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PREFACE.

The author has endeavored so to arrange the present work

that it shall be adapted both to those who do and those who
do not desire to make a special study of advanced mathema-

tics. Believing it better that a student should learn a little

thoroughly and understand ingly than that he should go over

many subjects without mastering them, the work is so con-

structed as to offer a wide range of choice in the course to be

selected.

The opening chapter contains a summary of the new ideas

associated with the use of algebraic language, which the stu-

dent is now first to encounter. His subsequent progress will

depend very largely on the ease and thoroughness with which

he can master this chapter.

The next seven chapters correspond closely to the usual

college course in plane analytic geometry; but the second sec-

tions of Chapters III. and IV., as well as some sections of Chap-

ter VIII., may be regarded as extras in this course.

If to this be added the part on geometry of three dimen-

sions, we shall have a course for those who expect to apply the

subject to practical problems in engineering and mechanics.

The second sections of Chapters III. and IV., together

with Part III., form an introduction to the modern projective

geometry; a subject whose elegance especially commends it to

the student of mathematical taste. The author has tried to

develop it in so elementary a way that it shall offer no diffi-

culty to a student who has been able to master elementary

geometry and trigonometry.

Valuable assistance in preparing the chapters on tbe

Conic Sections has been rendered by Dr. J. Morrison.

I
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ANALYTIC GEOMETRY.

PART I.

PLANE ANAL YTIC GEOMETR Y.

CHAPTER I.

FUNDAMENTAL CONCEPTIONS IN ALGEBRA AND
GEOMETRY.

1. Analytic Geometry is a branch of mathematics in which

position is defined by means of algebraic quantities.

As an example of how position may be defined by quanti-

ties we may take latitude and longitude. The statement

“This ship is in lat. 47° 1ST. and long. 52° W.”
indicates to the expert a certain definite point on the earth’s

surface near Newfoundland.
47° and 52° are the quantities indicating the position.

Algebraic Conceptions.

The following algebraic conceptions and principles should

be well understood by the student of Analytic Geometry.

2. Principles of Algebraic Language.

I. When an algebraic symbol is used in a statement, the

statement is considered true for any value of that symbol,

unless some limitation is placed upon it.

II. Any algebraic expression represents a quantity, and

may itself be represented by a single letter.
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3. Constants and Variables. A quantity is called

Constant when a definite fixed value is supposed to be

assigned it;

Variable when, no definite value being assigned it, it is

subject to change.

We may, when we please, assign a definite value to a

variable. It then becomes, for the time being, a constant.

Example. We may regard the expression

x* — a?x

as one in which x may take all possible values, while a remains

constant: x is then available.

But we may also inquire what definite value x must have

in order that the expression may vanish. We readily find

these values to be

x — 0; x = a; x = — a.

The quantity x then becomes a constant.

Again, we may think of a constant as undergoing variation:

it then becomes a variable.

Remark. The distinction of constant from variable is

not an absolute but only a relative one; that is, relative to

other quantities, or to our way of thinking at the moment.

The only absolute constants are arithmetical numbers.

4. Functions. When two variables are so related that a

change in one produces a change in the other, the latter is

called a function of the other.

Such relations between quantities are expressed by alge-

braic equations.

Example. In the equation

y — ax + b,

a change in a, b or x produces a change in y. Hence y is a

function of these quantities.

The value of an algebraic expression containing any sym-

bol will generally vary with that symbol. Hence

Any algebraic expression containing a variable is a func-

tion of that variable.
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Independent Variables. When a quantity, y, is a func-

tion of another quantity, x, we may assign to x all possible

values, and study the corresponding values of y.

The quantity x is then called an independent variable.

5. Identical and Conditional Equations. An equation

between algebraic symbols may be either

necessarily true, whatever values be assigned the symbols;

or true only when some relation exists between those

values.

An equation necessarily true is called an identical equa-
tion, or an identity. An equation only conditionally true

is called an equation of condition, or a condition.

Between the two members of an identity the sign = is

used; between those of a condition, the sign = .

Example. We have

(x a) (x — a) + of = z2

;

because the two members are necessarily equal for all values

of x and a. But the statement

ax — by = 0

can be true only when

b
x — - y,

a 3

and is therefore a condition.

The question whether an equation is an identity or a con-

dition is settled by reducing or solving it.

If an identity, the two members may be reduced to the

same expressions, or, if we try to solve it, we shall only bring

out 0 = 0.

If a condition, a value of x in terms of the remaining

quantities will be possible.

Theorem. An equation of condition becomes an identity

by solving it with respect to any one symbol, and substituting

the value of the symbol thus found in the equation.

Example. If in the preceding equation

ax —
- by = 0
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we substitute the value of x derived from it, we have

a — y — by = 0,
a J J

an identity.

Hence any equation may be regarded as an identity by

supposing any one of its symbols to represent that function o;

its other quantities obtained by solving it.

Example. The equation

aP - by = 0

changes into the identity

aP - by = 0

when we suppose P = — y.

6 . The symbol = is also used as the symbol of definition

when, in accordance with §2, II., we use a symbol to repre-

sent an expression. For example,

ax + by = X
means,
“ we use X for brevity, to represent the expression ax + by.”

When the sign = follows an expression in this way, it may
be read, “ which let us call.”

7. Lemma. Between the variables x and y and the con-

stants A, B and C the identity

Ax + By +(7=0 (1)

subsists tuhen, and only when,

A = 0. B = 0, (7=0. (2)

Proof. That the identity subsists in the case supposed

is obvious; that it subsists only in this case is seen bv showing,

first, that if (7 were different from zero, the identity would
fail for x = 0, y = 0; and next, that, (7 being zero, the

identity would fail for x = 0 when B was finite, and for

y
— 0 when A was finite.

Remark 1. The deduction of (2) from (1) rests on the

assumption that x and y are independent variables. If A and

B were regarded as variables, the conclusions would be

x — 0; y = 0; (7=0.
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Remark 2. Note the great difference between the inter-

pretation of the equation

ax + by -f- c = 0

and of the identity

ax -)- by c =0.

The equation expresses a certain relation between the van

ables x and y such that to each definite value of x corresponds

a definite value of y, namely, the value

ax + c

The identity expresses no relation between the quantities,

but requires zero values of a, b and c.

8. Roots of Quadratic Equations. Every quadratic equa-

tion is considered to have two roots, which may be real and

unequal, real and equal, or imaginary. If the equation is

ax2

-f- lx c = 0, (a)

then, since we know the roots to be given by the equation

_ — b ± VF — 4ac _ 2c

2a — i zp fF — 4ac

we see that the roots will be

real when F — 4ac > 0, i.e., when F — 4ac is positive;

real and equal when F — 4ac = 0;

imaginary when F — 4ac < 0; i.e., when F — 4«c is

negative.

The student should now be able to explain the following-

special cases:

1.

If the absolute term c vanishes, the roots become

x = 0 and x = — —

.

a

2. If b and c both vanish, both roots become zero.

3. If a approaches zero as its limit, one root increases

. . . c
without limit, and the other approaches the limit — j.
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Hence we may say: When the coefficient of x2
in the quad-

ratic equation (a) vanishes, the two roots are

c
ix = — -r- and x — oo

.

o

4. If both a and b vanish while c remains finite, botli

roots increase to infinity.

5. If a, b and c all vanish, the roots are entirely indeter-

minate, and the equation is satisfied by all values of x.

9. Proportional Quantities. The quantities of one series,

a, b, c, etc., are said to be proportional to those of another

series, A, B, C, etc., when each quantity of the one series is

equal to the corresponding quantity of the other multiplied

by the same factor.

The fact of such proportionality is expressed in the vari-

ous forms:

a : A — b\ B — c:C — etc.;

a : b : c : etc. — A : B : C : etc.;

a — pA, b = pB, c = pC, etc.;

p being, in the last case, the multiplying factor.

TEST EXERCISES*

1. A point at the distance (1) from one side of a right

angle and at the distance (2) from the other side will be at

the distance (3) from the vertex of the angle.

Here the student will substitute symbols at pleasure for

(1) and (2), and will replace (3) by the proper function of

those symbols, reading the statement accordingly. For ex-

ample, he may put

x in place of (1) and y in place of (2),

y x in place of (1) and y — x in place of (2),

etc. etc. etc.,

* These exercises are designed to decide the question whether the

student has a sufficient command of algebraic language and of geometri-

cal conceptions to enable him to proceed with advantage to the study

of Analytic Geometry. If he can perform all the exercises with ease,

he is probably well prepared to go on; if he performs them only with

difficulty, he may need much assistance in understanding the subject.
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and in each case he must read the statement with the proper

expression in place of (3).

2. If, in the preceding example, (1) varies while (2) re-

mains constant, the point will describe a line to

Fill the blanks with appropriate words.

3. If (2) varies while (1) remains constant, the point will

describe a line to the .

4. If (1) remains equal to (2), but both vary, the point

will move along the .

5. If (1) and (2) vary in such a way that (3) remains con-

stant, the point will describe a of radius around
— as a —

.

6. If two fixed points, A and B, are at the distance a from

each other, and if a third point, P, be taken at the distance

(4) from each of these points; then, if (4) varies, the point P
will describe a line (define the situation of the line). But, in

varying, the distance (4) cannot become less than —

.

The numbers in parentheses are to be replaced by appro-

priate symbols or expressions.

7. If, in the preceding example, a point be taken at the

distance (5) from the points, and at the distance (6) from B\

then, if (5) varies while (6) remains constant, the point will

describe a of around — as a —

.

8. But if (6) varies while (5) remains constant, the point

will

9. If the constant value of (6) in Ex. 7 plus the con-

stant of (5) in Ex. 8 =; a, the two will be to each

other.

10. If a line be drawn so as to pass at. the distance r

from each of the preceding points, then, if r varies, the

line will turn round (describe hotv it will turn). But the

value of r can never exceed , and for each value of r

there will be two positions of the line making equal angles

with —

.

11. If the line be required to pass at the distance (7) from

the point A, and at the distance (8) from the point B; then,

if (7) varies while (8) remains constant, the line will move
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round so as always to be tangent to the around — as

a with radius —

.

12. What symbols must (9) and (10) be replaced by in

order that all values of x and y which satisfy the equation

Ax -f- By -(-(7=0

may also satisfy the equation

nnAx -f- (9 )y -f- (10) = 0;

that is, in order that these two equations may give the same
value of y in terms of x ?

13. Show that the identity

ax by -f- c = Ax -f- By -f C,

x and y being variables, is impossible unless

a —A; b = B; c — C.

14. If we put

P = x — 2y -(- 3c, P' = ox — 6y -j- 9c,

is it possible to form an identity of the form

P + mP' = 0,

and, if so, what will be the value of m?
15. Generalize the preceding result by showing that if we

have
P = ax + by -f- c, P' = Ax + By + (7,

the identity P + mP' = 0,

x and y being variables, is possible only when

• a : A = b : B = c : C,

and express the value of m.

16. If a -f- x remains constant, and x varies at the rate of

plus one foot a second, at what rate will a vary?

17. What will be the answer to this last example if it is

a — 2x instead of a -(- x which remains constant?

18. If x may take any values between the extremes — 1

X
and + 2, between what extremes will the value of

—

:—; be

contained?

x — 1
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Geometric Conceptions.

10 . A geometric concept, form, or figure of any kind, may
be called a geometric object.*

In the higher geometry all geometric objects, when not

qualified, are considered as complete in every particular.

Examples. A straight line is considered to extend to

infinity in both directions. When a terminating straight line

is treated, it is considered as that portion of an infinite straight

line contained between some two points.

A triangle is considered as formed by three indefinite

straight lines intersecting each other in three different points.

Geometric objects differ from each other in magnitude,

form and situation.

Points, straight lines and planes can, however, difEer only

in situation, because any two points, any two lines or any two

planes may be made to coincide with each other by a change

of situation.

11. Points at Infinity. A pair of parallel lines are said to

intersect in a point at infinity

;

that is, in a point at an infinite

distance.

The idea of a point at infinity is reached in this way: Let

us suppose one of two intersecting lines to turn round on one

of its points and gradually to approach the position of parallel-

ism to the other line. As this position is approached the

point of intersection of the two lines will recede indefinitely, in

such wise that while the revolving line approaches parallelism

as its limit, the point will recede beyond every assignable limit.

Conversely
,
if we suppose the point of intersection to recede

indefinitely along the fixed line, the moving line will approach

* This is the best English word which lias presented itself to the

author to correspond to the Oebild of the Germans. Such a word is needed

in the higher geometry as a term of the most general kind to express

the lliings reasoned about. The term magnitude is too limited, not only

because a point is to be included among geometric objects, but because

objects are considered not merely as magnitudes but, in a more general

way, as things of which magnitude is only one of the qualities.
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the position of parallelism as its limit. This limit will be

the same whether the point of intersection recedes in one

direction or in the opposite.

Hence, using the convenient language of infinity, we see

that when the point of intersection is at infinity in either

direction the two lines are parallel. There is, therefore, no

need of making any distinction between these supposed points,

and they are talked about as a single point, called the point at

infinity.

The principle here involved is of extensive application in

the higher mathematics, and may be expressed thus:

Instead of using new or different forms of language to

meet exceptional cases, we use the common language, hut put an

exceptional interpretation upon it.

The advantage of this way of speaking is that we are not obliged to

make any exceptional cases respecting the intersection of lines when the

two lines become parallel.

The proposition, Two straight lines intersect in a single point, is then

considered universally true, the point being at infinity Avhen the lines

are parallel.

The following is a convenvient illustration of this form of language.

Let it be required to draw a line through a fixed point, P, so as to inter-

sect the fixed line b at the

same point, Q,, where the line

a intersects it. The construc-

tion will be literally possible sof
long as a and b intersect, but

will cease to be literally possible

if a takes the position a', paral-

lel to b, because then there will be no point Q of i;

But let us interpret the problem in this way: The required line must
intersect b where a intersects b. But in case of parallelism, a intersects

b nowhere. Hence the required line must intersect b nowhere; that is,

it must be parallel to it. It is this particular nowhere which is called the

point at infinity on the line b. It is, moreover, clear that if Q recedes to

infinity, both the line a and the required line will approach the position

of parallelism to b as their respective limits.



CHAPTER It.

OF CO-ORDINATES AND LOCI.

12 . Def. The co-ordinates of a geometric object are

those quantities which determine its situation.

Co-ordinates, like other quantities, are represented by

numerical or algebraic symbols.

The situation of an object is defined by its relations

to some system of points or lines supposed to be fixed. Such

a system is called a system of co-ordinates.

There are several systems of co-ordinates to be separately

defined.

First System : Cartesian or Bilinear
Co-ordinates.

13. On this system the position of a point is fixed by its

relation to two intersecting straight lines called axes.

Let AX and 57 be the two lines, and 0 their point of

intersection.

The point 0 is then

called the origin.

The indefinite line

AX, which we may con-

ceive to be horizontal, is

called the axis of ab-

scissas, or the axis ofX.
The intersecting line

.617 is called the axis of

ordinates, or the axis

of Y.

Let P be the point whose position is to be defined.
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From P draw PM parallel to OY and meeting the axis

of X in M, and

PNparallel to OX and

meeting the axis of Y in

N.

Then either of the

equal lines OM, NP is

called the abscissa of the

point P;
Either of the equal

lines MP, ON is called

the ordinate of the

point P.

It is evident that for every position we assign to P the

abscissa and ordinate will each have a definite value.

14. Co-ordinates Determine a Point. When the lengths

OM and MP are given, the point P is completely determined

in the following way: We measure from 0 on the axis of X
the given distance OM.

Through M we draw an indefinite line parallel to the axis

of Y, and on this line measure a length MP.
The single point P which we thus reach is the point which

has the given abscissa and ordinate.

Because the abscissa and ordinate thus determine the

situation of P, they form, by definition, a pair of co-ordinates

of P (§12).

Notation. The abscissa is represented by the symbol x.

The ordinate is represented by the symbol y.

It is evident that if the point P be fixed in position, its

co-ordinates will be constants. But if P varies, one or both

of the co-ordinates will vary also.

15. Algebraic Signs of the Co-ordinates. In what pre-

cedes it is supposed that the direction, as well as the distance,

of the measures OM and MP is given. If these directions

were arbitrary, we might measure the given distance OM in

either direction from 0, and thus reach either the point M to

the right of 0 or the point M' to the left of 0.
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Bj measuring the ordiuate in either direction from the

points M and M' we should reach either of four points,

P, P'
, P", P'", of which the co-ordinates would all be equal

in absolute value.

To avoid ambiguity in

of the abscissa is supposed

positive when meas-

ured from 0 towards the

right, and

negative when meas-

ured towards the left.

The ordinate J\1P is

supposed

positive when meas-

ured upward, and

negative when meas-

ured downward.

Now if the abscissa

x = OM — a and the

ordinate y = MP = b, then the

this respect the algebraic sign

co-ordinates of P are x = -f- a,

co-ordinates of P' are x — — a,

co-ordinates of P" are x = — a,

co-ordinates of P"’ are x — + a,

y = + h
y = + h;

y—-M
y — — b.

Thus the ambiguity is completely avoided when the algebraic

signs of the co-ordinates, as well as their absolute values, are

given, so that only one point corresponds to one pair of alge-

braic values of the co-ordinates.

16. Pectangular Co-ordinates. When not otherwise ex-

pressed, the axes of co-ordinates are supposed to intersect at

right angles. The co-ordinates are then called rectangular
co-ordinates.

To designate a point by its co-ordinates we enclose the

symbols or numbers expressing the co-ordinates between pa-

rentheses, with a comma between them, writing the value of

x first.
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Example. By (2, 3) we mean “the point of which the

abscissa is 2 and the ordinate is 3.”

EXERCISES.

1. Draw a pair of rectangular axes, and, taking a centi-

metre or inch, as may be most convenient, for the unit, lav

down the position of points having the following co-ordinates:

(+ 2, -j- 3), (-f- 2, — 3), (— 2, -|- 3), (— 2, — 3),

(+ 3, + 2), (+ 3, - 2), (- 3, + 2), (- 3, - 2).

Show that these eight points all lie on a circle having the

centre as its origin. What is the radius of this circle?

2. Mark a number of points of each of which the ordinate

shall be equal to the abscissa. How are these points situated?

3. Mark the points (1, — 1), (2, — 2), (— 1, 1) and

(— 2, 2), and show their relations.

4. Mark the points (1. 2), (2, 4), (3, 6), (4, 8), and show

how they are situated relatively to each other.

5. If we join the points
(
a

,
— b) and (a, b) by a straight

line, what will be the direction of this line?

6. Find, in the same way, the direction of the line joining

the points (a, b) and (— a, b ); (a, b) and (— a, — b).

7. Show that the distance of the point (a, b) from the

origin is Va"-{-b\

8. If we mark all possible points for which y has the con-

stant value + 1, how will these points be situated?

17. Problem I. To express the distance between two

points whose co-ordinates are given.

When the co-ordinates of two points are given, the position

of each point is completely determined (§ 14).

Therefore the distance between the points is completely

determined, and may be measured geometrically.

The algebraic problem requires us to express this distance

algebraically in terms of those quantities which determine the

position of the points, namely, their co-ordinates.

In the figure let P' and P be the two points; x'
,
y'

,

the co-

ordinates of P'; and x, y, the co-ordinates of P.
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Then we shall have

OM' = x', OM = z;

P'M' = y', PM = y.

If from P' we drop

a perpendicular, P'P,

upon MP, we shall have,

from the right-angled

triangle P'PR,

P’R = d/'JU = * - s',

and PP = MP — d/P = y — y'.

Then, by the Pythagorean proposition,

Fp2 = Fp2 + pp.

Let us then put = the distance P'P.

By substituting the values in terms of the co-ordinates and

extracting the square root, we shall have

d = 4/{(z - -tT + (y - y'Y), (i)

which is the required expression for the distance of the points

in terms of their co-ordinates.

18. Pkoblem II. To express the angle which the line

joining two points, given by their co-ordinates, makes icith,

the axis of X.

Using the same construction as before, let B be the point

in which the line PP' intersects the axis of X.

The required angle will then be

PBX or PP'R.
If we put

s = the required angle,

we shall have, by trigonometry,

PP = P'P sin £ = d sin £

;

P'P = P'P cos £ = d cos £

;

whence, by division,

PP _ y - ?/'

tan £ =
P'P (2 )
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The last equation gives the required expression for the

tangent, from which £ may be found.

19. The two preceding problems may be more elegantly

solved by a single pair of equations:

d sin e = y - y';
) ^

d COS £ — X — %'
. )

The method of solving these equations is explained in

trigonometry.

20. Problem III. Two points being given by their co-

ordinates, it is required to find the points in which the straight

line joining them intersects the respective axes of co-ordinates.

Solution. Let B be the point in which the line inter-

sects the axis of x, G the point in which it intersects the axis

of y.

The point B will then be given by the value of OB, its

abscissa, which we denote by x
0 ,
and C by the value of OC,

its ordinate, which we denote by y0
.

In the similar triangles MBP and RP fP we have

BM : MP = P'R : RP.

Substituting for the lines their values in terms of the co-

ordinates, this gives

BM _ y(x

whence

OB OM - BM =x-

y 7

y{x x’)

or x„ —
y - y

<iy - y') - y(x - -r') _ xy' - x'y

y - y' y
f - y

(i)

The value of OC can be found by a similar construction,

but we may also deduce it from OB by the equation

OC — OB tan £.

But in the figure as drawn C falls below 0, so that the

value of OC just obtained is the negative of the required
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ordinate of the point of intersection. This co-ordinate being

y0 ,
we shall have

«/0
= - OB tan e = xy

x (5)

The student should now note the relation between the

conditions of the geometric and the algebraic solutions.

The problem considered as a geometric one is:

Two points being given in position, to find the intersection

of the straight line joining them with the axes of co-ordinates.

The problem is solved geometrically simply by drawing the

line. The algebraic requirement is:

Two points being given by means of their co-ordinates, it is

required to express the points in which the straight line join-

ing them intersects the co-ordinate axes in terms of the respec-

tive co-ordinates of the given points.

The algebraic solution is given by the equations (4) and

(5).

21 . The preceding problems illustrate the following gen-

eral principle:

Whenever one geometric object is determined by another

geometric object, the algebraic quantities which define the one

can be expressed in terms of those quantities which define the

other.

EXERCISES.

1. Lay down the four points (1, 1). (1, 2), (2, 2), (2, 1),

and join each one and that next following so as to form a

quadrilateral. What will be the nature of this quadrilateral?

2. Show that the points (1, 0), (1, 1), (2, 0), (2, 1) lie

at the four vertices of a square.

3. Show that each of the following sets of four points

are the vertices of a parallelogram

:

Set (a): (0, 0), (3, 1), (0, 4), (3, - 3)-

Set (b): (1, 3), (2, 5), (6, 5), (5, 3);

Set (c): (1, 1), (2, 4), (5, 5), (4, 2).

4. Show by a geometric construction, employing the

properties of similar triangles, that each of the lines joining
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the following pairs of points passes through the origin of co-

ordinates:

(a): a line joining points (1, 1) and (2, 2);

(&): a line joining points (1, 2) and (3, 6);

(c) : a line joining points (1, 3) and (— 1, — 3);

(id): a line joining points (a, b) and
(
na

,
nb).

5. Show in the same way that each of the following trip-

lets of points lies in a straight line:

(a) (L 1), (2, 2), (3, 3);

(*) (i, o), (2, 2), (3, 4);

(c) (~ 1, 0), (0, + 2), (1> + 4);

(d) (3, - 2), (L - l), (- 1, 0);

(e) («, b). {a+p,b + q ), (

a

-f- np, b + nq).

6. What are the distance and direction (relatively to the

axis of X
)
from the point (1, 2) to the point (4, 6)?

22. Problem IV. To find the area of a triangle, the

co-ordinates of the vertices being given.

Remark. Since the positions of the vertices completely

determine the triangle, and therefore determine its area also,

it follows from the general principle, § 21. that this area can

be algebraically expressed in terms of the co-ordinates of the

vertices.

Solution. Let P, P' and P" be

the vertices, and (x, y), (
x' ,

y') and

(x”
, y") their respective co-ordi-

nates.

Let us put A the area of the

triangle. We shall then have

A — area PMM"P" plus area —
M'P'P"M" minus area MM’P'P.

In these three trapezoids we have

area MPP"M" = \{MP + M,rP’’)MM"
= \{y + y") 0

*" - *);

area M"P"P'M' = %(M"P" + M'P')M" M'

= W+y’)
area MPP'IF = \{M’P' + MP)MM’

=W + y) (x' - X).
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Therefore

2A = (y + y") (x"

or, by reduction,

*) + (;
y

"

+ y') i
x' - x")

+ (
y' + y) - xl,

2A = y{x" — x’) + y'(x — x") + y"(x’ — x), (6)

which is the required expression.

23. To divide a finite line into segments having a given

ratio. A finite line is defined by the co-ordinates of its two

terminal points Let us now consider the problem:

To find the co-ordinates of the point ivhich divides the finite

line joining two given points into segments having a given

ratio.

Let us put:

x
0 , y0 , the co-ordinates of one end, A, of the line.

xv yv the co-ordinates of the other end, B.

A, ju, the given ratio.

x, y, the co-ordinates of the required point, P.

Draw AN and PQ each

parallel to the axis of Aj and

PM, BN each parallel to

the axis of Y. Then

AM — x — x- PQ = x
,
— x:

PM= y — y0 ;
BQ = y-y.

Since we require that

AP : PB = A : yu,

we have the proportion C ^ N
A \ fx = AP : PB

— AM : PQ = x — x
0 : x

1
— x

= PM : BQ = y - y„ : y> - y%

Wc hence deduce the equations

A(®, — *) = M(x - I.),

Ht/i - y) = Ky - ya),

which give

A.t, + t*z
0 m

A + D ’

Ay,
y = tt

Wo.
(7)

which are the required co-ordinates of the point of division.
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Corollary. If P is to be the middle point of the line, we
have A = p, whence

_ ftp + X
x .

2 ’

_ y. + y,.
(8)

or.

Each co-ordinate of the middle point of a line is half the

sum of the corresponding co-ordinates of its terminal points.

EXERCISES.

1. Express the co-ordinates of the middle point of the line

terminating in the points (1, 6) and (3, — 4).

2. One end of a line is at the point (—2, — 3) and its

middle point at (1, — 2). Where is the other end?

3. Find the middle point of that segment of the line join-

ing the points (— 1, 6) and (3, — 2) which is contained be-

tween the axes of co-ordinates. Ans. (1, 2).

4. A line terminating at the points (1, 6) and (3, — 4) is

to be divided into four equal segments. Find the co-ordi-

nates of the three dividing points.

5. The line joining the points (a, h) and (p , q) is to he

divided intone equal parts. Express the co-ordinates of the

four points of division.

6. What is the distance between the middle points of the

lines whose respective termini are in the points (1, 7), (— 5, 3)

and (0, 2), (6, — 4)?

7. What point bisects the line from the origin to the

middle point of the line terminating at the points (7, — 9)

and (- 3, - 7)?

8. Find the co-ordinates of the point which is two thirds

of the way from the point (a, b) to the point (a', b').

9. Prove the theorem that the three medial lines of a tri-

angle meet in a point two thirds of the way from each vertex

to the opposite side, as follows:

Let (x
0 , y 0 ), (Zj, ?/,) and

(
x

2 , y„) he the three vertices of

the triangle.

Express the middle point of each side.

Then express the co-ordinates of those three points which
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ire respectively two thirds of the way from the several vertices

to the middle points of the opposite sides, and thus show that

the three points are coincident.

10. Prove that the lines joining the middle points of the

opposite sides of a quadrilateral and the line joining the

middle points of the diagonals all bisect each other.

To do this, express the co-ordinates of the middle points of the sides

and of the diagonals, and then of the middle points of the three joining

lines, and show that the latter points are the same for each joining line.

The very simple proof of this theorem which is thus found affords a

striking example of the power of the analytic method.

Second System : Polar Co-ordinates.

The position of a point may be defined by its distance and

direction from a fixed point.

The fixed point is then called the pole.

The distance of the point from the origin is called the

radius vector of the point.

In plane geometry the direction of a point from the origin

is fixed by the angle which the radius vector makes with an

adopted base-line.

Let OX be the base-line, and P the point; P being in

^ny one of the positions Pf

,
P", etc.

OP will then be the radius vector, and the angle XOP
will be the required angle.
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We generally put

r = the radius vector OP, and

0 = the angle XOP, which is called the vectorial angle.

The former is always considered positive, being measured

from the origin, 0, in the direction OP. The latter is posi-

tive when measured in the direction opposite to that in which

the hands of a watch move, and negative in the opposite di-

rection, just as in trigonometry.

24 . Problem. To express the distance between twopoints

in terms of their polar co-ordinates.

Let P and Q be the points.

In the triangle POQ we have,

by trigonometry,

PQ"= P -f- r'~ — 2rr' cos POQ
—

_[_ r
' 2_2rr'cos (0—0'),

6 and 6' being the angles which

the radii vectores make with the

initial or base line; therefore

PQ = [P + r
n - 2rP cos (0 - 6')}* (9)

which is the distance required.

EXERCISES.

1. Show how a point will be situated when its vectorial

angle is in the first, second, third and fourth quadrant re-

spectively.

2. If the vectorial angle O' and radii vectores r and P are

constant, while 0 may vary at pleasure, for what values of 6

will the distance of the points be the greatest and least possi-

ble, and what will be the greatest and least distances? Show
the correspondence of the algebraic answer from equation (9)

with the obvious answer from the figure.

3. If r = P and 0 O' — 180°, show both geometrically

and algebraically that distance = 2r cos 0.

4. If 0 — O' = 90° or 270°, express the distance of the

points both by a diagram and by the equation (9).
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Transformation of Co-ordinates from One
System to Another.

The general problem of the transformation of co-ordi-

nates is this:

Given: 1 . The co-ordinates x and y of a point P referred

to some system of co-ordinates.

Given: 2. The position of a second system of co-ordinates

in relation to the other system.

Required : To express the co-ordinates of P when referred

to the second system.

25. Relation of Rectangular and Polar Co-ordinates.

Let OX, OY be the rectangular axes, and P the position

of any point.

1st. We shall suppose the origin to be taken as the pole,

and the axis of abscissas as the base or initial line; then we
shall evidently have Y

x — r cos 0

and y — r sin 6.

r/
To express the polar co-ordi-

j

y

nates in terms of the rectangular 0 /v X
co-ordinates, we have from the x

last two equations, by squaring and adding,

r
2 = x1

-f if, or r = Vx2 + if,

and, by division, tan
X

which determine r and 0 when x and y are given.

2d. If the initial or base line

instead of coinciding with the

axis of X makes an angle a with

it, we shall evidently have, from
the figure,

x — r cos (a + 0)

and y = r sin (

a

-)- 6),

whence r Vx2

-f- if and tan (a -j- 0) — —

.

x
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EXERCISES.

1. In the figure of § 24, express the area of the triangle

OPQ in terms of r, r' and 6 — O’.

2. If r, r' and r" are the radii vectores, and 0, 6' and 0"

the corresponding angles of three points, which we shall call

P, P'
,
P"

,

it is required to express the areas, first, of the

triangles OPP’, OP'P” and OPP", and then of PP'P".
3. The point (3, 3) is the centre of a circle of radius 2, in

which two diameters, each making angles of 45° with the axes,

are drawn. Find the polar co-ordinates of the ends of these

diameters.

4. The point
(a ,

b) is the centre of a circle of radius P.

From the centre is drawn a radius making an angle y with

the axis of X. Express the rectangular co-ordiuates of the

end of this radius.

26. Transformation from one rectangular system to

another.

Solution. Let us first suppose

the two systems of co-ordinates par- N
allel. Also suppose

OX, OY the axes of the original

system

;

O’X', O'Y’ the axes of the second

system
;

^

P the point whose co-ordinates are x and y in the old system.

Draw
PM'M || YO\\ Y'O
PN'N\\ XO || X'O',

and put

a = the abscissa of the new origin, O', referred to the

old system;

b = the ordinate of O';

x' = the abscissa O'M' of P referred to the newr system;

y' = the ordinate M’P of P referred to the new system.

We then have

N P

o'
rg

h

j

x' = x — a:

)

y' = y - Ik '

(
10

)
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which are the required expressions for the new co-ordinates in

terms of the old ones.

27. Secondly. Suppose the new axes to make an angle,

8, with the old ones, but to have the same origin.

Let us put

r = the radius vector OP ;

cp = the angle XOP.
We shall then have

Angle X’ OP — cp — 8.

Putting, as before,

%' and y
f
for the co-ordinates referred to the new system, and

x and y the co-ordinates of the old system, we have, by § 25,

x — r cos cp-, y = r sin cp; (a)

%’ — r cos{cp — d); y' = r sin(<p — d).
(
b

)

By trigonometry,

cos (cp — d) = cos <p cos d -(- sin cp sin d;

sin(<p — 8) = sin cp cos d — cos cp sin d.

Substituting these values in (5) and eliminating r and cp

by («), we have

x' — y sin d -f- x cos d
;

)

y' — y cos d — x sin d; f
(
11

)

which are the required expressions.

To express the old co-ordinates in terms of the new co-

ordinates, we have

x — x' cos 8 — y' sin d; )

y — x,' sin 8 y
f
cos d. f

(
12

)

If we take for d the angle which the new axis of Y makes

with the old axis of X, the new axis of X will make an angle

of d — 90° with the old one. Hence in this case the formulas

of transformation will be found by writing d — 90° for d in

(12), which gives

x — x' sin d -j- y' cos d;

y
— — x' cos d -{- y' sin d.

(
13

)
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28 . Thirdly. Let the new system of co-ordinates have

any origin and direction whatever, and let us put, as before,

, b = the co-ordinates of the new origin referred to the

old system;

, the angle which each axis of the new system forms

with the corresponding axis of the old one.

Imagine through the new origin O' an intermediate system

of co-ordinates parallel to the old system, and let us put x
1
and

y, the co-ordinates of P referred to this intermediate system.

Then, by (10),

By (li),

Whence

x
x
— x — a\ — y fi-

x' — sin d -(- x, cos d;

y

'

= y x
cos 8 — x, sin d.

x’ = (y — h) sin d -\- (x — a) cos d;

)

U' — id ~ b) cos d — (x — a) sin d; f

which are the required expressions.

(14)

29 . Transformation from rectangular to oblique co-ordi-

nates, the origin remaining the same.

Let OX, OY be the rectangu-

lar axes, and OX', OY' the ob-

lique axes; the angle XOX' = a,

XOY' = /?; and let x, y be the

co-ordinates of any point P re-

ferred to the rectangular axes,

and x’
,
y' the co-ordinates of the

same point referred to the oblique

axes. Then

x - OM = ON + M’Q
= OM' cos XOX' + PM' cos XO Y'

(since XOY’= PM'Q
)

= x’ cos a -\- y’ cos /3,

y = PM — M'N+ PQ
= OM' sin XOX' + PM' sin XOY'
— x' sin a -f- y' sin /?;

and
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which are the expressions of the rectangular co ordinates in

terms of the oblique ones. If we express the oblique co-or-

dinates in terms of the rectangular ones, we shall have

, x sin 6 — 11 cos 6 , , ?/ cos a — x sin a
x’ — . ... . and y' = r—

.

sm(/J — a) sm(/3 — a)

Of Loci.

30. The first fundamental principle of Analytic Geom-

etry, as developed in what precedes, may be expressed thus:

Having chosen a system of co-ordinates, then

To every pair of values of the co-ordinates corresponds one

definite point in the plane.

Let us now suppose that, instead of the co-ordinates being

given, only an equation of condition between them is given.

Then we may assign any value we please to one co-ordinate,

and find a corresponding value of the other. To every such

pair of corresponding Tallies will correspond a definite point.

Since these pairs of values may be as numerous as we please,

we conclude:

A pair of co-ordinates subjected to a single equation of

condition may belong to a series of points unlimited in num-
ber.

If one co-ordinate varies continuously and uniformly, the

other will vary according to some regular law. From this

follows:

The points whose co-ordinates satisfy an equation of con-

dition all lie on one or more lines, straight or curved.

Def. A line, or system of lines, the co-ordinates of every

point of which satisfy an equation of condition is called the

locus of that equation.

31. Problem. To draiv the locus of a given equation.

Solution. 1 . By means of the equation express one co-

ordinate, no matter which, in terms of the second.

2. Assign to this second co-ordinate a series of values, at

pleasure, differing not much from each other.
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3. Find each corresponding value of the other co-ordinate.

4. Lay down the point corresponding to each pair of values

thus found, and join all the points by a continuous line.

5. This line will be the required locus.

Example 1 . Construct the locus of the equation

10y = x* — x — 4.

Assigning to x values from — 10 to + 10, differing by

two units, we have

x= - 10 - 8

y = -f 10.6+6.8

-6 1-4
I

+ 3 . 8|+ 1 . 6
|

1-2 I

1+ - 21-
0 1+2 1+4 |+6 1+8 ]+10

j

,4|- , 2|+ , 8|+ 2 . 6)+ 5 2|+ 8 . 6
|

Laying down the positions of these eleven points corre-

sponding to these pairs of co-ordinates, we find them to be as

in the annexed diagram.

Example 2. Construct the locus of the equation

(y - 5)
2 + (x — 12)

2 = 100.

From this quadratic equation we obtain for the value of y,

in terms of x,

y = 5 ± F100 - (x - 12)
5

.

The following conclusions follow from this equation:

1. For every value we assign to x there will be two values

of y, the one corresponding to the positive, the other to the

negative value of the sum. To form the locus we must lay

down both of these values.
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2. If the value of (

x

— 12)
2
exceeds 100, which will be the

case when x < 2 or x > 22, the quantity under the radical

sign will be negative, and the value of y will be imaginary.

This shows that there is no value of y, and therefore no point

of the curve, except when x is contained between the limits

2 < x < 22.

We now find the following sets of corresponding values of

x and y:

X = 2 3 4
.

6 8 10 12 14 16 18 20 21 22

V = 5.0 9.4 11.0 13.0 14.2 14.8 15.0 14.8 14.2 13.0 11.0 9.4 5.0

y = 5.0 0.6 ©CO1©7 -4.2 -4.8 -5.0 -4.8 -4.2 -3.0 -1.0 0.6 5.0

Laying down these points upon a diagram, we shall find

them to fall as in the annexed figure.

EXERCISES.

Construct the loci of the following equations to rectangu-

lar co-ordinates:

1. y = 3x2 - x - 10.

2. y — sin x.

3. y = cos x.

Note. In the last two exercises we should, in rigor, adopt the unit

radius, 57° 18', as the unit of x. But a more convenient and equally

good course will be to take 60° as the unit, and let it correspond to one

inch on the paper. Lay off a scale of sixths of an inch on the axis of X,

and let the successive points, one sixth of an inch apart, be 0°, 10°, 20°,
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30% 360°. At each point erect, as an ordinate, the corre-

sponding value of the natural sine or cosine, and draw the curve through

the extremities. The curve is called the curve of sines.

We need not stop at 360°, but may continue on indefinitely. The
curve will be a wave-line, the parts of which continually repeat them-

selves.

. x
i-y =3+1.
5. y = 3x + 1.

6. x = - 3.

7. 5x — y
1 — 5y — 5.

8. lOx = y* — Hy — 10.

9. f x\

10. y = tan x.

11. y — sec x.

Note. The object of the above exercises is to give the student a

clear practical idea of the relation between an equation and its locus.

He should perform as many of them as are necessary for this purpose.

It is in theory indifferent what scale of units of length is used, but in

practice a scale either of millimetres or tenths of an inch will be found

most convenient.

32. Intersections of Loci. Consider the following prob-

lem:

To find the point or points of intersection of two loci given

by their equations.

Solution. Since the points in question are common to

both loci, their co ordinates must satisfy both equations.

Hence we have to find those values of the co-ordinates which

satisfy both equations. This is done by solving the equations

algebraically, regarding the co-ordinates as unknown quanti-

ties.

If the equations are each of the first degree, there will

be but one pair of values of the co-ordinates, and therefore

but one point of intersection.

If the equations are one or both of the second or any

higher decree, there may be several roots, in which case there

will be one point for each pair of roots. The curves will then

have several points of intersection.
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If the roots are one or both imaginary, the loci will not

intersect at all. This is expressed by calling the points of

intersection imaginary

.

Example. To find the point in which the loci whose

equations are

f + 2x2 = 164

and y = 2x — 3

intersect each other.

We have here a pair of simultaneous equations, one of

which is a quadratic. Substituting in the first the value of y
from the second, we have the quadratic equation in x,

6a;
2 — 12a; - 155.

The solution of this equation gives

x = 1 = + 6.18 or -4.18.

The corresponding values of y are

y = 9.36 or - 11.36.

We have in this theory a correspondence between the

mobility of a point in space and the variability of an alge-

braic quantity, which is at the basis of Analytic Geometry.

That is:

To the unlimited variability of the co-ordinates x and y
corresponds the mobility of a point to all parts of a plane.

To the limited variability of co-ordinates subjected to one

equation of condition corresponds the limited mobility of a

point confined to a straight or curve line, but at liberty to

move anywhere along that line.

To the constancy of co-ordinates required to satisfy two

equations corresponds the immobility of a point required to

be on two lines at once, that is, confined to the intersections

of two lines.

It must always be understood that liberty to occupy any

one of several points, as when the curves have several points

of intersection, is not mobility.
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EXERCISES.

Find the points of intersection of the following loci:

, x
, y -i

x y n
1. —h f- =1 and - — = 2.

a b o a

2. x* -(- y" — 9 and y + f-
= 1.

-V O

3. |'+|'=1 »nd ,- + y-=|.

4. ?/ - 4 and a: — 4/% = 2.

Do the following loci intersect?

—

5. 3a;
2 — y* — — 4 and a;

2 + ?/
2 — 2a; = 0.

y ^
4^29 and 9a;

2 + 2oy" = 225.

Note. Tlie special values of the co-ordinates found from the above

exercises are constants, the relation of which to the variables may be

explained by thinking thus: The co-ordinates are affected by a love of

liberty which prompts them to take all possible values so long as we,

their masters, do not subject them to any condition.

If we require them to satisfy an equation, they obey us, but exercise

their liberty by assuming all values consistent with that equation.

If we require them also to satisfy a second equation, we deprive them

of all liberty of variation, and chain them down to the special values

which satisfy both equations.

Again, if we put

P= ax by 4- c,

then, so long as we require the co-ordinates to satisfy the equation

P— 0, P retains this zero value. But if we rub out the = 0, and leave

only the symbol P without any equation, the co-ordinates instantly re

sume their liberty, and, by varying, make P take all values whatever.



CHAPTER III.

THE STRAIGHT LINE.

Section I. Elementary Theory of the Straight
Line.

The Equation of a Straight Line.

33. Problem. To find the equation of a straight line.

In order that the equation of any locus may be found, the

locus must be so described that the position of each of its points

can be determined. Hence, to find the equation of a straight

line, we must suppose the data which determine the situation

of the line to be given. This may be done in various ways,

of which the following are examples:

I. A line is completely deter- Y
mined if the point in which it

intersects the axis of X, and the

angle which it makes with that

axis, are given. Let us then

suppose given
: q

The abscissa OR = a of the

point R in which the line inter-

sects the axis of X;
The angle e which the line makes with that axis.

To find the equation, let P be any point whatever on the

line. From P drop the perpendicular PM upon the axis of

X. If we then put

x, y, the co-ordinates of P.

we shall have

MP = y = RM tan s = (OM — OR) tan e = (x — a) tan e.
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Hence, putting m = tan e, we have

y = m{x - a). (1)

Because P may be any point whatever on the line, this equa-

tion must subsist between the co-ordinates of every point of

the line; it is therefore the equation of the line.

Def. The slope of a line is the tangent of the angle which

it forms with the axis of abscissas.

II. Let the slope m of the line, and the ordinate b of the

point in which the line cuts the

axis of Y, be given.

Using the same notation as be-

fore, we readily find

MP = x tan s -f- b,

or y ^ mx + b; (2)

which last is the required equation.

III. Let the points A and B in which the line intersects

the axes of co-ordinates be given. Let us then put

a = the abscissa OA of the

point A in which the line inter-

sects the axis of X\
b = the ordinate of the point

B in which it intersects the axis

of Y.

Then, if P be any point on

the line, the similar triangles

BOA and PMA give the pro-

portion

b : a = PM : MA = y : a — x.

We hence derive

that is,

or

ay = b(a — x);

bx -)- ay — ab,

= 1 .

a b (3 )

Def. The lengths OA and OB from the origin to the

points in which the line cuts the co-ordinate axes are called

the intercepts of the line upon the respective axes.
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EXERCISES.

1. Write the equations of lines passing through the origin

and making the angles of 45°, 30°, 120°, 135°, 150° and e,

respectively, with the axis of X.

2. If the intercept of a line on the axis of X is a, and if

£ is the angle which it makes with that axis, express its inter-

cept on the axis of Y.

3. Write the equation of the line whose intercept on the

axis of Y — 5 and which makes an angle of 30° with the

axis of X.

4. Form the equation of the line whose intercept on the

axis of X is a and which makes an angle of 45° with that

axis.

5. Show geometrically that the inverse square of the per-

pendicular from the origin upon a line is equal to the sum of

the inverse squares of its intercepts on the axes.

Note. The inverse square of a is 1 -r- a-.

6. Express the tangents of the angles which a line makes

with the co-ordinate axes in terms of its intercepts upon those

axes, and explain the algebraic sign of the tangent.

7. Two lines have the common intercept a upon the axis

of X
;
the difference of their slopes is unity; and the sum of

their intercepts upon the axis of Y is c. Find the separate

intercepts upon y, and show that the equations of the two lines

are

x 2y
ci'c — ct

= 1 and £ , %
a c a

= 1 .

8.

What is the relation of the two lines,

y - mx -f- b

and y - - mx + -|- u?

9.

What are the relations of the series of lines,

y — mx,

y -- mx + b,

y — mx + 2b,

y - mx + 3b,

etc. etc. ?
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10. What is the relation of the two lines,

y = b + mx
and y = b — mx?

Especially show where they intersect, the relation of the

angles they form with the axis, and the angle they form with

each other in terms of e = arc tan m.

34 . The equations
(
1 ), (2) and (3) are examples of the

numerous forms which the equation of a right line may
assume. We have now to generalize these forms.

Def. An equation of the first degree between two

variables, x and y, means any equation which can be reduced

to the form
Ax + By + C = 0, (4)

A, B and C being any constant quantities whatever.

Theorem. Every equation of the first degree between rect-

angular co-ordinates represents a straight line.

Proof. The equation (4) may be reduced to the form

Since the tangent of a varying angle takes all values, we

can always find an angle, = e, whose tangent shall be —

Q
On the axis of X measure a distance = a.

A
Then, by (1), the locus of (5) will be the line which inter-

sects the axis of A at the point x = a and makes an angle e

with the axis of X. Since such a line is always possible, the

theorem is proved.

Scholium. The result of the above theorem may be ex-

pressed as follows:

The locus of the equation

Ax + By +(7=0
is that straight line which intersects the axis of X at the

C
distance — j

from the origin and makes with that axis an

angle whose tangent is
A
B'
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35. Reduction of the General Equation. Any pair of

values of x and y which satisfy the equation

Ax + By + C = 0

must also make
m(Ax -|- By + C) — 0;

that is,

{inA )
x + {mB)y mC = 0.

Hence, since m may be any quantity whatever,

If we multiply or divide all the coefficients, A, B and C,

^vllich enter into the general equation, by the same factor or

divisor, the line represented by the equation will not be altered.

Example. The equations

y — 2x + 1 = 0,

2y — 4:X + 2 = 0
,

5y — lOz + 5 = 0,

all represent the same line, because they all give the same

value of y in terms of x, namely,

y = 2x — 1.

The same result may be expressed in the form:

The line represented by the equation (4) depends only on

the mutual ratios of the coefficients A, B and C, and not

upon their absolute values.*

36. From this it follows that special forms of the general

equation may be obtained by multiplying or dividing it by any

quantity.

I. First Form. By dividing by B we obtain

or

i x + y + 2 — °’

A C
y = - b x ~b' (6)

* This introduction of more quantities than are really necessary for

the expression of a result is quite frequent in Mechanics and Geometry.

It has the advantage of enabling us to assign such values to the super-

fluous quantities as will reduce the expression to the most convenient

form.
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which becomes identical with the form (2) by putting

Am = ~B’
T C
b =~B- ( 7 )

II. Second Form. By dividing by C the general equation

becomes

A B
n x + -qV + 1 — o,
c

or A
c
x

(8 )

(9 )

which becomes identical with (3) by putting

C , C
a = —

A’
b =

B'

III. Third or Normal Form. Let us divide by VA 2
-\- B 2

.

The equation will then become

A
VA 2 + B

= x-\-

' B
wFJ

C

VA'FB2 VA' + B2

If we now determine an angle a by the equation

B

0
. (

10)

sin a =
VA 2 + B2

’

we shall have

cos a = Vl — sin
2
or —

VA 2 + B2 (
11

)

Let us also put, for brevity.

~P
G

VA 2 + B2

The general equation of the line will then become

x cos a -f- y sin a — p — 0, (12)

which is called the Normal form of the equation of a

straight line.
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EXERCISES.

Express each of the following equations in the forms (2),

(3) and (10):

1. 3x + 4y + 15 = 0. 2. 4x + 3y - 15 = 0.

3. 12a; - by - 13 = 0. 4. x - 2y + 6 = 0.

5. x -f y c = 0. 6. x — y — c = 0.

37. Relation of the General Equation to its Special Forms.

The forms (1), (2) and (3) are examples of numerous special

forms under which the equation of a straight line may be

written. The general form is not to be regarded as a distinct

form, but as a form which may be made to express all others

by assigning proper values to the constants A, B and C.

For example:

The form (1) is equivalent to

y — mx + ma = 0,

which is what the general form becomes when we put

A = — m,

B=l,
C = am.

In the same way, to reduce the general form to (2), we
have only to put

A = — m,

B= 1,

C = — b.

To reduce it to (3) we put

C= 1 .

Again, the normal form is one expressed by the general

form when we suppose

A = cos a,

B = sin a.

c=~ P:



42 PLANE ANALYTIC GEOMETRY.

We may also say that the normal form is one in which

A' + B* = 1 .

38 . Since all forms of the equation of a straight line arc

special cases of the general form, we conclude:

If we demonstrate any theorem by means of the general

form of the equation of a straight line, that demonstration will

include all the special forms.

39 . Def. The constants A, B and C which enter into

the equation of a straight line are called its parameters.
The parameters determine the situation of a line as co-

ordinates do the position of a point.

Only two parameters are really necessary to determine the

line, hut there is often a convenience in using three, as in the

general form.

A line is completely determined when its parameters are

given. Instead of saying,

“The line whose equation is Ax -j- By -\- C = 0,”

we may say,

“The line (A, B, C).”

40 . Special Cases of Straight Lines.

I. If, in the general equation of the straight line.

Ax + By +(7=0,

the coefficients A and B are

of opposite signs, x must in-

crease with y, the line makes

an acute angle with the axis of

X, and its positive direction is

in the first or third quadrant,

QB is such a line.

II. If A and B are of the

same sign, one co-ordinate diminishes as the other increases,

the line makes an obtuse angle with the axis of X. and its

positive direction is in the second or fourth quadrant.

PS is such a line.
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III. If A vanishes, the equation may be reduced to

y — — ^
— a constant,

while x may have any value whatever.

The line is then parallel to the axis of X and at the dis-

C
tance — from it.

JJ

IV. In the same way, the equation of a line parallel to

the axis of Y is

x — a constant,

the constant being the distance of the line from the axis of Y.

V. If this constant itself vanishes, the line will coincide

with the axis of Y. Hence the equation of the axis of y is

x — 0.

VI. In the same way, the equation of the axis of x is

y = o*

EXERCISES.

1. At what point does the line

ax + c = 0

cut the axis of X?
2. Write the equation of a line perpendicular to the axis

of X and cutting off an intercept, b, from that axis.

3. What are the relations of the four lines,

x = a; x — — a;

y = h y = - h
and what figure do they form?

41. Special Problems connected with the General Equa-

tion of a Straight Line.

I. To find the intercepts of the general straight line upon

the co-ordinate axes.

By definition, the intercept upon the axis ofX is the value

of x when y = 0. Putting y = 0 in the general equation, it

becomes
Ax -f C = 0.
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Hence, if we put a for the intercept upon the axis of X,
we have

C
a ~ A

'

In the same way, we find for the intercept on Y, which we
call b,

C
b = -

&
II. Tofind the angle which a line makes with the axis ofX.

We have already shown (§ 34) that

A
tan £ — —

B ‘

We can now find the sine and cosine of e by trigonometric

formulae, as follows:

tan e A
sin £ =

cos £ —

Yl + tan
2
e

1

YX + B 2

B y (13)

Vl + tau
2
s YA* + B 2

III. To express the perpendicular distance of a pointfrom
a given line.

Let x' and y' be the co-ordinates of the point, and

Ax + By +(7=0
the equation of the line.

Since the position of the point is completely determined

by its co-ordinates, and the line ^
by its parameters, A, B, C, the

required distance admits of being

expressed in terms of x', y '
, A,

B and C.

Let P be the point, LN the

line, and PQ the perpendicular

from the point on the line; and ~iy
let the ordinate PM of the point

intersect the line in R. We shall

then have L/

PQ — PR cos £. («)
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Now R is a point oil the line whose abscissa is the same as

that of P, namely, x'; and if we put RM — yt
= the ordi-

nate of R, we must have, since R is on the line,

Ax’ -f- Byt
-\~C — 0,

Ax' + C
y, = -which gives Ut — j,

Then PR = PM - RM = y’

By' - y, -
Vi

Ax' + By' -f- C
B B

Substituting in (a) this value of PR and the value of cos s

from (13), we have

_ Ax' + By' + CPQ —
VA 2 + B"

(14)

Since the co-ordinates of the origin are x’ — 0 and y’ = 0,

we have

OQ' = C

VA2 + B2
’ (15)

which gives the perpendicular from the origin on the line.

EXERCISES.

Find, for each of the lines represented by the following

equations,

—

The angle which it makes with the axis of X\
Its intercepts upon the axes;

Its distance from the point (4, 3);

Its least distance from the origin;

The length of that portion intercepted between the axes.

1. 3x + Ay + 10 = 0.

3. 5x - 12y + 26 = 0.

5. Ax — 3y - 5 = 0.

7. x cos a -)- y sin a — p — 0.

2. 3x + Ay - 10 = 0.

4. x + y — 0.

6. x — y — 0.

8 .

*

a

9. Find the length of the perpendicular from the point

cc v
(«, i) on the line — + ^ = 1, and show that it is equal to

the negative distance of the line from the origin.

+! =>•
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10. Find the points on the axis of X which are at a per-
gr y

pendicular distance a from the line — 4- ~ — 1 = 0.
a b

42 . Direct Derivation of the Normal Form. This form
may be derived as follows:

From the origin drop the per-

pendicular OM upon the line

whose equation is required.

Let P be any point of the

line, and

x = ON, the abscissa of P;

y = NP, its ordinate;

a = angle NOM of the per-

pendicular with the axis of X;
P= OM.
From N draw NQ parallel to the line, and PR parallel to

OM. Then

OQ = ON cos a — x cos a;

QM= NP sin a = y sin a;

OQ -f- QM — p ~ x cos a -j- y sin a.

Hence

x cos a -f- y sin a — p
—

0,

which is the normal form of the equation.

We hence conclude:

In the normal form the parameters p and a are respectively

the perpendicular from the origin upon the line, and the angle

which this perpendicular makes ivith the axis of X.

43 . Distances from a Line in the Normal Form. In this

form A 2
B'

2 —
1. Hence the distance of the point whose

co-ordinates are x’ and y

'

from the line is

x' cos a -f-
y' sin a — p

the same function which, equated to zero, represents the line.

Hence the theorem

:

If, in the expression x cos a -f- y sin a — p, roe substitute

for x and y the co-ordinates of any point whatever, the expres-
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sion will represent the distance of thatpointfrom the line whose

equation is x cos a -}- y sin a — p = 0.

By supposing x' and y' zero, we find the distance of the

origin from the line to be — p. Sincep itself has been taken

as essentially positive, we conclude:

The expression for the distance of a point from the line in

the normalform is negative when the point is on the same side

as the origin, and positive on the opposite side.

This agrees with the convention that the direction from
the origin to the line shall be positive.

EXERCISES.

1. What is the relation of the two lines

x cos 30°
-f- V sin 30° — p = 0

and x cos 210° + y sin 310° — p — OP

2. Draw approximately by the eye and hand the lines

represented by the following equations:

x cos 30° + y sin 30° — 5 = 0.

x cos 60° + y sin 36° — 5 = 0.

x cos 120° + y sin 120° — 5 = 0.

x cos 240° -j- y s' 11 240° — 5 = 0.

Lines Determined by Given Conditions.

When a line is required to fulfil certain conditions, those

conditions must be expressed algebraically by equations of con-

dition involving the parameters of the line. The values of the

parameters are to be eliminated from the equation of the line

by means of these equations of condition.

Since two conditions determine a line, it will be convenient

to employ a general form of the equation of the line in which

only two parameters appear. Such a form is

y = mx + h.
(
a

)

44. To find the equation of a line which shall pass through

a given point and make a given angle with the axis of X.

Let {x'
,
y') = the given point, and

£ = the given angle.
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One equation of condition is then

m — tan e,

which determines the parameter m. This gives, for the equa-

tion of the line,

y = x tan £-)-&.
(
b

)

The condition that the line shall pass through the point

(x’, y') is

y' = mx' -f- b.

