

NAVAL POSTGRADUATE SCHOOL
Monterey, California

\U ^.T-'X.YC

ACCESSING NETWORK DATABASES VIA SQL
TRANSACTIONS IN A MULTI-MODEL

DATABASE SYSTEM

by

Dennis A. Walpole

and

Alphonso L. Woods

December 19 89

Thesis Advisor: David K. Hsiao

Approved for public release; distribution is unlimited

Ukzm

CURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb RESTRICTIVE MARKINGS

a. SECURITY CLASSIFICATION AUTHORITY

b DECLASSIFICATION /DOWNGRADING SCHEDULE

3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited

PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

a. NAME OF PERFORMING ORGANIZATION

Javal Postgraduate School

6b. OFFICE SYMBOL
(If applicable)

37

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

c. ADDRESS (City, State, and ZIP Code)

lonterey, California 93943-5000

7b. ADDRESS (Oty. State, and ZIP Code)

Monterey, California 93943-5000

a. NAME OF FUNDING /SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO.

1. TITLE (Include Security Classification)

ACCESSING NETWORK DATABASES VIA SQL TRANSACTIONS IN A MULTI-MODEL
DATABASE SYSTEM
12. PERSONAL AUTHOR(S)

tolpole, Dennis A. and Woods, Alphonso L.

I3a. TYPE OF REPORT

Master's Thesis
13b. TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month, Day)

1989, December
15 PAGE COUNT

12
16. SUPPLEMENTARY NOTATION

. .

he views expressed in this thesis are those of the authors and do not reflect the official

olicy or position of the Department of Defense or the U.S. Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Multi-Backend Database System (MBDS)

Multi-Lingual Database System (MLDS)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Traditional approaches to database-system design and implementation involve

single-model, single-language database systems with their inherent lack of

flexibility and extensibility. An alternative to the traditional approach to

database-system design and implementation is the multi-lingual database system
(MLDS). This approach allows the user with the user's familiar data language

to access and update one or more unfamiliar databases in different data models
as if they are in the user's familiar data model. Thus, MLDS has the flexi-

Dility and extensibility in database accesses.

In this thesis, we present a methodology for the-relational user to access

and update network databases with a relational data language. Specifically, w<

designed an interface for allowing the relations/SQL user to access a network

database via SQL transactions. This thesis further extends the functionality
of -MLDS.
20. DISTRIBUTION /AVAILABILITY OF ABSTRACT

ED UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS
22a. NAME OF RESPONSIBLE INDIVIDUAL

Prof. David K. Hsiao
DD FORM 1473, 84 mar

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified
22

?4
T

u
L

r)
H0^ir^^eacode) u<c8SP$Wl

83 APR edition may be used until exhausted.

All other editions are obsolete
SECURITY CLASSIFICATION OF THIS PAGE

ft U.S. Government Printing office: 1»M—«0t-J
UNCLASSIFIED

Approved for public release; distribution is unlimited

Accessing Network Databases via SQL
Transactions in a Multi-Model Database System

by

Dennis A. Walpole
Lieutenant Commander, United States Navy

B.A. , University of New Mexico, 1977

and

Alphonso L. Woods
Lieutenant, United States Navy

B.S., Prairie View A & M University, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1989

ABSTRACT

Traditional approaches to database-system design and

implementation involve single-model, single-language data-

base systems with their inherent lack of flexibility and

extensibility. An alternative to the traditional approach

to database-system design and implementation is the multi-

lingual database system (MLDS) . This approach allows the

user with the user's familiar data language to access and

update one or more unfamiliar databases in different data

models as if they are in the user's familiar data model.

Thus, MLDS has the flexibility and extensibility in database

accesses.

In this thesis, we present a methodology for the

relational user to access and update network databases with

a relational data language. Specifically, we designed an

interface for allowing the recreational/SQL user to access a

network database via SQL transactions. This thesis further

extends the functionality of MLDS.

111

~7~Alot

C.i
TABLE OF CONTENTS

I. INTRODUCTION 1

A. AN OVERVIEW 1

B. THE MULTI -LINGUAL DATABASE SYSTEM (MLDS) 3

C. THE MULTI-MODEL DATABASE SYSTEM (MMDS) 6

D. THE MULTI-BACKEND DATABASE SYSTEM (MBDS) 8

E. THE THESIS ORGANIZATION 8

II. THE DATA MODELS 11

A. THE ATTRIBUTE-BASED DATA MODEL (ABDM)
AND LANGUAGE (ABDL) 11

B. THE RELATIONAL DATA MODEL AND LANGUAGE 16

C. THE NETWORK DATA MODEL AND LANGUAGE 19

III. THE CROSS-MODEL ACCESSING CAPABILITY 23

A. THREE APPROACHES TO THE CAPABILITIES 2 3

B. THE CHOSEN APPROACH 27

IV. ON TRANSFORMING A NETWORK SCHEMA TO ITS
RELATIONAL EQUIVALENT 29

A. THE DESIGN 29

B. AN IMPLEMENTATION 36

V. MAPPING SQL STATEMENTS TO ABDL STATEMENTS FOR
ACCESSING A NETWORK DATABASE 4 3

A. THE TRANSLATION PROCESS IN LI 43

B. THE SELECT STATEMENT 48

C. THE INSERT STATEMENT 51

D. THE DELETE STATEMENT 54

E. THE UPDATE STATEMENT 59

IV

VI. CONCLUSIONS 61

A. A REVIEW OF THE RESEARCH 62

B. WHAT WE HAVE ACCOMPLISHED 62

APPENDIX A: THE RELATIONAL DATABASE STRUCTURE 64

APPENDIX B: THE NETWORK DATABASE STRUCTURE 65

LIST OF REFERENCES 67

INITIAL DISTRIBUTION LIST 70

ACKNOWLEDGMENTS

We would like to thank our thesis advisor, Professor

David Hsiao, for all the long hours of lectures on MBDS.

Your expert knowledge of MBDS gave us the needed foundation

to make our thesis a reality. We also would like to thank

him for introducing us to the MBDS concept. This concept

has made our research an enjoyable and worthwhile

experience.

We would like to thank Thomas Chu for all the technical

help given to us in debugging the system code. Your help

was very instrumental in our thesis success.

VI

I. INTRODUCTION

A. AN OVERVIEW

Databases have been an integral part of our society ever

since records have been kept. Probably the most visible

example is the merchants of old. They kept records of their

customer's transactions and the balance of payments. The

tax collector must have had a database to know who were in

the district and what they had paid in the past. As times

moved on databases were still kept by hand and the only

access to them was with the user of the databases. Of

course, copies could be made by hand; however, the point

then was that the user would only make copies as a back-up

for himself, since it was a time-consuming process.

As the computer was being developed, the databases were

no longer updated by hand. Although the computer was

initially thought of as a means to perform mathematical

calculations that were too complex to be done by hand

efficiently, the computer was eventually thought of as a

means to store and retrieve data.

Database systems were therefore designed. The concept

of massive storage capabilities and on-line manipulation of

databases have brought on a myriad of database systems.

Each database-system design was influenced by the type of

databases utilized. Therefore, in a large organization the

result was that it acquired more than one type of database

due to diverse applications. Each database type had its

unique language that must be used to access that type of

databases. This situation created a problem for the

organization. To access databases of the organization a

user must know all the respective types and languages

associated with the databases.

As the society has progressed in improving database

usage the computer has provided for direct manipulation via

complex queries which can be done in seconds that would take

hours or days to do by hand. Further, the storage space

required has vastly reduced and most importantly users may

now have on-line data to work with. The problem is that

these database systems and their databases are heterogeneous

in that if a user wants information in a database system

whose data model and data language are not familiar to the

user the user cannot access and query the database.

An approach conceived by Demurjian and Hsiao [Ref. 1]

solves the user access problem and reduces the maintenance

costs of database systems. The concept is to create a

database system that supports more than one database model

and then allow users to access any database in the system

and manipulate the database in the user's own familiar

language. The first stage in the process is to allow a user

to access multiple databases if the user is familiar with

the languages required to use these databases. This system

is the multi-lingual database system (MLDS) [Ref. 2]. Thus,

it is no longer necessary to have a large number of

heterogeneous database systems to support heterogeneous

database applications. The benefit in cost is that hardware

is only reguired to support a single system, i.e., MLDS.

Further, maintaining a single system is more efficient than

training and providing maintenance for many heterogeneous

systems. The second stage in the process is to provide

cross-model accessing. More specifically, MLDS allows for

direct accessing of multiple databases because all the data

respond to the same data language. The user's data language

is translated into the attribute-based data language (ABDL)

and the database created in the user's data model is stored

in the attribute-based data model (ABDM) . This capability

allows the user to access a database whose data model is

foreign to the user with the user's own familiar data

language. Thus, the cross-model accessing capability will

extend MLDS into a multi-model database system (MMDS) [Ref.

