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The house mouse (Mus musculus) provides a fascinating system
for studying both the genomic basis of reproductive isolation,
and the patterns of human-mediated dispersal. New Zealand
has a complex history of mouse invasions, and the living
descendants of these invaders have genetic ancestry from
all three subspecies, although most are primarily descended
from M. m. domesticus. We used the GigaMUGA genotyping
array (approximately 135 000 loci) to describe the genomic
ancestry of 161 mice, sampled from 34 locations from across
New Zealand (and one Australian city—Sydney). Of these,
two populations, one in the south of the South Island, and
one on Chatham Island, showed complete mitochondrial
lineage capture, featuring two different lineages of M. m.
castaneus mitochondrial DNA but with only M. m. domesticus
nuclear ancestry detectable. Mice in the northern and southern
parts of the North Island had small traces (approx. 2–3%)
of M. m. castaneus nuclear ancestry, and mice in the upper
South Island had approximately 7–8% M. m. musculus nuclear
ancestry including some Y-chromosomal ancestry—though no
detectable M. m. musculus mitochondrial ancestry. This is
the most thorough genomic study of introduced populations
of house mice yet conducted, and will have relevance to
studies of the isolation mechanisms separating subspecies
of mice.
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1. Introduction
The house mouse, Mus musculus, provides a powerful model system for understanding evolution, and
is arguably the best mammalian model for studies of the genomic basis for reproductive isolation
during the early stages of speciation. It includes at least three closely related subspecies with parapatric
distributions: M. m. musculus found in Eastern Europe and Northern Asia, M. m. castaneus in Southeast
Asia and India, and M. m. domesticus in western Europe, the Near East and northern Africa [1]. These
three subspecies rapidly diverged in allopatry around 350 000 years ago [2–4], and evidence suggests
that M. m. castaneus and M. m. musculus are more closely related to each other than either is to
M. m. domesticus [5,6]. During the past 10 000 years, house mice have become commensal with humans,
and, as stowaways with them, have become the most successful small mammal colonizers of new
continents during the past few hundred years [7,8].

Regions of secondary contact and introgression may mark where mouse subspecies meet in nature.
The best studied of these is a narrow hybrid zone between M. m. domesticus and M. m. musculus that
stretches from Denmark to the Black Sea in central Europe [9–18]. This hybrid zone is young, with
mice having colonized this area around 3000 years ago [19,20]. Hybridization in the wild between
M. m. domesticus and M. m. castaneus is best known from one study of an introduced population in
California [21] and one in New Zealand [22]. Within the native range, other possible domesticus/castaneus
hybrid zones in Iran [23–25] and in Indonesia [26] have produced only preliminary results, because these
regions are complex, supporting multiple (and potentially undescribed) subspecies [24], and because
comprehensive nuclear loci have not been used to look at the levels of admixture across the genomes.

Hybrids between subspecies have been extensively studied in laboratory strains of mice, with data
indicating that M. m. musculus and M. m. domesticus are largely reproductively isolated [27,28]. These
studies have helped us to understand the genetics of speciation, particularly the genetic basis of hybrid
male sterility [29–32], revealing an important role of the X chromosome in producing reproductive
incompatibilities [33–39]. Studies of both wild and laboratory mice have also found that hybrid
male sterility has a complex basis, involving many genes [31,32,37,40]. Laboratory crosses between
M. m. domesticus and M. m. musculus led to the identification of Prdm9 on chromosome 17, the only
gene at present known to contribute to hybrid sterility in vertebrates [29,41]. The identification of
other genes underlying hybrid male sterility in the wild remains a challenge, but the combination of
mapping studies in the laboratory and in regions showing limited introgression in nature have identified
good candidates for future study [18,32,42]. Despite the high degree of hybrid incompatibility and
reduced fitness, most standard inbred strains of laboratory mice have been derived from admixtures
between mouse subspecies. They often feature Y-chromosome or mitochondrial capture, where these
uni-parentally inherited markers do not match the ancestry of the rest of the genome [43–45].

The GigaMUGA array is the third generation of the Mouse Universal Genotyping Array (MUGA)
and consists of a 143 259-probe Illumina Infinium II array developed specifically for the house mouse.
These probes were designed to be evenly distributed across the 19 autosomal, and X and Y chromosomes
with minimal linkage disequilibrium (LD), and they include markers across the mitochondrial genome
[45]. While the GigaMUGA array was optimized for Collaborative Cross and Diversity Outbred
populations, for substrain-level identification of laboratory mice, single nucleotide polymorphisms
(SNPs) informative for subspecies of origin were also included to facilitate studies of wild mice. The
array was designed to have a density of at least one ‘diagnostic marker’ per 300 kb for each subspecies,
and to place at least one diagnostic marker for each subspecies within each recombination of the intervals
identified in Liu et al. [46]. Therefore, this cheap, high-density array specified for high-throughput
biomedical and developmental genomic studies has the potential to analyse colonization patterns and
evolutionary genomics of wild mice at an unprecedented scale.

