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Time-consuming numerical simulators for solving
groundwater flow and dissolution models of physico-chemical
processes in deep aquifers normally require some of the model
inputs to be defined in high-dimensional spaces in order to
return realistic results. Sometimes, the outputs of interest
are spatial fields leading to high-dimensional output spaces.
Although Gaussian process emulation has been satisfactorily
used for computing faithful and inexpensive approximations
of complex simulators, these have been mostly applied to
problems defined in low-dimensional input spaces. In this
paper, we propose a method for simultaneously reducing the
dimensionality of very high-dimensional input and output
spaces in Gaussian process emulators for stochastic partial
differential equation models while retaining the qualitative
features of the original models. This allows us to build a
surrogate model for the prediction of spatial fields in such
time-consuming simulators. We apply the methodology to
a model of convection and dissolution processes occurring
during carbon capture and storage.

1. Introduction
The use of complex mathematical models for simulating and
predicting the behaviour of physico-chemical processes is
nowadays crucial in a broad range of groundwater disciplines,
including contaminant transport and geological storage of CO2
in deep saline aquifers among many others. The complexity of
these models normally involves the implementation of highly
demanding and time-consuming numerical codes, and thus there
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is growing interest in designing faster and reliable statistical approximations of the computationally
expensive simulators, so-called emulators.

The vast majority of physico-chemical processes in porous media can be successfully described using
stochastic partial differential equations (SPDEs) (see [1–5]). One parameter of special relevance in these
equations is the permeability of the porous medium used to describe the inherent random heterogeneity
of the rock formation. Several researchers have shown in the past that although permeability values
can exhibit large spatial variations, these variations are not entirely random but spatially correlated
(e.g. [1–3]). It has been also shown through experimental validation that permeability fields can be
successfully modelled using a log-Gaussian distribution assumption (e.g. [4]). For instance, Mara et al.
[6] modelled strongly heterogeneous aquifers by using a stochastic Gaussian process (GP) for the log-
transmissivity fields conditional on data sampled at a set of locations in an aquifer. One of the most
extended possibilities to generate samples of a log-Gaussian random field is through Karhunen–Loéve
(KL) decompositions of the correlation function of the underlying Gaussian field evaluated at each of
the grid points of the computational domain (see [5,7]). These samples are represented by a sequence of
indexed random coefficients in a finite series. An immediate consequence of this form of representation
of the input fields is that the dimension of the stochastic input space is as high as the number of grid
points in the computational domain. As an example, for standard meshes of size 50 × 50, 80 × 80 or
100 × 100 in a two-dimensional rectangular domain, we would need to deal with a few thousands of
stochastic degrees of freedom (DoF) if we do not wish field variance preservation to become an issue. In
other words, the hypothetical over-smoothing of the generated permeability fields caused by a further
truncation of the original KL decomposition, if not handled properly, would lead to unrealistic results.

During the past decade, several high-dimensional model representation (HDMR) techniques, e.g.
CUT-HDMR, adaptive HDMR and new truncated HDMR, have been developed to reduce the
high-dimensionality of stochastic input spaces (see [8–12]). HDMR methods split the original high-
dimensional model into a set of lower-dimensional sub-models leading to less computational effort
when solving the resulting sub-models by any numerical method. One of the preferred methods to be
complemented with HDMR techniques for solving high-dimensional SPDEs found in the literature is
the stochastic collocation (SC) method in any of its variants, e.g. full-tensor product, Smolyak sparse grid
etc. (see [11,13–17]). The SC method became so popular because, besides providing fast convergence, it
lies within the so-called non-intrusive methods for solving SPDEs, i.e. neither knowledge nor algebraic
manipulation of the equations that will be solved is required, and thus researchers can use existing in-
house or commercial numerical simulators to implement the method. However, for some groundwater
models (e.g. [5,7,18]) the number of stochastic DoF needed for an acceptable resolution of the results is
still prohibitive for this method. One of the alternatives to overcome the problem of high dimensionality
in time-demanding groundwater model simulators is GP emulation [19–21].

There are several applications of GP emulation of multivariate simulators, for instance Bowman et al.
[22] compared four different techniques for emulating multivariate outputs in atmospheric dispersion
models. To the best of our knowledge, there are still a limited number of publications in the literature
dealing with GP emulation of groundwater models in very high-dimensional input spaces (e.g. [5]). GP
emulators for high-dimensional simulators also necessitate HDMR methods to overcome the limitations
of Bayesian regression. These limitations frequently arise in the estimation of some of the model
parameters (so-called hyperparameters) present in anisotropic covariance/correlation functions. The
hyperparameters are a priori unknown and need to be estimated from the data provided by the simulator.
The maximum-likelihood estimate (MLE) method has been extensively employed to find estimates of the
hyperparameters (see [5,23,24]). Most of the optimization algorithms used to find the MLE (in our case
by minimizing the negative log marginal likelihood), for instance steepest descent, conjugate gradient,
Hessian-free Newton etc., are critically dependent on the selection of the initial guess to initialize the
iterative algorithm. This sensitivity to the choice of the initial values might be, for instance, due to
the existence of multiple local maxima in the marginal likelihood [21]. While these methods have been
satisfactorily used to estimate hyperparameters defined in low-dimensional spaces, for high-dimensional
spaces this has historically led to an optimization problem, and in most of the cases to complete
failure. In groundwater models, GP emulators normally represent point correlation by using automatic
relevance determination covariances [25], and for these cases, we propose a continuation algorithm
for passing the right initial values to the MLE method in the successive iterations. This will overcome
the optimization issue and will make feasible the MLE method for a moderate/high dimension of the
input space.

