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PREFACE.

following lectures were collected from manuscripts left

-*-
by the late Professor J. C. Adams, and are now reprinted

without change from his Collected Scientific Papers, Vol. n.,

pp. i_84.

It was thought that the wide interest attaching to the

lunar problem reached many besides the professed astronomer,

and would justify a separate publication of this short work.

It is known that Adams contemplated the publication of

some such essay himself, and it must be a matter of regret to

all that he never did so. No pains have been spared to

present the material properly, but it is unavoidable that it

should appear from the hands of an editor in a less perfect

form than if the author had issued it himself.

Yet, allowing for this disadvantage, I think those best

qualified to judge will consider this work fully worthy of

Adams's great name. Of current elementary theories it may
be said that they leave off where the difficulties of the subject

begin, that is to say, where the various cases of slow con-

vergence have been exposed, but not dealt with. It is perhaps

not too much to say that these lectures carry us to the point

where such difficulties end, in an adequate evaluation of all

the chief constants. They leave the problem effectively solved

and not merely stated, and shew the path clear for the for-

mation of a detailed theory, if that is desired.

R. A. SAMPSON.

DURHAM.

8 October, 1900.
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LECTURES ON THE LUNAR THEORY.

[LECTURES on the Lunar Theory were given by Adams
from 1860 with few intermissions until 1889. Originally their

aim was to illustrate geometrically the analytical processes and

thereby render them more comprehensible, and they included

some elegant theorems on the geometry of conies which have

since become common property ;
but every year several lectures

were rewritten, and thus the whole fabric gradually changed
into the form in which it is here presented, the form, prac-

tically, in which he gave them last.

Perhaps it is superfluous to say that these Lectures stand

upon a different footing to treatises that are intended to form

the basis of Tables. With such, completeness is the first object

and manner of presentation is secondary. Immense as is the

labour of forming a treatise of this description, there exist

several that leave little to desire in respect to fulness of

detail. Indeed it may be suspected that their very perfection

in the quality they profess has stifled to some degree the

proper development of the subject, because at first sight it

suggests that there is little left to do in the Lunar Theory,
unless one is prepared to track down the inconsiderable errors

that have eluded his Masters. This seems a mistake; the

methods most suitable for the whole task adapt themselves

comparatively ill to each detail of it, and there seems much
that remains to be done in respect to inventing methods

suitable for attacking separately, as far as they permit of

separate attack, the many difficulties into which the theory
divides at the outset, and thence perhaps approximating to

A. L. 1



2 LECTURES ON THE LUNAR THEORY.

a more adequate knowledge than we now possess of the relative

motion of Three Bodies. So far, with the notable exception

of Dr G. W. Hill and those that have followed him, we have

seen comparatively little effort in this direction.

This was the cardinal feature of Adams's plan, and his

lectures shew the methods he had gradually elaborated to

accomplish it. They separate the inequalities from one another

as far as possible, and are content with indicating the manner

in which these separate inequalities afterwards combine. To

shew that, with so slight an apparatus and within so small

a compass, the result is no mere sketch, we need but set

side by side the coefficients of longitude found in these

Lectures and the corresponding terms in Delaunay's Theorie.

Adams. Delaunay.

Variation, coeff. of sin 2D
sin4D

Parallactic inequality, sin D
sin 3D
sin5D

Annual equation, sin I'

Evection,

Further,

Motion of Apse,
Motion of Node,

2106-4



LECTURE I.

HISTORICAL SKETCH.

[THE Lunar Theory may be said to have had its commence-

ment with Newton. Many irregularities in the Moon's motion

were known before his time, but it was he that first explained

the cause of those irregularities and calculated their amounts

from theory.

Of the inequalities which are due to the action of the

Sun, the first, which is called the Evection, was discovered

by Ptolemy, who lived at Alexandria in the first half of the

second century of our era, under the reigns of Hadrian and

Antoninus Pius. At a very early period the relative distance

of the Moon at different times could be told from the angle

it subtended, and its orbit could thus be mapped out. By
such means Ptolemy found that its form was not the same

from month to month, and that the longer axis moved con-

tinually though not uniformly in one direction. He represented
this change by a motion of the centre of the ellipse, as we
would put it, in an epicycle round the focus, obtaining thus

a variable motion for the longer axis and a variable eccentricity.

The representation of position by means of epicycles is

intimately related to the modern method of developing the

coordinates in harmonic series
;
thus if we have

x A l cos (nj, + a^ + A 2 cos (n2t + 2) + . . .

y = A 1 sin (nj + ax) + A z sin (nj + 02) + ...

the motion of the point (x, y) is that on a circle of radius A l

with angular velocity nlt around a centre which moves on a

12



4 LECTURES ON THE LUNAR THEORY. [LECT.

circle of radius A 2 with angular velocity n2 ,
and so on; and

if, more generally, we have

x = A l cos (njt + !)+...

y = Bl sin (n^t + a1)+ ...

we may reduce this case to the former by rewriting

a? = (4i + B1) cos (nj + a1) + (

y = ^ (A + #1) sin (w^ + aj + g (4 x
-

x) sin (-^ -
i) + . . . .

Probably we have here the reason why circular motions

and epicycles were first employed.

Tycho Brahe (1546 1601) discovered the existence of

another inequality in the Moon's Longitude quite different

from the Elliptic Inequality and the Evection. He found it

bore reference to the position of the Sun with regard to the

Moon
;
so that when the Sun and the Moon were in conjunction

or opposition or quadratures the position of the Moon was

quite well represented by the existing theory, but from con-

junction to the quadrature following, her position was more

advanced than the place assigned to it, reaching a maximum
of some 35' about half-way; and in the second quadrant it

was just as much behind. This inequality he called the

Variation; it was the first that Newton accounted for theo-

retically, and if we were to suppose the Moon and Sun to

move, except for mutual disturbance, in pure circles in the

same plane, it is the only one that would present itself.

The next significant step was made by Horrox (1619 1641)
who represented the Evection geometrically by motion in a

variable ellipse, and gave very approximately the law of varia-

tion of the eccentricity and the motion of the apse. He

supposed the focus of the orbit to move in an epicycle about

its mean place.

Newton's Principia did not profess to be and was not

intended for a complete exposition of the Lunar Theory. It

was fragmentary; its object was to shew that the more
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prominent irregularities admitted of explanation on his newly
discovered theory of universal gravitation. He explained the

Variation completely, and traced its effects in Radius Vector

as well as in Longitude; and he also saw clearly that the

change of eccentricity and motion of the apse that constitute

the Evection could be explained on his principles, but he did

not give the investigation in the Principia, even to the extent

to which he had actually carried it. The approximations are

more difficult in this case than in that of the Variation, and

require to be carried further in order to furnish results of

the same accuracy as had already been obtained by Horrox

from observation. He was more successful in dealing with

the motion of the node and the law of change of inclination.

He shewed that when Sun and Node were in conjunction,
then for nearly a month the Moon moved in a plane very

approximately, and that the inclination of the orbit then

reached its maximum, namely, 5 17' about; but as the Sun
moved away from the Node the latter also began to move,

attaining its greatest rate when the separation was a quadrant,
and that at this instant the inclination was 5 very nearly.

He also assigned the law for intermediate positions. The
fact that there was no motion when the Sun was at the

Node, that is, in the plane of the Moon's orbit, confirmed

his theory that these inequalities were due to the Sun's action.

When we spoke of Newton's results as fragmentary and

incomplete, let it not be understood that he gave only very
rude approximations to the truth. His results are far more

accurate than those arrived at in elementary works of the

present day upon the subject.

After Newton, Clairaut (1713 1765) treated the Lunar

Theory analytically. He readily found the Variation and many
other inequalities, but met with a difficulty in determining the

motion of the apse. At first he made its mean motion only
about one-half of the observed value, and supposed that this

indicated a failure of Newton's law of the inverse square of

the distance
;

but soon he recognized an error, caused by
omission of terms which he had imagined would not affect
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the result. When these were included the calculated amount

was nearly doubled.

The first Tables of the Moon which were sufficiently accu-

rate for use in determining longitudes at sea by observation

of Lunar Distances were those of Mayer. They obtained a

prize offered by our Board of Longitude, and were published
in 1770 by Maskelyne, the Astronomer Royal.

The first Theories which gave the Moon's place with an

accuracy equal to that of observation were those of Damoiseau

and Plana. The former was published in 1827, preceded in

1824 by Tables; the latter was published in 1832.

Hansen's Tables, which are those now used, were constructed

from theory and were published in 1857 at the expense of the

British Government.]



LECTURE II.

ACCELERATIONS OF THE MOON RELATIVE TO THE

EARTH.

WHEN three bodies move under their mutual attraction,

their motions are unknown to us except in the cases when

they are approximately elliptical ;
but this restriction includes

almost all the most important cases in the Solar System.

If one body of the system is greatly predominant and if

the lesser bodies are not close together, the centre of gravity
of the greater body may be taken as a common focus around

which the others move in approximate ellipses. Or again, if

two bodies lie close together, their relative motion may be

approximately the same as though they were isolated, although
the system contains a third greatly predominant body; for

their relative motion is affected by the difference of the attrac-

tions of the central body upon them and not by the absolute

value of those attractions.

The Sun and Planets are an example of the first kind;
the Earth, Moon and Sun of the second. The Earth and

Moon describe orbits round the Sun which are approximately

ellipses, and the Moon might be regarded as one of the planets;

but this point of view would not be a simple one
;
the disturb-

ing action of the Earth would be too great, though it is never

so great as the direct attraction of the Sun, that is to say,

never great enough to make the Moon's path convex to the

Sun. The more convenient method is to refer the motion of

the Moon to the Earth, and counting only the difference of
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the attractions of the Sun upon the Earth and upon the Moon,

to find how this distorts the otherwise elliptical relative orbit.

This is the method of the Lunar Theory.

The position of the Sun must be referred to the same

origin ;
but since the Earth describes an ellipse about the Sun

which is disturbed by the action of the Moon, if we choose as

origin the Earth's centre, we must allow for the disturbance of

the Sun's position by the Moon. This correction may be evaded

by choosing as origin, not the Earth's centre, but the centre of

gravity of the Earth and Moon,
with respect to which the Sun E

describes a curve so closely el-

liptical that no allowance is

required. For, if $, E,M denote

respectively the Sun, Earth,

and Moon, and G the centre

of gravity of E and M, the

accelerating forces of S are

on E S/SE* in ES,

and these imply accelerations of G of amount

M S

now the accelerations of S are

E/SE* in SE,

M/SM* in SM;
hence the acceleration of G relative to S is

S+E+M E
* parallel to S

S+E + M M

S + E + M /_, OE , GM\ . .,

E + M (
E
'SE*-

M
'SM*)

IU
-

GM
>

.m GS'

SG\
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Let EM = r, SG =
r', SGM = co

;
then

M

Hence

i i r. E

+ _vV 3
.
15

i ==M1"ra? 8cosa)

M

]-

r\V 3 15 \ 1

/)l-2
+ T cos

^J + ......

J
;

and the accelerations of G are

......]<*

......

]-

Now r// is approximately jr ; neglecting the square of this

quantity, we see that S moves about G in a pure ellipse.

Consider now the accelerations of the Moon relative to the

Earth
; subtracting the accelerations of the Earth from those of

the Moon, we find

MO EG

to

let E+M=
/j,,
S= mf

;
then these become

parallel to OS.
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In the accompanying spherical

triangle, let G be the centre of the

sphere, SM
f

the ecliptic, and M'
the projection of M.

