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The heavy quark propagation behavior inside the quark-gluon plasma (QGP), is usually described in
terms of the Boltzmann dynamics, which can be reduced to the Langevin approach by assuming a small
momentum transfer for the scattering processes between heavy quarks and the QGP constituents. In this
work, the temperature and energy dependence of the transport coefficients are calculated in the framework
of both Boltzmann and Langevin dynamics, by considering only the elastic scattering processes to have a
better comparison and understanding of these two models. The extracted transport coefficients are found to
be larger in the Boltzmann approach as compared with the Langevin, in particular in the high-temperature and
high-energy region. Within each of the two theoretical frameworks, we simulate the charm quark production
and the subsequent evolution processes in relativistic heavy-ion collisions. We find that the energy loss due to
elastic scattering is larger from the Boltzmann dynamics, resulting in a smaller RAA at high pT (pT � 10 GeV),
for both the charm quark and heavy-flavor mesons. The Boltzmann model produces systematically larger v2, in
particular at moderate pT, meanwhile, it shows a stronger broadening behavior for the relative azimuthal angle
between initially back-to-back generated cc̄ pairs in the similar region. They are mainly induced by the stronger
interactions between heavy quarks and the QGP partons in Boltzmann, which are able to transfer more v2 from
the medium to the heavy quarks, as well as to pull more cc̄ pairs from high momentum to low momentum. By
comparing the model calculations with available experimental measurements for D mesons, a visible deviation
can be observed for both the Boltzmann and Langevin approaches. The missing inelastic contributions allow
reducing the discrepancy with data, and additionally, the relevant Langevin approach is more favored by the RAA

data while the Boltzmann approach is more favored favor by the v2 data. A simultaneous description of both
observables appears challenging for both models.

DOI: 10.1103/PhysRevC.99.054909

I. INTRODUCTION

In ultrarelativistic collisions of heavy nuclei such as Au or
Pb, an extreme high temperature and energy density environ-
ment can be produced around the collision point, which allows
formation of a new state of nuclear matter consisting of the de-
confined quarks and gluons, namely the quark-gluon plasma,
QGP [1,2]. To investigate its properties, the experiments using
the Au and Pb as the colliding beams have been carried out at
the Relativistic Heavy Ion Collider (RHIC) at BNL and at the
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Large Hadron Collider (LHC) at CERN, respectively, in the
past two decades [3–5]. The QGP was found to induce the jet
quenching, as well as to exhibit the collective flow behavior
among various probes [6–10]. The jet quenching phenomenon
is known [11] as the energy loss of the fast partons traversing
the QGP medium, and it can be investigated by measuring
the suppression behavior of the cross section of the desired
particles produced in nucleus-nucleus collisions to that in
binary-scaled nucleon-nucleon collisions at the same energy,
which is the so-called nuclear modification factor, RAA,

RAA(pT) = dσAA/d pT

dσpp/d pT
. (1)

The collective effect can be interpolated as the strong collec-
tive expansion of QGP when its (local) thermal equilibrium
state is achieved, and it can be studied by a Fourier expansion
[12,13] of the particle azimuthal distributions with respect
to the reaction plane, which is defined as the plane includ-
ing impact parameter and beam axis. Normally, the second
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coefficient, v2,

v2(pT) =
〈

p2
x − p2

y

p2
x + p2

y

〉
, (2)

is called elliptic flow coefficient, which allows us to describe
the anisotropy of the transverse momentum.

Heavy quark (HQ), including charm and bottom, are of
particular interest [14–18] since, due to their large mass,
(i) mQ � �QCD, thus, its initial production can be well
described by the perturbative quantum chromodynamics
(pQCD) at the next-to-leading order [19–21], in particular
at high pT; (ii) mQ � T , resulting in the negligible thermal
production of HQ pairs in QGP medium with the temperature
reached at RHIC and LHC energies. In addition, HQ flavor
is conserved throughout the interactions with the surrounding
QGP constituents, i.e., gluons and (anti)light quarks. There-
fore, the initially produced HQ pairs will experience the full
evolution of QGP, and serve as its ideal probes.

During the propagating through the QGP medium, the HQ
dynamics is usually described by the Boltzmann or Langevin
model [22,23]. For the Boltzmann approach, the evolution of
the HQ distribution function follows the Boltzmann transport
equation (BTE), where the elastic and inelastic scattering
processes between HQs and the quasiparticles of QGP are
quantified by the relevant scattering matrix. Consequently, it
can be given with the help of the perturbative QCD. Due to
large HQ mass and moderate medium temperature, the typical
momentum transfers in interactions, q ≈ gT , are assumed
small, gT � mQ [24], therefore, the HQ trajectory will be
changed significantly only after receiving lots of soft momen-
tum kicks from the surrounding QGP constituents, resulting
in the Brownian motion. Based on this assumption, BTE
is reduced to the Fokker-Plank transport equation (FPTE),
which can be realized stochastically by a Langevin transport
equation (LTE). In the framework of LTE, all the interactions
are conveniently encoded into three transport coefficients,
satisfying the dissipation-fluctuation relation. Therefore, with
LTE, all the problem reduced to the evaluation of three trans-
port coefficients, which can be extracted from the lattice QCD
at zero momentum limit.

Many models were developed from the Boltzmann [25–29]
and Langevin dynamics [30–34] to study the suppression and
collective effect of the final heavy-flavor productions (having
the charm or bottom quarks among these valence quarks) such
as D mesons (D0, D+, D∗+, and D+

s [35,36]) and B mesons
(B0, B+, and Bs [37]). Comparing the theoretical calculations
with available data, it was realized [38–41] that the simulta-
neous description of RAA and v2 of open charmed meson at
low and intermediate pT is sensitive to the temperature and
energy dependence of the transport coefficients. It is necessary
to mention that, in order to improve the description of the
measurements, the Duke group [42] develops a data-based
hybrid model to extract the transport coefficient by utilizing
the Bayesian model-to-data analysis. See Refs. [43–45] for
the recent review.

