
This is a reproduction of a library book that was digitized
by Google as part of an ongoing effort to preserve the
information in books and make it universally accessible.

https://books.google.com

https://books.google.com/books?id=qB819m2ibUQC

1.28 :LA- 6943-1

LA-6943-H

History

D
E
P
O
S
I
T
O
R
Y

UC-32

Issued : May 1978

DOCUMENTS

AUG 22.1978

MICHIGAN STATE UNIVERSITY

LIBRARIES

Computing at LASL in the 1940s and 1950s

Roger B. Lazarus

Edward A. Voorhees

Mark B. Wells

W. Jack Worlton

losalamos

scientific laboratory

ofthe University of California

LOS ALAMOS, NEW MEXICO 87545

An Affirmative Action /Equal Opportunity Employer

UNITED STATES

DEPARTMENT OF ENERGY

CONTRACT W-7405-ENG. 36

MICHIGAN STATE UNIVERSITY LIBRARIES

CATALO
GED

!

3 1293 01258 0639
L

Printed in the United States of America. Available from

National Technical Information Service

U.S. Department of Commerce

5285 Port Royal Road

Springfield , VA 22161

Microfiche $ 3.00

001-025

026-050

051-075

076-100

101-125

4.00

4.50

5.25

6.00

6.50

126-150 7.25

151-175 8.00

176-200 9.00

201-225 9.25

226-250 9.50

251-275 10.75

276-300 11.00

301-325 11.75

326-350 12.00

351-375 12.50

376-400 13.00

401-425 13.25

426-450 14.00

451-475 14.50

476-500 15.00

501-525 15.25

526-550 15.50

551-575 16.25

576-600 16.50

601 -up --1

1. Add $2.50 for each additional 100-page increment from 601 pages up.

This report was prepared as an account of work sponsored

by the United States Government. Neither the United States

nor the United States Department of Energy, nor any of their

employees, nor any of their contractors, subcontractors, or

their employees, makes any warranty, express or implied, or

assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would

not infringe privately owned rights.

PREFACE

Each year the National Computer Conference devotes a session , known as

Pioneer Day, to recognizing a pioneer contributor to the computing profession .

The 1977 National Computer Conference was held in Dallas, Texas on June 13-

16, 1977, and the hosts of the conference honored the Los Alamos Scientific

Laboratory at the associated Pioneer Day. Since digital computation at LASL

has always been a multifaceted and rapidly changing activity, the record of its

history is somewhat fragmentary . Thus the 1977 Pioneer Day gave us the oppor-

tunity to survey and record the first 20 years of digital computation at LASL.

Four talks were presented :

I. "Hardware" by W. Jack Worlton,

II . " Software and Operations " by Edward A. Voorhees ,

III . "MANIAC " by Mark B. Wells , and

IV . " Contributions to Mathematics " by Roger B. Lazarus .

The contents of this report were developed from those talks . Each of them sur-

veys its subject for the 1940s and 1950s . Together, they reveal a continuous ad-

vance of computing technology from desk calculators to modern electronic com-

puters . They also reveal the correlations between various phases of digital com-

putation, for example between punched-card equipment and fixed-point elec-

tronic computers .

During this period , LASL personnel made at least two outstanding contribu-

tions to digital computation . First was the construction of the MANIAC I com-

puter under the direction of Nicholas Metropolis . The MANIAC system , that is

hardware and software, accounted for numerous innovative contributions . The

system attracted a user community of distinguished scientists who still

enthusiastically describe its capabilities. The second development was an overt

policy of the Atomic Energy Commission to encourage commercial production of

digital computers . Bengt Carlson of LASL played a key role in carrying out this

policy, which required close collaboration between LASL staff and vendor per-

sonnel , in both hardware and software development . Again , as you read these

four papers, you see the beginnings of the present multibillion - dollar computer

industry.

The Computer Sciences and Services Division of LASL thanks the National

Computer Conference for recognizing LASL as a Pioneer contributor to the com-

puting profession . The men and women who were at Los Alamos during the

1940s and 1950s are proud of this recognition, and those of us who have subse-

quently joined the Laboratory see in it a high level of excellence to be main-

tained . We also thank J. B. Harvill, of Southern Methodist University, for his

collaboration and assistance with arranging the 1977 Pioneer day.

B. L. Buzbee

iii

ADP

ALGAE

ASC

CDC

COLASL

ABBREVIATIONS AND DEFINITIONS

automatic data processing

a LASL-developed control language for programming

Advanced Scientific Computer (TI)

Control Data Corporation

a LASL-developed programming language and compiler (STRETCH) based on

ALGAE and the use of natural algebraic notation

Card-Programmed Calculator (IBM)

central processing unit

a LASL-developed floating-point compiler for the IBM 701

CPC

CPU

Dual

EDSAC electronic discrete sequential automatic computer

EDVAC electronic discrete variable automatic computer

ENIAC electronic numerical integrator and calculator

ERDA Energy Research and Development Administration

FLOCO a LASL-developed load -and -go compiler for the IBM 704

IAS

IBM

I/O

IVY

Institute for Advanced Study

International Business Machines Corporation

input/output

a LASL-developed load -and -go compiler for the IBM 7090 and IBM 7030

JOHNNIAC John's (von Neumann) integrator and automatic computer

LASL Los Alamos Scientific Laboratory

Madcap

MANIAC

a LASL-developed natural language compiler for the MANIAC

mathematical and numerical integrator and computer

iv

OCR

PCAM

MCP

MQ

Master Control Program, a LASL-IBM designed operating system for the IBM

7030

Multiplier-Quotient, a register used in performing multiplications and divisions

optical character recognition

punched-card accounting machine

SAP
SHARE Assembly Program for the IBM 704

SEAC Standards eastern automatic computer

SHACO a LASL-developed floating-point interpreter for the IBM 701

SHARE an IBM -sponsored users group

SLAM a LASL-developed operating system for the IBM 704

SSEC Selective Sequence Electronic Calculator

STRAP STRETCH Assembly Program

STRETCH IBM 7030 , jointly designed by IBM and LASL

TI Texas Instruments Company

UNIVAC trademark of Sperry Rand Corporation

V

COMPUTINGAT LASL IN THE 1940S AND 1950s

by

Roger B. Lazarus , Edward A. Voorhees ,

Mark B. Wells, and W. Jack Worlton

ABSTRACT

This report was developed from four talks presented at the Pioneer Day

session ofthe 1977 National Computer Conference. These talks surveyed the

development of electronic computing at the Los Alamos Scientific

Laboratory during the 1940s and 1950s.

I

HARDWARE

by

W. Jack Worlton

A. INTRODUCTION

1. Los Alamos: Physical Site

Project Y of the Manhattan Engineer District was

established at Los Alamos, New Mexico , in 1943 to

design and build the first atomic bomb . Los Alamos

occupies the eastern slopes of a volcanic " caldera , "

that is, the collapsed crater of an extinct volcano

that was active some 1 to 10 million years ago . Dur-

ing its active period the volcano emitted about 50

cubic miles of volcanic ash, which has since har-

dened and been eroded to form the canyons and

mesas on which the Laboratory is built .

Before its use for Project Y, this site was used for a

boys ' school , and those buildings were part of the

early residential and laboratory facilities . Old "Tech

Area 1 , " where the early computers were housed,

was built next to the pond , as shown in Fig . I- 1 . The

early IBM accounting machines were housed in E

Building, and the MANIAC was built in P Building .

Since that time the computing center has been

moved to South Mesa.

2. Computers in 1943

In 1943 computer technology was in an extremely

primitive state compared to the rapidly growing

needs of nuclear research and development . The

analog computers in use included the slide rule and

the differential analyzer . The slide rule was the ubi-

quitous personal calculating device, and LASL

1

Fig. I-1.

what the answer should be will inevitably lead to

technical errors, because flaws in the models , the

codes , or the data are essentially impossible to

eliminate in the very complex models used at the

frontiers of scientific research and development. In

those early years when computers were less trusted

than they are now, " Carson's Caution " was well un-

derstood, but we now accept computers so readily

that we sometimes forget this very basic lesson from

the past.

The other analog computing device used in the

early 1940s was the mechanical " differential

analyzer. " These were one-of-a -kind devices not

readily available, and thus they were not used at

LASL.

Digital computing in those early days was done

either with electromechanical desk calculators or

with accounting machines . Both of these methods

were used in the early weapons calculations .

3. Chronological Overview

Figure 1-3 . shows the various categories of com-

puting devices that have been used by LASL from

Lo
s
Ala

mos
St
ic

Lab
ies

tor
y

Fig. I-2.

COMMERCIAL COMPUTERS

MANIAC

701

704 7090 6600

7030 7094

MANIAC I MANIAC

ENIAC

SSEC UNIVAC I

SEAC

Non-LASL COMPUTERS

ACCOUNTING MACHINES

DESK CALCULATORS

7600

made 18-in . slide rules available from stock . The ex-

ample shown in Fig. I -2 belongs to J. Carson Mark,

formerly head of the Theoretical Division at LASL.

Although slide rules have now been largely replaced

by electronic calculators , they once played an im-

portant role in computational physics-one which is

still important and often overlooked . Mark points

out that computers can be downright dangerous if

their results are not checked with preliminary es-

timation techniques . In other words, estimation

should precede computation . Using the results of

computation without at least a rough estimate of

1940 1945

1

1950

Fig. 1-3.

1955 1960 1965 1970

the 1940s to the early 1970s . Note that not all of

these have been used at LASL; in the late 1940s and

early 1950s , some of the unique early computers at

other sites were used in an attempt to complete

some of the more critical calculations . In a sense,

the "modern" era of LASL computing began in 1953

with the installation of the first IBM 701 ; this in-

stallation ushered in a period in which the major

2

computing requirements at LASL (and other large

computing sites) would be met with equipment

developed by commercial vendors rather than with

computers developed as one-of-a-kind devices by

Government laboratories and universities .

B. DESK CALCULATORS

Shortly after scientists began arriving at Los

Alamos in March 1943, a desk-calculator group was

formed under the direction ofDonald Flanders . This

group (T-5) consisted of both civilian and military

personnel, including WACS (Women's Army Corp) ,

SEDS (Special Engineering Detachment) , and the

wives of scientists . By 1944 it was the largest group

in the Theoretical Division , with 25 people . The

calculators used were Marchants, Monroes, and

Fridens, although Flanders soon decided that it

would be best to have a standard calculator and

selected the Marchant (however, two advocates of

Monroes refused to give them up) . Repair of the

calculators was a continual problem at the isolated

Los Alamos site , so many of the problems with a

sticking calculator were solved simply by dropping

the end of the offending device, in the military

tradition of the "drop test . " Jo Powers (T- 1) also

notes that when their problems became acute , they

called Dick Feynman (later a Nobel laureate) who ,

according to Jo , could fix anything . Feynman has

recently given a lecture* that recounts some of his

experiences with early LASL computing.