To eliminate b, we subtract this equation from
(b

)

after

substituting the value of m. This gives

y — y' — tan e (x — x').

which is the required equation of the line passing through the

point {x’
, y') and making an angle e with the axis of X. If

we write m for tan e, it becomes

y — y’ — m(x — x'),
(
c )

or mx — y — mx' + y' — 0,

which, compared with the general form

Ax -f- By + C — 0,

gives

A — m\ B — — 1; C — — mx' + y'

.

45 . To find the equation of a line passing through two

given points.

Let (x,, y.) and (aq, y„) be the two given points.

To determine the param-

eters m and b, we have the

conditions

,Jt = ,»*, + t i w
«/s
= waq + b, )

which give, by subtraction,

y, - y, = - x
i)m ;

whence m — — —
.

(e)
x„ — x.

/
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Subtracting the first equation of
(
d

)
from (a), we have

y - yx
= m(x - x

t ),

and substituting the value of m gives

which is the required equation in which the parameters m and

b are replaced by the co-ordinates of the given points.

To reduce the equation to the general form, we have, by

clearing of denominators.

Remark. Most of the special forms of the equation already given

are cases in which the line is determined by given conditions. For

example:

In the form (1) (§ 33) the given quantities are the slope and the inter-

cept on the axis of X
In the form (2) they are the slope and the intercept on the axis of Y.

In the form (3) they are the two intercepts.

In the Normal form they are the length of the perpendicular from

the origin upon the line, and the inclination of the perpendicular to

the axis of X.

1. Write the equation of a line passing through the point

(
— 1, 2) and making an angle of 135° with the axis of X.

2. Write the equation of a line passing through the point

(4, —1) and making an angle of 30° with the axis of X; find

the intercepts which it cuts off from the axes, and the ratios

of these intercepts to the length of- the line included between

the axes.

3. Find the equation of the line passing through the points

(2, 4) and (3, —2), and find its intercepts on the axes, the angle

which it makes with the axis of X, and its distance from the

origin.

4. Find the equation of the line making an angle of 150°

with the axis of X and passing at a perpendicular distance 5

from the origin.

(16)

(17)

EXERCISES.
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5. Find tlie equa^on of the line passing through the point

(1, 5) and intercepting a length 3 on the axis of Y.

6. Find the equation of the line passing through the point

(5, — 1) and intercepting a length — 3 on the axis of Y.

7. Write the equations of lines passing through the three

following pairs of points:

I. The points (a, b) and (a, — b).

II. The points (— a, b) and
(
a

,
b).

III. The points (a, b) and (— a, — V).

8. What is the distance from the point (1, 5) to the line

joining the points (— 3, 3) and (1, 6)? Ans.
0

9. If the vertices of a triangle are at the points (1, 3),

(3, — 5) and (— 1, — 3), write the equations of the three

sides in the general form, and find the distance at which each

side passes from the origin.

10. Write the equations of the three medial lines of this

last triangle.

Note. A medial line of a triangle is the line from either vertex to

the middle of the opposite side.

11. Given the co-ordinates of the vertices of a triangle,

find the equations of the lines which join the middle points

of any two sides, and show that these joining lines are parallel

to the sides of the triangle.

12. Find the equations of the three sides of the triangle

whose vertices are at the points (a, b),
(
a b') and a", b").

Then find the product of the length of each side into its dis-

tance from the opposite vertex, and show that each of these

products is equal to the double area of the triangle.

First write the general equation of each side, using the form (17).

Then note the relation between each value of YA1+ B2 and the corre-

sponding side of the triangle. Then form the products and note § 22.

13. Show analytically that if a series of parallel lines are

equidistant, they contain between them equal segments of the

axes of co-ordinates. Note that the values of p for such lines

are in arithmetical progression.
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Relation of Two Lines.

46 . Problem. To express the angle between two lines in

terms of the parameters of the lines.

Let the lines be

Ax + By + C — 0 j
, \

and A’x + B'y+ G'= 0. f
V ;

The angle between them will be the difference of the angles

which they make with the axis of X\ that is, using the pre-

vious notation, it will be £ — s'.

The expression for the tangent of s — e
f

will be the

simplest. We have, by trigonometry,

tan ( s — s')
tan s — tan s'

1+ tan s tan s
r (18)

Substituting the values of tan s and tan s' found from

(13), this equation becomes, by reduction.

tan (

s

— s')

Or, if we put, as before,

m = tan s,

the expression will be

A'B - AB'
AA' + BBr

m' “ tan s',

tan (s — s')
m — m'

1 + mmr

(19)

(
20

)

Either of the forms (18), (19) and (20) is a solution of the

problem.

47 . The following are special cases of the preceding-

general problem:

I. To find the condition that tivo lines shall be parallel.

This condition requires that we have

£ - s' = 0° or 180°;

that is,

tan (s — s') — 0.
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Hence, from (19), the required condition is

A'B - AB' -
0, 'i

A* A i (21)
01

’

B’ ~ P? J

II. To find the condition that two lines shall he perpen-

dicular to each other.

The lines will be perpendicular when

e — s
f = ± 90°.

Then
tan (

e

— e') = oo

.

In order that the second members of either of the equa-

tions (19) or (20) may become infinite, its denominator must

be zero. Hence we must have

AA + BB — 0,
) (22)

or 1 + mm = 0, )

or tan s tan s' = — 1
,

which are three equivalent forms.

EXERCISES.

Write the equations of the lines passing through the origin

and perpendicular to each of the following lines:

1. ax + by + c = 0. Ans. lx — ay = 0.

2. y — mx + l. 3. a(x + y) — b(x — y) = 0.

Y x + ny = c. 5. (x - x
0)
= m(y - y0 ).

6. Write the equation of the line passing through the point

(a, b) and perpendicular to the line

Ax + By + C = 0.

7. Write the equation of the line through the point {a, b)

parallel to the line

Ax -(- By +(7=0.

8. Express the tangent, sine and cosine of the angle

between the lines

ax + by + c = 0;

ax — by + c = 0.
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9. Write the equations of two lines passing through the

origin, and each making an angle of 45° with the line

ax + by -f- c — 0.

Ans. (a + b) x — (a — b) y — 0,

and (a — b) x -f- (a -j- b) y = 0.

10. Compute the interior angles of the triangle the equa-

tions of whose sides are

s - 2y + 7 = 0;

x y — 3 = 0;

x + 3y - 0.

11. If the co-ordinates of the three vertices of a triangle

are (2, 5), (2, — 3), (4, — 1), it is required to find the equa-

tions of the three perpendiculars from the vertices upon the

opposite sides.

12. Find the equations of the perpendicular bisectors of

the sides of the same triangle.

13. Show that the lines joining the middle points of the

consecutive sides of a quadrilateral form a parallelogram.

To do this assume symbols for the co-ordinates of the four vertices;

then express the middle points of the sides by § 23, and then the equa-

tions of the joining lines by § 45, and show that opposite lines are

parallel.

14. Find the condition that the lines

x cos a -j- y sin a — p — 0 and x sin fi — y cos /? — p'

may be parallel.

15. If two lines intersect each other at right angles, and if

a and b be the intercepts of the one line, and a' and b' of the

other, it is required to show:

(a) That of the four quantities, a, b, a', b', either three

will be positive and one negative, or three negative and one

positive.

(/i) That these quantities satisfy the condition

aa' + bb ' = 0.

16. What is the rectangular equation of the line whose

polar equation is

— — 4 cos 6 4-3 sin 6 ?
r
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17. Find the area of the triangle formed by the straight

lines

y — x tan 75°, y = x, y — x tan 30° + 2.

18. Reduce 3r cos 6 — 2 r sin 6 = 7 to the form

r cos (0 — a) = p,

and find the values of a andy>.

19. Show that if b
2 — a

2 = 1, the lines

x + {a + b)y + c — 0 and (a + b)x + (a
2 — V)y + d = 0

are perpendicular to each other.

20. Show that when the axes are oblique, the ratio x : y
of the two co-ordinates of a point is equal to the ratio

Dist. from axis of Y : Dist. from axis of X.

21. Show that the lines x + y = a and x — y = a are

at right angles, whatever he the axes.

22. Show that the locns of a point equidistant from two

straight lines is the bisector of the angle they form.

48. To find the point of intersection of two lines given

by their equations.

As already shown, the co-ordinates of the point of inter-

section are those values of x and y which satisfy both equations,

(§ 32). If the given equations are

Ax -f- By +(7=0,
A'x + B'y + C' = 0,

we find, for the values of the co-ordinates,

_ BC - B’C
X ~ AB' - A'B'

_ A'C -AC'
y ~ AB’ - XB'

which are the required co-ordinates of the point of intersec-

tion.

Remark. The preceding result affords another way of

deducing the condition of parallelism by the condition that two

lines are parallel when their point of intersection recedes to

infinity. Let the student find this as an exercise.
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49. To find the condition that three straight lines shall

intersect in a point.

The required condition must be expressed in the form of

an equation of condition between the nine parameters of the

three lines. Let the equations of the lines be

ax + by + o = 0;

a'x + h'y + c' =0;
a"x + b"y + c" = 0.

If the three lines intersect in a point, there must be one

pair of values of x and y which satisfy all three equations.

By the last section we have, for the co-ordinate y of the point

of intersection of the first two lines,

_ a'c — ac/

y ~ ab’ - a'b’

and of the last two,

_ a”c’ — a'c”
V ~ a'b" - cTfifi'

If the three lines intersect in a point, these values of y
must be equal. Equating them and reducing, we find

c(a'b" - a"b’) + c'(a"b - ab") + c"(ab'— a'b) = 0,

which is the required equation of condition.

EXERCISES.

1. Given the three lines

x + 2y + 4 = 0,

2x— y - 7 = 0,

5x + y + c
—

0,

it is required to determine the constant c so that the lines

shall intersect in a point, and to find the point of intersection.

Ans. c = — 3.

Point = (2, — 3).

2. Express the condition that the three lines

y = mx + c,

y — m'x -f c',

y = m"x + c",

shall intersect in a point.
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3. Find the point of intersection of the two lines

y = vix -f- c,

y = m'x — c.

4. Prove algebraically that if two lines are each parallel to

a third, they are parallel to each other.

Note. We do this by showing that from the equations

ab' — a'b = 0,

ab" — a"b = 0,

follows
a'b" - a"b' = 0.

5. If the equations of the four sides of a parallelogram

are

y = nix -j- c,

y — m'x — c,

y = nix -|- c',

y — m'x — c',

it is required to find the co-ordinates of its four vertices and

the equations of its diagonals.

Ans ., in part. Equations of diagonals:

m + in'

y =
2

X;

_ c + c'

~~
in' — m

6. What relation must exist among a, a', m and m' that

the lines

y — mx + a,

y = m'x — a'

,

may intersect on the axis of X? Jjjs. a'm + am' = 0.

50. Transformation to New Axes of Co-ordinates.

By the formulae of § 25, the equation of a line referred to

one system of co-ordinates may be changed to another system

by an algebraic substitution.

To make the change it is neoessary to express the co-

ordinates of the original system in terms of those of the new

system, and to substitute the expressions thus found in the

equation of the locus.
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Example I. Let

+ By + C = 0 (a)
X

M X

be the equation of a line referred to

the system (X, Y).

Let it be required to refer the line 0

to a system (X', Y') parallel to the

first and having the origin O’ at the 0 M
point (a, b).

By § 26, the expressions for the original co-ordinates in

terms of the new ones will be

-,P

x = x' -f- a;

V = V’ + *•

Substituting these values in the equation (a), we find for

the equation of the line, in terms of the new co-ordinates,

Ax' + By' +Aa + Bb + C = 0.

The coefficients A and B of the co-ordinates remain un-

changed, showing that the line makes the same angle with the

new axes as with the old ones.

Example II. Let the new system of co-ordinates have

the same origin, but a different direction.

The equations of transformation are then (3) of § 27.

Substituting the values of x and y there given in the equation

(a) of the preceding example, we have

(A cos S B sin S)x' + (B cos S — A sin S)y' -{-<7=0.

The sum of the squares of the coefficients of x’ and y‘

reduces to A 2 + B2

,
as it should.

EXERCISES.

1. What will be the equation of the line

y — 2x 5

when referred to new axes, parallel to the original ones,

having their origin at the point (2, 3)?

2. What change must be made in the direction of the axis

of X that the line whose equation is x = y may be represented

by the equation x' = 2y' ?
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Section II. Use of the Abbreviated Notation.*

51. Functions of the Co-orclinates. We call to mind that,

corresponding to any point we choose to take in the plane,

there will be a definite value of each of the co-ordinates x

and y. Hence if we take any function of x and y, such, for

example, as

P = x 2y -{- I,

this function P will have a definite value for each point of

the plane, which value is formed by substituting in P the

values of the co-ordinates for that point. We may then im-

agine that on each point is written the value of P correspond-

ing to that point.

Example.
CO 4 5 6 7 00

1 2 3 4 5 6

-1 0 1 2 3 4

CO1 —2 -1 0 1 2

-5 -4 -3 -2 -1 0

The above scheme shows the values of the preceding func-

tion P = x + 2y + 1 for a few equidistant points, assuming

the common distance between the consecutive numbers on

each line to be the unit of length.

52 . Isorropic Lines. We may imagine lines drawn

through all points for which P has the same value, and may
call these lines isorropic; that is, lines of equal value. We
now have the theorem:

* This section can be omitted without the student being thereby pre-

vented from going on with subsequent chapters. But, owing to the

elegance of the abbreviated notation, the subject, which is not at all

abstruse, is recommended to all having mathematical taste.
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If the function P is of the first degree in x and y, the

isorropic lines willform a system ofparallel straight lines.

Proof. Let
P = ax f- by c-,

and let us inquire for what points P has the constant value

Jc. These points will be those whose co-ordinates satisfy the

condition

P — k — 0,

or

ax + by + c — k = 0. («)

This equation, being of the first degree, is the equation of

a straight line, whose angle with the axis of X is given by

the equation

,
a

tan £ = f.
b

Since a and b retain the same values, whatever values we

assign to k, e has the same value for each line of the system,

and all the lines are parallel.

53. Distance behveen Two Lines of the System. To each

value of k in the equation (a) will correspond a certain line.

We now have the problem:

To find the distance between the two lines for which P has

the respective values 7r, and lcv

Let OM and OJVbe the respective intercepts of the lines

on the axis of X. We shall then have

Distance MQ = J/Wsin e.
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Putting y = 0 in the two equations

ay -f- bx + c — k
1
= 0 )

and ay -\- bx c — k
t — 0, f

we have, for the intercepts,

OM = S-r—

;

(25 )

MN= ON - OM =

and
,rr, /7 , x sin f
JfO = (& — * )

—
j
— = J (§36)

Hence, the distance apart of two isorropic lines is propor-

tional to the difference between the values of P.

54. Distance of a Point from a Line. Let us now re-

turn to the general expression

P = ax -j- by + c,

and let us study its relation to the line

ax + by + c = 0;

)

that is, to the line P = 0. )

(a)

(*)

In (a) we may suppose x and y to have any values what-

ever. But in (b) x and y are restricted to those values which

correspond to the different points of the line (a, b, c).

Now from what has just been shown it follows that the

points for which, in (n), P has the special value k all lie on

a straight line parallel to the line P = 0, and distant from it

by the quantity

k

Hence, if x
0
and y0

be the co-ordinates of any point at

pleasure, we have

Distance of point (x
a , y n )

from line (a. b, c)
<re, + &y. + c

VV P
’

a result already obtained in § 41.
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These results may be summed up in a third fundamental

principle of Analytic Geometry, as follows:

If

P — ax —(- by "i~ c

be any function of the co-ordinates of the first degree, then

—

I. To every point on the plane will correspond one definite

value of P.

II. This value of P is equal to the perpendicular distance

of the point from the line P = 0 multiplied by the constant

factor Va‘ b'\

If the expression P is in the normal form, we have

a
2 + P = 1, (§ 36)

and the factor last mentioned becomes unity.

Hence

—

III. If toe have a function of x and y of the form

x cos a -f- y sin a — p = P,

this function will express the perpendicular distance of the

point tohose co-ordinates are x and y from the line P = 0.

EXERCISES.

1. Let the student draw the line

%x — 3y + 1 = 0,

and let him compute the values of the expression

2x — 3y + 1

for a number of points, and lay them down, as in the scheme

of § 51, until he sees clearly the truth of all the preceding

conclusions.

2. Imagine a plane covered with values of the function

P = ax + by + c,

as in § 51. Around the origin as a centre we describe a circle

of arbitrary radius, and on its circumference mark the points

where the values of P which it meets are greatest and least.

Show that all points thus marked lie on the line bx — ay = 0.

Show also on what line the points will fall if the centre of

the circle is at the point ( p . q ).
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Theorems of the Intersection of Lines.

55. We represent by the symbols P, P’

,

etc., Q, Q', etc.,

different linear functions of the co-ordinates; e.g.,

P = ax + by -f c;

P' = a'x + h'y c';

P" = a"x + V’y + c";

etc. etc. etc.

Also, we shall represent by the symbols M, M’, etc., A7

, IP,
etc., such functions reduced to the normal form in which

of + V — 1 .

Since the M’s, M’s, etc., will be a special case of the

P’s, Q’s, etc., every theorem true of all the latter will also be

true of the former; but the reverse will not always be the

case.

The line corresponding to the equation

P = 0

may, for brevity, be called the line P.

56. Theorem. If

P = 0, P' = 0

he the equations of any two straight lines, and if p and v he

any two factors which do not contain x or y, then the equa-

tion

juP 4- vP’ = 0 (
h )

will he that of a third straight line passing through the point

of intersection of the lines P and P'.

Proof. 1. By substituting in
(
h )

for P and P' the ex-

pressions which they represent, we see that pP + vQ is a

function of the first degree in x and y.

Hence (h) is the equation of some straight line.

2. That point whose co-ordinates satisfy both of the equa-

tions P — 0 and P' = 0 must also give pP + vP’ = 0,

and must therefore lie on the line (h).
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But such point is the point of intersection of the lines

P and P'

.

Hence the point of intersection lies on the line (b), and

(b) passes through that point. Q. E. D.

Corollary. If three functions
,
P, P' and P”, are so re-

lated that we can find three factors, A, p and v, which satisfy

the identity

AP + yUP' + VP" = 0,

then the three lines P = 0, P' = 0 and P" — 0 intersect

in a point.

For we derive from this identity

P = — - P' -f- - p"-- A ^ A ’

whence, by the theorem, P passes through the point of inter-

section of P' and P”

.

57. Theorem. Conversely, if P — 0 and P' = 0 be the

equations of two straight lines, then the equation of any

straight line through their point of intersection may be thrown

into the form
pP + vP' = 0. (a)

Proof. We have, by substitution,

pP + vP’ — (pa -j- ra’)x -f- (pb vb')y -f- pc + vc'.

Hence the slope of the line (a) is —
V<

\-. (8 34, Schol.)
pb -f vo

Let m be the slope of the line whose equation is to be ex-

pressed in the form (a). We must then have

pa + va'
VI — —

(*)
pb + vl”

which equation is satisfied by putting

p _ a’ -f mb'

v a + mb ’

Any values of p and v which have the ratio defined by this

equation will, when substituted in (a), make it the equation

of a line whose slope is m.

Remark. Were the two lines P and P' identical, then

a : b = a’ : b',

and in (b) m could have no other value than a : b unless
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we took

fx : v — a' : —a;
and then («) would vanish identically.

Hence P and P' must be different lines.

EXERCISES.

1.

Show that if the equations P — 0 and Q = 0 are so

related that we can find two coefficients, pi and v, which form

the identity

pP + vQ = 0
,

then the two lines P and Q are coincident. (Comp. §§52, 53.)

2. Having the two lines

y — mx 4- a = 0,

y -f- mx 2a = 0,

it is lequired to find the equation of a third line passing

through their point of intersection and through the origin.

Method of Solution. Calling the given expressions equated to zero

P and Q, and noting that the equation of every line through the point

of intersection may be expressed in the form

MP+ vQ = 0.

we are to determine the quantities /.i and r so that ihis line shall pass

through the origin. Hence the absolute term must vanish. This gives

the condition
/< = — 2v,

the value of v being arbitrary. Substituting this value of yu, and divid-

ing by v
,
we find the required equation,

y — 3mx = 0.

3. Find the equation of a line passing through the origin

and through the point of intersection of the lines

y — 2a; — n = 0;

y —|- 2x 3ct — 0.

4. Find the equations of the lines making angles of 45°

and 135° respectively with the axis of X and passing through

the point of intersection of the above two lines.

58. To complete and apply the preceding theory, it is

necessary to distinguish between the positive and negative

sides of a line. If distances measured on one side are positive,

those on the other side are negative. But no rule is possible
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for the positive and negative sides without some convention,

because the function P may change its sign without changing

the position of the liue. For example, the two equations

x — ny -j- h = 0,

— x -f- ny — h — 0,

represent the same line; but all values of x and y which make
the one function equal to -f- P will make the other equal to

— P, so that the positive and negative sides of the lines are

interchanged by the change of form.

Now, in the first form, the distance of the origin from the

line is

li

Vl + n 3
‘

Hence,

When the absolute term in the equation is positive, the posi-

tive side of the line is that on which the origin is situated, and

vice versa.

In the normal form the absolute term is negative. Hence,

In the normal form a positive value of the function

M = x cos a + y sin a — p

indicates that the point whose co ordinates are x and y is on

the opposite side of the line from the origin, and a negative

value that it is on the same side as the origin.

59 . Theorem. If

M = 0, N = 0

are the equations of any two lines in the normal form, then

the equations

M+ dsr = 0, M- N = 0,

will be the equations of the bisectors of the four angles which

the lines M and Nform at theirpoint of intersection.

Proof. 1. Because the functions if and N are in the nor-

mal form, they represent the respective distances of any point

from the lines M = 0 and N — 0. (§54.)
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2. Every pair of co-ordinates which fulfil the condition

M ± N= 0

must give

M = ± N,

so that the point which they represent is equally distant from

the lines M and N.

3. By geometry, the locus of the point equally distant from

two lines is the bisectors of the angles formed by the lines.

Remake 1. This theorem holds equally true of the equations of

any two lines in which the sums of the squares of the coefficients of x

aud y are equal. For if, in the equations

P = ax -\- by -f- c =0,
P = a'x 4- b'y + c! = 0,

we have a2+ 5'2 = an bn
,
then, by§ 53, the functions Pand P', when

not restricted to zero, express the distances of a point (x , y) from the re-

spective lines Pand P', multiplied by Va2 4- b'
2 and Va ' 2 4- b'- respec-

tively.

Now, when these multipliers are equal, every point whose co-ordi-

nates satisfy the equation

a ± a') x + (b ± b') y c ± c' = 0
or

P ± P ’ = 0

must be equally distant from the lines Pand P'

.

Remakk 2. The equation

M - N= 0

will be that of the bisector of the augle in which the origin is situated,

and of its opposite angle; while the equation

M+ N- 0

will represent the bisector of the two adjacent angles.

EXERCISES.

Find the bisectors of the angles formed by the following

pairs of lines:

1. x — 2y = 0 and 2x — y = 0.

2. y 4- nx — c = 0 and ny — x 4- c = 0.

3. Prove the theorem of geometry that the two bisectors

of the angles formed by a pair of intersecting lines are at

right angles to each other.
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In other words, if the functions Paud P' are such that

a* 4-E- = a
' 2 + b'\

then show that the two lines

P4-P'=0 and P-P' = 0

intersect at right angles.

4. Show that if N = 0 and N = 0 are the equations of

two lines in the normal form, then

\N+MHr = 0,) (n)
IN - pN' = 0, f

1 ’

will represent the loci of those points whose distances from N
and N' are in the ratio p : A, Also, show geometrically that

such a locus is a straight line.

5. In the preceding exercise, what condition must the co-

efficients A and p satisfy in order that the equations (a) may
each be in the normal form?

60. Applications of the Preceding Theorems. The pre-

ceding theorems enable us to prove with great elegance the

leading theorems of the intersections of certain lines in a tri-

angle.

I. The bisectors of the interior angles of a triangle meet in

a point.

Proof. Let

L = 0, M —
0, N = 0,

be the equations of the sides of the triangle.

We suppose the origin to be within the triangle, because

we can always move it thither by a transformation of co-ordi-

nates.

Then, by what precedes,

P = L - M = 0,

P' = M - N = 0,

P" = N — L = 0,

will be the equations of the bisectors. But these functions,

P, P’ and P"

,

fulfil the identity

P + P' + P" E 0,

and reduce to the form § 56 when we suppose

A = p = v = 1.
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Hence P, P' and P" all pass through a point.

II. The bisectors of any two exterior angles and of the

third interior angle meet in a point.

Proof. The equations of two exterior bisectors and of the

third interior bisector are

P E L + M = 0;

P' = M + N = 0;

P" = L - N = 0;

which fulfil the identity

P - P' - P" = 0.

III. The perpendiculars from the three vertices of a tri-

angle upon the opposite sides meet in a point.

Let Pbe any point upon the perpendicular from Y upon
a(3\ PM _L Ya, Pi

Y

_L Y/3; and

y . angle a Y/3.

Then, because the angles PYa
and a are complementary,

PM = PY cos a,

PN= PY cos yd;

PM : PN= cos a : cos yd.

Therefore, if the equations of the sides Ya and Y/3 are

M = o ; N’ = 0,

then, by the theorem of § 59, Ex. 4, the equation of the per-

pendicular YP will be

N cos yd — Nf
cos a — 0.

In the same way, if the equation of a/3 is iV" = 0, we

shall have, for the equations of the other two perpendiculars,

N

'

cos a — Nn cos y = 0;

N” cos y — N cos yd = 0.

The sum of these three equations is identically zero, thus

showing that the three lines intersect in a point.
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61. Diagonals of a Quadrilateral. An elegant and in-

structive application of the preceding theory is given by the

following problem:

To find the equations of the diagonals of a quadrilateral of

which the equations of the four sides are given.

We remark that, iu general geometry, a quadrilateral has three

diagonals. The reason is that each side is supposed to be of indefinite

length, and so to intersect the

three others. A diagonal is

then defined as the line joining

the point of intersection of any

two sides to the point of in-

tersection of the other two

sides. The number of points

of intersection, or vertices, is
.

equal to the combinations of

two in four, or 6. Taken in

pairs these 6 points have three

junction lines, as shown in the

figure.

Solution. Let the equations of the four sides be

P = 0;

Q =0;
R = 0;

S - 0.

(a)

We seek for four factors, n, A, /x and v, by which to form

the identity

kP + \Q -j- /uR + vS = 0. (b)

Four such factors can always be found when the parame-

ters of P, Q, etc., are given, because by equating to zero

the coefficients of x and y and also the absolute term in
(b )

we shall have three equations which determine any three of

the four factors n, A, fx and v in terms of the fourth. To
the latter we may assign any value at pleasure.

The identity (b) being satisfied, we shall have

uP -|- A Q = — (/.iR vS). (c)

Now, (§ 56),

kP -\- \Q — 0
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is the equation of some line passing through the intersection

of P and Q, while
/-ill + vS = 0

is the equation of some line passing through the intersection

of R and S.

But, by (c), these two lines are identical. Hence this com-

mon line is a diagonal of the quadrilateral. We show in the

same way that

hP + /iR = 0 or \Q -j- vS = 0

is the equation of the diagonal joining the intersection of P
and R to that of Q and S. Also, that

uP -J- rS =0 or \Q + jaR = 0

is the equation of the diagonal joining the intersection of P
and S to that of Q and R.

Example. To find the equations of the diagonals of the

quadrilateral whose sides are

P= x+ y + 1 = 0;

Q = rc —(- 2?/ — 3 = 0;

R = x — 2y + 4 = 0;

S =2x - y
- 2 = 0.

Forming the expression ( b ), we find it to be

(tt-f A-\-/a-\-2v)x-\- («+2/\. — 2/a— v)y -j-u— 3A-j-4/<—

2

p= 0.

Hence, to form this identity, (8 8),

(1) K + A + /A + 2p = 0;

(2) u + 2A. — 2/a — v — 0;

(3) k — 3A -j- — 2v — 0.

We solve as follows:

(2) -(1) A. — 3/a - 3v = 0;

(2) -(3) 5A — 6m + v = 0.

3A + 7v = 0;

9/i + 167' = 0.

A =-».=
O

21
“9”

P —
16
‘9

19

9
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The value of v is arbitrary, and values of h, p and A, free

from fractions, are obtained by putting v — 9. The values

of the four coefficients are then

n — 19; A = — 21; p — — 16; v = 9.

From these coefficients the equations of the diagonals are

formed by the preceding formulae, and are found to be

2x -f- 23# — 82 = 0;

x + 17# — 15 = 0;

37x + 10# + 1 = 0.

62. Fundamental Lines of a Triangle. Let us consider

the following problem:

If the equations of the three sides of a triangle in the nor-

mal form are

M = 0,

M’ = 0,

M" = 0,

what line is represented by the equation

M+M’ + M" = 0? (a)

Solution. If we put

Q = Mf M’,

the equation Q = 0 will represent the bisector of the exterior

angle between the lines M and Mr

(§ 59).

Also, the equation

Q+M" = 0,

which is the same as («), will represent some line passing

through the point of intersection of M" and Q, that is,

through the point in which the bisector meets the opposite

side.

In the same way it may be shown that the line («) passes

through each of the other two points in which the bisectors

of the exterior angles meet the opposite sides.

Hence the solution of the problem leads to the theorem:

The three points in which the bisectors of the exterior
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angles of a triangle meet the opposite sides lie in a straight line,

namely, the line whose equation is

M + M' + M" = 0;

M = 0, M' — 0 and M" — 0 being the equations of the sides

in the normalform.

We may show in the same way that the three equations

M + M' - M" = 0,

M - M' + M” = 0,

-M + M’ + M" = 0,

are the equations of three straight lines each containing the

foot of one bisector of an exterior angle and two bisectors of

the two remaining interior angles.

EXERCISES.

1. Show by the preceding theorems that if we form a

triangle by joining the points in which each bisector of an

interior angle meets the opposite side, the sides of this tri-

angle will severally pass through the points in which the

bisectors of the exterior angles meet the opposite sides.

2. Show that if

M = 0, M' = 0, M" -
0, M'" = 0,

be the equations of the four sides of a quadrilateral in the

normal form, then

M + M' + M" + M"' = 0

will be the equation of a straight line containing the three

points in which the external bisectors of the three pairs of

opposite vertices meet each other.

3. Find the equations of the three diagonals of the quad-

rilateral whose sides are

y = x;

y = x +
x = a\

y = - x.



CHAPTER IV.

THE CIRCLE.

Section I. Elementary Theory.

Equation of a Circle.

63. Problem. To find the equation of a circle.*

Let the co-ordinates of the

centre C of the circle be a

and b, and let P be any point

of the circle.

Calling x and y the co-

ordinates' of P, we have, for

the square of the distance be-

tween C and P,

CP°- = (x - ay + (y - b)\ (§ 17)

The condition that P shall lie on the circle requires that

this distance shall be equal to the radius of the circle. Let

us put
r = CP, the radius of the circle.

The condition then becomes

(x - afi + (y - by = r\ (1)

which is the required equation of the circle.

64. Theorem. Every equation between rectangular co-

ordinates of the form

+ y'f +px + qy + h = 0 (2)

* In the almost universal notation of the higher geometry the word
“circle” is used to designate the closed curve which, in elementary

geometry, is called the circumference of the circle.
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in tohich trie coefficients of x
2 and y~ are equal, while there is

no term in xy, represents a circle.

Proof. Divide by m, and put, for brevity,

a —

b =

P_
2m’

±_
2m’

and the equation will be transformed into

x2 — 2ax -f- y
2 — 2by -)- A = 0,

or

(X - ay + (y - by - a
2 - V + A = 0,

or

(x - a)' + (y- »• = «’ + 4- - i (3)

The first member represents the square of the distance be-

tween the fixed point (a, b) and the varying point (x, y ). The

second member being a constant, the equation shows that

the square of the distance of the two points is a constant,

whence the distance itself is a constant. Hence the equation

represents a circle whose centre is at the point (a, b) and

whose radius is \r _l if _ —

.

r m

65. Special Forms of the Equation oj a Circle.

We may suppose a circle moved so that its centre shall

occupy any required position without the form or magnitude

of the circle being changed.

If the centre be at the origin, we have a = 0 and b — 0,

and the equation of the circle becomes

x' + ffi
= r\ (4)

If the centre is on the axis of X. we have b — 0, and the

equation becomes

y" + (x — a)
2 = r

2

,

which is the equation of a circle whose centre is on the axis

of X.
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If we suppose a — r and b — 0, the circle will be tangent

Find the radii and the co-ordinates of the centres of circles

having the following equations:

4. mx2 + my2 + px + qy - — = 0.

5. Write the equation of the circle whose centre is at the

point (1, — 2) and whose radius is 7.

6. Write the equation of the circle whose centre is in the

position (p, q

)

and whose radius is Vp2 + q\

7. Write the equation of the circle whose centre is at the

point (0, 5) and which is tangent to the axis of X.

8. Write the equation of a circle passing through the

origin and having its centre at the point (3, 4).

9. Find the equation of a circle of which the line drawn

from the origin to the point (p, q ) shall be a diameter.

10. Find the equation of a circle of which the line from

the point (1. 3) to the point (7, — 5) shall be a diameter.

11. Find the locus of the centre of the circle passing

through the points (p, q) and (p’
,

q'), and show that it is a

straight line perpendicular to the line joining these points.

EXERCIPES.

1. z5 + y
2 - lO.r + 2y + 17 = 0.

2. 3x2 + 3if + 6x -12y - 9 = 0.

3. 2x2 + 2y
2 + 8x — 18y — = 0.
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Method of Solution. Since the two points are to lie on the circle, their

co-ordinates must satisfy the equation of the circle; that is, we must
have

(p - af + (ff - W — r-

;

(
o' — a)

2 -)- (§' - b
)
2 = r'

1
.

The radius r being a quantity which must not appear in the equation, we
must eliminate it, which we do by mere subtraction. We thus find an

equation of the first degree between a and b, the co-ordinates of the

centre. To express the locus in the usual form we may write x and y
for a and b in this equation, which will then be the required equation of

the locus of the centre.

12. Find the locus of the centre of the circle passing

through the points (1, 1) and (7, 9).

13. Find the locus of the centre of the circle passing

through the origin and the point (p, q).

14. Find the locus of the centre of the circle passing

through the origin and the point (2\p cos a, 2

p

sin a).

66. Intersections of Circles. The points in which circles

intersect each other, or in which a straight line intersects a

circle, are found from the values of the co-ordinates which

satisfy both equations.

Let the two circles which intersect be given by the equa-

tions

+ f + ax + by + P = 0; ) / x

x1 + y
1 + a ’x + b’y + p’ = 0. f

By subtracting one of these equations from the other, we

(a - ct’)x + {b - V)y + p — p’ = 0; '

whence P
y = - p -f- {a' — a)x

b-V i

By substituting this value of y in either of the equations

(a), we shall have a quadratic equation in x.

Since such an equation has two roots, there will be two

points of intersection.

But the roots may be imaginary. The circles will then

not meet at all, but one will be wholly within or wholly with-

out the other.

If the roots are equal, the points of intersection are coinci-

dent, and the circles touch each other.
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EXERCISES.
1.

Find the points of intersection and the length of the

common chord of the two circles

s* + f = r
2

;

x2 + y" — ax = d2
.

Ans. The co-ordinates are:

x — for both points;

y — ± — V (ar + r
2 — d2

)(ar — r
2+ d1

).

Common chord = ^ |
aV2— (r

2 — d 2

)

2

1

2.

Find the points of intersection and the length of the

common chord of the circles

z2 + y
1 - a

2 = 0;

x* + y
2 + by - r

2 — 0 .

3. Determine the radius r so that the circles

x' + y' = r
2

,

x2 + y
2 — 2x = 3,

shall touch each other.

Method of Solution. We find, as in the preceding exercises, the

values of the co-ordinates x and y of the points of intersection. In order

that the roots may be equal, the quantity under the radical sign in the

expression for y must vanish. Equating it to zero, we shall have

r» - 10;* + 9 = 0,

an equation of which the roots are 3 and 1.

4. Find the distance apart of the two points in which the

line

x = y +

1

intersects the circle

x2 + y
2 = 10.
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67. Polar Equation to the

Circle.

Let 0 be the pole, OX the / /
initial or base line; / \ \

p

'

and a the polar co-ordi- / Jo

nates of the centre C
; y s' /

p and 0 the polar co-ordi- //\ /
nates of any point P.

\

We then have, by trigonom-

etry,

PCn = OP2 + OC 2 — 20P. OC cos POC
;

that is, P = p
2 + p' 2 — 2pp' cos (0 — a),

or p
2 — 2pp' cos (0 — a) p' 2 — p = 0, (6)

the polar equation required.

It may also be obtained from the equation referred to

rectangular axes by putting x = p cos 6, y — p sin 6, a = p'

cos a, and b = p’ sin a. If the initial line pass through the

centre, a = 0 and the equation becomes

p
2 — 2pp' cos 6 -f-

p' 2 — P — 0. (7)

If the origin lie on the circumference, p' 2 — P and the

equation becomes

p — 2p' cos 6 = 2r cos 6. (8)

Note. In the above we put p and p' for the radii vectores in order

to avoid confusing them with the radius of the circle, which we call r.

Tangents and Normals.
68 . Equation of Tangent to a Circle. The requirement

that a line shall be tangent to a circle does not alone determine

the line, because a circle may have any number of tangents.

We may therefore anticipate that this requirement will be ex-

pressed by an equation of condition between the parameters

of the line. Let us then consider the problem:

To find, the equation which the parameters of a line must

satisfy in order that the line may be tangent to a given circle.

Let the circle be given by the equation

(x - a)
2 +(y- b)

2 = P.

and let the equation of the line be

Ax 4- Bn 4- C — 0.
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By geometry, the situation of the line must be such that

the perpendicular from the centre of the circle upon it shall

be equal to the radius of the circle. Conversely

,

every line

for which this perpendicular is equal to the radius of the

circle is a tangent.

Now, the length of the perpendicular from the point (a, b)

upon the line (A, B, C) is

nA -f- bB -f- C

VA" + B k

~‘

The requirement that this perpendicular shall be equal to

the radius r of the circle gives the equation

aA + bB + C = r VA" + B\ (1)

which is the required equation of condition between the para-

meters A, B and C.

If the equation of the line is in the normal form

x cos a -f- y sin a — p = 0,

we shall have

VA" -(- B" = t/cos
2
«' + sin

2
*? = ± 1,

and the equation (1) will assume the form

a cos a -)- b sin a — p — ± r. (2)

69o Equation of the tangent expressed in terms of the tan-

gent of the angle which the line makes with the axis ofX.

Let y — mx -f- b be the equation of the tangent, and

+ f = r
2

the equation of the circle. Eliminating y between these two

equations, we have

(1 -f- to
2
).t

2

-f- 2mbx + {V
1 — E) — 0,

which must have equal roots, since the tangent touches the

circle in only one point. Now the condition that this equa-

tion may have ecpial roots is (§ 8)

= (1 + to
2

)
(b

2 - r
2

);

whence b = r Vl -(- to
2

,

which substituted in the equation of the tangent gives

u b= mx r Vl + to
2

. (31
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Conversely, every line whose equation is of this form is a
tangent to the circle.

TO. Tangent determined by Two Conditions. In the
preceding article we employed only the one condition, that the
line should be tangent to the circle. Hence the line could
be completely found only when one of the parameters was
given. In order to determine completely the tangent line,

some other condition besides its tangency to the circle must
be given. Examples of such conditions are:

I hat the tangent line shall touch the circle at a given
point

;

That it shall pass through a given point not on the circle :

That it shall also be tangent to a second circle.

Tl. Problem. To find the equation of the line tangent

to a circle and passing through a given point.

Let x' and y' be the co-ordinates of the given point, and

x cos a -)- y sin a — p — 0

the equation of the tangent. Since the tangent passes through

the point (%'
,
y'), we must have

x' cos a y' sin a — p = 0, (4)

which combined with (2) will determine the two parameters,

a and of the line.

We may, however, first eliminate p by subtraction, which

gives the equation

(ia — x ’) cos a -f- (b — y') sin a — r.

The solution of this equation, which is obtained by

methods given in trigonometry, will give the value of a. It

may also be obtained algebraically by substituting for cos a

its equivalent, Vi — sin
2
a, or for sin a its equivalent,

Vi — cos
2
a, or for cos a and sin a their equivalents in

terms of tan a, viz.,

1 . tan a
cos a = —- sin a — — -

Vi + tan
2« Vi -j- tan

2

In either case we shall have a quadratic equation, the un-

known quantity in which will be either sin a, cos a or tan a.
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If we write, for brevity,

m — a — x '

,

n = h — if,

the solution of these equations will give

nr
sin a — ± m Vm" -)- n2 —

cos a —

m2 + n2

mr n V

m

2

-f- n
2 — r

m 2 + n2 (5)

tan a — mn ± r Vnv + n‘ — r
2

r — n

The value of p by (4) is

p = x’ cos a y' sin a,

in which cos a and sin a must be replaced by their values

given above. Substituting the values of cos a, sin a and p
in the equation

x cos a + y sin a — p
—

0,

the result will be the required equation of the tangent passing

through the point (x
f

,
y'). The double sign shows that there

may be two tangents drawn to a circle from a point without

it.

Case when the given point is on the circle. In this case we

shall have
m 2 + n2 - r

2 = 0,

and the values (5) of sin a and cos a become

and

n
sin a = —•.

r '

cos a = m

p =
mx' + ny'

Substituting these values in the equation of the tangent,

it becomes
mx + ny — mx' — ny' = 0,

or m (x — x’) -f n (

y

— y') = 0.
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If we substitute for m and n their values, the equation is

(a - x') (x - x') + (b - y’)
(y - y

') = 0.

If we take the centre of the circle as the origin, we have

a = 0, b = 0;

and because the point
(x y') is on the circle,

xn -f- y
n — rk

Making these substitutions, the equation of the tangent

assumes the simple form

x'x -(- y'y — P.
(
6
)

72. Def. The subtangent of a curve is the projection

on the axis of X of that portion of the tangent intercepted

between t he point of tangency and its intersection with the

axis of X. x
Thus, if CT is the axis of

X, MT is the subtangent corre- Tv
sponding to the tangent PT. /

I

V\
Length of the Subtangent. To / , I

find the length of MT, we find 1

jjj—j

the intercept CT on the axis of JX and subtract CM, the abscissa S
of the point of contact. ^

The equation of the tangent PT is (6)

x’x + y'y = p;

and when y — 0, we have

Hence we have

= CT.

73. Def. The normal to any curve is the perpen-

dicular to the tangent at the point of contact.

Equation of the Normal to a Circle. The equation of the

line perpendicular to

x'x + y'y = P
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and passing through the point of contact (x’
,
y') is, by §47,

y
f

y-y’ = - x’)>

or y'x — x'y — 0,

the equation required.

The form of this equation shows that every normal of a

circle passes through the centre—a property which is easily

established by elementary plane geometry.

The length of the normal is that portion of the line in-

cluded between the point of contact and the axis on which the

snbtangent is measured. In the case of the circle, the nor-

mal is constant and equal to the radius.

Def. The subnormal of a curve is the projection of

the normal on the axis of X.

Thus, CM is the subnormal corresponding to the point P,

and in the circle is equal to the abscissa of the point of contact.

EXERCISES.

1. Show that the condition that the line

x cos a -f- y sin a — p = 0

shall be tangent to the circle

(x - «)
2 + (y - b)

2 = a2 + b"

is a cos a -\- b sin a = p ± V

a

2 + b
2

.

2. What is the condition that the line

y = mx c

shall be tangent to the circle

(x - l)
2 + (y + 2

)

2 = 16?

3. What must be the value of c in order that the equation

x + y — c

may be tangent to the same circle?

Ans. c — — 1 ±4 V2.
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4. What must be the value of in in order that the line

y = mx -j- 6

may be tangent to the circle

x* + y' = 16 ?

j
Vb

5. In the last example show that we get the same an-

swer for the line

y = mx — 6,

and explain the equality by geometric construction.

6. What must be the value of the radius d in order that

the circle

(* + 3r + (

y

- 1)* = d 2

may have as a tangent the line

y = 2x + 5?

2
Ans. d —

7. By elementary geometry, two circles are tangent to each

other when the distance of their centres is equal to the sum
or difference of their radii. By means of this theorem write

out the condition that the circles

(x - af + {y - by = r
J

and (

x

— a')" + (y — b'Y = ?'
,a

shall be tangent to each other.

8. Show that the length of the common chord of the circles

whose equations are

(* - 2)
2 + (y

- 3 )’ = 9

and (x — 3)
2 + (y

— 2)
2 = 9

is 4
/

34.

9. Find the condition that the circles

(

x

— lif + (y — &)
2 = a

2

and (

x

— F)
2 + (y — hf = a2

may touch each other.

^4«s. a = —— (k — h).
V2
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10. Show that the polar equation

p
2 —

(
a cos 6 -f- b sin 6) p = p

1

is that of a circle, and express its radius and the position of

its centre.

1 1 . What curve does

p = a cos (d — a) b cos (6 — (3) -f- c cos (d — y) -(- . . .

represent?

12. A point moves so that the sum of the squares of its

distances from the four sides of a rectangle is constant. Show
that the locus of the point is a circle.

13. Given the base of a triangle (2b) and the sum of the

squares on its sides (2m~), find the locus of the vertex when

the middle point of the base is the origin.

Ans. x1

-J-
y'2 = m* — b".

14. Given the base (b) and the vertical angle
(
B

)

of a tri-

angle, find the locus of the vertex when the origin is at the

end of the base.

Ans. x* + if — bx — by cot B = 0.

15. Show that if, in the equation

+?/ + Ax -f- By -f- C = 0,

we have
4(7 > A 2 + B\

the circle will be imaginary. It is enough to show that the

radius is imaginary.

16. Show that a circle may be defined as the locus of a

point the square of whose distance from a fixed point is pro-

portional to its distance from a fixed line.

17. Show that a circle is the locus of a point the sum of

the squares of whose distances from any number of fixed

points is a constant.

18. If —,
= show that the circles

a b

+ V* + ax
. +ty = 0 ,

x* + y
2 + a'x -f b'y — 0,

touch at the origin.
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19. Find the locus of a point whose distances from two

fixed points have a fixed ratio to each other.

20. Express analytically the locus of a point from which a

tangent drawn to a circle will have a fixed length t.

21. Find the locus of the point from which two adjoining

segments of the same straight line shall be seen under the

same varying angle. In other words, if A, B and C are

three points in the same straight line, find the locus of the

point X which will satisfy the condition

Angle AXB — angle BXC.

22. If the equation of the circle x1
-)- y

1 — r
2
is transformed

to another system of co-ordinates having the same axis but a

different direction, show analytically that the equation will

not be altered.

23. Show analytically that if a circle cuts out equal chords

from the two co ordinate axes, the co-ordinates a and b of its

centre will be equal.

24. Find the equation of the circle which passes through

the three fixed points foyj, foy,), foy,).

25. Having given the circle af* -f-
y" + L0.r — 6y — 2 = 0,

find the equation of its two tangents, each of which is parallel

to the straight line y = 2x — 7.

26. The circle a-
2 + if = r

2 has tangents touching it at the

respective points (aq yj and (aq ?/„). Express the tangent of

the angle formed by these tangents.

27. A line of fixed length slides along the axes of co-ordi-

nates in such a way that one end constantly remains on each

axis. What is the locus of the middle point of the line?

28. Given a point (a, b) and a finite straight line whose

length is c, find the locus of the point whose distance from

(a, b) is a mean proportional between c and its distance from

the line x cos ac y sin a = p.

29. Having given the equation of the circle y
1 — 2rx — .r

2

,

let chords be drawn from the origin to all points of the circle,

and let each of them be divided in the constant ratio m : n.

It is required to find the locus of the points of division.

30. The same thing being supposed, the chords, instead
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of being divided, are each doubled. Find the locus of the

ends.

31. On each radius of a circle having its centre at the

origin a distance from the origin is measured equal to the or-

dinate of the terminal point of the radius ou the circle. Find

the locus of the point where the measures end.

32. The same thing being supposed, take on each radius

a point at a distance from the centre equal to the abscissa of

the end of the radius, and find the locus of this point.

33. Find the locus of the point from which two circles

will subtend the same angle; that is, from which the angle

subtended by the pair of tangents to one circle is equal to

that subtended by the pair of tangents to the other circle.

34. Find the equation of that circle which passes through

the origin and cuts off the respective intercepts p and q from

the positive parts of the axes of X and Y.

35. Find the locus of the point the sum of the squares of

whose distances from the sides of an equilateral triangle is

constant, and show that it is a circle. (To simplify the prob-

lem, let the base of the triangle be the axis of X.
)

3G. Find the polar equation of the circle when the origin

is on the circumference and the initial line a tangent.

37. A line moves so that the sum of the perpendiculars

AP and BQ from two fixed points, A and B, shall be a con-

stant. Find the locus of the middle point of the segment

PQ •

3^. The straight line whose equation is 3y -f- 5x -f- 19 = 0

cuts the circle ?/ -f- x
1 = 113 in two points. What is the

length of the chord which the circle cuts off from the line?

39. Find the equation of the straight line which cuts the

circle x2
-)- y* — 169 in two points whose abscissae are re-

spectively — 12 and 7.

40. Find the equation of a line passing through the point

{x', y'

)

and forming in the circle x" -j- y" = r" a chord whose

length is cl.

41. Through the point
(
x'

, y'), inside the same circle, a

chord is to be drawn which shall be bisected by the point.

Find the equation of the chord.
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Systems of Circles.

74. Let us consider the expression

(x - a)
2 + (y - by - d\

which, for brevity, we shall represent by P, putting

P = x1 + y
2 — 2ax — 2by + a

2 + b
2 — d2

.

To every point on the plane will correspond a definite

value of P, found by substituting the co-ordinates of such

point in this value of P.

We may form any number of expressions of this form,

such as

P’ = x3 + y
2 - 2a'

x

- 2b'

y

+ a'
2 + b’

2 - cl'
2

:

P" = a;
2 + if - 2a"

x

- 2b"

y

+ a" 2 + b" 2 - d" 2

;

etc. etc. etc.

In general, the co-ordinates x and y which enter iuto P
will be considered as entirely unrestricted, in which case P
will be simply an algebraic function of x and y.

But avg may also inquire about those special values of x

and y Avhich satisfy the equation P — 0. We know from

§§ 63, 64 that the points corresponding to these special

values of x and y all lie on a circle of radius d, having its

centre at the point (a, b). We now have the

—

75 . Theorem. The value ofPfor any point of the plane

is equal to the square of the tangent from that point to the

circle P = 0 .

Proof. Let P be the jioint
(
x

, y),

and let C be the centre of the circle

P = 0, Avhich is, by hypothesis, the

point («, b). We then have

CP 2 = (x - a)
2 + (y - b)

2 -

and because PTC is a right angle,

PT 2 - CP2 - CT 2

= (x — a)

2

-f (y — b )

2 - dr,
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which is the value of the function P, thus proving the

theorem.

Kemark. If the point
(
x

, y) is taken within the circle, P
will be negative, and the length of the tangent, being the

square root of P, will be imaginary.

76. Theorem. If P — 0 and P' — 0 are the equations

of two circles, any equation of the form

pP + yPr = 0 (a)

will represent a third circle passing through their points of

intersection.

Proof. We first show that (a) is the equation of some

circle. Substituting for P and P' their values, we have for

the equation of the curve

(p f- v){x2

y
2

)
— 2(pa-\- va')x — 2{pb-f vb f

)y

+ p(a 2 + ¥ - df + v(an + b
n - dn ) = 0.

Here the coefl&cients of x3 and y
2
are equal and there is no

term in xy. Hence (§ 64) the curve represented by the

equation (a) is some circle.

Secondly, the co-ordinates of all points in which the

circles P and P' intersect must satisfy both of the equations

P = 0 and P' — 0. Hence they also satisfy the equation

pP + vP' = 0,

and therefore the points of intersection lie on the circle of

which the equation is (a).

Hence this circle passes through the points of intersection

of the circles P and P'

.

Q. E. D.

Cor. The curve represented by (a) depends only on the

ratio of the factors p and v, and remains unchanged when

both are multiplied by the same quantity.

By assigning different values to the ratio p : v, we may

determine as many circles as we please passing through two

points.

A collection of circles passing through two points is called

a family of circles.



90 PLANE ANALYTIC GEOMETRY.

77 - Problem. To find the locus of the point from which

the tangents to two circles shall have a given ratio to each

other.

Solution. Let P — 0 and P' = 0 be the equations of the

two circles, and let the tangents from the moving point be in

the ratio m : m'

.

The square of the tangents will then be in the ratio

m 2
: mn . But these squares are represented hy the respective

values of P and P' corresponding to the point from which

the tangents are drawn. Hence between these values of P
and P' we have the proportion

P : P' = m? : mn
,

which gives

m' 2P - nT-P' = 0. (h)

Because the co-ordinates of the point from which the

tangents are drawn must satisfy this equation, this equation

is that of the required locus.

Comparing with § 76, we see that the equation is of the

form (a). Hence:

Theorem. The locus of the point from which the lengths

of the tangents drawn to tivo circles have a constant ratio to

each other is a third circle, passing through the common points

of intersection of the first two circles, and therefore a third

circle of the same family.

7 8. The Radical Axis. If the ratio m : m’ is unity, the

equation (h) will reduce to

P-P’ = 0,

or, substituting for P and P' their values,

2(a' - a)x + 2(h' - b)y + an - of + b” - F - dn + cP = 0,

which, being of the first degree, is the equation of a straight

line. From the results of § 76, this line must be the common

chord of the two circles. Hence:

Theorem. The locus of thepoint from which the tangents

to two circles are equal is the common chord of the two circles.

This locus is called the radical axis of the two circles.
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Imaginary Points of Intersection.

T9. The theorem of § 77 holds equally true whether

the circles P aud P' intersect or not; that is, it leads to a

third circle passing through the points of intersection of two

circles, even when these tivo circles do not intersect. If in this

last case the third circle, which we may call P"

,

really inter-

sected either of the others, say P'

,

this result would be self-

contradictory. For in such a case the circle P could not pass

through the intersection of P' and P"

,

and so the result of

the theorem would be false.

But if the point of intersection of P and P' is noivliere,

there will be nothing contradictory in the result, if only P"
intersects each of them nowhere.

Again, in § 78 we have found a perfectly general equation

of the radical axis founded on the definition that the radical

axis is the line joining the points of intersection of two circles,

which equation gives the real radical axis even when the circles

do not intersect.

If we take any special case, we shall find that the algebraic

processes are the same whether the circles do or do not really

intersect: only, in the latter case, the co-ordinates of the

points of intersection will be imaginary. To illustrate this in

the simplest way, take the two circles

To determine the points of intersection we must find

values of x and ij which satisfy both equations. The second
equation is, by reduction,

Substituting the value of x° -f if
—

1 in the first member,

x* + y
1 — 6x — 6y -f- 18 = 9. («)

we find

x + y = ~*
1 0 _ 5
~6 ~

3
' (*)

5
y = 3

- x;

Hence
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By substituting for y
2
its value 1 — x", we find

25 _ _ 16

T~ ~ “9~
;

0 ,
1 °

2x' x = 1
6

X “3 * = 8
9'

Completing square,

, 5 ,25 25 - 32
35 -3* + 36

= ^r- .1
36'

The square being negative shows that the roots are imagi-

nary. The solution gives, for the points of intersection,

5 ± V- 7

6
5

5 =F

The co-ordinates x and y being imaginary, the circles do

not really intersect. But these imaginary values of the co-

ordinates satisfy the equations of both circles and also the

equation
(
b

)

of the radical axis, as we readily find by the

calculation:

5
2 - 7 ± 10 V^~7 _ 9 ± 5 V- 7.

36 ~ 18

* + y =

5
2 _ 7 T 10 _ 9 5 V- 7.

36 ” 18

5 ±7 + 5T7_10_5
6

“ 6“ ~ 3

In taking the sum of the first two equations, the imaginary

terms cancel each other and we have x2

y
2 = 1.

Subtracting 6 times the third equation we satisfy (a), and

the third is identical with
(
b ), which is the equation of the

radical axis.

We adopt the following forms of language to meet this

class of cases:

I. An imaginary point is a fictitious point which we

suppose or imagine to be represented by imaginary co-ordi-

nates.

II. When imaginary co-ordinates satisfy the equation of a
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curve, we may talk about the corresponding imaginary points

as belonging to that curve.

III. A curve may be entirely imaginary.

Example. The equation

x" + y
2 — 2x — 2y = 1

is that of a circle. But we may write it in the form

(x - 1r + (y
- ir = - 1.

The first member is a sum of two squares, and therefore

positive for all real values of x and y, while the second mem-

ber is negative. Hence there are no real points whose co-

ordinates satisfy the equation.

EXERCISES.

1. If we take, on the axis of X, two imaginary points

whose abscissas are a -f- hi and a — hi respectively, find the

abscissa of the middle point between them.

2. Using the method of § 45, find the equation of the

line joining the imaginary points whose co-ordinates arc

—

1st point: x' — ci, y' = a -f- 2ci;

2d point: x" = h -|- ci, y" = a +2J + 2a;

and show that it is the real line

y — 2x -f- a.

3. Find the equation of the circle whose centre is at the

point (a, 2b) and which cuts the axis of X at the points de-

scribed in Ex. 1.

Ans. {x — ay + (y — 2b)
2 = 3Zr.

4. Find the equation of a circle belonging to the family

fixed by the pair

(x - 4y + (y- 3)
2 = 16,

(* - 2)
2 + (y- 5)

2 = 9,

and passing through the origin.