As mentioned, the Langevin approach is a very convenient
and widely used model, and it allows us to establish, directly,
a link between the observables and transport coefficients,

which can be extracted from the lattice QCD calculations.
However, the condition mQ � gT may not always be justified,
in particular for charm quark with the medium temperature
close to its initial value, resulting in the possible modification
of the heavy meson RAA. So, in this work, we focus on
the discussion related to the “benefits and limitations for
Boltzmann vs. Langevin implementations of the heavy-flavor
transport in an evolving medium” [43]. Both the BTE and LTE
will be employed to investigate the temperature and energy
dependence of the various transport coefficients, as well as
to study the charm quark transport behaviors in the QGP
medium.

The paper is organized as follows. In Sec. II we summarize
the employed Boltzmann and Langevin dynamics, together
with the comparison for the extracted transport coefficients
including only the elastic interactions. Section III is dedicated
to the description of the hybrid model, including the initial-
state configuration, the hydrodynamic expansion of the under-
lying medium, heavy quark propagation, and hadronization
via fragmentation and heavy-light coalescence mechanisms.
Section IV shows the results obtained at parton and hadron
levels with only the elastic processes, while Sec. V with both
the elastic and inelastic contributions. Section VI contains the
summary and discussion.

II. BOLTZMANN AND LANGEVIN DYNAMICS WITH
ONLY ELASTIC PROCESSES

A. Linearized Boltzmann transport model

The Boltzmann transport equation (BTE) reads

pQ

EQ
· ∂ fQ = C[ fQ], (3)

where, pQ, EQ, and fQ are the HQ four-momentum, energy,
and distribution function, respectively. C[ fQ] denotes the
collision integral, including all the interaction mechanisms
between heavy quarks and the medium partons. Equation (3)
can be linearized by ignoring the change of thermal parton dis-
tribution in the medium due to the heavy quark propagation,
and thus, C[ fQ] becomes a linear function of fQ. Based on the
Monte Carlo techniques, Eq. (3) can be solved numerically
by slicing the coordinate space into a three-dimensional (3D)
grid, and then the test particle method [46] is used to sample
fQ in each cell. The collision integral is solved by using the
stochastic algorithm for evaluating the collision probability
[47,48]. In this work, we utilize only the linearized Boltzmann
module in the Lido hybrid model [49] with all the default
parameters, except the charm quark mass mc = 1.5 GeV.

In the local rest frame (LRF) of the cell, the heavy
quark transport is performed within a given time step �t .
Concerning a desired scattering process l , there are n (m)
incoming (outgoing) partons, and the reaction probability �Pl

is expressed as [49]

�Pl

�t
= �l (EQ, T, t ) = g

ν

(2π )3δ

δ fQ

∫
d
(n, m)

∏
{in}

fi|M|2l ,

(4)
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where, �l (EQ, T, t ) is the relevant scattering rate; g is the spin-
color degeneracy factor of the incoming medium partons; ν is
the statistical factor that corrects for double counting when
there are identical particles in the initial/final state; fi denotes
the heavy quark (i = Q) and medium parton (i = q̄, q, g)
density, while the latter one follows the Maxwell-Jüttner dis-

tribution; |M|2l is the initial-state spin-color averaged scatter-
ing matrix element squared for two-body interactions, which
can be calculated via the perturbative QCD at leading order
[50]. d
(n, m) in Eq. (4) is the n + m body phase-space
integration,

d
(n, m) = (2π )4δ(4)(pin − pout )
∏

{in,out}

d3 �pi

2Ei(2π )3
, (5)

where, pin (pout) indicates the total four-momentum of all
the incoming (outgoing) partons for a given 2 → 2 scattering
process l . Within the time interval �t , the total reaction
probability �Ptotal is given by

�Ptotal =
∑

l

(�Pl ) =
∑

l

(�l · �t ). (6)

It was argued [51] that the interactions between HQs
and the medium partons can be encoded into the drag and
momentum diffusion coefficients:

ηD ≡ − d〈p〉
dt

/
〈p〉

κL ≡ d〈(�pz)2〉
dt

κT ≡ 1

2

d〈(�pT)2〉
dt

, (7)

which describes the average momentum/energy loss, momen-
tum fluctuations in the direction that parallel (i.e., longitudi-
nal) and perpendicular (i.e., transverse) to the propagation,
respectively.

B. Langevin transport model

While traversing the quark-gluon plasma (QGP), HQ suf-
fers frequent but soft momentum kicks from the medium
partons, therefore, HQ behaves the Brownian motion, which
can be described by the Langevin transport equation (LTE)
[52]

dxi

dt
= pi

E i

d pi

dt
= F i

Drag + F i
Diff . (8)

The deterministic drag force reads

F i
Drag = −ηD( �p, T ) · pi, (9)

where ηD( �p, T ) is the drag coefficient.
The stochastic force that acts on the HQ is expressed as

F i
Diff = 1√

dt
Ci j (t, �p + ξd �p, T )ρ j (10)

with the Gaussian noise ρ j follows a normal distribution

P(�ρ ) =
(

1

2π

)3/2

exp

{
−�ρ2

2

}
, (11)

resulting in 〈ρ i〉ρ = 0 and 〈ρ iρ j〉ρ = δi j . Therefore, there is
no correlation for the random force between two different
time scales 〈F i

Diff (t )F j
Diff (t ′)〉ρ ≡ CikCk jδ(t − t ′), indicating

the uncorrelated random momentum kicks from the medium
partons. During the numerical implementation, as shown
in Eq. (10), the stochastic process depends on the specific
choice of the momentum argument of the covariance matrix,
Ci j (t, �p + ξd �p, T ), via a parameter ξ ∈ [0, 1]. Typically, ξ =
0 for prepoint Ito, ξ = 1/2 for midpoint, and ξ = 1 for post-
point discretization scheme of the stochastic integral. Finally,
Ci j can be represented in terms of the longitudinal (κL) and
transverse momentum diffusion coefficients (κT) [53], i.e.,

Ci j ( �p, T ) ≡
√

κL( �p, T ) p̂i p̂ j +
√

κT( �p, T )(δi j − p̂i p̂ j ), (12)

therefore, the relation between ηD, κL and κT is given by

ηD = κL

2T E
+ (ξ − 1)

1

2p

∂κL

∂ p

+ d − 1

2p2
[ξ (

√
κT + √

κL)2 − (3ξ − 1)κT − (ξ + 1)κL],

(13)

where d = 3 denotes the spatial dimension. As pointed out,
HQ diffusions are conveniently encoded in the three coeffi-
cients ηD, κL, and κT. Note that Eq. (13) can be reduced to

ηD = κL

2T E
− d − 1

2p2
(
√

κT − √
κL)2 (14)

with the postpoint scheme, i.e., ξ = 1. Following our previous
analysis [41,54], a minimum model by assuming a isotropic
momentum dependence of the diffusion coefficient, κL =
κT ≡ κ , is adopted in this work, although it is just validated at
p = 0 and, they not exactly the same at p �= 0 region from the
analytical calculations [53]. Equation (14) is therefore further
reduced to

ηD = κ

2T E
, (15)

which is the so-called dissipation-fluctuation relation (or Ein-
stein relation) in the nonrelativistic approximation.

