
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2019-09

BLOCKCHAIN FOR USE IN COLLABORATIVE

INTRUSION DETECTION SYSTEMS

Kanth, Vikram K.

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/63465

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

BLOCKCHAIN FOR USE IN COLLABORATIVE
INTRUSION DETECTION SYSTEMS

by

Vikram K. Kanth

September 2019

Thesis Advisor: Murali Tummala
Co-Advisor: John C. McEachen

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2019 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
BLOCKCHAIN FOR USE IN COLLABORATIVE INTRUSION DETECTION
SYSTEMS

 5. FUNDING NUMBERS

 6. AUTHOR(S) Vikram K. Kanth

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 As the threat of cyber attack grows ever larger, new approaches to security are required. While there are
several different types of intrusion detection systems (IDS), collaborative IDS (CIDS) offers particular
promise in identifying distributed, coordinated attacks that might otherwise elude detection. Even for this
type of IDS, there are unresolved issues associated with trusting participants and aggregating data.
Blockchain technology appears capable of addressing those issues. This thesis is focused on presenting a
proof-of-concept experiment leveraging an Ethereum-based private blockchain for a CIDS that uses
pluggable authentication modules (PAM) to track login activity toward detection of doorknob rattling
attacks.

 14. SUBJECT TERMS
blockchain, hyperledger, secure communications 15. NUMBER OF

PAGES
 97
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

BLOCKCHAIN FOR USE IN COLLABORATIVE INTRUSION DETECTION
SYSTEMS

Vikram K. Kanth
Lieutenant Junior Grade, United States Navy

BS, U.S. Naval Academy, 2015

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2019

Approved by: Murali Tummala
 Advisor

 John C. McEachen
 Co-Advisor

 Douglas J. Fouts
 Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 As the threat of cyber attack grows ever larger, new approaches to security are

required. While there are several different types of intrusion detection systems (IDS),

collaborative IDS (CIDS) offers particular promise in identifying distributed, coordinated

attacks that might otherwise elude detection. Even for this type of IDS, there are

unresolved issues associated with trusting participants and aggregating data. Blockchain

technology appears capable of addressing those issues. This thesis is focused on

presenting a proof-of-concept experiment leveraging an Ethereum-based private

blockchain for a CIDS that uses pluggable authentication modules (PAM) to track login

activity toward detection of doorknob rattling attacks.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Thesis Objective . 1
1.2 Related Work . 2
1.3 Organization . 3

2 From Intrusion Detection Systems to Blockchain: An Overview 5
2.1 Intrusion Detection Systems . 5
2.2 Collaborative Intrusion Detection Systems 9
2.3 Blockchain . 11
2.4 Summary . 15

3 A Blockchain-based Collaborative Intrusion Detection System Solution 17
3.1 Distributed Attack Model: Doorknob Rattling Attack 17
3.2 Requirements for a CIDS System 21
3.3 Meeting CIDS Requirements with Blockchain 23
3.4 Proposed Blockchain Solution 25
3.5 Summary . 26

4 Implementation and Results 27
4.1 Recording Metrics . 27
4.2 Testbed Implementation and Software Selection 38
4.3 Results . 43
4.4 Detecting an Anomaly: Thwarting a Doorknob Rattling Attack 49
4.5 Summary . 56

5 Conclusions 57
5.1 Significant Contributions . 57
5.2 Recommendations for Future Work 58

vii

Appendix A Installation Guide and Implementation Notes 59

Appendix B Code Snippets 69
B.1 Sample Code for Various Applications 69

List of References 77

Initial Distribution List 81

viii

List of Figures

Figure 2.1 General Flow Chart for Intrusion Detection 5

Figure 2.2 Anomalies in a Two-Dimensional Space 6

Figure 2.3 Characteristics of Intrusion Detection Systems 6

Figure 2.4 Standard NIDS Architecture . 8

Figure 2.5 Overview of CIDS Architectures 10

Figure 2.6 Blockchain Example . 12

Figure 2.7 Blockchain Transaction Process 14

Figure 3.1 PMF for Nominal CIDS Scenario 19

Figure 3.2 Nominal Doorknob Rattling Attack Detection via CIDS 20

Figure 3.3 Generic Architecture of a Blockchain-Based CIDS 24

Figure 3.4 Blockchain Solution for CIDS 25

Figure 4.1 Baseline Output of Top Command 30

Figure 4.2 Two Thread Output of Top Command 31

Figure 4.3 Four Thread Output of Top Command 32

Figure 4.4 Six Thread Output of Top Command 33

Figure 4.5 Eight Thread Output of Top Command 34

Figure 4.6 Using PAM to Record and Propagate Login Attempts 35

Figure 4.7 CIDS Set Up Used in Experiments 39

Figure 4.8 CPU Utilization Output in Blockchain Ledger 44

Figure 4.9 Doorknob Rattling Attack in Ledger 46

Figure 4.10 Multi-attacker Doorknob Rattling Attack in Ledger 48

ix

Figure 4.11 Transaction Histogram for Doorknob Rattling Scenario 52

Figure 4.12 Gas Histogram for Doorknob Rattling Scenario 53

Figure 4.13 Initial Clustering for Doorknob Ratting Scenario 54

Figure 4.14 Dendrogram for Doorknob Rattling Scenario 55

Figure 4.15 Second Clustering for Doorknob Ratting Scenario 56

Figure A.1 Original calcDifficulty Function 60

Figure A.2 Modified calcDifficulty Function 60

Figure A.3 Sample Genesis Block . 61

Figure A.4 Determining enode Information 63

Figure A.5 ifconfig Output . 64

Figure A.6 net.peerCount Output . 65

Figure A.7 Creating a New Account . 66

Figure A.8 Sample Transaction . 67

Figure A.9 Output of Crawl Script . 68

x

List of Tables

Table 2.1 Metrics used in HIDSs . 7

Table 3.1 Username/Password Combinations for WordPress Doorknob Rattling
Attack . 18

Table 3.2 CIDS Requirements . 22

Table 4.1 PAM Fields Exported as Environment Variables by pam_exec . . 37

Table 4.2 Ethereum Clients . 40

Table 4.3 Fields in an Ethereum Transaction 43

Table 4.4 Login from GUI Example . 45

Table 4.5 Authentication Requests by sudo and su 45

Table 4.6 Login Attempt by a Remote User 46

Table 4.7 Summary of Doorknob Rattling Attack Events, Single Attacker . . 47

Table 4.8 Summary of Doorknob Rattling Attack Events, Multi-attacker . . 48

Table 4.9 Experimental Transaction Data with Gas Costs 51

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

API Application Programming Interface

CIDS Collaborative Intrusion Detection System

CLI Command Line Interface

CPU Central Processing Unit

GUI Graphical User Interface

IDS Intrusion Detection System

NPS Naval Postgraduate School

OS Operating System

PAM Pluggable Authentication Module

P2P Peer-to-Peer

SPoF Single Point of Failure

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

CHAPTER 1:
Introduction

There is no doubt that cyber attacks are an ever-growing threat. Statistics collected
by the U.S. Government Accountability Office (GAO) indicate that the number of reported
attacks against federal agencies has steadily increased by an average of 8,000 attacks per
year for more than a decade [1], the Department of Defense estimates that 36 million email
attacks take place against defense infrastructures every day [2], and an estimated 10% of
U.S. residents over the age of 16 were victims of cyber-perpetrated identity theft in 2016
alone [3]. A survey of this threat landscape reveals a clear need for more effective defensive
tools.

One of the most commonly used defenses is intrusion detection [4]. The objective
of intrusion detection systems (IDS) is to recognize anomalous behavior either within the
network as a whole or within individual hosts. In the threat landscape of today, current
intrusion detection techniques are not sufficient to address the wide variety of threats [5].
Collaborative intrusion detection is one technique that has potential to address some of
these threats [5].

The research conducted for this thesis is a demonstration of a proof-of-concept col-
laborative intrusion detection system (CIDS) to enable anomaly detection in a networked
environment. This research contributes directly to efforts to ensure network security.

Portions of this thesis were used in an upcoming paper submission for HICSS 2020.

1.1 Thesis Objective
The objective of this thesis is to develop amechanism bywhich a collaborative intrusion

detection system can be implemented. This implementation uses blockchain, an emerging
technology, to provide the information-sharing framework for a CIDS.

1

A commercially available blockchain client, Ethereum, is used to provide the trust
framework for a CIDS. This thesis develops a workflow that allows for the detection of
anomalies using a blockchain-based CIDS. Furthermore, potential classes of attacks are
attempted against and detected by this CIDS.

1.2 Related Work
The related work for this thesis can be subcategorized into a couple of categories: work

related to IDS/CIDS and work related to blockchain and its applications. Seminal work
combining the two will be discussed briefly.

Intrusion detection has long been present in literature as a way to counter forms of
computer abuse. The concept of IDS is presented in great detail in [4] and [6]. Denning
defines abnormal use of a system and presents a number of examples of aberrant usage [6].
Types of IDSs and their various approaches were catalogued in [4] and [7]. Various metrics
that are used for network analysis and in IDSs are covered in [8]. The need for CIDS
and baseline requirements for such a system are presented in [5]. These requirements and
the collection of metrics useful for detecting anomalies form the basis for the architecture
presented in Chapter 3.

Blockchain is a popular technology that has been applied to everything from medicine
to cryptocurrencies [9]–[11]. Basics and algorithms associated with blockchain are covered
in [11]–[13]. Blockchain serves as the trust agent for the CIDS system proposed and
implemented in this thesis.

The seminal work that this thesis is based around is the concept proposed by Alex-
opoulous et al. [14]. They propose a framework using blockchain as a mechanism for a
CIDS. While their work provided much of the theoretical framework supporting this idea,
they did not provide a proof-of-concept. One of their areas for future work was to implement
their framework. The focus of this thesis was to modify their proposal and implement it
using a commercially available blockchain client.

2

1.3 Organization
There are five chapters and two appendices in this thesis. Chapter 2 covers background

information relating to intrusion detection, anomalies, CIDS, and blockchain. The require-
ments and a proposed approach to a blockchain-based CIDS are presented in Chapter 3. An
implementation of the approach detailed in Chapter 3 and the results of testing the resulting
proof-of-concept system is presented in Chapter 4. The key findings and considerations for
future work are provided in Chapter 5. Appendix A is an installation guide detailing setup
instructions for a network of Ethereum nodes. Appendix B contains all of the code used in
the creation and testing of the CIDS system. Code was written in the Python, JavaScript,
Bash, Go, and C languages.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

CHAPTER 2:
From Intrusion Detection Systems to Blockchain: An

Overview

Several concepts that are integral to understanding the CIDS system proposed in this
thesis are discussed in this chapter. First, an introduction to an IDS and its shortcomings
is presented. A system capable of addressing those shortcomings, a CIDS, is described
afterwords. Finally, blockchain is discussed as it is a potential solution to overcoming the
implementation hurdles of CIDS.

2.1 Intrusion Detection Systems
As the name implies, the goal of intrusion detection is to recognize potential intru-

sions in a host or in a network. While there are several different approaches that are used
in intrusion detection, the general process is described in Figure 2.1. This figure pro-
vides a framework for the discussion around intrusion detection and systems capable of
accomplishing anomaly detection.

Figure 2.1. General Flow Chart for Intrusion Detection

The intrusion detection model is based on the idea that exploiting system vulnerabil-
ities necessarily requires the introduction or leveraging of some system abnormality [6].
Furthermore, by detecting and analyzing these abnormalities, potential system intruders
and violations can be revealed. An abnormality or anomaly is defined as a deviation from
normal behavior [6]. Figure 2.2 shows a graphical definition of an anomaly where X and
Y could represent hypothetical operational metrics recorded by an IDS. Groups N1 and N2

display normal behavior while groups O1, O2, and O3 represent anomalous behavior. Points
in this figure were clustered according to their distances from other points.

5

Figure 2.2. Anomalies in a Two-Dimensional Space. Source: [15].

IDSs analyze the produced anomalies and generate alerts based on established criteria.
Depending on the type of IDS, that alert can trigger an action or response [6]. For example,
if the IDS detects an denial-of-service (DOS) attack because of a high traffic volume from a
single IP address, the IDS could change firewall rules to block that IP address. The general
characteristics of an IDS are presented in Figure 2.3.

Figure 2.3. Characteristics of Intrusion Detection Systems. Source: [4].

6

There are several ways to categorize IDSs. One of the criteria that distinguishes
IDSs is whether the anomaly detection method is behavior-based or knowledge-based [4].
Knowledge-based systems leverage a priori knowledge about different types of attacks to
develop particular signatures to recognize anomalies [4]. Behavior-based systems develop
thresholds or profiles of normal activity and compare current behavior patterns to them to
detect anomalies. The focus in this thesis is on behavior-based IDSs. Another important
criterion for IDS classification focuses on what target the IDS is attempting to protect. An
IDS can be considered host-based or network-based depending on the circumstance.