Ans. // = 20; v — — 9; Eq. : 11(.U+ y
1

)
— 124a; — 30y = 0.
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Section II. Synthetic Geometry of the Circle.

Poles and Polars.

80. Let there be two points, P and P’, on the same
straight line from the centre 0 of a fixed circle, and so situ-

I

ated that the radius OR shall be a mean proportional between

OP and OP'.

Through either of the points, as P'

,

draw a line Q perpen-

dicular to the radius. Then
The line Q is called the polar of the point P with

respect to the circle, and the point P is called the pole of the

line Q with respect to the circle.

Had we drawn the line through P, it would have been the

polar of the point P', and P' would have been the pole of the

line through P.

81. The following propositions respecting poles and

polars flow from these definitions:

I. To every point in the plane of the circle corresponds

one definite polar, and to every line one definite pole.

II. The polar of a point and the pole of a line may be

found by construction as follows:

(a) If the pole P is given, we draw the radius through

the pole intersecting the circle at R. We then find the point

P' by the proportion OP : OR = OR : OP'.

The perpendicular through P' will be the polar of P.

(b) If the polar is given, we draw the perpendicular from
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the centre 0 upon the polar, and produce it if necessary. If

it intersects the circle at R and the polar at P'

,

we determine

OP as the third proportional to OP' and OR. The point P
will then be the required pole.

III. When the pole is within the circle, the polar is wholly

without it.

IV. If a pole is without the circle, the polar cuts the circle.

V. When the pole is a point on the circle, the polar is the

tangent at that point.

VI. If the pole approaches indefinitely near the centre of

the circle, the polar recedes indefinitely, and vice versa.

82. Fundamental Theorem. If a line pass through a

point, thepolar of the point will pass through thepole of the line.

Proof. Let the line CD pass

through the point P.

By definition, we find the polar

of P by drawing the radius OM
through P, taking the point P' so

that, putting r for the radius OM,
OP : r — r : OP’, {a)

and drawing P’Q’ _L OP'.

We find the pole of CD by draw-

ing OQ _L CD and finding a point P" such that

OQ : r — r : OP". (b)

We hare to prove that P" lies on the polar P'Q'. If we
call Q' the point in which OQ meets the polar P'Q', the tri-

angles P' OQ’ and QOP, being both right-angled and having

the angle at 0 common, are equiangular and therefore similar.

TTpivpp

OQ : OP = OP' : OQ'. (c

)

Comparing the proportions (a) and (b), we have

OP. OP’ = OQ. OP",

which gives the proportion

OQ: OP = OP’ : OP".

Comparing this proportion with
(
c), we have

OQ’ = OP".
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Hence P” and Q' coincide; that is, the pole P" lies on the

polar P'Q f
. Q. E. D.

Cor. 1. We may imagine several lines all passing, like CD,
through the point P. The theorem shows that the poles of

these lines all lie on P'Q'. Hence,

If several lines pass through a point, their poles will all lie

upon the polar of the point.

I

Cor. 2. We may imagine several points, all lying, like P,

on the line CD. The theorem shows that the polars of these

points will all pass through Q', the pole of CD. Hence,

If several points lie in a straight line, their polars will all

pass through the pole of the line.

Remark. These several theorems may be more readily

grasped when placed in the following form:

1. If a line turn round on a point, its pole will move along

the polar of that point.

2. If a point move along a line, its polar will turn round

on the pole of that line.

S3. Theorem I. Iffrom any

point two tangents be drawn to a

circle, the line joining the points

of contact will be the polar of the

point.

Proof. Let the tangents from

P touch the circle at M and N.

Let Q be the point in which OP.
from the centre 0, intersects the line MN.

VN

/
Q

M
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By elementary geometry, OQN and ONP are right tri-

angles. Because they have the angle at 0 common, they are

equiangular and similar. Hence

OQ : ON= ON: OP.

Now, since ON is the radius of the circle, this proportion

shows that MN is the polar of P. Q. E. D.

Theorem II. If through any point a chord he drawn to

a circle, the tangents at the extremities of the chord will meet

on the polar of the point.

Proof. Let the chord pass

through the point Q, and let

the tangents meet at P'

.

By
Theorem I., P' is the pole of the

chord; therefore, because Q lies

on the chord, the polar of Q
passes through P'

,

the pole of

the chord. Q. E. U.

Cor. 1. If any number of chords he drawn through the

same point, the locus of the point in which the tangents at

their extremities intersect will he a straight line, the polar of

the point.

Cor. 2. Conversely, If from a moving point on a straight

line tangents he draw?i to a fixed circle, the chords joining the

corresponding points of tangency will all pass through the pole

of the line.

THEOREMS FOR EXERCISE.

1. If we take any four points, A, B, A' and B'

,

on a circle,

and if P be the point of meeting of the tangents at A and B,

and P’ the point of meeting of the tangents at A' and B'

,

then the point of meeting of the lines AB and A'B' will be

the pole of PP'

.

2. If we take four points, A, B, X and Y, on a circle, such

that the tangents at A and B and the secant XY pass through

a point, then the tangents at X and Hand the secant AB
will also pass through a point.
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Centres of Similitude.

84. Def. The line joining the centres of two circles is

called their central line.

Theorem. If the ends of parallel radii of two circles he

joined by straight lines, these lines will all pass through a

common point on the central line.

Proof. Let CP and C'P' be any two parallel radii, and

S the point in which the line PP' intersects the line CC'
joining the centres. The similar triangles SPC, SP'C give

the proportion'

SC : SC = CP : CP'. (a)

Putting, for brevity, r = the radius CP, and r' = the radius

C'P'. this proportion gives, by division,

SC - SC' : SC' = CP - C'P' : CP' = r - r’ : r',

or CC : SC' = r - r' : r'.

Hence SC' = —^—fCC:
r — r

that is, the distance SC is equal to the line CC’ multiplied

by a factor which is independent of the direction of the radii

CP, C’P-, therefore the point S is the same for all pairs of

parallel radii. Q. E. D.

Case of oppositely directed radii. If the radii CP, C’P’

be drawn in opposite directions, it may be shown in a similar
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way that the line PP' intersects the central line CC' in a

point S’ determined by the proportion

CS' : C'S’ = CP : CP’ = r : r’, (b)

whence S' is a fixed point in this case also.

Def. The two points through which pass all lines joining

the ends of parallel radii of two circles are called the cen-

tres of similitude of the two circles.

The direct centre of similitude is that determined

by similarly directed radii.

The inverse centre of similitude is that determined

by oppositely directed radii.

Corollaries. The following corollaries should, so far as

necessary, be demonstrated by the student.

I. The direct centre of similitude is always without the

central line of the tioo circles, and the inverse centre is always

within this line, hoioever the two circles may be situated.

II. If the two circles are entirely external to each other, the

centres of similitude are the points of meeting of the pairs of

common tangents to the two circles.

III. Comparing the proportions (a) and
(
b ), we see that the

point S divides the line CC’ externally into segments having

the ratio r : r', while S' divides it internally into segments

having this same ratio.

This is the definition of a harmonic division. Hence

The two centres of similitude divide harmonically the line

joining the centres of the tioo circles.

85. The following are fundamental theorems relating to

centres of similitude:

Theorem I. Every line similarly dividing two parallel

radii of two circles passes through their centre of similitude.
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Proof. Let A and A' be the points in which the line di-

vides the radii;

S', the point in which this line cuts the central line;

S, the centre of similitude;

r, r'

,

the radii of the circles.

We then have, by the property of the centre of similitude,

C'S : CC' = CP' : CP - C'P' = r' : r - r'
.

(a)

The similar triangles CAS' and CA'S' give

C'S' : OS' = C'A' : CA;

whence, by division,

C'S' : CC' = C'A' : CA - C'A'. (6)

By hypothesis, the radii are similarly divided at A and A':

C'A' : CA = r' : r;

whence, by division,

C'A' : CA - C’A' = r:r- r'.

Comparing with (a) and
(
b ),

C'S' : CC' = C'S : CC;

whence C'S' = C'S and the points $and S' coincide. Q.E.D.

Remark 1. If the radii are oppositely directed, the

centre of similitude will be the inverse one. The demonstra-

tion is the same in principle.

Remark 2. The demonstration may be shortened by

employing the theorem of geometry that there is only one
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point, internal or external, in which a line can be divided in

a given ratio. (See Elementary Geometry.) By the funda-

mental property of the centre of similitude, it divides the

central line into segments proportional to the radii of the

circles. It may be shown that the point S' divides the central

line into segments proportional to CA and C’A’

.

From this

the student may frame the demonstration as an exercise.

Theorem II. Conversely, If any line pass through a

centre of similitude, and parallels he drawnfrom the centres

of the circles to this line, the lengths of these parallels will he

proportional to the radii of the circles.

The demonstration is so easy that it may be supplied by

the student.

86 . The Four Axes of Similitude of Three Circles. If

there be three circles, they form three pairs, each with its

direct and inverse centre of similitude. There will there-

fore be six such centres in all, three direct ones and three in-

verse ones. The following propositions relate to this case:

Theorem III. The three direct centres of similitude lie

in a straight line.

Proof. Let i\, and be the radii of the three circles.

Let SJf S„ and S
3
be the direct centres of similitude of the

pairs of circles (2, 3), (3, 1), (1, 2) respectively.

Let a line AB be passed through S
1
and S„.

From the centres of the three circles draw three parallel

lines, i?,, B„ and i?
3
to the line AB. Then,

Because AB is a line passing through the centre of simili-

tude Slf
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R,:R, = r
9
:r

%
. (Th. II.)

Because AB is a line passing through S
t ,

Ri : R* = r
.

: r
t
.

Taking the quotients of these ratios, we have

R
1

- R*= r,: r
2 ;

hence the line AB divides the radii r
t
and r

2
similarly.

Therefore this line passes through the centre of similitude

$
3
of the circles (1, 2). (Th. I.) Q. E. D.

Theorem IV. Each direct centre of similitude lies in the

same line with the two inverse centres of similitude which are

not paired with it.

The demonstration of this theorem is so nearly like that

of the last one that it may be supplied by the student.

Def. A straight line which contains three centres of simili-

tude of a system of three circles is called an axis of simili-

tude of the system.

Corollary. For each system of three circles there arc four

axes of similitude, of which one contains the three direct cen-

tres of similitude, and the others each contain one direct and

two inverse centres.

EXERCISES.

1. Show that if two of the three circles be equal, two of

the axes of similitude will be parallel, and vice versa.

2. If all three circles are equal, describe the axes of simili-

tude.
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The Radical Axis.

87. Theorem. If any perpendicular be drawn to the

central line of two circles, the difference of the squares of the

tangents from any one point of this perpendicular will be the

same as from every other point of it.

Proof. Let PN be any per-

pendicular to the central line

of the circles C and C'

,

and

P any point on this perpen-

dicular.

Let R and R' represent the

distances of P from C and C'

.

Because the tangents PT
and PT’ meet the radii drawn

to the points T and T of con-

tact at right angles, we have

PT = R2 - r
3

;

PT’ 2 = R

’

2 - r'
2
.

Hence, for the difference of the squares of the tangents,

PT 2 - PT' 2 = R2 - R’2 - (r - r’
2

). (1)

From the right triangles PNC and PNC, we find, in the

same wav,

R 2 - PN = NC 2 - NC' 2

;

whence, from (1),

PT - PT’ 2 = NC 2 - NC 2 - (r
2 - r'

2
). (2)

The second member of this equation has the same value at

whatever point on the perpendicular P may be situated,

which proves the theorem.

Corollary. If we choose the point N so as to fulfil the

condition

NC 2 - NC’ 2 = r
2 - r'

2

, (3)

we shall have

PT 2 — PT' 2

,
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and tlie tangents will be equal from every point of the per-

pendicular, which will then, by definition, be the radical axis.

88. Case when the circles intersect. In tbis case the

tangents drawn from either point of intersection are botli

zero and therefore equal. Hence this point is on the radical

axis, and this axis is then the common chord (or secant) of

the two circles. Hence another definition:

The radical axis of two circles is their common chord,

produced indefinitely in both directions.

EXERCISE.

In the preceding construction the circles have been drawn

completely outside of each other. Let the student extend

the general proof (1) to the case when the circles intersect,

showing that the two tangents from every point of the com-

mon secant are equal, and (2) to the case when one circle is

wholly within the other, showing that the radical axis is then

wholly without the outer circle.

89. The Radical Centre of

Three Circles. If we have three

circles, each of the three pairs

will have its radical axis. We
now have the theorem:

The three radical axes ofthree

circles intersect in a point.

Proof. LetH, B and C be the

three circles, and let 0 be the

point in which the radical axis of A aud B intersects

radical axis of B and C.

Because 0 is on the radical axis of A and B,

Tangent 0 to A — tangent 0 to B.

Because 0 is on the radical axis of B and C

Tangent 0 to B = tangent 0 to C.

Hence Tangent 0 to A = tangent 0 to C;

whence 0 lies on the radical axis of A and C, and all three

axes pass through 0.
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Def. The point in which the three radical axes intersect is

called the radical centre of the three circles.

Cor. The radical centre of three circles is a certain point

from which the tangents to the three circles are all equal.

90= System of Circles having a Common Radical Axis.

The theory of a family of circles, developed analytically in the

preceding section, will now be explained synthetically.

Problem. Let its have a circle A and a straight line N:

it is required to find a second circle X, such that N shall be

the radical axis of the circles A and X.

Solution. From the centre A draw an indefinite line AX
perpendicular to the line N.

Take any point P on the radical axis N, and from it draw

a tangent PT to the given circle.

From the same point, P, draw another line, PT'

,

in any

direction whatever; make PT' = PT, and from T' draw T'X
perpendicular to PT' and meeting the central line in X.
The circle round the centre X with the radius XT' will be

that required.

For PT'

,

being perpendicular to the radius, is tangent

to the circle X
;
and because PT — PT'

,
the line through

P perpendicular to the central line is the radical axis.

Hence the given line iV"is the radical axis of the two circles;

whence the circle X fulfils the condition of the problem.

Since the line PT' may be drawn in any direction what-

ever, we may find an indefinite number of circles which fulfil

the conditions of the problem.
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The construction of these circles is shown in the figure.

Since the tangents from P are all equal, it follows that the

line PN is the radical axis of any two circles of a family

passing through the same two points, real or imaginary.

91 . The following propositions lead to the solution of

the noted problem of drawing a circle tangent to three given

circles.

Def. When two circles each touch a third, the line

through the points of tangency is called the chord of con-

tact.

When two circles touch each other, either one must be

wholly within the other, or each must be wholly without the

other. Hence contacts are said to be of two kinds, internal

and external.

Theorem I. First, If a circle is tangent to a pair of

other circles, the chord of contact passes through a centre of

similitude of the pair.

Secondly, This centre of similitude is the direct one when

P

Tangent Circles.
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the contacts are of the same kind, and the inverse one when

they are of opposite kinds.

Proof. The points of con-

tact are readily shown to be cen-

tres of similitude of the respective

pairs of tangent circles.

By § 86, any two centres of

similitude of different pairs lie

on a straight line with one of the

centres of similitude of the third pair.

Hence the points of tangency are in the same line with a

centre of similitude. Q. E. D.

Remark 1 . An independent proof of the theorem is ob-

tained by drawing the radii from each centre of the pair of

circles to the points in which the joining line intersects the

circumferences, and showing that the radii, taken two and

two, are parallel.

Remark 2. The second part of the theorem is left as an

exercise for the student.

92. Homologous Points. If a common secant to two

circles be drawn through either of their centres of similitude,

it will intersect each circle in two points. By combining

either of these points on one circle with either of the points

on the other circle we may form four pairs of points, as

(P ,
P'), ( Q , Q'), (Q, Pf

), and (P, Q'). The pairs at the

termini of parallel radii, namely, (P, P') and
( Q, Q'), arc

called homologous points; those at the termini of 11011 -

parallel radii, as
( Q ,

P') and (P, Q'), are called anti-ho-

mologous.
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93. Theorem II. If two secants be drawn through a

centre of similitude, then—
I. The distances of any two homologous points on one secant

from the centre of similitude will be proportional to the dis-

tances of the corresponding points on the other secant.

II. The products of the distances of two anti-homologous

points will be the same on the two secants.

Hypothesis. Two secants, SQ

'

and ST'

,

from tlie centre

of similitude S, cut the circles in the points P, Q, P' and

Q'

,

and R, T, R' and T' respectively.

Conclusions

:

I. SP : SP’ = SR : SRf

;

SQ : SQ' = ST : ST'.

II. SP . SQ' = SR . ST' = SQ . SP' = ST . SR'.

Proof. I. Draw the central line and the radii to the

points of intersection. Because of the parallelism of the radii

OP and OP’

,

etc., we have

Triangle SOP similar to triangle SO'P';

Triangle SOQ similar to triangle SO' Q
Triangle SOR similar to triangle SO'

R

Triangle SOT similar to triangle SO' T'.

From the similarity of these triangles, we have

SO : SO' = SP : SP' = SQ : SQ'
= SR : SR' = ST : ST'. Q. E. D.

II. The second and last of these proportions give

SP . SQ' = SP' . SQ-,

)

SR . ST' = SR' .ST. f
K *
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By a fundamental property of the circle, shown in elemen-

tary geometry,

SP . SQ = SR . ST:

SP' . SQ' = SR' . ST'.

Multiplying these equations, we have

SP . SQ' X SP' . SQ = SR . ST' x SR' . ST.

By substitution from (a), this equation becomes

(SP . SQ')
2 = (SR . ST7;

whence, extracting the square root and combining with (a),

we have conclusion II. Q. E. D.

94 . Def. When a circle touches two others, we call it a

direct tangency when the two tangencies are of the same kind,

and an inverse tangency when they are of opposite kinds.

Several pairs of tangencies, all direct or all inverse, may
be called of the same nature. If one pair is direct and another

inverse, they are of opposite natures.

Remark. It will be noted that the chords of contact

pass through the same centre of similitude in the case of two

pairs of tangencies of the same nature, but not otherwise.

Hence, in what follows, whenever we have several circles

touching two others, we shall suppose the tangencies to be of

the same nature.

95 . Theorem III. If each circle of one pair is a tan-

gent of the same nature to the tivo circles of another pair, then

the radical axis of each pair passes through a centre of simili-

tude of the other pair.

Proof. Let the circles P and P' touch the circles 0 and

O' at the points M, N, M' and N'

.

The point of meeting, S, of the lines NM and N'M' will

be a centre of similitude of 0 and O’ (§91). Hence we have

SM . SN = SM' . SN'. (§ 93)

But SM. SN is equal to the square of the tangent from S
to the circle P (El. Geom.), and SM' . SN' is the square of the
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tangent from S to the circle P'

.

The taugents being equal.

S is on the radical axis of P and P'. Q. E. D.

It is shown in the same way that a centre of similitude of

P and P' is on the radical axis of 0 and O'. Q. E. D.

Cor. 1. If each of three circles is a tangent of the same

nature to two other circles, then, by this theorem, one of the

centres of similitude of each two out of the three circles must

lie on the radical axis of the two circles which they touch.

Hence,

When each of two circles touches each of three other circles,

their radical axis willform one of the axes of similitude of the

three circles.

Cor. 2. The same thing being supposed, each radical

axis of the three circles will, by the theorem, pass through a

centre of similitude of the pair which they touch. This centre

of similitude will therefore be their point of intersection.

Hence,

When each of two circles touches each of three other circles,

the radical centre of the three circles will he a centre of simili-

tude of the two circles.

96 . Problem. To draw a circle tangent to three given

circles.

Construction. Let L, M and JVbe the three circles.

Find their radical centre, C, and an axis of similitude, S.
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Find the poles p, q, r, of S with respect to the three

circles.

Join Cp, Cq and Cr, and let l, m, n and V
,
in'

, n' be the

points in which these lines intersect the three circles.

The circle through the three points l, in, n will be one of

the tangent circles required, and the circle through the three

points V ,
m’

, n’ will be the other.

Proof. The axis of similitude S is the radical axis of

some pair of circles touching the three given circles (§ 95,

Cor. 1), and C is one of their centres of similitude (§95,

Cor. 2).

Let us call X and Y the two circles of this pair, which are

not represented in the figure.*

Let m, l, n and in', n'
,
V

,

instead of being defined by the

above construction, be defined as the points of tangency of

this pair of circles whose centre of similitude is at C. Then,

by (§ 91), the lines mm', nn' and IV will all pass through C.

Through in' draw the common tangent to the circles M
and X, and through m draw the common tangent to M and

Y, and let P be the point of meeting of these tangents.

* The tangent circles and tangents are omitted from the printed

figure to avoid confusing it. The student can supply them so far as

necessary.
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Then, because the tangents Pm and Pm

'

touch the same

circle M at m and m'

,

they are equal.

Hence these lines are also equal tangents to the circles

X and Y; hence P lies on the radical axis of Xand Y, that

is, on the line S.

Because the line mm' is the chord of contact of tangents

from P, it is the polar of P; hence the pole of S, a line through

X, lies on the polar mm'

.

That is, the line Cq, found by the

construction, passes through the points of contact m and in'

.

In the same way it is shown that the points of contact/, /'

and n, n' are upon the lines joining C and the poles p and r.

Q. E. D.



CHAPTER V.

THE PARABOLA,

Equation of the Parabola.

97. Def. A parabola is the locus of a point which

moves in a plane in such a way that its distances from a fixed

point and from a fixed straight line in that plane are equal.

The fixed point is called the focus, and the fixed straight

line the directrix of the parabola.

The curve is traced mechauically as follows:

Let F be the fixed point or focus, and RR' the fixed straight line or

directrix. Along the latter place the edge of a

ruler, and to the focus attach one end of a

thread whose length is equal to that of a second

ruler, DQ, right-angled at D. Then having at-

tached the other end of the thread to the ruler

at Q, stretch the thread tightly against the edge

of the ruler DQ with the point of a pencil,

while the ruler is moved on its edge DR along

the directrix RR'
: the path of P will be a

parabola. For in every position we shall

have
PF= PD

,

which agrees with the definition.

98. Problem. To find the equation of the parabola.

Let Pbe the focus, and YY’ the directrix. Through F
draw OX perpendicular to YY’. Take

0 as the origin, OF as the axis of X,

and the directrix OP as the axis of Y.

Put OF = p, and let P be any point on

the curve. Join PF, and drawPJV per-

pendicular to the directrix YY'

.

Then,

by the definition of the curve, we have

PF= PX.
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Let OM, PM, the co-ordinates of P, be x and y. Then we
have

PM '

: + FM 2 = PF 2

= PN 2

= OM 2

;

that is, (a; — y>)
2 = x 1

,

or ?/
2 = 2p (x - ip),

which is the equation of the parabola

with the assumed origin and axes. y'

When y = 0 we have x = ip; that is, OA — AF, or the

curve bisects the perpendicular distance between the focus

and the directrix; and since there is no limit to the possible

distance of a point from both focus and directrix, the curve

extends out to infinity. From (1) we see that for every posi-

tive value of x greater than p there are two values of y, equal

in magnitude but of opposite signs. Hence the curve is

symmetrical with respect to the axis of X. If x be negative

or less than ip, the values of y are imaginary; therefore no

part of the curve lies to the left of A.

Def. The point A where the curve intersects the perpen-

dicular from the focus on the directrix is called the vertex
and AX the axis of the parabola.

The equation (1) will assume a simpler and more useful

form by transferring the origin to the vertex, which is done

by simply writing x for x — ip; hence (1) becomes

r = (2)

which is the form of the equation of a parabola which we

shall use hereafter.

In equation (2), let x — ip.

Then y~ = p
1

,

or y = ± p.

Hence FL — FL' = 2AF,
and LL' = 2p = 4AF.

Def. The double ordinate through

the focus is called the principal para-

meter or latus rectum.
Cor. The length of the semi-parameter is p.
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99 . Focal Distance of any Point on the Parabola.

Let r denote the focal distance FP of any point P (§ 98).

Then, by the definition of the curve, we have

or

FP = NP
= OA + AM,

r— ip + x, (3)

which, being of the first degree, is sometimes called the lin-

ear equation of the parabola,

100 . Polar Equation of the Parabola.

Problem. To find the polar equation of the parabola,

the focus being the pole.

Let FP — r, XFP = 0. Then, from the figure, we have

or

whence r

FP = PN
- OF+ FM
= 2AF A- FM,

r — p -f r cos 0\

P _

N

P
1 — cos 6 O'

(
4
)

ism —

If we count the angle 0 from the

vertex in the direction AP, we shall

have AFP — 0, and therefore (4) be-

comes p _ p

/ As

My i

a\ f M

1 + cos 0
cos ~x

(5)

which is the form of the polar equation generally used.

Cor. The polar equation may also be easily deduced from

the linear equation of the curve. Thus, when the vertex is

the origin, the linear equation is

r ~ ip + *;

and transferring the origin to the focus by writing x-fip for

x, it becomes
r = p + x

= p — r cos 0;

P
1 + cos O’

whence

as before.
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Diameters of a Parabola.

101. Def The diameter of a parabola is the locus of

the middle points of any system of parallel chords.

Problem. To find the equation of any diameter.

Let x, y be the co-ordinates of P, the middle point of any

chord CC'; x', y’ the co-ordinates of C'; r = PC'

,

half the

length of the chord; 6 the inclination'of

the chord to the axis of the curve. Di'aw

the ordinates PM, C'M' and PD parallel

to AM’

.

Then we have

AM’ = AM + PD,
or x' — x + r cos d,

and CM’ = PM+ C’D,

or y’ = y -}- r sin 0;

and since the point (x’, y’) is on the

curve, we have

y
n —

2fix'. (c)

Substituting the values of x' and y' as given by (a) and

(b) in (c), we have

(y -j- r sin 6)” = 2p(x + r cos 6),

or r
2
sin

2
0 + 2(y sin 6 — p cos 9)r y~ — 2px = 0,

from which to determine the two values of r. But since the

point
(
x

, y) is the middle of the chord, the values of r are

equal in magnitude but of opposite signs; therefore the co-

efficient of r must vanish, which gives

y sin 6 — p cos 9 = 0,

or y = p cot 9

= P
m’

where m = tan 9, the slope of the chord to the axis of X.

Hence the equation of any diameter is

y — p cot 9. (6)

Since the second member of (6) is constant for any system

of parallel chords, every diameter of a parabola is a straight

{a)

(*)
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line parallel to the axis ofX (§ 40, III.). Because m may have

any value whatever, (6) can be made to represent any straight

line parallel to the axis of the curve. Hence every line paral-

lel to the axis bisects a system ofparallel chords.

Cor. To draw a diameter of the curve, bisect any two

parallel chords, join the points of bisection and produce the

line to meet the curve: it will be a diameter.

Tangents and Normals.

102. Problem. To find the equation of a tangent to a

parabola.

Let
(
x', y') and (x", y”) be the co-ordinates of any two

points on the curve. Then the equation of the secant through

these points is

y - y' = y
x„
~%-(s - «')• 0)

But since
(
x'

,
y') and {%"

.
y") are on the curve, we have

y
n — 2px' (b)

and y
,n — 2px"

.

(c)

From (5) and (e) we get

whence

y
" 2 - y

n = 2p(x" - x');

y" ~ y’ _
x" — x' y

"

+ y
r

which substituted in (a) gives, for the equation of the secant,

y - y' =
y

' (
x - x')-

Now w’hen the point [x"
,
y") coincides with the point

{x'
, y'), the secant will become a tangent, and then x" = %'

and y" — ?/'; hence the equation of the tangent at the point

(«', y') is

y - y' = P
-Ax ~ ( 7 )

or y'y — px — px

'

+ y
n

- px — px' + 2px'

= p{x + x').
(8 )
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Cor. Let (*', y') be the co-ordinates of any point on a

parabola; the equation of the tangent at that point is

y = p(* + *')> («)

and the equation of the diameter passing through the point

(*'» 2/') is

!/' = -• (ft)J m v '

Eliminating y' from (a) and (&), we have

y = -f- a;')

for the equation of the tangent. But m is the slope of the

parallel chords to the axis; hence the tangent at the extremity

of any diameter of a parabola is parallel to the chords which

are bisected by that diameter.

The equation of the tangent may also be derived in-

dependently of the point of contact in the following manner.

103 . Problem. To find the condition that the line

y = mx -)- h

may be tangent to a given parabola.

The equation of the curve is

y- = 2fix-,

whence, by eliminating y between these equations, we get

(mx + hf = 2fix,

or mV + (2mh — 2p)x + h? = 0,

which determines the abscissae x of the two points in which

the line intersects the curve. But since the line is to be a

tangent, the two values of the abscissae will be equal. The

condition that this equation may have equal roots* is

(2mh — 2pf = 4m2
h*;

whence h =
2m

*The condition that the roots of the quadratic equation

ax'1 + bx -|- c = 0

b2 — 4ac = 0.shall be equal is (Chap. I.)
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the required condition. Substituting this value of h in the

equation of the line, we have

y - mx -f-
fP_
2m’ (

9
)

which is the equation of the tangent to a parabola in terms of

the slope and semi-parameter.

Conversely, every line whose equation is of this form is a

tangent to a parabola.

104. The Subtangent. Def. The subtangent is the

projection of the tangent upon the axis of the jrarabola.

To find where the tangent meets the axis of X, make

y = 0, in (8), and we get

0 = p(x + x'),

or x = — x f

;

that is, AT = AM;

or, the subtangent is bisected at the ^
vertex.

This property enables us to draw

a tangent at any point on a para-

bola. Thus, let P be any point on

the curve: draw the ordinate PM, and produce MA to T,

making A

T

equal to AM; join TP. Then TP is the tangent

required.

105. The Normal. Def. The normal to a curve at any

point is the perpendicular to the tangent at that point.

Problem. To find the equation of the normal to a para-

bola.

The equation of the tangent at any point {x'
,
y') has been

shown to be

y = + x')‘, («)

and let y — y' = m(x — x'
) (

b
)

be the equation of a line through (%'
,
y’) and normal to the

curve at that point.

Now in order that the lines represented by (a) and
(
b )
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may be perpendicular to each other, we must have the con-

dition

*? + l = 0,
y

or m = —

therefore (b) becomes

l.

y-y _ y- 2- (Z - X'),

p
'

(§47)

(10 )

which is the equation of the normal at the point (x
r

, y
f

).

106. The Subnormal. Def. The subnormal is the

projection of the normal upon the axis of the parabola.

To find where the normal intersects the axis of X, make

y = 0 in (10). Then we have

p = x — x'

= AX - AM
= MX;

that is, the subnormal MX is constant and equal to half the

parameter or latus rectum.

107. Theorem. A tangent to a parabola is equally in-

clined to the axis of the curve and the focal line from the point

of tangency.

Proof. From (§ 104) we have

FT = AT + AF
= AMX AF
= FP;

therefore the angle PTF is equal to the angle FPT.
Cor. Let PD be drawn parallel to the axis AX; then PD

is a diameter of the curve (§101), and the angle HPD is equal

to the angle TPF. Since the normal PX is perpendicular to

the tangent, the angle DPX is equal to the angle XPF.

Remark. The properties just proved find an application in the use

of parabolic reflectors intended to bring rays of light to a focus, as in

the reflecting telescope. Since the curve and the tangent have the same

direction at the point of tangency, rays of light are reflected by the
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curve as they would be by the tangent at that point; and because the

angle of incidence is equal to the angle of reflection, it follows that if

rays of light parallel to the axis of the curve fall upon a parabolic reflec-

tor, they will all be reflected to the focus. Conversely, if a luminous

body be placed in the focus of a parabolic reflector, all the rays proceed-

ing therefrom will be parallel after reflection.

108. Problem. To find the locus of the foot of the per-

pendicular from the focus upon a variable tangent.

Let x'
,
y’ be the co-ordinates of any point P on the curve.

The equation of the tangent at P is

y =
P
~AX + *')• (a)

The equation of the line through the focus whose co-ordi-

nates are {^p, 0), and perpendicular to (a), is

y
_ r

p
p— \X —V . (*)

And since the point (x', y
f

)
is on the curve

y
n = %px’, (c)

we have now to eliminate x' and y' from (a), (b) and (c).

From (c),

which substituted in (a) gives

From (b) we have

which substituted in (d) gives, after obvious reductions,

\y
2

-F 0 ~ ipY\x = 0.

Therefore we must have either

y* + (x — ipf= 0 or x = 0 .

The former gives y
— 0 and x = \p, the focus, which

however is not the locus of the intersection of («) and (b);
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for although these values of x and y satisfy (b), they do not

satisfy (a). We conclude, therefore, that the latter, namely,

x = 0, (11)

is the equation of the required locus, which is the tangent at

the origin or the axis of Y.

109. Problem. To find the locus of the point of inter-

section of two tangents to a parabola which are perpendicular

to each other.

Let the equation of one of the tangents be

y = mx + (§ 103 ) («)

Then the equation of the other, perpendicular to (a), is

or my — — x — \pni\ (5)

Multiplying (a) by m and subtracting (b) gives

0 = 2(1 + + (1 + irt)p,

or x — — ip, (12)

the equation of the required locus, which is the directrix.

110. Problem. To find the length of the perpendicular

from the focus upon the tangent at any point.

Let P denote the length of the perpendicular. The equa-

tion of the tangent at the point
(
x' ,

y') is

y’y — p(x + x') — 0 . (§ 102)

The perpendicular P from the focus, whose co-ordinates

are (ip, 0), is (§ 41)

p _ V(V +&r') _ jp(2a^ + p)

2 Vyri + 2 V2px' -f p
2

= i Vp(p + 2x')

= i (§ 99) (13)

where r is the focal distance of the point of tangency.
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111. Problem. To find the co-ordinates of the point of

contact of a tangent drawn from a given point to a parabola.

Let
(
x'

,
y

') be the co-ordinates of the required point of

contact, and (h, k) the co-ordinates of the given fixed point.

The equation of the tangent at (pc’
,
y') is

y'y =.?(* + *');

and since the tangent passes through the point (h, k), we also

have
ky' = p{x’ + h). (a)

Because the point (x
f

,
y’) is on the curve, we have

y = 2ps'. (6)

Solving («) and (b) for x’ and y'

,

we have

x' = k" — 2ph ± k Vk2 — 2ph;

y’ — k ± Yk2 — 2ph.

These equations show that from any fixed point tivo tan-

gents can be drawn to a parabola, and that the points of con-

tact {x
r

, ?/) will be real, coincident or imaginary according

as k 2 — 2pli >0, =0, or < 0; that is, according as the

point (h, k) is without, on or within the curve.

112. Problem. To find the equation of the parabola

referred to any diameter and the tangent at its vertex, as axes.

Let A

'

be any point on a

parabola; take this point as

origin and draw through it

the diameter A'X' for the

new axis of X, and the tangent

TA'Y' for the new axis of Y.

Let Y'A '
X'— A 'TX— 6,

and h and k the co-ordinates

of A' referred to the original

axes AX, A Y.

Let (x, y )
be the co-ordi-

nates of any point P referred to the original axes, and (x'
,
y')

the co-ordinates of the same point referred to the neio axes;

draw the ordinates PM. PM', and draw M'N and A'H paral-
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lei to A Y, and let Q denote the intersection of the diameter

A'X' and the ordinate PAL Then, from the figure, we have

x = AM = AH + A'M' + M’Q
= h + x' + PM' cos PM'Q
= h + a:' + y’ cos 6, (a)

and y = PM = A'H + PQ
= k + PM' sin PM'Q
= k + y' sin 6. (fr)

But since the point
(
x

, y) is on the curve,

y
2 = 2PX- (c)

Substituting the values of x and y as given by (a) and (b)

in (c), we have

(k y’ sin d)
2 = 2jo(h + x' + ?/' cos 0);

whence

y
n

sin
3 0 + 2y'(& sin 0 — y? cos 0)-f- k2 — 2ph = 2px\

But, by (6) of § 101,

lc — p cot 6;

and since the point (h, k) is on the curve

k2 — 2ph,
therefore we have

or

y' 2
sin

3 6 = 2px',

„ 2p ,

y = • fcM ,J
sin 0 (14)

which is the equation of the curve referred to the new axes.

Cor. This equation may also he expressed in terms of

A'F, the focal distance of the point A'. Thus, by (3) of §99,

A'F =%p + h,

and k2 — 2ph, or h = —

.

2p

rF=^ + (P
= i(p -\~P cot

3
6)

(since k =p cot 6)

= ip{1 + cot
3
6)

_ P
2 sin

3
O'

Therefore
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Therefore, denoting A'

F

by fp'

,

equation (14) may be written

y'2 = 2jdV,

or, suppressing the accents on the variables,

?/
2 = 2y/a;. (15)

Cor. From the identity of form in the equations

y
2 = 2px and y

2 = 2p'x,

we may at once infer that the equation of the tangent referred

to any diameter is

y'y — p’(x -|- x'). (16)

If in this equation we put y = 0, we get

x — — x';

or, the intercept on the axis of X is equal to the abscissa of

the point of contact, and therefore the subtangent to any

diameter of a parabola is bisected by the vertex.

Poles and Polars.

113. Def. A chord of contact is the chord joining

the points of contact of two tangents.

Problem. To find the equation of the chord of contact

of two tangents from an external point.

Let (aq, yf be the co-ordinates of the external point,

(xf

,
y') the co-ordinates of the point where one of the tangents

through (aq, y t )
meets the curve, and (x"

,
y") the co-ordi-

nates of the point where the other tangent meets the curve.

The equation of the tangent at
(
x', y') is

y'y = p{x' + x); (a)

and since this passes through (aq, «/,), we have

ypf = p(x' + aq), (b)

and, for the same reason,

ypy" = p(x" + xf. (c)

Hence the equation of the chord of contact is

y*y = p(x + xX (17)
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for this is the equation of a straight line, and is satisfied by

x — x’
, y — y' and x - x"

, y — y",

as we see from (b) and (c). Therefore (17) is the equation of

the chord of contact of the tangents through the point (x,, yf).

114. Locus of the Point of Intersection of Two Tangents

Let (x3 , yf) be the co-ordinates of any fixed point through

which a chord of contact of two intersecting tangents is drawn,

and (aq, yf) the co-ordinates of the point of intersection of the

tangents. Then the equation of the chord of contact is, by

the last section,

y,y = p(*i + *);

but since (aq, yf) is a point on the chord, we must also have

the condition

yjj, = Ml + l)>

which the co-ordinates of the point of intersection must al-

ways satisfy, however the chord of contact may change its

position as it revolves about the fixed point (x
2 , yf). Therefore

the equation of the required locus is

yiy
~ + *,)> (is)

which is that of a straight line. Hence we have the theorem:

If through any fixed point we draw chords to a parabola;

and if through the ends of each chord we draw' a pair of

tangents,

then the point of meeting of every pair of tangents will lie

on a certain straight line.

Def. Such, straight line is called the polar of the point

through which the chords pass.

It follows from this theorem that if (x„, yf) be any fixed

point, the equation of th e polar of that point is

y,y = P(x + *,) (
19

)

when referred to the axis, or

yiy = p\x + l) (
2°)

if referred to a diameter and a tangent at its vertex as axes.
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Direction of the Polar.

Making y^ — 0 in (20), we have

x = -
(21)

which is the equation of a line parallel to the axis of Y. Hence

The polar ofany point is parallel to the tangent at the end of

the diameter passing through that point, and is situated at a

distance from the vertex of the diameter equal, but in an oppo-

site direction, to the distance of the point.

11 5 . Polar of the Focus.

Put (ip, 0) for x
2 , y2

in the equation of the polar, and we
get

x — - ip, (22)

which is the equation of the directrix. Therefore

The polar of the focus of a parabola is the directrix.

EXERCISES

1. Find the points of intersection of the line y = 3x — 6

with the parabola y" — 9x. Ans. (4, 6) and (1,— 3).

2. Find the equation of a line through the focus of the

parabola if - 12a: and making an angle of 30° with the axis

of x. . x
AnS '

3. Find the equation of the line through the vertex and

the extremity of the latus rectum. Ans. y = ± 2x.

4. Find the equation of the circle which passes through

the vertex of a parabola and the extremities of the latus rec-

tum. Ans. x" -f- y
2 = \px.

5. Find the equation of the tangent at the extremity of

the latus rectum, and the angle between this tangent and

the line drawn to the vertex from the same extremity of the

latus rectum. Ans. y — x -f Ip; tan(-1)^.

6. Determine the equations of the normals at the extrem-

ities of the latus rectum, the co-ordinates of the points in

which these normals again intersect the curve, and the length

of the chords formed by the normals.

Ans. y ± x = (~, q= opj
;

4p V‘2.
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7.

Show that if the focus of a parabola is the origin, and

the axis of the curve the axis of X, the equation of the para-

bola is ?/
2 = p(2x -f- p), and the equation of the tangent at

the point (x'
,
y') is

y'y = p{x + x' +p).

8.

With the same origin and axes as in the last example

show that the equations of the tangents and normals at the

extremity of the latus rectum are

x f y + v = 0
;

x ± y — p = 0 .

9. Prove that the circle described on any focal chord as

diameter will touch the directrix.

10. A tangent is drawn to a parabola at the point (a/, y').

Find the length of the perpendicular drawn from the foot of

the directrix on this tangent.

A ns.
y
n ~f

.

2*V2 +Pa

.

11. Pairs of tangents are drawn to a parabola at points

whose abscissas are in a constant ratio. Show that the locus

of the intersection of the tangents is a parabola.

12. Find the polar equation of the parabola when the

vertex is the pole, and the axis of the curve the initial line.

A?is. r = 2p cot 9 cosec 9.

13.

If r and r' be the lengths of two radii vectores drawn

at right angles to each other from the vertex of a parabola,

show that

(rr'Y = 4p
2
(r
¥ -}- r'

T
).

14. Find the equation of the parabola referred to the tan-

gents at the extremities of the latus rectum as axes.

Ans. (x — yY — 2 V2p(% + y) — 2p
2 = 0.

15. If tangents be drawn to a parabola at the extremities

of any focal chord, show that they will intersect at right

angles on the directrix, and that the line from their point of

intersection to the focus is perpendicular to the focal chord.
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16.

From an external point
(
x

y

') two tangents are drawn

to a parabola. Show that the length of the chord of contact is

and that the area of the triangle formed by the chord and tan-

gents is

(y
n — 2px'Y'

17.

If to, to' be the slopes to the axis of the parabola of

the two tangents in the last example, show that

i
> v'm + to — ~ and , Pmm

2x’

18. If (%’
,
y') and (x"

,
y") be any two points on a para-

bola, show that the tangent of the angle contained by the

tangents touching at these points is

p{y" - y')

f + y"y'

19. In what ratio does the focus of a parabola divide that

segment of the axis cut out by a tangent and normal drawn

at the same point of the parabola?

20. A triangle is formed by three tangents to a parabola.

Show that the circle which circumscribes this triangle passes

through the focus.

21. Show that the parameter of any diameter is equal to

four times the focal distance of its vertex, or equal to the focal

double ordinate of that diameter.

Note. Tlie parameter of any diameter is the focal chord bisected

by that diameter, called 2p' in § 112.

22. If TP and TQ are tangents to a parabola at the points

P and Q, then if F be the focus, show that

FP . FQ — FT".



130 PLANE ANALYTIC1 GEOMETRY.

23. Show that the area of the triangle in Prob. 20 is half

that of the triangle formed by joining the points of contact

of the three tangents.

24. Given the outline of a parabola, show how to find the

focus and the axis.

25. The base of a triangle is 2a, and the sum of the tan-

gents of the base-angles is to. Show that the locus of the ver-

tex is a parabola whose semi-parameter is

26. Prove that y = x tan 0 -(- p cosec 2d is a tangent to

a parabola whose latus rectum is p, the origin being at the

focus, and the axis of the curve the axis of X.

27. Tangents are drawn from any two points P, Q to a

parabola. Show that the co-ordinates of T, the intersection

of the tangents, are

1 cos (0, -f 0
2 ) 1 sin (d

l + 0J
4? sin 6

1
sin 0

2
’ A? sin 0, sin 0

2
’

where tan 0, and tan 0„ are the slopes of the tangents to the

axis of X.

28. If all the ordinates of a parabola are increased in the

same ratio, show that the new curve will be a parabola, and

express its parameter in terms of the ratio of increase.

29. At what point of a parabola is the normal double the

subtangent; and what angle does that normal form with the

axis of the parabola?

30. Find a point upon a parabola such that the rectangle

contained by the tangent and normal shall be twice the square

of the ordinate; and show the relation of such point to the

focus.

31. Find that point on a parabola for which the normal is

equal to the difference between the subtangent and the sub-

normal.

32. Having given the parabola y" = 6x, find the equation

of that chord which is bisected by the point (4, 3).

33. Find the equation of that chord of a parabola which

is drawn from the vertex and bisected by the diameter y — q.



CHAPTER VI.

THE ELLIPSE.

Equations and Fundamental Properties.

116. Def. An ellipse is the locus of a point the sum

of whose distances from two fixed points is constant.

The two fixed points are called foci of the ellipse. Thus,

if the point P move in such a way that PF -f- PF' is con-

stant, it will describe an ellipse.

The curve may be described me-

chanically as follows: Take any two

fixed points Fand F', and attach to

them the extremities of a thread whose »'

length is greater than the distance FF'

.

Place a pencil-point P against the

thread, and slide it so as to keep the

thread constantly stretched: the point

P will describe an ellipse, for in every

position we shall have PF -f- PF' = the constant length of the thread.

The line AA' drawn through the foci and terminated by

the curve is called the transverse or major axis, and BB'
bisecting AA' at right angles is called the conjugate or

'

minor axis. The two are called principal axes.

The semi-axes CA and CB are represented by the symbols

a and b respectively.

The point C midway between

the foci is called the centre.
From the manner in which the

curve is generated, we see that A

and

AF - A’F’

PF + PF’ = AA'

.

P

\ 1rr c M P 1

B'
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117 . Problem. To find the equation of the ellipse.

Solution. Let C, the intersection of AA' and BB'

,

be

the origin; CA the axis of X, and CB the axis of Y; put

CA — CA' — a, CF — CF' — c, and x, y the co-ordinates

of any point P on the locus. Then we shall have

PF = VPM 2 + MF 2 = Vif + (c - x)*;

PF' = VPM 2 + MF' 1 = Vy- + (c + x)\

Therefore, by definition,

+ (C — + ^y‘ + (c + x)
2 = 2a.

Clearing this equation of surds, it reduces to

(a
2 - c

2
)x

2 + aY = afiF - c
2
).

But, by definition,

a2 -c2 = BF"- - CF 2 = BC2
- F;

therefore we have, by substituting in the above,

Fx2 + a2

y
2 = a2F;

or, dividing by a
2
F, we have

(
1
)

which is the simplest form of the equation of the ellipse. It

is called the equation of the ellipse referred to its centre and
axes, because the centre is the origin and the axes are the

axes of co-ordinates.

Def. The distance CF = CF' = c between the centre

and either focus is the linear eccentricity of the ellipse.

£
The ratio — of the linear eccentricity to the semi-major

axis is called the eccentricity of the ellipse.

By the common notation,

c
e = —

a

V

a

2 — F
(
2

)

is the expression for the eccentricity in terms of the semi-

axes.
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Cor. If we transfer the origin to A', whose co-ordinates

are {—a, 0), the equation (1) becomes, by writing (

x

— a)

for x,

(3 - aY
,

?/* _ ,

a
2 V

or y
2 = ^ (2ax — x2

),

a form of the equation of the ellipse which is sometimes use-

ful.

EXERCISES.

1. Find the eccentricity and semi-axes of the ellipse

16a;
2

-f- 25y
1 = 400.

Remark. Reduce the second member to unity by dividing by 400,

and compare with (1).

2. What are the semi-axes and the equation of the ellipse

when the distance between the foci is 2 and the sum of the

distances from each point of the curve to the foci is 4?

3. Determine the eccentricity and semi-axes of the ellipses

having the following equations:

(a) x2

-f- 2y
i — 6; (b) 3a;

2 + 4t/
2 = 9; (

c

)

4a;
2 + 9

y

2 - 16;

(cl) mx1 + mf = p; (
e
)
|a;

2 + ^?y
2 = p (/) aa;

2 + hf = 1.

4. Using the preceding notation, prove the following pro-

positions:

I. The distance of either focus from the centre is ae.

II. The distance of either focus from the nearest end of

the major axis is «(1 — e ).

III. The distance of either focus from the farther end of

the major axis is a(l + e).

TV. The distance from either end of the major axis to

either end of the minor axis is a V2 — e".

V. If we define an angle cp by the equation

sin cp = e,

we shall have for the semi-minor axis

b = a cos cp.
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5. Find the points in which the circle x 2
-j- xf = 4 inter-

sects the ellipse x2 + 2y
2 = G.

6. Write the equation of that ellipse whose minor axis is

10 and the distance between whose foci is 12.

118. If we solve equation (1) rvith respect to y, we find

This equation shows that for every value of x there will

be two values of y, equal but with opposite signs. Hence the

cit,rve is symmetrical with respect to the major axis.

By solving with respect to x we show in like manner that

the curve is symmetrical with respect to the minor axis.

Def. A chord of an ellipse is any straight line terminated

by two points of the ellipse.

A diameter of an ellipse is any chord through its centre.

Cor. The major and minor axes are diameters.

Def. The parameter or latus rectum is a chord

through the focus and perpendicular to the major axis.

119. Theorem I. The parameter ofan ellipse is a third

proportional to the major and minor axes.

Proof. The semi-parameter is, by definition, the value of

the ordinate y when x = ae. From equation (1), we have

If we put p for the semi-parameter, we find, by substitu-

tion in this equation.

y' = £(<•’ - *“)•

or

Hence p = —

,

a
p = —

, or ap = V1

.

a

a : b = b : p.

Cor. The length of the semi-parameter FL is

p = n(l — e
2

). (3)
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1 20. Focal Radii, or Radii Vectores.

Def. The focal radii of an ellipse are the lines drawn

from any point on the curve to the foci.

Problem. To express the lengths

of the focal radii in terms of the ab-

scissa of the point from which they

are drawn.

Let r and r' be the focal radii of

the point P, whose co-ordinates are

(*» y)-

Because FC = CF' — ae,

we have r~ = FM~ + PM 2

= (* - aef + f
— (x — aef + j (

a2 — x2

)

= x2 — 2aex + a
2
e
2
-(- (1 — e‘)(a

2 — x2

)

— a
1 — 2aex + e

2x2
.

Therefore r = a — ex. (4)

In the same way we find, for the other focal radius,

r' — a + ex. (5)

These expressions are of remarkable simplicity, and, being

of one dimension in x, either of them is called the linear

equation of the ellipse.

We observe that their sum is 2a, as it should be.

Cor. Equations (4) and (5) show that if a point move on

the circumference of an ellipse in such a way that its abscissa

increases uniformly, one focal radius tvill increase and the

other ivill decrease uniformly.

In other words, if the abscissce of several points are in

arithmetical progression, their focal radii ivill also be in

arithmetica l progress ion

.

121. Polar Equation of the

Ellipse, the right-hand focus being

the pole.

Let r and 6 be the polar co-

ordinates of any point P on an

ellipse; that is, r = FP and
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6 = the angle AFP. Join PF'. Then, from the triangle

FPF’
,
we have

PF’ 2 — PF 2 + FFn - 2PF. FF' . cos PFF'.

Bnt FF’ — 2ae and cos PFF' — — cos AFP;

therefore PF’ — V

P

+ 4«V + 4uer cos 6,

and by the fundamental property of the ellipse wc have

PF + PF’ = A A’,

or r -\- V

P

-f- 4a2
e
2 + 4uer cos 6 = 2a;

whence we easily find

~ <?)

1 + e cos O' (6 )

which is the required equation.

The polar equation may also be easily obtained from the

linear equation of the ellipse; thus, from (4), we have

r = a — ex,

the origin being at the centre.

Transferring the origin to the right-hand focus, whose co-

ordinates are (ae, 0), it becomes

r = a(1 — e’) — ex,

which in polar co-ordinates becomes

whence

r — «(1 — e
2

)
— er cos 6;

= fl(l - e-)

1 + e cos 6’

as before.

If the left-hand focus be taken as the pole, the student

may easily show that the polar equation is

~ e')
,

1 — e cos 6

Cor. If 0 = 0, we have r =
— e

) 1 1 \ • 1~—: = utl — e), which
1 + e

v

is the value of AF.
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When 6 = 180°, we get r = a(l -f- e), which is the value

of A'F.

When 6 — 90°, r = a( 1 — e
2

), the semi -parameter.

These results agree with those of §§ 117, 119.

EXERCISES.

1. If the semi-minor axis of an ellipse is b, and the eccen-

tricity sin cp, express its semi-major axis and semi-parameter

in terms of b and cp. Ans. a = b sec cp;

p = b cos cp.

2. The distance from the focus to the nearer end of the

major axis is 2, and the semi-parameter is 3. Find the

major and minor axes and the eccentricity.

3. Express the ratio of the parameter to the distance be-

tween the focus and either end of the major axis.

4. The major axis is divided by the focus into two seg-

ments. Show that the rectangle contained by these segments

is equal to the rectangle contained by the semi-major axis and

the semi-parameter, and also equal to the square of the semi-

minor axis.

5. Write the equation of an ellipse in terms of its semi-

minor axis b, and its semi-parameter p.

Ans. p~%'
-f- Vy

1 — b\

6. Find the points in which the several straight lines

y = 2x, y = 2x + 1, y = 2x + 2,

intersect the ellipse x1

-f- 2y~ = 6, and the lengths of the three

chords which the ellipse cuts out from the lines.

7.

Find the equation of the ellipse when the right-hand

focus is the origin, the axes being the major axis and the

latus rectum.

Am. %+£ + *- = -,
a~ b ' a a

8.

The sum of the principal axes of an ellipse is 108, and

the linear eccentricity 36. Find the equation of the ellipse,

and the eccentricity.

a
x'

,

y" _ i . _ 12
^ nS '

392 +
15

2 ~ ’
C _

13'
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Diameters of an Ellipse.

122. Theorem II. Every diameter of an ellipse is bi-

sected by the centre.

Proof. Let y — mx be the equation of any line through

the centre. Eliminating y between this equation and that of

the ellipse, we have

from which to determine the abscissae of the points in which

the line intersects the ellipse. Since this equation contains

terms in x2 but none in x, it will reduce to a pure quadratic,

of which the two roots are equal but with opposite signs.

From these roots we shall get, by substituting in the equation

y — mx, two equal values of y with opposite signs. Hence

the points of intersection are at equal distances on each side

of the origin.

123. Theorem III. The locus of the centres ofparallel

chords of an ellipse is a diameter.

Proof. Let y = mx -}- h (a)

be the equation of a chord; the

slope m being the same for all f
the chords, while h varies from

one chord to another.

We first find the points of in-

tersection of the chord with the ellipse in the usual way.

Eliminating y between (a) and the equation of the ellipse,

we find the absciss® of the points of intersection to be deter-

mined by the quadratic equation

xf (mx + hY _
a:
+ P

which being reduced to the general form becomes

2 2a?mh . a?(h?-~ V) __X
' Pm? -f- P

%
aim? + P

Now we need not actually solve this equation to obtain
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the result we want, namely, the abscissa of the middle point

of the chord. We know that if we put, for brevity,

2a?mli
V =

? =
a2m2 + ¥’

a2
{¥ - ¥)

a2m2 + ¥ ’

and call the roots x
,
and x„, we shall have

= i( ~P - - 4r/)>

= U- p + v'p
2 - 4g)>

which give the abscissae of the two points in which the chord

intersects the ellipse. The corresponding values of y, from

(a), are

y1
— mx

t + li\

y, = + A*

By (§ 23), the co-ordinates of the middle point of the

chord are the half-sums of the co-ordinates of the extremities.

If, then, we put x'
,
y' for the co-ordinates of the middle point

of the chord, we have

, . a
2mh

x = ~iP = dm2
-j- b

2>

y' = im(x
1 + x

2) + h

= mx' -j- h

- _ aWh
. h~ dm2 + ¥ ^

¥h
~ ¥m2 + ¥'

(*)

The problem now is, What relation exists between x' and

y' when we suppose h to vary and all the other quantities which

enter the second member of
(
b

)
to remain constant? We ob-

tain this relation by eliminating li between the two equations,

which is done by multiplying the first by ¥ and the second

by d2m and adding the products. Thus we find

¥x’ -(- a
2my' = 0. (7)

This is a relation between the co-ordinates of the middle

points of the parallel chords which is true for all values of h,
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that is, for all such chords; it is therefore the equation of

the required locus, and, from its form, is a straight line

through the origin and therefore through the centre of the

ellipse.

124 . Conjugate Diameters. If we omit the accents in

(7), we may write it in the form

V
y ——— »•J am

By assigning different values to m, or, which is the same

thing, by giving different directions to the parallel chords, the

D
slope t— may take all possible values, and therefore (7)am
may represent any line passing through the centre and bisect-

ing a system of parallel chords.

If m’ be the slope of the diameter which bisects all the

chords whose slope is m, we have

y — m'x,

the equation of the diameter;

but, by (7), V — 5
x

* am
is also the equation of the diameter.

Therefore m — —

or

a

m

mm — j--

or
(
8

)

Theorem IV. If one diameter bisects chords parallel to

a second diameter, the second diameter will bisect all chords

parallel to the first.

Proof. If m and m’ be the respective slopes of the two

diameters, we shall have

,
Vmm = t-,

a

since the first bisects all chords parallel to the second; but

this is also the only condition which must hold in order that

the second may bisect all chords parallel to the first.
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Def. Two diameters each of which bisects all chords par-

allel to the other are called conjugate diameters.

Cor. As the chords of a set become indefinitely short near

the terminus of the bisecting diameter, they coincide in direc-

tion with the tangent at the terminus. Hence:

Theorem V. The tangent to an ellipse at the end of a

diameter is parallel to the conjugate diameter.