1.1. Mice in New Zealand
House mice have accompanied humans around the world for thousands of years [47]. Because of their
high-standing genetic diversity, it has been possible to track the origins of introduced mouse populations
[2], revealing activities and movements of people invisible to traditional historical methods [48–52]. New
Zealand was entirely free of all terrestrial mammals until the introduction of the Pacific rat (Rattus
exulans), which arrived with Polynesian settlement around 1280 AD [53]. House mice arrived among
infested food and cargo on early European vessels, starting around the 1790s [54].

Most New Zealand mice closely resemble M. m. domesticus morphologically, however some
morphological characteristics of M. m. musculus have been identified at low frequencies [48]. The
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mitochondrial diversity of New Zealand mice is surprisingly large, with 23 M. m. domesticus D-loop
haplotypes descending from all six major M. m. domesticus clades, six M. m. castaneus D-loop haplotypes
from a single clade and one M. m. musculus haplotype so far identified [48,55]. Across most of the two
main islands, and on most offshore islands, M. m. domesticus mitochondrial haplotypes predominate. In
the southern South Island, however, one M. m. castaneus mitochondrial DNA (mtDNA) is solely found,
with a narrow ‘hybrid’ zone around 50 km wide separating the M. m. castaneus to the south and M.
m. domesticus to the north [22,55]. The same M. m. castaneus mtDNA haplotype is also present in the
lower North Island around the Wellington region, and a second one is the only mtDNA haplotype so far
identified on Chatham Island. The only place where M. m. musculus mtDNA has been detected is in the
lower North Island in Wellington.

While the distribution of mouse mitochondrial lineages across New Zealand has been well
documented, the nuclear genomic ancestry of mice in New Zealand is poorly understood. All studies
to date have found a predominance of M. m. domesticus nuclear ancestry across the country, including
‘hybrid’ populations containing unquantified mixes of the other two subspecies present but insufficiently
characterized. Of the few nuclear markers that have been sequenced previously, all mice, regardless of
mitochondrial haplotype, have had predominantly M. m. domesticus ancestry, though some mice in the
upper South Island also have had M. m. musculus markers [22]. No M. m. castaneus nuclear ancestry has
yet been detected in New Zealand mice.

New Zealand mouse populations are of particular interest for genetic studies due to the presence of
hybrids between all three subspecies. Hybrids of domesticus/castaneus are of particular interest, as this
mixture has rarely been studied, and has never been confirmed in their native range. In this study, we
aimed to ascertain the relative contribution of each subspecies to these hybrid populations, with a view
to better understanding the invasion history of mice in New Zealand, describing the spatial patterns of
present genomic diversity, and the ancestral origins of each population.

2. Material and methods
2.1. Sample collection
A total of 182 mouse tail samples approximately 10 mm long were obtained from across the country
(figure 1), selected to achieve geographically representative sampling from across the two main islands,
from all distant offshore islands with extant mouse populations, some large inshore islands, and from
Sydney, Australia—a potential source population for invading mice, as it was the major port in the region
in the nineteenth century. Where possible, samples of known mitochondrial lineages that had previously
been sequenced for the mitochondrial control region by King et al. [55] were used. Fifty-nine new samples
were obtained from locations of interest that had previously not been sampled, or from locations where
these previous tissue samples were found to be degraded. Tail samples were stored frozen from fresh.

2.2. DNA extraction and GigaMUGA sequencing
Tail samples were sent to the University of North Carolina, where genomic DNA was extracted using a
Qiagen Gentra Pure tissue kit according to the manufacturer’s protocols. All genome-wide genotyping
was performed using the GigaMUGA array at the University of North Carolina (GeneSeek, Lincoln, NE)
[56]. Genotypes were called using Illumina BEADSTUDIO (Illumina, Carlsbad, CA) and processed with
argyle [57].

2.3. Bioinformatic filtering and analyses
We filtered and combined the separate genotyping runs in argyle [57], an R package specifically designed
for manipulating MUGA data. We then used PLINK 1.9 [58] to remove any individuals from the dataset
that had 10% or more missing data, and to filter SNPs based on coverage across individuals (loci were
retained only if present in at least 90% of samples). All further filtering and analyses steps were also
conducted in PLINK 1.9 unless otherwise stated. We then merged our dataset with two published
datasets: (i) the reference GigaMUGA dataset (with a number of loci identical to our data) and (ii)
the MegaMUGA wild mouse reference dataset. For the GigaMUGA dataset, we included only wild
mice, and a few wild-derived laboratory strains that had been shown previously to be relatively pure
and non-divergent from their sub-specific origins [56]. This dataset therefore retained only a handful
of each subspecies as references, but contained the full set of approximately 135 000 SNP markers. The
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Figure 1. Sampling locations for genomic genotyping. For the mitochondrial dataset, data from King et al. [55] was also included (q.v.
for map and further details on those sample sites). Colour codes are based on latitude and used to help display relationships between
sampling locations in future figures.

MegaMUGA SNP array consists of approximately 78 000 markers, of which approximately 65 000 overlap
with the GigaMUGA array. Over 500 wild mice from across the native range have been genotyped using
the MegaMUGA array, therefore this dataset provided a much larger wild reference dataset than the
GigaMUGA reference dataset, but with reduced SNP coverage. Both our combined datasets were filtered
for LD with a window size of 10 kb, a step size of 5 and an R2 of 2.