Let I/u be the projection of

ME on the plane of the ecliptic;

the longitude of the Moon as seen from the Earth,

& the longitude of the Sun as seen from G,

s the tangent of the Moon's latitude MM'.

Then

r = (l+ s2

)^ u~\ cos to = cos (0
-

0') (1 + a*)-*,

and the accelerations of M relative to E are

(- 1 (1 + ") +~ cos2
((9
-

0'))
+ ......1 parallel to OS.

Call these quantities U and F respectively; then if we
resolve parallel to M'G, perpendicular to M'G in the plane of

the ecliptic, and perpendicular to the plane of the ecliptic, we
have the following quantities which we call P, T, S ;

viz. :

P= Z7(l+*)-*-F cos (0-00,

T=- Fsm(<9-0'X

and also

S-Ps = Vs cos (0-0').

From these we find

3

cos (0- 0') + cos 3(0 -0')} + ...1 ,

j
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Hence with the time as independent variable we have the

equations of motion

rl i
= P

d? \dtj

r dt V 'dt

Or we may write these with as independent variable
;
let

7/1

so that T

whence

again,

whence

ds
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or the equations of motion may be written

H dH_T~
3>

d0'

Our problem is to discuss these equations and to obtain

from them expressions for the Moon's position at any time.

The integration is best effected by observing what kinds of

terms will disappear on substitution in the equations, and then

assuming for the desired expressions for the coordinates a series

of such terms multiplied by undetermined coefficients. Our

procedure will be to discuss one by one the irregularities which

can be isolated from one another. This will permit a survey of

the entire field without involving needless complexity ;
but if

the Lunar Theory is to be accurate, the combinations of such

terms with one another must also be included, and the number

of terms employed and the labour of manipulating them becomes

very great.



LECTURE III.

THE SUNS COORDINATES IN TERMS OF THE TIME.

To obtain the Moon's coordinates in terms of the time from

the equations found in Lecture II., we must substitute in the

expressions for the forces the developments of the Sun's co-

ordinates which we now proceed to give.

Employing as coordinates r', 0', of the last lecture, we have

seen that the Sun's motion may be regarded as purely elliptical,

so that

a _ 1 + e
f

cos (6' CT')

/" 1-e'2

& - w ' = nf

t -*r' + 2e' sin (n't -') + z e>
* sin 2 (n/t

~ OT/) +
rr

in which we have written for convenience n't in place of n't + e.

The quantities that enter the equations are

sin

Making the substitutions we find without difficulty

?' cos (n't -&'+-- e'
z cos
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Y cos

2(0-r)=(i-L'A
cos

2(0-vor ) sin
v '

\ 2 / sin
v

sm

I r*OQ-
g

a' {2 (*-'*) + ('-'

'

{((9 -n't)- (n't-*/sm (V

~o~ v
8 sm

11 ,a
cos

8 sin

r / sin sm

1 e">

S

{3 (0
-

n't) + 2 (n't
-

w'))o sm

These quantities are to be substituted where they occur in

the expressions for the forces found in Lecture II.

Let us now make a few general remarks upon the result of

the substitution.
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It will be observed that the disturbing forces all involve the

coefficient m'a'~3
. It is very important to notice that the Sun's

parallax is not required for the evaluation of this quantity. By
Kepler's Third Law it is derivable from observations of the

Sun's mean motion alone. Other terms however, namely those

with the coefficient m'/a'*u, involve the Sun's parallax directly ;

and that constant may be obtained by comparing the observed

with the theoretical values of the coefficients of those in-

equalities, with an accuracy probably greater than that of any
other method.

The mean disturbing force is radial, and is equal to

4- - //8f
2

6

or the mean effect of the Sun's disturbance is to diminish the

Moon's gravity towards the Earth
;
and to diminish it more, the

greater is the eccentricity of the Sun's orbit. Now e' has been

diminishing for ages; hence the Moon's gravity towards the

Earth has been increasing, and its average time for accom-

plishing a revolution about the Earth has been diminishing.

This is one cause of the Secular Acceleration of the Moon's

mean motion which Halley derived from the records of ancient

eclipses.

It may also be noticed that the coefficient of the chief

r*

periodic part of the disturbing force, which involves 1 5 e'
2
,

2*

increases as e diminishes.

Finally let it be observed that the term with argument

2 (0
-

n't) + 2 (n't
-

w'),

which does not involve the Sun's Mean Longitude, is absent

from the development of
(

~
)

C S
2 (d

-
&).



LECTURE IV.

THE VARIATION.

THE Variation is the first inequality we shall consider
;
this

is the inequality which is independent of eccentricities and

mutual inclination in the orbits of the Sun and Moon.

Let us first take the equations in the first form in which

they are given in Lecture II., namely with t as independent

variable :

dt* dt

rdt\ dt,

we omit the equation of motion in latitude, and in the ex-

pressions for P, T we suppose 5 = 0; moreover it is possible

and convenient to discuss separately the terms that involve

the Sun's parallax; let these be omitted and we have

and if e' = 0, T' = a, m'/a
s = n'\ & = n't + e

,

d*0 ZdrdO 3
3io+-j7^ji = -
rf^

2 r dt dt 2

these are the equations to discuss.
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Assume as a first approximation

6 = nt + e + 62 sin [2 (nt + e)
- 2 (>' + e')}

= nt + e + 62 sin 2i/r, say ;

J
5- 1 [l+o, 008 2*1

and we shall suppose a2 ,
6a so small that in the first instance we

may neglect their squares and products.

Substitute in the equations ;
then

4 (n n'Y a2 cos 2i/r [ri* + 4>n(n ri) 62 cos

w + ^ 2 cos
a ft

4 (w _ n'y j2 sin 2^ 4- 4 (n
-

w') wa2 sin 2i/r
= - - ^/2 sin 2-

Hence, equating the coefficients of similar terms, we have

which gives the relation between n the Moon's mean motion,

and -
,
the mean of the reciprocal of the distance

;
also

CJb

(n-ri)b,= |^'
2

.......(1),

n-n')a2
=
-|n'

2
.......(2).

From (2) 4>n (n ri) b2 knz
a*i

= = -
, .

Add to (1), and substitute for
//./a

3
;

A. L.
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n 3 tt'
2

n-
3 ,2 n(2n-ri}_1_ .3 n 2

rt ^ /.. ._/\o ^^"^^^^^^"^^77"^ T+H^
Calling = m, we have

3 2-m= -^ m .

2 1-m* Q 11
23 - 8m + -7T-m2

3 2-m 1 3m
h <Yn zU c\ //t

2 (l-in) Q 11 _

'

8(l-m)2 '

3 8m + -5- m2

ir n m ,

or, calling , ,
or = = ml ,

we have3 w - n' 1-m

_3 2
2 + m,o-

2 wii .-

1) ,

3
L^ + m/.

These are convenient expressions, and, as it happens, very

approximate. If we wish to develope in ascending powers of

m or Wj, it appears that the latter development will be the

more convergent.

We find by observation = '07480, very nearly.

Hence a2
= '00717,95,

Hence the ratio of the greatest and least distances will be

1-00717,95 : 0*99282,05,

and the greatest angular deviation from the mean longitude

will be

35' 6"'4,

a very close approximation to the truth.
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Also we have found

= w2 x 1-00280,

which is the relation between the actual mean motion and the

actual mean distance (or rather mean reciprocal distance) of the

Moon.

Without the Sun's disturbing action, the relation between

the mean distance and the mean motion, or rather between the

radius of the orbit supposed circular and the uniform rate of

angular motion along it would be

Hence in the actual orbit, the mean motion for a given
mean distance is smaller than it would be without disturbance

;

Or, for a given mean motion, the mean distance is smaller

than it would be without disturbance.

In fact, the relation between the mean distance and the

mean motion is the same as it would be if the sum of the

masses of the Earth and Moon were diminished in the ratio of

1-00280 to 1.

22



LECTURE V.

THE VARIATION (continued).

WE will now proceed to substitute in the differential

equations the values of l/r and 6 which we have obtained,

retaining terms of the order of the squares and products of

a2 ,
62 and ra2 or m^.

The values to be thus substituted are

- = -
(1 + a2 cos

v a

where ty
= nt + e (n't + e'),

3= o mi

Hence

r a 1 a2 cos 2i|r 4-
- a2

2

(1 + cos
i_

-j-
=

4ta(n ft')
2
[or2 cos 2^|r 2a2

2 cos
at

?.*: =4 ^_ n').fl a .

r (ft
2

[2
!
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again,

rift

-j7
= n + 2 (n n') b2 cos 2-^,

= ?i
2
4- 4?*O -O 62 cos 2^+2 (n

-
n')

2 62
2

[1 + cos

,

^ , 3a2 cos 2\|r + -
a./ (1 + cos^ ~3l 2 \

Also,

Id/r

r dt

r i= 2 (n ?i ) a.2 sin 2^Jr
- a2

2 sin 4^1r
,

L ^
'

J

1 dr dd f {, 1 ) , 1
-

-7- -,-
=

2(?i n ) na2 sin 2^ + -<(?i
?i ) a262 ^r

7ia2
2

[-

sin 4^ ,LI / J

- - = 4 (n n')
2 62 sin 2^.

And cos 2 (^
- n'i - e')

= cos 2^ - 62 (1
- cos

sin 2 (0
- n't - e')

= sin
2i/r + 62 sin 4-f .

Substitute these in the differential equations, and we get,

on transposing all the terms to the left-hand sides from the first

equation

[1

3 "1

2
a2

2 + a2 cos 2i/r
- - a2

2 cos 4^

a* + 3 2 cos 2^/r + 2
2 cos

1 3- 7l
2 -

2
2 -

2 + COS >r + COS

and from the second equation

-4(n-')t &asin2^

,
r r . i )

n
+ 4 (n

- n ) \na.2 sin 2-Jr+ )( w') a262
- - na2

2
^ sin 4i|r

I I
2

J J
Q

-f x n/2

[sin 2i|r + 62 sin 4-^r].
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The coefficient of cos 2^/r
in the first of these expressions,

and that of sin 2^/r in the second, are respectively

4(n - nja,- *n (n
-

ri) 62 + 3 ^ a2
-
| n'\

a &

g
and -40- ft')

2 &2 + 4w (n
-

n') a, +
^

rc'
2
,

and these are evidently reduced to zero by giving a2 ,
b2 the

values previously found, if we substitute for
//,/a

3 the approxi-

mate value n2 + ~ ?i'
2
. To find the more correct value of

//,/a
3
,

2

equate to zero the constant term in the first expression ;

that is

(l
+

| a/)
= ti

2 + i
ri'

2 - 2 (rc
- ^O

2
2
2 + 2 (w

-
n')

2 62
2 -

1
^'262

= " + i w/2 + 2 (n - rc
7

)
2 Ugmj + m^) a2

2 -^ m^1 .

Hence we see that /JL/O?
differs from ti

2 + 5 w
/2

only in terms

of the fourth order, if we consider Wj a quantity of the first

order and consequently a2 ,
62 quantities of the second order.

Hence also by taking

in the multiplier of a2 , when we equate to zero the coefficient

of cos 2>Jr, we only neglected a quantity of the sixth order in mlt

and the error in the resulting values of a2 ,
62 is of that order.

