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Socio-economic related properties of a city grow faster than
a linear relationship with the population, in a log–log plot,
the so-called superlinear scaling. Conversely, the larger a city,
the more efficient it is in the use of its infrastructure, leading
to a sublinear scaling on these variables. In this work, we
addressed a simple explanation for those scaling laws in cities
based on the interaction range between the citizens and on the
fractal properties of the cities. To this purpose, we introduced
a measure of social potential which captured the influence of
social interaction on the economic performance and the benefits
of amenities in the case of infrastructure offered by the city.
We assumed that the population density depends on the fractal
dimension and on the distance-dependent interactions between
individuals. The model suggests that when the city interacts
as a whole, and not just as a set of isolated parts, there is
improvement of the socio-economic indicators. Moreover, the
bigger the interaction range between citizens and amenities,
the bigger the improvement of the socio-economic indicators
and the lower the infrastructure costs of the city. We addressed
how public policies could take advantage of these properties
to improve cities development, minimizing negative effects.
Furthermore, the model predicts that the sum of the scaling
exponents of social-economic and infrastructure variables are 2,
as observed in the literature. Simulations with an agent-based
model are confronted with the theoretical approach and they
are compatible with the empirical evidences.

1. Introduction
When humanity built the first cities, they brought together
individuals previously separated by space, increasing social and
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economic interactions, through the shared infrastructure of the cities, in a more constant and efficient
way. Since then, the city as a social organization of humanity, has become an important place to create
interactions in space and time between individuals [1].

Following Warren Weaver’s ideas on organized complexity [2], Jane Jacobs first proposed the idea of
the city as an integrator of individuals in her seminal work, The Death and Life of the Great American City [3].
In her work, Jacobs saw cities as complex entities, organized in a bottom-up manner, by the behaviour
of its inhabitants. In the book’s concluding chapter, Jacobs defines the city as a problem of organized
complexity. The ideas of complexity were young then, and Jacobs quickly realized the importance of
understanding cities from this conceptual framework. Thereafter, this complexity approach to cities have
yielded some important insights into urban science [4–7].

In the same vein, the hypothesis raised by Bettencourt & Lobo [8] proposes a new explanation
based fundamentally on network effects: the mere fact that individuals are spatially close to each
other increases the number of potential encounters between them. Theoretically, the probability of
encounters and interaction grows as the individuals get closer and this process lowers the transaction
and communication costs.

Recent research made it possible to empirically support these propositions [1,9,10], thanks to the
increasing availability of urban data, from official statistics to private databases. Taking advantage of
this large volume of data, covering thousands of cities in the world, researchers have apparently found
statistical regularities on how concentrations of people affect economic activities, infrastructure and
social vitality [11].

The main findings from this new field of study, integrating urban planning, geography and physics of
complex systems, can be summarized by the assumption that all cities produce spatial scale economies
as they grow and at the same time, achieve gains in their socio-economic productivity. In general, when
different cities within the same urban system (i.e. in the same country) are compared, the largest cities
are denser than the smallest towns, and therefore the total amount of infrastructure per inhabitant is
smaller. At the same time, as a general rule, the largest city is richer, costlier and more culturally and
technologically productive when the metrics per capita are analysed.

If the socio-economic variables of a city grow faster than the population, we have an effect called
superlinear scaling [10], characterized by a scaling exponent greater than one. The data indicate that
the urban infrastructure follows a similar law: the larger a city, the more efficient it is in the use of its
infrastructure, leading to significant economies of space. For example, when the population of a city
doubles its material infrastructure grows less than that, from the number of gas stations to the total length
of water pipes, streets and electric cables [9]. If the infrastructure grows less than the population, we have
something called sublinear scaling, characterized by a scaling exponent smaller than one. Last, there is a
third class of variables which presents linear scaling with the population size. According to empirical
evidence, those variables are related to individual needs, as consumption of water and electrical energy,
number of employment, and so on [9].

The most remarkable properties of the urban scaling hypothesis are (i) the concentration of
people in space and time and (ii) greater intensive use of urban infrastructure. Together, (i) and (ii)
promote matching and social coordination, increasing social indicators such as wealth, innovation
and crime, enabling better use of infrastructure such as the street and transportation networks,
electrical and communication cables and many others as a city grows [10]. Some evidence, however,
indicates a considerable sensitivity of the scaling exponent in relation to the adopted definition of city,
challenging the universality hypothesis of these scaling laws [12–15]. More empirical evidence is clearly
needed in this discussion but theoretical understanding, as presented in this work, can contribute to
this dispute.

