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ABSTRACT

Teaching graduate students how to develop hard real-time Ada software for embedded sys-

tem is a challenging task. We successfully used Ada in a series of software engineering courses to

teach graduate students the characteristics of hard real-time software and fundamental skills to

develop and validate complex systems and timing requirements through software prototypes of

the systems. A research tool, called CAPS (Computer Aided Prototyping System)*, was used by

the student software designers to construct software prototypes based on the requirements of the

system as well as to automatically generate Ada code interconnecting reusable modules. The

approach greatly stimulated the students' interest and helped them to gain first hand experiences

in developing hard real-time systems.
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1. INTRODUCTION

Many embedded software systems are safety critical, and depend on meeting hard real-time

deadlines for their successful operation. Patriot missile control software is one example of this

kind of system. "On February 25, 1991, a Patriot missile defense system operating at Dhahran.

Saudi Arabia, during Operation Dessert Storm failed to track and intercept an incoming Scud.

This Scud subsequently hit an Army barracks, killing 28 Americans" [1].

The single most costly event in the Operation Dessert Storm was the result of a software tim-

ing error. It underscores the importance and difficulties in the design and development of hard

real-time software in our military systems. Hard real-time systems are defined as those software

systems in which the correctness of the system depends not only on the logical result of computa-

tion, but also on the time at which the results are produced [2, 3]. One of the major differences

between a hard real-time system and a conventional system is that the application software must

meet its deadlines even under worst case conditions. Hard real-time software systems are typi-

cally embedded in larger systems, performing critical control functions. These real-time control

functions require the software system to interact with a wide variety of hardware/software sub-

systems via networks. The process of design and development of these systems is often plagued

with uncertainty, ambiguity and inconsistency. Typical tactical control software consists of

numerous processes including communication processing, known-object recognition, track pro-
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cessing, and display processing, among others. While conceptually these processes could fre-

quently run concurrently, limitations in hardware resources often force these processes to be

sequentialized in a centralized implementation through an interrupt driven prioritization scheme.

This scheme produces a completely dynamic schedule whose effects are difficult to predict and

control. The timing requirements are difficult for the user to provide and for the analysts to deter-

mine. As the software is modified, various aspects of its execution behavior change, including

maximum execution times and execution precedences for the subfunctions. Often these changes

are only observed after the fact: the system crashes during testing, or required functions don't get

processed when needed. The response is often to tweak the schedule until the system appears to

run acceptably on the available test cases. There is no assurance that the system will perform

acceptably in situations that have not been explicitly tested, which usually includes conditions

that may arise during the actual operation of the system.

A better approach to such problems involves systematic and automatable methods for con-

structing schedules and real-time simulations (or prototypes) of the systems. The Computer Aided

Prototyping System (CAPS) is a research tool developed at the Naval Postgraduate School to pro-

vide an integrated software development environment aimed at rapidly prototyping hard real-time

embedded software systems and generating Ada code automatically [4]. CAPS has undergone

extensive testing by several classes of graduate students.

Teaching graduate students how to develop hard real-time Ada software for embedded sys-

tem is a challenging task. Software Engineering is a fast moving discipline. Utilizing the state of

the art research results for teaching graduate courses is an important supplemental way to ensure

the quality of the courses. Such a practice has been instrumental in refining systematical

approaches to requirements analysis [5]. Due to lack of good textbooks, we had to use the same

approach to create our own teaching materials based on our research results and tools. As a result,

we successfully used Ada in a series of software engineering courses to teach graduate students

the characteristics of hard real-time software and fundamental skills to develop and validate com-

plex systems and timing requirements through software prototypes of the systems to accomplish

the important learning goals of our graduate students for their future DoD system acquisition

tasks [6].

The series of Software Engineering courses employing Ada includes "Software Methodolo-

gy"(CS3460) as the introductory course for the computer science majors, "Software Development

for Combat Systems"(CS3050) as the introductory course for the non-computer science majors,

followed by "Software Engineering"(CS4500), "Advanced Software Engineering"(CSS4520),

and "Software Engineering with Ada"(CS4530). We developed an advanced textbook, Software

Engineering with Abstractions - An Integrated Approach for Large Ada Software, to support this

series of courses with a combination of formal approaches, a second-order logic for specifications

of concurrent and real-time systems, and detailed examples of practical applications [7]. This

textbook is used in CS4500 to give solid graduate education in Software Engineering to the com-

puter science majors. Advanced technology, research topics, theoretical issues and skills for soft-

ware automation were taught in CS4520 and CS4530. At the beginning of the series, for the non-

computer science majors or the graduate students who have never experienced software system

development, a fast and practical exploration was needed before they could possibly understand

why the rigorous formalism for system specifications was needed in the textbook [7].

