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Approach to equilibrium of quarkonium in quark-gluon plasma
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We calculate the dissociation and recombination rates of ϒ(1S) in quark-gluon plasma by using potential
nonrelativistic QCD. We then study the dynamical in-medium evolution of the bb̄ − ϒ system in a periodic box
via the Boltzmann equation and explore how the system reaches equilibrium. We find that interactions between
the free heavy quarks and the medium are necessary for the system to reach equilibrium. We find that the angular
distribution of ϒ(1S) probes the stages at which recombination occurs. Finally, we study the system under a
longitudinal expansion and show that different initial conditions evolve to distinct final ratios of hidden and open
b flavors. We argue that experimental measurements of the ratio could address open questions in the quarkonium
production in heavy ion collisions.
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Heavy quarkonium is used as a probe of quark-gluon plasma
(QGP) produced in relativistic heavy ion collisions. In their
pioneering work, Matsui and Satz [1] argued that Debye
screening of the color attraction between heavy quarks (Q)
and antiquarks (Q̄) leads to the dissociation of the bound state
at sufficiently high temperature. As a result, the quarkonium
yield was predicted to be suppressed with respect to the scaled
yield measured in proton-proton (pp) collision. This ratio is
defined as the nuclear modification factor RAA.

The static screening mechanism proposed in the original
work is obscured by several factors: nuclear modification of
initial production, dynamical screening (dissociation caused
by scattering), recombination and feed-down contribution after
hadronization. Recent progress in understanding the full com-
plexity of quarkonium suppression includes the calculation of
the imaginary potential of QQ̄, which is related to the disso-
ciation rate [2,3]; the calculation of the viscous (anisotropic)
corrections to the real and imaginary parts of the potential
[4–6]; the calculation of the dissociation rate in potential
nonrelativistic QCD (pNRQCD) [7–9] and holographic gravity
models of QCD [10,11]; the description of the time evolution
in the open quantum system approach [12–19]; the use of
Langevin equations to study the impact of QQ̄ diffusion [20]
on quarkonia recombinations [21–25]; and phenomenological
studies that can reproduce the experimentally measured RAA

of bottomonia with [26] and without recombination [27].
The process of recombination is less well understood than

dissociation. Different studies incorporate recombination in
varying ways. In the open quantum system formalism, an
initially unbound QQ̄ pair will evolve to have nonvanishing
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overlap with bound state wave functions due to the action
of stochastic potentials. One-dimensional numerical studies
in the Abelian case have been carried out [14,16,18,19]
and the non-Abelian case has been developed formally [15].
Other approaches use coalescence models based on Wigner
functions [21,25] or invoke detailed balance to model the
recombination rate as the dissociation rate times equilibrium
quarkonium fraction [26], which is only true near chemical and
thermal equilibrium. Here, we aim to present a calculation that
incorporates dissociation and recombination in a consistent
way and without assuming the quarkonium distribution is close
to equilibrium.

Recombination is believed to be less important for bottomo-
nium than charmonium because fewer b quarks are produced
in the collision. This would be consistent with experimental
measurements if the dissociation is the dominant in-medium
process, which is based on the assumption of small suppression
of initial quarkonium production. However, we only know the
nuclear modification on parton distribution functions is small
[28], which is not sufficient for the assumption. Quarkonium
production in pp collisions factorizes into short-distance pro-
duction of heavy quarks and long-distance coalescence into
quarkonium [29]. It is unlikely that the long-distance physics
completes before the formation of QGP in heavy ion collisions.
Therefore the fraction of quarkonia formed in the initial stage
is not well determined.

Furthermore, if the initial QGP temperature is higher than
the melting temperature above which certain quarkonium state
cannot exist due to static screening (which has been studied
from the temperature dependence of the binding energy [30]
or spectral functions [31] in potential models), correlated
QQ̄ pairs will remain unbound when entering QGP and may
(re)combine later. This type of process is also defined as
recombination throughout this paper. In short, recombination
of correlated and uncorrelated heavy quark antiquark pairs may
be more important than originally thought.

To illustrate these points, we propose a dynamical in-
medium transport model based on Boltzmann evolution with
dissociation and recombination. This approach allows us to
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explore how experiments can help address various unknown
aspects of quarkonium production mechanisms in heavy ion
collisions. Here, we consider the ϒ(1S) as an example. The
physical picture is as follows: if the local temperature is higher
than the melting temperature, ϒ(1S) dissociates and locally
only unbound bb̄ exist. However, if the local temperature is
lower, on one hand, ϒ(1S) can exist and propagate in the
medium and may be dissociated by scattering with medium
gluons and light quarks; on the other hand, unbound b and b̄
propagate and diffuse, and at any time, they may recombine
into ϒ(1S) by scattering with medium constitutes, if they are
sufficiently close to each other and their relative momentum
favors recombination.