2.1.1 Host-Based Intrusion Detection Systems (HIDS)
A HIDS uses data about the host and its computing activities to determine if some

malfeasance is taking place. A sampling of these host metrics is presented in Table 2.1.

Table 2.1. Metrics Used in HIDSs. Adapted from [8], [16].
Metric Description

CPU Usage
High CPU Usage could Indicate an Attacker
or a Misperforming Process

Memory Access
Incorrectly Timed or Strange Memory Access
could Indicate an Attacker

File Access
Strange File Access Attempts could Indicate
an Attacker

Login Attempts/Times
High Numbers of Failed Login Attempts or
Login Attempts at Strange Times could
Indicate an Attacker

HIDS can also be either knowledge-based or behavioral-based. The knowledge-based
case is akin to commercial virus-checking software [16]. A virus-checking softwarematches
the signature of a virus or malware against characteristics on a host machine. If the signature
is matched, then the software throws an alert. In the behavioral-based case, a profile of
normal computer activity is developed. If the current measurements of metrics differ from
the expected profile, an alert is thrown [16].

7

For example, if a system expects login attempts to occur between 0800 and 1700 and a login
attempts occurs at 0200, an alert should be thrown.

2.1.2 Network-Based Intrusion Detection Systems (NIDS)
ANIDS inspects network-related data for anomalies. Examples of this data are network

packet traffic and knowledge of the various network protocols [16]. A standard NIDS
architecture is presented in Figure 2.4.

Figure 2.4. Standard NIDS Architecture. Source: [16].

Figure 2.4 highlights various places that packet sniffers can be placed to monitor traffic.

8

Those sniffed packets are then analyzed using either a knowledge-based or behavioral-based
approach. In the knowledge-based case, if the traffic pattern matches a known attack, an
alert is triggered [16]. In the behavioral-based approach, a normal profile of network traffic
is developed. If the traffic pattern differs from that profile by a specified amount, an alert
is triggered [16]. The general approach analyzes the statistical distribution of the attributes
of TCP/UDP traffic. These attributes are volume, destination, source, connection time, and
protocol [4], [16].

2.1.3 IDS: The Scaling Issue
While IDSs are commonly deployed as defensive solutions, they do have drawbacks [5].

Generally, IDSs are stand-alone. They monitor one host or one network for anomolous
activity [5]. An issue arises when an attack is distributed across several hosts or several
networks. A series of stand-alone IDSs that do not communicate or interact amongst
themselves are incapable of fully detecting or responding to such an attack [5]. Specifically,
the ability to correlate malicious events occurring across hosts in a network or networks in
a system at the same time is not present [5]. In order to address this weakness, the concept
of CIDS was introduced.

2.2 Collaborative Intrusion Detection Systems
CIDSs are designed to address the weakness of IDSs in thwarting distributed or parallel

attacks. CIDSs typically consist of a set ofmonitor units that are sensors, and a set of analysis
units that process the sensor data [5]. These units can be co-located [5]. In this way, a
CIDS can aggregate data from multiple hosts or networks in order to make decisions about
potential intrusions or anomalies.

2.2.1 Types of CIDS
There are three general categories of CIDS. Figure 2.5 shows their architectures by

categorization. The blocks labeled ’M’ and ’A’ refer to whether the node is a monitor unit
or analysis unit. In some cases, a node can be both.

9

Figure 2.5. Overview of CIDS Architectures. Adapted from [5].

A centralized CIDS is the most straight forward solution to the problem of distributed
attacks. This model has multiple monitor units feeding host-based alert data and network-
based traffic data to a single central analysis unit [5]. The analysis unit performs either
alert correlation algorithms on host-based data or standard detection algorithms on network
data [5]. This approach does have drawbacks that can make it undesirable in several
circumstances. Centralized CIDS scale very poorly with increasing network size, and the
central analysis unit serves as a single point of failure (SPoF) that represents a performance
bottleneck [5].

A decentralized CIDS uses a hierarchical structure of analysis andmonitoring units [5].
This structure has the advantage of avoiding the SPoF issue from centralized CIDS and is
scalable to larger systems [5]. Additionally, performance is improved at the top of the
hierarchy because analysis units are processing data at every level of hierarchy. This
reduces the burden on the top analysis unit [5]. This level-wise approach does come at a
cost. Information is lost at each aggregation step before reaching the top of the hierarchy.
This can lead to missing crucial data that prevents detection of attacks [5]. Also, as
Vasilomanolakis et al. [5] note, modern implementations of decentralized CIDS still have
SPoFs and bottlenecks.

A distributed CIDS eschews single analysis units in favor of distributing the analysis
tasks amongst all monitors [5]. This requires a peer-to-peer (P2P) architecture to ensure

10

all data is shared, aggregated, and correlated in a distributed manner across the system [5].
This approach is both scalable and avoids SPoFs. However, a distributed CIDS does incur
more network cost due to increased signaling overhead [5]. Finally, as Alexopoulous et
al. [14] note, such a system must have mechanisms to ensure trust amongst its nodes.

2.2.2 CIDS: The Trust and Consensus Issue
While a distributed CIDS approach seems effective at addressing the weaknesses of

an IDS, certain facets of its implementation are difficult to overcome. The idea of trust
is crucial in a CIDS. Alexopoulous et al. [14] posit a scenario in which a monitor begins
to disseminate false information. The system must be able to determine whether the data
produced by a monitor should be accepted and whether that monitor should be trusted. In
other words, the system must reach consensus on all alert data and on the trustworthiness
of all nodes [14]. Blockchain is proposed as a solution to this trust challenge.

2.3 Blockchain
Many industries are exploring how blockchain technology might improve their pro-

cesses; cyber security is no different. The properties that blockchain exhibits are useful
in the context of CIDS. Specifically, the critical component of blockchain technology for
CIDS applications is its mechanism of validating and storing data with no need for a cen-
tral, trusted authority. The following sections provide an overview of useful features of
blockchain.

2.3.1 Categories of Blockchain
There are three types of blockchain ledgers currently in use: public, consortium, and

private [17]. Public blockchain systems allow anyone with internet access and a desire to
participate to do so. Consortium blockchain systems are maintained by an established body
that grants access to others. Private blockchain systems are maintained by one entity that
provides permissions to others. More detailed information can be found in [17]. Depending
on the desired use case, different ledgers might apply.

11

2.3.2 Block Structure
At its most basic form, a blockchain is a chain of blocks, with each block connected

to the one before it and after it by means of a mathematical relationship. A block is simply
a container for pieces of data. The major idea behind blockchain is that each block has a
unique self-identifying hash in order to ensure integrity throughout the blockchain. This
self-identifying hash is composed of the hash of the block index, data, timestamp, and of
course, the hash of the previous block hash [9]. A truncated example of a blockchain is
shown in Figure 2.6.

Figure 2.6. Blockchain Example. Source: [18]

Each block also contains a record of all transactions, called a ledger, that occurred
during the duration of block production. In this way, each transaction is codified in this
block structure [9]. Figure 2.6 illustrates this point. As each block refers to the block before
it, there is a record of all of the transactions that have occurred before the production of the
current block. Section 2.3.3 will discuss why it is mathematically impractical to modify a
block [9].

2.3.3 Consensus
Consensus algorithms allow participants in a blockchain network to reach agreement

about the state of the network without a central trusted authority [9]. Any system that
is designed to use blockchain is only as effective as its consensus model [13]. More
information about the origins of the consensus problem and its properties can be found
in [13]. In the blockchain world, the most prevalent example of a consensus algorithm is

12

the proof-of-work algorithm, which Bitcoin implements [9].

Proof-of-work is based around the idea that a participant validates its identity by
providing some proof that it performed work. In the case of Bitcoin, the goal of every
participant is to find a hash value that is less than a number that is specified as the difficulty
level by the network [13]. This is an example of a computational puzzle where the most
efficient approach to solving the puzzle is a brute force guess-and-check method [19].
This process, called mining, prevents any single participant from having an advantage in
producing the next block [9]. As such, no authentication or a priori knowledge is required of
participants. This algorithm also makes it mathematically impractical to modify a block or
set of transactions as a node would have to reproduce the entire chain before a new block was
produced. Nakamoto [9] showed that the probability of a successful modification decreases
exponentially with the size of the blockchain. However, proof-of-work is vulnerable to the
51% attack where if more than half of the potential mining power is consolidated into one
coalition, that coalition can write blocks into the blockchain [13]. In order to combat this,
Ethereum (another cryptocurrency) implemented another consensus algorithm, proof-of-
stake.

Proof-of-stake relies on a pool of validators with an economic stake in the network
taking turns proposing and voting on the next block [20]. The algorithm selects validators
pseudo-randomly for block creation thereby preventing advance knowledge of when a
particular participant would create a block. The odds of being selected as a validator
is determined by the amount of cyrptocurrency, or stake, that the participant possesses
[13] [20]. While there are potential problems with this type of implementation, (see the
Nothing-at-Stake problem [20]), this algorithm does address the 51% attack and is currently
in development by Ethereum [20].

Consensus algorithms form the backbone of a network environment where participants
can trust network state information. These attributes are crucial in the context of a CIDS
environment. They are an active area of important research but outside the scope of this
thesis.

13

2.3.4 Transactions
A transaction is simply a transfer of data from one party to another. This data can

be anything. In the context of cryptocurrency, this data would be money or contract
data [9] [11]. In the medical field, this data could be the medical records of patients or the
transfer of medical equipment [10]. The flexible nature of data allows blockchain to be used
in a variety of fields. In the context of CIDS, a transaction could contain alert data [14]. The
blockchain ledger contains a record of all transactions that have taken place. The general
approach to a cyrptocurrency transaction is presented in Figure 2.7.

Figure 2.7. Blockchain Transaction Process. Source: [21].

The process modeled in Figure 2.7 illustrates a couple of important points. Every
participant has a copy of the ledger of transactions and each of these transactions is per-
manent and transparent [9]. Additionally, each block is agreed upon using some consensus
algorithm.

14

This provides a trust framework for all participants in the network. The process workflow
for Bitcoin is presented as Algorithm 1.

Result: All Transactions Codified
1) New transactions are broadcast to all nodes.
2) Each node collects new transactions into a block.
3) Each node works on finding a difficult proof-of-work for its block.
4) When a node finds a proof-of-work, it broadcasts the block to all nodes.
5) Nodes accept the block only if all transactions in it are valid and not already
spent.
6) Nodes express their acceptance of the block by working on creating the next
block in the chain, using the hash of the accepted block as the previous hash.

Algorithm 1: Bitcoin Transaction Codification Workflow. Source: [9].

This process flow facilitates the trust framework for all participants in the network.
The ability to ensure that all participants have knowledge of all transactions and have a stake
in approving those transactions is critical to using blockchain for a CIDS.

2.4 Summary
Chapter 2 discussed background concepts required for understanding the techniques

developed in the remainder of this thesis. IDSs, their categorization, their properties, and
their shortcomings were presented. CIDSs were discussed as a solution to address the
shortcomings of IDSs. CIDS categorization and the trust issue are also covered. Finally,
blockchain was presented as a potential solution to the trust issue in a CIDS. Blockchain
structure, consensus, and transactions were defined.

Chapter 3 will present an attack scenario as a vector to discuss CIDS requirements.
Those requirements will then be used to propose a blockchain-based CIDS solution.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

CHAPTER 3:
A Blockchain-based Collaborative Intrusion Detection

System Solution

While the theoretical advantages of CIDS have been touted for several years, actual
implementation has been difficult to achieve. The primary reason for this difficulty comes
from how participants are able to establish trust in one another and how the veracity of the
shared information is ensured. [5]. The purpose of this chapter is to model an attack that
is countered well by a CIDS and by doing so, present the requirements for a successful
CIDS system. Using those requirements, we briefly explore some of the seminal work
on the topic of a CIDS and propose our own model for a CIDS using blockchain as an
information-sharing tool.

3.1 Distributed Attack Model: Doorknob Rattling Attack
Our main series of questions and explorations dealt with improving the data ingest

and acquisition process. Envision a scenario in which a network is comprised of several
nodes where each monitors and reports various events. The confidence in the anomaly
detection capabilities of the system as a whole begins with confidence in the accuracy
and completeness of the record of events of interest. A system administrator must ask the
question, how can they trust the data that is flagged by the IDS?

