prime}=-\frac{l^{2}}{a^{2}} \tag{1}
\end{equation*}
$$

It follows, since the product of their slopes is negative, that with the exception of the case where one diameter is the minor axis itself, conjugate diameters do not both lie in the same quadrant formed by the axes of the curve.
( $\beta$ ) From the definition (Art. 153) it is evident that the minor and major axes of the ellipse are a pair of conjugate diameters, and they are at right angles to each other. Perpendicular lines, however, in general, fulfill the condition

$$
\begin{equation*}
m m^{\prime}=-1 \text {; } \tag{2}
\end{equation*}
$$

hence, in general, equation (2) is not consistent with equation (1) for other values of $m$ and $m^{\prime}$ than 0 and $\infty$, - the slopes for the axes of the curves. But for $b^{2}=a^{2}$, i.e., for the circle, it is clear that every pair of conjugate diameters satisfy equation (2), and are therefore perpendicular to each other. Hence, the major and minor axes of the ellipse are the only pair of conjugate diameters that are perpendicular to each other.
( $\boldsymbol{\gamma}$ ) If, in Fig. 111, the lengths of the conjugate semi-axes be $a^{\prime}=C P_{1}, b^{\prime}=C P_{1}^{\prime}$, then, since

$$
P_{1} \equiv\left(x_{1}, y_{1}\right), P_{1}^{\prime} \equiv\left(-\frac{a}{b} y_{1}, \frac{b}{a} x_{1}\right),
$$

$$
b^{2} x_{1}^{2}+a^{2} y_{1}^{2}=a^{2} b^{2}, \quad a^{\prime 2}=x_{1}^{2}+y_{1}^{2}
$$

and

$$
b^{\prime 2}=\frac{a^{2} y_{1}^{2}}{b^{2}}+\frac{b^{2} x_{1}^{2}}{a^{2}}
$$

therefore

$$
\begin{align*}
a^{\prime 2}+b^{\prime 2} & =\frac{b^{2} x_{1}^{2}+a^{2} y_{1}^{2}}{b^{2}}+\frac{a^{2} y_{1}^{2}+b^{2} x_{1}^{2}}{a^{2}} \\
& =a^{2}+b^{2} ; \tag{3}
\end{align*}
$$

i.e., the sum of the squares of two conjugate semi-diameters is constant; it is equal to the sum of the squares of the tuo semiaxes.
( $\delta$ ) Referring again to Fig. 111, where $C N$ is perpendicular to the tangent at $P_{1}$, the conjugate diameters $P_{1} P_{2}$ and $P_{1}^{\prime} P_{2}^{\prime}$ intersect at an angle $\psi$ such that

$$
\psi=\angle P_{1} C P_{1}^{\prime}=90^{\circ}+\angle P_{1} C N ;
$$

$\therefore \quad \sin \psi=\cos \angle P_{1} C N=\frac{C N}{C P_{1}}$.
But, by Art. 64, since the equation of the tangent at

$$
b^{2} x_{1} x+a^{2} y_{1} y=a^{2} b^{2}
$$

$$
C N=\frac{a^{2} b^{2}}{\sqrt{b^{4} x_{1}^{2}+a^{4} y_{1}^{2}}}=\frac{a b}{\sqrt{\frac{a^{2} y_{1}^{2}}{b^{2}}+\frac{b^{2} x_{1}^{2}}{a^{2}}}}=\frac{a b}{b^{\prime}} ;
$$

but

$$
\begin{gather*}
C P_{1}=a^{\prime} \\
\sin \psi=\frac{a b}{a^{\prime} b^{\prime}} \tag{4}
\end{gather*}
$$

hence
and the angle between two conjugate diameters is $\sin ^{-1} \frac{a b}{a^{\prime} b^{\prime}}$.
( $\epsilon$ ) Tangents at the extremities of a pair of conjugate diameters form a parallelogram circumscribed about the ellipse; its sides are parallel to, and equal in length to, the conjugate diameters. Since the area of a parallelogram is equal to the product of its adjacent sides and the sine of the included angle, therefore the area of this circumscribed parallelogram is $4 a^{\prime} b^{\prime} \sin \psi$, which, by (4), equals $4 a b$.

That is, the area of the parallelogram constructed upon any two conjugate diameters is constant; it is equal to the area of the rectangle upon the axes.
(弓) A simple relation exists between the eccentric angles of the extremities of two conjugate diameters.

Let the eccentric angle of $P_{1} \equiv\left(x_{1}, y_{1}\right)$ be $\phi_{1}$ (Fig. 112), and of $P_{2} \equiv\left(x_{2}, y_{2}\right)$ be $\phi_{2}$; then the slopes of the conjugate diameters may be written (cf. Art. 146),
for $C P_{1}$,

$$
\begin{aligned}
& m=\frac{y_{1}}{x_{1}}=\frac{b \sin \phi_{1}}{a \cos \phi_{1}} \\
& m^{\prime}=\frac{y_{3}}{x_{2}}=\frac{b \sin \phi_{3}}{a \cos \phi_{2}} \\
& m m^{\prime}=-\frac{b^{3}}{a^{2}},
\end{aligned}
$$

[Art. 155 (a)]
hence
giving
that is,
whence
Therefore

$$
\frac{b^{2} \sin \phi_{1} \sin \phi_{2}}{a^{2} \cos \phi_{1} \cos \phi_{2}}=-\frac{b^{2}}{a^{2}},
$$

$$
\frac{\sin \phi_{1} \sin \phi_{2}}{\cos \phi_{1} \cos \phi_{2}}=-1
$$

$$
\sin \phi_{2} \sin \phi_{1}+\cos \phi_{2} \cos \phi_{1}=0
$$

and the eccentric angles of the extremities of tico conjugate diameters differ by a right angle.
156. Equi-conjugate diameters. If two conjugate diameters be equal to each other, e.g., if $C P_{1}=C P_{3}$ (see Fig. 112), then the properties given in the preceding article lead to other simple ones.

Let $\phi_{1}$ be the eccentric angle of $P_{1}$, then $\phi_{1}+90^{\circ}$ is the eccentric angle for $P_{2}$; hence the coördinates of $P_{1}$ and $P_{2}$ are (a cos $\phi_{2}, b$ siu $\phi_{1}$ ) and $\left(-a \sin \phi_{1}, b \cos \phi_{1}\right)$, and since

$$
a^{\prime}=b^{\prime}
$$

therefore
i.e.,

Hence

$$
\begin{gathered}
a^{2} \cos ^{2} \phi_{1}+b^{2} \sin ^{2} \phi_{1}=a^{2} \sin ^{2} \phi_{1}+b^{2} \cos ^{2} \phi_{1}, \\
\tan ^{2} \phi_{1}=1 . \\
\phi_{1}=45^{\circ} \text { or } 135^{\circ}
\end{gathered}
$$

for the extremities of equi-conjugate diameters, and the extremities are

$$
P \equiv\left(x_{1}, \frac{b}{a} x_{1}\right), \quad P_{2} \equiv\left(-x_{1}, \frac{b}{a} x_{1}\right) .
$$

The equations of these diameters are

$$
y=\frac{b}{a} x, \text { and } y=-\frac{b}{a} x .
$$

Evidently these lines are the diagonals of the rectangle formed on the axes of the curve.

By Art. 155, ( $\gamma$ ), the length of each equi-conjugate semi-diameter is

$$
a^{\prime}=\sqrt{\frac{a^{2}+b^{2}}{2}}
$$

## EX.ERCISES

1. Find the diameter of the ellipse $\frac{x^{2}}{10}+\frac{y^{2}}{9}=1$ which bisects the chords parallel to the line $3 x+5 y+7=0$.
2. Find the diameter conjugate to that of exercise 1 .
3. Show that the lines $2 x-y=0, x+3 y=0$ are conjugate diameters of the ellipse $2 x^{2}+3 y^{2}=4$.
4. For the ellipse $\ell^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$, write the equations of diameters conjugate to the line

$$
\text { (a) } a x=b y, \quad(\beta) b x=a y \text {. }
$$

5. Prove that the angle between two conjugate diameters is a maximum when they are equal.
6. Show that the pair of diameters drawn parallel to the chords joining the extremities of the axes are equal and conjugate.
7. What are the equations of the pair of equi-conjugate diameters of the ellipse $16 y^{2}+9 x^{2}=144$ ?
8. Two conjugate diameters of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ have the slopes $\frac{1}{}$ and - respectively; find their lengths.
9. Given the ellipse $x^{2}+5 y^{2}=5$, find the eccentric angle for the point whose abscissa is 1 . Also find the diameter conjugate to the one passing through this point.
10. Given the ellipse $8 x^{2}+1 y^{2}=12$, find the conjugate diameters for the point whose eccentric angle is $30^{\circ}$.
11. Find the lengthes of the diameters in exercise 10.
12. The lengths of the chord joining the extremition of any two conjugato diameters of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\sqrt{a^{2}+b^{2}+a^{2} c^{3}}$ Bims $-\phi$. Find its greatest value. What is the correnponding value of $\phi$ ?
13. The area of a triangle inseribed in an ellipse, if $\phi_{1}, \phi_{s} \phi_{3}$ bo the occentric angles of the vertices, is

$$
\frac{1}{1} a b\left[\sin \left(\phi_{2}-\phi_{2}\right)+\sin \left(\phi_{1}-\phi_{1}\right)+\sin \left(\phi_{1}-\phi_{2}\right)\right] .
$$

14. Given the point $(-3,-1)$ on the ellipse $x^{2}+3 y^{2}=12$; find the corresponding point on tho major auxiliary circle, and also find the eccentric angle of the given point.
15. Find the polar of the focus of an ellipse with reference to each auxiliary circle.
16. Find the pole of the directrix of the ellipse with reference to each auxiliary circle.
17. Prove analytically that tangents at the ends of any chord intersect on the diameter which bisects that chord.
18. Supplemental chords. The chords drawn from any point of an ellipse to the extremities of a diameter are called supplemental chorts. Such chords are always parallel to a pair of conjugate diameters, $\sin$ co their slopes satisfy the relation

$$
m m^{\prime}=-\frac{b^{2}}{a^{2}}
$$

For if $P_{1} \equiv\left(x_{1}, y_{1}\right)$ and $P_{2} \equiv\left(-x_{1},-y_{1}\right)$ be the extremities of a diameter, and $P^{\prime} \equiv\left(x^{\prime}, y^{\prime}\right)$ be any other point of the ellipse, and $m$ and $m^{\prime}$ the slopes of the chords $P^{P} P_{1}$ and $P^{P} P_{8}$, respectively,
then

$$
m=\frac{y^{\prime}-y_{1}}{x^{\prime}-x_{1}} \quad m^{\prime}=\frac{y^{\prime}+y_{1}}{x^{\prime}+x_{1}}
$$

therefore

$$
\operatorname{man}^{0}=\frac{y^{\prime 8}-y_{1}^{2}}{x^{2}-x_{1}^{2}}
$$

But
and

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{v^{2}}{b^{2}}=1 \\
& \frac{x_{1}^{8}}{a^{3}}+\frac{y_{1}^{2}}{b^{8}}=1
\end{aligned}
$$

hence, by subtraction,

$$
\frac{x^{\prime 2}-x_{1}^{2}}{a^{2}}+\frac{y^{\prime 2}-y_{1}^{2}}{b^{2}}=0,
$$

that is,
hence

$$
\begin{aligned}
\frac{y^{\prime 2}-y_{1}^{2}}{x^{\prime 2}-x_{1}^{2}} & =-\frac{b^{2}}{a^{2}} \\
m m^{\prime} & =-\frac{b^{2}}{a^{2}}
\end{aligned}
$$

Therefore, supplemental chords are parallel to a pair of conjugate diameters.

For the special case when $a=b$, the product of the slopes becomes $m m^{\prime}=-1$, and therefore the supplemental chords are perpendicular; in other words, the angle inscribed in a semicircle is a right angle.
158. Equation of the ellipse referred to a pair of conjugate diameters.

In the simplest form for the equation of the ellipse, viz.,

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

the coördinate axes are the axes of the curve. These axes are conjugate diameters, and they are the only pair which are at right angles to each other (cf. Art. 155, $\beta$ ). It is desired now to find the equation of the curve referred to any pair of conjugate diameters, as $P_{2} P_{1}$ and $P_{2}^{\prime} P_{1}$, in Fig. 111. With the notation of Art. 154, let $\theta$ and $\theta$ be the angles the new $x$-axis, $C P_{1}$, and the new $y$-axis, $C P_{1}^{\prime}$, make with the old $x$-axis, respectively; they satisfy the relation [64],

$$
\begin{equation*}
\tan \theta \tan \theta^{\prime}=-\frac{b^{2}}{a^{2}} \tag{2}
\end{equation*}
$$

The lengths of the conjugate semi-diameters are $a^{\prime}=C P_{1}$ and $b^{\prime}=C P_{1}^{\prime}$.

Then, by Art. 73, the equations for transformation to the new axes are

$$
\begin{equation*}
x=x^{\prime} \cos \theta+y^{\prime} \cos \theta, y=x^{\prime} \sin \theta+y^{\prime} \sin \theta, \tag{3}
\end{equation*}
$$

and after transformation equation (1) becomes

$$
\begin{array}{r}
\left(\frac{\cos ^{2} \theta}{a^{2}}+\frac{\sin ^{2} \theta}{b^{2}}\right) x^{\prime 2}+2\left(\frac{\cos \theta \cos \theta}{a^{2}}+\frac{\sin \theta \sin \theta^{\prime}}{b^{\prime}}\right) x^{\prime} y^{\prime} \\
+\left(\frac{\cos ^{2} \theta^{\prime}}{a^{2}}+\frac{\sin ^{2} \theta}{b^{2}}\right) y^{\prime 2}=1 . \quad . \tag{4}
\end{array}
$$

But, by (2),

$$
\frac{\sin \theta \sin \theta^{\prime}}{\cos \theta \cos \theta}=-\frac{b^{2}}{a^{2}},
$$

hence

$$
\frac{\sin \theta \sin \theta}{b^{2}}+\frac{\cos \theta \cos \theta}{a^{2}}=0,
$$

and equation ( 4 ) reduces to

$$
\begin{equation*}
\left(\frac{\cos ^{2} \theta}{a^{3}}+\frac{\sin ^{2} \theta}{b^{3}}\right) x^{2}+\left(\frac{\cos ^{2} \theta}{a^{2}}+\frac{\sin ^{2} \theta}{b^{3}}\right) y^{2}=1 . . \tag{5}
\end{equation*}
$$

Frome equation (5) it is seen that the curve is obliquely symmetrical with respect to the new axee. Moreover, sinces $\pm \sigma^{\prime}$ and $\pm b^{\prime}$ are the istercopts on the now axes, equation ( 5 ) may he further simplified:
for

$$
\begin{aligned}
& \left(\frac{\cos ^{2} \theta}{a^{2}}+\frac{\sin ^{3} \theta}{b^{2}}\right) a^{\prime 3}=1 . \\
& \left(\frac{\cos ^{2} \theta}{a^{2}}+\frac{\sin ^{2} \theta}{b^{3}}\right) b^{\prime 3}=1 ;
\end{aligned}
$$

hence

$$
\frac{\cos ^{2} \theta}{a^{2}}+\frac{\sin ^{2} \theta}{b^{2}}=\frac{1}{a^{\prime 2}} \quad \frac{\cos ^{2} \theta}{a^{2}}+\frac{\sin ^{2} \theta}{b^{2}}=\frac{1}{b^{2}},
$$

and equation (5) may be written

$$
\begin{equation*}
\frac{x^{2}}{a^{\prime 2}}+\frac{y^{2}}{b^{\prime 2}}=1 \tag{C5}
\end{equation*}
$$

This is the required equation of the ellipse when referred to any pair of eonjugate diameters. It is evident that propositions which were derived for the standard form (1) without reference to the fact that the axes were rectangular, hold equally for equation [65] ; e.g., the equation of a tangent at the point $\left(x_{3}, y_{1}\right)$ of the curve is $\frac{x_{1} x}{a^{2}}+\frac{y_{1} y}{b^{2}}=1$.

Equation [65] states a geometric property of the ellipse entirely analogons to that of Art.112. It is left to the student to express this property in words.

If the ellipse is referred to equi-conjugate diameters, so that $a^{\prime}=b^{\prime}$. ita equation will be

$$
\begin{equation*}
x^{2}+y^{2}=a^{2} \tag{60}
\end{equation*}
$$

This is the same form as the simplest equation of the circle, but here the axes are oblique, and the equation represents, not a circle, but an ettlper.
159. Ellipse referred to conjugate diameters ; second method.

It the ellipso

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{v^{2}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

Is transformed to a pair of conjugate diameters, its equation after transformation (Art. 73) must he of the form

$$
\begin{equation*}
A x^{3}+2 H x y+B y^{3}=1 . \tag{2}
\end{equation*}
$$

But, since each chord parallel to either axis is bisected by the other, therefore, if $\left(x_{1}, y_{1}\right)$ is a point on the curve, then $\left(-x_{1},+y_{1}\right)$ must also be on the curve;
i.e., if

$$
\begin{gathered}
A x_{1}^{2}+2 H x_{1} y_{1}+B y_{1}{ }^{2}=1, \\
A x_{1}^{2}-2 H x_{1} y_{1}+B y_{1}^{2}=1, \\
H=0 .
\end{gathered}
$$

then
and, consequently,
Again, $\quad\left(a^{\prime}, 0\right)$ and $\left(0, b^{\prime}\right)$ are points on the curve;
hence

$$
A a^{\prime 2}=1, \quad B b^{\prime 2}=1 ;
$$

i.e.,

$$
A=\frac{1}{a^{\prime 2}}, \quad B=\frac{1}{b^{\prime^{\prime 2}}},
$$

therefore, equation (2) becomes

$$
\frac{x^{2}}{a^{\prime 2}}+\frac{y^{2}}{b^{12}}=1
$$

This method illustrates how analytic reasoning may often be used to shorten or perhaps obviate the algebraic reductions involved in a proof. With the similar methods of Arts. 39 and 40 , it will suggest to the reader the power and interest of what are called the modern methods in analytic geometry.

## EXAMPLES ON CHAPTER X

1. Find the foci, directrices, eccentricity of the ellipse $4 x^{2}+3 y^{2}=5$.
2. Find the area of the ellipse $4 x^{2}+3 y^{2}=5$ (cf. Art. 151, Ex. 9).
3. Show that the polar of a point on a diameter is parallel to the conjugate diameter.
4. Find the equations of the normals at the ends of the latus rectun, and prove that each passes through the end of a minor axis if $e^{4}+e^{2}=1$.
5. Show that the four lines from the foci to two points $P_{1}$ and $P_{2}$ on an ellipse all touch a circle whose center is the pole of $P_{1} P_{9}$.
6. Tangents are drawn from the point $(3,2)$ to the ellipse

$$
x^{2}+4 y^{2}=4
$$

Find the equation of the line joining $(3,2)$ to the middle point of the chord of contact.
7. Find the locus of the center of a circle which passes through the point $(0,3)$ and touches internally the circle $x^{2}+y^{2}=25$.
8. Find the length of the major axis of an ellipse whose minor axis is 10 , and whose area is equal to that of a circle whose radius is 8 .
9. The minor axis of an ellipne is 0 , and the mum of the focal radil for a certain point on the curro in 16; find its major axin, detance between foci, and area.
10. A line of fixed length moves so that its ends remain in the coordinate axes; find the locus generated by any point of tho line.
11. Find the locus of the middle points of chords of an ellipeo drawn through the positive end of the mituor axis.
12. With a given focus and directrix a series of ellipses are drawn; show that the locus of the extremities of their minor axes is a parabola.
13. Show that the line $x \cos a+y \sin \alpha=p$ touches the ellipse
if

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}+\frac{v^{2}}{b^{2}}=1 \\
p^{2}=a^{2} \cos ^{2} a+b^{2} \sin ^{2} a .
\end{gathered}
$$

14. Find the locus of the foot of the perpendicular drawn from the center of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to a variable tangent.
15. Prove, analytically, that if the normals to an ellipse pass through its center, the ellipse is a circle.
16. Find the locus of the vertex of a triangle of base $2 a$, and such that the product of the tangents of the angles at its base in $\frac{b^{2}}{c^{3}}$.
17. The ratio of the subnormals for corresponding points on the ellipse and major auxiliary circle is $\frac{b^{2}}{a^{2}}$
18. Find the equation of the ellipse $9 x^{2}+25 y^{3}=295$ when referred to its equi-eonjugate diameters.
19. Normals at corresponding points on the ellipse, and on the major auxiliary circle, meet on the circle $x^{3}+y^{2}=(a+b)^{2}$.
20. Two tangents to an ellipse are perpendicular to each other; find the locus of the middle point of their chord of contact.
21. If $P_{1}$ is a point on the director circle, the product of the distances of the center and the pole, respectively, from its polar with respect to the ellipse is constant.

The tangents drawn from the point $P$ to an ellipee make angles $\theta_{1}$ and $\theta_{3}$ with the major axis; find the locus of $P$
22. When $\theta_{1}+\theta_{3}=2 a$ a constant
23. when $\tan \theta_{1}+\tan \theta_{3}=c$, a constant.

Find the locus of the intersection $P$ of two tangents
24. if the sum of the eccentric angles of their points of contact is a constant, equal to $2 a$.
25. if the difference of the eccentric angles be $120^{\circ}$.
26. Find the locus of the middle points of chords of an ellipse which pass through a given point ( $h, k^{\circ}$ ).
27. Find the tangents common to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and its midcircle $x^{2}+y^{2}=a b$.

## CHAPTER XI

$$
\text { The Hyperbola, } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

160. Review. The definition of the hyperbola given in Chipter VIII led at once to two standard forms for its equation, viz. (cf. Arts. 116, 118):

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

when the axes of the curve are coincident with the coordinate axes ; and

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

when the axes of the curve are parallel to the coordinate axes, and its center is the point $(h, k)$.

A brief discussion of the first standard form $\frac{x^{2}}{a^{3}}-\frac{y^{2}}{b^{3}}=1$ showed that the curve has its eccentricity given by the relation $b^{2}=a^{2}\left(e^{2}-1\right)$, i.e., by $e^{2}=\frac{a^{2}+b^{2}}{a^{2}}$; its foci are the two points $( \pm a e, 0)$, and its directrices the lines $x= \pm \frac{a}{e}$ (Art. 116). These results are entirely analogous to the corresponding ones for the ellipse, if it be remembered that $1-r^{2}$ is positive for the ellipse, while $r^{2}-1$ is positive for the hyperbola.

The similarity of the equations of the hyperbola and the ellipse leads to various correspondences in the analytic properties of the curves. For example, the equation

$$
\frac{x_{1} x}{a^{2}}-\frac{y_{1} y}{l^{2}}=1
$$

represents the polar of the point $\left(x_{1}, y_{1}\right)$ with respect to the hyperbola; it represents the chord of contact if the point is outside the hyperbola, and the tangent if the point is upon the curve (Arts. 126, 122). Again, by the method shown in Art. 143, merely replacing $b^{2}$ by $-b^{2}$, it is evident that

$$
\begin{equation*}
y=m x \pm \sqrt{a^{2} m^{2}-b^{2}} \tag{1;7}
\end{equation*}
$$

is the equation of a tangent to the hyperbola in terms of its slope $m$. The student will be able in like manner to prove other properties of the hyperbola, analogous to those already shown for the ellipse, using the same methods of derivation.

It was shown, however, in the discussion of Chapter VIII, as also in Art. 48, that the nature of the hyperbola apparently differs widely from that of the ellipse, consisting, as it does, of two open infinite branches instead of one closed oval. It is desired in the present chapter to show some of the most important properties of the hyperbola which correspond to similar properties in the ellipse ; and also to prove some special properties which are peculiar to the hyperbola. For the most part, these will be derived for the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$; and the facts summarized above will be assumed.
161. The difference between the focal distances of any point on an hyperbola is constant ; it is equal to the transverse axis.

The hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ has its foci at the points $F_{1} \equiv(-a e, 0), F_{2} \equiv(a e, 0)$, with $b^{2}=a^{2} e^{2}-a^{2}$.

Let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ be any given point on the curve, so that

$$
y_{1}^{2}=\frac{l^{2} x_{1}^{2}}{a^{2}}-t^{2}
$$

Then $F_{1} P_{1}^{2}=\left(x_{1}+a c\right)^{2}+y_{1}{ }^{2}=x_{1}^{2}+2 a e x_{1}+a^{2} e^{2}+y_{1}{ }^{3}$

$$
\begin{aligned}
& =a^{3} c^{2}+2 a e x_{1}+\frac{b^{2}+a^{2}}{a^{2}} x_{1}^{2}-b^{2} \\
& =a^{2} e^{2}+2 a e x_{1}+c^{2} x_{1}^{2}+a^{2}-a^{2} c^{2} \\
& =r^{2} x_{1}^{2}+2 a e x_{1}+a^{2},
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
F_{1} P_{1}=e x_{1}+a . \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
F_{3} P_{1}=e x_{1}-a . \tag{2}
\end{equation*}
$$

These expressions for the focal distances of a point on the hyperbola are of the same form as those for the ellipse (Art. 144); here, however, $e>1$.

Subtracting equation (2) from equation (1) gives

$$
F_{1} P_{1}-F_{2} P_{1}=2 a
$$

hence, the difference between the focal distances of any point on an hyperbola is constant; it is equal to the transverse axis.

If the foci are not given, they may be constructed as follows, provided the semi-axes of the curve are known : plot the points $A \equiv(a, 0)$ and $B \equiv(0, b)$; then with the center of the hyperbola as center, and the distance $A B$ as radius, describe a circle; it will cut the transverse axis in the required foci $F_{1}$ and $F_{2}$, for

$$
A B=\sqrt{a^{2}+b^{2}}=\sqrt{a^{2} c^{3}}= \pm a e .
$$

162. Construction of the hyperbola. The property of the preceding article might be taken as a new definition of the hyperbola, viz. : the hyperbola is the locus of a point the dif. ference of whose distances from two fixed points is constant. This detinition leads at once to the equation of the curve (cf. Ex. 6, p. 67), and also to a method for its construction.
(a) Construction by separate points. Let $\Lambda^{\prime} A$ be the given difference of the focal distances, - i.e., the transverse axis of the hyperbola, - and $\boldsymbol{F}_{1}$ and $\boldsymbol{F}_{2}$ the given fixed points, the foci. With either

$A R$ describe an are cutting the first arcs in the two points $\boldsymbol{P}_{1}$. These are points of the hyperbola. Similarly, as many points as desired may be obtained and then connected by a smooth curve, - approximately an hyperbola.
$(\beta)$ Construction by a continuously moving point; the foci being given. Pivot a straight edge $L M$ at one focus $F_{1}$, so that $F_{1} M$ is greater than the transverse axis $2 a$; at $M$ and the other focus $F_{2}$ fasten the ends of a string of length $l$, such that $F_{1} M=l+2 a$; then a pencil $P$ held against the $L$ string and straight edge (see Fig.
 114), so as to keep the string always taut, will, while the straight edge revolves about $F_{1}$, trace one branch of the hyperbola. By fastening the string at the first focus and the straight edge at the second, the other branch of the curve can be traced.
163. The tangent and normal bisect internally and externally the angles between the focal radii of the point of contact.

Let $F_{1}$ and $F_{2}$ be the foci of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, $P_{1} T$ the tangent, and $P_{1} N$ the normal at the point $P_{1} \equiv\left(x_{1}, y_{1}\right)$.

Then the equation of $P_{1} T^{\prime}$ is $\frac{x_{1} x}{a^{3}}-\frac{y_{y} y}{b^{2}}=1$, and the length of the intercept $O T$ of the tangent is

$$
O T=\frac{a^{2}}{x_{1}}
$$



Now, in the triangle $F_{1} P_{1} \boldsymbol{F}_{3}$
and
but

$$
\begin{aligned}
F_{1} T & =F_{1} O+O T=a e+\frac{a^{3}}{x_{1}} \\
& =\frac{a}{x_{1}}\left(e x_{1}+a\right)
\end{aligned}
$$

and

$$
F_{1} P_{1}=e x_{1}+a
$$

Hence

$$
P_{1} F_{2}=e x_{1}-a
$$

$$
F_{1} T: T F_{2}=F_{1} P_{1}: P_{1} F_{2}
$$

and, by elementary geometry, the tangent bisects internally the angle between the focal radii. Then, since the normal is perpendicular to the tangent, the normal $P_{1} N$ bisects the external angle $F_{2} P_{1} W$. These facts suggest a method, anal-
ogous to that of Art. 148, for constructing the tangent and normal to an hyperbola at a given point.
164. Conjugate hyperbolas. A curve bearing very close relations to the hyperbola

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{l^{2}}=1 \tag{1}
\end{equation*}
$$

is that represented by the equation
i.e., by

$$
\begin{align*}
& \frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1 \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1, \quad . \quad . \tag{2}
\end{align*}
$$



Fio. 116.
in which $a$ and $b$ have the same values as in equation (1). This curve is evidently an hyperbola, and has for its transverse and conjugate axes, respectively, the conjugate and transverse axes of the original, or primary hyperbola. Two such hyperbolas are called conjugate hyperbolas; they are sometimes spoken of as the $x$ - and $y$-hyperbolas, respectively.

It follows at once that the hapertsola (2), conjugate to the hyperbola (1), has for its eccentricity

$$
e^{\prime}=\frac{\sqrt{a^{2}+b^{3}}}{b}
$$

for foci the points ( $0, \pm b e^{\prime}$ ), and for directrices the lines

$$
y= \pm \frac{b}{e^{0}}
$$

Two conjugate hyperbolas have a common center, and their foci are all at the common distance $\sqrt{a^{2}+b^{2}}$ from this center; i.e., the foci all lie on a circle about the center, having for radius the semi-diagonal OS of the rectangle upon their common axes, and whose sides are tangent to the eurves at their vertices. Moreover, when the curves are constructed it will be found that they do not intersect, but are separated by the extended diagonals $O S$ and $O K$ of this circumseribed rectangle, which they approach from opposite sides. These diagonals are examples of a class of lines of great interest in amalytic theory; they are called asymptotes (cf. Art. 165, also Art. 87, (5)).

## EXERCISES

1. Construct an hyperbola, given the distance between its foci as 3 cm . and $e=2$.
2. Construct an hyperbola, given the distance from directrix to focus as 2 cm . How many such hyperbolas are possible?
3. Write the equation of an hypertola conjugate to the hypertola $8 x^{3}-16 y^{2}=144$, and find its axes, foci, and latus rectum. Sketch the figure.
4. Write the equations of the tangent and normal to the hyperbola $10 x^{2}-9 y^{3}=112$ at the point $(4,4)$, and find the subtangent and subnormal.
5. Write the equations of the polars of the point $(3,4)$ with respect to the hypertola $9 x^{3}-16 y^{2}=144$ and its conjugate, respectively.
6. For what points of an hyperbola are the subtangent and subnormal equal?
7. Given the hyperbola $9 y^{2}-4 x^{2}=30$, find the focal radii of the proint whose ordinate is (4), and abscissa positive.
8. A tangent which is parallel to the line $5 x-4 y+7=0$, is drawn to the hyperbola $x^{2}-y^{2}=0$; what is the subnormal for the point of contact?
9. What tangent to the hyperbola $\frac{x^{2}}{10}-\frac{y^{2}}{12}=1$ has its $y$-intercept 2 ?
10. Find, by equation [67], the two tangents to the hyperbola $4 x^{2}-2 y^{2}=6$ which are drawn through the point $(3,5)$.
11. Find the polars of the vertices of an hyperbola with respect to its conjugate hyperbola.
12. Prove that if the crack of a rifle and the thud of the ball on the target are heard at the same instant, the locus of the hearer is an hyperbola.
13. An ellipse and hyperbola have the same axes. Show that the polar of any point on either curve is a tangent to the other.
14. Find the equation of an hyperbola whose vertex bisects the distance from the focus to the center.
15. If $e$ and $e^{\prime}$ are the eccentricities of an hyperbola and its conjugate, then

$$
e^{2}+e^{\prime 2}=e^{2} e^{\prime 2} .
$$

16. If $e$ and $e^{\prime}$ are the eccentricities of two conjugate hyperbolas, then

$$
a e=b e^{\prime} .
$$

17. Find the eccentricity and latus rectum of the hyperbola

$$
y^{2}=4\left(x^{2}+a^{2}\right)
$$

18. Find the tangents to the hyperbola $3 x^{2}-16 y^{2}=141$, which, with the tangent at the vertex, form a circumscribed equilateral trinugle. Find the area of the triangle.
19. Find the lengths of the tangent, normal, subtangent, and subnormal for the point $(3,2)$ of the hyperbola $x^{2}-2 y^{2}=1$.
20. Asymptotes. If a tangent to an infinite branch of a curve approaches more and more closely to a fixed straight line as a limiting position, when the point of contact moves further and further away on the curve and becomes infinitely
distant, then the fixed line is called an asymptote of the curve. * More briefly, though less accurately, this definition may be stated as follows: an asymptote to a curve is a tangent whose point of contact is ut infinity, but which is not itself entirely at infinity. It is evident that to have an asymptote a curve must have an infinite branch; and this branch may be considered as having two coineident, and infinitely distant, points of intersection with its asymptote. This property will aid in obtaining the equation of the asymptote.

The hyperbola

$$
\begin{equation*}
\frac{x^{3}}{a^{2}}-\frac{y^{2}}{b^{3}}=1 \tag{1}
\end{equation*}
$$



F20. 187

$$
\begin{equation*}
y=m x+c \tag{2}
\end{equation*}
$$

is out by the line
in two points whose abscissas are given by the equation

$$
\begin{equation*}
\left(a^{2} m^{2}-b^{2}\right) x^{2}+2 a^{2} c m x+a^{2} b^{2}+a^{2} c^{2}=0 . \tag{3}
\end{equation*}
$$

If line (2) is an asymptote, the two roots of equation must both become infinite; therefore, by Art. 10,

$$
\begin{equation*}
a^{2} m^{2}-b^{2}=0 \quad \text { and } \quad 2 a^{2} c m=0 \tag{4}
\end{equation*}
$$

hence

$$
c=0 \text { and } m= \pm \frac{b}{a}
$$

Substituting these values in equation (2), gives

$$
\begin{equation*}
y=\frac{b}{a} x, \quad \text { and } y=-\frac{b}{a} x \tag{5}
\end{equation*}
$$

[^42]$$
\text { tan. AN. GROM. }-18
$$
and these equacions represent the asymptotes of the hyperbola; they are the lines $O S^{\prime}$ and $O K$ in Fig. 117. Therefore, the hyperbola has two asymptotes; they pass through its center, and are the diagonals of the rectangle described upon its axes.

Since the equation of the hyperbola conjugate to (1) is

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1, \tag{6}
\end{equation*}
$$

and thus diffors from equation (1) only in the sign of the second member, which affects only the constant term in equation (3), therefore the equations (4) determine the value of $m$ and $c$ for the asymptotes of the conjugate hyperbola also. It follows that conjugate hyperbolas have the same asymptotes.

A second derivation of the equation of the asymptotes of an hyperbola (1) is as follows:

The equation of the tangent to (1) at the point $\left(x_{1}, y_{1}\right)$ is

$$
\begin{equation*}
\frac{x_{1} x}{a^{2}}-\frac{y_{1} y}{b^{2}}=1, \tag{7}
\end{equation*}
$$

which may be written in the form

$$
\begin{equation*}
b^{2} x=a^{2} y \frac{y_{1}}{x_{1}}+\frac{a^{2} b^{2}}{x_{1}} \tag{8}
\end{equation*}
$$

Since ( $x_{1}, y_{1}$ ) is on the curve ( 1 ),
therefore $\quad \frac{x_{1}{ }^{2}}{a^{2}}-\frac{y_{1}{ }^{2}}{b^{2}}=1$, i.e., $\frac{y_{1}}{x_{1}}=\sqrt{\frac{b^{2}}{a^{2}}-\frac{b^{2}}{x_{1}{ }^{2}}}$. .
Substituting this value of $\frac{y_{1}}{x_{1}}$ in equation (8), it becomes

$$
\begin{equation*}
b^{2} x=a^{2} y \sqrt{\frac{b^{2}}{a^{2}}-\frac{b^{2}}{x_{1}{ }^{2}}}+\frac{a^{2} b^{2}}{x_{1}} \tag{10}
\end{equation*}
$$

which is only another form of the equation of the tangent represented by equatious (7) or (8). If now the point of contact $\left(x_{1}, y_{1}\right)$ moves further and further away, so that $x_{1} \doteq \infty$, then the limiting position of the line (10) is represented by $b^{2} x=a^{2} y\left( \pm \frac{b}{a}\right)= \pm a b y$.
Hence the equations of the asymptotes are: $y= \pm \frac{b}{a} x$ (cf. Art. 156).

The equations of the asymptotes may be combined, by Art. 40, into the one equation which represents both lines, viz.:

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{u^{2}}{b^{2}}=0 . \tag{68}
\end{equation*}
$$

166. Relation between conjugate hyperbolas and their asymptotes. It has been seen that the standard forms for the equations of the primary hyperbola, its asymptotes, and its conjugate hyperbola are, respectively,

$$
\begin{align*}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1  \tag{1}\\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0  \tag{2}\\
& \frac{x^{3}}{a^{3}}-\frac{y^{3}}{b^{2}}=-1 \tag{3}
\end{align*}
$$

It will be noticed at once that these three equations differ only in their constant terms; and that the equation of the primary hyperbola (1) differs from that of the asymptotes (2) by the negative of the constant by which the equation of the conjugate hyperbola (3) differs from equation (2). Moreover, this relation between the equations of the three loci must hold when not in their standard forms, i.e., whatever the coördinate axes. For, any transformation of coördinates will affect only the first member of equations (1), (2), and (3), and will affeet these in precisely the same way. After the transformation, therefore, the equations of the loci will differ only by a constant (not, however, usually by 1 ): and the value of the constant in the equation of the asymptotes will be midway between the values of the constants in the equations of the two hyperbolas.

Example 1. An hyperbola having the lines

$$
\text { (1) } x+2 y+3=0 \text { and (2) } 3 x+4 y+5=0
$$

for asymptotes, will have an equation of the form

$$
\begin{equation*}
(x+2 y+3)(3 x+4 y+5)+k=0 \tag{3}
\end{equation*}
$$

while the equation of its conjugate hyperbola will be

$$
\begin{equation*}
(x+2 y+3)(3 x+4 y+5)-k=0 \tag{4}
\end{equation*}
$$

If a second condition is imposed upon the hyperbola, e.g., that it shall pass through the point $(1,-1)$, then the value of $k$ may be easily found thus: since the curve passes through the point ( $1,-1$ ), therefore by equation (3),

$$
(1-2+3)(3-4+5)+k=0 ; \therefore k=-8
$$

and the equation of the hyperbola is

$$
\begin{array}{ll} 
& (x+2 y+3)(3 x+4 y+5)-8=0 \\
\text { that is, } \quad & 3 x^{2}+10 x y+8 y^{2}+14 x+22 y+7=0 \tag{5}
\end{array}
$$

and the equation of the conjugate hyperbola is

$$
3 x^{2}+10 x y+8 y^{2}+14 x+22 y+23=0
$$

Example 2. The equation of the asymptotes of the hyperbola

$$
\begin{equation*}
3 x^{2}-14 x y-5 y^{2}+7 x+13 y-8=0 \tag{1}
\end{equation*}
$$

differs from equation (1) by a constant only, hence it is of the form

$$
\begin{equation*}
3 x^{2}-14 x y-5 y^{2}+7 x+13 y+k=0 \tag{2}
\end{equation*}
$$

Now equation (2) represents a pair of straight lines, therefore its first member can be factored, and, by Art. 67, [17]

$$
-15 k-\frac{1274}{4}-\frac{507}{4}+\frac{245}{4}-49 k=0 ;
$$

i.e., $\quad 64 k=-384$, whence $k=-6$.

Therefore the equation of the asymptotes is

$$
\begin{gathered}
3 x^{2}-14 x y-5 y^{2}+7 x+13 y-6=0 \\
\text { i.e., } \quad(3 x+y-2)(x-5 y+3)=0
\end{gathered}
$$

and the equation of the conjugate hyperbola is

$$
3 x^{3}-14 x y-5 y^{2}+7 x+18 y-4=0 .
$$

167. Equilateral or rectangular hyperbola. If the axes of an hyperbola aro equal, so that $a=b$, its equation has the form

$$
\begin{equation*}
x^{2}-y^{2}=a^{2} \tag{1}
\end{equation*}
$$

and its eccentricity $e=\sqrt{2}$. Its conjugate hyperbola has the equation

$$
\begin{equation*}
x^{2}-y^{2}=-a^{2} ; \tag{2}
\end{equation*}
$$

with the same eccentricity and the same shape; while its asymptotes have the equations

$$
\begin{equation*}
x= \pm y \tag{3}
\end{equation*}
$$

and are therefore the bisectors of the angles formed by the axes of the curves; hence the asymptotes of these hyperbolas are perpendicular to each other. The hyperbola whose axes are equal is therefore called an equilateral, or a rectangular hyperbola, according as it is thought of as having equal axes or asymptotes at right angles.

## EXERCISES

1. Find the asymptotes of the hyperbola $9 x^{2}-16 y^{2}=25$, and the abgle between them.
2. Where are the poles of the asymptotes of the hypertiola

$$
9 x^{2}-16 y^{2}=25
$$

with reference to the curve?
3. If the vertex lies two thirds of the distance from the center to the focus, find the equations of the hyperbola, and of its asymptotes.
4. If a line $y=m x+c$ meets the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ in one finite and one infinitely distant point, the line is parallel to an asymptote.
5. Show that, in an equilateral hyperbola, the distance of a point from the center is a mean proportional between its focal distances.
6. Find the equation of the hyperbola paseing through the point $(0,7)$, and having for asymptotes the lines

$$
2 x-v=7, \text { and } 3 x+3 y=5(c f . \text { Art. 166). }
$$

7. Write the equation of the hyperbola conjugate to that of Ex. 6.
8. Find the equations of the asymptotes of the hyperbola

$$
2 x^{2}-x y-2 x=y^{2}+y+6
$$

also find the equation of the conjugate hyperbola.
9. Find the equation of the asymptotes of the hyperbola

$$
3 x^{2}+34 x y+11 y^{2}-x+21 y=0
$$

10. Find the equation of the hyperbola conjugate to

$$
9 x^{2}-16 y^{2}+36 x+160 y=508
$$

11. Prove that a perpendicular from the focus to an asymptote of an hyperbola is equal to the semi-conjugate axis.
12. The asymptotes meet the directrices of the $x$-hyperbola on the $x$-auxiliary circle, and of the conjugate hyperbola on the $y$-auxiliary circle.:
13. The circle described about a focus, with a radius equal to half the conjugate axis, will pass through the intersections of the asymptotes and a directrix.
14. The line from the center $C$ to the focus $F$ of an hyperbola is the diameter of a circle that cuts an asymptote at $P$; show that the chords $C P$ and $F P$ are equal, respectively, to the semi-transverse and semiconjugate axes.
15. The hyperbola referred to its asymptotes. If the asymptotes of an hyperbola are chosen as the coördinate axes, their equations will be $x=0$ and $y=0$, respectively ; or, combined in one equation,

$$
\begin{equation*}
x y=0 \tag{1}
\end{equation*}
$$

By the reasoning of Art. 166, it follows that the equation of the hyperbola, - which differs from that of its asymptotes by a constant, - is

$$
\begin{equation*}
x y=k \tag{2}
\end{equation*}
$$

wherein the value of the constant $k$ is to be determined by an additional assigned condition concerning the curve ; e.g., that it shall pass through a given point.

The value of this constant, in terms of $a$ and $b$, can in general be found most easity by making the proper transformation of eoördinates upon the equation of the hyperbola

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \tag{8}
\end{equation*}
$$



Eso. 118.
The new $x$-axis makes the angle $\theta$, the new $y$-axis the angle $\theta^{\prime}$, with the old $x$-axis, such that

$$
\tan \theta=-\frac{b}{a}, \quad \tan \theta^{\prime}=\frac{b}{a}
$$

Hence

$$
\sin \theta=-\sin \theta^{\prime}=\frac{-b}{\sqrt{a^{2}+b^{2}}}
$$

and

$$
\cos \theta=+\cos \theta^{\prime}=\frac{a}{\sqrt{a^{2}+b^{2}}}
$$

therefore the formulas [25] for transformation,

$$
x=x^{\prime} \cos \theta+y^{\prime} \cos \theta^{\prime}, \quad y=x^{\prime} \sin \theta+y^{\prime} \sin \theta^{\prime}
$$

become in this case

$$
\begin{equation*}
x=\frac{a}{\sqrt{a^{2}+b^{2}}}\left(x^{\prime}+y^{\prime}\right), \quad y=\frac{-b}{\sqrt{a^{2}+b^{2}}}\left(x^{\prime}-y^{\prime}\right) \tag{4}
\end{equation*}
$$

Applying this transformation, equation (3) becomes

$$
\frac{x^{\prime 2}+2 x^{\prime} y^{\prime}+y^{\prime 2}}{a^{2}+b^{2}}-\frac{x^{\prime 2}-2 x^{\prime} y^{\prime}+y^{\prime 2}}{a^{2}+b^{2}}=1 ;
$$

that is, dropping the accents,

$$
\begin{equation*}
x y=\frac{a^{2}+b^{2}}{4} \tag{69}
\end{equation*}
$$

which is the desired equation of the hyperbola when referred to its asymptotes as coördinate axes.

