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Effective intervention strategies for epidemics rely on the
identification of their origin and on the robustness of the
predictions made by network disease models. We introduce
a Bayesian uncertainty quantification framework to infer
model parameters for a disease spreading on a network of
communities from limited, noisy observations; the state-of-the-art
computational framework compensates for the model complexity
by exploiting massively parallel computing architectures. Using
noisy, synthetic data, we show the potential of the approach to
perform robust model fitting and additionally demonstrate that
we can effectively identify the disease origin via Bayesian model
selection. As disease-related data are increasingly available, the
proposed framework has broad practical relevance for the
prediction and management of epidemics.
1. Introduction
Robustprediction of the spreadof an epidemic is critical tomonitoring
and halting its progress. The reliability of these predictions, which
have high clinical and societal significance, hinges on the underlying
mathematical models which quantify the spread and virulence of
diseases. Several models have been proposed for predicting the
spread of epidemics in real-world populations, allowing for the
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development of strategies for effectivelymanagingdisease spreadvia organized intervention. Perhaps themost

well-known approach is Kermack&McKendrick’s compartmental SIRmodel (and its extensions, such as SIRS
and SEIR), a differential equationmodelwhich divides populations into groups corresponding to their relation
with the disease (e.g. susceptible or recovered), which iswidely studied due to its simplicity and predictiveness
for several common diseases [1,2]. More recent work has also incorporated the topological aspect of network
structure by modelling explicit (or random) population networks through which diseases propagate [3–6],
working towards a more holistic view of disease modelling which can include aspects such as demography,
land use and climate change [7]. The predictions made by these mathematical models have been used to
study a diverse set of historical and modern epidemics, including HIV [8,9], malaria [10–12], polio [13] and
tuberculosis [14], by using a wide range of data assimilation techniques [15,16].

Many aspects of these models have also been analysed from a more abstract mathematical
perspective. Local bifurcation analysis has been performed on the man–environment–man and SIR
models [17,18], while other work has used Lyapunov functions to determine endemic equilibria for
SIRS and SEIR models [19,20] or has considered a mean-field approach [6,21–23]. Recent work has
addressed how the network structure influences the spread of disease via the initial conditions and
network topologies [4,5] and the ways in which epidemics spread on random networks [3]. Analytical
results have also been obtained for the case of two competing (or promoting) diseases on a network
[18,24]. Moreover, many of the models in question have been used to design intervention policies or
allocate vaccines via optimal control [20,25] or randomized interventions [26].

In this work, we introduce data-driven reverse engineering of models for the spread of an epidemic
through a population network. The model structure and parameters are inferred from noisy observations
using a Bayesian framework for uncertainty quantification (UQ); Bayesian inference enables robust
predictions and the rational selection of the best among competing models using data-based evidence. At
the same time, Bayesian inference involves sampling of the (potentially high-dimensional) parameter
space, requiring repeated evaluations of the forward model. As such, in cases where the forward model is
complex and computationally intensive (e.g. a large network with intricate connectivity), the Bayesian
approach may be prohibitively expensive. Yet the Bayesian setting is of considerable practical interest given
its potential applications to real-world data collection: efficient parameter estimation would enable
calibration of themodelswith actual observations, andmodels could be compared based on their degree of fit.

In what follows, we apply our Bayesian UQ frameworkΠ4U to an extension of the SIR model to graphs.
Π4U is an efficient parallel implementation of the transitional Markov chain Monte Carlo (TMCMC)
algorithm, which offsets the complexity of UQ approaches by making use of modern parallel computation
to run many copies of the model simultaneously [27–29]. Using noisy, simulated data, we show that our
method is able to efficiently estimate values of the model parameters and their underlying uncertainties.
The Π4U framework is also convenient for Bayesian model selection, which we use to identify the origin
of the epidemic (e.g. [30]) by considering each possible starting location as a separate model. Bayesian
approaches thus show significant potential to aid in real-world epidemic modelling and mitigation.
2. SIR model
The SIR epidemic model decomposes a population into three eponymous groups: hosts who are
susceptible to the disease, hosts who are infected and contagious (the infective group), and hosts who
are neither susceptible nor infected, either via gained immunity from recovery or due to a vaccine,
quarantine policies or disease-related death (the removed group).

2.1. Single population model
Let S(t), I(t) and R(t) denote the size of the susceptible, infective and removed groups, respectively, as
functions of a continuous time t. The SIR model is based on three main assumptions: first, since
the timescale on which the disease evolves is assumed to be much shorter than the timescale on which
the population may evolve via e.g. births or natural deaths, the population Y is assumed constant, and so

S(t)þ I(t)þ R(t) ¼ Y (2:1)

for all t (note that individuals killed by the disease are considered part of the removed group). Second,
members of the population are assumed to come into contact uniformly at random and at a constant rate
β—this parameter governs the rate at which an infection can spread. Finally, the infective population
recovers (or is otherwise removed from the infectives via e.g. death) at a constant rate γ. These
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assumptions can thus be visualized as

S�!b I�!g R, (2:2)

yielding the following set of ordinary differential equations:

dS(t)
dt

¼ �bIS,
dI(t)
dt

¼ bIS� gI and
dR(t)
dt

¼ gI: (2:3)

Namely, at a particular time t, S(t) susceptibles and I(t) infectives come into contact at a rate β, yielding
βIS transitions from susceptible to infective (implicitly assuming that contact with an infective
immediately infects a susceptible—if this assumption is not desired, the chance of disease transfer can be
incorporated in β). Meanwhile, I(t) infectives are removed at a rate γ, yielding γI transitions from
infective to removed.

