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ABSTRACT

Future modifications in the TERRIER missile fire control system will

be restricted by limitations in unallocated core and by problem solution

time in the system's digital computer.

This thesis is an analysis of methods by which reductions in core

storage requirements and in problem solution time could be achieved.

A determination of those functions requiring the most computer resources

is made and alternative methods of computing the functions are analyzed.

Comparisons of implementation of the functions by software in the fire

control computer versus other devices is made, and the tradeoffs required

by each method are presented.
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I. INTRODUCTION

A. GENERAL DESCRIPTION

The TERRIER missile fire control system is currently being modernized

to replace the present MK 119 analog computer with a MK 152 (UNIVAC

1219B) digital computer for calculation of launcher, missile, radar, and

weapon direction system quantities. Figure 1 shows the relationship of

the MK 152 computer to the other system components. The fire control

system (FCS) elements include the radar, launcher, and missile. The FCS

elements communicate through the Signal Data Converter (SDC) , where analog-

to-digital conversions are accomplished. The MK 152 computer receives

information from and passes information to the FCS elements through the

SDC. The MK 152 computer also receives from the SDC outputs of other

shipboard elements, such as the gyrocompass, anemometer and the pitometer

log. The MK 152 computer can communicate with the MK 152 computer of the

adjacent fire control system. Either of the pair of MK 152 computers can

be switched to a teletype (I/O console MK 77). Both computers have

access to the Digital Data Recorder magnetic tape unit. One additional

communication path, not shown in figure 1, is between the MK 152 computers

and the digital Naval Tactical Data System (NTDS)

.

B. PROBLEM DESCRIPTION

In the implementation of the digital computer in the TERRIER missile

system, bounds have been placed on the capabilities of the system by:

1. Limitations in Storage

The software program being implemented will require most of the

available 40K words of storage. Advanced proposals for future system
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changes indicate that a requirement will exist for additional core

storage in the MK 152 computer to implement these changes. The present

high usage of available core will severely constrain these future changes

by requiring these changes to either fit in the remaining available core

space or by reducing some of the system's present capabilities.

2. Limitations in Computing Time

The TERRIER missile, missile launcher, and part of the fire

control radar require analog inputs; therefore the quantities computed

in the MK 152 computer must be converted from digital to analog. The

"smoothness" of the resulting signals, then, will be a function of the

speed of solution in the digital computer. Reference 1 indicates that

two primary sampling rates are used for input and output - 16 and 32

times per second. The problem solution time for one iteration will

determine if these sampling rates can be met.

3. Limitations on Accuracy

As indicated previously, conversion of the data to and from the

FCS elements must be accomplished by the SDC. The accuracy of the data

input to the MK 152 computer, then, will be limited by the accuracy

of the data after conversion by the SDC. Conversely, the accuracy of

the data to the FCS elements will be a function of the accuracy of the

output data from the MK 152 computer after conversion by the SDC. For

both communication paths, two formats of words are used. The words

contain an address and either 10 or 12 bits of data depending on the

source or destination. With these limitations, it is desirable that

minimal degeneration of accuracy occur in the MK 152 computer during

manipulation of the data to insure that the output will have the maximum

accuracy possible.

10





C. SYSTEM PARAMETERS

1. Equations for the MR 152 Computer

Reference 1 contains the organizational relationships of the

system components and the signal flow between these components. The

equations used in the MK 152 computer to generate the signals to other

components are contained in Ref. 2. The validity and efficiency of the

equations in Ref. 2 are not questioned in this report.

2. MK 152 Computer Characteristics

Appendix A is a partial list of the capabilities of the MK 152

computer. A complete description of the organization, characteristics,

and operations of the MK 152 computer may be found in Ref. 3.

D. SELECTION OF OPERATIONS FOR ANALYSIS

In section II, the computer operations are separated into two broad

categories - logic operations and arithmetic operations. A comparison

is made of the frequency of execution, speed of execution, and core

storage requirements of the algorithms within each category to determine

which algorithms use the most computer resources. Only those operations

using the most computer resources are further analyzed, because reductions

in core and computing time in these operations would provide the most

overall computer resource savings.

E. ANALYSIS OF OPERATIONS

The methods available for implementing the functions are compiled

in section III. A comparison is made in sections IV and V of the methods

to determine those applicable to this particular problem. An analysis is

done in those sections as to which method would provide the greatest

reductions in storage and computation times.

11





F. IMPLEMENTATION OF FUNCTIONS

In section VI, a comparison is made of the present method of imple-

menting the functions within the MK 152 against the method selected in

section IV with the trade-offs incurred in core storage, speed of execu-

tion and accuracy. Consideration is given to the fact that the savings

in core and speed might be less than that required for implementing

future changes; therefore two alternative methods of implementing the

functions are considered in section VI. The alternatives consist of

adding additional devices to the system which would operate in conjunction

with the MK 152 computer. This would enable elimination of the functions

from the MK 152 computer, and parallel computations by the auxiliary

device. The two devices considered are a microprogrammed computer and

a hardware function generator.

G. GENERAL APPLICABILITY

Although the initial research was concentrated on the TERRIER missile

system, other Navy systems utilize the same or similar functions during

their computations. The MK 86 gun system, the TARTAR missile system,

and the TALOS missile system all use the MK 152 computer for fire control

system calculations. All of these shipboard systems, for instance, require

coordinate conversion matrices to convert the radar line-of-sight to

stable deck coordinates; therefore, the analysis conducted herein of that

process would have equal applicability to these other systems.

12





H. SUMMARY OF INTRODUCTION

This thesis is an analysis of methods by which the core usage and

computation times of the MK 152 digital computer in the TERRIER missile

fire control system could be reduced in order to increase the flexibility

of the system for future changes. This analysis determined that:

If these future changes require only a moderate increase in core

storage without a concurrent decrease in computing time, this can be

achieved by implementing polynomial evaluations for the trigonometric

functions within the MK 152 computer program;

If a decrease in computing time is the primary requirement for

future changes, then implementation of the trigonometric functions by a

hardwired device would be desirable;

If both core and time savings are required, then the addition of a

microprogrammed computer to the system would provide the most savings

in both areas.

Thus, alternatives are available for providing reductions in the

limiting areas of the TERRIER missile system computer program, so that

future changes may be made without system degradation.

13





II. SELECTION OF OPERATIONS FOR ANALYSIS

A. CATEGORIZATION AND COMPARISON OF OPERATIONS

The algorithms contained in Ref. 2 were divided into two primary

categories: logic operations and arithmetic operations. The operations

on both lists were compared to determine which of these operations had

the highest storage requirements and total computer use time during one

problem iteration.

B. RESULTS OF COMPARISONS

The comparison and elimination processes resulted in the following

operations being classed as the primary constricting operations in each

category:

1". Logic Operations

None of the logic operations had long execution times or high

storage requirements. The most often repeated operation was a compare

and branch on condition function. The MK 152 computer can process this

type of statement with a comparative mask and jump.

2 . Arithmetic Operations

The list of operations in this category was narrowed to two

functions: integration and trigonometric function evaluation. In the

present MK 152 program, integration is accomplished by a rectangular

approximation method. The trigonometric functions are evaluated by

dividing the digital representation of the input angle into three parts

The most significant bits are used to determine the quadrant of the

angle. The remaining bits are evaluated by using the trigonometric

identity for the sum of two angles. The trigonometric value of the

14





major portion of the angle is obtained by table lookup, and the trigono-

metric value of the minor portion of the angle is obtained by a Taylor

series polynomial expansion.

Table I is a compilation of the number of repetitions per

computation cycle, speed of execution, and core requirements for each of

the above operations. In the TERRIER system, separate computation paths

are required depending on the mode of operations. Table I was constructed

from the normal air mode with a semi-active homing missile computation

as being a representative path. As can be seen from Table I, the

trigonometric calculations placed the most demands on the MK 152 computer.

NUMBER OF EXECUTION CORE
OPERATIONS REPETITIONS TIME ( SEC) (WORDS)

Trigonometric
Functions

SIN/COS 13 251-349 315

ARCTAN 7 235 avg. 150

ARCSIN 5 208-348 134

Integration 18 30 4

Conditional
Branch 27 16 9-12

Table I

Operational Requirements

C. SELECTION OF THE TRIGONOMETRIC FUNCTIONS

As can be seen from Table I, considering the number of repetitions

to be fixed, the greatest possibility of achieving reductions in execu-

tions time and core storage would occur with the trigonometric functions;

therefore only the trigonometric functions were selected for analysis in

this thesis.