C. Boltzmann vs. Langevin

In this section, we mainly focus on the comparison of
the transport coefficients obtained via the Boltzmann and
Langevin approaches with considering only the elastic scat-
tering (2 → 2) off the QGP constituents. We show before
that the scattering rate [Eq. (4)] for c + q → c + q process in
Fig. 1, which is presented as a function of charm quark energy
and the medium temperature. It is found that the energy
dependence is weak, while the temperature dependence is
stronger.

054909-3



LI, WANG, WAN, AND LIAO PHYSICAL REVIEW C 99, 054909 (2019)

E (GeV)
5

10
15

20
T (GeV)

0.2
0.3

0.4
0.5

 (
G

eV
)

Γ

0.2

0.3

0.2

0.3

Boltzmann
cq2cq

FIG. 1. Scattering rate obtained in c + q → c + q via the
Boltzmann model [Eq. (4)].

1. Boltzmann vs. Langevin: Spatial diffusion coefficient

The spatial diffusion coefficient Ds [51] scaled by the
thermal wavelength 1/(2πT ),

2πT Ds = lim
p→0

2πT 2

mQ · ηD(p)
= lim

E→mQ

2πT 2

mQ · ηD(E )
, (16)

is defined at p → 0 limit, which can be obtained directly by
substituting Eq. (7) with the Boltzmann approach. 2πT Ds

is available from the lattice QCD calculation, moreover, it
is found [54] that, according to a phenomenological fitting
analysis with the Langevin approach, model predictions based
on 2πT Ds = 7 allow to reproduce all the measured pT de-
pendence of the nuclear modification factor at both RHIC
and LHC energies. Therefore, in the Langevin approach, the
drag and the momentum diffusion coefficients [Eq. (15)] can
be obtained via Eq. (16) by setting 2πT Ds = 7. Note that,
in this case, (i) the definition of spatial diffusion coefficient
is extended to larger momentum values. Similar strategy is
adopted in Refs. [33,55,56]; and (ii) the drag and momentum
diffusion coefficients in Eq. (15) can be represented in terms
of 2πT Ds as

ηD = 1

2πT Ds
· 2πT 2

E

κ = 1

2πT Ds
· 4πT 3. (17)

The temperature dependence of the spatial diffusion co-
efficient 2πT Ds is presented in Fig. 2. The results from
the Boltzmann (only c + q → c + q and c + g → c + g) and
Langevin (only collisional) approaches are displayed as the
dashed red and solid black curves, respectively. Lattice QCD
and Ads/CFT calculations, i.e., Banerjee (pink circles [57]),
Kaczmarek (blue square [58]), Ding (red triangles [59]),
and Oleg (dotted blue curve [60]) are shown as well for
comparison. Within the significant systematic uncertainties,
both Boltzmann (dashed red curve) and Langevin predictions
(solid black curve) are consistent with the Banerjee and Oleg
calculations. Similar behavior can be found by comparing
with the other model predictions, such as the CUJET3 (red
region) [28] and Lido (green region) [49].

T/T
1 2 3

s
T

D
π2

0

10

20

LQCD: Banerjee

LQCD: Kaczmarek

LQCD: Ding

CUJET3

Lido

Oleg

Langevin
Boltzmann

FIG. 2. Spatial diffusion coefficient 2πT Ds of charm quarks
(mc = 1.5 GeV) from lattice QCD calculations (pink circle [57],
blue square [58], and red triangle [59] symbols) at p = 0. The
CUJET3 (shadowed red region [28]) and Lido model predictions
(shadowed green region [49]), together with the results obtained from
the Boltzmann (dashed red curve) and Langevin dynamics (solid
black curve) are displayed for comparison. Note that only the elastic
scattering processes are considered with both the Boltzmann and
Langevin approach.

With Eq. (16), the thermalization time of charm quark,
defined in p → 0 limit [51], can be expressed as

τcharm ≡ lim
p→0

ηD(p)−1 = mcharm

2πT 2
c

· (2πT Ds)

(T/Tc)2
, (18)

which is about 2.27 and 3.07 fm/c for Boltzmann and
Langevin approach, respectively, with T = 2Tc ≈ 330 MeV
and mcharm = 1.5 GeV.

2. Boltzmann vs. Langevin: Transport diffusion coefficients

In Fig. 3, the drag coefficient (left), longitudinal (middle),
and transverse momentum diffusion coefficients (right), are
presented as a function of the medium temperature (top) at
a given energy E ≈ 10 GeV, and as a function of the charm
quark energy (bottom) at fixed temperature T = 0.3 GeV. The
results obtained with the Boltzmann [Eq. (7)] and Langevin
model [Eq. (17)] are shown as dashed red and solid black
curves, respectively, in each panel.

Concerning the drag coefficient ηD [Figs. 3(a) and 3(d)],
the two models show an increasing temperature dependence
and a decreasing behavior for the energy. The results with
the Boltzmann approach (dashed red curve) is systematically
larger than that with the Langevin approach (solid black
curve). Both the longitudinal κL [Figs. 3(b) and 3(e)] and
transverse momentum diffusion coefficient κT [Figs. 3(c)
and 3(f)] increases strongly with increasing the energy and
temperature via the Boltzmann approach, while they change
slowly, as expected [Eq. (17)], via the Langevin approach.