In order to build a quantitative theory of cities, we must take into account the city’s geometry to
calculate aggregate amounts that generate social and infrastructure indicators. According to the statistical
mechanics approach, to explain the scaling law observed in many complex systems we can ignore several
microscopic details and focus on the important features. More specifically, we can focus on proposing a
spatial interaction model involving the individuals and how they make choices about their destinations
or how they are influenced by the social network.

In the work herein, we look for a simple explanation for the scaling laws in cities based on the fractal
properties of the cities, as well as the behaviour of individuals. For that, we introduce a measure of social
potential that captures the influence of social interaction on the economic performance and the benefits
of amenities in the case of infrastructure offered by the city. We assume that the populational density
depends on the fractal properties and that the individual interaction intensity decays with distance. As
a result we obtain a power law scaling for social indicators and infrastructure. The scaling exponents we
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found are coherent with the empirical data. An agent-based model is proposed to compute experiments
and to test the hypotheses.

The paper is organized in five sections, including this introduction. Section 2 presents the model based
on the hypothesis just exposed above. Section 3 presents the model simulation results and §4 discusses
our results. We conclude in §5 with suggestions of further research.

2. The model
2.1. Scaling laws in the cities: socio-economic production
Individuals with limited information can take advantage from another person’s opinions, behaviours
and abilities in order to fulfil their needs and solve their problems. Through a positive feedback
mechanism, those interactions allow individuals to explore the information and resources available in
the city to enhance creativity and socio-economic production. Each individual in the city is stimulated
by the others. In this context, we use the word stimulus to mean all the social characteristics that influence
the individual, such as cultural attitude, dialect and demand of products, just to cite a few.

The distance between individuals in a city is an important factor. For instance, the chance of two
individuals meeting each other through common friends depends on the distance they live one from
each other. Moreover, the impact or influence which one person has on another also may depend on the
distance between them. Based on this, let us consider the stimulus strength of the individual j over the
individual i be represented by the function f (rij), where rij is the distance between them. So, based on
recent empirical evidence [16,17], it is quite plausible to assume that the stimulus between two citizens
decays with the distance, according to:

f (r) =

⎧⎪⎪⎨
⎪⎪⎩

1
rγ

if r > 2r0

1
(2r0)γ

otherwise,
(2.1)

where γ is the decay exponent. This function was first used to model the interaction of living cells in a
competitive [18] and cooperative [19–21] environment, and recently it was used to model the interaction
between tumour cells [22]. The distance 2r0 is the minimal distance between the agents (the distance
of a house, for instance). For convenience purposes, we assume that r0 = 1

2 . We find empirical support
for the hypothesis expressed by equation (2.1), with experimental values of γ ranging in the interval:
1 ≤ γ ≤ 1.5 [17]. For example, the distribution of physical distances of Facebook contacts are γ = 1.03 [16]
and γ = 1.12 [23]; the distribution of e-mail distances: γ = 1.0 [16] and γ = 1.20 [23]; and the frequency of
cell phone call with the distance is found in the interval: 1 ≤ γ ≤ 1.5 [17].

The influence between individuals separated by longer distances may be small, but if many people
share the same opinions, their collective strength may be meaningful and affect them. The extent of the
social tissue, measured by the size of the social network, contributed to the amount of social stimulus or
influence to which one individual is exposed. For simplicity, we proposed an additive model to measure
the total effective influence or stimulus. The individual stimulus of a single individual i from his/her
interaction with all the other (N) citizens of the city (influences), can be written as

Ii =
N∑

j=1

f (rij), (2.2)

while the socio-economic stimulus of the city is given by

Ise =
N∑

i=1

Ii. (2.3)

We are not modelling the mechanism behind how an individual may influence others. We are just
considering that the influence strength decays over the social network through distance in a pairwise
interaction framework at the micro level. Moreover, we are hypothesizing that the aggregate information
emerging from individual interaction is the mechanism for the power law observed at the macro level,
as presented in the following.