3].

B. THE MULTI -LINGUAL DATABASE SYSTEM (MLDS)

The multi-lingual database system has been described in

many theses prior to this one and we also briefly trace the

path that a user will take when accessing the system. The

structure of the multi-lingual database system is depicted

in Figure 1. In accessing a database the user uses a user

data language (UDL) that corresponds with the user data

UDM :User Data Model
UOL :User DAta Language
LIL rLanguage Interface Layer
KMS -.Kernel Mapping System
KC : Kernel Controller
KFS :Kernel Formatting System
KDM :Kernel Data Model
KDL :Kernel Data Language
KDS :Kernel Database System

Data Model

Data Language

System Module

Information Flow

Figure 1. The Multi-Lingual Database System

model (UDM) . The language-interface layer (LIL) identifies

which of the two possible transaction types is requested and

sends it on to the kernel mapping system (KMS) . If the user

wants to create a new database, KMS modifies UDM to the

kernel data model (KDM) ; if the user wants to use an

existing database, KMS modifies UDL to a kernel data

language (KDL) . The transformed request is then routed

to the kernel database system (KDS) via the kernel

controller (KC) . When KDS has completed the task desired by

the user, it then sends the result back to LIL in a format

that UDM recognizes. The kernel formatting system (KFS)

receives the result from KDS via the KC, reverses the

process performed by KMS, and sends the result to LIL where

the user receives the result.

LIL is unique to a pair of UDM and UDL. In a

multi-lingual database system, a separate LIL is required

for each pair of UDM and UDL; however, KDS is shared by all

UDM. Our system currently has language interfaces for the

relational model and SQL language, the hierarchical

model and DL/I language, and the network model and

COADYSYL-DML language. KDS is used to access the actual

database and to manipulate the database by one of the

language interfaces. All databases are stored in the

form of the attribute-based data model (ABDM) and accessed

by the attribute-based data language (ABDL) denoted by KDM

and KDL, respectively, Figure 2 shows how UDMs and UDLs as

separate entities access the same database structure. The

present system started as a concept by Hsiao [Refs. 4,5]

and reviewed by Rollins [Ref. 6]. Students at the Naval

Postgraduate School have used papers and theses that provide

guidance on the mappings of relational [Ref. 7],

hierarchical [Ref. 8], network [Ref. 9] and functional

[Ref. 10] databases to the attribute-based model. Students

have mapped and implemented the following language

interfaces: SQL-to-ABDL [Refs. 11,12], DL/I-to-ABDL

[Refs. 13,14] , CODASYL-DML-to-ABDL [Refs. 15,16]. The

implementations have been modified by professionals and are

(UDM4I w KKS 4 V
v--**

—
/*—N.

LlLa.

X^N^

A^Siw
Figure 2 . Multiple Language Interface

operational. Also, the language interface DAPLEX-to-ABDL

has been designed [Ref. 17] but not implemented.

C. THE MULTI-MODEL DATABASE SYSTEM (MMDS)

The result of Zawis ' thesis [Ref. 18] transformed MLDS

into MMDS [Ref. 3]. His thesis provided a cross-model

accessing capability to any relational user who wants to

access a hierarchical database. Figure 3 shows the MMDS

structure. The relational/SQL interface was modified by

Zawis to include a hierarchical database type in the

Figure 3. The Multi-Model Database

relational schema. It provides for identification of the

data model of a database being accessed. This is needed

since the original relational/SQL interface is based on only

one database model, i.e., relational. When a database is

accessed the new interface will search for the schema of the

database. When found the mapping schema will identify the

database model. On the basis of the database model the

interface branches to the appropriate procedures that allow

manipulation of the database. This solution to cross-model

accessing capability is effective in the current environment

and will be expanded in future work. This process is a

major step for mono-language users in a multi-language

database environment. The multi-model database system is

thoroughly discussed in [Ref. 18].

D. THE MULTI-BACKEND DATABASE SYSTEM (MBDS)

The multi-backend database system (MBDS) is not a factor

in our research. However, it is a part of the system used

to support our interface. We will briefly discuss the

system to provide the reader with an overview of the total

system. There exists more detailed discussion of MBDS in

[Ref. 19] and [Ref. 20]. MBDS has provided a solution to a

problem that exists in the conventional approach to database

performance. As in Figure 4, each backend has, in addition

to its own disk system, its own processor which are linked

by a communications bus and controlled by a controller.

This set up provides for parallelism which increases its

performance gains and capacity growth. The gains and growth

can be increased by the addition of more backends.

E. THE THESIS ORGANIZATION

We are adding the capability of using the relational

language, SQL, to access and manipulate a network database.

Prior to the thesis work, network databases are only

accessible through the network language, i.e., CODASYL-DML.

Our task is to design and implement the cross-model

accessing capability between a relational language and

T ransaction

I

Backend 1
Disk

Controller

,—

-s
Backend 2

Disk

Controller

Applications

Prograns

Operating

Systen

Backend

Controller) M
Answer

I L j t J

J

Backend N
Disk

Controller
i

i

-—

'

4-

.-—

-

Figure 4. The Multi-Backend Database System

network databases. We do not disrupt the existing cross-

model accessing capability as implemented by Zawis. In

Chapter II we discuss the data models with which we are

concerned. Those are the attribute-based data model,

the relation data model and the network data model. In

Chapter III we discuss the strategies considered by Rodek

and Zawis in implementing cross-model accessing

capabilities. In Chapter IV we discuss our design and

implementation on mapping a network database schema into a

relational database schema. In Chapter V, we discuss our

design and implementation of the network/SQL interface

and modifications needed to support transaction and

database integrity. In Chapter VI we give our conclusions

and remarks.

10

II. THE DATA MODELS

In this chapter, we discuss the three data models and

their corresponding data languages which are used in our

research. Since the database being accessed is stored as an

attribute-based database, Section A provides an overview of

the attribute-based data model. Section B looks at the

user's model which, in this case, is the relational data

model. The final model covered in our research is the

network data model. The distinction is_that _in our system

we do not access a network database stored as a network

database, but a network database that was transformed

into an equivalent attribute-based database for storage.

The CODASYL data manipulation language is not covered, since

it is not relevant to our research.

A. THE ATTRIBUTE-BASED DATA MODEL (ABDM) AND LANGUAGE
(ABDL)

The attribute-based data model (ABDM) originated in

[Ref. 4]. ABDM was implemented into the kernal database

system (KDS) discussed in Chapter I. The attribute-based

data model has two types of data. They are the base data

and the meta data; together they form the database.

1. The Base Data

A database is a collection of files. Every file has

records. A record is a collection of attribute-value pairs

11

(keywords) and the record body. The attribute-value pair is

a member of a Cartesian product of the attribute set and the

value domain of the attribute. Each attribute-value pair

can only exist once in a record. No two attribute-value

pairs in a record may have the same attribute. Directory

keywords of a record are attribute-value pairs or attribute-

value ranges that are stored in a directory. The attribute-

value pairs in the records which are not kept in a directory

are called non-directory keywords. The remainder of a

record is textual information and comprises the record body.

The following is an example of a record in the attribute-

based data model.

(<FILE , Suppl iers> , <SNO , Sl> , <SNAME , Jones> , <CITY , Monterey>

,

{Parts Supplied})

The parentheses enclose a record. The angle brackets

enclose the attribute-valued pairs and the squiggly brackets

constitute the record body.

2 . The Meta Data

The meta data are stored information about the base

data. More specifically, the directory is the collection of

the meta data for a database. In the directory there are

attributes, descriptors and clusters. Attributes are as

presented previously. A descriptor describes the range of

values or an exact value of an attribute. A cluster is a

group of records that satisfy a unique set of descriptors.

We use tables to maintain the directory. These are the

12

attribute table (AT) , the descriptor-to-descriptor-id- table

(DDIT) and the cluster definition table (CDT) . These tables

make up the directory, an example of which is shown in

Figure 5. The attribute types are A, B and C. Type A are

those with variable value- ranges. Type B are those with

unigue values. Type C have unigue values as type B;

however, the attribute value is entered at the record input

times. Type-C attribute values are added to DDIT if they do

not already exist; however, type A and B attribute values

are fixed at the database creation time and will not change

as new records are being inserted.

3 . The Attribute-Based Data Language (ABDL)

A brief description of the five primary operations

of ABDL is as follows:

To insert a new record in a database, INSERT must

proceed the record to be inserted, i.e., INSERT (record).

An example of an insert is:

INSERT (<FILE=Supplier> , <SN0=S1> , <SNAME=Woods>

,

<CITY=Monterey>

)

A deletion can affect more than one record. To

specify the set of records to be deleted, we use a guery,

i.e., DELETE (guery). Therefore, a delete is different from

an insert. The former takes a guery; the latter includes a

record.