III. METHODOLOGY

In the previous analysis [41], we construct a theoret-
ical framework to study the charm quark propagation in
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FIG. 3. The drag coefficient ηD [(a), (d)], longitudinal κL [(b), (e)], and transverse momentum diffusion coefficients κT [(c), (f)] with the
Boltzmann (dashed red curve) and Langevin model (solid black curve), are shown at fixed energy E ≈ 10 GeV (top) and at fixed temperature
T = 0.3 GeV (bottom).

ultrarelativistic heavy-ion collisions. The general modules of
the hybrid model are discussed in the following.

A. Initial-state configuration

The initialization of the heavy quark pairs is performed
in the spatial and momentum space, respectively. In the
transverse direction, the initial spatial distribution is sampled
according to the initial binary collision density that is modeled
by a Glauber-based approach [61], while in the longitudinal
direction, it is described by a data-inspired phenomenological
function [41]. The initial momentum distribution of c/c̄ is
predicted by the FONLL calculations [19–21], assuming a
back-to-back azimuthal correlation between c and c̄ (|�φcc̄| =
π ). Fo nucleus-nucleus collisions, e.g., Pb-Pb, the nuclear
modification of the parton distribution functions (nPDFs) is
taken into account by utilizing the EPS09 NLO parametriza-
tion approach [62].

The above initial-state configuration allows providing the
relevant entropy density distribution, which will be taken as
the input of the subsequent hydrodynamical evolution. All the
parameters in this procedure are tuned by the model-to-data
comparison [41].

B. Hydrodynamic description

The underlying medium evolution is modeled by a (3+1)D
relativistic viscous hydrodynamics, vHLLE [63], with the ini-
tial time scale τ0 = 0.6 fm/c, shear viscosity η/s = 1/(4π ),
and critical temperature Tc = 165 MeV in both Au-Au and
Pb-Pb collisions. Note that the hydrodynamic simulation pro-
vides the space-time evolution of the temperature and the flow
velocity field, which will be used in the HQ Boltzmann and
Langevin dynamics.

The QGP medium expands and cools down, and the (local)
temperature drops below the critical one Tc, resulting in
the transition from the QGP phase to hadrons gas, namely
hadronization. After the transition, the hadron gas can in
principle continue to interact inelastically until the chemical
freeze out, subsequently, the hadronic system continues to
expand and interact elastically until the kinetic freeze out.
In this work, we neglect the chemical freeze out procedure
and consider only the kinetic freeze out (or freeze out from
now on) occurs at Tc = 165 MeV. An instantaneous approach
across a hypersurface of constant temperature, namely isother-
mal freeze out, is utilized and modeled by a widely used
approach, Cornelius [64].

C. Heavy quark propagation in medium

We refer to Ref. [41] for the detailed discussion about
the numerical framework of charm quark Langevin evolution,
which is coupled with the expanding hydrodynamic medium.
For the Boltzmann case, it is quite similar except the proce-
dure to update the charm quark momentum in a discrete time
step. In the following, we show the general strategy for both
cases:

(i) sample a given number of HQ pairs at the position and
momentum (xμ, pμ), in the laboratory frame (LAB),
according to the previous initial phase-space configu-
rations (τ ≈ 0);

(ii) move all the HQs from τ ≈ 0 to τ0 = 0.6 fm/c as
free streaming particles, and modify the positions xμ

correspondingly;
(iii) search the fluid cell at the same position as HQ, xμ,

and extract its temperature T and velocity uμ from
the hydrodynamic simulations; then, boost the current
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HQ to the local rest frame (LRF) of the fluid cell and
get the HQ momentum in this frame;

(iv) make a discrete time step �t = 0.01 fm/c for the HQ
in order to update its momentum pμ

(a) Boltzmann dynamics: for the current HQ with
pμ

old, calculate its reaction probability �Pl for
each possible scattering channel l [Eq. (4)]; the
target channel is selected according to the rela-
tive reaction probabilities �Pl/�Ptotal [Eq. (6)],
meanwhile, the four-momentum pμ

new of the
heavy quark after the scattering can be obtained
according to the relevant scattering kinematics;

(b) Langevin dynamics: fix the drag and momentum
diffusion coefficient with the fluid cell tempera-
ture T [Eq. (17)], as well as the drag [Eq. (9)] and
thermal force [Eq. (10)];
and then, modify the HQ momentum pμ accord-
ing to the Langevin transport equation [Eq. (8)];

(v) update the HQ position after the time step �t

x(t + �t ) − x(t ) = p(t )

Ep(t )
�t

with the pμ obtained in the previous step, and then
boost back the HQ to the LAB frame;

(vi) repeat the above steps (iii)–(v) when the local temper-
ature T � Tc.

D. Heavy quark hadronization via fragmentation
and coalescence

The heavy quark will suffer the instantaneous hadroniza-
tion procedure via a dual approach, including fragmentation
and heavy-light coalescence mechanisms, when the local tem-
perature drops below the critical one Tc = 165 MeV. In this
work, we follow the previous analysis [41] and use this dual
model for the final heavy-flavor meson productions.

Concerning the universal fragmentation function, the
Braaten approach [65] is employed in this work. Due
to the limitation of the measurements, it is difficult separate
the open charmed hadrons produced in decays of each excited
charmed hadrons. Practically, the relevant contributions can
be treated together with the fragmentation, by including their
contributions in the fragmentation fraction of a particular open
charmed hadron. Finally, the fragmentation fractions for the
various hadron species are given by [41] f (c → D0) = 0.566,
f (c → D+) = 0.227, f (c → D∗+) = 0.230, f (c → D+

s ) =
0.081, and f (c → �c) = 0.080. The open charmed hadrons
listed above are all the species included in the fragmenta-
tion model, and the higher-state contributions are considered,
which is consistent with the heavy-light coalescence model
[to be discussed below; Eq. (21)].