The enormity of this question is even further exacerbated when a coordinated attack
occurs [5]. When coordinated attacks are choreographed to maintain a low volume or rate at
any one host, respectful of common intrusion detection activity thresholds, the networkmust
be able to aggregate events to be able to respond. Consider the example of the doorknob
rattling attack on a supervisory control and data acquisition (SCADA) system wherein
an adversary attempts common login/password combinations on several machines in the
network, maintaining a low number of overall login attempts per device [22]. For the attack
to succeed, the adversary needs only gain remote access to one of these devices [22]. Another
example of the doorknob rattling attack can be seen in [23]where attackers attempted to login
into WordPress servers worldwide. Instead of exhaustively using every username/password

17

combination in their dictionary, they settled on a small subset of hundreds of combinations
before moving on to the next target WordPress server [23].

Table 3.1. Username/Password Combinations for WordPress Doorknob Rat-
tling Attack. Adapted from [23].

Username Password
admin admin
Admin 123456
user 12345
support 12321
qwerty qwerty
manager 12345678
administrator 1234
admin1 123123
adm password
root 666666
aaa 121212
sysadmin pass

Table 3.1 provides a sample of the 13 most commonly used username/password com-
binations that were used in the WordPress attack. Similar types of dictionaries can be used
in the context of smaller networks like the SCADA networks discussed in [22]. The only
way to detect this type of attack is to aggregate the total number of login attempts. We can
express this mathematically as follows.

Let x0, x1, ..., xi−1, where i is the number of number nodes, correspond to the number
of login attempts on each node. Each node has a detection threshold y corresponding to a
certain number of incorrect login attempts. If there are z login attempts on each node where
z < y, this detection threshold will never be exceeded and an alert will not be thrown. A
CIDS approach would rely on setting an additional threshold v defined as

v =

i−1∑
n=0

xn. (3.1)

18

This threshold can be tuned to the network in question. For example, an organization with
100 devices may allow three incorrect login attempts on each machine but might trigger an
alert if there are over 50 login attempts in a given time interval. This would correspond
to two login attempts on 25 of the 100 devices, thwarting an attempted doorknob rattling
attack.

Consider a scenario where ten stand-alone IDS nodes are tracking login rate, with a
CIDS watching the system as a whole. For the ten stand-alone IDS nodes expecting to
record between zero and three logins per reporting period, a detection threshold of unusual
activity might be set at four. These login attempts can be treated as a discrete random
variable with a PMF as shown in Figure 3.

0 1 2 3 4 5 i

Number of Login Attempts, n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
ro

b
a

b
ili

ty

Figure 3.1. PMF for Nominal CIDS Scenario

19

Let X be uniformly distributed on the sample space of login attempts {0, 1, 2, i − 1}.
Its expected value is given by

E(X) =
i − 1

2
(3.2)

In the case of i = 4, the expected value would be 4−1
2 = 1.5 login attempts. Assume

that an attacker tries a doorknob rattling attack with two login attempts. With the attacker
attempting 2 additional login attempts on each of the nodes, we would expect a total of 3.5
login attempts, which is below the detection threshold. The log traces for both the IDS and
the CIDS in this scenario are illustrated in Figure 3.2.

8AM 11AM 2PM 5PM
0

5

10

15

20

25

30

35

40

lo
g
in

 r
a
te

IDS log

CIDS log

threshold

attack

Figure 3.2. Nominal Doorknob Rattling Attack Detection via CIDS

20

Only nodes that recorded 2 or 3 legitimate login attempts would be able to detect the
doorknob rattling attack. Thus, on average, half of the nodes would ignore the 11:00-am
doorknob rattling attack as the two extra login attempts per system would not break the
detection threshold. This low level of activity disappears in the normal network activity
on any one node. In contrast, the attack clearly stands out in the CIDS log trace in Figure
3.2 (as the number of login attempts was greater than the specified CIDS threshold), easing
the complexity required in the follow-on data processing and analysis phases of anomaly
detection.

While this example supports CIDS as a technique to overcome coordinated attacks, the
system administrator is still left with the question of whether to trust the data that is being
reported by the individual nodes in the CIDS. After all, if login attempts are not reported,
then they cannot be aggregated for analysis. Furthermore, if an adversary is successful
in accessing a CIDS, they could alter the access log to remove evidence of the attack, as
hackers often tamper with evidence of their presence on a system to thwart future forensic
analysis [24]. We need a technique that provides some guarantee that every login attempt
will be logged and that those logs are tamper-resistant. This leads to a conversation about
requirements for a CIDS system.

3.2 Requirements for a CIDS System
The doorknob rattling scenario from Section 3.1 demonstrated the role of CIDS in

detecting certain attacks. Vasilomanolakis et al. [5] and Alexopolous et al. [14] lay out the
principal requirements of such a system, which are compiled in Table 3.2.

21

Table 3.2. CIDS Requirements. Source: [5], [14].
Accountability Actions taken by a participating node must be tied to that node.
Integrity Data cannot be modified once entered into the system.
Resilience The system should not depend on small numbers of node and must

avoid single points of failure.
Consensus Nodes in the system must reach consensus about the quality and

trustworthiness of data.
Scalability The system must be able to scale to larger numbers of agents.
Overhead Overhead must be minimized to allow flexibility of the system.
Privacy Depending on the type of system, some level of privacy must be

considered for participants.

In the context of the scenario modeled in Section 3.1, some of these requirements are
critical for a system administrator to be able to detect and respond to the doorknob rattling
attack. Specifically, accountability, integrity, and consensus are integral to the detection of
the attack. The system has to record all login attempts on every node (accountability) while
ensuring that the network has trust in the quality and accuracy of the data (consensus).
Finally, there must be confidence that the login data has not been altered by an attacker
once it has been entered in the system (integrity). While our sample scenario had only 10
nodes, in the context of an industrial network where there can be hundreds or thousands of
different devices, the system must be able to scale.

There are clear trade-offs between the attributes specified in the table. For example,
there are often conflicts between privacy and accountability [14]. Every action that is taken
to tie a set of actions to a participant invariably reduces the privacy of that participant.
Furthermore, depending on where such a system would be utilized, the requirements shift.
For example, database entries with private customer account details require different pri-
vacy considerations than logs of privilege escalation on a controlled system. Framing the
design of CIDS in the context of these requirements is useful toward capturing the key
characteristics of the system while minimizing overhead and cost. For example, overlaying
data encryption using a public key infrastructure necessarily increases overhead and thus
should be implemented only when needed [14].

22

As discussed in Section 2.3.2, the central issue with CIDS is how to maintain trust amongst
the collaborating nodes in the system. Blockchain provides a potential solution to those
trust issues.

3.3 Meeting CIDS Requirements with Blockchain
A blockchain-based system fulfills the requirements in Table 3.2 as follows: Because

each transaction contains a sender and a receiver that cannot be modified once added to the
chain, the requirement of accountability is met. Furthermore, once approved transactions
are added to the chain, they cannot be modified without overcoming significant crypto-
graphic barriers [12], fulfilling the requirement of integrity. Resilience and consensus are
both met via blockchain’s embedded distributed consensus mechanisms [13], which can be
implemented to ensure single points of failure are avoided and graceful degradation is pos-
sible. As evidenced by wide use of cryptocurrencies like Bitcoin and Ethereum, blockchain
is scalable with appropriate implementation considerations and adequate resourcing. The
cryptocurrency use case also demonstrates that privacy can be achieved in blockchain-based
systems via the assignment of non-attributable identities. As Alexopoulous et al. [14] note,
overhead can be a problem for blockchain systems, but it is dependent on which consensus
mechanism is used and other design decisions and can be mitigated via techniques like alert
hashes and bloom filters.

23

Figure 3.3. Generic Architecture of a Blockchain-Based CIDS. Source: [14].

To satisfy the requirements from Table 3.2, Alexopoulous et al. [14] propose the
CIDS framework shown in Figure 3.3 and utilize a secure distributed ledger implemented
by blockchain technology to exchange alerts between collaborating nodes. These alerts
become the transactions of the blockchain system. Depending on the types of attacks or
behaviors that an organization is concerned about, different metrics must be utilized. A
more detailed discussion on different metrics can be found in [8]. As a few key examples,
finding an adversary running unwanted programs might require logging CPU utilization
statistics. Source and destination ports for data access requests could be another potential
metric of interest. To thwart the doorknob rattling attack from Section 3.1, the transactions
would record login attempts.

24

3.4 Proposed Blockchain Solution
As a proof-of-concept, we develop a CIDS to thwart the doorknob rattling attack by

leveraging blockchain technology to facilitate a distributed ledger of login and authentication
attempts across a network. The basic architecture of the system is displayed in Figure 3.4.

Figure 3.4. Blockchain Solution for CIDS

We make a few assumptions in this general approach. The first is that for most
organizations, a private ledger is the most logical mechanism for this log, with the system
administrator validating participant identity upon initialization of the system, at a minimum,
which leads to our second assumption that we have a priori knowledge of participants
on the network. For example, most organizations and companies register and sign out
equipment to their employees. Similarly, in the context of our general approach, the system
administrator would register devices to the user and ensure proper registration into the
blockchain network. This is a crucial distinguishing factor between this approach and
current blockchain implementations like Bitcoin where anonymity of the users is a feature.
In the Bitcoin environment, it would not be possible to have a priori knowledge of the
participants in transactions [9]. More to the point, Bitcoin does not support tying an actual
identity to a Bitcoin address. In fact, Bitcoin.org makes recommendations on how to protect
individual privacy using techniques like having multiple wallets and using unique addresses
for each transaction [25].

Although the ledger in Figure 3.4 is pictured in the center of the nodes, this is only to
emphasize that consensus is maintained on the ledger’s contents; it is physically stored at
every node to maintain the distributed attributes important to the system’s benefits. Data

25

from the private ledger can be used for aggregate analysis much like in any other IDS, with
the specific anomaly detection mechanism outside the scope of our proposed solution.

In the solution proposed in [14], nodes are categorized as either monitoring units or
analysis units. Any node in the blockchain network can be either although the technical
requirements for each will be different. An analysis node will need significantly more
computing power based on the algorithm chosen to process the data. Some systems may
also require two layers of communication: an alert layer and a consensus layer to allow
flexibility in scenarios where permissioned viewing lists are necessary to achieve required
privacy levels [14]. The range of scenarios that the systemmust handlewill heavily influence
design decisions, but as a proof-of-concept we have stuck to the case illustrated in Figure
3.4, where all nodes participate fully as both monitoring and analysis units.

3.5 Summary
An example of a distributed attack, the doorknob rattling attack, was presented as a way

to discuss CIDS requirements. Some use cases and tradeoffs of the various requirements
were discussed. An explanation of why blockchain is well-suited to address the trust issues
inherent to CIDS was presented. Finally, a brief discussion about what types of metrics
might be used as alerts in the blockchain system was held.

Chapter 4 will present an implementation of our general blockchain solution from Sec-
tion 3.4 and present results from a series of experiments conducted to test the effectiveness
of our solution. Specific tools, languages, techniques, and algorithms will be presented and
explained.

26

CHAPTER 4:
Implementation and Results

This chapter discusses the variety of technology and approaches that were required
to create a proof-of-concept CIDS and presents results of some experiments that were
conducted to show the potential capabilities of the system. Specifically, in the first two
sections of this chapter, the approach is presented by which the general blockchain solution
discussed in Chapter 3 section 4 and Figure 3.4 was implemented in small scale as a proof-
of-concept. Specific platform, programming language, software packages, and hardware
choices are discussed at length. Chapter 4 sections 3 and 4 cover a series of experiments
designed to examine how such a test bed can be used to thwart attacks like the doorknob
rattling attack from Chapter 3.

4.1 Recording Metrics
In order to properly implement and test our CIDS, we needed to control and capture our

metrics of interest. We implemented our CIDS system to aggregate two different metrics,
login data and CPU utilization. Both of these metrics are good indicators of different types
of attacks [8]. Login data is crucial to identifying the doorknob rattling attack discussed in
Chapter 2. CPU utilization information can help to identify when malicious processes are
running on a particular node [8]. The following sections describe how our system interacts
with each host machine to extract the data necessary for CIDS operation.

4.1.1 CPU Utilization
The basic idea for recording this metric is that unexpected spikes in CPU utilization

are potential indications of a possible anomaly. Our goal was to sample one of our nodes
every minute and report those statistics as a transaction in our blockchain system. In order
to properly perform this test, we created a program that would spike CPU utilization on
our node to an expected amount. This was implemented this using the OpenMP library in
C [26]. The OpenMP library provides an API specification for parallel programming. Our
test computer had 4 cores and 2 threads per core for a total of 8 virtual cores. In a typical
non-parallel environment, we can only fully load one of these 8 virtual cores leading to

27

approximately 12.5% CPU utilization (maxing out 1 of 8 cores). Using the OpenMP library
we are able to load any number of our cores giving us more granularity in setting utilization
values.