15





III. AVAILABLE TRIGONOMETRIC COMPUTATION METHODS

A. POLYNOMIAL EVALUATION METHODS

References 4 through 8 describe various methods of computing the

trigonometric functions. These methods were compared in order to

determine which would provide the desired accuracy with a limited word

size, and at the same time minimize the execution time and core require-

ments. The following methods appeared feasible:

1. A Telescoping Power Series

In this method [4, 5], a function is first expanded by a Taylor

series. For instance, for the sine:

SIN(it x/2) = a-j^x - a3x3 + a^x5 . . .

The series is truncated to the point that the error is slightly greater

than that desired. In this case, the absolute value of the error in

terminating the expansion at three terms for the SIN is less than or

equal to 0.00468 over the range of x from to 1. This would mean 7-8

bits of accuracy in the MK 152 computer, which is slightly less than

that desired. The expansion is then carried one term further and then

telescoped by replacing the last term of the expansion with the Chebyshev

expansion for that last term. For this example, the Chevyshev expansion

is:

x
7

= l/64(b
5
x5 - b

3
x3 + b

±
x + T

y
)

The magnitude of T
7
never exceeds one; therefore the absolute value of

the error is bounded. After replacing the last term with the Chebyshev

expansion and regrouping terms, the error will be determined by the

magnitude of the coefficient of the last term in the telescoped series.

16





For SIN(tt x/2), the maximum value of the error is + 0.0000731529, which

is 13-14 bits of accuracy. The telescoping process has enabled reduction

of the error as compared to a Taylor series for a given number of terms.

2. A Chebyshev Expansion

The Chebyshev polynomials are generated from a sequence of cosine

functions using the transformation 9 = cos" x to obtain Tn (x) = cos n9.

Repeated application of the trigonometric identity

cos n9 = 2 cos9 cos(n-l)6 - cos(n-2)9

will yield higher-order Chebyshev polynomials. The advantage of the

Chebyshev method is that the maximum error does not occur at the end

points of the function, but rather at intervals in the range of the

function [4,5]

.

3. Newton's Divided Difference Polynomial

This method [6] uses a pre-defined table for interpolating values

of a function. The function is evaluated as follows:

f(x) = P (x) + R (x)
n n

where P
n
(x) = f(xQ ) + (x-xQ ) f (x1 ,xQ ) + (x-xQ ) (x-x

1 )

f(x ,x ,x ) + ...+(x-x
Q

) (x-x
1
)...(x-x

n_ 1 )

f(xn ,xn_i,...,x )

and where. R (x) = . tt, (x-x. ) f (x x ,x ,,..., xn ) , the error,
n x=l l , n' n-1 '

Table II is an example of a divided difference table that could be used

for finding the cosine of an angle 9. Evaluating the cosine using this

method, the absolute value of the error is less than 10"
, which provides

13-14 bits of accuracy. Generally, the error is less than this maximum

bound. For instance, the cosine evaluated at 9 equal to 0.25 has an

error of 1.77xl0~5 .

17
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A. Least Squares Fit

This method minimizes the average square difference between the

polynomial and the true trigonometric function. The difference is

squared and integrated over the range of the function. Partial deriva-

tives are taken with respect to each of the polynomial coefficients, and

each of the resultant equations set equal to zero to find the minimum

of the function. If n equals the number of terms in the polynomial then

the result will be n equations in n unknowns. All of the equations will

be linear and in terms of the polynomial coefficients. This method will

not produce the closest approximation to the function. Using this

method, for example to obtain the coefficients for a polynomial repre-

sentation of C0S(ttx/2) results in the following equations:

The polynomial representation is:

C0S(tix/2) = E„a x
2r

r=0 2r

In the first equation that follows, then, the a's are the coefficients

to be determined.

1 n 2r 2
f(x) = / ( E a?T.x - C0S(ttx/2)) dx

° r=0

n n+2
= I al +2 Z (-l) r+1a a +

r=0 2r s=t+2 2r s
2r+l

2 I (-1)
S

2r! a2rs=0
(2r-2s)!(Tr/2)2s+l

= 2
Jo _^2r_ (-l) r + 2A =

2r+l
8a

^- = 21 a
2r (-l)

r
+ 2B =

aa
2 r+0 2r+3

8f = 2 Z
a
2r ("D

r
+ 2C =

9a2n r=0 2r+2n-l

19





Where A, B,..,C are constant terms resulting from the last summation in

the f(x) equation.

B. TABLE LOOKUP METHODS

The trigonometric functions can be evaluated by pre-storing the sine

and cosine values in a table in computer memory. Obviously, not all

values of the function over the entire range of the function can be

stored because of physical limitation on table size; therefore some

interpolation method must be employed.

1. Linear Interpolation

The values in the table above and below the input angles can be

extracted. An interpolation increment would be determined by a comparison

of the magnitude of the difference in the input angle from adjacent

table indices and the difference in the extracted values, i.e.,

sin(A,+a)~ sin(A.) + _ a (SIN (A. , , )-SIN(A. )

)

2

.

Approximations

The input angle can be separated into the sum of two or more

angles. This separation is done in order to be able to use approxima-

tions for smaller portion of the angle. Table entries will only have to

be provided for the major portion of the angle; therefore the size of

the table will be less than that required to represent the entire angle.

The trigonometric identities for the sine and cosine of the sum of

angle can be used for the evaluations after the table value has been

extracted. For instance, for the sine the trigonometric identity is:

SIN(A.+a) = SIN(A.)COS(a) + COS(A. ) SIN(a)11 i

where A. represents the major portion of the angle, and a the minor part

of the angle.

20





IV. ANALYSIS OF POLYNOMIAL COMPUTING METHODS

A. PURPOSE OF ANALYSIS

The series approximations to the trigonometric functions given in

Refs. 4 through 8 provide high degree of accuracy in the evaluations.

This accuracy is attained, in part, by precisely defining the polynomial

coefficients to a large number of decimal places. None of the references,

however, examined the effect of rounding off the coefficients in order

to apply the polynomials to a limited word size computer such as the

MK 152. In addition, the polynomials were written for applicability in

a floating point arithmetic mode of operation, which is not presently

implemented in the MK 152 computer. This analysis was conducted to

determine if:

1. The polynomial coefficients could be rounded to a degree

expressible as single precision numbers in a limited word length machine

without serious degradation of accuracy.

2. The errors generated by fixed point arithmetic operations of the

polynomial would not seriously degrade the accuracy.

These problems could be reduced by the use of double precision (36bits)

arithmetic and/or floating point; however the increased computation

times and additional core storage requirements for these modes would be

unacceptable in the fire control system.

21





B. ERROR ANALYSIS PROCEDURES

A set of polynomials from Ref. 4 with input ranges of — tt/2 and a

set of polynomials generated by the least square error method with input

ranges of - 1 were used for evaluations. These two sets of polynomials

were chosen as representing the largest variation in coefficient magni-

tudes and input ranges; therefore they would probably produce the

greatest difference in errors due to rounding operations. An analysis

was first conducted using a gross error criterion in order to obtain

an estimate of the number of terms required in the trigonometric polyno-

mials . From the results of this initial analysis, a detailed simulation

was done to:

1. Achieve a true bound on the error.

2. Determine the errors due to coefficient rounding alone.

3. Establish the total error because of rounding and arithmetic

operations and determine if the resulting error reduced the accuracy

below that required in the MK 152 computer.

C. SINGLE FUNCTION ERROR ANALYSIS

1. Determination of Gross Error Bounds

Reference 7 provided a method of determining the maximum error

bounds due to roundoff in the coefficients and due to roundoff in

arithmetic operations. It was found, however, that the computations

required using this method were difficult and cumbersome. The method

contained in Appendix B was developed in order to simplify the calcula-

tions. A computer algorithm was generated using this method to determine

the gross errors generated in rounding the polynomial coefficients. In

successive runs, the coefficients were rounded to 3,4 and 5 decimal

22





places to simulate the word lengths of small machines. In each case,

the polynomial was nested according to Horner's rule. As noted in

Ref. 4, for polynomials with small numbers of terms, this form provides

the minimum number of arithmetic operations. The results of these

evaluations for the sine and cosine were that the gross error was less

than +10 after the rounding operations for 3,4, and 5 term polynomials,

except when the 4 and 5 term polynomial coefficients were rounded to 3

decimal places. Polynomials with more than 5 terms could not be repre-

sented, because the coefficients of the least significant terms rounded

to zero with 5 or fewer decimal places. On the basis of these results,

further analysis was limited to polynomials with 5 or fewer terms.