2.2. Epidemic model on graphs
The SIR model is readily generalized to a directed graph with N vertices, a mathematical construct which
can be thought of as modelling a collection of N distinct communities. Namely, let each node
(community) be a distinct population whose dynamics evolve according to equation (2.3); the directed
edges (connections between communities) are a convenient framework to dictate transfer between
populations. Since each population itself has three groups (susceptible, infective, removed), three
quantities are needed to describe movement. Here, we use λi,j, ηi,j and gi,j to describe the rate of
movement from node i to node j on the susceptible, infective and removed groups, respectively;
identifying each transition rate as the weight of the edge connecting i to j, these rates are naturally
written as weighted adjacency matrices, here denoted Λ, H and G. The SIR model on a network, now
a system of N models corresponding to each population i, can then be written as

dSi(t)
dt

¼ �bIiSi þ
XN
j¼1

l j,iS j �
XN
j¼1

li,jSi,

dIi(t)
dt

¼ bIiSi � gIi þ
XN
j¼1

h j,iI j �
XN
j¼1

hi,jIi

and
dRi(t)
dt

¼ gIi þ
XN
j¼1

g j,iR j �
XN
j¼1

gi,jRi,

9>>>>>>>>>>>=
>>>>>>>>>>>;

(2:4)

or more succinctly in matrix form:

dS
dt

¼ �bI � Sþ LTS� (LF) � S,
dI
dt

¼ bI � S� gI þHTI � (HF) � I

and
dR
dt

¼ gI þ GTR� (GF) � R:

9>>>>>=
>>>>>;

(2:5)

(Here, F = (1, 1, …, 1)T is a vector of ones which simplifies the notation.) It should be emphasized that S, I
and R are N ×1 vectors whose ith element corresponds to the ith population. Note that if λi,j = ηi,j = gi,j = 0
for all i, j, i.e. there is no movement between populations, each model reduces to the single population
model (equation (2.3)).
3. Bayesian methodology
The network model described by equation (2.5) is a predictive model for tracking the spread of an epidemic
through a population network. Here, we introduce a Bayesian approach to the inverse problem, i.e. reverse-
engineering aspects of the model itself using observed outputs. In real-world scenarios, these observed
outputs (e.g. the number of infected patients at a particular set of community health centres) are noisy due
both to observational noise (e.g. not all infections are reported) and to model error—epidemic models are
mathematical equations introduced to represent the real system, and so will not exactly predict the noise-
free measurements. In particular, the proposed network model does not account for the intrinsic
stochasticity of system parameters, such as the recovery rate, which could in reality vary based on a
numberof external factors includingpatientphysiology, health centre availability, treatmentoptions andmore.
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The inverse problem for epidemics is of considerable practical interest: accurate estimation of model

parameters would allow for the identification of a disease’s underlying characteristics (e.g. its infectivity
β or the host recovery rate γ). Moreover, by defining a class of models corresponding to the disease
having originated in different communities, Bayesian model selection could be used to probabilistically
determine the initial outbreak location [30–32], thereby aiding in identification and mitigation of the
vector of infection. We note that stochastic optimization techniques such as CMA-ES [33] may also be
used to infer optimal model parameters from noisy data [34]; however, such techniques neither enable
robust predictions nor provide a framework for model selection as does the following Bayesian framework.

3.1. Bayesian uncertainty quantification
Denote as u [ Rn the set of parameters corresponding to the model M of interest. Here, the model M is
given by the SIR network model (equation (2.5)); its parameters include the infectivity β and recovery rate
γ. By evolving the system forward in time, we can generate deterministic predictions for the system at a
future time T—for example, the number of infected individuals present at a certain subset of nodes.

We first consider the problem of parameter estimation: suppose we observe a subset of noisy
predictions from this model and wish to estimate the parameters u [ Rn which generated them.
In particular, we will assume the observed data D [ Rm obey the model-prediction equation

D ¼ g(ujM)þ e, (3:1)

where g(ujM) :Rn ! Rm denotes the deterministic mapping of parameters to outputs and e is an additive
error term. The posterior distribution of the parameters given the data is then given by Bayes’ theorem as

p(ujD, M) ¼ p(Dju, M)p(ujM)
r(DjM)

(3:2)

in terms of the prior π(θ|M ), likelihood p(D|θ,M ) and evidence ρ(D|M ) of the model class, given by the
multi-dimensional integral

r(DjM) ¼
ð
Rn

p(Dju, M)p(ujM)du: (3:3)

This scenario can be extended to the case where the model M is one of many models in a
parametrized class M; the probability that the observed data were generated by any particular model
Mi is also given by Bayes’ theorem:

Pr(MijD) ¼ r(DjMi)Pr(Mi)
p(DjM)

: (3:4)

In particular, under the assumption of a uniform prior on models, Pr(Mi|D) is directly proportional
to the evidence ρ(D|Mi), and so model selection is ‘free’ when the evidence is already calculated for
parameter estimation [35,36].

In order to calculate the likelihood p(D|θ,M) needed for equation (3.2), we need to postulate a probability
model for the error term e. Here, we assume the model error e is normally distributed with zero mean and
covariance matrix Σ; the multivariate normal distribution maximizes entropy over the class of probability
distributions on Rm with specified mean and covariance matrix [37]. Assuming that errors at different
nodes are uncorrelated, the covariance matrix becomes Σ = σ2I, where I is the m ×m identity matrix.

If e is Gaussian, it follows that D is also Gaussian, and so the likelihood p(D|θ, M) of the observed
data is given as

p(Dju, M) ¼ jS(u)j�1=2

(2p)m=2 exp
h
� 1
2
J(u, DjM)

i
, (3:5)

where

J(u, DjM) ¼ [D� g(ujM)]TS�1(u)[D� g(ujM)] (3:6)

is the weighted measure of fit between the model predictions and the measured data, | · | denotes
determinant, and the parameter set θ is augmented to include parameters that are involved in the
structure of the covariance matrix Σ (here, the noise level σ).

The main computational barrier in calculating the posterior distribution of parameters given by equation
(3.2) is the complex forward problem g (the epidemic networkmodel) which appears in the fitness J(θ,D|M).



Algorithm 1. TMCMC

1: procedure TMCMC [28]

2: BEGIN, SET j ¼ 0, q0 ¼ 0

3: Generate {u0,k , k ¼ 1, . . . ,N0} from prior f0(u) ¼ p(ujM) and compute likelihood p(Dju0,k ,M)
for each sample.