While OpenMP provides the ability to use multiple threads, careful attention must be
paid to how it is used. It was necessary to select a problem where using multiple threads
would speed up execution. Furthermore, the problem had to take long enough to solve that
it was measurable by our system. We used factorization of a large number. The code is
shown in Listing 4.1 and also in Appendix B.1.3. The omp_set_num_threads() command
allows for the selection of a specific number of threads. While the code snippet in Listing
4.1 uses 8 threads, any number from 1 to 8 is selectable.

Listing 4.1: Factorization of a Prime Number

inc lude <math . h>
inc lude < s t d l i b . h>
inc lude < s t d i o . h>
inc lude <omp . h>
/∗

The purpose o f t h i s program i s t o f o r c e CPU u t i l i z a t i o n
by f a c t o r i n g a l a r g e number

∗ /
void main (i n t argc , char ∗ a rgv [])
{

i f (a r g c != 2)
{

p r i n t f (" Usage : ␣ . / p a r a ␣ numToFactor \ n ") ;
re turn ;

}
long long i n t n = (long long i n t) s t r t o l (a rgv [1] , (char

∗∗)NULL, 10) ;
long long i n t r ange = f l o o r (s q r t (n)) ;
omp_se t_num_threads (8) ;
#pragma omp p a r a l l e l f o r
for (long long i n t i = 1 ; i < n ; i ++)

28

{
i f (n % i == 0)
{

p r i n t f ("%l l d ␣ i s ␣ d i v i s b l e ␣by␣%l l d \ n " , n , i) ;
p r i n t f ("%l l d ␣ i s ␣ d i v i s b l e ␣by␣%l l d \ n " , n , n / i) ;

}
}

}

Systemmonitoringwas accomplished using the top command from the Linux operating
system. From the Linux manual pages, “The top program provides a dynamic real-time
view of a running system. It can display system summary information as well as a list
of tasks currently being managed by the Linux kernel. The types of system summary
information shown and the types, order and size of information displayed for tasks are all
user configurable and that configuration can be made persistent across restarts [27].” The
command top -b -n2 -d 1 takes two samples of our system in a one second duration in batch
mode. This allows the output to be sent to a variety of different programs. In this case, the
output was redirected to a text file, which was then read by the CIDS and recorded in the
blockchain ledger. The top code snippet is shown in Listing 4.2. The full Python script that
read the text file and submitted a transaction to the Ethereum nodes is in Appendix B.1.3.

Listing 4.2: Using top and other Linux utilities to record CPU Utilization

! / b i n / bash
t op −b −n2 −d 1 | awk " / ^ t op / { i ++} i ==2" | g r ep −Ei " cpu \ (s \)

\ s ∗ : " > ou t . t x t

Figure 4.1 presents the basic output of the top command. The typical steady state
utilization of our geth node is about 10% of one thread. The total CPU utilization on one
thread was approximately 20%. The utilization over all 8 threads was 2.5%, which can be
seen by the header%Cpu(s). This brings up an important point: there is a cost to running a
geth node. Future research will have to answer questions about how expensive (from both
a computational and network perspective) the overhead of a blockchain system is.

29

Figure 4.1. Baseline Output of Top Command

Figure 4.2 shows what happens when the factorization program a.out is run maxing
out two threads (one core). The overall CPU utilization went up to 26.4%, which again can
be seen by the header %Cpu(s). This is slightly more than a quarter of the total available
resources. We have maxed out two threads and have some additional utilization taking place
based on the other processes running at the same time.

30

Figure 4.2. Two Thread Output of Top Command

Figure 4.3 shows what happens when the program para is run maxing out four threads
(two cores). The overall CPU utilization went up to 51.4%. This is slightly more than half
of the total available resources.

31

Figure 4.3. Four Thread Output of Top Command

Figure 4.4 shows what happens when the program a.out is run maxing out six threads
(three cores). The overall CPU utilization went up to 79.2%. This is slightly more than
three quarters of the total available resources. In this case, the geth node was performing an
operation in the background that pushed the utilization for that particular process to 23.2%
of one core. This accounted for 23.2

8 = 2.9% to be added to the 75% expected directly from
our program para. The remaining 1.2% came from the remainder of processes running.

32

Figure 4.4. Six Thread Output of Top Command

Figure 4.5 shows what happens when the program a.out is run maxing out eight threads
(four cores). The overall CPU utilization went up to 99.7%. This is slightly less than 100%
of our total available resources. As stated earlier, the system only had 8 virtual cores giving
us a total of 800% of CPU utilization (based on one thread). Even forcing the program to
attempt to consume all of the available resources, the OS is smart enough to realize that
some amount of resources must be saved for the other processes running at the same time
as the program a.out. This leads to the 764.2% figure for a.out vice the 800% figure we
might have expected.

33

Figure 4.5. Eight Thread Output of Top Command

With our implementation, CPU utilization as a metric has a weakness. If a malicious
process is not running exactly when we sample our node, we will not see the anomaly.
The examples above work because we were able to somewhat control the execution time
by specifying the number to be factored. As a brute force method was used, the larger the
number, the longer the execution time. The CIDS that was put into place has a lag time
associated with passing data throughout the network and codifying transactions. This can
create a scenario where short duration malicious programs can be executed without being
detected. Further work is needed to improve this basic system. This provided the impetus
to find other metrics that would enable anomaly detection in a more robust fashion.

4.1.2 Login Attempts
Thwarting the doorknob rattling attack described in Chapter 2 requires an accurate

recording of all login attempts throughout a system. This provided the original inspiration
to use login attempts as a metric for anomaly detection. Our difficulty was in finding a

34

way to securely record login data for propagation throughout the network. By default,
several Linux distributions already log successful and failed login attempts to a variety of
log locations [28]. However, there are two issues to trying to read these logs. The first can
be summed up by asking the question: How often would the system administrator check the
logs? A doorknob rattling attack can take place quickly [22], and having to read information
from a log before sending it could make it difficult to see the attack. Secondly, as noted
in Chapter 3, hackers want to erase evidence of their actions [24]. A hacker would want
to erase evidence of their login attempts from the logs. Therefore, we concluded that the
best way to securely record login information was to make the recording and sending of the
information a part of the Linux login process. We decided to use Pluggable Authentication
Modules (PAM) to accomplish this task. The flowchart for how login attempts are recorded
is shown in Figure 4.6. Each of the steps will be discussed in more detail in the following
sections.

Figure 4.6. Using PAM to Record and Propagate Login Attempts

PAM
The Linux-PAM System Administrator Guide summarizes PAM as "a suite of shared

libraries that enable the local system administrator to choose how applications authenticate
users [29]". PAM is leveraged by applications to ensure that a user is properly authenticated
using a set of shared libraries called modules. A complete list of modules can be found
in [29]. This functionality allows us to create additional tasks that must be completed in
order for the login process to take place. More precisely, we leveraged the common-auth
configuration file. This configuration file is called in most situations where authentication
is required. Listing 4.3 shows the edited version of the file.

Listing 4.3: The common-auth Configuration File

/ e t c / pam . d / common−au t h − a u t h e n t i c a t i o n s e t t i n g s common t o
a l l s e r v i c e s

#

35

Th i s f i l e i s i n c l u d e d from o t h e r s e r v i c e − s p e c i f i c PAM
con f i g f i l e s ,

and shou l d c o n t a i n a l i s t o f t h e a u t h e n t i c a t i o n modules
t h a t d e f i n e

t h e c e n t r a l a u t h e n t i c a t i o n scheme f o r use on t h e sys tem
(e . g . , / e t c / shadow , LDAP, Kerberos , e t c .) . The d e f a u l t i s

t o use t h e
t r a d i t i o n a l Unix a u t h e n t i c a t i o n mechanisms .

he r e a r e t h e per −package modules (t h e " Pr imary " b lock)
au t h [s u c c e s s =2 d e f a u l t = i g n o r e] pam_unix . so

n u l l o k _ s e c u r e

here ’ s t h e f a l l b a c k i f no module s u c c e ed s
au t h r e q u i s i t e a u t h _ f a i l . so
au t h r e q u i s i t e pam_exec . so / home / b l o c k c h a i n / l o g i n _ s u c c e s s . sh

2
au t h r e q u i s i t e pam_deny . so

pr ime t h e s t a c k wi th a p o s i t i v e r e t u r n v a l u e i f t h e r e i sn ’
t one a l r e a d y ;

t h i s a vo i d s us r e t u r n i n g an e r r o r j u s t becau se no t h i n g
s e t s a s u c c e s s code

s i n c e t h e modules above w i l l each j u s t jump around
au t h r e q u i r e d pam_permit . so

and he r e a r e more per −package modules (t h e " Ad d i t i o n a l "
b lock)

au t h r e q u i r e d pam_example . so
au t h o p t i o n a l pam_cap . so
au t h o p t i o n a l pam_exec . so / home / b l o c k c h a i n / l o g i n _ s u c c e s s . sh

1
end of pam−au th −upda t e c o n f i g

36

When a user attempts to login, our system goes through the typical Linux authentication
process (pam_unix) but makes an additional call to pam_exec, which permits the system to
run an external command. Note that the call to the pam_exec module must be put into the
correct PAM service file (in Ubuntu the service file location is /etc/pam.d). We used the
common-auth service to call a Bourne Again SHell (Bash) script that interacted with our
blockchain client. The pam_exec module sets several environmental variables that record
several important pieces of information for logging purposes. A subset of these variables
is shown in Table 4.1.

Table 4.1. PAM Fields Exported as Environment Variables by pam_exec.
Source: [29].

PAM_RHOST Remote user attempting to authenticate
PAM_RUSER Remote host that is being authenticated to
PAM_SERVICE Service module that made request
PAM_USER User that made request

PAM_TYPE
Type of module (account, auth, password,
open-session, close-session)

By altering the common-auth file, we ensured that every time an authentication request
was made, it would be logged. Listing 4.4 shows the lines that were added. These two lines
covered the two different cases of a login failure and a login success. Based on whether
the login was successful, they called the Bash script login_success.sh with a different input
variable (2 for failure, 1 for success).

Listing 4.4: Lines added to common-auth

au t h r e q u i s i t e pam_exec . so / home / b l o c k c h a i n / l o g i n _ s u c c e s s . sh
2

au t h o p t i o n a l pam_exec . so / home / b l o c k c h a i n / l o g i n _ s u c c e s s . sh
1

Additionally, this method not only includes initial login attempts but any other service
that requires user authentication, such as the use of sudo to escalate privilege. The pam_exec
module allowed us to run an external Bash script that had access to all of these environment
variables.

37

Bash Script login_success.sh
A cursory explanation of the Bash script login_success.sh is required to understand

the output in Section 4.2. Listing 4.5 contains the text of login_success.sh.

Listing 4.5: login_success.sh

! / b i n / bash
d=$ (d a t e)
py =" / u s r / b i n / py thon3 "
l o c = " / home / b l o c k c h a i n / pape rNe t / l o g i n . py "

c a s e $1 i n
1)
va r =" A u t h e n t i c a t i o n S u c c e s s f u l "
e v a l $py $ l o c $PAM_USER $PAM_TYPE $PAM_SERVICE $PAM_RUSER

$PAM_RHOST $d $va r ; ; #>> / home / b l o c k c h a i n / ou t . t x t ; ;
2)
va r =" A u t h e n t i c a t i o n F a i l u r e "
e v a l $py $ l o c $PAM_USER $PAM_TYPE $PAM_SERVICE $PAM_RUSER

$PAM_RHOST $d $va r ; ;
e s a c

The pam_execmodule passed either a 1 or a 2 based success or failure. Those cases are
represented in the Bash script by the case statement. This Bash script calls a Python script
login.py (Appendix B.1.4) using the Bash command eval. The script login_success.sh acts
as a bridge between pam_exec and the Python script by passing all of the correct variables
as well as the timestamp from the date command.

4.2 Testbed Implementation and Software Selection
Our goal was to create a small network that would be able to share information using a

blockchain client. Our network architecture is shown in Figure 4.7. Our test bed consisted of
two Linux Ubuntu 18.04.1 systems with the Ethereum client running on both. The version
of Ubuntu is important as it determines the default version of Python available. While this
can be changed either via installation or via a virtual environment, we found it easier when a

38

suitable version of Python was natively installed with the OS. In this case, one of the Python
libraries that we leveraged, web3.py, only works with Python 3.5 and later [30]. We ran
into issues using the web3.py library using the Ubuntu 16.04 distribution with Python 3.5.1
as the default Python 3 distribution. These issues resolved when we migrated to Ubuntu
18.04.1, which by default uses Python 3.6.5.