2. Refinement of Error Bounds

The polynomial expansions used were:

COS(Z) = a
Q

- a
2
Z
2 + a

4
Z
4

- a
6
Z
6

SIN(Z) = a Z - a Z
3+ a Z

5 - a Z
7

1 3 5 7

The coefficients from Ref. 4 and those of the least square error

expansions differ because of the magnitude of the input values. The

trigonometric functions from Ref. 4 are of the form:

COS(X) 0£ X <_ tt/2

SIN(X) 0<_ X £ tt/4

Note: the range for SIN was the maximum available in Ref. 4. This

method of evaluation will be referred to as method 1. The second

method, which will be referred to as method 2, was generated from the

least mean square error, and has the form:

C0S(ttX/2) 0< X< 1

SIN(ttX/2) 0< X< 1

23





Using both methods 1 and method 2, the effects of rounding the coeffi-

cients alone on the approximation of the polynomial functions was

determined. Then, the effects of the rounding of coefficients plus the

affects of arithmetic operations on errors was determined.

a. Coefficient Roundoff Effects Alone

A computer program was generated to compare the effect of

roundoff of the polynomial coefficients alona with the double precision

trigonometric functions in the IBM 360/67 library. Figures 2 through 8

show the errors resulting from the rounding operations. The increasing

error in the functions with decrease precision clearly illustrates the

poorer approximations resulting from the rounding of the coefficients.

In all of the figures, it can be seen that the rounding to 3 decimal

digits greatly magnified the error. Thus, a word size of at least 12

bits is required in a digital computer if polynomial evaluations of

the trigonometric functions are desired.

b. Coefficient Roundoff Plus Arithmetic Effects

A digital computer program was written to simulate the

arithmetic operations in a fixed point arithmetic logic unit (ALU) of a

digital computer. Within the program, two's complement arithmetic was

used. Algorithms were generated for the following operations:

(1) Multiply . Booth's algorithm [9] was used because of

the high speed of the algorithm and the ability to multiply signed

numbers with no special manipulation.

(2) Add/Subtract . Adds were accomplished in normal two's

complement form. Subtracts were done by complementing the subtrahend

and adding.

24
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(3) Shift . Left shifts were conducted with a zero fill in

the least significant bits. Right shifts were accomplished with sign

bit extension.

(4) Complement . Complementation was done by searching the

bit string from right to left until the first set bit was encountered.

That bit was skipped and all the remaining bits toggled.

The insertion of output statements at the end of each subroutine pro-

vided data as to which operations were contributing the most to error

generation. The primary error generation occurred in the multiply

operations. Horner's form was again utilized to minimize the number of

ltiplies and the magnitude of the numbers. Using this form, themu

largest number encountered was (tt/2) in the method 1 evaluations;

therefore the binary point could be placed after the third bit.

During the program runs, the sine and cosine were

evaluated over the range of - tt/2; however, since these functions are

"well behaved", only selected points over that range were actually taken.

At each of the points, several small increments above and below the

point were also evaluated, so that the trend of the error could be

established. After completion of runs over the full range for each of

the functions, the input range was restricted to where the error appeared

to be the largest for each function. Additional runs were made with

small increments in the restricted range to establish the maximum error

magnitude as closely as possible. Tables III and IV contain selected

values obtained during these runs. In each table, the maximum and

minimum error points have been included. As can be seen from both

tables, the magnitude of the error for the cosine grew larger as the
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cosine approached zero. For both methods, the magnitude of the error

with three terms for the cosine was unacceptable over the full range,

as well as the four term cosine by method one. The four term method

two cosine could be acceptable for implementation, because of over 11

bits of accuracy in the interval. The three term sine by method two

produced over 12 bits of accuracy on the same interval. Consideration

was given to restricting the range to [0 , tt/4]. This would have

reduced the error in the polynomial approximation (Figure 5) , but the

computation time would have been increased depending on the octant of

input angle. The amount of error reduction achievable with this range

reduction was not computed.

For the method 1 runs, a comparison was made of the

effects of rounding versus truncation during the arithmetic operations.

In truncation, the least significant bits are dropped regardless of

magnitude. In round-up, the 18th bit is always set to one regardless of

the magnitude of the least significant bits. In round-off, the 19th

bit is examined. If this bit is set, then one is added to the 18th bit.

If the 19th bit is not set, the upper 18 bits are left unchanged. As

can be seen from Table III, very little difference in accuracy was

detected among the errors due to truncation, round-up and round-off.

The increase in computation time required for either rounding operation

versus the minimal accuracy gained would eliminate rounding as a desir-

able operation in the fire control system. For the method 2 runs, only

truncation was used.
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Table III-l

COS(X) - 3 terms, 5 decimal places

OUTPUT TOTAL ERROR
COS(X) Truncation Round-up Round-off

0.00000 0.00122 0.00123 0.00123
0.27740 0.00040 0.00040 0.00040

0.36646 0.00018 0.00019 0.00019
0.47942 0.00030 0.00031 0.00031
0.50708 0.00042 0.00047 0.00047

0.52075 0.00074 0.00074 0.00074

0.86586 0.00049 0.00010 0.00059
0.96272 -0.00011 -0.00007 -0.00007

0.98853 ' -0.00039 -0.00041 -0.00041

0.99585 -0.00042 -0.00042 -0.00042

Table III-2

COS(X) - 4 terms, 5 decimal places

OUTPUT TOTAL ERROR

COS(X) Truncation Round-up Round-off

0.00000 -0.00133 -0.00134 -0.00134

0.24740 -0.00399 -0.00400 -0.00400

0.36627 -0.00127 -0.00128 -0.00127

0.47942 -0.00017 0.00031 0.00031

0.50661 0.00047 0.00047 0.00047

0.52075 0.00073 0.00074 0.00074

0.86586 0.00060 0.00059 0.00057

0.96272 0.00042 0.00042 0.00042

0.98893 0.00008 0.00009 0.00009

0.99626 0.00007 0.00007 0.00006

Note: The negative sign on the Error indicate that the

computed value was less than the real value.

METHOD ONE ERRORS

Table III
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Table IV-

1

C0S(ttX/2)- 3 terms, 5 decimal places

OUTPUT OUTPUT
C0S(ttX/2) TOTAL ERROR COS(ttX/2) TOTAL ERROR

0.00000 0.00249 0.83147 0.00035
0.00077 0.00116 0.92388 -0.00002
0.19509 -0.00290 0.92621 0.00009
0.38268 -0.00167 0.98086 -0.00024
0.70711 0.00020 0.99577 -0.00038
0.71143 0.00026 0.99881 -0.00024
0.77301 0.00034 0.99996 -0.00029

Table IV-2

COS(ttX/2)- 4 terms, 5 decimal places

OUTPUT OUTPUT
COS(*X/2) TOTAL ERROR COS(ttX/2) TOTAL ERROR

0.00000 0.00001 0.83147 -0.00024

0.00077 -0.00010 0.92390 0.00000

0.19509 0.00040 0.92621 -0.00021

0.38268 0.00031 0.98086 -0.00009

0.70711 -0.00014 0.99577 -0.00006

0.71141 -0.00005 0.99881 0.00002

0.77301 -0.00024

Table IV-3

SIN(ttX/2)- 3 terms, 5 decimal places

OUTPUT
SIN(ttX/2) TOTAL ERROR

0.048685 -0.00010
0.091909 -0.00011

0.146730 -0.00012
0.194714 -0.00013
0.377007 -0.00005

0.382639 -0.00007

0.555570 -0.00003

OUTPUT
SIN(ttX/2) TOTAL ERROR

0.63439 0.00000

0.70275 0.00000

0.70707 -0.00008

0.92388 -0.00005

0.98079 -0.00019

0.99999 0.00000

1.00000 0.00000

Table IV

Method Two Error
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3. Evaluation of ARCTAN

The inverse tangent can be approximated by a series which is of

the same form as that for the sine, only with different coefficients;

therefore, the procedures above were repeated for the inverse tangent.

The inputs for the inverse tangent are Y divided by X, which goes to

zero as Y goes to zero and infinity as X goes to zero. This range can

be reduced to - 1 by evaluating the smaller of Y/X or X/Y. The result

of this evaluation may have to be rotated 90° depending on the quadrant

and whether Y or X is the larger value. As with the sine and cosine,

selected values obtained in the computer simulations runs are listed in

Table V. The 3 term ARCTAN has an accuracy of more than 10 bits over

the range [0 , 1], and the 4 term ARCTAN has an accuracy of more than

12 bits for that range. The addition of the fourth term would require

an additional add and multiply. In the MK 152 computer, this would

require 3 additional core locations and 21 microseconds additional

computation time. Thus, 2 additional bits of accuracy could be obtained

with those expenditures.