The equation of the conjugate hyperbola is then

$$
\begin{equation*}
x y=-\frac{a^{2}+b^{2}}{4} \tag{5}
\end{equation*}
$$

Remembering the relation $b^{2}=a^{2}\left(e^{2}-1\right)$, it will be seen that the value of the constant term in equation (2) may be written

$$
k=\frac{a^{2}+b^{2}}{4}=\frac{a^{2} e^{2}}{4}=c^{2},
$$

so that $c$ is half the distance of the focus from the center of the curve. Again, the coördinates of the foci, $x= \pm a e, y=0$, become after the transformation (4),

$$
\begin{equation*}
x=y= \pm \frac{a^{2}}{2}+\frac{b^{2}}{a} \tag{6}
\end{equation*}
$$

and the equations of the directrices, $x= \pm \frac{a}{e}$, become

$$
\begin{equation*}
x+y= \pm a \tag{7}
\end{equation*}
$$

169. The tangent to the hyperbola $x y=c^{2}$. The equation of the tangent to the hyperbola

$$
\begin{equation*}
x y=c^{2} \tag{1}
\end{equation*}
$$

at any given point $\left(x_{1}, y_{1}\right)$, may be easily derived by the secant method (cf. Arts. 84, 122). Let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ and $\boldsymbol{P}_{2} \equiv\left(x_{2}, y_{2}\right)$ be two points on the curve; then

$$
\begin{equation*}
x_{1} y_{1}=c^{2}, \quad . \quad . \quad \text { (2) and } \quad x_{2} y_{2}=c^{2} \tag{3}
\end{equation*}
$$

The equation of the line through $P_{1}$ and $P_{3}$ is

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{3}-x_{1}}\left(x-x_{1}\right)
$$

wherein $\frac{y_{x}-y_{1}}{x_{2}-x_{1}}$ must have a value determined by equations (2) and (3), hence

$$
m=\frac{\frac{c^{2}}{x_{2}}-\frac{c^{2}}{x_{1}}}{x_{2}-x_{1}}=\frac{c^{2}}{x_{1} x_{3}} \cdot \frac{x_{1}-x_{2}}{x_{2}-x_{1}}=-\frac{c^{2}}{x_{1} x_{2}} .
$$

The equation of the secant line $P_{1} P_{9}$ is therefore

$$
\begin{equation*}
y-y_{1}=-\frac{c^{2}}{x_{1} x_{3}}\left(x-x_{1}\right) . \tag{4}
\end{equation*}
$$

If now the point $P_{3}$ becomes coincident with $P_{1}$, equation (4) becomes

$$
y-y_{1}=-\frac{e^{2}}{x_{1}^{2}}\left(x-x_{1}\right)
$$

which may be reduced by equation (2) to

$$
\begin{equation*}
\frac{x}{x_{1}}+\frac{y}{y_{1}}=2, \tag{70}
\end{equation*}
$$

or to

$$
y_{1} x+x_{1} y=2 c^{2} .
$$

which is the required equation of the tangent at the point $P_{1}=\left(x_{1}, y_{1}\right)$ of the curve.
170. Geometric properties of the hyperbola. Equation [69] states the following intrinsic property for the hyperbola, $P_{1}=\left(x_{1}, y_{1}\right)$ being any point on the curve (Fig. 119).

$$
4 M P_{1} \cdot L P_{1}=O F^{3} ;
$$

that is, for every point of the hyperbola, four times the produt wi ita distances from the asymptotes, measured parallel to the asymptotes respectively, is equal to the square of the distance from the center to the focus; and is therefore constant.

Again, $2 \theta$ being the angle between the asymptotes, equation [69] may be written

$$
\begin{equation*}
x y \sin 2 \theta=\frac{\sqrt{a^{2}+b^{2}}}{2} \frac{\sqrt{a^{2}+b^{2}}}{2} \sin 2 \theta . \tag{1}
\end{equation*}
$$



Fra. 119.
Now $x y \sin 2 \theta$ is the area of the parallelogram $O M P_{1} L$, constructed upon the coördinates of the point $P_{1}$ of the hyperbola; and since the coördinates of the vertex $A$ are $x=y=\frac{\sqrt{a^{2}+b^{2}}}{2}$, the second member of equation (1) is the area of the rhombus $O R A S$, constructed upon the coördinates of the vertex. Therefore, the area of the parallelogram formed by the asymptotes and lines parallel to them drawn from any point of an hyperbola, is constant; it is equal to the rhombus similarly drawn from the vertex of the curve.

The equation of the tangent to the hyperbola

$$
\begin{equation*}
x y=c^{2}, \tag{2}
\end{equation*}
$$

at the point $P$, is $\quad \frac{x}{x_{1}}+\frac{y}{y_{1}}=2$.
The $x$-intercept of this tangent is $O T=2 x_{1}$; hence if $O T^{\prime \prime}$ be the $y$-intercept, and $M$ the foot of the ordinate of $P_{1}$, then from the similar triangles $M T P_{1}$ and $O T T^{\prime \prime}$,

$$
T P_{1}: T T^{\prime \prime}=M T^{\prime}: O T=x_{1}: 2 x_{1}=1: 2 .
$$

Hence, the segment of any tangent to an hyperiola betuceen the asymptotes in bisected by the point of contact.

The tangent (3) has the intercepts on the $x$-axis and $y$-axis, respectively,

Then

$$
O T=2 x_{1}, \quad O T^{\prime}=2 y_{1} .
$$

$$
\begin{equation*}
O T \cdot O T^{\prime}=4 x_{1} y_{1} \tag{4}
\end{equation*}
$$

But since $\left(x_{1}, y_{1}\right)$ is a point of the hyperbola

$$
4 x_{1} y_{1}=a^{2}+b^{2}
$$

hence

$$
\begin{equation*}
O T \cdot O T^{\prime \prime}=a^{2}+b^{2} \tag{5}
\end{equation*}
$$

i.e., the rectangle formed by the intercepts which any tangent to the hyperbola makes upon the asymptotes is constant; it is equal to the sum of the squars upon the semi-axe..

Moreover, equation (5) my b written

$$
\begin{equation*}
O T \cdot O T^{\prime \sin 2 \theta} \frac{a^{-}+b^{2}}{2} \sin 2 \theta ; \tag{6}
\end{equation*}
$$

but $\sin 2 \theta=2 \sin \theta \cos \theta=2 \frac{b}{\sqrt{a^{2}+b^{2}}} \frac{a}{\sqrt{a^{2}+b^{2}}}=\frac{2 a b}{a^{2}+b^{2}}$
hence (6) beomes $\frac{O T \cdot O T^{\prime \prime}}{2} \sin 2 \theta=a b$;
that is. the triangle formed by any $t$ ingent to an hyperbola and its asymptotes is constant; it is equal to the rectangle upon the semi-axes.

## EXERC'SES

1. Find the equation of the hyperbola $9 x^{2}-16 y^{2}=25$ when referred to its asymptotes as axes.
2. Find the semi-axes, eccentricity, and the vertices, of the hyperbola $x y=4$, the angle between the axes (asymptotes) being $00^{\circ}$.
3. Find the semi-axes, eccentricity, vertices, and the foci, of the hyperbola $x y=-12$, the angle between the axes being $00^{\circ}$.
4. Prove that the segments of any line which are intercepted between aa hyperbola and its asymptotes are equal.
5. Express the angle between the asymptotes of an hyperbola in terms of $e$; i.c., in terms of the eccentricity of the hyperbola.
6. The segment of a tangent to an hyperbola intercepted by the conjugate hyperbola is bisected at the point of contact.
7. Show that the pole of any tangent to the rectangular hyperbola $x y=c^{2}$, with respect to the circle $x^{2}+y^{2}=a^{2}$, lies on a concentric and similarly placed rectangular hyperbola.
8. Prove that the asymptotes of the hyperbola $x y=h x+k y$ are $x=k$, and $y=h$.
9. Derive the equation of the tangent to the curve $x y=k x+k y$ at the point $P \equiv\left(x_{1}, y_{1}\right)$ on the curve.
10. Diameters. A diameter has already been defined (Art. 129) as the locus of the middle points of a system of parallel chords, and in Art. 152 the equation was derived for a diameter of an ellipse. By the same method, if a system of parallel chords of the hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

have the common slope $m$, the equation of the corresponding diameter will be found to be

$$
\begin{equation*}
y=\frac{b^{2}}{a^{2} m} x \tag{71}
\end{equation*}
$$

This equation shows that every diameter of the hyperbola passes through the center.

Conversely, it is true, as in the case of the ellipse, that every chord of the hyperbola through the center is a diameter. That chord of the original set which passes through the center is the diameter conjugate to [71]; and its equation is

$$
y=m x . \quad \text {. . . } \quad[72]
$$

Letting $m^{\prime}$ be the slope of a diameter, and $m$ that of its conjugate, the essential condition that two diameters should be conjugate to each other is that (ef. Art. 153)

$$
\begin{equation*}
m m^{\prime}=\frac{l^{2}}{a^{2}} . \tag{73}
\end{equation*}
$$

172. Properties of conjugate diameters of the hyperbola.
(a) It is clear that the condition

$$
\begin{equation*}
m m^{\prime}=\frac{b^{2}}{a^{2}} \tag{73}
\end{equation*}
$$

holds also for the hyperbola

$$
\frac{x^{2}}{-a^{2}}+\frac{y^{2}}{b^{3}}=1,
$$

which is conjugate to the given hyperbola; for, replacing $a^{2}$ by $-a^{2}$ and $-b^{2}$ by $b^{2}$ leaves equation [73] unchanged. Hence, diameters which are conjugate to each other for a given hyperbola are conjugates also for the conjugate of that hyperbola.
( $\beta$ ) The axes of the hyperbola are clearly diameters of the curve. They are perpendicular to each other, and therefore satisfy the relation

$$
m m^{\prime}=-1
$$

Comparing this condition with that of equation [73], it follows that the transverse and conjugate axes of the hyperbola are the only pair of perpendicular conjugate diameters (ef. ( $\beta$ ) p. 255 ).

If $a=b$, the condition [78] reduces to

$$
m m^{\prime}=1 ;
$$

therefore (Art. 16), in the rectangular hyperbola the sum of the angles which a pair of conjugate diameters make with the transverse axis is $90^{\circ}$ (of. Art. 156).
$(\gamma)$ Since in equation [73] the product $m m^{\prime}$ is positive, it follows that the angles which conjugate diameters make with the transverse axis are both acute, or both obtuse. Moreover,

$$
\text { if } m< \pm \frac{b}{a} \text {, then } m^{\prime}> \pm \frac{b}{a}
$$

and the diameters lie on opposite sides of an asymptote. Two conjugate diameters lie in the same quadrant formed by the axes of the hyperbola, on opposite sides of the asymptote (cf. Art. 155 (a)).
( $\delta$ ) An asymptote passes through the center of an hyperbola, hence may be regarded as a diameter. Its slope is

$$
m= \pm \frac{b}{a}, \quad \therefore m^{\prime}= \pm \frac{b}{a}
$$

hence, an asymptote regarded as a diameter is its ou'n conjugate; it may be called a self-conjugate diameter.

This is a limiting case of $(\gamma)$ above.
( $\epsilon$ ) It follows from this last fact that if a diameter intersects a given hyperbola, then the conjugate diameter does not intersect it, but cuts the conjugate hyperbola. It is customary and useful to define as the extremities of the conjugate diameter its points of intersection with the conjugate hyperbola. With this limitation, it follows from (a) of this article, that, as in the ellipse, each of two conjugate diameters bisects the chords parallel to the other.
$(\zeta)$ As a limiting case of this last proposition, also, it is evident that the tangent at the end of a diameter is parallel to the conjugate diameter.

By reasoning entirely analogous to that given in Art. 155, for the ellipse, properties similar to those there given may be derived for the hyperbola. They are included in the following exercises, to be worked out by the student.

## EXERCISES

1. Find the oquation of the diameter of the hayperbola

$$
9 x^{2}-18 y^{2}=25
$$

wheh bisects the chords $y=3 x+b$. Find almo the conjugate diameter.
2. Find, for the hyperbola of Fix. 1, a diameter through the point $(1,1)$, and its conjugate.
3. Find the diameter of the ligperbola $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$ which is conjugate to the diameter $x-3 y=0$.
4. Find the equation of a chord of the hyperbola $12 x^{2}-9 y^{3}=108$, which is bisected at the point ( 1,2 ).
5. Lines from any point of an equilateral hyperbola to the extremities of a diameter make equal angles with the asymptoten.
6. Show that, in an equilateral hyperbola, conjugate diameters makes arual angles with the asymptotes.
7. The difference of the squares of two conjugate semi-diameters is constant; it is equal to the difference of the squares of the semi-axes.
8. The angle between two conjugate diameters is sin $\sin ^{-1} \frac{a b}{a^{\prime} \forall}$.
9. The polar of one end of a diameter of an hyperbola, with reference to the conjugate hyperbola, is the tangent at the other end of the given diameter.
10. Tangents at the ends of a pair of conjugate diametens intersoct on an asymptote.
173. Supplemental chords. As previously defined, chords of a curve are supplemental when drawn from any point of the curve to the extremities of a diameter. If, in the analytic work of Art. 157, $\mathbf{b}^{3}$ is replaced $b y-1,2^{2}$, then, if $m$ and $m^{\prime}$ are the slopes of two supplemental ehords of the hyperbola, they must satisfy the relation

$$
\begin{equation*}
m m^{\prime}=\frac{b^{2}}{a^{2}} . \tag{1}
\end{equation*}
$$

But this is (see Eq. [73]) the condition that exista between the slopes of two conjugate diameters. Therofore, supplemental chonds are porallel to a pair of conjugate diameters.

For the equilateral hypertola, i.e. when $a=b$, this relation has the special value

$$
\begin{equation*}
m m^{\prime}=1, \tag{2}
\end{equation*}
$$

and, therefore, the sum of the acute angles which a pair of supplementary chords of the equilateral hyperbola make with its transverse axis is $90^{\circ}$ (cf. Art. 172 ( $\beta$ )).
174. Equations representing an hyperbola, but involving only one variable.
(a) Eccentric angle. In the theory of the hyperbola, the auxiliary circles described upon the axes of the curve as diameters are not as useful as the corresponding circles for the ellipse, since the ordinate for a point on the hyperbola does not cut the $x$-auxiliary circle, and, therefore, there is no simple construction for the eccentric angle. It is, however, sometimes desirable to express by means of a single variable the condition that a point shall be on an hyperbola; and for this purpose the equatious

$$
\begin{equation*}
x=a \sec \phi, y=b \tan \phi \tag{74}
\end{equation*}
$$

similar to equations [60], may be used; for these evidently satisfy the equation of the hyperbola

$$
\begin{aligned}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} & =1 \\
\sec ^{2} \phi-\tan ^{2} \phi & =1
\end{aligned}
$$

since
The angle $\phi$ may be defined as the eccentric angle for the hyperbola, and the corresponding point of the curve may be constructed as follows:


Draw the auxiliary circles, and any $\angle A O Q=\phi$. At the points $R$ and $Q$, where the terminal side of $\phi$ cuts the circles, draw tangents cutting the transverse axis in the points $M^{\prime}$ and $M$, respectively. Erect at $M$ an
ordinato $M I^{\prime}$ equal to $R M^{\prime}$; ite "xtremity $P$ is a point of the hypertala. For, in the right triangle OMQ.

$$
O M \cos \phi=O Q \text {. i.e., } O M=a \sec \phi ;
$$

and, in the right trianglo $O .1 F R$,

$$
M^{\prime} R=O R \tan \phi, \quad \text { i.e., } M^{\prime} R=b \tan \phi .
$$

But for tho point $P$.

$$
\begin{array}{ll} 
& x=O M, y=M P=M^{\prime} R ; \\
\text { hence } \quad & x=a \sec \phi, y=b \text { tan } \phi .
\end{array}
$$

and $P$ is a point on the hypertola. ${ }^{-}$
The ecoentric angle for any given point, $P$, of an hyperbola is easily abtained. Draw the ordinate MP, and from its foot, M, draw a tangeat $M Q$ to the $x$-auxiliary circle; then the angle $M O Q$ is the eocentric auglo corresponding to $P$.
( $\beta$ ) The equation of the hyperbola referred to its asymptotes, viz $x y=c^{2}$, is satisfied by the coordinates $x=c, y={ }_{i}$, whatever the values of $t$. The use of this single independent variable $t$ is sometimes convenient in dealing with points on the hyperbola.

## EXAMPLES ON CHAPTER XI

1. Write the equation of an hyperbola whose transverse axis is B , and the conjugate axis one half the distance between the foci.
2. Find the equation of that diameter of the hyperbola $16 x^{2}-9 y^{2}=14$ which passes through the point $(5,48)$; also find the coordinates of the extremities of the conjugate diameter.
3. Assume the equation of the hyperbola, and show that the difference of the focal distances is constant.
4. Find the locus of the vertex of a triangle of given base $2 c$, if the difference of the two other sides is a constant, and equal to $2 a$.
5. Find the locus of the vertex of a triangle of given base, if the difference of the tangents of the base angles is constant.
6. Find an expression for the angle between any pmir of conjugate diameters of an hyperbola.
7. Show that two concentric rectangular hyperionas, whome axes meet at an angle of $45^{\circ}$, ent each other orthogonally.

[^43]tan. an. onom. - 19
8. The portions of any chord of an hyperbola intercepted between the curve and its conjugate are equal.

Suggestion. Draw a tangent parallel to the line in question.
9. The coordinates of a point are $a \tan (\theta+\alpha)$ and $b \tan (\theta+\beta)$; prove that the locus of the point, as $\theta$ varies, is an hyperbola.
10. Prove that the asymptotes of the hyperbola $x y=3 x+5 y$ are $x=5$ and $y=3$.
11. If the coördinate axes are inclined at an angle $\omega$, find the equation of an hyperbola whose asymptotes are the lines $x=2$ and $y=-3$, respectively, and which passes through the point $(2,1)$.
12. Find the coördinates of the points of contact of the common tangents to the hyperbolas,

$$
x^{2}-y^{2}=3 a^{2}, \text { and } x y=2 a^{2} .
$$

13. If a right-angled triangle be inscribed in a rectangular hyperbola, prove that the tangent at the right angle is perpendicular to the hypothenuse.
14. Show that the line $y=m x+2 k \sqrt{-m}$ always touches the hyperbola $x y=k^{2}$; and that its point of contact is $\left(\frac{k}{\sqrt{-m}}, k \sqrt{-m}\right)$.
15. Find the point of the rectangular hyperbola $x y=12$ for which the subtangent is 4 . Find the subnormal for the same point.
16. Find the polar of the point $(5,3)$ on the hyperbola $x^{2}-2 y^{2}=7$, with respect to the conjugate hyperbola. Show that this line is tangent to the given hyperbola, at the other end of the diameter from $(5,3)$.
17. If an ellipse and hyperbola have the same foci, they intersect at right angles.
18. Find tangents to the hyperbola $2 y^{2}-16 x^{2}=1$ which are perpendicular to its asymptotes.
19. Find normals to the hyperbola $\frac{(x-3)^{2}}{16}-\frac{(y-2)^{2}}{9}=1$ which are parallel to its asymptotes. Find the polar of their point of intersection.
20. Show that, in an equilateral hyperbola, conjugate diameters are equally inclined to the asymptotes.
21. Show that two conjugate diameters of a rectangular hyperbola are equal.
22. Show that, in an equilateral hyperbola, two dianmetem at right angles to each other are equal. Show also that thin follows from Ex. 21.
23. A variable circle in always tangent to each of two fixud circles: prove that the locus of its center in either an hyperbola or an ellipe.
24. Find the common tangents to the hyperbola $\frac{x^{2}}{a^{3}}-\frac{y^{3}}{b^{3}}=1$ and its midecircle $z^{2}+y^{2}=a b$.
25. In the hyperbola $25 x^{2}-16 y^{9}=100$, find the conjugate diameters that cut each other at ans angle of $45^{\circ}$.
26. The latus rectum of an hyperbola is a thind proportional to the two axes.
27. The polars of any point ( $h, l$ ) with respect to conjugate hyperbolas are parallel.
28. The sum of the eccentric angles of the extremities of two conjugate diameters of an hyperbola is equal to $90^{\circ}$; i.e., $\phi+\phi^{\prime}=90^{\circ}$.
29. Find the equation of a line through the focus of an hyperbola and the focus of its conjugate, and find the pole of that line.
30. Find the asymptotes of the hyperbola $x y-3 z-2 y=0$. What is the equation of the conjugate hyperbola?
31. Show that the $y$-axis is an asymptote of the hyperbola

$$
2 x y+3 x^{2}+4 x=0
$$

What is the equation of the other asymptote? Of the conjugate hyperbola?
32. If two tangents are drawn from an external point to an hyperbola, they will touch the same or opposite branches of the curve according as the giren point lies between or outside of the asymptotes.

## CHAPTER XII

## GENERAL EQUATION OF THE SECOND DEGREE

$$
A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0
$$

175. General equation of the second degree in two variables. Thus far only special equations of the second degree have been studied; they have all been of the form

$$
\begin{equation*}
A x^{2}+B y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

i.e., they have been free from the term containing the product of the variables. In Arts. 107, 113, and 119 it is shown that equation (1) represents a conic section having its axes parallel to the coördinate axes. It still remains to be shown, however, that the most general equation of the second degree, viz.

$$
\begin{equation*}
A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0 \tag{2}
\end{equation*}
$$

also represents a conic. section. To prove this it is only necessary to show that, by a suitable change of the coördinate axes, equation (2) may be reduced to the form of equation (1).

If equation (2) be referred to new axes, $O X^{\prime}$ and $O Y^{\prime}$, say, making an angle $\theta$ with the corresponding given axes: and if the new coördinates of any point on the curve be $x^{\prime}$ and $y^{\prime}$, the old coördinates of the same point being $x$ and $y$; then (Art. 72)

$$
\begin{equation*}
x=x^{\prime} \cos \theta-y^{\prime} \cdot \sin \theta, \text { and } y=x^{\prime} \sin \theta+y^{\prime} \cos \theta \ldots \tag{3}
\end{equation*}
$$

Substituting these values (8) in equation (2), it becomes

$$
\begin{gather*}
A\left(x^{\prime} \cos \theta-y^{\prime} \sin \theta\right)^{3}+2 H\left(x^{\prime} \cos \theta-y^{\prime} \sin \theta\right)\left(x^{\prime} \sin \theta+y^{\prime} \cos \theta\right) \\
\quad+B\left(x^{\prime} \sin \theta+y^{\prime} \cos \theta\right)^{2}+2 G\left(x^{\prime} \cos \theta-y^{\prime} \sin \theta\right) \\
\quad+2 F^{\prime}\left(x^{\prime} \sin \theta+y^{\prime} \cos \theta\right)+C=0, \quad . \quad . \quad \text { (4) } \tag{4}
\end{gather*}
$$

which, being expanded and re-arranged, becomes:
$x^{2}\left(A \cos ^{2} \theta+2 H \sin \theta \cos \theta+B \sin ^{2} \theta\right)$
$+x^{\prime} y^{\prime}\left(-2 A \sin \theta \cos \theta-2 H \sin ^{2} \theta+2 H \cos ^{2} \theta+2 B \sin \theta \cos \theta\right)$
$+y^{\prime 2}\left(A \sin ^{2} \theta-2 H \sin \theta \cos \theta+B \cos ^{2} \theta\right)$
$+x^{\prime}(2 G \cos \theta+2 F \sin \theta)$
$+y^{\prime}(-2 G \sin \theta+2 F \cos \theta)+C=0$.
This transformed equation (5) will be free from the term containing the product $x^{\prime} y^{\prime}$ if $\theta$ be so chosen that
$-2 A \sin \theta \cos \theta-2 H \sin ^{2} \theta+2 H \cos ^{2} \theta+2 B \sin \theta \cos \theta=0$, i.e., if $\quad 2 H\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=(A-B) 2 \sin \theta \cos \theta$,
i.e. if $\quad 2 H \cdot \cos 2 \theta=(A-B) \sin 2 \theta$,
or finally, if

$$
\begin{equation*}
\tan 2 \theta=\frac{2 H}{A-B} \tag{6}
\end{equation*}
$$

Moreover, it is always possible to choose a positive acute angle $\theta$ so as to satisfy this last equation whatever may be the numbers represented by $A, B$, and $H$.

Having chosen $\theta$ so as to satisfy equation (6), and having substituted the values of $\sin \theta$ and $\cos \theta$ in equation (5), that equation reduces to

$$
\begin{equation*}
A^{\prime} x^{\prime 2}+B^{\prime} y^{\prime 2}+2 G^{\prime} x^{\prime}+2 F^{v} y^{\prime}+C=0, \tag{7}
\end{equation*}
$$

(wherein $A^{\prime}, B^{\prime}, \cdots$ represent the new coefficients)
and therefore represents a conic section with its axes parallel to the new coördinate axes. But equation (i) represents
the same locus as equation (2); hence it is proved that, in rectangular coördinates, every equation of the form

$$
A x^{2}+2 H x y+B y^{2}+2 G x+2 \boldsymbol{F} y+C=0
$$

represents a conic section whose axes are inclined at angle $\theta$ to the given coördinate axes, where $\theta$ is determined by the equation

$$
\tan 2 \theta=\frac{2 H}{A-B}
$$

It is to be noted that the constant term $C$ has remained unchanged by the transformation given above.

The next article will illustrate the application of this method to numerical equations. It is to be observed that this method is entirely general, and enables one to fully determine the conic represented by any given numerical equation of the second degrec.

Note. In the proof just given that every equation of the second degree represents a conic section, it is assumed that the given axes are at right angles. This restriction may, however, bę removed; for if they are not at right angles, a transformation may be made to rectangular axes having the same origin (cf. Arts. 74, 75), and the equation will have its form and degree left unchanged; after which the proof already given applies.
176. Illustrative examples. Example 1. Given the equation

$$
\begin{equation*}
-x^{2}+4 x y-y^{2}-4 \sqrt{2} x+2 \sqrt{2} y-11=0 \tag{1}
\end{equation*}
$$

to determine the nature and position of its locus.
Turn the axes through an angle $\theta$, i.e., substitute for $x$ and $y$, respectively, $x^{\prime} \cos \theta-y^{\prime} \sin \theta$ and $x^{\prime} \sin \theta+y^{\prime} \cos \theta$; equation (1) then becomes

$$
\begin{align*}
x^{\prime 2}\left(-\cos ^{2} \theta\right. & \left.+4 \sin \theta \cos \theta-\sin ^{2} \theta\right) \\
& +x^{\prime} y^{\prime}\left(+2 \sin \theta \cos \theta+4 \cos ^{2} \theta-4 \sin ^{2} \theta-2 \sin \theta \cos \theta\right) \\
& -y^{\prime 2}\left(\sin ^{2} \theta+4 \sin \theta \cos \theta+\cos ^{2} \theta\right) \\
& -x^{\prime}(4 \sqrt{2} \cos \theta-2 \sqrt{2} \sin \theta) \\
& +y^{\prime}(+4 \sqrt{2} \sin \theta+2 \sqrt{2} \cos \theta)-11=0 . \quad \text {. . . } \tag{2}
\end{align*}
$$

The coefficient of $x^{\prime} y$ in erguation (2) reducen to $4\left(\sin ^{2} \theta-\cos ^{2} \theta\right)$; it will therefore be zero if $\sin \theta=\cos \theta$, i.e., if $\theta=45^{\circ}$.

If $\theta=45^{\circ}$, then $\sin \theta=\cos \theta=\frac{1}{\sqrt{2}}$, and this value of $\sin \theta$ and $\cos \theta$ being substituted in equation (2), it trecomes

$$
\begin{equation*}
z^{2}-3 y^{2}-2 z^{2}+6 y-11=0, \tag{3}
\end{equation*}
$$

which represents the aame locus as in represented by equation (1); the difference in the form of the two equations being due to the fact that the axen to which equation (3) is referred make au anglo of $45^{\circ}$ with the axes to which equation (1) is referred.

Equation (3) may bo written in the form
i.e,

$$
\begin{align*}
& \left(x^{\prime}-1\right)^{2}-3\left(y^{\prime}-1\right)^{2}=0, \\
& \frac{\left(x^{\prime}-1\right)^{2}}{3^{2}}-\frac{\left(y^{\prime}-1\right)^{2}}{(\sqrt{3})^{2}}=1, \tag{4}
\end{align*}
$$

which represents an hyperbola (cf. Art. 118). Its center is at the point ( 1,1 ) ; the transvense axis is parallel to the $z^{\prime}$-axis; the semi-axes are of length 8 and $\sqrt{3}$, respectively ; the eccentricity is $e=j \sqrt{3}$; the foci are at the points $F \equiv(1+2 \sqrt{3}, 1)$ and $F \equiv(1-2 \sqrt{3}, 1)$, respectively; the directrices have the equations

$$
\text { and } \begin{aligned}
x & =1+1 \sqrt{3} \\
x^{\prime} & =1-1 \sqrt{3},
\end{aligned}
$$

reapectively; and the latus rectum is 2. All these results refer to the new axes, of course, and the locus is that represented in Fig. 191.


5a. 121.

[^44]Example 2. Given the equation

$$
\begin{equation*}
4 x^{2}+4 x y+y^{2}-18 x+26 y+64=0 \tag{5}
\end{equation*}
$$

to determme the nature and position of its locus. Turn the axes through an angle $\theta$, i.e., substitute for $x$ and $y$, respectively, $x^{\prime} \cos \theta-y^{\prime} \sin \theta$ and $x^{\prime} \sin \theta+y^{\prime} \cos \theta$; equation (5) then becomes

$$
\begin{align*}
x^{\prime 2}\left(4 \cos ^{2} \theta\right. & \left.+\sin ^{2} \theta+4 \sin \theta \cos \theta\right) \\
& +x^{\prime} y^{\prime}\left(-8 \cos \theta \sin \theta+2 \cos \theta \sin \theta-4 \sin ^{2} \theta+4 \cos ^{2} \theta\right) \\
& +y^{\prime 2}\left(4 \sin ^{2} \theta+\cos ^{2} \theta-4 \sin \theta \cos \theta\right) \\
& +x^{\prime}(-18 \cos \theta+26 \sin \theta) \\
& +y^{\prime}(18 \sin \theta+26 \cos \theta)+64=0, \tag{6}
\end{align*}
$$

in which $\theta$ is to be so determined that the coefficient of $x^{\prime} y^{\prime}$ shall be zero. On placing this coefficient equal to zero, it is at once seen that $\tan 2 \theta=\frac{4}{3}$, from which it follows (cf. exercise 3, Art. 10, second method) that

$$
\sin 2 \theta=\frac{1}{3} \text { and } \cos 2 \theta=\frac{3}{3} ;
$$

remembering that $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2}$ it is easily deduced that $\sin \theta=\frac{1}{\sqrt{5}}$ and $\cos \theta=\frac{2}{\sqrt{5}}$

Substituting these values in equation (6), it becomes

$$
\begin{align*}
& 5 x^{\prime 2}-2 \sqrt{5} x^{\prime}+14 \sqrt{5} y^{\prime}+64=0 \\
& \left(x^{\prime}-\frac{1}{\sqrt{5}}\right)^{2}=-\frac{14}{\sqrt{5}}\left(y^{\prime}+\frac{63}{14 \sqrt{5}}\right) \tag{7}
\end{align*}
$$

which is the equation of a parabola whose vertex is at the point

$$
\left(\frac{1}{\sqrt{5}},-\frac{63}{14 \sqrt{5}}\right)
$$

whose focus is at the point $\left(\frac{1}{\sqrt{5}},-\frac{8}{\sqrt{5}}\right)$, whose axis is parallel to the negative end of the $y^{\prime}$-axis, and whose latus rectum is $\frac{14}{\sqrt{5}}$. All these results refer to the new axes; the locus of the above equation is given in Fig. 79, p. 178 (Art. 108).

## EXERCISES

1. For the hyperbola in Fig. 121 find the coördinates of the center and of the foci, and also the equations of its axes and directrices, all referred to the axes $O X$ and $O Y$.

By first removing the $x y$-term, deturmine the nature and powition of the loci reprosented by the following equations. Aleo plot the curves.
2. $x^{3}-2 \sqrt{3} x y+3 y^{2}-24 x-8 \sqrt{3} y+16 \sqrt{3}=0$.
3. $x^{2}-4 \sqrt{5} x y+2 y^{2}+\sqrt{5} z+10 y=0$.
4. $3 x^{2}+2 x y+3 y^{2}-10 y+23=0$.
5. $x^{3}-2 x y+y^{2}-6 x-6 y+0=0$.
177. Test for the species of a conlc. It is often dexirable to know the species of a conic represented by a given equation even when it may not be necessary to determine fully the position of the curve. Remembering that every equation of the second degree represents a conic (Art. 175), and also that the three species of conics may be distinguished from each other by the number of directions in which lines meeting the curve at infinity may be drawn through any given point (Art. 131, Note), it is easy to find a test that will enable one to distinguish at a glance the kind of conic represented by a given equation.
let the given equation be

$$
\begin{equation*}
A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0 . \tag{1}
\end{equation*}
$$

If this equation be transformed to polar courdinates, the origin being the pole and the r-axis the initial line, so that $x=\rho \cos \theta$ and $y=\rho \sin \theta$, it becomes

$$
\begin{align*}
\rho^{2}\left(A \cos ^{2} \theta\right. & \left.+2 H \sin \theta \cos \theta+B \sin ^{2} \theta\right) \\
& +2 \rho(G \cos \theta+F \sin \theta)+C=0 . \tag{2}
\end{align*}
$$

One value of $\rho$, determined by this equation, will be infinite if its direction be such that

$$
A \cos ^{2} \theta+2 H \sin \theta \cos \theta+B \sin ^{2} \theta=0 ; \quad[\text { Art. 10] }
$$

i.e., if

$$
B \tan ^{2} \theta+2 H \tan \theta+A=0
$$

i.e., if

$$
\begin{equation*}
\tan \theta=\frac{-H \pm \sqrt{H^{2}-A B}}{B} \tag{3}
\end{equation*}
$$

Equation (3) shows that $\tan \theta$ will have
two imaginary values, if

$$
H^{2}-A B<0 ;
$$

two real and coincident values, if $H^{2}-A B=0$;
two real and distinct values, if $\quad H^{2}-A B>0$.
Therefore, there is no direction, one direction, or there are two directions, respectively, in which a line meeting the curve in an infinitely distant point may be drawn through the origin, according as

$$
H^{2}-A B \text { is }<0,=0, \text { or }>0 ;
$$

and hence,
if $H^{2}-A B<0$, equation (1) represents an ellipse,
if $H^{2}-A B=0$, equation (1) represents a parabola,
if $H^{2}-A B>0$, equation (1) represents an hyperbola.
178. Center of a conic section. As already defined (Arts. $111,117,120$ ), the center of a curve is a point such that all chords of the curve passing through it are bisected by it. It has also been shown that such a point exists for the ellipse and hyperbola, i.e., that these are central conics.

If the equation of the conic is given in the form

$$
\begin{equation*}
A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

the necessary and sufficient condition that the origin is at the center, is $G=0$ and $F=0$.

For if the origin be at the center, and $\left(x_{1}, y_{1}\right)$ be any given point on the locus of equation (1), then $\left(-x_{1},-y_{1}\right)$ must also be on this locus (because these two points are on a straight line through the origin and equidistant from it); hence the coördinates of each of these points satisfy equation (1),
i.e., $A x_{1}^{2}+2 H x_{1} y_{1}+B y_{1}^{2}+2 G x_{1}+2 F y_{1}+C=0$, .
and $A\left(-x_{1}\right)^{2}+2 H\left(-x_{1}\right)\left(-y_{1}\right)$

$$
\begin{equation*}
+B\left(-y_{1}\right)^{2}+2 G\left(-x_{1}\right)+2 F\left(-y_{1}\right)+C=0 ; \tag{8}
\end{equation*}
$$

and equation (8) may be written thus:

$$
\begin{equation*}
A x_{1}^{2}+2 H x_{1} y_{1}+B y_{1}^{2}-2 G x_{1}-2 F_{y_{1}}+C=0 \tag{4}
\end{equation*}
$$

Subtracting equation (1) from equation (2) gives
i.e.,

$$
\begin{align*}
4 G x_{1}+4 F y_{1} & =0 ; \\
G x_{1}+F y_{1} & =0 . \tag{5}
\end{align*}
$$

But equation (5) is to be satisfied by the coordinates $x_{1}$ and $y_{1}$ of every point on the locus of equation (1), and the necessary and sufficient conditions for this are

$$
G=0 \text { and } F=0 .
$$

179. Transformation of the equation of a conic to parallel axes through its center. Let the equation of the given eonic be

$$
\begin{equation*}
A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

and let the coördinates of its center be $a$ and $\beta$. Then to transform equation (1) to parallel axes through the point (a. $\beta$ ) it is only necessary to substitute in that equation $x^{\prime}+a$ and $y^{\prime}+\beta$ for $x$ and $y$. This substitution gives

$$
\begin{aligned}
A\left(x^{\prime}+a\right)^{2} & +2 H\left(x^{\prime}+a\right)\left(y^{\prime}+\beta\right)+B\left(y^{\prime}+\beta\right)^{2} \\
& +2 G\left(x^{\prime}+a\right)+2 F^{\prime}\left(y^{\prime}+\beta\right)+C=0
\end{aligned}
$$

$$
\text { i.e.. } \begin{align*}
A x^{\prime 2} & +2 H x^{\prime} y^{\prime}+B y^{\prime g}+2 x^{\prime}(A a+H \beta+G) \\
& +2 y^{\prime}(H a+B \beta+F)+A a^{2}+2 H a \beta+B \beta^{2} \\
& +2 G a+2 F \beta+C^{*}=0 \tag{2}
\end{align*}
$$

Since $a$ and $\beta$ are the coördinates of the center (Art. 178),

$$
\begin{equation*}
A a+H \beta+G=0 \text { and } H a+B \beta+F=0 \tag{3}
\end{equation*}
$$

[^45]solving these equations gives
\[

$$
\begin{equation*}
a=\frac{B G-F H}{H^{2}-A B} \quad \text { and } \quad \beta=\frac{A F-G H}{H^{2}-A B}, \tag{4}
\end{equation*}
$$

\]

which are the coördinates of the center of the locus of equation (1).

The constant term in equation (2) is,
$A a^{2}+2 H a \beta+B \beta^{2}+2 G a+2 F \beta+C$,
$=a(A a+H \beta+G)+\beta(H a+B \beta+F)+G a+F \beta+C$.
$=G a+F \beta+C, \quad[$ by virtue of equations (3)].
$=G\left(\frac{B G-F H}{H^{2}-A B}\right)+F\left(\frac{A F-G H}{H^{2}-A B}\right)+C, \quad[$ by equation (4) $]$
$=-\frac{A B C+2 F G H-A F^{2}-B G^{2}-C H^{2}}{H^{2}-A B}=-\frac{\Delta}{H^{2}-A B}$,
wherein

$$
\Delta \equiv A B C+2 F G H-A F^{2}-B G^{2}-C H^{2}(\text { cf. Art. } 67)
$$

Equations (4) show that the center of the locus of equation (1) is a definite point, at a finite distance from the origin, if $H^{2}-A B \neq 0$, but that the coördinates of this center become infinite if $H^{2}-A B=0$. Hence (cf. Art. 177), while the ellipse and hyperbola each have a definite finite center, the parabola may be regarded as having a center at infinity.

By making use of equations (3) and (5), equation (2) may be written

$$
\begin{equation*}
A x^{\prime 2}+2 H x^{\prime} y^{\prime}+B y^{\prime 2}-\frac{\Delta}{H^{2}-A B}=0 ; \tag{6}
\end{equation*}
$$

hence, if the general equation of an ellipse or hyperbola be transformed to parallel axes through the center of the conic. the coefficients of the quadratic terms remain unchanged,
those of the firm degree terms vanish, and the new alssolute term becomes

$$
-\frac{\Delta}{1^{2}-A B}
$$

Note. Two special cases should to noted:

1) Equation (8) shows that if $\Delta=0$, the locus of equation (1) con sints of two straight lines through the new origin (cl. Art. 07 ).
2) The point $(a, \beta)$ is the intersection of the two straight lifies

$$
A z+H y+G=0 \text { and } H x+B y+F=0 \text {. (df. eq. (3) above.) }
$$

If $\frac{A}{H}=\frac{H}{B}=\frac{G}{F}$, then these lines are coincident (Art. $38,(\beta)$ ), and the colirdinates a and $\beta$ become indeterminate. In this case, it may the shown that $\Delta=0$; that the locus of equation (1) consists of two lines paralle! to, on opposite sides of, and equidistant from, then lin. $A z+U y+G=0$; hence any point of the latter line may be considered is a center, since chords drawn through such a point are bisected by it, i.e., the curve has a line of centers. Again, since $H^{3}-A B=0$, this locus raay be considered a special form of a parabota.
180. The invariants $A+B$ and $\boldsymbol{H}^{\geq}-\boldsymbol{A B}$. In Art. 175 it was shown that a transformation of coordinates by rotating the axes through an angle $\theta$ changes the coefficients of the equation

$$
\begin{equation*}
A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

with the exception of the constant term. It is true, however, that certain functions of these coefficients are not changed by this transformation, e.g., the sum $A+B$ of the coefficients of the $x^{2}$ and $y^{3}$ terms is the same after trans formation as before. If the transformed equation be written

$$
\begin{equation*}
A^{\prime} x^{2}+2 \Pi^{\prime} x y+B^{\prime} y^{2}+2 G^{\prime} x+2 F^{\prime} y+C=0 \tag{2}
\end{equation*}
$$

wherein, as in Art. 175 ,

$$
\begin{align*}
& A^{\prime} \equiv A \cos ^{2} \theta+2 H \sin \theta \cos \theta+B \sin ^{2} \theta,  \tag{3}\\
& B^{\prime}=A \sin ^{2} \theta-2 H \sin \theta \cos \theta+B \cos ^{2} \theta \tag{4}
\end{align*}
$$

and $2 H^{\prime}=2 H \cos 2 \theta-(A-B) \sin 2 \theta$,
then the addition of equations (3) and (4)
gives $\quad \boldsymbol{A}^{\prime}+\boldsymbol{B}^{\prime}=\boldsymbol{A}+\boldsymbol{B}$ (since $\sin ^{2} \theta+\cos ^{2} \theta=1$ ).
Again, $A^{\prime}-B^{\prime}=2 H \sin 2 \theta+(A-B) \cos 2 \theta$.
hence

$$
\begin{align*}
\left(A^{\prime}-B^{\prime}\right)^{2}+4 H^{\prime 2} & =\left\{(A-B)^{2}+4 H^{2}\right\}\left(\sin ^{2} 20+\cos ^{2} 2 \theta\right),  \tag{7}\\
& =(A-B)^{2}+4 H^{2}, \tag{8}
\end{align*}
$$

i.e., $A^{\prime 2}-2 A \cdot B^{\prime}+B^{\prime 2}+4 H^{\prime 2}=A^{2}-2 A B+B^{2}+4 H^{2}$.

But by (6),

$$
A^{\prime 2}+2 A^{\prime} B^{\prime}+B^{\prime 2}=A^{2}+2 A B+B^{2}
$$

hence, by subtraction,

$$
\begin{equation*}
H^{2}-A B=H^{2}-A B, \tag{9}
\end{equation*}
$$

and the function $H^{2}-A B$ is also unchanged by the transformation of coördinates, through the angle $\theta$. Morenver, if a transformation of coürdinates to a new origin be performed as in Art. 179, $A, B$, and $H$ are not changed, nor, therefore, the functions $A+B$ and $H^{2}-A B$. Such functions of the coefficients, which do not vary when the transformations of Arts. 175 and 179 are performed, are called invariants of the equation for those transformations.