Figure 4.7. CIDS Set Up Used in Experiments

4.2.1 Blockchain Client: Ethereum
We leveraged a number of commercially available and open-source products to im-

plement our proof-of-concept. We considered two different products for our blockchain
client, Ethereum [31] and Hyperledger [32]. We chose Ethereum as it supported our
blockchain-based distributed ledger via the testnet functionality.

Ethereum supports a variety of clients in different programming languages. These
options are shown in Table 4.2.

39

Table 4.2. Ethereum Clients. Source: [33].
Client Language Developers Latest release
go-ethereum Go Ethereum Foundation go-ethereum-v1.4.18
Parity Rust Ethcore Parity-v1.4.0
cpp-ethereum C++ Ethereum Foundation cpp-ethereum-v1.3.0
pyethapp Python Ethereum Foundation pyethapp-v1.5.0
ethereumjs-lib Javascript Ethereum Foundation ethereumjs-lib-v3.0.0
Ethereum(J) Java <ether.camp> ethereumJ-v1.3.1
ruby-ethereum Ruby Jan Xie ruby-ethereum-v0.9.6
ethereumH Haskell BlockApps no Homestead release yet

The Ethereum documentation states that the Go and Rust (Parity) implementations are
the most popular [33]. We leveraged the standard go-ethereum client and the private test
network functionality for all experiments. The go-ethereum client is referred to as geth. A
detailed guide on installation of Go, an Ethereum node, geth, and specific implementation
directions is provided in Apprendix A.

Interacting with the Ethereum Client
We utilized two different methods to interact with an existing Ethereum node, the

JavaScript command line interface (CLI) and a Python interface using the web3.py library.

JavaScript Command Line Interface: Geth is the command-line interface (CLI) for inter-
acting with an Ethereum node. Command line instructions can be given in the JavaScript
language via the Web3.js library. The full documentation for this library can be found
at [34]. The Web3.js library covers many core functions of Ethereum including mining,
sending and receiving transactions, querying the state of the testnet, and node management.
The code snippet in Listing 4.6 illustrates some of these core functions. This snippet unlocks
an already created account with a plaintext password and initializes a transaction to be sent
to another account. A mining operation is then started for a duration of three seconds.

Listing 4.6: JavaScript Example: Interacting with Ethereum Node

web3 . p e r s o n a l . un lockAccoun t (web3 . p e r s o n a l . l i s t A c c o u n t s [0] , "
t e s t 1 " , 1 50) ;

40

toAddr = "0 x842686d96bbdfd540293622d17fa8eb1d1604b0a " ;

t r a n sD a t a = web3 . f r omAsc i i (" Text f o r a T r a n s a c t i o n ") ;

web3 . e t h . s e n dT r a n s a c t i o n ({ t o : toAddr , from : web3 . e t h .
co i nba s e , v a l u e : web3 . toWei (1 , " e t h e r ") , d a t a : t r a n sD a t a
}) ;

web3 . miner . s t a r t (1) ;

s e tT imeou t (f u n c t i o n () {
web3 . miner . s t o p () ;

} , (3 ∗ 1000)) ;

Python Interface: While the JavaScript CLI is very useful, it has some shortcomings. We
needed our operating system to be able to interact with Ethereum. The JavaScript CLI
was unable to support that requirement. This led us to use the Web3.py library written in
the Python programming language, which allowed various system components to talk to
Ethereum. The full documentation can be found at [35]. The code snippet in Listing 4.7
provides the exact functionality as the snippet in Listing 4.6.

Listing 4.7: Python Example: Interacting with Ethereum Node

from web3 . au t o import w3
import t ime

w3 . p e r s o n a l . un lockAccoun t (w3 . e t h . a c c oun t s [0] , " t e s t 1 " , 150)

toAddr = w3 . toChecksumAddress (’ 0
x842686d96bbdfd540293622d17fa8eb1d1604b0a ’)

t r a n sD a t a = ’ Text ␣ f o r ␣a␣ T r a n s a c t i o n ’

41

t r a n sD a t a = " 0x " + " " . j o i n (hex (ord (c)) [2 :] f o r c in
t r a n sD a t a . s t r i p (’ \ n ’))

a = w3 . e t h . s e n dT r a n s a c t i o n ({ ’ t o ’ : toAddr , ’ from ’ : w3 . e t h .
co i nba s e , ’ v a l u e ’ : w3 . toWei (1 , " e t h e r ") , ’ d a t a ’ :
t r a n sD a t a })

w3 . miner . s t a r t (1)
t ime . s l e e p (3)
w3 . miner . s t o p ()

4.2.2 Transaction Structure in Ethereum
In Section 2.3, we discuss the idea of a transaction in a blockchain environment.

In essence, a transaction can be thought of as a data package being passed between two
participants. In Ethereum, the primary purpose of a transaction is to transfer money from
one party to another. The structure of an Ethereum transaction is presented in Table 4.3.

In our system, we repurposed this structure to instead contain the alert information that
was to be propagated throughout the network. For example, using the login information
passed by pam_exec and our Bash script from Listing 4.5, a node in our CIDS submits a
transaction wherein the data field contains a hex string encoding the user, service, time, and
type of authentication. In another use case, we use the data field to send information about
CPU utilization. This hex string contains the timestamp and CPU data. Once a mining
operation takes place to produce a new block, either type of transaction is codified into the
ledger and can be viewed by any node in the CIDS. For our specific implementation, while
all other fields in the transaction were included, only the data field was important for the
operation of the CIDS.

42

Table 4.3. Fields in an Ethereum Transaction. Adapted from [36].
Field Data Type Description

from String|Number
The address for the sending account.
[Can be an address or a local] wallet.

to (optional) String
The destination address of the
message, left undefined for a
contract-creation transaction

value (optional) Number|String|BN|BigNumber
The value transferred for the
transaction in wei, also the endowment
if it’s a contract-creation transaction

gas Number
The amount of gas to use for the
transaction (unused gas is refunded)

gasPrice Number|String|BN|BigNumber
The price of gas for this transaction
in wei

data (optional) String

Either a ABI byte string containing
the data of the [function call] on a
contract, or in the case of a
contract-creation transaction, the
[initialization] code

nonce (optional) Number
Integer of a nonce. This allows the
overwriting of pending transactions
that use the same nonce

4.3 Results
This section contains the results from various experiments crafted using both of the

metrics discussed in Section 4.1. Additionally, a scenario was modeled and executed on the
test bed. Data from that scenario was collected and shared with a collaborator who applied
a statistical analysis algorithm, resulting in the identification of an anomaly [37].

43

4.3.1 CPU Utilization
We designed a simple experiment to confirm that our CIDS setup would be able to

accurately record CPU utilization information. Our node would sample its CPU utilization
every minute and record the result. Separately, another program (para) was running in the
background. The purpose of para was to run the factorization process with four threads at
random intervals causing CPU spikes. The results are shown in Figure 4.8. Our system
was able to record what was occurring on the machine at a specific point in time. We could
have used CPU utilization over 50% as a threshold as a trigger for a specific action, such
as shutting down the target machine or killing the specific process that was responsible for
the high CPU utilization. This threshold, much like in the case of login attempts, is flexible
based on system needs.

Figure 4.8. CPU Utilization Output in Blockchain Ledger

44

4.3.2 Login Attempts
With the CIDS in place, we were able to capture a variety of different authentication

requests including login attempts. Table 4.4 shows output from the blockchain ledger for
gdm-password, which occurs when one attempts to log in from the GUI.

Table 4.4. Login from GUI Example
$PAM_USER $PAM_TYPE $PAM_SERVICE Date Success/Failure

blockchain auth gdm-password Sun Jul 21
9:20:34 Success

blockchain auth gdm-password Sun Jul 21
9:26:53 Success

Table 4.5 shows two other services, sudo and su being logged. There is an additional
field in use with these commands. This is the $PAM_RUSER field because both sudo and su
can change the context of the user. PAMmodules need to determine both the identity of the
user who requests a service, and also the identity of the service granter [29]. Oftentimes,
these two fields will not be the same. Envision a scenario where one user uses the su
command to switch to another user. Listing 4.8 is output for the user vikram using the su to
switch to user blockchain. This is an example of where the $PAM_RUSER field changes.

Listing 4.8: Example Using su to Switch Between Users

vikram au t h su b l o c k c h a i n Sun J u l 21 09 : 27 : 29 PDT 2019
Au t h e n t i c a t i o n S u c c e s s f u l

Table 4.6 demonstrates the case of an external host using the ssh command to log into
our CIDS node remotely. This example uses the $PAM_RHOST field, which contains infor-
mation about the requesting host. In this case, an external agent (172.20.157.112) success-
fully logged into our CIDS node as user blockchain via the ssh blockchain@172.20.157.111

Table 4.5. Authentication Requests by sudo and su

$PAM_USER $PAM_TYPE $PAM_
SERVICE $PAM_RUSER Date Success

/Failure

blockchain auth sudo blockchain Sun Jul 21
9:28:00 Success

blockchain auth su blockchain Sun Jul 21
9:29:45 Success

45

command. This is an incredibly important use case as the doorknob rattling attack typically
involves remote users attempting to penetrate a target network [22].

Table 4.6. Login Attempt by a Remote User

$PAM_USER $PAM_TYPE
$PAM_
SERVICE

$PAM_RHOST Date
Success
/Failure

blockchain auth sshd 172.20.157.112
Sun Jul 21
9:29:04

Success

Using the technique developed to record external login attempts evidenced by Table
4.6, we simulated a doorknob rattling attack against one of our machines. In this test, the
victims were different user accounts on a single machine. Output from our CIDS ledger is
shown in Figure 4.9. The attacking machine (172.20.157.112) attempted to login to each
victim user account three times via secure shell (SSH). With our modified common-auth file
in place, the CIDS recorded each login attempt as a separate transaction in the blockchain
as depicted in Figure 4.9. The logged information is summarized in Table 4.7.

Figure 4.9. Doorknob Rattling Attack in Ledger

46

Table 4.7. Summary of Doorknob Rattling Attack Events, Single Attacker

User
IP Address
of Request

Number of
Login
Attempts

Duration
of Attack
(seconds)

user1 172.20.157.112 3 7
user2 172.20.157.112 3 10
user3 172.20.157.112 3 9
user4 172.20.157.112 3 11
user5 172.20.157.112 3 9

This attack took place over 46 seconds, with 15 total login attempts across five different
accounts. As this ledger is visible from anyCIDS node, extraction of these login attempts for
follow on analysis toward anomaly detection becomes possible from any of the distributed
participants. Although beyond the scope of the current experiment, our system might have
then responded by blocking any subsequent traffic from the attack-related internet protocol
(IP) address.

In a second experiment, multiple attackers acted against our victim machine. Output
from the ledger in this case is shown in Figure 4.10. This scenario contained two attackers
that acted in differing ways as revealed by the detail the ledger contains. The first attacker
(172.20.148.85) made all of its SSH requests simultaneously whereas the second attacker
(172.20.157.112) made its SSH requests in sequence. This simple difference can reveal
some information about the attacking machine. The first attacker was a Windows machine
using the puTTY program for its SSH requests. The second attacker was another Ubuntu
machine using OpenSSH to conduct its login attempts. The differing nature of these
programs can be seen from the log entries in Figure 4.10. A summary of the attack is shown
in Table 4.8. There were a total of 24 login attempts by two attackers across a time interval
of 43 seconds.

47

Figure 4.10. Multi-attacker Doorknob Rattling Attack in Ledger

Table 4.8. Summary of Doorknob Rattling Attack Events, Multi-attacker

User
IP Address
of Request

Number of
Login
Attempts

user1 172.20.157.112 3
user2 172.20.157.112 1
user3 172.20.157.112 2
user4 172.20.157.112 3
user5 172.20.157.112 3
user1 172.20.148.85 3
user2 172.20.148.85 3
user3 172.20.148.85 3
user4 172.20.148.85 1
user5 172.20.148.85 2

In both experiments, the timestamps of the transactions in the blockchain indicate the
attack was permanently recorded in the CIDS distributed ledger within seconds of attack

48

initiation. This rapid indication of the event and protection of related data could facilitate
action in time to protect other network nodes in near real time and also ensures that a
trustworthy forensic record of the attack events is preserved for follow on analysis. Although
a specialized system might improve functionality and efficiency, we have concluded that
Ethereum’s unaltered testnet blockchain client integrates smoothly with existing Linux
system architecture to accomplish data ingest toward intrusion detection with minimal
adjustment or overhead and fidelity sufficient for an initial investigation.