4. Evaluation of ARCSIN

The evaluation of the inverse sine becomes difficult as the

input approaches the value of 1. There is no simple solution for this

problem as with the ARCTAN. The ARCSIN can be evaluated over the full

range by using the trigonometric identity

X
ARCSIN (X) = ARCTAN

To be able to utilize this effectively in the fire control system, the

evaluation of the square root would have to be rapid. An analysis of

the square root was not conducted as part of this thesis; however, it
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Table V-l

ARCTAN (X) - 3 terms, 5 decimal places

OUTPUT OUTPUT
ARCTAN TOTAL ERROR ARCTAN TOTAL ERROR

0.78538 0.00051 0.12051 -0.00051
0.71883 -0.00069 0.10894 -0.00054

0.6A350 0.00005 0.09348 -0.00046
0.46365 0.00034 0.06242 -0.00029
0.46052 0.00040 0.05853 -0.00030
0.35877 -0.00025 0.03124 -0.00023
0.24495 -0.00069 0.02734 -0.00024
0.18535 -0.00066 0.01562 -0.00012
0.12435 -0.00058 0.01172 -0.00012

Table V-2

ARCTAN (X) - 4 terms, 5 decimal places

OUTPUT OUTPUT
ARCTAN TOTAL ERROR ARCTAN TOTAL ERROR

0.78538 0.00002 0.12051 -0.00015
0.71883 0.00016 0.10894 -0.00018
0.64350 -0.00007 0.09348 -0.00010
0.46365 0.00010 0.06242 -0.00016
0.46052 0.00005 0.05853 -0.00006

0.35877 0.00000 0.03124 -0.00011
0.24494 -0.00008 0.02734 -0.00012
0.18535 -0.00017 0.01562 -0.00012
0.12435 -0.00009 0.01172 -0.00012

. Table V

ARCTAN Evaluation
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appears that the 190-196 microseconds [10] now required for the square

root evaluation could be shortened considerably by optimizing the

starting value of the Newton-Raphson iteration by the method in Ref. 11.

In the present implementation, the ARCSIN requires 208-348 microseconds

for evaluation, so implementation by the ARCTAN should be less than or

equal to this time. The implementation of a common subroutine for both

functions would provide a saving of about 130 storage locations.

D. MULTIPLE FUNCTION ERROR ANALYSIS

In the fire control problem, the greatest number of operations on

a set of quantities, and hence the greatest error, is in the evaluation

of the coordinate transformation matrices:

cosAsinB cosZo -sinZo cosWsinX

cosAcosB = sinZosinEio cosEio cosZosinEio x cosWcooX

sinC sinZocosEio -sinEio cosZosinEio sinW

The largest error for the single trigonometric functions was 0.00040

for the cosine of 78.75° (Table IV-2) . In the 3x3 matrix, Eio is ship's

pitch angle and Zo is ship's roll angle; therefore, as these angle

never exceed about 45°, the cosine of these values will never be eva-

luated at the maximum error point. In fact, Eio is generally limted to

less than a few degrees, which is the range where the cosine error is

minimum. The quantities W and X are obtained from the FCS elements.

Both inputs can attain the maximum error simultaneously. To determine

how much error would occur if both W and X were at 78.75°, the product

of cosWcosX was first taken. The resultant error for the product was

0.00032, which is less than for the cosine alone. Thus, the maximum

error is not at the point both functions individual errors are maximum.
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The maximum error would occur when either X or Y was at 78.75° and the

other value was 0°. At that point, the error would be 0.0004, which

is better than 11 fractional bits of accuracy. The outputs of the

matrix, cosAsinB and cosAcosB are used as the inputs for the inverse

tangent evaluation. As can be seen from the matrix, the product of

cosWcosX doesn't enter into the calculation of cosAsinB. The maximum

error, therefore should be less than above. The calculated maximum

error is 0.00031. With similar reasoning as above for cosAcosB, the

maximum error will be 0.00040. Thus both inputs to the ARCTAN subroutine

retain more than 11 bits of accuracy for the full range of these values.

After evaluation of the ARCTAN with four terms, more than 11 bits of

accuracy were still available. The sinC result will have a maximum

error of 0.00020, which is better than 12 bits of accuracy. This is used

as an input to the ARCSIN subroutine. If the procedure noted in the

section on ARCSIN evaluation is used, then the accuracy achievable in

the subroutine will depend on the accuracy of the square root calculation,

E. POLYNOMIAL EVALUATION SUMMARY

The use of a 4 term cosine and 3 term sine by method 2 and a 4 term

ARCTAN will produce results with sufficient accuracy for implementation

in the MK 152 computer.

It should be noted that the binary terms used in the polynomials

may not be the optimal set for maximum error reduction. After deter-

mining the magnitude of the coefficients in decimal form, the terms were

converted to binary. As a true binary representation was not possible,

some deviation in binary representation can be expected. During the

simulation runs, some of the least significant bits were changed to
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determine if the resultant error was improved or degraded by the change,

Sufficient bit changing was done to insure that the functions were

"reasonably" accurate; however optimization was not attempted. A minor

increase in accuracy could probably be achieved by the use of an optimi-

zation program.
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V. ANALYSIS OF TABLE LOOKUP METHODS

A. GENERAL CONSIDERATIONS

1. Form of Inputs

The values input to the MK 152 computer are scaled in Binary

Angular Measurements (BAMS). As described in Ref. 12, the high order

bit is normally equal to 360° in BAMS, and each succeeding bit is equal

to one-half the value of the preceding bit. In implementation in the

MK 152 computer, however, this form is modified so that the high order

bit equals 180°. This limits the expression of angular values to the

range from zero degrees to slightly less than 360°.

2. Range Reductions

Although the inputs can span the range from 0° to 360°, it is

desirable to reduce the range to some smaller span so that the corres-

ponding table size can be reduced. This reduction can be accomplished

by extraction of the high order bits and processing them separately.

For instance, the extraction of the two highest order bits in an input

angle to the MK 152 would reduce the range table to 0° to 90°. After

extraction of the trigonometric value of the angle from the table, the

two bits extracted would have to be evaluated to determine the rotation

required to place the trigonometric value in the proper quadrant. Each

bit extraction reduces the range to one-half the size of the previous

range, and consequently reduces the table size by one-half. The compu-

tation time, though, is increased by each extraction because of the

necessity of providing separate evaluations for the values of the

extracted bits. So the primary considerations in a table lookup program
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are the tradeoff in table size versus the speed of conversion. Figure 9

is a graph of the core storage requirements for a table of sine or cosine

values plotted against the maximum difference in the trigonometric values

between two adjacent storage locations for either a 45° or a 90° range.

It can be seen from the graph that increases in table value accuracy

rapidly becomes expensive in terms of core storage requirements.

3. Use of Approximations for Table Size Reductions

Figure 9 shows that to achieve 10 bits of accuracy (.001 maximum

difference between adjacent storage locations) would require a large

table if either a 45° or 90° range is used. After extraction of the

upper bits for range reduction, the remainder of the word can be

subdivided into a major angle portion and one or more minor angle portions

The major angle portion would be evaluated by table lookup and the minor

portion obtained by some other method such as additional tables, polyno-

mial evaluations, or by interpolation. With the extraction of the low

order bits for separate evaluation, the number of trigonometric values

required to be stored in the table is reduced. Again referring to Figure

9, if the angle increments in the major portion of the input angle are

— 3 — ^increased so that 6x10 vice 1x10 is required between the maximum

adjacent table values, then the table could be reduced from 1526 words

to 256 words

.

The evaluation of the major portion of the angle can be made very

fast by using the angle input as the entry address in the table. The

speed of evaluation of the minor portion of the angle will depend on the

evaluation method used. If polynomials or additional tables are used,

then trigonometric identities must be employed to establish the trigono-

metric value of the total angle. If interpolation is used, then the
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ratio of input values to the table values must be computed. All of these

minor angle evaluations utilize some approximation method; therefore some

degradation of accuracy can be expected.

4. Summary of General Considerations

Reductions in table size can be accomplished by dividing the

angle into several sections. The extraction of the upper bits permits

range reductions for the table evaluations. Extraction of the lower bits

for separate processing increases the interval between stored table

values. The reductions in table size accomplished by these methods

requires more complex calculations, which causes increases in computation

times, and results in an attendant loss of accuracy.

B. DETERMINATION OF RANGE REDUCTIONS

The number of storage locations required to represent a full 360° for

th'e sine and cosine would be prohibitive; therefore, some range reduction

must be utilized. The repetition of the trigonometric values by quadrant

with only sign changes, makes it desirable to reduce the range for table

lookup to 0° to 90°. This would require extraction of the top 2 bits of

the input angle. For implementation in the MK 152 computer, the addi-

tional computations would require adding 14 instruction and would increase

computation time by 16 to 28 microseconds over that required for a full

table. For 10 bits of accuracy, this operation reduces the table size

to 1536 words. For the same accuracy, the extraction of an additional

bit would reduce the range to 45° and the table size to 768 words. This

further reduction would require an additional 7 instructions and 28 micro-

seconds computation time. For further range reductions, the symmetric

properties of the sine and cosine used above are no longer applicable;

consequently, computation time becomes large.
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Thus, the selection of range reduction will depend on whether storage

or computation time is the most critical factor.