Considering that the individuals are continually distributed along the city area with density ρ(r),
where r is a position vector, then the sum in the equation (2.2) can be approximated by an integral. That
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Figure 1. Histogram of the fractal dimension of many cities around the world. Data collected from [24, p. 242]. Most of the cities studied
have their fractal dimension in the interval Df = [1.6, 1.8], with average D̄f = 1.7.

is, the total stimulus felt by i can be computed by

Ii =
∫

all space
ρ(r)f (r)dDr, (2.4)

where D is the Euclidean dimension of the space in which the population is embedded. In the case of a
city, which lies in a plane, we can assume that D = 2. However, following the approach adopted in many
studies, the spatial distribution of a city obeys fractal behaviours [24,25]. Figure 1 presents a histogram
built from a table of the fractal dimension Df of many cities around the world presented in [24, p. 242].
The box-counting method was used to compute the fractal dimension of the cities [26,27]. According to the
data, most of the cities have their fractal dimension in the interval Df = [1.6, 1.8], with average D̄f = 1.7, as
shown in figure 1. There are other references that suggest this is the average value of the fractal dimension
of the cities [28].

Cities usually present fractal behaviour, thus we assume that r is the linear length, and then the
number of individuals must scale as rDf , while the area that embedded the population scales as rD. Thus,
we write the population density equation as

ρ(r) = number of individuals
Area

= ρ0
rDf

rD = ρ0rDf−D, (2.5)

where ρ0 is constant (for details, see [27]). This hypothesis suggests that the density is a radially
symmetric function. With this hypothesis, we solve equation (2.4) using

dDr = rD−1 dr dΩD (2.6)

(transforming from Cartesian coordinates to hyperspherical coordinates). Using the periodic boundary
condition, we have

Ii(N) = ωD

Df

1
1 − γ /Df

[(
ωD

Df
N
)1−γ /Df

− 1

]
+ ωD

Df
, (2.7)

where ωD depends only on the Euclidean dimension (for details, see [19–21]). The right side of the above
equation does not depend on the index i, which means that, given the hypothesis presented, all the
individuals of the population felt the same stimulus intensity, which depends on the population size of
the city. It is due to the self-similarity of the fractal structure formed by the population [27]. In this way,
the individual stimulus scales with N by

Ii(N) = c1N1−γ /Df + c2, (2.8)

where c1 and c2 are constants. The ratio γ /Df plays an important role in this context. In fact, this ratio
is responsible for the range of interaction between each pair of individuals in the city. If (γ /Df) > 1,
the individual stimulus given by (2.4) does not depend on the population size (given a population
sufficiently large). Let us call this situation the short-range interaction regime since the individual interacts
only with its closer neighbours. In this case, the stimulus felt by a single individual converges to a
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Table 1. Empirical results of the scaling exponent for two particular indicators of the cities in three different countries: one correlated to
an infrastructure indicator (gas station) and other related to a socio-economic one (GDP). The data came from [8,29], but similar results
were presented in other studies [9,10,29]. The number of gas stations scales sublinearly (β ≈ 5

6 < 1), while the GDP scales superlinearly
(β ≈ 7

6 > 1) with the population size of the cities. Different countries present similar scale exponent values, and the evidence suggests
a correlation between the exponents, given that the sum, no matter the country, is around 2.

country βinfra (gas stations) βse (GDP) βinfra + βse

France 0.90 [0.8, 1.0] 1.20 [1.15, 1.26] 2.1 [1.95, 2.2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spain 0.75 [0.65, 0.85] 1.13 [0.97, 1.30] 1.88 [1.62, 2.15]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Germany 0.80 [0.75, 0.85] 1.17 [1.06, 1.28] 1.97 [1.81, 2.13]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

constant when the population size is large enough. On the other hand, if (γ /Df) < 1, the individual
stimulus given by (2.4) diverges when N → ∞ as a consequence of the fact that the individuals interact
effectively with everybody, despite being less intense with people who are further away. We will call this
case the long-range interaction regime.

From equation (2.4), the total socio-economic stimulus produced in the city, that is Ise = NIi, is given by

Ise = c1Nβse + c2N (2.9)

where
βse ≡ 2 − γ

Df
, (2.10)

is the scaling exponent associated with the socio-economic activities. So the total stimulus in the city is a
power law of the population size.