Both of these datasets were then filtered for a minimum minor allele frequency of 0.05. For
subspecies identification, we further filtered the data to include only those loci which were most highly
differentiated between subspecies (dataset 3). When the MegaMUGA array was developed, Morgan
& Welsh [56] evaluated the information content of each site in terms of subspecies differentiation—
calculating the Shannon information content for each locus. This takes values between 0 and 1, where
0 means identical allele frequencies and, therefore, no information to inform identification, and 1 is
reached when it detects a fixed difference between subspecies. We filtered our data for subspecies
admixture calculations to exclude loci with a Shannon information of less than 0.5—leaving only loci
with high differentiation between subspecies, and removing the ascertainment bias in the chip towards
M. m. domesticus diversity.

To investigate the population genetic structure within New Zealand, we used the program
FASTSTRUCTURE [59], on the complete dataset (dataset 1) employing the choose.K command to
ascertain the optimal number of clusters present in our data. To examine the autosomal (and X
chromosomal) subspecies ancestry of individuals, we used the program ADMIXTURE, using both the
combined MegaMUGA reference dataset (dataset 2) and the reduced, weighted dataset that contained
only those SNPs that were most diagnostic for subspecies identification (dataset 3). For genome-wide
comparisons in ADMIXTURE, we did some initial pilot runs using all of the reference samples, and
then when it became clear that the majority of M. m. domesticus ancestry came from Europe, as expected
from historical shipping records, we limited the subspecies reference dataset to include only wild
M. m. domesticus from this region. This was done because working with highly uneven reference
populations may cause biases in admixture assignment [60]. ADMIXTURE was run for all autosomal
chromosomes together, and for each chromosome separately, to further resolve the contributions of each
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subspecies to the genomic makeup of each mouse. We then used the R package TessR3 to plot ancestry
admixture coefficients spatially using Kriging [61].

As a comparison for the ADMIXTURE outputs, we also used the MegaMUGA wild mouse reference
database to search for fixed differences (diagnostic SNPs) among subspecies reference sets, and then
counted the relative contribution of these SNPs to each of the New Zealand mouse samples. While
these diagnostic data yield a far smaller dataset than the total GigaMUGA or MegaMUGA genotypes,
it provides an unbiased estimate of ancestral contribution, which can be compared to the model-based
outputs from ADMIXTURE.

We extracted both the mitochondrial and Y-chromosome SNPs and compared these haplotypes
with the GigaMUGA reference samples, and with the known mitochondrial control region sequences
previously recorded for most of the New Zealand samples [55]. There are multiple (greater than
5) diagnostic SNPs on both the Y chromosome and mt-genome featured on this array, therefore
we were able accurately to classify each haplotype to subspecies origin, and, where possible, to
infra-subspecies clade.

We created an identity-by-state differentiation matrix between individuals using PLINK, and used
these to construct neighbour-joining trees in the R package APE [62], and principal component analyses
(PCAs) in PLINK. We ran these analyses both for the New Zealand samples independently, and for the
combined GigaMUGA (dataset 1) and MegaMUGA (dataset 2) references.

3. Results
3.1. Data filtering and statistics
Of the 182 mouse tail samples collected from around New Zealand (and from Sydney and Lord Howe
Island in Australia), 166 had high enough DNA quality to pass quality control and be analysed using
the GigaMUGA SNP array. We filtered for a maximum of 10% missing data per individual, removing a
further five individuals, yielding a final dataset of 161 mice. Neither of the two mouse samples obtained
from Lord Howe Island were of high enough quality to be retained in analyses, but all other locations
remained represented for spatial population analyses.

Of the 129 704 autosomal SNPs, 119 645 remained after filtering for coverage, and 49 266 remained
for analyses requiring linkage equilibrium. Examining the reference samples, mitochondrial and
Y-chromosome haplotypes could be assigned to subspecies using multiple (greater than 5) fixed
differences, and to intra-subspecies clade by greater than 2 fixed SNPs. For mitochondrial haplotypes
and clades for all individuals, see the electronic supplementary material, table ST1. For the subspecies
admixture analyses, we retained only SNPs that had a differentiation Shannon weighting of greater than
0.5 between subspecies, leaving the most differentiated 9501 SNPs for high-accuracy subspecies genomic
assignment, and these were scattered across all chromosomes (electronic supplementary material,
table ST2).

As a second method to confirm ancestry proportions, we created datasets composed of fixed
differences between subspecies pairs domesticus/castaneus (106 loci) and domesticus/musculus (481 loci).
The relative number of these ‘fixed’ loci between subspecies will not reflect real differences in the levels
of similarity between subspecies, nor are they necessarily fixed, because the sizes of the M. m. castaneus
and M. m. musculus reference populations were small relative to those for M. m. domesticus. Given the
large size of the M. m. domesticus reference dataset, these ‘fixed’ differences do however represent loci
where one allele is likely to be very rare or absent from M. m. domesticus, therefore these should be useful
for identifying ancestry from these other two subspecies.

3.2. Genetic population structure
Across all sampling locations, individuals grouped together most closely with other individuals from
the same location—see neighbour-joining trees (electronic supplementary material, figures SF1, SF2),
indicating that differentiation between locations was always higher than within them. There was also
clear regional structure evident: for ease in describing the spatial genetic patterns of mice across New
Zealand, we have divided the two main islands into five regions (A–E) corresponding to population
genetic regions, and provide a map highlighting the locations mentioned in the text (figure 2).