In order for the students to gain first hand experience in software development, they are

required to work on the large projects in CS3460 or CS3050. In the courses, the student designers



used CAPS to construct software prototypes based on the requirements of the system and to auto-

matically generate Ada code interconnecting reusable modules. Hardware components and inter-

faces were simulated in the CAPS prototype model. The approach greatly stimulated the students'

interest and helped them to gain first hand experiences in developing hard real-time systems in

Ada. The students in these courses designed and implemented prototypes of several hard real-time

systems: the Patriot Missile Defense System, the Robot Motion Control System, the Fish Farm
Control System and the Generic Command and Control Station. This paper summarizes the expe-

rience gained from these projects.

2. THE COMPUTER AIDED PROTOTYPING SYSTEM

CAPS provides facilities for computer-aided design, software component reuse, and auto-

mated Ada code generation (Figure 1). These tools are developed to help software engineers rap-

idly construct and adapt software, validate and refine user requirements, and to check consistency

of proposed design [8]. The process supported by CAPS provides requirements and designs in a

form that is useful in the construction of the operational system, as well as in the acquisition pro-

cess to assess optimized implementations delivered by contractors, and to integrate independently

developed subsystems. CAPS allows the user to specify the requirements of a proposed system

informally in a structured top-down fashion using easy-to-understand graphics, assists the

designer in augmenting the informal specifications with formal annotations, and automatically

translates the result into executable Ada code that realizes the timing requirements based on

declared maximum execution times and monitors conformance of actual execution times to the

maximum execution times specified in the design.

User Interface

Figure 1. CAPS Advanced Rapid Prototyping Environment

2.1 THE CAPS METHOD
There are four major stages in the CAPS rapid prototyping process: software system design,

construction, execution, and debugging/modification (Figure 2). The initial prototype design

starts with an analysis of the problem and a decision about which parts of the proposed system are
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to be prototyped. Requirements for the prototype are then generated, either informally (e.g.

English) or in some formal notation. These requirements may be refined by asking users to verify

their completeness and correctness. After the requirements analysis is completed, the designer

uses the CAPS graphic editor to draw dataflow diagrams with nonprocedural timing and control

constraints as part of the specification of a hierarchically structured prototype, resulting in a pre-

liminary, top-level design free from programming level details. The underlying computational

model unifies dataflow and control flow, and provides a mechanism for developing top-down

decompositions. The user may continue to decompose any software module until its components

can be realized via reusable components drawn from the software base or new atomic compo-

nents. This high-level specification is then translated into Ada for execution and evaluation.

Debugging and modification is assisted by a design database that helps the designers in managing

the design history and coordinating changes.

Initial requirements

changes
L_i

Reusable Software

Construct / modify
prototype

Translate / schedule
prototype in Ada

Demonstrate
prototype

DBMS
Software
Base

Design
Database

Execution

Support
System

Figure 2. Iterative Prototyping Process in CAPS

2.2 THE PROTOTYPE SYSTEM DESCRIPTION LANGUAGE
The CAPS tools are based on the Prototype System Description Language (PSDL). PSDL is

a high-level language designed specifically to support the specification of real-time software sys-

tems, as well as to organize and retrieve reusable components in the software base [9]. PSDL lets

designers sketch a system using computation graphs, where the vertices are operators and the

directed edges are data streams, and then refine the design by adding timing and control con-

straints in text form.

Operators are state machines whose internal states are modeled by state variables. Operators

with an empty variable set behave like functions. PSDL operators can be triggered by data (spo-

radic operators) or by periodic timing constraints (periodic operators). When triggered, an opera-

tor will produce output based on input values and values of internal state variables. There are two

kinds of operators: atomic operators and composite operators. An atomic operator is one that can

be realized by an implementation stored in the software base or supplied by the software engi-

neers, and a composite operator is one that can be decomposed into a network of more primitive

operators represented as enhanced dataflow diagrams.

Operators communicate via two kinds of data streams: dataflow streams and sampled
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streams. A dataflow stream can be thought of as a FIFO buffer of capacity one that connects syn-

chronized operators. Data in dataflow streams represents discrete transactions, and is removed

from the stream when read. A sampled stream can be thought of as a single memory cell and con-

nects operators with uncoordinated rates. This type of data usually comes from a continuous data

source and can be used many times or written over before use, depending on the rate of its input

and use.