To avoid problems with manual errors, many of

the calculations were executed by more than one

person, with intermediate check points to assure

that no errors had been introduced . Flanders

designed special forms to aid in the setup and execu-

tion of the calculations . These calculations were

typically done by a manual form of parallel process-

ing; that is , the problem would be broken down into

sections that could be executed independently. It

seems that parallel processing is part of the "roots "

* "Los Alamos from Below: Reminiscences of 1943-1945, " adapted

from a talk at Santa Barbara Lectures on Science and Society,

1975. Published by Engineering and Science, January-February

1976, pp . 11-30.

of scientific computing, rather than just a recent in-

novation , as sometimes thought . *

C. PUNCHED - CARD ACCOUNTING

MACHINES

The PCAMS of the early 1940s were designed

primarily for business applications, but they could

also be used for scientific calculations, such as the

pioneering work of Comrie . ** In early 1944, Stan

Frankel (who worked with Metropolis) recognized

that PCAM equipment could be used for some ofthe

calculations at LASL, and that spring the following

equipment was delivered :

⚫ three IBM 601 multipliers

● one IBM 405 alphabetic accounting machine

⚫one IBM 031 alphabetic duplicating punch

⚫one IBM 513 reproducing punch

⚫one IBM 075 sorter

⚫one IBM 077 collator.

The 601 multiplier was the "workhorse" of this

array of equipment . Its basic function was to read

two numbers from a card, multiply them together,

and punch the result on the same card , although it

could also add and subtract (division was done by

multiplying with reciprocals) . The 601 was an im-

portant advance over its predecessor, the IBM 600,

because the 601 had a changeable plugboard that

made changing the functions being performed very

rapid compared to rewiring the 600 for every such

change . The 405 could add or subtract and list

results . The 031 was a "keypunch" in modern ter-

minology .

Early accounts of computations with these

machines indicated that a single problem took

about 3 months to complete; later methods reduced

the time so that nine problems could be completed

in a 3-month period .

*The ENIAC , the first electronic computer, employed parallel

execution in its design.

**L. J. Comrie, "The Application of Commercial Calculating

Machinery to Scientific Computing, " in Math Tables and Other

Aids to Computation , Vol . II , No. 16, October 1946 , pp . 149-159 .

3

The first of a series of the new IBM 602

Calculating Punch models was delivered to P. Ham-

mer (Group Leader, T-5) on November 6, 1947 ,

along with a new model of the sorter, the IBM 080 .

Although still an electromechanical device , the 602

had over 100 decimal digits of internal storage and

could perform the following operations ; add , sub-

tract, multiply, divide, compare , and negative test .

Property records indicate that eight 602s were

delivered to Los Alamos in 1947 and 1948 , and both

601s and 602s were in use for some time.

IBM's first electronic calculating punch was the

604, which was also used at LASL. It had 50 decimal

digits of internal vacuum-tube register storage,

although the sequencing control was through a

prewired plugboard . Input and output was through

punched cards , read and punched at a rate of 100

cards per minute . The 604 could perform the same

operations as the 602, plus zero test, positive or

negative test, repeat, and shift .

The IBM CPCs were delivered to Los Alamos in

1949; eventually LASL had six of these, the last of

which was removed in October 1956. The CPC em-

ployed both electronic and electromechanical

technology, with 1400 vacuum tubes and 2000

relays . It had 290 decimal digits of internal vacuum-

tube registers plus up to three IBM 941 storage units

that provided sixteen 10-digit words of relay storage

each. The card reader and printer operated at 150

cards per minute and 150 lines per minute , respec-

tively . The operations performed by the CPC in-

cluded add, subtract, multiply, divide , repeat , zero

test, suppress, shift, plus wired subroutines for

transcendental functions

D. NON-LASL COMPUTERS USED FOR

LASL STUDIES

From 1945 until the completion of the MANIAC ,

several non-LASL machines were used for LASL

weapons studies. Nick Metropolis and Stan Frankel

used the ENIAC at the Moore School of the Univer-

sity of Pennsylvania (before its being moved to

Aberdeen, Maryland) for the first significant ther-

monuclear calculation . This was useful not only to

LASL but also to the ENIAC project, because it

gave this machine a rather thorough checkout . This

study was arranged by John von Neumann , who was

a consultant to both the ENIAC project and LASL.

Metropolis and Frankel collaborated on a study of

the liquid-drop model of fission that used the

ENIAC (also at the Moore School) in 1946 and 1947.

In the summer of 1948 , Foster and Cerda Evans

(T- 3) , J. Calkin (T- 1) , and H. Mayer (Group

Leader, T- 6) used the ENIAC, this time at Aber-

deen . As late as 1951-1952 Paul Stein also used the

ENIAC for a LASL study.

The SSEC, a mixed-technology machine com-

pleted by IBM in 1948 in New York City, was used

for LASL calculations by R. Richtmyer and L.

Baumhoff in late 1948 .

In 1951 the SEAC at the National Bureau of Stan-

dards in Washington, D.C. was used by R.

Richtmyer, R. Lazarus , L. Baumhoff, A. Carson ,

and P. Stein of LASL.

The UNIVAC I at New York University was used

by R. Richtmyer, R. Lazarus , and S. Parter. Paul

Stein later used a UNIVAC I at Philadelphia.

Finally, the IAS computer was used by Foster

Evans of LASL in a collaboration with von

Neumann. Although the MANIAC was available at

LASL by then, the work was completed on the IAS

machine because the code was not portable to the

MANIAC.

E. MAJOR COMMERCIAL COMPUTERS :

1953 TO 1977

In 1953 IBM delivered the first model of their 701

computer to Los Alamos, as arranged by John von

Neumann who was a consultant to both organiza-

tions . Thus began the era at LASL in which com-

puting requirements would be met with commercial

computers . Figure I-4 shows the electronic com-

puters that have been used at LASL from 1953 to

the present . These computers have been (with the

exception of the small CDC Cybers) the " supercom-

puters " of their time ; that is, they were the most

powerful computers available, where " powerful" is

defined in terms of the speed of instruction execu-

tion and the capacity of the main memory.

Figure 1-5 illustrates the trend in execution

bandwidth in operations per second that has oc-

curred at LASL from the early 1940s to the present .

4

Large Scale Computers at LASL

Computer Power Calendar Year

1950 1955 1960 1965 1970 1975 1980

MANIAC I
IBM 701

IBM 701

IBM 704

0006

0006

0006

IBM 704

IBM 704 Ο ΟΙ

MANIAC II oo

IBM 7030 C3

IBM 7090 007

IBM 7090 007

IBM 7094 OI

IBM 7094 CI

CDC 6600 1

CDC 6600

CDC 6600

CDC 6600 1

CDC 7600 5

CDC 7600 5

CDC 7600 5

CDC 7600 5

CDC CYBER - 730 75

CDC CYBER - 730 75

CRAY-1 20

E
x
e
c
u
t
i
o
n

B
a
n
d
w
i
d
t
h

(o
p

/ s)

10

1950 1955 1960 1965 1970 1975 1980

Fig. I-4.

Trend in execution bandwidth

CRAY-I

10 7600

6600

10

7030

10

M
o

N
o

10

MANIAC

SEAC

10'

10°

Accounting

Machines

704

` 8 = @ 22 (1-6 +/201 |
It=0 1943

1985

1985

some 8 to 9 orders of magnitude in the change of ex-

ecution bandwidth-a rare and perhaps unique

change in technology in such a short period .

For many years LASL's growing needs for com-

putational capacity and capability were such that

an attempt was made to double the computing

capacity every 2 years. This was successfully done

from 1952 to about 1970, but the recent growth rate

has not matched the former pace for two reasons : (1)

the rate of development of faster computers is now

somewhat slower than it was earlier and (2) the

competition for computer funding within ERDA is

much greater now than it was . LASL now competes

with 38 other organizations within ERDA for ADP

capital equipment funds .

The installation of ever-increasing computing

capacity to match the growing needs of the research

and development work at LASL would have been

impossible if it were not for another important

trend: the steady decline in the price -performance

index of computers . The ENIAC cost about $750 000

to build, and it executed about 500 operations per

second . The most recent supercomputer at LASL,

the CRAY- 1 , costs about 10 times as much as the

ENIAC, but generates results about 100 000 times as

fast. Thus, there has been a decline of some 4 orders

of magnitude in the cost of an executed instruction

in the 30 years since LASL began using the ENIAC

at the Moore School.

The architecture of the commercial computers

has changed in important ways in the 1940s and

1950s , including a trend toward ever-increasing

levels of parallelism, as shown in Fig. I -6 . The first

1940 1950 1960 1970 1980

Fig. I-5.

SCALER

MMM

SEQUENTIAL

RRM

EVOLUTION OF COMPUTER

ARCHITECTURE 1946-1976

LOOKAHEAD

The largest single step in this trend occurred with

the development of the MANIAC, because this was

a change from electromechanical to electronic

technology . Whereas implosion calculations

previously had required several months to complete

on the PCAM equipment, the MANIAC was able to

complete these calculations in a few days . Curren-

tly, CDC 7600s can complete this same type of

calculation in a few hours . Overall, the trend covers

I/E OVERLAP
FUNCTIONAL

PARALLELISM

MULTIPLE

FUNC UNITS

IMPLICIT

VECTORS

PIPELINE

MMM

Fig. I-6.

ARRAY

PROCESSORS

EXPLICIT

VECTORS

RRR

5

computers following the ENIAC were strictly scalar

processors; that is, they generated a single result for

each instruction executed . Further, they were three-

address designs , in which both operands used were

addressed in memory and the result returned to

memory (indicated by "MMM " in Fig . I -6) . The so-

called " von Neumann" type of architecture modified

this addressing method by the use of an "ac-

cumulator" that allowed a single-address format to

be used in which only one memory operand was ad-

dressed, and the other operand and the result were

assumed to be in the accumulator (indicated by

"RRM " in Fig . I-6) .