If, as in Art. 175, $\theta$ be chosen so that

$$
\begin{equation*}
\tan 2 \theta=\frac{2 H}{A-B}, \tag{10}
\end{equation*}
$$

then $H^{\prime}=0$, and equation (9) becomes

$$
\begin{equation*}
-A^{\prime} B^{\prime}=H^{2}-A B \tag{11}
\end{equation*}
$$

Again, from eq. (10), $\sin 2 \theta=\frac{2 H}{\sqrt{(A-B)^{2}+4 H^{2}}}$,
and

$$
\begin{equation*}
\cos 2 \theta=\frac{A-B}{\sqrt{(A-B)^{2}++H^{2}}} ; \tag{12}
\end{equation*}
$$

hence, equation (8), $\quad A^{\prime}-B^{\prime}=\frac{2 H}{\sin 2 \theta}$.
Since $\sin 2 \theta$ is positive (Art. 175), therefore the sign of $A^{\prime}-B^{\prime}$ is the same as the sign of $H$.

These results are useful in reducing an equation of a conic to its simplest standard form, as will be illantrated in the following article.
181. To reduce to its simplest standard form the general equation of a conic. a. Central conic. The result of Art. 180 enables one to raduce to its sirplest form a given equation of the second degree, in which $H^{2}-A \mathscr{A} \neq 0$, much more easily than by the method of Art. 175. If the equation of the conic,

$$
\begin{equation*}
A x^{2}+2 H_{x y}+B y^{2}+2 C x+2 F y+C=0, \tag{1}
\end{equation*}
$$

to first transformed to the center of the curve as origin, the resulting equation becomes (Art. 179)

$$
\begin{equation*}
A x^{2}+2 \| x y+B y^{2}+C=0 . \tag{2}
\end{equation*}
$$

If equation (2) be now transformed to axes $\sigma x^{\prime \prime}$ and $\sigma^{\prime} s^{\prime \prime \prime}$, making the augle 0 with $O \mathrm{~N}^{\prime}$ anid $\sigma \Sigma^{\prime \prime}$, respectively, sich that

$$
\tan 2 \theta=\frac{2 H}{A-B},
$$

it will become (Art. 175) $A^{\prime} x^{3}+B^{\prime} y^{2}+C^{\prime}=0$, (3) wlimrein the new coeffcients are easily detero minod by the relations

$$
\begin{aligned}
C & =G a+F \beta+C \\
& =-\frac{\Delta}{H^{2}-A B},
\end{aligned}
$$

(Art. 179),

$$
A^{\prime}+B^{\prime}=A+B,
$$

$$
\text { and }-A B^{r}=\Pi^{2}-A B
$$


(Art. 180).

Example. Suppose the given equation to bo

$$
\begin{equation*}
3 x^{2}+2 x y+3 y^{2}-10 y+90=0 \tag{4}
\end{equation*}
$$

in which $A=3, H=1, B=3, G=0, F=-8$, and $C=20$.
Then $H^{2}-A B=-8$, and the locus is an ellipee.

The coördinates of the center are $a=-1, \beta=3$.
Therefore, $C^{\prime}=G a+F \beta+C=-4 ; A^{\prime}+B^{\prime}=6,-A^{\prime} B^{\prime}=-8$;
and, since $A^{\prime}$ is larger than $B^{\prime}, H$ being positive (Art. 180),
hence

$$
A^{\prime}=4, B^{\prime}=2 ;
$$

while $\tan 2 \theta=\infty$, and therefore $\theta=45^{\circ}$. The transformed equation is therefore
i.e.,

$$
\begin{gather*}
4 x^{2}+2 y^{2}-4=0, \\
\frac{x^{2}}{1}+\frac{y^{2}}{2}=1, \tag{5}
\end{gather*}
$$

when referred to the axes $O^{\prime} X^{\prime \prime}, O^{\prime} Y^{\prime \prime}$; and the locus is approximately as given in Fig. 122.
b. Non-central conic. If $H^{2}-A B=0$, the relations of equations (6) and (11), Art. 180, may still be used to simplify the reduction of equation (1) to the standard form for the equation of a parabola, if, as in Art. 176, the $x y$-term be removed first. In this case, however, a better method of reduction is as follows:

Since the first three terms of equation (1) form a perfect square, that equation may be written

$$
\begin{equation*}
(\sqrt{A} x+\sqrt{B} y)^{2}+2 G x+2 F y+C=0 \tag{6}
\end{equation*}
$$

wherein the sign of the $\sqrt{B}$ is the same as that of $H$.
Equation (2) may now be transformed to new axes $O X^{\prime}$ and $O Y^{\prime}$, which are so chosen that the equation of $O X^{\prime}$ referred to the given axes shall be

$$
\sqrt{A} x+\sqrt{B} y=0
$$

hence, if $\theta$ be the angle between $O X$ and $O X^{\prime}$, then

$$
\begin{equation*}
\tan \theta=-\frac{\sqrt{A}}{\sqrt{B}} \text { whence } \sin \theta=\frac{-\sqrt{A}}{\sqrt{A+B}} \text { and } \cos \theta=\frac{\sqrt{B}}{\sqrt{A+B}} \tag{7}
\end{equation*}
$$

Equation (7) shows that $\theta$ is negative (if the positive value of $\sqrt{A+B}$ be used), and acute or obtuse according as $\sqrt{B}$ is positive or negative. The formulas for transforming to the new axes are (cf. Art. 72)

$$
\begin{equation*}
x=\frac{\sqrt{B}}{\sqrt{A+B}} x^{\prime}+\frac{\sqrt{A}}{\sqrt{A+B}} y^{\prime} \text { and } y=\frac{-\sqrt{A}}{\sqrt{A+B}} x^{\prime}+\frac{\sqrt{B}}{\sqrt{A+B}} y^{\prime} \text {. } \tag{8}
\end{equation*}
$$

Substituting these values for $x$ and $y$ in equation (B), it becomes

$$
\begin{equation*}
(A+B) y^{\prime 2}+2 \frac{F \sqrt{B}-F \sqrt{A}}{\sqrt{A+B}} x^{\prime}+2 \frac{G \sqrt{A}+F \sqrt{B}}{\sqrt{A+B}} y^{\prime}+C=0 . \tag{9}
\end{equation*}
$$

By dividing equation (9) by $(A+B)$, completing the square of the y'termes, and transpening, it may bo written in the form

$$
\begin{align*}
\{y & \left.+\frac{G \sqrt{A}+F \sqrt{B}}{(A+B)^{!}}\right\}^{3} \\
& =-2 \frac{C \cdot \sqrt{B}-F \sqrt{A}}{(A+B)^{!}}\left\{z^{2}+\frac{(G \sqrt{A}+F \sqrt{B})^{2}-C(A+B)^{2}}{2(A+B)^{!}(F \sqrt{B}-F \sqrt{A})}\right\} . \tag{10}
\end{align*}
$$

Comparing equation (10) with equation [ $1:$ ? (Art. 100), it is ment that the length of the latus rectum, as well as the courdinates of the vertex and focus (with reference to the axes $O \mathcal{X}^{\circ}$ and $O 1^{\prime \prime}$ ), and other inuportant facts, may be read directly from the equation.

The advantage of equation (10), over that reaulting from the reduction of Ex. 2, Art. 170, is that, in comnection with equation (i), it gives all tho fints necessary for the immediate lucation of the curve, and gives those facts in terms of the coefficients of the original equation.

Examplik. Let it be required to determine the position and parameter of the parabola represented by the equation

$$
9 x^{3}-24 x y+16 y^{2}-18 x-101 y+19=0
$$

The given equation may be written as
$(3 x-4 y)^{2}-18 x-101 y+10=0$.
If the line $3 x-4 y=0$ be chosen as $x^{\prime}-$ axis, then $\tan \theta=\frac{f}{}$, whence $\sin \theta=-\frac{1}{3}$, and $\cos \theta=-\frac{1}{3}$. The formulas of transformation then are:
$x=\frac{-4 x^{2}+3 y^{\prime}}{5}$ and $y=-\frac{3 x^{2}+4 y^{\prime}}{5}$.
Substituting these values in equation (1), it becomes

$$
25 y^{2}+70 y^{\prime}=-75 x^{\prime}-19 ;
$$

this equation may be written

$$
\left(y^{\prime}+\frac{j}{j}\right)^{2}=-3\left(x^{\prime}-\frac{j}{j}\right),
$$


which showa that the latus rectum is 3 , and the courdinates of the vertex and focus (with reference to the new axes) are, respectively, of, -i and - 85 - ?. It also shows that the axis of the curve is parallel to the negative end of the 2 -axis.

Recalling the remark about the angle $\theta$ determined by equations (7) alove, it is seen that the geometric representation of the abore equation is shown in Fig. 123.
182. Summary. It has been shown in the preceding articles that every equation of the second degree in two variables represents a conic section, whether the axes are oblique or rectangular; and that its species and position depend upon the values of the coefficients of the equation. The various criteria of the nature of the conic represented by such an equation, in rectangular coördinates, appear in the following table :

The General Equation of the Second Degree

$$
\begin{aligned}
& A x^{2}+2 H x y+B y^{2}+2 G x+2 F y+C=0 \\
& \Delta \equiv A B C+2 F G H-A F^{2}-B G^{2}-C H^{2}
\end{aligned}
$$

I. $H^{2}-A B<0$. The ellipse.
(1) if $A=B$, and $H=0$, a circle.
(2) if $\Delta$ is + , imaginary.
(3) if $\Delta$ is - , real.
(4) if $\Delta$ is 0 , a pair of imaginary straight lines, or, a point.
II. $H^{2}-A B=0$. The parabola.
(1) if $H$ is + , axis is the new $y$-axis.
(2) if $H$ is - , axis is the new $x$-axis.
(3) if $\Delta$ is 0 , pair of parallel straight lines, which are real and different, real and coincident, or imaginary, according as $G^{2}-A C>$, $=$, or $<0$.
III. $H^{2}-A B>0$. The hyperbola.
(1) if $A=-B$, a rectangular hyperbola.
(2) if $\Delta$ is + , principal axis is the new $y$-axis.
(3) if $\Delta$ is -, principal axis is the new $x$-axis.
(4) if $\Delta$ is 0 , a pair of real intersecting straight lines.

Notk. The above resulte have not all ben shown, but are enally delued from the work alreaty given. Thun the locus of equation (3), Art. 131, if an ellijew, in innginary if $C^{\circ}$ is - ; but, by oquation (6), Art 175, $C$ is - is $\Delta$ is + ; bence the leat I (2), given atrure. And so for the other teista, which tho student should verify. The angle 0 which the new axes make with the oll, roppectively, in chosen as in Art. 175, 20 living taten always positive and not greator than $180^{\circ}$.
183. The equation of a conic through given points. The general equation of a conic may be written

$$
\begin{equation*}
A x^{3}+2 H x y+B y^{2}+2 G x+2 F y+C=0 \tag{1}
\end{equation*}
$$

and contains five parameters, the five ratios between the coefficients $A, I, B, G, F, C$. Since five equations, or conditions, will determine those parameters, in general five points will determine a conic. That is, in general, a conic may be made to pass through five, and only five, given points.

If, however, the conic is to be a parabola, one equation is given ; viz. $H^{2}-A B=0$, hence only four additional conditions are needed. In general, a parabola may be made to pass through four points, only.

A circle has two conditions given, viz. $A=B, H=0$; therefore, in general, a circle may be made to pass through three points, only.

A pair of straight lines has one condition given, $\Delta=0$; therefore, in general, a pair of straight lines may be made 10 pass through four points, only.

The method to be followed in obtaining the equation of the required conic has been used in Art. 80, and may be indicated for finding the equation of the parabola through four given points,

$$
P_{1} \equiv\left(x_{1}, y_{1}\right), P_{2} \equiv\left(x_{2}, y_{2}\right), P_{8} \equiv\left(x_{8}, y_{3}\right), \text { and } P_{4}=\left(x_{4}, y_{4}\right) .
$$

The equation must be of the form (1),
therefore,

$$
\begin{array}{r}
A x_{1}^{2}+2 H x_{1} y_{1}+B y_{1}^{2}+2 G x_{1}+2 F y_{1}+C=0 \\
A x_{2}^{2}+2 H x_{2} y_{3}+B y_{2}^{2}+2 G x_{2}+2 F y_{2}+C=0 \\
A x_{3}^{2}+2 H x_{3} y_{3}+B y_{3}^{2}+2 G x_{3}+2 F y_{3}+C=0 \\
A x_{4}^{2}+2 H x_{4} y_{4}+B y_{4}^{2}+2 G x_{4}+2 F y_{4}+C=0 \\
H^{2}-A B=0
\end{array}
$$

also,
The required ratios between the coefficients of equation (1) may be found from these equations.

## EXAMPLES ON CHAPTER XII

Without transforming the equations to other axes, find the center or the rertex, the axes, and the nature of the following conics:

1. $x^{2}+5 x y+y^{2}+8 x-20 y+15=0$;
2. $(x-y)^{2}+2 x-y=1$;
3. $3 x^{2}+2 y^{2}-2 x+y-1=0$;
4. $3 x^{2}-8 x y-3 y^{2}+x+17 y-10=0$;
5. $4 x^{2}-4 x y+y^{2}+4 a x-2 a y=0$;
6. $5 x^{2}+2 x y+5 y^{2}=0$;
7. $3 x^{2}+3 y^{2}+11 x-5 y+7=0$;
8. $x^{2}+2 x y-y^{2}+8 x+4 y-8=0$;
9. $y^{2}-x y-6 x^{2}+y-3 x=0$;
10. $y^{2}-x y-5 x+5 y=0$.

Trace the following conics:
11. $3 x^{2}+2 x y+3 y^{2}-16 y+23=0$;
12. $4 x^{2}+9 y^{2}+8 x+30 y+4=0$;
13. $3 x^{2}-3 y^{2}+8 x y-10 y+6 x+5=0$;
14. $(x-y)(x-y-6)+9=0$.
15. What conic is determined by the points $(0,3),(1,0),(2,1)$, $(-1,-3)$, and $(3,-3)$ ?
16. Find the equation of the parabola through the points $(3,2)$, $\left(1, \frac{3}{}\right),(-6,8)$, and $\left(-2, \frac{8}{8}\right)$.
17. Find the equation of the conic through the points $(9,2),(6,3)$, $(3,2),(1,-2),(2,1)$.

## CHAPTER XIII

## HIGHER PLANE CURVES

184. Definitions. A curve, in Cartesian coürdinates, whose equation is reducible to a finito number of terms, each involving only positive integer powers of the coordinates, is called an algebraic curve; all other curves are called transcendental curves.

Algebraic curves the degree of whose equations exceeds two, and all transcendental curves, are (if they lie wholly in a plane) ealled higher plane curves. On account of their great historical interest, and because of their frequent use in the Calculus, a few of these curves will be examined in the present chapter.

## I. AIGEBRAIC CURVES

185. The cissoid of Diocles. The cissoid may be defined as follows : let $O F A K$ be a fixed circle of radius $a, O A$ a

[^46]diameter, $A T$ a tangent; draw any line as $O Q S$ through $O$, meeting the circle in $Q$ and the tangent in $S$, and on this line lay off the distance $O P=Q S$ : the locus of the point $P$, as the line $O S$ revolves about $O$, is the cissoid. *

From this definition, the equation of the cissoid, referred to the rectangular axes $O X$ and $O Y$, is readily derived.
 Let the coördinates of $P$ be $x$ and $y$, and let $C$ be the center of the circle so that

$$
O C=C A=C K=a
$$

Since triangles $O M P$ and $O N Q$ are similar,
$\therefore M P: O M:: N Q: O N$. (1) and since $O P=Q S$, therefore
$N A=O M=x$; moreover, $\widetilde{N Q}^{2}=O N \cdot N A=(2 a-x) x$.

Substituting these values in equation (1) gives

$$
\begin{equation*}
y: x:: \sqrt{(2 a-x) x}:(2 a-x) \tag{2}
\end{equation*}
$$

whence

$$
\begin{equation*}
y^{2}=\frac{x^{3}}{2 a-x} \tag{3}
\end{equation*}
$$

which is the required rectangular equation of the cissoid.
The definition of the cissoid, as well as the equation just derived, shows that the curve is symmetric with regard to

[^47]the $x$-axis; that it lies wholly between the $y$-axis and the line $x=2 a$; that it passes through the extremities $F$ and $K^{-}$ of the diameter perpendicular to $0 . \mathrm{A}$; and that it has two infinite branches to each of which the line $x=2 a$ is an nsymptote.

Notk 1. The polar equation of the cimoid referred to the initial line $O X$, and pole $O$, is also casily found. Let the polar courdinates of $P$ be $\rho$ and $\theta$; then,

$$
\begin{equation*}
\rho=O P=Q S=O S-O Q_{0} \tag{4}
\end{equation*}
$$

but

$$
O S=2 a \sec \theta, \text { and } O Q=2 a \cos \theta,
$$

$\therefore \quad \rho=2 a \sec \theta-2 a \cos \theta=2 a(\sec \theta-\cos \theta)$,
i.e.,

$$
\begin{equation*}
\rho=2 a \tan \theta \sin \theta_{1} . \tag{3}
\end{equation*}
$$

which is tho polar equation sought.
Note 2. To "duplicate the culve" by means of the cissoid, extend $C K$ to $H$, making $H K=C K=n$, draw the line $H A$ cutting the cissoid in $J$, and draw the ordinate $E J$. Since $C H=2 C A$, therefore $E \cdot=2 E A$, but from equation (3),

$$
\begin{align*}
& E J^{2}=\frac{\overline{O E}{ }^{3}}{E A}=\frac{\overline{O E}{ }^{3}}{\frac{1 E J}{}} \\
& \therefore E J^{3}=2 \overline{O E^{2}} . \tag{6}
\end{align*}
$$

Now let $m$ be the edge of any given cube, and let it be required to coustruct a line $n$ such that the cube on $n$ shall be equal to the double of the cute on $m$. Construct $n$ so that

$$
O E: E J:: m: n ;
$$

then

$$
O E_{3}^{2}: E J^{3}=m^{2}: n^{2},
$$

and, since $\overline{E J^{3}}=2 . \overline{O E} E^{3}$, therefore $n^{2}=2 \mathrm{~m}^{2}$.
Nots 3. The cissoid may also be defined in either of the following *ays: (1) as the locus of the point ( $P$ ) in which the chord $O Q S$ interfect that ordinate (ML) of the circle which is equal to $N Q$; and (2) as the locus of the foot of the perpendicular let fall from the vertex of a parabola upon a tangent. The derivation of the equation of the curre tomed upon these definitions is left as an exereise for the student.

[^48]For Newton's method of drawing the cissoid by continnous motion, see Salmon's Higher Plane Curves, p. 183, or Lardner's Algebraio Geometry, p. 136.
186. The conchoid of Nicomedes.* The conchoid may be defined as follows : Let $P R P^{\prime} Q$ be a given circle of radius $a$ whose center $S$ moves along a fixed straight line $O X$; let $L K$ be a straight line drawn through a fixed point $A$ and the center $S$ of this moving circle, and let $P$ and $P^{\prime}$ be the intersections of this line and the circle; then the locus traced by $P$ (and by $P^{\prime}$ ) as $S$ moves along $O X$ is a conchoid.


This definition may also be stated thus: If $A$ is a fixed point, $O X$ a fixed line, and $S$ the point in which $O X$ is intersected by a line $L K$ revolving about $A$, then the locus of a point $P$ on $L K$, so taken that $S P$ is always equal to a given constant $a$, is a conchoid.

The fixed point $A$ is called the pole, the constant parameter $a$ the modulus, and the fixed line $O X$ the directrix of the conchoid.

[^49]T'o derive the rectangular equation of the conchoid draw $A O Y$ perpendicular, and $A / I$ parallel, to $O X$, and let $O A=e$; let $P=(x, y)$ be any position of the generating point, and draw the orlinate HMP; then, from the similar triangles AHP and SMP,

$$
A H: H P:: S M: M P
$$

i.e..

$$
x: y+c:: \sqrt{a^{2}-y^{2}}: y ;
$$

$$
\left[\text { sinco } S M=\sqrt{S P^{2}-M P^{2}}=\sqrt{a^{2}-y^{2}}\right]
$$

whence

$$
x^{2} y^{3}=(y+c)^{2}\left(a^{2}-y^{2}\right)
$$

which is the equation sought.
The definition of the conchoid, as well as the equation just derived, shows that the curve is symmetric with regard to the $y$-axis; that it lies wholly between the two lines $y=a$ and $y=-a$; and that it has four infinite branches to each of which the $x$-axis is an asymptote. ${ }^{*}$

Note 1. The polar equation of the conchoid. Let $A$ be the pole, $A Y$ the initial line, and $l^{\prime} \equiv(\rho, \theta)$ (or $P^{\prime}$ ) any position of the generating point; then
i.e.

$$
\begin{gathered}
\rho=A P=A S \pm S P=O A \cdot \sec \theta \pm S P . \\
\rho=c \sec \theta \pm n
\end{gathered}
$$

which is the desired equation.
Note 2. The conchoid may also be readily constructed by continuous raotion as follows: By means of a slot in a ruler, fitting over a pin at A, themotion of the line $I . K$ is properly controlled; if now a guide pin at $S$, and a tracing point at $P$, be attached to this ruler, then the point $P$ will trace out the conchoid when the guide point $S$ is moved along the live O.x.

Note 3. By means of a conchoid, any given angle may be trisected. 1 Let $A B C$ be any angle, on one side (B.A) take any dixtance, as $B H$, and

[^50]draw OHX perpendicular to the other side of the angle ( $B C$ ) ; then lay off $O K=2 B H$, and construct the conchoid $K E F$ with $B$ as pole and $2 B H=O K$ as modulus, and $O X$ as directrix. Draw $H L$ parallel to $B C$ and connect $B$ with $L$, then the angle $L B C=\{A B C$; for, ioin $D$, the

middle point of $M L$, to $H$, then $M L=O K=2 B H=2 H D$, and the three angles marked $\alpha$ are all equal, as are also the two marked $\beta$; moreover, $\beta=2 \alpha$, being the exterior angle of the triangle $H L D$, which proves that angle $L B C=\frac{1}{f} A B C$.
187. The witch of Agnesi.* The witch may be defined as


Fig. 127. follows: Let $O K A Q$ be a given fixed circle of radius $a, O A$ a diameter, and $Q$ any point on the circle ; if now the ordinate $M Q$ be produced to $P$, so that

$$
\begin{equation*}
M Q: M P:: M A: O A, \cdot \tag{1}
\end{equation*}
$$

then the locus of $P$, as $Q$ moves around the circle, is the witch. To derive the rectangular equation of the witch, let $P \equiv(x, y)$ be any point on the curve ; then, since

$$
M Q=\sqrt{O M \cdot M A}=\sqrt{x(2 a-x)},
$$

[^51]sulstituting in equation (1) gives
\[

$$
\begin{gather*}
\sqrt{x(2 a-x)}: y::(2 a-x): 2 a  \tag{}\\
y^{3}=\frac{4 a^{2} x}{2 a-x}, \tag{3}
\end{gather*}
$$
\]

which is the equation sought.
The definition of the witch, as well as the equation just derived, shows that the curve is symmetrical with regard to the $x$-axis; that it lies wholly between the $y$-axis and the line $x=2 a$; and that it has two infinite branches to each of which the line $x=2 a$ is an asymptote.
188. The lemniscate of Bernouilli.* The lemniscate may be defined as follows: let LTARNA' $K$ be a rectangular hyperbola, $O$ its center, $O X$ and $O Y$ its axes, and $T E$ a tangent to the curve at any point $T$. Also let $O G$ be a perpendicular from the center upon this tangent, and let $P$ be the point of their intersection; then the locus of $P$ as $T$ moves along the hyperbola is called the lemniscate.

To derive the rectangular equation of this curve, let $O A=a$, and let the coordinates of $T$ be $x_{1}$ and $y_{1}$; then the equation of the tangent $T E$ 's

$$
\begin{equation*}
x_{1} x-y_{1} y=a^{2} \tag{1}
\end{equation*}
$$

hence the equation of $O G$, the perpendicular upon this tangent (Art. 62), is

$$
\begin{equation*}
x_{2} y+y_{1} x=0 . \tag{2}
\end{equation*}
$$

[^52]Regarding equations (1) and (2) as simultaneous, the $x$ and $y$ involved are the coördinates of the point $P$; moreover, since the point $T \equiv\left(x_{1} \cdot y_{1}\right)$ is on the hyperbola, therefore

$$
\begin{equation*}
x_{1}{ }^{2}-y_{1}{ }^{2}=a^{2} . \tag{3}
\end{equation*}
$$

Eliminating $x_{1}$ and $y_{1}$ between equations (1), (2), and (3) gives

$$
\begin{equation*}
\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right), \tag{4}
\end{equation*}
$$

which is, therefore, the equation sought.


The definition of the lemniscate, as well as the equation just derived, shows that the curve is symmetrical with regard to both coördinate axes; that it lies wholly between the two lines whose equations are $x=-a$ and $x=+a$; that it passes through the origin and the two points $(-a, 0)$ and $(+a, 0)$; and that $y$ is never larger than $x$; hence the lemniseate is a limited closed curve as represented in Fig. 128.

[^53]for then $x=\rho \cos \theta$ and $y=\rho \sin \theta$, and equation ( 1 ) at onim relues is
\[

$$
\begin{equation*}
\rho^{8}=a^{2}\left(\cos ^{3} \theta-\sin ^{3} \theta\right)=a^{2} \cos 2 \theta \tag{5}
\end{equation*}
$$

\]

whieh is therefore the required polar nequation of the lemniscato.
Syuation (5) shows that: when $\theta=0, p= \pm a$; when $\theta<45^{\circ}, p$ has two equal thit oppresito values, each of which is smaller thatio a; when $\theta=15^{\circ}, p=0$, i.en, the angle which the curve makes with the initial liee Is $45^{\circ}$; when $45^{\circ}<0<135^{\circ}, \rho$ is imaginary; when $135^{\circ}<\theta<180^{\circ}, \rho$ lias two equal but opgosite values, each of which in smaller than $a$; and when $\theta=180^{\circ}, \rho= \pm a$. The curve, therefore, consistit of two ovals meeting in O, each lying in the same angle between the asymptotes of the hyperbola as ions the corresponding branch of that curve, and these asymptotes aro tangent to the lemniscate at the point $O$.

Note 2. If the two points $F_{1}$ and $F$ be so located that
$F_{1} O=O F=\frac{a}{2} \sqrt{2}$, and if $S \equiv(x, y)$ the any point on the lemmiscate
then

$$
F_{1} S=\sqrt{F_{1} M^{2}+M S^{3}}=\sqrt{\left(\frac{n}{2} \sqrt{2}+x\right)^{2}+y^{2}}
$$

ainl $\quad F S=\sqrt{\left(\frac{a}{2} \sqrt{2}-x\right)^{3}+y^{2}}$,
hence $F_{1} S \cdot F S=\sqrt{\left(\frac{a}{2} \sqrt{2}+x\right)^{2}+y^{2}} \cdot \sqrt{\left(\frac{a}{2} \sqrt{2}-x\right)^{2}+y^{2}}$

$$
=\sqrt{\left(x^{2}+y^{2}\right)^{2}-a^{2}\left(x^{2}-y^{2}\right)+\frac{a^{4}}{4}}=\frac{a^{3}}{2}[\text { by eq. (4) }]
$$

i.e., $\quad F_{1} S \cdot F S=\frac{a^{2}}{2}$.

Hence the lemniscate may be defined as the locus of a point which mores so that the product of its dintances from two fixed points is conatant, and equal to the square of half the distance tetween the fixed points (cf. foot-note, p. 315).

This definition of the curre easily leads to the equation already dorived; it also emables one to readily construct the curve thus: with $r$ as center, and any convenient radius FS , descrite an are; then, with $F_{1}$ as center, and a third proportional to $F S$ and $O F^{\circ}$ as radius, deserile another are cutting the first in $S$; thin intersection $S$ is a point on the loous, and as many points as desired may be constructed in the same way

189:a. The limacon of Pascal.* The limaçon may be defined as generated from a circle by adding a constant length to each of the radii vectores


Fio. 120 drawn from a point on its circumference as origin,proper account being taken of negative radii vectores. $\dagger$ E.g., let $O L A_{1} N$ be a given circle of radius $a, 0$ any point on it, $A_{1} A=k$ any constant ; then if any radius vector as $O P_{1}$ be drawn from $O$, and $P_{1} P$ $=A_{1} A=k$ be added to it, then $P$ is a point on the limaçon; and as $P_{1}$ is made to describe a circle, $P$ will trace the limaçon.

The polar equation of the curve is at once written down from this definition; for, if the diameter $O C X$ be taken as initial line, then the polar equation of the circle is

$$
\begin{equation*}
\rho=2 a \cos \theta, \tag{1}
\end{equation*}
$$

whence the polar equation of the limaçon is

$$
\begin{equation*}
\rho=2 a \cos \theta+k \tag{2}
\end{equation*}
$$

If $k$ be taken equal to $a$, the radius of the given circle, this equation may be written in the more common form

$$
\begin{equation*}
\rho=a(1+2 \cos \theta) . \tag{3}
\end{equation*}
$$

[^54]The definition of the limagon, as well as the equation just derived, shows that the curve is symmetrical with regard to the initial line, and that it has the form shown in Fig. 129.

Nork. The rectangular equation of the limaçon for which $k=e$ is easily derived from equation (3). Choosing the initial line and a perpendieular to it through $O$ as rectangular axes, to that $z=\rho \cos \theta$, and $y=p$ sill $\theta$, oquation (3) becomes

$$
\begin{equation*}
\sqrt{x^{2}+y^{3}}=a+2 a \cdot \frac{x}{\sqrt{x^{3}+y^{3}}} \tag{4}
\end{equation*}
$$

Rationalizing equation (4) gives

$$
\begin{equation*}
\left(x^{2}+y^{2}-2 a x\right)^{2}=a^{2}\left(x^{2}+y^{2}\right) \tag{5}
\end{equation*}
$$

which is the usual form for the rectangular equation of the limacon.
1896. The cardioid. The cardioid may be defined as a special case of the limaçon; viz., it is a limaçon in which the constant $k$, which is added to each of the radii vectores, is taken equal to the diameter of the fundamental circle. If in the equation of the limaçon [Art. 189a, equation (2)] the constant $k$ be taken equal to $2 a$, that equation becomes

$$
\begin{equation*}
\rho=2 a(1+\cos \theta) \tag{1}
\end{equation*}
$$

which is the polar equation of the cardioid.
The more usual form in which the equation of the cardioid is written is

$$
\begin{equation*}
\rho=2 a(1-\cos \theta) \tag{2}
\end{equation*}
$$

but this amounts merely to turning the figure through $180^{\circ}$ in its own plane.

Note 1. The rectangular equation of the cardioid is obtained as in Art. 189 a.

It is $\left(x^{2}+y^{2}+2 a x\right)^{2}=4 a^{2}\left(x^{2}+y^{2}\right)$.
The curve represented by equations (2) and (3) has the form shown in Fig. 130.

The cardioid is usually defined as the locus traced by a point on a given circle $A K 1, L$, which rolls on an equal but fixed circle $O M A_{1} I$. This deflinition also leads to equations (2) and (3) already derived.

190. The Neilian, or semi-cubical, parabola.* This curve may be defined as follows: let HTASKL be a given parab-


Fig. 131 ola whose equation is

$$
\begin{equation*}
y^{2}=4 p x ; \tag{1}
\end{equation*}
$$

let TMS be any double ordinate of the curve, $T T_{1}$ a tangent at the point $T \equiv\left(x_{1}, y_{1}\right)$, and $A Q$ a perpendicular from the vertex upon this tangent; if $Q A$ intersects $T S$ in $P$, then the locus of $P$ as $T$ moves along the parabola is called a semi-cubical or Neilian parabola.
Its rectangular equation is derived as follows : the equation of $T T_{1}$ is

$$
\begin{equation*}
y_{1} y=2 p\left(x+x_{1}\right) \tag{2}
\end{equation*}
$$

hence the equation of $A Q$ is

$$
\begin{equation*}
y=-\frac{y_{1}}{2 p} x \tag{3}
\end{equation*}
$$

The equation of $T S$ is

$$
\begin{equation*}
x=x_{1} \tag{4}
\end{equation*}
$$

If now equations (3) and (4) be regarded as simultaneous, then $x$ and $y$ are the coördinates of the point $P$ in which the two lines intersect, and if $x_{1}$ and $y_{1}$ be eliminated by means of the equation

$$
\begin{equation*}
y_{1}^{2}=4 p x_{1} \tag{5}
\end{equation*}
$$

an equation connecting $x$ and $y$ is obtained.

[^55]Substituting for $x_{1}$ and $y_{1}$, in equation (5), their values in terms of $x$ and $y$ as found from equations (8) and (4), gives
i.e.,

$$
\begin{align*}
\frac{4 p^{2}}{x^{2}} y^{2} & =4 p x_{0} \\
y^{3} & =\frac{x^{3}}{p} \tag{6}
\end{align*}
$$

which is the equation sought.
This equation shows that the curve passes through the origin and is symmetrical with regard to the $x$-axis; that it lies wholly on the same side of the $y$-axis as does the given parabola; and that it has two infinite branches.

## II. TBANSCE.NDENTAI. CUBVES*

191. The cycloid.t The cycloid (OPKA) is the path traced by a point $P$ on the circumference of a circle (HNSP)


Fi. 13

- A few very common transcendental curves have already been exarulned In Chapter III; among these are the curre of sinex, the curve of tangents, and the logarithemic curve.

I Because of the elegnence of its propertien, and because of itn numerous applications in mechanics, the cyclodd in the meter imperiant of the transecndental curreas. It has the added historical interest of being the secont curre that was rectifed (ct. Art. 190, foot-note). Tha rectifeation was fins accomplished by Sir Christopher Wren (1652-1723) and published by tim in 1678.
which rolls, without sliding, upon a fixed right line $(O X)$. The point $P$ is called the generating point; the cirele $P H N S$, the generating circle; the points $O$ and $A$, the vertices; the line $E K$, perpendicular to $O A$ at its middle point, the axis; and the line $O A$, the base of the cycloid.

To derive the rectangular equation of the cycloid let $a$ be the radius of the generating circle, and $O X$ the fixed straight line on which it rolls; also let $P$ be the generating point, and let PNS be any position of the generating circle. Draw the radius $C P$, the ordinate $M P$, the line $P L$ parallel to $O X$, and the radius $O H$ to the point of contact of the generating circle and the line $O X$. Let $O X$ and $O Y$ (the perpendicular to it through $O$ ) be chosen as axes, and let $\theta$ be the angle $P C H$.

Then, if $P \equiv(x, y)$.

$$
\begin{align*}
x=O M & =O H-M H \\
& =O H-P L \\
& =a \theta-a \sin \theta, \quad[\text { since } O H=\operatorname{arc} P H=a \theta] \\
x & =a(\theta-\sin \theta) . \tag{1}
\end{align*}
$$

i.e.,

Similarly, $\quad y=a(1-\cos \theta)$.
Solving equation (2) for $\theta$ gives

$$
\begin{aligned}
\cos \theta & =\frac{a-y}{a} \\
\theta & =\cos ^{-1}\left(\frac{a-y}{a}\right)=\operatorname{vers}^{-1}\left(\frac{y}{a}\right)
\end{aligned}
$$

i.e.,
and substituting this value of $\theta$ in equation (1) gives

$$
\begin{equation*}
x=a \operatorname{vers}^{-1}\left(\frac{y}{a}\right)-\sqrt{2 a y-y^{2}} \tag{3}
\end{equation*}
$$

which is the rectangular equation sought.

Notk 1. It is usually simpler to regard equations (1) and (2) together as reprementing the cycloid; $\theta$ is then the indeymondent variable, while $x$ and $y$ are both functions of it.

Sote 2. The eycloid belongn to the kind of curves called roulettes. Thise curves are generated by a point which is invariably comuected with a curve which rolls, without allding, upon a given fixed curve.

If both the rolling and the fixed curver are circles, then the curve gonerated is designated by the general name of trochold. If the genenting point is on the circumference of the rolling circle, and this circle rolls on the outside of a fixed circle, then the curve described is called an epicycloid; but if it rolls on the inside of the fixed circle, the generated curve is called a hypocycloid. The cycloid may be regaried either as an epicycloid or a hypocyeloid, for which the fixed circle has its center at infinity and an infinite radius.
192. The hypocycloid. Let the hypocycloid APRST ... be traced by the point $P$ on the circumference of the circle $P Q R$, whose radius is $b$, and which rolls on the inside of the

fixed circle $A Q E$, whose radius is $a$. Also let $P \equiv(x, y)$ be any position of the generating point. Draw the line $O O^{\prime} Q$, the ordinates $H O$ and $M P$, the radius $O P$, and the
line $K P$ parallel to $O A$, where $A$ is the point with which $P$ coincided when in its initial position. Let $O A X$ and $O Y$, the perpendicular to it through $O$, be chosen as coördinate axes; also let the angles $A O Q, P O^{\prime} Q$ and $O^{\prime} P K$ be designated, respectively, by $\theta, \theta^{\prime}$ and $\phi$.

Then $O M=O H+H M=O H+K P$

$$
\begin{aligned}
& =O O^{\prime} \cos \theta+P O^{\prime} \cos \phi \\
& =O O^{\prime} \cos \theta+P O^{\prime} \cos \left(\theta^{\prime}-\theta\right),
\end{aligned}
$$

$$
\begin{equation*}
\left[\text { since } \phi=\theta^{\prime}-\theta\right] \tag{1}
\end{equation*}
$$

i.e., $\quad x=(a-b) \cos \theta+b \cos \left(\theta^{\prime}-\theta\right)$.

But since are $A Q=$ arc $P Q$, therefore $a \theta=b \theta^{\prime}$, whence $\theta^{\prime}=\frac{a}{b} \theta$, and equation (1) becomes

$$
\begin{equation*}
x=(a-b) \cos \theta+b \cos \frac{(a-b) \theta}{b} \ldots \tag{2}
\end{equation*}
$$

Similarly, $y=(a-b) \sin \theta-b \sin \frac{(a-b) \theta}{b}$.
Equations (2) and (3) are together the equations of the hypocycloid. A single equation representing the same curve may be found, as in the case of the cyeloid (Art. 191), by eliminating $\theta$ between equations (2) and (3).

Note. If the radii of the circles be commensurable, i.e., if $b$ equals a fractional part of $a$, then the hypocycloid will be a closed curve; but if these radii are incommensurable, then the curve will not again pass through the initial point $A$.

In particular, if $a: b=4: 1$, then the circumference of the fixed circle is 4 times that of the rolling circle, and the hypocycloid becomes a closed curve of four arches, as shown in Fig. 134. In this case, equations (2) and (3) become, respectively,
and $\left.\begin{array}{r}x=\{a \cos \theta+\{a \cos 3 \theta \\ y=\{a \sin \theta-i a \sin 3 \theta\end{array}\right\}$. (1)
But, by trigonometry.
$3 \cos \theta+\cos 3 \theta=4 \cos ^{\prime} \theta$, and $3 \sin \theta-\sin 3 \theta=4 \sin ^{2} \theta$, hence equations (1) become
and

$$
\left.\begin{array}{l}
x=a \cos ^{-} \theta_{1}  \tag{5}\\
y=a \sin ^{8} \theta_{i}
\end{array}\right\}
$$

whence $x^{3}+y^{3}=a^{\frac{3}{3}}$.
which is the common form of the equation of the four-cusped hypocycoloid.


Fiso. 134

## SPIRAIS

193. A spiral is a transcendental curve traced by a point which, while it revolves about a fixed point called the center, also continually recedes from this center, according to some definite law.

The portion of the spiral generated during one revolution of the tracing point is called a spire; and the circle whose radius is the radius vector of the generating point at the end of the first revolution is called the measuring circle of the spiral. Thus, in Fig. 135, ABCDE is the measuring circle, OQSUWA is the first spire, and AFHLN is the second spire.
194. The spiral of Archimedes. $\dagger$ This curve is traced by a point which moves about a fixed point in a plane in such a

- If chis equation be rationalized, it becomes

$$
27 a^{2} x^{2} y^{2}=\left(a^{2}-x^{2}-y^{2}\right)^{1}
$$

Although the hypocycloid is, in general, a transcendental curve, it becomes algebraic for particular values of the ratlo of the railif of the circles.

This curve is usually supposed to bave been discovered by Conan, though its principal properties were laveatigated by the geometer in howe name it bears.


Fig. 135.
way that any two radii vectores are in the same ratio as are the angles they make with the initial line.*

From this definition it follows that the equation of the curve is

$$
\begin{equation*}
\rho=k \theta, \tag{1}
\end{equation*}
$$

where $k$ is a constant.
This equation shows that the locus passes through the origin, and that the radius vector becomes larger and larger without limit as the number of revolutions increases without limit. Moreover, if ( $\rho_{1}, \theta_{1}$ ) be any point on the curve, and if $\left(\rho_{2}, \theta_{1}+2 \pi\right)$ be the corresponding point on the next spire, then

$$
\rho_{1}=k \theta_{1} \text { and } \rho_{2}=k\left(\theta_{1}+2 \pi\right)
$$

whence

$$
\rho_{2}=\rho_{1}+2 k \pi ;
$$

but $2 k \pi=O A$, hence the distance between the successive points in which any radius vector meets the curve is constant; it is always equal to the radius of the measuring circle. This follows also directly from the definition.

The locus of equation (1), for positive values of $\theta$ is represented in Fig. 135; for negative values of $\theta$ the locus is symmetrical with the part already drawn, the axis of symmetry being the line $L F$.
195. The reciprocal or hyperbolic spiral. This curve is traced by a point which moves about a fixed point in a plane in such a way that any two radii vectores are in the

[^56]same ratio as the reciprocals of the angles which they form with the initial line.

From this detinition it follows that the equation of the eurve is

$$
\begin{equation*}
\rho=\frac{k}{\theta}, \tag{1}
\end{equation*}
$$

where $k$ is a constant.
This equation shows that the curve begins at infinity when $\theta=0$ and winds round and round the center, always approaching it, but never quite reaching it ; i.e., $p=0$ only after an infinite number of spires have been described.

Equation (1) also shows that the constant $k$ is the circumference of the measuring circle. For the radius of the measuring circle (Art. 193) is the radius vector of the generating point of the curve at the end of the first revolution, i.e., when $\theta=2 \pi$; but, from equation (1), this radius vector is $\frac{k}{2 \pi}$, and the circumference of the circle of which this is the radius is $k$.

Again, if $P \equiv(\rho, \theta)$ be any point on the locus of equation (1), then

$$
\begin{aligned}
\rho \theta & =k \\
& =\text { circumference of measuring circle }
\end{aligned}
$$

but $\rho \theta$ equals the length of the circular are described with radius $\rho$ and subtending an angle $\theta$, therefore the length of any circular are as $M P$, described about $O$, with radius $\rho$, and extending from the initial line to the curve, is equal to the circumference of the measuring circle.


Pro. 13.

The locus of equation (1), for positive values of $\theta$, is represented in Fig. 136.
196. The parabolic spiral. This curve is traced by a point which moves around a fixed point in a plane in such a way that the squares of any two radii vectores are in the same ratio as are the angles which they form with the initial line.

From this definition it follows that the equation of the curve is

$$
\begin{equation*}
\rho^{2}=k \theta, \quad . \quad . \quad . \tag{1}
\end{equation*}
$$

where $k$ is a constant.
This equation shows that the curve begins at the center when $\theta=0$, winds round and round


Fia. 137 this point, always receding from it, the radius vector becoming infinite when $\theta$ becomes infinite, i.e., when it has described an infinite number of spires.
The locus of equation (1), for positive values of $f$, is represented in Fig. 137.*
197. The lituus $\dagger$ or trumpet. This curve is traced by a point which moves around a fixed point in a plane in such a way that the squares of any two radii vectores are in the same ratio as the reciprocals of the angles which they form with the initial line.

From this definition it follows that the equation of the curve is

$$
\begin{equation*}
\rho^{2}=\frac{k}{\bar{\theta}} \quad . \quad . \quad . \tag{1}
\end{equation*}
$$

where $k$ is a constant.
This equation shows that the curve begins at infinity, when $\theta=0$, and winds round and round the center, always

[^57]approaching $i t$, but never quite reaching it, i.e., $p=0$ only after an infinite number of spires lave been described.

The locus of equation (1) is shown in Fig. 188; the heavy

line being the part of the locus obtained from the positive values of $\rho$, while the dotted part belongs to the negative values of $\rho$.