C. DETERMINATION OF APPROXIMATIONS

After performing the range reduction, the remainder of the input

angle can be divided up into two or more subdivisions. The upper bits

will represent the major portion of the angle, and will be referred to

as angle A. The lower bits, which will constitute the remainder of the

subdivisions, will represent a minor portion of the angle. This lower

portion will be referred to collectively as angle B, regardless of the

number of subdivisions. The trigonometric value of angle A will be

obtained by table lookup. Three methods were considered for obtaining

the trigonometric values:

1. Linear Interpolation

In this method, the input angle is separated as follows:

quadrant angle A angle B

The trigonometric value of angle A is obtained from a table. This value

is pertubated by adding an interpolated trigonometric value for angle B.

The equation to accomplish this is:

B
SIN(A.+ B) = SIN(A.) +-s (SIN(A.^)-SIN(A.))

1 , 1 i+1 1+1 1

where A. is the table entry for angle A and A. , is the next adjacent

table entry.

Considering the midpoint in the interval between adjacent table values

as approximately the point of poorest interpolation, the error produced

for the sine near 0° was 0.00317. This is less than 9 bits of accuracy;

therefore, this method was eliminated from consideration to implement

in the fire control system.
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2. Table Plus Polynomial Evaluation

This method uses the following trigonometric identities for

evaluation of the sine and cosine:

SIN(A+B) = SIN(A)COS(B) + COS(A)SIN(B)

COS(A+B) = COS (A) COS (B) - SIN(A)SIN(B)

The sine and cosine of angle A are obtained by table lookup. The sine

and cosine of angle B are obtained from a Taylor series expansion. If

the angle B is sufficiently small, then only a one term expansion will

be required for the sine and cosine of B to obtain a good approximation.

From the single term expansions, the SIN(B) is approximately equal to B

and the COS(B) is approximately equal to 1. Inserting these quantities

in the original trigonometric identities provides the following

simplifications

:

SIN(A+B) = SIN (A) + (B)COS(A)

COS(A+B) = COS (A) - (B)SIN(A)

This method is presently implemented in the MK 152 computer. In that

subroutine, angle A and angle B are each 8 bits. Thus, 256 words are

required in the table for referencing by angle A. The maximum value

of angle B is 42.0228'; therefore the one term expansions provide a good

approximation. Fourteen bits of accuracy were achieved over the range

- Tr/2 for both the sine and cosine in the implementation. Reducing A

to 7 bits and increasing B to 9 bits would reduce the required table to

128 words, but double the maximum value of B. Using the one term Taylor

series expansion, the error in the approximation reduces the accuracy

over the range to less than 9 bits. An additional term was added to

both expansions to increase the accuracy; however, the increased number

of operations extends the computation time beyond that required for a
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polynomial evaluation alone, and a table was still required. Thus , the

highest efficiency in terms of time and core storage using this method

is as presently implemented.

3. Multiple Tables

The trigonometric identities from the last section were used, only

the trigonometric values for angle B were obtained by a table vice

approximation. This method was much slower in computation time for

evaluation of angle B and required more core storage then using the

polynomial approximation for B.

D. COMPARISON OF TABLE LOOKUP METHODS

The present method implemented in the MK 152 computer using a table

for the major portion of the angle and one term polynomial approximations

for the minor portion of the angle yields the greatest accuracy, for

the core and time expended, of any table lookup algorithm of this class.
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VI. COMPARISON OF TRIGONOMETRIC EVALUATION METHODS

A. METHOD IMPLEMENTABLE IN THE MK 152 COMPUTER

The primary controlling criterion for the methods analyzed was the

accuracy requirement in the TERRIER fire control system. It was found

for the polynomial evaluation methods (Section IV) that a 4 term cosine

and a 3 term sine would meet the requirement. The 4 term polynomial

expansion for the inverse tangent would also meet the accuracy require-

ments, and, if a sufficiently accurate square root routine were used,

the inverse tangent subroutine could be used for the inverse sine. The

presently implemented for of table lookup (Section V) using the sum of

angle trigonometric identities with a table lookup plus polynomial

evaluation provided sufficient accuracy.

B. COMPARISON OF IMPLEMENTATION REQUIREMENTS

1. Sine and Cosine

Table VI is a comparison of the MK 152 computer resources expended

by the polynomial evaluation and table lookup methods.
Computation Core Accuracy

Method Time (usee) (words) (bits)

Polynomial

Table Lookup

186-204*

180-194*

55

315

11-12

14

*Time dependent on input angle quadrant.

Table VI

MK 152 Computer SIN/ COS Requirements

It can be seen from Table VI that the computation times for the two

methods are comparable. Although the accuracy for the polynomial method

is slightly less than the table lookup method, even with the degradation
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in subsequent operations, the final result is still within accuracy

requirements. Thus, a sizeable reduction in storage requirements could

be achieved in the SIN/COS subroutines by the implementation of the

polynomial evaluation method.

2 . Inverse Tangent and Inverse Sine

The ARCTAN and ARCSIN programs were not available during the

period of this evaluation, so the standards set forth in Ref. 10 were

used as a basis of comparison with the methods analyzed. Table VII is

a summary of the MK 152 computer requirements for the polynomial evalua-

tion method for the ARCTAN and the Ref. 10 standards.

Method
Computation
Time (usee)

Core
(Words)

Accuracy
(bits)

Polynomial

Ref. 10

146-156*

235 avg.

74

150

12

10-11

* Time Dependent on Quadrant

Table VII

MK 152 Computer ARCTAN Requirements

The polynomial method for ARCTAN provided savings in computation time and

core storage with a higher degree of accuracy than the Ref. 10 standards.

The use of the ARCTAN subroutine for evaluation of both the ARCTAN and

ARCSIN would provide an additional core saving of about 130 words. A

savings in computation time could also be achieved for the ARCSIN if the

time for the computation of the square root was shortened as noted in

Section IV. Even without this reduction, the time for evaluating the

ARCSIN by the trigonometric identity for ARCTAN is approximately equal

to the upper time bound (348 u sec) listed in Ref. 10.
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VII. ALTERNATIVE IMPLEMENTATIONS OF TRIGONOMETRIC FUNCTIONS

A. ALTERNATIVES CONSIDERED

The trigonometric functions are presently implemented by subroutine

programs within the MK 152 computer; therefore consideration was given

to other means of implementing these functions in order to achieve more

core savings and to enhance the speed of operation. Two primary areas

were considered; microprogrammed computers and hardware devices.

1. Microprogrammed Computers

a. General Description

The structure of a microprogrammed computer is similar to

that of a conventional computer, except for the implementation of the

control section. Figure 10 is a comparison of the two structures.

CONVENTIONAL MICROPROGRAMMED

memory

control arithmetic

input/

output

control
store

J
control
decode

memory

arithmetic

input/
output

Figure 10

Computer Structures

The control store is usually implemented by read-only memories (ROM)

.

The primary difference in the two control functions above is that in

the microprogrammed computer instructions are executed by addressing an

entry location in the ROM, which causes execution of a sequence of
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micro-operations. For a conventional computer, the control is entirely

be means of software programs whose instructions activate certain

hardwired logic paths. One of the prime advantages gained by micro-

programming is the reduction in the number of hardwired paths for

instruction logic. The instruction logic can be easily altered or

expanded in a microprogrammed machine by altering the ROM contents

(called "firmware") . In a conventional machine an expensive hardware

change would be required to achieve the same thing. The microprogrammed

computer structure also makes implementation of special instructions

easier. The control store structure has a further advantage of being

able to execute several micro-operations simultaneously. This increases

the speed of operations of these machines.

b. Capabilities of Microprogrammed Computers

The capabilities of microprogrammed computers vary widely

[13-18]. For example, some of the capabilities available in these

machines are:

(1) Direct implementation of higher level languages such as

FORTRAN and ALGOL (HP 2100).

(2) Floating point arithmetic (MICRO 800, HP 2100).

(3) Direct memory access (AMI 7200, UNIVAC 1616, HP 2100,

MICRO 800)

.

(4) Interrupts (AMI 7200, HP 2100, UNIVAC 1616, MICRO 800).

(5) Various memory sizes (MCS 4, UNIVAC 1616, HP 2100,

AMI 7200, MICRO 800).

In all of the microprogrammed computers studied, the size and capabilities

of the instruction sets would enable implementation of the trigonometric

functions in these machines. HEWLETT-PACKARD ' s microprogrammed computer

51





(HP 2100) was used as an example microprogrammed computer for imple-

menting the trigonometric functions, so that a comparison of speed of

execution and accuracy could be made with the MK 152 computer. Appendix

III lists the capabilities of this computer. References 13 and 14

provide a complete description of this computer and its' capabilities.