125. Problem. Given the co-ordinates of the extremity

of one diameter, to find those of either extremity of the con-

jugate diameter.

Solution. Let POP

’

and BCD'
be any pair of conjugate diameters,

and (x'
,
y') the given co-ordinates

of P. Then the equation of CP is

and the equation of DD' is

(«)

or (*)

and the equation of the ellipse,

a
2

>f + VlP — a’Pf.

Substituting from (b) in (c), we have

(lfx
n + afifijx

2 = ay2

;

but since
(
x y’) is on the ellipse, we have

Pxn + a
2

y
n = a

2F;

therefore

or

Substituting this value of x in (a), we get

y — =F —Xo
a
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126. Theorem VI. The sum of the squares of two con-

jugate semi- diameters, is constant and equal to the sum of the

squares of the semi-axes.

Proof. Let (x'
,
y’) be the co-ordinates of P (last figure),

and denote the semi-conjugate axes CP, CD by a’ and P
respectively. Then we shall have

C'P
2 + CD'1 = z'

2 + y
n + y

' 2 + ~xri

_c?yn + Pxn a'y
n + Pxn

~ bl " +
a

2

_PP_ <fP_

~ P + dr’

or an + b
' 2 = a

2 + P (9)

127. Problem. To find the angle between two conjugate

axes.

Let 6 and d' be the angles which

the semi-conjugate axes make with

the major axis, and cp the angle be-

tween the conjugate axes. Then

and

cp = 6' —6

sin cp = sin 6’ cos 6 — sin 6 cos 6'.

Denote the semi-conjugate axes by a' and P, and the co-

ordinates of P by x', y’. Then (§ 125) the co-ordinates of D
are

sin 6 —

a ,
,

b ,

~P> + .

a

- vL. a x '

cos a =
a a

bx'

Ob
'

’

cos a — —

Hence

Substituting in (a), we have

bx'
1

sin cp — —yjy + ,T aab abb

ay

W'

ayn _ Pxr:
-)- cdy’

aba'P
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Bat since (y
r

,
y’) is on the curve,

Pxn -f a'yn = a'P.

Therefore sin cp = a'P ab
(
10

)aba’V a’b
r

128. Theorem VII. The area of the parallelogram which

touches an ellipse at the ends of conjugate diameters is constant

and equal to the area of the rectangle which touches the ellipse

at the ends of the axes.

Proof. From the last equation we have a’b' sin cp = ab\

but a'b' sin cp is equal to the area of the parallelogram CPQD,
and ab is equal to the area of the rectangle CAEB\ therefore

the parallelogram QRST — the rectangle EFGH, which is

constant.

Cor. 1. The triangle CPD is equal to the triangle A CB,

each being one half of the parallelograms QC and EC respec-

tively.

Cor. 2. If P denote the perpendicular from C on QT, we

have

R

T

S

P . CD = area of CPQD
= ab.

a*P a"P

CD'1
b’"
r

b
n = a

1 + P - a'\

Therefore

But, by § 126,

Hence
(
11

)



144 PLANE ANALYTIC' GEOMETRY.

12i). Problem. To find the equation of the ellipse re-

ferred to a pair of conjugate diameters as axes.

Let CP, CD be any two conju-

gate semi-diameters; take CP for

the new axis of X, and CD for the

new axis of Y; let the angle

A CP = a, and the angle A CD — ft ;

(x, y) the co-ordinates of any point

Q of the ellipse referred to rect-

angular axes, and (xj y') the co-ordinates of the same point

referred to the new axes.

The 'formulae for passing from rectangular to oblique axes

are (§ 29)

x — x' cos a + y' cos
ft-,

y = x' sin a -j- y’ sin ft.

But since {x, y) is on the ellipse, we have

a
2

//

2
-j- Px2 = a*P.

Eliminating x and y from these three equations, we have,

after reduction,

(a
2
siira -j- If cos*a)xn -f- (a

2
sin

2
/? -j- ^ cos

2

/?)//'
2

+ 2 (a
2
sin a sin ft -\-P cos a cos ft)x'y' — a~P.

But since CP and CD are conjugate semi-diameters, we have,

by (8), the condition

mm' = P

or tan a tan ft
— V_

m

that is.
sin a- sin ft

cos a cos ft a
2 ’

or a
2
sin a sin ft -f- P cos a cos ft = 0.

Therefore the coefficient of x’y

’

vanishes and we have

(a
2
sin

2a -j- 5
2
cos

2
n')a’'

2

-f- (a
2
sin

2
/? -)- P cofft)y'"— off, (12)

which is the equation of the ellipse referred to the new axes.

By putting g'* = 0, tve get

x = aPf

n
2
sin

2a -f- P cos
2#
= CP\
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which we have already denoted by a'
2

. In a similar manner

we get

v
« - - CD2

y a
2
sin

2

/? + b
2
cos

2

/3
’

which we have denoted by b’
2

.

Hence (12) may be written

cr'
2 vn

- u — — i •

an I"

or, suppressing the accents on the variables, since the equation

is entirely general,

+f =
(
13 )

Comparing this with (1), we see that the equation of the

curve referred to the major and minor axes is only a particu-

lar form of the more general one which we have just obtained.

From the identity of form in (1) and (13) we see that the

transformations of the former are applicable to the latter;

therefore it follows that any formulae derived from the equa-

tion of the ellipse by processes which do not presuppose the

axes to be rectangular will be applicable when any pair of

conjugate semi-diameters are substituted for the principal

semi-axes.

130. Supplemental Chords.

Def. The two straight lines drawn from any point on an

ellipse to the extremities of any diameter are called supple-

mental chords.

If the diameter is the major axis,

principal supplemental chords.

Relation betiveen Tivo Supplemen-

tal Chords. Let PP' be any diame-

ter, and.P0, P'Q two supplemental

chords; (a/, y
') the co-ordinates of

P, and therefore {— xr

, — y') the

co-ordinates of P’

,

and (x, y) the

co-ordinates of Q. Then the equa-

tion of the line PQ may be written

y - y' = rn(x - x'),

the chords are called
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and the equation of the line P'Q may be written

V + V’ - m'(x + x');

whence, by multiplication,

y
2 — y’~ = mm'(x" — xn ). (a)

But since the points (x, y )
and

(
x ’ ,

y') are on the curve,

we have
a

2f + b
2x2 = a2

b
2

and a2y' 2

-f- b
2xn= a

.

2
b
2

;

whence a
2

(if — y’j + b
2
(x

2 — x’
2

)
—

0,

or if - y
n = - - x’

2

). (b)

Comparing (a) and (&), we have

mm’ =
a

which is the condition that holds for conjugate diameters

whose slopes to the major axis are m and m' respectively

(§124); therefore

—

Theorem VIII. If any chord of an ellipse is parallel to a

diameter, the supplemental chord is parallel to the conjugate

diameter.

Relation of the Ellipse and Circle.

131. Let a circle be described on the major axis of an

ellipse as a diameter; its equation

referred to the centre as origin is

yj = a2 - x2

,
(a)

where yc represents the ordinate

P’M.
The equation of the ellipse gives

y: = - *')• (
4
)

Comparing (a) and (b), we have

yf_ _ of y_e _ a
.

y7~ir y~e b’

b
whence
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that is. the ordinate of the ellipse at any point is found by

multiplying the ordinate of the circle by the constant factor

—
. Hence we have

a

Theorem IX. If all the ordinates of a circle be dimin-

ished in the same proportion, the circle will be changed into

an ellipse.

132. The Eccentric Angle.

Def. If we join P and C, the centre of the ellipse, the

angle P'CA is called the eccentric angle of the point P.

Problem. To express the co-ordinates of any point of the

ellipse in terms of the eccentric angle of that point.

Let the eccentric angle = cp, and x, y, the co-ordinates

of the point P. Then, since P' C — AC, we shall have

x = a cos cp;

y = - P’MJ a

— — a sin cp — b sin cp.

a

133. Problem. To find the area ofan ellipse.

Describe a circle on the major

axis as a diameter, which we can con-

ceive to be divided into any num-
ber of equal parts. At any two ad-

jacent points, as M, N, draw the

common ordinates MP', EQ'

,

and

through P and P' draw PH, P'H'
parallel to the axis. Let the ordinates

PM, P'M be denoted by ye and yc

respectively. Then, since the rectangles MH, MH

'

have the

same breadth, namely, MN, they are to each other as their

heights MP, MP '
;
that is,

MH _y_e _ b

MH' yc o'
(§ 131)

In the same way it may be shown that any other pair of

similar rectangles in the ellipse and circle have the ratio of
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b : a, and therefore the sum of all the rectangles in the ellipse

is to the sum of all the corresponding rectangles in the circle

as b : a.

Now if the number of equal parts into which the axis is

divided be increased indefinitely, the sum of all the rectangles

in the ellipse will approach the area of the semi-ellipse as a

limit, and the sum of all the rectangles in the circle will ap-

proach the area of the semi-circle as a limit.

Therefore we shall ultimately have

Area of the ellipse _ b

Area of the circle a

But the area of the circle = no? therefore we shall have

the area of the ellipse = nab. Hence:

Theorem X. The area of an ellipse is a mean propor-

tional between the areas of the circles described on the major

and minor axes.

Tangents and Normals to an Ellipse.

134. Problem. To find the equation of the tangent to

an ellipse at a given point.

Let a', y' be the co-ordinates

of any point on the curve, and

x"
,
y” the co-ordinates of an

adjacent point on the curve.

The equation of the secant pass-

ing through the points x'
,

y'

and x"
,
y" is, by § 45,

|
- y' = § - O- («)

Since {x ’
,
y') and (x", y") are on the ellipse, we have

cry'"- + Vxn = TV
and a'y"~ + Vx,n — arb*-,

therefore (i'(y

"

3 — y'') + b*(x
,n — xn

) = 0;

bf x" + x'

a? ' y" + y
rwhence
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Substituting in (a), we have, for the equation of the secant,

y y' = - F + s'
f(x - x'). V)

a* y" + y’

Now if the points (x
f

,
y’) and (x"

,
y") approach each

other until they coincide, the secant SS' will become the tan-

gent TT'

.

We shall then have at the limit

x" — %' and y" - - y'
\

hence
(
b

)
becomes

y - y' = F x’— —(x — x’),ay '

which is the equation of the tangent at the point xr
,
y'.

This equation may be simplified thus: Multiply by a‘y'

and we get

cdyy’ -f- Fxx' — a~y'" -f- Fx
n

= a*F,

or
xx^-

yyfi

a~ F
= 1 . (!5)

The equation of the tangent may also be expressed inde-

pendently of the co ordinates of the point of contact, as fol-

lows:

135 . Problem. To find the condition that the line

y - mx + h

may he tangeiit to the ellipse

If we eliminate y between these equations, we have

•5 ,

(mx -f h)” _
F ~ '

or (

F

+ d‘m,
)x’

>

-f- 2Fmhx — 'a?(F — A2

), (a)

for determining the abscissae of the points in which the line

intersects the ellipse. Since the line is to be a tangent to the

ellipse, the two values of the abscissa will be equal. Now the
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condition that this equation may have equal roots is, by the

theory of quadratic equations (§ 8),

4«
2
(A

2

-f «
2m 2

)(A
2 - A 2

) + 4«4»rA2 = 0

whence A 2 = A
2 + a

2
«i

2

, (16)

or A = ± Vtf + a*ml,

the required condition.

Substituting this value of A in the given equation of the

line, we have

y — mx ± Vb 2 + (i
1™*

(17)

for the equation of the tangent.

Conversely, every equation of this form is the equation of

some tangent to the ellipse. The double sign shows that there

will always be two tangents having a given slope.

Remark. From the facility with which this equation en-

ables us to solve many problems involving the use of the equa-

tion of the tangent, it is sometimes called the magical equa-

tion of the tangent.

136 . The Subtangent.

Def. The projection on the axis of X of that portion of

the tangent intercepted between the point of contact and the

axis of X is called the subtangent.

To find where the tangent intersects the axis of X, we

make y = 0 in the equation of

the tangent. Thus the equa-

tion of the tangent is

xx' yy' .

~aF
+

'~v
~ lm

(

/ 1

/ * \ \/ 1 \ \
/ ! \

Making y = 0, we have l C NIL

x = -,= CT.
X

Subtractiug CM or x', we have

Subtangent = MT
_ai

, _ a 1— x’"

x' '

x'

Cor. The subtangent is independent of A: hence all
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ellipses described on a common major axis have a common

subtangent for any given abscissa of the points of contact.

This property enables us to draw a tangent to an ellipse

from any point on the curve.

Thus, let P be any point on the curve; describe a circle on

AA' as a diameter, and produce the ordinate PM to meet

the circle in Q. Then if x' is the abscissa CM, we have

di—xn
Subtangent of ellipse = -——— = subtangent of circle = MT.

Hence if QT be drawn tangent to the circle and meeting A A'

produced in T, then, by what has just beeu proved, Twill be

the foot of tangent to the ellipse at P, which is found by join-

ing TP. If the point T were given, we would first draw

TQ tangent to the circle, and from the point of contact Q
draw the ordinate QM. intersecting the ellipse in P, the re-

quired point of contact; and by joining P and T we would

have the required tangent.

137. Tangent through a Given Point.

Let the tangent line be required to pass through a given

point (x
f

, y’)\ we shall then have the condition

y’ = mx' + h, (
a

)

which, combined with (16), will enable ns to determine m and

h. Equation (a) gives

Ir = y
n — 2mx'y' + ml'1

,
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which, substituted in (16), gives

whence

(a
2 — x'

2)m 2 + 2x'y'm fi &
2 — y

n = 0;

m
— x'y' ± Vcfy'' + Vxn — crb'

a — x
(IS)

Since there are two values of m, two tangents to an ellipse

can be drawn through a given point. There are three cases

depending on the position of the point:

I. If the position of the point is such that

ay 2 + Vxn - a2

!}
2 < 0

,

the value of m will be imaginary. The point (x'
,
y') will

then be within the ellipse.

II. If ary'~ + ¥xn — 0*1' > 0, the two values will be real

and different.

III. If afy'- + Vx'- — cdV1 = 0, the point {x’, y’) will be

on the ellipse, the two tangents will coincide, and the equa-

tion can be reduced to the form (16).

138 . Problem. To find the locus of the point from

winch two tangents to an ellipse make a right angle with each

other.

Let the equations of the tangents be

y = vix fi Vb~ + aW; («)

y
— m'x+ Vtf fi «

2m' 2

. (£)

Then the condition to be fulfilled is (§ 47)

mm' + 1 = 0. (c)

Eliminating in' from
(
b )

and (c), the equation of the two

tangents will be

y — mx = Vb
'

2

fi arm2

]

my -fix = Va' fi b~m~.

Now, what we want is the locus of the point which is on

both tangents at once; that is, the locus of the point whose

co-ordinates satisfy both of these equations. To find the re-

quired locus, we must eliminate m from the equations, which

we do thus:
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Squaring and adding, we liave

(m2 + I)#
2 + (m2 + l)y

2 = [m 2 + l)(cr + b
2

),

or x2
y~ — a" -j- b~,

which is the equation of a circle whose centre is at the origin

and whose radius is Va2
-j- b~-

We thus have the result: If ice slide a right angle around

an ellipse so that its sides shall continually touch the ellipse, its

vertex will describe a circle whose radius is equal to the dis-

tance between the ends of the major and minor axes.

139. Problem. A perpendicular being drawn from
either focus of an ellipse upon a moving tangent, it is required

to find the locus of the foot of the perpendicular.

Let

y = mx + Vb* + a2m2
(a)

be the equation of the tangent. The equation of a line per-

pendicular to (a) and passing through the focus whose co-

ordinates are ae and 0 is

y = ~ - ae). (3)

From (a) we have

y — mx — Vb2 + a
2m%

and from (5), my + x = ae.

Squaring and adding, we get

(x
2 + y

2

) (1 + m2

)
= b

2

-f- a
2m 2 +

— cr(l -f- mj
(since a

2
e
2

-j- b
2 = a

2

).

Therefore Ave have

+ V' =

the equation of the required locus, which is a circle described

on the major axis of the ellipse. The same result is obtained

if we draw the perpendicular from the other focus.

140. Perpendiculars from the Foci upon the Tangent.

Problem. To find an expression for the length of the per-
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pendicular from either focus upon the tangent to an ellipse at

the point {x'
,
y').

Let p and p' be the perpen-

diculars FQ, F'

R

respectively.

The equation of the tangent is

Fx'x -f- a
3
y'y — a

3F = 0;

and since the co-ordinates of the

foci F and F’ are
(
ae, 0) and

(— ae, 0) respectively, we shall

have, by § 41

,

aFex' — a
3F

p = ah' {ex' — a)

and / =

VFx'3 + a'y'
3

— aFex'— a;F

a*y'
3VFx'3 +

— aF{ex

’

-j-
(19)

VFxn + a'y
’ 3 VFx'3 + a4y' 3 ’ J

which are the required expressions for the perpendiculars.

Product of the Perpendicularsfrom the Foci upon the sam

Tangent. We find, by multiplication,

, _ a
3F{a3 - e

3
x'

3 '

pp - £v 2 + «y 2

a
3F(a3 - e

3
x'

3

)

Fx ,3+a3
{a

3F-Fx'3

)

a*F(a* - e
3
x'

3

)

Fxn + a\a3 - x'
3

)

a
4

{ 1
- e

3
){a

3 - e
3
x'

3

)

~ a2
(l — e

3
)x'

3
-\- a3

(a
3— x'

3

)

[since F = «2

(1 — e
3

))

_ a
2
(l — e

3
){a

3 — e
2
.T

,a

)

= V, (
20 )

an expression which is independent of the co-ordinates x’ and

y'-

Hence:

Theorem XI. The rectangle contained by the perpen-

diculars from the foci upon a tangent to an ellipse is com

stant and equal to the square of the semi-minor axis.



THE ELLIPSE. loo

For the ratio of the perpendiculars we have

P_ a — ex'

a -j- ex'

r
(§ 120 )

Hence:

Theorem XII. The perpendiculars from thefoci upon the

tangent have to each other the same ratio as the focal radii of

the point of tangency.

141. The Normal to an Ellipse.

Problem. To find the equation of the normal line at any

point of an ellipse.

Let x’
,
y’ he the co-ordinates of any point on the ellipse.

Then, by § 134, the equation of the tangent at that point is

**
, yj_ _ i

a2 ^ T
(a)

or y =
W
ay' y

The equation of a line through x '
,
y' and perpendicular to

(a) is, by § 47,

, «Y/ ny-y = ® ), (21)

which is the equation of the normal at x', y’

.

142. The Subnormal.

Def. That portion of the normal line intercepted be-

tween the point on the curve and the axis of X is called the

normal, and its projection on the axis of X is called the sub-

normal.

To find where the normal cuts the axis of X, we make

y
— 0 in the equation of the normal; then we get (see fig.,

§ 136
)

CN = x’

Hence the subnormal
NM = CM - CN

— (1 — e
2

)x'.

e x
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143. Theorem XIII. The normal at any point on o.n

ellipse bisects the angle con-

tained by the focal radii of

that point.

Proof. Let us put ip, ip'

,

the angles FPN and F'PN
respectively.

By the theorem of sines,

we have

sin ip _ FN sin ip' _ F'N
sin PNF ~ FT5 ’

sin PNF'
~

~FP‘ 'a '

Now, FP and F'P are the focal radii whose lengths are

given by the equations (4) and (5), §120. Also, by §§136
and 142, we readily find

FN = ae — e'V = e(a — ex'
)
= er;

F'N = ae + e'x' = e(a + ex') = er';

whence (a) gives

e sin PNF— sin ip; e sin PNF' = sin ip';

and then, since sin PNF' = sin PNF, we have

ip = ip'.

Therefore the normal PN bisects the angle FPF'

.

Cor. The tangent at any point of an ellipse bisects the

exterior angle formed by the focal radii of that point.

For if one of the focal radii, as F’P, be produced to any

point Q, and the tangent PT be drawn, the angles F'PF,
FPQ are supplementary; and since NPT is a right angle and

PN bisects the angle F'PF, PT also bisects the angle FPQ,
which is the exterior angle formed by the focal radii FP, F'P.

Remark. If a ray of light proceed from F to any point

P on the ellipse, it will be reflected to F'

.

For this reason

the points F'aud F' are called foci, or burning points.

The theorem just proved enables us to draw a tangent at

any point on an ellipse. Thus, let P be any point on the

curve; draw the focal radii PF, PF’; produce one of them,

as PF'

,

and bisect the exterior angle thus formed by PT,
which is the tangent required.
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EXERCISES

1. Show that there is a certain segment of the major axis

of an ellipse from which normals not coincident with that

axis maybe drawn to the ellipse, and two other segments from

which such normals cannot be drawn, and define these seg-

ments.

2. Show that the normals from three or more equidistant

points on the major axis intersect the ellipse in points whose

absciss® are in arithmetical progression.

3. Show that the ordinate of the point in which a normal

6
“

intersects the minor axis is in the constant ratio to
e — 1

that of the point where it intersects the ellipse.

Reciprocal Polar Relations.

144 . Chord of Contact.

Def. The line which passes through the points where

two tangents from an external point meet an ellipse is called

the chord of contact.

Problem. To find the equation of the chord of contact.

Let (A, k) be the co-ordinates of the point from which the

two tangents are drawn; (x', y’), the co- ordinates of the point

where one of the tangents through (A, fc) meets the curve,

and
(
x", y”) the co-ordinates of the point where the other

tangent meets the curve.

The equation of the tangent at (x
f

,
y') is

— i •

r v 2 -*> (a)

and since this passes through (A, k), we have

hx'
,

Ten'—— = 1
a2 ^ V (6)

Similarly, = 1. («)

Hence it follows that the equation of the chord of contact is

-I = 1
> (

22 )

hx

A
2
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for this is the equation of a straight line, and is satisfied for

x = . y = y’ and x = x"
, y = y", as we see from

(
b ) and

(c).

Cor. Prom what has been shown in the preceding section,

it is evident that this equation, referred to any pair of conju-

gate diameters as axes, is

hx Icy _
aP + # ~ L

(
23

)

145 . Locus of Intersection of Two Tangents. Let (x',yr

)

be the co-ordinates of any fixed

point Q through which the chord

of contact corresponding to the

two intersecting tangents is

drawn; (x"
,
y”), the co-ordinates

of P, the intersection of the tan-

gents. By the preceding section,

the equation of the chord TT' is

ECx,y)

x"x y y
HT + ~ 1;

but since (x
f

,
y') is a point on the chord, we have the com

dition

x”x’
!

y"y'

~aT + ~¥~ ~

which the co-ordinates of the point of intersection must always

satisfy. Hence, regarding x”, y" as variables and omitting

the accents, the equation of the locus of the point of intersec-

tion of the two tangents is

x’x

Id
+ P

Cor. This equation, referred to a pair of conjugate diam-

eters as axes, will be

x'x y’y _ .

yy _ 1
(
24

)

146 . Pole and Polar.

The identity of form in the equations of the tangent, the

chord of contact and the locus of the intersection of tangents
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drawn from the extremities of chords passing through a fixed

point is only the expression of a reciprocal relation widen

exists between the locus and the fixed point (;x’ ,
y'). This

relation is one of polar reciprocity and is expressed by the

following theorem:

Theorem XIV. 1. If chords in an ellipse be drawn through

any fixed point and tangents be drawn from the extremities of

each chord, the locus of the intersections of the several pairs

of tangents ivill be a straight line.

2. Conversely, Iffrom different points in a straight line

pairs of tangents be drawn to an ellipse, their chords of con-

tact will intersect in one point.

Defs. The straight line which forms the locus of the

intersection of two tangents drawn from the extremities of

any chord which passes through a fixed point is called the

polar of that point.

Reciprocally, the fixed point is called the pole of the

straight line which forms the locus.

Thus, if P be the fixed point through which the chords

GG', HH’ are drawn, and pairs of tangents Gil, G'P, HQ,
H'Q be drawn from their extremities, intersecting in R and

Q respectively, then the line QR is the polar of P. and P is

the pole of QR. If the pole is

on the curve as at H, then the

tangent HR is the polar; and if

the pole is without the curve, as

at Q, then it follows that the

chord of contact HH' is the

polar; hence we see that the

tangent and the chord of con-

tact are respectively the polars of the point of contact and of

the intersection of the tangents drawn from the extremities

of the chord of contact.

Hence it follows that if (x
f

, y') be the co-ordinates of any

point within, on or wittiout the curve, the equation of the

polar is
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or, when referred to a pair of conjugate diameters as axes.

^ jl tl - i

an f y, - i- (27)

The equation of the diameter conjugate to that which

passes through the point
(
x y') is

y = -
7/

or ^ , O - o1“

which shows that the diameter and the polar (27) are parallel:

hence we have the following theorem:

The polar of any point in respect to an ellipse is parallel to

the diameter conjugate to that which passes through the point.

147 . Polars of Special Points.

Polar of the Centre. If in the equation of the polar (26)

we suppose the pole (x', y'
)
to approach the centre, x’ and y’

will approach zero as their limit, and one or both the co-

ordinates, x and y, of any point of the polar will increase

indefinitely. Hence the polar of the centre is at infinity.

This is also seen from the fact that tangents at the ex-

tremities of any diameter meet at infinity.

Polar of a Point on one of the Axes. When y' = 0, we get

x = ~ = a constant,
x'

which shows that the semi-major axis is a mean proportional

between the distances, x r and x, of the pole and polar from

the centre. Since the same reasoning may be applied to a

point on the minor axis, we conclude:

Theorem XY. Either semi-axis is a mean proportional

between the distances cut offfrom it by a pole upon it, and by

the corresponding polar.

Polar of the Focus. Substituting for (x’
,
y'

)
the co-or-

dinates of either focus (± ae, 0) in (26), we have
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or, the polar of either focus of an ellipse is perpendicular to

a
the major axis and at a distance from the centre equal to —

measured on the same side as the focus.

148. Directrix of an Ellipse.

If DR is the polar of the focus F, we have

and DP = OM
= OC- AW

a a — ex

but from the linear equation of the curve we have

FP = a — ex;

FP FP
hence DP = and -frn — e•

e DP
The same reasoning applies to either focus and its polar.

Hence:

Theorem XYI. The focal distance of any point on an

ellipse is in a constant ratio to its distance from the polar of

the corresponding focus, the ratio being less than unity and

equal to the eccentricity of the curve.

Def. The polar of either focus is called a directrix.
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EXERCISES.

1. Show that an ellipse has a pair of equal conjugate

diameters whose direction coincides with the diagonals of

the rectangle on the axes.

2. Show that the equal conjugate diameters of au ellipse

bisect the lines joining the extremities of the axes.

3. Find the co-ordinates of the point in an ellipse such

that the tangent there is equally inclined to the axes.

,
a

2 V
Ans.

;

- -
.

V

a

+ l' V

a

-|- b"

4. If r and r' denote the focal radii of any point on an

ellipse whose eccentric angle is cp, show that

r ~ a{ 1 — e cos cp) and r' = a( 1 + e cos cp).

5. Find the equation of the tangent at the extremity of

the latus rectum. Ans. y -f- ex = a.

6. Find the equations of the lines joining (1) the extremi-

ties of the axes; (2) the centre and the extremities of the latera

recta.

7.

Find the equation of the normal at the extremity of

the latus rectum.

8.

If the normal at the extremity of the latus rectum

passes through the extremity of the minor axis, show that the

eccentricity of the ellipse is determined by the equation

9.

Show that the equation of the tangent at any point is

Ans. y = ± -

J
i

cc

Ans. y — - ae
1 — 0.J

e

e
4 + e

2 - 1 = 0.

X V .— cos (0 + ^- sm m — 1 — 0.
a ^ b

where cp is the eccentric angle of that point.
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10. Find the equation of the straight line which is tan-

gent to the ellipse 20y
2 + 5x2 = 100 at the point (2, 2).

11. Through the right-hand focus of the ellipse

25y
2

-f- 16a;
2 = 1600 is drawn a focal radius making an angle

of 30° with the axis of X Find the equation of the tangent

to the ellipse at the end of this radius.

12. Express the intercepts which the normal to an ellipse

cuts off from the co-ordinate axes in terms of the principal

axes of the ellipse and of the co-ordinates of the point (aq, ?q)

in which the normal cuts the ellipse.

13. If 6 is the angle which a radius from the centre of the

ellipse forms with the axis of X, and 6' the angle which the

tangent to the ellipse at the end of that radius forms with the

same axis, find what relation exists between 6 and 6'.

14. From the centre of an ellipse to a tangent is drawn a

line parallel to the focal radius of the point of tangency, and

meeting the tangent at the point p. Find the locus of p as

the tangent changes its position.

15. From one focus of an ellipse a perpendicular is dropped

upon the tangent and produced to an equal distance on the

other side. Show that its terminus is in the same straight

line with the point of tangency and the other focus.

16. The same thing being supposed, find the locus of p
when the tangent moves around the ellipse.

17. To the ellipse a
2

y
2

-j- b
2x2 = a 2

b
2 and its circumscribing

circle y
2

-f- o? — a
2 tangents are drawn such that the points of

tangency shall have the same abscissa. What relation exists

between the subtangents, and what relation between the sub-

normals?

18. Find the equations of the tangents drawn from the

point (0, 8) to the ellipse whose equation is 20 ?/

2

-f- 5x
2 = 100.

19. If that point of an ellipse to which a normal is drawn
approaches indefinitely near to the major axis, what limit will

the intercept of the normal upon the axis of X approach?

20. On the major axis of an ellipse a point is taken whose
abscissa is x’

.

Find the slope and equation of the tangents

from this point.
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21. At what points will the tangents which make an angle

of 45° with the principal axes cut those axes?

22. Find the intercept upon the minor axis when the

normal approaches the end of that axis.

23. Find the equations of the two tangents to the ellipse

5 ij
1

-f- 3F
2 = 15 which are parallel to the line 3y — 4.r + 1 =0.

24. To the ellipse 36_?/
2

25a;
2 = 900 are to be drawn tan-

gents cutting the axis of X at an angle of 30°. Find the co-

ordinates of the points of tangency.

25. Having given the ellipse 5V + cfy
1 — a^h" and the

circle a;
2

-)
- y

1 = ah, it is required to find the equation of the

common tangent to the two curves. Find also the angle at

which the curves intersect.

26. If two points as poles be taken on a tangent to an

ellipse, where will their polars intersect?

27. The chord of contact to two tangents of an ellipse is

required to pass through the focus. What is the locus of the

point where the tangents intersect?

28. Find the pole of the line y — mx -+- h with respect to

the ellipse ofy
1 + h'x

1 = a"b".

29. If tangents to the circumscribed circle of an ellqise be

taken as polars, what will be the locus of the pole?

30. Find the locus of the pole when the polar is required

to be a tangent to the circle described upon the minor axis of

the ellipse as a diameter.

31. If a series of poles be taken on the diameter of an

ellipse, show that the polars will all be parallel to eaclr other.

32. If chords be drawn from any point of an ellipse to the

ends of either principal axis, sh ow geometrically that they are

parallel to a pair of conjugate diameters.

33. If a line of fixed length slide'with its two ends con-

stantly upon the respective sides of a right angle, show that

any point upon it describes an ellipse.

34. The area of an elliqrse is to be equal to that of the con-

centric circle passing through its foci. Find its eccentricity.



TEE ELLIPSE. 165

35. The minor axis of an ellipse is 12, and its area is equal

to that of a circle whose diameter is 20. What is its major

axis?

36. The area of an ellipse is equal to that of a circle cir-

cumscribed around the square upon its minor axis. Find the

angle whose sine is the eccentricity. Ans. 60°.

37. Show that the equation of the normal at the point

whose eccentric angle is cp is

ax sec cp — by cosec cp — a? — b'.

38. If cp and cp' be the eccentric angles of any two points

P , Q on an ellipse, show that the area of the parallelogram

formed by tangents at the extremities of the diameters

through P and Q is . . r . When is this area a8 ^ sm (<7/ — cp)

minimum?
39. Show that the circle described on any focal chord as a

diameter touches the circle described on the major axis as a

diameter.

40. Normals are drawn to an ellipse and the circumscrib-

ing circle at points having the same abscissa. Show that the

locus of their intersection is a circle whose radius is a -f- b.

41. Show that the locus of the intersection of tangents

to an ellipse at the extremities of conjugate diameters is an

ellipse.

42. Show that the tangents at the extremities of any chord

of an ellipse meet on the diameter which bisects that chord.

43. If cp and cp' denote the eccentric angles of the vertices

of two conjugate diameters of an ellipse, show that

tan cp tan cp' -)- 1 = 0.

44.

If 6 denote the angle which any focal chord makes
with the major axis, show that the length of the chord is

2P
n(l — e

2
cos

2 dy

,
, • 2 b

chord is —

,
and the length of the diameter parallel to the

|/(1 — e
2
cos

2
d)‘

45.

If cp and <p' be the eccentric angles of any two points
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on an ellipse, show that the equation of the chord which joins

the points is

b cos \{cp + qj') . x + a sin-|(<p + q>')
. y = ab cos-|-(<p — cp’).

46. Find the polar equation of the ellipse (1) when the

centre is the pole, and (2) when the left-hand vertex is the

pole, the major axis being the initial line in both cases.

.2 _ b* _ 2ab" cos 6
J ns ‘ ’

1 — e
2
cos

29' 1

a? sin
2# -f- cos

2#

47. Show that the perpendicular from the centre on the

chord which joins the extremities of two perpendicular diam-

eters of an ellipse is of constant length.

48. Find the polar co-ordinates of that point on an ellipse

at which the angle between the radius vector and tangent is

a minimum. Ans. a; cos
-1

e.

49. If the equation x" -\- y* = cf represent an ellipse, ex-

press its eccentricity in terms of the angle between the axes.

50. Show that the sum of the reciprocals of two focal

chords at right angles to each other is constant and equal to

a' + b
2

2ab3 '

51. A tangent is inclined to the major axis of an ellipse at

an angle 9. Show that the rectangle contained by perpendi-

culars upon it from the ends of the major axis varies as cos"6.

52. If 7\, r, i\ be the radii vectores corresponding to the

angles 9 — 60°, 9, 9 -f- 60°, show that

r, i\ r 4 latus rectum’

V
53. Show from the equation y

2 =
^
„(2ax — x“) and from

§ 119 that if the major axis of an ellipse becomes infinite

while the parameter remains finite, the ellipse will become a

parabola.

54. Show that the line from the focus to the point of in-

tersection of two tangents bisects the angle formed by the

focal radii of the points of tangency.



CHAPTER VII.

THE HYPERBOLA.

Equation and Fundamental Properties of
the Hyperbola.

149. Def. An hyperbola is the locus of a point the

difference of whose distances from two fixed points is con-

stant.

The two fixed points are called the foci of the hyper-

bola.

The distances from any point on the curve to the foci are

called focal radii, or focal distances.

The hyperbola is described mechanically as follows: Take any two

fixed points, as A7 and F', and at

one of them, as F', let a ruler be

pivoted, while to the other point,

F, is fastened a thread whose

length is less than that of the

ruler.

Attach the other end of the

thread to the free end of the ruler

atD, and stretch the thread tightly

against the edge of the ruler with

a pencil-point, P. Then, while the ruler is moved round the pivot at F',

let the pencil-point slide along the edge of the ruler so as to keep the

thread lightly stretched; the pencil-point will describe an hyperbola, be-

cause in every position of P we shall have

F'P - FP = (F'P + PD) - (FP + PD).

But F'P-}- PD is the length of the ruler, and FP -R PD is the length

of the thread, and the difference between the lengths of these is con-

stant; therefore we have

F'P — FP = a constant,

which agrees with the definition.
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By interchanging the fixed extremities of the ruler and thread we
shall obtain a second figure equal and similar in every respect to the

first, but turned in the opposite direction. Thus we see that the com-

plete curve consists of two branches, as represented above.

150. Problem. To find the equation of the hyperbola.

Let the straight line drawn

through the foci be taken

as the axis of X; the point

C midivay between the foci

be taken as the origin; and

the perpendicular to FF'
through C as the axis of Y.

Let the distance between the

foci = 2c; the difference be-

tween any two focal radii = 2a; and x, y, the co-ordinates of

any point P. Then we have

F'M = z + c;

FM — x — c;

and therefore

PF” = (z + cy + tf;

PF2 =
(
x — cy -+- y~;

and, by the fundamental property of the curve,

V (

x

+ c)
2 y" — V(x — c)" + y

1 = 2a.

Freeing this equation of surds, we have

(c
2 — «

2
)a;

2 — a^y" = a
2
(c

2 — «
2

), (1)

which is the required equation.

This, however, may be simplified by putting, for the sake

of brevity.

Ci 1 II
(»)

hence we have

Fx~ — a"y
2 = a"F, (3)

or, dividing through by a'F,

^ r
«

2 F ~ ’ W
which is the equation of the hyperbola referred to its centre

and axes.
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151 . Relations among Axes and Foci of the Hypemola.

If, in the equation (3), we put y — 0, we have, for the

points in which the curve cuts the axis of X,

x — ± a = CA or CA'

.

Therefore the curve cuts the axis of X in two points, A
and A', equidistant from the

origin and between the origin

and the foci.

Def. The points A, A'

where the line joining the foci

cuts the curve are called the

vertices of the hyperbola.

The line AA' is called the

transverse axis.

The point C midway between the vertices is called the

centre of the curve.

If x = 0, we have

y = ±h
which shows that the curve cuts the axis of IT in two imagi-

nary points situated on opposite sides of the centre and at

the imaginary distance h T from it.

Measure off now on the axis of Y the distances CB, CB ’

,

each equal to b, the real factor of this imaginary value of y.

Then:

Def. The line BB' is called the conjugate axis of the

hyperbola.

Solving the equation (3), for y, gives

y=± i-
(5)

which is real for all values of x greater than a. Hence, when
x> a, y has two real values equal in magnitude but of opposite

signs; therefore the curve is symmetrical in reference to the

axis of X.

If x < a, the values of y are imaginary; therefore no point

of the curve lies nearer to the centre than the vertices.
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If x increases without limit in either direction, y increases

without limit, and therefore the curve extends indefinitely

both to the right and to the left of the points A, A'.

By solving the equation of the curve for x, we can easily

show in a similar manner that the curve is symmetrical in

reference to the axis of Y.

Def. The distance CF = OF' — c of each focus from

the centre is called the linear eccentricity of the hyper-

bola.

The ratio
l— is called the eccentricity of the hyperbola,

and is represented by the symbol e.

Since

we have

c" = a? -f- b",

, a2 + V
e* = s—

.

a ( 6 )

Hence the eccentricity of an hyperbola is always greater

than unity.

From (6) we find

b = a V(T — 1
, (7)

which expresses the semi-conjugate axis in terms of the semi-

transverse axis and the eccentricity; and since e > 1, b may
be greater or less than a. For this reason we do not use the

terms major and minor axis as in the case of the ellipse.

Cor. By comparing the equation of the ellipse with that

of the hyperbola, we see that the equation of the latter may
be deduced from that of the former by simply writing — b‘

for -j- F. Hence

Anyfunction of b in the ellipse will be converted into the

corresponding function in the hyperbola by merely changing

b into b V — 1 .

153. Equilateral Hyperbola. An hyperbola in which

the transverse and conjugate axes are equal is called an

equilateral hyperbola.
From (3) we see that the equation of the equilateral

hyperbola is
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153. Def. The parameter or latus rectum of an hy-

perbola is the chord through the focus perpendicular to the

transverse axis.

Theorem I. The parameter of an hyperbola is a third pro-

portional to the transverse and conjugate axes.

In order to find the value of the parameter or latus rec-

tum, we put x = c in the equation of the curve. The equa-

tion of the curve may be written

y =

And substituting c for x and denoting the semi-parameter by

p, we have

whence
F

(8)

or II
53*

that is. a : b :: b : p.

e, is

Cor. The length of the semi-parameter, in terms of a and

p - a{e
2 — 1).

154. Focal Radii.

Problem. To express the lengths of the focal radii in

terms of the abscissa of the point

from which they are drawn.

Let r and r' denote the focal

radii of any point P whose co-

ordinates are
(
x

, y). Then, from

the figure, we have

F = FM2 + 1>1\P

= (x — aef + id

= (x — aef -f-

= (x — aef -f (e
2 — l)(a-

2 — a
2

)

= eV2 — 2aex -f- u
2

;

whence r = ex — a. (9)
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In a similar manner we find

r' — ex + a. (10)

Either of these expressions, being of one dimension in x,

is called the linear equation of the hyperbola.

We observe that their difference is 2a, as it should be.

155. Conjugate Hyperbola.

AVe will now point out the signification of the line BB',

whose length is 2b and which is defined as the conjugate axis

of the curve. It is so called by reason of the important rela-

tion it bears to a companion-curve, called the conjugate
hyperbola, whose equation wc will now develop.

Let an hyperbola be described

about the foci G, G' situated on

the axis of Y, and at the same

distance from the centre C as the

foci F, F’oi the hyperbola which

we have hitherto been consider-

ing. Let
(
x

, y) be the co-ordi-

nates of any point Q on this new

curve. Then, retaining the same

origin and axes of reference as before, we shall have

CG = CG' = c, x = HQ and y - CF;

therefore G'Q 2 = (c + yY + a:
2

;

GQ"- = {c-yY + x\

Let the difference between the focal radii G'Q, GQ be 2b

instead of 2a. Then we shall have, by the definition of the

curve

V(c + yY + x2 - Y(c - yY+ a? = 2b,

which, when freed from radicals, becomes

av - (c
2 - by/ = - b\c - i

2
).

But c
2 — b

2 =

therefore Wx* — ary
2 = — a'b'

,

or (11 )
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which is the equation of the companion-curve or conjugate

hyperbola.

If in (11) we put x = 0,

y = ±b= CB or CB',

which shows that the conjugate hyperbola has its transverse

axis coinciding in direction and equal in magnitude to the

conjugate axis of the primary curve.

If y
—

0, we have

x = ± a V— 1.

But CA — a and AA' = 2«; therefore the transverse axis of

the primary curve is the conjugate axis of the new curve.

Thus we see that what is called the conjugate axis of an hyper-

bola is in fact the transverse axis of the conjugate hyperbola.

Def. A conjugate hyperbola is one which has the

conjugate axis of a given hyperbola for its transverse axis,

and the transverse axis of the given hyperbola for its conju-

gate axis.

By comparing (4) and (11) we see that the equations of an

hyperbola and its conjugate differ only in the sign of the con-

stant term. Since the conjugate hyperbola holds the same

relation to the axis of Y that the original does to the axis of X,
we may obtain the equation of the former from that of the

latter by simply interchanging the quantities which relate to

the two axes. Thus if the equation of the original hyper-

bola is

SV - a*if = a?b\

then, by interchanging

x and y,

a and b,

we have, after changing signs,

Vx? — a^y
1

- —

which is the equation of the conjugate hyperbola.
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156 . Polar Equation of the Hyperbola, the left-hand

focus being the pole, and the transverse axis the initial line.

Let the angle A'F'P = 6 and PF' = r be the polar co-

ordinates of any point P. Then we shall have

PF 2 = PFn + FFn - 2PF'. FF' cos FF'P,

or PF a = P -f 4aV — 4aer cos 6.

Now, by the fundamental property of the curve, we have

PF- PF' — 2a,

or VP + 4aV — 4aer cos 6 — r = 2a;

whence we get

_ a(e
2 — 1)

1 e cos 6’ (
12 )

which is the equation inquired.

The polar equation may also be very readily obtained from

the linear equation of tlie curve in the same manner as in the

case of the ellipse. (See § 121, Ellipse.)

157 . To trace the form of the curve from its polar equa-

tion.

In (12) let 6 = 0. Then r = a(e — 1) = F'A'. As 6

increases from 0 past 90°, r increases and becomes infinite

when 1 + e cos 6 = 0

or when cos 6 = — —

.

e

Thus, while 6 increases from 0 to the angle whose cosine is

— —
,
that portion of the curve is traced out which begins at
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A' and passes through P to an indefinite distance from the ver-

tex. As 6 increases from the augle whose cosine is — ro 180°,

r is negative and decreases; hence the portion P'A in the

lower right-hand quadrant is traced out. When 6 = 180°,

r — — a(e-\- 1) = F’A. As 6 increases from 180° to the angle

whose cosine is — j
in the third quadrant, r is negative and

increases numerically, and becomes indefinitely great when

cos 6 = — i-. Thus the portion AP" is traced out. As 6

increases from that angle in the third quadrant whose cosine

is — - to 360°, r again becomes positive, is at first indefinitely

great and then diminishes until 6 = 360°, when r — a(e — 1)

= F’A’, as it should. Thus the portion P'"A' in the lower

left-hand quadrant is traced out.

EXERCISES.

1. Prove the following propositions:

I. The distance of each focus from the centre is ae.

II. The distance of each focus from the nearer vertex is

a(e — 1), and from the farther vertex a(e + 1).

III. The distance between the vertices of the hyperbola

and of its conjugate is equal to that between the centre and

the foci.

IY. If we put e’ for the eccentricity of the conjugate

hyperbola, we shall have

e
2 + e'

2 = eV2
.

Y. The eccentricity of an equilateral hyperbola and of its

conjugate are each Y2.

2. Find the semi-axes and eccentricity of the hyperbola

16a;
2 — 9y/

2 = 144. Ans. a = 3; b — 4; e — w-
O

3.

Find the eccentricity and semi-parameter of the hyper-

Ans. e = ^3^; p = 7.2.bola 36a;
2 — 25if = 900.
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4. What is the equation of the hyperbola when the dis-

tance between the foci is 6 and the difference of the focal

radii of any point of the curve is 4?

Ans. 5
x~ — 4if = 20.

5. The distance from the focus of an hyperbola to the more

5
remote vertex is 4 and the eccentricity is — . Find the equa-

O

tion of the curve and its latus rectum.

Ans. %x* — = 1; latus rectum =

6. What is the equation of the hyperbola whose transverse

axis is 10 and whose vertex bisects the distance between the

centre and the focus? Ans. Zx* — y" = 75.

7. The equation of an hyberbola is x1 — 4y
1 = 12. Find

the equation of the conjugate hyperbola and its eccentricity.

Ans. x2 — 4y
1 — — 12

;
e — Vh.

8. If e and e' denote the eccentricity of an hyperbola and

its conjugate, show that

e__b_
e' a'

9.

Find the equadon of the hyperbola when the left-hand

focus is the origin.

. x1

2e
aAns. ^ a H x = e- — 1.

V c? a

10. Show that by multiplying every ordinate y of an

ellipse referred to its centre and axes by the imaginary unit

V— 1
,
it will be changed into an hyperbola having the same

axes.

11. A line parallel to the transverse axis is drawn so as to

intersect both an hyperbola and its conjugate. Show that the

segments contained between the two hyperbolas diminish

indefinitely as the line recedes indefinitely. Also, that the

rectangle contained by one of those segments, and by the sum
of the two segments, one of which is cut out of the line by

each hyperbola, is equal to the square upon the transverse

axis.
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Diameters of tlie Hyperbola.

158. Def. A diameter of an hyperbola is any lino

passing through the centre. The length of a diameter is

the distance between the points in which it meets the curve.

Theorem II. Every diameter of an hyperbola or of its

conjugate is bisected by the centre.

Proof. Let the equation of any line through the centre of

an hyperbola be

y = mx. [a)

The equation of the hyperbola is

Vx2 - ay = a*b\ (
6
)

and the equation of the conjugate hyperbola,

VP - a\f = - a
2
V.

(
c

)

Solving (a) and (b) for x and y, we have

and

x = +

y = ±

ab

VV— a
2m2

mab

VV— d'vd

And solving («) and (c) for x and y, we have

ab
^

and

x — ±

V = ±

VPm2— V
mob

Va^m2— V

(d)

(*)

From (cl) and
(
e ) we see that the points of intersection of

the line y = mx with the hyperbola and its conjugate are at

equal distances on each side of the origin. Q. E. D.

When V > arm2
or m < ± the values of x and y in (d)

are real, which shows that the line (a) intersects the given

hyperbola at finite distances from the centre; while in (e) the

values of x and y are imaginary, which shows that the line

(a) does not then intersect the conjugate hyperbola.
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If F < i'Tin
2

or m > ± —
,
the values of £ and y in (d)

are imaginary

,

while in (e) they are real, showing that the

line does not then meet the given hyperbola, but meets the

conjugate at finite distances from the centre.

159. Asymptotes. If F =a‘2
i?T or m = ± —

, the values
a

of x and y in both (4) and (5) become infinite. Hence the

diameter whose slope to the transverse axis is either 4- — or
a

meets the hyperbola or its conjugate only at infinity.

Def. That diameter of an hyperbola which meets the

hyperbola and its conjugate at infinity is called an asymp-
tote of the hyperbola.

Cor. 1. The equation of the q
asymptote CP is

y = x

,

or - — = 0; (13)
a a o

and of the asymptote CQ,

x — — —x, or — -)-
-f
= 0. (14)

a a b

Cor. 2. Equations (13) and

(14) are the equations of the diagonals of the rectangle formed

by the axes of the curve. Hence :

Theorem III. The asymptotes coincide with the diagonals

of the rectangle contained by the transverse and conjugate axes.

100. Theorem IV. The locus of the centres of paral-

lel chords of an hyperbola is a diameter.

The demonstration of this theorem is similar in every re-

spect to that of Theorem III. of the Ellipse. Substituting

— b
2
for F in §123 of the Ellipse, we have, omitting the

accents on the variables,

— Fx -\- oTmy = 0,

F
'

y = .r,amor (15)
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as the equation of the locus of the centres of parallel chords.

This is the equation of a straight line through the centre, and

is therefore a diameter of the curve. By giving m suitable

values, (15) may be made to represent any line through the

centre. Hence

Every diameter bisects some system ofparallel chords.

If m’ be the slope to the transverse axis of any diameter

which bisects a system of parallel chords whose slope is m,

then the equation of the diameter is

y — m'x.

But, by (15),

y = —-xam
is also the equation of the diameter;

therefore m’ = ,am

or mm' — (16)

which is the relation which must hold between the slope of

any system of parallel chords and the slope of the diameter

which bisects these chords. Hence:

Theorem V. If one diameter bisects chords parallel to a

second diameter, the latter will bisect all chords parallel to the

former.

161. Conjugate Diameters.

Def. Two diameters are said to be conjugate to each
other when each bisects all the chords parallel to the other.

The equation of condition for conjugate diameters is,

by (
16 ),

,
Emm = —

,

a

where m and m' denote their respective slopes to the trans-

verse axis. Since the second member of this equation is posi-

tive, m and m' must have the same signs; that is, they must

be both positive or both negative. Hence the angles which

conjugate diameters make with the transverse axis must be

both acute or both obtuse.
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m <
b b

a’

b

m’ >
a

’

bm >
a

’

b

m’ < ~
a’

bm — ±
a’

m' — db —

.

a

Whence it follows that the conjugate diameters of an hyperbola

lie on the same side of the conjugate axis, but on opposite

sides of an asymptote; so that if one of two conjugates, as PP',

meets the hyperbola, the other, QQ'
,
will meet the conjugate

hyperbola. PPf produced bisects all chords parallel to QQ'

in either branch of the hyperbola, and QQ', produced if neces-

sary, bisects all chords drawn betxoeen the two branches of the

curve and parallel to PP'.

Conversely, QQ' produced bisects all chords of either

branch of the conjugate hyperbola parallel to PP', and PP'
produced bisects all chords parallel to QQ' between the two

branches of the conjugate hyperbola.

Cor. Since the chords of a set become indefinitely short

near the extremity of the bisecting diameter, they will coin-

cide in direction with the tangent at that point. Hence:

Theorem VI. The tangent to an hyperbola at the end of a

diameter is parallel to the conjugate diameter.

102. Problem. Given the co-ordinates of the extremity

of one diameter, to find those of either extremity of the conju-

gate diameter.
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Let PP' and QQ' be any two

conjugate diameters, and (x', y')

the co-ordinates of P.

The equation of CP is

y'
.

y'
t \

y — -.x, since m — (a)J x x

and the equation of QQ' is

or

y = —-xJ am
Px'

y — ~~rx \J a~y
(i)

and the equation of the conjugate hyperbola is

Px2 — ary
2 — — a

2
P. (c)

Solving (b) and (c), we have, since Px'2 — a2y'2 = afb
2

,

,

a
>X = ± P

and y = ± —x\J a

163. Theorem YII. The difference of the squares of two

conjugate semi-diameters is constant and equal to the differ-

ence of the squares of the semi-axes.

Proof. Let
(
x'

,
y') be the co-ordinates of P (last figure).

Then the co-ordinates of Q will be

If the semi-conjugates be denoted by a' and P, we have

or

CP’ - CQ’ = (x” + „») fpy" +
t

fr-

_ Px'2 — cdy
n Px'2 — a

2y'

~ P
a'

2 - P 2 = a
2 -P

= a constant.

(17)
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164. Problem. To express the angle between two conju-
gate diameters in terms of their lengths.

Let 0 and 6

'

denote the angles which the conjugate semi-
diameters CP, CQ make with the transverse axis, and cp the
angle PC'Q between them.

Then eg — d' — 6

and sin cp — sin Q' cos 6 — sin d cos 6'. (a)

Now if {%’, y’) be the co-ordinates of P, those of Q will be

therefore
if-

sin 6 =

sin d' =

y_.
an

bxf

ab”

cos 6 —

a, ay
cose =w

Substituting in (a), we get

av* - a\,
n

sin cp =
aba'b'

ah

a’b”
(18)

the required expression.

Cor. From (17) we have

a
n — b

n + a constant;

therefore a’ and V increase together or decrease together.

Hence, when each tends to coincide with the asymptote, the

product a'V tends towards infinity, and sin cp tends towards

0; therefore the angle between two conjugates diminishes

without limit. When the conjugates coincide with the asymp-

totes, each becomes infinite.

165. Theorem VIII. The area of the parallelogram

whose sides touch an hyperbola at the ends of any pair of con-

jugate diameters is constant and equal to the rectangle formed

by the axes of the curve.

Proof. From (18) we have

4a'b' sin cp = 4ab

= a constant, (19)

which proves the proposition.
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166 . Problem. To find the equation of the hyperbola

referred to apair of conjugate

diameters as axes.

Let DD' ,
IIH' be any pair

of conjugate diameters. Take

DD’ for the new axis of X,
and IIH' for the new axis of

Y, and let the angleXCD— a
and XCH — f3. We may
now transform

b
2x2 — a"y" = a"b"

from rectangular to oblique axes by the process of § 129, or

we may simply change b
2
into — b~ in equation (12) of that

section. Thus we get

(a
2
sin

2a — b
2
cos

2
«').r

,2+ (a
2
sin

2/?— b
2
cos

2
/3)y'

2— — a
2
b
2

, (20)

which is the equation required.

By putting x' and y
f
each equal to zero, we get the inter-

cepts on the axes or the lengths of the semi-conjugates.

Thus, when y’ 2 — 0,

x — - a
2
b
2

a2
sin

2« — b
2
cos

2a

and when x’
2 — 0, we have

a
2
b
2

a
2
sin

2

/? — b
2
cos

2

/?

CD2 = a'
2

-,

- CH 2 = - b’
2
.

(a)

(»)

Because the new axis ofX meets the given hyperbola, the new
axis of Y will not meet the curve, but will meet the conjugate

hyperbola. Therefore -

2 • 2/?
^- 75 s-3 is a negative quail-

ct sin p — 0 cos

tity.

From (a) and (b) we get

a
2
sin

2
or — b

2
cos

2a
a2

b
2

a
1 2

a2
sin

2

/? — b
2
cos

2
(3 — a

2
b

2

b’
2

'and
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Substituting in (20) and dividing by — cfli
1

, we have,

omitting the accents from the variables,

J'V- a’Y =

or = 1. C21)

Also, the equation of the conjugate hyperbola referred to

the same axes is

x

X
Tangent and Normal to an Hyperbola.

167. Problem. To find the equation of the tangent to

an hyperbola.

In order to obtain the equation of the tangent, we have

only to repeat the process of §§ 134, 135, changing V into

— 1)\ Thus we get

cfy'y — Vx'x = — a
2
6
2

.

or yy_ _ ,

(
22

)

and also y = mx ± Varm2 — F, (23)

where m is the slope of the tangent to the transverse axis.

Intercept of the Tangent

on the Axis of X.

In (22) make y = 0.

Then

* = p = CTt (24)

from which we see that x

and x' must always have the

same sign; and since x is always positive in the right branch

of the curve, the tangent to that branch always intersects the

axis of X to the right of the centre.

16S. Subtangent. For the length of the subtangent we
have, from the figure,

Subtangent = MT
, a ‘ x — a

x' 7 = -—

—

X x (
25

)
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169 . Theorem IX. The tangent to an hyperbola at any

point bisects the angle formed by the focal radii of that point.

Proof. Since F'G— FC = ae and CT — we have

and

whence

F'T = ae + (ex' -f- a)
x x x

FT=ae--ff = ^(ex'-a);

F’T _ ex' -f- a

FT ex — a

FP

"

(§ 154 )

Therefore, since the base of the triangle F'FP is divided pro-

portionally to its sides (Geom.), the tangent PT bisects the

angle FPF'.