Real-time applications, design flexibility, and code reuse motivate the timing and non-proce-

dural control constraints of PSDL. Each time critical operator has a maximum execution time con-

straint, representing the maximum time the operator may need to complete execution after it is

fired, given access to all required resources. In addition, each periodic operator has a. period and a

deadline. The period is the interval between triggering times for the operator and the deadline is

the maximum duration from the triggering of the operator to the completion of its operation. Each

sporadic operator has a maximum response time and a minimum calling period. The minimum
calling period is the smallest interval allowed between two successive triggerings of a sporadic-

operator. The maximum response time is the maximum duration allowed from the triggering of

the sporadic operator to the completion of its operation. To model distributed systems, PSDL also

provides the option of specifying the maximum delay associated with any data stream.

PSDL also allows the specification of both input and output guards to provide conditional

execution of an operator and conditional output of data. Guards can include conditions on timers

that measure durations of system states, and can allow operators to execute only when fresh data

has been written to an input stream. Control constraints can also trigger exceptions.

2.3 THE CAPS TOOLS

The set of tools provided by CAPS includes the user interface, software database system, and

execution support system.

The user interface in CAPS includes a graphic editor, a syntax-directed editor, and a browser.

The graphic editor and the syntax-directed editor together provide a user-friendly environment for

the user/software engineer to construct a prototype using a combination of graphical and textual

objects. The browser allows software engineers to view reusable components in the software data-

base system.

The software database system, which consists of a software base and a design database, pro-

vides facilities for software reuse, automated project management, and version control. The soft-

ware base keeps track of the PSDL descriptions and Ada implementations for all reusable

software components in CAPS. The design database coordinates the concurrent efforts of a team

of software engineers and manages the different versions and alternatives of the design and docu-

ments they produce.

The execution support system consists of a translator, a static scheduler and a dynamic sched-

uler. The translator generates code that binds together the code supplied by the designer and the

reusable components extracted from the software base. The static scheduler and the dynamic

scheduler together create the real-time schedule and control code needed for executing the proto-

type. The resultant Ada main program consists of four parts. The first is a set of data streams,

implemented as instantiation of generic packages containing Ada tasks controlling the mutually

exclusive read/write access to the data buffers. The second part consists of a set of drivers, one for

each of the atomic operators. Each driver reads data from the specified input streams, evaluates

the input guards, executes the operators, evaluates the output guards and then writes the outputs to
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the specified data streams accordingly. The third part is a static schedule which is a high priority

Ada task that executes all time-critical operators in a deterministic and timely manner. The sched-

ule is generated automatically based on the timing constraints and the precedence of the operators

specified in the data-flow graph. The last part of the Ada main program is a dynamic schedule,

which is a low priority Ada task that executes the non-time-critical operators during the slack time

in the static schedule.

3. OUR CLASSROOM EXPERIMENTS

Four hard real-time software system prototypes have been designed and developed by stu-

dents using CAPS. Due to lack of space, we shall only present the Patriot Missile Defense System

and the Generic Command and Control Station prototypes here.

3.1 THE PATRIOT MISSILE DEFENSE SYSTEM

Figure 3 shows the PSDL specification of the prototype for a simplified two-dimensional ver-

sion of the Patriot missile defense system. This prototype was developed by five Weapons System

students for the class "Software Development for Combat Systems." In this course, non-com-

puter-science students learned the basics of real-time systems, software engineering, and real-time

Ada programming. They also must learn to use UNIX workstations running X Window Systems

and Motif along with software tools such as Verdix Ada Development System (VADS), CAPS
and TAE Plus. The prototype shown in Figure 3 has a total of nine atomic operators. The opera-

tors patriotjadar, check threat, control_patriort and scud_radar are time-critical, each has a

maximum execution time of 10 ms.

Figure 4 shows the TAE Plus user interface for the prototype, which was developed using the

TAE Work Bench and consists of two panels, one representing the Scud launcher and a tracking

radar, and the other representing the Patriot System Console. Two major problems had to be over-

come to use TAE Plus user interfaces for the CAPS prototypes. First, the user interface must be

subordinate to the real-time system (i.e. execution of the time-critical operators cannot be blocked

by the user interface processing), while the architecture generated by TAE Plus is one where the

user interface is in control, executing application functions as driven by user actions. Second, the

X Window System Xlib is non-reentrant. Thus user interface operations may not be interrupted by

other user interface operations before completion. Our solution to this problem involved a user

interface architecture where all calls to the user interface by the real-time applications are made
mutually exclusive through an Ada monitor task. All rendezvous are embodied in a selective wait

with a 10 ms time-out. If no rendezvous are ready within the 10 ms, the task exits the selective

wait and checks for TAE WPT events. All WPT events are processed before checking for rendez-

vous requests again. (Interested readers should refer to [10] for details.)