2. Hardware Devices

The advent of integrated circuits (IC's) have reduced some of

the former disadvantages of analog devices. Their small size reduces

space requirements greatly, and facilitates easy replacement or changing

of devices. The cost of the devices has been steadily declining as the

technology of fabrication is improved. The accuracy of analog IC's output

has not been significantly improved over discrete devices. A limitation

of about ±1% of full scale accuracy may be found with these devices.

Two devices presently available on the market were considered for imple-

menting the sine and cosine functions: BURR-BROWN ' s sine/cosine function

generator and OPTICAL ELECTRONIC 's analog function module for sine and

cosine.

B. IMPLEMENTATION BY ALTERNATIVE DEVICES

1 . Microprogrammed Computer

a. Implementation of Single Trigonometric Functions

The HP 2100 could, for example, be programmed to compute the

trigonometric functions when passed an angle by the MK 152 computer. The

HP 2100, as well as the other microprogrammed computer considered, had

a word size of 16 bits. Thus a loss of precision, over that achievable

in the MK 152 computer, would occur. The faster instruction execution

times, however, would enable the calculations of the trigonometric
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functions to be performed faster than with the MK 152 computer. The

HP 2100 can perform the sine and cosine calculations in a maximum of

179 microseconds whereas the function in the MK 152 computer would

require. 204 microseconds. During this period of computation in the

microprogrammed computer, the MK 152 could continue processing in-

structions until receiving an interrupt notification from the micro-

programmed computer that the computations were complete. Thus, the time

now required for software execution in the MK 152 computer, as well as

the core storage requirements for the trigonometric subroutines would

be practically eliminated. The only time requirement would be that

necessary for passing information, considering no dead time occurs

waiting for the computational results. Communication time could be

minimized by using spare function codes in the MK 152 computer as the

means of activating the microprogrammed functions, and by using a

microprogrammed computer, such as the HP 2100, which has a direct memory

access

.

b. Implementation of Multiple Functions

In addition to implementing just the trigonometric functions

in the microprogrammed computer, additional time and core in the main

computer could be saved by implementing larger portions of the fire

control problem in the microprogrammed computer. The coordinate conver-

sion computations, for instance, could be implemented entirely within the

microprogrammed computer. The inputs to the microprogrammed computer

could come entirely from the MK 152 computer, or one of the channels of

the microprogrammed computer could be coupled directly to the SDC to

obtain the gyrocompass outputs. This latter method would enable

"continuous" computation of the sine and cosine of the gyro values. Thus
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all elements in the 3x3' coordinate conversion matrix would be available

whenever the main computer required a coordinate transformation. The

ARCTAN and ARCSIN routines could also reside in the microprogrammed

computer. With a microprogrammed computer such as the UNIVAC 1616 [17],

the implementation of the ARCSIN by the trigonometric identity cited in

section IV becomes feasible because of the availability of a high speed,

built-in, square root routine. Thus, the major time and core consuming

routines in the MK 152 computer would be eliminated. The ability of

the microprogrammed computers to perform calculations independently after

receiving inputs means that the MK 152 computer could continue with

other calculations while the microprogrammed computer processed its

information.

c. Additional Possible Applications

A microprogrammed computer could also be tasked with other

operations in addition to computing the trigonometric functions. For

instance, it could act as a buffer between the fire control computer and

the NTDS computer (UNIVAC 642B) . As many microprogrammed computers have

16 bit words, the formatting of words to be compatible with the 32 bit

words of the NTDS computer would be straightforward. The microprogrammed

computer would also be an excellent test vehicle for other elements in

the systems.

2 . Hardwired Device

Figure 11 is a four-quadrant sine/cosine generator taken from

Ref. 19 by BURR-BROWN Research Corporation. Figure 12 is the sine/cosine

generator configuration by OPTICAL ELECTRONICS INC. [20]. These modules

could be used to convert the gyrocompass angles to trigonometric values.

At the present time, the gyrocompass signals pass through the SDC, where
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A/D conversion is accomplished. The computer algorithms within the fire

control program only use the sine and cosine of these inputs; therfore,

each time a new input is received a call to the SIN/COS subroutine is

necessary. The gyro signals could be converted to sines and cosines

by a hardwired device before A/D conversion in the SDC, thus eliminating

that step within the MK 152 computer. This would provide no core savings,

because the SIN/COS subroutine would still be necessary in other parts of

the problem. The hardware devices could also be coupled with Integrated

Circuit A/D and D/A converters to do all of the sine and cosine evalua-

tions. The use of IC's for conversions enable a speed of conversion as

fast as 100 nanoseconds to be attained [21]. This method would eliminate

the SIN/COS subroutine from the MK 152, and would enable rapid computa-

tion times. The accuracy, however, would be limited to the ± 1% accuracy

of the converters and the sine/cosine generators. The advantage of this

method of implementation are:

a. The small size of the modules would enable installations to

be made in existing equipment.

b. The cost of the modules is small - about $100 per generator

unit (commercial small-quantity retail)

.

c. As the generators have plug- in components, changing of

failed components would be fast and simple.

C. CONCLUSIONS ON ALTERNATIVE METHODS

The use of software programs in the MK 152 computer provides the most

accuracy for the trigonometric functions, but is costly in terms of core

storage and time expenditure requirements. The use of a microprogrammed

computer would speed up the computation time and reduce the core storage
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requirements, but results in some loss of accuracy and increased cost.

The use of hardwired devices, in the manner discussed, would be cheaper

and easier to install than a microprogrammed computer, but would provide

less accuracy. The high speed achievable by hardwired devices would be

offset by the limited functions that can be performed by the devices.

The limitation on functions necessitates retaining most of the computing

capability internally within the MK 152 computer, which means little

core saving is achieved.

Table ,VIII is a general comparisons of the tradeoffs incurred by the

use of each method considered for the trigonometric functions.

Implementation Accuracy
Core

Savings
Speed

Increase

software good moderate none
(polynomial)

microprogrammed good high good
computer

hardware fair none high
device

Table VIII

Implementation Comparisons

The means of implementing the trigonometric functions, then, would

depend whether core savings, or speed, or accuracy needed to be given

the primary consideration.
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VIII. SUMMARY

It was found in the TERRIER missile fire control system that the

calculation of the trigonometric functions is a highly repetitive

operation. Each subroutine for the trigonometric functions requires

relatively long computation times and uses a large amount of storage

compared to the other functions in the fire control system program.

An analysis was conducted of alternative methods of calculating the

trigonometric functions to establish whether another method would provide

reductions in core and computation requirements from the presently

implemented method, yet maintain the systems accuracy requirement. The

analysis revealed two general classes of functions for evaluating the

trigonometric functions that were applicable in the fire control problem

table lookup and polynomial evaluation. It was found that polynomial

evaluations would provide a reduction in storage requirements with about

the same accuracy and computation times as the present method.

Alternative equipments were also considered as means to provide

larger reductions in core and execution times than could be achieved by

changes to the MK 152 computer software programs. The use of a micro-

programmed computer in conjunction with the MK 152 computer would enable

complete elimination of the trigonometric subroutines from the MK 152.

It was found that this would reduce both the computation time and the

core requirements for the system. Consideration was given to expanding

the function of the microprogrammed computer to include other operations.

These expansions resulted in additional savings in core and computing

time for the MK 152 computer.
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If future installations in the fire control system exceed the storage

and/or time limitations of the MK 152 computer, then the addition of a

microprogrammed computer to the system would provide the greatest

relaxation of the restrictions.
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APPENDIX A

I. CHARACTERISTICS OF THE MK 152 COMPUTER

A. CONTROL SECTION

The instruction set for the MK 152 (UNIVAC 121 B) computer has 102

single address instructions of two formats:

1. Format I

Format I is used for arithmetic operations and memory reference

instructio'ns. The word construction is:

18 bits-

Bits 12 through 17 contain the function code, and bits through 11 are

used either as a constant or as an address. If the low order bits are

used as an address, the address can be modified by any one of eight

index registers. The index registers are reserved core storage locations

Only one index register can be active during an operation. The activa-

tion and deactivation of the index registers is accomplished under

program control by instructions sent to a 3 bit hardware index control

register (ICR). In general, Format I instructions, with or without

address modification, require 4 microseconds for execution.

2. Format II

Format II is used for register-to-register transfers and for

control of input and output operations. The word construction for

Format II instruction is:
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17 - 12 11-6 5-0
This format is distinguished from Format I by the setting of bits 12

through 17 to 50 octal. Bits 6 through 11 are used for the function

code, and bits through 5 are used for channel designators during

input/output operations. Most of the Format II instructions are executed

in 2 microseconds.

B. ARITHMETIC SECTION

The arithmetic operations are accomplished using parallel one's

complement subtractive hardware with fixed point arithmetic. Either

single precision (18 bits) or double precision (36 bits) operations may

be performed. Five 18 bit flip-flop registers are used in the arithmetic

section for data manipulation:

X - Adder input register.