We calculate the dissociation and recombination rates to
lowest order in pNRQCD [32,33]. The effective theory can
be derived from QCD under the hierarchy of scales M �
Mv � Mv2,T ,mD , where M = 4.65 GeV is the b quark mass,
v ∼ 0.3 is the relative velocity of bb̄ inside ϒ(1S), T is
the temperature, and mD is the Debye screening mass. The
pNRQCD Lagrangian is given by

LpNRQCD =
∫

d3rTr
(

S†(i∂0 − Hs)S + O†(iD0 − Ho)O

+VA(O†r · gES + H.c.)

+ VB

2
O†{r · gE,O} + · · ·

)
, (1)

where E represents the color electric gauge field. The La-
grangian of gluon and light quark is just QCD with momenta
�Mv. The pNRQCD is a systematic expansion in v or 1/M
(NR expansion) and r , the relative distance between bb̄ (mul-
tipole expansion). The degrees of freedom are the color singlet
S(R,r,t) and color octet O(R,r,t) states where R denotes the
center-of-mass (c.m.) position and r the relative coordinate.
The color singlet and octet Hamiltonians are expanded in
powers of 1/M:

Hs,o = P2
c.m.

4M
+ p2

rel

M
+ V (0)

s,o + V (1)
s,o

M
+ V (2)

s,o

M2
+ · · · . (2)

By the virial theorem, p2
rel/M ∼ V (0)

s,o ∼ Mv2. Higher-order
terms of potentials including relativistic corrections, spin-
orbital and spin-spin interactions are further suppressed by
extra powers of v. The c.m. kinetic energy is also suppressed
because momenta ∼Mv have been integrated out in the
construction so Pc.m. � Mv. We only work to order Mv2

because v is small and also heavy ion experiments do not
resolve hyperfine structures currently. In the following, we only
consider temperatures at which the ϒ(1S) exists (TC < T <
2.5TC , TC = 155 MeV). In this domain the confining potential
is flattened and potentials can be approximated by Coulomb
interactions

V (0)
s = −CF

αs

r
, V (0)

o = 1

2Nc

αs

r
. (3)

The singlet-octet and octet-octet vertices are color dipole
interactions with VA = VB = 1.

The Feynman diagram of the transition between the singlet
ϒ(1S) and the unbound bb̄ octet via absorption or emission of a
gluon is shown in Fig. 1. For simplicity, we here consider only

∗
λ,q, a

k1, 1S
k2,prel, a

FIG. 1. Transition between ϒ(1S) and bb̄ octet by absorbing or
emitting an on-shell gluon. Single line indicates quarkonium while
double lines represent unbound octet.

the interaction with on-shell gluons in the QGP. Transitions
mediated by virtual gluons (inelastic scattering with medium
constitutes) are at next order in αs and can be easily included
within our formalism. But we are also aware that when mD �
E1S , the inelastic scattering dominates [9]. Our future full
calculations will include both. The scattering amplitude is
given by

T a = (2π )4δ3(q + k1 − k2)δ(�E)Ma,

Ma = −ig

√
TF

Nc

q〈ψ1S |ε∗
λ · r|
 prel

〉,

�E = q + k2
1

4M
+ E1S − k2

2

4M
− p2

rel

M
, (4)

where TF = 1/2, |ψ1S〉 is the hydrogen-like 1S wave function
for ϒ(1S) and |
 prel

〉 is the Coulomb wave function for
unbound bb̄ octet. The 1S binding energy is given by E1S =
−α2

s C
2
F M/4 and the gluon energy is q = |q|. Throughout our

paper we set αs = 0.3. Here, k1,2 are c.m. momenta and their
associated kinetic energies will be neglected according to the
power counting.