The momentum distributions of heavy-flavor mesons (Qq̄)
reads

dNM

d3 �pM
= gM

∫
d3�xQd3 �pQd3�xq̄d3 �pq̄ fQ(�xQ, �pQ) fq̄ (�xq̄, �pq̄ )

×W
(n)
M (�yM, �kM)δ(3)( �pM − �pQ − �pq̄ ), (19)

where, gM is the spin-color degeneracy factor; fQ(�xQ, �pQ)
is the phase-space distributions of heavy quark, which can
be obtained after the HQ propagate through the underlying
QGP medium; fq̄ (�xq̄, �pq̄ ) is the one for light antiquark, which
follows the Boltzmann-Jüttner distribution in the momentum
space and it is spatially distributed on the freeze-out hypersur-
face. The coalescence probability for Qq̄ combination to form
the heavy-flavor meson in the nth excited state, is quantified
by the overlap integral of the Wigner function of the meson
and the Qq̄ pair [66],

W
(n)
M (�yM, �kM)

=
∫ d3�x ′

Qd3 �p ′
Q

(2π )3

d3�x ′
q̄ d3 �p ′

q̄

(2π )3
WQ(�x ′

Q, �p ′
Q)Wq̄ (�x ′

q̄ , �p ′
q̄ )

×W (n)
M (�y ′

M, �k ′
M)

=
[

1

2

(�y 2
M

σ 2
M

+ σ 2
M
�k 2

M

)]n

exp

{
− 1

2

(�y 2
M

σ 2
M

+ σ 2
M
�k 2

M

)}/
n!,

(20)

where, �yM = (�xQ − �xq̄ ) and �kM = (mq̄ �pQ − mQ �pq̄ )/(mQ +
mq̄ ) are the relative coordinate and the relative momen-
tum, respectively, in the center-of-mass frame of Qq̄ pair;
WQ(�x ′

Q, �p ′
Q) and Wq̄ (�x ′

q̄ , �p ′
q̄ ) are, respectively, the Wigner func-

tions of heavy quark and light antiquark with their centroids
at (�xQ, �pQ) and (�xq̄, �pq̄ ), and they are both defined by taking
the relevant wave function to be a Gaussian wave packet [67].
W (n)

M (�y ′
M, �k ′

M) denotes the Wigner function of heavy-flavor
meson, which is based on the well-known harmonic oscillator
[67]. The width parameter σM is expressed as [41]

σ 2
M =

⎧⎨
⎩

2
3

(eQ+eq̄ )(mQ+mq̄ )2

eQm2
q̄+eq̄m2

Q
· 〈

r2
M

〉
(n = 0)

2
5

(eQ+eq̄ )(mQ+mq̄ )2

eQm2
q̄+eq̄m2

Q
· 〈

r2
M

〉
(n = 1)

, (21)

where 〈r2
M〉 ≈ (0.9 fm)2 is the mean-square charge radius

of D meson; eQ and eq̄ are the absolute values of the
charge of heavy quark and light antiquark, respectively; the
light (anti)quark mass takes mu/ū = md/d̄ = 300 MeV and
ms/s̄ = 475 MeV. We consider the various heavy-flavor me-
son species up to their first excited states (n � 1), see the
Table II as shown in Ref. [41] for details.

In Fig. 4 the coalescence probabilities obtained in central
(0–10%) Pb-Pb collisions at

√
sNN = 5.02 TeV, are presented

as a function of the charm quark transverse momentum. The
contributions of the ground states and the first excited states
are shown separately as the long dashed blue and short dashed
black curves, respectively. It is found that the coalescence into
a ground state has maximum probability at pHQ

T ≈ 0, and it
decreases towards high pT, due to the difficulty to find a co-
alescence partner in this region. The coalescence probability
into the first excited states shows similar behavior. The total
coalescence probability is shown as a solid red curve, which
decreases from ≈ 0.7 at pHQ

T ≈ 0 to 0.2 at pHQ
T = 10 GeV.

Moreover, the total coalescence probability is larger than 0.5
in the range pHQ

T � 4 GeV, reflecting its dominance in this
region.

As displayed in Fig. 4, the hadronization of charm quark
is divided into three channels: fragmentation, coalescence to
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FIG. 4. Comparison of the coalescence probability, for c → D
meson in central (0–10%) Pb-Pb collisions at

√
sNN = 5.02 TeV,

contributed by the ground states (long dashed blue curve) and the
first excited states (dashed black curve). The combined results (solid
red curve) are presented as well.

form D mesons at ground state and at first excited state.
During the implementation, we generate a random number,
using the Monte Carlo techniques, with flat distribution be-
tween zero and one, and then compare it to the above three
probabilities. Finally, the target channel can be selected, and
the momentum of the relevant heavy-flavor meson will be
obtained by assuming the energy-momentum conservation in
the Q and q̄ combination procedure. See Ref. [41] for details.

IV. RESULTS WITH CONSIDERING ONLY
ELASTIC PROCESSES

A. Momentum distribution inside a static medium

In order to study the difference between the Boltzmann
and Langevin dynamics, in this section, we focus on the
time evolution of the charm quark momentum distribution,
which is obtained inside a static medium with temperature
fixed at T = 0.3 GeV, as well as the momentum initialized
at p = 10 GeV.

In Fig. 5, the charm quark momentum distribution dN/d p
based on the Boltzmann model [Fig. 5(a)], is calculated at var-
ious times during the hydrodynamic evolution of the medium,
showing as different styles. At the starting time τ0 = 0.6 fm/c
(solid black curve), as expected, the initial dN/d p behaves a
delta distribution at p = 10 GeV. During the evolution up to
τ = 12 fm/c, dN/d p is broadened comparing with the initial
distribution, meanwhile, the average momentum is shifted
toward low p, which is mainly induced by the drag force.
This is caused by the fact that the initial momentum spectrum
of charm quark is much harder than that of medium parton,
and the multiple elastic scatterings are therefore dominated
by the drag rather than the diffusion term [41]. The results
based on the Langevin approach [Fig. 5(b)] present a different
broadening behavior, which follows a Gaussian-like shape, as
expected in the construction [Eq. (11)]. Similar results can be
found in Ref. [68]. Comparing Boltzmann with Langevin cal-
culations, it is observed that the momentum broadening profile

dN
/d

p

100

200

300

310×

c0.6 fm/ c3.0 fm/
c6.0 fm/ c9.0 fm/
c12.0 fm/

Pb-Pb @5020GeV, 0-10%, Charm, |y|<1

Boltzmann

(a)

 (GeV)p
2 4 6 8 10

0

100

200

300

=7sTDπLangevin: 2

(b)

0

FIG. 5. (a) Charm quark momentum distribution based on the
Boltzmann dynamics at different times during the hydrodynamical
evolution of the medium with a constant temperature T = 0.3 GeV
(see legend for details). (b) similar as panel (a) but with the Langevin
approach. Only the collisional energy loss mechanism is considered.

is stronger with the Boltzmann model, since the scatterings
with large momentum transfer are allowed in this approach,
which are discarded with the Langevin approach. Conse-
quently, the relevant azimuthal angle distribution with the
Boltzmann model, is expected to show a stronger broadening
behavior as compared to Langevin. Note that, for both Boltz-
mann and Langevin dynamics, dN/d p(τ = 3 fm/c) (dotted
red curve) is followed by a tail in the range p > 10 GeV,
where the interaction processes allow the charm quark to gain
more energy respect to the lost term.