D - Second adder input register.

AU - Adder output register.

AL - Second adder output register.

W - Shift register.

The X register is used in conjunction with the AU register and the W

register is used in conjunction with the AL register for shift operations

The AU and AL registers are connected so that 36 bit shifts may be

accomplished. Table A-I contains some typical arithmetic execution times.

The times include insturction and data fetches plus indexing.
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Table A-

I

MK 152 Computer Arithmetic Execution Times

Operation Execution Time

add/subtract (single precision) 4usec

multiply /divide 14usec

add/subtract (double precision) 6ysec

compare/masked compare and branch 6ysec

shifts ( n=shift count) 2+.5nysec

C. MEMORY

Memory is constructed of magnetic core arrays with word lengths of

18 bits. The core is divided into two sections; a control memory and

main memory. The control memory is a rapid access (300 nanoseconds)

section used for index registers, clock cells, input/output buffer

control and interrupt registers. The memory cycle time for this 256

word section is 500 nanoseconds. Main memory is a 40960 word storage

for program and data. The access time to this section is 750 nanoseconds

with a total cycle time of 2 microseconds.
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APPENDIX B

I. UPPER BOUND ERROR ANALYSIS OF POLYNOMIALS

A. ERROR CLASSIFICATION

In evaluating Taylor series and other polynomials by digital computer,

the accuracy of the answer obtained is dependent on the magnitude of

the following two types of error:

1. Approximation Errors

This type of error is partially caused by using a truncated

representation of a long or infinite series. The remainder of this type

of error is caused by coefficient and input term round-off or truncation

due to precision limitations of a digital computer.

2 . Arithmetic Errors

Values may be rounded off or truncated during arithmetic opera-

tions. The magnitude of the errors generated by this operation will be

a function of the procedures used in a digital computer for conducting

arithmetic operations [22]. Both approximation and arithmetic errors will

be propagated through successive operations; therefore, algorithms with

a larger number of operations are more susceptible to loss of accuracy.

Thus, it is often desirable to obtain an estimate of the upper bound on

the errors when consideration is being given to including polynomials in

computer algorithms. The determination of the upper bound on the errors

will show if a particular polynomial provides a reasonable approximation

to a function.
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B. POLYNOMIAL NESTING

One of the ways to reduce errors generated in the ovulation of

polynomials is to reduce the number of arithmetic operations by nesting

the polynomial according to Horner's rule [7]. The polynomial of the

form

n
i

P (X) I a.X
i=0 1

is rewritten in the following form:

C = a
n n

C m
= X(C

m+l ) + a
m

m = n_1 >n" 2 •
'

' ' '°

P (X) = C
n

where a and a are the polynomial coefficients.
n m r J

Example: Let n = 2

P (X) = X(X(a ) + a ) + a
2 2 1

In this example, nesting has reduced the number of multiplies necessary

in a digital computer from 4 to 2.

C. POLYNOMIAL ERROR EVALUATION

To find the approximation of the true value of the polynomial due

to errors, the following errors are defined:

1. R_. R _.•••, R = the roundoff errors in the polynomial
al a2 an

coefficients a. ,a„ , • •
• ,a ,1' 2

' ' n

2. R = the roundoff error in the variable X.
x

3. R = the roundoff error in one multiplication step.
m r

4. R = the roundoff error in one addition step.
s
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R and R are the maximum errors possible in these operations, which is

the reason this is only a upper bound error determination. The approxi-

mation of the polynomial can be represented, then by the inclusion of

the error terms in Horner's general form:

C = a + R
n n an

C = (X+R )C ,, + R + a + Rm x m+1 mj
[_
m am J

+ R
s

P
n
(X) - c

Using the example given above, the expansion becomes:

P
2
(X) = (X+R

x ) [(X+R
x ) (a2+Ra2

) + R
m
+ a

±
+ R^ + R^ +

a + Ra0 + R
s
+ *m

The bar over P will be used to indicate that this function is an

approximation. The right hand side of the equation can then be expanded.

Since the product of error terms will be much smaller than the other

terms, they can be omitted in the expansion.

P (X) = a X
2 + 2a R X +R„X2 +RX+a

1
X+R,X+

2
v

2 2x a2 m 1 al

R X + a,R +aA +R n +R +R
s 1 x aO s m

Obviously, as n gets large, the number of terms in the expansion prohibits

manual manipulation of the expression.

D. SIMPLIFICATION OF POLYNOMIAL ERROR EVALUATION

The following method simplifies the above procedure, and eliminates

the necessity of performing a long expansion;

1. Let n equal the maximum subscript for the coefficients, and let

m = n-1.

2. Set up a table with two rows and as many columns (n) as polynomial

coefficients. Label the column headings with the polynomial coefficients
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in descending order from left to right. Label the first row with the

variable, and m as the second row heading.

3. Enter in the first row of the tables the values for n,n-l,'*",0

successively in each column from left to right. Enter the second row

with the values for m,m-l, m-2, ••',() in the same manner. The completed

table will appear as in Table B-I with the last row and column entry

blank.

ln-l an-2

X

m m

n-1

m-1

n-2

m-2

-i t

1 Y

"0

-f f-

Table B-I
Polynomial Error Table

4. For each column, the sum of the coefficient and coefficient

error term in that column are multiplied by the variable raised to the

power of the number in the first row of that column, i.e. (a +R )X forr n an

the first column.

5. The number in the first row for each column is also the constant

that multiplies the product of the coefficient term in that column and

the variable error term. This product is multiplied by the variable

raised to the power in the second row of that column, i.e., na^P^X for

the first column.

6. For each column in the table, the sum of the multiplication and

addition roundoff error terms are multiplied by the variable raised to

the power in the second row, i.e., (R +R )X for the first column.

7. The sum of all terms above is the approximate value of the

polynomial. If this value is subtracted from the true value of the

Function, then the value of the gross error may be found.
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E. EXAMPLE OF USE OF PROCEDURE

Again the example used previously with n = 2 will be illustrated,

P
2
(X) = X(X(a

2
) + a

x
) + a

Q

The table is first set up:

a
2

a
l

a

2 1

1m

Then the terms in the approximation are found using the procedures

above:

2

P (X) = (a +R )X + (a +R - 2a R + R + R )X + a +
2 2a2 lal 2xms

R „+ a n R + R + R
aO 1 x m x

This example illustrates that with a small amount of practice the

evaluation can be done rapidly and with a minimization of the possibi-

lity of arithmetic errors. The resultant form is readily adaptable for

computer algorithm.
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APPENDIX C

I. HP 2100 COMPUTER CHARACTERISTICS

A. CONTROL SECTION

The instruction set of the HP 2100 computer has 80 single address

instructions, which are implemented by microprogram, in four formats:

1. Memory Reference

This format is used for arithmetic operations and other memory

references. The word construction is:

15 14 - 11 10 9-0
16 bits'

Bits through 9 contain a memory address. To permit more compact

addressing, memory is divided into pages of 1024 words. Bit 10 is used

to indicate if the address is in the current page or in page zero. Bits

11 through 14 contain the function code. Bit 15 is set for indirect

addressing. Execution time for memory reference instructions is 1.96

microseconds

.

2. Register Reference

>

This format is used for rotations and shifts of registers,

comparison operations and complementation. The word construction of

this format is

:

15 - 12 11 10 9-0
Bits through 9 contain the instruction to be executed. Groups of up

to 8 register instructions can be combined in these lower bits for
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simultaneous execution. Bit 10 is used to indicate if the instruction

in the lower bits comes from a group of shift-rotate instructions or

from a group of alter-skip instructions. Bit 11 indicates which of the

two accumulators is being referenced. Bits 12 through 15 indicate that

this class of instructions are register reference instructions. Execu-

tion of this class of instructions is 1.96 microseconds maximum.

3. Input/output

This format of instruction is used to control input/output

devices, t,ransfer data to and from peripherals, and for control of the

interrupt system. The word construction of this format is:

15 - 12 11 10-6 5-0
Bits through 5 reference one of the fourteeen input/output addresses.

Bits 6 through 10 contain the input/output instruction. Data can be

directly input and output from one of the two accumulators, so bit 11

is used to select one or the other. Bits 12 through 15 denote this is

an input/output instruction. Execution time for an instruction of this

format is 1.96 microseconds.