Nots. The four spirals just discused, and whome forms are given in Figs. 135 to 135, are all included under the more general case of the curve defined by the equation

$$
\begin{equation*}
\rho=1 \theta^{\circ} \text {; } \tag{}
\end{equation*}
$$

if $n=1$, this is the spiral of Archimedes; if $n=-1$, it is the hyperbolic apiral ; if $n=\frac{1}{2}$, it is the parabolic spiral; while if $n=-\frac{1}{2}$, it is the tituus.
198. The logarithmic spiral. This curve is traced by a point which moves around a fixed point in a plane in sucis

[^58]a way that the logarithms of any two radii vectores are in the same ratio as are the angles which these lines form with the initial line.

From this definition it follows that the equation of the curve is

$$
\begin{equation*}
\log \rho=k \theta \tag{1}
\end{equation*}
$$

where $k$ is a constant.
If $k$ be unity, and logarithms to the base $a$ be employed, this equation may be written in the form

$$
\begin{equation*}
\rho=a^{\theta} \tag{2}
\end{equation*}
$$

This equation shows that if $\theta=-\infty, \rho=0$; that $\rho$ increases from 0 to 1 , while
 $\theta$ increases from $-\infty$ to 0 ; and that $\rho$ continues to increase from 1 to $\infty$, while $\theta$ increases from 0 to $+\infty$; the curve has, therefore, an infinite number of spires.

If the constant $a$ equals 2 , then $\rho$ takes the values $\cdots \frac{1}{4}, \frac{1}{2}$, $1,2,4,8, \cdots$, when $\theta$ is assigned the values (in radians), $\cdots,-2,-1,0,1,2,3, \cdots$; Fig. 139 represents the locus of equation (2), $a$ being equal to 2 , for values of $\theta$ from $-2 \pi$ to +3 . In this figure $\angle F O E=\angle E O A=\angle A O B=\angle B O C$ $=\angle C O D=57^{\circ} .3$, and $O F=\frac{1}{4}, O E=\frac{1}{2}, O A=1, O B=2$, $O_{\prime}^{\prime}=4$, and $O D=8$.

## PART II

## SOLID ANALYTIC GEOMETR $Y^{\circ}$

## CHAPTER I

## COÖRDINATE SYSTEMS. THE POINT

199. Solid Analytic Geometry treats by analytic methods problems which concern figures in space, and therefore involves three dimensions. It is evident that new systems of coobrdinates must be chosen, involving three variables; and that the analytic work will therefore be somewhat longer than in the plane geometry. On the other hand, since a plane may be considered as a special case of a solid where one dimension has the particular value zero, it is to bo expected that the analytic work with three coürdinate variables should be entircly consistent with that for two variables; merely a simple extension of the latter. The student should not fail to notice this close amalogy in all cases.

In the present chapter will be considered some simple and useful systems of coördinates for determining the position of a point in space, some elementary problems concerning points, and the transformations of coobrdinates from one system to another. Later chapter3 will treat briefly of surfaces, particularly of planes and of surfaces of the second order, and of the straight line.
200. Rectangular coördinates. Let three planes be given fixed in space and perpendicular to each other, - the coördinate planes $X O Y, Y O Z$, and
 ZOX. They will intersect by pairs in three lines, $X^{\prime} X$, $Y^{\prime} Y$, and $Z^{\prime} Z$, also perpendicular to each other, called the coördinate axes. And these three lines will meet in a common point $O$, called the origin. Any three other planes, $L P, M P$, and $N P$, parallel respectively to these coördinate planes, will intersect in three lines, $N^{\prime} P, L^{\prime} P$, $M^{\prime} P$, which will be parallel respectively to the axes; and these three lines will meet in, and completely determine, a point $P$ in space. The directed distances $N^{\prime} P, L^{\prime} P$, and $M^{\prime} P$ thus determined, i.e., the perpendicular distances of the point $P$ from the coördinate planes, are the rectangular coördinates of the point $P$. They are represented respecsively by $x, y$, and $z$. It is clear that

$$
\begin{aligned}
& x=N^{\prime} P=L L=N M^{\prime}=O M ; \\
& y=L^{\prime} P=M M^{\prime}=L N^{\prime}=O N ; \\
& z=M^{\prime} P=N N^{\prime}=M L=O L .
\end{aligned}
$$

It is generally convenient, however, to consider

$$
x=O M, y=M M^{\prime}, \text { and } z=M^{\prime} P .
$$

The point may be denoted by the symbol $P \equiv(x, y, z)$.
The axes may be directed at pleasure ; it is usual to take the positive directions as shown in the figure. Then the eight portions, or octants, into which space is divided by the coördinate planes, will be distinguished completely by the signs of the coördinates of points within them.

If the chomen courdinate planea were oblique to each other, a set of oblique courdinates for any point in space might twe found in an entirely amalogous way.

Unless otherwise stated, rectangular coürdinates will be used in the subsequent work.
201. Polar coordinates. A second method of fixing the position of a point in space is by means of its distance and direction from a given fixed point. Let $O$ be a fixed point in space, called the pole; and let $\rho$ be the distance from $O$ to any other point $P$. To give the direction of $\rho$, let $O R$ and $O S$ bo two chosen directed perpendicular lines through $O$, determining the plane ROS; then the direction of $\rho$ will be
 given by the angle $\theta$ from the plane ROS to the plane POM, and the angle $\phi$ from the line $O S$ to $\rho$. The point $P$ is completely determined by the values of its radius vector $\rho$ and its vectorial angles $\theta$ and $\phi$, and may bo denoted as $P=(\rho, \theta, \phi)$. The elements $\rho, \theta, \phi$ are called the polar coordinates of the point $P$.

It is to be noted that for convenience the positive values of $\theta$ and $\phi$ are those for rotation in clockuise direction from ROS and O.S, respectively. And although a given set of corirdinates fixes a single point, yet any point may have sixteen sets of coürdinates in a polar system, if, as usual, the values of the angles are less than $360^{\circ}$.
202. Relation between the rectangular and polar systems. If the axes $O R$ and $O S$ of a polar system coincide with the axes $O X$ and $O Z$, respectively, of a rectangular sys•


Fic. 142
tem, the pole and origin therefore being coincident, then simple relations exist between the two sets of coürdinates for any point. For, since $\angle O M M^{\prime}=90^{\circ}$ and $\angle O M^{\prime} P=90^{\circ}$, therefore $O M=O M^{\prime} \cos \theta$
$=O P \sin \phi \cos \theta$.

$$
M M^{\prime}=O M^{\prime} \sin \theta=O P \sin \phi \sin \theta,
$$

and

$$
M^{\prime} P=O P \cos \phi ;
$$

that is,

$$
\left.\begin{array}{l}
x=\rho \cos \theta \sin \phi,  \tag{1}\\
y=\rho \sin \theta \sin \phi, \\
z=\rho \cos \phi .
\end{array}\right\}
$$

Again,

$$
\overline{O P^{2}}=O M^{\prime 2}+{\overline{M^{\prime} P^{2}}}^{2}=\overline{O M^{2}}+\overline{M M^{\prime}}{ }^{2}+{\bar{M} P^{\prime}}^{2}
$$

i.e.,
also

$$
\begin{equation*}
\tan \theta=\frac{y}{x} \tag{2}
\end{equation*}
$$

and

$$
\rho^{2}=x^{2}+y^{2}+z^{2}
$$

$$
\cos \phi=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2} .}}
$$

The above relations give formulas for transformation from the one coördinate system to the other.
203. Direction angles: direction cosines. A third useful method of fixing a point in space is a combination of the two methods already considered. The axes of reference are chosen as in rectangular coördinates, and any point $P$ of space is fixed by its distance from the origin, called the radius vector, and the angles $\alpha, \beta, \gamma$, which this radius

vector makes with the coordinate axes, reapectively. Them angles are called the direction angles of the line $O P$, and their cosines, its direction cosines. The point may be coneisely denoted as the point $P=(\rho, a, \beta, \gamma)$.

Simple equations connect these courdinates with those of the rectangular system; for, projecting $O P$ upon the axes $O X, O Y$, and $O Z$, respectively,

$$
\begin{equation*}
x=p \cos \mathrm{a}, \quad y=p \cos \beta, \quad \approx=\rho \cos \gamma, \tag{8}
\end{equation*}
$$

and also, $\rho^{3}=x^{2}+y^{2}+z^{3}$, as in equations [2].
Moreover, the direction cosines are not independent, but are connected by an equation ; for, by combining the above equations,

$$
\begin{align*}
\rho^{2}= & \rho^{2} \cos ^{2} \varepsilon+\rho^{2} \cos ^{2} \beta+\rho^{2} \cos ^{2} \gamma \\
& \cos ^{2} a+\cos ^{2} \beta+\cos ^{2} \gamma=1 .
\end{align*}
$$

Such a relation was to have been expected, since only three magnitudes are necessary to determine the position of a point, and therefore the four numbers $\rho, u, \beta, \gamma$ could not be independent.

Any three numbers, $a, b, c$, are proportional to the direction cosines of some line; because if these numbers are considered as the coördinates of a point, then the direction cosines of the radius vector of that point are, by eq. [3].
$\cos a=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \cos \beta=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \cos \gamma=\frac{c}{\sqrt{a^{2}+b^{2}+c^{3}}}$. [5]
These direction cosines are proportional to $a, b, c$; and are foumd by dividing $a, b, c$, respectively, by the same constant,

$$
\sqrt{a^{2}+b^{2}+c^{2}}
$$

Direction cosines are useful in giving the direction of any line in space. The direction of any line is the same as that of a parallel line throngh the origin, therefore the direction of a line may be given by the direction angles of some
point whose radius vector is parallel to the line. Sometimes, as an equivalent conception, it is convenient to consider the direction angles as those formed by the line with three lines which pass through some point of the given line, and are parallel, respectively, to the coördinate axes.
204. Distance and direction from one point to another ; rectangular coördinates. A few elementary problems concerning


Fig. 14. points can now be easily solved ; for example, the problem of finding the distance between two points. Let $O X, O Y, O Z$ be a set of rectangular axes, and $P_{1} \equiv\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2} \equiv\left(x_{2}, y_{2}, z_{2}\right)$ be two given points. Then the planes through $P_{1}$ and $P_{2}$, parallel, respectively, to the coördinate planes, form a rectangular parallelopiped, of which the required distance $P_{1} P_{2}$ is a diagonal. From the figure,
since $\quad \angle P_{1} Q P_{2}=90^{\circ}$ and $\angle M_{1}^{\prime} R M_{2}^{\prime}=90^{\circ}$,
therefore

$$
\begin{aligned}
\overline{P_{1} P_{2}^{2}} & ={\overline{P_{1} Q^{2}}+{\overline{Q P_{2}}}^{2}=\overline{M_{1}^{\prime} M_{2}^{\prime}}}^{2}+{\overline{Q P_{2}^{2}}}^{2} \\
& ={\overline{M_{1}^{\prime} R^{2}}+\overline{R M_{2}^{\prime}}}^{2}+{\overline{Q P_{2}}}^{2} \\
& =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}
\end{aligned}
$$

That is, if $d$ be the required distance,

$$
\begin{equation*}
a=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \tag{6}
\end{equation*}
$$

Moreover, since the direction of the line $P_{1} P_{2}$ is given by the angles $a, \beta, \gamma$, which it makes, respectively, with the lines $P_{1} X^{\prime}, P_{1} Y^{\prime}$, and $P_{1} Z^{\prime}$, drawn through $P_{1}$ parallel to the
axes, therefore the projection of $d\left(=P_{1} P_{2}\right)$ upon these lines in turn gives

$$
P_{1} P_{2} \cos \text { ce }=P_{1} X^{\prime}, P_{1} P_{2} \cos \beta=P_{1} Y^{\prime}, P_{1} P_{3} \cos \gamma=P_{1} Z^{\prime}
$$

$$
\text { i.e.. } d \cos a=x_{2}-x_{3}, \quad d \cos \beta=y_{2}-y_{1}, \quad d \cos \gamma=z_{2}-z_{1} \text {; }
$$

and, finally,

$$
\cos \alpha=\frac{x_{2}-x_{1}}{d}, \quad \cos \beta=\frac{y_{2}-y_{1}}{d}, \quad \cos \gamma=\frac{z_{z}-z_{1}}{d}, \ldots[[]
$$

These equations give the required direction angles of $P_{1} P_{8}$
205. The point which divides in a given ratio the straight line from one point to another. Let $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2} \equiv\left(x_{2}, y_{2}, z_{2}\right)$ be two given points, and let $P_{8}=\left(x_{8}, y_{8}, z_{3}\right)$ be a third point which divides the line $P_{1} P_{2}$ in the given ratio $\frac{m_{1}}{m_{2}}$, so that $\frac{P_{1} P_{3}}{P_{3} P_{2}}=\frac{m_{1}}{m_{2}}$.

Let $P_{1} P_{8}=d_{1}$, and $P_{8} P_{2}=d_{2}$;

then by Art. 204, if $a, \beta, \gamma$ be the direction angles of $P_{1} P_{8}$

$$
\cos \varepsilon=\frac{x_{3}-x_{1}}{d_{1}}=\frac{x_{2}-x_{3}}{d_{2}} ; \therefore \frac{x_{3}-x_{1}}{x_{2}-x_{3}}=\frac{d_{1}}{d_{2}}=\frac{m_{1}}{m_{2}},
$$

and
Similarly,
and

$$
x_{3}=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}
$$

$$
\begin{equation*}
y_{\mathrm{a}}=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \tag{8}
\end{equation*}
$$

$$
z_{3}=\frac{m_{1} z_{2}+m_{4} z_{1}}{m_{1}+m_{2}} .
$$

It will be noticed, as in the similar problem in Part I. Art. 30, that if $P_{8}$ divides the line externally, the ratio $\frac{m_{3}}{m_{3}}$ must be negative ; and the above formulas still apply.

TAN. AN. GEOM. - 22

If $P_{3}$ bisects the line $P_{1} P_{2}$, formulas [8] take the simpler forms

$$
x_{3}=\frac{x_{1}+x_{2}}{2}, \quad y_{3}=\frac{y_{1}+y_{2}}{2}, \quad z_{3}=\frac{z_{1}+z_{2}}{2} \ldots .[9]
$$

206. Angle between two radii vectores. Angle between two lines. Let $P_{1} \equiv\left(\rho_{1}, \mu_{1}, \beta_{1}, \gamma_{1}\right)$ and $P_{2} \equiv\left(\rho_{2}, \alpha_{2}, \beta_{2}, \gamma_{2}\right)$ be two given points, and $\theta$ the angle included by the radii vectores $\rho_{1}$ and $\rho_{2}$. Then the pro-
 jections upon $O P_{1}$ of the line $O P_{2}$ and of the broken line $O M_{2} M_{2}{ }^{\prime} P_{2}$ are equal (Art. 17); hence,

$$
\begin{aligned}
& \text { proj. } O P_{2}=\text { proj. } O M_{2} M_{2}^{\prime} P_{2} \\
& \text { i.e., } \quad \rho_{2} \cos \theta=O M_{2} \cos \varkappa_{1} \\
& +M_{2} M_{2}^{\prime} \cos \beta_{1}+M M_{2}^{\prime} P_{2} \cos \gamma_{1} .
\end{aligned}
$$

$$
O M_{2}=\rho_{2} \cos \alpha_{2}
$$

$$
M_{2} M_{2}^{\prime}=\rho_{2} \cos \beta_{2}, \text { and } M_{2}^{\prime} P_{2}=\rho_{2} \cos \gamma_{2}
$$

hence,
$\rho_{2} \cos \theta=\rho_{2} \cos \alpha_{2} \cos \alpha_{1}+\rho_{2} \cos \beta_{2} \cos \beta_{1}+\rho_{3} \cos \gamma_{2} \cos \gamma_{13}$
i.e., $\quad \cos \theta=\cos a_{1} \cos \alpha_{2}+\cos \beta_{1} \cos \beta_{2}+\cos \gamma_{1} \cos \gamma_{2}$,
and this relation determines the required angle $\theta$.
It follows, since any two straight lines in space have their directions given by the direction angles of radii vectores which are parallel to them, respectively, that formula [10] applies as well to the angle 0 between any two straight lines in space, whose direction angles are given.

Two special cases arise, that of parallel and that of perpendicular lines. If the two given lines are parallel, evidently

$$
\begin{equation*}
a_{1}=a_{2}, \beta_{1}=\beta_{2}, \quad \gamma_{1}=\gamma_{2} ; \tag{11}
\end{equation*}
$$

and formula $[10]$ reduces to eq. [4]. If the lines are perpendicular, $\cos \theta=0$, and eq. [10] reduces to

$$
\begin{equation*}
\cos \alpha_{1} \cos \alpha_{2}+\cos \beta_{1} \cos \beta_{2}+\cos \gamma_{1} \cos \gamma_{2}=0 . \tag{12}
\end{equation*}
$$

207. Transformation of coordinates; rectangular systems. The relations found in Art. 202 to exist between reetangular and polar coordinates of a point may be used as formulas of transformation from one system to the other if the origin, the pole, and the reference axes are coincident. Two other simple transformations may be useful, (1) from one set of rectangular axes to a parallel set, that is, a change of origin only; and (\%) from one set of rectangular ares to another set through the same origin, i.e., a change of direction of axes. Then any transformation between rectangular and polar systems can be performed by a combination of these three elementary transformations.
(1) Change of origin only. Let the new origin be the point $O^{\prime}=(h, k, j)$; then, constructing the coordinates of any


Fira $14:$ point $P$ with reference to each set of coördinate planes, it is evident, by analogy with Art. 71, that

$$
\begin{equation*}
x=x^{\prime}+h, \quad y=y^{\prime}+k, \quad z=z^{\prime}+j . \tag{18}
\end{equation*}
$$

(2) Change of direction of ares. Let a second set of reetangular axes, $O X^{\prime}, O Y^{\prime}, O Z^{\prime}$, have the direction angles $a_{1}$, $\beta_{1}, \gamma_{1}, u_{2}, \beta_{2}, \gamma_{2}$, and $a_{3}, \beta_{8}, \gamma_{3}$, respectively, with the old axes OX,OY,OZ.


Then if the coördinates of any point $P$ in the two systems are

$$
\begin{aligned}
& x=O M, \\
& y=M M^{\prime}, \\
& z=M^{\prime} P,
\end{aligned}
$$

and
then projections of $O P$ and the broken line $O Q Q^{\prime} P$ upon $O X$, $O Y, O Z$, in turn, will be equal ; hence,

$$
\left.\begin{array}{l}
x=x^{\prime} \cos \alpha_{1}+y^{\prime} \cos \alpha_{2}+z^{\prime} \cos \alpha_{3}, \\
y=x^{\prime} \cos \beta_{1}+y^{\prime} \cos \beta_{2}+z^{\prime} \cos \beta_{3},  \tag{14}\\
z=x^{\prime} \cos \gamma_{1}+y^{\prime} \cos \gamma_{2}+z^{\prime} \cos \gamma_{3} \cdot
\end{array}\right\}
$$

These formulas are for transformation from the first system to the second. But, also, by projecting $O P$ and $O M M^{\prime} P$ upon $O X^{\prime}, O Y^{\prime}, O Z^{\prime}$, respectively,

$$
\left.\begin{array}{l}
x^{\prime}=x \cos \alpha_{1}+y \cos \beta_{1}+z \cos \gamma_{1}, \\
y^{\prime}=x \cos \alpha_{2}+y \cos \beta_{2}+z \cos \gamma_{2},  \tag{15}\\
z^{\prime}=x \cos \alpha_{3}+y \cos \beta_{3}+z \cos \gamma_{3},
\end{array}\right\}
$$

and these formulas are for the reverse transformation, from the second system to the first.

Note. It is to be remembered that in the transformations of [14] and [1.5], twelre conditions exist, by eq. [4] and eq. [12], three of each of the following types,

$$
\begin{aligned}
& \cos ^{2} \alpha_{1}+\cos ^{2} \alpha_{2}+\cos ^{2} \alpha_{3}=2 \\
& \cos ^{2} \alpha_{1}+\cos ^{2} \beta_{1}+\cos ^{2} \gamma_{1}=1 \\
& \cos a_{1} \cos a_{2}+\cos \beta_{1} \cos \beta_{2}+\cos \gamma_{1} \cos \gamma_{2}=0 \\
& \cos a_{1} \cos \beta_{1}+\cos a_{2} \cos \beta_{2}+\cos \alpha_{3} \cos \beta_{3}=0
\end{aligned}
$$

These equations are not independent, however, but reduce to six independent equations.

It is clear, by reasoning similar to that of Art. 75, Part Y, that none of the transformations [13], [14], and [15], neither separately nor in combination, can alter the degree of an equation to which they may be applied.

## EXAMPLES ON CHAPTER 1

1. Prove that the trianglo formed by Joining the points $(1,2,3)$, (2, 3, 1), and (3, 1, 2). in pain, is equilateral.
2. The direction cosines of a straight tine are proportional to $1,2,3$; find their values.
3. Find the angle between two atraight lines whose direction cosins are propurtional to $2,2,2$, and $5,-1,7$, renpectively.
4. The rectangular coördinates of a point are $(\sqrt{3}, 1,2 \sqrt{8})$; find its polar coürdinates.
5. The polar coürdinates of a point are $\left(3, \frac{\pi}{6}, \frac{\pi}{4}\right)$; find its rectangular coürdinates.
6. Express the distance between two points in terms of their polar coürdinates.
7. Find the coürdinates of the points dividing the line from $(-2,-3,1)$ to $(3,-2,4)$ externally and internally in the ratio $2: 5$.
8. What is the length of a line whose projections on the coürdinate axes are $4,1,3$, respectively?
9. Find the rudius vector, and its direction cosines, for each of tho puints $(-\bar{i}, 1,5),(1,-1,-2),(a, 0, b)$.
10. Find the center of gravity ${ }^{*}$ of the triangle of Ex. 1.
11. Find the direction angles of a straight line which makes equal angles with the three coirrdinate axes.
12. A straight line makes the angle $30^{\circ}$ with the saxis, and $75^{\circ}$ with the saxis. At what angle does it meet the $y$-axis?
13. Prove analytically that the straight lines foining the mid-pwints of the oppasite edges of a tetrahedron pase through a common point, and are bisected hy it.
14. Prove analytically that the atraight lines joining the mid-jwints of the opposite sides of any quadrilateral pass through a common proint, and are bisected by it.

## CHAPTER II

## THE LOCUS OF AN EQUATION. SURFACES

208. Attention has been called to the close analogy between the corresponding analytical results for the geometry of the plane and of space. It is evident that in geometry of one dimension, restricted to a line, the point is the elementary conception. Position is given by one variable, referring to a fixed point in that line ; and any algebraic equation in that variable represents one or more points. In geometry of two dimensions, however, it has been shown that the line may be taken as the fundamental element. Position is given by two variables, referring to two fixed lines* in the plane; and any algebraic equation in the two variables represents a curve, i.e., a line whose generating point moves so as to satisfy some condition or law. Correspondingly, in geometry of three dimensions the surface is the elementary conception. Position is given by three variables, referring to three fixed surfaces, since any point is the intersection of three surfaces; $\dagger$ and it can be shown that any algebraic equation in three variables represents some surface.
[^59]The study of the special equations of first and meond degree will be taken up in the two sucoepding chapten. Here it is desired to show that an algehraic equation in three variables represents a surface, and to consider brietly swo simple classes of surfaces : (1) cylinders, i.e., surfaces which are generated by a straight line moving parallel to a fixed straight line, and always intersecting a fixed curve; and (2) surfaces of revolution, i.e., surfaces generated by revolving some plane curve about a fixed straight line lying in its plane.
209. Equations in one variable. Planes parallel to coordinate planes. From the definition of rectangular courdinates, it follows that the equations

$$
x=0, y=0, z=0
$$

represent the coirdinate planes, respectively, and that any algebraic equation in one variable and of the first degree represents a plane parallel to one of them. Similarly, an equation in one variable and of degree $n$ will represent $n$ such parallel planes, either real or imaginary. For, the first member of any such equation, as

$$
\begin{equation*}
p_{0} x^{n}+p_{1} x^{n-1}+p_{3} x^{n-2}+\cdots+p_{0-1} x+p_{0}=0, \ldots \tag{1}
\end{equation*}
$$

can be factored into $n$ linear factors, real or imaginary,

$$
\begin{equation*}
p_{0}\left(x-x_{1}\right)\left(x-x_{2}\right)(\cdots)\left(x-x_{n}\right)=0 \tag{2}
\end{equation*}
$$

and by the reasoning of Part I, Art. 40, eq. (2) will represent the loci of the $n$ equations

$$
x-x_{1}=0, x-x_{2}=0, \cdots, x-x_{n}=0
$$

each of which is a plane, parallel to the $y$-plane, and real if the corresponding root is real. In the same way, an equa-
tion in $y$ or 2 only will represent planes parallel to the $z x$ - or $x y$-plane.

Any algelraic equation in one variable represents one or more planes parallel to a coördinate plane.

It follows at once by Art. 39, that two simultaneous equations of the first degree in one variable represent the intersection of two planes parallel to coördinate planes; therefore, represent a straight line parallel to the coördinate axis of the third variable ; e.g., $y=b, z=c$, considered as simultaneous equations, represent a straight line parallel to the $x$-axis.
210. Equations in two variables. Cylinders perpendicular to coorrdinate planes. Consider the equation

$$
\begin{equation*}
2 x+3 y=6, \tag{1}
\end{equation*}
$$

with two variables only. In the $x y$-plane it represents a straight line $A B$. If, now, from any point $P$ of $A B$ a

straight line be drawn parallel to the $z$-axis, the $x$ and $y$ coorrdinates of every point $Q$ on this line will be the same as for $P$, and therefcre satisfy equation (1). Moreover, if the line $P Q$ moved along $A B$, and always parallel to the $z$-axis,
still the coordinates of every point in it satisfy equation (1). As the line $P Q$ is thus moved, it traces a plane surface perpendieular to the $x y$-plane; and, as evidently the copordinatea of a point not on this surface do not satisfy equation (1), this plane is the locus of equation (1).

Again: the equation

$$
\begin{equation*}
y^{2}+z^{2}=r^{2} \quad \text {. . . } \tag{2}
\end{equation*}
$$

represents in the $y z$-plane a circle. It is therefore satisfied by the coördinates of any point $Q$, in a line parallel to the $x$-axis, through any point $P$ of this circle; and also hy the coürdinates of $Q$ as this line $P Q$ is moved, parallel to

the $x$-axis and along the circle. The circular cylinder thus traced by the line $P Q$, perpendicular to the $y z$-plane, is the locus of the given equation.
Similarly, it may be shown that the locus of the equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{z^{2}}{b^{2}}=1 \tag{3}
\end{equation*}
$$

is a cylindrical surface traced by a straight line parallel to the $y$-axis, and moving along the hyperbola whose equation in the $x z$-plane is equation (3). And, in general, it is clear by analogy that any alyelraic equation in two variables represents a cylindrical surface whose elements are parallel to the
axis of the third variable, and having its form and position determined by the plane curve represented by the same equation.

As a direct consequence, it is clear that if a cylinder has its axis parallel to a coördinate axis, a section made by a plane, perpendicular to that axis, is a curve parallel to and equal to the directing curve on the coördinate plane, and is represented in the cutting plane by the same equation. Thus, the section of the elliptical cylinder whose equation is $3 x^{2}+y^{2}=5$, cut by the plane $z=7$, is an ellipse equal and parallel to the ellipse whose equation is $3 x^{2}+y^{2}=5$.
211. Equations in three variables. Surfaces. A solid figure has the distinctive property that it can be cut by a straight line in an infinite number of points, while a surface or line can, in general, be cut in only a finite number. A line has the distinctive property that it can be, in general, cut by a plane in only one point, while a surface may be cut in a curve. To show that the locus of an algebraic equation in three variables is, in general, a surface, it is sufficient to show that, in general, a plane will cut it in a curve, while a straight line will cut it in a finite number of points.

Let the given equation be

$$
\begin{align*}
f(x, y, z) & =0  \tag{1}\\
z & =c \quad . \quad .
\end{align*}
$$

be a plane parallel to the $x y$ :plane. The points of intersection of these two loci will be on the locus of the equation

$$
\begin{equation*}
f(x, y, c)=0 ; \tag{3}
\end{equation*}
$$

and, by Art. 210, they lie, therefore, upon a plane curve, cut from the cylinder whose equation is (3), by the plane whose equation is (2). Hence the locus of equation (1) is not a line.

Again, let $\quad y=b, z=c \quad . \quad$.
be the equations of a struight line (Art. 209), parallel to the $x$-axis. The points of intersection of locus (1) and the line (4) will be also on the locus of the equation

$$
\begin{equation*}
f(x, b, c)=0 ; \tag{i}
\end{equation*}
$$

which, since the equation is in one variable, of finite degree, will represent a finite number of planes parallel to the $y z$ plane, and therefore having a finite number of points of intersection with the line (4). Hence the locus of equation (1) is not a solid.

Therefore, the locus of any algebraic equation in three variables is a surface.
212. Curves. Traces of surfaces. Two surfaces intersect in a curve in space, and since every algebraic equation in solid amalytic geometry represents a surface, a curve may be represented analytically by the two equations, regarded as simultaneous, of surfaces which pass through it. Thus it has been seen that the equations $y=b, z=c$ separately represent planes, but considered as simultaneous represent the straight line which is the intersection of those planes. But by the reasoning of Art. 41, the given equations of a curve may be replaced by simpler ones which represent other surfaces passing through the same curve. In dealing with curves it is often useful to obtain, from the equations given, equations of cylinders through the same curve: i.e., it is generally useful to represent a curve by two equations each in two variables only.

Example: The curre of intersection of the two surfaces,

$$
\text { (1) } x^{2}+y^{2}+z^{2}-25=0 \text { and (2) } x^{2}+y^{2}-16=0 \text {, }
$$

is also the intersection of the surfaces

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}-25-\left(x^{2}+y^{2}-16\right)=0, \text { i.e., } z= \pm 3 \tag{3}
\end{equation*}
$$

with the surface (2). The curve is therefore composed of two circles of radius 4 , parallel to the $x y$-plane at distances +3 and -3 from it.

Conversely, the curves of intersection of a surface with the coördinate planes may be used to help determine the nature of a surface. These curves are called the traces of the surface.

Thus, the surface $x^{2}+y^{2}+z^{2}=25$ has the traces

$$
\text { on the } y z \text {-plane, where } x=0, y^{2}+z^{2}=25 \text {; }
$$ on the $z x$-plane, where $y=0, x^{2}+z^{2}=25$; on the $x y$-plane, where $z=0, x^{2}+y^{2}=25$.

Each of these traces is a circle of radius 5 , about the origin as center; the surface is a sphere of radius 5 with center at the origin.

Since three surfaces in general have only one or more separate points in common, the locus of three equations, considered as simultaneous, is one or more distinet points.
213. Surfaces of revolution. Analogous to the cylinders are the surfaces traced by revolving any plane curve about a straight line in the plane as axis. From the method of formation, it follows that each plane section perpendicular to the axis is a circle, - the path traced by a point of the generating curve as it revolves; and the radius of the circle is the distance of the point from the axis in the plane before revolution begins. These facts lead readily to the equation of any surface of revolution, as a few examples will show.
(a) The cone formed by revolving about the z-axis the line

$$
\begin{equation*}
2 x+3 z=15 \tag{1}
\end{equation*}
$$

Any point $P$ of the line (1) traces during the revolution a circle of radius L.P parallel to the ry-plane. The equation ot that path is

$$
x^{2}+y^{2}=L P^{3}
$$



But in the $x z$-plane, before revorution is begun, $L P$ is the abscissa $x$ of $P$ : hence, by equation (1),

$$
\overline{L P}=x=\frac{15-3 z}{2}
$$

so that the equation of the path of $P$ is

$$
\begin{equation*}
x^{2}+y^{2}=\frac{(15-3 z)^{2}}{4} \tag{2}
\end{equation*}
$$

But $P$ is any point of line (1); hence equation (2) is satisfied by every point of the line, and represents the surface generated by the line, which is the required conical surface.
(b) The sphere formed by revolving about the z-axis the circle

$$
\begin{equation*}
x^{2}+z^{2}=25 \tag{3}
\end{equation*}
$$

In this case, any point $P$ of the curve traces during the revolution a circle of radius NP, parallel to the $x y$-plane. The equation of this path is therefore

$$
x^{2}+y^{2}=N P^{3}
$$



Fig. 152.

But in the $x z$-plane, by equation (3)

$$
N P=x=\sqrt{25-z^{2}} .
$$

Hence, substituting above,

$$
\begin{equation*}
x^{2}+y^{2}=25-z^{2} \tag{4}
\end{equation*}
$$

i.e., $x^{2}+y^{2}+z^{2}=25$;
which is the equation of the required spherical surface.
(c) The surface formed by revolving about the $x$-axis the curve

$$
\begin{equation*}
z^{2}=(x-1)(x-2)(x-3)[\text { cf. Art. } 37,(4)] \tag{5}
\end{equation*}
$$

Any point $P$ of the generating curve traces a circle parallel to the $y z$-plane, with a radius $M P$ equal to the $z$-abscissa in equation (5). Hence the equation of its path is

$$
y^{2}+z^{2}=\overline{M P^{2}}
$$

i.e., $y^{2}+z^{2}=(x-1)$
$(x-2)(x-3), \ldots(6)$
which is the equation of the required surface.
(d) Of the various
 surfaces of revolution those of particular interest are generated by revolving about their axes the various conic sections, giving the cones, spheres, paraboloids, ellipsoids, and hyperboloids of revolution.

The student may verify the equations of the following surfaces: *

The sphere: with center at the origin, and radius $r$,

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=r^{2} ; \tag{i}
\end{equation*}
$$

with center at $(a, b, c)$, by Art. 207, eq. (7) becomes

$$
\begin{equation*}
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2} . \tag{8}
\end{equation*}
$$

The cone: the surface generated by the right line $z=m x+c$. rotated about the $z$-axis,

$$
\begin{equation*}
x^{2}+y^{2}=\frac{(z-c)^{2}}{m^{2}} \tag{9}
\end{equation*}
$$

The oblate spheroid: the surface generated by the ellipse $\frac{x^{2}}{a^{2}}+\frac{z^{2}}{b^{3}}=1$, rotated about the minor axis,

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{3}}{a^{2}}+\frac{z^{2}}{b^{2}}=1 . \tag{10}
\end{equation*}
$$

The prolate spheroid: the surface generated by the ellipse $\frac{x^{3}}{b^{2}}+\frac{z^{2}}{a^{2}}=1$, rotated about the major axis,

$$
\begin{equation*}
\frac{x^{3}}{b^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{a^{2}}=1 \tag{11}
\end{equation*}
$$

The hyperboloid of one nappe: the surface generated by the hyperbola $\frac{x^{3}}{a^{2}}-\frac{z^{3}}{b^{3}}=1$, rotated about the conjugate axis,

$$
\begin{equation*}
\frac{x^{2}}{a^{3}}+\frac{y^{3}}{a^{2}}-\frac{z^{2}}{b^{2}}=1 \tag{12}
\end{equation*}
$$

The hyperboloid of two nappes: the surface generated by the hyperbola $\frac{x^{2}}{a^{3}}-\frac{z^{3}}{b^{2}}=1$, rotated about the transverse axis,

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{b^{3}}=1 \tag{18}
\end{equation*}
$$

[^60]The paraboloid of revolution: the surface generated by the parabola $x^{2}=4 p z$, rotated about its axis,

$$
\begin{equation*}
x^{2}+y^{2}=4 p z \tag{14}
\end{equation*}
$$

## EXAMPLES ON CHAPTER II

What is the locus of each of the following equations?

1. $x^{2}-6 x+9=0$.
2. $2 x+4=0$.
3. $x^{2}-2 x y+y^{2}+2 x-2 y+1=0$.
4. $a x^{2}+b x y+c y^{2}=0$.
5. $4 y z+6 y-8 z+1=0$.
6. $z^{2}-9 y=9$.

What are the curves of intersection of the surfaces represented by the equations
7. $y+1=0, \quad 3 x^{2}+3 y^{2}+3 z^{2}=20$ ?
8. $x^{2}-y^{2}=0, \quad z=a$ ?
9. $x^{2}+y^{2}+z^{2}=9, \quad 4 x^{2}+y^{2}=4$ ?
10. $9\left(x^{2}+y^{2}\right)-z^{2}=25-10 z, \quad z= \pm 5$ ?
11. $3 x^{2}-4 y^{2}-z^{2}=12, \frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ ?

Determine the traces upon the coorrdinate planes of the following surfaces:
12. $x^{2}+y^{2}+4 z^{2}=25$;
13. $3 x^{2}-4 y^{2}-z^{2}=12$.

Find the equation of
14. the paraboloid of revolution one of whose traces is $y^{2}=-5 x+3$.
15. the cone of revolution one of whose traces is $y=-5 x+3$ and whose axis is the axis of $y$. Find its vertex.
16. the oblate spheroid one of whose traces is $\frac{z^{2}}{2}+\frac{x^{2}}{3}=1$.
17. the prolate spheroid one of whose traces is $\frac{y^{2}}{7}+\frac{z^{2}}{9}=1$.
18. the surface of revolution whose axis is the axis of $x$ and one of whose traces is $x^{2} y-1=0$.
19. the hyperboloid of two nappes one of whose traces is $10 x^{2}-9 z^{2}=1$.
20. the sphere described about the major axis of the ellipse $4 x^{2}+9 y^{2}-24 x=0$ as diameter.

## CHAPTER III

## EQUATIONS OF THE FIRST DEGREE

$$
A x+B y+C z+D=0
$$

## planes and straigit lines

## 1. The Plane

214. Every equation of the first degree represents a plane. A plane is a surface such that it contains every point on a straight line joining any two of its points.

Let $P_{1} \equiv\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2} \equiv\left(x_{2}, y_{2}, z_{2}\right)$ be any two points of the surface whose equation is

$$
A x+B y+C z+D=0, \quad . \quad . \quad[16]
$$

so that

$$
\begin{equation*}
A x_{1}+B y_{1}+C z_{1}+D=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
A x_{2}+B y_{2}+C z_{2}+D=0 \tag{2}
\end{equation*}
$$

Now, if $P_{8} \equiv\left(x_{3}, y_{3}, z_{3}\right)$ be any point on the straight line from $P_{1}$ to $P_{2}$ at a distance $d_{1}$ from $P_{1}$ and $d_{2}$ from $P_{2}$, then, by Art. 205,

$$
\begin{equation*}
x_{3}=\frac{d_{1} x_{2}+d_{2} x_{1}}{d_{1}+d_{2}}, y_{8}=\frac{d_{1} y_{2}+d_{2} y_{3}}{d_{1}+d_{2}}, z_{3}=\frac{d_{1} z_{3}+d_{2} z_{1}}{d_{1}+d_{3}} \tag{3}
\end{equation*}
$$

But this point lies on the surface represented by equation [16]; for, substituting its coürdinates from (3) in equation [16], the latter becomes

$$
\frac{d_{1}}{d_{1}+d_{2}}\left(A x_{2}+B y_{2}+C z_{2}+D\right)+\frac{d_{2}}{d_{1}+d_{2}}\left(A x_{1}+B y_{1}+C z_{1}+D\right)=0,
$$

which is a true equation, since each parenthesis vanishes separately by equations (1) and (2). Hence every point of the line $P_{1} P_{2}$ is on the locus of equation [16], and that locus is therefore a plane. Every algebraic equation of the first degree in three variables represents a plane.
215. Equation of a plane through three given points. The general equation of the first degree,

$$
\begin{equation*}
A x+B y+C z+D=0 \tag{1}
\end{equation*}
$$

has only three arbitrary constants, viz. the ratios of the coefficients. If three given points in the plane are

$$
P_{1} \equiv\left(x_{1}, y_{1}, z_{1}\right), \quad P_{2} \equiv\left(x_{2}, y_{2}, z_{2}\right), \text { and } P_{3} \equiv\left(x_{3}, y_{8}, z_{3}\right)
$$

then these ratios may be found from the three equations,

$$
\left.\begin{array}{l}
A x_{1}+B y_{1}+C z_{1}+D=0  \tag{2}\\
A x_{2}+B y_{2}+C z_{2}+D=0 \\
A x_{3}+B y_{8}+C z_{8}+D=0
\end{array}\right\}
$$

considered as simultaneous.
In solving equations (2) for the required ratios, two special eases may occur: (a) The value of one of the coefficients may be zero, then the ratios determined must not have that coefficient in the denominator. E.g., if $D=0$, solution should not be made for $\frac{A}{D}, \frac{B}{D}, \frac{C}{D}$, but for $\frac{A}{C}, \frac{B}{C}$ (say). (b) The equations may differ only by constant factors, then the three equations have an infinite number of solutions. This is explained by the fact that the points are on a straight line, and any plane through the line will pass also through the points.
216. The intercept equation of a plane. A plane will in general cut each coördinate axis at some definite distance
from the origin, and this dintance is called the intercept of the plane on the axis. If $a, b, c$ be the intercepts on the $x$ -$y-$, and $z$-axes, respectively, of the plane whose equation is

$$
\begin{equation*}
A x+B y+C z+D=0 \tag{1}
\end{equation*}
$$

then the points $(a, 0,0),(0, b, 0),(0,0, c)$ are points of the plane, and therefore (cf. Art. 215)

$$
A a+D=0, \quad B b+D=0, \quad C c+D=0
$$

i.e.,

$$
\begin{equation*}
A=-\frac{D}{a}, \quad B=-\frac{D}{b}, \quad C=-\frac{D}{c} \tag{2}
\end{equation*}
$$

Hence equation (1) may be written
i.e.,

$$
\begin{gather*}
\frac{D x}{a}+\frac{D y}{b}+\frac{D z}{c}-D=0, \\
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 ; \tag{1i}
\end{gather*}
$$

and this is the equation of the plane in terms of its intercepts.
217. The normal equation of a plane. A plane is wholly determined in position if the length and direction be known of a perpendicular to it from the origin; and this method of fixing a plane leads to one of the most useful forms of its equation. Let $O Q$ be the perpendicular from the origin $O$ to the plane $A B C$, let $p$ be its length, always considered as positive, and let $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \boldsymbol{\gamma}$
be its direction angles. Let $P \equiv(x, y, z)$ be any point of the plane, and draw its coördinates OM, MM', M'P. Then, projecting upon $0 Q$.

$$
\text { proj. } O M M^{\prime} P=\text { proj. } O P
$$

hence proj. $O M+$ proj. $M M^{\prime}+\operatorname{proj} . M^{\prime} P=$ proj. $O P$, that is,
$x \cos \alpha+y \cos \beta+z \cos \gamma=\boldsymbol{p}$.
This is called the normal equation of the plane.
There are two special cases to be considered :
(1) If the plane is perpendicular to a coördinate plane, c.g., to the $x y$-plane (cf. Art. 210), then $\gamma=90^{\circ}, \cos \gamma=0$, and equation [18] reduces to

$$
\begin{equation*}
x \cos \alpha+y \cos \beta=p . \tag{19}
\end{equation*}
$$

(2) If the given plane is parallel to one of the coördinate planes, e.g., to the $x y$-plane (cf. Art. 209); then $\alpha=\beta=90^{\circ}$, $\gamma=0^{\circ}$, and eq. [17] reduces to

$$
\begin{equation*}
z=p \tag{20}
\end{equation*}
$$

218. Reduction of the general equation of first degree to a standard form.* Determination of the constants $a, b, c, p$, $\mathrm{a}, \beta, \gamma$. I. Intercept form. In Art. 216 a method has been indicated for reducing the general equation

$$
\begin{equation*}
A x+B y+C z+D=0 \tag{1}
\end{equation*}
$$

to the intercept form. Since the points $(a, 0,0),(0, b, 0)$, and $(0,0, c)$ are on the plane (1), it follows that the intercepts are

$$
\begin{equation*}
a=-\frac{D}{A}, \quad b=-\frac{D}{B}, \quad c=-\frac{D}{C} . \tag{2}
\end{equation*}
$$

II. Normal form. If equation (1) and the equation

$$
\begin{equation*}
x \cos a+y \cos \beta+z \cos \gamma-p=0 \tag{3}
\end{equation*}
$$

represent the same plane, then their first members can differ

[^61]ouly by a constant factor, $m$ (cf. Art. 203, eqs. [5]; also Art. 58);
therefore
$$
m A=\cos \alpha_{1} \quad m B=\cos \beta, \quad m C=\cos \gamma, \quad m D=-p,
$$
but, by [4], $\quad \cos ^{2} a+\cos ^{2} \beta+\cos ^{2} \gamma=1$, hence $\quad m^{2}\left(A^{2}+B^{2}+C^{2}\right)=1$, and $m=\frac{1}{\sqrt{A^{2}+B^{2}+C^{2}}}$

Then

$$
\begin{align*}
& \cos a=\frac{A}{\sqrt{A^{2}+B^{2}+C^{2}}}, \quad \cos \beta=\frac{B}{\sqrt{A^{2}+B B^{2}+C^{2}}}, \\
& \cos y=\frac{C}{\sqrt{A^{2}+B^{2}+C^{2}}}, \quad p=\frac{-D}{\sqrt{A^{2}+B^{2}+C^{2}}},
\end{align*}
$$

Equation (1) written in the normal form is then
therefore, to reduce equation (1) to the normal form, it is necessary only to transpose the constant term to the second member of the equation, and then divide both members by the square root of the sum of the squares of the coefficients of the variable terms. The sign of the radical is determined by the fact (Art. 217) that $p$ is taken positive; hence, the sign of the radical is the opposite of the sign of the constant term.
219. The angle between two planes. Parallel and perpendicular planes. The angles formed by two intersecting planes are the same as the angles formed by two straight lines perpendicular to them respectively; i.e., are the same
as the angles between the respective normals from the origin to the planes. If
and

$$
\begin{align*}
& A_{1} x+B_{1} y+C_{1} z+D_{1}=0  \tag{1}\\
& A_{2} x+B_{2} y+C_{2} z+D_{2}=0 \tag{2}
\end{align*}
$$

be two planes, then the direction cosines of their normals are respectively (eqs. [21])
$\cos \alpha_{1}=\frac{A_{1}}{\sqrt{A_{1}{ }^{2}+B_{1}{ }^{2}+C_{1}^{2}}}, \cos \beta_{1}=\frac{B_{1}}{\sqrt{A_{1}{ }^{2}+B_{1}{ }^{2}+C_{1}{ }^{2}}}, \cos \gamma_{1}=\frac{C_{1}}{\sqrt{A_{1}{ }^{2}+B_{1}{ }^{2}+C_{1}{ }^{2}}} ;$
$\cos \alpha_{2}=\frac{A_{2}}{\sqrt{A_{2}{ }^{2}+B_{2}{ }^{2}+C_{2}{ }^{2}}}$, etc.,
and by equation [10], if $\theta$ be the angle between the two planes, and hence between the two normals,

$$
\begin{equation*}
\cos \theta=\frac{A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}}{\sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}} \sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}} \tag{22}
\end{equation*}
$$

There are two cases of special interest.
I. Parallel planes. If the planes (1) and (2) are parallel, their normals from the origin will have the same direction cosines, and differ only in length ; therefore, by equations [21], the equations of the planes must be such that the coefficients of the variable terms are the same in the two equations, or can be made the same by multiplying one equation by a constant. In other words, if the planes (1) and (2) are parallel, then

$$
\begin{equation*}
\frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}}=\frac{C_{1}}{C_{2}} ; \tag{23}
\end{equation*}
$$

and the plane $\quad A x+B y+C z+K=0$
is parallel to the plane

$$
\begin{equation*}
A x+B y+C z+D=0 \tag{4}
\end{equation*}
$$

for all values of the parameter $K$.
II. Perpendicular planes. If the planes (1) and (2) aro perpendioular to each other, then $\cos \theta=0$, and

$$
\begin{equation*}
A_{1} A_{z}+B_{1} B_{z}+C_{1} C_{3}=0 ; \tag{24}
\end{equation*}
$$ and conversely.