In the short-range interaction regime, γ /Df > 1, the total stimulus of the city scales as Ise ∼ N (linear
behaviour), which is not compatible with the empirical data presented in table 1. It means that if the
individuals of the city interact only with their neighbours and not with the distant ones, the intellectual
and socio-economic activities of the city will not scale superlinearly, but only linearly with the population
size. Conversely, in the long-range interaction regime, that is γ /Df < 1, the total stimulus scales as

Ise ∼ Nβse , (2.11)

with βse > 1. This result agrees qualitatively with the empirical data presented in table 1.
This means that, according to the theory presented here, if a city presents superlinear behaviour of

their socio-economic indicators, then the individuals (or the regions) of this city must be able to interact
with all other individuals (or other regions) of this city. In other words, the city will only enhance their
socio-economic indicators if the city behaves as a whole. On the contrary, that is, if the city is just a
collection of isolated regions, then the socio-economic indicators will be only linearly dependent on the
population size. As we presented, the last case is not supported by empirical data.

Medellin, Colombia, is a example of such a situation. This city had a strong increase in development
indicators when it began to integrate its less developed areas, previously isolated in the hills, with the
rest of the city. This integration process, made by the implementation of the aerial lift (or metrocable),
generated new revenue for the inhabitants of these places and promoted the development of the city as
a whole [30].

2.2. Scaling laws in the cities: infrastructure
Let us now focus on the infrastructure of the cities. In the present work, the focus is directed to the
number of amenities a city has to offer. They are related to the infrastructure sector, and they usually
present sublinear behaviour, as shown by figure 2. We built this histogram using 74 kinds of amenities
(e.g. bakery (βinfra = 0.847), beauty salon (= 0.745), gas station (= 0.652) and so on) across 47 US cities.
The data were collected directly from the references [31,32], but other studies found similar results [9,29].
Although the model we present below relates to the number of amenities in a city, the framework must
be valid to other infrastructure sectors of the city.

Suppose U to be the total consumption of an individual human need quantity, and then U ∼ N [9].
This consumption is supplied by the amenities of the infrastructure sector in consideration. For instance,
U can be the total consumption of bread in the city, and the amenities that supply this product are the
bakeries. The average per capita demand of this product is 〈u〉 = U/N.
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Figure 2. Histogram showing the number of amenities with a particular value of scaling exponent (βinfra). This histogramwas built with
74 amenities (for instance, bakery (βinfra = 0.847), beauty salon (= 0.745), gas station (= 0.652) and so on), all of them presenting
scaling lawwith the population size, across 47 US cities. It is possible to note an evident sublinear scaling for all the amenities presented.
The data used were collected directly from the references [31,32].

Considering ui as the consumption of the product (following the last example, the consumption of
bread) by a single citizen i, we have U =∑N

i=1 ui. The citizen can acquire this product in P amenities
distributed around the city, and the choice of what amenity through which he/she will get the product
depends on many factors, such as the quality of services, conservation, overcrowding, price, distance,
etc. However, we will consider an ideal situation that all the amenities are completely similar, and the
only relevant variable for the citizen is the distance. In this way, a rational citizen will choose the amenity
that minimizes the transport cost. In other words, we can use the function f (rik), given by equation (2.1),
to represent the total supply of the amenity k for citizen i, and they are separated by the distance rik. Then
the total demand—the provision—of citizen i can be computed by

ui =
P∑

k=1

f (rik). (2.12)

Here, we assume that the citizen is more influenced, or more supplied in this context, by closest
amenities.

In order to compute the number of amenities of a given infrastructure sector, let us to compute first
the total provision (of a particular product) of the city. It can be reached by the sum

U ≡
N∑

i=1

ui =
N∑

i=1

P∑
k=1

f (rik), (2.13)

which can also be written as

U =
P∑

k=1

( N∑
i=1

f (rik)

)
. (2.14)

The sum inside the parenthesis can be computed in a similar way that was done in the previous section,
which conducts us to

∑N
i=1 f (rik) ∼ N1−γ /Df , and then (from equation (2.14))

U ∼ PN1−γ /Df . (2.15)

As U ∼ N, the above equation yields to

P ∼ Nβinfra , (2.16)

where

βinfra ≡ γ

Df
(2.17)

is the scaling exponent associated with the infrastructure.
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Figure 3. The socio-economic scale exponent as a function of the fractal dimension of the city, according to the equation (2.10), for
γ = 1.41666 . . .. The socio-economic scale exponent is a monotonically increasing function of the fractal dimension of the city. When
one considers, by approximation, that the city is a compacted structure, that is Df = D= 2, it implies an overestimation of the scale
exponent. The extension of the solid line (Df > γ = 1.41666 . . .) represents the long-range interaction regime. For Df < γ , that is the
short-range interaction regime, the socio-economic variables scale linearly with the population size.