The focus of this paper is the development of a new approach for constructing GP emulators to
act as a full surrogate model for computationally expensive spatial field simulators defined in very
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high-dimensional input and output spaces, and in particular for groundwater model simulators. Note
that standard scalar GP emulation has already been successfully applied to complex and time-consuming
scalar valued simulators [5]. Thus, the inputs and outputs of the simulator considered here will be spatial
fields defined in very high-dimensional input and output spaces. The GP emulator is able to reproduce
(up to a predetermined level of accuracy) the work of the computer model much faster. This is of vital
importance in applications such as uncertainty quantification, design optimization and decision theory,
where a large number (sometimes millions) of calls to the numerical simulator are required in order
to produce a critical assessment. The methodology of the empirical simultaneous GP model reduction
(ESGPMR) approach presented in this paper consists of combining two main techniques. (i) We use
the method proposed by Higdon et al. [26] to reduce the dimensionality of the output space by using
principal component analysis (PCA) and separate independent GP emulators for the coefficients in the
PCA basis. Higdon’s approach has been successfully adapted to other applications, for example, Holden
et al. [27] applied a variation of the method to high-dimensional climate model outputs. Bowman &
Woods [22] adapted the method to the field of atmospheric dispersion by using the thin-plate splines
technique. (ii) We capture the high-dimensional relationship between the simulator inputs and the
coefficients of each of the vectors spanning the reduced output space by exploiting the properties of
the KL decomposition of the input permeability fields and using cross-validation (CV). Thus, we find
a subspace of the high-dimensional input space leading to an optimal representation of the GP model
response surface. To test the GP emulation results, we take as reference (true value) a sample of 256
full numerical simulations. The simulations were obtained over 18 days of continuous intensive CPU
computations on a 12-core Intel Xeon cluster processor. The time spent to compute the final prediction of
the same 256 spatial fields with the ESGPMR approach on the same processor was 4 h.

The outline of this paper is as follows. In §2, we introduce the computationally expensive numerical
simulator of a convection and dissolution process in random heterogeneous porous media. In §3,
we describe the framework of the GP emulation methodology. We present the novel method for
simultaneous input–output model dimension reduction and we detail how to properly estimate the
hyperparameters of a high-dimensional space by using a continuation algorithm. In §4, we test the GP
model reduction methodologies with the model problem introduced earlier. Concluding remarks are
provided in §5.

2. Mathematical model and numerical simulator
Dissolution of CO2 in deep saline aquifers is considered one of the most effective ways of carbon capture
and storage [28]. The model studied here focusses on the hydrodynamical part of the problem by setting
a model for CO2-loaded flows in an idealized two-dimensional geometry. It considers the impact of
hydrodynamic dispersion (or dispersivity), permeability heterogeneity and isotropy in porous media on
the development of convecting instabilities. For solving the resulting problem, the finite-element method
(FEM) is employed. The existence of continuous bifurcations from the no-flow steady-state solutions of
the problem adds additional challenge to the search of numerical solutions, and to overcome this an
arclength continuation technique [29] is used in conjunction with the FEM.

2.1. Convectively enhanced dissolution process in porous media
The dissolution of CO2 into the brine of the storage site causes an increase in the density of the mixture,
leading the CO2 to sink while reacting with local rock minerals to become a solid carbonate [30]. This
leads to the onset of convection rolls and the resulting mixing leads to a greater contact between the
injected CO2 and local minerals, significantly enhancing the carbon capture. This process is known as
convectively enhanced dissolution (C-ED) [31,32].

In recent theoretical and numerical works (e.g. [32–34]), researchers have investigated the behaviour
of CO2 in deep saline aquifers. These studies focussed on the understanding of a simplified and idealized
case where the problem is reduced to the motion of a fluid through a porous medium and where
the dispersive transport is based on pure molecular diffusion. This paper will take into account more
characteristics of natural aquifers, namely the rock heterogeneity and the hydrodynamic dispersion. This
later will be modelled by a dispersion tensor, D, dependent on the local Darcy velocity of the fluid u as
follows [34–36]: D = DmI + βT‖u‖I + (βL − βT)(u ⊗ u/‖u‖), where ⊗ represents the tensor product, I is
the unit (identity) tensor, Dm is the molecular diffusion coefficient of the solute in the fluid and βL and
βT are, respectively, the longitudinal and transverse dispersion coefficients, which satisfy βL ≥ βT ≥ 0
[5,37,38].
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We consider the C-ED process to occur in a two-dimensional domain representing a random,

heterogeneous, isotropic porous medium of depth 2H and length L. The spatial variable is defined by
x = (x, z) on the domain [0, L] × [−H, H]. The governing equations for this model are continuity (2.1),
Darcy’s Law (2.2) and convection–diffusion-reaction (2.3) [32,33,38]:

∇ · u = 0, (2.1)

u = −K
μ

(∇P + ρgez) (2.2)

and φ
∂C
∂t

+ u · ∇C = φ∇ · (D∇C) − γcC, (2.3)

where ez is the outward-pointing unit vector along the ordinate axis, C is the concentration of dissolved
CO2, u = (ux, uz) is the fluid velocity and P is the fluid pressure. The parameters K, μ, φ, γc and g
are, respectively, the medium permeability field, the fluid viscosity, the rock porosity, the reaction rate
and acceleration due to gravity. The solute undergoes a first-order reaction and is converted into an
inert product with no effect on the solution density, thus the density of the fluid is linearized and
takes the form, ρ = ρ0 + βcC, where ρ0 and βc are the density of the pure fluid and the volumetric
expansion coefficient. This assumption allows us to use the Boussinesq approximation [32]. The
boundary conditions for the above problem are: C(x, z = H) = C0 and ux(0, z) = ux(L, z) = uz(x, ±H) = 0,
(∂C/∂z)(x, −H) = (∂C/∂x)(0, z) = (∂C/∂x)(L, z) = 0.