170. Tangent through a Given Point.

Let (h, k) be the co-ordinates of the given point, and {x',y')

the co-ordinates of the point of contact. The equation of the

tangent is

Fx’x — cdy’y — <TF\

but since the tangent must pass through (h, k) and (x', y’),

we have
Fhx' — adky' — adF, («)

and also Fx'~ — cdy
n — odF. (b)

Eliminating y' from these equations, wT
e have

(«
2F - FF)xn + 2a-Fhx' - a\F + F) = 0;

whence

, _ a'Fh Ya'k Vadk* — Fid + a^F
X ~ ~ Fid - cdld ' (

26
)

Since x’ has two values, two tangents to an hyperbola can

be drawn through a given fixed point. The tangents will be

real, coincident or imaginary according as

adF — Fid -f- a‘
2F>, = or < 0;

that is, according as the given point is within, on or outside

the curve.
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171. Problem. To find the criterion that the two tan-

gents from a given point shall touch the same branch of the

hyperbola.

If the tangents belong to the same branch of the curve, the

abscissae of the points of contact x' will have like signs; but

if they belong to opposite branches, unlike signs. Now, in

order that the values of x' in (26) may have like signs, we

must have numerically

a2
b
2h > a

2k Va2k2 - b
2h2 + a2

b
2

;

whence, by reduction,

7k < —h.
a

But u = —xJ a

is the equation of the asymptote; and if we take on the

asymptote a point whose abscissa x is equal to the abscissa h

of the point from which two tangents may be drawn, we shall

have k > y; that is, the ordinate of the point from which

two tangents can be drawn to the same branch of an hyperbola

must be less than the corresponding ordinate of the asymptote.

Hence the point from which two tangents can be drawn to the

same branch of an hyperbola must lie in the space between the

asymptotes and the adjacent branch of the curve, which is the

required criterion.

Hence, also, if the point lie without this space, the two

tangents will touch different branches of the curve.

172. Problem. To find the locus of the point from
which tioo tangents to an hyperbola make a right angle with

each other.

The solution is similar to the corresponding problem in

the Ellipse. We will therefore simply change b
2
to — b

2
in

the process of § 138, and we get

x2 + y
2 — a

2 — b
2

for the required locus, which is a circle having the same

centre as that of the hyperbola and whose radius is Va2 — b
2
.
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Cor. Two tangents at right angles to each other cannot

be drawn to an hyperbola when b > a.173.

Problem. To find the locus of the intersection of

the tangent with the perpendicular on it from the focus.

The solution is the same as that of the corresponding

problem in the case of the ellipse.

The equation of the required locus is found to be

z2 + f =
which is a circle described on the transverse axis as a diameter.

174.

Problem. To find the length of the perpendicular

from either focus upon the tangent to an hyperbola.

If
(
x'

,
y'

)
be the co-ordinates of the point of tangen cy,

andj9, p' the perpendiculars from the foci F and F' respec-

tively, we find, in the same manner as in the Ellipse,

aF(ex' — «)_')

Vblxn + afi'
V

I

aF(exr + a)
.

|

Vb'x
n ayy

n ’

J

whence we get, by reduction,

pp' — b
2

p _ ex — a _r
and

P ex

(27)

(28)

(29)

where r and r' denote the focal radii of the point of contact.

From the last two equations we readily find

and P =
2^+7 (30)

175.

Normal to an Hyperbola.

Problem. To find the equation of the normal to an hyper-

bola.

The equation of the normal is found by changing V into

— b
2

in the process of § 141. Thus, if (x'
, if) be the co-
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ordinates of any point P on the hyperbola, the equation of

the normal PN is

Hence, subnormal = MN — ON — CM — (e
1 — l)x'.

1 7G. Theorem X. The normal at any point of an hyper-

bola bisects the external angle contained by the focal radii of

that point.

Since the angles FPF' and FP

H

are supplementary and

TP bisects FPF', therefore PN, which is perpendicular to

TP, must bisect the external angle FPH.
Cor. Comparing this result with that of § 113, we see that

if an ellipse and an hyperbola have the same foci, the curves

will intersect at right angles.

For at the point of intersection the taugent of one will be

the normal of the other, and vice versa.

Remark. The student should note the relations between the differ-

ent theorems and formulae relating to the ellipse and the corresponding

ones relating to the hyperbola. Where the formula of the one class con-

tains the symbol 62
,
it may be applied immediately to the other by chang-

ing the sign of bi
,
which will be the result of substituting b ^ —1 for b.

Where only the first power of b enters, the theorems of one class involving

real quantities will be imaginary when transferred to the other class. Thus

we have imaginary asymptotes to the ellipse. The apparent exceptions

arise from our substituting a real for an imaginary conjugate axis in the

hyperbola and thus referring several expressions which would have been

imaginary to the conjugate hyperbola, which, it must be remembered,

is not a part of the curve at all.

(31)

The Subnormal. Putting y — 0 in (31), we find
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Poles and Polars.

177. Problem. To find the equation of the chord oj

contact of tioo tangentsfrom the same given point.

Let
(
h

, k) be the co-ordinates of the fixed point from

which the two tangents that determine the chord are drawn.

Then, hy simply changing the sign of F in § 144, the equa-

tion of the hyperbolic chord of contact will he

h'x k'y _
Id

__
F ~ 1 (32)

when referred to the axes of the curve,

or
h'x k'y

when referred to any pair of conjugate diameters.

(33)

178. Locus of Intersection of Two Tangents whose chord

of con tact passes through a fixed point.

Let (x’
,
y') be the co-ordinates of any fixed point through

which the chord of contact belonging to any two intersecting

tangents is drawn. Then, hy simply changing the sign of F
in the process of § 145, we shall have, for the equation of the

required locus.

x'x

a"
(34)

or, when referred to a pair of conjugate diameters.

x'x y'y _
a”

(35)

which is the equation of a straight line, the polar of the

point (x', y').

Cor. The student may easily show, as in the case of the

ellipse, that the polar of any point in respect to an hyperbola

is parallel to the diameter conjugate to that which passes

through the point.
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179 . Polars of Special Points.

Polar of the Centre. Proceeding in the same manner as

in the ellipse, we find that the polar of the centre is at in-

finity.

The Polar of any Point on a Diameter A is a straight line

parallel to the conjugate diameter, and cutting the diameter

A at a distance from the centre equal to the square of the

semi-diameter on which the point is taken divided by the

distance of the point from the centre.

Polar of the Focus. Substituting (±ae, 0) for (xf y') in

the equation of the polar, we have

Hence the polar of the focus of an hyperbola is the perpen-

dicular which cuts the transverse axis at a distance — from

the centre on the same side as the focus.

180 . Distance of any Point on the Curve from either Fo-

cal Polar.

Let DR be the polar of the focus F. Then we have

Whence:

Theorem XI. The focal distance ofanypoint on an hyper-

bola is in a constant ratio to its distance from the polar of the

focus.
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This ratio is greater than unity and equal to the eccentri-

city of the curve.

Def. The polar of the focus is called the directrix of

the hyperbola.

The above property enables us to describe the curve by continuous

motion, as follows: Take any fixed

straight line NR and any fixed point F,

and against the former fasten a ruler,

and place another ruler, right-angled at

N, so that its edge, NH, may move freely

along NR. At F attach one end of a

thread equal in length to the hypothe-

nuse HQ of the ruler, and the other end

to the extremity Q of the ruler. Then
with a pencil-point P stretch the thread

tightly against the edge I1Q
,
while the

ruler is moved along the other ruler, NR.
The point P will describe an hyperbola,

for in every position we shall have

and therefore

PF = PH;
PF _ PIT

PD ~ PD

=m
NQ = a constant.

181. Cor. From §§ 97, 148 and 180 it follows that we

may define a conic section as the locus of a point which moves

in such a way that its distance from a fixed point (the focus)

is in a constant ratio to its distance from a fixed straight

line (the directrix).

PF
In the ellipse, the ratio -p-p

PF
In the parabola, the ratio —

^

PF
In the hyperbola, the ratio -p^

< 1 .

= 1 .

> 1 -

In all cases this ratio is the eccentricity of the curve.

In the case of the ellipse and hyperbola there is a direc-

trix corresponding to each focus. In the case of the parabola

the second focus and directrix are at infinity.
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The Asymptotes.

182 . We have already shown (§159) that the equations

of the asymptotes when re-

ferred to rectangular co-ordi-

nates are

-±f = o. '(«)
a o

Now since the equation of

the hyperbola referred to a

pair of conjugate diameters

as axes is of the same form as

when referred to rectangular axes, we at once infer that equa-

tions (a) transformed to the same conjugate diameters become

that is, the equations of the asymptotes MG, LH when re-

ferred to any pair of conjugate diameters are respectively

oII1a

|*e
(*)

and
aj

a
+ II © (0)

Equation
(
b
)

is the equation of a line which passes through

the centre or origin and the point
( + a', +£')? that is,

through C and D; and (c) is the equation of a line which

passes through the origin and the point (-}- a '
,
— b') or C

and E. Hence we conclude:

Theorem XI. The asymptotes coincide in direction with

the diagonals of the parallelogram formed by any pair of

conjugate diameters.

183 . Angle betiveen the Asymptotes.

Let GGX — a. Then tan a = —

;

a

whence sin a = —
,

and cos a = — ° —
.

Va? + V Va* + V
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Now since XCH — OCX, sin GCH = sin 2GCX-,

hence sin GCH = 2 sin GCX cos GCX

2ab

Cor. In the equilateral hyperbola, a = b;

hence sin GCH = 1;

that is, the asymptotes of the equilateral hyperbola intersect

at right angles. For this reason the equilateral hyperbola is

sometimes called the rectangular hyperbola.

184. Theorem XII. The asymptotes of the hyperbola

are its tangents at infinity.

We prove this by showing that, as the point of tangency

on an hyperbola recedes indefinitely, the tangent approaches

the asymptote as its limit.

1. If, in equation (24) of § 167,

we suppose x' to increase without limit; x, the abscissa of the

point in which the tangent intersects the transverse axis, ap-

proaches zero as its limit. Hence the tangent at infinity

passes through the centre of the hyperbola.

2. From the equation of the tangent,

Vx’x — a2
y'y = a*V,

Vx'
it follows that its slope to the axis of X is -=-7. We must

ay
now find the value of this slope when the point of tangency

(x '
,
y') recedes to infinity. Because this point remains on

the hyperbola, we have

x' y _

whence
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As y' recedes to infinity,-^ approaches zero as its limit; whence,

ocf a
at infinity,-^ = ± —

,
and we have

Slope of tangency at infinity = n: —

.

Hence the tangents at infinity are a pair of lines whose equa-

tions are

,

b

y = ± -x,J a

which lines are the asymptotes, by definition.

185. Problem. To find the equation of the hyperbola

referred to its asymptotes as axes.

Let the asymptote CH be the new axis of X, and the

other, CG, the new axis of Y\
(
x

, y) be the co-ordinates of any

point on the curve referred to the old axes, and
(
x' ,

y') the

co-ordinates of the same point referred to the new axes.

The equation of the curve referred to the old axes is

Vxd — adif — art?, (a)

which must be transformed to the new or oblique axes, the

origin remaining the same.

The formulae of transformation are

x — x’ cos a -)- y' cos f3; )

y — x' sin a -j- y' sin (3 ;
f

(b)

where a and /3 are the angles which the new axes make with

the old axis of X; that is, a — XCH and (3 = GCX,

or (3 = — a.

Therefore (b) becomes

x —
(
x' + y') cos or,

y = (x' — y')sin a;

which being substituted in (a) give, after obvious reductions,

(&
2 cosV— ad sin

2
«')(a:

,2
q-?/

/2
)4- 2 (Z>

2
cos

2a-+ sin*oi)x'y’=a*V

.

But
b

tan a = —

,

or
a

sin a _ b'

cos a a
’

V cos
2
a- = ad sin

2

#;whence
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which being substituted in the preceding equation gives, after

dividing by a
2

,

4 sin
2
a' x'y' = F.

But sin a = -
^

; (8 188)
Va 2 + b

2

therefore = a
2

-f- F,

or, omitting the accents on the variables, since

is perfectly general,

_ v

the equation

(36)

which is the required equation.

Cor. The equation of the conjugate hyperbola referred

to the same axes is readily found to be

a
2 + F

xy=
4
— (37)

186. Problem. To find the equation of the tangent to

an hyperbola referred to the asymptotes as axes.

Let
(
x

' ,
y') and

(
x", y") be the co-ordinates of any two

points on the curve. The equation of the secant through

these two points is

y - y' - v~
, I

y
c
„ (x - x')- («)

Since the points (x', y
') and [x"

,
y") are on the curve.

r /
a~ F

x y -
4

and n T-

x"y" =
^ ;

whence ^5
r-HOII

which substituted in (a) gives, after reduction,

y -yf = - -(* - O-
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iNow at the limit, x" — x' and the secant becomes a tan-

gent; hence the equation of the tangent at the point (x!
,
y') is

v'
y - y' = - -,(x - O;

whence x'y -f xy' = 2x'y
f

,

or
x'
+

y’
2

, (38)

thus, x - 2x' = CT

and y = 2y' — CT'.

Hence the point of contact

is the middle point of TT’\

or, that portion of a tan-

gent intercepted between

the asymptotes is bisected

at the point of contact.

which is the simplest form of the required equation.

Cor. 1. Making x and y successively equal to 0, we get the

intercepts on the axes;

Cor. 2. CT x CT = 4x’y'= a* +
or, the rectangle formed by the intercepts cut off by any tan-

gent from the asymptotes is constant and equal to the sum

of the squares of the semi-axes.

Cor. 3. The area of the triangle CTT' is

= \CT .CT'

.

sin TCT'
2ub= 2x'y' X 2 „J a b

- ^ V 2ab

2 «" + b
3

= ab, a constant

;

or, the area of the triangle formed by any tangent and the

asymptotes is constant and equal to the rectangle of the

semi-axes.
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EXERCISES.
1.

Find the equation of that hyperbola whose transverse

axis is 8 and which passes through the point (10, 25).

21w5

Am -

le-ssto
= 1 .

2. What condition must the eccentricity of an hyperbola

fulfil in order that the abscissa of some point upon it shall be

equal to the ordinate? Ans. e < V2.

3. Express the distance from the centre of an hyperbola to

the end of its parameter in terms of the semi- transverse axis

and eccentricity.

4. Show that each ordinate of an equilateral hyperbola

is a mean proportional between the sum and difference of the

abscissa and semi-transverse axis.

5. Write the equation of a focal chord cutting an hyperbola

at the point (x'
,
y').

(5. Find that point upon the conjugate axis from which the

two tangents to an hyperbola form a right angle with each

other.

7. Where do the tangents drawn from a vertex of the con-

jugate hyperbola touch the hyperbola, and what are the equa-

tions of these tangents? Show that they are bisected by the

transverse axis.

8. What must be the eccentricity in order that the tan-

gent at the end of the parameter may pass through the vertex

of the conjugate hyperbola?

9. Find those tangents to an hyperbola which make an

angle of 60° with the transverse axis.

10. What must be the eccentricity of an hyperbola that the

subnormal may always be equal to the abscissa of the point

from which the normal is drawn?

11. Find the equation of the hyperbola when the origin is

transferred to one of the vertices, while the axes of co-

ordinates remain parallel to the principal axes.

12. Express the product of the segments into which a
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food chord is divided by the focus in terms of the angle

which the chord forms with the major axis.

Ans. tf
1 — e

2
cos

20

'

13. Show that the sum of the reciprocals of the two seg-

ments of a focal chord is equal to four times the reciprocal of

the parameter.

14. The line x = 3y is a diameter of the hyperbola

25x 2 — 16^
2 = 400. Find the equation of the conjugate

diameter.

15. For what point of an hyperbola are the subtangent and

subnormal equal to each other?

16. Express the length of the tangent at the point (x'
} y').

& 'll

17. Find the condition that the line 7 + - = l shall touch
o a

the hyperbola — Ans. e* — e
1 — 1.

18. A perpendicular is drawn from the focus of an hyper-

bola to an asymptote. Show that its foot is at distances a

and b from the centre and focus respectively.

19. Show that the linear equation of the right-hand branch

of the hyperbola when a focus is the origin is

r — ex Y «(1 — e
2

).

20. Each ordinate of an hyperbola is produced until it is

equal to the focal radius of the point to which it belongs.

Find the locus of its extremity.

21. Find the equation of the tangent at the extremity of

the latus rectum.

22. Show that the intercepts cut off from the normal by

the axes are in the ratio of «
2

: b".

23. In an hyperbola, 3a = 2c. Find the eccentricity and

the angle between the asymptotes.

Ans. e = sin
-1

^ Vh.
/v y

24.

Show that the angle between the asymptotes of an

hyperbola is

2 sec
-1

e.
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25.

From any point on an hyperbola perpendiculars are

drawn to the asymptotes. Show that their product is constant

and equal to

26. From any point in one of the branches of the conju-

gate hyperbola tangents are drawn to an hyperbola. Show

that the chord of contact touches the other branch of the

conjugate hyperbola.

27. Show that the polar equations of the right-hand branch

of an hyperbola referred to the foci are

«(e
2 — 1

)

1 — e cos 6
and

u(l — e
2

)

1 — e cos 6'

28.

Show that the polar equation of the hyperbola when
the centre is the pole is

2
r

e
2
cos

2 6 — 1'

29. Show that the length of any focal chord of an hyper-

2 P
bola is — . -x xryx where 6 is the inclination of the

a e cos 6—1
chord to the transverse axis.

30. In the figure of § 182, show that the diagonal PQ is

parallel to the asymptote.

31. In an equilateral hyperbola, if cp is the inclination of

a diameter passing through any point P, and cp' the inclina-

tion of the polar of P, show that

tan cp tan cp' — 1.

32. Through the point (5, 3) is to be drawn a chord to the

hyperbola 25.r
2 — 16?/

2 = 400 which shall be bisected by the

point. Find the equation of the chord.

33. In an hyperbola is to be inscribed (or escribed) an equi-

lateral triangle, one of whose vertices shall be at the right-

hand vertex of the curve. Find the sides of the triangle,

and find the eccentricity when they are infinite.

34. Express the tangent of the angle between the two

focal radii drawn to the point
(
x ', y

') of an hyperbola, and
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thence find those points of the curve from which these radii

subtend a right angle.

Ans., in part, tan cp - ^ + y?_ aV »

35. For what point on an equilateral hyperbola is the pro-

duct of the focal radii equal to 3/d?

36. From the foot of any ordinate of an hyperbola a tangent

is drawn to that circle described upon the major axis as a

diameter. Show that the ratio of the ordinate to the tangent

is a constant and equal to e
2 — 1.

37. Find the lengths which the directrix of an hyperbola

cuts off from the asymptotes, and the length of that segment

of the directrix contained between the asymptotes.

Ans. a and b A- e.

38. Find the polar of the vertex of the conjugate hyper-

bola relatively to tire principal hyperbola.

39. From any point of an hyperbola is drawn a parallel to

the asymptote, terminating at the directrix. Find the ratio

of the length of this parallel to the focal radius of the point,

and show that it is a constant.

40. Show (1) that the sides of the quadrilateral whose ver-

tices are at the termini of any pair of conjugate diameters are

equally inclined to the principal axes; (2) that all such quad-

rilaterals in the same hyperbola have their corresponding sides

parallel and are equal in area.

41. Find that point of an hyperbola for which the tangent

is double the normal.

42. At what angle does the hyperbola x2 — if — c? inter-

sect the circle x2
-|- y" = 9a

2
?

43. A line drawn perpendicular to the transverse axis of

an hyperbola meets the curve and its conjugate in P and Q
respectively. Find the loci of the intersection of the normals,

and of the tangents, at P and Q.

?/
2 X2

1)*X*

Ans. The transverse axis; 5 = 4-^.
b~ a ay

44. The two sides of a constant angle slide along a para-

bola, Find the locus of the vertex of the angle, and compare

the cases of two loci whose angles arc supplementary.



CHAPTER VIM.

THE GENERAL EQUATION OF THE SECOND DEGREE.

187 . The most general equation of the second degree be-

tween two variables x and y may be written in the form

mx1

nif + 2Ixy -f- 2px -f- 2qy -)- d = 0; (1)

the six coefficients m, n, l, p, q and d being any constants

whatever. *

We may divide the equation throughout by any one of the

coefficients without changing the relation between x and y.

One of the six coefficients will then be reduced to unity.

Hence the six coefficients are really equivalent to but five in-

dependent quantities.

The problem now before us is: What possible curves may
be the locus of the general equation, and what common pro-

perties have these curves?

One property may be recognized at once by determining

the points of intersection of the curve with a straight line.

Let the equation of the straight line be

y — hx -f b.

By substituting this value of y in (1) we shall have an

equation of the second degree in x whose roots will give the

abscissas of the points of intersection. Now, since an equa-

tion of the second degree always has two roots which may be

real, equal or imaginary, we conclude:

* Three of these terms are written with the coefficient 2 because

many expressions which enter into the theory, especially when deter-

minants are introduced, are thus simplified. We then consider l, p and

q as representing one half the coefficients of xy, x and y respectively.
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Theorem I. Every straight line intersects a curve of the

second degree in two real, coincident, or imaginary points.

188. Change of Origin. To continue the investigation,

we change the origin of co-ordinates without changing the
form of the curve. If we put x' and y' for the co-ordinates

referred to the new origin, we must, in equation (1), put

x = x' -j- a',

y = y' + 1';

a' and V being the co-ordinates of the new origin, which are

to be determined in such a way as to simplify the equation.

Making this substitution, the equation becomes

vix
n
f- 2lx’y' + ny'~ + 2(a'm+ VI+ p)x'+ 2 (a'l+ b'n + q)y'

-)- anm -j- b'~n -(- 2a'b'l 4- 2a'

p

-)- 2b'q -j- d = 0. (2)

We now so determine the co-ordinates a' and V that the

coefficients of x’ and y' shall vanish. To effect this we have

the equations

ma' + lb' =-p-,)
{)

la' + nV = -g;

)

’

in which a' and b' are the unknown quantities. Solving the

equations, we find

up -Iqf|

T - mn ’
i /a v

7 > (°)
_ mg -Ip

f

l
2 — mn J

Omitting for the present the special case in which P — mn
= 0, these values of a' and b' will always be finite.

By means of these values of a' and b' we may simplify the

equation (2) as follows: Multiplying the first of equations (a)

by a', the second by b’, and adding, we have

ma'2 + nb + 2 la'b’ = — a’p — b'q. (b)

By means of the equations (a) and (b) the general equation

(2), omitting accents, is reduced to

mx2 f 2Ixy + ny~ + «'p f-b’q d— 0. (4)

This equation (4) will now represent the same curve as

(1), only referred to new axes of co-ordinates.
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189. A second fundamental property of the locus of the

second degree is immediately deducible from (4). If x and

y be any values of the co-ordinates which satisfy this equation,

it is evident that — x and — y will also satisfy it. That is,

if the point
(
x

, y) lie on the curve, the point (— x, — y) will

also lie upon it. But the line joining these two points passes

through the origin and is bisected by the origin. When re-

ferred to the original system (1), this origin is the point

whose co-ordinates are a' and V in (3). Hence:

Theorem II. For every curve of the second degree there is

a certain 'point which bisects every chord of the curve passing

through it.

Def The point which bisects every chord passing through

it is called the centre of the curve.

Remark 1. In the special case when

T — mn = 0,

the centre (a', b') of the curve will be at infinity, and the

theorem will not be directly applicable.

Remark 2. Since in the equation (4) the origin is at the

centre, this equation is that of the general curve of the second

degree referred to its centre as the origin.

190. Change of Direction of the Axes of Co-ordinates.

The next simplification of the equation will consist in remov-

ing the term in xy. To do this, let us refer the curve to the

same origin as in (4), namely, the centre, but to a new system

of axes making an angle d with those of the original system.

This we do by the substitution (§ 27)

x — x’ cos d — y
f
sin d;

y = x' sin 8 f y' cos d.

Making this substitution, the equation becomes

(to cos
2d + n siird -|- 21 sin d cos 8)xn

+(m sin
2d -f- n cos

2d — 2 1 sin d cos 8)y
n

+ [(% — m) sin 2d + 2Zcos 2S~\x'y' = d’ ,

where we put — df = a'p + b'q -f d.
(
5

)
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Substituting for the powers and products of sines and co-

sines their values, namely,

cos
2d = -J(l + cos 2d),

siird = ^(1 — cos 2d),

2 sin d cos d = sin 2d,

and then putting, for brevity,

h = (

n

— m) cos 2d — 21 sin 2d, [ , ,

k = (

n

— ?»)sin 2d 2 1 cos 2d, j

this equation reduces to

(ni -(- n — h)xn -\-{m -(- n + h)y'~ + 2kx'y' — 2d'

.

(6)

To make the term in x'y' disappear, we must so determine

the value of d that k = 0. This gives

, ot 21
tan 2d = ,m — n

which determines the values of d.

Then from (c) we have, when k — 0,

h sin 2d — k cos 2d = — 21 —h sin 2d;

h cos 2d + k sin 2d = n — m — h cos 2d.

The values of h and d are therefore given by the equations

whence

h sin 2d = — 21; )

h cos 2d = n — m; f
(7)

II 1 + (8)

Omitting accents, the equation (6) of the curve now re-

duces to

m-\-n— V(vi— n)~-\-^T
2

,

V(m — «)
2+4f 2_ i r

2d’
•
r"'

h“
2d’

~
y ~ L (9)

The coefficients of x* and?/2
in this equation are always real,

but may be either positive or negative according to the sign of

d' and the values of in, n and l.
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If, then, we put

the algebraic signs being so taken that a" and lr without

sign shall be positive, the equation (9) still further reduces to

which still represents the same locus as (1), only referred to

different axes and a different origin.

191 . There are now three cases to be considered’

Case I. The algebraic signs in the first member both

negative.

Case II. The algebraic signs both positive.

Case III. The one sign positive and the other negative.

In the first case the equation is impossible with any real

values of x and y, because the first member will then be neces-

sarily negative, while the second is positive. The curve is

therefore wholly imaginary.

In the second case the equation is that of an ellipse whose

semi-axes are a and b.

In the third case the equation is that of an hyperbola whose

semi-axes are a and b.

We therefore conclude:

Theorem III. The locus of the equation of the second de-

gree between rectangular co-ordinates is a conic section.

192 . Special Kinds of Conic Sections. In order that the

equation (9) shall represent an ellipse we must have, by Case II.,

(
10

)

m -j- n > V(m — n)'
1

41'2
.

Hence

and

(m -j- nfy (

m

— nf -f 4f

mn > r,

mn — r positive.or
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Hence:

Theorem IY. The criterion whether the general equation

(1) shall represent an ellipse or an hyperbola is given by com-

paring the square of the coefficient of xy with four times ilie

product of the coefficients of x
2 and y'\

If the square is algebraically less thanfour times theproduct,

the curve is an ellipse ; if greater, it is an hyperbola.

In special cases the equation may represent other lines than

the ellipse or hyperbola. We have, in fact, tacitly assumed

that the expressions a
2 and b

2
in (10) are both finite and de-

terminate. We have now to consider the case when either of

them is zero, infinity or indeterminate.

193 . The Parabola. If in the equation (1) mn =. V,

the preceding criterion will give neither a genuine ellipse nor

hyperbola, but a limiting curve between the two. We know
the parabola to be such a curve. In this case, also, the co-ordi-

nates a' and b' of the centre of the curve in (3) will be infinite,

so that the equation cannot be reduced to the form (4). But

when the centre of an ellipse or hyperbola recedes to infinity,

we know from Elementary Geometry that the curve becomes

a parabola. We shall now prove this result analytically.

Reduction in the Case of a Parabola. We have to con-

sider the special form of the general equation (1) in which

l — Vmn. The equation may then be written in the form

(nftx + n^yf + 2px + 2qy -J- d = 0. (12)

That is, in this case the sum of the three terms of the second
l l

order forms the square of the linear expression nfx -)- try.

We may infer that the line whose equation is

l l

mx -j- tCy = 0

stands in some special relation to the curve. We shall there-

fore so change the direction of the axes of co-ordinates that

this line shall be the new axis of X. Taking the general

equation for this transformation,

x = x' cos 8 — y' sin 8,
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we see that they giveli i l

nvx n2

y = (to
5
cos 8 -(- n 1

sin 8)x’

+(— to
5
sin 8 -|- n' cos 8)y'. (

b

)

l l
.

In order, now, that the line m2x -f n 2

y = 0 may be identi-

cal with the line y' — 0 (which is the axis of X'), the coeffi-

cient of x' in the above equation must vanish. That is, we

must have

to* cos 8 -f- ?rsin 8 = 0, (o)

or

whence sin 8 —

cos 8

tan 8 = —

tan d

ni ’

mi

Vl -f- tan
2d

1
+

Vm + n
ni

VT+taird Vm-\-n

— m* sin 8 -f n cos 8 = (
m -+- nf

.

(5) and (a) now become

n*y — \/(m -f- ri)y'\

(d)

__
nix' + miy'

X
\/{m -f- n) ’

niu
y - —

\/(m + n
)

By substitution, the equation (12) now becomes

(m , n\vn .

2Pni ~ 2?mi x>
,

2P >ni +
v >

, d = 0 .

' ' W ^{rn -}- n) ‘ \/{m + n) ^ ' ’

and putting, for brevity,

p _ qmi — pni
~

(to + n)i
’

n _ pmi + qni
V =

(to + n)i’

(
13

)

D = d
to -f- n’

the equation reduces to

y
n + Qy' - Px’ + n = o.
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This, again, can be expressed in the form

w +m = w + iv - d. (15)

We can still further simplify this equation by changing

the origin to the point whose co-ordinates are — and
J (p _ j)4 Y

p . If the new co-ordinates referred to this origin are

which is the equation of a parabola whose parameter is \P
referred to its vertex and principal axis.

We therefore conclude:

Theorem V. The general equation of the second degree

represents a parabola when the square of the coefficient of xy

is equal to four times the product of the coefficient of x* and if
1

.

194 . Case when the Parameter is Zero. There is still a

special case of the parabola to be considered, namely, that in

which P = 0. From (16) it would then follow that y — 0 for

all values of x. But this conclusion would be premature,

because the transformation (15) would then involve the plac-

ing of a new origin at infinity. We must therefore go back

to the equation (14), which, when P — 0, gives

that is, y may have either of two constant values.

Hence, when P — 0, the equation represents a pair of

straight lines parallel to the axis of Wand distant — D
on each side of it.

195 . General Case of a Pair of Straight Lines.

On reducing to the form (4), the absolute term d' may
vanish. The reduction to the form (9) will then be impossi-

x and y, we have

y = y' + iQ-

Then, by substitution, the equation becomes

ffi = Px, (16)

y = - iQ ± ^\Qr -
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ble, because the coefficients of x2 and y
2
will become infinite.

In tbis case, however, the equation (4) will be

mx2 + 2Ixy + ny" = 0. (17)

If we factor this quadratic equation by any of the methods

explained in Algebra, we may reduce it to the form

\ny + {l + VP — mn)x\ X {ny (l — VP — mn)x\ — 0,

or we may prove this equation by executing the indicated

multiplications and thus reducing it to the form (17).

Now this equation may be satisfied by equating either of

its two factors to zero. If we distinguish the values of y in

the two factors by subscript indices, we may have either

or

y ,
=

y,
=

— I + VI" — mn
2n~

— I — Vr — mn
w: x:

(18)

that is, to each value of x will correspond these two values of

y. But each equation (18) is that of a straight line passing-

through the origin. We therefore conclude:

Theorem VI. When, on reducing the general equation of

the second degree to the centre, the absolute term vanishes,

the equation represents a pair of straight lines.

If we have P < mn, the lines will both be imaginary.

But in this case there will be one pair of real values of the co-

ordinates, namely, x = 0 and y = 0. Hence,

If, in the case supposed in the preceding theorem, the lines

become imaginary, the equation can be satisfied by only a single

real point.

This result is also evident by a comparison of equations

(9), (10) and (11), because when d' — 0 and P < mn, we
have an ellipse of which both the axes are zero, and this can

be nothing but a point.

On the other hand, if both the axes of an hyperbola be-

come zero, it reduces to a pair of straight lines.

We have thus found two seemingly distinct cases in
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which the conic is reduced to two straight lines: the one when
P — mn — 0 and P = 0; the other when d' — 0. We shall

now show that the former cases may bo combined with the

latter.

If in the expression (5) for d' we substitute for a' and V
their values (3), it will become

7, _ P(nP ~ k) + ~~ ty) + d(P ~ mn )

l — mn
Now let us put

R = p{np — Iq) -f- q{mq — Ip) + d(P — mn),

so that we have

R — d\mn — P).

(19)

(
20

)

If we square the value (13) of P and note that we are

considering the case when mn — T, we have

(m + n)
3P2 = mq~ — 2lpq + np'

= p( iip - k) + q(mq - 1p)-

This expression is zero, by hypothesis, since P = 0. Com-
paring it with (19) and noting that P — mn = 0, we see that

the value of R vanishes in this case as it does when d' — 0.

We therefore conclude that R = 0 is the condition that the

conic shall reduce to a pair of straight lines.

196. Summary of Conclusions. The various conclusions

which we have reached may be recapitulated as follows:

The general equation of the second degree,

mf -)- Tlxy + nif + 2px + 2qy d = 0,

represents

An ellipse when P < mn;
A parabola when P = mn:
An hyperbola when V > mn.

Also, in special cases,

The ellipse may be reduced to a point;

The parabola to a pair ofparallel straight lines;

The hyperbola to a pair of intersecting straight lines.

But since, in the first case, the point-ellipse is defined as

the real intersection of a pair of imaginary straight lines, we
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may describe all three of these cases as one in which the conic

is reduced to a pair of straight lines, and sum up the conclu-

sion thus:

If the coefficients in the general equation of a conic satisfy

the condition

p(np ~
1<l) + q{mq — Ip) + d(f — inn) = 0, (19)

the conic will he reduced to a pair of straight lines. If we

have

! < inn, the lines are imaginary;
} = mn, the lines are real, and parallel or coincident;

r > mn, the lines are real and intersecting.

197 . All these forms are conic sections. That the

ellipse, parabola and hyperbola are such sections is shown in

Geometry.

When the cutting plane passes through the vertex of the

cone, the section is a point or a pair of intersecting straight

lines according to the position of the plane.

/
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When the vertex of the cone recedes to infinity, the base

remaining finite, the cone becomes a cylinder, and the sec-

tion parallel to the elements is a pair of parallel straight lines.

Remark. A conic section is, for brevity, frequently

called a conic simply, and we therefore designate all loci of

the second degree as conics.

198. Similar Conics. From equation (10) it follows

that the ratio a : b of the semi-axes depends only upon the

coefficients m, n and l of the terms of the second order in

the general equation. Since we have, for the eccentricity.

it follows that the eccentricity depends only on the same co-

efficients, l, m and n.

Moreover, the angle d which the principal axes of the

conic form with the original axes of co ordinates depends only

on these same coefficients. Hence, using the definitions.

Similar conics are those which have the same eccen-

tricity or (which is the same thing) the same ratio of the

two principal axes; Similar conics are said to be similarly

placed when their corresponding axes are parallel,—we have

the theorem:

Theorem VII. All conics ivhose equations have the same

terms of the second degree in the co-ordinates are similar

and similarly placed.

199. Theorem VIII. A conic section may he made to

pass through any five points in a plane.

Let us divide the general equation (1) by d, and, distin-

guishing the new coefficients by accents, we have

m'x1 + n'y
2 + 2Vxy + 2p'x + 2q'y + 1 = 0. (n)

Now if (+, y ,), (+, +), (+, yt), (+, y4), (+, y.) are the

five given points in the plane, we have, by substituting in the

last equation the co-ordinates of these five points for the gen-

eral co-ordinates x and y, the five following equations of con-

dition:
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m'x

;

-|- n'y* + 2l'x
1y 1 + 2p'x

l + 2q'y
1 + 1 = 0;

m'x* + n-y

*

+ 2l’xjy
t + 2p’xt + 2q'y2 + 1 = 0;

+ n'y,
2 + SJ'a.y, + + 2q'y

3 + 1 = 0;

m'x* + n'y; + 2l'x
iyi + 2p'x

t + 2q'y
i + 1 = 0;

m'x; + n’y; + 2l'x
by b + 2p'x

b + 2q'y b + 1 = 0;

from which the coefficients in’, n', V
’
,p' and q' may be found,

since xv yx ,
x
3, y3 , etc., are known quantities. Substituting

these values of in', n', etc., in the general equation (a), the

resulting equation of the second degree in x and y will be

that of the required conic section.

Cor. Since the equations of condition are all of the first

degree with respect to in', n' , V
,
p’ and q', each of these

quantities has only one value; therefore only one conic section

can be passed through five given points on a plane.

Example. Let it be required to pass a conic section

through the five points (2, 1), (— 1, — 3), (0, 3), (1, 0),

(3, - 2).

The equations of condition which determine the coefficients in, n, l,

etc., are (omitting the accents)

4m + ft + 4? + 4^> + 2<? + 1 = 0

;

m + 9a + 61 — 2p — 6q + 1 = 0;

9a + 6q -f 1 = 0;

i

n

+2p +1=0;
9?ft + 4ft — 121 + 6p — 4g + 1 = 0;

from which we find

m Q =
59

384'

Substituting these values in the general equation

mx2 + ny‘2 + 2Ixy + 2px + 2qy + 1=0,

and clearing of fractions, we have

99a;2 - 41y'1 - 12xy - 291a; + 59y + 192 = 0,

which is the equation of an hyperbola, since l- — mn is a positive quantity.

If one of the given points should be the origin, the corresponding

equation would be the impossible one 1 = 0. In this case we should

have to divide by some other coefficient than a.
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200. Intersection and 'Pungency of Conics.

Theorem IX. Two conics in general intersect each

other in four points.

Proof. Tlie co-ordinates x and y of the points of inter-

section of two conics are given by the roots of two equations

of the second degree in x and y. Now, it is shown in Algebra

that when we eliminate an unknown quantity from two quad-

ratic equations, the resulting equation in the other unknown
quantity will, in general, be of the fourth degree. This equa-

tion will therefore have four roots, thus giving rise to four sets

of co-ordinates of the points of intersection.

.Remark. The roots may be all four real; one pair real

and one pair imaginary; or all four imaginary; and, in any

case, the two roots of a pair may be equal.

According as this happens the conics are said to intersect

in real, imaginary or coincident points. In the latter case

they are said to touch each other at the coincident points.

Cor. Two conics may touch each other at two points and

no more.

201. Families of Conics. Let us put, for brevity,

P’ = m'x" + 2Vxy + n’tf -f 2\p’x + 2q'y -f- d'
;

P" = mPx2 + 2Vxy + n”y2 + 2p"x -j- 2q"y + d";

etc. etc. etc.

;

that is, let us represent by P’ . P", etc., any functions of the

second degree in the co-ordinates.

Theorem X. If P’ — 0 and P" = 0 are the equations

of any two different conics, then the equation

pP' + AP" = 0 (20)

{where p and A are constants) will represent a third conic

passing through the four points of intersection of the other

two.

For, first, we see by substitution of the values of P' and

P" that the equation (20) is of the second degree in the co-

ordinates. Hence its locus is some conic.

Secondly, every pair of values of x and y which make
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both P' — 0 and P" = 0 must also satisfy the equation

piP' -j- AP" — 0. Hence every point common to P' and P"
must belong to the locus of (20); that is, this locus passes

through all the points, real and imaginary, in which P' and

P" intersect. The number of these points is four.

By giving different values to the ratio A : pi, any number
of conics passing through the same four points may be found.

We may, without loss of generality, suppose px = 1 in this

theory, because the locus (20) depends only on the ratio A : pi

Def. A system of conics all of which pass through the

same four points is called a family of conics.

202. Theokeji XI. In a family of conics two and

no more are parabolas.

Proof. If, in the expression

P = P' + A P”,

we substitute for P’ and P" their values, we shall have, in P,

Coefficient of P — m' -j- Am" = m;

Coefficient of y
2 = n' -j- An" = n;

Coefficient of 2xy = V + Al" = l.

The condition that the curve P = 0 shall be a parabola

then becomes

0 — P — mn
= (

l
,n - m"n") A2+ (2VI"-mV- m"n ')A + l

n - mV.

This is a quadratic equation in A, which therefore gives

two values of A, and thus two expressions for P, each of which,

equated to zero, is the equation of a parabola. Q. E. D.

203. Theorem XII. In a family of conics three, and
no more, may be pairs of lines.

Proof. Forming the expression P' + AP"

,

we find the

coefficients of the general equation to become

m = m' -f- Am";

n = n' + An";

etc. etc.
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In order tliat a conic of the family may be a pair of lines

it is necessary and sufficient that its coefficients satisfy the

condition (19). Each term of (19) is of the third degree in

the coefficients. Hence the entire condition gives an equation

of the third degree in A, which has three roots. Hence we

have three expressions of the form P’ + AP", each of which,

when equated to zero, gives a pair of lines. Q. E. D.

Remark. If we call A, B, C and D the four points of

intersection of the family, the three pairs of lines which be-

long to it will pass as follows:

One pair through AB and CD respectively;

One pair through AC and BD respectively;

One pair through AD and BC respectively;

and the three pairs will form the sides and diagonals of a

quadrilateral.

204. Theorem XIII. If we take any point (xv y t )

at pleasure in the plane of a family of conics, then one conic

of thefamily, and no more, will pass through this point.

Proof. Since the equation

P’ _|_ AP" = 0

must be satisfied for the value (a:,, y^) of the co-ordinates

x and y which enter into it, we have

{in' + Am")x? + (n' + An")y
x

* + 2(1' + hl")x
1y 1 + etc. = 0.
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Since xv y 1
and all the symbols except A in this equation

are known, it is an equation of the first degree in A and

so has but one root. This root may be expressed in the form

P '

1 1
/L — p n 9

1
i

in which P' and P” represent the values of P' and P" when

x
x
and y x

are substituted for x and y. There being but one

value of A, only one conic of the family can pass through

the point (x
x , y x ).

205. Theorem XIY. The equation

P' + AP" = 0 (a)

may, by giving all real values to A, represent every possible

conic passing through the four intersections of P' and P"

.

For, let C be any conic passing through the four points.

P '

Take any fifth point (x
x , y x )

on C, and put A = — —yy. The

equation (a) will then be satisfied identically when in it we put

x = x
x , y = y x .

because it will become

p: - = 0 .

Hence, with this value of A, (a) will represent a conic of the

family passing through the point (x
x , y x ).

But only one

conic can pass through five points. Hence the conic thus

found will be C.

206. Relation of Focus and Directrix to the General

Equation. Let BAG be any conic section; OX, OY, rectan-

gular axes. Let AQ, the axis of the curve, make an angle

AGX=a with the axis OX. And let
(
x

, y) be the co-ordi-

nates of any point P\ (h, h), the co-ordinates of the focus F;

and r = OD, the distance from the origin to the directrix

DK. Join PF, and draw PE perpendicular to DK, and
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FH parallel to OX. Then, by the definition of a conic section

given in § 181, Chapter VII., we have

PF
-p-^, = e, the eccentricity,

and therefore PF = ePE

and PE — x cos a -)- y sin a — r.

Hence PF = e(x cos a -\- y sin a — r),

PF 2 = FH 2 + PIP,

or
(
x cos a + y sin a — rye2 = (x — hf + (y — Tcf.

Expanding and collecting terms, we have

(1 — e
2
cos

2
a)a;

2 + (1 — e
2
sin

2

a)if — 2e
2
sin a cos a xy

+ (2e
2
r cos a — 2h)x 4- (2eV sin a — 2k)y

+ {¥ + F - eV2

)
= 0. (21)

To compare this with the general equation, we must divide

both it and the general equation by their absolute terms, in

order that the two may have the same coefficients. Supposing

. . 771

the general equation thus divided, and writing m for y, n for
CL

71

etc.: also putting, for brevity,
CL

A = cos «: // = sin a\
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we find, by comparing coefficients of corresponding terms in

the two equations,

i -
Jf + m - <?V

~ m
’

or 1 — e
2A 2 = m(Jc~-\-Jf — e

2
r
2

); (a)

1 — e
2
/i

2 = n(k* + Jr — eV);
(b )

- e
2An = l(lf + 1? - eV); (c)

2Ar - h = X>{¥ + If - eV); (d)

e
2
/ir — Jc = g(/ir + A

2 — eV2

). (e)

These five equations completely determine the five quanti-

ties a, r, Ji, Jc and e, and hence the focus, directrix and

eccentricity of the conic, in terms of the coefficients of the

general equation.

EXERCISES.

1. Investigate the locus represented by the equation

4a;
2 + </

2 + 3xy — 2x y = 0.

3
Here we have m = 4; n = 1 ;

l = —

.

Then mn — Z
2 = 4 — -t=+-v;

4 4
therefore the locus is an ellipse.

2. Find the co-ordinates of the centre of the conic repre-

sented by

5a;
2

-f- y
2 + 2xy — 37a; — 2y 100 = 0,

and find the angle between the axis of the curve and the axis

of X.

3. What curve does if — 3 (xy — 2) represent?

4. Determine the locus y
1 = 3(a — 7) and the angle its

axis makes with the axis of X.

5. Determine the locus of a;
2+ if— 6a:y — 6x -)- %y -j- 5 = 0.

Find co-ordinates of the centre, and the angle the axis of the

curve makes with the axis of X. Ans. (0, — 1); 135
p

.

6. If Ay 2

-f- Bxy -f- (7a
2 + Dy -)- Ex -)- F — 0 be the

equation of a conic section, show that

Bx -j- 2Ay + D = 0

is the equation of a diameter of the locus.
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7. From the equation (9) find the two conditions that the

equation of the second degree shall represent a circle.

8. Find in the same way the two conditions that the gen-

eral equation shall represent an equilateral hyperbola.

9. What locus is represented by the equation

JYx1 + mxy + k?y
2 =

when m = hlc?

10. Find the semi-parameter of the parabola

(x — yY = ax.

11. What angle do the asymptotes of the hyperbola

mx2 — xy — a

make with the transverse axis?

12. If we have the two conics

mx2

-f- 2Ixy + ny” -f- 2px -)- 2qy + d = 0.

mx2

-f- 2Ixy -)- ny" — 2px — 2qy = 0,

show that the line joining their centres is bisected by the

origin.

13. The co-ordinates x and y of a moving point are ex-

pressed in terms of the time t by the equations

x — mt + a\ y = mt + l.

What is the equation of the line described by the point?

14. If the co-ordinates are given by the equations

x = mt, y — nf,

show that the curve is a parabola, and express its parameter.

15. What condition must the coefficients of the general

equation (1) of the second degree satisfy that the curve may
pass through the origin of co-ordinates?

16. Write the equation of that conic formed of a pair of

straight lines through the origin whose slopes are m and — m.

17. Do the same thing when the lines are to intersect in

the point (a, b).

18. What is the condition that the principal axes of a

conic shall be parallel to the axes of co-ordinates? (See §190.

)
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19. Express the points in which the locus of the equation

x" — 2xy -f- y
1

3a; — 4 = 0

cuts the respective axes of co-ordinates.

Ans. The axis of X, (1, 0) and (—4, 0);

The axis of Y, (0, 2), (0, — 2).

20. What condition must the coefficients of (1) satisfy that

the curve may be tangent to the axis of X and to the axis of

Y respectively?

Ans. p
1 — md for the axis of X;

q
2 = nd for the axis of Y.

The solution is very simple, if it is remembered that the curve is to

cut the axis in two coincident points.

21. Find the equation of that conic which cuts the axis

of X at points whose abscissas are — 2 and -j- 4, the axis of

Y at points whose ordinates are — 1 and -+- 2, and whose princi-

pal axes are parallel to the axes of co-ordinates.

Ans. x2 + 4 1/

2 — 2x — 4?/ — 8 = 0.

22. Show that in the general equation (1) the line

mx -\-iy — P — 0

bisects all chords parallel to the axis of X. Find also the line

which bisects all chords parallel to the axis of Y.

Begin by solving the general equation as a quadratic in x so as to ex-

press x in terms of y, and vice versa.

23. How many points are necessary to determine a para-

bola? An equilateral hyperbola?

24. Mark five points at pleasure on a piece of paper.

Can you find any criterion for distinguishing at sight the fol-

lowing cases?

—

I. The five points lie on one branch of a conic (ellipse or

hyperbola).

II. The conic is an hyperbola having three of the points

on one branch and two on the other.

III. It is an hyperbola having four points on one branch

and one on the other.

Suppose a string drawn tightly around all the points, and

note the number of points the string will not reach.
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25. Find the equation of a parabola which shall touch the

axis of X at the point whose abscissa is + 2, and the axis of

Y at the point whose ordinate is + 1.

A ns. x2 — 4xy + 4y
2 — 4a-’ — Sy -J- 4 = 0.

26. The base of a triangle has a fixed length, and the

escribed circle below this base is required to touch it at a

fixed point. Find the locus of the point of intersection of the

two sides of the triangle.

27. A line passes through the fixed point (0, b) on the

axis of Y and intersects the axis of X and the fixed line

y — mx. Find the locus of the middle point of the segment

of the line contained between the fixed line and the axis of X.

28. Investigate the locus of the point the differences of

the squares of whose distances from the axis of Xand from

the line y = mx is the constant quantity k2
.

29. The base a of a triangle and the sum of the angles at

the two ends of the base are both constant. Investigate the

locus of its vertex.

30. Each abscissa of the circle x2 + y
2 = r

2
is increased by

m times its ordinate. Find the locus of the ends of the lines

thus formed.

31. Investigate the locus of the middle points of all chords

of an ellipse which pass through a fixed point.

32. The circle x2 + y
2 = r~ has two tangents intersecting

in a movable point P and cutting out a fixed length a from

a third tangent y — r. Investigate the locus of P.

33. Show that the equation of that pair of straight lines

formed of the axes of co-ordinates is xy — 0.



PART II.

GEOMETRY OF THREE DIMENSIONS.

CHAPTER I.

POSITION AND DIRECTION IN SPACE.

207 . Directions and Angles in Sjiace. Two straight lines

cannot form an angle, as that term is defined in elementary

geometry, unless they intersect. Two lines in space will, in

general, pass each other without intersecting. Hence we
cannot speak of the angle between such lines unless we extend

the meaning of the word a?igle. Now the following theorem

is known from solid geometry:

If we have given any two lines, a and h, in space;

and if ive take any point P at pleasure;

and if through P we draw two lines, PA and PB, par-

allel to a and h respectively, —
then, so long as we leave a and b unchanged, the angle APB

ivill have the same value no matter where tve take the point P.

We therefore take this angle as the measure of the angle

between the lines a and b. This measure may be considered

as expressing the difference of direction between the lines

a and b, and the word angle, as applied to two non-intersecting

lines, will be understood to mean their difference of direction.

We thus have the following definition and corollary:

Def. The angle between two non-intersecting lines is

measured by the angle between any two intersecting lines

parallel to them.

Cor. If we have two systems ofparallel lines in space, the

one a, a' , a", etc., the other b, l'
,
b”

,
etc., then the angles between

any line of a and any line of b will all be equal to each other.
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208. Projections of Lines. The projection of a finite

line PQ upon an indefinite line X is the length of X inter-

cepted by the perpendiculars dropped upon it from the two

ends of PQ.

Theorem I. The projection of a line is equal to the pro-

duct of its length by the cosine of the angle which it forms
with the line on which it is projected.

To prove the theorem, pass through each of the termini,

P and Q, a plane perpendicular to X The planes will be

parallel to each other and will cut X at the termini of the

projection of PQ, which we may call P’ and Q’

.

Through

P’ draw P’Q” || PQ and intersecting the plane through Q
in Q"

.

We shall then have

P’Q" = PQ-
(being parallels between parallel planes;)

P'Q’ = P’Q" cos Q"P'Q’
— PQ cos (angle between P’ Q' and PQ). Q.E.D.

Remark. By assigning a positive and negative direction

to the two lines, the algebraic sign of the projection will be

determined. It will be positive or negative according as the

angle between the positive directions of the two lines is less

or greater than a right angle. The following theorem is a

result of this convention, combined with the principles of

Trigonometry:

Theorem II. If we have any broken line in space, made

up of the consecutive straightlines AB, BC, CD, etc., . . . GH,
which lines form the angles a, /?, y, etc., with the line of pro-

jection X;
and if ive project this line upon X by dropping perpendicu-

lars AA',BB' , CC , etc., . . . . HIP ,
meeting X at the points

A’, B', C', D', etc., .... H'—
then the length A’IB will be the algebraic sum of the

* No figure is drawn for this demonstration, because two non-inter-

secting lines in space cannot be represented on paper. If the student

cannot readily conceive the relation, he should take two rods or pencils

to represent the lines.
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separate lengths A'B' ,
B'C', CD’, etc., these separate lengths

being considered positive when taken in one direction, negative

when taken in the opposite direction, and will be expressed

by the equation

A’H’ = AB cos a -f- BG cos f3 + CD cos y etc.

209. Co-ordinate Axes and Planes in Space. The posi tion

of apointin space maybe defined byits relation to three straight

lines intersecting in the same point and not lying in a plane.

Three sncli lines of reference are called a system of co-

ordinate axes in space.

The point in which the axes intersect is called the origin

of co-ordinates, or simply the origin.

The three axes are designated by the letters X, iFand Z
respectively.

The co-ordinate axes, taken two and two, lie in three planes,

one containing the two axes X and Y, another Y and Z

,

a

third Z and X.

These planes are called co-ordinate planes. They
are distinguished as the plane of XY, the plane of YZ, and

the plane of ZX respectively.

The several angles which the axes of co-ordinates make
with each other are arbitrary. But, for elementary purposes,

it is most convenient to suppose each to form a right angle with
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the other two. The following conclusions then result from

solid geometry:

I. Each axis is perpendicular to the plane of the other two.

II. Each plane is perpendicular to the other two planes.

III. Every line or plane perpendicular to one of the planes

is parallel to the axis which does not lie in that plane.

IV. Every line or plane perpendicular to one of the axes

is parallel to the plane of the other two.

V. If the centre of a sphere lies in the origin, the intersec-

tions of the co-ordinate axes and planes with its surface form the

vertices and sides of eight trirectangular spherical triangles.

VI. To each plane corresponds the axis perpendicular to

it, which is therefore called the axis of the plane.

210. Co-ordinates. The position of a point in space is

defined by its distances from the three co-ordinate planes of a

system, each distance being measured on a line parallel to the

axis of the plane. When the axes are rectangular, these direc-

tions will be perpendicular to the planes. The notation is:

x = distance from plane YZ\

y = distance from plane ZX\
z = distance from plane XY.

To distinguish between equal distances on the two sides

of a plane, distances on one side are considered positive,

on the other negative.

The positive direction from each plane is the positive di-

rection of the axis perpendicular to it.

It is, of course, a matter of convention which side we take

as positive and which negative. A certain relation between

the positive directions is, however, adopted in physics and

astronomy, and should be adhered to. It is this:

The positive side of the plane of XY is V
that from which we must look in order that

the axis OX would have to turn in a direc-

tion the opposite of that of the hands of a

watch in order to take the position OY.

If we conceive the plane of XY to be O

horizontal, the axis of Z will be vertical, and. supposing the

X
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axes of X and Y to be arranged as in plane geometry, the

positive side of the plane will be the upper one.*

The following propositions respecting certain relations of

signs of co-ordinates to position should be perfectly clear to

the student

:

I. The co-ordinate planes divide the space surrounding the

origin into eight regions, distinguished by the distribution

of + and — signs among the co-ordinates.

Imagine the axis of X to go out positively toward the east;

Imagine the axis of Y to go out positively toward the north;

Imagine the axis of Z to go out positively upward,

and the point of reference to be the origin. Then

—

II. For all points above the horizon z will be positive; for

all points below it, negative.

III. For all points east of the north and south line x will

be positive; for all points west of it, negative.

IV. For all points north of the east and west line y will be

positive; for all points south of it, negative.

211 . ITow the Co-ordinates define Position. Let us first

suppose that the only information given us respecting the

position of a point P is its co-ordinate

x = a, (a)

a being a given quantity.

This is the same as saying that P is at a distance a from

the plane YZ. In order that a point may be at a distance a

from a plane, it is necessary and sufficient that it lie in a par-

allel plane, such that the distance between the two planes is a.

Hence the proposition informs us that P lies in a certain

plane.

* The author regards it as unfortunate that many mathematical

writers, in treating of analytic geometry, reverse the arrangement of axes

in space universally adopted in astronomy and physics. Uniformity in

this respect is so desirable that he has not hesitated to adhere to the latter

arrangement.

It may be remarked that, in drawing figures, the axes are represented

as seen from different stand-points in different problems, (lie best point

of view for each individual problem being chosen.
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If we are informed that

y = h
then P must lie in a plane parallel to ZX, at the distance b

from it.

If both propositions, x — a and y — b, are true, then P
must lie in both planes. Hence it must lie on their line of

intersection, which line will be

parallel to the axis of Z,

parallel to the planes ZX and YZ,
and perpendicular to plane XY.

If it is also added that

z = c,

the point P lies in a third plane, parallel to XY. Lying in

all three planes, its only position will be their common point

of intersection.

Hence:

The position of a point is C07npletely determined when its

three co-ordinates are given.

Notation. By point (a, b, c

)

we mean the point for

which x — a, y — b and z — c.

212. Parallelopipedon formed by the Co-ordinates.

Let 0 be the origin; OX, OY, OZ, the axes; P, the point;

PR, PS and PQ, parallels to the axes terminating in the sev-

eral planes. Then, by definition, the co-ordinates of P will

be
z = RP = VS = OT = WQ

;

y = SP — VR = OW = TQ

;

z = QP = TS = OV = WR.

We shall then have, by considering the three planes which

contain these co-ordinates,

Plane RPS |j
plane XY;

Plane SPQ
||

plane YZ;
Plane QPR ||

plane ZX.

Hence the three planes which contain the co-ordinates,

together with those which contain the axes, form the six faces

of a parallelopipedon. This figure has
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Four edges = and || to co-ordinate x;

Four edges = and
||

to co-ordinate y;

Four edges = and || to co-ordinate z.