4.4 Detecting an Anomaly: Thwarting a Doorknob
Rattling Attack

The purpose of our proposed CIDS architecture was to record data that could be
used to detect anomalies. Ultimately, collecting data is not enough. That data has to
be processed and analyzed in order to find potential threats. Working in collaboration
with LCDR Stephanie Pendino [37], we designed an experiment in which we were able
to demonstrate detecting a doorknob rattling attack using statistical analysis and machine
learning techniques.

We used the cron software utility to schedule a job every five minutes. This job
represented steady-state login traffic over a defined interval. The time interval could have
been made every hour or every day by adjusting the cron parameters. The cron job executed
the script shown in Listing 4.9

Listing 4.9: Bash Script for Anomaly Detection Scenario

! / b i n / bash

FLOOR=20;
CEILING=30;
RANGE=$ (($CEILING−$FLOOR+1)) ;
NUMLOG=$RANDOM;
l e t "NUMLOG %= $RANGE" ;
NUMLOG=$ (($NUMLOG+$FLOOR)) ;
echo $NUMLOG

49

FLOOR=1;
CEILING=5;
USER=$RANDOM;
l e t "USER %= $RANGE" ;
USER=$ (($USER+$FLOOR)) ;
echo " u s e r "$USER

f o r j i n ‘ seq 1 $NUMLOG‘ ;
do
s s h p a s s −p "wrong pa s s " s sh −o S t r i c tHo s tKeyCheck i ng =no "

u s e r "$USER@172 . 2 0 . 1 5 7 . 1 1 1 &
done

We ensured that between 20 and 30 logins were attempted of a random user on our
victim machine in five-minute intervals. We let this traffic pattern continue for several
iterations before introducing a spike in login attempts (done by adjusting the NUMLOG
parameter in Listing 4.9 to a value larger than 30). Additionally, on the CIDS node, we
adjusted our login Python script to also vary the transaction cost of each record of a login
attempt (adjusting the gas parameter) to provide another variable to analyze for potential
anomalies. The idea is that the more transactions take place, the more transaction costs
will be paid during that time duration. This code is provided in Appendix B.1.4. Table
4.9 contains the data from the experiment. Some of the transactions that occurred at
the borderline between intervals were categorized into the wrong intervals. This explains
the transaction values of 19, which were below the NUMLOG parameter specified. The
processing algorithm was unaware that 30 was the threshold value.

50

Table 4.9. Experimental Transaction Data with Gas Costs
Time Number of Transactions Average Gas Cost Total Gas Cost
10:43:34 25 1252000 31300000
10:48:34 20 1295000 25900000
10:53:34 22 1250000 27500000
10:58:34 25 1288000 32200000
11:03:34 19 1215789.47 23099999.93
11:08:34 21 1285714.29 27000000.09
11:13:34 24 1166666.67 28000000.08
11:18:34 28 1310714.29 36700000.12
11:23:34 19 1268421.05 24099999.95
11:28:34 22 1268181.82 27900000.04
11:33:34 36 1225581.395 44200000
11:38:34 41 1255882.353 51200000
11:43:34 21 1266666.67 26600000.07
11:48:34 21 1319047.62 27700000.02
11:53:34 33 1275757.576 42100000
11:58:34 27 1251851.85 33799999.95

By inspection, there were three time intervals (11:33:34, 11:38:34, 11:53:34) when the
number of transactions eclipsed the threshold (30). Figures 4.11 and 4.12 show histograms
and boxplots for both the number of transactions and transaction (gas) costs.

51

15 20 25 30 35 40 45

Number of Transactions

0

1

2

3

4

5
F

re
q
u
e
n
c
y

Histogram

Generalized Extreme Distribution

Legend

15 20 25 30 35 40 45

1

Figure 4.11. Transaction Histogram for Doorknob Rattling Scenario. Source:
[37].

52

2.35 2.65 2.95 3.25 3.55 3.85 4.15 4.45 4.75 5.05

Total Gas Usage 107

0

1

2

3

4

5

6
F

re
q
u
e
n
c
y

Histogram

Generalized Extreme Distribution

Legend

2 2.5 3 3.5 4 4.5 5

107

1

Figure 4.12. Gas Histogram for Doorknob Rattling Scenario. Source [37].

The attack intervals are clearly highlighted in the histograms and skew the distribution.
From a statistical perspective, only the interval where 41 transactions occurred was flagged
as an anomaly. We used the standard definition of an outlier: a point that is more than
1.5 times the interquartile range below the first quartile or above the third quartile [38].
Although the inability to detect all three attacks was problematic, this statistical method did
correctly identify that there was an anomaly, which would lead a system administrator to
further investigate.

We then used an unsupervised machine learning technique to identify clusters in our
data. The k-means method was used to identify numbers of clusters in the data. This
technique takes a set of data and divides it into k different partitions on the basis of
similarities. More specific information on k-means can be found in [39] and [40]. Based on
prior analyses of Ethereum, we determined that clustering the data into two sets was a good

53

starting point [37]. Those results are shown in Figure 4.13. This clustering was insufficient
to answer which transaction intervals were suspicious.

15 20 25 30 35 40 45

Number of Transactions

2

2.5

3

3.5

4

4.5

5

5.5

T
o
ta

l
G

a
s
 U

s
a
g
e

107

Cluster 1

Cluster 2

Centroid

Legend

Figure 4.13. Initial Clustering for Doorknob Ratting Scenario. Source: [37].

We then used a dendrogram to further refine our clusters. A dendrogram is a tree
diagram that represents the hierarchy of similarities between groups of data points [41].
The similarities are determined by the Euclidean distance between data points. More
information of dendrograms, their applications, and methods to create them are covered
in [41] and [42]. Figure 4.14 is a display of the dendrogram for our data set. The
dendrogram shows three clusters of interest and correctly identifies a similarity between
the three attack intervals. This provides us with a model of what behavior in our network
might be considered normal (blue) vice suspicious (green and red). It also further informs
the k-means algorithm.

54

 5 9 2 13 6 3 14 10 7 1 4 16 8 15 11 12

Data Point Index

0

2

4

6

8

10

12

14

16

18
D

is
ta

n
c
e
 B

e
tw

e
e
n
 D

a
ta

 P
o
in

ts
10

6

threshold

Figure 4.14. Dendrogram for Doorknob Rattling Scenario. Source: [37].

Figure 4.15 shows the results of the k-means algorithm with the information gleaned
from the dendrogram. Once our data had been refined using the hierarchical clustering
approach, it became clear that three clusters was the optimal number of clusters for the
k-means algorithms. These clusters corresponded to normal behavior, suspicious behavior,
and our sole statistical outlier. Our second clustering in Figure 4.15 correctly identifies the
attack intervals that would be of interest to a system administrator. In addition, it is visually
clear that there is a demarcation at 30 transactions. A number of transactions above 30 is
suspicious or an outlier and a number of transacions under 30 is normal. This is significant
because both the statistical approach and the unsupervised machine learning approach did
not have a priori information about the threshold that we set during the design phase of the
experiment. These techniques were able to identify that threshold and could be used in a
network to establish baseline behavior that would form the basis for anomaly detection.

55

15 20 25 30 35 40 45

Number of Transactions

2

2.5

3

3.5

4

4.5

5

5.5
T

o
ta

l
G

a
s
 U

s
e

107

Outlier

Normal Behavior

Suspicious Behavior

Legend

Figure 4.15. Second Clustering for Doorknob Ratting Scenario. Source: [37].

4.5 Summary
The general blockchain solution proposed in Chapter 3 was implemented in this chapter

in small scale with specific implementation details provided. The choices of hardware,
blockchain client, metrics, and software interfaces were explained and analyzed. A set of
experiments was conducted to present the methodology of logging potentially anomalous
data. Both CPU utilization and login attempts were discussed.

Finally, a scenario was devised involving a fictitious network and attackers conducting
a doorknob rattling attack. This data was then analyzed using statistical techniques and
machine learning leading to the detection of anomalies.

56

CHAPTER 5:
Conclusions

The sharing of information between cyber defenders has become crucial toward pre-
venting attacks against the system as a whole. This information sharing is even more crucial
in an environment where distributed attacks are becoming increasingly common. CIDS are
one way in which to address this need, and blockchain technology appears to be well-suited
for the task of ingesting data in a distributed and secure fashion. This research has demon-
strated the ability to use commercial and open source blockchain solutions to implement
an information sharing system to record both the doorknob rattling attack using PAM and
CPU utilization information as transactions in the blockchain. This proof-of-concept also
showed that a blockchain system is capable of acting as a logging mechanism for multiple
attackingmachines and can be used to aggregate data for further processing toward intrusion
detection. While it is true that blockchain is not a solution to every type of problem, it shows
promise in this area. These positive indications point to the value of future investment in
understanding how blockchain technology could improve CIDS.

5.1 Significant Contributions
The most significant contribution in this thesis is the presenting of the proof-of-

concept system for CIDS. This proof-of-concept while considered in literature has not yet
been implemented in practice. This is a significant contribution to this field as it provides
a physical structure for analysis and improvement. Furthermore, this thesis reveals the
potential feasibility of using open-source blockchain clients, like Ethereum, to conduct
further research in this relatively new topic area.

Another contribution is the use of PAM to record information for use as a transaction
in a blockchain environment. This is an innovative use of PAM that has heretofore not been
used in literature, or used practically to the extent of our knowledge. This method provides
a more secure alternative to writing information to a log file, which could potentially be
modified by an adversary. This proof-of-concept also demonstrates an example of the
interface between a blockchain client and existing systems and software. Being able to trust
recorded alerts is the first step in detecting and preventing cyber attacks.

57

Finally, this research demonstrated the ability to develop thresholds of anomalous
activity using statistical and machine learning techniques based on data acquired from the
blockchain-based system developed in this thesis. The scenario described in Chapter 4
illustrated how a network administrator might analyze potentially anomalous data in order
to prevent intrusions in their networks.

5.2 Recommendations for Future Work
This thesis provides several avenues for additional work. The proof-of-concept system

engineered in this thesis is small in scale. Creating a larger testbed would be the first step in
further exploration of this system approach. Additional research must also be conducted to
determine how the system would work at scale with several devices. One issue that would
need to be addressed as the system increases in scale is the network overhead to support
the blockchain client. Developing an understanding of the overhead of a blockchain client
must be a priority for this research to move forward.

The system engineered in this thesis utilized the Ethereum client. By its very nature,
this client is designed around supporting a cryptocurrency. A CIDS-specific blockchain
apparatus might differ significantly from existing clients in terms of consensus algorithm,
transaction formatting, and other details. Work is needed to explore what that customization
should entail. Furthermore, if designing a CIDS-specific blockchain system is too high of a
hurdle at the current time, additional research on which general purpose blockchain client
best meets CIDS requirements should be conducted.

Finally, more work is also necessary to explore how this blockchain-based data ingest
module will interact with follow on filtering and processing of data and the other remaining
steps in the intrusion detection process outlined in Figure 2.1. There is potential for the
blockchain system itself to provide enhanced detection of attacks. For example, an increased
activity level in the blockchain could indicate some attack. Methods to use blockchain-
activity data to detect and prevent attacks are a rich area for further exploration.

58

APPENDIX A:
Installation Guide and Implementation Notes

This appendix contains an installation guide that should prove useful to a user new to
Ethereum. Steps to create a networked blockchain using Ethereum Client:

1. Update machine

NOTE: Location of go-ethereum is assumed to be in the home directory.

Listing A.1: Basic Update and Setup Instructions

sudo ap t −g e t upda t e
sudo ap t −g e t upgrade
sudo ap t −g e t i n s t a l l −y bu i l d − e s s e n t i a l
sudo ap t −g e t i n s t a l l g i t
cd ~

g i t c l o n e h t t p s : / / g i t h u b . com / e the reum / go−e the reum . g i t

2. Install go-lang for geth

Use update-golang.sh from [43]

Modify consensus algorithm calcDifficulty in consensus.go (For ease of testbed use
and experimentation)

59

Figure A.1. Original calcDifficulty Function

Figure A.2. Modified calcDifficulty Function

This step is particularly important because it sets our mining difficulty to its lowest
possible level. This allows us to acquire a large amount of faux currency for our transactions
between accounts. Once we have completed the above step, we must again rebuild geth.
Thankfully, the developers of this code have provided us with a makefile to automate this
process. Please note that you must be in the go-ethereum folder in order to run the make
command.

3. Rebuild go-ethereum

Listing A.2: Updating geth with the make Command

cd ~ / go−e the reum
make ge t h

60

For the sake of simplicity, details have been included about how to setup a two-node
network. For a multi-node network, every node must be peered with every other node.