The primary population genetic structure among mouse populations in New Zealand is defined
by the divergences between the southern South Island sampling locations (Matukituki, Hollyford,
Eglinton, Grebe, Pig Creek and Tairoa—region E; for detailed location data, see [55]), and the northern
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Figure 2. Map of New Zealand indicating the geographical regions discussed and highlighting any particular locationsmentioned in the
text. Sampling locations shown as black dots.

South Island sampling locations (Abel Tasman & Lake Rotoiti—region C) from the remaining locations
(figure 3). Sampling locations that exhibit admixtures with these divergent groups within the South
Island (e.g. Hurunui, Bruce Bay), are shown as slightly divergent from the other populations.

While mice from each location could be identified to their sampling location (electronic
supplementary material, figures SF1, SF2), FASTSTRUCTURE indicated nine clusters were optimal to
explain the genetic differentiation present across New Zealand (figure 4a). These clusters represent
groups of individuals with similar genetic makeup and similar ancestry—though there will be spatial
patterns of diversity and connectivity within these groupings. It is possible that each cluster therefore
represents a different population, founded primarily via different introduction events, though long
periods of relative isolation could also account for the divergence of clusters.

Three of the most remote offshore islands (Chatham, Antipodes and Auckland) are highly
differentiated from all other populations. Ruapuke Island clusters with Sydney and some North Island
sites, and Pitt Island is most similar to locations in the lower North Island. The relatively near shore
islands (Great Barrier, Waiheke and Pourewa islands) belong to the same cluster as nearby North Island
mainland locations—all in region A.

For the mainland sites, admixture between clusters is evident, with southern Canterbury (Mawaro,
Timaru and Temuka) being composed of a mixture of central South Island cluster to the north
(Christchurch, Ashburton—region D) and the southern South Island cluster to the south (Matukituki,
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Figure 3. PCA based on identity by descent for all New Zealandmice derived from LD filtered loci. The southern South Island population
(Southern SI) consists of Matukituki, Hollyford, Eglinton, Grebe, Pig Creek and Tairoa, which overlap too much to be labelled separately.
Colours are derived from latitude, matching figure 1.

Hollyford, Eglinton, Grebe, Pig Creek and Tairoa—region E). In the lower North Island—region B—a
mixture of clusters is also evident, with contributions from the northern North Island cluster diminishing
southwards, plus elements of both the central and southern South Island clusters.

3.3. Genomic contributions from each subspecies
We found significant discrepancies among the mitochondrial, autosomal and Y-chromosome ancestries
across the country, indicating frequent admixtures between subspecies and genetic clusters in multiple
locations, both before and after arrival in New Zealand (figure 4b).

Across all sampling locations, ADMIXTURE indicated that the nuclear ancestries of New Zealand
(and Australian) mice are predominantly M. m. domesticus. In the southern North Island (region B),
southern South Island (region E) and on Chatham Island, there were notable discrepancies between
mitochondrial ancestry and nuclear ancestry (figures 4b and 5). In Wellington (Karori), all mice had
either M. m. musculus or M. m. castaneus mtDNA, while their autosomal DNA consistently showed
approximately 97% M. m. domesticus ancestry, with approximately 2% M. m. castaneus and approximately
0.02% M. m. musculus input. In the southern South Island M. m. castaneus mtDNA dominated, with all
mice sampled south of Mawaro having M. m. castaneus mtDNA. ADMIXTURE however indicated no
trace (less than 0.001%) of M. m. castaneus nuclear DNA in any individuals from these locations, and
effectively no trace of M. m. castaneus nuclear ancestry across the South Island. This ADMIXTURE result
matched closely the ‘diagnostic’ subspecies SNP frequencies, with 0.6% of ‘diagnostic’ M. m. castaneus
alleles present on average across the southern South Island. Across all populations the diagnostic
SNP marker sets confirmed the ADMIXTURE analyses (electronic supplementary material, figure SF3),
although because many of these loci are identical between M. m. musculus and M. m. castaneus, the
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proportions of hybrid alleles should be interpreted as a percentage of ancestry that is non-domesticus
rather than clearly identifying one or other of these two minor component subspecies.

We detected a similar situation on Chatham Island, where three of the four mice sampled had
M. m. castaneus mtDNA, and the fourth had M. m. domesticus mtDNA. No M. m. domesticus mtDNA
had previously been recorded among nine mice previously collected there. Nuclear ancestry of Chatham
Island mice was consistently over 99.8% M. m. domesticus from the ADMIXTURE analysis. The diagnostic
SNP analysis gave a slightly higher percentage of M. m. castaneus ancestry (approx. 3%), though with the
small number of loci available this may be less accurate than the approximately 9500 SNPs analysed
in ADMIXTURE. The M. m. castaneus mitochondrial genotypes from Chatham Island matched the
previously identified casNZ.2 haplotype, and the single M. m. domesticus mitochondrial haplotype
matched M. m. domesticus clade E haplotypes, which dominate both the North and South Islands.