Z

213 . Since there are four equal lines for each co-ordinate,

we may use any one of these four in constructing the co-ordinate.

Sometimes it is advantageous to choose such lines that, taking

the co-ordinates in some order, the end of each shall coincide

Z

with the beginning of the next following, the end of the third

being the point. For example, we may take, in order,

x = OT\

y=TQ-
z = QP.
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The three co ordinates will then form a series of three lines,

each at a right angle with the other two.

Again, each face of the parallelopipedon being perpendicu-

lar to four edges, it follows that the diagonal PT will be the

perpendicular from P upon the axis of X, and that the like

proposition will be true for the other axes. Hence
The rectangular co-ordinates of a point are equal to the

segments of the axes contained between the origin and the per-

pendiculars droppedfrom the point upon the respective axes.

EXERCISES.

1. If from the point (a, b, c
)
we draw lines to the several

points (— a, b, c), (a, — b, c), (a, b, — c), (—a, — b, c),

(a, — b, — c), (— a, b, — c), (— a, — b, — c), define in what

seven points these lines will cut such of the co-ordinate

planes as they intersect.

2. If perpendiculars be dropped from a point (a, b, c) upon

the three co-ordinate axes, show that the lengths of the per-

pendiculars will be V

a

1

-f- V, Vb2

f- d and Vd + a5
.

3. If we take, on each axis, a point at the distance r from

the origin, what will be the mutual distances of the three

points from each other, and of what figure will they and the

origin form the vertices?

4. If, on the axes of X, Y and Z respectively, we take

the points P. Q and R. and from the origin 0 drop OL J_ QR,

OMpRP and OXLPQ, show that

OL2 ^ OM 2 ^ OX 2 OP2 ^ OQ2 ^ OR2

214. Problem. To find the distance of a point (.x, y, z)

from the origin, and the angles which the line joining it to the

origin makes with the co-ordinate axes.

Let P be the point, and let us put

r, the distance OP from the origin;

a, (3, y, the angles POX, POY and POZ
which the line makes with the axes.

Then

—

I. Because OP is the diagonal of a rectangular parallelo-
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pipedon whose edges are PQ, PR and PS, we have, by

Geometry,
OP1 = PQ2 + PR2 + PS 2

;

that is,

r2 = x
2 + y- + (

1
)

and r — Vx2 + y
1 +

which gives the distance of the point from the origin.

II. Again, supposing the same construction as in § 212, we

have

PTO — a right angle.

Hence
0T= OP cos POX,

or, from the equality of the parallel edges,

x — r cos a.

In the same way

y — r cos /?;
|

z = r cos y. _

(a)

The required values of the cosines of the angles are, there-

fore,

cos a = - =
r

cos /3 — — =

X

r Vx* + f +
y

-

iV + y’+V’
Z Z

cos y = — = — —
.

r Vx 1
-\- y'1 + z

2

(
2 )

Theorem III. The sum of the squares of the cosines of

the angles which a line through the origin makes ivitli three

rectangular axes is unity.

Proof. Adding the squares of the last set of equations,

we have

cos
2
** + cos

2
/? + cosV = ^ ^

y
y%

= 1, (i)

which proves the theorem.

This theorem enables us to find any one of the angles a,

j3 and y when the other two are given.
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215 . Problem. To express the distance between two

points given by their co-ordinates, and the angles which the

line joining them forms with the axes of co-ordinates.

Let P and P' be the points, and let

P have the co-ordinates x, y, z;

P’ have the co-ordinates x', y', z’

.

Tt

Through each of the points P and P' pass three planes

parallel to the co-ordinate planes. These planes will form the

faces of a rectangular parallelopiped of which the edges are

P'M — x’ — x\

P'N = y’-y;
P'R = z ’ - z.

If we put

A = PP'
,
the distance of the points, we have, by Geometry,

A 2 = P'M 2 + P'N 2 + P'R2

= (x' - x)
2 + (?/' - y)

2 + (z' - z)
2

= x’
2 + y’ 2 + z'

2

-f- x
2 + y

2
-\- z

2 — 2(xx' + yy,Jr zz').

Hence A = V(x' — x)
2 + (y' — y)

2 + (
z

' — z)
2
. (3)

To express the angles a, /3 and y which the line PP'
forms with the axes, we note that these angles are, by § 207,

equal to those which P'P forms with P'M, P'N and P'R
respectively. Thus we find

cos a — x — x

cos /? =
y' ~ V .

A ’
>

z
cos y — A ' J
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21C. Pkoblem. To express the angle between two lines

in terms of the angles which each of them forms with the co-

ordinate axes.

Let the two lines emanate from the origin, and put

a, ft y, the angles which one line makes with the axes;

a', ft ,
y', the corresponding angles for the other line.

On each line take a point, namely, P on the one and P'

on the other, and put

r, r', the distances of P and P’ respectively from the origin.

The problem is solved by expressing the distance PP' in

two ways:

I. The equations («) of §214 give, for the co-ordinates

of P: x — r cos a; y = r cos ft, z = r cos //;

of P':x’ = r' cos <ad; y' = r’ cos ft ;
z' = r' cos //'.

Substituting these values in the expression of § 215 for

the distance of the points,

A 2 = r
2
(cos"a ft cos

2
/? + cos

2

//)

-4 r'
2 (cosV' ft cos

2
/?'

-f- cos
2
//')

— 2r?-'(cos a cos a' -j- cos /? cos ft ft cos y cos //').

The first two terms reduce to r
2 + r'

2 by (b).

II. If we put

v = the angle between the lines,

the lines r, r’ and A will be the sides of a plane triangle of

which the angle opposite the side A is v. Hence, by Trigo-

nometry,
A~ = r

2 + j-' 2 — 2 /•;' cos v.

III. Comparing the two values of A 2

,
we find

cos v — cos a cos a’ + cos /? cos ft ft cos y cos //', (5)

which is the required expression.

Cor. The condition that v shall be a right angle is

cos a cos a' -j- cos /? cos ft + cos y cos //' = 0, (6)

because, in order that an angle shall be a right angle, it is

necessary and sufficient that its cosine shall be zero.
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217 . Def. The direction-cosines of a line are the

cosines of the three angles which it forms with the co-ordi-

nate axes.

The direction-cosines are so called because they determine

the direction of the line.

Direction- Vectors. The three direction-cosines of a line

arc not independent, because, when any two are given, the

third may be found by the equation

cos
2a + cos

2
/? -j- cos~y = 1. (7)

But the direction of the line may be defined by any three

quantities proportional to its direction-cosines. To show this,

let us put

l, m, n, any three quantities proportional to cos a, cos ft,

cos y respectively.

Because of this proportionality, we shall have

l m — = a-
cos a cos ft cos y

whence

G cos a = l; ff cos ft = m: a cos y — n.

The sum of the squares of these equations gives, by (7),

<r
3 = ft -f- in" + id;

l l
cos a =

0 Vl
1 + nd + id

'

m
cos ft — — — 111

.. \ (8 )

0 Vl" -j- nd id

os y — — =
0 Vd + nd + id

Thus, when l, in and n are given, the angles a, ft and y
can be found, and thus the direction of the line is fixed.

The quantities l, m and n are called direction-vectors.

The direction of the line depends only upon the mutual

ratios of the direction-vectors, and not upon their absolute

values. For, if we multiply the three quantities l, in and n

by any factor p, a will be multiplied by this same factor,

which will divide out from the equations (8). and thus leave

the values of a, ft and y unchanged.
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Cor. If the directions of two lines are given by the

direction-vectors

l, m and n, V, m' and n'

,

respectively, the condition that they shall form a right

angle is

IV mm' -j- mV — 0. (9)

For, by substituting in the equation (6) the values of the

direction-cosines of the two lines given by (8), the condition

becomes
IV -f- mm' -)- nn'

66 '

from which (9) immediately follows.

= 0
,

218. Piioblem. To express the square of the sine of the

angle between two lines in terms of their direction-cosines.

The result is derived from (5) by the form

sin
2
v = 1 — cos

2
w = cos

2
et -f cos

2

/? + cos
2

/ — cos~v.

To simplify the writing we shall omit the letters cos, using

a, (3 , y and a', /?', /'for the direction-cosines of the respec-

tive lines. Then

sin
2
v = a2

-\- /3
2
-1- y~— cos

2
v

—- -
/3

2+ /
2— a~a' 2— /J

2
/?'

2 — y~yn

— 2aa'/3(3’ — 2/3/3'vy'— 2yy'aa'
= «2

(i - «' 2

) + /?
2
(i -D+ y\i - r'

2

)

— 2(aa'/3/3' + etc.)

= «2
(/?'

2+ y'f + /?
2
(/'

2+ «' 2

) + f («'
2+ /?'

2

)

— 2(aa'/3{3' etc.)

= a2
/?'

2+ a'
2

/?
2- 2aa'/3/3'+ /?

2/' 2+ /5'
2

/
2- 2/3/3'yy'

-)- y*a'"-f- /' 2a 2— 2yy'aa'

= (a,(S'- a'j3y+ (/?/'- /?» 2+ (
ya’- y'af, (10)

which is the required expression.

Cor. If hco lines have the direction-cosines of the one

respectively equal to the corresponding ones of the other, the

lines are parallel.

For, if

a = a', /3 = f, y = y'

,

the last equation reduces to

sin v = 0.
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EXERCISES.

1. If a line make equal angles with tlie co-ordinate axes,

what are these angles, and what angle does it form with the

co-ordinate planes? Ans. 54° 44'.1; 35° 15'. 9.

2. Find the direction-cosines of a line which makes equal

angles with the axes of X and Y, but double the common
value of those equal angles with the axis of Z, and show that

the angles may be either 90°, 90°, lb0°; 45°, 45°, 90°; or 135°,

135°, 270°.

3. In a room 15 by 20 feet and 10 feet high, a line is

stretched from the northwest corner of the ceiling to the

southeast corner of the floor. Find its length, the angles

which it forms with the three bounding edges of the walls

and ceiling, and with the walls and ceiling.

4. What angles do lines having the following direction-

vectors form with the co-ordinate axes?

—

Lino A, 1 = i; m = 2; n — 2;

Line B, l = 3; m = 2; n = 1;

Line C, l = 2; m — 3; n — 4;

Line D, l = p;
II

T'-*

II

5. If the direction-cosines of a line are proportional to the

fractions -
2-, }, J, what are the smallest integers which we can

employ as direction-vectors?

6. Find the values of the direction-cosines of a line which

satisfy the equation

cos a = 2 cos /3 — 3 cos y,

and the least integers which can be used as direction-vectors.

7. Find the direction-cosines of lines joining the following

pairs of points:

(a) From the origin to the point (2, 3, 4);

(
b

)
From the origin to the point (— 2, — 3, — 4);

(c) From the point (1, 1, 1) to the point (2, 3, — 1);

(
1d

)

From the point (1, 2,— 3) to the point
(
— 1 — 3, 3).

If the order of the points of each pair be reversed, what effect

will this change have on the direction-cosines?
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8. What angle is formed by the two lines passing from

the origin to the points (1, 1, 2) and (2, 3, 4) respectively?

9. Find the angle whose vertex is at the point (2, 3, 4),

and whose sides pass through the points (1, 2, 3) and (3, 5, 5).

10. What angle is contained by two lines whose direction-

vectors are :

Line A, l = -f- 1; m — + 3; n = — 5;

Line B, l = —
- 3; m = + 2; n = + 1.

219. Transformation of Co-ordinates.

Case I. Transformation to a new system ivhose axes are

parallel to those of the first system. Let the co-ordinates of a

point P referred to the old system be x, y and z, and let the

co-ordinates of the new origin referred to the old system be

a, h and c. It is now required to express the co-ordinates

x'
,
y'

,
z' of P referred to the new system.

Because the new and old co-ordinate planes are parallel,

the perpendiculars dropped from the point P upon corre-

sponding planes will be coincident, and that portion of a

perpendicular intercepted between the parallel planes will be

a, h or c according as the plane is YZ, ZX or XY. The
difference between the co-ordinates will therefore be equal to

these same quantities, and we shall have

xf - x - a; y' =y - b; z' — z — c;\ ,n .

or x = x' -f- a; y — y' + h\ z = z' c. f

220. Case II. Transforma-

tion to a neto rectangular system

having the same origin hut differ-

ent directions. Let 0-XYZ be

the axes of the old system, OX'
any axis of the new system, and

P a point whose co-ordinates

are to be expressed in both sys-

tems.

From P drop PQ±_ plane XY, .
•

. || axis OZ.

From Q drop ()f?L axis OX.

-X
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Then, calling x, y and z the co-ordinates of P referred to

the old system, we shall have, by §213,

x = OR-,

y = RQ;
z = qp.

From the points P, Qan&R drop perpendiculars upon the

new axis OX', meeting it in the points P', Q' and R'

.

Let
us then put

a, fi, y, the angles which OX', the axis of the new sys-

tem, makes with the respective axes of X, Y and Z in the

old system. We shall then have

OR' = OR cos XOX' = x cos a;

also, because RQ || OY,

R'Q' — RQ cos YOX' = y cos /?;

also, because QP || OZ,

Q'P' = QP cos ZOX = z cos y.

Now, the line OP' is the algebraical sum of the three seg-

ments OR’
, -f- R'Q', + Q'P', each segment being taken posi-

tively or negatively according as the angle a, (3 or y is acute

or obtuse.

Hence
OP' — x cos a + y cos /? -f- 2 cos y. (12)

If we suppose OX' to represent the new axis of X. then

OP' will be the co-ordinate x referred to the new axis, which

we call x'. In the same way we have y’ and z’ when OX’
represents the corresponding axes. If, therefore, we put

(
X',X),(X

,
Y),(X',Z) the angles made by X' withX, Y&Z;

(
Y',X),( Y', Y),

(
Y',Z) the angles made by Y' with X, Y&, Z:

(Z',X). (Z', Y). (
Z',Z

)

the angles made by Z' with X, Y& Z.

we shall have

x' = x cos (X',X) + y cos (X', Y) -f z cos (X',Z): t

y' = x cos
(
Y',X) + y cos

(
Y', Y) + z cos

( Y',Z); t (a)

z’ — x cos
(
Z',X

)

+ y cos (Z', Y) + ^ cos (Z'. Z). )
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The relation of the symbols {X’,X), etc., to the symbols

x, y, z and xr

,
y', z', which is readily seen, renders these equa-

tions easy to write. But the subsequent management of the

equations will be more simple if we retain the symbols a, (3

and y, putting

a, 13 and y for (X'.X),(X',Y) and (X',Z);

a', (3
r and y' for (Y',X),(Yf

,
Y) and (Y',Z);

a", 13" and y" for (Z',X),(Z', Y) and (Zf

,
Z).

The equations (a) will then be written

x’ — x cos a -|- y cos (3 z cos y;
)

y’ — x cos a '

-f V cos /?' + z cos y
f

;
>- (13)

z
f — x cos a" -(- y cos f3" -j- 2 cos y". '

Each set of these cosines must separately satisfy the equa-

tion (7), which gives the first three equations written below.

The last three are obtained by the consideration that, by § 216,

the cosine of the angle between the axes of X1 and Y' is

cos a cos a' cos (3 cos /?'
-f- cos y cos y'

.

But, because the new axes are rectangular, this cosine must

be zero, as must also be the cosines of the angles between Y'

and Z' ,
and between Z' and X'

.

Thus we have the six equa-

tions of condition,

cos
2
<* -(- cos

2
/? + cos

2
;/ = 1;

cos
2
a:' + cos

2
/?' + cos

2
;/' = 1;

cos
2
nr" + cos

2
/?" + cos

2 ;/" = 1;

cos a cos a ' cos (3 cos /?' + cos y cos y' — 0;
[

'

cos <v' cos a" cos /?' cos /?"-|- cos y' cos;/"=0;
cos a" cos a -j- cos /?" cos /? cos y" cos y — 0.

There being six separate equations of condition between

the nine cosines, it follows that all nine of them can be ex-

pressed in terms of some three independent quantities. How
this can be done we shall show hereafter.

221. We next remark that we can express the co-ordi-

nates x, y and z in terms of x'
,
y' and 2 ', by reasoning exactly

as we have reasoned in the reverse case, thus obtaining
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x = x' cos a -j- y
! cos a' -j- z' cos a"

; )

y = x' cos /? -(- y' cos /?'
-f- z' cos /?"; r (15)

z — x' cos y -+- y’ cos y' + z
' cos y" . )

We can also derive the first of these equations directly

from (12) by multiplying the first by cos a, the second by

cos a' and the third by cos a", and adding, noting the ap-

plication of the results of § 216 to the angles formed by the

axes.

Continuing the reasoning, we are led to the six equations

of condition,

cos
2« + cos

2
a' -|- cos

2<*" = 1;

cos
2

/? + cos
2
/?' + cos

2/?" = 1;

cos~y -f- cos
2
^' + cos*y” — 1;

cos a cos fi + cos a' cos /?'
-f- cos a" cos /?" = 0;

cos /? cos y -f- cos /S' cos y ' + cos fi" cos y" — 0;

cos y cos a -)- cos y' cos a' -j- cos y" cos a" — 0.

r (16)

In reality these equations are equivalent to the equations

(14), and the one set can be deduced from the other by alge-

braic reasoning, without any reference to co-ordinates.

222. Polar Co ordinates in Space. In space, as in a

plane, the position of a point is determined when its direction

and distance from the origin are given.

In space the direction requires two data to determine it.

These data may be expressed in various ways, of which the fol-

lowing is the most common. We take, for positions of refer-

ence:

1. A fixed plane, called the fundamental plane. For this

the plane of XY in rectangular co-ordinates is generallv

chosen.

2. An origin or pole, 0. in this plane.

3. A line of reference, for which we commonly choose the

axis of X.

Let P be the point whose position is to be defined. We
first have to define the direction of the line OP. From any

point P of this line drop a perpendicular PQ upon the fnn
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damental plane, ancl join OQ. The direction of OP is then

defined by the following two z
angles:

(1) The angle POQ which

OF forms with its projection

OQ; that is, the angle be-

tween OP and the plane.

(2 )
The an gleXOQ which

the projection of OP makes

with OX.
It will be remarked that

the planes of these two angles are perpendicular to each

other.

To show that these two angles completely fix the direction

of OP, we first remark that when the angle XOQ is given,

the line OQ is fixed.

Next, because PQ is perpendicular to the plane, the point

P and therefore the line OP must lie in the plane ZOQ,
which is fixed because its two lines OZ and OQ are fixed. If

the angle QOP in this (vertical) plane is given, there is only

one line, OP, which can form this angle.

Hence the direction of the line OP is completely deter-

mined by the two angles XOQ and QOP; and when the dis-

tance OP is given, the point Fis completely fixed.

We use the notation

cp, the angle QOP, or the elevation of OP above the

plane XOY. Wo may call this angle the latitude of F.

A, the angle XOQ which OQ, the projection of OP,
makes with OX. We may call this angle the longitude of F,

r, the length of OP.

Because the quantities (p,
A and r completely fix the posi-

tion of P, they are called the polar co-ordinates of F in

space.

223. Relation of the Preceding System to Latitude and

Longitude. For another conception of the angles cp and A,

pass a sphere around 0 as a centre, and mark on its surface

the points and lines in which the lines and planes belonging

to the preceding figure intersect it. Then
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The fundamental plane OXQ intersects the spherical sur-

face in the great circle XQ Y;

The line OX intersects it in X;
The line OQ intersects it in Q;
The lines OP and OZ intersect it in P and Z.

We therefore have

Angle XOQ measured by arc XQ;
Angle QOP measured by arc QP.

r?
Li

If now we imagine this sphere to be the earth, the gieat

circle AX to be its equator, Z to be one of the poles, and P
any point on its surface, then

The arc QP or the angle QOP is the latitude of P;

The arc XQ or angle XOQ is the longitude of P. counted

from ZX as a prime meridian. Thus the angles we have

been defining may be described under the familiar forms of

longitude and latitude.

224 . Problem. To transform the position of a point

from rectangular to polar co-ordinates, and vice versa.

Comparing the definitions of rectangular and polar co-

ordinates, we put, for the point P in §222,

PQ — z = OP sin <p;

OQ = OP cos cp.
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Now, supposing a perpendicular dropped frum Q upon OX,

this perpendicular will be the ordinate y, and will meet OX
at the distance x from the origin. Thus,

Putting OP = r, and substituting for OQ its value, we have

which are the required equations.

Cor. The direction- cosines of the line OP in terms of q>

and A are

225. The result stated in § 220, that the nine direction-

cosines of one system of rectangular axes with respect to

another system can be expressed in terms of three independ-

ent quantities, may now be proved as follows:

1. Let OP beany one accented axis, say X'; the direction-

cosines of this axis are expressed in terms of two angles,

cp and A, by (18).

2. Imagine a plane =M, passing through 0, §223, per-

pendicular to OP. This plane M will be completely deter-

mined by the direction OP\ whence the line =X in which it

cuts the fundamental plane XY will also be determined.

3. The new axis Y' may lie in any direction from the

point 0 in the plane M. One more angle EE rp is required to

determine this direction, and for this angle we may take the

angle which Y' forms with the line X.

4. The direction of the axis Z' is then completely fixed,

because it must lie in the plane M and make an angle of 90°

with Y'.

Thus, <p, A and ip completely determine the directions of

the three new axes.

x = OQ cos XOQ = OQ cos A;

y — OQ sin XOQ — OQ sin A.

z = r sm cp\

(17)

(18)
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EXERCISES.
1.

If, in the figure of §223, the co-ordinates of the q>oint

P are

x = 27, y — 19, z = 17,

find its polar co-ordinates r, cp and A.

Method of Solution. Tlie quotient of the first two equations (17) g' ves

tan A = —

,

x

from which A is found. Then we find sin A or cos A or both, and com-

pute

r cos cp — x _ y
cos A sin A'

Next we have
z

tan cp = ,

r cos cp

from which we find cp. Then
z r cos cp~

sin cp cos cp
'

2. Supposing the radius of the earth to be 6369 kilometres,

the longitude of New York to be 74° west of Greenwich, and

its latitude to be 40° 32', it is required to find the rectangular

co-ordinates of New York referred to the following system of

axes having the earth’s centre as the origin:

X in the equator, and on the meridian of Greenwich.

Yin the equator, in longitude 90° east of Greenwich

Z passing through the North Pole.

3. If, in the figure of § 222, we take a point P' whose

latitude is the same as that of P and whose longitude is 90°

greater than that of P, it is required to express the angle

POP'.
4. If the angle cp is negative, within what region will - he

point P be situated?

5. If we take a point P' whose latitude is cp and whose

longitude is A + 180°, how will it be situated relatively to P,

and what will be the angle POP'?
6. If we take a point P' for which

cp' = 180° - cp,

V = A + 180°,

show that this point will be identical with P.
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THE PLANE.

226. Introductory Considerations on the Loci of Equa-

tions. If the values of the three co-ordinates of a point are

not subject to any restriction, the point may occupy any posi-

tion in si^ace. Restrictions upon the position are algebraically

expressed by equations of condition between the co-ordinates.

Let us inquire what will be the locus of the point when the

co-ordinates are required to satisfy a single equation of condi-

tion. By means of such an equation we may express any one

of the co-ordinates, z for example, in terms of the other two,

the form being

« = f(x> y)- (a)

We can now assign any values we please to x and y, and

for each pair of such values find the corresponding value of z.

To each pair of values of x and y will correspond a certain

point on the plane of XY. If at this point we erect a per-

pendicular equal to z, the end of each perpendicular will be a

point whose co-ordinates satisfy the equation.

We may conceive these perpendiculars to become indefi-

nitely numerous and indefinitely near each other, thus tending

to form a solid. Their ends will then tend to form the sur-

face of this solid. But these ends are the locus of the equation

(a). Hence

The locus of a single equation of condition among the co-

ordinates is a surface.

If a second equation is required to subsist among the co-

ordinates, the locus of this equation will be a second surface.

If the co-ordinates are required to fulfil both conditions

simultaneously, then the point must lie in both surfaces; that
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is, it must lie ou the line in which the surfaces intersect.

Hence

The locus of two simultaneous equations between the co-

ordinates is a line.

227. To find the Equation of a Plane. The property of

a plane from which the locus can be most elegantly deduced is

this: If on any line which intersects the plane perpendicularly

we take two points, A and B, equidistant from the point of

intersection and on opposite sides, then every point of the

plane will be equidistant from A and B, and no point not on

the plane will be equidistant.

Let us then drop from the origin a perpendicular upon the

plane, and continue it to a distance on the other side equal to

its length, and let P be the point at which it terminates.

The condition that a point shall lie on the plane will then be

that it shall be equidistant from the origin and from P.

Let us put

a, b, c, the co-ordinates of P
;

x, y, z, the co-ordinates of any point on the plane.

Then, by §§ 214, 215, the squares of the distances of
(
x

, y, z)

from the origin and from P will be respectively

x2 + y
2 + z

2

and (
x — af + (y — b)

2 + (z — c)
2

.

Developing and equating these two expressions, we find, for

the required equation,

2ax -f 2by + 2cz = a
2 + V + c

2
.

To reduce this equation, let us put

p, the length of the perpendicular dropped from the origin

upon the plane; that is, one half the line from the origin to P
;

a, (3, y, the angles which this perpendicular makes with

the respective axes of X, Hand Z.

We shall then have OP = 2y, and the values of a, b and

c will be, by § 214,

a = 2p cos a:

b = 2\p cos /?;

c - 2p cos y.
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Substituting these values in the equation of the plane, reduc-

ing, and remarking that

cos
2a + cos

2

/? + cos
2
;/ = 1,

the equation of the plane becomes

x cos a -j- y cos /? + z cos y — p — 0, ( 1

)

which is called the normal equation of the plane.

228. The Angles a, (3 and y. As we have deflued the

angles a, /? and y, they are the angles which the perpen-

dicular p forms with the co-ordinate axes. It is shown in

Solid Geometry that the angle between any two planes is equal

to that between any two lines perpendicular to them. Because

Plane YZ J_ axis X,
Plane (1) _L line p,

. plane (1) makes the angle a with the plane YZ. Hence

we may define a, /? and y as the angles which the plane makes

with the co ordinate planes YZ, ZX and XY respectively.

One restriction upon this proposition is necessary. Two
supplementary angles are formed by any two planes, so that,

in the absence of any convention, we should say that the

angle between the planes is either equal or supplementary to

that between the lines. The best way of avoiding ambiguity

is to choose, for the angle between the planes, the angle be-

tween the perpendiculars dropped from the origin upon the

planes.

If the angles a, /? and y are the same for several planes,

these planes, being perpendicular to the same line, are paral-

lel. Hence they may, in a certain sense, be said to have the

same direction. We may therefore call cos a, cos (3 and cos y
the direction-cosines of the plane. They are also the direc-

tion cosines of the perpendicular dropped from the origin

upon the plane.

229. Theorem I. Every equation of the first degree le-

tioeen rectangular co-ordinates in space is the equation of
some plane.

Proof. Let the equation be

Lx + My -+- Nz -f- D = 0.
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Divide this equation by VLr + 4/ 2 + and
three angles, a, ft and y, by the equations

cos a =
Vi7 + Ir + w 2

’

cos ft = ;
>

Vr + M*-\-]V'2 '

N
cos y = — —

.

VL2 + M '2 + N 2

determine

(*)

This will always be possible, because each of these cosines

is less than unity. Because these cosines fulfil the condition

(7), 8 217, we can draw a line of length = — ^
6 vu+dr+N2

from the origin making the angles a, ft and y with the sev-

eral co-ordinate axes. Through the end of this line pass a

plane perpendicular to it. Then, by the last section, the equa-

tion of this plane will be

x cos a 4- y cos ft 4- z cos y A — 0,J 7 VT + M' + N'

an equation which becomes identical with that assumed in

the hypothesis by clearing of denominators and substituting

from (2). We may therefore put the theorem in the following

more specific form:

Every equation of the form

Lx -f My + Nz + D — 0

represents a certain definite plane, namely, the plane passing

perpendicularly through the end of that line which

emanates from the origin;

makes rvitli the axes angles whose cosines are

L M , N
, ,

. - and
,

— :

VU + M" + N 2 VL2 + J/ 2 + JV
7S VL2 + J/

2 + N*

respectively;

and has the length —
VL2 + M 2 + N2
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230 . Notation. By “ the plane
(
L

,
M, N, D)” we mean

“the plane whose equation is

Lx + My + Nz D = 0.
”

Def. An equation of a plane in which the four quantities

L, M, N and D are all independent is called the general
equation of a plane.

The general equation may be considered as related in two

ways to the normal or other special forms of the equation.

I. The special forms are cases in which certain relations

exist among the quantities L, M, Wand Zb For example, the

normal form is the special case in which L 2

-f- i/
2
-|-X"

2 = 1.

Whenever we find this condition satisfied, we know that

the equation is in the normal form.

II. The general equation may always be reduced to the

normal form by dividing by VL~ -j- M~ -j- W 2
.

Direction-Vectors. From the equation (2) it is seen that

Ij, M and N may be taken as the direction-vectors of any line

perpendicular to the plane, because they are severally equal to

the direction-cosines of such a line multiplied by the common
factor \Z(L‘ + M~ -\- A7

"
2
). Hence we conclude:

The equation of every plane perpendicular to a line whose

direction-vectors are l, m and n may he written in the form

lx + my -f- nz + d = 0;

and, conversely, for the direction-vectors of any line perpten-

dicular to the plane (L, M, N, D
)
may he Liken X, M and N.

231 . Special Positions of a Plane. If one of the co-

efficients L, M, or N vanishes, the cosine of the angle which
the plane makes with the corresponding co-ordinate plane will

also vanish; that is, the plane will be perpendicular to the co-

ordinate plane, and therefore parallel to the axis of that plane.

Hence an equation of the first degree between two only of the

co-ordinates represents a plane parallel to the axis of the miss-

ing co-ordinate.

For example, the locus of

Lx + My + D = 0 l/

is a plane parallel to the axis of Z.
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It follows that if two co-ordinates are missing, the locus

will be parallel to the common plane of the missing co-ordi-

nates. For example, the locus of

Lx -f- D = 0

D
or x — y1j

will be a plane perpendicular to the axis of X and parallel to

the plane YZ. ,

232. Lines and Points connected with a Plane. The
following lines and points are determined by every plane:

I. The three lines in which it intersects the co-ordinate

planes.

II. The three points in which it intersects the co-ordinate

axes.

III. The foot of the perpendicular from the origin upon

the plane.

When we include among possible lines and points the lines

and points at infinity, the above three lines and four points

will always be determinate.

Def. The lines in which a plane intersects the co-ordinate

planes are called traces of the plane.

The distances from the origin to the three points in which

a plane cuts the co-ordinate axes are called the intercepts

of the axes by the plane.

233. Puoblem. To find the equations of the traces of a

plane.

The trace of the plane upon the plane of YZ is simply

those points of the plane for which x = 0. Hence, if we put

x = 0 in the equation of a plane, we have the equation of its

trace upon YZ. Therefore, in the general equation

Lx -f My -f- Nz -f D — 0,

the equations of the traces upon the co-ordinate planes are:

On YZ, My -(- Nz -(- D — 0;

On ZX, Lx -f- Nz D = 0;

On XY. Lx -f My + D = 0.
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These equations, representing lines upon planes, can be dis-

cussed like the equations of liues in Plane Analytic Geometry.

234. Problem:. To express the lengths of the intercepts

of the axes by a plane.

At the point where the plane cuts the axis of X we have

y = 0 and z = 0. Hence the intercept is the value of x cor-

responding to zero values of y and z, and so with the other

co-ordinates. Thus:

Scholium. Each of the traces necessarily meets the other

two on the several co-ordinate axes, and their points of meet-

ing are those in which the plane cuts the axes. Hence the

traces form a plane triangle of which the points in which the

plane intercepts the axes are the vertices.

Each of the sides of this triangle is the liypothenuse of a

right triangle of which the sides containing the right angle

are the intercepts upon the axes.

The relations between the sides and angles of these tri-

angles, considered individually, may be investigated by the

methods of Plane Trigonometry.

235. Problem. To express the equation of a plane in

terms of its intercepts upon the axes

Let us put

a, b, c, the intercepts on the axes of X, Y and Z respec-

tively.

-v Intercept on Y = — —
;

Intercept on Z = —

(
4)

Then

>
(
5 )



252 GEOMETRY OF THREE DIMENSIONS.

Substituting these values of L, l/
-

and Win the general equa-

tion, it reduces to

£+£ +£-
a ^ b

1

c
1

, ( 6 )

which is the required equation.

EXERCISES.

1. Write the equation of that plane for which the co-

ordinates of the foot of the perpendicular from the origin

upon the plane are 1, 2, and 3.

2. If, in the general equation of a plane, the coefficients

L, M and N are all equal, what angle will the perpendicular

make with the co-ordinate axes, and what angle will the

plane make with the co-ordinate planes?

3. The equation of a plane being

3x + 4y— 12z — 26,

it is required to reduce it to the normal form to find the

angles which it forms with the co-ordinate axes, the equations

of its traces upon the co-ordinate planes, the lengths of its in-

tercepts upon the co-ordinate axes, the lengths of its traces

between these intercepts, and its least distance from the

origin.

4. The intercepts being in the proportion 1:2:3, what

are the cosines of the angles which the perpendicular upon

the plane makes with the axes?

5. Show that the inverse square of the perpendicular from

the origin upon a plane is equal to the sum of the inverse

squares of its intercepts; i.e.,

f d- ^ F ^
c
2

6. Show the corresponding relation between the two sides

of a right triangle and the perpendicular from the vertex

upon the hypothenuse.

7. Express the lengths of the sides of the triangle formed

by the traces of a plane in terms of the intercepts, and prove

that the sum of the squares of the sides is twice the sum of

the squares of the intercepts.
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8. A plane cuts traces whose lengths between the axes are:

On plane YZ, u; on plane ZX, v; on plane XY, tv.

Find the lengths of the intercepts and the equation of the

plane in terms of r = i(w
2 + v~ + w 2

)-

A ns.

Vs" Vs 2
+ = 1 .

w
9. Find the angle included between the planes

* + y+ z = a

and x — y -)- 2z = h. (Comp. §§ 216, 230)

236. Plane satisfying Given Conditions. If a plane is

required to satisfy a condition, that condition can be expressed

as an equation between the constants L, M, N, D, which de-

termine the position of the plane. By means of this equation

one of the constants can be eliminated from the equation of

the plane, and the condition will then be fulfilled for all values

of the remaining constants.

If two conditions are given, two constants can be elimi-

nated; if three, all the constants. For, although the general

equation of the plane contains four constants, it depends only

on the three ratios of any three of these constants to the

fourth. In fact, we can always reduce the general equation to

the form (6)

®
, y_

a ^ i + V- 1
’

which contains but three arbitrary constants.

237. Problem. To find the equation of aplane passing

through a given point.

Let
(
x ' ,

y',
z') be the given point. In order that the

plane
(
L

,
M, N, D

)
may pass through this point, its constants

must satisfy the condition

Lx' -f- My' + Xz' + D = 0, (a)

which gives

D = - {Lx' + My' + Xz').

Substituting this value of D in the general equation, the

latter becomes

Lx + My + Xz —
(
Lx

'

-f My' + Xz') = 0, (7)
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or, in another form,

L(x — x') -f- M(y — y’) + N{z — z
f

)
— 0. (8)

Remark 1. In these equations we may assign any values

we please to L, M and N, without the plane ceasing to pass

through the point (x
r

,
y'

,
z'), as is evident from (8).

Remark 2. If we had two equations of the form («), wc

could eliminate two of the constants, say N and D, and L
and M would still remain. If we had three equations, wc
could eliminate three constants, M, iVLand D for example.

That is, we could, by solving the equations, express M,Nand D
in terms of L. Substituting these values in the general equa-

tion, the latter would, it would seem, still contain the constant

L. But, in reality, L would enter only as a factor of the

whole equation, and would therefore divide out. Hence, when
we eliminate any three of the four constants, the fourth drops

out of itself without the introduction of any further condition.

Relations of Two or More Planes.

238. Parallel and Perpendicular Planes.

Theorem II. If, in the equations of any two planes

Lx -f- My + Nz + D — 0,

L'x + M'y + N'z + jy = 0,

the direction-vectors L '
,
M' and N' are proportional to L, M

and N respectively ,
the Lvo planes are parallel.

Proof. The direction-vectors of the perpendiculars from

the origin upon the planes being proportional, the direction-

cosines are equal (§ 217), and these perpendiculars are co-

incident (§218). Hence the planes are perpendicular to the

same line and therefore parallel. Q. E. D.

Problem. To find the condition that two planes given by

their equations shall be perpendicular to each other.

Let the planes be (L, M. N, D )
and (L r

, M'

,

J\', D').

The planes will be perpendicular when the perpendiculars

from the origin are perpendicular to each other. The con-

dition is, from eq. (9) of § 217,

LL' + MW + NN' = 0.
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239 . Notation. I. We use the symbols P, P' , P"

,

etc.,

Q, Q'

,

etc. etc., to signify functions of the co-ordinates of

the first degree. For example,

P = Lx My -f- Nz -(- D;

P' = L'x + M’y + N'z + D'\

etc. etc. etc.

II. By the expression “the plane P” we mean the plane

whose equation is P = 0.

240 . Theorem III. If in a function P we substitute

for x, y and z the co-ordinates x '
,
y' and z' of a point, P will

then express the distance of that point from the plane P — 0

multiplied by the factor V L~ + M~ + N".

Proof. Let us pass through the point (%'
,
y'

,
z') a plane

A parallel to the plane P. The equation of this plane will

be (§ 237)

Lx + My + Nz -
(
Lx

'

+ My' + Nz') = 0.

The term independent of x, y and 2 is — (L.r'+dTy'+IVV),

which takes the place of D in the general equation. Hence

the perpendicular distance of this plane A from the origin is

, _ Lx' + My' + Nz'
V ~ VU -fM 1 + W7 '

The perpendicular distance of the plane P from the origin is

(§229)

- ~D
VN + M % + N*’

Because the point (x'
,
y'

,
z') is in the plane A

||
P, the

distance of (x', y', z') from the plane P is equal to the con-

stant distance between the planes, and hence to the difference

p — p' between the perpendiculars. Hence

Distance of {x'
,
y', z') from P = Lx' + My' + Nz' + D

VN+~fP +N~
or

Lx’ + My' -)- Nz' + D — Distance x t'/f + M'1 +W 2
.

Q. E. D.
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Cor. If the equation is in the normal form, we shall have

Vu + j/ 2 + jy
s = 1,

and the expression P will then represent the distance of the

point whose co-ordinates appear in it from the plane P = 0.

EXERCISE.

Show that the angle e between the two planes

Lx + My + Nz -f- D = 0 and L'x + M'y + N’z -j- D' = 0

is given by the equation

I

U

+ MW + NN'
COS £ = — — - .

VU + M"- + N* V L' 1 + M'- + aV'
2

241. Theorem IV. If P — 0 and P' — 0 le the equa-

tions of any two planes, and X and X' constants, the equation

XP + VP’ = 0 (a)

will he the equation of a third plane intersecting the other two

in the same line.

Proof. I. The expression XP + VP’ is of the first degree

in x, y and z. Therefore the equation is that of some plane.

II. Every set of values of the co-ordinates x, y and z

which simultaneously satisfy both equations P = 0 and P' — 0

also satisfy equation (a). The co-ordinates which satisfy both

equations are those of their line of intersection (§ 226). There-

fore these co-ordinates also satisfy (a); whence the line lies in

the plane XP + X’P', which proves the theorem.

Cor. If three functions, P, P' and P"

,

are such that it

is possible to find three constant coefficients, A, X' and A",

which lead to the identity

XP + X’P’ + A"P" = 0,

the three planes P, P' and P" intersect in the same line.

Theorem V. If Q — 0 and Q’ = 0 are the equations of

ttvo planes in the normal form, the equations

Q Q' = 0 and Q — Q' — 0
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represent the planes which bisect the dihedral angles formed by

the plane Q and Q'.

Proof. Because the expressions Q and Q' represent the

distances of the point
(
x

, y, z) from the planes Q and Q'

(§240), it follows that the equation

Q = Q' or Q — Q' — 0

will express the condition that the said point is equally dis-

tant from the planes Q and Q'. Hence it lies upon the plane

bisecting the angle formed by Q and Q', and this plane is the

locus of the equation Q — Q' — 0.

The equation Q -j- Q' = 0 is equivalent to Q — — Q'

,

and asserts that the point
(
x

, y, z), if on the positive side of

the one plane, is on the negative side of the other at an equal

distance. Therefore it bisects the adjacent dihedral angle.

Cor. In the case supposed, the two planes Q — Q’ and

Q f- Q' are perpendicular to each other because they are the

bisectors of adjacent angles.

Theorem YI. If A, A' and A" are constant coefficients,

the equation

\P -j- \'P' + VP" — 0 (,b)

represents a plane passing through the common point of inter-

section of the planes P, P' and P".

Proof In the same way as with Theorem IV, it is

shown (1) that the equation is that of a plane, and (2) that

the co-ordinates of any and every point common to the three

planes P, P' and P" satisfy equation (b). Now, because any

three planes have one point common (which may be at infin-

ity), the point common to P, P’ and Pn lies on the plane

(

b

). Q. E. D.

Cor. If four functions, P, P’
,
P" and P'n , arc- such that

an identity of the form

AP + A'P' + A"P” + A"'P"' = 0

is possible, the four planes P, P '
,
P" and P’" will intersect

in a point.
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242, Bisectors of Dihedral Angles. The foregoing

principles enable us to prove many elegant relations among
the planes which bisect the dihedral angles of a solid, or of a

solid angle. Let

(? = 0, Q' = 0, Q" = 0,

be the equations of any three planes in the normal form.

Since any three planes meet in a point, they may be consid-

ered as forming a dihedral angle at that point.

The bisecting planes of the three dihedral angles formed

by the planes Q, Q
f and Q" will be (§241)

Q - Q’ = 0 = P;
Q' - Q" = 0 = P';

Q" - Q = 0 = P".

These functions satisfy the condition

P + P' + P" = 0.

Therefore the three bisecting planes of a dihedral angle in-

tersect on a line.

Placing the centre of a sphere at the vertex of the dihe-

dral angle, and considering the spherical triangle formed by

the planes Q, Q'
, Q", we have the theorem:

The great circles bisecting the interior angles of a spherical

triangle meet in a point.

EXERCISES.

1. In order that the two planes P-\-P'= 0 and P—P'= 0

may be perpendicular to each other, show that the coefficients

of x, y and 2 in P and P' must satisfy the condition

L"- + + N 2 = Z' 2 + M'”- + iV'
2
.

2. Describe the relative position of the four planes

x+ y + 2 = 0,

x -)- y — 2z = 0,

x — 2y -(- z = 0,

— 2x -f- y + z = 0,

and find the angles which each makes with the three others.
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3. Show that the line of intersection of the two planes

ax -f- by + cz -f- cl = 0,

ax -\-by — cz -J- cl — 0,

is in the plane of XY, and that its equation in this plane is

ax + by + d — 0.

4. What is the condition that a plane shall pass through

the origin?

5. Write the equation of a plane making equal angles with

the three co-ordinate planes and cutting off from the axis of

X an intercept a.

6. When a plane makes equal angles with the three co-

ordinate planes, what is the ratio of each intercept which it

cuts off from the axes to the perpendicular from the origin

upon the plane? Ans. V3 : 1.

7. Write the equation of a plane which shall make equal

angles with the axes of X and Z,
and shall be parallel to the

axis of Y.

8. What is the distance apart of the parallel planes

x + 2y 4- 2z = a;

%x -)- Ay -f- 4z — b?

9. Write the equation of the plane which shall pass

through the point (1, 2, 2) and be parallel to the plane

— x -f- 2y — z = 0.

10. Write the equation of the plane which shall pass

through the origin, the point (1, 1, 2) and the point (2,3, 1).

Ans. — 5x 4- 3y + 2 = 0.

11. Write the equation of the plane which shall pass

through the origin and the point (1, 2, 2), and shall be per-

pendicular to the plane

x - y+ z- 0.

Ans. 4:X -j- y — 3z = 0.

12. Find the locus of that point which is required to be

equally distant from the points («, b, c) and («', b c').

Ans. 2(a'— a)x + 2(Z>'— b)y -f 2(c'— c)z

= a ’ 2 - a2 + b'p - b
2 + c'

2 - +
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13.

If, in the preceding problem, the point (a', V , c') is

on the straight line from the origin to (a, b, c), and m times

as far from the origin as (a, b, c), show that the perpendicu-

'yyi _j— 2. /

lar from the origin upon the plane is—-— V cd -j- b~ -)- c
2
.

14. The plane x + y z — d = 0 is required to bisect

the line from the origin to the point («, b, c ). Find the

value of d. Ans. d — |-(

a

+ b + c).

15. Find the equation of the plane passing through the

origin and through the line of intersection of the planes

2x -f- 3y -f- 4z -f~ p — 0j

x -j- y z — 2p = 0.

Ans. 5x + ly + 9z = 0.

16. Find the equation of the plane which shall passthrough

the point (2, 3, 5) and through the line of intersection of the

two planes

% + y+ 2 - 5 = 0;

x — y + 2z -f- 1 = 0.

Ans. x + 3y — 11 = 0.

Calling the two expressions P and P', the equation of any plane pass-

ing through the intersection of P and P' may be written in the form

AP-j-P' = 0. We determine A by the condition that this equation

shall be satisfied when we have x — 2, y = 3 and g = 5.

17. Write the equation of the plane passing through the

origin and perpendicular to the two planes

x + y
- 2 = 0;

x — y — 2z = 0.

Ans. 3x — y + 2z = 0.

18. The three planes

x — 2y — 3z = 0,

2x + y — nz = 0,

Vx + m'y + n'z = 0,

are each to be perpendicular to the other two. Find the

least integral values of V ,
m'

,
n' and n which satisfy this con-

dition, and thus show that the equations of the second and

third planes are

%x + y = 0;

Zx — Qy + 5z = 0.



CHAPTER III.

THE STRAIGHT LINE IN SPACE.

243 . Theorem I. The position of a line is completely

determined by its projections upon any two non-parallel

planes.

Proof. Through the projection on one of the planes pass

a plane R _L to that of projection. The line projected then

must lie entirely in the plane R.

In the same way, the line must lie entirely in the plane

S jL to the other plane of projection and containing the other

projection. Hence the Tine is the intersection of the planes

R and S.

There can be only one plane R and one plane 8, because

along a given line in a plane only one J_ plane can be passed.

Hence there is but one line in which these planes can inter-

sect, and this is the line whose projections are given. Q. E. D.

244 . Equations of a Straight Line. Since any one

equation between the co-ordinates of a point represents a sur-

face, at least two equations are necessary to represent a line

in space. These equations, considered separately, represent

two surfaces. Considered simultaneously ,
that is, requiring

the co-ordinates to satisfy them both, they represent the line

in which the surfaces intersect.

The most simple form of the equations of a straight line

is given by the equations of the planes in which it is pro-

jected upon any two of the co-ordinate planes, XZ and YZ
for example. The equation

x — hz a

(y being left indeterminate) represents a certain plane paral-

lel to the axis of Y (§ 231); that is, the co-ordinates of all the



262 GEOMETRY OF THREE DIMENSIONS.

points in this plane satisfy the equation, and vice versa. In

the same way, every point whose co-ordinates satisfy the equa-

tion

y = Icz -\-b

lies in a certain plane parallel to the axis of X. Hence
every point whose co-ordinates satisfy both equations must
lie in both planes, that is, in the line of intersection of the

planes. The two equations taken simultaneously therefore

represent a straight line.

Remake. Any two consistent and independent simulta-

neous equations between the co-ordinates, for instance,

ax -{-by cz -j- d — 0, \

a’x + b'y + c'z -(- d’ — 0, f

equally represent a straight line, namely, the line in which

the planes intersect. But the forms

x = hz + a,\
(3)

y = la + t, f

are preferred because they are more simple.

We also remark that the form (1) can always be reduced

to the form (2) by first eliminating y and then x from the two

equations.

EXERCISES.

1. Express the equations of the line of intersection of the

planes

3x — 2y + z -{- od = 0,

— x + y -)- 2z — id = 0,

in the form (2).

(
x = —5z -j- 3d;Am- iy=-7* + 7<7.

2. Express in the form (2) the equations of the three lines

of intersection of the planes

x — y — z = a;

z + y - z = b;

x -{- 2y -\- z = a -{- b.



THE STRAIGHT LINE IN SPACE. 263

3. Explain how it is that the equation of a line in one of

the co-ordinate planes (the other co-ordinate being supposed

zero) is the same as the equation of the plane passing through

that line and parallel to the third co-ordinate.

4. Prove that if we represent the equations of a straight

line [(1) or (2), for example] in the form

P = 0, 0 = 0,

then the equations

mP ?iQ — 0
;

mP — tiQ = 0,

m and n being constants, will represent the same line.

245 . Symmetrical Equations of a Straight Line. The
equations of a straight line may he represented, not only by

two equations between the three co-ordinates, hut by express-

ing each of the three co-ordinates as a function of a fourth

variable. To do this, let us put

x
0 , y0 , z

0 ,
the co-ordinates of any fixed point of the line;

x, y , z, the co-ordinates of any other point of the line;

p, the length between the points (x
0 , y0 , z

0 )
and

(
x

, y, z).

Then, a, (3 and y being the angles which the line makes

with the co-ordinate axes, we have, by § 215,

x — x
0 = p cos a\ \

y-iy* = pcos/?;V (3)

z — z
0 = p cos y. )

Here x
0 , y0 , z

B ,
a, (3 and y are supposed to be constants

which determine the position of the line in space, while

x, y, z and p are variables. Assigning any value we please to

p, we shall have corresponding values of x, y and z, which

will be the co-ordinates of that point P on the line which is

at the distance p from the point (x
0 , y0 , z

0 ).
Since for every

point on the line there will be one and only one value of p,

and for this value of p one value and no more of each co-

ordinate, and vice versa, the equations (3) will represent all

points of the line, and no others. They are therefore the

equations of a straight line.

These equations (3) are readily reduced to the form (2) by
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eliminating p, first between the first and third, and then be*

tween the second and third. We thus find

x =

y-

cos a
z +

cos y
cos ft

z +
cos y

x
0
cos y — z

0
cos a

cos y
y0

cos y - z
0
cos ft

cos y

The equations may also be reduced to the symmetric form

fH _ y - Vo _ 2 - Zq

cos a cos ft cos y
'

246. Introduction of Direction-Vectors. In the equa-

tions (3) we may introduce, instead of the direction-cosines,

any three quantities proportional to them, without changing

the line represented by the equation. Let' these quantities be

1, m and n, so that the equations become

x = x
0 + lp; \

y = yo + mPl
[

(i)

z —Z
0 + np. )

To show that the line is unchanged, we proceed as in § 217,

where we have shown that the proportionality of l, m and n
to the direction-cosines may be expressed by the equations

= ff cos a
;

m = 6 cos f ;
n = 6 cos y.

By substitution the equations (4) become

x = x
0

-j- pa cos a;

y = y0 + P<? cos ft;

z = z
0 + pa cos y.

These equations are the same as (3), except that pff takes

the place of p; that is, the distance between the points

(x
0 , ?/ 0 ,

z
0 )

and (x, y, z) is pa instead of p. Hence the systems

(3) and (4) represent the same line, except that in (4) p repre-

sents length -i- a. instead of length simply.

Cor. We may multiply the three direction-vectors in the

symmetrical equations of a line hy any common factor without

changing the line represented.
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Remark. The forms (3) and (4) have a great advantage

in nearly all the investigations of Analytic Geometry, and

will therefore be exclusively employed. The advantage

arises from the fact that the three co-ordinates which fix the

position of some one point of the line are completely distinct

from the quantities l, m and n which express its direction.

EXERCISES.

1. Express the co-ordinates of the three points in which

the line given by the equations (3) intersects the three co-

ordinate planes respectively. Express also the corresponding

values of p.

2. Write, in the form (4), the equations of a line passing

through the point (a, b, c) and parallel to the axis of Z.

3. Write, in the same form, the equations of a line passing

through the point (x
0 , y0 ,

z
0 )

parallel to the plane ofXY and

making equal angles with the axes of X and Y.

4. Write the equations of a line passing through the point

(x
0 , y0 , z

0 )
and making equal angles with the co-ordinate

planes. Express also the co-ordinates of the three points in

which it intersects the co-ordinate planes.

A ns., in part. It intersects the plane of YZ in the points

V = y0
- z = *

0
- *.•

5. Show that the equations of the line passing through the

points
(
x

0 , y 0 , z
0 )

and (.r,, yv z^) may be written in the form

* = x
0 + OG - x

0)p ;

y = Vo + (y, - y„)p;

z = z
o + Oh - Up-

state to what distance on the line corresponds the unit of p
in these equations, and find the co-ordinates of the points in

which the line intersects the co-ordinate plaues.

6. Write the three symmetrical equations of the straight

line joining the points (1, 1, 2) and (2, 3, 5). Find the

angles which it makes with the co-ordinate axes, the points

in which it intersects the co-ordinate planes, and the distances

between these points.
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24:7. Condition that a Line shall he parallel to a Plane.

So long as the coefficients l, m and n in the equations (4) of

a straight line are entirely unrestricted, these equations may,

by giving suitable values to l, m and n, be made to represent

any line whatever passing through the point (x
0 , y0 ,

z
0 ).

If,

however, they be subjected to a homogeneous equation of con-

dition, the lines will be restricted, as we shall now show.

Theorem II. If, in the symmetrical equations of a

straight line, the direction-vectors m, n and p are required

to satisfy a linear equation, the line will lie in or he parallel

to a certain plane.

Conversely, the requirement that the line shall lie in or he

parallel to a certain plane is indicated hy a linear equation

between the direction-vectors.

Proof. Let the linear equation which m, n and p are re-

quired to satisfy be

Al + Bm + Cn = 0. (a )

I say that every point of every possible line represented by the

equations (4) will then lie in the plane whose equation is

A(x— x
0) + B{y - y t ) +. C{z - z

0 )
= 0, (h )

and will therefore be parallel to every plane whose direction-

vectors are A, B and C. For, by multiplying the equations

(4) respectively by A, B and C, transposing, and adding the

products, we find

A(x- x
a) + B(y - y„) + C{z - z„) = {Al + Bm + Cn)p.

Now, by hypothesis (a), the second member of this equation

vanishes. Hence all values of the co-ordinates x, y and z

which satisfy (4) also satisfy {h). Hence every point of the

line lies in the surface whose equation is {h), and this surface

is a plane, by § 229.

Every plane whose direction-vectors are A, B and C is

parallel to (6), because perpendicular to the same line. Hence

(a) is the condition that the line (4) is parallel' to every such

plane.



THE STRAIGHT LINE IN SPACE. 267

Next, let it be required that the line (4) shall lie in the

plane whose equation is

Ax -f- By Cz f-D — 0. (c)

I say that the coefficients m, n and p must satisfy the linear

equation
Al + Bin + Cn — 0.

For, by substituting in (c) the values of x, y and z from (4),

we have

Ax
o + By

a
-(- Cz

a -f- D -(-
(
Al Bm -f- Cn)p — 0, (

d

)

which equation must be satisfied for all values of p. Now, by

hypothesis, the point (x
0 . y0 , z

0 )
lies on the line, and therefore

lies in the plane (c) which requires it to satisfy the equation

Ax
0
-j- By

0 + Cz
0 + D = 0.

Hence, in order that the equation
(
d

)
may be satisfied, we

must have
Al + Bm -f- Cn — 0. (5)

248. Common Perpendicular to Two Lines. It is shown
in Geometry that two non-parallel lines have one and only one

common perpendicular, and that this perpendicular is the

shortest distance between the lines. Let us now solve the

problem,

To find the equation of the common perpendicular to two

given lines.

We shall express the equations of the given lines in the

form (3), putting, for brevity,

and

A. Yv l

a
2 , yv )

the directioh-cosines of the given lines,

a, (3, y, those of the required perpendicular.

Thus the symmetrical equations of the given lines will be

* = + ajP> )

y = + Apj
[

x = x
2 + a

2p;

y = y, + Ap;
* = *, 4 - YP-

and
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Let us first find the direction-cosines a, (3, y. By §§ 216,

217, we have the equations

a
i
a + PxP + Yiy — 0

; )

+ A/5 + Y*Y = 0; > (6)

«2 + P
2 + f = 1 . )

Eliminating first ft and then y from these equations, we have

KA - + (An - fiiY,)Y = °;

(nn ~ Y*
a,)« + (An ~ AY*)P = °-

Dividing these equations by ay and a/3, respectively, gives

An ~ A

n

_ nn - nn _ «,A - nA - ...

a /3 y

m<* = An - An;
Rp = Yia*~ Y*aB
hr = «iA — «

aA-

Taking the sum of the squares of these equations,

m* = {PiYi - An)* + (n*.
- nA)* + («iA - «*A)*» (7 )

which is the square of the sine of the angle between the given

lines (§ 218).

The direction-cosines a, [3 and y are therefore

_ An - An .

LX .
j

Sill V

p =

Y —

nn -- Y*a i .

sin v

q,.A — nA .

sin v ’

(
3 )

v being the angle between the given lines. Thus the direc-

tion of the required line is completely determined.

To complete the solution, we must find the co-ordinates

of some point of the line. Let us then put

(a, b, c )
the point in which the required line intersects the

first of the given lines. The equations of the required line

may then be written
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x = a + <*p;

}J
— b +

z = c-\- yp.