4. Extended Arithmetic

These instructions implement all operations which require a

double length accumulator, such as a multiply. Two formats are used in

extended arithmetic operations:

a. Extended Memory Reference

The extended arithmetic memory reference instructions

utilize two words for instruction execution:
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15 - 12 11 10 4 3

15 14 ^

Bits through 3 of the first word are not used. Bits 4 through 10

contain the instruction to be executed. Bit 11 is used to indicate that

this is an extended memory reference. The upper 4 bits denote this is an

extended arithmetic instruction. In the second word, bits through

14 are used for the memory address and bit 15 is an indirect address bit.

b. Extended Register Reference

The extended arithmetic register reference instructions use

one word for shift operations:

15 - 11 10 9-4 3-0
Bits through 3 indicate the number of shifts to be made and bits 4

through 9 contain the shift/rotate instructions. Bit 10 indicates this

is a register reference instruction, and the upper bits labels it an

extended arithmetic instruction.

Execution times for this class of instruction vary from

2.9 to 16.7 microseconds, depending on the operation performed.

During program execution, the reference to one of the four

classes of instructions above causes execution of a sequence of micro-

instructions contained in the ROM control memory. A separate format is

used for these instructions:

23 - 21 20 - 18 17 - 13 12-9 8-5 4-0

•24 bits
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Bits through 4 control skip functions. Bits 5 through 8 are a

special field for execution of functions not covered by other fields.

Bits 9 through 12 are mostly used for activating stores into registers

from the T bus (the bus structure is explained in the next section).

Bits 13 through 17 are a function field that controls operations of the

arithmetic logic unit, flag, overflow, shift, and jump logic functions.

Bits 18 through 20 causes reads of selected registers to the S bus.

Bits 21 through 23 causes reads from selected registers to the R bus.

B. ARITHMETIC SECTION

The HP 2100 uses three buses (R, S, and T) for the transfer of

information to and from the arithmetic section. The R and T buses are

used within the arithmetic section to provide transfer paths between

registers. The S bus provides the main communication path between the

four primary sections of the computer (Control, Arithmetic, Memory, and

Input/Output) . The arithmetic section contains nine 16 bit registers

for information processing. Two of these registers are accessible

under software program control for use as accumulators. One register

contains a program counter, which controls the program flow. The

remainder of the registers are manipulated by the microinstruction firm-

ware during program execution. Table C-I indicates the execution times

of some of the arithmetic instructions.
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Table C-I

HP 2100 Execution Times

Operation Execution times (»>. sec)

add/subtract 1.96

multiply 10.7

divide 16.7

compare 1.96

shift/rotate 1.96 - 7.8

depending on type and

length

C . MEMORY

As indicated in Section A, main memory is divided into pages of

1024 words page. Main memory uses a folded planar core which has a 980

nanosecond cycle time. Each word has 17 bits, of which 16 bits are

used for data and 1 bit is a parity check bit. Main memory may be

expanded from 4K to 32K words by the addition of either 4K or 8K modules

The control memory is comprised of 1024 words of 24 bit semiconductor

memory, which has a cycle time of 196 nanoseconds.

73





BIBLIOGRAPHY

1. Surface Missile Systems Project Officer Report SMS-FS-421, TERRIER
Fire Control Digital Computer Program Design Specification (Advanced
Development Model ) , XWS-13058, prepared by The John Hopkins
University Applied Physics Laboratory, October, 19 70.

2. Surface Missile Systems Project Officer CONFIDENTIAL Report SMS-FS-305,
TERRIER Adaptive Fire Control System (AFCS) Fire Control Computer
Program Performance Specification (Advanced Development Model) (U) ,

Revision 3, prepared by The John Hopkins University Applied Physics
Laboratory, June, 1971.

3. Naval Ordnance Systems Command OP 3514 (PMS/SMS) , Part 1, Digital
Computer MK 152 Series, Description, Operation and Maintenance,
1 January, 19 72.

4. Hart, J. F. and others, Computer Approximations , Wiley, 19 68.

5. Hastings, Cecil, Approximations for Digital Computers , Princeton
University Press, 1955.

6. Carnahan, Brice; Luther, H.A.; and Wilkes, J. 0., Applied Numerical
Methods , Wiley, 1969.

7. McCracken, D. D. and Dorn, W. S., Numerical Methods and Fortran
Programming , Wiley, 1969.

8. Ralston, Anthony and Wilf, H. S., Mathematical Methods for Digital
Computers, Wiley, 1960.

9. Booth, A. D. and Booth, K. H. V., Automatic Digital Calculators
,

Butterworth LTD, 3rd edition, 1965.

10. UNIVAC Division, Sperry Rand Corporation, UNIVAC 1219B Programmers
Reference Manual , UNIVAC PX 49 39, date unknown.

11. Moursund, D. G., "Optimal Starting Values for Newton-Raphson Calcula-
tion of^x", Communications of the ACM , V. 10, p 430-432, July, 1967.

12. Naval Weapons Center Report TP 45 77, Digital Fire Control System
Software Design

, prepared by Lockheed Electronics Company, June, 1968.

13. Hewlett-Packard Corporation, 2100 Computer Programming Guide, 1971.

14. Hewlett-Packard Corporation, HP 2100 Processor Description , July, 19 72.

15. INTEL Corporation, MCS 4 Micro Computer Set Users Manual , Revision 3,

19 72.

74





16. MICRODATA Corporation, MICRODATA Handbook , 2nd edition, 1971.

17. Sperry Rand Corporation, UNIVAC Division, UNIVAC 1616 General
Description , undated.

18. American Microsystems Incorporated, 7200 Processor , undated.

19. Burr-Brown Research Corporation, Sine Cosine Function Generator
,

PDS-224B, June, 1972.

20. Optical Electronics Incorporated, Model 5010 Operating and Applications
Manual , undated.

21. DATEL Systems Incorporated, Short Form Catalog , Summer 19 72.

22. Wilkinson, J. H., Rounding Errors in Algebraic Processes , Prentice-Hall,
1963.

75





INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2

Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0212 2

Naval Postgraduate School
Monterey, California 93940

3. Asst Professor V. M. Powers, Code 52 Pw 1

Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

4. Professor J. R. Ward, Code 52 Wa 1

Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 9 3940

5. CDR L. J. Holloway, USN 2

Code 4400
Naval Ship Missile Systems Engineering Station
Port Hueneme, California 93043

6. LCDR James R. Williamson, USN 1

2090 Paralta Avenue
Seaside, California 93955

76





Securit v Classification

,Sccur,ty. c las s. 'irar.on o( title, body

"atinG activity (Corporate author)

al Postgraduate School

terey, California 93940

DOCUMENT CONTROL DATA -R&D
ot abslrec, and indent annol.tion „,»*. be .nlercd Wh»n IM ov^.N ,*po,r I, r,„.,».c/,)

IT TITLE

2.. REPORT SECURITY CLASSIFICATION

Unclassified

2b. GROUP

lysis of Computing Methods for the TERRIER Fire Control System

„PT,vE NOTES (Type of report and. inclusive dales;

i-pt 's Thesis; December 1 9 72

ORIS) (First name, middle initial, laet name)

tes Ray Williamson

RT DATE

zember 19 72
T OR GRANT NO.

JEC T NO.

TOTAL NO. OF PAGES

78

7b. NO. OF REFS

22

»a. ORIGINATOR 1 * REPORT NUMBERIM

9b. OTHER REPORT NOISI (Any O

thit report)

ther number* that may be ateigned

I
BUTION STATEMENT

Approved for public release; distribution unlimited

PLEMENTARY NOTES
12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School

Monterey, California 9 39 40

5TR AC T

• *-k q tfrrtfr missile fire control system will be

*5cS jfESS^I^SS.^ and by problem solution ti- in the

^stem's digital computer.

This thesis is an analysis of methods by which reductions J"^^ q£

equipments and in problem solution time could be ^hieve^ A dete^

hose functions requiring the most computer resource is made and £™ of
ethods of computing the functions are analyzed. Comparxsons or i P

he functions by software in the fire control computer versus other devices

ade, and the tradeoffs required by each method are presented.

FORM
( NOV 66

0101 -807-681 1

1473 (PAGE 1) 77 Unclassified
Security Clarification 1-31408





Jnclassified
Security Classification

key wo RDI

( 152 Digital Computer

fIVAC 1219B Digital Computer

ERRIER Missile System
rigonometric Function Evaluation

ross Error Analysis
ine/Cos Evaluation
igital Computing Methods

olynomial Errors

ronit.

J.,1473 (BACK)
78 Unclasqi f i'pH

0)01 -807-6821 Security Classification A- 3 1 409









Thesis
W6245 WfMi. 141456

-
Wl ">amson

Analysis of compUt .'ng methods for the™««* Hre con tr
h

o

e

?

27 AUG 64 2 119 6

16 SEP 86
J ^ S
3 3 190

Thesis

W6245
c.l

14 1458
Wi 11 iamson

Analysis of comput-

ing methods for the

TERRIER f i re control

system.



thesW6245

Analysis of computing methods for the It

3 2768 000 98719 2

DUDLEY KNOX LIBRARY