The spatial distribution of subspecies ancestry, and the discrepancies between the mitochondrial
haplotypes and nuclear genomes are highlighted in figure 5—note the differences in ancestry proportions
in the scale bars between the comparative mitochondrial and nuclear maps. The only places in the
country with any substantial M. m. castaneus contribution to the nuclear genome were in Northland
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Figure 5. Maps of NewZealand showing the comparative subspecies ancestry proportions formice in each region as determined in Tess3r
for both nuclear autosomal DNA (left) and mitochondrial DNA (right). Note the different scales for each map, as ancestry percentages
varied hugely between subspecies and DNA type. Mitochondrial data are concatenated from the present study and King et al. [55].
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(Doubtless Bay, Bay of Islands, Ruatangata, and Tawharanui—the northern part of region A), and the
Wellington region (Karori and Eketahuna—region B), with 2–3% M.m. castaneus ancestry each (figure 5).
Traces (approx. 1%) of M. m. castaneus ancestry were also recorded in Taranaki. Of these places, only
Wellington had any evidence of M. m. castaneus mtDNA, and M. m. castaneus Y-chromosomal DNA was
never recorded in any of the sampled locations.
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While M. m. musculus mtDNA has never been recorded in the South Island, the three populations

sampled in the north of the South Island (region C) showed a gradient of M. m. musculus autosomal
ancestry from approximately 7–8% in Abel Tasman National Park and Lake Rotoiti, declining
southwards to 5% at Hurunui. Two mice sampled from Franz Josef had approximately 1% M. m.
musculus nuclear ancestry, suggesting that gene flow containing this admixed DNA has spread this far
south. These observations were confirmed by the diagnostic SNP frequencies, and the M. m. musculus
diagnostic alleles often clustered together on the genome, representing stretches of chromosomes
inherited from this subspecies. The only two male mice sampled from Abel Tasman National Park both
had M. m. musculus Y chromosomes—and these were the only mice sampled across the entire study not
to have M. m. domesticus Y-chromosomal ancestry.

Comparing the samples of mice from New Zealand and from the native range shows that all New
Zealand mice clearly cluster with the wild native M. m. domesticus samples (figure 6), though the
populations with some M. m. musculus admixture (Lake Rotoiti, Abel Tasman, Hurunui—region C)
and M. m. castaneus admixture (Eketahuna, Doubtless Bay, Bay of Islands, Ruatangata, Tawharanui and
Karori) are pulled slightly right, towards their respective minor subspecies components.

The contributions of each subspecies to the genomic makeup of New Zealand mice varied
significantly across chromosomes (figure 7). For the three identified geographic regions with large
numbers of admixed individuals (at the nuclear level)—Northland, Wellington, and the upper South
Island—we display these results graphically (figure 7). Of particular note, there was minimal evidence
for genomic input from M. m. castaneus or M. m. musculus for the X chromosome across these three
populations, but a large proportion (greater than 50%) of the genomic ancestry of mice from the upper
South Island came from M. m. musculus on chromosome 17, compared with the average M. m. musculus
ancestry across the genome of around 7.5%.

4. Discussion
The application of cheap high-density genotyping arrays now available for mice has corrected many
false assumptions, and greatly increased our knowledge about the diversity, ancestry and admixture of
laboratory mice [45,63]. These tools, developed primarily for developmental genetics and biomedical
research, can also assist us in understanding the ancestry, invasion histories and diversity of wild
mice populations. Using the GigaMUGA SNP genotyping array, we have significantly expanded our
knowledge of the genomic diversity and colonization history of mice in New Zealand—highlighting the
need to go beyond mitochondrial markers to trace biological invasions. This need for greater genomic
resolution in evaluating biological invasions was recently also emphasized in a similar genomic study
of Norway rats (Rattus norvegicus) [64]—another species for which invasion biology has benefitted from
the genomic resources developed using domesticated laboratory strains. We have also gained significant
insights into the abilities of wild mouse subspecies to hybridize during colonization events.

4.1. Insights into mouse subspecies hybridization
New Zealand is a particularly interesting location to look at the hybridization of mouse subspecies in
the wild, because traces of ancestry from all three major subspecies are present, the results of multiple
comparatively recent hybridization events. The hybrid domesticus/castaneus populations in New Zealand
are of particular interest given the rarity of this particular cross, however both of the previously
identified ‘hybrid’ populations, one in the south of the South Island—region E—and the other on
Chatham Island, are hybrids only in the very limited sense that there is discordance between their
nuclear M. m. domesticus and mitochondrial M. m. castaneus DNA. Both populations are essentially pure
M. m. domesticus across the nuclear genome, but they retain the mitochondrial ‘ghosts’ of a previous
hybridization event which failed to lead to nuclear admixture in the long term, i.e. they are cases of
‘mitochondrial lineage capture’ (reviewed in [65]). The fact that these populations have significantly
different M. m. castaneus mitochondrial haplotypes implies that these mitochondrial lineage capture
events occurred independently. The process of mitochondrial lineage capture has been observed across
a diverse range of taxa including Crotaphytus lizards [66], chipmunks [67], loaches [68], deer [69], goats
[70], hares [71–73], pocket gophers [74], voles [75], daphnia [76], and indeed between mouse subspecies
[45,77,78]. While relatively commonly identified in mammals, mitochondrial capture with no traces of
nuclear introgression has rarely been demonstrated to be so complete as in these mouse populations. Our
ability to detect it has been made possible due to the extensive genomic markers available for this species.
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Theoretical comparisons of pre- and post-zygotic models of isolation demonstrate that, under certain
conditions, models of prezygotic isolation (e.g. female choice or male–male competition) allow for much
more rapid introgression of maternally inherited DNA [79]. This result should be strongest when the
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source of the mtDNA is relatively rare, overall population sizes are small and there is asymmetric
hybridization [65,79]. These are precisely the conditions that would have occurred if a small founding
population of resident M. m. castaneus was invaded by M. m. domesticus mice, and it is particularly likely
given the relative hybrid fitness of these two subspecies.