If we are in the long-range interaction regime, that is (γ /Df) < 1, the number of amenities behaves
sublinearly in relation to N. Since the empirical data suggest a sublinear behaviour, the theory predicts
that the individuals search for gas stations or other infrastructure variables in an interaction of long
range. That is, there will be scale economies in infrastructure variables (sublinear behaviour) only if the
city interacts as a whole, as a single organism. If the citizens use only the amenities that are in their blocks,
it means that the citizens do not use effectively the city, but only a part of it. In this case, we observe a
linear relation between the number of amenities (infrastructure) and the population size, which is not
consistent with the empirical evidence.

In conclusion, and connecting with what we described in the previous section, when the city interacts
as a whole, and not just as a set of isolated parts, then there is improvement of the socio-economic
indicators (superlinear behaviour). Consequently, the infrastructure variables show scale economies
(sublinear behaviour). Moreover, the bigger the interaction range between citizens and amenities (i.e.
the smaller γ is), the bigger the improvement of the socio-economic indicators and the lower the
infrastructure costs of the city are.

2.3. Relation between the scale exponent and the fractality of the city
In the long-range interaction regime the scale exponent βse is a monotonically increasing function of the
fractal dimension of the city, as suggested by equation (2.10) and shown in figure 3. It means that more
compact cities (Df ≈ 2) tend to have bigger scale exponents than fractal cities (Df < 2). That is because,
according to our theoretical results, the more compact the city is, the bigger the cultural and social
stimuli are. This assertion is in accordance with Bettencourt’s discussion [10]. In his urban mobility-
based model, assuming that the population completely fills the area, the scale exponent predicted by
his theory is bigger than the one observed experimentally. According to Bettencourt, this is related to
the fact that the population does not occupy all the space, but only a fragment of that. The model
presented here and consequently the result (2.10), based on social stimulus, also follows the same
interpretation.

Given that the three parameters of the result (2.10) are accessible experimentally, the theory can
be tested. For instance, if βse = 7

6 and Df = 1.7, then γ = 1.41666 . . ., which coincides with the interval
of numeric values that the experimental results suggest (between 1 and 1.5). Moreover, this numeric
value strengthens the evidence that cities present a long-range interaction regime because (γ /Df) =
(1.41666 . . . /1.7) < 1.
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circles, were distributed according to the DLA algorithm, forming a structurewith fractal dimension Df ≈ 1.7. The amenities, represented
by a fuel dispenser, were generated by the rules described in the §3.

3. Model simulations
In this section, we present computational simulations in order to test the proposed theory. The algorithm
used to simulate a virtual city is described as follows. Consider N fixed individuals spatially distributed,
whose stimulus between them and the total stimulus of the city are computed by equations (2.2) and (2.3),
respectively. We will consider two types of spatial configurations in the simulations: compacted and
fractal landscape. In the first one, the individuals are fixed and randomly distributed in a square.
In this case, the population (compacted) presents dimension Df = D = 2. The other type of spatial
distribution is fractal and generated by a diffusion-limited aggregation (DLA) algorithm [27,33]. One
particular configuration generated by this algorithm is the one presented in figure 4 (small circles). In this
case, the spatial distribution of the population has dimension Df ≈ 1.7 [27]. In fact, this artificial structure
has been used to model growth of cities due to the numerical similarity between its fractal dimension
and the dimension of real cities [24,34]. We will use these two kinds of spatial distribution (compacted
and fractal) to see, computationally, how the socio-economic and infrastructure scale exponents behave
according to the dimension of the spatial structure formed by the population.

The list below summarizes the algorithm used to simulate a city and to compute the socio-economic
variables:

1. First, it generates a city with N individuals: using DLA algorithm (Df = 1.7) or distributing the
individuals randomly in a square (Df = 2).

2. It computes the distance rij between any two individuals.
3. It computes the stimulus of all individuals of the population ({Ii}i=1...N), in which Ii =∑N

j=1 f (rij),
and f (rij) is given by equation (2.1). The parameter γ is kept fixed throughout the process.