4: while q jþ1 � 1 do:

5: Analyse samples {u j,k , k ¼ 1, . . . ,N j} to determine q jþ1, weights w(u j,k ), covariance S j ,

6: and estimator S j of E[w(u j,k )].

7: Resample based on samples available in stage j in order to generate samples for stage j þ 1

8: and compute likelihood p(Dju jþ1,k ,M) for each.

9: if q jþ1 .1 then

10: BREAK,

11: else

12: j ¼ j þ 1

13: end

14: end loop

15: end procedure
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The Π4U software [28] has two advantages in this respect: first, it approximately samples the posterior via
transitional Markov chain Monte Carlo [38], described below, which is massively parallelizable; and
second, it leverages an efficient parallel architecture for task sharing (see Appendix).

3.2. Transitional Markov chain Monte Carlo
The TMCMC algorithm used by Π4U functions by transitioning to the target distribution (the posterior
p(θ|D,M)) from the prior π(θ|M). To accomplish this, a series of intermediate distribution are
constructed iteratively:

f j(u) � [p(Dju, M)]q j � p(ujM), j ¼ 0, . . . , l

0 ¼ q0 , q1 , . . . , ql ¼ 1:
(3:7)

The explicit algorithm, shown as algorithm 1, begins by taking N0 samples θ0,k from the prior
distribution f0(θ) = π(θ|M). For each stage j of the algorithm, the current samples are used to compute
the plausibility weights w(θj,k) as

w(u j,k) ¼
f jþ1(u j,k)

f j(u j,k)
¼ [p(Dju j,k, M)]q jþ1�q j :

Recent literature suggests that qj+1, which determines how smoothly the intermediate distributions
transition to the posterior, should be taken to make the covariance of the plausibility weights at stage
j smaller than a tolerance covariance value, often 1.0 [28,38].

Next, the algorithm calculates the average Sj of the plausibility weights, the normalized plausibility
weights w(u j,k) and the scaled covariance Σj of the samples θj,k, which is used to produce the next
generation of samples θj+1,k:

S j ¼ 1
Nj

XNj

k¼1

w(u j,k),

w(u j,k) ¼
w(u j,k)PNj

k¼1
w(u j,k)

¼ w(u j,k)

NjS j

and S j ¼ b2
PNj

k¼1
w(u j,k)[u j,k � m

j
][u j,k � m

j
]T :

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(3:8)

Σj is calculated using the sample mean μj of the samples and a scaling factor b, usually 0.2 [28,38].
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The algorithm then generates Nj+1 samples û jþ1,k by randomly selecting from the previous

generations of samples {θj,k} such that û jþ1,‘ ¼ u j,k with probability w(u j,k). These samples are selected
independently at random, so any parameter can be selected multiple times—call nj+1,k the number of
times θj,k is selected. Each unique sample is used as the starting point of an independent Markov
chain of length nj+1,k generated using the Metropolis algorithm with target distribution fj and a
Gaussian proposal distribution with covariance Σj centred at the current value.

Finally, the samples θj+1,k are generated for the Markov chains, with nj+1,k samples drawn from the
chain starting at θj,k, yielding Nj+1 total samples. Then the algorithm either moves forward to
generation j + 1 or terminates if qj+1 > 1.
/journal/rsos
R.Soc.Open

Sci.8:200531
4. Results
In the following results, we apply our high-performance implementation of Bayesian UQ Π4U to a case
study with simulated data from two example network structures. In each case, we fix particular values of
the system parameters (infectivity β, recovery rate γ and time of observation T) and use equation (2.5) to
evolve the network forward in time via a fourth-order Runge–Kutta method. At the observation time T,
the infective populations (and sometimes also the recovered populations) from a selected subset of
communities, corrupted by additive Gaussian noise with noise level σ, are output as the noisy
observed data. Namely, observed data Dk are generated as

Dk ¼ pk þ sek,

where each deterministic population datum pk generated from the reference model is added to a zero-
mean, unit-variance Gaussian εk scaled by the noise level σ to yield the observed noisy datum Dk. In
order that the signal-to-noise ratio be high enough for meaningful estimation, we choose σ to be a
fraction σ = 0.01α (or sometimes σ = 0.05α) of the average value α of all model outputs pk.

We then use our method to approximately solve the inference problem by generating 104 samples
from the posterior distribution of the model parameters given these noisy outputs, checking the
validity of our approach by comparing the resulting distributions to the known reference values.
While we use synthetic, model-generated noisy data, we note that the framework is readily extended
to the incorporation of real-world data.

For ease of comparison, we present numerical results in terms of the rescaled parameters (θβ, θγ, θT,
θσ/α), given by θβ = β/β0, i.e. the ratio between the estimated value and the true reference value. Accurate
estimation thus results in scaled parameters close to 1. As the Π4U approach does not rely on the choice
of a particular prior, we use a simple uniform distribution on [0.01, 2] × [0.5, 2] × [0.02, 5] × [0.005, 0.10] in
this scaled parameter space. The uniform distribution, which maximizes entropy over a compact domain,
functions as an agnostic prior: we assume as little knowledge as possible of the parameters (other than a
generous feasible range) [37].

4.1. Network 1: the 20-barbell graph
We first consider a network with two distinct populations, each with many highly interacting sub-
communities. The two populations mix via a single route, modelled by a single connecting edge. This
‘barbell graph’—two complete 20-node graphs connected by a single edge—is illustrated in figure 1.
In this case, we impose uniform transition rates between adjacent vertices of 0.02, 0.3 and 0.05 for the
susceptible, infective and recovered populations, respectively. The infection begins at node 1 with the
configuration S1(0) = 5, I1(0) = 95, R1(0) = 0, and all other nodes are fully susceptible with configuration
Si(0) = 100, Ii(0) =Ri(0) = 0, i≠ 1.