The set of Boltzmann equations for the b, b̄ and ϒ(1S)
distribution functions fi(x, p,t) is given by(

∂

∂t
+ ẋ · ∇x

)
fi(x, p,t) = Ci − C+ + C−,

(
∂

∂t
+ ẋ · ∇x

)
fϒ (x, p,t) = C+ − C− , (5)

where i = b or b̄. For b and b̄ quarks, the collision term Ci

describes their scattering with thermal constituents of QGP.
This process has been described either as diffusion in the
framework of the Langevin equation [34,35] or as two-body
scattering in the framework of the linearized Boltzmann equa-
tion [36–38]. Here, we use, for simplicity, the relaxation-time
approximation with Ci = −�r (fi − f

eq
i ). The relaxation rate

is assumed to be �r = T 2/M [34] and f
eq
i is the relativistic

Boltzmann distribution. For ϒ(1S), the gain term C+ is from
recombination by gluon emission and the loss term C− is from
dissociation by gluon absorption:

C+ =
∫

d3p1

(2π )3

d3p2

(2π )3

d3k1

(2π )3

d3q

2q(2π )3

(
1 + n

(q)
B

)8

9
fb(x, p1,t)

× fb̄(x, p2,t)(2π )4δ3(q + k1 − k2)δ(�E)|Ma|2 , (6)
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C− = 1

γ

∫
d3prel

(2π )3

d3k2

(2π )3

d3q

2q(2π )3
n

(q)
B (2π )4δ3(q + k1 − k2)

× δ(�E)|Ma|2fϒ (x, p,t) ≡ �d (x, p,t)fϒ (x, p,t), (7)

where the second equation defines the gluodissociation rate
�d . The scattering amplitude is calculated in the rest frame of
ϒ for dissociation and that of bb̄ for recombination, where the
pNRQCD is valid. The Bose distribution of medium gluons n

(q)
B

is boosted into the rest frame of ϒ or bb̄ accordingly. The two
frames are not equivalent but since the gluon energy is small
compared to M (T � M), the difference is suppressed by
T/M . The overline indicates an average over initial-state and
sum over final-state quantum numbers (color and spin). The
phase space measure is relativistic for gluons and nonrelativis-
tic for b quarks, which is consistent with our field definitions.

For dissociation, the rest-frame rate is then boosted back
into the medium frame by the factor γ −1 = √

1 − v2, where v
is the ϒ velocity. For recombination, the γ factor cancels out,
as explained further below. The quark momenta p1 and p2 are
related to the relative momentum prel used in the amplitude
calculation via 1

2 ( p′
1 − p′

2), where the primed momenta are in
the bb̄ rest frame. The factor 8/9 ensures that only a color octet
bb̄ pair can form a singlet bound state by emitting a gluon.

We solve the Boltzmann equations (5) by stochastic sim-
ulation. Here, we study the evolution inside a periodic box
of QGP with side length L = 10 fm. The QGP temperature
is constant throughout the box but can change with time. A
certain number of b, b̄, and ϒ (Nb, Nb̄, and Nϒ ) are initialized
by random sampling of their positions and momenta, assuming
a given initial momentum distribution. At each time step �t ,
we consider three types of processes.

First, for each ϒ with a given velocity, we determine
whether it dissociates according to the probability �d�t . If
it dissociates, we sample the incoming gluon momentum in
the rest frame of ϒ according to the integrand of the rate
integral and then calculate the outgoing relative momentum
of bb̄ by energy-momentum conservation. Finally we boost
the momenta of b and b̄ back into the medium frame; their
positions are set to be the position of ϒ before dissociation.

For eachb quark with position yi and momentum ki we need
to determine the total recombination rate with neighboring
b̄ quarks with position zj and momenta kj . However, the
quark and antiquark distributions in the expression (6) should
be evaluated at the same position, but the product of two δ
functions is ill defined. We introduce a position-dependence
of the recombination probability by means of a Gaussian
function with a width σ chosen to be the ϒ(1S) Bohr radius.
This ensures that the recombination probability of a widely
separated bb̄ pair vanishes. The product of local distributions
in Eq. (6) is thus replaced with

fb(x, p1,t)fb̄(x, p2,t)

→
∑
i,j

e−(zj − yi )
2/2σ 2

(2πσ 2)3/2
δ3

(
x − yi + zj

2

)

× 2θ [−(zj − yi) · (kj − ki)]δ
3( p1 − ki)δ

3( p2 − kj ) ,

(8)
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FIG. 2. Simulations at T = 350 MeV. Nb = Nb̄ = 40 and Nϒ =
10 (case 1) with thermal momenta (upper) and Nb = Nb̄ = 50 and
Nϒ = 0 (cases 2, 3) with uniform momenta (lower). The dashed lines
indicate the abundance ratio at equilibrium.

where the sum over i,j runs over all b,b̄ contained in the
box. The position-dependence (including the choice of σ )
disappears if one averages over many spatial configurations.
The θ function assures that only approaching quark pairs
can recombine. Thus, a bb̄ that has just dissociated cannot
recombine until at least one of them scatters once.