We see that the substitution just made in our equations

leaves outstanding terms of the fourth order in cos 4^ and

sin 4-^. In order to get rid of these we must add terms of this

form to the assumed values of l/r and #, respectively. Suppose
that

- = -
[1 + a.2 cos 2i/r -f a4 cos

= nt + e + 62 sin 2i/r + 64 sin
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where, as we shall find, a4 and 64 are small quantities of the

fourth order.

It may be readily seen that the additional terms introduced

are the following :

1 d?r
in

-j 16(n %')
2 a4 cos4^,V Cut

?i 4 cos

and also that we may neglect the terms added in the ex-

pressions for

| rc'
2 cos 2 (0

- n't - e), | n'* sin 2 (0
-^ - e

7

).
L -j

If we write the terms thus produced along with the several

terms left outstanding in our equations and then equate the

whole to zero, we have

1 6 (n
- nj a,-8n(n- n') 64 +^ 3a4

- 6 (n
- nj a* - 2 (n

- nj bj
a

from which we must determine a4 and 64 .

Put = M2 + n
'
a
'
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and divide both equations by (n n')
2

;
we get

I

16 +
3(l

+ 271^ +1^1 a4 -8(l + w,)&4-

2 -
3(1

Cl
\ 9

1 +2 mi)
a
2+jg^i

4 =0.

Simplify and multiply the last equation by = (1 -|- mi),

19 + 6m! + mA a4
- 8 (1 + m,) 64

~
(-^

+ ml
- i m

27
-3(1

(4 -f 8m! + 4w!
2

) a4
- 8 (1 + m^ 64 + (1 + 2m1 + mf) a2

2

Subtract the latter from the former and 64 will be elimi-

nated
;
we get

.
1 A /15 3

15 - 2j = i 4
-

i 1 i

which gives a4 ;
and this being known 64 is found from

1 1 3 / 1 \ 9
64
= -

(1 + W 1)a4+ Q (1 + mjaf +=-^( 1 +^ml ) m^a2 + ^r^ mf.
2 X 8 16V 2 / 2o6

Taking m = '07480 as in Lecture IV, we find

a4
= -00004,580,

64
= -00004,237 = 8"-740.



LECTURE VI.

THE VARIATION (continued).

LET us consider the problem of the Variation over again,

taking now as independent variable.

The equations of motion are given in Lecture II :

d?u P T du

P 1 n'* 3 ri2

where _ =,,___--_ cos 2 (0
-

0'),

T _3nf*
u3
~

2 U*

so that the second equation may be written

Our aim is to express t and u in terms of 6 and constant

quantities. Now since the orbit of the Moon does not differ

widely from a circle we may write the difference of nt + e from

6, and the difference of au from unity as series of small periodic

terms depending upon 6. Inspecting the form of the equations,

it is evident that these periodic terms are of argument 2 (0 6')

and its multiples ;
that is

nt + e = 6 + periodic terms of argument 2 (6 0'), &c.
;

but n't + e' = f
'
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therefore

- & = (1
- m) 9 - j3

+ periodic terms of argument 2 (1
- m) -

20, &c.,

where we have written

j3
= e'- me

;

this constant ft is associated with (1 m) wherever the latter

occurs
;
for brevity in writing, we shall omit it.

We may then assume as a first approximation

au = 1 4- Og cos (2 2m) 0,

nt + e = 6 + 62 sin (2
- 2m) 6

;

whence

2 ((9
-

0')
= (2

- 2m) - 2m 2 sin (2
- 2m) 0,

cos 2 (0
-

0')
= mb.2 + cos (2

- 2m) - mb2 cos (4
- 4m) 0,

sin 2 (0
-

(9
X

)
= sin (2

- 2m) 6 - mb2 sin (4
- 4m) 6,

n
g|

= 1 + (2
- 2m) 6a cos (2

- 2w) ft

Substitute in the right-hand member of the second equa-
tion :

~
2^P = - 3m 2

[sin (2
- 2m) 4- (2

- 3m) 62 sin (4
- 4m) 0].

Therefore

H*\ 3m2 3 2 - 3??i= ~ C S 2 ~
2 lm 4

a

which we may write

/H 2\

loge ( -T-
J

= 2h2 cos (2
- 2m) + 2/t4 cos (4

- 4m) 0,

where h is an arbitrary constant of integration, A2 is a known

quantity, and h4 involves b2 . If we take as a second approxi-

mation

au = I+a2 cos (2 2m) + a4 cos (4 4m) 0,

w$ + e = -H 62 sin (2
- 2m) + 64 sin (4

- 4m) 0,

the above value of loge (H
2

/h?) will not require modification

and will supply equations of condition for determining the

coefficients a2 , &a> a*, b4 .
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dt n no? h 1
I nii ttil

d0~Hu*-~h H(au)*'
so that

/ dt\ /na?\ 1 (H*\
\ ctu/ \ ti / *2i \ ii /

but

log, (n
<

JH"\
= -

(1
- m)

2 62
2 + (2

-
2m.) 62 cos (2

- 2m)

+ [(4
- 4m) 64

-
(1
- m)

2 62
2

] cos (4
- 4m) 0,

a.
2

/ a 2
\

logg au = -j- + a2 cos (2 2m) 0+[&t-r] cos (4 4w) 0.
4 \ 4 /

Hence we find

'-joA

(4
- 4m) 64

-
(1
- m)

2 62
2 = - h^

- 2a4 + ^ a2
2

.

22

The remaining equations of condition that we require are

obtained from the first equation of motion
;

this may be

written

d- (au)

Now

au 1 + az cos (2 2m) 4- 4 cos (4 4m) 6,

whence

^^ = - (2
- 2m) a2 sin (2

- 2m) -
(4
- 4m) a4 sin (4

- 4m) 0,

^^ = -
(2
- 2m)

2
a, cos (2

- 2m) -
(4
- 4m)

2
a, cos (4

- 4m) 0,

and

L'^Y = m2

[1 + (4
- 4m) 62 cos (2

- 2m) 0],

in 2(0-0')=m2
[sin (2-2m)0+(2 - 3m)62 siii(4-
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= m2

[(2
- m) 62 + cos (2

- 2m) + (2
- 3m) 62 cos (4

- 4m) 0],

-^
= ^

[1 + A2
2 - 2Aa cos (2

- 2m) + (h*
- 2h4) cos (4

- 4m) 0].

Substitute these in the equation above, and equate the

coefficients of corresponding terms,

-
(2
- 2m)

2a2 +
(l
+

*
m2

)
a2 +

|
m2 + (2

- 2m) m262
=^ (-

-
(4
- 4m)

2a4 + l + m' a4 + ^2
(2
- 3m) 62 +

If we neglect at first terms of the fourth order, we find from

the first of these equations

From the earlier set of equations we have

(2
- 2m) 62 = - h - 2a2 ;

substitute this in the second equation above. We get

-(2-2m)2 + l+|m
2- 2m2

ja
2
-

or

3 m2 3
2
2-m

wfi

21-m~2 m l-m'

= ^m
so that

3 n 2-m

and

2 l-m 11
3 - 8m + -- m2

3m2

1 - m '

8 (1
- m)

2
'
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These are numerically equal to the quantities denoted by
the same symbols in Lecture IV, but 62 bears the contrary sign.

We further find

{(1 + 3m - 2m2
) a, + (8

- 15m + 6m2
) 62),

T! J. 7?l

1 33m2
,

i ^ + (6

or reduced to numbers

a4
= - -00002,210,

64
= -00005,414 = n"-i7.

Finally let us exhibit the relation between the constants

employed in this investigation and those of Lectures IV, V; to

distinguish them, attach accents to the latter, so that

= nt + + b2

'

sin 2^ + &/ sin
4>|r,

= 1 + a cos 2i|r + a/ cos
4-\Jr,

and, omitting the constant /3 as before,

(1
- m) =

>|r + (1
- m)V sin 2-^ + (1

- m) &/ sin
4i|r.

Then

2i|r
= (2

-
2m) -

(2
- 2m) &/ sin (2

- 2m) 0,

sin
2-^r

= sin (2
- 2m) -

(1
- m) 6a

'

sin (4
- 4m) 0,

cos 2i|r
=

(1
-

HI) 62

7 + cos (2
- 2m) -

(1
- m) 62

r

cos (4
- 4m) 0.

Substitute in the equation for 6
;
we find

nt + = 0-b.2

'

sin (2
- 2m) 6 - [&/

-
(1
- m) 62

/2

] sin (4
- 4m) 0,

and similarly

a'u = 1 + (1
-

in) a2'br + a2

'

cos (2
- 2m)

+K -
(1
- m) o2

/

62

/

]
cos (4

- 4m) 0.

We observe that a' differs from a by quantities of the fourth

order,



LECTURE VII.

CORRECTION OF APPROXIMATE SOLUTIONS.

WE may simplify the equations we have been dealing with,

by a proper choice of units. Let the unit of distance be the

radius of the circular orbit which the Moon, if undisturbed,

would describe about the Earth in its actual periodic time
;

then

yLt
= 7l

2
.

Also choose the unit of time so that

n ri = 1,

so that, if we take as the result of observation of the mean

motions of the Sun and Moon,

ri : r& = -07480,13,

we get n' = '08084,9 = mu
where m l

is the quantity so called in Lecture IV; and

yu
= 1-16823,4.

We shall frequently'adopt these simplifications in what follows.

Now let l = loge (r/a),

so that

i^_^ l^r_^ (dlf P = P. -31.

r~dt~di' rd&~dP \dtl
% r>~ a*

e

and the equations discussed in Lecture IV become

dt2
*

(dt)

~

\dt)
+

d?Q g dl dO

oft
2

+
Jt~di

5r*-<g +
|co.l.].a

r 3 ~i

f n/2

g
sin 2o> I

= 0,

where co = &'.
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Now these equations are defective, for they have been

formed by omitting certain terms from the complete equations

as given in Lecture II. Hence, calling 1
,

the values of I, 6,

which we have proved in Lecture IV to be solutions of the

above equations, if we substitute 1
,

in the complete equa-
tions of Lecture II, residuals are left, say X and T respectively.

And if I, 6 be solutions of the complete equations, and if we

write

e = + so,

where 81, BO are small quantities whose squares and products

may be neglected in the first instance, we obtain the following

equations for determining SI, SO, the corrections to approximate
solutions 1

,
# already found :

*--.
Now let us write

,

dt r 3 a?

where c = (1 + rij + $ n'2.

2i

The quantity v consists wholly of periodic terms of the form

cos 2ity multiplied by small coefficients; w contains, besides

periodic terms, a small constant term, which however might be

removed if we were to choose c as the constant part of
yu,/r

3 in

place of according to the definition above.

Let S'l, S'O be quantities defined by the equations

then S'l, S'd are approximations to the complete corrections SI,

SO, which if substituted in the equations that give those cor-

rections will leave residuals, say X' and F', where
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_
at at at

. ^n ~ do I .0/0 rt C-//1' = 2 -^ -- + 2v -- + 3n 2 cos 2o>8 0.

We see that their value is known when 87, 8'# are determined.

Now 87, 8'0 may be determined as follows.

Let X = p 4- %>i cos ity, . Y 2^ sin ity,

where i takes all positive integral values
;
and assume

87 = a 4- 2c^ cos
t-v/r,

8'0 = S6f sin i^.