4. Setting up Node 1

Listing A.3: Creating a Data Directory

mkdir g e t hDa t aD i r # (Name i s c omp l e t e l y a r b i t r a r y)

create genesis JSON block

Figure A.3. Sample Genesis Block

For more information on each of these fields, one can consult the Ethereum documen-
tation [20]. Keep the difficulty low in order to mine more currency. Also note that the
network ID of the blockchain network is determined by the chainId variable above. It is
highly advised that the number is large as to prevent conflicts.

b. Initialize chain with genesis JSON block ensuring chain ID is large

Listing A.4: Initializing a Genesis Block

ge t h −− d a t a d i r ~ / g e t hDa t aD i r / i n i t g e n e s i s . j s o n

c. Open IPC endpoint with the same network Id as designated in JSON block

Listing A.5: Opening an IPC Endpoint

61

ge t h −− d a t a d i r ~ / g e t hDa t aD i r −−ne two rk i d 7986

d. Attach to the IPC endpoint

Listing A.6: Attaching to the IPC Endpoint

cd ~
ge t h a t t a c h i p c : g e t hDa t aD i r / g e t h . i p c

5. Node 2 Setup Directions

NOTE: FOR EVERY SUBSEQUENT NODE, THE SAME GENESIS BLOCK
AS THE FIRST NODE MUST BE USED. IF NOT, NODES WILL NOT BE ABLE
TO BE PEERS.

a. Create data directory as shown in Listing A.3 and use the same genesis JSON
block as Node 1.

b. Follow initialization instructions from Listing A.4.

c. Follow opening IPC endpoint instructions from Listing A.5.

c. Follow attaching to the IPC endpoint instructions from Listing A.6.

d. Use enode address of Node 1 to add them as a peer: The enode address of Node
1 can be determined by using admin.nodeInfo.enode. Details can be seen in A.4.

62

Figure A.4. Determining enode Information

The IP address shown in the enode value above is localhost (127.0.0.1). Node 2 must
replace that address with the address of the active network interface on Node 1. This is
accomplished via running the command ifconfig on Node 1. This step is displayed in Figure
A.5.

63

Figure A.5. ifconfig Output

Based on the above values, the command that must be run from Node 2 is:

Listing A.7: Adding a Peer

admin . addPee r (" enode : / /
d09b3c4032429d687f53abed2d60d55eac22c9f f470ebeb
872 a106e618db3145848b69404eb3110fd01e6ad397e6e39d1ab6a9e9fa
d35e8437727ad534b6ee6e@172 . 2 0 . 1 5 7 . 1 2 1 : 3 0 3 03 ? d i s c p o r t =0")

The output should return true and if the command net.peerCount is executed it should
return a value of 1 signifying that Node 2 has one peer, Node 1 as can be seen in Figure A.6.
The same process could have been reversed with Node 1 adding Node 2 as a peer using its
enode address. If there are more than two nodes, each node must add each other node as
can be seen in Figure 3.4.

64

Figure A.6. net.peerCount Output

Once the nodes have been connected, a variety of operations can now be conducted.
We will cover three basic operations, adding accounts, mining, and sending transactions.

Adding Accounts (Can be done before peering nodes)

Listing A.8: Adding Accounts and Verifying

p e r s o n a l . newAccount (" password ")
web3 . e t h . a c c oun t s

There is no password recovery option. If the password for the account is forgotten, all
money contained in the account is inaccessible.

65

Figure A.7. Creating a New Account

Mining

Listing A.9: Mining

miner . s t a r t (1)
miner . s t o p ()

Transactions

Listing A.10: Transaction

web3 . p e r s o n a l . un lockAccoun t (web3 . p e r s o n a l . l i s t A c c o u n t s
[0] , " a c coun t password " , 15000)

c on s o l e . l og (e t h . s e n dT r a n s a c t i o n ({ from : web3 . e t h . co i nba s e
, t o : "0 x842686d96bbdfd540293622d17fa8eb1d1604b0a " ,
v a l u e : web3 . toWei (1 , " e t h e r ") , d a t a : t r a n sD a t a })) ;

The variable transData is a 32-byte string that is hex encoded. The transaction script
in Appendix B shows how to correctly encode those types of values. Also recall that

66

transactions will be processed when blocks are mined. Output of a transaction and of a
script designed to crawl through all transactions on a network are shown in Figures A.8 and
A.9.

Figure A.8. Sample Transaction

67

Figure A.9. Output of Crawl Script

This ends the basic installation guide and Ethereum tutorial.

68

APPENDIX B:
Code Snippets

This Appendix contains code snippets that were written for the implementation of a
CIDS node that was capable of recording information.

B.1 Sample Code for Various Applications

B.1.1 JavaScript Function for Sending a Transaction
Listing B.1: Sending a Transaction

web3 . p e r s o n a l . un lockAccoun t (web3 . p e r s o n a l . l i s t A c c o u n t s [0] , "
pape rNe t1 " , 15000)

/ / Must encode d a t a s t r i n g as a hex s t r i n g . The f r omAsc i i
f u n c t i o n a c comp l i s h e s t h i s .

t r a n sD a t a = web3 . f r omAsc i i (Math . f l o o r (Math . random () ∗Math . pow
(2 , 6 3)) . t o S t r i n g (3 6)) ;

c o n s o l e . l og (e t h . s e n dT r a n s a c t i o n ({ from : web3 . e t h . co i nba s e , t o
: "0 x599e76d919dcaa7274cce5e299dce9b46eda989b " , v a l u e :
web3 . toWei (1 , " e t h e r ") , d a t a : t r a n sD a t a })) ;

miner . s t a r t (1) ;

s e tT imeou t (f u n c t i o n () {
miner . s t o p () ;

} , (5 ∗ 1000)) ;

B.1.2 JavaScript Function for Crawling Through all Transactions
Listing B.2: Crawling Through all Transactions

c on s o l e . l og (" Execu t i ng T r a n s a c t i o n s Crawl ")
va r t r a n s T e s t = []

69

va r z e r o = 0 ;
va r temp ;
va r d a t a ;
/ /We a r e a b l e t o s t a r t a t any b lock by s e t t i n g i t o be

wha t eve r b l ock we wish . In t h i s example i t i s s e t t o 1 .
f o r (i = 1 ; i < e t h . g e tB lock (" l a t e s t ") . number ; i ++)
{

temp = e t h . g e tB lock (i) . t r a n s a c t i o n s ;
i f (temp . l e n g t h != 0)
{

f o r (j = 0 ; j < temp . l e n g t h ; j ++)
{

t r a n s T e s t . push (temp [j]) ;
c u r r e n t T r a n s = e t h . g e t T r a n s a c t i o n (

temp [j])
d a t a = c u r r e n t T r a n s . i n p u t
i f (d a t a != "0 x ")
{

/ / Records bo th t h e d a t a and
gas c o n s u p t i o n f o r
f u r t h e r a n a l y s i s .

/ / Gas i s no t needed f o r CIDS
f u n c t i o n

c on s o l e . l og (i , web3 . t oA s c i i (
d a t a) , c u r r e n t T r a n s . gas) ;

}
}

}
}

70

B.1.3 Python Script for Recording CPU Utilization
This script utilizes a Bash script shown in Listing B.4 to record utilization information

in a file out.txt to be read by this Python script. It uses a C program to act as a CPU hog.
That code is shown in Listing B.5.

Listing B.3: Python Example: Recording CPU Utilization

from web3 . au t o import w3
import i m p o r t l i b
import t ime
import s u b p r o c e s s
import d a t e t im e
import random

w3 . p e r s o n a l . un lockAccoun t (w3 . e t h . a c c oun t s [0] , " pape rNe t1 " ,
15000)

toAddr = w3 . toChecksumAddress (’ 0
x f2419638f fa438b5fddd4b89e0848a2021ba7e62 ’)

#Two p o s s i b l e pa ths , one w i t h t h e cpu hog runn ing and one
w i t h o u t

i f random . random () < . 5 0 :
s u b p r o c e s s . Popen ([’ . / p a r a ’ , ’ 9223372036854775807 ’])
t ime . s l e e p (1 0)

t r a n sD a t a = ’ ’
s u b p r o c e s s . c a l l (" / home / b l o c k c h a i n / a t kNe t / cpu . sh ")
c u r _ t ime = d a t e t im e . d a t e t im e . f romt imes tamp (t ime . t ime ()) .

s t r f t i m e (’%Y−%m−%d␣%H:%M:%S ’)

wi th open (’ ou t . t x t ’ , ’ r ’) a s f :
t r a n sD a t a = f . r e ad ()

t r a n sD a t a = cu r _ t ime + ’␣ ’ + t r a n sD a t a

71

pr in t (t r a n sD a t a)

t r a n sD a t a = " 0x " + " " . j o i n (hex (ord (c)) [2 :] f o r c in
t r a n sD a t a . s t r i p (’ \ n ’))

a = w3 . e t h . s e n dT r a n s a c t i o n ({ ’ t o ’ : toAddr , ’ from ’ : w3 . e t h .
co i nba s e , ’ v a l u e ’ : 12345678 , ’ d a t a ’ : t r a n sD a t a })

pr in t (a)
pr in t (’ \ n ’)

s u b p r o c e s s . run ([’ p k i l l ’ , ’ p a r a ’])

w3 . miner . s t a r t (1)
t ime . s l e e p (5)
w3 . miner . s t o p ()

Bash Script for Recording CPU Utilization
Listing B.4: Bash Script for Recording CPU Utilization

! / b i n / bash

t op −b −n2 −d 1 | awk " / ^ t op / { i ++} i ==2" | g r ep −Ei " cpu \ (s \)
\ s ∗ : " > ou t . t x t

C Script for Factorization of a Large Number
Listing B.5: Factorization of a Large Number

inc lude <math . h>
inc lude < s t d l i b . h>
inc lude < s t d i o . h>
inc lude <omp . h>
/∗

72

The purpose o f t h i s program i s t o f o r c e CPU u t i l i z a t i o n
by f a c t o r i n g a l a r g e number

∗ /
void main (i n t argc , char ∗ a rgv [])
{

i f (a r g c != 2)
{

p r i n t f (" Usage : ␣ . / p a r a ␣ numToFactor \ n ") ;
re turn ;

}
long long i n t n = (long long i n t) s t r t o l (a rgv [1] , (char

∗∗)NULL, 10) ;
long long i n t r ange = f l o o r (s q r t (n)) ;
omp_se t_num_threads (8) ;
#pragma omp p a r a l l e l f o r
for (long long i n t i = 1 ; i < n ; i ++)
{

i f (n % i == 0)
{

p r i n t f ("%l l d ␣ i s ␣ d i v i s b l e ␣by␣%l l d \ n " , n , i) ;
p r i n t f ("%l l d ␣ i s ␣ d i v i s b l e ␣by␣%l l d \ n " , n , n / i) ;

}
}

}

B.1.4 Python Script for Recording Login Attempts
This script was designed to take input from a Bash script shown in Listing B.7 and

process it as a transaction.

Listing B.6: Python Example: Recording Login Attempts

from web3 . au t o import w3
import sy s

73

w3 . p e r s o n a l . un lockAccoun t (w3 . e t h . a c c oun t s [0] , " pape rNe t1 " ,
15000)

toAddr = w3 . toChecksumAddress (’ 0
x f2419638f fa438b5fddd4b89e0848a2021ba7e62 ’)

t r a n sD a t a = ’ ’
f o r i in range (1 , l en (s y s . a rgv)) :
t r a n sD a t a = t r a n sD a t a + ’ ␣ ’ + sy s . a rgv [i]

pr in t (t r a n sD a t a)

p r i c e = random . r a n d i n t (1 0 , 1 5) ∗100000

t r a n sD a t a = " 0x " + " " . j o i n (hex (ord (c)) [2 :] f o r c in
t r a n sD a t a . s t r i p (’ \ n ’))

a = w3 . e t h . s e n dT r a n s a c t i o n ({ ’ t o ’ : toAddr , ’ from ’ : w3 . e t h .
co i nba s e , ’ gas ’ : p r i c e , ’ g a s P r i c e ’ : 1000000000 , ’ v a l u e ’ :
42 , ’ d a t a ’ : t r a n sD a t a })

pr in t (a)
pr in t (’ \ n ’)

w3 . miner . s t a r t (1)
t ime . s l e e p (5)
w3 . miner . s t o p ()

Bash Script for Taking Input from PAM and Outputting it to a Python Script
Listing B.7: Bash Bridege Between PAM and Python

! / b i n / bash
d=$ (d a t e)

74

py =" / u s r / b i n / py thon3 "
l o c = " / home / b l o c k c h a i n / pape rNe t / l o g i n . py "

c a s e $1 i n
1)
va r =" A u t h e n t i c a t i o n S u c c e s s f u l "
e v a l $py $ l o c $PAM_USER $PAM_TYPE $PAM_SERVICE $PAM_RUSER

$PAM_RHOST $d $va r ; ; #>> / home / b l o c k c h a i n / ou t . t x t ; ;
2)
va r =" A u t h e n t i c a t i o n F a i l u r e "
e v a l $py $ l o c $PAM_USER $PAM_TYPE $PAM_SERVICE $PAM_RUSER

$PAM_RHOST $d $va r ; ;
e s a c

75

THIS PAGE INTENTIONALLY LEFT BLANK

76

List of References

[1] U.S. Government Accountability Office, “Information security: Agencies need to
improve controls over selected high-impact systems,” Washington, DC, USA, GAO
Report No. GAO-16-501, 2016.