For a given b quark, the b̄ density is Lorentz boosted into
the rest frame of bb̄, and when the rate is transformed back
into the medium frame, the two γ factors cancel. This explains
the absence of γ factor in Eq. (6). If the b quark is found to
recombine, a b̄ quark is chosen based on the value of recom-
bination probability. We then sample the outgoing gluon and
replace the bb̄ pair with a ϒ whose momentum is determined
from energy-momentum conservation. Its position is given by
the c.m. position of the quark pair as indicated in Eq. (8).

Third, the diffusion of unbound b or b̄ quark in the QGP
is implemented by resampling its momentum from thermal
distribution at a probability of �r�t in each time step. We
exclude elastic scattering between medium particles and bound
ϒ because it cannot happen at the order we are working.

As a first application, we study how the bb̄-ϒ system
reaches chemical equilibrium. We set up the system at a
constant temperature T = 350 MeV with Nb,tot = Nb + Nϒ =
50 in three different initial conditions:

(i) Nb = Nb̄ = 40, Nϒ = 10; the initial momenta of all
particles are sampled from thermal Boltzmann distri-
butions with relativistic dispersion relation;

(ii) Nb = Nb̄ = 50, Nϒ = 0; the initial momentum com-
ponents of all particles are sampled uniformly in
the range −1 GeV < px,py,pz < 1 GeV with heavy
quark (HQ) diffusion turned off;

(iii) as case 2, but including HQ diffusion.

The results of Nϒ/Nb,tot are plotted in Fig. 2. At equilibrium

N
eq
i = giVol

∫
d3p

(2π )3
λie

−Ei (p)/T (9)
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FIG. 3. Angular anisotropy v2 of ϒ from recombinations of b,b̄

with anisotropic momentum distributions for different values of v
(b)
2 .

with Ei(p) =
√

M2
i + p2 relativistically and Mi + p2

2Mi
non-

relativistically for i = b,b̄, or ϒ . The degeneracy factors are
gb = gb̄ = 6 and gϒ = 4 [because hyperfine splitting is not
considered here and thus ηb and ϒ(1S) are degenerate]. The
fugacities are related by λϒ = λbλb̄ = λ2

b and solved from
N

eq
b + N

eq
ϒ = Nb,tot . The simulations converge to the NR lines

because the rates are calculated in a pNRQCD. If excited states
are included, the ϒ(1S) equilibrium fraction will decrease
but only insignificantly. As the lower part of Fig. 2 shows,
HQ diffusion is necessary for the system to reach equilibrium
starting from a nonthermal initial distribution.

We next study the azimuthal angular anisotropy of ϒ pro-
duced from recombinations of b and b̄ with certain azimuthal
momentum distributions simulating elliptic flow of the QGP,
which is gradually transmitted to the unbound heavy quarks
by diffusion during the QGP phase. Since quarkonia can form
at any time below the melting temperature and not necessarily
have to wait until the QGP hadronizes [40], measurements
of the quarkonium elliptic flow can, in principle, tell us at
what time quarkonia are formed by recombination. Therefore
it is important to understand how the elliptic flow transmits
from heavy quarks to quarkonia. In our study, the momentum
distributions of b and b̄ are chosen as

E
d3N

dp3
= 1

2π

d2N

pT dpT dy

(
1 + 2v

(b)
2 cos(2φ)

)
, (10)

where φ is the angle around the z axis. The initial pT

distribution is taken from the FONLL calculation for 2.76 TeV
Pb-Pb collision at rapidity y = 0 [39]. Pairs of b and b̄ are
sampled and recombined by gluon emission according to the
rate at T = 250 MeV assuming they are at the same position.
The v2 of produced ϒ is computed by averaging cos(2φ) in
each pT bin with size 1 GeV. The results are plotted in Fig. 3.
At low pT , the distribution becomes isotropic as expected. As
pT increases, the curves are flatten out. We note that at high
pT fragmentation becomes the dominant mechanism, which
will be studied in future work. In the plotted pT range where

150 200 250 300 350

T (MeV)

10−1

100

101

Γ
(M

eV
) expansion

dissociation

HQ-thermalization

recombination

FIG. 4. Thermal rates of expansion, dissociation, HQ thermaliza-
tion and recombination.

recombination dominates, the quarkonium v2 is sensitive to
that of heavy quarks.