The velocity field is represented by using a streamfunction, Ψ , formulation, ux = ∂Ψ/∂z and uz =
−∂Ψ/∂x. We can eliminate the pressure field from equation ((2.2)) by satisfying the mass conservation
(2.1), resulting in a new set of equations for the unknown field variables (Ψ , C). For the resulting set of
governing equations and boundary conditions we follow the same dimensionless formulation used in
Crevillén-García et al. [5], where the reader can find a full detailed derivation of formulae and equations.
The dimensionless variables and numbers are defined by: x′ = x/H, z′ = z/H, Ψ ′ = Ψ μ/HC0K0βcg,
C′ = C/C0, t′ = tC0K0βcρ/μφH, β ′

L = βLC0K0βcg/D0μ, β ′
T = βTC0K0βcg/D0μ, K′ = K/K0, L= L/H, Ra =

K0C0gβcH/φμD0 and Da = γcμH/K0C0gβc, where βT and βL are, respectively, the longitudinal and
transverse dispersion coefficients [37,38]; K0 and D0 are reference permeability and diffusion coefficients,
respectively; L is the aspect ratio of the domain; Ra is the Rayleigh number, related to the buoyancy
driven flow; and Da is the Damkhöler number, which is the ratio of the chemical reaction rate to the
mass transfer rate [32]. In terms of these dimensionless variables and numbers, and dropping the primes
for convenience, the following dimensionless governing equations defined in R= [0,L] × [−1, 1] stay as:

∂

∂x

(
1
K

∂Ψ

∂x

)
+ ∂

∂z

(
1
K

∂Ψ

∂z

)
+ ∂C

∂x
= 0 (2.4)

and
∂C
∂t

− ∂Ψ

∂z
∂C
∂x

+ ∂Ψ

∂x
∂C
∂z

− 1
Ra

(
∂Jx

∂x
+ ∂Jz

∂z

)
+ DaC = 0. (2.5)

The Fickian mass flux J = (Jx, Jz) (Scheidegger-Bear) [38] satisfies J = D∇C and its components
are expressed as follows: Jx = (1 + βT‖∇Ψ ‖2)(∂C/∂x) + ((βL − βT)/‖∇Ψ ‖2)((∂Ψ /∂z)2(∂C/∂x) − (∂Ψ /∂x)
(∂Ψ /∂z)(∂C/∂z)) and Jz = (1 + βT‖∇Ψ ‖2)(∂C/∂z) + ((βL − βT)/‖∇Ψ ‖2)((∂Ψ /∂x)2(∂C/∂z) − (∂Ψ /∂x)(∂Ψ /

∂z)(∂C/∂x)), where ‖ · ‖2 denotes the standard Euclidean norm. Finally, the corresponding dimensionless
form of the boundary conditions is: C(x, 1) = 1, Ψ (x, ±1) = Ψ (0, z) = Ψ (L, z) = 0, (∂C/∂z)(x, −1) =
(∂C/∂x)(0, z) = (∂C/∂x)(L, z) = 0. In this study, we are interested in the long-term behaviour of the system
and consequently we will restrict ourselves to the steady-state equations, i.e. by setting ∂C/∂t = 0 in
equation (2.5).

2.2. Convectively enhanced dissolution numerical simulator
The numerical simulator is built based on an H1-conforming FEM [39], and the numerical solutions
were computed on a shape-regular rectangular partition of R= [0, π/2] × [−1, 1] ⊂ R

2 comprising 2500
elements (i.e. a computational domain formed by M = 2601 nodes), employing basis functions of
polynomial degree 1. All computations were performed using the AptoFEM finite-element toolkit,
documented in Antonietti et al. [40], together with the MUMPS linear solver [41,42]. In terms of the
CPU time spent by the numerical simulator to compute a single solution of equations (2.4) and (2.5), the
choice of different values for the model parameters, Ra and Da, makes no difference. In this paper, we
will restrict ourselves to the case L= π/2, Ra = 100, Da = 0.1, βL = π/2 and βT = βL/10.
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2.3. Generation of random permeability fields
Natural media is heterogeneous in a hierarchy of scales, and it is virtually impossible with today’s
technologies to resolve this heterogeneity in detail [43]. The permeability values have shown spatial
correlation [1–3] and a function that has been extensively used [2,5,7,18,44,45] to represent that
correlation is the following squared exponential covariance function:

c(xi, xj) = σ 2 exp
(−‖xi − xj‖2

λ

)
xi, xj ∈R, (2.6)

where λ represents the correlation length and σ 2 the variance of the process.
The simulator described earlier necessitates the values of the permeability K at each of the M nodes

of the computational domain in order to solve the problem. It is common in groundwater flow models
[18] to model K as a log-Gaussian random field; this guarantees that K > 0 in R. In this study, we will
model the permeability as log-Gaussian permeability fields and generate samples of the permeability
fields at the nodes with the following procedure [46]. Let (Ω ,F , P) be a probability space. If we now
let Z ∼N (m, C), i.e. Z : Ω → R

M be a multivariate normally distributed random vector with mean
and covariance m = (m1, . . . , mM)ᵀ = E[Z] ∈ R

M, C = E[(Z − m)(Z − m)ᵀ] ∈ R
M×M, respectively, where

mi = E[Z(xi)] = m(xi), Cij = c(xi, xj), i, j = 1, . . . , M. Then, given the set of nodes {xi}M
i=1, the vector Z :=

(Z(x1), . . . , Z(xM))ᵀ is a discrete Gaussian random field. Finally, we set K = exp(Z) to obtain the desired
discrete log-Gaussian permeability field, where each of the components of the vector K ∈ R

M corresponds
to the value of the permeability at a node of the computational domain.