220. Distance of $\varepsilon$ point from a plane. Let

$$
P_{1}=\left(x_{1}, y_{1}, z_{1}\right)
$$

be a given point, and

$$
\begin{equation*}
A x+B y+C z+D=0 \tag{1}
\end{equation*}
$$

a given plane. The perpendicular distance of $P_{1}$ from the plane is equal to the distance from the plane (1) to a parallel plane through the point, i.e., is equal to the difference in the lengths of the normals, from the origin, to these two parallel planes.

The parallel plane through $P_{1}$ has for its equation by Art. 219, equation (3),

$$
\begin{equation*}
A x+B y+C z=A x_{1}+B y_{1}+C z_{1} \tag{2}
\end{equation*}
$$

By [21], the lengths of the normals to planes (1) and (2) are, respectively,

$$
p=\frac{-D}{\sqrt{A^{2}+B^{2}+C^{2}}} \quad p^{\prime}=\frac{A x_{1}+B y_{1}+C z_{1}}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

therefore, if $d=p^{\prime}-p$ be the required distance,

$$
\begin{equation*}
a=\frac{A x_{1}+B y_{1}+C z_{1}+D}{\sqrt{A^{2}+B^{2}+C^{2}}} \tag{25}
\end{equation*}
$$

In formula [25], the sign of the radical is taken opposite to the sign of $D$ (Art. 218); and the sign of $d$ shows on which side of the given plane lies the given point.

## II. The Stbaight Line

221. Two equations of the first degree represent a straight line. Every equation of first degree represents a plane
(Art. 214), and two equations considered as simultaneous represent the intersections of their two loci (Art. 39). Therefore since two planes intersect in a straight line, the locus of the two simultaneous equations of first degree,
$A_{1} x+B_{1} y+C_{1} z+D_{1}=0, A_{2} x+B_{2} y+C_{2} z+D_{2}=0, \ldots$ (1) is a straight line. As suggested in Art. 212, it is generally more simple to represent the straight line by equations in two variables only, standard forms, to which equation (1) can always be reduced.
222. Standard forms for the equations of a straight line. (a) The straight line through a given point in a given direction. Let $P_{1} \equiv\left(x_{1}, y_{1}, z_{1}\right)$ be a given point, and $u, \beta, \gamma$ the direa tion angles of a straight line through it. Let $P \equiv(x, y, z)$ be any point on the line, at a distance $d$ from $P_{1}$. Then by equation [7],

$$
\begin{equation*}
d \cos \alpha=x-x_{1}, d \cos \beta=y-y_{1}, d \cos \gamma=z-z_{1}, \ldots \tag{1}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{x-x_{1}}{\cos a}=\frac{y-y_{1}}{\cos \beta}=\frac{z-z_{1}}{\cos \gamma} ; \tag{26}
\end{equation*}
$$

which are the equations of a straight line in the first standard form, called the symmetrical equations.
(b) The straight line through two given points. Let $P_{1} \equiv$ $\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2} \equiv\left(x_{2}, y_{2}, z_{2}\right)$ be the given points. Any straight line passing through $P_{1}$ has [26] for its equations. If the line passes also through $P_{2}$, then

$$
\begin{equation*}
\frac{x_{2}-x_{1}}{\cos \alpha}=\frac{y_{2}-y_{1}}{\cos \beta}=\frac{z_{2}-z_{1}}{\cos \gamma} \tag{2}
\end{equation*}
$$

and hence from equations [26] and (2), by division to eliminate the unknown direction cosines,

$$
\begin{equation*}
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{z}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}} \tag{27}
\end{equation*}
$$

These are the second standard forms for the equation of a straight line.
(c) The straight line with given traces on the coorrdinate planes. One of the simplest set of planes for determining a straight line is a pair of planes through the line and perpendicular respectively to the coördinate planes (cf. Art. 212). Then the equation of these planes will be the same as the equations of the traces of the line on the corresponding courdinate planes (Art. 210). Thus, if the equation of the traces of a given line upon the $z x$ - and $y z$-planes are, respectively,

$$
\left.\begin{array}{l}
x=m z+b  \tag{28}\\
y=n z+d
\end{array}\right\}
$$

then, considered as simultaneous, these are also the equations of the given line in space.

In Fig. 155 the given traces are $A B L$ in the $2 x$-plane, and $C D N^{\prime}$ in the $y z$-plane $P$ is any point in the given straight line, and $Q, R, S$ are the points where the line pierces the $x y$ - $y z$-, $z x$-planes, respectively. Then it is clear that in equations [28]


$$
\left.\begin{array}{rl}
m & =\tan \angle O A B, \quad b=O B .  \tag{3}\\
n & =\tan \angle O C D, \quad d=O D .
\end{array}\right\}
$$

Also, since, by equations [28],

$$
O A=-\frac{b}{m}, A R=\frac{d m-b n}{m}, O C=-\frac{d}{n}, \quad C S=\frac{l n-d m}{n},
$$

therefore the points where the given line pierces the coürdinate planes are

$$
\begin{equation*}
Q \equiv(b, d, 0), R \equiv\left(0, \frac{d m-b n}{m},-\frac{b}{m}\right), S \equiv\left(\frac{b n-d m}{n}, 0,-\frac{d}{n}\right) . \tag{4}
\end{equation*}
$$

223. Reduction of the general equations of a straight line to a standard form. Determination of the direction angles and traces.
I. Third standard form: traces. The traces of a straight line have the same equations as have the planes of projection of the straight line upon the coördinate planes, respectively. They may be obtained, therefore (Art. 210), by eliminating in turn each of the variables $z, y, x$ from the given equations.

This may be illustrated by a numerical example.
Given the equations

$$
\begin{equation*}
3 x+2 y+z-5=0, x+2 y-2 z=3 \tag{1}
\end{equation*}
$$

representing a straight line. Eliminating $z, y$, and $x$, successively, the equations

$$
\begin{equation*}
7 x+6 y-13=0,2 x+3 z-2=0,4 y-7 z-4=0 \ldots \tag{2}
\end{equation*}
$$

are obtained, each representing a plane through the given line and perpendicular to a coördinate plane. Therefore these equations are also the equations of the traces of the line, in the $x y-, z x$-, and $y z$-planes, respectively.
II. First standard form: direction angles. The method of reducing the general equations of a straight line to the first standard form, and finding its direction angles, can also be illustrated by a numerical case.

Considering still the line whose equations are (1) above, and whose traces are given by equations (2); and taking the equations of any two of its traces, e.g.,

$$
\begin{equation*}
2 x+3 z-2=0, \quad 4 y-7 z-4=0 ; \tag{3}
\end{equation*}
$$

theso have one variable, z , in common. Equating the values of this common variable from the two equations, given

$$
z=\frac{-2 x+2}{8}=\frac{4 y-4}{7}
$$

which may be written, to correspond with equations [26],

$$
\begin{equation*}
\frac{z-0}{1}=\frac{x-1}{-1}=\frac{y-1}{z} \tag{4}
\end{equation*}
$$

Sow, although the denominators 1, $-1,1$ of equation (4) are not direction cosines of any line, yet, by equations [5], they differ from such direction cosines only by the divinor

$$
\sqrt{1+1+8 i}=1 \sqrt{101} .
$$

Rewriting equations (4) in the form

$$
\begin{equation*}
\frac{x-1}{\frac{-6}{\sqrt{101}}}=\frac{y-1}{\frac{7}{\sqrt{101}}}=\frac{z-0}{\frac{1}{\sqrt{101}}} \tag{5}
\end{equation*}
$$

it corresponds entirely to equations [20]. Therefore the line passes through the point ( $1,1,0$ ), and its direction augles are given by the relations

$$
\cos \alpha=-\frac{6}{\sqrt{101}} \cos \beta=\frac{7}{\sqrt{101}} \quad \cos \gamma=\frac{4}{\sqrt{101}}
$$

The method given above is evidently perfectly general.
224. The angle between two lines; between a plane and a line. If the equations of two straight lines be written in the form

$$
\begin{align*}
& \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}  \tag{1}\\
& \frac{x-x_{3}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}} \tag{2}
\end{align*}
$$

then by Art. 223, II, their direction cosines are, respectively,

$$
\begin{gather*}
\cos a_{1}=\frac{a_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}, \quad \cos \pi_{2}=\frac{a_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \\
\cos \beta_{1}=\frac{b_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}, \text { etc., } . . . \tag{8}
\end{gather*}
$$

and therefore, by equation [10], the angle between the two lines is given by the equation

$$
\begin{equation*}
\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \tag{29}
\end{equation*}
$$

Again, the angle between the straight line

$$
\begin{equation*}
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c} \tag{4}
\end{equation*}
$$

and the plane

$$
\begin{equation*}
A x+B y+C z+D=0 \tag{5}
\end{equation*}
$$

is the complement of the angle between the line (3) and the perpendicular to the plane (4) from the origin. Therefore, by equations [10] and [21], and Art. 223, II, the required angle is given by the equation

$$
\begin{equation*}
\sin \theta=\frac{a A+b B+c C}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{A^{2}+B^{2}+C^{2}}} . \tag{30}
\end{equation*}
$$

Conditions for perpendicularity and parallelism precisely like those of Art. 219 may be obtained from equations [29] and [30].

## EXAMPLES ON CHAPTER III

1. Find the equations of a line through the points $(1,2,3)$ and $(3,2,1)$.
2. Find the equation of a plane through three points $(1,2,3)$, $(3,2,1)$, and $(2,3,1)$.
3. Write the equations of the straight line through the point ( $1,2,3$ ), and having its direction cosines proportional to $\sqrt{3}, 1,2 \sqrt{3}$.
4. What are the traces of the line of Ex. 1 upon the coördinate planes? Where does the line pierce those planes?
5. Find the equations of a straight line through the point $(1,2,3)$ and perpendicular to the plane $x+2 y+3 z=6$.

Reduce to the intercept and normal forms, and determine which octant each plane cuts :
6. $2 x-3 y-z=7$;
7. $5 y+2 z-1=x$.
8. Roduce the equation of the line

$$
2 z-3 y-z=7, \quad 3 y+2 z-1=z
$$

to the symmetrical form, and determine ite direction conines.
9. Find the angle between the planes

$$
2 x-3 y-z=7, \quad 6 y+2 z-1=x
$$

10. Find the angle between the line
and the plane

$$
x+y+2 z=0, \quad 2 x-y-2=-1=0
$$

11. Write the equation of a plane parallel to the plane

$$
2 x-y+7 z-5=0
$$

and passing through the point $(0,0,0)$; through the point $(-1,1,-1)$.
12. Write the equation of a plane pergendicular to the plane

$$
3 x+5 y-z+6=0
$$

and passing through the two points $(3,1,2)$ and $(0,-2,-4)$.
13. Find the distancen of the proints $(7,-2,8)$ and $(3,3,1)$ from the plane $2 x+5 y-z-9=0$. Are they on the same side of the plane?
14. At what angle does the plane $a x+b y+c z+d=0$ cut each coordinate plane? Fach coördinate axis?
15. Find the equation of a plane through the point $(1,1,1)$ and perpendicular to each of the planes

$$
2 x-3 y+7 z=1, \quad x-y-2 z=2
$$

16. Write the equation of a plane whowe distance from the point $(0,2,1)$ is 3 , and which is perpendicular to the radius vector of the point ( $2,-1,-1$ ).
17. Write the equation of a straight line through the point $(5,2,6)$ which is parallel to the line

$$
2 x-3 z+y-2=0, \quad x+y+z+1=0
$$

18. Find the traces on the coordinate planes of the line

$$
2 x-3 z+y-2=0, \quad x+y+z+1=a
$$

19. Prove that the planes

$$
\begin{gathered}
2 x-3 y+z+1=0 \\
3 x+z-1=0 \\
23 x+3 y+4 z-6=0
\end{gathered}
$$

have one line in conmon.
20. What is the equation of the plane determined by the line

$$
2 x-3 z+y-2=0, \quad x+y+z+1=0
$$

and the point $(5,2,0)$ ?
21. Show analytically that the locus of a point equidistant from three given points is a straight line perpendicular to the plane determined by those three points.
22. Derive equation [17] directly from a figure, without using equation [16].

## CHAPTER IV

## EQUATIONS OF THE SECOND DEGREE

## QUADRIC SURFACES

225. The locus of an equation of second degree. The most general algebraic equation of second degree in three variables may be written

$$
\begin{align*}
A x^{2} & +B y^{2} \\
& +C z^{2}+2 F y z+2 G x z+2 H x y+2 I x+2 M y \tag{31}
\end{align*}
$$

Any surface which is the locus of an equation of second degree is called a quadric surface, and is of particular interest because of its close comnection with and analogy to the conic sections. In fact, every plane section of a quadric is a conic, as may be easily shown as follows.

By Art. 207, any plane may be chosen as a coördinate plane. and the transformation of coordinates to the new axes will leave the degree of equation [81] unchanged; i.e., the new equation of the locus will still be of the form [31], though with different values for the coefficients. To find the nature of any plane section, choose the given plane as (say) the ryplane of reference, and transform to the new axes; the new equation will be of form (1). Then let $z=0$. The equation of the section of the quadric is

$$
A x^{2}+B y^{2}+2 H x y+2 L x+2 M y+K=0 ; \ldots(1)
$$

and this, by Art. 175, represents a conic.

Moreover, the trace of the surface on any parallel plane, as $z=a$. is given by the equation

$$
\begin{align*}
A x^{2}+B y^{2} & +2 H x y+2(L+a G) x+2(M+a F) y \\
& +\left(C a^{2}+2 N a+K\right)=0 \tag{2}
\end{align*}
$$

Now, by Arts. 177, 181, the loci of equations (1) and (2) are conics of the same species, and with semi-axes proportional; therefore their eccentricities are equal, and the curves are similar. Hence, all parallel plane sections of a quadric are similar conics.
226. Species of quadrics. Simplified equation of second degree. As will be seen in the following sections, quadric surfaces may be conveniently classed under four species. For, although different plane sections of any surface will in general be conics of different species, still the general form of the surface may be characterized most strikingly by those plane sections which are ellipses, hyperbolas, parabolas, or straight lines. These species are called, respectively, ellipsoids, hyperboloids, paraboloids, and cones; and each species has special varieties, depending upon the nature of a second system of plane sections. To study these species it will be well to simplify the general equation of second degree as much as possible by a suitable transformation of coördinates.*

A transformation of coördinates changing to a new rectangular system having the same origin as the old, by equations [14], will transform the given equation of second degree to

$$
\begin{align*}
A^{\prime} x^{2}+B^{\prime} y^{2} & +C^{\prime} z^{2}+2 F^{\prime} y z+2 G^{\prime} x z+2 H^{\prime} x y+\varrho L^{\prime} x \\
& +2 M^{\prime} y+2 N^{\prime} z+K=0 \tag{1}
\end{align*}
$$

where $A^{\prime}, B^{\prime}, \ldots N^{\prime}$ are functions of the nine direction angles
$"_{1}, u_{2}, \cdots$ of the new axem, which are limited by the six independent equations noted in Art. 207. These angles, therefore, may be so chosen that three additional conditions shall to fulfilled; hence, so that the coefficients $F^{\prime \prime}, G^{\prime}$, and $H^{\prime}$ shall vanish. Then the new equation of the quadric will be

$$
\begin{equation*}
A^{\prime} x^{2}+B^{\prime} y^{2}+C^{\prime \prime} z^{2}+9 I^{\prime} x+2 M^{\prime} y+2 N^{\prime} z+K=0 . \tag{2}
\end{equation*}
$$

Now a second transformation may be made to a paralled system of axes through a new origin ( $h, k, j$ ), by equations [18], giving for the new equation
$A^{\prime} x^{2}+B^{\prime} y^{2}+C^{\prime} z^{2}+2 L^{\prime \prime} x+2 M^{\prime \prime} y+2 N^{\prime \prime} z+K^{\prime \prime}=0,(8)$
in which $L^{\prime \prime}, M^{\prime \prime}, N^{\prime \prime}$, and $K^{\prime}$ are functions of the coirdinates $h, k$, and $j$; and these coordinates may be chosen so that $L^{\prime \prime}, M^{\prime \prime}$, and $N^{\prime \prime}$ will vanish, giving for the simplified form of the equation of the given quadric,

$$
\begin{equation*}
A^{\prime} x^{3}+B^{\prime} y^{2}+C^{\prime \prime} z^{2}+K^{\prime \prime}=0 . \tag{4}
\end{equation*}
$$

It may happen, however, that the choice given above for the direction angles $a_{1}, c_{2}, \cdots$, of the new axes is such that the coefficient of one more term of second degree, as $C^{\prime \prime}$, will also vanish ; then equation (4) would reduce to

$$
\begin{equation*}
A^{\prime} x^{2}+B^{\prime} y^{3}+K^{\prime}=0 \tag{5}
\end{equation*}
$$

and the surface is a cylinder (Art. 210). Again, if also $L_{L^{\prime \prime}}$. $M^{\prime \prime}, N^{\prime \prime}$ are not independent, and the values of $h, k, j$ as given above are therefore indeterminate, then $h, k, j$ may be chosen so that, for example, $L^{\prime \prime}, M^{\prime \prime}$, and $K^{\prime \prime}$ shall vanish ; and the equation of the quadric becomes

$$
\begin{equation*}
A^{\prime} x^{2}+B^{\prime} y^{2}+2 N^{\prime \prime} z=0 . \tag{6}
\end{equation*}
$$

[^62]The two forms of the quadric, not already discussed,* have therefore for their equations, when simplified (dropping the accents),
and

$$
\begin{equation*}
A x^{2}+B y^{2}+C z^{2}+K=0 \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
A x^{2}+B y^{2}+2 N z=0 \tag{33}
\end{equation*}
$$

A center of a surface is a point such that it bisects every chord of the surface which passes through it. It is clear that the locus of equation [32] is a central quadric, while the locus of equation [33] is non-central (cf. Art. 178).
227. Standard forms of the equation of a quadric. For convenience of discussion, the intercepts of the locus of equation [32] on the coördinate axes may be represented by $a, b, c$, respectively, so that

$$
\begin{equation*}
a^{2}=-\frac{K}{A}, \quad b^{2}=-\frac{K}{B}, \quad c^{2}=-\frac{K}{C} . \tag{1}
\end{equation*}
$$

Then, since $A, B, C$, and $K$ cannot be all of the same sign, there will be three types of equation [32], according to the signs of $A, B, C$, and $K$; viz.:

$$
\begin{align*}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1  \tag{2}\\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1  \tag{3}\\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \tag{4}
\end{align*}
$$

Similarly, equation [33] may be written for convenience in the typical forms

$$
\begin{align*}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=z  \tag{5}\\
& \frac{x^{2}}{\overline{a^{2}}}-\frac{y^{2}}{b^{2}}=z \tag{6}
\end{align*}
$$

[^63]wherein, however, a and b aro no longer intercepts as in (2), (3), and (4).

Again, if the equation [32] has its constant term zero, it may bo written in two typical forms,

$$
\begin{align*}
& \frac{x^{3}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{3}}=0  \tag{i}\\
& \frac{x^{2}}{a^{2}}+\frac{y^{3}}{b^{3}}-\frac{z^{2}}{c^{3}}=0 . \tag{8}
\end{align*}
$$

These seven equations are standard forms of the equation n! second degree, and will bo discussed in turn.
228. The ellipsoid: equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. From the equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \tag{34}
\end{equation*}
$$

the following properties of its locus may he derived:
(1) The traces on each coördinate plane are ellipses, having

the semi-axes $a$ and $b$ in the $x y$-plane, $b$ and $c$ in the $y z$ plane, and $c$ and $a$ in the $z x$-plane.
(2) The traces on planes parallel to any coördinate plane are similar ellipses (Art. 225).
(3) The equation may be written

$$
\frac{y^{2}}{\frac{b^{2}\left(a^{2}-x^{2}\right)}{a^{2}}}+\frac{z^{2}}{c^{2}\left(a^{2}-x^{2}\right)} \frac{a^{2}}{a^{2}}=1 ;
$$

hence for a plane section parallel to the $y z$-plane, the semiaxes are real if the value of $x$ lies between $-a$ and $+a$, imaginary if beyond those limits, and zero if $x= \pm a$. Moreover, the length of the axes diminish continuously from the values $b$ and $c$, respectively, when $x=0$ to the value zero, when $x= \pm a$.

Similarly for sections parallel to either of the other coürdinate planes.
(4) The surface is symmetrical with respect to each coordinate plane.

This quadric surface, the locus of equation [34], is called an ellipsoid. It may be conceived as generated by a variable ellipse, which has its vertices upon, and moves always perpendicular to, two fixed ellipses, which in turn are perpendicular to each other and have one axis in common.

From this definition equation [34] can be easily derived. Let $C R A$ and $A S B$ be fixed ellipses perpendicular to each other, and having the semi-axis $O A$ in common,
 and the second axes $O C$ and $O B$, respectively; and let $S P R$ be the variable ellipse, with semi-axes MS and MR. If $O A, O B, O C$ be taken as the $x, y, z$ axes, respectively ; and $P$ be any point on the moving ellipse, with coördinates OM, $M M M^{\prime}, M^{\prime} P$, then (by Art. 112),
$\frac{M I^{3}}{M \hbar^{2}}+\frac{M M^{2}}{M S^{3}}=1$
$\frac{3 / h^{4}}{\bar{U} C^{3}}+\frac{\sigma A^{1}}{\partial A^{1}}=1$
$\frac{\sqrt{\pi s^{2}}}{\overline{U \delta^{3}}}+\frac{\overline{d \pi J^{2}}}{\overline{U . t^{3}}}=1$
i.e., $\frac{g^{2}}{M R^{2}}+\frac{y^{2}}{M s^{3}}=1$,
$\frac{\sqrt{\Gamma F^{3}}}{c^{3}}+\frac{s^{3}}{a^{3}}=1$,
(2) $\frac{\sqrt{3}}{b^{3}}+\frac{x^{2}}{a^{2}}=1$. (i)

By oquations (2) and (3),

$$
M k^{2}=c^{2}\left(1-\frac{x^{2}}{a^{2}}\right), \quad M^{3}=b^{3}\left(1-\frac{x^{2}}{a^{2}}\right)
$$

Substitution in (1) gives $\frac{s^{2}}{a^{2}}+\frac{v^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
Every algebraic equation of the form

$$
A x^{2}+B y^{2}+C z^{2}-K=0
$$

represents an ellipsoid. If two of the coefficients of the variable terms are equal it is an ellipsoid of revolution, either an oblate or prolate spheroid; and if the three coefficients of the variable terms are equal, it is a sphere (cf. Art. 213, eqs. (10), (11), and (8)).
229. The un-parted hyperboloid: equation $\frac{x^{2}}{a^{2}}+\frac{\nu^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$. From the equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \tag{85}
\end{equation*}
$$

the following properties of its locus may be derived:
(1) The trace on the $x y$-plane is an ellipse, with semi-axes $a$ and $b$; while the traces on the $y z$-and $z x$-planes are hyperbolas, having the semi-axes $b$ and $c, c$ and $a$, respectively, and the conjugate axes along the $z$-axis.
(2) The traces on planes parallel to any cotirdinate plane are similar conics, ellipses or hyperbolas, respectively (.1rt. 225).
(3) The traces on the planes $x=a, x=-a, y=b, y=-b$ are in each case a pair of intersecting straigit lines.

(4) The equation may be written

$$
\begin{align*}
& \frac{x^{2}}{\frac{a^{2}\left(c^{2}+z^{2}\right)}{c^{2}}}+\frac{y^{2}}{\frac{b^{2}\left(c^{2}+z^{2}\right)}{c^{2}}}=1  \tag{1}\\
& \frac{y^{2}}{\frac{b^{2}\left(a^{2}-x^{2}\right)}{a^{2}}}-\frac{z^{2}}{\frac{c^{2}\left(a^{2}-x^{2}\right)}{a^{2}}}=1 \tag{2}
\end{align*}
$$

From equation (1) it appears that the trace on the $x y$-plane is the smallest of the system of ellipses parallel to that plane, and that the sections increase continuously and indefinitely as $z$ increases from 0 to $\pm \infty$.

From equation (2) it appears that the transverse axis of the hyperbolas parallel to the $y z$-plane is parallel to the $y$-axis. Similarly, for the $x z$-sections the transverse axis is parallel to the $x$-axis.
(5) The surface is symmetrical with reapect to each eno ordinate plane.

This quadric surface, whom equation is [35], is called an un-parted hyperboloid, or ith hyperboloid of one sheet. It may be conceived as generated by a variable ellipse, whieh has its vertices upon and moves always perpendicular to two fixed hyperbolas, which in turn are perpendicular to each other, and have a common conjugate axis. Its equation can be readily obtained from this defintion.*

Every equation of the form $A z^{2}+B y^{3}-C z^{2}-K^{\prime}=0$ represents an un-parted hyperboloid. If the two positive coeflicients are equal, i.e., if $a=b$, the quadric is the simple liyperboloid of revolution (Art. 213, eq. (12)).
230. The bi-parted hyperboloid: equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$. From the equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \tag{36}
\end{equation*}
$$

the following properties of its locus may be derived:


- C\&. ATr. Eq8.
(1) The traces on the $x y$ - and $z x$-planes are hyperbolas, with semi-axes $a$ and $b, c$ and $a$, respectively, and with the transverse axis along the $x$-axis, while the traces on the planes parallel to the $y z$-plane are imaginary if $x$ lies between $a$ and $-a$, real ellipses if $x$ is beyond those limits, and points if $x= \pm a$.
(2) The traces on planes parallel to any coördinate plane are similar (Art. 225).
(3) The elliptical sections parallel to the $y z$-plane increaso continuously and indefinitely as $x$ varies from $+a$ to $+\infty$, or from $-a$ to $-\infty$.
(4) The surface is symmetrical with respect to each coördinate plane.

This quadric surface, whose equation is [36], is called a bi-parted hyperboloid, or hyperboloid of two sheets. It may be conceived as generated by a variable ellipse which has its vertices upon, and moves always perpendicular to, two fixed hyperbolas which in turn are perpendicular to each other, and have a common transverse axis. This definition leads readily to the equation [36].

Every equation of the form $A x^{2}-B y^{2}-C z^{2}-K=0$ represents a bi-parted hyperboloid. If the coefficients of the two negative variable terms are equal, i.e., if $b=c$, the sur face is the double hyperboloid of revolution (cf. Art. 213, eq. (13)).
231. The paraboloids: equation $\frac{x^{2}}{a^{2}} \pm \frac{\nu^{2}}{b^{2}}=z$. A discussion of the equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=z \tag{37}
\end{equation*}
$$

similar to that of the preceding articles shows that its locus
is as represented in Fig. 160, symmetrical with respect to the $y z$ - and $z x$-plane, but not with respect to the $x y$-plane. This quadrio is the elliptic paraboloid, and may be conceived as being generated by a variable parabola which has its vertex upon, and moves


Fo. 300 always perpendicular to, a fixed parabola, the axes of the two parabolas being parallel and lying in the same direction. This definition leads directly to equation [87].*
Every equation of the form $A x^{3}+B y^{2}-2 N z=0$ reprosents an elliptic paraboloid. If the two positive coefficienta are equal, the quadric is a puraboloid of revolution (cf. Art. 218, eq. (14)).

Similarly, the equation $\frac{a^{2}}{a^{2}}-\frac{v^{2}}{b^{2}}=z \quad . \quad . \quad$.


Fha. 161

- Seo ATt 293
has for its locus a surface as represented in Fig. 161. This quadric is the hyperbolic paraboloid, and may be conceived as generated by a variable parabola which has its vertex upon and moves always perpendicular to a fixed parabola, the axes of the two parabolas being parallel, but lying in opposite directions. Equation [38] may be derived at once from this definition.*

Every equation of the form $A x^{2}-B y^{2}-2 N z=0$ repre sents an hyperbolic paraboloid.
232. The cone: equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$. The equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=0$ evidently is sat-
 isfied by the coördinates of only one real point, viz. the origin. No further discussion of this equation is necessary. But the equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0 . \tag{39}
\end{equation*}
$$

has a locus of importance, having the following properties.
(1) The origin is a point of the locus.
(2) The trace on the $x y$ plane is a point. The traces on planes parallel to the $x y$-plane are similar ellipses, whose semi-axes increase continuously and indefinitely as $z$ increases from 0 to $\pm \infty$.
(3) The trace on each of the other coördinate planes is a pair of straight lines which intersect at the origin.

[^64](1) Tho surface is ${ }^{\text {y }}$ manetrical with reqpect to esch courdl. nate plane, hence also with reapect to the origin.
(5) The straight line through the origin and any other point of the locus lies wholly in the locus.

This quadric surface is called a cone, and the origin is its vertex. It may bo conceived as generated by a straight line which moves along a fixed ellipso as directrix, and passes through a fixed point in a straight line which is perpen dicular to the plane of the ellipse at its center.

Every equation of the form $A x^{3}+B y^{2}-C z^{2}=0$ represents a cone. If the two positive coefficients are equal, it is a cone of revolution, or circular cone (cf. Art. 213, eq. (9)).

The reasoning of Art. 225, applied to the special equation of the form [31] which represents a cone, gives an analytio proof of the fact that every plane section of a cone is a second degree curve (cf. Art. 48; Appendix, Note D).
233. The hyperboloid and its asymptotic cone. The hypuerboloid

$$
v^{3}-y^{2}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

and the cone

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{3}}-\frac{z^{2}}{c^{3}}=0
$$

are closely related. It is clear that, since the equations differ only in the constant terms, the surfaces can have no finite points in common; while as the values of $y$ and $z$ are increased indefinitely, the corresponding values for $x$ from the two equations be-


F30.16
come relatively nearer. In fact, the hyperboloid may be said to be tangent to the cone at infinity, and bears to the cone a relation entirely analogous to that between the hyperbola and its asymptotes. In the same way, the cone $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{l^{2}}-\frac{z^{2}}{c^{2}}=0$ is asymptotic to the hyperboloid $\frac{x^{3}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$.

## EXAMPLES ON CHAPTER IV

1. Derive the equation [35] directly from the definition of $\mathbf{A r t} .229$.
2. Derive the equation [36] directly from the definition of Art. 230 .
3. Derive the equations [37], [38] directly from the definitions of Art. 231.
4. Derive the equation [30] directly from the definition of Art. 232.
5. Show analytically that the intersection of two spheres is a circle.
6. Find the equation of the tangent plane to the sphere $(x-a)^{2}$ $+(y-l)^{2}+(z-c)^{2}=r^{2}$, at any point of the sphere.
7. Show that the equation $A x_{1} x+B y_{1} y+C z_{1} z+K=0$ represents a plane tangent to the quadric, $A x^{2}+B y^{2}+C z^{2}+K=0$, at the point ( $x_{1}, y_{1}, z_{1}$ ) on the quadric.
8. Find the equation of the cone with origin as vertex and the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ in the plane $z=-2$, as directrix.
9. Find the equation of a sphere having the line from $P_{1} \equiv\left(x_{1}, y_{1}, z_{1}\right)$ to $P_{2} \equiv\left(x_{2}, y_{2}, z_{2}\right)$ as a diameter.
10. Show that a sphere is determined by four points in space.

Write the equation of the quadric whose directing curves have the equations:
11. $\frac{x^{2}}{2}+\frac{y^{2}}{3}=1$, and $\frac{y^{2}}{3}+\frac{z^{2}}{9}=1$.
12. $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$, and $\frac{x^{2}}{9}-\frac{z^{2}}{16}=1$.
13. $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$, and $\frac{y^{2}}{4}-\frac{z^{2}}{16}=1$.
14. $z^{2}=16 x$, and $y^{2}=0 x$.
15. $x^{2}-4 y=0$, and $z^{2}+3 y=0$.

## APPENDIX

## NOTE A

Historical sketch. Aunlytio Geometry, in the form in which it is now known, was invented by Hend Descartes (1506-1650) and fint publishod by him in 1637, in the thind mection of a treatieo on universal science entitled "Discours de la méthod pour bien conduire sa raimon et chercher la verite dans la sciences." He made the iuvention while attempting to solve a certain problem, proposed by Pappun, the mont important ense of which is: to find the locus of a point such that the product of the perpendiculars drawn from it upon m given straight lines shall bear a constant ratio to the product of the pergendiculars drawn from it upon $n$ other given straight lines. By pure geometry this probs lem had already been solved for the special cases when $m=1$ and $n=1$ or 2. Pappus had also asserted, but without proof, that when $m=n=2$, then the locus of this point is a conic. In his effort to prove this fact Descartes introduced his system of coürdinates and found the equation of the locus to be of the second degree, thus proving that it is a conic.

Aualytic geometry does not consist merely (as is sometimes loosely said) in the application of algebra to geometry: that had been done by Archimedes and many others, and had become the usual method of procedure in the works of mathematicians of the sixteenth century. But in all these earlier applications a special set of axes were required for each individual curve. The great adrance made by Descartes was that he saw that a point could be completely determined if its distanos, say $x$ and $y$, from two fixed lines, drawn at right angles to each other, in the plane, were given : and that though an equation $f(x, y)=0$ is indeterminate and can be satisfied by an infinite number of values of $x$ and $y, ~ y w t$ these ralues of $x$ and $y$ determine the courdinates of a number of points which form a curve of which the equation $f(x, y)=0$ exprewnes sotie geometric property, i.e., a property true for every point of the curve. Moreover, he saw that this method enables one to refer all the curve that may be under investigation to the same int of axes; and that in
order to investigate the properties of a curve it is sufficient to select any characteristic geometric property, as a definition, and to express it as an equation by means of the (current) coordinates of any point on the curve; i.e., to translate the definition into the language of analytic geometry - the equation so obtained contains implicitly every property of the curve, and any particular property can be deduced from it by ordinary algebra.

While the earlier geometry is an admirable instrument for intellectual training, and while it frequently affords an elegant demonstration of some proposition the truth of which is already known, it requires a special procedure for each individual problem; on the other hand, analytic geometry lays down a few simple rules by which any property can be at once proved. It is incomparably more potent than the geometry of the ancients for all purposes of research.

## NOTE B

Construction of any conic, given directrix, focus, and eccentricity. Let $D^{\prime} D$ be the directrix, $F$ the focus, and $e$ the eccentricity of a conic (cf. Part 1, Art. 48), to plot the curve.


Construction: Draw $Z F X$ perpendicular to $D^{\prime} D$, and $Z W$ so that, if $a=\angle X Z W$, $\tan a=e$. Now draw $F R$ perpendicular to $Z F$, cutting $Z W$ at $R$; then $R$ is a point of the conic; it is the end of the latus rectum.

Bisect the right angles at $F$ by $F H_{1}$ and $F H_{2}$, intersecting $Z W$ in $H_{1}$ and $H_{2}$, and draw $H_{1} .4$ and $H_{2} A^{\prime}$ perpendicular to $Z X$; then $A$ and $A^{\prime}$ are points on the curve; they are the vertices of the conic.

Again, from any point $G$ letwenn $H_{1}$ and $H_{3}$ ot $Z I W_{\text {, draw }} M G$ pero peadicular to $\%$. cutting it at $M$; and from $P$ as a oenter whith $M G$ as radius descrite an are cutting $M G$ at $P$. 'Then $P$ ' is a point of the curve.

Proof: for the puint $10, \frac{P R}{Z F}=$ tan $a=e$;

$$
\text { Sor the proint } A, \quad \frac{A F}{Z A}=\frac{A H_{1}}{Z A}=\tan a=e ; \quad\left[\angle A F H_{1}=40^{\circ}\right]
$$ for the point $f^{\prime}, \frac{Y P}{\delta, M}=\frac{M / i}{\delta . M}=\tan a=e$;

bence the points $R, A_{2}$, and $P$ are such that their divtances from the directrix and from the focus are in the ratio e; and each is therefore. accorting to the definition given in Art. 45, a point of the conic. By plotting various points $P^{P}$ (and the symmetrical points $P^{P}$ ) and conneeting them by a smooth curve, the conic may be plotted to any required degree of accuracy.

If $a<15^{\circ}$, then tana $a<1$, i.e., $e<1$, and the conic is an ellipmer; if $a=45^{\circ}$, the conic is a parabola; and if $a>45^{\circ}$, the conic is an hyperbola (cf. Part I, Arl. 45).

## NOTE C

The special cases of the conics. The locns of the second degree eurve has heen seell to have three species, according as $e<1, e=1$, or $e>1$.
if $e=0$, then, since $b$ is defined thy the equation $b^{2}=a^{2}\left(1-e^{3}\right), b=a$, and the curve is an ellipse with equal axes, i.e., it is a circle; in this case, also, the directrix is at infinity and the focts at the center, for the equation of the directrix is $x=\frac{a}{e}$, and the distance from the center to the focus is ae (ef. Part I, Arts. 110, 116).


Again, suppose the focus $F$ to be on the directrix. Then, if $P$ is any point of the locus, and $L P$ perpendicular to $F D$,
and

$$
\begin{gather*}
F P=e \cdot L P  \tag{1}\\
\sin \angle P F L=\frac{L P}{F P}=\frac{1}{e} \tag{2}
\end{gather*}
$$

hence the angle $P F L$ is constant, with two supplementary values for a given value of $e$.

The locus consists therefore of two straight lines intersecting at $F$, and equation (2) shows that:
if $e>1$, the lines are real and different;
if $e=1$, the lines are real and coincident;
and if $e<1$, the lines are imaginary, and the real part of the locus consists of the point $F$.
Suppose now the directrix, with the focus upon it, to be at infinity; then, if $e>1$, the locus is a pair of parallel lines.

These results agree with those already summarized in Art. 182.

## NOTE D

Sections of a cone made by a plane. The following proposition is due to Hamilton, Quételet, and others (see Taylor's Ancient and Modern Geometry of Conics, p. 204).

If a right circular cone is cut by a plane, and two spheres are inscribed in the cone and tangent to this plane, then the section of the cone made by the plane is a second degree curve (cf. Part I, Arts. 48, 175), of which the foci are the points of contact of the spheres and the plane, and the directrices are the lines in which this plane intersects the planes of the circles of contact of the spheres and the cone.

Construction: Let $O-V W$ be a right circular cone cut by the plane $H K$ in the section RPSQ, $P$ being any point of the section. Inscribe two spheres, $C-A B F$ and $C^{\prime}-A^{\prime} B^{\prime} F^{*}$, whose circles of contact with the cone are $A E B$ and $A^{\prime} E^{\prime} B^{\prime}$, respectively, and which are tangent to the plane $H K$ in the points $F$ and $F^{*}$. Through $P$ draw the element $O P$ of the cone, cutting the circles of contact in the points $E$ and $E^{\prime}$. Also pass a plane $M N$ through the circle $A E B$, and therefore perpendicular to the axis $O C C^{\prime}$ of the cone; it will intersect the plane $H K$ in a straight
line $G D I_{0}$, which is perpeudicular to the atraight line $F^{\circ} F$. Draw $I^{\prime} L$ perpendicular to GDL.


Then PL, makes a constant angle $\theta$ ( $(\angle F D D$ ) with the plane $M N$ [since $P L$, is parallel to $F^{V} F$ ], and, if $p$ represents the distance from the point $P$ to the plane $M N$,

$$
\begin{equation*}
p=P L_{0} \sin \theta . \tag{1}
\end{equation*}
$$

Also $P E$, being an element of the cone, makes a constant anglo a with the plane $M N$, and

$$
\begin{equation*}
p=P E \sin \alpha \tag{2}
\end{equation*}
$$

Again, since tangents from an external point to a sphere are equal,

$$
\begin{equation*}
P E=P F . \tag{3}
\end{equation*}
$$

Heuce, from equations (1), (2), and (3)

$$
\begin{equation*}
\frac{P F}{P L}=\frac{\sin \theta}{\sin u}=e, \text { a constant, } \tag{4}
\end{equation*}
$$

i.e., the ratio $P F$ : $P L$, for every point $P$ of the section $S P R Q$, is constant, and (Part 1, Arts. 48, 175) the section is a second degree curve, with a focus at $F$, directrix $G D L$, and eccentricity $\frac{\sin \theta}{\sin q}$.

Similarly, $F^{*}$ is the other focus, and the line of intersection of the planes $H K$ and $A^{\prime} E^{\prime} B^{\prime}$ is the other directrix of the conic $S P R Q$; hence the theorem is established.

Moreover, the plane $V W$, being perpendicular to the axis of the cone, and OVW, being a section made by a plane passing through the axis, $a=\angle O V^{W} W$, and is constant for a given cone, while $\theta=\angle O S R$, and varies only with the plane $H K$.

Hence the eccentricity varies with the inclination of the plane $H K$, and there are the three following cases:
if $\theta<\alpha$, then $e<1$, and the section is an ellipse;
if $\theta=u$, then $e=1$, and the section is a parabola;
if $\theta>a$, then $e>1$, and the section is an hyperbola.
Again, if the cutting plane $H K$ passes through the vertex $O$ of the cone, then the focus $F$ is on the directrix $G D L$, and the section will be either a pair of straight lines or a point:
if $\theta<\mu$, the section is a point, the vertex $O$ of the cone.
if $\theta=u$, the section is a pair of coincident straight lines, an element of the cone;
if $\theta>a$, the section is a pair of intersecting straight lines, two elements through the vertex (cf. Note C).
It is, of course, evident that for every elliptic section of the focal spheres both lie in the same nappe of the cone, and touch the plane of the section (HK) on opposite sides; while for every hyperbolic section these focal spheres lie one in each nappe of the cone, and both on the same side of the plane of the section.