We consider, in particular, the case of having information only from a limited subset of nodes; by
placing the ‘sensors’ at different locations (i.e. observing different subsets of nodes), we can test how
the sensor configuration influences the parameter estimation procedure and the corresponding
uncertainties. In particular, we assume observations of both the infective and recovered populations at
the sensor locations.

We consider three sensor configurations: in the first experiment, we place two sensors at nodes 3 and
12, which are members of the same complete subgraph as node 1, the origin of the epidemic (figure 1). In
the second experiment, we gather data from both complete subgraphs by placing sensors at nodes 3 and
24. Finally, in the third experiment, we focus on nodes 24 and 27, which are part of the initially healthy
complete subgraph. The disease evolves according to reference values β = 0.02 and γ = 0.3, while the



Figure 1. The 20-barbell graph. Two complete 20-node graphs are connected by a single edge.
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observation time T is chosen as T = 3, T = 5 and T = 7 in three separate cases, yielding nine total
experiments (three sensor configurations each observed at three different times).

Results at the intermediate time T = 5 are summarized in the second block of table 1 and displayed in
figure 2a,b,c. For all sensor configurations, reference values for β, γ and T are within two standard
deviations of the estimated values, though the level of uncertainty varies significantly. In particular,
estimated values were the most accurate and had the lowest uncertainty when using sensors at nodes
3 and 24, which were on opposite sides of the graph. Placing sensors at nodes 3 and 12, on the same
side of the graph as the epidemic origin, yielded the least accurate estimates.

β and γ are positively correlated, i.e. similar outputs can be achieved by simultaneously raising both
the infection rate and the recovery rate. Intuitively, a faster-spreading disease must be counteracted by
quicker recovery in order for the dynamics to remain consistent. Similarly, both β and γ are negatively
correlated with T; a more infectious disease or quicker recovery would increase the speed of the
system dynamics, meaning similar outputs would be observed earlier.

The recovered noise standard deviation σ/α has significantly larger uncertainty than do the system
parameters β, γ and T. Despite this comparatively large uncertainty, the reference noise value σ is
recovered to within 2 s.d. for all three sensor configurations, though the posterior means θσ/α
consistently overestimate the true magnitude.

Figure 3 shows the deterministic populations of the susceptible, infected and recovered groups as a
function of time for a selection of nodes involved in the experiments (since e.g. node 12 is identical to
node 3, only one is shown). Nodes 21 and 27, both contained in the initially susceptible subgraph,
reach peak infective population around time t≈ 5. Nodes on the side of the infection origin,
conversely, achieve peak infective population at t≈ 3. The results of parameter estimation at the
reference observation time T = 5 thus suggest that observing nodes around the time when the infective
population peaks improves the accuracy of the recovered parameters. This effect can also be seen
in figure 2 in the joint marginals of the system parameters β, γ and T: nodes 3 and 12, which peak at
t≈ 3, give much more smeared marginals in figure 2a, obtained using observations at time T = 5, than
in figure 2d, corresponding to observations at T = 3; meanwhile nodes 24 and 27, which peak at t≈ 5,
have sharper distributions in figure 2c, with observations taken at T = 5, than in figure 2f, which has
observations at T = 3. The parameter distributions obtained for data from nodes 3 and 24, shown in
figure 2b and figure 2e, are very similar in both cases, suggesting that placing one sensor in each
subgraph leverages information from both timescales.

The parameter estimation results at T = 7, shown in the left column of figure 4, corroborate this
conclusion. Though all nodes in the graph are well-past peak infective population at this time, using
information on two different timescales (the two subgraphs) yields much sharper joint marginals (e.g.
the joint distribution of β and T in figure 4b when compared with figure 4a and 4c).

Numerical values for T = 3 and T = 7 appear in the first and third block of table 1. In most cases, the
parameters β, γ and T are recovered to within 1 s.d.; the notable exception is the configuration with
sensors at nodes 3 and 12, which fails to recover β within 2 s.d. when T = 7, by which time the disease
has largely run its course in the left half of the graph. The experiment with sensors at nodes 3 and 24
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Figure 2. Parameter estimation results for the 20-barbell graph with infection rate β = 0.02, recovery rate γ = 0.3, noise level σ =
0.01α and time step Δt = 0.005. In each experiment, noisy data from two nodes were used to track the epidemic. For each pair of
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continues to be both the overall most accurate (in terms of posterior means) and precise (in terms of
uncertainties), highlighting the importance of sensor placement in leveraging information from
different timescales.

To test the robustness of the parameter estimation to increased noise, we next reconsider the time
T = 5 case with noise level σ = 0.05α, five times the previously used σ = 0.01α. Results appear in the
right column of figure 4 and in the fourth block of table 1. Again, the experiment using simulated
data from nodes 3 and 24 (figure 4e) recovers the parameters with comparatively lower uncertainty
and greater accuracy. For all three sensor configurations, parameters are recovered to within one
standard deviation, and so we conclude that the Bayesian UQ approach to SIR models on the
20-barbell graph has significant robustness to observational noise.
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Table 1. Numerical results for estimation of β, γ, T and σ/α for the 20-barbell graph. Blocks of the table are different times of
observation or noise levels. Parameters are reported in terms of scaled values θ; accurate estimation thus results in values close
to 1. Uncertainties, e.g. uβ, are the ratio of a parameter’s standard deviation to its mean.

data node pair θβ

uβ
(%) θγ

uγ
(%) θT

uT
(%) θσ/α

uσ/α
(%)