To generate different samples of Z, we will use the KL decomposition method (see [5,7,46,47]. This
method uses an eigen-decomposition of the covariance matrix C at the nodes which is then stored for
future samples generation. Moreover, the KL expansion may be truncated, which leads to a reduced-
dimensional formulation that is critical in the emulator construction. The KL decomposition method is
summarized as follows.

The covariance matrix C is real-valued and symmetric, and therefore admits an eigen-decomposition
[48]: C = (ΦΛ1/2)(ΦΛ1/2)ᵀ, where Λ is the M × M diagonal matrix of ordered decreasing eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0, and Φ is the M × M matrix whose columns φi, i = 1, . . . , M, are the eigenvectors of
C. Let ξi ∼N (0, 1), i = 1, . . . , M, be independent and identically distributed (i.i.d.) random variables. We
can draw samples from Z ∼N (m, C) using the KL decomposition of Z using the following expression
[46]:

Z = m + ΦΛ
1
2 (ξ1, . . . , ξM)ᵀ = m +

M∑
i=1

√
λiφiξi. (2.7)

The terms ξi ∼N (0, 1) are called KL coefficients. To be consistent with the non-dimensional formulation
of equations (2.4) and (2.5), we generate a set of log-Gaussian permeability fields with point-wise mean
1 by setting m = −(σ/2)I. Let us define the random vector ξ ∈ R

M, distributed according to N (0, I). The
numerical simulator is considered as a mapping from ξ ∈ R

M to (C, Ψ ) ∈ R
M × R

M. If we were interested
only in one of the two simulator output fields, we could also consider the simulator as either fc : ξ �→ C
or fΨ : ξ �→ Ψ .

In the next section, we will describe how to build a GP emulator.

3. Gaussian process emulation of spatial fields in complex simulators
A GP emulator is a statistical approximation of the numerical simulator. In this paper, to build an
emulator for a given simulator, we use GP regression methodologies consisting of establishing a prior
specification of the functional form of the target simulator which is updated in the light of data provided
by using Bayes’ rule, which yields a posterior distribution that can be used for inference. That prior
specification consists of providing the model with a mean, a covariance structure and a set of observed
values (or targets) at carefully selected inputs, so-called design points. The pair formed by the design points
and the observed values at such points is called the training set. The mean and covariance functions
contain parameters, so-called hyperparameters, that need to be inferred from the training data by solving
an optimization problem. For high-dimensional input spaces, the GP model would be impractical. To
overcome this optimization issue, we developed an ESGPMR method based on Bayesian inference that
is able to recursively find the lowest dimension of the input space for which the GP emulator response
surface best approximates the numerical simulator. The method incorporates a continuation routine that
helps the optimization algorithm used for the MLE estimates to find adequate initial values for the
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successive iterations. The continuation routine can be easily made extensive to any existing moderate-
dimensional GP emulators that groundwater researchers using commercial GP toolboxes discarded
because of the impossibility of estimating the hyperparameters appropriately. In the next section, we
only give a brief description of the GP framework, stating our choices for the prior specifications of the
GP model, the generation of the training data and the final predictive equations used to approximate the
simulator. For a detailed description of conditional distributions and the derivation of the final formulae,
we refer the reader to Rasmussen & Williams [21].

3.1. Gaussian process emulation framework
In this section, we describe the general GP emulation methodology for scalar functions, to then extend
it to vector functions in the next section. Let g : R

M → R be a scalar simulator. The aim of GP emulation
is to learn the functional form of the target model g(·) in the light of a very reduced (due to the time-
consuming simulator) set of data. The design points can be regarded as the locations (in the input space)
at which we wish to obtain the values of g(·) to determine the sensitivity of the simulator to different
inputs. An exhaustive explanation of the possible choice of design points is addressed in Sacks et al. [19].
To generate the set of design points, we simply spread the points to cover the input space, in this case
R

M. There are several methods of sampling the inputs, the most common of which are Latin hypercube
sampling (LHS) [49,50] and Sobol sequence sampling [51]. In this paper, guided by the successful results
obtained in a previous work, we will use the latter. Given the particular definition of the inputs in our
model simulator (ξ ∼N (0, I)), one very intuitive way of building a set of d design points is to, first, use
a Sobol sequence to generate d points in [0, 1]M, and second, push the d points component-wise through
the inverse cumulative distribution function of M random variables distributed according to N (0, σ 2

d ),

with σ 2
d ≥ 1, to, jointly, form the set of design points ξ̂ j = (ξ̂1

j , . . . , ξ̂M
j )ᵀ, j = 1, . . . , d. Note that by setting

σd > 1, we guarantee that the design points are spread enough in R
M to cover all the points sampled

from the input distribution (N (0, I)), and therefore we will not be missing some key information about
the simulator responses at points far from the mean of the input distribution.