In the above proof, for the sake of simplicity, a right circular cone was employed; it is easy to show (see Salmon's Conic Sections, p. 329) that every section of a second degree cone (right or oblique) by a plane is a second degree curve.

The demonstratimen just given shows abo that the paralula is a limiting cave of ath ellifan (cf. Note 1:).

## NOTE E

Parabola the limit of an ellipse, or of an liyperbola. If a vertex and the corronponting focus of att ellipmo remain fixes in poaltion while the center moves further and further away, the major axis lesmolag infinitely long, then then form of the ellijme approaches more and name nearly to that of a parabola liaving the same vertex and focus.


This is easily shown as follows:
The aquation of the ellipse referred to its major axis and the tangent at its lefthand vertex, as coobrdinate axes, is (Part I, Art. 11:)

$$
\begin{equation*}
\frac{(x-a)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

which may be written in the form

$$
\begin{equation*}
y^{2}=\frac{2 b^{2}}{a} x-\frac{b^{2}}{a^{2}} x^{2} \tag{2}
\end{equation*}
$$

If now the fixed distance $O F$ be represented by $p$, then
whence

$$
P=O F=O C-F C=a-\sqrt{e^{2}-b^{3}}
$$

$$
\text { therefore } \quad \frac{2 b^{2}}{a}=4 p-\frac{2 p^{2}}{a} \text {, and } \frac{b^{3}}{a^{3}}=\frac{2 p}{a}-\frac{p^{2}}{a^{4}}
$$

[^65]Substituting these values in equation (2) it becomes

$$
\begin{equation*}
y^{2}=\left(4 p-\frac{2 p^{2}}{a}\right) x-\left(\frac{2 p}{a}-\frac{p^{2}}{a^{2}}\right) x^{2} \tag{3}
\end{equation*}
$$

and the limit of this equation as $a$ approaches $\infty, p$ remaining constant, is

$$
\begin{equation*}
y^{2}=4 p x ; \tag{4}
\end{equation*}
$$

which is the equation of a parabola, and the proposition is proved.
In the same way it may be shown that the parabola is the limit to which an hyperbola approaches when its center moves away to infinity, a vertex and the corresponding focus remaining fixed in position (cf. also Note D).

## NOTE $F$

Confocal conics. - Two conics having the same foci, $F_{1}$ and $F_{2}$, are called confocal conics. Since the transverse axis of a conic passes through the foci and its conjugate axis is perpendicular to, and bisects, the line joining the foci, therefore confocal conics are also coaxial,* i.e., they have their axes in the same lines. If the equation of any one of such a system of conics is

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

and if $\lambda$ is an arbitrary parameter, then the equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1 \quad . \tag{2}
\end{equation*}
$$

will represent any conic of the system. For, $a$ and $b$ being constant, and $a>b$, equation (2) represents ellipses for all values of $\lambda$ between $\infty$ and $-b^{2}$, hyperbolas for all values of $\lambda$ between $-b^{2}$ and $-a^{2}$, and imaginary loci when $\lambda<-a^{2}$; moreover, the distance from the center $O$ to either focus for each of these curves is

$$
\sqrt{\left(a^{2}+\lambda\right)-\left(b^{2}+\lambda\right)}
$$

which equals $\sqrt{a^{2}-b^{2}}$, and is therefore constant.
The individual curves of the system represented by equation (3) are obtained by giving particular values to $\lambda$, each value of $\lambda$ determining one and but one conic. If any one of these conics is chosen as the

[^66]fundamental conle, and represented by equation (1), then each of the other conics of the syatem may be designated by its appropriate value of $\lambda$.


Through any assigned point, $P_{1} E\left(x_{1}, y_{1}\right)$, of the plane, there passes one ellipse and one hyperbola of the aystem represented by equation (2). For substituting the coördinates $x_{1}$ and $y_{1}$ of $P_{1}$ in equation (2), it gives the quadratic equation

$$
\begin{equation*}
\frac{x_{1}^{2}}{a^{2}+\lambda}+\frac{y_{1}^{2}}{b^{2}+\lambda}=1, \tag{3}
\end{equation*}
$$

for the determination of $\lambda$. Equation (3) gives two values of $\lambda$, hence two conics of this confocal system pass through $P_{1}$. That one of these is an ellipse and the other an hyperbola is shown as follows: the quadratic function in $\lambda$

$$
\frac{x_{1}^{2}}{a^{2}+\lambda}+\frac{y_{1}^{2}}{b^{2}+\lambda}-1
$$

is negative when $\lambda=+\infty$, and, as $\lambda$ decreases from $+\infty$ to $-\infty$, this function becomes positive just before $\lambda=-b^{2}$, negative again just after $\lambda=-b^{2}$, and positive again just before $\lambda=-a^{2}$; hence, of the two roots of equation ( 3 ), one lies between $-b^{2}$ and $x$, and the other between $-a^{2}$ and $-b^{2}$; and therefore of the two confocal conies which pass through $P_{1}$, one is an ellipse and the other an hypertiola. Moreover, the two confocal conies which pass through any given point, as $P_{1} \equiv\left(x_{1}, y_{1}\right)$, of the plane intersect at right angles. This is easily seen geotactrically thus: connect $P_{1}$ with the foci $F_{1}$ and $F_{8}$, then the tangent $P_{1} T_{1}$ to the
hyperbola through $P_{1}$ bisects the interior angle between $F_{1} P_{1}$ and $F_{2} P_{1}$, while the tangent $P_{1} T_{3}$ to the ellipse through this same point bisects the external angle formed by these two lines (cf. Part I, Arts. 148, 163); these tangents are therefore at right angles, hence (cf. Part I, Art. 100) the conics intersect at right angles.

This fact could also have been readily proved analytically by comparing the equations of the two tangents.

Remark 1. It is easily seen that as $\lambda$ approaches $-\boldsymbol{b}^{2}$ from the positive side, the ellipses represented by equation (2) grow more and more flat (because the length of the semi-minor axis $\sqrt{b^{2}+\lambda}$ approaches 0 ), approaching, as a limit, the segment $F_{1} F_{2}$ of the indefinite straight line through the foci. On the other hand, if $\lambda$ approaches - $b^{2}$ from below, then the hyperbolas grow more and more flat, approaching, as a limit, the other two parts of this line. Again, if $\lambda$ approaches $-a^{2}$ from above, the hyperbolas approach the $y$-axis as a limit.

Remark 2. Since through every point of a plane there passes one ellipse and one hyperbola of the confocal system represented by equation (2), and but one of each, therefore the two values of $\lambda$ which determine these two curves may be regarded as the coordinates of this point; they are known as the elliptic coördinates of the point. If the rectangular coördinates of a point are known, the elliptic coördinates are easily found by means of equation (2).
E.g., let $P_{1} \equiv\left(x_{1}, y_{1}\right)$ be the point in question, then the elliptic coördinates of $P_{1}$ are the two values of $\lambda$, which are the roots of equation (3). So, too, if the elliptic coördinates are given, the Cartesian coördinates can be found.

Remark 3. The above observations concerning confocal conics are easily extended to confocal quadrics, i.e., to quadric surfaces whose principal sections are confocal conics. They are represented by the equation

$$
\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}+\frac{z^{2}}{c^{2}+\lambda}=1
$$

## ANSWERS

Page 8. Ast. 7.
4. Yes
5. Yea
6. Ien, if o lu poalilive ; yea
9. $z=a$.
10. Yes; yes; yes.

Page 10. Ast. 9.

1. (2), (3), (4), and (5) are Identities. Bootimaginary.
2. $x=-\frac{3+m}{4(2+m)} \pm \frac{1}{4(2+m)} \sqrt{-31 m^{2}-0^{2} m-3 y}$; roots are eyual if $v=-i\} \pm \delta^{2} \sqrt{118}$.
3. (1) imaginary ; (2) imaginary ; (3) real and unequal.
4. (1) $m=2$ or -4 ; (2) $m=-\frac{1}{t} \pm t$ 析 $\sqrt{-10} ;$ (3) $m=3$ or -5 ; (t) $m= \pm a \sqrt{37}$.
5. (1) $e=\frac{1}{1}$;
(2) $c=\frac{1}{m}$;
(3) $c= \pm 2 \sqrt{10}$.
6. E.x. 2. $x=-\frac{1}{1} \pm \frac{1}{13} ;$ Fix. 8. $x=\frac{1}{8} \pm \frac{1}{18} \sqrt{-23}$;

$$
\text { Ex. 6. }\left\{\begin{array}{l}
2=\frac{1}{3} \pm \sqrt{-6} \\
x= \pm \sqrt{-8} \\
8=\frac{1}{6} \pm \sqrt{2 \pi 2}
\end{array}\right.
$$

11. $x= \pm 4$ or $\pm 3 ; x=-2$ or -8 .

Page 14. Art 12.

1. $x_{1}+x_{2}=-\frac{3}{1+m} ; x_{1} y_{3}=-4$;

$$
\begin{gathered}
(1+m)\left\{x+\frac{3}{2(1+m)}-\frac{\sqrt{25+32 m+16 m m^{2}}}{2(1+m)}\right\} \\
\left\{x+\frac{3}{2(1+m)}+\frac{\sqrt{25+82 m+16 m}}{2(1+m)}\right\}
\end{gathered}
$$

2. (1) $(x-4)(x-1) ;(2)(x+4)(x-2)$;
(3) $m\left\{x-\frac{3}{2 m}-\frac{1}{2 m} \sqrt{v-4 c m}\right\}\left\{x-\frac{3}{2 m 0}+\frac{1}{2 m} \sqrt{v-4 C_{m}}\right\}$ :
(4) $a\left\{x-\left(\frac{b}{2 a}+\frac{1}{2 a} \sqrt{b^{2}-4 a c}\right) y\right\}\left\{x-\left(\frac{b}{2 a}-\frac{1}{2 a} \sqrt{b^{2}-4 a c}\right) y\right\}$;
(6) $\left(3 x^{d}+2\right)\left(x^{2}-32\right) ;(6)(11+6 y)(1-3 y)$.
3. $x_{1}+x_{2}=-\frac{m+3}{2 m+4} ; x_{1} x_{2}=\frac{4 m+3}{2 m+4} ; x_{1}=x_{2}$ if $m=\frac{-41}{31} \pm \frac{2}{31} \sqrt{118} ;$ one root becomes infinite if $m \doteq-\frac{1}{1}$;

$$
\begin{gathered}
2(m+2)\left\{x+\frac{m+3}{4(m+2)}-\frac{1}{4(m+2)} \sqrt{-31 m^{2}-82 m-39}\right\} \\
\left\{x+\frac{m+3}{4(m+2)}+\frac{1}{4(m+2)} \sqrt{-31 m^{2}-82 m-39}\right\}
\end{gathered}
$$

4. The roots are equal if $m=\frac{5 \pm 2 \sqrt{-5}}{10}$; the roots are real for all real values of $m$; one root becomes infinitely great if $m \doteq 2$; one root becomes zero if $m \doteq 0$; the factors are

$$
\begin{gathered}
(m-2)\left\{\log x-\frac{2 m+3}{2(m-2)}-\frac{1}{2(m-2)} \sqrt{20 m^{2}-20 m+9}\right\} \\
\left\{\log x-\frac{2 m+3}{2(m-2)}+\frac{1}{2(m-2)} \sqrt{20 m^{2}-20 m+9}\right\}
\end{gathered}
$$

6. Real and equal ; imaginary.
7. (1) $x=\frac{6}{3}, y=1 \frac{1}{1}$;
(2) $y=-\frac{4}{3}, z=\frac{4}{6}$; (3) $x=\frac{3 \pm \sqrt{9+12 c}}{6}+\frac{c}{3}$,

$$
y=\frac{3 \pm \sqrt{9+12 c}}{2}
$$

(4) $x=-3 \pm \sqrt{14}, y=\sqrt{-6(3 \pm \sqrt{14})}$;
(5) $x=0$ or $-\frac{2 a^{8} b}{b^{2}+a^{4}}, y=b$ or $\frac{b\left(b^{2}-a^{4}\right)}{b^{2}+a^{4}}$;
(B) $x= \pm 4, y=0$.

8, 9. (1) $b= \pm a \sqrt{37}$;
(2) $b=\frac{1}{m}$;
(3) $b= \pm 2 \sqrt{29}$.

## Page 19. Art. 16.

1. $15^{\circ}=\frac{\pi}{12}^{(r)}=0.2018(r)$ approximately; $60^{\circ}=\frac{\pi}{3}^{(r)}=1.0472(r)$ approximately; etc.
2. $\left(\frac{\pi}{4}\right)^{(r)}=45^{\circ} ;\left(\frac{3 \pi}{5}\right)^{(r)}=108^{\circ} ;\left(\frac{1}{4}\right)^{(r)}=14^{\circ}+19^{\prime}+26.2^{\prime \prime}$; etc.
3. $\sin \theta= \pm \frac{3}{\sqrt{10}}, \cos \theta= \pm \frac{1}{\sqrt{10}}, \cot \theta=\frac{1}{3}, \sec \theta= \pm \sqrt{10}, \csc \theta= \pm \frac{\sqrt{10}}{3}$; $\sin x= \pm \frac{1}{\sqrt{2}}, \cos x=-\frac{1}{\sqrt{2}}, \tan x=\mp 1, \cot x=\mp 1, \csc x= \pm \sqrt{2} ;$ etc.
4. $\sin 30^{\circ}=\frac{1}{2}, \cos 30^{\circ}=\frac{1}{2} \sqrt{3}$, etc. ; $\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}$, etc. $; \sin 60^{\circ}=$ $\cos 30^{\circ}=\frac{1}{2} \sqrt{3}, \cos 60^{\circ}=\frac{1}{2}$, etc. $; \sin 90^{\circ}=1, \cos 90^{\circ}=0$, etc. $; \sin 135^{\circ}=$ $\frac{1}{\sqrt{2}}, \cos 135^{\circ}=-\frac{1}{\sqrt{2}}$, etc. $; \sin \left(-45^{\circ}\right)=-\frac{1}{\sqrt{2}}, \cos \left(-45^{\circ}\right)=\frac{1}{\sqrt{2}}$, etc.
5. $\tan 3500^{\circ}=\tan 80^{\circ}=\cot 10^{\circ} ;-\operatorname{ces} 800^{\circ}=\cos \% 0^{\circ}=\sec 20^{\circ} ; \operatorname{sta}\left(-840^{\circ}\right)=$ $-\sin \theta^{\prime} ;-\cos \frac{11 \pi}{6}=-\cos \frac{\pi}{3} ; \cot \left(-1215^{\circ}\right)=\cot 45^{\circ}$.
6. (1) $\sin \theta=-\operatorname{con} 910^{\circ}=\operatorname{con} 50^{\circ}=\sin \theta 0^{\circ}$, hence one value of $\theta$ is $60^{\circ}$; (2) $0=30^{\circ} ;(3) x=00^{\circ} ;(1) x= \pm 30^{\circ}$.

Page 23. Art. 17.

1. 1, 3.
2. $1,0, \frac{1}{3}$.
3. $\frac{8}{\sqrt{13}}, \frac{18}{\sqrt{18}}$.
4. $\frac{a}{\sqrt{3}}$ if a th the eigo of the cube. 8. H, 15 atna .
5. Cstac. 7. 0 .

## Pago 28. Ast. 22.

3. Point of intersection is $(0,0)$; znideflo point is $(0,0)$.
4. On the axin of abscinsas ( $x$-axis); on the axis of ondinates ( $y$-axis); on the line bisecting the ist and $8 \mathrm{~S}_{\mathrm{d}}$ angles formed by the coorrilnate axes ; on the line bisecting the $2 d$ and 4 th angles formed by the cobrdinate axea.
5. $y=0, x=0, x-y=0, x+y=0$.
6. $\left(-\frac{1}{2}, 0\right),(1,0)$, and $(0,1 \sqrt{3}) ;(0,0),(5,0)$, and $(0,8)$.
7. $\left(\frac{1}{2}, 0\right),(0,1 \sqrt{2}),(-1 \sqrt{2}, 0)$, and $\left(0,-\frac{1}{2}\right) ;(0,0),(0,5)$, $(6 \sqrt{2}, 0)$, and $(5 \sqrt{2},-5)$.
8. $(3,51)$.
9. $\sqrt{a^{3}+b^{3}} ; \sqrt{a^{2}+b^{3}}$ 。

## Page 30. Art. 23.

3. $\left(5,0^{\circ}\right),\left(5,60^{\circ}\right)$.
4. $\left(-2, \frac{6 \pi}{4}\right),\left(-2, \frac{-8 \pi}{4}\right),\left(2, \frac{-7 \pi}{4}\right),\left(3,255^{\circ}\right)$, $\left(3,-100^{\circ}\right), \quad\left(-3,-28 j^{\circ}\right) ;\left(6,300^{\circ}\right),\left(6,-360^{\circ}\right),\left(6,-0^{\circ}\right) ;\left(0,240^{\circ}\right)$, $\left(0,-120^{\circ}\right),\left(0,-300^{\circ}\right)$.
5. On circumference of a circle of radius 7 and center at the pole; mame circle; on the Itne through the pole making an angle of $95^{\circ}$ with the tuttial line ; on the initial line; on the initial line.
6. $p=7 ; p=-7 ; \theta=95^{\circ} ; \theta=0(0) ; \theta=-180^{\circ}$.
7. Parallel to the intulal line.

Pago 33. Art. 27.

1. $\sqrt{17}, \sqrt{167}, \sqrt{74}$.
2. $\sqrt{21}, \sqrt{223}, \sqrt{100}$.
3. $\sqrt{(b-c)^{2}+(a-b)^{2}}, 2 \sqrt{a^{2}+b^{2}}$.
4. $\sqrt{18-12 \cos \frac{7 \pi}{12}}, \sqrt{10}, \sqrt{6-4 \cos \frac{18 \pi}{12}}$.
5. 8 or -10 .
6. $\sqrt{(x+2)^{2}+(y-3)^{2}}=8$, 8.e. $x^{2}+y^{2}+4 x-6 y+1=0 ; x^{2}+y^{2}=0$.
7. $18 x+4 y=61$.
8. $1 ; f^{3} ;-1 ;-8$

Page 37. Art. 29.

1. (1) 4 ; (2) $18 \frac{1}{2}$; (3) 73 .
2. Yes.
3. Yes.
4. $\frac{\pi^{2}}{4}$.
5. $2 \sqrt{3}, 278 \sqrt{3}$

Page 39. Art. 30.
3. $\left(\frac{3}{3}, 0\right)$ and $\left(\frac{3}{3}, 2\right)$.
6. $\left(\frac{3}{3}, \frac{32}{3}\right)$ and $(-1,1)$.
7. $C \equiv(8,0)$.

## Pages 41, 42. Examples on Chapter II.

1. $56 \frac{1}{2}$.
2. alt. is $12 \sqrt{2}$, base is $4 \sqrt{2}$, sides are $2 \sqrt{74}$, area is 48 .
3. $\left(5,-\frac{9}{7}\right) ;(8,21) ;(-7,-24)$.
4. $(7,9)$.
5. $\frac{2}{} \sqrt{1237}$.
6. $14-\frac{38}{4} \sqrt{3} ; \sqrt{19}+\sqrt{89}+\sqrt{73-24 \sqrt{3}}$.
7. Slopes are : $1, \frac{1+\sqrt{3}}{1-\sqrt{3}}, \frac{1-\sqrt{3}}{1+\sqrt{3}}$.
8. $\sqrt{(h+1)^{2}+(k-1)^{2}}=\sqrt{(h-1)^{2}+(k-2)^{2}}$, i.e. $4 h+2 k=3 ; k=0$.
9. $(1,-11),(-11,5)$ or $(13,-1)$.
10. $\left(3,-\frac{1}{3}\right)$
11. $\left(\frac{4 x_{1}+x_{2}}{5}, \frac{4 y_{1}+y_{2}}{5}\right),\left(\frac{3 x_{1}+2 x_{2}}{5}, \frac{3 y_{1}+2 y_{2}}{5}\right)$, etc.
12. $3 \sqrt{10+3 \sqrt{3}}+6 \sqrt{2+\sqrt{3}}+3 \sqrt{2-\sqrt{3}}$.
13. $\left( \pm \frac{7}{5}, \mp \mathcal{y}_{5}^{4} \sqrt{5}\right)$.

Pages 53, 54. Art. 39.

1. (\%, है).
2. $(3,0)$.
3. $(0,2),\left(-\frac{f}{3},-\frac{f}{3}\right)$.
4. $\left(2 \sqrt{-\frac{3}{2 T}}, 5 \sqrt{-\frac{3}{2 K}}\right)\left(-2 \sqrt{-\frac{5}{21}},-5 \sqrt{-\frac{3}{2 Y}}\right)$.
5. Two of the four points are : $\left(\frac{ \pm \sqrt{6}(1+\sqrt{2})}{2}, \frac{ \pm \sqrt{6}(1-\sqrt{2})}{2}\right)$.
6. $(0,-a),\left(-\frac{3 a}{5}, \frac{4 a}{5}\right)$.
7. $(0,0),(4 p, 4 p)$.
8. $\left(\frac{a}{a^{2}+b^{2}}\left[2 a^{2} \pm b \sqrt{b^{2}-3 a^{2}}\right], \frac{a b}{a^{2}+b^{2}}\left[2 b \mp \sqrt{b^{2}-3 a^{2}}\right]\right)$.
9. $( \pm \sqrt{11}, \pm \sqrt{5})$.
10. $(-1 \pm 2 \sqrt{-2}, 2 \pm 2 \sqrt{-2})$.
11. $\left(\rho=6, \theta=\cos ^{-1} \frac{2}{3}\right)$.
12. $\rho$ and $\theta$ of the points of intersection satisfy the equations:

$$
\rho^{2} \sqrt{2}=9\left(1+\sqrt{\rho^{2}-1}\right) \text { and } \theta=\sin ^{-1}\left(\frac{1}{\rho}\right)
$$

Page 56. Art. 40.

1. The two axes, i.e. the loci of $y=0$ and $x=0$.
2. The loci of $\frac{x}{2}+\frac{y}{3}=0$ and $\frac{x}{2}-\frac{y}{3}=0$.
3. $x=0$ and $8 x+2 y=\%$
4. $x=0, y=0$, and $5 y-2 x=0$.
5. $x-1=0$ and $x-1=0$.
6. $x^{2}+y^{2}=4, y+2 x=0$, and $y-2 x=0$.

## Page 58 Art. 41.

2. (a) $x^{3}+y^{3}-2+4\left(x^{2}+2 x+y^{3}\right)=0$;
( $\beta$ ) $y-\sin z+k(y-2 \cos z)=0$.
3. (a) $x^{3}-4 y+1\left(y^{3}-4 x\right)=0$;
( $\beta$ ) $p-2 \cos \theta+26 \cos \theta-1)=0$.

## Pager 59, 60. Examples on Chapter III.

1. The first two are not ; the third in 2. Yen $3 . \geq 3 ; \pm \sqrt{26-s^{6}}$.
2. This curve cuts the $x$-axis in the pointes $(2,0)$ and $(8,0)$; it cuts the $y$-axie th the proint ( 0,9 ).
3. The $z$-lintercepter are $\pm 3$, and the $y$-Interopper are $\pm 4$.
4. The $x$-linterceptes are $-3 \pm 2 \sqrt{3}$, and the $y$-intercepts ane $2 \pm \sqrt{7}$.
5. ( 0,0 ).
6. $( \pm a, 0)$.
7. The four polnts are: $( \pm \sqrt{10}, \pm \mid \sqrt{6})$; the lengthe of the sides are: $2 \sqrt{10}$ and $8 \sqrt{6}$; and the lengthe of the diagomals are $\sqrt{0 .}$
8. $12 a^{2}$.
9. $\|_{1} \sqrt{13}$.
10. Ye.
11. Yes

14 For $m^{2}>833$.
15. $\left\{\begin{array}{l}\text { Distinet points if } b<1 . \\ \text { Colneldent potits if } b=1 \text {. } \\ \text { lmaginary polnts if } b>1 .\end{array}\right.$
16. $c= \pm 6 \sqrt{6}$.
17. $z^{2}+y^{2}-25+k\left(y^{3}-4 x\right)=0$.
8. $(3 x-2 y+12)\left(y^{2}-4 x\right)\left(x^{2}+y^{2}-a^{2}\right)=0$.
29. $(5,0)$ and $(-5,0)$.

## Page 65. Art. 45.

1. $4 x-6 y+31=0 ; 3 x-6 y+31=0$; the origin ts on the postive side of each of these linea.
2. $3 x-2 y=0$; through the origin; yea
3. $x-y=12 ; x+y+2=0$.
4. $x+\sqrt{8} y+2 \sqrt{8}+6=0$
a. $x^{2} \pm 10 x+y^{2}=0$; outside.

## Page 67 Art. 47.

1. $x^{2}-10 x+y^{2}+9=0$.
2. $18 x+4 y=01$.
3. $x^{2}+4 x+y^{2}-6 y+4=0$.
4. $y^{8}=8(x-2)$.
5. $8 x^{2}+4 y^{2}=30$.
6. $4 y^{2}-x^{2}=$.

## Pages 79, 80. Examples on Cbapter IV.

$14 x+\dot{y}=11, x-y=0$, and $8 x+y=21$.
2. $x-y=1, x+y=8, y-x=8$, and $z+y+1=0$.
3. Center is at $(0,1)$, radius in 2 , eq. of circle is $x^{2}+y^{2}-2 y=\&$.

1. (x) $x+y=0$; ( $\beta$ ) $6 x+8 y=60$; (y) $x-y=0$ 。
2. $y=1 x+6$, i.e. $2 y-3 z=12 \quad$ 6. $y^{2}=4$.

7 $04 x^{2}+98 y^{2}+24 x y-380 z-840 y+785=0$.
8. $5 x^{2}-3 y^{2}-6 x y-10 x+50 y-31=0$.
9. $y^{4}=9 x^{2}$.
10. $(x-a)^{2}+y^{3}=4 y$.
11. $x^{2}-3 y^{2}=0$.
12. $6 z-2 y=16$
13. $2 x^{2}+2 y^{2}-10 x-10 y+25=0$.
14. $6 a x+2 b x=b^{2}-a^{2}$.
15. $6 x-4 y=20$.
16. $16 x-2 y=9 ; 10 x-8 y+21=0$; (1ㄱ, 71).
17. $6 x-3 y+14=0$.
18. $5 x+4 y+24=0$, or $5 x+4 y-26=0$.
19. $\rho=\tan \theta$.

Page 84. Art. 52.
2. (a) $x+y=7$;
(阝) $y+3 x=13$; ( $\gamma$ ) $3 x+2 y+16=0$;
(8) $169 y$
$-20 x+177=0$.
3. (a) $\frac{x}{4}+\frac{y}{7}=1$;
( $\beta$ ) $\frac{y}{5}-\frac{x}{3}=1$;
(r) $\frac{3 x}{4}-2 y=1$
(8) $\frac{y}{3 a}-\frac{2 x}{a}=1$.
6. Yes.
7. Yes.
8. No ; this point and the origin are on opposite sides of the line.
9. $\left(\frac{-13}{11}, \frac{-13}{4}\right)$.
10. Equations of the sides are $\cdot\left\{\begin{array}{c}4 x+y=11, \\ 9 x+y=21, \\ x-y=9 .\end{array}\right.$

Equations of the medians are : $\left\{\begin{array}{r}7 x=3, \\ 7 x+3 y=13, \\ 17 x+3 y=43 .\end{array}\right.$
Medians intersect in the point $\left(3, \frac{-8}{3}\right)$.
11. $-\frac{13}{6}$.
12. $3 x-y=0,3 x-4 y=0$.

## Pages 85, 86. Art. 53.

4. $y=\frac{x}{\sqrt{3}}+7+\sqrt{3} ; \quad y=-\frac{x}{\sqrt{3}}+7-\sqrt{3} ; \quad y=-\sqrt{3} x+7-3 \sqrt{3} ;$ $y=\frac{x}{\sqrt{3}}+7+\sqrt{3}$.
5. (a) $y=3 x+8$;
( $\beta$ ) $y=\frac{x}{2}-3$; ( ( $\left.\gamma\right) y=-2 x-\frac{4}{4}$.
6. -41 .
7. $-\frac{8}{3}$.
8. Yes.
9. They differ in their $y$-intercepts, but have the same slope.
10. The $y$-intercept.
11. $\frac{y_{2}-y_{1}}{x_{2}-x_{1}} ;-\frac{b}{a}$.

Page 88. Art. 55.

1. $x+\sqrt{3} y=10$.
2. $x \sqrt{3}+y=6$.
3. $1+\frac{7}{2} \sqrt{3}$.
4. $x+y+7=0$.

Pages 96, 97. Art. 60.

1. ( ) $\frac{x}{-4}+\frac{y}{6}=1$; ( $\beta$ ) $\frac{x}{-1}+\frac{y}{-1}=1$; ( $\gamma$ ) $\frac{x}{-3}+\frac{y}{5}=1$; ( () $\frac{x}{20}+\frac{y}{-2}=1$.
2. (a) $y=x+4$; ( $\beta$ ) $y=-\frac{1}{2} x-3$; ( $\gamma$ ) $y=-3 x-2$.
3. (a) $x \frac{4}{8}+y=3$; ( $\beta$ ) $x\left(-\frac{8}{8}\right)+y \frac{1}{3}=3$; ( $\gamma$ ) $-\frac{5 x}{\sqrt{34}}-\frac{3 y}{\sqrt{34}}=\frac{5}{\sqrt{34}}$ () $-\frac{2 x}{\sqrt{13}}+\frac{3 y}{\sqrt{13}}=\frac{15}{\sqrt{13}}$.
4. Slope in -5 ; diatance trom origiti in $\frac{8}{\sqrt{10}}$.
5. $x+y=11 ; p=\frac{11}{\sqrt{2}}$.
6. 2. 
1. $a=-2 y, b=4: a=0, b=0$.
2. A syatem of parallol lines of alope 0.
3. All the lines paning through the groint $(0,0)$.
4. All the tangents to the circle of rallum 6 , and center at the origin.
5. (a) $\cos a=\frac{-m}{\sqrt{1+m^{2}}}, \sin a=\frac{1}{\sqrt{1+m}}$;
( $\beta$ ) $\cos a=\frac{b}{\sqrt{a^{2}+b^{2}}}, \sin a=\frac{a}{\sqrt{a^{2}+b^{2}}} ;$
(v) $\cos a=\frac{2}{\sqrt{13}}, \sin a=\frac{-8}{\sqrt{13}} ;$
(8) $\cos a=\frac{-7}{\sqrt{74}}, \sin a=\frac{8}{\sqrt{i 4}}$
6. (a) second; ( $\beta$ ) third: ( $\gamma$ ) fourth.
7.     - if ; su.
8. $4:-1:-12$.
9. I and - 3 .
10. $\frac{7}{6 \sqrt{2}}$ and $\frac{-1}{6 \sqrt{2}}$.

Page 98. Art. 61.

1. +1 .
2. +13 .
3. 0 .
4. $\frac{-2 a b}{b^{2}-a^{3}}$
5. $\frac{-b \sin a+a \cos a}{b \cos a+a \sin a}$.

## Page 101. Art. 62.

1. (a) $y=6 x+k$;
( $\beta$ ) $3 x-i y=k$;
(y) $x \cos 30^{\circ}+y \sin 30^{\circ}=k ;$
(8) $\frac{x}{2}-\frac{y}{3}=k$, where $k$ may have any value whatever.
2. If; - If ; fo ; from the second line to the first in each case.
3. (a) $x+6 y=b ; \quad$ (阝) $7 x+3 y=b ; \quad$ (久) $x \sin 30^{\circ}-y \cos 30^{\circ}=b$;
(8) $2 x+3 y=b$.
4. $6 x-y+65=0$.
5. $A x+B y=A x_{1}+B y_{1}$.
6. $y=2 x-9$.
7. $x+2 y+3=0$.
8. $125 z-116 y=0$.
9. $86 x-190 y+45=0$.
10. $\left(\frac{6}{37^{\circ}}, \frac{-i}{3 i}\right)$.

Pages 103. 104. Art. 63.

1. $x+6 y=45,6 x-y=1 \%$. 8. $y=i x+6$. 4. $y=\frac{12 \sqrt{3}+6}{6 \sqrt{3}-12} x+6$.
2. $y-3=\frac{2+\sqrt{3}}{2 \sqrt{3}-1}(x-1), y-3=\frac{\sqrt{3}-2}{2 \sqrt{3}+1}(x-1) \quad$ 6. $z=0 ; y=0$.
3. $\left(y-\frac{b}{2}\right)=\frac{2 a b}{b^{2}-a^{2}}\left(z-\frac{a}{2}\right)$. 8. $x+2 y=14$ or $z-2 y+6=0$.
4. $y=2 x-10,5 x-3 y=10, x-y+1=0$. 12. $16 x-8 y=4$.
5. (1) $3 x-2 y+8=0$;
(2) $\because x+3 y=11$;
(3) $(2 \sqrt{3}-3) x+(3 \sqrt{3}+2) y=11 \sqrt{3}+8 ;$ (1) $y=3$.
6. Yes; $\tan ^{-1} y, \tan ^{-1} y, \tan ^{-1}\{f$.
7. $\tan ^{-1}\left(\frac{1}{6}\right), \tan ^{-1}\left(\frac{1}{3}\right), \tan ^{-1}\left(-\frac{1}{f}\right)$.
8. Parallel if $b=0$; perpendicular if $1^{2}=a^{2}+1$.
9. Distance between lines is $\frac{12}{\sqrt{10}}$.
10. $\frac{5}{2 \sqrt{34}}$.
11. $\frac{25}{\sqrt{629}}$.
12. They make numerically equal but opposite angles with the $x$-axis.
13. $\tan ^{-1}\left(-\frac{8 t}{8}\right) ; 7 y=9 x-1,7 x+9 y=73$.
14. $45^{\circ} ;(-5,3) ; 2 x=y+8, x=3 y+9$.

Pages 107, 108. Art. 64.
2. $\frac{20}{\sqrt{41}}$.
3. 0 .
4. $\frac{a b}{\sqrt{a^{2}+b^{2}}}$
5. 21.
B. $-\frac{24}{\sqrt{5}}$.
7. $\frac{31}{\sqrt{58}}$
8. $\frac{7}{\sqrt{29}} ; \frac{-C}{\sqrt{A^{2}+B^{2}}}$.
9. $\frac{-49}{\sqrt{58}}$.
10. $\frac{y_{1}-m x_{1}-b}{\sqrt{1+m^{2}}}$.
11. Altitudes are: $\frac{2}{\sqrt{34}}, \frac{1}{\sqrt{5}}$, and $\sqrt{2}$; the area is 1 .
18. $\frac{2 x_{1}-y_{1}-11}{\sqrt{5}}= \pm \frac{4 x_{1}-3 y_{1}-5}{5}$.
14. $x-y=12$, and $7 x+7 y=86$.

Page 110. Art. 65.

1. $\frac{x-y+6}{\sqrt{2}}= \pm \frac{3 x-10 y+10}{\sqrt{109}}$ 2. Other bisector is $21 x-77 y+61=0$.
2. $\phi_{1}=\tan ^{-1}\left(\frac{3 b-a}{b+3 a}\right) ; \phi_{2}=\tan ^{-1}\left(\frac{2 a-b}{a+2 b}\right)$;

$$
a=\frac{38 \pm 15 \sqrt{2}}{142}, b=\frac{16 \pm 25 \sqrt{2}}{142}
$$

## Page 114. Art. 67.

1. $3 y+x+6=0,2 y-x+6=0$; $\left(\frac{3}{3},-\frac{12}{\gamma}\right) ; 45^{\circ}$.
2. $x-3 y+1=0, x+y+1=0$; ( $-1,0$ ); $\tan ^{-1} 2$.
3. $x-y(\sec a+\tan \alpha)=0, x-y(\sec a-\tan a)=0 ;(0,0) ; a$.
4. $x+3 y+5=0, x+3 y-1=0$; lines are parallel.
5. $k=\frac{y}{2}$ or $\frac{12 \pi}{28}$; the lines corresponding to $k=\frac{4 \pi}{2}$ are $3 x+4 y+5=0$, $2 x+3 y+4=0$, and the angle between them is $\tan ^{-1}\left(\frac{1}{18}\right)$, their point of intersection is ( $1,-2$ ).
6. For $k=28$ this equation represents a pair of imaginary lines.
7. $k=4$; the two lines coincide, the equation is $(2 x-3 y-1)^{2}=0$.
8. $6 x-5 y+14=0$ and $6 x+5 y=56$.
9. Real if $B^{2}-A C>0$; imaginary if $B^{2}-A C<0$; coincident if $B^{2}=A C$; perpendicular if $A+C=0$.

## Page 117. Art 68

1. $\tan \theta=\{\sqrt{3}$.
2. $\tan \theta_{1}=\frac{i}{i-8 \sqrt{2}}, \tan C_{2}=\frac{1}{1-\sqrt{2}}$
3. $\tan \phi=\frac{2 \sqrt{y}}{6 \sqrt{2}-10}$.
4. Thi vericees are: $(2 \sqrt{8}, 0),(0,2 \sqrt{8}),(-2 \sqrt{3},-2 \sqrt{3})$; and the equis tions of the sides are: $x+y=2 \sqrt{3}, 2 x-y+2 \sqrt{8}=0, x-2 y=2 \sqrt{3}$.

## Page 119. Ast. 69.

2. $\rho \sin \theta= \pm 3 ; \rho \cos \theta= \pm 3$.
3. $P\{(6+2 \sqrt{2}) \cos \theta+6 \sin \theta\}=10$.
4. $\rho \sin (\phi-\theta)=\rho_{1} \operatorname{din}\left(\phi-\theta_{1}\right)$.
5. $\left(p_{1}, a_{1}\right)=\left(2 a, \frac{y}{g}\right)$.

## Pages 119-122. Examples on Chapter V.

1. The thind vertex is $(1 \pm 2 \sqrt{3}, \pm 2 \sqrt{3})$; equations of the two aides are : $(1 \pm \sqrt{3}) y+(1 \mp \sqrt{3}) x-1 \mp 3 \sqrt{3}=0$, and $(1 \pm \sqrt{3}) x+(1 \mp \sqrt{3}) y-1 \mp 6 \sqrt{3}=0$.
2. The aren is 18 and the fourth vertex is at any one of the following points : $(3,-5),(i, 1),(-1, i)$.
3. $3 y-4 x=9$, and $y-3=0$.
4. $y=3 x$.
5. $23 x+23 y=11$.
6. $y=(2 \pm \sqrt{3}) x \mp \sqrt{3}$.
7. $9 x-7 y=1$, or $7 x+9 y=73$.
8. If the base be chosen as $x$-axia, and lis uilddle pelut as origla, then the equation of the locus of the vertex is ax $-\alpha=0$.
9. $2 x-6 y+i=0, x-y=1 ; 1: 1: 1$.
10. $(: \sqrt{10}-3 \sqrt{33}) x+(\sqrt{63}-2 \sqrt{10}) y+11 \sqrt{63}+\sqrt{10}=6 \sqrt{500}$.
11. $f \sqrt{33}(y-3 x+11)=3 \sqrt{10}(7 x-2 y+1)$.
12. $x+y=6 \sqrt{630} ; 4 x-3 y=0$.
13. $\left(\frac{3 i 3}{20}, \frac{148}{20}\right),\left(\frac{-60}{20}, \frac{-84}{20}\right)$.
14. $x+y=2 a$, or $x+y=4 a$.
15. $\left(p_{1}, \theta_{1}\right)=\left(2 a, \frac{\pi}{2}\right), p=\infty$, in the first line for $\theta=n=($ where $n=0,1,2, \ldots)$, In the second line for

$$
\theta=\frac{n \pi}{2}+\frac{\pi}{6}(\text { where } n= \pm 1, \pm 3, \pm \delta, \ldots) ;
$$

the first line is parallel to the polar axis, the second line makees an angle of $60^{\circ}$ with the polar axin ; the lines make an angle of $60^{\circ}$ with each other.
19. $y=\sqrt{3} x+8-\sqrt{3}$.
20. $8 x+3 y+4=0$.
21. $6 z+4 y=12$
22. Center is $\left(\frac{-1}{2}, \frac{-3}{2}\right)$, radius is $\frac{f}{2} \sqrt{2}$.
23. If the base $(=2 a)$ coincides with the $x$-axis, its middle point at the origin, and if $k \equiv$ the area of the triangle, then the locus of the vertex is $a y-k=0$.
25. $10 x=7$ (axes chosen as in Ex. 23).
26. (a) $x=0, y=0, x-y=0$; ( $\beta$ ) $7 x+y=0,2 x-y=0$; ( $\gamma$ ) $x=0, y=0$.
27. $c=-3$.
31. $x-4 y+8=0 ; 9 x-4 y=24$.
32. $25 x-14 y=120$.
33. $x=6$.
34. $x^{2}-y^{2}=0$.
35. $3 y-25 x=3,122 y-37 x=10,31 x+78 y=100$.
36. (a) $\left(\rho_{1}, \theta_{1}\right) \equiv\left(\frac{a}{\cos 15^{\circ}}, \frac{\pi}{4}\right) ;(\beta)\left(\rho_{1}, \theta_{1}\right) \equiv\left(\frac{a}{2} \sqrt{3}, \frac{\pi}{3}\right)$.
41. $\phi=\tan ^{-1}\left(\frac{2 \sqrt{H^{2}-A B}}{A+B}\right)$.

## Pages 125, 126. Art. 71.

1. $3 x-2 y=0$.
2. $x^{2}+y^{2}=31$.
3. $2 y^{2}-4 x^{2}+1=0$.
4. $y=3 x$ 。

Page 127. Art. 72.

1. $x^{2}+y^{2}=16$.
2. $x y=-8$.
3. $\sqrt{2} y+1=0$.
4. $9 x^{2}+25 y^{2}=225$.
5. $x^{2}-4 y^{2}=a^{2}$.

Page 128. Art. 73.

1. $4 x y=25$.
2. $x=x^{\prime}-\frac{y^{\prime}}{\sqrt{3}}, y=\frac{2 y^{\prime}}{\sqrt{3}} ; x^{\prime}=x+\frac{1}{2} y, y=\frac{\sqrt{3}}{2} y$.
3. $y=0, x=0$, and $\sqrt{2} x+9 y=3 \sqrt{10}$.

## Page 129. Art. 74.

2. $3 x^{2}+9 y^{2}=5 ; 12 x^{2}-18 x y+9 y^{2}=5$.

Page 131. Art. 76.

1. $\rho=a$.
2. $\rho \sin \theta-\cot \theta+2 a=0$.
3. $9 \cos 2 \theta=1$.
4. $\tan \theta=\tan \alpha$.
5. $\rho(\cos \theta+\sqrt{3} \sin \theta)=2$.
6. $\rho^{2} \cos 2 \theta=49$.
7. $x^{2}+y^{2}=a^{2}$.
8. $x^{2}-y^{2}=a^{2}$.
9. $x y=5$.
10. $\left(x^{2}+y^{2}\right)^{2}=2 a^{2} x y$.
11. $x^{2}+y^{2}=k x$.
12. $11 y=2 x$.
13. $y^{2}+4 k x=4 k^{2}$.

## Pages 132-134. Examples on Chapter VI.

1. $x y+7=0$.
2. $\sqrt{5} y^{2}+6 y=0$.
3. $y^{2}-x y=0$.
4. $y^{2}+x y+5 \sqrt{2} y=0$.
5. $(-2,2) . \quad$ 7. $x+y=0,2 x-3 y=0$.
6. $y=0$.
7. $\tan \theta=3$.
8. $\tan \theta=-\frac{A}{B} ; \tan \theta=\frac{B}{A}$.