B. Elastic energy loss inside a realistic medium

Figure 6 shows the average in-medium energy loss of
charm quark, due to elastic scatterings, as a function of its
initial energy. The results with the Boltzmann and Langevin
dynamics are presented as the thick and thin curve, respec-
tively. When comparing Boltzmann with Langevin results,
they are similar at low energy (E � 10 GeV) where the inter-
actions with small momentum transfer are dominated, while
the former one is systematically larger than the latter one at
higher energy, resulting in a softer charm quark spectrum in
this region.

C. RAA and v2 for charm quarks

Figure 7 shows the nuclear modification factor RAA (v2) of
charm quark obtained with the Boltzmann (solid red curves)
and Langevin approach (dashed black curve) in central
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FIG. 6. Elastic energy loss of charm quarks obtained via Boltz-
mann approach (thick curve) and Langevin approach with 2πT Ds =
7 (thin curve) after the propagation through a realistic hydrodynamic
medium.

(semicentral) Pb-Pb collisions at
√

sNN = 5.02 TeV. It is ob-
served that RAA, as displayed in Fig. 7(a), is suppressed at
high pT with the Boltzmann approach as compared to the
Langevin approach. Therefore, charm quark loses more its
initial energy while traversing the medium in the Boltzmann
dynamics, which is consistent with results shown in Fig. 6.
The elliptic flow coefficient v2, as presented in Fig. 7(b), with
the Boltzmann approach is systematically larger as compared
to the Langevin approach, which means that the Boltzmann
dynamics is more efficient in producing v2. Similar behavior
is observed for different centrality classes and at different en-
ergies. It is most probably due to fact that the drag coefficient
is larger in Boltzmann, resulting in a larger drag force acted on
the charm quarks, which is able to introduce more significant
interactions with the QGP partons, as well as to transfer more
v2 from the medium partons to the charm quarks.

Concerning the relative azimuthal angle distribution, the
yields of the initially back-to-back generated cc̄ pairs can be
described by a δ distribution at |�φ| = π . After propagating
through the medium, it is found that the above |�φ| = π

distribution is broadened within different initial transverse
momentum interval pc/c̄

T , as shown in different curves in
Fig. 8. With the Boltzmann approach (thick curves), It is clear
to see that there is an almost flag behavior with the lower
initial transverse momentum pc/c̄

T < 1.5 GeV (dotted black
curve), indicating the corresponding initially back-to-back
properties are largely washed out throughout the interactions
with the surrounding medium constituents [41]. Meanwhile,
the broadening behavior tends to decrease with increasing
pc/c̄

T (dashed pink curve). Similar results can be found with
the Langevin approach (thin curves). Note that the nuclear
(anti)shadowing effect is not included. Comparing Boltzmann
with Langevin approach, they are close within small pc/c̄

T
region, while the former one shows stronger broadening be-
havior at larger pc/c̄

T . This is because, as explained above, with
the larger initial drag force, the interactions in the Boltzmann
model are stronger and more powerful to pull the cc̄ pairs from
high momentum to low momentum.
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FIG. 7. (a) Comparison of the charm quark RAA obtained with
the Boltzmann (solid red curve) and Langevin approach (dashed
black curve), in central (0–10%) Pb-Pb collisions at

√
sNN =

5.02 TeV. (b) Same as (a) but for charm quark v2 obtained in
semicentral (30–50%) Pb-Pb collisions at

√
sNN = 5.02 TeV. Only

the collisional energy loss mechanism is considered.

D. RAA and v2 for heavy-flavor mesons

Figure 9 presents the average RAA [Fig. 9(a)] and v2

[Fig. 9(b)] of the nonstrange D meson (D0, D+, and D∗+) in
central (0–10%) and semicentral (30–50%) Pb-Pb collisions
at

√
sNN = 5.02 TeV, respectively, with the Boltzmann (solid

red curve) and Langevin approach (dashed black curve). It
is observed that RAA is suppressed at high pT for the Boltz-
mann dynamics as compared to the Langevin, while v2 is
systematically higher in the while pT region. This behavior
is consistent with the results found at parton level (see Fig. 7).
The available measurements for RAA and v2 (boxes) are shown
for comparison. The calculations with both the Boltzmann and
Langevin approaches fail to reproduce both the RAA and v2

data, which may due to the missing effects such as radiative
energy loss mechanisms.

Based on the Bayesian model-to-data analysis, the original
Lido hybrid model [49] is developed to study the funda-
mental interaction mechanisms between heavy quark and the
QGP constituents. However, in this work, we utilize only its
Boltzmann module to describe the charm quark propagation
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FIG. 8. Comparison of the relative azimuthal angle between c
and c̄ quarks with the Boltzmann (thick curves) and Langevin ap-
proach (thin curves) in central (0–10%) Pb-Pb collisions at

√
sNN =

5.02 TeV. The curves in different styles indicate the results within
different pT intervals (see legend for details). Only the collisional
energy loss mechanism is considered.

inside the underlying thermal medium. Therefore, one cannot
expect same RAA and v2 results between us, since the other
used modules are different such as the initial charm quark
momentum spectra, hydrodynamic modeling, and the heavy-
light coalescence in the subsequent hadronization procedure.