The authors of reports of attempted crosses at the Jackson laboratory between M. m. castaneus and
M. m. domesticus state that fighting is particularly prevalent in progeny of any crosses involving male
M. m. castaneus [22]. Similarly, in the Collaborative Cross, a set of recombinant inbred lines derived from
crosses between eight strains [80], the M. m. castaneus X chromosome was underrepresented [31]. Male
infertility was responsible for nearly half of all observed lineage extinctions [81]. Furthermore, severe
breeding problems have also been noted with crosses of another M. m. castaneus strain, CasA [82]. A
recent quantitative trait loci study of genes related to hybrid fitness identified regions on the autosomes,
the X chromosome, and particularly in the pseudoautosomal region (PAR) of the X and Y chromosomes
which confer hybrid male sterility for crosses between M. m. domesticus and M. m. castaneus [31]. A
substantial proportion of F2 males in White et al.’s study [31] exhibited phenotypes that previously
had been connected with sterility. These included high levels of abnormal sperm, strong reductions in
the apical sperm hook and severely amorphous sperm heads that are unable to fertilize ova [40,83,84].
All of these factors indicate that when initially successful, hybridization between M. m. domesticus and
M. m. castaneus is likely to be highly asymmetrical and unstable due to both behavioural and genetic
incompatibility.

Along with the domesticus/castaneus hybrid populations described above, there is evidence of a hybrid
population with nuclear introgression in the northern half of the South Island, between M. m. domesticus
and M. m. musculus. The nuclear ancestry of this population is approximately 92% domesticus/8%
musculus population, and Y chromosomes from both subspecies are present in this region. These
two Y chromosomes could be spatially differentiated, because M. m. musculus Y chromosomes were
recorded only in the two male mice sampled from Abel Tasman National Park, while only domesticus
Y chromosomes were detected in five males from Lake Rotoiti. Given the small numbers sampled, we can
only speculate about this trend. We have yet to find evidence of M. m. musculus mitochondrial ancestry
in this population. Our results expand and quantify the findings of Searle et al. [48], who also found some
evidence of domesticus/musculus hybrids in this region.

Our finding that the domesticus/musculus hybrid population in the upper South Island has particularly
high M. m. musculus ancestry for chromosome 17 is also an intriguing result worthy of further
investigation. The only gene (Prdm9) known to cause hybrid sterility in vertebrates, identified in crosses
between M. m. musculus and a classical inbred strain primarily derived from M. m. domesticus, is on
chromosome 17 [27,29,85]. Our results could indicate that incompatibilities in this region have led to
a high proportion of this chromosome being inherited from M. m. musculus across this population.

4.2. The mouse invasion history of New Zealand
Our study highlights the extreme complexity of assessing the origins and invasion pathways of
organisms using genetic data. While our results match those of previous studies [22,48,55], the vastly
increased range of genetic markers highlight the need for genomic data to fully explain invasion histories.
These previous studies relied on mitochondrial data, along with a handful of nuclear markers, because
this focus allowed large numbers of mice to be genotyped. Since mitochondrial DNA is uni-parentally
inherited, a clear and detailed pattern of inheritance can be established for this molecule and the
matrilineal history [51]. Gene trees, however, are not species trees, and mitochondrial DNA is only one
locus, which is largely unrelated to phenotype.

Firstly, we note the similarity of the nuclear genomes of mice across New Zealand. All mice in New
Zealand other than those on Antipodes and Auckland Islands genetically clustered together with each
other (and with Sydney, Australia), indicating similar origins, or significant mixing among locations
post-introduction. This pattern of similarity among most New Zealand sites (other than Antipodes
and Auckland Islands) is more clearly seen in the electronic supplementary material, figures SF1, SF2.
As previous work has indicated by the diversity of mitochondrial haplotypes, there have been many
introductions to New Zealand of mice representing diverse origins; however, those that have contributed
to the bulk of the modern nuclear genetic diversity across the country are primarily descended from
M. m. domesticus ancestors from northwestern Europe.

Our study has revealed discordant genomes in many parts of New Zealand, as in other well-studied
islands such as Madeira subject to multiple invasions by mice of different origin [86–93]. The differences
between the genders in behaviour and breeding biology permit invading male markers to spread more
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rapidly than female markers [94]. Hence, island populations are more porous to incoming males than to
females, so mtDNA is more likely to mark the original colonists. Therefore, mtDNA can be helpful in
establishing priority among propagules in the order of colonization, but misleading as to the genomic
ancestry of individuals in the extant population. Here we update and review the story of the mouse
invasion of New Zealand and its surrounding knowledge, in light of our new insights from the genomic
data. King [54] made a number of hypotheses as to the origins of New Zealand mice, at that time
based on mitochondrial data along with historical shipping records. We have reproduced a table of
these hypotheses, along with the level of support offered by the genomic data (electronic supplementary
material, table ST3).