13． $\tan \theta=$ 1．14．Any point on the tine $A x+B y+C=0$ ．16．$(1,1)$
16．＇The new origin may be any joint on the fuens of the given mepuation．
17． $8 x^{2}+y^{2}-1=0$ ．18 $x^{2}+6 x y+9 y^{2}+80 \sqrt{10} y=0$ ．
19．（（ ）$\left(x^{2}+y^{2}\right)^{2}=d^{8}\left(x^{2}-y^{2}\right) ;\left(\beta^{2}\right) x^{3}-y^{3}=d^{3} ;(\gamma)\left(x^{3}+y^{4}\right)^{3}=4 \Delta^{2} x^{2} y^{2}$ 。
20．$p^{3}=A^{3} \cos 2 \theta$ ．
21．$p=7 a \cos 0$ ．
22．$A=8$ ．
23．$x^{2}=16$ as
24． $2 x^{3}+2 y^{3}=96$ ．
25． $4 x^{3}-6 y^{2}=3$ ．
26．$x y=0$ ．
27． $2 x y+1 \%=0$ ．
28． $2 a \sin \theta \tan \theta=a$ ．
20．$\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}+8 x y-y^{3}\right)^{3}$ ．31．$p \cos (0-a)=p$ 。
Page 137．Art． 78.

8．$x^{2}+y^{2}-10 x+6 y+18=0$ ．
3．$x^{2}+y^{2}-6 x+6 y+9=0$ ．
5．$x^{3}+y^{2}+8 x+16=0$ ．

2． $4 x^{2}+4 y^{2}-16 y+i=0$ 。
4．$x^{2}+y^{2}=23$ ．
7．$\left\{\begin{array}{l}x^{2}+y^{2} \pm 2 h z=0 ; \\ x^{2}+y^{2}+2 h(z-y)+h^{2}=0 .\end{array}\right.$

Page 139．Art． 80.
1．$r=\sqrt{61} ;(2,4)$ ．
2．$r=\{\sqrt{62} ;(1,8)$ ．
3．$r m i \sqrt{5} ;(1,0)$ ．
4．$r=i ;(0\}$,$) ．$
8．$r=\frac{1}{2 a} \sqrt{b^{2}+c} ;\left(\frac{b}{2 a}, \frac{c}{2 a}\right)$ ．
6．$r=2 a ;(0,0)$ ．

7．A point circle ；Imaginary circle．8．$x^{3}+y^{4}-22 z-4 y+26=0$ ．
9．$(a+b)\left(x^{2}+y^{2}\right)-\left(a^{2}+b^{2}\right)(x+y)=0$ ．10． $2 x^{2}+2 y^{3}+6 x+0 y=11$ ．
11．$x^{2}+y^{2}-12 x+2 y+12=0$ ，or $x^{3}+y^{3}-14 x-12 y+00=0$ ．
12．$x^{2}+y^{2}-2 x-6 y+5=0$ ．
13．$x^{2}+y^{2}+2(5 \pm 2 \sqrt{8})(x-y)+(5 \pm 2 \sqrt{3})^{2}=0$ ．
14． $9\left(x^{2}+y^{2}\right)-42 x+47=0$ ，center is $\left.( \}, 0\right), r=\frac{\sqrt{2}}{8} ;$ or
$8\left(x^{2}+y^{2}\right)-48 x+8 y+i 8=0$ ，center is $(3,-1), r=\frac{\sqrt{2}}{4}$.

## Page 142．Art． 82.

1．$x+2 y \pm 2 \sqrt{6}=0$ ．
2． $8 y=8 x+2 \pm 2 \sqrt{2}$ ．
3．$y=2 x+13 \pm 6 \sqrt{6}$
4．$x \pm y= \pm r \sqrt{2}$ ．
8．$\left(-\frac{c}{\sqrt{2}}, \frac{c}{\sqrt{2}}\right)$ ．
6．$(-1,0)$ and $(0,-1)$ ．

7．$c=-30 \pm 20 \sqrt{6}$ ．
8． $1 \sqrt{10}$ ．
9．$(0,8)$ ．
10．$y=-8, y=\sqrt{3} x+6, y=-\sqrt{3} x+6$, area， $27 \sqrt{3}$ ，for one of the four iriangles．

## Pago 144．Art． 83.

1．$y=3 x \pm 4 \sqrt{10}$ ．
2．$x+2 y \pm 2 \sqrt{6}=0$ ．
3．$y=\sqrt{8} x \pm 6$ ．
4．$y=5 x \pm 5 \sqrt{20}$ ．
5．$x+y=2 \pm \sqrt{2}$ ．

## Pages 148，149．Art． 85.

2．（a） $3 x+4 y=25$ ；（B） $6 z-12 y=162$ ；（y） $3 x+y=10$ ；（（8） $2 x+y=0$ ．
3．（ब） $4 x=3 y$ ；（ß） $12 x+6 y+i=0$ ；（广）$x-8 y+7=0$ ；（（ ）$x-2 y=0$ ．
TAN．AN．GEON．－ 28
6. $y+4=0$.
6. $x+3 y=20 ; 31 x-27 y=260$.
7. $13 x^{2}+13 y^{2}-130 x-78 y+321=0$.
8. $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{r^{2}}$.
0. $\left(x-\frac{a+b-\sqrt{a^{2}+b^{2}}}{2}\right)^{2}+\left(y-\frac{a+b-\sqrt{a^{2}+b^{2}}}{2}\right)^{2}=\left(\frac{a+b-\sqrt{a^{2}+b^{2}}}{2}\right)^{2}$.
10. $\left(x_{1}, y_{1}\right)^{\circ} \equiv(2,6)$, or $\left.\equiv\left(\frac{1}{1} 3,-1\right)^{2}\right)$.

Page 151. Art. 87.

1. $28 \frac{3}{3} ;-20 \frac{2}{3} ; 11 \nmid \frac{1}{2} ;-4 \frac{1}{12}$.
2. 3 \&, 2 \} , 5,4 .
3. $\psi \sqrt{14}, \frac{-18}{7} \sqrt{7}, 5,-\sqrt{7}$.
4. $2 x^{2}+2 y^{2}=51 ;\left(-3, \pm \sqrt{y_{2}^{23}}\right)$.

Pages 155, 156. Art. 90.

1. (a) $2 \sqrt{35}$; ( $\beta$ ) $2 \sqrt{34}$.
2. (a) $x+2 y=14$; ( $\beta$ ) $\left(\frac{22 \mp 2 \sqrt{21}}{5}, \frac{24 \pm \sqrt{21}}{5}\right)$;
( $\gamma$ ) $(7 \mp 2 \sqrt{21}) x+(14 \pm \sqrt{21}) y=119 \mp 4 \sqrt{21}$.
3. $x=0,21 x+20 y=0 ; y-2=\frac{-11 \pm 2 \sqrt{118}}{3}(x-1)$.
4. $10 x-14 y=53$.
5. $(6,8)$.
6. $3 x+7 y=25 ; 3 x+2 y=25$.

## Page 158. Art. 93.

1. $3 x+4 y=7$.
2. $3 x-y=14$.
3. $(20,30)$; $(35 a, 35 b)$.
4. $4 x+7 y=65 ; 7 x-4 y=65,4 x+7 y=65$.
5. Pole is at infinity, in the direction $\theta=\tan ^{-1}\left(-\frac{1}{2}\right)$.

## Page 162. Art. 97.

1. $11 x+5 y+8=0$.
2. $\left(\frac{-94 \pm 10 \sqrt{65}}{73}, \frac{90 \mp 22 \sqrt{65}}{73}\right) ;$ 㳯 $\sqrt{65 \cdot 140}$.
3. $x-y=0 ; \frac{1}{\frac{1}{2}} \sqrt{2(a+b)^{2}-16 c}$.
4. $(-2,-1)$.
5. $y=3 ; 5 x=y+7 ; 4 x+y+1=0$.

Page 164. Art. 100.

1. $\rho^{2}-7 \sqrt{2} \rho(\sin \theta+\cos \theta)=51 ; \frac{7 \sqrt{2} \pm \sqrt{302}}{2}$.
2. $\rho^{2}-30 \rho \sin \theta+125=0 ; \sin ^{2} \theta=\frac{6}{6}$. 3. $\rho^{2}-12 \rho \sin \theta+27=0$; 6
3. $x^{2}+x y+y^{2}-7 x-8 y=6$.
4. $x^{2}+y^{2}-x y=4$.
5. $x^{2}+x y+y^{2}-a x-a y=0$.
6. $x^{2}+\sqrt{2} x y+y^{2}-2 \sqrt{2} a x-2 a y+a^{2}=0$.
7. $\tan ^{-1} 2 \sqrt{2} ; \tan ^{-1} \sqrt{19}$.

## Pagea 165-169. Examplos on Chapter VII.

1. $16 z^{2}+10 y^{3}-129 z+04 y=128 ;\left(48,-\frac{18}{3}\right) ;$ is $\sqrt{1805}$
2. ( $-a,-b$ ); this familly conntasta of all elreles of radius $\sqrt{a^{3}+b}$, and having thetr centeris on tie clrcle whome eypuation is $x^{3}+y^{3}=a^{3}+b^{2}$
3. $\sigma_{1}=\sigma_{20}$ and $F_{1}=F_{1} ; G_{1}^{3}+F_{1}^{3}-C_{1}=G_{3}{ }^{3}+F_{2}{ }^{3}-C_{2}$.
4. $D^{2}=E^{3}=4 A F^{2}$.
B. $2 x^{3}+2 y^{2}=13 z$.
5. $(2 \pm 3 \sqrt{-4},-8)$.
6. The circlew are:
 The radical axea are:
$8 x-2 y=85,4 z+3 y=9,8 x+14 y=1 ;$ radical center ( $481,-2 y^{3}$ ).
7. $x^{3}+y^{3}-2 x+y=16, \quad x^{2}+y^{2}-6 x+2 y=16, \quad x^{3}+y^{2}-10 x-6 y+27=0$; $4 x-y=0,4 x+7 y=42,4 x+3 y=21$; ( 46,24$)$.
8. $y_{1}\left(x^{2}+y^{2}\right)=y\left(x_{1}^{2}+y_{1}^{2}\right)$.
9. $3 x-6 y=3$.
10. $x^{2}+y^{2}-2 z-12 y+12=0$.
11. $x^{6}+y^{6}=8$.
12. $b y-a x=b^{3}, a x-b y=a^{2}, a z+b y=0$.
13. $(x-1)^{2}+(y-16)^{2}=74,(x-16)^{2}+(y-6)^{2}=74$.
14. $(3 x-14)^{2}+(3 y-4)^{2}=25 ; 3 x+6 y=17,3 x+y=15,3 z-3 y=8$.
15. $x^{3}+y^{2}=x_{1} x+y_{1} y$.
16. (1, 1).
17. $G_{2}: F_{1}:: G_{3}: F_{2}$
18. $2 x^{2}+2 y^{2}+40 z-85 y-3=0$.
19. $y=2, x=1,4 x-3 y=10,3 x+4 y=2$.
20. The rudical axis is $2 x+y=2$, the ratio is $8: 7$.
21. $\left(\frac{1}{d}, 2\right), 1 ;$ this point is the radical center.
22. $\left(r^{2}-1\right)\left(x^{2}+y^{2}\right)-2\left(G+a r^{2}\right) z-2\left(r+b r^{2}\right) y-C+r^{2}\left(a^{2}+b^{2}\right)=0$, where $r$ ts the given ratio and $(a, b)$ the fixed polnt. 27. $p=r(1+c i=9)$.
23. $\sqrt{4 r^{3}-2(a-b)^{1}} ; r=\frac{a-8}{\sqrt{2}}$.
24. $3 ;(1,2)$.
25. $u=30^{\circ} ; r^{2}=47-24 \sqrt{3}$. 31. $\left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right) ;\left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right) ;(3,0)$;
and for three other polnts in each case.
26. Equations of shlen of inscribel triangle ares $y+1=0, y= \pm \sqrt{3} x+2$; equations of sides of circumacribed triangle are: $y=2, y= \pm \sqrt{3} z-4$; and the lengths of the sidew are respectively $2 \sqrt{3}$ and $; \sqrt{3}$.
27. Compare Example 32.
28. Chonls are: $2 z+y=4$ and $2 x+y=4$. Sommals are: $4 z-3 y=83$ and $y=2$.
29. $x^{2}+y^{2}+2 x+4 y=18$, or $x^{2}+y^{2}-2 x-4 y+5=0$.
30. $x^{3}+y^{2}+4 x+4 y+2=0$.
31. $x^{3}+y^{2}=b^{3}-a^{2}$.
32. $\left(x-\frac{x_{1}}{2}\right)^{2}+\left(y-\frac{y_{1}}{2}\right)^{2}=\frac{a^{2}}{4}$, the fixed point being $\left(x_{1}, y_{1}\right)$.
33. $\left(x-\frac{x_{1}}{2}\right)^{2}+\left(y-\frac{y_{1}}{2}\right)^{2}=\frac{a^{2}}{4}$. $\quad$ 40. $5 x^{2}+5 y^{2}-50 x-46 y+22=0$.
34. No. 42. $x^{2}+y^{2}+10 x+10 y=35$, or $x^{2}+y^{2}-8 x-20 y+31=0$.
35. $2 x-3 y=13,2 y+3 x=0 ; y= \pm \sqrt{13} x+6, x=0$.
36. $y-3=\frac{49 \pm \sqrt{97}}{48}(x-2)$.
37. $45^{\circ}$.
38. Riquation of diameter is $5 x+4 y=1$, equation of chords $185 y=4 x+k$.
39. $x^{2}+y^{2}=r_{1}{ }^{2}+r_{2}{ }^{2}$.
40. The locus is the circle $\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=k^{2}\left[\left(x-x_{2}\right)^{2}+\left(y-y_{2}\right)^{2}\right]$.
41. The condition that these circles cut each other at right angles is $2 G_{1} G_{2}+2 F_{1} F_{2}=C_{1}+C_{2}$.

Page 175. Art. 106.

1. $25 x^{2}+30 x y+9 y^{2}+80 x-224 y+330=0$.
2. $x^{2}+4 x y+4 y^{2}-12 x+6 y-9=0$.
3. $y^{2}=12 x$.
4. $x^{2}=-12 y$.
5. $x^{2}+4 x+16 y=76$.
6. $y^{2}+8 y-12 x=8$.
7. $y^{2}=4 p(x-p)$.
8. $12 ; 12 ; 16 ; 12$.

Page 177. Art. 107.

1. $\left(\frac{-14}{5},-2\right) ;\left(\frac{-31}{20},-2\right) ; 5 ; 20 x+81=0 ; y+2=0$.
2. $(-2,5) ;\left(-2, \frac{24}{\gamma}\right) ; \frac{4}{3} ; 3 y=16 ; x+2=0$.
3. $\left(\frac{18}{1}, \frac{8}{8}\right) ;\left(\frac{-1}{18}, \frac{8}{8}\right) ; \frac{4}{3} ; 48 x=29 ; 6 y=5$.
4. $(-1,-1) ;(2,-1) ; 12 ; x+4=0 ; y+1=0$.

Page 178. Art. 108.

1. $y^{2}=-\frac{40}{\sqrt{34}} x$.
2. $y^{2}=-\frac{55}{\sqrt{53}} x$.
3. $y^{2}=\frac{2 a b}{\sqrt{a^{2}+b^{2}}} x$.

Pages 185, 186. Art. 112.

1. $7 x^{2}+2 x y+7 y^{2}+10 x-10 y+7=0$.
2. $8 x^{2}+9 y^{2}-18 x=81$.
3. $25 x^{2}+24 y^{2}=600$.
4. $\frac{x^{2}}{2}+\frac{y^{2}}{5}=1$; latus rectum $=\frac{4}{\sqrt{5}}$.
5. $3 x^{2}+5 y^{2}=32$.
6. $\frac{x^{2}}{81}+\frac{y^{2}}{72}=1$.
7. $\frac{x^{2}}{45}+\frac{y^{2}}{81}=1$.
8. $\frac{4 x^{2}}{81}+\frac{4 y^{2}}{45}=1$.
9. $\frac{x^{2}}{25}+\frac{y^{2}}{20}=1$.
10. $\frac{x^{2}}{81}+\frac{5 y^{2}}{144}=1$.
11. $\frac{(x-8)^{2}}{10}+\frac{(y+2)^{2}}{0}=1$; fool are : $(3 \pm \sqrt{7},-2)$.
12. $\frac{(x+8)^{2}}{f}+\frac{(y-1)^{3}}{25}=1$; foot are : $(-\bar{R}, 1 \pm \sqrt{21})$.
13. $\frac{83 x^{3}}{110}+\frac{(y-7)^{2}}{49}=1$; focl are: $(0 ; 7 \pm 7 \sqrt{11})$.
14. $\frac{\ln (x-1)^{3}}{45}+\frac{9(y+4)^{3}}{49}=1$; foct ane: $\left(1,-18 \pm \frac{\sqrt{640}}{18}\right)$.
15. A circle.

## Page 189. Art. 113.

1. $(1,1) ; a=\frac{1}{28}, b=\{\sqrt{85} ;(1 \pm 1 \sqrt{170}, 1) ;(1 \pm i \sqrt{235}, 1) ; i \sqrt{204}$
2. $(1,-1) ; b=1, a=2 ;(1,-1 \pm \sqrt{3}) ;(1,1),(1,-8) ; 1$.
3. $(-2,-2) ; a=7, b=\frac{7}{\sqrt{15}} ;\left(-2 \pm \frac{7}{7} \sqrt{910},-2\right) ;(-2 \pm 7,-2)$; H6.
4. $\frac{x^{2}}{13}+\frac{x^{2}}{13}=1 ; \frac{x^{2}}{1}+\frac{x^{2}}{4}=1 ; \frac{x^{2}}{49}+\frac{x^{2}}{11}=1$.

## Page 190. Art. 114.

1. $\frac{x^{3}}{18}+\frac{y^{3}}{y^{2}}=1$.
2. $\frac{x^{2}}{\frac{a^{2} b^{2}+n^{2}}{\left(a^{2}+b^{2}\right)\left(n^{2}-r^{2}\right)^{2}}}+\frac{y^{2}}{\frac{a^{2}+a^{2}}{\left(a^{2}+b^{3}\right)\left(n^{2}-r^{2}\right)}}=1$.

## Pages 196, 197. Art. 118.

1. $41 x^{2}-54 x y-31 y^{2}-428 x+46 y+361=0$.
2. $\frac{x^{2}}{25}-\frac{y^{2}}{9}=1$.
3. $\frac{x^{3}}{10}-\frac{94 y^{3}}{25}=1$.
4. $8\left(x^{2}-y^{3}\right)=25$.
5. $\frac{x^{8}}{a^{2}}-\frac{y^{2}}{3 a^{2}}=1$.
6. $\frac{(z-8)^{2}}{16}-\frac{(y+2)^{3}}{8}=1$.
7. $\frac{(x+3)^{2}}{4}-\frac{(y+4)^{2}}{30}=-1$.
8. $(3 \pm 6,-2)$, i: $(-3,-4 \pm 2 \sqrt{10})$, .
9. $\frac{x^{2}}{10}-\frac{x^{2}}{9}=1 ; \frac{x^{2}}{4}-\frac{x^{2}}{30}=-1 . \quad 10 .( \pm \sqrt{34}, 0) ;( \pm \sqrt{18}, 0) ;(0, \pm \sqrt{13})$.

## Pago 199. Art 119.

1. $\left(-2,-\frac{\}}{}\right) ; a=\mid \sqrt{6}, b=\{\sqrt{3} ;(-2 \pm 1 \sqrt{2},-1) ;(-2 \pm \mid \sqrt{6},-1) ; \mid \sqrt{6}$.
2. $(3,1) ; a=\frac{\sqrt{b 1}}{2}, b=\frac{\sqrt{2006}}{10} ;(6 \pm \sqrt{10} \sqrt{100}, 1) ;(6 \pm 1 \sqrt{81}, 1) ; 8 \sqrt{b 1}$.
3. $(1,-1) ; a=\sqrt{3}, b=3 ;(1,-1 \pm 2 \sqrt{3}) ;(1,-1 \pm \sqrt{3}) ; 6 \sqrt{3}$.
4. $\frac{x^{2}}{11}-\frac{x^{2}}{11}=1: \frac{x^{2}}{4}-\frac{x^{3}}{11}=1 ;-\frac{x^{2}}{9}+\frac{x^{2}}{3}=1$.

Pages 204, 205. Art. 123.

1. Yes.
2. $y=3 x-\frac{21}{2} \pm \frac{1}{2} \sqrt{4 B}$.
3. $\frac{x_{1} x}{a^{2}}+\frac{y_{1} y}{b^{2}}=1 ; \frac{y_{1} x}{b^{2}}-\frac{x_{1} y}{a^{2}}=x_{1} y_{1}\left(\frac{a^{2}-b^{2}}{a^{2} b^{2}}\right)$.
4. $\frac{x_{1} x}{a^{2}}-\frac{y_{1} y}{b^{2}}=1 ; \frac{y_{1} x}{b^{2}}+\frac{x_{1} y}{a^{2}}=x_{1} y_{1}\left(\frac{a^{2}+b^{2}}{a^{2} b^{2}}\right)$.
5. $x_{1} x=2 p\left(y+y_{1}-10\right) ; 2 p x+x_{1} y=x_{1}\left(2 p+y_{1}\right)$.
6. $3\left(x_{1}+4\right) x-5 y_{1} y+12 x_{1}=0 ; 5 y_{1} x+3\left(x_{1}+4\right) y=4 y_{1}\left(2 x_{1}+3\right)$.
7. $\left(2 x_{1}-3\right) x+10\left(y_{1}+1\right) y=3 x_{1}-10 y_{1}+8 ; 10\left(y_{1}+1\right) x-\left(2 x_{1}-3\right) y$ $=10 x_{1}+8 x_{1} y_{1}+3 y_{1}$.
8. $y_{1} y=2 p\left(x+x_{1}\right)$.
9. $\left(x_{1}-4\right) x+2\left(2 y_{1}+5\right) y=4 x_{1}-10 y_{1}$.
10. $y=1 ; x+2=0$.
11. $3 x+2 y=0 ; 2 x-3 y=0$.
12. $x+y+4=0 ; y=x+2$.
13. $x+\sqrt{3} y=4 ; y=\sqrt{3} x$.
14. $3 x-2 y=8 ; 2 x+3 y=1$.

Pages 208, 209. Art. 126.

1. Chord of contact : $2 x+y=1$; points of contact : $(-1,3),(-2,5)$; equations of tangents : $4 x+y+1=0, x+y=3$.
2. $x+4 y=27$; Yes.
3. $2 y+9 x=0 ; 2 y+3 x=0$.
4. $y-1=\left(-\frac{2}{5} \pm \frac{1}{10} \sqrt{102}\right)(x+1)$.
5. $y-2=\frac{6 \pm \sqrt{21}}{5}(x-3)$.
6. The four normals are : $y^{2}=0$ and $y= \pm \sqrt{5}(x-1)$.

Pages 212, 213. Art. 129.

1. $x-2 y=6$.
2. $x-2 y=6 ;(-4 \pm 2 \sqrt{15},-5 \pm \sqrt{15})$;
$(5 \mp 2 \sqrt{15}) x-(10 \mp 2 \sqrt{15}) y \pm 2 \sqrt{15}=0$.
3. $x-8 y+19=0$; yes.
4. $\tan ^{-1}\left( \pm \frac{8}{3}\right)$.
5. It is.
6. $x-3 y+9=0$.

## Pages 216-218. Examples on Chapter VIII.

1. $4 y= \pm \sqrt{10} x+4$.
2. $63 x+32 y=144 ; 63 x+32 y= \pm 12 \sqrt{505}$.
3. $y= \pm 2 \sqrt{7} ; x+p=0$.
4. $0 \cdot x+0 \cdot y+A B C-A F^{2}-B G^{2}=0$; cf. Art. 60, p. 95.
5. The foci: $( \pm 2 \sqrt{5}, 0)$.
6. The directrix $x=\frac{a}{e} ; x+m y=a e$; they are perpendicular to each other.
7. It is the tangent at the vertex.
8. The directrix.
9. The focus.
10. $x= \pm 3, y^{2}=0$.
11. At infinity ; at infinity.
12. $8 x^{3}+3 y^{4}-4 x-38=0$. An ellipec
13. $(0, \sqrt{57}),(\sqrt{3}+\sqrt{10},-3)$ and $(-\sqrt{8}-\sqrt{10},-8)$; or $(0,-\sqrt{68})$, $(\sqrt{3}+\sqrt{10}, 8)$ ant $(-\sqrt{8}-\sqrt{10}, 8)$.
14. $6 x-18 y+18=0 ; 6 x-18 y+1=0$.
15. Hyperbola ; $\left.\left.\left(\frac{-7}{2} \pm i \sqrt{2}, 0\right) ; x=-\right\} \pm 1 \sqrt{5} ;(-\}, 0\right) ;$ 1. \}; 1.
16. This equation may be writtens $-\frac{(x+1)^{2}}{11}+\frac{(y-1)^{4}}{11}=1$, which showns that it is an hyperbola ; that the center in at $(-1, f)$ : that the trassevesen axis is $2 \sqrt{f f}=f \sqrt{18}$ and in parallel to the $y$-axd, ete
17. Thats equation suay be written: $(x-2)^{2}=4 \cdot 1 \cdot(y+1)$, - a parabola.
18. Thls equation may be written: $\frac{(x-1)^{2}}{6}+\frac{(y+4)^{3}}{18}=1$, - an ellipere.
19. This equation may be written: $(2-y)(3 x+3 y-6)=0$, - a pais of lines.
20. An cllipno ; $\left(\frac{1 \pm \sqrt{3}}{4}, \frac{8+\sqrt{3}}{f}\right) ; z+y=1 \pm \sqrt{3} ;\left(\frac{8}{8} 1\right) ; \frac{1}{3}, \frac{1}{6}$; 1 $\sqrt{3}$. This question may be molved by assuming that the ficton in at $(h, k)$ and that the directrix $\ln l x+m y=1$, and then finding $A, k, l$, and $m$ by a comparison of equations ; cf. Arts 108 and 114.
21. $p=\frac{12}{1-2 \cos \theta}$

Page 224. Art. 137.
3. $y=\frac{1}{8} \sqrt{8} x+\sqrt{3} p_{0}$ and $y=-\frac{1}{3} x-\sqrt{8} p_{i} 1: 2$.
4. $16 x+4 y+p=0 ;\left(\frac{p}{10},-\frac{p}{2}\right)$ b. $2 y=(-1 \pm \sqrt{0})(x+1)+2$.
6. $2 x+2 y+6=0,2 x-2 y+6=0$; the directrix.
7. $4 y=3 x+12 ; 4 x+3 y=34$.
8. $2 x+2 y=0$.
9. $4 x-2 y+p=0 ; \sqrt{8} y=x+3 p$.
10. $x+y+p=0$.
11. $y^{3}=p(x-p)$.
12. $y^{2}=4 x$; \%
13. $12 ; 3 \sqrt{6}$.
14. $\left.y=3 x+1 ;\left(\frac{1}{2}, 2\right) ; f \sqrt{10} ;\right\}$.
13. $y^{2}=8 x$

Pages 229, 230. Art 138.

1. $y=\sqrt[2]{-2 x}-3(\sqrt[3]{-y}-1)$
2. $(-p, 0)$.

Pages 234, 235. Art. 141.

1. $2 y+7=0$.
2. $4 x+3 y=c$.
3. $x=-2$
4. $2 y^{2}=41 x$ 。
5. $x^{2}=24 y$ 。
6. $y=f$.
7. $(x, \infty)$.

## Рages 235, 236. Examples on Chapter IX.

1. $3 y^{2}=4 x$.
2. $y^{2}-2 x-8 y+10=0$.
3. $(y+7)^{2}=4(x-3)$.
4. $x^{2}-2 x-4 y+5=0$.
b. $(1,1) ; x-1=0$.
5. $y^{2}=4 p(x-p)$.
6. $y^{2}=4 p(x+p)$.
7. $y^{2}=-9 x$.
8. $y^{2}=8 x$.
9. $y=x ; x+y+p=0$.
10. $90^{\circ}$; $\tan ^{-1}\left(\frac{3}{8}\right)$.
11. $4 \rho^{2}$.
12. $y^{2}=p x$.
13. $y^{2}=2 p x$.
14. $k x=p$.
15. $y=k p$.
16. $y^{2}=4 p x+p^{2} k^{2}$.
17. A parabola whose focus is the given point and whose directrix is the given line.
18. $k y^{2}=p(1+k)^{2} x$, if $k$ is the given constant ratio. 23. $2 y=3 x-4$.
19. A parabola whose focus is the center of the given circle, and whose directrix is a line parallel to the given line and at a distance from it equal to the radius of the given circle.
20. If $m$ is the slope of the normal, these points are : $\left(p m^{2},-2 p m\right)$ and $\left\{\frac{p}{m^{2}}\left(m^{2}+2\right)^{2}, \frac{2 p}{m}\left(m^{2}+2\right)\right\}$, and the length is $\frac{4 p}{m^{2}}\left(1+m^{2}\right)^{\frac{8}{2}}$.
21. $x^{\frac{1}{2}} \pm y^{\frac{1}{2}}= \pm a^{\frac{1}{2}}$, where $a=4 \sqrt{2} p$.
22. $(p, 2 p)$; slope is 1 .

## Pages 241, 242. Art. 145.

4. $x=-\frac{9}{\sqrt{5}}$; the left-hand directrix.
5. $y=4$ or $2 y+3 x=17$.
6. Through the points for which $x=\frac{ \pm a^{2}}{\sqrt{a^{2}+b^{2}}}$.
7. $\sqrt{3} x+2 y=4 ; 4 x-2 \sqrt{3} y=3 \sqrt{3} ; \frac{4 \sqrt{3}}{3} ; \frac{3 \sqrt{3}}{4}$.
8. The points for which $x= \pm \frac{2}{2} \sqrt{\frac{5}{15}}$.
9. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.
10. $3 x+8 y=4 ; 2 x=3 y$.
11. $2 y=x \pm 6$.
12. $\frac{b^{4}}{a^{2}\left(1-e^{2} \cos ^{2} \theta\right)}$.
13. $4 y=3 x \pm 4 \sqrt{13} ; 4 \sqrt{73} y=3 \sqrt{73} x \pm 72$.
14. $\left(\frac{48}{5},-\frac{18}{5}\right) ; 7 \frac{1}{6}, 9 \frac{8}{3}$.
15. The points for which $x=\frac{ \pm a^{2}}{\sqrt{a^{2}+b^{2}}}$; the same.

Pages 258, 259. Art. 156.

1. $16 y=15 x$.
2. $3 x+5 y=0$.
3. (a) $u^{8} y+b^{8} x=0 ;(\beta) a y+b x=0$.
4. $4 y \pm 3 x=0$.
5. $5 \sqrt{2}$.
6. $\tan ^{-1} 2 ; 2 \sqrt{5} y+x=0$.
7. $2 y=x ; 3 x+2 y=0$.
8. $\sqrt{15}, \sqrt{13}$.
9. $a \sqrt{2} ; 45^{\circ}$.
10. $(-3,-\sqrt{3}) ; 210^{\circ}$.
11. $e x=a ; a e x=b^{2}$.
12. $(a e, 0) ;\left(\frac{e b^{2}}{a}, 0\right)$.

## Pages 262-264. Examples on Chapter $x$.

1. $(0, \pm i \sqrt{18}): y= \pm\left\{\sqrt{16} ; \frac{1}{2}\right.$

$$
\text { 2. } \frac{8-\sqrt{3}}{6}
$$

4. Onv of thene equationas los $y-\frac{b^{3}}{a}=\frac{1}{e}(z-a e)$. a. $2 x-8 y=0$.
5. $25 x^{3}+16 y^{3}-48 y=84$.
B. 24 .
6. $16 ; 2 \sqrt{6} ; 24 \mathrm{r}$.
7. If the generathig point divides the line in the ratio a: $b$, the equastion of the locus $\frac{x^{3}}{a^{2}}+\frac{v^{2}}{b^{2}}=1$.
8. $\frac{x^{2}}{\frac{a^{2}}{4}}+\frac{\left(y-\frac{b}{2}\right)^{2}}{\frac{b^{2}}{4}}=1$.
9. $\left(x^{3}+y^{2}\right)^{2}=a^{2} x^{3}+b y^{2}$.
10. It the base coincide with the $x$-axin, its middle point at the origin, the equation is $\varepsilon^{2} x^{2}+c^{2} y^{2}=a^{2} b^{2}$.
11. $x^{4}+y^{2}=17$.
12. $\left(a^{2}+b^{2}\right)\left(b^{2} x^{2}+a^{2} y^{2}\right)^{2}=a^{8} b^{2}\left(x^{2}+y^{4}\right)$.
13. $\left(y^{2}-x^{2}+a^{2}-b^{2}\right) \tan 2 a+2 x y=0$.
14. $2 x y=c\left(x^{3}-a^{2}\right)$.
15. $b x-a y \cot a=0$.
16. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=4$.
17. $\frac{x^{3}}{a^{3}}+\frac{y^{2}}{b^{2}}-\frac{h x}{a^{2}}-\frac{h y}{b^{3}}=0$.
18. $y= \pm \sqrt{\frac{b}{a}} x \pm \sqrt{b(a+b)}$.

Pages 271. 272. Art. 164.
8. $16 y^{2}-8 x^{2}=144 ;(0, \pm 6) ; y^{2}$.
4. $10 x-0 y=28 ; 9 x+16 y=100$; 1; \%
B. $27 x-64 y \mp 144=0$.
6. $\left( \pm \frac{a^{3}}{\sqrt{a^{2}-b^{2}}} \pm \frac{b^{2}}{\sqrt{a^{2}-b^{3}}}\right)$.
7. $2(\sqrt{13} \pm 1)$.
8. $\pm 6$.
9. $4 x \pm \sqrt{10} y \mp 2 \sqrt{10}=\Omega$
10. $y=\frac{15}{15}(15 \pm \sqrt{15}) x-\left(1 \pm \frac{6}{\sqrt{15}}\right)$.
11. The polar of one vertex is the tangent at the other.
14. $3 x^{2}-y^{2}=3 a^{2}$.
17. $\frac{1}{6}$; $a$.
18. $y= \pm\left(\frac{x}{\sqrt{3}}-7\right) ; \sqrt{3}(23-8 \sqrt{7})$; there are three octher solutions
19. 8 ; ; 1; 1; 1 .

Pages 277, 278 Art. 167.

1. $\left.y= \pm\left|x ; 2 \tan ^{-1}\right|=\tan ^{-1} 2\right\}$.
2. At infinity.
3. $6 x^{2}-4 y^{4}=3 a^{2} ; 6 x^{2}-4 y^{4}=0$
4. $0 x^{2}+8 x y-8 y^{2}-31 x-10 y+200=0$.
5. $6 x^{2}+3 x y-3 y^{2}-31 x-16 y-189=0$.
6. $2 x+y=0, x-y=1 ; 2 x^{2}-x y-y^{2}-2 x-y+6=0$.
7. $3 x+y+2=0, x+11 y=1$.
8. $9 x^{2}-16 y^{2}+30 x+160 y=220$.

Pages 283, 284. Art. 170.

1. $576 x y=625$.
2. $2 \sqrt{2}, 2 \sqrt{2} ; \sqrt{2} ;(2,2),(-2,-2)$.
3. $2 \sqrt{3}, 6 ; 2 ;(2 \sqrt{3}, 2 \sqrt{3}),(-2 \sqrt{3},-2 \sqrt{3}) ;(4 \sqrt{3}, 4 \sqrt{3}),(-4 \sqrt{3},-4 \sqrt{3})$.
4. $\tan ^{-1}\left(\frac{2 \sqrt{e^{2}-1}}{2-e^{2}}\right)$.

Page 287. Art. 172.

1. $16 y=3 x ; y=3 x$.
2. $y=x ; 16 y=9 x$.
3. $16 y=75 x$.
4. $8 x-3 y=20$.

## Pages 289-291. Examples on Chapter XI.

1. $x^{2}-3 y^{2}=16$.
2. $15 y=10 x ;\left(4, \frac{20}{\delta}\right),\left(-4,-\frac{20}{3}\right)$.
3. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{c^{2}-a^{2}}=1$, if the middle point of the base is the origin and the base of the triangle on the $x$-axis.
4. $2 x y=k\left(c^{2}-x^{2}\right)$, if $k$ is the constant and axes chosen as in Ex. 4.
5. $\sin ^{-1}\left(\frac{a b}{a^{\prime} b^{\prime}}\right)$, where $a^{\prime}, b^{\prime}$ are the conjugate semi-diameters.
6. $x y+3 x-2 y-6=0$.
7. $\left(\frac{3 a}{4} \sqrt{6},-\frac{a}{4} \sqrt{6}\right) \cdot\left(\frac{a}{3} \sqrt{6}, a \sqrt{6}\right) ;\left(\frac{-3 a}{4} \sqrt{6}, \frac{a}{4} \sqrt{6}\right),\left(-\frac{a}{3} \sqrt{6},-a \sqrt{6}\right)$.
8. $(-4,-3) ; 21$ 16. $6 y-5 x=7$. 18. $8 \sqrt{2} y \pm 4 x= \pm 3 \sqrt{7}$.
9. The four normals are:

$$
\pm \sqrt{175}(4 y-3 x+1)+300=0, \pm \sqrt{175}(4 y+3 x-17)+300=0 .
$$

24. $\sqrt{b^{2}+a b} x \pm \sqrt{a^{2}-a b} y \pm \sqrt{a b\left(a^{2}+b^{2}\right)}=0$.
25. $32 y=(\sqrt{3281} \pm 41) x . \quad$ 29. $x+y=\sqrt{a^{2}+b^{2}} ;\left(\frac{a^{2}}{\sqrt{a^{2}+b^{2}}}, \frac{-b^{2}}{\sqrt{a^{2}+b^{2}}}\right)$.
26. $x=2, y=3 ; x y-3 x-2 y+12=0$.
27. $3 x+2 y+4=0 ; 3 x^{2}+2 x y+4 x+9=0$.

## Pages 296, 297. Art. 176.

1. Center $\equiv(0, \sqrt{2}) ; \quad$ foci $\equiv( \pm \sqrt{6}, \quad \sqrt{2} \pm \sqrt{6}) ; \quad$ axes : $y-x=\sqrt{2}$, $y+x=\sqrt{2}$; directrices : $x+y=\frac{2 \pm 3 \sqrt{3}}{\sqrt{2}}$.
2. Parabola ; $0=50 \%$; vertex, vierred to whid axes, to at the polats

$$
\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \text {; and the latas netuen ir }+\sqrt{3} \text {. }
$$

3. Hyperbola; tan $20=4 \sqrt{6}$, be., $0=\sin ^{-1}(3)$; cepter, reterred to old

4. Ellipeo ; $0=45^{7}$; conter ${ }^{(-1,8)}(-8)$, referred $\omega$ old axen ; fiel are on tho new y-axin, the memi-axes being $\sqrt{1}$ and $\frac{1}{}$.
5. Parabola ; $0=45^{\circ}$; the vertex (referred to oll axes), to the polnt ( 1,1 ); $p=\frac{3 \sqrt{2}}{4}$

## Page 308. Examples on Chapter XII.

1. Hyperbola; $\theta=45^{\prime \prime}$; courdinates of center (old axes) are : (भुㅇ, - H) $; a^{2}=414, b^{2}=43^{2}$.
2. Parabola ; $\theta=45^{\circ}$; the new equation is:

$$
\left(y-\frac{3}{4 \sqrt{2}}\right)^{2}=-\frac{\sqrt{2}}{4}\left(x-\frac{25 \sqrt{2}}{18}\right)
$$

3. Fillipse; $\theta=0$; center (old axes) $\left(\frac{1}{3}, \frac{-1}{4}\right) ; a^{2}=11 . b^{2}=43$; thel on new $y$-axis.
4. Two straight lines : $3 z+y=6$, and $3 y-z=2$.
5. Two parallel lines: $2 x-y=0$, and $2 z-y+2 a=0$.
6. A "point ellipse," or two Imaginary straight lines through the origin.
7. Circle; center (old axes) $=\left(-\frac{18}{\prime}, 1\right) ; r^{2}=18$.
8. Hyperbola ; center (old axes) $=(-3,-1) ; 0=22 \jmath^{3} ; a^{8}=b^{3}=\frac{29}{\sqrt{2}}$
9. Two stralght lines : $2 x+y+1=0$, and $3 x-y=0$.
10. Two straight lines : $x-y=0$, and $y+6=0$.
11. The hyperbola $48 x^{2}-11 x y-17 y^{2}-129 x+24 y+81=0$.
12. The parabola $16 x^{3}+i 2 x y+81 y^{3}-20 x-3 i 8 y+144=0$.
13. The clrcle $(x-6)^{2}+(y+2)^{2}=25$.

## Page 341. Examples on Chapter 1. Part II

$2 \cos \alpha=\frac{1}{\sqrt{14}}, \cos \beta=\frac{2}{\sqrt{14}}, \cos \gamma=\frac{3}{\sqrt{14}}$
4. $\left(4,30^{\circ}, 30^{\circ}\right)$ )

7. Internally : $\left(-\frac{1}{2},-4,4\right)$; externally $(-4,-4,-1), 8 \sqrt{20}$
9. $p_{1}=5 \sqrt{3}, \quad \cos a_{1}=-\frac{7}{5 \sqrt{3}}, \quad \cos \beta_{1}=\frac{1}{5 \sqrt{3}}, \quad \cos \gamma_{1}=\frac{1}{\sqrt{3}} ;$
$\rho_{2}=\sqrt{6}, \cos a_{2}=\frac{1}{\sqrt{6}}, \cos \beta_{2}=-\frac{1}{\sqrt{6}}, \cos \gamma_{2}=-\frac{2}{\sqrt{6}} ;$
$p_{8}=\sqrt{a^{2}+b^{2}}, \quad \cos a_{3}=\frac{a}{\rho_{3}}, \cos \beta_{3}=0, \cos \gamma_{8}=\frac{b}{\rho_{3}}$.
10. $(2,2,2)$.
11. $a=\beta=\gamma=\cos ^{-1} \frac{1}{\sqrt{3}}$. 12. $\cos ^{2} \beta=\frac{\sqrt{3}}{4}-1$

## Page 352. Examples on Chapter II, Part II.

1. Two colncident planes parallel to the $y z$-plane and at the distance +3 from it.
2. A plane parallel to the $y z$-plane and at the distance -2 from it.
3. Two coincident planes parallel to the $z$-axis and intersecting the $x y$-plane in the line $x-y+1=0$.
4. Two planes intersecting in the $z$-axis, and intersecting the $x y$-plane in the lines $y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 c} x$.
5. Hyperbolic cylinder with generators paraliel to the $x$-axis.
6. A parabolic cylinder with generators parallel to the $x$-axis.
7. A circle whose plane is parallel to the $x z$-plane and whose equation is $3 x^{2}+3 z^{2}=17$.
8. A pair of lines respectively parallel to $y= \pm x$.
9. The projection of this curve upon the $x z$-plane is the hyperbola $3 x^{2}-z^{2}+5=0$, and its projection on the $y z$-plane is the ellipse $3 y^{2}+4 z^{2}=32$.
10. For $z=5$, the point $(0,0,5)$; for $z=-5$ it is a circle parallel to the $x y$-plane, and whose equation is $9 x^{2}+9 y^{2}=100$.
11. Solved like No. 9. 12. $x^{2}+y^{2}=25 ; x^{2}+4 z^{2}=25 ; y^{2}+4 z^{2}=25$.
12. Solved like No. 12.
13. $y^{2}+z^{2}+5 x=3$.
14. $(y-3)^{2}=25\left(x^{2}+z^{2}\right)$; vertex $\equiv(0,3,0)$.
15. $\frac{x^{2}+y^{2}}{3}+\frac{z^{2}}{2}=1$.
16. $\frac{x^{2}+y^{2}}{7}+\frac{z^{2}}{9}=1$.
17. $x^{4}\left(y^{2}+z^{2}\right)=1$.
18. $16 x^{2}-9 y^{2}-9 z^{2}=1$.
19. $x^{2}+y^{2}+z^{2}=6 x$.