Let us denote by f (·) the GP used to model g(·). For any ξ , ξ ′ ∈ R
D, for some D ≤ M, the GP prior mean

function is defined as: m(ξ ) := E[f (ξ )] and the covariance function as: k(ξ , ξ ′) := Cov(f (ξ ), f (ξ ′)) = E[(f (ξ ) −
m(ξ ))(f (ξ ′) − m(ξ ′))], where E[f (·)] and Cov(·, ·) denote the expectation and covariance operators,
respectively. One of the methods available in the literature to select the mean and covariance functions
for a given model is CV (see [5]). However, the covariance chosen for this GP makes no difference to
the scope of the approaches developed in this study, and thus, for simplicity, we will use a mean-zero
function and the square exponential (SE) covariance which is given in terms of three hyperparameters as
follows [21]:

k(ξ , ξ ′) = σ 2
f exp(− 1

2 (ξ − ξ ′)diag(�−2
1 , . . . , �−2

D )(ξ − ξ ′)) + σ 2
n δij, (3.1)

where σ 2
f is the process variance, ��� = (�1, . . . , �D) is the length scale, σ 2

n is the noise variance and δij is

the Kronecker delta. The hyperparameters are collectively represented by θθθ = (σ 2
f , �, σ 2

n ). Given the set of

design points generated with the method described earlier, ξ̂ j = (ξ̂1
j , . . . , ξ̂M

j )ᵀ, j = 1, . . . , d, we can define

the design matrix as X = [ξ̂1, ξ̂2, . . . , ξ̂d]. To avoid numerical instabilities (ill-conditioning of the matrix
system), an i.i.d. random noise εj ∼N (0, σ 2

n ), where σ 2
n is the variance in expression (3.1), is typically

introduced into the model, and thus the observed values will take the form yj = fc(ξ̂ j) + εj, where yj is the

perturbed simulator output at the design point ξ̂ j ∈ R
M. If we now write y = [y1, . . . , yd]ᵀ, we can define

the training set as the pair D = {X, y}. Once we have provided the model with a mean-zero function, the
SE covariance function (3.1) and the training set D, we can make predictions for new untested inputs
ξ∗ ∈ R

D by using the predictive equations for GP regression [21]:

mD(ξ∗) = Σ(ξ∗, X)[Σ(X, X) + σ 2
n I]−1y (3.2)

and

kD(ξ∗, ξ∗) = k(ξ∗, ξ∗) − Σ(ξ∗, X)ᵀ[Σ(X, X) + σ 2
n I]−1Σ(ξ∗, X), (3.3)

where the (i, j)th entry of Σ(X, X) ∈ R
d×d is given by k(ξ̂ i, ξ̂ j) and Σ(ξ∗, X) = (k(ξ∗, ξ̂1), . . . , k(ξ∗, ξ̂d))ᵀ.

Expression (3.2) for the GP posterior mean mD can be then used to emulate the simulator output at any
new input ξ∗, i.e. we can write f (ξ∗) := mD(ξ∗) ≈ g(ξ∗). Expression (3.3) provides the predictive variance
in the estimation of the output.
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3.2. Reduced-rank approximation of the output space
In this section, we use the method proposed by Higdon et al. [26]. The idea is to use PCA to project the
original simulator outputs onto a lower-dimensional space spanned by an orthogonal basis. This is done
via singular value decomposition (SVD) as we detail later. Once in the PCA framework, the outputs
can be expressed as a linear combination of PCA basis vectors (or the principal components (PCs)) with
coefficients treated as independent univariate GPs with distinct sets of correlation lengths. This allows us
to build separate GP emulators (as many as PCs considered) to estimate the coefficients of new outputs
at untested inputs in the PCA basis. Then we use a linear map for reconstruction to the original output
space. By using orthogonal projection, we guarantees a minimal average reconstruction error. The error
considered for comparisons between two vectors throughout this paper will be the L2-norm relative
error (RE) unless stated otherwise. For the two vectors x = (x1, . . . , xM) and y = (y1, . . . , yM), we define
the L2-norm RE between x and y as

RE(x, y) = ‖x − y‖2

‖x‖2
, (3.4)

where ‖x‖2 is the Euclidean norm.
Let us consider a simulator (e.g. fc) which receives inputs in R

M and returns outputs in R
M (instead

of R). Then the GP emulator described in §3.1 would not work. Let Y be the M × d matrix with
column j the jth run of the simulator. The dimension reduction in the output space can be described as
follows:

(i) Subtract off the mean for each dimension M to obtain the centred version of the matrix Y, Y′.
(ii) Multiply the centred matrix Y′ by the normalization constant 1/

√
d − 1 to obtain Y′′.

(iii) Compute the SVD of Y′′ and obtain the M × M matrix U whose columns uj, j = 1, . . . , M, are the
PCs of the PCA basis.

(iv) Project the original centred data into the orthonormal space to obtain the matrix of coefficients,
α = (αij), i = 1, . . . , M, j = 1, . . . , d.
An orthonormal basis for a lower-dimensional space of dimension r < M is given by the first r
PCs of {uj}M

j=1. Thus a reduced-rank approximation of Y′′, Ỹ′′ can be obtained by using the first r
columns of U and the first r rows of α.