4. Lastly, it computes the total stimulus of the city by Ise =∑N
i=1 Ii.

Figure 5 presents the average of the total stimulus of the two kinds of spatial structure as a function of the
population size when γ < Df. It is evident, by the simulation results that the socio-economic exponent
follows a superlinear behaviour (βse > 1). That is, the total stimulus of the city is boosted with increases
in population size. In relation to the quantitative analysis of the social exponent, there is also a good
agreement between the simulation and the analytic prediction given by (2.11). The comparison between
the theoretical predictions of the socio-economic exponent and the simulation results is better for a larger
population size, due to the minimization of the finite size effects. As was expected, a compact structure
presents a greater socio-economic exponent than the fractal one. In other words, the more compact the
population is, the more efficient the city will be in the socio-economic aspects.



9

rsos.royalsocietypublishing.org
R.Soc.opensci.4:160926

................................................

1000 10 000
N

1

10

I to
t/I

0

Df  = 1.7
Df  = 2

14

4

Figure 5. Superlinear behaviour between the total stimulus of the city and the population size, presented by the simulation of themodel.
The parameters of simulationswere:γ = 1.41666 . . .,Df = 2 (homogeneous distribution) andDf = 1.7 (DLA algorithm). Points (circles
and squares) represent averages over 50 independent samples of numerical simulations, where each simulation is performed keeping
N fixed. The error bars are smaller than the size of the points. The continuous lines are theoretical predictions (equation (2.10)) where
βse = 7

6 (blue line) andβse = 1.29166 (red line). Dashed line represents the linear scaling.

To simulate the dynamics of the amenities, which represent an infrastructure sector, we used the
following algorithm. Given a city generated by the previous algorithm, we have P = P0 amenities (initial
condition) that are randomly distributed in the space of the virtual city. Then the provision function of
all the individuals of the population is computed via equation (2.12). The average individual provision
can be computed by ū = (1/N)

∑N
i=1 ui. If ū < c (supply shortages), where c is a constant, then one new

amenity is introduced in a random position in the city. If ū ≥ c, then the less efficient amenity is deleted
(bankruptcy) from the city. As the time evolves, the number of amenities converges to an equilibrium
(optimal) value. Figure 4 shows a particular city generated using DLA algorithm and the distribution (at
equilibrium) of the amenities generated by the algorithm described above.

The algorithm used to simulate the amenities and the variables associated with infrastructure is
summarized below:

1. It generates a city with N individuals by the same procedure described above.
2. It generates P0 amenities, each of them is allocated randomly in some point of the city.
3. P := P0.
4. It computes the distance from any amenity to all the other citizens to obtain {rik}i=1,...,N,k=1,...,P.
5. It calculates the supply function of all individuals, that is the set {ui}i=1...N , and the average

individual-used provisions, by ui =∑P
k=1 f (rik) and ū = (1/N)

∑N
i=1 ui, respectively.

6. If ū > c, where c is a constant, then the amenity that produces less provision to the individuals
is deleted. Then do P := P − 1. Otherwise (ū ≤ c), a new amenity is generated and allocated
randomly in some point of the city. Then P := P + 1.

7. Back to the item 4.
8. The simulation stops when the number of amenities converges.

Figure 6 shows us that the equilibrium quantity of amenities scales sublinearly with the population size
(given γ < Df, i.e. long-range interaction regime). That means we have scale economies, and therefore,
greater cities need less amenities per capita. These scale economies (sublinear behaviour), according to
the model, are a direct consequence of the long-range interaction regime. The opposite situation, that is
the short-range interaction regime, must conduct to a linear behaviour, which does not correspond to the
empirical evidence.

4. Discussions
In our model, the ratio γ /Df plays an important role. Being γ /Df > 1 implies a short-range interaction
between the population, that will tend to form isolated groups, and then the city would not
behave as an unit. In this situation, as shown by equation (2.9) in this limit, the socio-economic
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Figure 6. Sublinear behaviour between the number of amenities at equilibrium (normalized by the division by P0 ≡ P(N = 1000))
and the population size, presented by the simulation of the model. The parameters of simulations are: γ = 1.41666 . . ., Df = 2
(homogeneous distribution) and Df = 1.7 (DLA algorithm). Points (circles and squares) represent averages over 30 independent samples
of numerical simulations, where each simulation is performed keeping N fixed. The error bars are smaller than the size of the points.
Continuous lines are theoretical predictions (equation (2.16)) where βinfra = 5

6 (blue line) and βinfra = 0.708 (red line). Dashed line
represents the linear scaling.

variables will scale linearly with the population size, which is not supported by the empirical
data. However, γ /Df < 1 implies a long-range interaction between the population and the socio-
economic variables will exhibit superlinear behaviour, as shown by equation (2.11), in accordance with
empirical evidence.