Briefly, the hypothesis of mice arriving to Sydney with supply fleets from Europe is highly supported,
as all Sydney mice cluster with northwestern European mice—as had previously been suggested using
mitochondrial data [49]. The hypothesis of mice arriving in Sydney from India or Canton is not
supported, as no M. m. castaneus nuclear or mitochondrial ancestry has been detected. If M. m. castaneus
arrived in Sydney they either failed to establish, or were entirely replaced by M. m. domesticus. We cannot
rule out traces of M. m. castaneus in small local populations around the ports—as our samples came from
the north and west of Sydney, but if these exist, this genetic component must be minimal for traces to not
have spread further.

The lack of M. m. castaneus signal in Sydney means that the M. m. castaneus ancestry recorded in New
Zealand is likely to have come directly from Asia. There are clearly two M. m. castaneus mitochondrial
lineages in New Zealand: (i) the southern South Island (region E) which is also present in the southern
North Island (Region B), and (ii) Chatham Island. Nuclear M. m. castaneus ancestry was however only
recorded in the North Island, primarily in the southern and northern regions (figure 5). There are several
possible scenarios that may account for the first of these two hybrid populations (on the North and South
Islands). King suggests (i) direct colonization of the southern South Island from Canton by sealers in the
1790s to 1810s, (ii) colonization from trading ships from China to Wellington from 1840 and (iii) from
China to the southern South Island (Dunedin or Hokitika) with gold miners from 1865–1890 [54]. We
cannot rule out any of these hypotheses, but given that the majority (or all of) the nuclear genome of
mice in these regions has been replaced with M. m. domesticus DNA, hybridization must have started
early, potentially before arrival on a boat or in a previous port.

The fact that it is the same mitochondrial lineage in the southern North Island and the southern South
Island brings up the possibility that mice with M. m. castaneus ancestry colonized only one of these
places, then moved to the other. This hypothesis is supported by the mixture of genetic clusters found
in Wellington, including some ancestry for the southern South Island cluster. We have not yet tried to
assess the direction of this movement.

In the northern North Island, the discordance between the same two subspecies runs in the opposite
direction (figure 4) with some traces of M. m. castaneus nuclear ancestry, but with no M. m. castaneus
mitochondrial DNA yet detected. In the 107 mice from that area previously examined, 92% carried
a single haplotype of M. m. domesticus identical to equivalent representatives of clade E in UK and
Australia. For compelling biological reasons summarized above, it is reasonable to doubt that M.
m. castaneus could have invaded such a strongly established M.m. domesticus population in Northland.
There are also historical reasons to suspect that mice arrived in the Bay of Islands only in the 1820s
or 1830s, after restrictions on trans-Tasman trade with Sydney were lifted [54]. Sydney had by then
developed into the major port of the southwest Pacific, offering unlimited opportunities for hybridization
among mice living on shore or among cargo. The most likely explanation for our results is that the
mice colonizing Northland and spreading south were already hybrids, dominantly M.m. domesticus but
carrying evidence of past encounters with M. m. castaneus.

4.3. Offshore island mouse invasion histories
Mice from the three relatively near-shore islands off the northeast coast of the North Island (Great Barrier,
Waiheke and Pourewa) all belonged to the same cluster as the nearby mainland, indicating probable
colonization from vessels moving between the mainland and each island.

Although Chatham and Pitt islands are relatively close to each other (approx. 25 km), their mouse
populations have different genetic histories. Pitt Island mice appear to be mixed from two clusters—the
central South Island cluster and the North Island cluster. Pitt Island mice had the mitochondrial D-loop
haplotype DomNZ.7, and the only locations it has been found on the main islands of New Zealand
are around Timaru—where the primary shipping company to Pitt Island is based. Our results therefore
strengthen the view that mice may have been exchanged between Pitt Island and the South Island [55].
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Chatham Island mice, however, were very different. Mice from this population predominantly had an M.
m. castaneus haplotype, casNZ.2, which has yet to be detected anywhere else in New Zealand or Australia.
It remains difficult to speculate as to the origins of this population as there are no clear mitochondrial
links, and nuclear clustering indicates it is very separate from other New Zealand populations. This
differentiation may be due to high genetic drift and founding effects, or because these mice have (some)
origins independent of the other New Zealand populations.

Three New Zealand southern island populations—Auckland, Antipodes and Ruapuke Islands—
supported mice belonging to clades different from the rest of the New Zealand mouse samples, indicating
a probable origin outside of mainland New Zealand. Our genetic results lend strong support to two
specific introduction scenarios for the Antipodes and Ruapuke mice.