Instructions were executed in strictly sequential

mode in these early scalar processors : the instruc-

tion was fetched and decoded , the effective address

was generated, the operand was fetched , the result

was generated ; the same sequence was then followed

for the next instruction . With the design of the

STRETCH computer (IBM 7030) , which was a joint

LASL-IBM effort, the instruction processing phase

was overlapped with the execution phase through

the use of a "lookahead " unit . Instruction processing

then became less of a bottleneck, and the limit on

operating speed became the "E-Box" that actually

executed the operations (indicated by "I/E Overlap "

in Fig . I -6) . This limitation was rather quickly ad-

dressed in designs that included many "functional

units , " that is , independent units that could execute

a designated function such as add or multiply in-

dependently of one another . The CDC 6600 had 10

such units, for example .

The next advance in architecture was the

development of the "pipeline " processors, first ac-

quired at LASL in the CDC 7600. This design breaks

the instructions down into small segments . Each of

these is executed independently and in parallel ,

thereby multiplying the execution rate by the

degree of segmentation in the pipeline . Even this

design is limited by the rate at which instructions

can be issued , because only one result is generated

per instruction . This bottleneck was addressed in

the design of the " vector " processors, in which a

single instruction can cause the generation of a set of

results, using the same operation (for example , add)

in pairs on two sets of operands . The first -generation

vector processors (the CDC STAR-100 and the TI

ASC) were memory-to-memory designs in which

operands were drawn from memory and the results

returned to memory. This was, in effect, a repetition

of the memory-to-memory design of the EDVAC,

but in a vector context, and had the same disadvan-

tage , namely that the memory and the central

processor have widely disparate response times ,

thus making it difficult to avoid memory-limited

performance . LASL carefully analyzed the first-

generation vector processors and decided that the

performance gain was too limited to justify the large

amount of time and personnel effort involved in

bringing one of these machines into productive

status . A fourth 7600 was acquired instead .

The limitations of the memory-to-memory vector

designs were addressed in the next generation of

vector designs that used a register-to -register for-

mat, in which vector registers were included . These

could be loaded from memory or have their contents

stored in memory, but all vector operations drew

operands from the high-speed registers and returned

their results to the registers (indicated by "RRR" in

Fig. I-6) . LASL acquired the first of the CRAY-1

computers that included this design feature.

F. CONCLUSION

Nuclear science and computer science at LASL

(and at other major research centers) have enjoyed a

"symbiotic " relationship in which each has benefited

from and contributed to the work of the other.

Nuclear science has provided technical motivation

and much of the funding for large-scale scientific

computing, and computing has provided the tools

and techniques for the solutions of many problems

in nuclear science that would otherwise have been

either intractable or much delayed . Computing

remains a critical resource to the programmatic

work at LASL, both for weapons research and

development and for the growing efforts in energy

research .

6

II

SOFTWARE AND OPERATIONS

by

Edward A. Voorhees

A. INTRODUCTION

A more descriptive title would be " Software with

Notes on Programming and Operations, " because

during the 1940s and 1950s, the coder (today called a

Programmer or Systems Analyst) was usually the

operator as well . Scientists normally programmed

their own applications codes and on occasion might

also code utility programs such as a card loading

routine . They primarily used longhand , or machine

language, in the larger codes to minimize running

time . They were not afraid of " getting their hands

dirty" and would do almost any related task to ac-

complish the primary work of math, physics , or any

other field in which they were engaged . Some of this

history was not well documented , and many of the

old write-ups are not dated . Some details therefore

could be slightly in error . I hope to convey a feeling

for how computing was done in the " good old days "

as well as to provide some information on the

hardware and software available then . *

Hand computing was performed in the 1940s

through the mid-1950s . At its peak there were

perhaps 20 to 30 people using Marchant and Friden

desk calculators . Mathematicians and physicists

would partition the functions to be calculated into

small calculational steps . These functions generally

required many iterations and/or the varying of the

parameter values . In many respects this constituted

programming by the scientists for a "computer" that

consisted of one or more humans doing the

calculating, following a set of step-by-step "instruc-

tions . "

The computing machines at LASL in the 1940s

and 1950s fell into four groups . From 1949 to 1956 ,

LASL used IBM CPCs; from 1953 through 1956 ,

IBM 701s were also installed . These were all

replaced almost overnight in 1956 by three 704s,

*I will discuss LASL's effort primarily, and references to IBM

usually will be to indicate a joint effort or to maintain a frame of

historical reference .

which remained until 1961. The IBM STRETCH

computer arrived in 1961 , but there was a period

before that of about 5 years during which LASL did

development work on both the hardware and

software in cooperation with IBM.

B. CARD-PROGRAMMED CALCULATOR

ERA

The IBM CPCs (used at LASL from 1949 to 1956)

were not stored-programmed computers and were

not originally designed as computers but rather as

accounting machines . The card deck was the

memory for the program and the constant data . The

machine itself included 8 registers that held 10-digit

decimal words . One could add up to 48 additional

registers in units of 16 per box for a total of 3 such

boxes . These were commonly referred to as

"iceboxes . " Figure II - 1 shows an abbreviated version

of the programming form developed for the CPC .

The form could accommodate four different fields of

operations ; an operation normally consisted of

Operand A, Operation, Operand B, and with the

result being stored in the register identified in "C. "

Each of the wide gaps on the form indicate where

two fields of data could be entered . The data were

represented with a sign, a single integer, and seven

fractional decimal digits . The exponent was

represented as 50 plus or minus whatever the actual

exponent would be. Branching was rather in-

teresting. Even though each card was executed in-

dependently of every other, the machine could be

(1)

OP BIC

2 22 2

IBM CPC

(2) (3)

A OF BL A OP BC A

Fig. II-1.

(4)

OP BC

7

programmed to remember which of the four fields of

operations it was following at any given time .

Therefore, if the program had a branch (either un-

conditional or conditional) among the instructions

in field 1 , the machine could begin to execute its

next instruction from any one of the other three

fields . In this way you could branch between fields

and follow a different sequence of instructions .

The design and use of the wired board " created " a

general purpose floating-decimal computer from an

accounting machine . The F Control Panels were

LASL's most advanced wired boards and had many

of the elements of " macrocoding. "

Figure II -2 shows some of the operations that

could be performed from a single card using the F

Control Panels . Note that in these cases there are

two operands and one result with a third operand ,

X, coming from another field of the form. Usually,

CPC SINGLE - CARD OPERATION EXAMPLES

A + B+X C

CPC FUNCTIONS

√Ā

A * B (1≤n≤108)

sin X , cos X, ex

1/2 log

1+X

1 - X

arctan X

sinh X , cosh X

Fig. II-3.

features . Four wires come out of the columns iden-

tified as Brushes (which refer to the card-reading

brushes) that go into the Multiplier. Another three

B *X

→ C

A

(A+ B)* X → C

X

AB

Fig. II-2.

FOOTP

SUMM CUNTERTO

these operations could be executed in one card cy-

cle. Some ofthem would take longer than one cycle ,

so the programmer would have to put a blank card

in the deck to give the machine enough time to ex-

ecute that instruction before proceeding to the next

one.

Figure II-3 shows some of the functions that were

available on the CPC . The functions here and the

operations in Fig . II -2 resemble modern-day sub-

routines, but they were subprograms wired on the

board . Some of them were fairly complex, and often

blank cards were again necessary to provide enough

time for the CPC to execute the function .

Figure II-4 shows a board from an IBM 601 .

Although the CPC boards were much larger and

more complex, this board shows some of the basic

IND GROUP

IX BRUSHES

FIXE

ROSS-FO

ссо
CLASS SELECTION

Fig. II-4.

મીની
AXBAG

LASS SELECTION

6266

C802c

I

8

wires go into the Multiplicand, and the Product is

routed to the Card Punch. There were a total of six

CPCs at LASL; the last one did not leave until late

in 1956, well after the three 701s had already depar-

ted and three 704s had been installed .

The operator would stand in front ofthe machine ,

recycle the cards for hours, perhaps change to alter-

nate decks of cards, watch the listing, and often

"react . " In other words , over 25 years ago we already

had " interactive computing. "

A

C COUNTER

B

D

C. IBM 701 ERA

The IBM 701 originally was announced as the

"Defense Calculator . " LASL was the recipient ofthe

serial number 1 machine, which arrived in April

1953 and remained until the fall of 1956. A second

701 calculator, as it was later called , came in

February 1954. The machine was fixed binary . All

numbers were assumed to be less than one ; that is ,

the binary point was on the extreme left of the num-

ber. The electrostatic storage (which was not too

reliable) could hold 2048 36-bit full words or 4096 16-

bit half-words. It was possible later to double the

size of that memory, which LASL did indeed do . In-

structions were all half-words ; data could also be in

half-word format . Instructions were single address

with no indexing . There was no parallel I/O . The

system consisted of one card reader, one printer, one

memory drum storage unit , two tape drives (which

often did not work), and one card punch (the

primary device for machine-readable output) .

Figure II -5 shows the console of the 701. The

Memory Register held word transfers to and from

memory. If you wanted to add or subtract you would

put one number into the Accumulator ; if you wan-

ted to divide or multiply, you would use the MQ

register. There were two overflow bits in the Ac-

cumulator register in case of a spill, a condition the

program could sense with an instruction . A 72-bit

product was formed when multiplying two full

words. A 72-bit dividend , in the Accumulator and

MQ, divided by a 36-bit divisor yielded a 36-bit

quotient in the MQ and a 36-bit remainder in the

Accumulator. Six Sense Switches in the upper

right-hand corner of the console could be in-

terrogated by the program so as to alter the course of

the program and thereby provided six manually set

conditional branches. There were also four program-

E

SUCTION ENTRY

Fig. II-5.

TRY

OPERATING

mable Sense Lights, which could be used to visually

indicate where in the code execution was occurring

or some other internal condition . In the extreme

lower left-hand corner, two buttons, one labeled

Half Step and the other Multiple Step, permitted

the programmer to step his way slowly through his

program and observe the contents of the Ac-

cumulator, MQ, and the Memory Register when the

701 was switched to Manual Mode.

Before the first IBM 701 had been delivered , three

principal methods of programming had been

developed at LASL: longhand (which is perhaps

better understood today if called " machine

language ") , SHACO, and Dual . SHACO and Dual

were originated and implemented at LASL. All

these programming systems were developed by 8 to

10 people and were operational soon after the

delivery of the first machine .

Machine language came into operation in 1953

and was based on an early IBM assembly program

called SO2 . LASL's first version , " 606 , " was soon

followed by " 607 , " which was then used during the

remaining service of the 701s at LASL. Both used

9

BY

"Regional Programming . " Each location and ad-

dress occupied a 3-column region field , which

designated a block of instructions or data, followed

by a 4-digit sequence number, which permitted up

to 9999 instructions per block. A signed 2 -digit

GROUP

NEXAMPLE 3,887, "PRINCIPLES"

701 Calculator

Regional Programming
ALPHAMERIC REMARKS

STORE IN ERASABLE

KELCTIVE LOCATION ET OP'N RELATIVE ADDRESS

OOSFO 100280004 FORM C+ IAI - 181,

028 0: 00.0

70.29000 STORAGE

0205F00 S X
4 01 X

Χ

1900 R X

3

52100R

07-1200E ..