Now we can build r separate and independent GPs from the input space R
M to R as described in §3.1

by generating also r separate training sets. In this case, the design points in all the training sets are the
same, X = {ξ̂ j}d

j=1, with ξ̂ j ∈ R
M, and the set of observed values are the coefficients of the PCs computed

above, i.e. the first r rows of α. Thus, for any untested input ξ∗ ∈ R
M, we use expression (3.2) for each

of the r GPs to estimate the r coefficients. These are then stored in vector form and can be mapped back
to the original output space to obtain the final GP prediction y∗ ∈ R

M. We can test the accuracy in the
prediction by running the numerical simulator at the same input ξ∗ and compare the result ytrue ∈ R

M

with y∗. Unfortunately for high-dimensional input spaces this approach is not valid and an additional
input space dimension reduction must be performed.

In the next section, we propose a method for overcoming the limitation that GPs have in high-
dimensional input spaces. This methodology is then combined with the output space reduction method
above to build a GP emulator for the full simulator.

3.3. The empirical simultaneous Gaussian process model reduction method
Let us clarify the notation first. Suppose we have a set of d design points ξ̂ j ∈ R

M generated as described
in §3.1. We run the simulator at those points to obtain the corresponding true d output fields y1, . . . , yd
where the fields yj are reshaped to form the columns of the M × d outputs matrix Y. Then we use the
dimension-reduction method described in §3.2 to obtain the PCA basis and the matrix of coefficients
α = (αij), i = 1, . . . , M, j = 1, . . . , d. We denote by Ỹr the reduced-rank approximation of Y obtained by
considering the first r ≤ M PCs of the PCA basis whose columns ỹr

j , j = 1, . . . , d are the correspondent
reduced-rank approximations of the observed fields yj, j = 1, . . . , d. As we wish to reduce the dimension

M of the original input space, let us define, for any D ≤ M, the training sets as: {DD
i = (XD, αi)}r

i=1, where

XD = [ξ̂
D
1 , . . . , ξ̂

D
d ] is the truncated design matrix with D denoting the first D components used from the

whole set of M (e.g. for ξ̂1 = (ξ1
1 , . . . , ξD

1 , . . . , ξM
1 )ᵀ we have ξ̂

D
1 = (ξ1

1 , . . . , ξD
1 )ᵀ), and αi = (αij), j = 1, . . . , d.

The ESGPMR algorithm (figure 1) can finally be described as follows:
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ESGPMR algorithm

Start
set initial tolerances:

Œ and Dmax

set r = 1

set r = r + 1

set D = Dmax

set D = D–1

set D = D–1

Yes

No
use r GPs and LOO-CV to test if:
RE(yj, ŷj

D) <Œ, for all j = 1, …, d 

use r GPs and LOO-CV to test if:
RE(yj, ŷj

D) <Œ, for all j = 1, …, d 

End
return:

D, r

r = M ?

No

Yes

Yes

No

            End
either go to start
and increase Œin or
look for a different
surrogate model …

Figure 1. ESGPMR algorithm for code implementation.

(i) Set accuracy tolerance ε and maximum dimension of the input space to be considered Dmax.
(ii) Set r = 1.

(iii) Find a reduced-rank approximation Ỹr of the original Y by using the first r PCs.
(iv) Set D = Dmax.
(v) Form the training sets {DD

i }r
i=1 and build r independent GPs (as described in §3.2). Follow the

leave-one-out cross-validation (LOO-CV) approach and use the previous GPs to predict the fields

at the leave-out points ξ̂
D
j , j = 1, . . . , d, and then check if the following expression holds:

RE(yj, ŷD
j ) < ε, ∀j = 1, . . . , d, (3.5)

where yj are the columns of Y (the true fields) and ŷD
j denotes the predicted field at point ξ̂

D
j .

If expression (3.5) does not hold, set r = r + 1 and go to (iii) (to refine the reduced-rank
approximation error). If expression (3.5) holds, set D = Dmax − 1 and go to (v) (to reduce the
dimension of the input space) until the expression does not hold, and then return D and r.

Note that the choices of ε and Dmax are problem-dependent and completely heuristic. In the next
section, we will discuss how to choose values for those tolerances by examining the data, although this
ultimately depends on the end-user criteria.

3.4. Leave-one-out cross-validation and hyperparameters estimation
Estimates of the unknown hyperparameters θθθ = (σ 2

f , �, σ 2
n ) in expression (3.1) need to be inferred from

the data provided to the model. This step is a crucial part of GP emulation. While this is quite simple to
solve in one-dimensional problems, it really becomes an optimization issue when dimension increases.
In this section, we describe how to estimate those parameters from the training set even if the dimension
of the input space is large. To estimate the hyperparameters, we use a technique known as leave-one-out
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cross-validation (LOO-CV) (see [5,21]). LOO-CV consists of using all training set data but one point (the
leave-out) for training, and computing the model prediction error on the leave-out point. This process is
repeated until all available d points have been exhausted. We use each of the d leave-out training sets
and a conjugate gradient optimizer to obtain estimates of the hyperparameters by maximizing the log
marginal likelihood (3.6) with respect to the hyperparameters:

log p(y|X,θθθ ) = −1
2

yᵀ(Σ + σ 2
n I)−1y − 1

2
log |Σ + σ 2

n I| − n
2

log 2π . (3.6)

The prediction errors during the LOO-CV scheme are quantified through the mean square error (MSE):

MSE = 1
d

d∑
j=1

(yj − mj)
2, (3.7)

where mj is the predicted expected value given by expression (3.2) and yj is the corresponding observed

value both at the same (leave-out) input ξ̂ j. Note that the MSE depends only on the mean predictions,
and thus, sometimes, different CV measures which also take into account predictive variances, such as
the negative log validation density loss [21] or the Dawid score [52], might be preferred. For the purpose
of this study, the MSE gives us the relevant information about the LOO-CV predictions we need for
assessment. For an optimal performance of the optimization algorithm and for avoiding failure due to
the existence of possible marginal likelihood multiple optima, a continuation routine must be included
in all the independent GP emulators described earlier. This is straightforward and can be implemented
as follows:

(i) Consider the training sets as in §3.3, i.e. for any D ≤ M: {DD
i = (XD, αi)}r

i=1. Without loss of
generality, let us set r = 1. The method is exactly the same for the other r − 1 GPs.