Finally we study the dynamics of the system under a
boost invariant longitudinal expansion [41]. The temperature
dependence is the Bjorken model given by

T = T0

( t0

t

)c2
s

. (11)

Here, we assume t0 = 1 fm/c, T0 = 350 MeV, and a speed of
sound c2

s = 1/3. The various rates are plotted as a function of
temperature in Fig. 4: the expansion rate defined as |dT /dt |/T ,
the dissociation rate of a static ϒ , the thermally averaged
recombination rate, and the HQ relaxation (thermalization)
rate.

We simulate the system starting either at Nb = 5,Nϒ = 0
or at Nb = 0,Nϒ = 5 with HQ diffusion. The initial momenta
of b and b̄ are randomly sampled angularly with the magnitude
distributed according to the pT spectrum in the same FONLL
calculation as above. The momentum distribution of ϒ is given
by the convolution of those of b and b̄. The evolution of the
ϒ(1S) fraction is shown in Fig. 5. The fraction in pp collision
is roughly 1.76 × 10−3 [26] and is indicated by the dotted
horizontal line. For comparison, we take the weighted average
of the two simulations with initial fraction 0 or 1 so that the
initial fraction starts at the pp value.

For the curve starting at Nϒ/Nb,tot = 1 (all b,b̄ initially
bound) dissociation is the dominant process. Because the
dissociation and expansion rates are on the same order, as
shown in Fig. 4, the survival probability of ϒ is large and
the curve stays far away from equilibrium at the end of
expansion.

On the other hand, the curve starting at Nϒ/Nb,tot = 0 (all
b,b̄ initially free) always fall below the equilibrium. The reason
is twofold: The recombination is significantly slower than the
expansion as shown in Fig. 4 and the thermalization of HQ
is not fast enough. We also studied simulations without HQ
diffusion and find that the influence of HQ diffusion is small in
this scenario. However, if all the rates except the expansion
rate were larger, the curve including HQ diffusion would
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FIG. 5. Evolution of the ϒ(1S) fraction in QGP undergoing a
boost invariant expansion. The upper (yellow) and lower (purple) solid
curves correspond to the cases where all b,b̄ quarks are assumed to
be initially bound and free, respectively. The horizontal dotted line
indicates the ϒ(1S) fraction measured in pp collisions. The middle
(red) solid curve represents the average of the upper and lower ones
weighted in such a way that it starts at the measuredpp ϒ(1S) fraction.

be closer to the equilibrium curve, though it would still lag
behind.

Lastly, the curves starting at the pp fraction happen to
approach the equilibrium line in the end, but this does not
indicate the system reaches equilibrium. The recombination
contribution here is negligible. However, we note that both the
equilibrium fraction and recombination contribution depend
on the value of Nb,tot . For much larger values of Nb,tot the
equilibrium and recombination curves would move up and
the recombination contribution would be significant, similar
to what is observed in the charm sector.

It can be seen that different initial conditions lead to largely
distinct final ratios. Since we do not fully understand the initial
production of quarkonia in heavy ion collisions, we can hope
to learn this together with the in-medium evolution from exper-
iments. The change during the hadronic phase should be small
due to the small cross sections [42]. Therefore, it is important to
measure the final ratios of hidden and open heavy flavors in var-
ious pT and rapidity ranges as a function of centrality and col-
lision energy. We will gain more information from these mea-
surements on the quarkonium production mechanism. Thus, it
is essential to do the measurements at both the CERN Large
Hadron Collider and BNL Relativistic Heavy Ion Collider.

In summary, we have used pNRQCD to calculate the
dissociation and recombination rates of ϒ(1S) in a thermal
QGP. We studied the dynamics of the bb̄ − ϒ system in
QGP via the Boltzmann transport equation, which we solved
by Monte Carlo simulation. We showed how the system
reaches equilibrium starting from different initial conditions.
We demonstrated the importance of HQ diffusion in the
medium: It is necessary for the system to reach equilibrium.
We then calculated the elliptic flow of ϒ produced from
recombinations. We argued that measurements of v2(ϒ) probe
stages of quarkonia production by recombination. Finally we
studied the system under a Bjorken expansion. We showed
that different initial ϒ fractions evolve to widely different final
results and argued that measurements on the hidden-to-open
heavy flavor ratio could address open questions in quarkonium
production in heavy ion collisions.
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