(*)

Let us also put

p,, the distance of the point (a, b, c
)
from (a^, zj on

the first given line
;

p2 ,
the distance from (:e

2 , z„) on the second given line

to the point in which the required line intersects it

;

p0 , the distance of the points of intersection, that is, the

length of the shortest line between the given lines.

Then, equating the expressions for the co-ordinates of the

points of intersection on the two lines, we have the six equa-

tions

a + ap
0 = a;

2 -f- aiPA
)
Intersection of required

b + /3p0 = + /32p2 ;
[• line with second given

c + VPo = + V,P,- ) line.

These six equations suffice to completely determine the six

unknown quantities, a, b, c, p0 , p,, p2
. First subtracting

corresponding equations in the two sets, we eliminate a, b and

c, and have three equations which we may write in the form

and which contain only the three unknown quantities p0 , p i

and p2
. Multiplying the equations in order by a, f

J
> and y,

taking their sum and referring to the relations (6), we have

Po = «(*, - *,) + /%, - y,) + yfa - *,) (9)

From the manner in which p0
has been defined, it is equal

to the shortest distance between the two lines (1) and (2), be-

cause it is the distance from the point (a, b, c) to the point

in which the shortest line intersects the second line.

y (c)

(d)
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If we substitute for a, (5 and y their values (8), we have

Po =
(Piyi-fayi) (a?a—

a

,i)+(/i«!i—yvaQOh - yQ+ iaifiz— —zQ
,

1Q
siu v '

Again, multiplying the equations
(
d

)

by a t , /h and y i, and

adding, and then by rr
2 , /?„ and yv and adding, we find

p, - p2
cos v = -

*i) + A(y, - ?/,) + ri(^ - *,) = »*,;

Px cos v - p, = «.(*. - »,) + A(y, - y.) + r.(*.
- z

i) - ?v

Hence

_ 7
’l
~ cos v

r, cos v — r
2

sin
2
v

To find a, & and c, we have only to substitute the value of

p, in (c), which gives

a = +

* = y. +

C = 2, +

Sill U

— yS,r
2
cos y.

sin
2
v

YI\ — Yira cos v

sin" y

(
11

)

The values of a, b, c, a
, /? and 7 in (11) and (8) being

substituted in (b), the equations of the shortest line are com-

plete.

249. Condition ofIntersection. Since p0
in (9) expresses

the shortest distance between the two lines, the condition

that the lines shall intersect is found by putting p = 0.

Substituting for a, f and y their values (8), this condition

gives

(Pirs— y-iocOtya— ^iH-(«iPa— Ofo—*0= 0 .

If, instead of a, /3 and y, we use the quantities l, m and n,

we must, from the proportionality of these factors to a, (5 and

y, have a, (i and y equal respectively to I, m and n, each

multiplied by the same factor.
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If we call p and q these factors in the cases of a
1? /?l5 y

and a
a , /?a , y2

respectively, we have

Ar. - Ari =j>g(*»
1»,
-

j'i".
-

«,A - «.A - hm i)>

and the condition of intersection becomes

(ffliWs—

m

2re,)(*,—®i)+(n!?a
—n3h) (?/,— Zi)=0. (12)

250. Problem. To find the point in which, a tine in-

tersects a surface.

Since the point of intersection lies on the line, there will

be a definite value of p corresponding to it. Tibs value of p,

being substituted in the equation of the line, will give values

of the co-ordinates x, y and z which, if p is properly taken,

will satisfy the equation of the surface. We therefore proceed

as follows:

Calling, for the moment, (a, h, c) any one point of the

given line, we substitute in the equation of the surface, for

x, y and 2
,
the expressions

x — a + Ip; y — 1 mp; z = c + np. (a

)

The equation of the surface will then contain no unknown
quantity except p, and is to be solved so as to get' an expres-

sion for p which shall satisfy it.

This expression being substituted in the equations (a)

will give the required values of the co-ordinates of the point

of intersection.

If the equation in p is of a higher degree than the first,

there will be several values of p, and therefore several points

of intersection.

Example. Find the point in which the line

x = 2 -(- 2p,

y = 3 — 2p,

z = 5 — p,

intersects the plane

2x — 3y — z + 8 = 0.
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Substituting the values of the co-ordinates in the equa-

tion of the plane, we find

- 10 + lip + 8 = 0,

which gives p = ~;

whence
x = 2+, y = 2T

7
T , z

—
4^-,

are the co ordinates of the point of intersection.

The same general method applies whenever points fulfil-

ling any condition whatever are to be found on one or more

lines. Each line must have its own value of p, which wo
may distinguish from the values for other lines by accents or

subscript numbers. The values of the co-ordinates, expressed

in terms of p, are to be substituted in each condition, and

equations with the p’s as the only unknown quantities will

thus be formed.

EXERCISES.

1. Write the equations of the sides of the triangle whose

vertices are at the points (1, 2, 3), (3, 2, 1) and (2, 3, l),and

find the angles of the triangle.

Ans., in part. 30°, 60°, 90°.

2. Find the points in which the line joining the points

(1, 2, 3) and (2, 3, 4) intersects the co ordinate planes.

Ans. (0, 1, 2); (- 1, 0, 1); (- 2, - 1, 0).

3. Write the symmetrical equations of the line passing

through the point
(
a

,
b, c) and perpendicular to the plane

px + qy + rz — 0.

4. An equilateral triangle has one vertex in each co-ordi-

nate plane, at the distance h from each of the axes lying in

that plane. Write the equations of each of its sides, taking

the middle point of each side as the point from which p is

measured.

Ans., in part. x—Ji; l Equations

y = 4/i + p; V of one of

z = i-h — p. ) the sides.
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5.

In wliat points does the line of intersection of the two

planes

® + y
- z = ?>

x-y +'2z = 1,

intersect the co-ordinate planes?

Ans. (4, 3, 0); (0, 15, 8); (5, 0, — 2).

6.

Express the point in which the line (4),

sects the plane Lx -J- My + Nz = 0.

246, inter-

Ans., in part, x, _ M(mx
0
- ly

a ) + X(nx
0
- h

B )

IL + Mm -f- Nn

7.

Write the symmetrical equations of the line of inter-

section of the two planes

x + 2y — 3z — 5 = 0,

2x — y -f 2z 7 = 0,

taking as the zero point of the line that in which it intersects

the plane XI 7
".

9 17
Ans. x — — — — p; y = —-

-f- 8p; z — 0 + 5p.
O 0

In cases where direction-vectors appear as unknown quantities in

equations, there will be hut two equations for the three vectors. In this

case we determine any two in terms of the third, and assign to the lat-

ter such value as will give the simplest form to the results.

8. Write the equations of the line passing through the

poiut (3, 1, 5) and intersecting the axis of X perpendicularly.

9. Write the equations of the line passing through the

point (a, b, c) and parallel to each of the planes

x -f- y — 2z = 0;

x — y -|- z =0.
Ans. x = a -f- p;

y = 5 + 3p;

z = c -f- 2p.

10. Find the condition that the line (4), § 246, shall inter-

sect the axis of Z. Ans. mx
0
= ly

0
.

The condition requires that the points in which the line intersects the

planes of XZ and TZ respectively shall be the same, that is, correspond

to the same value of p.
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11. Find the equation of the line passing through the

point (5, 2, 4) and intersecting perpendicularly that line

through the origin whose direction-vectors are l = 1, m = 2,

n — 2. Ans. x — 5 — 14p; y = 2 + 8p; z = 4 — p.

Write the symmetrical equations of the given and the required line,

calling p' the variable for the one line,•"'and p for the other. The con-

dition that some one point (x, y, z) shall satisfy the equations of both

lines then gives three equations of condition between l, m, n, p' and p,

and the condition of perpendicularity gives a fourth.

12. Deduce the condition that two lines shall intersect by

the principle that there must then be one set of values of x, y
and z which shall satisfy the equations of both lines, these

values of the co-ordinates being given in terms of one value

of p for the one line, and another value for the other line.

The condition gives three equations between the two quantities p
(on one line) and p (on the other), and the values of p and p' must be

the same, whether we derive them from one or another pair of the equa-

tions.

13. Write the equation of the plane which contains the

two intersecting lines

x — a p\ x = a — p;

y = b-p; y — b 2p;

z = c — 2p; z = c — 3 p.

Ans. x — 5y -f- 3z — a -f- 5b — 3c = 0.

Note that the condition that a plane shall contain or be parallel to a

line is the same as that a line shall be parallel to or lie in a plane.

14. Find that plane which is parallel to each of the lines

x = a — 2p; x — a' -f- p;

y — b — p; y — b'-Y 2p;

z = c + p; z = c’ — p;

and equidistant from them. Also find the common distance.

Ans. 2a: —(— 2y -j- 6z — a — a' — b — b' — 3c — 3c' 0.

a —a' + b — V -f 3 (c — c')

2 Vli
Common dist.



CHAPTER IV.

QUADRIC SURFACES.

General Properties of Quadrics.

251. Def. A quadric surface is the locus of a point

in space whose co-ordinates are required to satisfy an equation

of the second degree.

Remark. A quadric surface is called a quadric simply.

The most general form of an equation of the second degree

between the co-ordinates is

t
rjx

2
-+- hy 1

-f- 7cz
2 + 2g'yz -j- 2li’zx + 2lc'xy

+ 2g"x -f- 2h"y -f- 2Tc"z -)- d — 0, (1)

because the terms in this equation include all powers and

products of the co-ordinates x, y and z up to those of the

second degree.

The number of coefficients, as written, is ten. But since,

by division, we may reduce any coefficient to unity, their

number is, in effect, equivalent to nine. Hence:

Theorem I. Nine conditions are necessary to determine

a quadric in space.

Remark. In discussing the equation (1), we regard the

coefficients (/, h, Tc, g'
, etc., as given constants, unless other-

wise expressed.

We may trace out certain analogies between the quadric

and conic, by treating the former in the same general manner
in which we treated the latter in Part I.
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253. Intersections of a Quadric ivith a Straight Line.

Let the equations of the line be

The problem now is, What values of x, y and z satisfy both

these equations and (1)? (Cf. § 250.) If we substitute these

expressions for x, y and z in (1), thus:

we shall have an equation in which all the quantities except

p will be supposed given. Hence p can be determined from

the equation. When this is done, the values of the co-ordi-

nates of the point or points of intersection are found by sub-

stituting the values of p in («). How the equation in p will

be of the second degree, and will therefore have two roots,

which may be real, imaginary or equal. Hence:

Theorem II. Every straight line intersects a quadric in

two reed, imaginary or coincident points.

253. Centre of Quadric. Let us next change the origin

to a point whose co-ordinates have the arbitrary values A, B,

C. If we distinguish the co-ordinates referred to the new

system by accents, we shall have (§ 219)

Substituting these values in the general equation (1), it be-

comes

gx'
%

-f- 7iy
n -4- kzn -+- 2g'u'z' -f- 2h'z'x

'

+ 2 k'x'y'

+ 2{gA + h'B + h’C + g")x’

+ 2{hB + g'C+k'A + h")y'

+ 2(kC+h’A + g'B + k")z'

+ gA" + hB3
+7cC"- + 2eg'BCf 21i'CA + 2VAB
+ 2eg”A + 2h"B + 2k"C+d = 0. (!')

(a)

gx* = g(xf + 2lx
ap + fp2

),

etc. etc.

x — x r —{— A :

y =y’ + B;

Z = z' + G.
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Let us now determine the co-ordinates A, B, C of the new
origin bv the condition that the coefficients of x', y' and z'

shall all vanish. To do this we have to solve the equations

9

A

+ k'B -\- Id C — — g"; \

h'A + hB + g'C = - h"; [ (2)

h'A + g'B + kC = - ,fc"; )

regarding A, B and C as the unknown quantities. Since

there are as many equations as unknown quantities, the solu-

tion will, in general, be possible.

Let us now suppose the equations (2) to be solved, and the

resulting values of A, B and C to be substituted in (1'). Let

us also put
cl', the absolute terms in (1').

Then, omitting accents, the equation (1') of the quadric re-

duces to

gx~ -j- Inf -(- kz
1

-f- 2g'yz -)- 2h'zx+ 2k'xy + d' — 0. (3)

From this equation we may deduce a second fundamental

property of the quadric. If (x, y, z) be any values of the co-

ordinates which satisfy (3), it is evident that (— x, — y, — z)

will also satisfy it. Hence, if one of these points is on the

quadric, the other will also be on it. But the line joining

these points passes through the origin, and is bisected by the

origin, that is, by the point whose co-ordinates, referred to the

original system, are (A, B, C). Since (x, y, z) may be any

point on the quadric, we conclude:

Theorem III. For every quadric there is, in general, a

point lohich bisects every chord passing through it.

Def. That point which bisects every chord passing

through it is called the centre of the quadric.

A chord through the centre is called a diameter of the

quadric.

254. Section of a Quadric by a Plane. To investigate

the equation of the plane curve in which any plane intersects

the quadric, we may take a pair of co-ordinate axes in the

cutting plane. This we do by simply transforming the equa-

tion to one referred to new axes; and we may, in the first
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place, leave the origin unchanged. Accenting the new co-

ordinates, the equations of transformation will be (§220)

x = ax’ -f fiy’ -f- yz'-,

y = a'x' -j- fi’y' + y’z'\

z — a"x' -j- fi"y' + y"z'\

a, fi, y, etc., being the direction-cosines of the new co-ordi-

nate axes relatively to the old ones.

Now when we substitute these expressions in the general

equation (1) and arrauge the terms according to the powers

and products of x'
,
y' and z', we shall have a new equation of

the same form as (1), that is, one containing terms in xn
,

y", z", x'y'

,

etc.; the only change being that the coefficients

g, h, k, g’

,

etc., have new values. We may therefore, without

any loss of generality, take the equation (1) as representing

the transformed equation, and consider the section of the sur-

face which it represents by a plane parallel to any one of the

co-ordinate planes, XY for example. Let us then suppose

z = c in (1). The equation of the section of the quadric by

the plane z — c will be, omitting the accents,

gx* + hy2 + 2k’xy + 2 (Ji’c + g")x + 2(g'c + h")y

+ ke + 2k"

c

-f d — 0.

This is the equation of a conic section. Hence:

Theorem IV. Every plane section of a quadric is a conic

section.

It is also shown in § 198 that all conics whose equations

have the same coefficients in x*, xy and y~ are similar and

similarly placed. Now, in the above equation, the coefficients

g, h and 2k remain unaltered, however c may change; that is,

however we may change the position of the cutting plane, so

long as it remains parallel to the plane of XY. Hence:

Theorem. Y. All sections of a quadric by parallel

planes are similar conics and have their principal axes

parallel.

Cor. If any plane section of a quadric is a circle, all

sections parallel to it are circles.
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EXERCISES.

1. Find the centre of the quadric

x2 + hy2 + z
1 + nyz -f- mx = 0.

2. Write the equation of the locus of the point required

to be equally distant from the origin and from the plane

ax + fiy + yz — p— 0. (a2 + fi" y
2 = 1.

)

3. Write the equation of the locus of the point equally

distant from the origin and from the plane

cx + c'y — p = 0, (c
3 + c'" = 1.)

and show that its centre is at infinity.

255. Conjugate Axes and Planes. Consider this prob-

lem:

To find the locus of the middle poin ts of all chords of a

quadric parallel to any fixed line, and therefore to each other.

Let the equation of any one of the chords be

x = x
0 + Ip

;

y = y. + mp;

z = z
0
+np.

If l, m and n remain constant, then, by asigning all values to

x
0 , y 0

and z
0 ,

these equations may represent any system of lines

parallel to each other. Now, we find the two points in which

any one of these lines intersects the surface by the process of

§ 250; namely, we put in the equation (3) of the surface

x2 = x
0

2 + 2lx
0p 4- l

2

p
2

;

if = Vo
2 + %W0P + «*

2

p
2

;

2
2 = zj + 2nz

0p + n2

p
2

\

IP = VPo + (
?^o + mzo)P + mnp2

',

zx = z
0
x

0 + (nx
0 + lzj)p + nlp2

\

xy = xdJ* + (fy0 + mxo)p + iwp2
-

For brevity, let us represent the result of substituting these

values in (3) in the form

A -)- Bp -j
- Cp2 = 0. (d)
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Now, we may choose for (x„ y0 ,
z
0 )
any point on the chord.

Let us choose the middle point. This point will be deter-

mined by the condition that the two values of p from the

quadratic equation (a) shall be equal, with opposite algebraic

signs. The condition for this result is B = 0. That is, writ-

ing for B its value, the condition will be

glx
0 + hmy

0 + km, + g'{ny, + viz,) + h’{nx, + lz
0 )

+ k'(ly
0 + mx

0 )
= 0.

This, then, is the equation which the middle point
(
x„ y0 ,

z,)

must satisfy as x
0 , y0

and z, vary. Being of the first degree,

it is the equation of a plane, and, having no absolute term,

the plane passes through the origin, that is, the centre

of the quadric. Hence:

Theorem. VI. The locus of the middle points of a system

ofparallel chords of a quadric is a plane through the centre.

Def. A plane through the centre of a quadric is called a

diametral plane.

That diametral plane which bisects all chords parallel to a

diameter is said to be conjugate to such diameter, and the

diameter is conjugate to the plane.

That diameter whose direction-vectors are l, m, n, that is,

whose equations are

a- = Ip,

y — mp,

z = np,

will be called the diameter (l, m, n).

Remark. If we call any diameter A, we may call the

conjugate diametral plane A'.

The above equation of the diametral plane may be written

out thus, the subscript. zeros being omitted:

(gl + k’m + h'n)x + (
k’l hm + g'n\y

-f- {Ji'l + g'm -f- kn)z = 0. (4)

That is, this plane is conjugate to the diameter (l, m, n).

Theorem. VII. If a diameter B lie in a plane A', the

conjugate diametral plane B' will contain the diameter A,

conjugate to A'.
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Proof. Let the equation (4) represent the diametral

plane A', and let the diameter B be (A, y, v). By § 247, the

condition that this diameter shall lie in the plane (4) is

(gl -j- Tc'm -\-h'n)X + (
Tc’l -f Am + </'«)/*

+ (Ifl -j- g'm -f- Tcri)v — 0,

or, rearranging the terms,

(gX -j- k'fx h'v)Pj- (A
rA + lifx -f- g'v)m

+ (IfA -f- g'y kv)n = 0.

But (§247) this is the condition that the diameter (l, m, n),

or A, shall lie in the plane

(gX + fcfi + h’v)x A-\h'X + hg. + g'v)y

+ (A'A + g'ji -)- hv)z = 0,

which, by comparison with (4), is seen to represent the plane

conjugate to the diameter (A, a, v), or B\ that is, the plane

B'

.

Hence this plane contains tTie diameter A. Q. E. D.

Scholium. Having two conjugate diameters, A and B,

with their diametral planes. A' and B'
,
arranged as in this

theorem, the intersection of the planes A' and B' will deter-

mine a third diameter, which we may call C. Then, because

C lies in both the planes A' and B'
,

its conjugate plane C"

will, by Theorem VII., pass through both A and B. Thus
we shall have a system of three diametral planes whose inter-

sections will form three diameters, and each plane will bisect

all chords parallel to its conjugate diameter.

These three lines and planes are called a system of con-

jugate axes and diametral planes.

256. Change in the Direction of the Axes. To simplify

the equation (3) still further, let us change the direction of

the axes of co-ordinates, leaving the origin at the centre.

This we do by the substitution

x = ax' + fig' + yz'\

y = a'x' + /3'y

'

+ y’z

z =: a"x' + fi"y' + y"z'.

If we substitute these values in (3). we shall have an equation



282 GEOMETRY OF THREE DIMENSIONS.

the terms of which we can arrange according to the powers

and products of x’
,
y' and z'\ namely,

z'
2

, y'\ y’z’, zV, Pyf
.

We then suppose the values of the direction-cosines a, (3. y, a',

etc., to be so determined that the coefficients of y’z’,
z'x' and

x’y’ shall all three vanish. This will require three equations

of condition to be satisfied, which, with the six relations (14)

of §220, will completely determine the nine direction-cosines.*

These cosines being determined, the coefficients of xP, y'~

and z
n

will all become known quantities, while the products

y'z', etc., will disappear. Thus, omitting once more the

accents from the co-ordinates, the equation (3) will be re-

duced to the form

or

ZV -f m'if + mV + cV — 0,

V
,

m'
2

n' 2
'

~

W

y ~F =1
’ 0)

V, m’ and n’ being known quantities, functions of the origi-

nal coefficients in (1). It will be seen that the absolute term

d' remains unaltered by this transformation.

V 'tYl*

The several quantities —„ etc., may be either positive

or negative, according to the values of the coefficients which

enter into the original equation (1).

257. Principal Axes. Let us put A for the value of

d' p-
—
r taken positively; the first term of (5) will be ± —

, accord-

ing to whether it is positive or negative. If then we put

a = V'A - )/± y,
X“

the term will become ± hr
a

* The equations obtained in this way are too complex for con-

venient management, and the actual values of the direction-cosines

must be found by the differential calculus, or by an application of the

algebra of linear substitutions. We must therefore, at present, be con-

tented with showing the possibility of the solution, which is all that is

necessary for our immediate purpose.
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In the same way the other terms can be reduced to the

Def. The quantities a, b and c in this equation are called

the principal axes of the quadric.

The Three Classes of Quadrics.

258. There are now four possible cases, omitting the

exceptional ones in which a, b, or c is zero or infinity.

Case I. The coefficients of the first member of (6) all

positive.

Case II. Two coefficients positive and one negative.

Case III. One coefficient positive and two negative.

Case IV. All the coefficients negative.

In the last case no real values of the co-ordinates can sat-

isfy the equation, because the terms, being themselves squares,

are essentially positive, and therefore with the minus signs

essentially negative. Hence there can be no real surface to

represent the equation. But in the other three cases there

will be real loci. Hence

There are three general classes of real quadrics.

259. Class I. The Ellipsoid. In Case I. the equation

Let us first investigate the limiting values of the co-ordi-

nates. Writing the equation in the form

z
form ± ~ and ± —, . Thus the general equation of the quad-

ric can finally be reduced to the form

(6)

is

(?)

we see that when — c > z > -f- c, the co-ordinates x and?/ can-

not both be real. Hence the surface is wholly included between

the two planes z = -f- c and 2 = — c.
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In the same way it is shown that the surface is included

between the planes x = -f- a and x = — a, and also between
the planes y = -f- b and y = — b. Hence it is bounded in

every direction.

Because its sections by a plane are of the second order,

and limited in extent, they must all be ellipses. Hence the

surface is called an ellipsoid.

If we suppose z — + c, we have x — 0 and y = 0, as the

only values of x and y which can satisfy the equation. Hence

each of the two planes z = -f- c and z = — c meets the sur-

face in a single point on the axis of Z, and is therefore tan-

gent to the surface. Extending the same proof to the other

two co-ordinates, we reach the conclusion:

The six planes x = + a, x = — a, y — b, y — — b,

z — -f- c and z = — c are all tangents to the ellipsoid at the

points which lie on the axes at the distances ± a, ± h and ± c

from the origin.

These six planes form the faces of a rectangular parallele-

piped whose edges are respectively 2a, 2b and 2c. Each pair

of parallel faces being at equal distances on the two sides of

the origin, and parallel to the corresponding axes, these axes

intersect the faces in their centres. Hence:

Theorem YIII. Every ellipsoid may be inscribed in a

rectangular parallelopiped whose surface it ivill touch in the

centre of each face.

260. Class II. The Hyperboloid of One Nappe. Let us

take that form of the equation (7) in which one of the three
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terms of the first member is negative

be that in z. The equation is then

z"*
, r

5 = 1
,

which we may write in the form

x

a
+ V- = 1 +-

Suppose this term to

(
8

)

(S')

Let us now find the curve in which the surface intersects

the plane of XY. This we do by putting z — 0, which gives

at once the equation of an ellipse whose major axes are a and

b. Hence:

Theorem IX. The hyperboloid of one nappe intersects

the plane ofXY in an ellipse whose axes are the same as the

axes a and b of the surface.

This ellipse is called the ellipse of the gorge.

Let us next find the curve in which the surface intersects

a plane parallel to that of XY and at a distance h from it.

The equation of such a plane is

z — Tc.

Substituting this constant value of z, and putting, for brevity,

IF

(a)

the equation (8') reduces to

JL + JL = 1AV ^ Idb
2

This is the equation of an ellipse whose axes are ha and
lib. Whatever the value of h, the ratio of these axes will he

a : b, so that the ellipses will be similar. Hence:

Theorem X. The hyperboloid of one nappe cuts all planes

perpendicular to its axis of Z in similar ellipses.

The equation (a) shows that h exceeds unity and increases

with positively or negatively increasing values of Tc. Hence
The ellipses in which the hyperboloid of one nappe cuts

planes perpendicular to its axis ofZ are larger the farther the

planes are from the centre.
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To find the curves in which the surface intersects planes

parallel to the other co-ordinate planes, we transpose either

the term in x or that in y, thus putting the equation in the

form

(
9
)

Assigning any constant value to y, we see that the equation is

that of an hyperbola, and we may show, as in the case of the

other section, that these hyperbolas are all similar. But

there is one remarkable case, namely, that in which the equa-

tion of the intersecting plane is

y= ±t-

The equation of the intersection then becomes

or (cx — az)(cx -f- az) = 0,

which is the equation of a pair of straight lines.

This result will be generalized hereafter.

261. Class III. Hyperboloid of Tiro Nappes. Let two

of the terms in (6) be negative. By taking the terms in x

and y as negative, and then changing the sign of each mem-
ber of the equation, it may be written in the form

(
10 )

If c > z > — c, the second member will be negative and

the equation can be satisfied by no real values of x and y.

When z is on cither side of the limits ± c, there will be real

values of x and y. Hence the surface is composed of two dis-

tinct sheets, or nappes, separated at their nearest points by the

space 2c. This surface is therefore called the hyperboloid
of two nappes.

We readily see that the plane z — 1c, parallel to the plane

of XY, intersects the surface in a real ellipse whenever & > c.

We also show, as in the last section, that the planes x — 1c

and y = k intersect it in hyperbolas.
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Tangent and Polar Lines and Planes to a
Quadric.

262. Since the equation of the general quadric surface

may he reduced to one of the three forms just considered, we
may, without loss of generality, consider the equations (6) as

representing every such surface. Moreover, we may, in

beginning, restrict ourselves to the first form.

(
11

)

because the fact that any of the three terms of the first mem-
ber has the negative sign may be indicated by substituting

— a
2

,
— If or — c

2
for a

2

,
If or

Def. A tangent line to a surface is a line which passes

through two coincident points of the surface.

Problem. To find the condition that a line shall touch a

surface of the second order at the point (aq, y1} zj on that sur-

face.

Solution. Since the line passes through the point (aq, yv zj

of tangency, its equations may be written in the form

x = aq + lp\
j

y = y i + mP
; [

(«)

z = z
1 + np. )

So long as l, m and n are unrestricted, these equations may
represent any line through the point (aq, y lf zf

To find the points in which the line meets the surface (11),

we must substitute these values of x, y and z in the equation

of the surface. Doing this, and arranging the equations in

powers of p, we have the condition

5. , , 1
a2 + f +

c
2

l + M~£ +
my

t

“F

(b)
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Since the point (xv yx,
z,) lies on the surface by hypothe-

sis, we have

w , yi
a

2 ^ V + -#- 1=0
’ (e)

from which it follows that p = 0 is a root of (l). This give-

the point (xv y t ,
z,) as one of the points, as it ought to.

Dividing by p, the equation becomes

which gives, for the other value of p,

r vr
* + (d)

We have hitherto subjected the line (a) to no restriction

except that of passing through the point (a;,, y„ z,). The

equation
(d

)

gives the value of pin terms of l, m and n for

the second point in which the line intersects the surface.

Now, the problem requires that this second point shall

coincide with the first one, that is, that p = 0 in (d). This

gives

K ,

mJs , _ A^ ^ c
2 (

12
)

as the required condition that the line A shall touch the

quadric at the point (»„ yv zj.

All the quantities except l, m and a in this equation being

regarded as given constants, it constitutes a linear equation

between l, m and n. Hence, by § 247 (
b ), it requires that

the tangent line lie in the plane

- x
i) + -

y») + - *0 = °>

which, by (c), readily reduces to

?£ i Ma- ^ - 1 -0
a?
+ V ^ e

2 (13)

Hence we reach the conclusion:
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Theorem XI. All straight lines touching a quadric sur-

face at the same 'point lie in a certain plane passing through

that point.

Def. The plane containing all lines tangent to a surface

at the same point is called a tangent plane to the surface,

and is said to touch the surface at that point.

263 . Lines upon the Hyperboloid of One Nappe. The

result of §260, that a plane may intersect an hyperboloid in a

pair of straight lines, is a special case of the following theorem:

Theorem XII. Through every point upon the hyperboloid

of one nappe pass two straight lines which lie wholly on the

surface, and which form the intersection of the plane tangent

at that point with the surface.

Proof. We may write the equation (9) of the hyperboloid

in the form

Now, putting A for an arbitrary constant, let us consider

the two planes whose equations are:

First plane, -f*
~ = A ^1 -f-

Second plane, — — Z
^=\[l — \a c A\ b

Every set of values of x, y and z which satisfies these two

equations simultaneously satisfies the equation (b) of the sur-

face, as we readily find by multiplication. But all such

values belong to the line in which the two planes intersect.

Hence this line lies wholly in the surface.

We have next to show that, by giving a suitable value to

A, this line may pass through any point of the surface. Let

us put (xv yv z,), the point through which the line is to pass.

The factor A must then satisfy the two equations
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whence

a = -1 + - i -f
sx = i _ m ±1 _ a

a c o b a c
(d)

These two equations give the same value of A when aq, y x

and z
l
are required to satisfy the equation of the surface.

Substituting the second value of A in the first equation (c) of

the line of intersection, and the first value in the second,

these equations readily reduce to

Taking half the sum and half the difference of these equations,

they become

¥ , M_V_ -i
. ^

a 2
b

2
c"

’

££ , y_ _ £1
z
_ = h.

ac b ac b ’>

w

which are still the equations of the line in question, in another

form. But the first of these equations is that of the tangent

plane. Hence the line lies in the tangent plane as well as on

the surface, and therefore forms the intersection of the plane

with the surface.

The other line through {x
x , yx ,

z
x )

is found, in the same

way, to be given by the simultaneous equations

x z

a ' c

The value of pi, found like that of A, is

;
a ^ c b ^ b a

-l
.

c
'

Thus the equations of the second line become the same ns
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those already found for the first one, except that the signs of

y%
and y are changed. In part, we find

which are the equations of another line in the surface and

passing through (x
1 , yj, thus proving the theorem.

264. The equations
(
e
)
and (/) represent two lines,

each situated both in the surface and in the tangent plane.

Hence the theorem may be expressed in the form:

Theorem XIII. Every tangent plane to the hyperboloid

of one nappe intersects the surface in a pair of straight lines

passing through the point of tangency.

It is evident from the preceding theory that the surface in question

may be generated by the motion of a line. We present three figures

showing the relations which have been discussed. In the first, OP is a

central axis or rod, supported on a fixed disk at the bottom and carrying

a similar disk at the top. The latter can be turned round on the rod.

Vertical threads pass from all points of the circumference of one disk to

the corresponding parts of the other, thus forming a cylindrical surface.

Then turning the upper disk through any angle less than 180°, the

threads will form an hyperboloid of revolution, as shown in the other

zfc _ y_ _h
ac b ac b

(/)
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figure. The threads shown in the figure are those of one system only;

by rotating the disk in the opposite direction the threads would be those

of the other system.

The next figure represents the surface as cut by a plane very near the

tangent plane, the section being an hyperbola of which the transverse

axis is vertical. By moving the cutting plane a little closer to the

centre, the bounding curves of the section will merge into the dotted

lines, and the plane will be a tangent to the surface at their point of

intersection.

265. Equations of the Generating Lines. To study the

lines in question, let us refer each to the point in which it in-

tersects the plane of XY. We shall then have z
l
— 0 and

The equations of any one of the first set of lines will then

become

^ . M - i.

d2 + ~

b ac b'

Because the lines lie in both of the planes represented by these

equations taken singly, the coefficients l, m and n in the vec-

torial form must, by § 247, satisfy the conditions
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% + b>i = 0
;

a b

m x
x

-f -n — 0 .

b ac

These equations give the following values of l and m in

terms of n, which remains arbitrary:

7 - _ a-hn .

1 ~
be

n
>

m —
bx ,

• First system of lines.

ac
-n.

Proceeding in the same way with the second set of lines,

we find, starting from the equations (/),

a 2 + V
~ ’

m x,- + ->-n = 0;
b ac

from which

l =
be

bxm — :?z.

ac

j-
Second system of lines.

J

If we give n in both systems the value abc, so as to

avoid fractions, the values of the direction-vectors Z, m and

n will be:

( 1 = - a*vA (
l
' — + «*»,;

First system: I m = -f- Px,; Second system: < m' — — Vxp,

( n — abc\ i n' — abc-,

the values of the second system being distinguished by accents.

266. Theorem XIY. On an hyperboloid every line of

the one system intersects all the lines of the other system. But
no tivo lines of the same system intersect each other.

Proof. Retaining (xv y„ 0) as the fundamental point of

any line of the first system, and putting x
0
and y Q

for the
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values of aq and y ,
in case of any line of the second system,

the condition of intersection of two lines (§ 249) will be

(»*»' - *»'»)(*! - xo) + (nl
' - n '

l)(y 1
- Vo) = 0, (a)

the third term being omitted because z
1
= 0 and z

n
— 0.

If we substitute for m, m', etc., their values, as just given,

this equation becomes

aFc(x
x + x

0
)(x

I
- x

t ) + a
s
bc{y

1 + y0)(y l
- yQ) = 0.

Dividing by we find it reduce to

Now, by hypothesis, (aq, y t )
and (aq, y 0 )

are points on the

ellipse in which the plane of XY intersects the surface; that

is, on the ellipse whose equation is

Hence the condition reduces to 1 — 1 = 0, which is an iden-

tity, showing that the lines intersect.

Secondly. Let both lines belong to the same system, the

one line intersecting the ellipse of the plane of XY in the

point (aq, yQ, as before, and the other in the point (aq, y0 ).

We shall then have, for the values of the direction-vectors,

l = - V = - Yy
0 ;

m — + S
2
aq; m' = + Z>

3
aq;

n = abc\ n’ - abc.

The condition
(
a

)
of intersection then becomes

(ft. ~ -O" , 0/, - yX _ n^ b*

Each term being a perfect square is necessarily positive, so

that the condition of intersection is impossible. Q. E. D.

267. Poles and Polar Planes of the Quadric. Let us

consider all possible tangent planes which pass through a

fixed point (aq, y0 , z
0 )

not belonging to the quadric. Let

(aq, y i9
zj be the variable point of tangency on the quadric.
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The equation of the plane tangent at (x
lf yv zJ will then be

(13). The condition that this plane shall pass through the

point (x
0 , y0 ,

z
B )

is that the co-ordinates of this point shall

satisfy the equation of the plane, which gives

This is now a condition which the point of tangency (x
lf yv zf)

must satisfy as it varies. Being of the first degree, it shows

that this point must lie in a certain plane. The equation of

this plane may be written

Def. That plane which contains the points of tangency

of all tangents to a quadric which pass through a point is

called the polar plane of that point.

The point is called the pole of the plane.

Remark 1. The point of tangency in the above case may
move along a curve which will then be the intersection of

the polar plane and the quadric.

Remark 2. The point
(
x

0 , y0 , z
0 )
may be so situated that

no real tangent plane can pass through it; for example, in

the interior of an ellipsoid. The points of tangency (xv yv zf)

in (14) will then be entirely imaginary. But the plane (15)

will always be real and determinate; only it will not meet the

quadric. Hence:

Theorem XV. To every point in space corresponds a

definite polar plane relative to any quadric.

Theorem XVI. Conversely, To every plane corresponds

a certain pole.

Proof. Let the plane be

and let a, b and c be, as before, the principal axes of the

quadric. Comparing the equation (a) with (15), we see that

they become identical if we can have

(14)

(15)

Ax + By -(- Cz -f- D — 0, («)

xj>__4.. h - _ !s _ _ C'

a
2 ~ D’ P D’ c

2 D



296 GEOMETRY OF THREE DIMENSIONS.

This only requires that we determine x
0 , y0

and z
0
by the

conditions

PA
_ _ _ PB _ _ PC

D~ ] Vo ~ D ’
Z°~ D’

which always give real values of x
0 , y0

and z
0 , and therefore a

real pole. Q. E. D.

Cor. If the plane approach the centre as a limit, D ap-

proaches zero as its limit, and x
0 , y0

and z
0
increase indefi-

nitely. Hence

The pole of any diametral plane of a quadric is at infinity.

Notation. If we call any points P, Q, etc., we shall call

their polar planes P'
,
Q'

,
etc.

268. Theorem XVII. If a point lie on aplane, thepole

of the plane will lie on the polar plane of the point.

Proof. Let a point P be (x
0 , y0 , z

0 )
and a point Q be

(
x

x , yv z
x).

Then, by (15), the polar plane Q’ is

W
, M j_M

al ^ P ^ c
2
- 1 = 0 .

Let the point P lie on this plane. Then the co-ordinates

x
t , y 0 , z0

must satisfy this equation; that is,

a* ^ P ' P

This equation shows that the co-ordinates (aq, y„ 2q) satisfy

the equation

, M i

ZJL _ _ a

a:
+ P +

c
2

which is the equation of the polar plane of
(
x
0 , y 0 ,

z
c ).

Hence

the pole (aq, yv z,), or Q, lies on this plaue. Q. E. D.

Cor. If any number of points lie in a plane P’
,
their

polar planes will all pass through the pole P of that plane.

Conversely, If any number ofplanes pass through a point

Q, their poles will all lie on the polar plane of Q.

Theorem XVIII. If any number of planes intersect in

a straight line, their poles will all lie in another straight line.
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Proof. In order that planes may intersect in one line, it

is necessary and sufficient that they should all pass through

any two points, taken at pleasure, on that line. Let P and

Q be two such points. Then

—

Because all the polar planes pass through the point P,

their poles all lie somewhere in the polar plane P';

Because these planes all pass through the point Q, their

poles all lie somewhere in the polar plane Q'.

Hence these poles all lie on the intersection of P' and Q',

which is a straight line. Q. E. D.

Cor. It is readily shown by reversing the course of reason-

ing that if any number of points lie in a straight line, their

polar planes loill all pass through another line.

Def. Two lines so related that all poles of planes passing

through one lie in the other are called reciprocal polars.

EXERCISES

1. If an ellipsoid, an hyperboloid of one nappe and one of

two nappes are formed with the same principal axes, a, b, c,

it is required to write the equations of their several polar

planes relatively to the pole (x
0 , y0 , z

0 ).

2. In this case show that the polar planes with respect to

the ellipsoid and the hyperboloid of one nappe intersect in the

plane of XY on the line b”x
0
x + a~y

0y — 1 = 0.

3. In the same case show that the polar planes with respect

to the hyperboloids of one and of two nappes respectively are

parallel.

4. In the same case show that the polar planes with respect

to the ellipse and the hyperboloid of two nappes respectively

intersect in a line parallel to the plane ofXY and intersecting

the axis of Z.

5. Show that if a pole lies on any diameter, the polar plane

will be parallel to the diametral plane conjugate to such dia-

meter.

6. Show that if the pole lie on the surface of the quadric,

the polar plane will touch the surface at the pole.
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7. Show that the reciprocal polar of a line tangent to a

quadric is another line tangent at the same point, the two
tangents lying in a pair of conjugate diametral planes.

8. If a line is required to lie in a diametral plane, show
that its reciprocal polar must be parallel to the diameter con-

jugate to that plane.

Special Cases of Quadrics.

2 (59 . In all the preceding investigations it has been

assumed that the co-ordinates A, B, C of the centre, given by
the equations (2), and the quantities l', m'

,
n' and d' in (5),

which determine the three principal axes of the quadric, are

all finite and determinate.

Although in the general case this will be true, yet the nine

constants which determine the quadric may have such special

values that these quantities may be zero or infinite. The
complete discussion of these cases would require us to make
extensive use of the theory of determinants, which we wish

to avoid; we therefore shall merely point out to the student

the possibility of certain special cases.

270 . The Paraboloid. When we solve a system of three

equations with three unknown quantities, like (2), each un-

known quantity comes out as the quotient of two quantities

(compare eq. (3) of § 188 for example), and the denominator

of these quotients is the same for all the quantities. If this

denominator approaches zero as a limit, the values of A, B
and C in (2) will increase without limit. Hence, if this de-

nominator vanishes, the centre of the quadric is at infinitv.

In this case the quadric is called a paraboloid.

271 . The Cone. In reducing the original equation to

the form (3), the absolute term d' may vanish. In this case

the principal axes a, b and c (§ 257) will all vanish (unless

some of the quantities V, m' or n' are also zero), and we shall

have the homogeneous equation

(jx~ -)- Inf + kzd -j- 2g'yz + 2li’zx + 2 1c'xy = 0. (16)

Def. A cone is a surface generated by the motion of a
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line which passes through a fixed point and continually in-

tersects a fixed curve.

The fixed point is called the vertex of the cone.

The fixed curve is called the directrix of the cone.

A quadric cone is one whose directrix is a plane locus

of the second degree.

Theorem XIX. Every homogeneous equation of the

second degree has for its locus a quadric cone whose vertex is

at the origin.

Taking the equation (16), which is a perfectly general one

of the kind named in the theorem, we first prove that its locus

is a cone having its vertex at the origin, in the following way:

We take any point at pleasure on the surface (16);

We pass a line through this point and through the origin;

We then show that this line must lie wholly on the locus.

Let (aq, y ,, zf be any point on the surface (16). Then
every point

(
x

, y, z ) determined by the equations

z = pxv
|

y = py:>
J

(«)

z = pzv )

will lie on the line passing through the origin and (aq, yv z,).

Substituting these values in (16) gives, for the condition that

the point (x, y, z) shall lie on the locus,

p\gx
x

2 + ky; 4-W + + 2/Fz,aq + 2k'x
1y1)

= 0. (5)

By hypothesis (aq, y x ,
z,) satisfies (16). Hence this condition

(h) is satisfied for all values of p; hence every point deter-

mined by (a) lies on the surface (16); whence this surface is

some cone.

Secondly, being of the second degree, (16) represents a

quadric surface; whence, by Th. IV., every plane intersects it

in a conic, and it is by definition a quadric cone.

Remark. For the directrix of the cone we may take its

intersection with any plane whatever not passing through the

vertex. Let us then take the plane z = c. We then shall

have from (16), for the equation of the directrix,

gx5 + Inf + 2k'xy -4- 2k'cx 2(fey -f- kc~ = 0. (17)
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The coefficients being all independent, this curve may be any
conic whatever. Hence (16) may represent any quadric cone

whose vertex is at the origin.

272c Special Case when a Quadric becomes a Pair of

Planes. Since the directrix of the cone may be any conic, it

may be a pair of straight lines. Since a line turning on a

point and intersecting a fixed line describes a plane, it fol-

lows that whenever the directrix is a pair of lines, the quadric

cone becomes a pair ofplanes. Hence among the special kinds

of quadrics must be included a pair of planes.

The quadric equation of a given pair of planes is readily

found. If the equations of the planes are

we have only to take the product of these equations, which

will be of the second degree in x, y and z.

2

7

3. Surfaces of Revolution. In the reduction of the

general quadric, two of the principal axes, a and b for example,

may be found equal. In this case the equation may be re-

duced to one of the forms

Assigning any constant value to z, the equation in x and y
will be that of a circle. Hence all planes parallel to the plane

of XT will intersect the quadric in circles having their centres

on the axis of Z. Since all sections containing the axis of Z
will be conics, the surface can be generated by the revolution

of some conic around the axis of Z. It is therefore called a

surface of revolution.

The equation (17) admits of the same four-fold classifica-

tion as the equation (6), according to the algebraic signs of

the ambiguous terms. We have therefore, as the three real

form s

—

ax -f by -f- cz -f- cl = 0,

a'x + b’y + c'z + d' — 0,

or (17)
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I. The ellipsoid of revolution

:

II. The hyperboloid of revolution of one nappe:

x2 + if = a2
(l +

III. The hyperboloid of revolution of two nappes:

+ y* = -
1).

When, in the ellipsoid,

c > a, the ellipsoid is called prolate

;

c <a, the ellipsoid is called oblate
;

c — a, the ellipsoid is called a sphere.

In the hyperboloid of one nappe the axis c may be infi-

nite. The equation will then be

x* + f = a\

the equation of a cylinder of radius a, whose axis is that of Z.

274. Deriving Surfaces from the Generating Curve. The

general method by which we find the equation of the surface

generated by revolving a curve around the axis of Z is, this:

Assume the curve to be in any initial position.

Take any point upon it whose vertical ordinate is z, and

find the corresponding values of x and y, and hence of

Vx2 + if, in terms of z, the distance of the point from the

plane of XT.
Since this distance remains constant while the point re-

volves, the square of the equation thus found will be the

equation of the surface.

If the fixed position can be so chosen that the generating

curve may lie wholly in the plane of XZ (or YZ), one of the

co ordinates y or z will then be zero, and we have only to sub-

stitute Vx? + if for x or y. as the case may be.
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275. The Paraboloid of Revolution. Let us suppose a

parabola to revolve about its principal axis, which we shall

take as the axis of Z. The square of each ordinate will then

be 2pz. But this square, as the curve revolves, is continually

equal to x~ -)- y", because the ordinate is a line perpendicular

to the axis of Z, whose terminus on the curve is represented

by the co-ordinates x and y of the curve. Hence the equa-

tion of the surface is

x 2 + ?/
2 = 2pz;

p being the semi -parameter of the generating parabola.

EXERCISES.

1. Find the equation of the cone generated by revolving

around the axis of Z the straight line whose equation, when
the line is in the plane XZ, is

x — mz -f b.

Find also the vertex of the cone.

Ans. x2 y- — mV + 2mbz + V.

Vertex at the point,
\
0, 0,

—
—
J.

2. Investigate the surface generated by the motion of a

straight line around an axis which does not intersect it, the

shortest distance of the line from the axis being a, and the

angle between them being a. (In the initial position we may
suppose the line to intersect the axis of X at right angles at

the distance a from the origin, and to form an angle a. whose

tangent is m, with the axis of Z.) Find the equation of the

surface and its principal axes.

Ans. x5

-f- if— rrfz* = V Axes: a. a,
1 J m

Here, if we take a point on the line at the distance r from the axis

of X, its co-ordinates in the initial position will be

x = a; z — v cos ex
; y — r sin a = s tan a = ms.

3. Find the equation of the cone generated by the revolu-

tion of the straight line whose equations in one position are

x = mp; y = 0; z=np.
Ans. n2(P -j- y~) — mV = 0.
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4. Find the equation of the ellipsoid generated by the re-

volution of the ellipse Fx~ -f- arz" = a"b
2

.

5. If the hyperbola c¥ — a~z
2 = «V revolve about the

axis of Z, find the equation of the curve and of the cone de-

scribed by the asymptotes.

Ans.
g’ + y*

a2

z2 + f
d1

i;

o.

6. Investigate the surface when the revolving hyperbola

is flV — cV = «
2
Z>

2
.

7. Find the equation of the surface generated by the revo-

lution about the axis of Z of the line whose equations are

x = a -f- Ip‘

y = b + mp;
z = c -f- up.

Ans. n\x* + y
2

) = (na — Ic
)

2 + (nb — me)- + (

P

+ m')z5

+ -)- mnb — Z
2
c — m 2

c)z.

8. Show that the equation of a sphere of radius r whose
centre is at the point (a, b, c) is

(x - ay + (y - 5)
2 + (2 - c)

2 - ^ = 0,

and find the value of r in order that the origin may bisect the

radius passing through it.

9. Find the plane of the circle in which the spheres

(* - aY + (y - ty + (z- cy = r
2

and (x — u')
2+ (?/ — 6')

2

-f (z — c')
2 = r'

2

intersect each other.

10. Show that if three spheres mutually intersect each
other, the planes of their three circles of intersection pass

through a line perpendicular to the plane containing the

centres. (One of the centres may be taken as the origin.)

11. Investigate the locus of the equation

£2

.
y~ _

a and b being both positive.
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12.

Do the same thing for the equation

x2

a
z.

13. Show that the six planes in which four spheres taken,

two and two intersect each other all pass through a point.

14. Investigate the relations of the three surfaces

and

,
r _ i

Y “T" V V
~

’

£ + =

o

Y y- z- _
1.

Show that if these surfaces be cut by a plane parallel to

that of XY, the two areas included between the three ellipses

of intersection will each be constant and equal to the area of

the ellipse in which the first surface intersects the plane of

XY.
15. A straight line moves so that three fixed points upon it

constantly lie in the three co-ordinate planes. Find the locus

of a fourth point upon it whose distances from the other three

points are a, b and c.

16. From the results of § 266 deduce the following con-

clusions:

I. The cosine of the angle between the two generating

lines through the point (aq, yv 0) of the surface is

a2Z>V — a'y* — b*x*

YV& cfy* -+- b*x*’

II. At the ends of the respective axes a and b the cosines

u
2 - V , c

2 - «
2

are „ ,—78 and —

|

c + A c -f- a

III. If a = b = c, the lines are at right angles to each

other.



PART III.

INTRODUCTION TO MODERN
GEOMETRY.

276. The Principle of Duality. In modern geometry

every straight line is supposed to extend out indefinitely in

both directions, and is called a line simply. Hence lines, like

points, differ only in situation.

Def. A segment is that portion of a line contained be-

tween two fixed points. Hence a segment is what is called a

finite straight line in elementary geometry.

There are certain propositions relating to lines and points

which remain true when we interchange the words point and

line, provided that we suitably interpret the connecting words.

The principle in virtue of which this is true is called the

principle of duality.

Two propositions which differ only in that the words point

and line are interchanged are said to be correlative to each

other.

The following are examples of correlative propositions and

definitions. The right-band column contains in each case

the correlative of the proposition found at its left.

I. Prop. Through any I. Prop. On any line

point may pass an indefinite may lie an indefinite number
number of lines. of points.

II. Def. Any number of II. Def. Any number of

lines passing through a point points lying on a line is called

is called a pencil of lines, a row of points, or simply

or simpl v a pencil. a point-row or row.
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The common point of a

pencil is called the vertex
of the pencil.

III. Prop. Two points

determine the position of a

certain line, namely, the line

joining them.

IV. Def. The line join-

ing two points is called the

junction-line of the points.

V. Prop. Three points,

taken two and two, determine

by their junction-lines three

lines.

VI. Prop. A collection

of n lines, taken two and two,

has, in general,
n ^n--—

—

z

junction-points.

VII. Def. A collection of

four lines, with their six junc-

tion-points, is called a com-
plete quadrilateral.

VIII. Prop. On each of

the four sides of a complete

quadrilateral lie three ver-

tices.

The line on which a row
of points lie is called the car-

rier of the row.

III. Prop. Two lines de-

termine the position of a cer-

tain point, namely, their point

of intersection.

IV. Def. The point of in-

tersection of two lines is called

the junction-point of the

lines.

V. Prop. Three lines,

taken two and two, determine

by their intersections three

junction-points.

VI. Prop. A collection

of n points, taken two and

two, has, in general, ——

—

z

junction-lines.

VII. Def. A collection

of four points, with their six

junction-lines, is called a

complete quadrangle.

VIII. Prop. Through

each of the four vertices of a

complete quadrangle pass

three sides.
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IX. Prop. The complete

quadrilateral lias three diago-

nals, formed by joining the

junction-point of each two

sides to the junction-point of

the remaining two sides.

It' two lines are represented

by the symbols a and b, their

junction-point is represented

by ab.

The pencil of lines from a

vertex P to the points a, b, c,

etc., is represented by P-abc,

etc.

When two lines are each

represented by a pair of point-

symbols, a comma may be in-

serted between the pairs when
their junction-point is ex-

pressed.

Ex. The expression ab, xy

means the junction-point of

the lines ab and xy.

IX. Prop. The complete

quadrangle has three minor

vertices, being the intersection

of the junction-line of each

two vertices with the junction-

line of the remaining two.

If two points are repre-

sented by the symbols a and

b, their junction-line is repre-

sented by ab.

The row of points in which

a carrier R intersects the lines

A, B, C, etc., is represented

by R-ABC, etc.

When two points are each

represented by a pair of line-

symbols, a comma may be in-

serted between the pairs when
their junction-line is ex-

pressed.

Ex. The expression AB,
XY means the junction-line

of the points AB and XY.

Scholium. When, in elementary geometry, two intersecting lines

are drawn, their junction point, being evident to the eye, is not sepa-

rately marked. But when two points are given, it is considered neces-

sary to draw their junction-line wherever this line is referred to. But
l his is not always necessary in the higher geometry, and such lines

may be omitted when drawing them would make the figure too compli-

cated.
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The Distance-Ratio and its Correlative.

2‘77. Tlie Distance-Ratio. Heretofore the position of a

point ou a straight line has been expressed by its distance

(positive or negative) from some other point, supposed fixed

on the line.

The position of the point may also be expressed by the

ratio of its distances from two fixed points on the line.

X3 a
'

?l XL

h

Let a and b be two fixed points on an indefinite line,

which points we may regard as the ends of a segment ab of

the line. Let x,, x, and x
3
be three positions of a movable

point x, and let us consider the ratio ax : bx of the distances

of x from the points a and b. If we put

we shall have

li, the distance ab;

k, the distance ax;

r, the ratio ax : bx,

k
r ~k- li

(
1 )

This fraction, or ax : bx, is called the distance -ratio

of the point x with respect to the points a and b.

Notation. The distance-ratio is written

/ i N _ a*
(
a> h x) = Yx

Let us now study the changes of value of the distance-

ratio as the point moves along the line.

Assuming the positive direction to he toward the right,

then, when x is in the position x„ the distances ax, and bx,

will both be positive, and we shall have
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If x recedes indefinitely toward the right, 1c increases in-

definitely and the ratio ,

^ — approaches unity as its limit.

Therefore, for a point at infinity on the line, we have

?• — + 1 -

Supposing the point to move toward the left, the denomi-

nator 1c — h will become zero when x reaches b; and as this

point is approached, the fraction r will increase without limit.

Hence, when x is at b,

r = oo

.

When x is in the position x
2
between a and b, ax will be

positive and bx negative. Hence, in this part of the line,

r — a negative quantity.

As x passes from b to a, r will increase from negative in-

finity to zero.

At a,

r — 0.

In the position x
3
both terms of the ratio will be negative,

and r will be a positive proper fraction.

As x recedes to infinity on the left, r will approach unity

as its limit. Hence, whether we suppose x to reach infinity

in the negative or positive direction, we have, at infinity,

= + 1
,

and no distinction is necessary between the two infinities.

If, then, we suppose the point x to move along the whole

line from negative to positive infinity, we may consider it as

arriving back at its starting-point, and being ready to repeat

the motion. During this motion the distance-ratio r will

also have gone through all possible values from negative to

positive infinity, and will be back at its starting-point. The
order of positions of the point and the order of changes of r

are as follows:

Point: Infinity; negative; at point a; on line ab; at point b; posi-

tive; infinity.

Dist. r.: Unity; positive < 1; zero; negative; infinity; positive > 1;

unity.
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278.

To exhibit-, to the eye the changes in r as x moves

along the line, we may erect at each point of the line an ordi-

nate the length of which shall represent the value of r at

that point. The curve passing through the ends of the ordi-

nates will be that required.

The ratio r being a pure number, the length which shall

represent unity may be taken at pleasure. So we may lay

down from the middle point m of ab an arbitrary length

viq = — 1 ,
and the lengths of all the other ordinates will be

fixed.

279. Theorem. The position of a point is completely

fixed by its distance-ratio with respect to tivo given points

;

that is, there can be only one point on the line to correspond to

a given value of the distance-ratio.

This is the same as saying that, in the equation (1), only

one value of Tc will correspond to given values of r and h.

This is readily proved by solving the equation with respect to

h. We note that in the special case when r = 1 the point is

at infinity.

280. Relation of the Distance-Ratio to the Division of a

Line. The conception of the distance-ratio occurs in elemen-

tary geometry when we say that the point x divides the line

ab internally or externally into the segments ax and bx, having
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a certain ratio to each other. This ratio is identical with the

distance-ratio just defined. It is negative when the line ab is

cut internally; positive when it is cut externally.

We may therefore, instead of saving, “The distance-ratio

of the point x with respect to the points a and b,” say,

“ The ratio in which the point x divides the segment ab.”

1. Show that the curve wThich expresses the value of r in

the preceding section is an hyperbola; find its asymptotes;

define the class to which it belongs; construct its major axis

in the case when we take mq = ab.

2. Show that if we take two points at equal distances on

each side of the middle point m of the base-line, the pro-

duct of the corresponding values of r will be unity. Trans-

late this result into a property of the equilateral hyperbola.

281 . The Sine-Ratio. In the two preceding articles we
showed how to express the position of a varying point upon a

fixed line. The correlative of this problem is that of express-

ing the position of a varying line which must pass through a

fixed point.

As, in the first case, the position of the moving point is

expressed by its relation to two fixed points on the line, so,

in the second case, the position of the moving line is fixed by

its relation to two fixed lines passing through the point. Let

us put

EXERCISES.

From any point P of this

line drop the perpendiculars

PP' and PP" upon the fixed

0A, OB, the two fixed

lines;

0, the fixed point;

OX, the moving line.

-B

•A

lines. Let us then consider the ratio
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We readily see that the value of r is the same in whatever

position on the line OX the point P is chosen, and that

„ _ sin A OXK ~
sin BOX'

Hence we call R the sine-ratio of the line OX with re-

spect to the lines OA and OB.