[2] F. Konkel, “Pentagon thwarts 36 million email breach attempts daily,” Jan 2018.
Available: https://www.nextgov.com/cybersecurity/2018/01/pentagon-thwarts-36-
million-email-breach-attempts-daily/145149/

[3] U.S. Government Accountability Office, “Data breaches: Range of consumer risks
highlights limitations of identity theft services,” Washington, DC, USA, GAO Re-
port No. GAO-19-230, 2019.

[4] H. Debar, M. Dacier, and A. Wespi, “Towards a taxonomy of intrusion-detection
systems,” Comput. Netw., vol. 31, no. 9, pp. 805–822, Apr. 1999. Available: http:
//dl.acm.org/citation.cfm?id=324119.324126

[5] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer, “Taxonomy
and survey of collaborative intrusion detection,” ACM Comput. Surv., vol. 47, no. 4,
pp. 55:1–55:33, May 2015. Available: http://doi.acm.org/10.1145/2716260

[6] D. E. Denning, “An intrusion-detection model,” IEEE Transactions on Software En-
gineering, vol. SE-13, no. 2, pp. 222–232, Feb 1987.

[7] P. Kabiri and A. A. Ghorbani, “Research on intrusion detection and response: A
survey,” International Journal of Network Security, vol. 1, pp. 84–102, 2005.

[8] T. Proffitt, How Can You Build and Leverage SNORT IDS Metrics to Reduce
Risk? SANS Institute, Sep 2013. Available: https://www.sans.org/reading-room/
whitepapers/tools/paper/34350

[9] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009. Available:
https://bitcoin.org/bitcoin.pdf

[10] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “Medrec: Using blockchain for
medical data access and permission management,” in 2016 2nd International Con-
ference on Open and Big Data (OBD), Aug 2016, pp. 25–30.

[11] B. Vitalik, “A next-generation smart contract and decentralized application plat-
form,” Ethereum, 2014. Available: https://github.com/ethereum/wiki/wiki/White-
Paper

77

https://www.nextgov.com/cybersecurity/2018/01/pentagon-thwarts-36-million-email-breach-attempts-daily/145149/
https://www.nextgov.com/cybersecurity/2018/01/pentagon-thwarts-36-million-email-breach-attempts-daily/145149/
http://dl.acm.org/citation.cfm?id=324119.324126
http://dl.acm.org/citation.cfm?id=324119.324126
http://doi.acm.org/10.1145/2716260
https://www.sans.org/reading-room/whitepapers/tools/paper/34350
https://www.sans.org/reading-room/whitepapers/tools/paper/34350
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

[12] S. Singh and N. Singh, “Blockchain: Future of financial and cyber security,” in 2016
2nd International Conference on Contemporary Computing and Informatics (IC3I),
Dec 2016, pp. 463–467.

[13] A. Baliga, “Understanding blockchain consensus models,” Persistent Systems, Santa
Clara, California, USA, 2017. Available: https://www.persistent.com/whitepaper-
understanding-blockchain-consensus-models/

[14] N. Alexopoulos, E. Vasilomanolakis, N. R. Ivánkó, and M. Mühlhäuser, “Towards
blockchain-based collaborative intrusion detection systems,” in Critical Information
Infrastructures Security, G. D’Agostino and A. Scala, Eds. Cham: Springer Interna-
tional Publishing, 2018, pp. 107–118.

[15] S. Kibish, “A note about finding anomalies,” Apr. 2018. Available: https://
towardsdatascience.com/a-note-about-finding-anomalies-f9cedee38f0b

[16] J. Hu, Host-Based Anomaly Intrusion Detection. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 235–255. Available: https://doi.org/10.1007/978-3-642-
04117-4_13

[17] H. Okada, S. Yamasaki, and V. Bracamonte, “Proposed classification of blockchains
based on authority and incentive dimensions,” in 2017 19th International Confer-
ence on Advanced Communication Technology (ICACT), Feb 2017, pp. 593–597.

[18] “What Is Hashing? Step-by-Step Guide-Under Hood Of Blockchain,” Aug. 2017.
Available: https://blockgeeks.com/guides/what-is-hashing/

[19] A. Miller and J. LaViola, “Anonymous byzantine consensus from moderately-hard
puzzles: A model for bitcoin,” University of Central Florida, 2014. Available: https:
//socrates1024.s3.amazonaws.com/consensus.pdf

[20] “The Ethereum Wiki. Contribute to ethereum/wiki development by creating an ac-
count on GitHub,” Aug. 2019, original-date: 2014-02-14T23:05:17Z. Available:
https://github.com/ethereum/wiki

[21] “How does blockchain technology work? Is it really the future?” Nov. 2017. Avail-
able: https://cryptotechies.com/blockchain-technology-future/

[22] B. Zhu, A. Joseph, and S. Sastry, “A taxonomy of cyber attacks on scada systems,”
in 2011 International Conference on Internet of Things and 4th International Con-
ference on Cyber, Physical and Social Computing, Oct 2011, pp. 380–388.

[23] P. Ducklin, “Wordpress blogs and more under global attack – check your pass-
words now!” Apr 2013. Available: https://nakedsecurity.sophos.com/2013/04/13/
wordpress-blogs-and-more-under-global-attack-check-your-passwords-now/

78

https://www.persistent.com/whitepaper-understanding-blockchain-consensus-models/
https://www.persistent.com/whitepaper-understanding-blockchain-consensus-models/
https://towardsdatascience.com/a-note-about-finding-anomalies-f9cedee38f0b
https://towardsdatascience.com/a-note-about-finding-anomalies-f9cedee38f0b
https://doi.org/10.1007/978-3-642-04117-4_13
https://doi.org/10.1007/978-3-642-04117-4_13
https://blockgeeks.com/guides/what-is-hashing/
https://socrates1024.s3.amazonaws.com/consensus.pdf
https://socrates1024.s3.amazonaws.com/consensus.pdf
https://github.com/ethereum/wiki
https://cryptotechies.com/blockchain-technology-future/
https://nakedsecurity.sophos.com/2013/04/13/wordpress-blogs-and-more-under-global-attack-check-your-passwords-now/
https://nakedsecurity.sophos.com/2013/04/13/wordpress-blogs-and-more-under-global-attack-check-your-passwords-now/

[24] J. Erickson, Hacking the art of exploitation, 2nd ed. San Francisco, Calif: No Starch
Press, 2008.

[25] “Protect your privacy – Bitcoin.” Available: https://bitcoin.org/en/protect-your-
privacy

[26] Tim Lewis, “Openmp: Enabling hpc since 1997.” Available: https://www.openmp.
org/

[27] “top(1) – Linux manual page.” Available: http://man7.org/linux/man-pages/man1/
top.1.html

[28] “12 Critical Linux log files you must be monitoring,” Apr. 2018. Available: https:
//www.eurovps.com/blog/important-linux-log-files-you-must-be-monitoring/

[29] A. Morgan and T. Kukuk, “The Linux-PAM system administrators’ guide, version
1.1.2,” 2010. Available: http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_
SAG.html

[30] “web3: Web3.py.” Available: https://github.com/ethereum/web3.py

[31] “Ethereum.” Available: https://ethereum.org

[32] “Hyperledger – Open source blockchain technologies.” Available: https://www.
hyperledger.org/

[33] “Choosing a client – Ethereum Homestead 0.1 documentation.” Available: http://
ethdocs.org/en/latest/ethereum-clients/choosing-a-client.html

[34] “web3.js Ethereum JavaScript API – web3.js 1.0.0 documentation.” Available: https:
//web3js.readthedocs.io/en/1.0/

[35] “Web3.py – Web3.py 4.9.2 documentation.” Available: https://web3py.readthedocs.
io/en/stable/

[36] “web3.eth – web3.js 1.0.0 documentation.” Available: https://web3js.readthedocs.io/
en/1.0/web3-eth.html#eth-sendtransaction-return

[37] S. Pendino, “Blockchain network behavior based anomaly detection,” 2019, unpub-
lished.

[38] D. S. Moore and G. P. McCabe, Introduction to the practice of statistics, 4th ed.
New York: W.H. Freeman and Co., 2003.

[39] J. MacQueen, “Some methods for classification and analysis of multivariate ob-
servations.” The Regents of the University of California, 1967. Available: https:
//projecteuclid.org/euclid.bsmsp/1200512992

79

https://bitcoin.org/en/protect-your-privacy
https://bitcoin.org/en/protect-your-privacy
https://www.openmp.org/
https://www.openmp.org/
http://man7.org/linux/man-pages/man1/top.1.html
http://man7.org/linux/man-pages/man1/top.1.html
https://www.eurovps.com/blog/important-linux-log-files-you-must-be-monitoring/
https://www.eurovps.com/blog/important-linux-log-files-you-must-be-monitoring/
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
https://github.com/ethereum/web3.py
https://ethereum.org
https://www.hyperledger.org/
https://www.hyperledger.org/
http://ethdocs.org/en/latest/ethereum-clients/choosing-a-client.html
http://ethdocs.org/en/latest/ethereum-clients/choosing-a-client.html
https://web3js.readthedocs.io/en/1.0/
https://web3js.readthedocs.io/en/1.0/
https://web3py.readthedocs.io/en/stable/
https://web3py.readthedocs.io/en/stable/
https://web3js.readthedocs.io/en/1.0/web3-eth.html#eth-sendtransaction-return
https://web3js.readthedocs.io/en/1.0/web3-eth.html#eth-sendtransaction-return
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992

[40] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition Let-
ters, vol. 31, no. 8, pp. 651–666, June 2010. Available: http://www.sciencedirect.
com/science/article/pii/S0167865509002323

[41] K. M. Carter, R. P. Lippmann, and S. W. Boyer, “Temporally oblivious anomaly de-
tection on large networks using functional peers,” in Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement (IMC ’10). New York, NY, USA:
ACM, 2010, pp. 465–471. Available: http://doi.acm.org/10.1145/1879141.1879201

[42] L. K. Szeto, A. W.-C. Liew, H. Yan, and S.-s. Tang, “Gene expression data cluster-
ing and visualization based on a binary hierarchical clustering framework,” Journal
of Visual Languages & Computing, vol. 14, no. 4, pp. 341–362, Aug. 2003. Avail-
able: http://www.sciencedirect.com/science/article/pii/S1045926X03000338

[43] udhos, “update-golang is a script to easily fetch and install new Golang releases with
minimum system intrusion: udhos/update-golang,” July 2019, original-date: 2017-
04-10T21:50:01Z. Available: https://github.com/udhos/update-golang

80

http://www.sciencedirect.com/science/article/pii/S0167865509002323
http://www.sciencedirect.com/science/article/pii/S0167865509002323
http://doi.acm.org/10.1145/1879141.1879201
http://www.sciencedirect.com/science/article/pii/S1045926X03000338
https://github.com/udhos/update-golang

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

81

	19Sep_Kanth_Vikram_First8
	19Sep_Kanth_Vikram
	Introduction
	Thesis Objective
	Related Work
	Organization

	From Intrusion Detection Systems to Blockchain: An Overview
	Intrusion Detection Systems
	Collaborative Intrusion Detection Systems
	Blockchain
	Summary

	A Blockchain-based Collaborative Intrusion Detection System Solution
	Distributed Attack Model: Doorknob Rattling Attack
	Requirements for a CIDS System
	Meeting CIDS Requirements with Blockchain
	Proposed Blockchain Solution
	Summary

	Implementation and Results
	Recording Metrics
	Testbed Implementation and Software Selection
	Results
	Detecting an Anomaly: Thwarting a Doorknob Rattling Attack
	Summary

	Conclusions
	Significant Contributions
	Recommendations for Future Work

	Installation Guide and Implementation Notes
	Code Snippets
	Sample Code for Various Applications

	List of References
	Initial Distribution List