T = 3, σ = 0.01α 3 and 12 1.1889 27.89 1.1829 28.63 0.9064 25.89 2.08 70.51

3 and 24 1.0435 17.83 1.0360 16.20 0.9870 13.89 4.53 46.94

24 and 27 1.2369 27.08 1.1765 27.42 0.8925 22.99 4.07 53.71

T = 5, σ = 0.01α 3 and 12 1.5593 21.48 1.5235 21.17 0.6939 29.56 1.67 130.59

3 and 24 1.0468 9.50 1.0225 8.46 0.9666 7.93 1.85 55.98

24 and 27 1.1402 30.17 1.1303 30.37 0.9593 26.71 2.51 69.50

T = 7, σ = 0.01α 3 and 12 1.5858 17.56 1.5532 24.65 0.7032 36.88 1.33 76.57

3 and 24 1.0906 21.41 1.0553 16.56 0.9581 16.94 2.24 67.16

24 and 27 1.1675 27.95 1.1302 28.96 0.9315 21.72 2.33 67.11

T = 5, σ = 0.05α 3 and 12 1.0729 37.32 1.0956 36.02 1.0396 37.72 0.786 50.94

3 and 24 1.1842 29.17 1.1151 26.41 0.9218 28.54 1.154 34.82

24 and 27 1.2432 35.11 1.1968 35.50 0.9101 33.09 0.828 47.01
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A final experiment tests the approach in the context of minor model misspecification. We perturb the
network by introducing an extra edge between nodes 2 and 40; while observations are generated from a
network which includes this edge, we perform parameter estimation using the original model (without
the extra edge). Results for observing nodes 3 and 24 for the T = 3, σ = 0.01α case with two different
perturbation strengths appear in figure 5 and table 2. When compared with the original case (second
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Figure 4. Parameter estimation results for the 20-barbell graph with infection rate β = 0.02, recovery rate γ = 0.3, time step Δt =
0.005 and noise level σ = 0.01α at time T = 7 (a–c) and with increased noise level σ = 0.05α at time T = 5 (d–f ). See figure 2
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row of table 1 and figure 2e), themost notable change is the significant increase in the estimated noise level—
disagreements between the original model (now misspecified) and the observed data are reconciled by
assuming a much higher magnitude of noise. Nonetheless, estimation of system parameters (β, γ, T) for
both perturbations is reasonably successful, with all reference values recovered to within two standard
deviations, though uncertainties in estimation are roughly twice as large as without the perturbation.
4.2. Network 2: the three-group network
The second network considered is a 44-node graph comprising three large sub-networks with limited
interaction (figure 6). Each sub-network has a distinct topological structure and set of non-uniform
transition rates (explicit values appear in the appendix). We again consider three sensor configurations: a
7-node set (nodes 1–4, 20, 31 and 34), a 23-node set (nodes 1–7, 20–28 and 31–37) and a 35-node set
(nodes 1–28 and 31–37), each in the presence of observational noise σ = 0.01α. Parameter estimation
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Figure 5. Parameter estimation results for the perturbed 20-barbell graph with infection rate β = 0.02, recovery rate γ = 0.3, time
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Group III

Figure 6. The three-group network. Group I (yellow) comprises nodes 1-19, Group II (blue) 21-30 and Group III (green) 31–44.
Groups are sparsely connected.

Table 2. Numerical results for estimation of β, γ, T and σ/α for the perturbed 20-barbell graph. Data are generated with an
additional edge between nodes 2 and 40, which uses the specified fraction of the transition rate of other edges; parameter
estimation uses the original model. See table 1 for description of values.

transition rate θβ uub (%) θγ uug (%) θT uuT (%) σ/α uσ/α (%)

10% 1.0473 8.63 1.0228 7.87 0.9667 6.62 2.13 68.62

50% 1.3283 14.58 1.2401 12.95 0.8008 12.67 3.51 64.86
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results for this network use only observations of the infective populations (in contrast with results for the
barbell graph, which additionally used observations of the recovered populations).

4.2.1. Parameter estimation

First, we attempt to recover β, γ and T (reference values 0.02, 0.3, 5, respectively) for a disease which starts
at node 34 with S34(0) = 5, I34(0) = 90, R34(0) = 5. All other nodes are fully susceptible, i.e. Si(0) = 100,
Ii(0) =Ri(0) = 0, for all i≠ 34.

Results are shown in figure 7a–c and in the first block of table 3. Sensors at the 7-node subset recover
β, γ and T to within one standard deviation, while larger subsets recover all parameters with comparable
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accuracy and greater precision: the 7-node 95% confidence interval for the scaled infection rate θβ is
[0.9986, 1.0253], which narrows to [0.9868, 1.0042] in the 23-node case. Increasing the number of
observed nodes has the additional effect of accurately recovering the scaled noise level θσ/α, which is
significantly underestimated when observing only the 7-node set.

Many real epidemic datasets include multiple observations over time; it is worth verifying that our
approach can reasonably incorporate such observations. T (time from infection to first sample)
remains the only unknown time in this setting, as the relative timing between samples is known.
Blocks 2–4 of table 3, the right column of figure 7 and the left column of figure 8 present results when
considering additional samples taken at evenly spaced intervals of length 1. Including a second
observation yields a significant reduction in estimated uncertainties, especially when observing only
7 nodes (uncertainties for β, γ, T and σ/α are reduced by factors of 1.66, 1.38, 1.49 and 1.45,
respectively). Comparatively, additional samples beyond the second yield diminishing returns (when
observing the 7-node set, moving from two to four samples reduces uncertainties for β, γ, T and σ/α



Table 3. Numerical results for estimation of β, γ and T for the three-group network with σ = 0.01α. Seven-node set is nodes
1–4, 20, 31 and 34; 23-node set is nodes 1–7, 20–28 and 31–37; and 35-node set is nodes 1–28 and 31–37. In the case of
multiple samples (blocks 2–4), observations are evenly spaced in time with known interval 1. Perturbation experiment generated
data with an additional edge between nodes 16 and 44. See table 1 for description of parameter values.

experiment
observed
set ub

uβ
(%) ug

uγ
(%) θT

uT
(%) θσ/α

uσ/α
(%)