F
O
R
O
R
O

L
O
K
O
R
O

0
0
0

0
0
0

O
O

8
0
0

5
2
0

F
B
E

A
R
R

9
1
0 ORIGIN FOR SF

RIGIN FOR 28

ORIGIN FOR DE

Fig. II-6.

PROGRAM

OPERATION WORD

AND R ADD.

ADD. AB.

SUB AB

TR OV

TR.1

L RIGHT

ROUND!

STORE

L(c) = -0:

L(A)=

(B)

L(x).

FOR

PRO !

single -address operation code was always ex-

pressed numerically . On the form (Fig . II -6) , there

were comment fields for a program label and the

name of the operation. The absolute locations of

blocks were specified by the coder for the assembly

program at the time of loading for each of the dif-

ferent regions used . These assignments were on

"origin cards . " The card output options from the

assembly program were absolute binary, regional

binary (which was relocatable) , and regional

decimal (which was used to correct the source

language deck and then punch a new regional

decimal deck) . The regional decimal punching op-

tion was too slow, so it was omitted from a later ver-

sion of the assembly program. The output listing

had both decimal and octal absolute locations ; the

octal were more useful than the decimal because

most of the users worked in binary and octal . Scal-

ing for fixed-point binary coding was generally

noted in a comment field . The " 607 " assembly

program was loaded at the beginning of the user's

deck because there was no machine -resident

software. Card errors were often fixed by plugging

unwanted holes with chips from a card punch hop-

per . Some people got so adept at this that they could

even fix the check-sum on binary cards .

Machine language allowed the user to get in-

timately close to the computer . There were no

1

monitors or other software stored in the computer.

Everything that was in the computer was there

because the user loaded it from cards . When he got

on the machine, he loaded a bootstrap card loader

that loaded the rest of his deck. He loaded his own

print program (fixed output format) and manually

put the corresponding print board in the printer. If

there was trouble on a run, he then loaded an ap-

propriate debugging program and associated printer

board of his choice (generally, either a printed

dump or an instruction-by-instruction tracing of a

portion of the code as it executed) . Memory check-

sums and frequent dumps were made as protection

against the short mean time (minutes) between

computer failures .

With machine language , the user had to remem-

ber the following.

• When dividing, the divisor always had to be less

than the dividend so that the quotient would be less

than 1. If not, a Divide Check would occur and the

machine would come to a screeching halt .

• An instruction was often used also as a data

constant; that would be unheard of today.

• Because the 701 was a fixed -point binary

machine, the user had to think in binary octal , es-

pecially when working at the console or poring over

an octal dump.

Scaling was necessary and often difficult to do

without causing undue loss of significance or result

overflows. The programmer had to mentally keep

track of the binary point as he programmed .

• When decimal data were loaded , the program-

mer specified both the decimal and binary points for

the conversion . For example, the integer 13

(decimal) would have a decimal scaling factor of 2

(for two decimal digits) , but the binary scaling fac-

tor would have to be at least 4 to accommodate the

number of binary bits from the conversion .

• When adding two numbers, they had to have

the same binary scale factor for proper alignment ;

otherwise, the user would have to shift one of them

until they were aligned . He also had to allow room

for a possible carry or check the Overflow Indicator

after the addition .

The Program Library included various card

loaders , print programs, and debugging programs .

The debugging programs would look for such things

as transfers or stores to certain specified locations .

Memory errors frequently resulted in a Divide

10

Check and a machine stop . Occasionally, instruc-

tion sequence control would be lost, and a jump

would occur to some part of memory where it should

not be. In this case , when the machine stopped you

had no idea how control got to that location .

LASL Group T- 1 , which ran the computer opera-

tion, began issuing materials and offering program-

ming classes in 1953. At that time there were about

80 users outside of T- 1 . By August, LASL was

already operating 24 hours per day. Six 701s had

been delivered nationwide by then, and there was

enough interest among users to hold a program-

exchange meeting at Douglass Aircraft (Santa

Monica) . This meeting was the forerunner of the

SHARE organization formed in 1955 of which LASL

was a charter member.

SHACO was an attempt to simulate the widely

used CPC decimal coding scheme . It was an inter-

preter with an option for tandem arithmetic opera-

tion . SHACO was 20 to 60 times faster than the CPC

depending on the amount of printing done during

execution . Printing on the CPC was overlapped with

execution and hence was "free . " SHACO was 2 times

slower than the 701 when executing machine-

language codes that incorporated floating-point

subroutines . It was about 10 to 15 times slower than

a good 701 machine-language fixed-point code . If

the tandem arithmetic option was used , execution

was slowed by another factor of 2. SHACO's

floating-decimal data representation was 10 digits

(1 integer plus 9 fractional digits) and a 3-digit

signed exponent (not modulo 50) . It had a max-

imum of 24 instruction blocks each of which could

contain up to 127 instructions . There was also a

maximum of 705 data locations . Data exponents

were stored separately from mantissas . Figure II -7

shows the input format . SHACO was the forerunner

SHACO FOR 701

CARD

BLOCK NO . AOP BC

2

+ X.XXXXXXXXX

3 132 133

± EEE (EXPONENT STORED SEPARATELY)

Fig. II-7.

of IBM's Speedcoding system, which was issued in

1954. Their version was very similar, and in their

manual they acknowledged that LASL had com-

pleted a program with the same objective of Speed-

coding: to minimize the amount of time spent in the

problem preparation . SHACO, although con-

siderably slower than 701 machine language, was

very effective for short problems where few runs

were anticipated and/or for "exploratory" difficult-

to-scale codes . Using a language of this type on the

701 saved approximately a factor of 20 in coding and

debugging time.

Dual was a LASL-developed fixed- and floating-

decimal coding language that came out about the

same time as SHACO . Its authors claimed that it

would " transform the 701 into a combined floating-

point and fixed -point computer. " Its commands

strongly resembled 701 assembly-language single-

address commands . It had a "virtual" combination

of the Accumulator and the MQ into a single AMQ

universal register . It had built-in tracing and a

single-address coding format. Dual executed com-

mands by branching to subroutines that occupied

about a quarter of the electrostatic storage . It

represented its data with a modulo 50 exponent

written in front of the mantissa . For example, the

decimal number -3 would be written as -51.300 . It

had a limited set of functions , such as square root,

cosine, and exponential. Both Dual and SHACO

were extensively used for all programs other than

the very large production codes .

There were no machine room operators as such ;

there was a dispatcher who kept records of usage,

downtime, and the schedule of assigned users . A

user operated the computer while his programs were

running (Fig . II -8) . During the day, he would re-

quest and was allocated 2- to 5-minute periods on

the computer for debugging, checkout, etc. When

his turn came, he would have his program card deck

plus debugging programs in hand . The preceding

user would normally be printing or punching at the

end of his run, and he would usually allow the next

user to stack his cards in the card reader. When the

preceding user finished , the next user would be

ready to initiate loading of his deck. Sometimes the

preceding user would overrun his allocation .

Usually, he would be allowed to continue for another

11

Fig. II-8.

minute but then the situation could get tense in-

deed . More than once, the waiting user pushed the

CLEAR button to erase memory. The habitual

overrunners developed a reputation for such ; but ,

all in all , things went rather smoothly .

At night, users with long-running jobs were able

to do something other than tend the computer . An

AM radio was attached to the machine . Different

sections of a code had a unique rhythm and sound so

the user could do other work if he kept one ear half-

cocked to the sound of the radio. If he heard

something unusual, he took appropriate action .

Night runs would range from 30 minutes to 4 or

more hours . Occasionally, when oversubscribed , up-

per management might have to decide who would

get the time available during the night .

D. IBM 704 ERA

The IBM 704, initially announced as the "701A" in

mid-1954, came to LASL in January 1956. It

represented a significant improvement over the

IBM 701. For one thing, instead of electrostatic

storage , it had core memory, which was much larger

(up to 32k words) and far more reliable . It had

floating-point binary, so SHACO and Dual were un-

necesary. It had index registers ; although there were

only three, they could be used simultaneously in

combination if you were a very tricky coder. It had a

much larger vocabulary and some logical opera-

tions . It was 2-1/2 times faster . By September 1956,

three 704s had been installed at LASL and two 701s

released . There was a lot less procurement red tape

at that time.

LASL-developed 704 software included longhand

(assembly language) , FLOCO , ALGAE, and SLAM .

The 704 machine language, called Regional Sym-

bolic or LASL " 871 , " was a straightforward assembly

program based on the previous assembly program ,

"607 , " for the 701. However, it had alphabetic opera-

tion codes and nonsymbolic numeric locations . It

had additional fields for the new index registers

(Tag) . The Decrement was the field used to modify

the contents of index registers . It was possible to

partially assemble a deck and then merge it with the

previously assembled binary deck . There was a

greatly expanded subroutine library .

Eight months after the first 704 was installed , we

issued the 704 Primer. Apparently we were in no

hurry to enlist new computer users . The 701 users

already had IBM manuals and needed little ad-

ditional help . The 704 Primer, an extension of the

early 701 Primer, was mainly used in the courses for

beginning coders .

FLOCO , which used what we called a "flow code , "

came out in 1956 and was replaced by FLOCO2 in

1959. The idea was to create a single-address

floating-decimal system that could be loaded and

immediately begin to execute following a one-pass

compilation that occurred during the card loading .

This saved greatly on compile time. The slogan for

FLOCO was that the source deck was the object

deck . One could have up to eight instructions per

card . The flow code controlled the execution ofwhat

was called the "formula set . " FLOCO had

pseudoinstructions interspersed in the card deck

that caused alternation of loading and execution .

The computer would load some instruction cards ,

execute the instructions, load more cards, and con-

tinue in this manner. Data or data space referred to

by a formula had to precede the formula in the card

deck to allow address assignment in the instructions

during the single pass . For some reason that is not

now clear to me, it was necessary to load data in

backward order . One could have transfers ,

branches, or jumps within a formula but not directly

to another formula . This had to be done indirectly

by a return transfer to the flow code. Note that the

flow code defined the flow of the program and was

separate from the formula set or set of things to be

done; that is , the logic of the overall code was not

embedded in the rest of the code .