All Antipodes Island mice so far sequenced were mitochondrial M. m. domesticus clade C, a clade
originating from France, Spain, Portugal and Italy [19] that has yet to be detected on mainland New
Zealand, or in Sydney—although a different clade C haplotype is present on Ruapuke Island. The origins
of the Antipodes mice appear to be independent of the other mice in New Zealand, with strong inferred
genetic links to France as the source of this invasion. As suggested by Russell [95], the Antipodes Island
mouse population was probably founded through a shipwreck, and a likely contender is that of the
Président Felix Fauré, a four-masted barque which was wrecked on rocks on the north side of the island in
Anchorage Bay in 1908. All 22 men on board made it ashore and survived for two months before being
rescued [96,97]. The first records of mice on Antipodes Island are dated to one year later in 1909, by Waite
[98] who wrote, ‘I am told by Captain Bollons that mice are very numerous at the Government depots on
Campbell and Antipodes Islands’.

The genomic links between the Ruapuke Island population and mice from Sydney also match the
known invasion history of the island. The first recorded population of mice in New Zealand arrived
on Ruapuke in 1824 with the stranded flax trading ship Elizabeth Henrietta, which came from Sydney
[99]. The fact that they have a mitochondrial haplotype of clade C not yet observed in Sydney (or
mainland New Zealand) could be due to (i) the small number of samples available of mitochondrial
haplotypes from Australia, which are few and not from around the historical dock area; or (ii), founding
effects whereby a small random sample of a relatively rare haplotype in Sydney rose to prominence on
Ruapuke Island.

The origin of the Auckland Island mice remains less certain. Following the discovery of the Auckland
Islands in 1806, mice were first recorded there in 1840 by a United States expedition, but likely had
already been present for some time before this. As there are no records of shipwrecks during this period,
it is speculated that mice arrived here during sealing activities [100]. The only mitochondrial haplotype
found on Auckland Island (NZ_dom4) is from clade E and matches haplotypes from Sydney, and both
North and South Islands of mainland New Zealand. At a nuclear level, however, this population clades
most closely with introduced mouse populations from the USA. This population was possibly founded
through activities of American sealers (or whalers) which were both active in the region at the time,
although, due to the very significant bottleneck experienced by the Auckland Island population, further
research and modelling will be needed to reveal the source of the mouse population on Auckland Island.

4.4. Applicability of the GigaMUGA SNP array
Ideally for population genomic studies, SNP variation recorded should represent the average SNP
variation present across individuals, however this is rarely the case. SNP genotyping often suffers from
an ascertainment bias, due to the procedure used to select SNPs [101–106]. The degree of ascertainment
bias primarily depends on the size and representativeness of the panel of individuals, in this case the
mice, used to select the SNPs. If a panel is chosen from individuals from a subpopulation or geographical
region that is not representative of the population as a whole, variability in groups related to the
ascertainment group will be over-represented [105].

The ascertainment bias for the GigaMUGA SNP array is both extreme and not uniform, due to
the development procedures used to create the array. The GigaMUGA array was designed primarily
from laboratory strains of mice, for use in biomedical and developmental genomic research. As the
majority of laboratory strains are descended primarily from M. m. domesticus, a large proportion of SNPs
will, therefore, be informative only between M. m. domesticus lineages, and monomorphic in the other
subspecies. Furthermore, SNPs in the array were selected in a way to minimize mutual information
between markers, which has the side effect of eliminating LD signals. This ascertainment bias means
that comparing populations with differing proportions of the three subspecies may lead to biases in
estimates of nucleotide diversity, population size, demographic changes, LD, selective sweeps and
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inferences of population structure [107–109]. We specifically chose analyses and data-filtering steps to
avoid the effects of the inherent ascertainment bias in the GigaMUGA array, and these methods should
be robust to the previously mentioned caveats [106,109]. We caution against using our data to assess other
properties such as nucleotide diversity or to identify selective sweeps without careful consideration for
appropriate filtering.

4.5. Future directions
Our study is the first looking at the invasion history of wild mice using the GigaMUGA SNP array,
and indeed the first to use a high-density SNP array of any kind to assess population genomics of wild
mice. Our data are available online (http://dx.doi.org/10.5061/dryad.tm617 [110]) so that researchers,
from both ecological and genomic fields, can compare their populations with ours using similar SNP
genotyping methods. For regions within the native range of house mice where complex patterns of
divergence and introgression have been observed, such as Turkey and Iran [24,111] and across Europe
[20], the GigaMUGA array has significant potential to add to our understandings of the genomics of
these hybrid zones.

We have not fully addressed the precise origins in the native ranges of the representatives of each
subspecies that came to New Zealand, largely due to the paucity and unevenness of wild-mouse samples
genotyped across these native ranges. However, these results are consistent with what is known from
historic shipping records [54]. Given the standardization of the GigaMUGA array, it should be relatively
easy to investigate this in the future, by obtaining and genotyping samples of mice from across the home
range—particularly around historically significant ports. Furthermore, using runs of homozygosity, it
should be possible to model the demographic history and the effects of the expanding invasion fronts on
genomic diversity (e.g. [112]).

New Zealand is currently investigating the use of gene-drive technology [113] to help eradicate
mammalian pest species as part of the aspirational ‘Predator Free 2050’ project [114]. Current laboratory
proof-of-concept research is proceeding on mice as a model organism, due to their short generation
times and the extensive genomic resources available for this species. Our study of wild mice would
be informative to this research, as an understanding of the standing variation, spatial structuring and
genomic ancestry of wild mice will be vital to informing laboratory work, and could help identify islands
where trials or application for this technique could be conducted.
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