1 sample

7-node 1.0119 0.66 1.0017 0.42 0.9915 0.46 0.87 18.49

23-node 0.9955 0.44 0.9989 0.31 1.0032 0.31 0.96 7.72

35-node 0.9959 0.29 0.9963 0.22 1.0027 0.21 0.97 6.24

2 samples

7-node 0.9985 0.40 0.9990 0.31 1.0007 0.30 1.05 10.58

23-node 0.9979 0.25 0.9983 0.17 1.0014 0.19 0.92 5.08

35-node 1.0013 0.18 1.0001 0.13 0.9991 0.14 1.01 3.84

3 samples

7-node 1.0015 0.33 1.0014 0.23 0.9986 0.26 0.98 8.54

23-node 1.0011 0.19 1.0002 0.13 0.9990 0.16 0.99 3.99

35-node 1.0012 0.13 0.9996 0.09 0.9991 0.11 1.00 3.38

4 samples

7-node 1.0025 0.32 1.0011 0.17 0.9977 0.26 0.99 7.50

23-node 1.0004 0.16 1.0001 0.10 0.9995 0.13 1.01 3.37

35-node 0.9997 0.12 0.9993 0.08 1.0002 0.11 0.98 3.38

perturbation 35-node 1.0019 2.51 0.9983 1.84 0.9996 1.77 6.93 6.52
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by factors of 1.26, 1.80, 1.17 and 1.49, respectively). We additionally note that observing multiple samples
over time can reduce the correlation between parameter uncertainties (e.g. the highly correlated posterior
of β and γ in figure 7a when compared with the nearly uncorrelated ellipse of figure 8a).

As a basic example showing that the success of the approach is not reliant on this exact choice of
epidemic model, we next consider a modified model wherein the infection rate of the disease varies
by location. Specifically, we choose the infection rate to be the original β1 = 0.02 within Group I, but to
be doubled to β2 = 0.04 in Groups II and III. As infectivity incorporates both characteristics of the
disease itself and social behaviours (such as wearing masks or physically distancing), this represents a
scenario wherein behaviours vary by community. Parameter estimation for this scenario using sensors
at the 35-node subset appear in table 4. As in the original model, system parameters are recovered to
good accuracy (all within 1%) and with low uncertainty (less than 1%), suggesting the efficacy of the
approach is not limited to the particular model explored here.

As with the 20-barbell graph, we also consider model misspecification via perturbation of the
network. The final row of table 3 presents parameter estimation results when observations at
the 35-node subset are generated using an additional edge connecting nodes 16 and 44 (and thus
Groups I and III); transition rates along the additional edge are chosen to match those of the edges
connecting Groups II and III. As before, uncertainties for system parameter estimates (β, γ and T) are
larger than without the perturbation (by factors of 8.69, 8.53 and 8.54, respectively), though recovered
parameter values are nonetheless accurate (scaled values off by less than 0.01), and so parameter
estimation in this setting remains successful. The noise level σ/α is again overestimated, as it must
additionally account for disagreement between the model used to generate the data and the model
used to perform parameter estimation.

We next augment the parameter set θ with the initial population vector S0, I0 and R0 of the initially
infected node, but take as known the observation time T = 5. In order that the reference values of all
parameters be positive, the initial population vector at node 34 is altered to S34(0) = 5, I34(0) = 90,
R34(0) = 5. The scaled parameter set (ub, ug, uS0 , uI0 , uR0 , us=a) uses a uniform prior on [0.02, 2] × [0.02,
2] × [0, 10] × [0, 10] × [0, 10] × [0.001, 0.10].

Results are shown in figure 8d–f and appear numerically in table 5. Compared to estimation of β, γ
and T, correlations between parameters are generally weaker in this context, though there do exist
clear relationships (e.g. larger I0 necessitates smaller β for the infection to spread at the same absolute
rate). All sensor configurations recover the disease parameters β and γ accurately, with scaled values
off by less than 0.01 in all cases. Conversely, uncertainty in the recovered distributions for S0 and R0 is
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Figure 8. Additional parameter estimation results for the three-group network. (a–c) Estimating β, γ, T using four measurements at
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Table 4. Numerical results for estimation of β1, β2, γ and T for the three-group network with σ = 0.01α; and differing
infection rates β1 and β2 between Group I and Groups II/III, respectively. Sensors were placed at the 35-node subset including
nodes 1–28 and 31–37. See table 1 for description of parameter values.

ub1
ub1

(%) ub2
ub2

(%) ug uγ (%) θT uT (%) θσ/α uσ/α (%)

0.9926 0.97 1.0045 0.83 0.9924 0.66 1.0025 0.60 0.97 5.90
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significantly higher than for other parameters, owing to the small ground-truth values for
these parameters relative to the total population at the origin (S0 = R0 = 5 out of 100 individuals at
time t = 0) and their correspondingly minor effect on the behaviour of the initial outbreak.



Table 5. Numerical results for estimation of β, γ, S0, I0 and R0 for the three-group network with σ = 0.01α. See table 1 for
description of values.

observed set ub uβ (%) ug uγ (%) θσ/α uσ/α (%)

7-node 1.0047 0.47 1.0022 0.87 0.86 24.72

23-node 1.0056 0.38 1.0097 0.59 0.96 7.82

35-node 1.0034 0.25 1.0048 0.39 0.98 6.26

observed set uS0 uS0 (%) uI0 uI0 (%) uR0 uR0 (%)

7-node 3.5525 42.99 0.8874 8.56 1.0324 59.26

23-node 2.7714 45.34 0.8969 7.02 1.3630 37.71

35-node 2.4802 35.68 0.9291 4.77 0.7811 43.64

Table 6. Subset of model selection results for the three-group network. Recovered scaled parameters θ and uncertainties u
appear with the estimated log evidence for the model.

model log evidence Pr(Mj|D) θβ uβ (%) θγ uγ (%) θσ/α uσ/α (%)

M1 −45.6069 1.00 0.9996 0.06 0.9999 0.13 0.97 6.08

M8 −298.8088 ∼0.00 1.8226 2.92 1.0178 6.48 43.95 6.99

M14 −289.9867 ∼0.00 0.9474 2.11 0.9440 4.51 38.64 5.45

M21 −319.5694 ∼0.00 0.9160 4.59 0.9534 9.31 60.34 6.38

M32 −342.3303 ∼0.00 1.9701 1.66 0.7933 10.57 82.49 6.36

M43 −358.6517 ∼0.00 1.7586 10.41 1.4595 19.32 106.80 6.62
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4.2.2. Origin of disease identification