12

In 1958 , the ALGAE language was implemented

at LASL for the 704. It was a preprocessor to FOR-

TRAN (which was first issued by IBM in 1957) . The

language contained a control structure that resem-

bled arithmetic expressions . The basic idea was to

separate the specification of the program control

from that for the evaluation of equations , I/O state-

ments, data movements, etc. , reducing the common

two-dimensional flow diagram to a compact linear

statement (box labeled Control in Fig .

II -9) . That control statement plus the set of "things

ALGEBRAIC FORMULATION OF FLOW DIAGRAMS

(1rΣ<0)

8 or

(1rΣ20)

ves

O10 10-1 S+x S 1 =0? 520?

no no

S+8+6

S20?

ino

ves
10-1 1-11 1-07

no

E

where E₁ : S = 0

E2 : S = x + S

Control

E3 :

E :

5

S - S + b

S = S + a

: - 1 , 10, 1

C₂ : 520.

....
• E1 + 11E₂ + C₂ (E3, E4) + ...

I₁ : 1-1, 10, 1

91 :520

Fig. II-9.

Equations

5 : S - 0

E2 :

E3

ves

ves

-S + x1

: S - S + b

E : S - S +

S+b S

E3

to be done" totally represent and define everything

that is in the flow diagram. A paper on the language

published in Vol . 1 of Communications of ACM

points out that the GO TO statement is probably

unnecessary in nonmachine programming

languages. Hence , 20 years ago, there was a sugges-

tion of GO-TO- less programming in the literature .

SLAM was an elementary monitor program for

the 704. It accepted multiple jobs batched on tape

and produced batched output on tape for offline

printing . It removed the necessity for a coder to be

in attendance during his run . It accepted all the

various languages in operation at LASLthen . Its use

was not mandatory. Larger codes would use single-

purpose tape- in and tape-out utility programs for

offline purposes instead of SLAM.

E. STRETCH ERA

Next came the planning period before the delivery

of the STRETCH computer (IBM 7030) .

STRETCH was a major LASL-IBM joint effort that

began in 1956. The hardware was novel and

revolutionary compared to the IBM 704 hardware .

The vocabulary was enormous . The machine was

delivered in 1961 .

LASL and IBM worked together in the develop-

ment of STRETCH software, including the design

of a longhand assembly program named STRAP

and an operating system called MCP. STRAP- 1

(implemented by LASL in 1958) was actually a

crosscompiler that operated on the 704 and

produced code for the 7030. A 7030 simulator (IBM)

operated on the 704 and incorporated STRAP- 1 .

STRAP-2 (implemented by IBM in 1960) accepted

the same language but ran on STRETCH itself.

Figure II - 10 shows the evolution in the design of

three assembly program languages . The problem is

to compute T = Z (X + S3) with floating-point argu-

ments . Note that the "871 " coding form for the 704

had fixed fields , whereas STRAP had free-form

statements for instructions . Also note the steady

progression from numerics to symbols in the three

generations of assembly language .

The MCP for the 7030 was designed by LASL and

IBM and was written by IBM. It had parallel

batching of I/O and disk operations, which was

referred to as " spooling. " It handled interrupts ; there

were many on the 7030. IBM 1401s came into use for

offline I/O support ; there were four of them during

the lifetime of STRETCH, beginning in 1960. There

was no multiprogramming then , but the overlap of

I/O and calculation was possible . MCP was not used

by most of the nighttime, long-running production

codes because it would have precluded I/O functions

13

LOCATION OPER ADDRESS
REGION SEQUENCE ATION PIGION SEQUENCE

Vol005 00000 CA 800 0

8
7
1

I FA 801

2 ST

3 LQ

4 FM 900

0050ST 850
10/005.0005,05

O

DECREMENT
REGION SEQUENCE

DATA
FRACTION

REMARKS

X INTO AC

ADD S3

STØRE SUM

SUM TO MQ

MULTIPLY BY

STØRE T

subscript any number of levels . A sample 9210 out-

put from the typewriter and card punch is shown in

Fig. II- 12 . Note that three cards are needed to repre-

sent the equation

LOCATION OP ADDRESS, TAG, DECREMENT

12

CALCT CLA X

S
A
P

FAD S3

STØTEMP

L DQ TEMP

FMP Z

STØT

C
L
A
S
S

STATEMENT

NAME

CALCT

S
T
R
A
P

910

L ,X

+ , S3

STATEMENT

* , Z : ST,T ^^" ...SEE NØTE "I

" SEE NØTE 2 ^ON NEXT PAGE

Fig. II-10.

being closely phased into the code by the program-

mer.

Two programming languages, COLASL and IVY,

were developed totally by LASL concurrently with

the joint LASL-IBM effort .

Figure II- 11 shows the keyboard for the IBM 9210,

which was built by IBM to specifications developed

at LASL from 1956 to 1960. The goal was to develop

an input device with a large number of characters

and other features to use with "natural languages . "

It incorporated a triple -case typewriter with three

letters on each type slug. It could superscript and

WILL

Fig. II-11 .

B

O

1,3Alexaretani Av])

Fig. II-12.

COLASL (Compiler of LASL) , based on the 9210,

was developed and appeared in 1961. (The

MANIAC had a similar compiler named Madcap

with a more limited character set . In 1960 Madcap

had superscripts and subscripts as well as displayed

functions .) COLASL accepted "natural "

mathematical notation. The code (typed in black)

was often embedded in the narrative write-up or

commentary, which had to be typed in red . Red

characters were ignored during compilation . If

desired , you could switch off the red key; everything

would come out in black and would look like a

report. COLASL was actually precompiled to FOR-

TRAN . The COLASL statement analysis used some

rather advanced techniques such as recursive sub-

routines, tree-structures, and a complete logic trace.

Figure II- 13 shows an example of COLASL code

as written by the programmer. Án example of

14.

RANVER PROBLEM
ECS FORMA

STATEMENT COLASL
NAME STATEMENT

DATE PAGE OF

DO NOT PUNCH CARD COLS. 73 THRU BO

Comments were written in red and were

ignored by the Compiler.

COLASL could accept equations suck ass

A

Fig. II-13.

or

well entrenched after 4 or 5 years . Another factor

was the lack of an adequate and relatively inexpen-

sive I/O device corresponding to the 9210. We could

not afford to buy a second 9210 when we wished to

do so later . Perhaps in the future , OCR or some

other technology will begin to make the use of

mathematical notation feasible .

IVY for the 7030 was based on a similar compiler

by the same name for the IBM 7090. It came out in

1961 as a successor to the FLOCO language . Again it

was a load-and-go one-pass compiler-assembler that

attempted to combine machine language and an

algebraic language based on Polish notation . It

could relocate data while the code was executing, an

option referred to as "dynamic storage allocation . "

THE SPHERICAL BESSEL ROUTINE

The routine , J =√1x 3pp+ 1/2 (x) is represented by the

notation : j (x , J , P) , where x is a normalized floating point

number , ♬ is the first word of the output array , J

and the range of p is determined by the integer P, P>0 .

Definition :

Let P-P+ 10 , and M= 2x + 10 . If (PM) then set M-P, the

larger of the two .

Since as M∞, the method consists of guessingm

JM , JM , 10. The remaining J, are then computed using
M- 1

the recursion formula

31-17
=

21+1

X J₁- J₁ , for (i = M- 1 , M− 2 , . . . , 1) .

However, 3 may be obtained directly from the relationship

3

3.- Sin(x),
X

computed .

and the normalization factor R
R=3

can be

The remaining 3 are obtained by letting J₁ = RJ₁ , for

(i = 1 , 2 , ... , P) . This is the end of the routine definition .

Routine : j (x , J , P) .

M-
P=P+ 10, M= 2x + 10 . if (PM) then M- P . JM , JM , = 10 .

³¸_ ‚ = ²² + ¹³¸˜³¸¸ ‚‚ ‚° (1 =M− 1 , M− 2 , . . . , 1) . J¸ =sin (x) /x , R=J „/J¸ ·

J₁ = RJ , (1 = 1 , 2 , ..., P) ., P) . End routine .

i- 1 X
-

The spherical Bessel routine in the COLASL language.

Fig. II-14.

COLASL source code made on the 9210 is shown in

Fig. II-14 . Note the use of j and displayed quotients ,

which were not possible using FORTRAN. Neither

of the LASL-built natural language compilers,

COLASL or Madcap enjoyed any widespread

success, in part because FORTRAN was already

F. CONCLUSION

During the 1940s and 1950s programming

emphasized machine efficiency. Codes were very

machine-dependent. Ease of programming was a

secondary consideration . Hands -on computer opera-

tion was the norm . Systems software, although

primitive by today's standards , was generally ready

for use when the computer was delivered (even when

you were getting serial number 1 or serial number 2

hardware) . Programs were freely exchanged . Some

LASL-developed compilers were more popular

elsewhere than they were at LASL. Programming

was not ego-less ; programmers took pride in their

work . Competition to write smaller, faster math

subroutines or utility programs was common. The

users today are now insulated functionally and

physically from the hardware . At LASL, special

arrangements are now necessary even to see a big

computer, and it is not clear to me that that is good.

Today, conventions, standards, regulations, and

procedures are far more abundant in procurement

and in the use of computers . I believe there is good

reason for concern about such restrictions because

they can stifle progress in computer design , in

software design, and in the use of computers . The

industry is no longer driven by what the users think

they need, but rather by what industry thinks they

can sell.

Finally, it is interesting that there seems to be a

revival of stand-alone or distributive computing,

which I view to be a move to gain more control for

the user. The progression has been from hands -on

15

computing with optimization of hardware utiliza-

tion to batch (no hands-on) to timesharing (pseudo

hands-on with no concern for hardware efficiency) .

The trend now seems headed back toward increased

interest in efficient hardware utilization .

III

MANIAC

by

Mark B. Wells

I am going to reminisce a little about the

MANIAC computer that served LASL so well in the

early 1950s . Actually, there were three MANIAC

computers . MANIAC I , which I will discuss mostly,

was at LASL from 1952 to 1957. MANIAC II was

there from 1957 to 1977. MANIAC III was never at

LASL; it was built in the late 1950s at the Univer-

sity ofChicago where Nick Metropolis , the prime in-

stigator for all three machines , spent a few years .

(Figure III- 1 shows MANIAC III under construc-

tion .) The word MANIAC is an acronym for

machine names , such as ENIAC and EDSAC,

prevalent then. Now one wonders if it may have

been a stimulus instead of a deterrent . The late

George Gamow, well -known astronomer and

physicist , had his own interpretation of the

acronym . Talking to John von Neumann, he

suggested that maybe MANIAC should stand for

Metropolis and Neumann invent awful contraption .