Then substituting and equating coefficients, the constant

term gives

p - 3ca = 0,

and the terms in ity give

Pi
- Pa* -2(1+ n

1

) ibi
- ^ca{

= 0,

qi-i*b,i-2(I+ri)iai =0;
the second of these may be written

subtract from the first and we have

or at =

and &< =
/

We see that ait bi will be of the same order of small quantities

as pi, qi, in general. And therefore the coefficients of the terms

of X', Y' will be of order higher than those of Z, 7. Proceed

then to determine further corrections 8"Z, 8"0 satisfying the

equations
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then if 8'l + 8"l, 8'0 + 8"0 are substituted in the complete

equations for SI, 86 the residuals become

2 T ~ ^ ~ *w*" 1 + 3
'2 sin

at at at

Y" = 2
a a a

expressions which, if developed in series of cosines and sines of

multiples of ty, will have coefficients of higher order than the

corresponding coefficients in X', Y'. The like process may be

repeated until the residuals become insensible; we then have

sensibly correct values of 81, 80, giving

We may now take into account squares and products of the

small quantities 81, 80 by treating 1Q + 81, + &@ as given

approximate solutions just as we have here treated 1Q , ;

substitute them in the complete equations of motion, and

determine the residuals X, Y which they leave. These resi-

duals will form the basis of a second approximation, and the

operation may be repeated until no further correction is

necessary. It is to be observed that if 81, 80 depend upon
some such constant as the eccentricity of the Earth's orbit

around the Sun, or the parallax of the Sun, then successive

approximations yield correctly and separately the terms which

depend upon the first, second, ...... powers of that constant.

A. L.



LECTUHE VIII.

THE PAUALLACTIC INEQUALITY.

WE shall now apply the method of the last lecture to find

the terms in the Moon's coordinates which depend upon the

parallax of the Sun.

The values of I, found in Lecture IV are

1Q
= \oge (r/a) = - a2 cos 2-^,

= nt -f e 4- 62 sin 2>/r,

and these satisfy the equations of motion in which the terms

involving the Sun's parallax are omitted. Hence the residuals

they leave from the complete equations are

X =-W2 -
j| cos (0

- 00 + ^cos 3(0 -0')j,a (o o
j

F = \n* -
\\ sin (0 -O

f

) +~ sin 3 (0.
-

0')} ,a (0 o
j

E-Ma
where X =

--, =y .E -H M a'

Now from above

-0' = ^ + &2 sin2i/r;

hence we have

sin (0
-

6')
= sin

i|r + - 62 (sin >/r + sin 3^),

COS (0 0') = COS
i/r
- - b2 (COS ^ - COS

22

sin 3 (0 6') sin 3>|r -f
-

b.2 (sin ty + sin
5i/r),

COS 3 (0 0')
= COS 3i/r

'-
b.2 (COS l/r

COS 01/r);
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and

15 9 9 \ /45 , 15
+

16
* -

16 V
cos 3* +

lie
b-
-

i6
cos

'-

I
sin (ft

-
0') +^ sin 3 (ft

- ^) =
(J
- | 62

-
| ,)

sisn

15 3
,

3 \ . /45 , 15 \ .

+
16

6* ~
16^ sm 3t +

lie
6z +

16
"

j
sm *-

Assume

&\ = Xax cos -^ H- Xa3 cos 3i|r,

80 = \6j sin
i|r + \63 sin 3i/r,

neglecting for the present the terms in
5-^r. In the present

case it happens that it is more advantageous to substitute

these expressions directly in the complete equations for SI, BO

given in the last lecture than to follow exactly the process for

finding them by successive approximation. Omitting the

factor X, we get

ax cos t/r -f- 9a3 cos 3-^ -f 4a2 sin 2^ [ax sin ^ + 3a3 sin

CL CL

-[2(1+ ri) + 462 cos 2^/r] [&! cos ^ -|- 363 cos

/2

[sin 2^/r + 62 sin 4-^r] [6a sin ty + 63 sin

~~ n'2

vTfi
^2

~"
Tfi

a
*i

cos^ = ^'

>! sin yjr
9bs sin 3-\/r + 4a2 sin 2^ [6j cos >|r + 363 cos 3>/r]

+ 3w/2

[ 62 + cos 2-^r -i- 62 cos 4i/r] [6X sin >/r + 63 sin 3^/r]

+[2 (1 + n') + 462 cos 2>/r] [^ sin
>/r + 3a3 sin 3-^]

, /45
,

15
2 ^-

Ig
2

32
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If we equate to zero the coefficients of cos
ifr

and cos 3-^ in

the first, and those of sin
i/r

and sin 3^/r in the second, we obtain

the following equations for alt bi, a3 ,
b3 ;

the terms in o-^r remain

outstanding, and the effect of a5) b5 in modifying the other co-

efficient is neglected.

a, [2 (1 + n')
- 262]

+a,[66J

^3

a,]

+ a 3 [6 (1 + n')] -63 [9

If we require the formal values of alt blt aS) 63 , we must

substitute for a2 ,
62 , yit/a

3 the expressions we have found for

them, and it will then be best to develope the coefficients in

ascending powers of ri. But it is difficult to obtain by this

process such good numerical results as we can get by sub-

stituting the numerical values of a2 ,
62 , /JL/O? immediately in

the equations above. If we do so we get the equations

4-566T2o1 -2-l7232&1+ '08093a3
-

2-14128o1-0-9956461 + '06127a3
-

o

02349^- 0301261 +12-51451a3-6'4850863
=

'^n
/2 x 5'00455,

o

020420!+ -024066i+ 6-48508a8-9'0002063=-|n/2 x5-00152.
o



VIII.] THE PARALLACTIC INEQUALITY. 37

We notice that the first equation is not very different from

the second doubled : it is this fact that makes successive

approximation a disadvantageous method and renders it ad-

visable to include small quantities from the beginning.

Eliminate a3 , bs in succession from the third and fourth

equations, thus :

Multiply the third equation by

9'00020-r [12-51451 x 9'00020 6'48508x6'48508]= 0*127523,

and the fourth by

-6'48508---[12'51451x9'00020-6-48508x6-4850S]=-0-09]887,

and add
;
bs will be eliminated.

Again multiply the third equation by '091887 and the

fourth by '177317 and add; a3 will be eliminated. Hence

we find

001119^ - -006052^ + a3
= |n

/2 x 1-09776,
o

- -0014630! - '007034&! + b3
= f n'z x 1-34669.

o

Multiply these by '08093 and '05137 respectively and add

to the first equation :

5/i'
2 x 2'87937,

- 0-00009^+ 0-00049&!- '08093a3
= ?i'

2 x - 0'08884,
o

-0-000080!- 0-00036&! +'0513763=|w/2 x 0'06918
;

o

hence

4-566650! - 2-172196! = ? ri* x 2*85971.
o

Eliminate c/
3)

b3 in a similar manner from the second

equation ;

2-14128a1 -0-9954661 +-06127a3--0333863=-|n/2 x 0'91416,
o

-000007a1 +0-0003761--06127o3 =-^n/2 x 0'06726,
o

-0'00005a 1 -0'000236 1 + '033386,=- 1 ?i'
2 x -0'04495

;

o
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hence

2-14116a1 -0-9955061 =-|?i'
2 x 0'93647.

o

From these equations we find

0, = - f n
/2 x 46-4814 =-11392,8,

o

b,
= -lri*x 99-0336 =-'24273,4,

o

a3
=

|??
/2 x -55042= '00134,9,

o

bs
= |^

/2 x -58209= -00142,7.
o



LECTUKE IX.

THE PARALLACTIC INEQUALITY (continued).

LET us now consider the terms in 5tjr which have been left

outstanding.

Include additional terms Xa5 cos 5^, \b5 sin 5^|r in SI, SO,

and equate to zero the coefficients of cos 5^, sin 5^ in the

differential equations that give SI, SO.

We have

25aB + a, - 10 (1 + n') b,
-

+10(1+ ?i
x

) a5

In these equations substitute

Then

5 -f 6n' + ^ ri2

}
a5 10 (1 + n') bs

=

-~
lb

"
lo
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Eliminate b5 :

- 2n' +
\ '")

5
=

[(I

- 9' -
?f

'

+ n" + 1

and then 65 is given by

From these we find

= /i
/2 x -00595,3 = '00001 4591,

o

&5
= JV2 x -00710,3 = -00001,7410.
o

These numbers being so small, we see that we may safely

ignore, as we have done, their effect in modifying the earlier

coefficients.

To find the effect of these coefficients upon the Moon's

coordinates we must multiply by the factor X=
pt~r~jg

- ">

We shall take in accordance with the results given in

Monthly Notices, Vol. 13, p. 177, and Appendix to the Nautical

Almanac, 1856,

Constant of Moon's Parallax = 3422"'325.

Also .we shall take in the first place, the Sun's Mean

Parallax to be 8":8, and in the next place 8
//

'9, and we will

find the corresponding values of the coefficients of the Paral-

lactic Inequalities.
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We find

8"'8

X = -00250,9

\a, = - -00028,585

41

-00060,903 =-125 //

-62

\as 00000,3385

00000,3580 =

Xa5
= -00000,00366

X&5
= -00000,00437 =

//

'7384

0" -00901

8"-9

X = -00253,76

Xax = - -00028,910

X&! = - -00061,596
= -127"-05

Xa3
= -00000,3423

X&3
= -00000,3620

0"-7468

Xa5
= -00000,00370

X65
= -00000,00442

0"'00911.

These results are very fairly accurate
;
but in order to get

good values for ax ,
blt we were obliged to discuss at , 6,, a3 ,

63

simultaneously. Let us consider the peculiarity of the equa-

tions from which this difficulty arose.

Following the method of approximation of Lecture VII, if

we neglect at first the products of 81, SO, dSl/dt, dS0/dt with the

small quantities a2 ,
62 ,

n z
,
the equations become

, Y
j- zn -, .3 oi 4- A =0,
dtf dt a3

+ F = 0.

Now suppose the following is a set of terms that appear

in X pi cos (it + 7), in F # sin
(i' + y),

82 a; cos (^ + y), 80 &i sin (it + y) ;

then as in Lecture VII, we find

2 - + ^ J^EUBR^S^^ OF THE **P

UNIVERSITY

i4UFOR^
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Therefore if i differs little from n, the divisor in c^ will be

small, and a small error or omision in the numerator of c^ will

appear magnified in the values of both ai and &;. In the case

of the first term of the Parallactic Inequality,

i = n n',

-n+Jfi'* = ~2nn' + | w/*;
Zi

and if we take

_9 /2 _3 /2
Pi 5 " j (i o ^

>

o o

which differ from the correct values by quantities of the fourth

order, then

~ n 3 ,2
5?i 3?i'

i 8 n w'

and the formulae give

_ 3 n' (on
-

3n')

4 (n n') (4tt 5ri)
'

, 2ti 3 n'2

Now if we develope these expressions in ascending powers of m,

i.e. n'/n, the first terms are

a = w & - -i-77

and these are the only terms which the formulae derived from

our method of approximation will give correctly.



LECTUEE X.

THE ANNUAL EQUATION.

LET us next take into account the effect of the first power
of the eccentricity of the Earth's orbit. We shall find thafc it

produces an inequality in the Moon's coordinates, the chief part

of which has a period of one year, and is therefore called the

Annual Equation.