Finally, we introduce a method for probabilistically identifying the origin of the epidemic (e.g. [30]) using
the Bayesian model selection framework described in the Bayesian methodology section; recall that all
observations are at the future time T, and so the origin may not be identified with certainty even
when included in the set of observed nodes. We initialize the disease at node 1 with the standard
initial configuration S1(0) = 5, I1(0) = 95 and R1(0) = 0, with all other nodes fully susceptible with
Si(0) = 100, Ii(0) =Ri(0) = 0, and use corrupted observations of infective and recovered populations
from the 35-node subset. Other parameter values are identical to those used in the previous section;
in this case, T = 5 is assumed to be known, with β and γ estimated from observations. Defining the
model class Mj as the model under which the disease originated from node j with the given initial
vector, the log evidence for each model is generated from the model selection framework (see
equation (3.4) in Bayesian methodology).

A representative selection of results appear in table 6. Model M1, corresponding to the correct origin
of the disease at node 1, has a significantly larger log evidence than all other models considered. Models
which place the origin at increasingly distant points generate increasingly less accurate and more
uncertain results; models M32 and M43, which originate the disease in Group III, find the estimated
noise σ to be two orders of magnitude larger than the reference value. Out of the models shown, if
the correct model M1 is not considered, the probabilities shift to 0.001 for M8, 0.999 for M14, and all
other probabilities ≈10−13 or smaller, suggesting that topographic proximity to the true origin is the
dominant factor in the evidence.

The effect of topographic proximity on the model evidence appears visually in figure 9. Models Mi,
i = 1, …, 44 correspond to the epidemic beginning at node i; each node in the graph is coloured by the
estimated log evidence log Pr(Mi|D), where D are the noisy data obtained from a reference simulation
beginning at node 1. In order that the fine detail be more visible, the colour mapping is non-uniform
such that node 1 (log evidence −45.6) is the only node in its colour bin; other bins from log evidence
−360 to −250 capture the range of behaviour in the remaining nodes. Evidence decays with
topographic distance within the first group and becomes negligible in the second and third groups,
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Table 7. Subset of model selection results for the perturbed three-group network. Data are generated with an additional edge
between nodes 16 and 44; parameter estimation uses the original model. Recovered scaled parameters θ and uncertainties u
appear with the estimated log evidence for the model.

model log evidence Pr(Mj|D) θβ uβ (%) θγ uγ (%) θσ/α uσ/α (%)

M1 −90.8875 1.00 0.9983 0.13 0.9941 0.28 1.97 6.60

M8 −298.6711 ∼0 1.8138 3.10 1.0184 7.16 44.38 6.90

M14 −289.9163 ∼0 0.9514 1.87 0.9375 4.02 38.12 4.76

M21 −319.2385 ∼0 0.9160 4.15 0.9492 9.04 60.19 5.98

M32 −342.0946 ∼0 1.9786 1.40 0.7803 9.49 81.80 5.85

M43 −358.7536 ∼0 1.7745 10.82 1.4404 19.58 107.39 6.93
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highlighting the improbability of the epidemic starting at these distant nodes and producing the noisy
observations D corresponding to an epidemic outbreak at node 1.

Lastly, we attempt origin identification via the same model selection approach for the perturbed
model which generates data using an additional edge connecting nodes 16 and 44; results appear in
table 7. Despite the misspecification, the correct model M1 is selected with near certainty, though its
log evidence is many orders of magnitude smaller than in the no-perturbation experiment (−90.8875
versus −45.6069) owing to the high level of noise required to explain disagreements with the observed
data. Other models largely have similar evidence and recovered parameter values as before,
suggesting this type of misspecification to be insignificant compared to the overwhelming
unlikelihood of observing significant early spread centred around a different node.
5. Discussion
We found that Bayesian UQ via TMCMC effectively recovered SIR network model parameters, such as
the infection rate β and recovery rate γ, using only noisy observations from a limited set of nodes. The
approach was tested on two example networks with distinct topologies, with two possible sets of
observed data (infective populations versus both infective and recovered populations), using different
sets of free parameters, and in a number of additional contexts (in particular, with model
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perturbations and with multiple observations at each node). Given its explicit estimation of parameter

uncertainty, the framework permits comparison of precision in distinct scenarios—for example,
uncertainties in recovered parameter values were found to be inversely related to the number of
sensors (for the three-group network, increasing the number of sensors from 7 to 23 decreased
parameter uncertainties by a factor of 1.2–1.8).

The 20-barbell graph, wherein only pairs of nodes were observed, provided additional insight into
the effect of sensor placement on the uncertainty of parameter estimates. Sensors which were close
together, e.g. nodes 3 and 12 (whose connectivity is identical), yielded similar noisy data, thereby
affording less information about the underlying dynamics. By contrast, placing sensors on opposite
sides of the network to gain information about dynamics on different timescales yielded significantly
less uncertainty. Given limited resources for monitoring an epidemic, it may thus be beneficial to
track a set of communities which are at varying stages of outbreak rather than allocating resources
directly to those communities nearest to which the disease was initially observed.

Our approach proved robust both to perturbations in the model and to increased observational noise.
Results for the 20-barbell graph with increased noise level σ = 0.05α, five times the original σ = 0.01α,
recovered reference parameters with comparable accuracy. For the three-group network, we were also
able to identify the disease origin with near certainty via selection among models corresponding to
potential starting points, even when data were generated from a distinct model with an additional
edge; model selection thus has the potential to locate real outbreaks even when observations begin
well after the time of infection and the network structure is not known exactly [30–32]. We remark
that the evidence calculation required for this procedure is an intermediate step of the Bayesian UQ
framework, and so it does not incur any additional computational cost.