The MANIAC I computer at LASL is often con-

fused with the IAS computer at the Institute for Ad-

vanced Study in Princeton (Fig . III-2) . At the plan-

0
0

D

시

[
0
0
0
0
0
0
0
0

0
0

D
O

Fig. III-1.

mathematical analyzer, numerical integrator, and

computer. Nick tells me that he chose the name par-

tly in the hope of stopping the rash of acronyms for

Fig. III-2.

ning stage in 1948, MANIAC was to resemble the

machine being built in Princeton by von Neumann

and Julian Bigelow. However, when it was com-

pleted in 1952 , it was quite a different machine . One

of the hardware differences was the size of the

Williams tubes used for memory: 2-in . tubes on the

MANIAC instead of the 5 -in . tubes on the IAS com-

puter . Two - in . tubes were chosen by Jim

16

Richardson, the chief engineer on the MANIAC pro-

ject, because they required less space . Three-in .

RCA tubes were substituted later. By the way, do

not confuse either of these machines with the

JOHNNIAC built at Sperry Rand Corporation by

Willis Ware.

MANIAC I was a vacuum-tube machine powered

by a room full of batteries (Fig . III -3) . Figure III -4

94 93 92 91

186

89 58

Fig. III-3.

Fig. III-4.

shows MANIAC I. The arithmetic unit with the

three registers is in the middle with the operation

controls on the sides and in the back . The word

length was 40 bits ; if you look closely, you can see 10

bits of register in each of the 4 central panels . The

memory is on top. There are 2 Williams tubes in

each of the 20 boxes . The 2 monitor tubes at the

ends were for viewing the contents of any of the 40

tubes . Each tube could store 32 by 32, or 1024 , bits

of information; hence, MANIAC I had a memory

capacity of 1024 words . Out of the figure on the

right, or perhaps it had not been installed yet, was a

10 000-word Engineering Research Associates drum

for auxiliary storage . On the far left is the row of

switches that served as the user's console as well as

part of the engineer's console. The user's console

was later moved to a table . The controls used by the

engineers to tune the memory and view its contents

were accessible on the front of the memory boxes

and below the memory . I can still remember the Fri-

day when those controls were recklessly twiddled by

a brilliant, but rather naive, mathematician named

John Holladay. After spending several hours that

weekend readjusting the controls, an engineer (I

believe it was the late Walter Orvedahl) installed

some very attractive switches just below the

memory. These "Holladay" switches were for the un-

authorized person who could not resist twiddling ;

they did absolutely nothing .

Actually, there was good rapport between the

engineers and the programmers, or coders as they

were called in those days . Nick, who is still at LASL,

and later Jack Jackson, now with IBM, were the

primary design architects of MANIAC I and its

system, but suggestions for hardware modifications

as well as operational procedures were proposed ar-

bitrarily by users or engineers . There are many ex-

amples of this user-engineer interaction throughout

the service of MANIAC I and MANIAC II . One was

Lois Cook Leurgans ' naming of the hardware

breakpoints " red " and "green " after the color of the

pencils she used to indicate the temporary stopping

points in her program . (She is shown at the console

in Fig . III -5 .) The suggestion for the successful

console-controlled breakpoint, called the purple

breakpoint, came from Bob Richtmyer, an avid

MANIAC user, who is now with Colorado Univer-

sity. Also, it was interaction between engineers Jim

Richardson and Grady McKinley and coders Bob

Bivins and me that led to the development of the

17

Fig. III-5.

(see Fig. III-4) , and so the binary digits* that they

contained could be seen directly. The whole

machine was, in effect, part of its console . Further-

more, by using clip leads to short one side of the

vacuum-tube flipflops, you could actually change

the contents of a register (while the machine was

stopped) . A skilled operator , like Don Bradford or

Verna Ellingson Gardiner, could fetch a word into a

register, make a change in it using clip leads, and

store it back in memory in about the same time that

most modern operators can type a one-line com-

mand on a terminal.

Figure III-6 shows another of the early coders,

Marj Jones Devaney, working at the I/O station . In

platen-rotating Flexiwriter . This was a paper-tape

input device on which the two-dimensional expres-

sions of Madcap 3 (developed about 1960) could be

typed. Perhaps the best example of all was the

design of the bit manipulation instructions in the

early 1960s used specifically by the set-theoretic

operations of Madcap 4.

I have forgotten who (perhaps it was engineer

Allan Malmberg) suggested attaching a simple am-

plifier to pick up noises or music (depending on your

point of view) from the running computer . It was an

almost indispensable diagnostic device for both

MANIAC I and MANIAC II . Nick tells the story of

the time that he was chatting with Bob Richtmyer

in a corner of the MANIAC room while one of their

programs was running. Bob, besides being a well-

known theoretical physicist , is also a noted musi-

cian . As they were chatting, Bob heard a slight

change in the sound emanating from the amplifier

and announced that he thought box 19 was being

skipped . (He was referring to flow diagram box 19.)

Sure enough, upon examination they discovered a

computer malfunction was preventing entry to box

19.

Let me point out another interesting feature of

MANIAC. Note that the register flipflops with at-

tached neon lights were on the front of the machine

Fig. III-6.

front of her is a teletype printer and to her left is a

mechanical paper-tape reader. Later, that reader

was replaced by a more reliable Feranti photoelec-

tric reader. In general, we found what is well known

today that electronic equipment is preferable to

mechanical equipment .

The fast line printer for MANIAC I is shown in

Fig. III-7 . The Analex (serial number 1) was a cylin-

der printer capable of putting out up to 10 lines per

*We called them " bigits " for a short time before common adop-

tion of the term "bit."

18

Fig. III-7.

second. Note that the paper was not fanfold and

that the paperfeed was downward . We had a basket

on the floor to receive the output, but it was quite

inadequate . It was common to see prominent scien-

tists crawling along the floor to study results . The

printer must have been fairly well tuned when it

produced this sample output ; I remember the lines

being more wavy most of the time.

33

34

Note that the character set was hexadecimal with A

through F representing 10 through 15. This output is

part of a program listing, where the absolute in-

structions are in the five-column field . There were

two instructions per word on MANIAC I, so the ab-

solute word addresses just to the left of the instruc-

tions appear only on every other line . The numbers

in the far-right field are the so-called " descriptive"

addresses used by the programmer because we had a

rudimentary assembly language . The numbers in

the far-left field are flow-diagram box numbers for

ease in referring back to the problem formulation .

MANIAC I ran a wide variety of problems from

hydrodynamics to chess and played a prominent

role in the development of the Monte Carlo method .

Those were really exciting times . The list of scien-

tists who prepared problems for the MANIAC or

who actually operated the machine is truly im-

pressive: von Neumann, Fermi, Richtmyer, Teller ,

Pasta, Ulam, Gamow, and the Rosenbluths are a

few. The machine was fairly easy to operate, and do-

it-yourselfers , like Fermi and Richtmyer, often

carried calculations through themselves, including

keypunching on the Flexiwriter to produce paper-

tape input and making changes with clip leads .

Others had the coder/operators do their calcula-

tions . However, Richtmyer recalls his surprise one

Sunday when he found Edward Teller and Lothar

Nordheim , neither of whom was known for his dex-

terity, operating the machine with no coder or

engineer present .

Figure III -8 shows a piece of physics code that was

run on the MANIAC . Note that we used von

Neumann flow diagrams to specify calculations .

These were translated by the coder into assembly

language then assembled and run on the computer.

! A

18 1C5

01

02 1C6

03

1 C1 AA280 024

DC27F 023

15 1 C2

16

17 1C3

18

J9 16 .

AA282 026

DC281 025

AA268 вос

OC28F 033

AA250 001

8424A

0 C250

AA250

8824E

B01

Sra

001

x.y! toT.1
Ax!.3! 6o7.2
£241-42 6o7.3
Drop Sign

(Men 18 -Xp -M
-IP-41 (Min 1g!-yp\)-M

d, (MenIX -X)-MT.4 dy " (Maly!-yptoT5

PHP

805
PH-P

Clear Distance

со 1 сс 491
Andys Counter

P-195

Prohibition Counter

47 01 1C7

02

AA20E

84256 002

лое

03 1 се PATC9 E05

04 AA250

05 1C9 ввоос

06 СО 1 СА

07 1 СА

001

000

481

сво 1 в 041

and Analysis

d'-G

ddd to T.6

Histogram Analysis
of Distances

110 Print

01

02 1C8

03

AA25E 002

8424A 801

DC25E 002

-195
TransferDistance Analy313
toPermanent Storage,
Clear Temporary Counters.

Fig. III-8.

Transfer FromTemperary
toPermanent Storage
of Xand y-

19

We believe that the first "performance measure-

ment" was done on MANIAC I. Using an inter-

pretive approach, Gene Herbst (now with IBM) ,

Nick, and I were able to get a dynamic count of the

instructions used in various calculations . Table III-I

Q

Q

TABLE III-I

ANALYSIS OF THE CODE FOR A PROBLEM IN

HYDRODYNAMICS Q

Q

Q

Fig. III-9.

Percentage Percentage

Vocabulary Static of Static Dynamic of Dynamic

Symbol Count
Percentage

Count Count Count Time ofTime

AA 156 13.5 3499 12.3 314.9 5.4

8 0.6 309 1.0 27.8 0.4 Q

AC 0.0 0 0.0 0.0 0.0

AD 0.0 0.0 0.0 0.0

AE 0.0 0 0.0 0.0 0.0

AF 0.0 40 0.1 3.6 0.0

BA 8.0 2745 9.6 247.0 4.2 Q

BB 5.8 2149 7.5 193.4 3.3

BC 0.0 0 0.0 0.0 0.0
BD 0.0 0 0.0 0.0 0.0

BE 0 0.0 0 0.0 0.0 0.0

BF 0.3 0.0 0.3 0.0

CA 34 2.9 332 1.1 16.6 0.2

CB 49 4.2 936 3.3 46.8 0.8

CC 13 1.1 447 1.5 20.1 0.3

CD 24 2.0 770 2.7 34.6 0.6

CE 0 0.0 0 0.0 0.0 0.0

CF 0.0 0.0 0.0 0.0

DA 93 8.0 2498 8.8 2592.9 45.1

ᎠᏴ 3 0.2 80 0.2 83.0 1.4

DC 157 13.6 4163 14.6 249.7 4.3

DD 49 4.2 1154 4.0 1197.8 20.8
DE 28 2.4 763 2.6 106.8 1.8

DF 6 0.5 12 0.0 0.8 0.0

EA 0.0 0 0.0 0.0 0.0

EB 118 10.2 3225 11.3 209.6 3.6

EC 104 9.0 2430 8.5 160.3 2.7

ED 13 1.1 37 0.1 1.4 0.0
EE 11 0.9 407 1.4 53.7 0.9

EF 19 1.6 86 0.3 6.4 0.1

FA 38 3.2 1101 3.8 88.0 1.5
FB 42 3.6 1063 3.7 85.0 1.4

FC 0 0.0 0 0.0 0.0 0.0
FD 0.0 0.0 0.0 0.0

FF 17 1.4 0.0 0.0 0.0
800 3 0.2 83 0.2 6.1 0.1

Totals 1151 28333 5747.4

shows the results for a hydrodynamics calculation .