As an example we can delete all suppliers from

Monterey.

13

Attribute Attribute Type DDIT Entry

POPULATION A Dll

CITY C D21

FILE B D31

(a) An Attribute Table (AT).

Id Descriptor

Dll ^ POPULATION ^ 50000

D12 50001 ^ POPULATION ^ 100000

D13 100001 ^ POPULATION ^ 250000

D14 250001 ^ POPULATION ^ 1000000

D21 CITY = Cumberland

D22 CITY = Columbus

D23 CITY = Monterey

D24 CITY = Toronto

D31 FILE = CanadaCensus

D32 FILE - USCensus

Dij: Descriptor j for attribute i.

(b) A Descriptor-to-Descriptor-Id Table (DDIT).

Id Desc-Id Set Rec-Id.

CI {D11,D21,D32} R1,R2

C2 {D14,D22,D32} R3

C3 {D12,D23,D32} R4

C4 {D14,D24,D31} R5

(c) A Cluster-Definition Table (CDT).

Figure 5. The Directory Tables

14

DELETE ((FILE=Suppliers) and (CITY=Monterey)

)

UPDATE is used to modify a record or a set of

records in a database. The request consists of two parts:

a query and the modifier. The query indicates which part of

the database is to be modified and the modifier specifies

how the database is to be updated, i.e., UPDATE ((Query)

(Modifier))

.

The following is an example of an UPDATE request:

UPDATE ((FILE=Suppliers) and (SNAME=Jones) (CITY=Carmel)

)

This UPDATE request will update the Supplier named

Jones as being located in Carmel.

RETRIEVE is used to gather information from a

database. The request contains a query, a target-list and a

by-clause. The query indicates which records are to be

retrieved. The target-list is a list of attributes

that are to be retrieved. The by-clause is optional and

groups records, i.e., RETRIEVE ((Query) (Target-list)

)

(by-clause)

.

The following is an example of a RETRIEVE request:

RETRIEVE (FILE=Suppliers) (SNAME) BY SNO

This request will retrieve all the names of

suppliers in the Supplier file in order of the SNO.

RETRIEVE COMMON is used to merge two files into one

where records from the respective files have common

attribute values. The format of the request is as follows:

15

RETRIEVE (Query- 1) (Target-list-1)

COMMON (Attribute-1 , Attribute-2

)

RETRIEVE (Query-2) (Target-list-2)

Where the common attribute values are specified by

their attributes, i.e., attribute-1 for the first RETRIEVE

and attribute-2 for the second RETRIEVE.

An example of a RETRIEVE COMMON query is as follows:

RETRIEVE (FILE=Supplier) (CITY)

COMMON (CITY , CITY

)

RETRIEVE (FILE=Part-location) (CITY)

This query retrieves all suppliers and parts that

are located in the same city.

B. THE RELATIONAL MODEL AND LANGUAGE

1. A Model Description

The relational model was proposed by E.F. Codd in

1970 [Ref. 21]. The model is a collection of tables that

form a "flat" database, unlike the hierarchical and network

databases that use a tree structure and a network,

respectively. "An Introduction to Data Base Systems" by

C.J. Date [Ref. 22] is recommended for further reading to

provide an overview of relational database concepts.

A relational database is a collection of tables or

relations that are equivalent to files. Within each table

there are tuples which are records of the table. A tuple

consists of a group of attribute values and all tuples in

the table have the same attributes. Therefore, specific

16

attribute names are the column headings of the table and

the individual tuple are the rows.

The tables (relations) are not connected by any

structure. The tables are identified by their unique table

names (relation names) . The key attributes uniquely

identify the tuples. Thus, within the table no two tuples

may have identical values for the key attributes.

2 . The Data Manipulation Language (SOL)

The relational data language supported by our system

is SQL. This is a widely-used relational data language. A

description of SQL is not provided, but examples of the four

basic queries are given. A comprehensive discussion of SQL

can be found in Date [Ref. 22].

SELECT is the command used to retrieve attribute

values from the database. The query is structured so that a

set of attributes is specified for a relation where the

specific attribute values are to be selected. The relation

name is in the FROM clause. The optional WHERE clause

defines the attribute names to match in the relation.

If a match exists the attribute value (s) in the SELECT

clause are displayed.

SELECT attribute (s

)

FROM relation

WHERE query

An example is as follows:

17

SELECT CITY

FROM Supplier

WHERE SNAME= Jones

This request selects the value (s) of the attribute

CITY from the relation Supplier where the SNAME is Jones.

The select command can be more complex and a select

command from more than one relation is also possible. Our

system at this time provides for up to two relations.

The INSERT request inserts a new tuple into an

existing table. In this situation the command inserts

attributes with values into a relation. The attribute order

and number of attributes must match the relation exactly.

INSERT INTO Relation (attribute-names)

<attribute-values>

An example of an INSERT follows:

INSERT INTO Supplier (SNO, SNAME, CITY)

:

<'S1', 'Jones', ' Monterey •

>

This command inserts SI, Jones and Monterey into the

Supplier relation.

The DELETE command will remove one or more a tuples

from a relation in a database. In the delete command

structure all tuples with occurrences in a relation where

the query is matched, will be deleted.

DELETE relation

WHERE query

18

An example of a DELETE command follows:

DELETE Supplier

WHERE SN0='S1'

This DELETE command removes all tuples where SNO is

equal to SI in the Supplier relation.

An UPDATE command is used to modify attribute

values in one or more tuples. The structure of the UPDATE

command is that a relation is updated in the modifier

attribute with the new value where the query is true.

UPDATE relation

SET modifier

WHERE query

An example of an UPDATE command is:

UPDATE Supplier

SET CITY=Memphis

WHERE SN0=S1

This UPDATE command replaces the CITY attribute

value with Memphis in the Supplier relation where SNO is

equal to SI.

C. TOE_NETWORK DATA MODEL AND LANGUAGE

The network (CODASYL) data model is based on the concept

of directed qraphs. Graphs consist of nodes and arcs.

Data Base Management Systems by Cardenas [Ref. 23] has an

excellent introduction to the network (CODASYL) schema and

architecture. The oriqinal design and implementation of a

network database employed the most restrictive options. The

19

options involve insertion, retention and set-selection. The

structure of a network database as it is realized in the

attribute-based form is well described by Wortherely [Ref.

15]. Our description follows his and Rodeck's [Ref. 10]

work to maintain consistency.

1. A Model Description

The network (CODASYL) databases are networks of

record types and set types, where records and sets are the

entities which describe the databases. A record type in a

CODASYL database is defined as a collection of

hierarchically-related data item names or field names. A

record is any occurrence of a record type and has specific

values assigned to the data items named in the schema

declarations. This implies that a record type is simply a

generic name for all of the records that are described by

the same schema. Set types in a CODASYL database indicate

relationships between record types. They consist of a

single record type called the owner record type, and zero or

more record types called the member record types. Thus, a

set type expresses explicit associations between different

record types in the database. This characteristic makes it

possible for a designer to model a large variety of

real-world database management problems involving diverse

record types [Ref. 15]. The many-to-many relationship is

limited in that an owner record of a set type cannot be a

member of the same set type.

20

Set types have occurrences just as record types do.

Each occurrence of a set type has one occurrence of the

owner record type and zero or more occurrences of each its

member record types. The same restriction applies here in

that a record occurrence cannot be present in two different

occurrences of the same set type. This restriction

emphasizes the pairwise disjointness of the set occurrences

of a given set type [Ref. 15].

2

.

The Data Manipulation Language (CODASYD

The CODASYL language is used to create a network

database. However, this thesis is concerned only with

accessing a network (CODASYL) database and not in the

language that creates it, but in the relational language

SQL. We therefore do not include a discussion of the

CODASYL manipulation language. However, the book The

Codasyl Approach to Data Base Management by T. William Olle

[Ref. 24] provides a very comprehensive look at the CODASYL

manipulation language.

3

.

The AB (Network) Database

In our implementation, a network database is stored

in the ABDM form. Thus, the database looks like an

attribute-based database. What distinguishes a network

database, say, from a relational database which is also

stored in the ABDM form is the presence of a network schema

for the database. Similiarly, there is a relational schema

for a relational database. To characterize our approach to

21

the support of network databases via ABDM storages and

network schema, we refer to our network databases, the

AB (network) databases.