Broadly speaking, our results suggest that parallel implementations of Bayesian UQ in frameworks
such as Π4U have great potential to perform statistical inference in real-world noisy settings, even
when the underlying mathematical models have significant complexity and inherent modelling error.
The Bayesian framework accurately and efficiently recovered system parameters for our network
epidemic model, providing an approach for robust epidemic modelling and tracking in a rigorous
probabilistic setting which can be further refined and tested by leveraging more complex population
models (e.g. recent human mobility models [39–41]), observation models (e.g. partial observations
[42–44]) and real datasets. The present framework can be readily deployed in conjunction with a wide
range of computational models, and so we believe it will have broad practical relevance for the future
prediction and management of epidemics.
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Appendix A
A.1. Further details on transitional Markov chain Monte Carlo

A.1.1. Numerical error

In this section, we describe the application of TMCMC to a simple example (sampling from a known
distribution) where the error can be easily characterized. Further details on this analysis can be found
in [45].

We first consider a d-dimensional multivariate Gaussian distribution with mean μ = 0 and a random
covariance matrix Σ. We then use TMCMC to estimate the parameters μ and Σ, denoting the estimated

https://github.com/cselab/pi4u
https://github.com/cselab/pi4u
https://doi.org/10.5281/zenodo.4015102
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values as m and S, respectively. Numerical error is calculated as

e ¼ 1
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j�Si,j � Si,jj
0
@

1
A, (A 1)

i.e. the equal average of the error in estimating μ and the error in estimating Σ, where each term uses the
average L1 error across components. We use the scaling parameter b = 0.2 (see equation (3.8)) and a
uniform prior on [−10, 10]d. Each case is repeated 100 times and the errors averaged to obtain a final
estimate for the numerical error.

The blue points in figure 10a show the results obtained using N0 = 1000 samples for a range of
dimensions d = 2, 5, 10, 15, 20; error unsurprisingly increases with dimensionality. Figure 10b shows
the results for fixing the dimensionality d = 5 and instead varying the number of samples N0, showing
error to decrease with samples. A linear fit of error versus samples yields a slope of −0.5, i.e. a
convergence rate of 1=

ffiffiffiffiffiffi
N0

p
.

As a comparison, we also compute results for a mixture of two Gaussians with means at μ1 = (−5,
…,−5) and μ2 =−μ1 and equal covariances randomly generated as before. To estimate parameters in
this setting, we divide samples into two groups with a simple clustering algorithm based on
Euclidean distance. The red points in figure 10a show the average numerical error using N0 = 5000
samples as a function of dimension d from 2 to 8. In comparison to the previous case, the error is
lower in low dimensions (d = 2, 3) but scales worse into higher dimensions.
A.1.2. Comparison of TMCMC with nested sampling

In this section, we compare a selection of TMCMC results from the main text to the results which would be
obtained using nested sampling, an alternative sampling method which also provides Bayesian estimates
of model evidence [46]. (Most sampling methods do not estimate model evidence, and would thus make
for an apples-to-oranges comparison.) We use the model and parameters corresponding to figure 2b, the
20-barbell graph with one sensor on each side and a sampling time T = 5.

Figure 11a–c shows the results of parameter estimation in this scenario using TMCMC with 10 000, 15
000 and 20 000 samples, respectively. Recall from the previous section that TMCMC converges with
sample size as 1=

ffiffiffiffiffiffi
N0

p
, i.e. more samples yields a lower error. The similarity between the three figures

suggests that TMCMC has already converged to visually indistinguishable accuracy by this number of
samples.

As an aside, we note that the convergence of TMCMC also varies with the number of intermediate
generations, which is controlled by a hyperparameter of the method; similar studies have found
comparable results using awide range of values for this parameter, including the values used in this paper.

Figure 11d shows results using the nested sampling approach with 1000 live samples and 8500 final
samplings. Joint and marginal distributions are indiscernable from the results of TMCMC, suggesting
that both methods were able to accurately sample from this posterior. We conclude that the other
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advantages of TMCMC, most notably its efficient parallel implementation, make it an excellent choice for
this sort of computationally intensive model selection.
A.1.3. Convergence by generation

Figure 12 shows six intermediate generations of TMCMC convergence for the scenario of figure 2b, the
same scenario used to draw a comparison with nested sampling above. These intermediate generations
illustrate well the gradual transition from the uniform prior (Generation 0) to the sharply peaked
posterior (Generation 10).
A.1.4. High-performance implementation

Π4U [28] is a platform-agnostic task-based framework for UQ that supports nested parallelism and
automatic load balancing in large-scale computing architectures. The software is open-source and
includes HPC implementations for both multi-core and GPU clusters of algorithms such as
transitional Markov chain Monte Carlo [27,38] and approximate Bayesian computational subset-
simulation [47]. The irregular, dynamic and multi-level task-based parallelism of the algorithms
(figure 13a) is expressed and fully exploited by means of the TORC runtime library [27]. TORC is a
software library for programming and running unaltered task-parallel programs on both shared and
distributed memory platforms. TORC orchestrates the scheduling of function evaluations on the
cluster nodes (figure 13b). The parallel framework includes multiple features, most prominently its
inherent load balancing, fault-tolerance and high reusability. As a specific example, the TMCMC
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method within Π4U is able to achieve an overall parallel efficiency of more than 90% on 1024 compute

nodes of Swiss supercomputer Piz Daint running hybrid MPI+GPU molecular simulation codes with
highly variable time-to-solution between simulations with different interaction parameters.

A.2. Transition matrices for three-group network
Transition rates were chosen to vary among groups in the three-group network in order to test the
robustness of our approach to non-uniform rates. Populations moved between Group I and Group II (via
the edge connecting node 14 to node 21) at a rate of 0.4, while the transition rate between Group II and
Group III (via the edges connecting node 31 to nodes 25 and 26) was 0.2. Rates (λi,j, ηi,j, gi,j) within
Group I were selected randomly to be either (0, 2, 0.05, 0.1) or (0.1, 0.1, 0.2), those for Group II were
selected randomly to be either (0.15, 0.2, 0.1) or (0.3, 0.1, 0.1) and Group III had uniform rates of 0.05.
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