The very high percentage of time (45.1%) used by

the multiply instruction (DA) was noted for input to

the design of MANIAC II .

Not all of the computing on MANIAC I was

numerical . We also had some fun with com-

binatorial problems . We wrote a code for the queens

problem in chess, just as most students do today,

and calculated the 92 solutions for the 8 by 8 board

(one solution is shown in Fig . III -9) . At the time, I

was too inexperienced to program on MANIAC the

group operations with which to calculate the solu-

tions inequivalent under reflections and rotations ; I

can remember spending an afternoon in my office

with the 92 machine-produced solutions and my

chessboard grinding out the 12 inequivalent solu-

tions by hand. I believe it was my independent dis-

covery of backtracking in the early days of MANIAC

I that nurtured the interest in combinatorial

algorithms that I still have today.

We also had a chess -playing program on

MANIAC I. However, because of the slow speed of

MANIAC (about 10 000 instructions per second) we

had to restrict play to a 6 by 6 board, removing the

bishops and their pawns . Even then, moves

averaged about 10 minutes for a two-move look-

ahead strategy. The program played several games,

both against itself and against humans ; it even won

one game against a beginner who had been taught

how to play specifically for our experiments . We

wanted to determine the level of play of the

program. As I remember, we concluded that the

program was equivalent to a beginner with about a

half-dozen games experience . Perhaps the most ex-

citing game was one played with Martin Kruskal, a

Princeton physicist ; Kruskal gave MANIAC queen

odds . The game was a stand-off for some time ; once

after a surprising move by MANIAC, Kruskal even

murmured, "I wonder why he did that?" In the end,

however, Kruskal did win; but when he checkmated

the machine at move 38, it responded with one more

move, illegal of course . We were dumfounded for a

while, until we traced the trouble and realized that

the program had never been taught to resign . When

20

confronted with no moves, it got stuck in a tight

loop . As some ofyou may recall, tight loops were of-

ten hard on electrostatic memories . In this case, the

tight loop actually changed the program , creating

an exit from the loop, whereupon the program found

the illegal move. You might call that a " learning"

program .

MANIAC I did not actually leave service until

1965 , * but it was replaced at LASL in 1957 by the

faster, more powerful, easier-to-use MANIAC II

(Fig . III - 10) .

The chief advantages that the second -generation

machines , MANIAC II and IBM 704, had over the

programming of a neutronics hydrodynamics

calculation in FORTRAN to learn the language.

Some of the features that annoyed us then, like re-

quired parentheses in IF statements , are still there .

It is too bad FORTRAN was frozen and became a

standard so early.

I am not going to say much about Madcap,

because most of its development took place in the

1960s and 1970s . However, Fig . III- 11 shows a small

-
L; - (24)→ Li

if L₁ =0:

-
Si + Pi + 1 Qi → Si

otherwise :

9080

Qi Pi +1 , nest deeper

|Ail

parperno ()= P₁ ; go to exit

Fig. III-10.

first-generation MANIAC I and IBM 701 was

floating-point arithmetic . As Ed Voohees mentioned

in Sec. II , a substantial portion of the software effort

on the early machines involved producing sub-

routines to do our arithmetic in floating point ,

letting the user think more at his own level without

complicated scaling . With the advent of the more

powerful second-generation machines, attention

could be given at a higher level, and we then saw the

beginning of real programming languages ; FOR-

TRAN on the 704 (1957) and Madcap on MANIAC

II (1958) . However, whereas Madcap has evolved

and improved over the years along with MANIAC II

and with our understanding of languages and

algorithms, FORTRAN has been essentially static .

In 1958, Roger Lazarus and I participated in the

*It went to the University of New Mexico and was used there un-

til 1965 when it was retired .

Fig. III-11.

piece of a Madcap program written in 1965. The

two-dimensional features are exemplified by the

subscripts and binomial coefficients . The set-

theoretic notation was added in 1963 and expanded

with a structure former notation in the latest Mad-

cap in 1972. Two other features that I developed in

Madcap of which I am particularly proud are type

propagation in lieu of declarations and an im-

plementation of activation record retention that

allows incorporation of a very useful function data

type.

I wish to conclude with a crude analogy between

the floating-point libraries on the early machines

and the development of FORTRAN preprocessors

today. In both cases, we were or are attempting to

tack on features that should have been or should be

an integral part of the basic computational tool .

While the hardware upgrading was accomplished

fairly easily in the late 1950s, the sheer size of the

computing industry today makes widespread accep-

tance of the conversion to higher level languages

such as Algol 68, Pascal, or even Madcap, painfully

slow if not impossible. I am certainly glad com-

puters got index registers, floating-point arithmetic ,

and the like when they did ; the added complexity of

computing without these features would be

considerable .

21

IV

CONTRIBUTIONS TO MATHEMATICS

by

Roger B. Lazarus

First , I want to talk about a particular area of

physics that I was involved in personally: the es-

timating of the energy release of nuclear devices .

Then, I will just mention , for the record and for the

fun of reminiscence , some of the early problems that

I remember that were done in the early 1950s . Most

of them, but not all , were done on the MANIAC I.

Finally I want to close with some speculative

remarks entitled , "Why Was It More Fun? "

The whole Los Alamos Project was started with

the " estimate " that if the fission reaction released

both energy and extra neutrons, then a chain reac-

tion could be brought into existence that would give

an explosion . And that is what it was all about .

In the 1940s during the war, and in the 1950s, the

main challenging calculational problems were those

of shock hydrodynamics and neutron transport .

There was also radiation transport as a problem ,

and generally, that is easier than the neutron

transport.

The hydrodynamics problems are described by

hyperbolic nonlinear partial differential equations

in space and time . It is the nature ofthose equations

that discontinuities in the dependent variables can

come about spontaneously , so that the

straightforward replacing of partial differential

equations with partial difference equations can run

into trouble because the derivatives can become in-

finite .

I was not really quite sure of who did what first . I

found in the preface of the 1957 edition of

Richtmyer's book Difference Methods for Initial-

Value Problems, * the following sentence . " Finite-

difference methods for solving partial differential

equations were discussed in 1928 in the celebrated

paper of Courant , Friedrichs , and Lewy but were

put to use in practical problems only about fifteen

*Robert D. Richtmyer, Difference Methods for Initial-Value

Problems, (Interscience Publishers, Division of John Wiley &

Sons, 1957) .

years later under the stimulus of wartime

technology and with the aid of the first automatic

computers.... " Well, the rest of the paragraph talks

about the LASL part of the whole thing.

The accounting machines that Jack Worlton

showed you, which were used primarily for shock

hydrodynamics , were used only for the smooth part

of the flow. The accounting machines would run as

far as they could , and when it was necessary to do

the shock fitting-to apply the jump conditions

across the shock-that was done by hand . It was

that hangup that led to the invention by Richtmyer

and von Neumann of a thing called pseudo viscous

pressure , which is an extra term added to the dif-

ference equations that will smear out the shock over

a few zones, the number of zones being essentially

independent of the shock speed and material . It will

do this in such a way as to preserve the important

quantities: shock strength and speed . That inven-

tion was made specifically for a calculation done on

the SSEC . That was in the late 1940s . That method

of smearing is still in use .

There was a two-space dimensional R-Z cylin-

drical geometry hydrodynamics code run on the

ENIAC , and I imagine it was the first two-

dimensional hydrodynamics done anywhere . But

usually, in the 1940s and the 1950s , one worked with

a single space variable, either spherical symmetry or

the symmetry of an infinite cylinder. There are in

hydrodynamic calculations both numerical in-

stabilities and physical instabilities . Physical in-

stabilities, such as mixing and picking up waves

when one substance slides across another, are sup-

pressed by the assumption of symmetry. This led to

a very deep part of the early computing problems .

When I came to LASL in early 1951 , my first

assignment was to do a yield calculation on a CPC

for a pure fission bomb. That machine was so simple

and so incapable, in modern terms , that at least on

the Model- 1 CPC, it was not really possible to do

22

partial differential equations at all . Simplifying

assumptions were made, essentially parameterizing

the shape of everything, so that one could solve or-

dinary differential equations . But that same year, in

the summer of 1951 , my second job was to help with

a code that had been written for SEAC for a thou-

sand words of memory . It was really quite a substan-

tial calculation that directly integrated the finite

difference approximations to the partial differential

equations . So there was quite a contrast, of which I

do not remember being particularly conscious . The

focus was on the application-what approximations

were reasonable, what you needed to do, and then

you looked around to see if you could do it .

The neutron transport part of things is described

by a linear integro-differential equation in which the

rate of change of the number of neutrons at a given

place , direction, speed, and so on , depends on the

scattering of all the neutrons at that point and going

in all directions . There was quite a range of dif-

ficulty for that problem. The easiest case I can think

of was to find a steady-state solution for a system of

spherical symmetry with a homogeneous scatterer

and within the diffusion limit , which is to say short

mean free path. That really is a very simple

problem. The hardest , perhaps , would be something

where there was no spatial symmetry, where the

scatterers were in motion ,where the mean free path

was long compared to the dimensions, and , as an ex-

tra difficulty, perhaps there were only a few

neutrons involved so that you had a discrete func-

tion .

A problem geared to this latter class was most dif-

ficult and was what led to what is perhaps the most,

or at least one of the most , far-reaching LASL in-

ventions, namely, the Monte Carlo method . In fact,

one of the most important early problems was that

of initiation probability-given a slightly super-

critical assembly and one neutron , what is the

probability that that neutron , before being absorbed

or escaping or having all its daughters escape, will

lead to an explosive chain reaction? You can

describe Monte Carlo easily in that tranport con-

text, which is where it is perhaps most obviously ap-

plicable , but Monte Carlo grew in conjunction with

the growth of probability theory itself. Now it is ex-

tremely widespread and used far from transport

problems where you are actually tracking things .