In the context of this model, because we observe the superlinear behaviour, we expect that the
individuals interact in a long-range manner in the cities. So, the definition of what is a city and how
to measure its properties must be done with the following requirement in mind: it is not the political
borders nor the arbitrary geographical borders that matters. What defines the cities is the geographical
areas with interacting population, the so-called functional cities [10].

In the following, we discuss the main contributions of the present theory that can shed light into the
study of cities.

4.1. The explicit dependence of the scaling exponents
One of the main contributions of this work is to obtain an explicit dependence of the scaling exponents
β, equations (2.10) and (2.17), with ratio γ /Df. As defined in this work, the decay exponent of interaction
γ and the fractal dimension of the city Df are, in principle, both measurable.

As stated by equation (2.10) and shown in figure 3, the scaling exponent associated with the socio-
economic activities βse is a monotonically increasing function of the fractal dimension of the city Df.
As a consequence, for given γ , the denser the city, the greater the socio-economic scaling exponent,
more intense the social interaction and so the city development, in accordance with [10]. As stated by
equation (2.17), a similar reasoning is valid for the scaling exponent associated with the infrastructure
βinfra.

4.2. Individual productive capacity
One interesting aspect of the model proposed concerns the individual productive capacity, called G by
Bettencourt [10]. He has shown that this quantity can be expressed as the product of the socio-economic
production per capita and the infrastructure per capita, which reveals to be scale invariant: G ∼ N0. In the
particular case of Bettencourt’s empirical studies, it was shown that these properties of G can be observed
when we use variables related to area (for instance, road surface area, circumscribing land area, etc.) as
the infrastructure variable. In this work, one can show that this property of G can also be observed when
we use the number of amenities (per capita) as the infrastructure variable. That is, according to the results
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given by equations (2.10) and (2.17),

G =
(

Ise

N

)
·
(

P
N

)
∼ N2−γ /Df−1Nγ /Df−1 = N0, (4.1)

which means G is a constant in relation to N (in the absence of a scaling law), regardless of the numeric
values of Df or γ . Thus, the result of the current work is compatible with the fact that G, being related to
individual effort and thus limited to physical constraints, should not depend on the size of the city.

4.3. Relation between socio-economic and the infrastructure scaling exponents
Another important feature that emerges from the model is the relation between the socio-economic and
infrastructure scaling exponents. For instance, the sum of these exponents,

βse + βinfra =
(

2 − γ

Df

)
+
(

γ

Df

)
= 2 (4.2)

is a number (= 2), which does not depend on the parameters of the model (γ or Df). Moreover, this result
corroborates the same relation found in [7] and it is in accordance with the empirical data, presented in
table 1.

4.4. Different decay exponents
In our model, we are supposing that the decay exponent γ is the same for both socio-economic and
infrastructure variables. However, the way citizens behave in relation to them can be different. Therefore,
if we build a γ for each variable as: βinfra = γinfra/Df and βse = 2 − γse/Df, the sum of the scaling
exponents will be

βse + βinfra = 2 + γinfra − γse

Df
. (4.3)

Note that this sum can be below or above 2. Empirically, as we showed in table 1, the sum varies around
2. There are two alternative explanations for this: (i) this fluctuation is due to some measurement error or
(ii) it is due to the difference between γse and γinfra. More empirical evidence and, consequently, a more
detailed study are necessary to clarify this issue.

4.5. Different urban variables with different scaling exponents
Now, we consider the possibility that different infrastructure sectors present different scaling exponents.
For instance, let’s take two different kinds of amenities in the city: bakeries and gas stations. According
to empirical data presented by [31,32], βbakery = 0.847, while βgas station = 0.652 in the USA. The model
sheds some light on the difference between these values. If Df is the same for both, the model says that if
βbakery > βgas station, then γbakery > γgas station, which means that bakeries are more restricted, that is, they
have a smaller range of interaction than gas stations. That makes sense, because people usually go to
bakeries that are in the neighbourhood. However, it is more common for people to fuel their cars further
away from their homes. The same idea can be applied in the context of the socio-economic variables.