## Page 364. Examples on Chapter III, Part II.

1. $x+z=4, y=2$. 2. $x+y+z=6$. 3. $\frac{x-1}{\sqrt{3}}=\frac{y-2}{1}=\frac{z-3}{2 \sqrt{3}}$
2. $y=2$ (on $x y$-plane), $y=2$ (on $y z$-plane), $x+z=4$ (on $x z$-plane); it plerces the $x y$-plane at $(4,2,0)$, the $y z$-plane at $(0,2,4)$, and is parallel $t$ r the $x z$-plane.
3. $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$.
4. $\frac{x}{f}+\frac{y}{-z}+\frac{8}{-7}=1 ; \frac{2 x}{\sqrt{14}}-\frac{3 y}{\sqrt{14}}-\frac{2}{\sqrt{14}}=\frac{9}{\sqrt{16}}$
5. $\frac{x}{-1}+\frac{y}{f}+\frac{z}{1}=1 ;-\frac{x}{\sqrt{50}}+\frac{6 y}{\sqrt{30}}+\frac{28}{\sqrt{20}}=\frac{1}{\sqrt{20}}$
6. $\frac{x-8}{1}=\frac{y}{8}=\frac{8-8}{-8} ; \frac{1}{\sqrt{60}} \frac{8}{\sqrt{60}}, \frac{-7}{\sqrt{60}} \quad$ e. $\cos \theta=\frac{-10}{8 \sqrt{106}}$
$10 \sin \theta=\frac{-16}{8 \sqrt{14}}$
7. $2 z-y+7 z=0 ; 8 z-y+i z+10=0$.
8. $11 x-7 y-2 z=22$.
9. $\frac{-8}{\sqrt{30}}, \frac{11}{\sqrt{800}} ;$ no.
10. $\operatorname{con}^{-1}\left(\frac{a}{\sqrt{a^{3}+b^{3}+c^{3}}}\right)$ for the $y s \cdot \rho l a n e, \cos ^{-1}\left(\frac{b}{\sqrt{a^{3}+b^{2}+c^{3}}}\right)$ for the z8-plane, and $\cos ^{-1}\left(\frac{c}{\sqrt{a^{3}+b^{3}+c^{2}}}\right)$ for the zy-plane ; $\sin ^{-1}\left(\frac{a}{\sqrt{a^{2}+b^{3}+c^{3}}}\right)$. $\sin ^{-1}\left(\frac{b}{\sqrt{a^{2}+b^{6}+c^{3}}}\right)$, and $\sin ^{-1}\left(\frac{c}{\sqrt{a^{2}+b^{3}+c^{3}}}\right)$ respectively for the $s-a x i a$, the $y$-axis, and the s-axis.
11. $18 z+11 y+z=20$.
12. $2 x-y-z=-3(1 \pm \sqrt{6})$.
13. $\frac{x-6}{4}=\frac{y-2}{-6}=\frac{z-6}{1}$.
14. $y+6 z+4=0, x-4 z=3,6 x+4 y+1=0$.
15. $18 x+11 y-17 z=10$.

## Page 380. Examples on Chapter IV. Part II.

6. $\left(z_{1}-a\right)(x-a)+\left(y_{1}-b\right)(y-b)+\left(z_{1}-c\right)(z-c)=r$ is the langent olane at $\left(x_{1}, y_{1}, z_{1}\right)$.
7. $4 x^{2}+9 y^{2}=9 z^{2}$.
8. $\left(z-\frac{x_{1}+x_{2}}{2}\right)^{2}+\left(y-\frac{y_{1}+y_{2}}{2}\right)^{2}+\left(z-\frac{z_{1}+z_{3}}{2}\right)^{2}$

$$
=\frac{\left(z_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{1}\right)^{2}+\left(z_{1}-z_{9}\right)^{2}}{4}
$$

11. $\frac{x^{3}}{2}+\frac{y^{2}}{8}+\frac{z^{2}}{9}=1$.
12. $\frac{x^{2}}{9}-\frac{x^{2}}{4}-\frac{x^{2}}{16}=1$.
13. Impossible.
14. $10 y^{2}+9 z^{3}=144 x$.
15. $3 x^{4}-4 x^{2}=18 y$

$$
\sqrt{x}
$$

.
-

## INDEX

## The numbers refer to pages.

## Abeclasa, 38.

Agneal. 314.
Analytle geometry, 23.
fundameatal problems of, 40.
Angle, 15.
bietiveen two Ines, 9r, siss, 3m3.
between two planes, $33 \%$.
bisectors of angles between two lines. 108.
direction, 331.
formet by two curves, 16L.
пиеаиите of, $\mathbf{1 \%}$.
vecturlal, 59, 353.
vertex of, 16 .
Arclimeries, 8 es.
Area of ellipme, 250.
of trlangle, 34, 36.
Asymptotes, $97 \%, 275,278$.
Axis, conjugate, transverse, fot hyper. bola, 19.
major (transtence) twhor (conjugate) for an elligme, 183.
of conic, (ix).
of eltfuce, 10, 183.
of hyperbola, 148.
of parabola, 173.

## Batt's Itheory of Mathematics, 38.

Bernonilli, 315.
Cantor, 311, 313, aso.
Caniliold, 389.
Cartocian, cournllnates, 23 .
ovals, 31s.
Chond, commin, of two circles, 100.
of contact for circle, 151.
of contact for coule, 200 .
Chords, of a diameter of a conle, 211.
supplemental. for ellipme, 220 .
supplemental, for hyperbola, 2s\%.
Circle, center ant rallus ef, 175.
equation of, In obllque ares, ita.
general rectangular equation of, 136.

Circle, nertanal to, 118.
milar equation of, tie
through thiree pritith, tak.
tavgents $10,311,145,146$.
Cleseld, ant.
Conchold, 312
direetrix of, 21:
modulus of, 512
prole of, 812
Comdition, that quartratle equation repremente two etralght lines, 111.
meceasary and sufticlent for above. 112.
that a poins lles on locus of an equas tfon, th.
Cone, $251,378$.
asymprotic, 970.
sections of, by planiss, Dst
Confocal conten, ste.
quadries, sto.
Conle, central and non-nentral, 1es, Zus
chord of contart for, 205.
confocal, गबा.
dlameter of, :311.
focms, directrix, abs eocentricity of, E
general cunsermetien of, sel.
general equition of, 252.
invarlates of, 3 In.
normal tin, 9 .
pilar equatlen of, 815.
prover and juilars of, 300
principal axis of, er.
refluction of, 308.
Enethons, 67, 180, 2ns.
ajpecial cates of, 3N. 384.
mantmary fer, 20.3.
tangent to. sho.
lest for apecles of, enf.
through gitres palats, an\%.
throigh Intervections of two coulas. 218.
vertices of, 93.

Conjugate, diameters of ellipse, 252.
diameters of hyperbola, 250.
hyperbolas, 270.
Constants, 2.
absolute, 2 .
arbitrary 3.
Coürdinates, of a point, 24.
sxes of, 26, 332.
elliptic, $3: 0$.
origin of, 26, 332.
polar, 25, 29, 333.
positive and negative, 25.
rectangular, 27, 332.
relation between rectangular and polar, 130, 333.
transformation of, 123, 339.
Cramer, 315.
Curves, 347.
algebraic, 309.
higher plane, 309.
transcendental, 321.
use of, in applied mathematics, 73.
Cycloid, 321.
Cylinders, 343.
perpendicular to coürdinate planes, 344.

Dlanseter, of conic, 211.
conjugate, of ellipse, 252.
conjugate, of hyperbola. 285
of ellipse, 250.
of hyperbola, 284.
of parabola, 230.
Diocles, 305, 310.
Direction, angles, 334. cosines, 334.
Directrix, of conchoid, 312.
of conic, 68.
of ellipse, 179.
of hyperbola, 190.
of parabola, 171.
Distance, between two points, 31, 336 .
of point from a line, 105.
of point from plane, 359.
Eccentric angle, for ellipse, 243.
for hyperbola, 288.
Eccentricity, of conic, 68.
of ellipse, 179.
of hyperbola, 190.
Ellipse, auxiliary circles of, 242.
center of, 183.
conjugate diameters of, 252.

Ellipse, construction of, 240.
defined, 70, 179, 237.
directrix of, 179.
eccentric angle of, 243
eccentricity of, 179.
focus of, 179.
imaginary, 188.
major or transverse axis of, 182.
minor or conjugate axis of, 183.
point, 188.
principal axis of, 182.
subtangent and subnormal of, 244.
sum of focal distances constant, 239.
Ellipsoid, 371.
Elliptic coördinates, 390.
Equation, 4.
coudition that quadratic, represents two lines, 111.
degree of, unchanged by transformation, 129.
discussion of, 49 .
homogencous, 14.
locus of an, 43.
locus of the product of two or more, 54.
locus of the sum of two or more, 56 .
of a locus, 61 .
of circle, 64, 64, 135.
of locus traced by moving point, 65 .
of straight line, 61, 63, 81, 83, 84, 86.
of straight line in oblique coirdinates, 115.
of straight line in polar coördinates, 118.
of tangent to circle in terms of slope, 142.
of tangent to circle in terms of coördinates of point of contact, 144.
of the form $A x+B y+C=0$ represents a straight line, $81,89$.
properties of quadratic, 12.
quadratic, 9.
reduction of, to standard forms, 91.
special cases for straight line, 95.
to trace the locus of $\mathrm{an}, 9$.
Focus, of conic, 68.
of ellipse, 179.
of hyperbola, 190.
of parabola, 170.
Formula, for area of triangle, 34, 36.
for angle between two lines, 97 .

Formula, fir cocindinates of polat dl. vidiug time in given ratie. 刻.
fur difatace between tro potmen, als. SW5.
for distance of a polat from a llase. 103.
itigitantmotio, 12
$F$ functoms, 3.
algetoraic, 5.
clanithed, s.
contriuvun, ti.
diexontinuous, 7.
explicit. 4.
tomplicte, it
of related angles. 18.
tranneevideutal, $\delta$.
trigonotuotrle, $1 \%$.
Gregory, 315.
Higher plane curves, 100.
Hyperhola, is.
arymptotes of, $25 \%$.
conjugate, zto.
construction of, 910
defintelen of, 72, 150, 225.
differeme between focal radll consstant, 266.
direetrix of, 190.
eccentrie angle for, 283.
eccoatrictry of, 190.
equilateral or rectangular, $20 \%$.
focts of, 190.
tangent and normal to, 3\%8.
Hyperbolotd, bi-parted, 3 T5.
of one nappe or sheet, 363.
of two nappes or sheets, $\mathbf{3 5 1}$.
un-partet, 373.
Hyprocyelotel, se3.
Hentity, t.
Intercept, form of eq. of stralght line, 83.
of locus on axes, th.
Iutersection of two bect, 63
invariants, $\mathbf{5 0 1}$.
K'leln, 300 .
Lambert's Analytic Geometry, 75.
Latus rectum, of ellipse, $1 \times 3$
of hyperbola, 194.
of parabola, 173.
Lemniscate, 315.

IJ macoen, 31 ll .
Liwes, bien tern of anglas betwoed two. jos.
broken, E1.
conditios for paralles or perpondes lar, 98.
atrecten, is.
dletabot of potat from, I06,
equation of atralght, 6i, 6i, 51, as, \&!. *8.
egrenton of : $4=0,110$
equaitom of, in obiliqee coürdieates, 113
equation of, In jpolar coubrdinstes, BRA
intiat, 53.
pole of, ISE.
poaitive alde of, 63
slope of $\mathbf{a}, 38$,
stralghe lime divided in given ration. 37.
to Mod anglo between swo, y\%.
Idesue, ses.
Leens, clansificatling of, 48
Consistuetlon of. 515.
interceptes formed by, 19.
of an equation, 43, 5i, 42.
of an equation remalsis mnchannel by muttipitertion and trami pottuin, fo-
of an equation of tirst deficee fan three variablew. 3:3.
of an equation of memont degree in three vartablen, कit.
polats of Intersectlon of $8 \mathrm{mro}, 23$.
Nell, 350.
Nicomedes, 312.
Normal, 140.
form of equation of atraight lime, Nos.
length of, 159, 1s0.
fo the conle.
$A z^{2}+B y^{2}+2 G z+2 F y+C=0,300$.
Notation, 3, 30.
Number, 1.
finlte, 8.
tafinite, a.
infinitentenal, 8.
Orflumete, 3n.
Origin. 2n, ser.
Parabola, 70, 1\%0, 51a
cobitruetion of, 2sa.
dimmerert of, 3u.

F'arabola, directrix of, 171.
focus of, 170.
latus rectum of, 173 .
limit of ellipse, $35 \%$.
properties of, 235, 232.
semi-cubical, 320.
subtangent and subnormal of, 222.
verlex of, 172.
Paraboloid, 3 īt.
elliptic, 377.
hyperbolic, 378.
of revolution, 352.
Parameter, 8 \%.
Pascal, 318.
I'olnt, coürdinates of, 24.
distance between two, 31 .
distance of, from line, 105.
jower of, 152.
Pular, construction of, 159.
equation of, $15^{\circ} 6$.
Pole, 29, 333.
and polars, 209.
construction of, 159.
of a line, 156.
of conchoid, 312.
Iower of a point, 152.
l'rojection, 21.
formulas for transformation of coördinates by, 126, 129.

Quadrants, 27.
Quadrics, 3F $8,370$.
confocal, 3:0.
Radical, axis, 161.
center, 161.
Radius vector, 29, 333.
Rice and Johnson, 328.
Root, 4.
condition for equal, 10.
condition for zero and infinite, 11.
condition for real and imaginary, 10.
Salmon, 315.
Secants, 140 .
Semi-cubical parabola, 320.
Shearer, 73.
Slope, form of equation of straight line, 85.

Slope of a line, 33.
Sphere, 351.
Spherold, oblate, 351.
prolate, 351.
Splial, 335.
center of, 3 \%.
logarithmic, 399.
measuring circle of, 3\%5.
of Archimedes, 325.
parabolic, 328.
reciprocal or hyperbollic, 326.
spire of, 3 3)
Subnormal, 149, 150.
Subtangent and subuormal, 149, 150.
for ellipse, 244.
for parabola، 222.
Surfaces, $342,346$.
of revolution, 343, 348.
traces of, 347.
Tangents, 140.
equation of, to circle in terms of coür. dinates of point of contact, 144.
equation of, to circle in terms os slope, 142.
lengths of, 149, 150, 151.
to circle, 141, 152.
to the conic,
$A x^{2}+B y^{2}+2 G x+2 F y+C=0,200$.
two can be drawn to conic througl external point, 206.
Transformation, of coördinates, 123. of coïrdinates by projection, 126, 129
Triangle, area of, 34, 36.
Trigonometric ratios, 17.
Variables, 2.
dependent, 3.
independent, 3.
Vectorial angle, 29, 333.
Vertex, of an angle, 16.
of conic, 69.
of hyperbola, 192.
of parabola, 172.
Wallis, 320.
Willcox, 76.
Witch, 314.
Wren. 321.

## The Modern (Cornell Mathematical Series

Lucien Augustus Walt CENERAL ROITOR<br>Benior Prolineter of Mathemation in Cornail Ualvereigy

## ANALYTICAL GEOMETRY

Iif J. H. Tasser. Ha.11., Awítant Profesion of Mathemadion, Cornell Univeratty, and Josern Aless, A M., Tumor lo Madismatics in The College of the City of Nee Viwh. Cloth, \$vos 400 pages.
$\$ 2.00$

## DIFFERENTIAL CALCULUS

 Cornell University, and VikGu. Asvink. Th. I). Ioserotien is Mathematic. Comell U'niventity. Cloth, Bro, 336 paget . \$2.00

## INTEGRAL CALCULUS

liy Davisl Alexasber Merikay. Th. D., Inatractor in Mallic. matics in Cornell U'nisersity, Cloth. tro, 302 pager . $\$ 2.00$

## DIFFERENTIAL AND INTEGRAL CALCULUS

liy Visgre Srrusk. Ph.D. Instructor in Mrehematio. Cornell University, and Johr Inwis IJurclussos, Ih.D., Iestrecter is Mathematics, Cornell University. Clath, Svo, 320 pages . $\$ 2.50$

## In Preparation

ELEMENTARY ALGEBRA. Ily J. H. TANSEK PLANE GEOMETRY. Ify JANE MCDABON.

The advanced books of this series treat thelr sabjects in a way that is simple and practical, jet thoroughly rigorous and attractive to botb teacher and student They meet the needs of shelents punsing counes in eagifecring and architecture is any cullige or utiversity. Sloce their pablication they have received the genend iod hearty approral of teachers, and have been very widely sdopted.

The elementary books will be designed tu inaplant the spirts of the other books into secondary whools, and will make the wurk in matheo matics, from the very vart, cosuineose and harmonions.

## AMERICAN BOOK COMPANY, Publishers

## Text-Books on Surveying

## RAYMOND'S PLANE SURVEYING

By William G. Raymond, C.E., Member American Society of Civil Engineers; Professor of Geodesy, Road Engineering, and Topographical Drawing in Rensselaer Polytechnic Institute$\$ 3.00$

This work has been prepared as a manual for the study and practice of surveying. The long experience of the author as a teacher in a leading technical school and as a practicing engineer has enabled him to make the subject clear and comprehensible for the student and young practitioner. It is in every respect a book of modern methods, logical in its arrangement, concise in its statements, and definite in its directions. In addition to the matter usual to a full treatment of Land, Topographical, Hydrographical, and Mine Surveying, particular attention is given to system in office work, to labor-saving devices, the planimeter, slide rule, diagrams, etc., to courdinate methods, and to clearing up the practical difficulties encountered by the young surveyor. An appendix gives a large number of original problems and illustrative examples.

## Other Text-Books on Surveying

DAVIES'S ELEMENTS OF SURVEYING (Van Amringe) . . $\$ 1.75$
ROBINSON'S SURVEYING AND NAVIGATION (Root) . . 1.60
SCHUYLER'S SURVEYING AND NAVIGATION . . . . 1.20

Copies will be sent, prepaid, to any address on reccipt of the price.

## American Book Company

New York . Cincinnati . Chicago

# Scientific Memoir Series 

## EuITED MY JOSEPII S AMES. Ph.D. Johas Hopkites University

The Free Expansion of Gases. Memolrs by Cay-Levace, Joule. and Joule and Thomson. Vdited by Dr. J. hi Ames ..... $\$ 075$
Prismatic and Diffraction Spectra Memotrs by Joseph voa Fraunbofer. Fidited by Dr. J. S. Asesa ..... 60
Rontgen Rays. Memoirs by Rontgen, Stokes, and J. J. Thomeno. Edied by Dr. Gnorge F. Bancer ..... 60
The Modern Theory of Solution. Memoles by Ifelfer, Vab't Ilod. Arrbenius, and Raoutt. V.dited by Dr. If. C. Jowns ..... 100
The Laws of Gases. Memoirs by lloyle and Amagat. Edised byt Dt. Carl bakus. ..... 75
The Second Law of Thermodynamics. Memoirs by Carmot. Clausius, and Thomson. Edited by Dr. W. F. Macis ..... 90
The Fundamental Laws of Electrolytic Conduction. Memoirs by Faraday, Hitsorf, and Kolltrausch. Edited by Dr. H. M. Goonwis ..... 75
The Effects of a Magnetic Field on Radiation. Memoirs by Faraday, Kerr, and Zeeman. Lidited by Dr. E. P. Lewts . ..... 75
The Laws of Gravitation. Memoirs by Newton. Bouguer, and Cavendish. Edited by Dr. A. S. Mackenziz ..... 100
The Wave Theory of Light. Memoirs by Huygens, Voung, and Fresnel. Edited by Dro Henay Cazw ..... 1.00
The Discovery of Induced Electric Currents. Vol. 1. Memoirs by Joseph Henry. Vidited by Dr. J. S. Amos ..... 75
The Discovery of Induced Electric Currents. Vial. 11 . Memoirs by Michael Faraday. Eidited by Dr. J. S. Aurs. ..... 75
Stereochemistry. Memoirs by Patteur, Le Bel, and Viant ISolt. together with selections from later memoins by $W$ islicenus and others. Fidited by Dr. G. M. Richanyton ..... 1.00
Th, Expansion of Gases. Memoirs by Gay-Lusace and Regnault. Edized by I'rof. W. W. Randall ..... 1.00
Radiation and Absorption. Memolrs by Prévost. Balfour Stewart. Kirchhof, and Kirc! hofl and llunsea. Edited by Dr. Dewitt B. Brack ..... 1.00Copies sewt. propaid. to any adlress ow recripg of the prise.
American Book Company
New York- Cincinnats(4)

## Biology and Zoölogy

## DODGE'S INTRODUCTION TO ELEMENTARY PRACTICAL BIOLOGY

$$
\begin{aligned}
& \text { A Laboratory Guide for High School and College Students. } \\
& \text { By Charl.es Wrigut Dodge, M.S., Professor of Biology } \\
& \text { in the University of Rochester . . . . . . } \$ 1.80
\end{aligned}
$$

This is a manual for laboratory work rather than a text-book of instruction. It is intended to develop in the student the power of independent investigation and to teach him to observe correctly, to draw proper conclusions from the facts observed, to express in writing or by means of drawings the results obtained. The work consists essentially of a series of questions and experiments on the structure and physiology of common animals and plants typical of their kind-questions which can be auswered only by actual investigation or by experiment. Directions are given for the collection of specimens, for their preservation, and for preparing them for examination; also for performing simple physiological experiments.

## ORTON'S COMPARATIVE ZOÖLOGY, STRUCTURAL AND SYSTEMATIC

By James Orton, A.M., Ph.D., late Professor of Natural History in Vassar College. New Edition revised by Charles Wrigut Dodge, M.S., Professor of Biology in the University of Rochester $\$ 1.80$
This work is designed primarily as a manual of instruction for use in higher schools and colleges. It aims to present clearly the latest established facts and principles of the science. Its distinctive character consists in the treatment of the whole animal kingdom as a unit and in the comparative study of the development and variations of the different species, their organs, functions, etc. The book has been thoroughly revised in the light of the most recent phases of the science, and adapted to the laboratory as well as to the literary method of teaching.

Copies of cither of the above books will be sent, prepaid, to any address on receipl of the price.
American Book Company
$\underset{(167)}{\text { New York }}$ Cincinnati $\quad$ Chicago

## Standard Text-Books in Physics

## ROWLAND AND AMES'S ELEMENTS OF PHYSICS

By Henky A. Kowland, Ph, D., I.L. D., and Jonepu S. Ames, Ph.D., Profossurs of Physics in Johtus Hopkins University.
Cloth, $12 \mathrm{mo}, 275$ pages . . . . . Price, $\$ 1.00$
This is designed to meet the requirements of high schools and normal schools, and is situpte but logical and direct, being divided into two parts-the first treating of the theory of the subject, and the second containing suggestions to teachers.

## AMES'S THEORY OF PHYSICS

By Joserfi S. Anes, Ph.D.
Cloth, 8vo, 531 pages . . . . . . Price. $\$ 160$
In this text-book, for adranced classes, the aim has been to furnish a concise and logical statement of the fundamental experiments on which the science of Phytics is based, and to correlate these experiments with modern theories and methods.

## AMES AND BLISS'S MANUAL OF EXPERIMENTS IN PHYSICS

 By Josepr S. Ames, Ph.D., Professor of Phrsics, and William J. A. Bless, Ph.D., Associate in Physics, in Johus Hopkins University.Cloth, 8vo, 560 pages
Price. $\$ 1.80$
A course of laboratory instruction for advanced classes, embodying the most improved methods of demonstration from a modern standpoint, with numerous questions and suggestions as to the value and bearing of the experiments.

Copies sewt, propaid, to ant adircss ow rocipg of prive by sto Publishers:
American Book Company
$\underset{\substack{\text { New York } \\(15 y)}}{\substack{\text { Nincinnati }}}$

# Text-Books in Geology 

By JAMES D. DANA, LL.D.<br>Late Professor of Geology and Mineralogy in Yale University.

## DANA'S GEOLOGICAL STORY BRIEFLY TOLD $\$ 1.15$

A new and revised edition of this popular text-book for beginners in the study, and for the general reader. The book has been entirely rewritten, and improved by the addition of many new illustrations and interesting descriptions of the latest phases and discoveries of the science. In contents and dress it is an attractive volume, well suited for its use.

## DANA'S REVISED TEXT-BOOK OF GEOLOGY

Fifth Edition, Revised and Enlarged. Edited by William Nortil Rice, Ph.D., LL.D., Professor of Geology in Wesleyan University. This is the standard text-book in geology for high school and elementary college work. While the general and distinctive features of the former work have been preserved, the book has been thoroughly revised, enlarged, and improved. As now published, it combines the results of the life experience and observation of its distinguished author with the latest discoveries and researches in the science.

## DANA'S MANUAL OF GEOLOGY

Fourth Revised Edition. This great work is a complete thesaurus of the principles, methods, and details of the science of geology in its varied branches, including the formation and metamorphism of rocks, physiography, orogeny, and epeirogeny, biologic evolution, and palcontology. It is not only a text-book for the college student but a handbook for the professional geologist. The book was first issued in 1862, a second edition was published in 1874, and a third in 1880. Later investigations and developments in the science, especially in the geology of North America, led to the last revision of the work, which was most thorough and complete. This last revision, making the work substantially a new book, was performed almost exclusively by Dr. Dana himself, and may justly be regarded as the crowning work of his life.

Copies of any of Dana's Geologies will be sent, prepaid, to any address on receipt of the price.

## American Book Company

$\underset{(\mathrm{s} 77)}{\text { New York }}$ Cincinnati $\quad$ Chicago

# BOWNE'S THEISM 

BY BORDEN P. BOWNE<br>Prolesser of Philosephy in Bostea Undversity

## FOR COLLEGES AND THEOLOGICAL SCHOOLS

PRICE. $\$ 1.75$

THIS BOOK is a revision and extension of the author's previous work. "Philosophy of Thelsm." In the present volume the arguments, especially from eplatemology and metaphysles, receive fuller treatment. The work has been largely rewritten, and about half as much additional new matter has been included.

The author, however, still adheres to his original plan of giving the essential arguments, so that the reader may discern their true nature and be enabled to estimate theis ratonal value. He does thls from the conviction that the Important thing in theistic discussion is not to make bulky collections of striking facts and eloquent illustrations, nor to produce learned catalogues of thelstic writers and their works, but to clear up the logical principles which underlie the subject. From this point of view the work might rightly be called the " Logic of Thetsm."

Special attention is given to the fact that atheistle argument is properly no argument at all, but a set of illusions which Inevitably spring up on the plane of sense-thought, and acquire plausiblity with the uncritical. The author seeks to lay bare the root of these fallacles and to expose them in thelr baselessness. In addition, the practical and vital nature of the theistic argument is emphasized, and it is shown to be not merely nor mainly a matter of syllogistic and academic Inference, but one of life, action, and history.

Copies sent, prepaid, on resceips of price

# AMERICAN BOOK COMPANY 

PUBLISHERS

NEW YORK . CINCINNATI • CHICAGO

## a descriptive catalogue of high SCHOOL AND COLLEGE TEXT-BOOKS

WE issue a complete descriptive catalogue of our text-books for secondary schools and higher institutions, illustrated with authors' portraits.

For the convenience of teachers, separate sections are published, devoted to the newest and best books in the following branches of study:

ENGLISH
MATHEMATICS
HISTORY AND POLITICAL SCIENCE SCIENCE

MODERN LANGUAGES
ANCIENT LANGUAGES
PHILOSOPHY AND EDUCATION

If you are interested in any of these branches, we shall be very glad to send you on request the catalogue sections which you may wish to see. Address the nearest office of the Company.

## AMERICAN BOOK COMPANY

Publishers of School and College Text-Books NEW YORK CINCINNATI CHICAGO

Boston
(312)

# A Complete System of Pedagogy 

## is THKER VOLUMES

BY EMERSOS E. WHITE, A.M, L.L.D.

THE ART OF TEACHING. Cloth, 321 pages . . Price, $\$ 1.00$
This new work in Podagogy is a melensilic and praclical conddes. tion of fractiog as an arf. It grosents in a luclid manner the fandasmenta! principles of teaching, and then applies then in gewerk and oomper. hansive methouls. The closing chapters diwose to a mesterly way the teaching of readling. language, arithmetic gengraplicy, and ofler elementary brancher. The avihor also conslders most belplilly the varivus problems connected with seachiog. Jociuiling oral testractia, book study, class instruction and management, eraminitlions, promother of pupils, etc.

ELEMENTS OF PEDAGOGY, Cloth, 336 pages . . Price, $\$ 1.00$
This treatise, by unanimoas verdict of the toachers" profession, has been accepted as the leadiog standard authority on the subjocs. Frum its first publication it has met with the greatest favor, and its wilde eirculation ever since has been phenomenal. It has been adopted in more Normal Schools, Teachers Inititutes, and State Rewding Circles, ithas any other book of its class. This wise clrculatom and popularity ta directly attributable to the intrinsic value and mert of the book itseld and the reputation of lis author, who is everywhere recogntred as pros. eminently qualified to speak or write with authority on educational subjects.

## SCHOOL MANAGEMENT. Cloth, 320 pages . . Price, $\$ 1.00$

The first part of this work is devoted to school organization and discipline, and the second part to moral training. Principles are clearly stated and aptly illustrated by examples drawn largely from the author's own wide experience. A cleas tight is thrown on the mos tapuramt problems in school management. The necessity for moral tralning. which, in the minds of many, also involves religlous lastruction, wild make the second part of this book a welcome contrilietion to pedagogical literature. The subject is thoroughly and wicty treated, and tie bisterials which are provided for moral lessons will be highly appreciated by all teachers who feel the importance of this work.

Cogies sent, pregaid, to any address on rovije of its prict.

## American Book Company

$\underset{\substack{\text { New York (ow) } \\ \text { (owncinnati }}}{ }$

# A New Astronomy 

BY

DAVID P. TODD, M.A., Ph.D.<br>Professor of Astronomy and Director of the Observatory, Amherst College.

Cloth, $12 \mathrm{mo}, 480$ pages. Illustrated - - Price, $\$ 1.30$

This book is designed for classes pursuing the study in High Schools, Academies, and Colleges. The author's long experience as a director in astronomical observatories and in teaching the subject has given him unusual qualifications and advantages for preparing an ideal text-book.

The noteworthy feature which distinguishes this from other text-books on Astronomy is the practical way in which the subjects treated are enforced by laboratory experiments and methods. In this the author follows the principle that Astronomy is preëminently a science of observation and should be so taught.

By placing more importance on the physical than on the mathematical facts of Astronomy the author has made every page of the book deeply interesting to the student and the general reader. The treatment of the planets and other heavenly bodies and of the law of universal gravitation is unusually full, clear, and illuminative. The marvelous discoveries of Astronomy in recent years, and the latest advances in methods of teaching the science, are all represented.

The illustrations are an important feature of the book. Many of them are so ingeniously devised that they explain at a glance what pages of mere description could not make clear.

Copies of Todd's New Astronomy will be sent, prepaid, to any address on receipt of the price by the Publishers:

## American Book Company

$\underset{(\mathrm{s} 8 \mathrm{z})}{\mathrm{NEW} \text { YORK CINCINNATI - CHICAGO }}$



## PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSTTY OF TORONTO LIBRARY


[^0]:    TAN. AN, GEOS. -1

[^1]:    - All these kinds of numbens will be met and better illustrated in succeedIng chapters of this book. E.g, see Art. 65, Note.

[^2]:    - The sign $\doteq$ is read "approaches as a limit." It was introduced by the " late Irofessor Oliver of Cornell University.

[^3]:    - Hereafter, unless uthervise stated, projection will be understoot to tnean orthogonal prujection.

[^4]:    - These minus signs are written high merely $u$ indicate that they are signs of quality and not of operation.

[^5]:    - The demonstration applies to each figure.
    - By examining other possible constructions the student should assure hitnself of the generality of this formula.

[^6]:    - This kind of symmetry is known as cyclic (or circular) symmetry. If the numbers 1,2, and 3 be arranged thus ${ }_{2}^{3}$, then the subscripts in the first term (in [4a] say) begin with 1 and follow the arrow heads around the circle (i.e. their order is $1,2,3$ ), those of the second term begin with 2 and follow the armow heads (their orler is $2,3,1$ ), and those of the third term begin with 3 and follow the arrow heads.

[^7]:    - If $z$ and $y$ are reganded as the coordinates of the point of internction, the subecripts may be omitted here.

[^8]:    - If equations whose second members are not zero are multiplied together, member by member, the resulting equation is not satisfied by any points of the loci of the given equations except those in which they intersect each other; the new equation therefore represents a locus through the points of intersection of the loci of the given equations.

[^9]:    - This proof shows clearly that if the coordinates of any point on the stralght line through $P_{1}$ and $P_{8}$ are substituted for $x$ and $y$ in equation (1) the finit meuber will be equal to zen); If the corbinlinates of any polut belowe this line are so subatituted the first metuber will be negative; and if the coordinatea of any point above this line are sosubstituted the fint member will bo positive. This line may then be regarled as the boundary which exparates that part of the plane for which $3 y-x-3$ is negative from the part for which this function is ponitive. Because of this fact that side of this lise on which $P_{\text {a }}$ lina may be callod the negatien side, and tho other tho positive alde.

    I See also Art. 63.

[^10]:    - The positive side of this line is that side on which the origin lies (cf. foot-note, Art. 43).
    t See also Art. 98.
    I Except in elementary geometry, the word "circle" is employed by most writers on mathematics to mean "circumference of a circle." It will be so used in this book.

[^11]:    - This property enables one to construct any number of points lying on the parabola, thus: with $F$ as center, and any radius not less than $\frac{1}{2} O F$, describe a circle, then draw a line parallel to $O Y^{\circ}$ and at a distance from it equal to the chosen radius; the points in which this line cuts the circle are points on the parabola. Other points can be located in the same way. See also Note B, Appendix.
    + Fquation (4) enables one to construct any number of points on the

[^12]:    - For most of the suggestions in this article, and in the examples that follow it, the authors are indebted to Mtr. J. S. Shearer of the Department if Physics of Cornell U'ulversity.

[^13]:    - Taken by permission from lambert's Analytic Geometry.

[^14]:    - Throughout this book the more important formulas are printed in boldfaced type; they should be committed to memory by the learner.

[^15]:    - See also Fix. 3 below.

[^16]:    - If elther $A$ or $B$, say $A_{1}$ is zero, then the equation may be written in the form: $y=-\frac{C}{B}$, which is the equation of a stralght line parallel to che z-axia, and at the distance $-\frac{C}{B}$ from it [ct. Art. $33,(2)$ ].

[^17]:    - This conclusion may also be drawn thus: clear equation (6) of fracthous, transpose all the terms to the first member, and multiply by $\frac{1}{2} \sin \omega$;

[^18]:    TAR, AN, QEOM. - i

[^19]:    - It must not be forgotten that this conclusion is drawn only for lines that are not perpendicular to the x-axis; because if the lines are perpendicular to the $x$-axis then equations (1) and (2) are inapplicable (cf. Art be).

[^20]:    - As an illustration of another practical method of factoring a quadratic expression, when fuctoring is possible, i.e., if equation [17] holds, find the factors of

    $$
    2 x^{2}-7 x y-15 y^{2}+7 x+17 y-4 .
    $$

[^21]:    - The angles a and $\beta$ are the dirretion angles of the line ON, and their cosines are the direction cosinea of that line.

[^22]:    - Observe the symmetry here ; cf. foot-note, Art. 29.

[^23]:    - See Note 1, Art. 72.

[^24]:    - These formulas can also be read directly from Fig. 60 by first projecting $O I /$ and then the broken line $O M^{\prime} P M$ upon a line perpendicular to $O I^{\circ}$; and afterwards projecting $M P$ and also the broken line MO.MP upon a perpendicular to O.N. The resulus being equated in each case, and divided by ain $\omega$, give [28].

[^25]:    - For illustration, see Art. 84.

[^26]:    - This equation is sornetimes spoken of as the magical equation of the tangent

[^27]:    - The difference between equations (2) and (6) consists in this: no matver where the points ( $x_{1}, y_{1}$ ) and ( $x_{3}, y_{2}$ ) may be, equation (2) represents the stralght line pasaing through them; but equation (6) is the equation of the line through these polnts only when they are on the circle $r^{2}+y^{2}=r^{0}$. If ocher worts, equation (2) is the equation of the line passing through any timp pointa whatever, white equation (6) is the equation of the line pasing through any two polnts on the clreumference of the circte.

[^28]:    - Equationa (11) and (12) are, of course. but different forms of the equaUon of the same tangent as that represented by equation [30].

[^29]:    - If the circle is given by the equation $A x^{2}+A y^{2}+2 G x+2 F y+C=0$, it must first be divided by $\boldsymbol{A}$ before applying this theorem.
    $\dagger$ The expression $x_{1}^{2}+y_{1}^{2}+2 G x_{1}+2 F y_{1}+C$ is called the power of the point $P_{1} \equiv\left(x_{1}, y_{1}\right)$ with regard to the circle $x^{2}+y^{2}+2 G x+2 F y+C=0$.

[^30]:    - These conclusions may alno be atated thus: If $P_{1}$ is owfside of the drele, equation ( $t$ ) gives two real and distinct values for $m$; corresponding te thess there are two real and distinct tangents ; if $P_{1}$ is on the circle, the two values of mare real but coincident, and shere are two real but colpeident tangents ; if $P_{1}$ is inside of the circle, the two values of min are imaginary. and the two corresponding tangents are therefore also imaginary.

[^31]:    - The axis of a curve whould the carvfully distinguishod from an exis of colindinates; though they often are colncident lines in the figures to bo atudied.

[^32]:    - This equation may also be easily derived independently of Art. 48, cf. Arts. 103, 116.

[^33]:    - If $a=\delta$ (i.e., if $e=0$ ) thls equation represents a circle. The ellipae, then, includes the circle as a special case. In other worls: a circle is an dilpee whose eccentricity is zero.

[^34]:    - The student should observe that $b$ is the semi-minomaxis and not necesarily the denominator of $y^{2}$ in the standanl forms of the equation of the Filifer - [44], [43], or [40]; he should also obscrve that the focl are always on the manjor axis.

[^35]:    - That sign ( + or - ) which makes the fraction positive is to be used.

[^36]:    - Compare note, Art. 84, ( $\beta$ ).

[^37]:    - Since the equation of the normal [51] is so readily deduced, in every particular case, from that of the tangent, and since the latter is so easily remembered, it is not recommended that equation [51] be memorized.

[^38]:    - For ouly one proint, viz: $f^{\prime \prime}=(2 p, 0)$, are all the roots of equation (2) equal.

[^39]:    - Equation ( 5 ) might have been obtained at once as a apecial form of equation [ 3 ] , Art. 120, by giving appropriate ralues to the coefliciente $A, B_{0}$ $F, G$, and $C$ there used.

[^40]:    - The eccentric angle of any given point $P$ on an ellipse is readily constructed thus : produce the orlinate $M P$ to meet the major auxiliary circle in $Q$; the augle $A O Q$ is the eccentric angle of the point $P$ ?

[^41]:    *The equations [60] are of great service in studying the ellipse by the methods of the differential calculus.

[^42]:    - This definition implles that the distance between a curve and lis anypitote becomes infinitely small. McMabou \& Snyder, Diferential Catenfas, Claap. XIV.

[^43]:    - The forms of this article are useful in the difterential calculua

[^44]:    - This accords with a result of the preceding article, viz. that to free an equation from its ry-term it in only necessary to turn the axes through a positive acute angle determined by $\tan 2 \theta=\frac{2 \pi}{A-B}$. In the present problem $\Pi=+2$ and $A=B=-1$, hence $\tan 2 \theta=\infty$ and $\theta=45^{\circ}$.

[^45]:    - It is $\omega$ be noted here that the new abeolute term, fe., the term fove from $x$ and $y^{\prime}$ in equation (2), may be obtalned by subatituting a and $\beta$ for $x$ and $y$ in the first member of equation (1).

[^46]:    - This curve was invented, by a Greek mathematician named Diocles, for the purpose of solving the celebrated problem of the finsertion of two mean proportiouals between two givenstraight lines. The solution of this problem earries with it the solution of the even more famous Delian problem of conatructing a cube whose volume shall be equal to two titwes the volume of a given cube. For, let a be the edge of the given cube; onnstruct the two mean proportionals $x$ and $y$ between $a$ and $2 a$; then $a: x:: x: y:: s: \& a$, whence $x^{3}=2 \cdot a^{3}$, f.e., $x$ is the edge of the required cube. If $a=1$, then $x=\sqrt[3]{2}$, hence the insertion of two mean proportionals enables one to construct a line equal to the cube root of 2. The cinold may alm be employed to construct a line equal to the cube noot of any given number (see Kilein, Elementargeometrie, S. SS, or the Einglish translation by Profemons Beman and Simith).

    It is not positively known just when Diocles lived; it is very probable, howerer, that it was in the last half of the mecond century a.c.

[^47]:    - Diocles named his curve "cissoid" (from a Greek word meaning "ivy," because of its resemblance to a vine climbing upwards. The name "cissoid" is sometimes, though rarely, applied to other curves which are generated as stated in the definition given above, except that some other basic curve is employed instead of a circle. For other, but equivalent, definitions of the cissoid see Note 3, below.

[^48]:    - To Insert two mean proportionals between two given lines by means of the cirwhl. Sie Cantor, Geschichte der Machemathk, IUL. I., S. 3:2.

[^49]:    - The conchoid was invented by a Greek mathematician nanned Nicomedes, probably in the second century B.c. Like the cissoid, it was invented for the purpose of solving the famous problem of the "duplication of the cube"; it is, however, easily applied to the solution of the related, and no less famous, problem of the trisection of a given angle (see Note 3, below).

[^50]:    - It is evident that, if $A O<O B$, i.e., if $c<a$, the curve bas an oval below A as shown in Fig. 125; if $c=a$, this oval closes up to a point ; and if $c>a$. both parts of the curve lie wholly above $A$.
    i For the insertion of two mean proportionals between two given lines by teans of the conchold, see Cantor, Geachicbee der Mathemasik, Bd. I., S. 330.

[^51]:    - The witch was invented by Donna Maria Gaetana Agnesi (1718-1799), an Italian lady who was appointed professor of mathematics at the University of Bologna, in 1750.

[^52]:    - The lemniacate was Invented by Jacques Bernoullli ( $105-1805$ ), a noted Swiemathematician and professor in the Univensity of Basle. It ha, howtrer, only a special crase of the Casalntin ovits ; viz, of the locess of the vertux of a triangle whose base is given in tength and position, and the proxtuct of whom other two sides is a constant. Siee Salmon's Higher Plane Curves, p. 11, Gregory's Examples, or Cramer's Introduction to the Analyals of Curtea.

[^53]:    Note 1. The polar equation of the lemniscate is easily derived from equation (4) if the $x$-axis be chosen as initial line and the origin as pole;

[^54]:    - This curve was invented and named by Blaise Pascal (1623-1602), a celebrated French geometrician and philosopher. It is, however, a special case of the so-called Cartesian ovals.

    ITh3 limaçon may also be defined as the locus of the intersection of the two lines $O P$ and $C P$ which are so related during their revolution about $O$ and $C$, respectively, that the angle $X C P$ is always equal to itimes the angle $X O P$. This definition easily leads to the polar equation already derived.

[^55]:    - This curve is historically interesting, because it is the first one which was rectifed, i.e., it is the first one the length of an arc of which was expressed in rectilinear units. This celebrated rectification was performed, without the aid of the modern Calculus methods, by William Neil, a pupil of Wallis (see Cantor, Geschichte der Mathematik, Bd. II., S. 827), in 1657; the curve is therefore called the Neilian parabola. It is also called the semicubical parabola because its equation may be written in the form $y=a x$.

[^56]:    * This curve may also be defined thus: It is the path traced by a point which moves away from the center with uniform linear velocity, while its radius vector revolves about the center with uniform angular velocity.

[^57]:    * See also Rice and Johnson's Differential Calculus, p. 307.
    t This curve was invented and named by Cotes, who died in 1716.

[^58]:    - This curve might have been defined by saying that the radlus vector increases in a geometric ratio while the rectorial angle increases in an arith. wisic ratio. An important property of this curve la (ace McMabon anl Sayder's Differential Calculus, Art. 180) that it cuts all the radil vectores at the same angle, and the tangent of this anglo is the roodulus of the system of logarithms which the particular spiral represeuts.

[^59]:    * With polar coördinates, these lines are a circle about the pole with radius $=\rho$, and a straight line through the pole making the angle $\theta$ with the initial line (Art. 23).
    $\dagger$ With polar coorrdinates, these surfaces are a sphere, about the origin as center, determined by the radius vector $\rho$, a right cone about the $z$-axis, with vertex at the origin, determined by the angle $\phi$, and a plane through the $z$-axis determined by the angle $\theta$ (Art. 201).

[^60]:    - See Chap. IV, where diagrams aro given for the correrponding cases of the general quadric, with elliptical instead of circular sections.

[^61]:    - The reduction of this article gives a second proof that the general algebraic equation of first degree always has for its locus a plane.

[^62]:    - If the coefficienta of two qualratic terma ranish, as Ir and $C$, a change of origin finv, then of direction of axes, may be chosen wo that the equatoon will reduce to the form (b).

[^63]:    - An exceptional case occurs where the general equation can be factored into linear factors, and therefore represents two planes.

[^64]:    - See ATl. 228.

[^65]:    - This fact is of importance in astronomy in connection with the beharior of comets.

[^66]:    - Coaxial conics are, however, not necessarily confocal.