V. BOLTZMANN AND LANGEVIN DYNAMICS WITH
BOTH ELASTIC AND INELASTIC PROCESSES

Concerning the scattering inelastically with the light
(anti)quarks and gluons of QGP in Boltzmann, both the 2 → 3
gluon radiation and the 3 → 2 inverse absorption processes
are taken into account to guarantee the detailed balance.
The relevant scattering matrices are derived in an improved
Gunion-Bertsch model in the soft-eikonal limit [25]. Mean-
while, a Debye screening mass m2

D = 8
π

(Nc + Nf )αsT 2 based
on the Boltzmann statistics [56] is considered to regulate the
t-channel gluon propagator. The LPM effect is included by
restricting the momentum space integration of the emission-
absorption gluon with a coherence factor [49],

d3�k
2k

→ d3�k
2k

·
{

2

[
1 − cos

(
t − t0

τ f

)]}
, (22)

where, t0 is the initial time for gluon radiation/absorption, k⊥
is the transverse momentum of gluon, τ f the gluon formation
time

τ f = 2x(1 − x)E

k2
⊥ + (xmQ)2 + (1 − x)m2

D/2
, (23)

with E and mQ are the HQ energy and mass, respectively, and

x = k + kz

E + pz
(24)

characterize the light-cone momentum fraction of the
radiated/absorbed gluon. Note that the coherence factor
shown in Eq. (22), is obtained by requiring the radiation rate
reduces to the higher-twist prediction in the limits [49]: soft-
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FIG. 9. (a) Comparison of the nuclear modification factor RAA

of nonstrange D-meson (D0, D+, and D∗+) with the Boltzmann
(solid red curve) and Langevin approach (dashed black curve), in
central (0–10%) Pb-Pb collisions at

√
sNN = 5.02 TeV. (b) Same as

(a) but for v2 obtained in semicentral (30–50%) Pb-Pb collisions
at

√
sNN = 5.02 TeV. Experimental data taken from Refs. [69,70].

Only the collisional energy loss mechanism is considered.

emission (x � 1); large gluon transverse momentum compar-
ing with the momentum transfer (k2

⊥ � q2
⊥).

The gluon radiation incorporated Langevin transport model
is expressed as [33,41,54]

d pi

dt
= F i

Drag + F i
Diff + F i

Gluon. (25)

Comparing with Eq. (8), the additional term F i
Gluon is the recoil

force induced by the emitted gluons

F i
Gluon = −d pi j

Gluon

dt
, (26)

where, pi j indicates the momentum of the radiated gluon.
The transverse momentum together with the radiation time
dependence of the radiated gluon is quantified by pQCD
higher-twist model [71]:

dNGluon

dzdk2
⊥dt

= 2αsCAP(x)q̂q

πk4
⊥

[
k2
⊥

k2
⊥ + (xmQ)2

]4

sin2

(
t − t0

2τf

)
.

(27)
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FIG. 10. Same as Fig. 6 but including both the elastic and inelas-
tic contributions.

x = k/E denotes the fraction of energy carried away by
the emitted gluon, which is equivalent to Eq. (24) in the
high-energy (E ≈ pz) and collinear-radiation (k ≈ kz) limit;

αs(k⊥) = 4π
11Nc/3−2Nf /3 (ln k2

⊥
�2 )−1 is the strong coupling con-

stant of QCD at leading-order approximation; P(x) = (x2 −
2x + 2)/x is the splitting function for process “Q → Q + g”;
q̂q is the jet transport coefficient for quarks1; τf = 2x(1 −
x)E/[k2

⊥ + (xmQ)2] is the gluon formation time without con-
sidering the contribution of the gluon thermal mass [m2

g =
m2

D/2; see Eq. (23)]. It was argued [33] that an additional
lower cutoff was imposed on the emitted gluon energy, k �
πT , to balance the gluon radiation and the inverse absorption,
so as to ensure that HQ equilibrium state can be reached after
sufficiently long evolution time.

We can see that the implementations of radiative en-
ergy loss are different in the Boltzmann and Langevin ap-
proaches, which will apparently introduce the source of un-
certainty when comparing these two models. However, it is
still necessary to check further the modifications for each
dynamics.

Figure 10 displays the elastic (or collisional) and inelastic
(or radiative) energy loss as the dashed black and long dashed
blue curves, respectively, while the combined results are
shown as the solid red curves. The results with the Boltzmann
and Langevin dynamics are presented as the thick and thin
curves, respectively. We can see that the inelastic contribution
(thick long-dashed blue curve) with the Boltzmann approach,
is dominated at high energy, while the elastic component
(thick dashed black curve) is significant at low energy. Sim-
ilar behavior is observed with the Langevin approach (thin
curves). The energy loss due to elastic scattering is larger with
Boltzmann (similar with Fig. 6), while the total in-medium
energy loss is larger with Langevin, in particular at high-
energy region.

1According to its definition, q̂q = 2κ⊥/vQ ≈ 2κ⊥ at high energy
E � mQ, where HQ velocity vQ = √

1 − (mQ/E )2 ≈ 1.
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FIG. 11. Same as Fig. 7 but including both the elastic and inelas-
tic contributions.

Figure 11 shows the RAA (v2) of charm quark with Boltz-
mann (solid red curves) and Langevin approach (dashed black
curve) but including both the elastic and inelastic scattering
processes. When comparing with the results including only
the elastic component (see Fig. 7), RAA is suppressed (en-
hanced) at high (low) pT for both these two models, while
v2 is enhanced in the range 2 � pT � 7 GeV, in particular
with the Boltzmann approach. This is mainly due to the fact
that, as discussed in Fig. 10, inelastic component dominates at
high pT, meanwhile, it introduces more interactions between
charm quarks and QGP partons, transferring more v2 from
QGP partons to charm quarks. Similar behavior was observed
in Ref. [72].