22

III. THE CROSS-MODEL ACCESSING CAPABILITY

A. THREE APPROACHES TO THE CAPABILITIES

As more databases proliferate with their associated

data manipulation languages, the need for a more flexible

database system is needed. MLDS discussed earlier offers

more flexibility than conventional database systems by

giving the user the capabilities to access heterogeneous

databases based on different data models with the user's

familiar data manipulation language. The solution is to

have: (1) the capability to access any database with a

generic data manipulation language, (2) the translation of

the user's data language into the kernel data language, (3)

the presence of a database schema for the database which is

based on the user's familiar data model. This process is

the concept of the Multi-Model Database System (MMDS) . The

scope of this thesis is specifically concerned with giving

the user the ability to access and query a network database

via SQL (a relational data language) . In this case the

user's familiar data model is relational (not network) and

the user's familiar data language is SQL (relational, not

Codasyl-DML) . Nevertheless, we provide the user with the

capability to access a network database as if it is a

relational one.

23

Rodeck [Ref. 10] described various strategies for

implementing MMDS. A summary of the proposed strategies is

presented in the rest of this chapter.

1. The High-Level Preprocessing Method

This method is called high-level preprocessing

because the processing occurs "above" the local interface.

This means a user inputs a database name for processing.

The local interface is searched for the database name, if

not found locally, the other Lis are searched. When found

in another LI, the schema transformer transforms the found

schema into an equivalent local database schema based on

the local data model. When the user queries the database

via the transformed schema with the local data language

(say SQL), the second component of LI, language translator,

translates the queries (say, Codasyl-DML) into the

equivalent queries in the local data language for accessing

the database. The third component of LI is the result

formatter. It formats the results of a query into a form

the user can recognize. For example, if a user wanted to

access a network database via SQL transactions, the results

would be returned to the user in a table form, instead of

the network form. Figure 6 depicts this processing

strategy.

2

.

The Mixed-Processing Strategy

This method of processing differs from the previous

method in that there is no language-translation step. There

24

Schema

Transformer

Lli Language

Translator

Llj

Results

Reformatter

KDM ^^
Figure 6. The High-Level Preprocessing Strategy-

are two components involved in the process, the schema

transformer and a second language interface. See Figure 7.

Similar to the preprocessing strategy, when a user inputs a

database name for processing, the local LI is searched; if

the database is not found, other Lis are checked. After the

database is found in another LI, a copy of its schema is

transformed into an equivalent schema and placed in the

local LI. When queries are entered against the transformed

schema in the local data language, the local LI processes

the request without the need of any translation. The

25

Schema

Transformer

LI'l

KDS

[
KDM

]

Figure 7. The Mixed-Processing Strategy

output also requires no reformatting, since it is in the

form of the local database model.

3 . The Postprocessing Strategy

The last strategy to be examined is the

postprocessing strategy. In this strategy, the schema

transformation takes place from the schema of the database

to be accessed to the schema of the local LI, i.e.,

transforming a schema of a heterogeneous database into a

schema in the form of the user's familiar data model. This

strategy is called low-level because it occurs below the LI

26

layer as illustrated in Figure 8. The language-translation

portion of the strategy takes place in exactly the opposite

direction to the schema transformation. The translation

takes place from the local database language transactions

to the equivalent database language transactions of the

heterogeneous database. The result formatter outputs the

results in the form of the local LI, i.e., use the

transformed schema for output formats.

B. THE CHOSEN APPROACH

Because the postprocessing strategy involves both the

schema transformation and transaction translation as

discussed in Zawis [Ref. 18], it is too complicated to be

used in our implementation.

The preprocessing methods involve translating the syntax

of one data language into the syntax of another language;

this is also a very complicated and time-consuming process.

It is also ruled out as a viable strategy.

Thus, the mixed processing is chosen, since it does not

require language translations for the same transaction. The

last characteristic of the mixed-processing strategy is that

this strategy requires less modification of existing code

than the other strategies. The existing mixed-processing

strategy for the network-to-relational transformation is

very similar to the hierarchical-to-relational transforma-

tion. The major difference is the manner in which records

are searched. In the hierarchal model, the user is

27

Schema
Transformer

Language

Translator

Results

Reformatter

KDS

KDM KDL

Figure 8. The Postprocessing Strategy

concerned with a single parent-child relationship. In the

network model, the user has to search via sets and must also

be concerned with records having multiple parents. However,

once the desired record is found, the manner of retrievals

is very similar. We can refer to Zawis' [Ref. 18] work on

the hierarchical-to-relational for our work on the network-

to-relational transformation.

28

IV. ON TRANSFORMING A NETWORK SCHEMA TO ITS
RELATIONAL EQUIVALENT

A. THE DESIGN

The first step in the mixed-processing strategy is to

perform the schema transformation. In our case, it is from

a network schema to an equivalent relational schema. This

is accomplished by translating the data relations in the

network database to their equivalents in the relational

model

.

The network-to-relational transformation process will be

illustrated by first describing a typical network database.

Figure 9 illustrates the sample database to be transformed.

The schema that describes the network database is "SPS."

Figure 10 depicts this database definition. There are three

record types called SA (Supplier) , PA (Parts) , SP (Supply)

.

These record types will be functionally represented in a

relational schema by tables. The "duplicates-are-not-

allowed" declarations for SNO and PNO in respective SA and

PA record types implies these attributes are key. fields that

uniquely describe an entity or record in question.

Therefore, when desiring to insert, the program must check

to see if the insert request has an attribute value that

already exists in the database. The record attributes are

defined by type and length.

29

SPS DATABASE

SS3 HP PALO

SS2 IBM SANJ

SS1 DEC MONT

SA

SNO SNAME CITY

SS2

SS1

PF 2

PP1

200

100

SNO PNO QTY
SP

PP3 BUG BUG

PP2 BOLT SANJ

PP1 NUT MONT

PA

PNO PNAME CITY

Figure 9. Supplier/Parts Network Database

The set types are now defined. Their purpose is to

describe a relationship among record types. The two set

types defined are SSP and PSP. Each set-type declaration

will include the following: owner-record-type name, member-

record-type name and insertion and retention rules. The

particular details of each set type will differ, depending

30

schema name is SPS;

record name is SA;

duplicates are not allowed for SNO;

SNO ; character 10.

SNAME ; character 10.

record name is PA;

duplicates are not allowed for PNO;

PNO ; character 10;

CITY ; character 10;

record name is SP;

QTY ; fixed 4.

set name is SSP;

owner is SA;

member is sp;

insertion is automatic

retention is fixed;

set selection is by value of SNO in SA;

set name is psp;

owner is PA;

member is SP;

insertion is automatic

retention is fixed;

set selection is by value of PNO in PA;

Figure 10. The Network Database Definition
of a Sample Database

31

on the circumstances. The owner-name and member-name

statements simply define a static relationship among

existing records (i.e., occurrences) of the two record

types.

The statement, insertion-is-automatic in set types SSP

and PSP, means every record added or modified which

represents a record type or subtype, must belong to a

particular set. The statement, retention-is-fixed,

requires a member record reflecting that a record subtype

always belongs to the same owner-record type.

The last statement, set-selection-is-by-value, declares

that when a record is inserted into a set, the set must be

the current set type of SNO in SA and likewise PNO in PA.

In simpler terms, this means each supplier and part will be

inserted in the sets based on the owner record types.

In transforming an existing network schema to a

functional equivalent relational schema, various key issues

must be observed. The relational database model has the

characteristic commonly referred to as flatness. Flatness

means that the tables (i.e., record types) have no

(structural) relationships from each other. Whereas in a

network or hierarchal database, the record and segment

types are structurally linked. In the relational database

environment, if structural relationships between tables are

desired, data manipulation constructs such as the JOIN and

VIEW are used.

32

As Zawis [Ref. 18] indicated in his work on the cross-

model transformation (e.g., RELATIONAL-TO-HIERARCHICAL)

,

there are key issues that also must be adhered to, in order

to preserve the structural integrity of the mapped (i.e.,

in our case the network) schema to the equivalent

(relational) schema.

One key issue is in the case of the network schema

maintaining owner-set-member relationship in the network

database. Similar to Zawis [Ref. 18] proposal for

performing his transformation of hierarchal-to-relational

,

there are two methods that must be examined. His first

method of schema transformation is to create a relational

table for each relationship required in the given database.

The fact that a network database has many-to-many

relationships among its records; i.e., a record can have two

owners and these owners can have parents, the proliferation

of tables would make the representation not very cost

effective. The second reason his method is not a sound

method for our purposes is due to the numerous tree

structures (hierarchies) in a network database, thus making

queries against the database a very long and complicated

process.

In our design, the method of schema transformation is to

cascade data in key fields in the network records to form

primary keys of equivalent relational tables. Figure 11

illustrates the cascading method. Key fields are defined as

33

LU
I
o >-

>- >

CO O O o
_J

< LU

2
LU

oz < < z
O

LU

Z
CO

z * CO

-1
CO

>J

LU

CL
0.
Z>
CO

o
z

« CO
2

o
Z

* 0.