3.2 GENERIC COMMAND AND CONTROL STATION

This prototype was developed by a group of five Computer Science students for a class cre-

ated by the first author titled "Software Engineering with Ada." In this course, students learn how
to apply the software engineering principles in the design of large, real-time, embedded computer

systems through the use of automated tools in the Ada environment. The class project was to build

upon previous prototyping efforts on a SUN3 workstation [11] and use the CAPS tools to develop

an improved prototype for a generic C3I station and simulations of its interacting external systems

on the SPARCstations. Figure 5 shows the PSDL specification of the top-level design of the pro-



totype, which has four composite operators {comms interface , track_databasejnanager, use-

r interface and sensor interface) and five atomic operators {commsJinks, weapons_systems,

navigation system, sensors and weapons interface). The operators commsJinks, weapons_sys-

tems, navigation_system and sensors are time-critical software modules which simulate the exter-

nal systems with which the C3I station interacts.

Figures 6 and 7 show the PSDL specifications of the successive decomposition of the comm-

s interface module and its incomingjnessageresolver sub-module. The final output of the hier-

archical design is a tree of data-flow graphs, with a total of 8 composite operators (internal nodes)

and twenty-six atomic operators (leaf nodes). During translation, these leaf nodes are merged into

a single-level data-flow graph automatically and the resultant precedence and timing constraints

are used by the static scheduler to generate a run-time static schedule for the time-critical opera-

tors. The user interface for the prototype was also developed using the TAE Work Bench. It con-

sists of a total of 14 panels, four of which are shown in Figure 8.

4. LESSONS LEARNED

It took the students a total of about one man-month to complete each of the above projects.

They spent about 25% of the time learning and debugging the CAPS tools, 20% of the time ana-

lyzing the requirements and developing PSDL specifications for the prototypes, 40% of the time

developing Ada codes for the operators and the user interface, 10% of the time debugging and

testing the prototype, and 5% of the time documenting the project and writing the final report.

One of the major difficulties encountered by the students was the lack of published user man-

uals for the CAPS tools, thus making the learning curve steeper than desired. Furthermore, the use

of the CAPS tools also revealed several bugs in the Design Database, PSDL Syntax-directed edi-

tor, and Static Scheduler, which added extra burden to the students using these tools. Another dif-

ficulty encountered by the students was learning how TAE Plus works and how to modify the Ada

code generated by the TAE Work Bench to fit the CAPS real-time model. Most of these difficul-

ties can be traced to the fact that CAPS was still under development. Several of its components

were not available at the time of the classroom projects. Today, two years later, the tools are much
more mature and instructors have gained more experience in the use of course material. We are

looking forward to future experiments in combining the teaching and research efforts for improv-

ing the quality of education for our graduate students.

The availability of even an experimental version of the computer-aided prototyping tools did

help students in visualizing and understanding the effects of real-time constraints. Through the

use of CAPS tools, students designing the Patriot Missile Defense System prototype were able to

go through the cycle of changing the timing constraints of the operators, translating the PSDL
specification into Ada code, compiling the Ada code and executing the prototype in less than 5

minutes. As they varied the maximum execution time and periods of the time-critical operators,

they discovered that the Patriot system would fail to intercept the incoming Scud missile due to

either missing deadlines when the timing constraints were too tight or inaccurate flight path com-

putations when the timing constraints were too loose. Such experiments would be very difficult, if

not impossible, to conduct without the help of computer-aided prototyping tools.

The CAPS tools also facilitate the coordination and management of team work. After com-

pleting the top-level design of the C3I station prototype, the students were split into three sub-

groups, each responsible for the design and development of roughly one-third of the prototype.

These subgroups worked independently, interacting with each other only through the CAPS



design database. When the design was completed, the CAPS translator automatically merged all

the atomic operators together and generated the drivers and run-time schedules needed to execute

the prototype. The final complete prototype has roughly a total of ten thousand lines of Ada code.

5. CONCLUSIONS

It is possible to prototype realistic hard real-time systems in a classroom environment rapidly

using of the CAPS tools. The on-line design database helps coordinate and manage team work.

The automatic generation of the Ada main program and run-time schedules helps student to

experiment with different design options quickly.

Experiences gained from these prototyping exercises have also suggested many possible

improvements to future version of CAPS. A new user interface is needed to unify the various tool

user interfaces into one and to make the boundaries between different tools transparent to the user.