In the formulae of Lecture VII, let the known approximate
solutions 1

,
#

,
include the Variation only ;

then the equations
for the corrections SI, 86 are

C S

- 2 [(1 + nf

) + 262 cos 2^] + 3n /8

(sin 2^+ 62 sin 4x/r)S0
= 0,

sin 2 + 3n/* ~
62 + cos 2 + 6 cos

where a2 , 62 , /^/ci
3 are known quantities whose values are given

in Lectures IV, V.

Refer now to Lecture III, and we find that the terms that

are left outstanding when the terms of the Variation are sub-

stituted, and the parallactic terms omitted are the following :
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X = - I nV cos (n't
-

w')
-^ nV cos (2(0- w'$)

-
(w'J

-
w')}

2 4

+
|
wV cos

f
2 ((9

-
w'f) + (n't

-
w')}

F= + ^ nV sin {2 ((9
-

w'$)
-

(n't
-

w')}

-
|
/iV sin {2 (0

-
n't) + (n't

-
w')}.

Write a for n' tar'
;
then

cos }2 (d
-

n't)
-

a}
= cos (2^ - a)

-
(268 sin 2^) sin (2^ - a)

= - 62 cos a + cos (2-^r a) -f b2 cos (4-^r a),

sin (2 (0 n't) a)
= + 62 sin a -I- sin (2-\/r a) + 62 sin (4i|r a),

cos {2 (0 n't) + a}
= 62 cos a + cos (2>|r + a) + 62 cos (4i|r + a),

sin {2 (6
-

ft'tf) + a)
= 62 sin a + sin (2i|r + a) -f 62 sin (4\/r + a).

Hence

q 91
X = -

I w
/s

(1
- 362) ^ cos a - ^- wV cos (2^ - a)

z. 4

3 21 3'' '

+ -j
nV cos (2>Jr + a) -^

n' 2
-

F= 6n/262e' sin a + wV sin (2-f
-

a)
- ?i

/2
e' sin (2^/r + a)

21 3
+ -j- n'2b2e' sin (4^ a)

-
^i'^e' sin

(4-v/r + a).
TP T<

For our present purpose we shall ignore the small terms in

and 4-Jr + a. which are of the sixth order.

Assume

SI = a5e' cos a + a$' cos (2>/r a) -f a 7e
f

cos (2ty + a),

80 = b5e sin a + 6e' sin (2^ - a) -f 67e sin (2^ + a).

Now the terms which arise in the left-hand members of the
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equations owing to terms ap cos pt in SI, and bp sin pt in SO,

will be

jo% cos pt + 2a2pap [cos(pt 2-^r) cos ( p + 2^)]

+ ~T ap cos 2^ + ^>
a2 cos ( /> 2-*J

a-
|_

2

- 2 (1 + n')A cos pZ 2b2pbp [cos (pt
-

2-\Jr)+cos(p +2i/r)]

+ - n'*bp [cos (pt 2^) cos (pt + 2-\Jr)],

and

-
p*bp sin^ + 2a2pbp [- sin (pZ

-
2^/r) + sin (pt +

3
+ - n 2bp [sin (pt 2>Jr) 262 sm jci + sm (^9^

+ 2 (1 + ri)pap sin j3^ + 2b.2pap [sin(pt

respectively, neglecting the very small quantities in
4-^r.

Hence we get the equations following :

Equate to zero the coefficients of cos a, sin a :

_2rc'(l+O&5 + 2(2-<

-2(2- n') bj) + ri
/266 + 2 (2 + n'

- 2 (2 + n') bzb7 +
1

7/2&7
=
|
n'2

(1
- 362)

- ??
/265

- 3rt
/26265 + 2(1+ n') ria5 + 2 (2

-
n') a266

- 2 (2
-

w') 62a6
- n'*b6 -2(2 + n'

+ 2(2 + n'

Equate the coefficients of cos (2-^r a), sin
(2-*Jr a) :

(2
- nja, + 3

3
a6
- 2 (1 + n') (2

-
n') bs + 2n'a0, + 3 ^3

.

|
a2a5

2 (1 +O (2 - n ) a6 + 2n'aJ>5
- 2ri
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Equate the coefficients of cos
(2-\Jr + a), sin (2i/r -+ a) :

(2 + nja7 + 3 -
3
a7
- 2 (1 + n') (2 + ri) 67

- 2rc'a2a5 + 3 - ? a2a5

- (2 f w')
2 67

- 3>i'
2&A + 2 (1 + n') (2

+!-*.- !-.

In equations of this class, as a general rule we would

determine a5 , b5 approximately from the first pair, substitute

them in the second pair and determine ae ,
66 approximately,

and similarly o^, b7 from the third pair, and repeat this approxi-

mation as often as might be necessary. But if we refer to the

second equation, we see that b5 must be determined by means

of a small divisor, and this puts any method of approximation
at a disadvantage. In order to obtain readily satisfactory values

for the new coefficients, we shall treat the six equations simul-

taneously, substituting first the numerical values of the known

quantities.

We have found

a2
= -00717,95, 62 = -01021,20, /*/a

3 = 117150,3.

Hence

3-52105a5
- 0'17476365 + -0654050. - '029393&6 + -067727a7

- -032695&7
=

I
n/2 x 0-969364,

0-l74763a5
- 0'00673665

- '039197a6 + -01775366 + '042499a7

- -02007567
=

|
n"2 x - 0*040848,

039009a5 + '008153&5 + 7l9766a6
- 4'1485866

= n/2 x 3-50,

- -00165105- -00864365 + 414858a6 -3-6833566

= 5 n' 2 x - 3-50,
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036687a
:5

- -0114556, + 7-84443a7 -4'4981167

=
|?/

2 x-0-50,

001651a5 + -010965&5 + 4*4981 Ia7
- 4-3301 267

= o'2 + 0-50.
A

From the second and third pairs we find

016186ag + '00708465 + a6
= | n'* x 2'94739,

fi

018678a5 + '01032665 + b, = | n/2 x 4 26994,
A

011026a5
- -00720368 + % = | ?i'

2 x - 0-321398,

011072a5
- -OlOOlo&g + b7

= n'* x - 0449338.

Eliminate a6 ,
66 ,

a7 ,
67 from the first pair.

Hence

7i'
2 x Q'909170,

0-l74819cr B
- -00653665

=
|
n 2 x 0-003516.

Hence

a5
=
1

72
/2 x -

0-70619,8 = - -00692,37,

68= |n' x - 19-4268 = - -19046,3.
i

Now e' is a -constant found by observation
; taking

e' = 3459
//

'28, its value in 1850, we get

a/ = --0001 1,61,

&/ = - -00319,4 = - 658"-9,

and further

a6
= -03035,8, a,e' = '00050,9,

b6
= -04396,7, b6e'= '00073,73= 152"'09,

a7
= - -00444,7, a/ = -

'00007,457,

&7
= - -00623,6, 67e'

= - '00010,46 = - 21"-57.



LECTURE XI.

THE EQUATION OF THE CENTRE AND THE EVECTION.

WE have seen that the equations of motion

dt2 dt dt

are satisfied very approximately by the values

I = log
- = a2 cos 2ijr,a

= nt + e -f b2 sin 2i/r,

where ^r nt + e - (n't + e),

and a2 ,
62 are small quantities depending upon the ratio n'jn,

and a is a quantity depending upon % in such a way that

while n, e are arbitrary, though subject to the assumption that

the ratio n'/n is small.

This solution, then, expresses a possible case of motion
;

nevertheless it is no more than a particular case because it

involves only two arbitrary constants, whereas the complete
and general solution must contain four, in order that it may
be able to satisfy any given initial conditions, that is, in order

that the initial coordinates and their initial velocities may have

any given values.
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When there is no disturbance the four arbitrary constants

are n and e, which denote quantities similar to those expressed

by the same symbols above, and the two elliptic elements e

and OT, of which e denotes the eccentricity of the orbit and

BT the longitude of the apse.

We will now shew how to complete the solution by intro-

ducing into log (a/r) and 6 additional terms depending on

quantities similar to e, or, of which the former is constant and

the latter varies slowly and uniformly with t
;
and for the sake

of simplicity we will suppose at first that e is so small that its

square and higher powers may be neglected though it is other-

wise arbitrary in magnitude.

Let us assume then

log
- = a2 cos 2>/r + e cos (nt -cr),

9 = nt + e + 62 sin 2*^ + 2e (1 + &) sin (nt
-

-07),

in which the elliptic terms are of the same form as in the

undisturbed orbit, and is is supposed to be slowly variable,

so that

where p is supposed to be a small quantity of the order of the

disturbing force.

We will now substitute these assumed values in the differ-

ential equations. We have

-si 2 (n n) a2 sin 2i|r + (n p) e sin (nt cr),

= 4 (n n')
2 a2 cos 2^/r -f (n pfe cos (nt -or),

dO
-J-

= n + 2 (n n') 62 cos 2^/r + 2 (n p) (1 + 6 ) e cos (nt OT).

= - 4 (n
-

n') b2 sin 2^/r 2 (n pY (1 + bQ) e sin (nt
-

-OT).

Hence

4 (n n')
2
a>2 cos 2-|r -f (n pf e cos (nt w)

+ 2 (n
-

n') (n-p) a2e [cos (2-^r nt + vr) cos (2i|r + nt &)]

A. L. 4
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-
[n* + 4n (n

-
n') b2 cos 2i/r + 4<n (n

-
p) (1 + b ) e cos (nt vr)

+ {1 + 3a2 cos 2^r} {1 + 3e cos (n*
-

r)}
Cb

- n'2

{5
+ 5 cos 2>Jr

- 3 sin 2>Jr [2 (1 + 6 ) e sin (nt
-

8r)]|
= 0,

and

- 4 (n - w')
2 62 sin 2i|r

- 2 (n
-

_p)
2

(1 + 6 ) e sin (n<
-

*r)

+ 4?n (n n') a2 sin 2-v/r + 2?z (n p)e sin (w r)

4- 4 (w
-wx

) (n p) (1 + 6 ) ea>* [sin(2i/r ?i^+ ) 4- sin ( 2i|r+^- t

+ 2 (71
-

ri')(7i
-

p) e62 [- sin (2-^r nt + ^)-\- sin (2-^ + nt

+ 7i
/2

g
sin 2^ + 3 cos 2^ [2 (1 + 6 ) e sin (w*

-
r)]

= 0.

It will of course be found that with the values of a2 ,
62 of

Lecture IV, the terms independent of e vanish identically.

Equating to zero the coefficients of cos (nt TV) in the first

equation and sin (nt OT) in the second, we get

(n -pf - *n (n -p) (1 + 6,) + '^ = 0,
a

-2(n- p)
2

(1 + 6 ) + 2n(n-p) = 0.

Therefore (n p) (1 + b )
= n,

and (n-jo)
2 =4?i2

-'â
g= nz

<:
7i

/2
, approximately,

or - = -^m
2 = b0) approximately.

Now terms have been left outstanding with the arguments

2-^ nt + 'sr, 2->/r + nt -ST. These may be removed by assuming

log
- = Oa cos 2i/r + e cos (nt r) + a2i6 cos (2^ wtf + /SJ

")

+ a22 e cos (2i|r + nt r),

sin 2i/r + 2e (1 + 6 ) sin (nt *r)

- nt + r + 622e sin (2r -f n - OT
).
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Hence in place of the former equations, we get the

following

(n
-

n') (3n
- 2' - p) + 0,0.