Q.
Q.
=>
CO

o
z

2
0)

s
o
(1)

o
CO

o
CO

o

(0

c
5»

0)

V

0)

to

CO

o
5
c

>
M
0)

co

<u

PL)

o
+J

CO

tO Pi
>i-H
cu x:
« CO

c
Cn O

•H

re

O
CO

rcj

u
14-1

o

<D

CO

D
CD

x:

CD

s
I

u
CD

c

O

CD

Cn
•H

34

fields that uniquely identify the corresponding records.

They must remain consistent throughout the transformation.

Figure 12 is an illustration of the transformed network

database to its equivalent relational database.

database name = SPS

number of relations = 3, number of views =

database type = NETWORK

relation_name = SA, number of attributes = 3

attr name = SNO /type = s, length = 10, key = TRUE

attr name = SNAME /type = s, length = 10, key = FALSE

attr name = CITY /type = s, length = 10, key = FALSE

relation_name = PA, number of attributes = 3

attr name = PNO /type = s, length = 10, key = TRUE

attr name = SNO /type = s, length = 10, key = TRUE

attr name = QTY /type = s length = 4, key = FALSE

relation_name = SP, number of attributes = 3

attr name = PNO /type = s, length = 10, key = TRUE

attr name = SNO /type = s, length = 10, key = TRUE

attr name = QTY /type = i, length = 4 , key = FALSE

Figure 12 . The SPS Database Mapped from a
Network Schema to an Equivalent
Relational Schema

35

B. AN IMPLEMENTATION

The implementation of the mixed-processing strategy

required modification to the language interface layer (LIL)

,

the kernel mapping system (KMS) and the kernel controller

(KC) . These modifications are made with little modifica-

tions of the existing Relational/SQL interface. This

chapter will give a summary of the major data structures

implemented in the new LIL as well as the flow of

executions from LIL to the parser for the syntactical

verification and execution of a SQL transaction.

1. The Language-Interface (LI) Structures

The language interface layer (LIL) is one of the

most important layers in MMDS mainly because this layer

directly links the user to the system. Upon an initial

sign-on onto the system, there are numerous data structures

that must be initiated in order to give the user access to

the multiple databases. All the data structures in LIL

will not be examined herein; however, the most important

structures will be presented. The first structure present

is the dbid_node in Figure 13. This structure points to a

list of all the schemas that have been defined for all

modeled databases. The structure also gives the user the

ability to access all of the databases databases in the

MMDS environment. After the user inputs a database name,

the system searches the current list of databases based on

the requested interface first. For example, if the user has

36

union dbid_node
{

struct rel_dbid_node *rel

;

struct hie_dbid_node *hie;
struct net_dbid_node *net;
struct ent_dbid_node *ent;
}

-
-f*

Figure 13. The dbid_node Structure

requested a relational interface and then inputs a database

name to be loaded onto the meta-data disk, the system would

first search the list of relational database names via the

dbid_node structure. If the database name is not found in

the list of relational database names, it then searches the

other defined database names.

The next data structure is the rel_dbid_node which

points to the first relational database. This structure is

depicted in Figure 14. It is the controlling data structure

for all the schemas defined for the relational databases.

The structure contains the name of the database, the number

of relations, a pointer to the first relation, a pointer to

the current relation, a pointer to the next database schema

and, based on Zawis' first implementation of cross_modeling,

a DBTYPE. The DBTYPE tells the user the name of the

original database prior to the transformation.

The data structure rel_node shown in Figure 15

describes each of the relations in a database and is

initialized with information available from the equivalent

record data structures in the network schema. The relation

37

struct rel_dbid_node
{

char name [DBNLength + 1] ;

int num rel

;

struct rel node *first_rel

;

struct rel node *curr rel

;

struct rel dbid node *next db

;

int
}

dbtype

Figure 14 . The rel_dbid node Structure

struct rel
{

char
int
struct
struct
struct
}

node

rattr node
rattr node
rel_node

name [RNLength + 1]

;

num_attr

;

*first_attr

;

*curr_attr

;

*next rel

;

Figure 15. The rel_node Structure

name is set egual to the network record name and pointers

are set to the first attribute of the relation and to the

next relation, if any, in the schema. The network records

are mapped to this data structure via the set-member

relationship.

The user_info data structure uniquely identifies a

particular relational user. It also links the user to the

linked list of other users on the multi-user environment.

Figure 16 depicts this data structure.

The last data structure examined is the sql_info

data structure. It contains pertinent information about the

current database that the user is using, and information

38

struct user_info
{

char uid[UIDLength + 1] ;

union li_info 1 i_type

;

struct user_info *next user;
}

Figure 16. The user_info Structure

about the sql transaction. This structure is shown in

Figure 17.

struct sql_info
{

struct curr_db_info
struct file_info
struct ran_info
int
struct ddl_info
struct tran_info
struct kms_info
union kfs info
union kc info
int
}

curr_db

;

file;
sql_tran

;

operation;
*ddl_files;
*abdl_tran;
kms_data

;

kfs_data

;

kc_data

;

error

;

Figure 17 . The sql_info Structure

2 . The Schema Transformation

As previously mentioned, LIL is the most important

layer in MBDS . It is from this layer the user logs onto the

system and tells MBDS what type of tasks to accomplish. The

user can load new databases, access previously created

databases, and access information from an existing database.

The flow of control is sequential. Control always returns

to the menu-driven LIL. The user will always exit the

39

system via the top level menu. The user can step back to

top-level menu because an exit routine is provided at each

level of menus.

The first menu, a user will see, gives the user

options to load a new database, process an old database or

return to the operating system. If he chooses to load new

data into an existing database, the list of relational

schemas is searched for the appropriate name. If the

database name is found, the schema is loaded and processing

may take place.

If the database name is not founded by searching the

list of relational schemas, the system will search the list

of schemas defined as network, hierarchal or functional. If

found, it transforms the found schema to a functionally

eguivalent relational schema to facilitate SQL transactions.

If the name of the selected database is located in the list

of network databases, the data structure rel_dbid_node is

appended to the end of the list of relational databases with

the DBTYPE field having the value NET. The new data

structure, rel_node, is now attached to the schema. The

relational name of the SQL transaction is compared to the

record name in a set type. If a match is attained, then the

relation name in the SQL schema is eguivalent to an owner-

record name declared in a set type. If the relation is not

found in the set type, then a comparison would be made on a

member record. When found, the network record is set to

40

equal to the SQL record and pointers are set to point the

first attribute of the SQL record and the next relation.

The rattr_node data structure describes all the

attributes associated with a relation. Figure 18 depicts

this structure. Each attribute is represented by a unique

rattr_node which contains a name, type, and length. The

attributes are mapped directly from the network attribute

node to the relational attribute node (struct rattr_node)

.

If the network attribute is a key field, then the attribute

is flagged in the relational schema with key attribute

having a value of "true."

struct rattr n<ode
{

char
char
int
int
struct rattr node

name[ANLength + 1]

;

type ;

length;
key_flag;
*next

;

Figure 18 . The rattr_node Structure

The cascading mechanism is used to map the key from

the root nodes to the leaf nodes in the network structure.

This is necessary in order to maintain the integrity of the

network database. Even though relational schemas do not

recognize networks set-owner-member relationships, cascading

the key fields into the relations by the convention of key

attributes captures this relationship. Upon completion of

41

the cascading sequence, the number of attributes is set to

equal to the number of attributes in the associated network

database plus the cascaded fields. The mapping and

cascading continues until all the relations are completed.

Upon completion, control is returned to LIL where the user

can query the database via SQL transactions.

42

V. MAPPING SOL STATEMENTS TO ABDL STATEMENTS
FOR ACCESSING A NETWORK DATABASE

In Chapter IV we have discussed the schema transforma-

tion process needed to implement the mixed-process strategy.

Figure 19 depicts the scheme used to complete the cross-

model accessing of an AB (network) database. The forms in

solid lines represent existing implementation and those in

broken lines represent our work. The relational schema

presented to the user is transparent in that the network

schema appears to be a schema for a relational database.

When a user creates an SQL transaction to access or update

an AB (network) database, the existing Relational/SQL

interface cannot be used, since it translates the SQL

transaction into an ABDL equivalent for an AB(relational)

database. Ours is an AB (network) database. Thus, the new

network/SQL interface uses the original relational/SQL

interface with some modifications which allow the interface

to identify the schema created for the AB (network)

database, instead of the ones for the AB (relational)

databases. Note that the entire process does not involve

the the network/CODASYL interface at all.

A. THE TRANSLATION PROCESS IN LI

Zawis [Ref. 18] presented two methods that the new

language interface (LI) can be implemented. The first

43

RELATIONAL
SCHEMA

ABDL EQUIVALENT

RELATIONAL
DATABASES

AB(RELATIONAL)
DATABASES

ABDL EQUIVALENT

NETWORK
SCHEMA

ABDL EQUIVALENT

NETWORK
DATABASES

AB(NETWORK)
DATABASES

Figure 19. The Cross-Accessing Language Interface Design

method is to created a separate language interface

(LIL,KMS,KC and KFS) for each data model. The LI used would

be determined by the database model selected. The second

method is to use the existing LI and modify it to by the

user input. The second method is to use the existing LI and

modify it to branch to the appropriate translation and

processing activities as reguired by the user input. The

latter method reguires less implementation. Zawis chose to

modify the existing LI to reduce the code size reguired.