Better integration between the graphic editor and the syntax-directed editor is needed to enforce

consistency of the multi-level designs. The current version of Design Database is very primitive

and is one of the major bottlenecks in CAPS. A more advanced Design Database based on the

revised Design Database Model is needed to support concurrent design effort. Depending on the

timing constraints specified in the prototype, the Static Scheduler in CAPS may produce very

large periodic static schedules that cause the Ada compiler to fail; an alternate approach to Har-

monic Block scheduling is needed. Efforts are currently under way to respond to all of these

issues.
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OPERATOR patriot
SPECIFICATION

DESCRIPTION

{Patriot Missile Defense System simulation.

Simulates Patriot intercepting a Scud missile.}
END
IMPLEMENTATION

GRAPH

scudjposititm

radar mode 150 i*s

nissile

cud track

track.

intercep

DATA STREAM
-- Type declarations for the data streams in the graph go here.

CONTROL CONSTRAINTS

OPERATOR Patriot_Radar

PERIOD 80 MS

OPERATOR Scud_Radar

PERIOD 800 MS

OPERATOR Display_Tactical

TRIGGERED BY SOME

tactical_status

OPERATOR Control_Patriot

TRIGGERED BY ALL

intercept_angle,

target_range

OPERATOR Launch_Patriot

TRIGGERED BY ALL

launch_angle

OPERATOR Check_Threat

PERIOD 80 MS

OUTPUT

intercept_angle

IF NOT (intercept_angle - 0.0)

OUTPUT

target_range

IF NOT (intercept_angle = 0.0)

OUTPUT

launch_angle

IF NOT (launch_angle = 0.0)

END

Figure 3. PSDL Specification of the Patriot Missile Defense System
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Figure 4. User Interface for the Patriot Missile Defense System Prototype
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OPERATOR c3i_system
SPECIFICATION

DESCRIPTION

{This module implements a simplified version of

a generic C3I workstation.}
END
IMPLEMENTATION

GRAPH

DATA STREAM
-- Type declarations for the data streams in the graph go here

CONTROL CONTRAINTS

OPERATOR comms_links

PERIOD 3 00 00 MS

OPERATOR navigation_system

PERIOD 30000 MS

OPERATOR sensors

PERIOD 3 00 00 MS

OPERATOR weapons_systems

PERIOD 3 0000 MS

OPERATOR weapons_interface

TRIGGERED BY SOME

weapon_status_data

MINIMUM CALLING PERIOD 20 00 MS

MAXIMUM RESPONSE TIME 3 00 MS

OUTPUT

weapons_emrep

IF weapon_status_data . status

damaged

OR weapon_status_data . status

service_required

OR weapon_status_data . status

out of ammunition
END

Figure 5. PSDL Specification of the C3I_system
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OPERATOR comms_interface
SPECIFICATION

INPUT

tcd_transmit_command : t ransmi t_comniand

,

tcd_archive_setup : archive_setup,

tcd_network_setup : network_setup,

tcd_emission_control : emissions_control_command,

terminate_trans : BOOLEAN,

initiate_trans : initiate_transmission_sequence,

input_link_message : filename

OUTPUT

comms_email : filename,

comms_add_track : add_track_tuple

DESCRIPTION

{This operator is responsible for processing incoming

and outgoing messages as well as producing periodic

track report and format translating}
END
IMPLEMENTATION

GRAPH

tC«_tf4BflUt,

DATA STREAM
-- Type declarations for the data streams in the graph go here

CONTROL CONSTRAINTS

OPERATOR track_report_generator

TRIGGERED IF

NOT terminate_trans

PERIOD 3 0000 MS
END

Figure 6. PSDL Specification for the comms_interface module
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OPERATOR incoming_message_resolver
SPECIFICATION

INPUT

tcd_archive_setup : archive_setup,

input_link_message : filename

OUTPUT

comms_add_track : add_track_tuple,

comms_email : filename

MAXIMUM EXECUTION TIME 15 ms

DESCRIPTION

{This operator processes the incoming messages.}
END
IMPLEMENTATION

GRAPH

DATA STREAM
-- Type declarations for the data streams in the graph go here,

CONTROL CONSTRAINTS

OPERATOR input_f ile_parser

TRIGGERED BY SOME

input_link_message

OPERATOR message_type_decision

TRIGGERED BY SOME

input_text_record

OUTPUT

comms_text_f ile

IF comms_text_f ile .archive

OUTPUT

comms_email

IF NOT input_text_record . is_track

OPERATOR track_extractor

TRIGGERED IF

comms text file, is track
END

Figure 7. PSDL Specification of the incoming_message_resolver module
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Figure 8. User Interface for the C3I_system
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