- 2 (w -jp)
2

(l + 6 )

- 2 (w
-

n') (n
- 2ri + p) bta^ + 2(n- n') (Sn

- 2ri -

2 (n
-

n') (n
- 2n'

f- 2 (w
-

w') (3n
- 2n' -p)a9 + n/2 622

= 0.

Multiply the second by -
?^-, and add to the first; this

will eliminate 1 + 6 .

2
(TO
-

n') (w
- 2w' +p) [>2a21

-

+ 2(w-TO'

42
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Also the equations obtained by equating the coefficients of

e cos (2>/r nt + iv) and e sin (2^r nt + -cr) to zero are

2 (n
-

n') (n -p) +

- 2n' +pf + oa - 2n (n
- 2w' + p) bzl

= 0,

4 (n
-

n') (n -p) (1 + b ) a2
- 2 (n

-
n') (n ->) 6a

- 3^/2

(1 + 6 )
-

(n-
- 2w

x + jo)
2

6.21 + 2n (n
- 2ri + p) a2l

= 0.

2t?

Multiply the second by ^ ,
-----

,
and add to the first

;

fl ~~ u ~

this will eliminate 62i> and gives

I

- 4 (re
-

n') (n
-
p) (1 + 6,) + 4

^ ^ "^f+^
(n
-

p)
j

6,

Lastly the equations obtained by equating the coefficients of

e cos
(2-\|r + nt OT) and e sin C2\fr + n -or)

to zero are

-2(^-^)(^-l>)+|^la2-4(^-^)(^-

a - 2w (3n
- 2n' -p) 6,,

= 0,

and

6o)os + 2 (w-tt
/

)(w-
- 2w' - p) 0^ = 0.

n
Multiply the second by ^-7

-- and add to the first
;J

3n-2?i'-p
this will eliminate 622 ,

and gives
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- 2(n - n')(n -p) + \
-
3n_ n̂,_p

(n
- nO(n -p)(l

+6,)]
a,

?* - 2w' - u
2 - 4na + a = 0.

These six equations are to be solved by successive approxi-

mation
; taking the first rough values of p/n and 6 , we find

from the last two pairs values for a2i, ^21 , a.^, b.^', these are

substituted in the first pair and yield more approximate values

of p/n and boy and so on.

It will be noticed that this complexity is made necessary by
the fact that 02!, &2i are found by means of a small divisor



LECTURE XII.

THE EVECTION AND THE MOTION OF THE APSE.

WE proceed to the conversion into numbers of the formulae

of Lecture XL

Take n n = 1,

n = 1-08084,9,

n' = "08084,9,

^= 1-17150,3,
CL

log a2
= 7-85609,

log 62
= 8-00911.

First Approximation.

O-p)2 -4n2 + 3^ = 0,
cu

4rc
2

4-67293,7,

- 3 ^ - 3-51450,9,
CL

(n-pf= 1-15842,8,

n-p= 1-07630,3,

p = -00454,6,

n-2n' +p= -92369,7,

3n-2n/

-jp= 3-07630,3,

1 + 6 - 1 -00422,4 = n/(n
-
p).
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Substitute in the equation for a21 ,

4rc
2 + a21 + 2 (n

-
n') (n

-
p) a, + a,

-n')(n-p)^^

+6^
The various terms give

2 (n
-

n') (n -p) a2 '01545,45

1^,0,
-03784,83.

~ 8
n^^ ^ ~ W/) ^ " P^1 + bo) a2

~ ' 7264 '
10

-04415,05

05144,47

^/2 (1+6 ) -01969,25

7171/2 " ^
-04608,58

05373,43

85321,6

-4n2 + 3-} -1-15842,8
a3 '

30521,2

a21
= -17605,6.

The equation for 621 is

- 2
/ '\J\-^ (n

~
P) b*

~ 3
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l
n

, a21 -41201,8n 2n + p

^-"ol'l^fr -P)(l +&o)o. '03637,95

- -02576,42

621
= '39955,3

The equation for o^ is

Here - 2 (n
-

w') (w
-
p) a2

- '01 545,45

|^a2 -03784,83

6o)a2
-*02181

'
13

- 4 (n
-

w') (w
-
p) (1 + 6 ) 62

- -04415,05

- 4 ^ (n
-

n') (n -p)b, - '01544,69
3n 2n p

-3w/2

(l-l-6 ) --01969,25

- 6 =- -^-f (1 + 6 )
- '01383,78

- -09254,52

9-46363,4

- 1-15842,8

8-30520,6

= 01114,30.
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And

0783
'011

+ 6o) "2 '00327,988

-00232 '283

M ' 0208 '086

= -01551,37

Second Approximation. The complete equation for
^> is

2 (n
- w7

) (w
- 2n'

^/2

[^21 + 6J + 2 (w
-

w') (3n
- 2w' -

4 (n w') (3w
- 2r&' p) [62^22

- 1-15842,8

00080,8

-
-00520,1
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-00708,4

-00406,9

&2 &22]
- '00048,2

(??
-

n') (n
- 2n' + p] [62 a21

- a2621]
- '00397,5

- 4-- (n
-

w')(3w
- 2' -p) [6^ - a2 622]

- '00003,0

3-[621 -6J -00756,1

(n-pf= 1-14859,4

n-p = 1-07172,5

p= -00912,4

p : n = -00844,2.

Apply these numbers in the equation for 1 + 6 :

i
- bJ

4(w-|,

1-00851,33

- -00017,51

00086,55

(3n
- 2' - p) [6,^

- Os&J -00000,64"- -00163,92

1+6 = 1-00757,1

Continuing the approximation for 21 ,
6a , a^, ^ the various

terms found are the following :
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01538,88
03784,83

- -07221,53
- -04410,93

05097,33
01975,81
04601,14
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Fourth Approximation.

1-15842,8 1-00862,79
- -00081,41 - -00017,57

00534,22 n-p= 1-07160,3 '00088,04
- -00727,13 p= -00924,6 -00000,64
- -00416,24 p:n= '00855,4 -^0167^94

'00048,35 i + 6 = 1-06766,0"
00407,66
00002,97

- -00778,05

(n-p?= 114833,2

The values already found for the remaining quantities are

sufficiently exact.

These numbers give, taking after Hansen,

e(l + 6 )
= '05491

e = -05449

2 (1 + 6 ) e = -10982,0 = 22651
//

'9

-00986,03

-02228,44 = 4596"'6

a22e = -00060,93

b^e =-00084,85= 175"-1,

and taking the Moon's mean annual motion 17325593", the

annual motion of the apse is

148202
// = 4110'2 //

.



LECTURE XIII.

THE MOTION OF THE APSE, AND THE CHANGE OF

THE ECCENTRICITY.

WE have seen that when the eccentricity of the Moon's

orbit is not considered we may write

r a

H= no? [1 + As cos 2(0- 0')],

3 2-m 1 ,3m2

where a2
= ^ m . :, .

.. ., ;
ft2
=

-r-
.,

.

2 1 -m
,

11 . 4 1 m
3 - 8m + -g-

m2

Let us introduce the two new arbitraries e, TV by writing

H = hna? [1 + h2 cos (2
- 2m) 0],

- = ~-
[1 + a2cos (2

- 2m) + e cos (0
-

)],

where /i is a third arbitrary, which may be chosen to suit our

convenience
;

it must be unity when e = 0.

Then

dH dH dt 3

[sin (2
- 2m) + 4me cos (2

- 2m) sin (0
-

tar)]
-
1
m2^

-
1
m2n2 f^ [1

-
(4oa + Aa) cos (2

- 2m) (9
- 4e cos (0

-
CT)]

x [sin (2
- 2m) + 4me cos (2

- 2m) sin (0
-

r)],



62 LECTURES ON THE LUNAR THEORY. [LECT.

and also

7 TT 77

dO
=
d6

n0? t
1 + ^2 C S ^2

~ 2m^ ~ na2h (2
- 2m) ^ sin(2

- 2m) (9.

Now we may put h 1 + 77, where ?; vanishes with e. Neglecting

powers of e above the first

drj dh^ =^ = 3m2
(1 -f m) e sin (1

- 2m(9 + -or)du du

+ 3m2 (l-m)esm (3
- 2m0 - r)

- 9m2
77 sin (2

- 2m) ^.

Neglect at first the last term :

Substitute this in the last term, and we get

27 2 + 4m -4m2

(

Now consider the other equation

H2
LL 1

m2wV
[cos (2

- '

- 2me cos (1
- 2m0 + w) + 2me cos (3

- 2m0 -
)],

Differentiate the assumed expression for -, and let ^ be

chosen so that the first differential coefficient shall have the

same form as if h, e, vr were constant.

Thus

1 dr I

where
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or

cos (d tff) + e , sin(0
- w) = 6m2

(I+m)e sin (1
- 2m0 +

+ 6m2

(l-m)e sin (3
- 2m0 - )

and

= -
(2
- 2m) a2 sin (2

- 2m) 4-
- e sin (0

-

77^7=
-j-

(2
- 2m) a2 sin (2

- 2m)

+ ~ [1 + A2 cos (2
- 2m) 0] e sin (0

-
w),

nadh , . d6

Multiply by r*/n?a
3

;
then since

r2
-5- =H = /ma2

[1 + / 2 cos (2
ttc

we have

^.2 x72,v.

__
i

= (2
- 2m)

2 a2 cos (2
- 2m)

/ Cv Cviu

-
(2
- 2m) A2 sin (2

-
2??i) e sin (0

-
r)

+ e cos (0
-

tsr) + 2A2 cos (2
- 2m) e cos (0

-
(2
- 2m) a2 sin (2

- 2m)
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and this is equal to

7T2 .. 1 3 O ~3

T + ^m2
-, 4- ^m2

-, [cos (2
- 2m) (9

n2a?r rc
2a3 2 a3 2 a3 L v

- 2me cos (1
- 2m0 + -BT) + 2me cos (3

- 2ra0 - r)]

-Tl + \
m^ C

1 ~ 3a cos (
2 " 2m)^ ~ 3e cos (^

~ OT)]

1
m2A6

|cos (2
- 2m) + 6a2 e cos (6

-
r)

)
e cos(l-2m^ + w)- (|

- 2ml e cos(3-2m^- r)1- 2m

The terms in these two expressions which are independent of

give no new information
; equating the others :

-
(2
- 2m) htf sin (2

- 2m) sin (0
-

)

(2
- 2m) a2 sin (2

- 2m) <9

o 3 r= 3m2
?;
- -= m*e cos (6 - r) + ^

m2 6a2e cos (0
-

r)

-]
e cos ("l^2m0 + w) - (^

-
2m^

e cos (3^2w0-r)- + 2m- e cos (l

+ 9m2
7? cos (2

- 2m) 0.

Keducing this expression

(q

gQ \

^
m2 + 3m3 +

g-
m4

J
e cos (1

- 2m0 + r)

s m2 - 3m3 + >

4
e cos (3

- 2m0 - r)
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and from before

,-A cos (6 -ay) + e -T5 sm (0 -BT)
= I8m4

e sin (0 OT)du CLu

+ (6m
2 + 6m3

) e sin (f-

+ (6m
2 - 6m3

) e sin (3
- 2m.0 -F r).