(ii) Estimate the hyperparameters by finding the MLE of expression (3.6) for the D one-dimensional
problems until a maximum value Dmax (large), i.e. by using the Dth KL coefficient of each of the
d design points in the training set. We obtain θθθ (ini) = (σ (ini)

f , �(ini)
1 , . . . , �(ini)

D , σ (ini)
n )ᵀ. Note that the

importance here lies in the length scales arising from the anisotropic covariance function. Note
also that we do not need to compute these values a priori and we can do each calculation just
before each iteration as needed (depending on Dmax).

(iii) Start the iteration over the number of KL coefficients D. For D = 1 perform a LOO-CV scheme
by using the values obtained in (ii) as initial guess for the estimation of hyperparameters to be
used in the GP. Store the hyperparameters as θθθ (1) = (σ (1)

f , �(1)
1 , σ (1)

n )ᵀ.
(iv) Repeat the iterations until D = Dmax, and for D > 2 take as initial guess the previous estimation

of the hyperparameters in the lower-dimensional space and the first estimation obtained in (ii)
for the next component. For example, for θθθ (2) take as initial guess: (σ (1)

f , �(1)
1 , �(ini)

2 , σ (1)
n )ᵀ.

Store the MSE for all the D iterations to examine convergence. By inspecting figure 2, we can
estimate a value for Dmax and refine the model.

4. Numerical results
In this section, we discuss the results obtained by applying the reduction and GP emulation methods
to the model problem introduced in §2. Let us consider the numerical simulators fc : ξ �→ C and fΨ :
ξ �→ Ψ with ξ ∈ R

M, distributed according to N (0, I). C ∈ R
M and Ψ ∈ R

M are the concentration and
streamfunction, respectively. Let us show how we build the GP emulator for the concentration simulator
fc. Exactly the same procedure applies to fΨ . The first step is to build a training set. We generate d = 256
points as described in §3.1, i.e. we use a Sobol sequence to generate d points in [0, 1]M, and, second, push
the d points component wise through the inverse cumulative distribution function of M random variables
distributed according to N (0, σ 2

d ), with σd = 1.32, to, jointly, form the set of design points ξ̂ j, j = 1, . . . , d.
For the choice of σd, we tested the GP simulator for three different values: σd = 1.32 was the one providing
more accuracy in the LOO-CV test. To exploit the properties of Sobol sequences and spread the points in
the space in an optimal manner, it is recommended [53] that the generated samples are a power of 2. In
this study, we use d = 28 = 256. A lower number of design points might be used with the same degree of
accuracy in the results (see [5]), although as our decisions for the model specifications are based mainly in
the LOO-CV technique, we need a relatively large amount of experimental data. For those design points
we run the simulator and obtain the correspondent concentration fields fc(ξ̂1) = C1, . . . , fc(ξ̂d) = Cd.
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Figure 2. MSE against the number of KL coefficients or input space dimension D. These data correspond to the emulation of the first PC
component.

Table 1. Relative errors between the true and reduced-rank approximation REtrue-red and between and the true and the predicted
concentration fields REtrue-pred for three different tolerances ε. The numbers of PCs (PC) and KL coefficients (KL) used are also provided.

ε PC KL REtrue-red REtrue-pred
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.050 3 5 0.034 0.047
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.025 6 14 0.017 0.023
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.010 10 82 0.005 0.010
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The key parameters used to characterize the heterogeneity of the porous medium appeared in
expression (2.6). A detailed analysis of the impact of heterogeneity on the concentration profiles and
the streamfunction fields has been conducted previously [5,24]; in these earlier works, a measure of the
amount of CO2 adsorbed through the top boundary in a process of CO2 storage is computed from both
the heterogeneous case and the one for an equivalent homogeneous medium characterized by a constant
permeability equal to the mean permeability in the domain. For our simulations, the value of λ will be set
to λ = 0.5. This value has been taken from the ranges suggested in the literature (see [18]). The existence
of bifurcating branches of solutions in the C-ED model (see [32]), i.e. there is not always guarantee of a
unique observed value at a single design point, might lead to inaccurate training data if large values of σ 2

are considered and no classification techniques are employed [5]. Thus, for simplicity and without loss of
generality, we will set σ 2 = 0.1. Note that the choice of σ 2 does not directly affect the applicability of the
ESGPMR method proposed in this paper but the uniqueness of the simulator outputs. Consequently, the
use of larger values for σ 2 would probably necessitate using additional pre-processing tools to classify
the variety of branches of observed data before forming the training set. This scenario has been treated
in detail previously [5]. Note that for models where there is a one-to-one correspondence between inputs
and outputs, the ESGPMR can be applied without restriction.

Once we have generated the training set and decided the prior specifications for the GPs, we use
the ESGPMR algorithm to reduce the dimensionality of the input and output spaces in order to bring
the original model to a more computationally tractable and accurate problem. Tables 1 and 2 show the
results for different accuracy tolerances ε obtained from the set of concentration and streamfunction
fields, respectively. It also shows the number of KL coefficients used for the input space, the number
of PCs from the PCA basis for the output space and the overall relative (maximum) error achieved.
We observe that (as one might expect) the more dimensions that are considered, the more accurate is
the overall approximation of the GP emulator. This is also a sign that the ESGPMR algorithm is well
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Figure 3. MSE against the number of PCs or output space dimension r. These data correspond to a GP emulation with D= 120.
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Figure 4. Permeability field used for the prediction of the concentration and streamfunction fields shown in figures 5 and 6.