Similarly, we choose the same path. The consistency in

improvements to MDLS and the existence of previous work are

primary factors in determining the chosen method.

44

The SQL statement is sent to the relational/SQL

interface. The relational/SQL interface branches to an

internal network/SQL interface that ensures the needed

checks and modifications of a network database are performed

in KMS.

1. Query Processing in the LI

The user will load a database or select an existing

database to process. The user is then given a menu to

choose follow-up actions:

Enter mode of input desired

(f) —read in a group of transactions from a file

(t) —read in transactions from the terminal

(x) —return to the previous menu

ACTION > _

The user can use a prepared list of gueries or create

gueries from the terminal. In any case a list of

transactions are displayed on the terminal, with a number

associated with each guery. The following action menu is

presented to the user:

Pick the number or letter of the action desired

(num) —execute one of the preceding gueries

(d)—redisplay the list of gueries

(x) —return to the previous menu

ACTION >

45

The user can now select a query to process. The order of

processing is not important if the query does not rely on

another query. As an example a user cannot retrieve a file

if it has not been created first. The query is sent to the

kernel mapping system (KMS) for translation, and then to the

kernel controller (KC) for execution. The results are

returned to the user on the terminal and the action menu is

presented for user selection.

2 . Query Processing in LI

Previous theses provide descriptions of the query

process in detail. In Benson and Wentz [Ref. 14], Emdi

[Ref. 16] and Kloepping and Mack [Ref. 12] detailed

descriptions of KMS are presented. The following is an

overview of the query process based on the designers and

implementors of MLDS. Zawis [Ref. 18] composed an excellent

overview and we follow that overview.

SQL transactions are sent to KMS from LIL. The KMS

function is to: (1) parse the SQL query and ensure the

query syntax is correct, and (2) translate the query into an

equivalent ABDL transaction. A valid query is sent to the

kernel controller for processing by the kernal database

system KDS, i.e., MBDS

.

The KMS parser uses the Yet-Another_Compiler_

Compiler (YACC) . YACC is a program generator that performs

a process on a stream of tokens that produces a parser that

is syntactically correct. The Yacc-produced parser is a

46

finite-state machine and performs a top-to-bottom parsing.

The parser searches from left to right and with one token

look-ahead. When tokens are recognized, portions of the

output code may be executed or propagated up the hierarchy

until a higher-level rule is satisfied. If the token string

has successfully been processed then the parser terminates

normally. If a syntax error is issued, the parser returns

to the calling procedure.

The KMS data structure primarily consist of five

data structures used during the parser process. The

rel_kms_info is depicted in Figure 20. This structure

contains information accumulated in the parser process to be

used later. Attribute names used in the Select and Insert

operations are held in the target list, the names of the

relations being accessed are stored in templates, and Insert

request attribute values are maintained in the insert list.

The temp_str stores intermediate translation results and the

join_str is needed to hold the translation of a second

retrieve request of a join operation. The next_nest field

is a pointer to the next rel_kms_info structure in the list

of a nested Select transaction. The last field, alt_tgt

holds information relating to the translation of non

AB (relational) statements.

The four data structures pointed to by rel_kms_info

are depicted in Figure 21. The relational KMS data

47

struct rel_kms_info

{

struct

struct

struct

char

char

struct

struct

}

target_l ist_inf

o

templates_info

insert list info

rel_kms_info

alt list info

*first_tgt;

templates;

*first_val;

*temp_str

;

*join_str

;

*next-nest

;

*alt_tgt

;

Figure 20. The rel_kms_info Data Structure

structures are covered extensively in Kloepping and Mack

[Ref. 12]. Since we are accessing an AB (network) database

the modifications are primarily concerned with the KMS

parser. The branching in KMS is modified so that the

SQL-ABDL AB (network) model. The remainder of the chapter

describes the design considerations and implementation

details involved in mapping the four primary SQL

transactions into AB (network) equivalents.

B. THE SELECT STATEMENT

1. The Design

The SQL select command retrieves information from a

database. Retrieval of information does not alter the

database. Information is retrieved without modification,

48

target_l ist_inf

o

{

char

char

struct target_list_info

}

templates_info

{

char

char

}

insert_l ist_inf

o

{

char

struct insert_into_info

}

alt_list_info

{

char

char

struct alt_list_info

}

name(ANLength + 1);

tgt_rel (RNLength + 1) ;

*next attr;

name 1 (RNLength + 1)

;

name2 (RNLength + 1)

;

*value;

*next val

;

name (ANLength + 1)

;

op (RNLength + 1)

;

*next attr;

Figure 21. KMS Parser Data Structures

when accessing an AB (network) database. The transforma-

tion of the AB (network) schema into an equivalent AB

49

(relational) schema provides the user with a view of the

attributes required to retrieve information, the key

attributes are cascaded in the mapping. The DBKEY used in

the CODASYL language interface is system generated

and not provided to the user and therefore the DBKEY for the

record must be added to the retrieve request before it is

sent to the MBDS. The modification is not needed at root

records, since theydo not have owner records and the

relational user is given the actual attributes of the

record.

2 . An Implementation

Database integrity is not an issue in the select

statement. The method used to implement the select is to

branch to a retrieve_net procedure in KMS and add the record

DBKEY to the ABDL request and send the request to MBDS

.

Fiqure 22 is an example of a select transaction and its

equivalent ABDL transaction.

SELECT sno,sname

From sa

WHERE city = 'London'

Retrieve ((TEMP = SA) and (CITY= London)) (SNO,SNAME) BY

DBKEY

Figure 22. A SQL Select Transaction

50

C. THE INSERT STATEMENT

The SQL insert statement is used to add information to

an existing database. The database is modified and the AB

(network) database integrity may be violated by the insert

statement. The record-type-and-set-type relationships have

to be maintained. The relational user does not know the

notion of record types and set types. Nor does the

relational user know their relationships and the

restrictions that apply.

1. The Design

As mentioned in Chapter II the implementation of the

AB (network) model is restricted to certain options. Here,

the type of insertion is automatic in the AB (network)

model. This means that insertion is based on set selection

criterion. That is an occurrence of a record may not be

inserted into a member record if a set type does not exist

for the occurrence. The network/SQL language interface

is needed to determine if the insert statement will violate

the AB (network) integrity. The interface must retrieve the

record DBKEY and add it to the insert statement before

sending the insert statement to MBDS. The SQL user inserts

the following transaction:

INSERT INTO sp (sno, pno, qty)

:

<'Sl f
, 'PI' ,300>

The AB (network) model only allows for automatic

insertion. If the insert is into a member record proper

51

caution is taken to ensure that the record is placed in the

proper set occurrence. The set selection mode must be

considered.

a. The STORE-by-Application Statement

This method looks for proper set occurrence and

then inserts the record.

b. The STORE-by-Value Statement

This method adds the requirement that the owner

of the proper set occurrence must be located prior to

insertion.

c. The STORE-by-Structure Statement

This method is similar to store-by-value except

that the values of the owner and member attributes must

match.

KMS only allows for the store-by-application

method of set selection to be used in the present

implementation

.

2 . An Implementation

By design, the AB (network) database accepts inserts

if all set occurrences are proper. The insert_rel_to_net

procedure traverses the AB (network) database to determine if

the insert is valid. The first step is to evaluate whether

the record type is a root record (owner only) or member

record (can be owner also) . This is accomplished by

searching the set types using member name to match the

record type. If no match occurs then the record type does

52

not exist or it is a root record. In the latter case, the

insert statement is then processed. Conversely, if a record

type is found, it is a member. The insert must match

the owner (s) ' set type(s). This requires that a search of

the owner (s) record (s) of the member record have the key

attribute (s) used in the insert statement in the owner (s)

record. This is accomplished by a RETRIEVE request for each

owner record based on the attribute on which the set type is

based. Each RETRIEVE is sent to a buffer to be sent to

MBDS.

When the AB (network) translation is complete the

parser completes its operations and control is given back to

LIL. The KC then receives the linked list of ABDL requests

from LIL. KC recognizes that an AB (network) database is

being accessed and branches to a procedure that passes the

RETRIEVE requests to MBDS. The record retrieved, if

any, is sent to a buffer. The buffer is checked for at

least one record. If the buffer is not empty the insert

transaction is transmitted to the KC for processing. If the

buffer is empty the user is informed that the insert as

requested will violate the AB (network) database.