Hence,

de ! 3 - -
m m<Wn2tf-

4
"

16

27
+

( T m* ~ 3m3 ~ 3 m4

)
e sin (2

- 2m)

15
^ m2

^ m3

r-^
m4

)
e sin (4

4
"

16

9
.
39

C ^m
2 -

(IK

Q fi^i
N

^m
2 +

1
m3 +

?|
m4

)
cos (2m6>

3
m2+

3
m3+

15

We notice that among these terms, one is of long period,

approximately semiannual, and will become of greater relative

importance than the others on integration.

To effect this integration, assume

n = tsr-f a sin 2 (0
- w)+ ft sin (2-2m) 6 + 7 sin {(4 -2m)0-2'&},

so that the mean motion of II is the same as that of &, and

substitute in the equation.

A. L. 5
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Then

x cos 2 (0
-

-cr)

[q
on g

|
m2 - 6m 3 +

^-
m4 f (2

- 2m) - 6m2a -
^
m2
?

x cos (2
- 2m)

f ^ m2+
1
m3 +

6|
m4

_|
m2J cos (2m(9

- 2H)

-^
m2

+^m
3 +

jg
m4 + (4-2?tt)7-^m

2 a -^w
2

7

x cos (4-

so that if we take

219
a = _ - m +

8 32

9
2

15 ,_99 4

3 3 51

we have

j TT o QOQ (~ 1 P\ Q 4< \ ~1^ = ^ m-2 +^ m4 + M^ m2 +
|
m3 +^ m4 cos (2m(9-2n).

If we write mB II =
i/r,

this becomes -^
= a b cos 2i|r,

where

3 309 ,15 9 45
a = m - - m2 -

-^-
m4

,
6 = -7- ?^2 + ra +

-g-
m4

,

and the solution is

a + 6
tan-1

A -,
tan = 0\/a2 - 62 + constant.
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Hence if we denote by
-~ the mean rate of change of cr, we have

dS

3 225 4071
^ (vyi _ ntYi" - - nm^ - - 100*

4
W

32
rt

128
m

'

c^ _ 3 225 4071

dB
~

4
h
~32

* h 128"
We observe that a -f 6 and a 6 are the rates of separation of

the Sun from the apse when the Sun and the apse are at

quadratures and syzygies with one another, respectively, that

is if we take II for the longitude of the apse, or, what is the

same thing, if we ignore small terms of short period. Hence

the mean rate of separation of the Sun from the apse is a mean

proportional between its rates when at quadratures and syzygies

respectively with the apse*.

[* This is the analogue for the case of the apse of Machin and Pemberton's

theorem on the motion of the node, inserted in the third edition of the

Principia as a scholium to prop, xxxiu., lib. in. See some notes by Adams
in Brewster's Life of Newton, Appendix xxx.]

52



LECTURE XIV.

THE LATITUDE AND THE MOTION OF THE NODE.

LET us first treat this problem on the supposition that the

latitude is so small that its square may be neglected. The

equation of motion, taken from Lecture II, may be written

d*z z mfr /- E - M r

where z = r sin (latitude) and the cube of s is omitted; or

neglecting the parallactic terms

^__J/f + ^l
dV~ [r* r'

3

J'

The value of /i,/r
3

may be considered known by the operations

which have determined the motion in an orbit coinciding with

the ecliptic ;
that is to say,

= ~
[l
+
1 2

2 + 3a2 cos 2^ +
(J

a2
2 + 3a4

)
cos

where a has the definition of Lectures IV, V ;
or numerically,

taking
n n'= 1,

^ = 117150,3 + -02523,0 cos 2t + '00025,15 cos 4>t.

And

^ = rc
/2 = '00653,6.

Hence

Jv~
2
= - z [1-17803,9 4- -02523,0 cos 2t + '00025,15 cos

4ft].
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Let us now consider the equation

where P = q + 2gx cos 2t + 2g2 cos 4ft,

in which qlt g2 are supposed small.

Suppose a term in z to be c cos (to + /3) ;
when this is

substituted in Pz there will arise terms

c cos (k
- 2t 4 ) c cos (& + 2 + ft)

c cos (A;
- 4t + @) c cos (k +

Let us therefore assume

z = c [cos (to + ) + Ci cos (A; + 2t + /9) + c2 cos (k + 4 + ft)

+ c_! cos (A;
- 2t + yS) + c_2 cos (k

-

c is arbitrary ;
we have to determine k, c1? c_i, &c.

Substitute and equate coefficients:

=0

=0

=0

... =0

If ^D ^2v are neglected, we have simply

- &2 + q
=

;

this is a first approximation to the value of k.

Taking q1 into account and neglecting q2
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In the actual case considered we notice that g does not

differ widely from unity. Hence k is nearly equal to unity

also, and the denominator in c_i is small, and makes c_j much

more important than c l .

If we substitute these values in the third equation above,

we have

whence

(P - g )
3 - 8 (&

2 -
qrf

-
{16 (g

-
1) + 2^} (k*

- q)
-
Sqf = 0,

which may be put under the form

(k*
-

g )
2 + 2 (q

-
1) (k*

-
q.)
= -

qf + i
q? (k*

-
g ) + | (A;

2 -
g )

3
,

whence

(f - 1)
3 =

(?<,
-

1)
2 -

g,
1 -

1 <?,

2
(*

2 -
?.) + g (^

3 -
?.)

3
-

With this equation we can approximate very rapidly to the

value of k. Taking as a first approximation

k*-q = 0,

substitute this value of k in the small terms and we get as a

second approximation
& = 1-08516,9.

Whence the ratio of the retrograde motion of the node to the

Moon's mean motion is

k/n
- 1 = g

- I = '00399,7,

where g is written for k/n. This value is very correct. Taking
the Moon's mean annual motion as 17325593", the resulting

annual retrograde motion of the node is

69252" = 19 14' 12".

Next find the values of the coefficients c-i, c1} c_2 , c2 . We have

ql
= -01261,5,

g -(&-2)2 = -34112,3,

2o
-

(k +2)2 = - 8-34022,8:

whence as a first approximation

c_j = - -03698,19, d = '00151,26.
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Hence

qiC-i + ?2
= - '00034,02, ftd + g2

= '00014,49,

and

go
_

(&
_

4)
2 = - 7-31821, q

-
(k + 4)

2 = - 24*6809,

whence

c_2
= - -00004,650,

c2 = -00000,587.

A second approximation to c_i, d gives

[- (A;
-

2)
2 + g ] c_! = -((?i + g2C! + ^c_2),

[- (A? 4- 2)
2 + gr ] d = -

(grx + ^c^ + ^c2) ;

with the above values

ft + #A + giC_2
= '01261,47, q1 + g2c_! + gA = '01261,03,

so that c_! = - -03698,00,

d = -00151,20.



LECTURE XV.

MOTION IN AN ORBIT OF ANY INCLINATION.

LET us consider the change in the plane of the orbit

produced in an indefinitely small time dt by the action of a

given disturbing force. Let Z be the resolved part of the

disturbing force at any time in a direction perpendicular to

the plane in which the body is moving at the instant. Imagine
the force Z to act by impulses at the small intervals of time dt,

then Zdt will be the indefinitely small velocity generated by
the force Z in the time dt, in the direction perpendicular to the

plane of orbit at the instant.

Let FP be the radius vector and P the position of the

body at the instant. Also let PT represent the velocity at

the instant in magnitude and direction
;
then if Tt be taken

perpendicular to the plane FPT and equal to Zdt, the velocity

and its direction after the impulse will be represented by Pt,

and the new plane of the orbit by FPt. Draw Tm perpen-
dicular to FP and join tm\ then tmT is the angle through
which the plane of the orbit has been turned about the radius

vector FP in the indefinitely short time dt.



LECT. XV.] MOTION IN AN ORBIT OF ANY INCLINATION.

tT Zdt
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ATNow mtmT = 7n = -
Tm

where v is the resolved part of the velocity at P perpendicular
to the radius vector. But

hence the angle through which the orbit is turned in an

indefinitely short time dt is

*
To find the corresponding changes in the elements that deter-

mine the plane of the orbit, namely, the inclination of the orbit

to a fixed plane, and the longitude of the node on that plane.

Let NPQ be the great circle which represents the plane of the

orbit at the time t, NR the plane of reference, usually the

plane of the ecliptic, P the position of the body at the same

time, and let i = PNR, the inclination, and let N be the

longitude of the node.

Let nPq be the position of the orbit at time t + dt.

Take NQ = 90
;
draw nm perpendicular to NPQ and qQR

perpendicular to NR
;
then QR i\ and by what we have

just proved

Therefore nm =
-jf

dt . sin 6, qQ=-fj.dt. cos 6,

where 6 = nP.

But nm = Nn sin i = sin i dN; qQ = di.
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Therefore
di

di

dN
dt

Zr cos 6

Zr sin

H sin i

which give the changes of the elements required.

Now let NMS be a spherical triangle, the centre of the

sphere being 6r, the centre of gravity of the Earth and Moon
;

and let GS, GM, GN point respectively to the Sun, the Moon,
and the node of the Moon's orbit upon the ecliptic, so that NM
is the plane of the Moon's orbit and NS the ecliptic. Let

MS = w, NS=0', NM=0, of which the first is identical with

the quantity denoted by the same symbol in Lecture II, but

the second and third are not so.

Then, following Lecture II, the forces on the Moon are

m'r
mMG,

mr o an
jjj-

3 cos &), in SG,

if we ignore the parallactic terms.

This latter may be resolved into

TB
3 cos to x (cos cos 6' + sin 6 sin & cos i) in MG,

, perpendicular to

>j-
3 cos &) x (sin 6 cos & cos 6 sin & cos i) MG in the plane

of the orbit,

, perpendicular to

TJ-
3 cos ft) x sin 0' sin i the plane of the

orbit.
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Now

cos a) = cos cos & -f sin sin & cos i

= cos (6
-

0') cos
2

\ + cos
((9 + 0') sin2 ^ ,

L 2t

sin # cos #' - cos sin 0' cos i

= sin (0
-

0') cos2

^ + sin (6 + (90 sin
2

\ .

- _

Hence we have the following expressions for the three forces :

x 2 cos2 sin2 + ^ + cos 2^ "

\ 7? sin * - sin (0
-

20') cos2 -

+ sin cos i + sin (0 + 20') sin2

^

Now we have seen

dNZrsinO_^ __
dt" H '

~dt
= ~

Hsini'

also, the rate of advance of the node along the orbit is

Zr sin

H tan i
'

Thus the equations of motion become

r2
~

dt

together with _

dt



LECTURE XVI.

MOTION IN AN ORBIT OF ANY INCLINATION (continued}.

To satisfy the equation at the end of Lecture XV, assume

neglecting the square of the disturbing force and the eccen-

tricity; thus in the small terms we write

d0 dO'
r = a,

Tt
=n, r=a, ^--n.

Hence

d?r

~d^
= n'a ^2 " 2m)2 Al C S 2 (6 "^ + 4^ 2 cos 26>

+ 4m2A cos 20' + (2 + 2m)'
2^ 4 cos 2 (0 + 0')] ;

substitute in the equation

therefore

4- A 1 cos 2 (6>
-

6') + ^ 2 cos 2(9 + 4, cos 2<9
7

+ At cos 2 (0 + 0')]

4

["{1
+ cos 2 - ^ cos4

-

- w2a4

[(2
- 2m)

2A cos 2 ((9
-

6>
7

) + 4>A 2 cos 2(9

8 cos 2(9' + (2 + 2w)
a ^ 4 cos 2 (0 + 0')].
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Again, we have the equation

=-
dt

which may be written

H~ = -
1
n'mW

[~sin

2 (6
-

0') cos4
1

+ sin 26 . 2 sin2

1
cos2

1
+ sin 2 (0 + 0') sin

4

^
1 .