Figure 12 presents the average RAA [Fig. 12(a)] and v2

[Fig. 12(d)] of the nonstrange D meson (D0, D+, and D∗+) in
central (0–10%) and semicentral (30–50%) Pb-Pb collisions
at

√
sNN = 5.02 TeV, respectively, with the Boltzmann (solid

red curves) and Langevin approach (dashed black curves).
The central values are obtained in terms of the central pre-
dictions of the initial heavy quark spectra and the nPDFs.
The bands are determined according to the total theoretical
uncertainties, which are contributed by the FONLL model
predictions on the initial charm momentum spectra, as well
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FIG. 12. Same as Fig. 9 but including both the elastic and inelastic contributions, as well as the theoretical uncertainties: [(a), (d)]
nonstrange D meson in Pb-Pb collisions at

√
sNN = 5.02 TeV. [(b), (e)] nonstrange D meson in Pb-Pb collisions at

√
sNN = 2.76 TeV; [(c),

(f)] D0 in Au-Au collisions at
√

sNN = 200 GeV. Experimental data taken from Refs. [69,70,73–76].

as the EPS09 NLO parametrization for the nPDF in Pb [41].
We take the maximum derivation with respect to the central
values in each pT bin, and add in quadrature the above two
components to get a conservative range. It is observed that
RAA is suppressed at high pT for the Langevin dynamics
as compared to the Boltzmann, while v2 is systematically
higher at moderate pT (2 � pT � 4 GeV). This behavior is
consistent with the results found at parton level (see Fig. 11).
The available measurements for RAA and v2 (boxes) are shown
for comparison. We find that, (i) when comparing with Fig. 9,
both the elastic (or collisional) and inelastic (or radiative)
energy loss mechanisms are needed to reduce the discrepancy
between model and data, as concluded in Ref. [77]; (ii)
the calculations with the Langevin approach seem to give
a better description of the measured RAA as compared to
those with Boltzmann approach, in particular in the range
pT � 10 GeV. Meanwhile, nonstrange D meson v2 calculated
with the Boltzmann approach is closer to the available data
at pT � 4 GeV. The comparison of RAA and v2 gives the
opposite indications about the two models, confirming that it
is challenging to describe well RAA and v2 simultaneously, as
observed in Ref. [39]. A similar behavior can be observed in
Pb-Pb collisions at

√
sNN = 2.76 TeV [Figs. 12(b) and 12(e)]

and Au-Au collisions at
√

sNN = 200 GeV [Figs. 12(c) and
12(f)].

VI. CONCLUSION AND DISCUSSION

In this work, we investigated the charm quark evolution
via the Boltzmann and Langevin dynamics in relativistic
heavy-ion collisions. By including only the elastic scattering
contributions, the extracted drag coefficient (ηD), momen-
tum diffusion coefficients (κL and κT), and spatial diffusion

coefficient (2πT Ds) are calculated as a function of charm
quark energy and the medium temperature, and further com-
pared between the two approaches. The relevant in-medium
energy loss together with its effect on the nuclear modification
factor (RAA) and elliptic flow coefficient (v2) at parton and
hadron level, are discussed and compared with the available
measurements at RHIC and LHC energies.

It is found that ηD, κL, and κT calculated from the Boltz-
mann dynamics (2πT Ds � 7 in the range 1 < T/Tc < 3), are
systematically larger than the ones obtained with the Langevin
approach (2πT Ds = 7). The collisional energy loss is larger
with the Boltzmann approach, resulting in a smaller charm
quark RAA at pT � 10 GeV, as compared to the Langevin.
Meanwhile, due to the larger drag force and stronger in-
teractions in Boltzmann, it is more efficient in producing
larger v2, as well as in developing the broadening effect
for the azimuthal angle distributions. The above RAA and
v2 behaviors observed at parton level are well inherited by
the corresponding heavy-flavor hadrons. When comparing the
model with available data, it is realized that the calculations
including only the contributions from the elastic processes,
are unable to describe both the RAA and v2 measured at
RHIC and LHC energies. This discrepancy can be reduced
by including the inelastic contributions in both the Boltzmann
and Langevin dynamics, even though the relevant implemen-
tations are different between these two models. Finally, we
find that the model calculations for nonstrange D meson RAA

favor the Langevin approach, while v2 prefer the Boltzmann
approach. A simultaneous description of both RAA and v2

remains a challenge for both models.
It is necessary to mention that Ref. [68] is also a system-

atical study of Boltzmann versus Langevin, by considering
only the elastic scattering processes. We obtain the similar
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conclusions for charm quarks, for instance, (i) drag coef-
ficients show a decreasing momentum/energy dependence,
while the momentum diffusion coefficients present an in-
creasing behavior from the Boltzmann transport equation; (ii)
after the in-medium evolution, charm quark spectra is harder
with the Boltzmann approach in the range pT � 7–10 GeV,
resulting in a larger (smaller) RAA at 2 � pT � 7 GeV (pT �
2 GeV); (iii) as explained above, the Boltzmann model gives
larger v2 at both parton and hadron levels. On the other hand,
few differences are observed between us: (i) the calculations
for RAA and v2 with both the Boltzmann and Langevin dy-
namics, including only the elastic processes, are failed to
describe the available data in this analysis, while it is not true
in Ref. [68], in particular for the Boltzmann approach, which
reproduce well the measured pT dependence of both RAA and
v2 (see references therein); (ii) in this analysis, the additional
inelastic (or radiative) contributions are powerful to reduce the
discrepancy with data, in particular at pT, however, this effect
is not discussed in Ref. [68]; (iii) the theoretical uncertainty
such as the one on the initial charm quark production, is
taken into account in this work, which is missing in Ref. [68].
These differences could be induced by the following sources:
(i) comparing with the hybrid model utilized in this analysis
(Sec. III), Ref. [68] takes different approaches in the relevant
modules, such as the initial charm quark spectra is given
by a parameterized power-law function, which works better
only at high momentum region; nuclear (anti)shadowing and
heavy-light coalescence effects are missing; (ii) with the
Boltzmann approach, only quark-gluon scattering (Q + g →
Q + g) is considered in Ref. [68], while quark-quark (Q +
q → Q + q) is also included in the two-body interactions in
this work; constant running coupling and Debye mass are used
in Ref. [68], but a momentum- and temperature-dependent
scenario is adopted for us.

Finally, it is interesting to note that the resolution of the
above model-to-data challenge may require the inclusion of
nonperturbative dynamics in the medium. It may be noted that
a similar challenge was previously investigated for light-flavor
jet energy loss and a viable solution was previously pro-
posed by introducing a nontrivial medium color structure that
includes both chromoelectric and chromomagnetic degrees
of freedom [38,78] and that leads to a strong temperature
dependence of transport coefficients [28,79,80]. Whether a
similar strategy may help address the RAA and v2 challenge
in the heavy-flavor sector would be an interesting problem for
future investigation. More detailed studies will be reported in
forthcoming publications.
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