The following is a sample of the terminal display that the

SQL user receives.

UNABLE TO COMPLY WITH REQUEST—to insert a network

member record, an owner record must exist.

53

D. THE DELETE STATEMENT

1. The Design

The purpose of the SQL Delete is to delete records

from a relational database. However, deleting records from

a network database involves more than just deleting records.

First, a database modification (in our case, deletion)

requires checking to ensure that the network integrity is

maintained. This process involves checking whether a target

record is a parent record, if it is a parent, all the

children must also be deleted. Second, because a network

database has many-to-many relationships between parent-child

records; it necessary to update (i.e., delete) all the

associated occurrences in subsequent tree structures.

Third, translate the SQL Delete into a number of AB (network)

Deletes. For example, suppose a user performs the following

Delete transaction on the network database in Figure 23:

DELETE SA
WHERE SNAME = 'IBM'

If the supplier record 'IBM' is deleted from SA, the

occurrence of 'SS2' in SP no longer has an associated parent

in SA (i.e., integrity violation). In our design, we will

delete the specified record and all associated occurrences.

The primary tasks in executing a SQL Delete

transaction are to provide integrity checks on the network

database, translate the SQL Delete to an equivalent set of

AB (network) Deletes and finally perform the delete

transaction.

54

SPS DATABASE
SA PA

PP3

PP2

PP1 NUT

BUG

BOLT

ALTO

SANJ

MONT

PNAME CITY

Figure 23. A Sample Network Database Prior
to a Delete Operation

2 • An Implementation

As described earlier, prior to executing a SQL

(delete), a sequence of events must be accomplished. One of

these events is integrity checking. Integrity checking

consists of multiple deletes on parent-child related

records. These multiple deletes are accomplished by

55

buffering of intermediate results associated with records at

different levels in the network tree structure.

The existing hierarchical language interface,

contains the necessary logical concept to perform the Delete

operation in our network database. This interface will

allow us not to duplicate and integrate different code

(i.e., mixed-processing strategy).

The operations necessary to accomplish a Delete

transaction is dependent on the location of the occurrence

in the network tree structure. If the occurrence is located

at a leaf node in the network structure, then only a single

delete transaction is needed. However, if the occurrence is

located in a non-leaf node position in the network tree

structure, multiple Retrieve and Delete transactions are

needed.

The Delete operation requires multiple retrieves

because the user does not provide all the necessary

information required for the operation. As a relational

user, the user does not know what records are associated

with each other (in given many-to-many relationships) in

the network structure. We will use the Retrieve operation

to gather all the records associated with the target delete

record. The retrieves take place at each level of the

network structure; the results are then stored in the KC

(Kernel Controller) buffer for later processing. An example

of the transactions required for the Delete operation

56

discussed earlier is illustrated in Figure 20. The first

value retrieved is <SS2 , IBM,SANJ>. The key value, • SS2' is

then used to delete occurrences in SP. The Delete operation

is now complete,. This is a very simple example of a network

database in order to keep the details of the implication to

a minimum. However, in a more complicated network

database, execution of the Delete operation would continue

to sibling and child records of SP. A Retrieve operation

is needed at each level utilizing the 'SS2' value from

the previous Retrieve. Following execution of these Delete

operations in SA, the processing returns recursively to the

associated record buffers with the specified 'SS2' value.

Upon completion of the branch, execution then goes to the

next branch for retrieval and Deletion using 'SS2 1 value

until no branches in the tree remain for processing. The

deletes are then sent to MBDS for execution.

The execution of the Delete operation starts in the

KMS parser. The user specified Delete transaction is parsed

and verified to be a legal Delete operation. A legal Delete

operation is an operation that the parser recognizes based

on existing grammar rules in the parser. Once the parser

verifies that the operation is a Delete on a Network

database, execution then branches to a routine that

converts the AB(relational) Delete to an equivalent

AB (network) transaction.

57

The remaining AB (network) Delete transaction now

needs data structures in order to create and execute the

Delete operation. These structures are built from the

network database schema. The transaction now is complete

and is sent to the KC for execution.

Upon completion of the Delete, the network data

structures are released and the allocated memory returned to

the operating system. The KMS then resumes processing and

the relational data structures are re-initialized. In

completion, control is returned to LIL for input from the

user.

[RETRIEVE ((TEMP = SA) AND (SNAME = IBM)) (SNO) BY SNO]

[DELETE ((TEMP = SA) AND (SNO = **))]

[RETRIEVE ((TEMP = SP) AND (SNO = **)) (SNO) BY SNO]

[DELETE ((TEMP = SP) AND (SNO = **) AND (PNO =**))]

** is the place-holder for the value of SNO supplied by the
prior retrieve statement.

Figure 24. A Sample AB (network) Delete Transaction

58

E. THE UPDATE STATEMENT

The SQL Update operation is used to modify attribute

values in a relational database. If multiple values are to

be updated, a sequence of Update transactions must be sent

to MBDS. The Modify statement in Codasyl-DML is the

equivalent to this (relational) statement.

1. The Design

The Update transaction is limited to non-key

attributes. Non-key attributes are the attributes not

needed to maintain the integrity of the network database.

As a result, modification of key attributes values will

cause corruption of the network database integrity. For

example, if a key attribute field is changed in a record

with children, the ancestor tree associated with the new

value will be incomplete, and the existing children are no

longer linked to a valid parent in the network structure.

As documented in earlier work, our implementation of the

Update operation remains consistent with this constraint.

2

.

An Implementation

The fact that we are constrained to only updating

non-key attributes, our Update translation is achieved

within the relational interface. LIL forwards the

transaction to KMS for parsing and syntax verification.

After the parser recognizes the transaction as a legal

Update on a network database, a search routine is called to

search the database schema for the desired attribute. If

59

the target attribute is a key attribute, then the user will

be sent the following message:

UPDATE not allowed. Updates only allowed

on NONE_KEY attributes only.

The request is aborted and control is returned to LIL for

further user input. If the attribute found is a non-key

field, then the Update is mapped to an equivalent

AB (network) Update and passed to KC for execution.

In terms of future work, the Update could be

modified to allow updates on key-attributes. This would

consist of a series of Retrieve and Update operations

similar to the Delete statement. Update statements could

then be generated that will modify the cascaded key-

attribute values of all descendent records in the network

tree. In addition, it will be necessary to execute a

retrieve on the ancestors of the record to be updated. The

returned records are then stored in the KC buffer, thus,

the complete ancestor tree for the new attribute value is

established.

60

VI. CONCLUSIONS

Traditionally, the design and implementation of a

conventional database system begins with the selection of a

data model, followed by the specification of a model-based

data language. An alternative to this traditional approach

to database system development is the multi-lingual database

system (MLDS) . This alternative approach affords the user

the ability to access and manage a large collection of

databases via several data models and their corresponding

data languages. This alternative approach has been

designed and implemented at the Laboratory for Database

Systems Research, Naval Postgraduate School, Monterey,

California. Figure 25 depicts the multi-lingual database

system.

MLDS restricts users to access individual databases with

their respective data languages. For example, a network

database can only be accessed via the network-data-model-

based Codasyl-DML language. The extension of MLDS will

support cross-model accessing of all the databases. The

scope of this research is the design and implementation of

an interface to support the access of a network database via

SQL transactions.

61

Relational Hierarchical Network Functional

KD3 (Atrribute-Baaed Model)

Multi-Backend Database System

Figure 25. The Multi-Lingual Database System Concept

A. A REVIEW OF THE RESEARCH

We have presented three strategies for implementing this

interface, inc luding high-level preprocessing, mixed-

processing, and post-processing, prior to selecting the

mixed-processing strategy as the most viable strategy. We

have related our research with those research on cross-model

accessing.

B. WHAT WE HAVE ACCOMPLISHED

The mixed-processing strategy involves two components.

First, the schema transformation consisted of a methodology

to map the network schema to a relational schema. This was

62

accomplished by cascading key fields from the network schema

to the relational schema; thus maintaining the owner-member

relationships by keys. Second, we described the data

structures and implementation details necessary to

integrate the schema transformer in the Language Interface

Layer (LIL)

.

The new language interface provides the capability of

manipulating a network database via SQL transactions. This

is accomplished by the translation of SQL transactions to an

equivalent AB (network) transaction. We then detailed the

changes to the existing relational-to-hierarchical language

interface in order to provide us with cross-model accessing

capability (i.e., relational-to-network) . We then conclude

our work by describing the four basic relational

transactions, Select, Insert, Delete, and Update, in terms

of the amount work entailed in the language interface and on

the network database.

Our efforts at the Laboratory for Database Systems

Research illustrates that a multi-model database system

(MMDS) could be designed and implemented using existing

software and the potential for further extension of MLDS is

only limited by the motivation for research in this area.