Substitute for pa its approximate value ttV in the small terms
;

and we find from these two equations

-
(1
- m) A l + 4 (1

- m)
3A l + = m? (1

- m) cos4

1
= - - m2 cos4

1 ,

- J. 2 + 4^1 2 + ^ m2
. 2 cos2 sin2

^_ & A

3 i' i= TC m2
. 2 cos2 - sin2

^ ,

1 22
3 i i

- - mJ.3 -H 4tm*A s + Jr
m3

. 2 cos2

^ sin2 x = 0,

Therefore

_3 2 4 i_ 2-m

A z
=- 2m2 cos2

^ sin2
-,
^

2 2

3 . .i 2 + m
2'"

"

2(l+7n)(l+2m)(3 + 2m)'
and

H* = nW 1 + m2 -
|m

2

("cos

4

|
+ sin4

|)

cos 2 ^ - & + 3m COs2 Sin2 COS
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where a is defined by

If we preferred to define a so that the constant term in H*
were equal to n*a4

,
we should have

w2a4 =
fjua -f m?n?a4 = m2

?i
2a4

(cos
4 = + sin4

=r] ,

2 \ 2 2J

F 1 i i~\
or

fjL
= n2a3 1 +

<>
m2 - 3m2 sin2

^
cos2

.

Let us next find the latitude and the motion of the node.

Suppose that i = i + At,

in which Ai, AJV are small, i is a constant, and N varies

slowly in proportion to the time, so that we may assume

= N-L sin 2 (0 0') +N2 sin 20 +Na sin 20' -f- J\
r
4 sin 2 (0 4- 00,

Ai = /a cos 2(0- 0') + /2 cos 20 + /, cos 20
X + 74 cos 2 (0 +

X

).

Then remembering that

rf0' = _dN

an expression that must be used in the terms of chief import-

ance, we have

=_2(l-m)n/1 sin 2 (0
- 00 - 2w/a sin 20

at

_ 2 m - nI3 sin 20' - 2 (1 + m) n/4 sin 2 (0 +
7

),
71

+ 2 fm - -^ w^3 cos 20'+ 2(1 + m)nN4 cos 2(0+0')
\ n at J

s di . nnf+ ~T- T. sm 20
7

,

c?i cfa

in which the last term will be found to be required to get the

constant q correctly to the order m3
.
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These must be equated to

Zr cos _ Zr sin

~1T~ 5 TT^inT

respectively.

Hence

q 2mN3
2 mI3

~ = -r m2 cos i
;

O/l T*

therefore as a first approximation

g
g = ^r

m2 cos i
;

hence

io -

3 3
2/2 = -m2sin i cos i, /2

= ~ m2 sin i cos i,

9 I _i_
"

2
'

\ T "
S

* * T "3 .
~ A T 3

2
.. r_3 m sin t

T^ sin t, 2^ TT
" ~

>

1 4- T ?ft cos i
4

o/i 3 ...'..* r 3 m2
. . . ,i2 (1 + m) /4

= -m2snu sm2

^,
/4
= - smi sm2

and

3 m2

2
<i

81 m 2'

O O

2JVa =
^-m

2
cosi, J\

r
2
= ^m

2
cosi,

3 A , 3 3 racosi/ \ S
2 I m+-jmzcosi\N3

=
-jirtfcosi, 8,3

1 + 7 7ft COS I
4

Substitute above for the quantities /3> Na and we get the second

approximation to q,39 9
q = '2

m2 cos i ^m2 cos2
i +

-^
m* sin2

i.
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It will be observed that /3 ,^ are of lower order than the other

coefficients, so that in order to obtain them correctly to the

same order as the others we were obliged to retain small terms

in -=- arising from the variability of N.

If we take the variable plane defined by the longitude of the

node N and the inclination i as the plane to which the position

of the Moon is referred, we have the latitude of the Moon above

this plane

= Ai sin AxV sin i cos

3 ....... r 1m sin i cos2 =
8'" 2,3 ."1-m

1

1 + j m cos i

sin (6 -20')

5 m2 sin i cos i sin 6
o

sn



LECTURE XVII.

ON HILLS METHOD OF TREATING THE LUNAR THEORY.

LET us suppose the Moon to move in the plane of the

ecliptic, and let us refer its motion to rectangular axes in

rotation, the rotation being such that the axis of x passes

always through the mean position of the Sun; that is, the

axes rotate with angular velocity ri, and if we suppose the Sun

describes a circular orbit about the origin, its coordinates are

x' = a, y'
= 0.

Let x, y be the coordinates of the Moon.

Then the disturbing forces of the Sun upon the Moon
relative to the Earth are

ra' x a' m' m y

~7~~P~~~^' ~7*~P

parallel to the axes of x and y respectively, where

p>
= (x-aj + y\

and the forces of the Earth on the Moon relative to the

Earth are

where r'
2 = x* + y\

Now these forces may be written

dx' dy'

where f>
LL m' mx
r p a

A. L.
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Hence
IL m! f 1 A m' / 3 \

We have tacitly assumed the origin to be at the centre of the

Earth
;

if we prefer to place it at the centre of gravity of the

Earth and Moon, the necessary change is effected by multiplying
the last terms, which correspond to the Parallactic Inequalities,

Equating these forces to the accelerations of the Moon

parallel to the coordinate axes, we have the equations of

motion in the form

d?x _ ,dy ,, dl
2ri -f - ri*x = -=-

dt2 dt dx '

d*y ,
,dx ,9

dl
-J; + Zn-sr n>y =

Ty
,

or, as they may be written,

d?x _ , dy _ dR
dt2 dt dx '

, -/_
dt2

"*

dt
~

dy
'

where R = H +
^

ri'
2

(
2 + y

2

)

y2 a V 2 ^

Now suppose we have found values of as and y which satisfy

this pair of equations and which involve two arbitrary constants.

This may be accomplished by taking assumed developments

x = 2&i cos i (t + 7),

y = S6f sin i (t + 7),

substituting in the equations, and equating coefficients of the

various terms. The solution found will include the Variation

and the Parallactic Inequalities. Let it be required to amend

this solution by the introduction of the remaining two arbitrary

constants that are required for a complete solution.
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Let the additional terms that we seek be Sx, Sy, which we
shall suppose so small that their squares and products may be

neglected, let us consider first the terms which are multiplied

by the first power of one of the new arbitraries, the original

particular solution corresponding to the case in which this

arbitrary is zero.

Then &x, By are determined by the equations

d2R d*R _

d2R
dt-

'

dt dxdy"
^
df

"

where X, Y are supposed known functions of x, y or of t, and

have been added here to include disturbing causes not allowed

for in the above form of R.

Multiply the original equations by -j- ,

- and add :

d?x dx d*y dy _ dR dx dR dyWdiWdi =
d^~di

+
dy^i

= dR

since a?, y are the only functions of t that R involves
;
whence

\dt) \dt)
~

'

where C is an arbitrary constant
;
this is the integral known as

Jacobi's Integral.

Let us write

then we have F2 = 2R + G;

and from the original equations themselves

dV

dR dR ,=
, cos

(f> + -j- sin <f>
;dx dy
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and

dy .

*+ *.

dR . dR

And from these, differentiating and substituting for ~
at

we get

d?V d<> d<> A , d'B

dV



LECTURE XVIII.

ON HILL'S METHOD OF TREATING THE LUNAR
THEORY (continued).

THE equations for &, 8y are

~da?*
X +

dxJy
8 'J + X>

the equations for x, y are

,

j + ztt TT = j j- &x + -j-9 ov + F;
eft

_9 >dy _dR~~~ *""'

Multiply the former pair by -7- , -^ respectively, and the

latter pair by -, -, and add all together; we get

dy d2

Sy

dx d*R dy\ , ( d*R dx d2R dy
di
+
dxdy dt)

d> f
(dtsdy Tt

+
~df~dt

dRdSx dRdBy y dx dy
h
dx dt

+
dy dt

' *
dt- dt*

d*R dx d*R dy ^ d dR
dx* dt dxdy dt

~
dt dx'

d*R_ dx d?R dy _ d dR

dxdy dt df dt
~

dt cty

'
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Then our equation may be integrated

dx dSx dy dSy _ dR ~ dR ~

dt~dt
+
dt~dt~~dx

t f
d y

r

so that T is a known function of t, which involves an arbitrary

constant.

Now let us assume

&E = v cos
<j>

w sin
</>,

Sy = v sin
(fr + w cos <.

, .. T ,.
dx dy dSx dSy

Substitute above for - t ^ t t J. ;
we find

,

-T.
- w .

= - cos +
rf^ . ,\
-T- sin

(/>

0?V /

( dR . dR ,\ rr
j- sin (f> + r cos 6

}
w + T.

\ dx d ^
)

r
dy

dR dR . dV
But -- cos <i + -= sin 6 =

djR .

,

d5
T./^r- sm <f> + -=- cos 6 = r ( -3r +

rfa? ^ \dt

Therefore F *- -. +

y-
=

I TT (^ +
^'j

w^ +
I

whence

An arbitrary constant is included on the right. This

equation shews that when w is known, v can be found; it

remains to determine w.

Now by actual differentiation

dv dd>

dv____ _
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Also multiplying the differential equations for Sx, By by
sin

(j>,
cos

<j), respectively and adding

,

X sin
</>
+ F cos <.

Substitute and we find

C S

. - .

-r- sm2
<f> 2^ j-sm d> cos <f>

c?^
2

^rfy

X sin + F cos
</>.

Now we have seen

dto v c?F /^<i A
^7
=

1^-77 + 2 Kf -^ ^+
d* F dt \dt )

Substitute for 2 (~+nf]^ on the left.

\dt J dt

We get

<Ht^

d*R .

-,
jin <f> cos cf) + r : cos2

d)

L u,*, ^c?y 2/

Xsin </>+ Fcos<^>.
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But by the equations proved at the end of Lecture XVII,
the terms in v cancel one another, and we are left with the

equation for w :

y
- - -T-;

dt/ dt dx*

d2R . d*R .1
Z -= T- sin <b cos <z>

--
5 cos2

<p

cfo?cfa/ ^2/

Or since

1 dx . I dy
,

S111 ^=F
dR . rffi

-j sm 6 + =-
dx dy

^ .
,

1 / dR .

-jf -f 2n = ^v
- sm 6 + =- cos

af FV
the coefficient of w is

%_(_dR_dy,dR dx\ 2

_(*n_(_dRdy^ dR dx\ ,

F4
V dx dt

+
rfy ^/ V2

I dx tt'^'dy dt)
4

J^ (d*R /dy\* d*R dxdy^ d?R
fdx

"T"2 {^'
2
(dt)

"

d^dydtdi
+
'd^(di

= P, say.

This function P is a known function of t
;

it may be seen

that if

x = 2i cos i (t + 7),

y =% sin i ( + 7),

then P may be developed in the form

Hence if we omit the terms X, Y, due to other disturbances

not yet allowed for, the equation for w assumes the form

-~ + w[A + A! cos (t + 7) + AS cos 2 (t + 7) + ...]
= 0.

This is identical in form with the equation treated in

Lecture XIV, to find the motion of the node. The value of w
may be found by the method there employed, and the value

of v deduced from it.
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