4.6. The fluctuations in real data
There is one more interesting possibility allowed by the approach presented in this work: it can also give
some insights about the fluctuations of the urban variables that are observed in empirical allometries.
Empirical data from recent works [35,36] suggest that the residuals surrounding the scaling laws are log-
normally distributed. The present model can explain such properties as a consequence of fluctuation of
the interaction range of the citizen, given by particularities of the cities.

To understand that, consider the hypothesis that the exponent decay γ is Gaussian distributed in
an ensemble of cities of the same population size. This implies that the scaling exponent β will be also
normally distributed, since β ∝ γ , which is consistent with the empirical data presented in figure 2. From
the allometric equation Y ∝ Nβ , being β normally distributed and log Y ∝ β log N, then log Y will be
also normally distributed. Then the urban indicator Y, which can represent both a socio-economic Ise

or an infrastructure P variable, must be lognormally distributed, in the same way that it is observed in
empirical data. In [35], the authors consider Gaussian noise in the multiplicative constant of the scaling
equation to explain the lognormal distribution observed in real data. While they assumed β fixed without
noise, we consider β is noise.
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In conclusion, the model proposed suggests that the fluctuation in the interaction range of the

individuals conducts to the lognormal distribution of the allometric metrics, in accordance with the
empirical facts. In other words, fluctuations in urban variables would be due to the diversity and
peculiarities of each city in promoting the spatial integration of individuals.

4.7. Practical applications for urban development
Based on the previous considerations, we now address the role of the parameters γ and Df in practical
applications. In general, it is usual to say that the development of a city for good is associated with the
increase of the socio-economic scaling exponents, equation (2.10), and the decrease of the infrastructure
scaling exponents, equation (2.17). For both exponents, the smaller the ratio γ /Df, the better the city
development.

Creating public policies able to decrease the ratio γ /Df should be the goal of cities’ administration.
This could be done (i) by increasing the density of the cities, or what is the same, the fractal dimension
Df; (ii) by decreasing the decay exponent γ , which means increasing the interaction range between the
citizens, by creating public policies capable of promoting distant individuals to interact by decreasing
the cost of transportation, or improving and diversifying urban mobility, for instance; and (iii) by a
combination of both, since those variables might be dependent or correlated one to the other.

However, these strategies might be bounded by correlations between what is generally seen as
prosperity variables (such as GDP, income, employment, etc.) and what is generally seen as disadvantage
variables (such as criminality and CO2 emission levels). While the increase of the former variables are
welcome, the increase of the latter are not. We need first to know to what extent those variables are
independent or correlated before discussing specific policies. Empirical evidence regarding the values of
γ for the different urban variables and their correlations is still missing and needs to be further studied
before discussing specific policies.

5. Conclusion
This work sheds light on the understanding of scaling laws which emerge in cities. We argued that
the cities’ scaling laws observed in empirical data can be explained considering distance-dependent
interactions at individual level. We developed a microscopic model approach, based on pair interaction
of individuals with distance, characterized by a decay exponent γ that accounts for the superlinear
and sublinear scaling, respectively, of the socio-economic and infrastructure variables. To obtain scaling
exponents compatible with empirical data, the long-range interaction must be prevalent. We built an
agent-based model to test the hypotheses behind the presented assumptions. The main idea is that
the model can be built without taking some details into consideration. The scaling laws obtained from
simulations were compatible with empirical data.

The proposed model presents an explicit relation for the scaling exponents β in terms of the
decay exponent γ , and the fractal dimension Df of the city. The model predicts that the sum of the
scaling exponents of socio-economic and infrastructure variables are 2, as observed in empirical data,
independent of the parameters of the model. The scaling exponents β can be different for different socio-
economic and infrastructure variables, and we addressed how public policies could take advantage of
these properties to improve cities’ development, minimizing negative effects.

The model also presents an alternative interpretation for the lognormal distribution of the scaling
variables. It proposes that the fluctuation in the interaction range of the individuals conducts to the log-
normal distribution of the allometric metrics, in accordance with the empirical facts. In other words,
fluctuations in urban variables would be due to the diversity and peculiarities of each city in promoting
the spatial integration of individuals.

This framework elegantly allows researchers to make microscopic measurements of individual
interactions and to integrate the outcome with the city geometrical properties to estimate the underlying
scaling exponents. This study relies on the fact that cities have to be seen as a unit as their emergent
scaling laws depend on the fact that cities work as integrated systems. Further research in this line is
warranted.
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