Table 2. Relative errors between the true and reduced-rank approximation REtrue-red and between and the true and the predicted
streamfunction fields REtrue-pred for three different tolerances ε. The numbers of PCs (PC) and KL coefficients (KL) used are also provided.

ε PC KL REtrue-red REtrue-pred
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.100 5 6 0.069 0.095
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.075 10 18 0.036 0.072
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.050 14 55 0.017 0.048
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 5. True (a), reduced rank (b) and predicted (c) concentration fields for the permeability shown in figure 4. The dimension of the
input (D) and output (r) spaces and the relative error (RE) achieved are also reported.

designed. To set an optimal value for Dmax, we need to conduct a first experiment allowing Dmax to
be large enough to allow us to investigate, for instance by visual inspection, some signs or numerical
evidence of convergence. Figure 2 provides us with a valuable information about the latter. For this
model, a sensible value for Dmax might be 100 (higher or lower values are at user discretion). Note that
this limit is only illustrative as figure 2 is only considering the first GP emulator or r = 1. Although
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Figure 6. True (a), reduced rank (b) and predicted (c) streamfunction fields for the permeability shown in figure 4. The dimension of the
input (D) and output (r) spaces and the relative error (RE) achieved are also reported.

the value of Dmax is just a reference, using more DoF does not seem to be sensible as it could lead to
additional numerical errors as well as an exponential increase of the computational cost. It is important to
note that Dmax is just a user’s auto-imposed limit depending on the user’s own computational resources,
and therefore it is related to dimension reduction, while ε is related to the accuracy of the GP results.
Thus, the choices of Dmax and ε are made independently. In these terms, if the user has not reached the
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Figure 7. Scatterplot of the massM computed from the 256 observed concentration fields in the training set and the predicted mass
obtained from the emulated concentration fields at the same design points. The line y = x is used as the reference for the best possible
performance.

desired accuracy in the GP predictions for either a tolerance ε or a relatively large value of Dmax, it can
be concluded that GP emulation is not a priori (one can always try with different prior mean, covariance
or likelihood functions) a recommendable surrogate model for the numerical simulator. Figure 3 shows
numerical evidence of how the reduction of the MSE depends on the number of PCs considered. Figure 4
shows the permeability field used to compute the concentration and the streamfunction outputs shown
in figures 5 and 6. Figure 5 shows the results obtained by using the GP emulator with D = 82 and r = 10
to predict the concentration output field at one untested point ξ∗ ∈ R

M. The RE between the true and the
reduced rank approximation was 0.005. The RE between the true and the predicted was 0.01. Figure 6
shows the results for the same input considered in figure 5, where in this case the best resolution achieved
was using D = 55 and r = 14. We highlight here that different values of D and r are needed for each GP
emulator to achieve the desired tolerance, i.e. while for the concentration we needed D = 5 and r = 3
to achieve a tolerance of 0.05, for the streamfunction we needed D = 55 and r = 14. Furthermore, both
algorithms were unable to refine further, and thus the lowest tolerances we could achieve in this study
were ε = 0.01 for the concentration and ε = 0.05 for the streamfunction.

Before finishing this section, let us see another application. We can use the GP emulator to
approximate scalar-valued quantities of interest from any of the output fields, for instance we can
compute the total mass of dissolved solute in the domain R given by BarbaRossa et al. [34]: M= ∫

R C.
In this case, we only need to emulate the concentration field C for the new input and then compute
the integral over R. An intuitive and qualitative way of measuring how close our GP predictions are
to the observed values is through scatterplots. This consists of plotting the pairs (predicted outputs,
observed outputs) along with the line y = x and checking that the scattered points are not ‘far away’
from the straight line. For this application, we used the data stored during the LOO-CV scheme for the
GP above and computed the set M∗

1, . . . ,M∗
d from the emulated concentration fields. Then we computed

M1, . . . ,Md directly from the simulator concentration outputs C1, . . . , Cd. Figure 7 shows the scatterplot
for the observed values (Y-axis) against the predicted values (X-axis).

In this study, the GP emulation was implemented using the GPML MATLAB TOOLBOX v.3.4 [21].

5. Conclusion
In this paper, we developed a methodology based on dimensionality reduction and GP emulation
for surrogate modelling in SPDEs. The technique can be applied without modification to any model
involving vector-valued functions and vector-valued inputs. The ESGPMR algorithm was able to
simplify the original mathematical problem while retaining the accuracy in the results. In particular,
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for the emulation of concentration fields, one of the GP emulators was able to reduce the dimensionality
of the input and output spaces from M = 2601 to D = 112 and from M = 2601 to r = 20, respectively, for
an overall tolerance of ε = 0.01.

The ESGPMR algorithm provides the end-user with a tool for assessing if GP emulation is an efficient
surrogate model for a given computationally expensive numerical simulator. This applies to either
numerical models where it is not feasible to meet the desired resolution in the GP predictions or when
the original problem cannot be adequately reduced to a more tractable model (i.e. Dmax and r are found
to be extremely large for the tolerances given).

Data accessibility. Our data are available in Dryad at https://doi.org/10.5061/dryad.3g280 [54].
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