63

APPENDIX A

THE RELATIONAL DATABASE STRUCTURE

cur»«r_r*]_ptr
U_l»_typ+.ll_*ql.
si_ci:rr_db.cdi_
cn_ral.

r-ii_dbid_nod«

rdn_nam-»

it

MODIFIED SYSTEMS CATALOG IN THE RELATIONAL/SOL LANGUAGE INTERFACE

(incorporated to support views)

3 OCT 1988

(Database
nam*/

UtIItlltttltl

rdn_num_rel

rdn.num.Titw

The numbir of views tn

the database.

rn_type

A character, althar •v
or 'V, designating a

TABLE or VIEW.

rn_num_vlew_def

Tha nnnbar of ABDL r»-

quests making np tha view

definition.

ran_imp_table

Tha tab)* in tha ABDL
request to which ran.

imp_nane belongs.

ran_lmp_name

The attribute in the ABDL
request, located in view
def. corresponding to the

attribute in ran.name.

i view_def

A pointer to the ABDL
request describing the

view.

64

APPENDIX B

THE NETWORK DATABASE STRUCTURE

naat_noda
nan^naaa

nat_dbld_nod• Ban_ownar_naaa

ndn niM _fi!n_-«iBb-r ••
ndn_nun_aat nan_lnaart_»ada

ndn numj-K nan_rataat_aoda

ndn.dbkay nan_anc«ator

ndn_flrat_aat n«o_»«l*ct_»oda

ndn_curr_Mt nan_ownar
nan_jn •a opt

ndn_curr_r*d 1

L BIIUKXt a*t — Co n*»U_no4m
ndn_naxt_db

|
1

nraclnoda
1

nr*c. .nod*

nra_naaa

\

nrn_naaa
nrn_num_attr nrn_ntu*_attr
nrn_anca«tor nrn_aac*ator

1

1nrn_nr*t_attr - nrn_flr»t_ittr

nrn_eurr_attr - nra_carr_ittr nattrlned*

nrn_naxt_rac - nrn_naxt_ra< nan_n»««
nan_Uv«l_nan

nan.typ*v - _. «,**

\ t nan_l*ngthl

to nottr^nodt to ttattr^/todo Dan_l«ntth2

nan_dup_flaf

nan_n«xt_attr 1 a*.

nan_cblld a» to nattr_nod

Network Data Sf rnrtnr» nan_par«nt

65

nr»c_no4«

nra_n»m«

nm_nuia_»ttr

nrn_»nc«»tor

nrn_f!r»t_«ttr

nrn_curr_*ttr

nrn_n«xt_r«c

a
if

nattr_no4«

nr»c,inod«

nrn_n»m»

BM_n«B>
ninj«f>ljn»

n«n_typ»
n«n_l»n<th 1

nmn_l»n<th£

n»n_dcp_flM
n»n_n««t_«ttr

n«n_chtlU

n>n_p»r«nt

/•v*/

«ttrL»»4*

iimJ«t«1jibb /•vt/ > 2

H*n.tr»*
aiQ+agtli 1

nan^Unftat
n»n_dap_n»g
n«n_ji«xt_>ttr

n«n_chUd
injtrtnt

ns«tr3»*4*

»MJIi»«
amJwljiBM /•V#/

B>,
s.tyr>

n»"_*^"fth I

n»n^l«nft*g

n*nm4urmn*l
i*n^H*xt_>ttr

nmn_ehlM
Mtjwtrt

nattr node structure

66

LIST OF REFERENCES

1. Demurjian, S.A. and Hsiao, D.K., "New Directions in
Database-Systems Research and Development," Proceedings
of a Conference on New Directions in Computing , IEEE
Computer Society Press, August 1985.

2. Demuurjian, S.A. and Hsiao, D.K., "The Multi-lingual
Database System," Proceedings of the Third International
Conference on Data Engineering , IEEE Computer Society
Press, February 1987.

3. Demuurjian, S.A. and Hsiao, D.K., "The Multi-Model
Database System," Proceedings of the International
Phoenix Conference on Computers and Communications ,

March 1989.

4. Hsiao, D.K. and Harary, F. , "A Formal System for
Information Retrieval from Files," Communications of the
ACM , Vol. 13, No. 2, February 1970. Corrigenda,
CACM 13,3 (March 1970).

5. Banerjee, J. and Hsiao, D.K., "The Use of a Database
Machine for Supporting Relational Databases,"
Proceedings of the 5th Annual Workshop on Computer
Architecture for Nonnumeric Processing . Syracuse, New
York, August 1978.

6. Rollins, R. , Design and Analysis of a Complete
Relational Interface for a Multi-Backend Database
System , Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1984.

7. Banerjee, J. and Hsiao, D.K., "The Use of a Database
Machine for Supporting Relational Databases,"
Proceedings 5th Workshop on Computer Architecture for
Nonnumeric Processing , August 1978.

8. Banerjee, J., Hsiao, D.K. and Ng, F. , "Database
Transformation, Query Translation and Performance
Analysis of a Database Computer in Supporting
Hierarchical Database Management," IEEE Transactions on
Software Engineering , Vol. SE-6, No. 1, January 1980.

9. Banerjee. J. and Hsiao, D.K., "A Methodology for
Supporting Existing CODASYL Databases with New Database
Machines," Proceedings of National ACM Conference .

1978.

67

10. Rodeck, B.D., Accessing and Updating Functional
Databases Using CODASYL-DML . Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1986.

11. Macy, G. , Design and Analysis of an SQL Interface for a
Multi-Backend Database System . Master's Thesis, Naval
Postgraduate School, Monterey, California, March
1984.

12. Kloepping, G.R. and Mack, J.F., The Design and
Implementation of a Relational Interface for the Multi-
Lingual Database System , Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1985.

13. Weisher, D. , Design and Analysis of a Complete
Hierarchical Interface for a Multi-Backend Database
System , Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1984.

14. Benson, T.P. and Wentz, G.L., The Design and Implementa-
tion of a Hierarchical Interface for the Multi-Lingual
Database System . Master's Thesis, Naval Postgraduate
School, Monterey, California, June 1985.

15. Wortherely, C.R. , The Design and Analysis of a Network
Interface for a Multi-Backend Database System . Master's
Thesis, Naval Postgraduate School, Monterey, California,
December 1985.

16. Emdi, B. , The Implementation of a CODASYL-DML Interface
for a Multi-Lingual Database System , Master's Thesis,
Naval Postgraduate School, Monterey, California,
December 1985.

17. Goisman, P.L., The Design and Analysis of a Complete
Entity-Relationship Interface for the Multi-Backend
Database System . Master's Thesis, Naval Postgraduate
School, Monterey, California, December 1985.

18. Zawis, J. A. , Accessing Hierarchical Databases Via SQL
Transactions in a Multi-Model Database System . Master's
Thesis, Naval Postgraduate School, Monterey, California,
December 1987.

19. Hsiao, D.K. and Menon, M.J., "Design and Analysis of a
Multi-Backend Database System for Performance
Improvement, Functionality Expansion and Capacity Growth
(Part I)," Technical Report, OSU-CISRC- TR-81-7, The
Ohio State University, Columbus, Ohio, July 1981.

68

20. Hsiao, D.K. and Menon, M.J., "Design and Analysis of a
Multi-Backend Database System for Performance
Improvement, Functionality Expansion and
Capacity Growth (Part II)," Technical Report,
OSU-CISRC-TR-81-8, The Ohio State University, Columbus,
Ohio, August 1981.

21. Codd, E.F., "A Relational Model of Data of Large Shared
Data Banks," Communications , ACM, Vol. 13, No. 6, June
1970.

22. Date, C.J., in An Introduction to Database Systems ,

Addison-Wesley, 1981, 3rd edition.

—^>23. Cardenas, A.F., in Data Base Management Systems , Allyn
and Bacon, Inc, 1985, 2nd edition.

24. Olle, T.W. , in The CODASYL Approach to Data Base
Management , John Wiley & Sons, Ltd., 1978.

69

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 52 1

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Curriculum Officer, Code 37 2

Computer Technology
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor David K. Hsiao, Code 52Hg 2

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

6

.

Thomas Chu 1

1140 Pebblewood Way
San Mateo, California 94403

7. Marciano Pitargue 1

Vitalink Communications Corporation
6607 Kaiser Drive
Fremont, California 94555

8. Stanley and Jeanette Wade 1

Route 1

Box 320
Martinsville, Virginia 24112

9. Pamela Woods 3

Route 6

Box 1796
Danville, Virginia 24541

10. Richard W. Walpole 4

1967 Glenover Drive
Memphis, Tennessee 38134

Ui ,'t
4
/

70

Thesis

W222802 Walpole

c.l Accessing netwcn

databases via S#L trans-

actions in a^multi-Tno-

del data>^se system.

"JfcluCA*^

i*5