The first method that I used , on the CPC code for

the neutron transport problem, was called Serber-

Wilson. I assume it was invented in part by Serber

and in part by Wilson . It had a lot of hyperbolic

functions, and exponential integrals that were all

entangled with the hyperbolic functions ; and one

used those marvelous WPA (Work Project Ad-

ministration) tables , which were perhaps the only

good result of the Depression of the 1930s . The CPC,

at least the Model-2 CPC , also had those functions .

It had an electronic 604 , or whatever it was, that

would give you those . But the terms and expressions

containing these functions were not physical expres-

sions , and they were very difficult to scale . So when

I moved from the CPC to MANIAC I , carrying over

Serber-Wilson , I found myself building essentially

floating - point software-automatic scaling

software . It was very annoying . Luckily, this was

replaced by the family of methods Bengt Carlson

came up with in the early 1950s and which are still ,

at least generically, the primary method of choice

for neutron transport . The dependent variables were

the currents themselves, the neutrons per square

centimeter per second for certain energies, and they

were easy to scale . It was a tremendous blessing for

fixed point. It also happened to be a fundamentally

superior method in the long run .

From the CPC to the IBM STRETCH computer,

there was approximately a factor of 104 increase in

speed and in memory size . The factor in run time for

a typical yield calculation was 10° . Beginning on the

CPC, at the end on STRETCH, and in fact today on

CRAY- 1 , the really difficult problems take about 15

hours and the easy ones take half an hour . Another

thing that has not changed , besides the run time, is

the agreement between calculation and experiment ,

by an appropriate measure . At least , one can ob-

serve that tests of nuclear devices still seem to be

necessary. The answer to that paradox is , of course,

the increase in complexity of the things we are try-

ing to do. When we say 10% agreement , we do not

mean between the same measures and quantities . It

might be between some spectrum now, and it was

between some single number then.

I would like to wrap up this part on estimating

yields by particularly stressing the word estimating,

the difference that is suggested by the connotation

of estimating versus calculating. It seems to me that

we were more conscious then that we were es-

timating something . I remember quite early think-

ing in terms of what I called the fudge function ,

which was simply a function over a parameter space

23

whose value is the ratio of the truth to what I

calculated . I saw my job , which was to predict the

energy release of some proposed design, as being a

problem in interpolation or extrapolation on the

fudge function. I was calculating the yield for a

given design, but that is not the number I would

predict . I would interpolate or extrapolate on all the

parameters I could think of and get the fudge func-

tion value , 1.32 or whatever , and multiply the

answer by that . The trouble , of course , is the un-

known dimensionality of the parameter space ,

which is to say knowing which of the probably in-

finite number of things that were actually changed

were relevant . There were certainly times when one

thought that the phase of the moon was the relevant

parameter that would explain the mystery.

The physics that we added as time passed and as

computers grew in capability was added , in general,

where this fudge function was ill-behaved or

perhaps where we only had a single point . To say we

had only a single point is equivalent to saying that

we were starting into a new dimension, where

something was to be varied for the first time . Then

we could clearly not interpolate, nor could we ex-

trapolate . We could either assume it did not matter,

which in some cases was patently absurd , or we

would have to add to the physics . But, all the time

we were conscious of the fact that we could not add

all the physics . If we got a correct answer, it had to

imply that the errors had cancelled precisely . There

was no possibility that we would calculate all the

processes correctly. The process of adding physics

was one usually of replacing what I always dis-

tinguished as fudge factors (which are usually things

called the effective such and such, or the net

equivalent so and so) with the relevant equation .

For example, in the early days , we did not keep scat-

tering cross sections as a function of energy . We kept

the one number that was the cross section averaged

over the fission spectrum or whatever approximate

energy spectrum we expected .

Then , with all these fudge factors , of which we

had really quite a few, there was a process of tuning

the code to give an attractive fudge function ,

ideally, one which would be unity over all the

measured points, but in any case , something that

you felt comfortable with . That was part of the job:

to tune the code . I remember that just before the 704

came we had a 701 code that was really nicely tuned .

When we moved to the 704, we threw away all those

scale factors , all those powers of 2, with great joy

because they were really hard to keep track of. Of

course, the code on the 704 did not repeat, so we

started debugging. We went on and on until we were

really sure we had checked all the logic , and then we

discovered that one of our fudge factors that we

thought was in there with a 2+2 scale factor was in

there with a 2-2 . Given the pressure of time, the best

we could do was change the fudge factor by 16 and

swallow our pride . If we had put the correct fudge

factor into the 704 code, we would have loused up

our fudge function . It stayed that way, as I remem-

ber, until the test moratorium in the late 1950s .

Then we finally had time to retwiddle .

Let me now switch to just giving a list and a few

comments on some of the early MANIAC I

problems . MANIAC I was a 1024-word machine

when it was born-two instructions per word . Later

it got a drum. One of the first problems , besides the

yield calculation that was my bread and butter, was

something called Quintet , which was a five-

dimensional integral for scattering corrections in ex-

perimental physics. I remember it took approx-

imately a second to get the integrand . It seemed like

an easy problem until you really took some nominal

number of points (I think a half a dozen when we

first started) and took the fifth power; then sud-

denly it was large . That is where I learned about

Gaussian quadrature . There were, of course, no in-

dex registers then; a quintuple DO-loop involved

bringing out your instruction and adding the num-

ber or subtracting the number from your address

and storing it back. Well, that was minor as a

problem .

A more important problem was the Fermi , Pasta,

Ulam nonlinear oscillator investigation that led to

what is now still quite a live field , called soliton

theory. There was the first Monte Carlo equation of

state that was, I think invented by Marshall and

Arianna Rosenbluth (well , it is possible that Teller

made the original suggestion) , where you tried to

calculate the actual equation of state of the material

by stochastic processes on sample molecules . There

was what I assume was the first stellar evolution

calculation , done by Art Carson and George

Gamow. There was, I think, the first chess ; it was

not strictly chess; it was 6 by 6 chess . It was a

slightly reduced board . But it was quite important

24

as being, I think, the first or at least a very early

class of computing that led to what is now called ar-

tificial intelligence.

There was a code worked on by Verna Gardiner

with Gamow for trying to discover the code for DNA

selection of amino acids, or whatever that is , which

of course was not successful . Other things were virial

coefficients , nuclear scattering problems , and

Schrödinger equation integrations . Intranuclear

cascades were another Monte Carlo thing ; in a

heavy nucleus one actually tried to count the

production of cascades of pions within the nucleus .

I noticed when the title was mentioned, it said

"mathematics . " I really have thought physics was

what LASL was about . But if I was really supposed

to talk on math, I had better mention at least a cou-

ple of examples . There was a calculation of group

characters on MANIAC I , done by Paul Stein and

others . There was perhaps the beginning of what a

lot of people now think of as experimental

mathematics , where you try things and explore us-

ing the computer, trying to form conjectures or get

some new insight . It was believed , as I suppose it is

by most mathematicians today, that ideas are not

worth anything until you prove something, but at

least there was an important role computers could

play at the experimental level . One that I was in-

volved with, an idea of Stan Ulam's, was in the area

ofpseudo prime numbers: integers that have not the

defining properties of prime numbers but have their

same probability distribution within the set of all

integers . It was discovered that many of the proper-

ties of primes apparently are due to their distribu-

tion only, not to their unique defining property.

There were also some cell multiplication studies ;

Ulam also was involved with that.

In parallel with all these problems (probably

every one I mentioned was coded in absolute) , there

was the business of subroutines and assembly

routines . I do not really know who started what, or

what credit LASL can take and get away with it , but

it was just sort of common sense . You got tired of

coding the sine function over and over again , so you

borrowed somebody's . I remember personally being

quite negative about subroutines . It seemed to me

outrageous to lose control of where your numbers

were in memory. That may be partly because ofthe

1951 SEAC experience, which was the first thing I

had to do with a really modern computer . I was han-

ded a code, all written, that required 1023 words . I

was told we were going to take this in August and

put it on the SEAC (which actually had a 1024 -word

memory) and "would you please make sure that it is

correct. " That seemed a reasonable thing at the

time . It was right there . Every bit was put down that

the machine could see . So I worked for a couple of

months and I found three coding errors . As it turned

out , those were the only three coding errors there

were . Unfortunately, I made a mistake fixing the

three errors , so there was still a coding error when we

got to Washington . Again unfortunately, I needed

two more words to fix those three errors, and that

came to 1025. Luckily that was a four-address

machine—A, OP, B, C , and GO TO D-so you

had a free branch on every instruction . You could

put everything in where you wanted except for

arrays, so I just picked a constant, decoded it, and

arranged addresses so that some instruction had the

numerical value and off we went.

Maybe that story leads naturally into the topic,

"Why Was It More Fun?" I have six things listed

here, of which the first is "Maybe it was not more

fun . " There is selective recollection ; there is the

nostalgic fallacy . It is hard to judge . When the ses-

sion started , it struck me as particularly appropriate

that they were doing that jackhammer work outside

because it was true that that was the feeling I got of

working conditions around the computer, especially

at New York University with UNIVAC I in 1953 ,

with the air full of dust . But it was fun , and what

could it have been? It could be that there were no

operating systems . There was more a feeling of man

against the elements ; that you were searching for

the maximal exploitation of a set of hardware . It was

just you and it . Perhaps it was that we had, I think,

at least for these big problems, a deeper un-

derstanding of a simpler calculation than we have

today. Today I think we have a shallower un-

derstanding of more complex calculations . Perhaps

it was that there was no subdivision of labor . At

least if you read some of the Marxists, they will tell

you most everything is less fun now because of sub-

division of labor . People do not grasp the whole of

what they are doing . We certainly did then , because

we did everything ourselves . Perhaps it was because

there was no management or at least the manage-

ment was invisible . In those days , at least according

to my selective recollection , the scientist did

25

science , instead of management . Lastly, and

perhaps more seriously, I will echo the point that I

think Ed Voorhees made . There was more prior

analysis and estimating of what you were doing, es-

pecially in the fixed -point computer era . There was

more checking; and there was more skepticism, both

with respect to the hardware and with respect to the

physics . We were so far from putting it all in . It was

so new that we were not trapped into this confusion

between estimating and calculating . We did not

think we were getting the answer to the original

physics problem .

U.S. GOVERNMENT PRINTING OFFICE : 1978-777-836 / 340

1

26

D
O
C
U
M
E
N
T
S

A
U
G

2
2
.
1
9
7
0

M
I
C
H
I
G
A
N

S
T
A
T
E

U
N
I
V
E
R
S
I
T
Y

L
I
B
R
A
R
I
E
S

	Front Cover
	science, instead of management. Lastly, and ...