To investigate the algebraic signs of sin A OXand sin B OX,
let us take the directions OA

,
OB and OP as positive. Then,

in accordance with the usual trigonometric convention, the

sine of AOP will be 'positive or negative according as a person

standing at 0 and facing toward A has the point P on the

left or right side of the line OA.

Suppose the line OX to start from the position OA and to

turn round 0 in the positive direction. Then,

As OX starts from OA,

R starts positively from zero.

When OX reaches the bisector OX,

R = + 1,

because then A OX + BOX = 180°.

As OX approaches the position OB',

R increases indefinitely,

because sin BOX approaches zero.

When OX reaches OB'

,

R — 00 .

As OX passes from OB to the bisector OX",

R increases from — oo to — 1.

When OX reaches OX"

,

R = - 1.

As OX passes from OX" to OA',

R increases from — 1 to 0.

The line OX has now reached its initial position, though

its positive direction is reversed. Completing the revolution.
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we see that R goes through the same series of values as before.

Hence

The sine-ratio depends only upon the position of the mov-

ing line
,
and is the same whether we take one direction or the

other as positive.

282. Division of the Angle. As, in § 280, we have sup-

posed the point x to divide the line ah, so we may in the pre-

ceding construction suppose the line OX to divide the angle

BOA into the parts BOX and A OX. We then take for the

dividing ratio, not the ratio of the angles themselves, but that

of their sines.

Note. The student may remark a certain incongruity when we
speak of the point x dividing the line ab into the segments ax and bx,

because it is not the algebraic sum but the algebraic difference of the

segments which makes up the line ab. This incongruity would be

avoided by measuring one of the segments in the opposite direction,

making x its initial point, thus taking ax and xb as the segments. But

it is more convenient to take x as the terminal point of each segment,

and to accept the incongruity of calling a line the algebraic difference

of its parts, because no confusion will arise when the case is once under-

stood.

The same remarks apply to the division of the angle.

283. Distinction of Antecedent and Consequent in Dis-

tance- and Sine-Ratio. In forming a ratio one of the terms

must be taken as the antecedent (or dividend), and the other

as the consequent (or divisor). By interchanging the points a

and b the antecedents and consequents will be interchanged,

and the ratio will therefore be changed to its reciprocal.

To give clearness to the subject we shall employ the fol-

lowing notation:

The points a and b from which we measure the segments

ax and bx will be called base points.

That base-point from which the antecedent segment of the

ratio is measured will be called the A-point.

That base-point from which the consequent segment of the

ratio is measured will be called the B-point.

ctcc

Then, when the ratio is represented in the form

(a, b, x),
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we write first the A-point, next the B-point, and lastly the

terminal point, which we may call the T-point.

284. Permutation of Points. If we use the notation

p = length ab,

q = length bx,

we shall have, by the definition of the distance-ratio,

(a,b, x) = t+± = 1+ p_.
(„)v /

q q

Let us represent this ratio by the symbol r. Then, by

permuting the base-points between themselves (that is, by

making a the B- and b the A-point), we shall have

(b, a, x) = -4- = (&)
P + S'

r

a result which we may express by the general proposition:

I. Bx
/
permuting the base-points xve change the distance-

ratio into its reciprocal.

By permuting b and x in (a), we have

<«*»> = if =^ = 1 - r- M
That is:

II. Bx/
permuting the B- and T-points xue change the dis-

tance-ratio r into 1 — r.

The same permutation applied to (b) gives

n \ ~ â - ~ V _ V _ r ~ 1

(^ x, a) - xa _ + p + q r *

Lastly, by permuting the base-points in (c) and (<?),

(a-, a, b) =

(x, b, a) = ^zn

«

if)
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1. By comparing

the expression

EXERCISES.

the forms («) and (d ), show that if, in

we put cpr for r and repeat the substitution in the result, we

shall get r itself.

2.

Find the distance from the A-point (§ 277) of points

whose distance-ratios are

- 3 , +
3

2
'

,
2 3 1

Ans.
3
P

’ 5
P ’ 3

P ’

~ P ’
°P '

3.

If a, b, x and y be any points whatever, show that

(a, b, x) _ (b, a, y ) _ (x, y, a) _ (y, x, b)

(a, b, ij)
~

(b, a, x) ~ (x, y, b) {y, x, a)'

4.

Show that if from the vertex

c of an isosceles triangle abc we

draw a line cx to the base, the sine-

ratio in which the angle c is divided

by the line cx equals the distance-

ratio in which the base ab is cut by

the point x.

In algebraic language the theorem is

sin acx _ ax

sin bcx bx‘

5. If the angle A OB is 120°, in what directions must

those lines be drawn which will divide the angle in the respec-

tive sine-ratios — 2 and + 2?

6. If the point x divide the segment ab in the ratio + 1:2,

in what ratio will b divide the segment ax ? Ans. 2 : 3.

7. If the points x and y divide the segment ab in the re-

spective ratios + 2 and — 2, in what ratios will a and b re-

spectively divide the segment xy? Ans. + 3 and — 3.

8. If the sum of the distance-ratios of two points, a- and y,

is unity, show that ax x ay = ab
2
.
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Theorems involving the Distance- and Sine-
Ratios.

285. Def. If eacli of the sides or angles of a polygon is

divided by a point or line, the ratios of the divisions are said

to be taken in order when each vertex is a divisor-point for

one of its sides and a dividend-point for the other side.

If the divisions are all internal, we shall, in going round

the polygon, have the divisor- and dividend-segments in alter-

nation.

286. Theorem I. If any

three lines he drawn from the

three vertices of a triangle to its

opposite sides, the continued

product of the sine-ratios in

which the angles are divided is c

<

equal to the continued product

of the distance-ratios in which

the sides are divided, the ratios

being all taken in order.

Hypothesis. A triangle ahc of which the sides and angles

are divided by the lines ax, by and cz.

Conclusion. If we put

r,, r
2 ,

r
3

, the distance-ratios in which the sides are divided

by the points x, y and z respectively;

R,, i?
2 ,

i?
3 , the sine-ratios in which the angles are divided

by the respective lines ax, by and cz, we have

**, r
3 = R, R, R,.

Proof. By the theorem of sines in trigonometry we have,

in the triangles bax and cax,

cx _ sin cax
_

ax sin c ’

bx _ sin bax

ax sin b



DISTANCE- AND SINE-RATIO. 317

Dividing the first equation by the second,

cx sin cax sin b

bx sin bax sin c

In the same way we find

ay sin aby sin c_

cy sin cby sin a’

bz sin bez sin a

az sin acz sin b'

Taldng the continued product of the three last equations, we

have

cx ay bz sin cax sin aby sin bez

bx cy ' az sin bax sin cby
'

sin acz'

The three fractions in the first member of this equation

are the distance-ratios in which the sides are divided, and

those in the second member are the sine-ratios in which the

angles are divided, so that the theorem is proved.

287. Theorem II. The continued product of the dis-

tance-ratios in loliich any transversal cuts the sides of a tri-

angle is equal to unity.

Proof. Let a transversal

cut the sides of the triangle

abc in the points x, y and z.

Through any vertex, as a

l, draw a line parallel to the

transversal, meeting the op-

posite side in the point b'

.

Then, forming the distance-ratios in which the sides be

and ba are divided, using the similar triangles thus con-

structed, we have

az _ ay
.

Tz~v~f
bx _ b'y

cx cy ’

cy _ cy

ay ~ ay'

while
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The continued product of these equations gives

az lx

Iz ' cx

°y_

ay
= 1. Q. E. D.

Kehark. Since the demonstration takes no account of

algebraic signs, we have not yet shown whether the product

is 1 or — 1- It is evident that the transversal must cut

either two sides of the triangle internally, or none. Hence

either two factors or none at all will be negative; whence the

product is always positive and equal to — 1.

Corollary. If three points in a straight line he taken on

the three sides of a triangle, the junction-lines from each point

to the opposite vertex divide the angles into parts the continued

product of whose sine-ratios is unity.

For, by Th. I., the product of the sine-ratios is equal to

that of the distance-ratios, and, by Th. II., the continued

product of the latter is unity.

288. Theorem III. Conversely, If on the three sides

of a triangle ale tee take any three points x, y, z, such that

az lx cy _
Iz' ex' ay

’

these points will le in a straight line.

Proof. Let z’ be the point in which the line xy cuts the

side ab of the triangle. We shall then have, by Th. I.,

az’ lx cy _
Iz' ' cx ' ay

Comparing with the equation of the above hypothesis, we

find

az _ az’
.

Iz
—

Iz
'

’

that is, the distance-ratios of the points z and z' with respect

to a and l are the same.

Because there is only one point on ab which has a given

distance-ratio, the points z and z' are coincident and z lies

on the line xy. Q. E. D.
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289. Theorem IY. If three lines passing through a

point he drawn from the vertices of a tri-

angle, the angles ivill he so divided that the

sine-ratios, taken in order, will he — 1.

Proof. If ABC be the triangle, and

P the point, we have, in the triangles

PAB, PBC and PCA, neglecting alge- A
braic signs,

sin BAP sin CBP sin AGP _
sin CAP " sin ABP ' sin BCP ~

Algebraic signs having been neglected, it remains to be

found whether this product is positive or negative. We have

the theorems:

I. Lines drawn from any point within a triangle to the

three vertices cut the angles internally.

II. Of the three lines drawn to the vertices of a triangle

from an external point, and produced if necessary, two will

divide the angles internally and one externally.

I is evident. To
prove II let the whole

plane without the tri-

angle be divided by its

sides into the six regions

A, A', B, B’, C and C.

Then the angle whose

sides bound A will be

cut internally or exter-

nally, according as the

point is situated within or without one of the regions A and
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A'. Considering the other angles in the same way, we see

that only one angle can be cut internally and that the other

two will be cut externally.

The sine-ratio being positive for an external and negative

for an internal division, either one or all three of the factors

in (a) must be negative. Hence

sin BAP sin CBP sin ACP _
sin CAP ' sin ABP ' sin BCP ’ Q. E. D.

Corollary. Three lines passing from the vertices of a tri-

angle through a point cut the opposite sides so that the con-

tinued product of the distance-ratios , taken in order, is nega-

tive unity. i

For, by Theorem I., this product is equal to that of the

corresponding sine-ratios, which product is negative unity, by

the theorem.

290. Theorem V. Conversely, If three points cut the

respective sides of a triangle so that the continued product of

the distance-ratios is negative unity, the lines joining these

points to the opposite vertices of the triangle pass through a

point.

Proof. If abc be the triangle, and x, y and z be the points,

we have, by hypothesis,

az lx cy _
Iz ' cx ' ay

Join the points x and y to the opposite vertices, a and b,

of the triangle by lines intersecting at a point 0. From c

draw a line L through 0, and let z' be the point in which it

cuts be.

By Th. IV., Cor., we then have

az' bx cy _
bz'

' cx ' ay

Comparing with the hypothesis, we have

az _ az

'

bz bz''

Therefore the points z and z' are coincident and the line

from z to c is identical with L, and so passes through the

point 0 in which ax and by intersect. Q. E. D.
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EXERCISES.

1. Explain wliat Theorem II. shows when the transversal

is parallel to one of the sides.

2. What does Theorem IV. become when the point

through which the lines are drawn is at infinity?

3. Show by Theorem V. that the three medial lines of a

triangle pass through a point.

4. Show by the preceding theorems what bisectors of the

interior and exterior angles of a triangle meet in a point.

5. If from the vertices at the ends

of the base BC of a triangle we draw

lines intersecting on the medial line

AQ and meeting the opposite sides in

the points B' and C', show that B'C'

is parallel to BC.
6. In this case what relation exists

B

between the distance-ratios in which the sides AB and AC
are divided by the points B' and C'?

Tke Anliarmonic Ratio.

291. Taking any point x on a l x y

the line ab, we have, by what precedes, a distance-ratio ax : bx

or (a, b, x) of the point x with respect to the points a and b.

In the same way, taking a fourth point y, we have a distance-

ratio
(
a

,
b, y ). Then:

Def. The quotient 0f the distance-ratios of the

.

b’V)
'

points x and y with respect to the points a and b is called the

anharmonic ratio of the four points a, b, x and y.

That terminal point x which enters into the numerator of

the fraction will be called the A-T-point; the other, the B-T-

point.

It will be seen that the anharmonic ratio is a pure number
whose value depends upon the mutual distances of the four

points.

292. The following are simple corollaries from the de-

finition of the anharmonic ratio:
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I. If the terminal points are loth outside the segment ab,

or both within it, the anharmonic ratio is positive.

For in the first case the distance-ratios are both positive,

and in the second they are both negative.

II. If one terminal point is within and the other without

the segment ab, the anharmonic ratio is negative.

For the two distance-ratios then have opposite signs.

III. If the two terminal points coincide, the anharmonic

ratio is unity.

IV. If three points, namely, the base-points and one ter-

minal point, are fixed, while the other terminal point may move,

then for every value which we may assign to the anharmonic

ratio there will be one and only one position of the movable

point.

For if we put r = the anharmonic ratio, and suppose the

points a, b and x to be fixed, we have, by definition.

whence

_ (a, b, y) '

(a, b, x
)

’

(a, b, y) = (a, b, x
) X r.

Now, the points a, b and x being fixed, the quantity

{a, b, x) is a constant, so that for every different value we
assign to r we shall have a different value of the distance-

ratio (a, b, y), and hence a different position of the point y

(§ 279).

It will be seen that the four points which enter into an

anharmonic ratio form two pairs, one pair being the two base-

points, the other pair the two terminal points. The two

points of each pair are said to be conjugate to each other.

(a, b, x)
Notation.

in the form

We represent the anharmonic ratio
(«, b, y )

(a, b, x, y).

Expressing the points by their general

(§§ 283, 291), the order of writing them is

(A, B, A-T, B-T).

designations
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Writing the ratios at length, we have

{a, b, x, y)
ax : bx _ ax . by

ay : by ay . bx
(a)

293. Permutation of Points. Let us now consider the

problem, What changes will result in the anharmonic ratio

by interchanging the different points?

By interchanging the two base-points, that is, by making

b the A-point and a the B-point, we change each distance-

ratio into its reciprocal (§ 284, I), and hence the anharmonic

ratio into its reciprocal, because we always have

1 -P _ <f

l:q p’

whatever be p and q.

The same result follows by interchanging the terminal

points, because we then change the terms of the fraction

(a, «) • t
(a, y)

(a, b, y) {a, b, x)'

Hence, if we make both changes, the anharmonic ratio

will be restored to its original value.

If we simply make the base-points the terminal ones, and

vice versa, the anharmonic ratio is unaltered. For, by the

notation,

(x, y, a, b) =
xa : ya _ xa : xb

xb : yb ya : yV

which is identical with (a), the signs of each of the four seg-

ments being changed.

It follows from this that there will be four permutations

which will leave the anharmonic ratio unchanged, and four

others which only change it to its reciprocal. They are as

follows:

(a, b, x, y) = (b, a, y, x) = (x, y, a, b) = (y, x, b, a) = r; (1)

(b, a, x, y) = (a, b, y, x) — (x, y, b, a) = (y, x, a, b) = -. (2)
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In all these permutations the four points are paired in the

same way, a and b being one pair and x and y the other.

Hence the eight permutations which do not change the

pairing of the conjugate-points can only interchange the terms

of the anliarmonic ratio.*

When the pairing of the points is changed, a may have

cither x or y as its conjugate-point. To find the effect of

these permutations, we start from the following identical

equation which always subsists between the six segments ter-

minated by the four points a, b, x and y. These segments

are ab, act, ay, bx, by and xy. b 4 +
^

ax . by + ab
.
yx -j- ay . xb = 0. (a)

To prove this equation, we substitute for ab and ay their

values

ab = ax + xb,

ay = ax + xy,

and so write the first member of the equation in the form

ax .by -f* ax

-)- xb
which is the same as

yx -f- ax

+ xy

xb,

ax(by + yx + xb) + xb(yx + xy),

an expression which vanishes identically, because

by -f- yx + xb = 0
;

yx -\- xy = 0.

Now divide («) by ay .bx. We thus find

ax. by ab.yx _
ay

.

bx ay . bx
'

that is,

(a, b, x, y) + (a, x, b, y) = 1.

Hence, using the same notation as before,

(a, x, b, y) = 1 - r.

(i)

* In this pairing process note the analogy of conjugate-points to

partners at whist. There are eight arrangements of the players around

the table which will not change the pairing, and there are three ways

in which the players may choose partners.
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We now have, in the same way as before,

(a, x, b, y)-(x, a, y, b)= (b, y, a, x)—{y, l, x, a) = 1 - r; (3)

{x, a, b, y)= (a, x, y, b)= {y, b, a, x)=(b,y, x, a) = (4)

We have finally to consider the case in which a is paired

with y. To pair a with y, we remark that the equation
(
b ),

being true whatever points we suppose a, b, x and y to rep-

resent, may be considered a brief expression of the theorem:

By interchanging the B- and A-T-pnints, we form a new

anharmonic ratio which, added to the original one, makes

unity.

Applying this theorem to the second expression in line (4),

it gives

{a, x, y, b) + {a, y, x, b) = 1.

1 r
Hence (a, y, x, b) = 1 — (a, x, y,b) — A — ^ ^

and

{a, y, x, b)= (y, a, b, x)=(b, x, y, a)-{x, b, a, y)
— - (5)

r — A

(y, a, x, b)— {a, y. b, x)= {x, b, y, a)= (b, x, a, y) = —— . (6)

The equations (1) to (6) include all 24 permutations of

a, b, a: and y, which, however, give rise to only G different

values of the anharmonic ratio, namely.

r,
1

1 -r. (c)

294 . The preceding operations lead to a curious algebraic

result. Suppose that, instead of starting with the equation

(1), we had started with any of the others, (6) for example.

We could then have obtained expressions for the remaining

20 anharmonic ratios by performing the same operations on

(6) which we have actually performed upon (1), only the ex-

pression
^
-- would have taken the place of r all the way

through. But, if the process is correct, we should then arrive at

the same expressions for the other 20 anharmonic ratios which
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we have actually found. The same being true if we start from

any other of the six equations, we conclude:

If, in the set of expressions (c), we substitute for r any one

expression of the set, the values of the several expressions will

be changed into each other in such a way that the set will re-

main unaltered except in its arrangement.

As an illustration, let us substitute the sixth expression,

r — 1—-—,
for r all the way through the set (c). Then, by reduc-

tion of the fractions,

r — 1
r will be changed to ;s

r ’

will be changed to —

1 — r will be changed to —

;

^
will be changed to r;

V

-

will be changed to 1 — r\

-

will be changed to —-—

.

r
&

1 — r

We have thus reproduced the same set, only differently

arranged.

295. Anharmonic Ratio of a Pencil of Lines. As we

have formed the anharmonic ratio of four

points on aline by their distance-ratios, so

we may form the anharmonic ratio of

four lines passing through a point by

means of their sine-ratios.

The four lines A, B, X and Y pass

through the point P. If we take A and

B as the base-lines forming the angle APB, the line X will

give the sine-ratio

si n APX
sinBPX’



ANHARMONIC RATIO. 327

and the line Y will give the sine-ratio

sin APY
sin SPY'

The quotient of these ratios, or

sin APX
_
sin APY _sin APX sin BPY

sin BPX '

sin BPY sin BPX sin APY’

is called the anharmonic ratio of the pencil of lines PA,
PB, PX and PY.

Designating each line by a single letter, we may write

(A, B, X, Y)

as the anharmonic ratio of the four lines A, B, X and Y.

296. Fundamental Theorem. If a transversal cross

a pencil offour lines, the anharmonic ratio of the four points

of intersection will be equal to the anharmonic ratio of the

pencil.

Proof. LetABXY be the

pencil, intersecting the trans-

versal ay in the points a, b, x

and y.

We begin, as in §286, by

comparing the distance-ratio 1

{a, b,x) with the sine-ratio (A, B, X).
From the equations

ax : Px = sin aPx : sin xaP,
bx : Px = sin bPx : sin xbP,

we obtain, by division,

ax _ sin aPx sin xbP
bx sin bPx ' sin xaP’

or, using the abbreviated notation,

{a, b, x) = (A, B, X)
sin xbP
sin xaP'
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We find in the same way

(a, b, y) = (A, B,
sin xbP
sin xaP'

Taking the quotient of these equations,

(a, b, x
) _ (A, B, X

)

(a, b, y)
~ (A, B, Y)'

The first member of tin's equation is, by definition, the

anharmonic ratio of the four points a, b, x and y, while the

second is that of the pencil of lines A, B, X and Y. Thence

{a, b, x, y) = (A, B, X, Y).

Q, E. D.

Cor. 1. If any number of transversals cross the same

pencil offour lines, the anharmonic ratios of the four points

of intersection on the several transversals will all be equal.

For each such ratio will be equal to the anharmonic ratio

of the pencil.

Cor. 2. If from a row of four points lines be drawn to a

fifth movable point, the anharmonic ratio of the pencil thus

formed will be constant, whatever be the position of the fifth

point.

For the anharmonic ratio of the pencil will be constantly

equal to that of the row.

Scholium. Using the notation of § 276, IX., the preced-

ing propositions may be expressed as follows:

If P be any vertex, and a, b, x, y a rowr of points, then

Anh. ratio
(
P-a,b,x,y

) = (a, b, x, y).

If p be any transversal, and A, B, X, Y the four lines of

a pencil, then

Anh. ratio (p-A,B,X, Y) = (
A

,
B, X. Y).

297. Application of the Principle of Duality. The

branch of Plane Geometry which we are now treating is

subject to the principle of duality (§276); that is,

From every proposition respecting the relations of points

and lines we may form a second correlative proposition respect-
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ing the relation of lines and points, by interchanging the words

line and point, as follows:

Line instead of Point.

Junction-point of
j

t j
Junction-line of two

two lines ( points.

Point on a line
66 Line through a point.

Pencil of lines
66 Row of points.

Three points in a
t j Three lines through a

line r ( point.

Anharmonic ratio
'

i \ Anharmonic ratio of
of lines through

a point

e
“

) poiuts on a line.

The correlative proposition is not necessarily different

from the original one. When the two are identical, the pro-

position is self-correlative.

The relation of the proposition to its correlative is mutual;

that is, the correlative of the correlative is the original pro-

position.

To make the notation correlative we represent the junction-

point of the two lines A and B by AB.
Let us, as an example, change the preceding fundamental

proposition into its correlative. The two then read:

(
pencil of four lines n (line,

Given

:

a 1
1

. and any fifth -j

’

( row of four points
(
point.

We conclude: the anharmonic ratio of the four

junction- -j

I

10 ' 11 *-*
0 f the four

\
^'
nes

with the fifth
\
^ ne is

( lines ( points ( point

equal to that of the given \
l
ienc^-

( row.

By reading the top lines we have the original proposition;

by reading the bottom lines, its correlative. By making the

construction it will be seen that the correlative proposition is

identical with the original one.

The principle of duality applies to the demonstration as

well as to the proposition. By making the above substitu-

tions the demonstration of the original becomes the demon-
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stration of the correlative. It is therefore in rigor not

necessary to give the latter; and when we do so, it is only to

assist the student.

298. Tiieobem. If we have two lines intersecting in a

point p, and if ive have on the one line any three points

a, l), c, and on the other line three points a', b'
,

c' ,
such that

the anharmonic ratio
(p, a, b, c

) is equal to (p, a', b', c'),

then the three junction-lines aa’
, W and cc’ meet in a point.

Proof. Let M and i^be the given lines, and let q be the

junction-point of the lines aa

'

and bb'. Join qp and qc’

,

and

let c" be the junction-point of the line N with the line qc'

.

Then, because M and N are two transversals crossing the

pencil q-a’,p,b’,c we have

{p, a, b, c") = (p, a', b', c').

By hypothesis,

(p, a, b, c) = (p, a', b’, c').

Hence

(p, a, b, c") — (p, a, b, c).

The points p, a and b being given, there is only one fourth

point which can form with them a given anharmonic ratio

(§ 292, IV.). Hence the points c and c" are coincident,

and the junction-line c'c is identical with c'c"

,

and so passes

through the point q, in which, by construction, aa' and bb'

intersect. Q. E. D.
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Correlative Theorem. If ive have two points on a line

Q, and if through one point pass three lines A, B and

C, and through the other point pass three lines A'. B’ and C',

such that the anharmonic ratio (Q, A, B, C) equals

( Q ,
A', B’

,
C'), then the three junction-points AA', BB' and

CC lie in a straight line.

Proof. Let m and n be the points; let P be the junction-

line of the points A A' and BB', c the junction-point PC'

,

and C" the junction-line nc.

Then, because the pencils Q, A', B'
, C' and Q, A, B, C”

pass through the same four points of the line P, we have

( Q ,
A, B,C") = {Q,A', B',C').

But, by hypothesis,

(Q, A', B', O') = (Q, A, B, C).

Hence

(Q,A, B, C") = ( Q ,
A, B, C

)

These equal anharmonic ratios having three lines identical,

the fourth lines C and C" are also identical; wdience the lines

C and C' intersect at c, the junction-point C'P
;
whence the

junction-points AA', BB' and CC' all lie on the line P.

Q. E. D.

Note. The student should compare the demonstration, step by

step, with that of the original proposition, and note the relation of each

step.
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Projective Properties of Figures.

299. Let there be a point 0, a plane P and a figure Q
each situated in any position in space. If lines (called lines

of projection) pass from 0 to each point of Q, the points in

which these lines intersect the plane P form a second figure

which is called the projection of the figure Q.

This definition of a projection is more general than that of elemen-

tary geometry, in which the lines of projection are all parallel to each

other and perpendicular to the plane P. The latter is a special case in

which the point 0 is at infinity in a direction perpendicular to the plane.

It may be remarked that the shadow of a figure upon a plane, as

cast by a luminous point, is identical with its projection. But should

the distance of any part of the figure from the plane exceed the distance

of the luminous point, there could he no shadow, but there would still

be a projection, formed by continuing the lines of the rays in the

reverse direction, namely, from the figure through the luminous point.

300. The following are some simple relations between

figures and their projections:

I. The projection of a point is a point.

II. The projection of a straight line is a straight line.

For since the straight line and point lie in a plane, the

lines of projection are all in this plane, aud the projection is

the intersection of this plane with the plane of projection.

III. The projection of a rote ofpoints is another row whose

carrier is the projection of the original carrier.

IV. The projection of a pencil is a pencil.

V. The projection of a curve and a tangent is another

curve and a tangent.

VI. Every project ion of a line passes through the point in

which the line intersects the plane ofprojection.

VII. The projection of a circle is a conic section.

For the lines from a point to the circumference of a circle

form the elements of a cone. Hence their intersection with

the plane of projection is the intersection of a conical surface

with that plane, and is therefore, by definition, a conic section.

VIII. If the projectedfigure Q is in a plane P' ,
and if we

call Q’ its projection on the plane P, then Q itself is the pro-

jection of ()' upon the plane P'

.
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This follows at once from the definition, the lines of pro-

jection being identical in the two cases.

IX. Every section of a circular cone can he projected into

a circle.

For, by taking the vertex of the cone as the point 0, and

its circular base as the plane of projection, the outline of this

base becomes the projection of any section of the cone.

301 . Theorem. The projection of a row offour points

has the same anharmonic ratio as the original roiv.

Proof. The lines of projection

of the four points form, by defini-

tion, a pencil having its vertex at

0. The carriers, both of the origi-

nal and the projected row, form

transversals crossing this pencil, fr -p a'

and the two rows of points are the intersections of these

carriers with the lines of the pencil. The anharmonic

ratios of the two rows are therefore equal (§296, Cor. 1).

Q. E. D.

302 . Theorem. The projection of a pencil offour lines

has the same anharmon ic ratio as the original pencil.

Proof. Let O-abcd be the Ao
given pencil, and let a, h, c and d

be the points in which it intersects

the plane of projection.

Because the lines of the pencil

must all lie in one plane, the

points a, h, c and d will lie in a

straight line.

If O' be the projection of 0, the projected pencil will be

O'-ahcd.

Then the anharmonic ratios of each pencil will be equal

to («, b, c, d ), and so will be equal to each other.

Remark. Those properties and relations of a figure

which remain unchanged by projection are called projective

properties and relations.
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Harmonic Points and Pencils.

303. Def. When the anharmonic ratio of four points is

negative unity, they are called a row of four harmonic
points, and each pair of conjugate points is said to divide

the segment joining the other pair harmonically.
So a pencil of four lines of which the anharmonic ratio is

negative unity is called an harmonic pencil.

Cor. The anharmonic ratio being negative, one of the

terminal points must divide the base-line iuternally and the

other must divide it externally. Hence the order of the four

points is such that the conjugate points of the one pair, a and

b, alternate with those of the other pair, x and y.

If the point x is half way between a and b, its conjugate,

y, is at infinity.

If x then move toward b, y will also move toward b from

the right, and the two points will reach b together.

If x move toward a, y will approach from infinity on the

left, and the two points will reach a together.

The law of change is expressed by the following theorem:

304. Theorem. The product of the distances of two ter-

minal harmonic points from the middle of the base-line is con-

stant, and equal to the square of half the base-line.

Proof. The condition that the anharmonic ratio of the

four points a, b, x, y — — 1 is

ax ay _
bx

:

by
~ ~

which is equivalent to

ax. by -\- ay .bx = 0.

Let m be the middle point of ab. Then

ax = am + mx:

by — bm -|-my — — am -f- my,

ay = am. + my,

bx = — am + mx.
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By substitution the equation («) reduces to

— 2(am)* + 2mx.my — 0.

Hence

mx.my— (am)*. (1) Q. E. D.

Remark. On the line ab we may take any number ofami
1 " r, i „ ! nr, ft, 1 1

x x x y y y

pairs of points, x and y, fulfilling the condition (1), and

therefore dividing harmonically the segment ab.

Def. Three pairs of points which divide harmonically the

same segment are said to form an involution.

305 . The Fourth Harmonic.

Def. When three points of an harmonic row are given, the

fourth is called the fourth harmonic of the other three.

Problem. Having given three points of an harmonic row,

to find the fourth.

Construction. Let a, b and c be

the given points, and let a and b be

the conjugate base-points.

On the middle point m of ab

erect a perpendicular mp = \ab, and a c m. c i a

on the other side of m from c take me' — me.

Through p and c' describe a circle having its centre upon

the line ab.

The other point, d, in which this circle cuts ab will be the

fourth harmonic required.

Proof. From eq. (1) and from the theorem of elementary

geometry which gives c'm.md — {mp)" the proof is readily

found.

306 . Fourth Harmonic of a Pencil. When three lines

of a pencil are given, the fourth line necessary to form an

harmonic pencil may be constructed.

From § 296 it follows that every pencil of four lines passing

through a row of four harmonic points is an harmonic pencil,

and, conversely, that every transversal intersects an harmonic

pencil in four harmonic points.
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Hence, to construct the fourth harmonic of a given pencil

of three lines, we draw any transversal, fiud the fourth

harmonic of the three points of intersection, and join it to

the vertex.

307 . Harmonic Properties of the Triangle.

Theorem. If from a point are drawn three lines to the

vertices of a triangle, and at any two of the vertices the fourth

harmonics to the lines thence emanating are constructed, these

fourth harmonics will meet

the line from the third ver-

tex in a point.

Proof. Let ABC be

the triangle, and P the

point. Let CP' and BP'

the pencils C-APB and B-APC.
Then, because AP, BP and CP meet in a point,

sin BAP sin CBP sin ACP
sm CAP ' sin ABP '

sin BCP
= - 1 . (§ 289

)

Because BP' and CP' are fourth harmonics conjugate to

BP and CP respectively,

sin CBP _ sin CBP'
sin ABP ~

sin ABP

”

sin ACP __ sin ACP'
sin BCP sin BCP'"

By substitution in the equation (a) we have

sin BAP sin CBP' sin ACP' _
sin CAP ‘ sin ABP' ' sin BCP'

Therefore the three lines AP, BP' and CP' meet in a

point (§§ 286, 290). Q. E. D.

Scholium. By drawing the fourth harmonic at A and

considering the other two pairs of vertices, A, B and C, A, we

have two other points of meeting, making four in all.

If the point P is the centre of the inscribed circle, the

lines from P will be the bisectors of the angles, and the

three points P' will be the centres of the escribed circles.



HARMONIC POINTS AND LINES. 337

308 . Correlative Theorem. If three points on a line

be taken on the sides of a triangle, and the fourth harmonics

to two of them be constructed, these fourth harmonics will be

on a line ivith the third point.

Proof. Let abc be the triangle;

x, y and z, three points on the sides in a right line;

%’
,
y' and z'

,
the fourth harmonics to the rows b, c, x

;

c, a, y; a, b, z, respectively.

Because x'
,
y' and z

r
are fourth harmonics,

az _ az'

bz~ ~ W ]

bx _ bx' ,

cx cxn

cy _ cy'
~ ayr .

Because x, y and z are on a right line,

az bx cy _ ^
bz ' cx ' ay

(P)

By substituting for any two of these factors their values

from
(
b ), we prove the theorem, by §288.

EXERCISES.

1. Any two orthogonal circles cut the line joining their

centres in four harmonic points.

2. Any circle of a family having a common radial axis

cuts harmonically the common chord of the orthogonal

family.
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Anharmonic Properties of Conics.

309 . Lemma. If two tangents to a circle are intersected

by a third tangent, the points of intersection subtend from
the centre of the circle an angle measured by one half the arc

between the two tangents.

Proof. Let 0 be the centre

of the circle;

m, n, the points of tangency

of the two tangents;

p, the third point of tan-

gen cy;

m', n'

,

the points of intersec-

tion.

It is then easily shown, from the equality of the lines m'p

and m'm, that Om' is perpendicular to pm.
In the same way, On' is perpendicular to pn\

. • . Angle m' On' — angle mpn.

By a fundamental property of the circle.

Angle mpn — \ angle mOn.
Therefore

Angle m’ On' = \ angle mOn.
Q. E. D.

Cor. If the third tangent pn' moves around the circle,

the angle m' On' will remain constant, being always equal to

\m On.

310 . Theorem. If four fixed tangents touch a conic,

and a movable fifth tangent intersect them, the anharmonic

ratio of thefour points of intersection is the same for all posi-

tions of the fifth tangent.

Proof. Let the conic be projected into the circle whose

centre is 0, and let a, b, c and d be four points in which

the fifth tangent intersects four fixed projected tangents,

touching the circle at the points tv t„. f
s , f

4
.

Because Angle a Ob = arc-angle tfi„,
)

Angle bOc — -§ arc-angle tjs
V (§ 309)

and Angle cOd = I arc-angle tft , )
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and t
x ,

t
2 ,

etc., are, by hypothesis, fixed, these angles remain

constant however the fifth tangent may move.

Therefore the anharmonic ratio of the pencil O-abccl re-

mains constant, being a function of the sines of constant

angles.

Therefore the anharmonic ratio of the row a, b, c, d re-

mains constant (§296).

Because this anharmonic ratio is constantly equal to that

of the corresponding points in the projected figure (§ 301),

the latter also remains constant. Q. E. D.

311 . Theorem. If from four fixed points of a conic

lines be drawn to a fifth variable point, the anharmonic ratio

of the pencil thus formed xoill remain constant whatever the

position of the fifth point.

Proof. Project the conic into a cir-

cle. Let a, b, c and d be the projec-

tions of the four fixed points, and P
that of the fifth point.

By a fundamental property of the

circle the angles aPb, bPc, etc., will re-

main constant as P moves on the circle.

Therefore the anharmonic ratio of

the pencil P-abcd will remain constant.

Therefore the anharmonic ratio of the corresponding pen-

cil in the conic will remain constant (§302). Q. E. D.

Def. The constant anharmonic ratio of a pencil whose
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lines pass from four fixed points on a conic to any fifth point

is called the anharmonic ratio of the four points of the conic.

Def. The constant anharmonic ratio of the points in which

four fixed tangents to a conic intersect a fifth tangent is called

the anharmonic ratio of the four tangents to the conic.

312. Extension of the Principle of Duality to Curves.

If we conceive a series of points to follow each other according

to some law, their junction-points will form a broken line or

a polygon. If each point of the series approaches indefinitely

near to the preceding one, the broken line approaches a curve

as its limit. We may therefore define a curve as the limit of

a series of junction-lines when the points approach each other

indefinitely.

The correlative conception,

on the principle of duality,

will he that of a series of lines

following each other according

to some law, and approaching

each other indefinitely. The

junction-points of consecutive

lines will be the correlatives of

the broken lines, and as they approach each other indefinitely

they will tend to lie on some curve as their limit.

In the first case, if we suppose the points to be consecu-

tive positions of a moving point, this point will move on the

limiting curve.

In the correlative case, if we suppose the lines to be the

consecutive positions of a moving line, this line will con-

stantly be tangent to the limiting curve.

We thus have, as correlative conceptions:

Points on a curve corresponding to Tangents to a curve.

Junction-point of )

two tangents f

Points in which a
)

line intersects a -

( Junction-line of two

I points, i.e., a chord.

( Tangents from a

1 point to the curve.
curve
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313 . Pascal’s Theorem. If a hexagon be inscribed in

a conic, the three junction-points of its three pairs of opposite

sides lie in a straight line.

Remark. By a polygon inscribed in a curve is meant any

chain of straight lines, returning into itself, whose consecutive

junction-points all lie on the curve. A polygon of n sides

may be formed by taking any n points and joining them con-

secutively in any order whatever.

Proof. Let 1 2 3 4 5 6 be the inscribed hexagon, of which

the opposite sides are

12 and 45;

23 and 56;

34 and 61.

Select three alternate vertices, as 2, 4 and 6, and consider

the pencils

2-1345 and 6-134 5.

Because these pencils are formed by joining the four fixed

points 1, 3, 4, 5 on the conic to the points 2 and 6 respective-

ly, their anharmonic ratios are equal (§ 311).

Let a, b, c, d be the row of points in which the pencil

2-13 45 intersects the line 45. We shall then have

(a, b, c, d) — Anil, ratio (2-13 45). (§ 29G)

Let a '
, b '

, c, d' be the row of points in which the pencil

6- 1345 intersects the line 34. We have

(«', b' , c, d’) = Anh. ratio (6-1 3 45).

(a, b, c, d) — (a', b '
, c, d r

).

Hence
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These two rows have the point c common to both, and this

point occupies the same position in the two ratios. There-

fore the three lines

an', W, dd'

meet in a point (§ 298).

But a and a' are the respective junction-points (1 2 and 4 5)

and (6 1 and 3 4), while bb’ = 23 and dd'= 5 6.

Hence the opposite sides 23 and 5 6 intersect on the line

act’ which joins the junction-points of the two other pairs of

opposite sides. Q. E. D.

314. Correlative of Pascal’s Theorem: Brtax-

chon’s Theorem. The three lines joining the opposite ver-

tices of a hexagon circumscribed about a conic meet in a point.

Proof. Let the sides taken in order be 1, 2, 3, 4, 5, 6.

Consider the two rows of points a, b, c, d and a', V
,
c' , d'

in which the sides 1, 3, 4 and 5 intersect 2 and 6.

v>

Because the tangents 2 and 6 are each intersected by the

four tangents 1, 3, 4, 5, we have

(a, b,c,d) = (a',b',c',d'). (§310)

Consider the pencil A-a,b,c,d. We have

Anh. ratio
(
A-a,b,c,d ) = (a, b, c, d). (§ 296)
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Also, for the same reason

Anh. ratio {A'-a',b',c’,cl') = («', b', c', cl').

Hence

Anh. ratio
(
A-a,b,c,cl

)
— Anh. ratio (A' a', b'

,
c', d').

Now these two pencils have the line Ac = A'cf common,
and occupying the same position in the two ratios. Hence

the three remaining lines intersect in three points in a right

line (§298, Cor.); that is, the three points

(
e
)
where diagonal Act crosses diagonal A 'a';

(
b

)
where line Ab crosses A'b';

(
cl') where line Ad crosses A' cl',

are in a right line, which proves the* theorem.

Trilinear Co-ordinates.

315 . In the method of trilinear co-ordinates the posi-

tion of a point is defined by its relation to the three sides of

a general triangle. Distances from each side are considered

positive when measured in the direction of the opposite ver-

tex; negative in the opposite case.

Theokem. If a general triangle be given, the position of

a point is completely determined when the mutual ratios of

its distances from the three sides of the triangle are given.

Proof. Let it be given that .AA
the distances of a point P from yy \
the sides AB and AC of a tri- y / \6

angle are in the ratio m : n. / f ,.-"'2/ \
If we draw a line Ax divid- y \

ing the angle BAG in the sine- B^L:
O O X Co

7?Z

ratio — —
,
every point of this line will fulfil the given con-

dition (§281).

If it be also given that the distances of the point P from

the sides BC and BA are in the ratio p : m, then the point

P must also lie on the line By dividing the angle B in the

sine-ratio — —

.

m
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Hence, if both ratios be given, the only point which will

satisfy them is the junction-point of the lines Ax and By,

which is therefore the required point P. Q. E. D.

Method of Expressing the Ratios of Distances. The
mutual ratios of the distances of a point P from the three

sides of a triangle are most conveniently expressed by three

numbers proportional to these distances. Let us put

d,, d
3 , d3 ,

the distances of P from the three sides of the

triangle;

x„ x
t ,
x

3 ,
any three numbers proportional to dr d„, d,.

We then have

D-D-D = d
1

: d3 : d3 , (1)

and (f __ D _ (f _ x,_
m (f _ x^'

d
3
~ x

3
’ d

3
~ xf d~

~
~x~f

(
2
)

also,
d, = cf_ = (f

X
,

x„ x
3

' (3)

If we put p for the common value of the three fractions

(3), we have

d
x
- px , : \

d
,
= PD- r (T)

d
3 = px

3
. )

The sets of equations (1), (2), (3) and (4) are so many
different ways of expressing the fundamental fact of the pro-

portionality of the numbers x
x ,

x„ and x
3
to the distances d

x ,

d„ and d
3

.

316 . Relation between the Distances. The position of

the point is completely determined when its actual distances

from any two sides of the triangle are given. Hence from two

distances the third may be found, which shows that there is

some equation between the distances. If we put

a, b, c, the lengths of the three sides of the fundamental

triangle;

A, the area of the triangle,

the equation in question is

ad, + bd
3 + cd

3
= 2A. (5)
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TJiis equation is readily proved bv drawing lines from the

point to the three vertices and equating the algebraic sum of

the areas of the three triangles thus formed to that of the

original triangle.

When xv x
2
and x

3
are given, this last equation with the

three equations (4) suffice for the determination of d
1 ,
d

3 , d3

and p, and therefore for the position of the point. In fact, by

substituting (4) in (5), we have at once

from which p is found. Then from (4) we have the values of

d1} d2
and d

3
.

317. Multiplication by Constant Factors. We may, in-

stead of taking aq, x
3
and x

3
proportional to dv d

3
and d

3 ,
take

them proportional to the products obtained by multiplying

each distance d by any arbitrary but constant factor. If we
take /q, p2

and p 3
for such factors, we shall then have

The constant factors /q, p 2
and p3

being supposed given,

the equations (5) and (G) suffice for the determination of

d„ d
2 , d%

and p.

318. Definition of Trilinear Co-ordinates. The tri-

linear co-ordinates of a point are three numbers propor-

tional to the distances of the point from the three sides of a

triangle, each distance being, if we choose, first multiplied by
any fixed factor.

The triangle from whose sides the distances are measured
is called the fundamental triangle.

Corollaries from the Definition :

I. If the trilinear co-ordinates of a point be all multiplied

by the same factor, the position of the point which they repre-

sent will not be altered.

For the position of the point depends only on the mutual

p{ax
1 + b.r

2 + cx
3 )
= 2A,

x, :x
2

: x
3 = pfi, : : p3

d
s ,

or



346 MODERN GEOMETRY.

ratios of its trilinear co-ordinates, which remain unaltered by
such multiplication.

II. The points (1), (2) and (3) whose respective co-ordi-

nates are

:

are the three vertices of the fundamental triangle, no matter

what the absolute values of xv x
2 , and xr

Note. Tlie introduction of the factors p being a mere matter of

convenience, the student may ordinarily leave them out of consideration,

which is the same as to suppose them unity. Their introduction

amounts to supposing that the distances from the different sides of the

triangle may be expressed in three different units of length without

destroying the truth of our conclusions.

1. The distances of a point from the three sides of the

fundamental triangle cannot all be negative.

2. Assuming the factors /q, aud ju
s
to all have the same

sign, every point whose co-ordinates are all positive or all

negative lies within the fundamental triangle.

3. If the factors /< are all positive and the trilinear co-

ordinates of a point all negative, the value of p must be

negative.

4. The lines from the point (a-

,, x„, x
s )

to the three vertices

of the triangle divide the internal angles in the respective sine-

ratios

319 . Relation of Trilinear and Rectangular Co-ordinates.

Let us suppose the three sides of the fundamental triangle to

be given by their general equations in rectangular co-ordinates,

as follows:

Point (1), (a,, 0, 0),

Point (2), (0, a
2 , 0),

Point (3), (0, 0, x
3 ),

EXERCISES.
Provo

:

(*)
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Then, by §§ 41, 54, if x and y be the rectangular co-ordinates

of any point whatever, the expression

ax + by + c (a)

will represent the distance of that point from the side (1) of

the triangle, multiplied by the factor Va~ + ¥. Since, by

multiplying the equation of side (1) by an appropriate

factor, we can give the quantity Va"
-f- P any value we please,

we can make it equal to /q. We shall then have, when x and

y are the rectangular co-ordinates of a point distant cl
l
from

the side (1),

mA = ax -f by + c.

Thus the equations (6) of § 317 may be replaced by

ax -j- by -f- c = pxp,

a'x -f Vy + c' = px
3 ; £ (8)

a”x + l>"y -+- c" — px
3

. )

These equations determine p, x and y when x
1} x„ and x

3
are

given. The values of x and y thus obtained from them are

{b’c
x — b"c’)x

x + {b"c - bc")x
3 + (

be ' - b’c)x
3 _ )

(
a'b

"

- + (a"b - ab")x
2 + (

ab' - a'b)xf

(
a"c' — a’c")x

1
(ac" — a”c)x„ + (a'c, — ac’)x

3t~ {a’b" - a"b')x
1 + (

a"b - ab")x\ + {ab’ - a'bjfj J

H9)

which are the expressions for the rectangular co-ordinates of

a point {x. y) in terms of its trilinear co-ordinates.

320. Equation of a Straight Line in Trilinear Co-orcli-

nates.

Theorem. If the trilinear co-ordinates of a point are re-

quired to satisfy a linear equation, the locus of the point will

be a straight line.

Proof. Let

Pixi + p& + P^3
= 0

be the linear equation which the co-ordinates must satisfy.

If we substitute fora;,, x
3
and x

3
their expressions (8) in terms

of Cartesian co-ordinates, we readily see that the equation
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will be of the first degree in x and y. It is therefore the

equation of a straight line.

321. Homogeneous Character of Equations. In order

that any equation in trilinear co-ordinates may represent a

locus, the equation must be homogeneous in terms of such

co-ordinates. For, by definition, the position of a point re-

mains unaltered when its three co-ordinates are all multiplied

by any arbitrary common factor p. When we take a homo-

geneous equation of the nth degree in xv x
s
and x

3 ,
such, for

example, as (when n = 2)

ax
3
x

3 + bxf = 0,

and multiply xv x
3
and x

3
by p, the result is the same as if

we multiplied each member of the equation by p
n

. Hence

the relation between x
3 ,
x

3
and x

3
expressed by the equation

remains unaltered. But if we take such an equation as

ax
1
x

2
-j- bx

3
4- c = 0,

and multiply xv x„ and x
3
by c, the result is

ap\x
3 + bpx

3 + c = 0,

an equation which expresses a different relation from the

other. Hence such an equation cannot represent a definite

locus so long as the trilinear co-ordinates are used to corre-

spond to their definition.

Correlative of Trilinear Co-ordinates.

—

Co-ordinates of a Line.

322. The principle of duality is applicable to all the pre-

ceding propositions which express position. We shall there-

fore change these propositions into their correlatives.

Theorem. If three fixed points not in the same straight

line be given, the position of a line is completely determined

when the mutual ratios of its distances from these points are

given.

Proof. Let the three fixed points be A, B and C.

Let it be given that the ratio of the distances of a line

from the points A and C is m : n.
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Let L be any line fulfilling this condition, and let y be

the point in which it cuts the line AC. Also let Aa' and Cc’

be the perpendiculars from A and C upon the line L. We
then have, by hypothesis,

Act' : Cc' = m : n.

Hence, by similar triangles,

Ay : Cy = m : n.

This last relation completely fixes the position of the

point y (§ 279), which therefore remains the same for all lines

which satisfy the given condition. That is,

Every line fulfilling the condition that its distances from

two fixed points, A ancl C, shall he in the ratio m : n, passes

through that point wh ich divides the junction-line AC in the

ratio m : n.

Let it also be given that the distances of the line from the

points C and B shall be in the ratio n : p. It must then pass

through a point X which divides the junction-line CB in the

ratio n :p.

If now it be required that the line shall satisfy both con-

ditions, it must pass through both the points X and y, and is

therefore completely fixed.

When both these conditions are satisfied, the distances of

the line from BA will be in the ratio p : in, and it will inter-

sect A

B

in some point, dividing AB in the ratio j? : m.

The three points then satisfy the proposition of (§ 287),

because
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Proceeding as in the case of the point, if we put

Dv D 3 , D3 ,
the distances of the line from the three points;

A,, A
2 ,

A
3 ,

constant factors,

we may express the mutual ratios of the distances by three

quantities, uv u
2
and u

3 ,
proportional to them. AVe then have

Thus tlie position of the line is completely fixed by the

three quantities u
lf
u

3
and u

3 ,
which are therefore called co-

ordinates of the line. AVe therefore have the definition:

The trilinear co-ordinates of aline are three numbers

proportional to its distances from three fixed points, each

distance being first multiplied by any fixed factor.

The junction-lines of the three points form the funda-

mental triangle of reference.

323. There are therefore two ways of defining the posi-

tion of a line, namely:

1. By the equation of the line.

2. By the value of its co-ordinates.

To investigate the relation of these two ways let us con-

sider the problem: AVhat are the co-ordinates of the line whose

equation is

U
1 : u2 : u3

= A
t
D

1
: A„D„ : A

3
ZA

3 ;

u u, u.

— Gup,

AA = <tu
3 ,

= ffW,.

rnx
l -f- nx3 -f- px3

= 0? (a)

Let us suppose the indices

1, 2 and 3 to refer to the sides

BC, CA and AB respectively.

Let us first find the point x in

which the line (a) intersects

AB. To do this we put x
3
= 0, which gives

x
i _ n

.

x„ m ’
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and by substituting for x
t
and x

2
their expressions (6) in terms

of the distances,

d
L _ _

d, ~ Mjn

'

Since d
x
and d

\

are the distances of x from the sides CA and

CB, — ~ is the sine-ratio in which the line Cx divides the

angle C (§ 281). To define the point x by the distance-ratio in

which it cuts AB, we have the equations

Bx _ sin BCx
'

Cx sin B ’

Ax _ sin ACx
Cx sin A

Hence

Bx _ sin BCx sin A _ d
l
sin A _ nji sin A

Ax
~

sin ACx ' sin B d„ sin B ji
x
m sin B’ '

which, determines the point of intersection, x.

By what has been shown, this distance-ratio is the ratio of

the two co-ordinates u
v
and of the line, multiplied by a

factor. In fact, putting D
l
and Z>

2
for the distances of the

line from A and B respectively, we have

Bx _ I)., __
A

Ax ~ D
t

~ A
2
?q

'

Comparing this with the equation (b), we have, for the ratio

of the two line-coordinates,

u„ _ A 2/u2
w sin A _ n A

2
yu

2
sin A

u
1

Aj/.qmsin B m '

A
1
jx

1
sin B'

In the same way,

u, _ A
t uj> sin B _ i A

3m3
sin B

_

u.
2

A
2 tV<> S1U @ n A

2/q sin C’ '

/q _ Aj/qmsin C _ m A sin C

M,
~

sin A ~ p A
3 /q sin A'

How, it will be remembered that the constant factors A

and /< which multiply the distances between the points and
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lines have been left entirely arbitrary. Can we not so deter-

mine them that the last fractions in the third members of the

above equations shall be unity? This will require the factors

to fulfil the conditions

A,/q sin B = A
2/q sin A; i

K/B sin C - A
3/q sin B\ £ (d)

A
3/q sin A — A,/q sin C. )

These three equations are really equivalent to but two, be-

cause anyone can be deduced from the other two by eliminat-

ing the common angle. If we suppose the values of r to be

given, we can determine the mutual ratios of the A’s by the

equations

Aj _ r3
sin A.

A
3
“ /q sin C”

A„ _ r 3
sin B

A
3 r„ sin C

Hence the required condition can always be satisfied, and we

shall always suppose it satisfied.

The equations (c) can then be satisfied by putting

u
t
= m x any factor;

u
3
= n X the same factor;

u
3 = p X the same factor.

Hence:

Theorem. If the co ordinates a:,, x„, x
3 of a point arc.

considered as variables required to satisfy the equation

mx
l -f- nx„ -f- px3 = 0,

the point will always lie on the line whose co-ordinates are tie*

constants m, n and p, or their multiples.

324. Equation of a Point. We have the following

theorem, the correlative of the preceding one.

Theorem. All lines whose co-ordinates ?q, u„ and u
3

satisfy a linear equation

mu. -f- nu„ + pu
a
= 0
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pass through a point, namely, the point whose co-ordinates arc

in, n and p.

This theorem follows immediately from the preceding one,

because when a point lies on a certain line, the line passes

through that point. Putting both equations in the form

u
1
x

1 + u
3
x

3 + u
3
x

3 - 0,

the theorem of § 323 asserts that whenever this equation is

satisfied the point (aq, x
t ,

x
3 )

lies upon the line (u„ u
2 ,
u

3).

Changing the form but not the essence of the conclusion, wc
have the theorem that whenever this equation is satisfied the

line («,, u„, u
3 ) passes through the point (x

t ,
x

2 ,
x

3 ).
This

result, being true for all values of the six quantities which

satisfy the equation, will remain true wrhen wre suppose x
J}
x

2

and x
3
to remain constant and u„ u

2
and u

3
to vary; that is,

the varying line («,, u„, v
3 )

will then constantly pass through

the fixed point (aq, ||, x
3 ).

325 . The preceding conclusions may be summed up as

follows :

I. If u„ u„ and u
3
are line-coordinates, and aq, x

2
and x

3

are point-coordinates, then, so long as these co-ordinates are

unrestricted, they may represent any line and any point what-

ever.

II. If it he required that the line shall pass through the

point and the point lie on the line, the co-ordinates must satisfy

the condition

U,x
x + u

2
x
3 + u

3
x

3 = 0.

III. If, in this equation, we suppose the x's to remain

fixed while the ids vary, the lines represented hy the ids will

all pass through the fixed point represented hy the x's.

IV. If we suppose the x’s to vary while the ids remain con-

stant, the points represented hy the x's will all lie on the fixed

line represented hy the ids.

326 . For brevity of writing we may use a single letter to

represent the combination of three co-ordinates of a point or

line. Then the expression “the point (p)” will mean the

point whose co-ordinates are p,, p„ and p 3
.
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Theorem. If (x) and (y) are any two points, and if,

with any factor A, we form the quantities

z
,
= )

*. = Ay3 ,
V (a)

= *3 + A */3 >

'

the point
(
z
)
will lie on the line joining the points {x) and (y).

Proof. Let (p) be the line joining the points (x) and (y).

Because the line
(p

)

passes through the point (a), we have

p,x, + p3
x
3 + p3

x
3 = 0.

Because (p) passes through the point (y), we also have

PdJ, + PPJ. + p3y* = 0 .

Multiplying this equation by A and adding it to the other,

pXxi + Ay.) + + xy*) + p&3 + x
i>3)

= o,

or p,z, + p3
z
3 + p3

Z; = 0.

Therefore the point
(
z
)

is on the line (p). Q. E. D.

Cor. Any point (z) whose co-ordinates satisfy the con-

ditions

*i
= AL 4- My„

z, = A-L + J*y„

*
3
= A®, + My3 ,

lies on the same straight line with the points (x) and (//), what-

ever be the factors A and //.*

327. Problem. Having the four points in a right line,

(x), (y), (x + Ay), (x + AT/),

it is required to determine their anharmonic ratio.

We must first, instead '

of the trilinear co-ordi-

nates, take the actual re-

duced distances of the

points from the sides of A <* b c b
the triangle. Let us then suppose

* These coefficients X and u must, of course, not be confounded with

the factors used in §§317, 322.
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AB, any side of the fundamental triangle;

z = the point (x-\-hy)

;

ax, by, cz = p, q and r, the distances of x, y and z from

AB.
We then have for the distance-ratio of z, with respect to

x and y,

xz _ r — p
yz r — q

This gives

r p - m
1 — u

'

Wc have three equations of this form, corresponding to

the three sides of the fundamental triangle, in which p, q

and r have the respective indices 1, 2 and 3. We may write

them:

(1 - p)i\ = Pl - pq
(1 - p)r„ = p3 - pqp,

(1 - p)r
3 = p3 - nq 3

.

The trilinear co-ordinates xv x„ and xv proportional to

pv p„ and p 3 ,
are formed hy dividing these last quantities by

a common factor = p. Let a he the common factor for q.

Then these equations become, by substitution and reduction,

iuff

pa

These equations become identical with (a) by putting

1 — p pa , Ap
z = r; = A, or p — .

p ’ p ’ a

But p is the distance-ratio of the point
(
z
)
= (

x -f Ay) with

respect to the points
(
x

)
and

(y). Hence,

Whenfrom two points, (x) and (
ij),

we form the third,

{

x

+ Ay), in the same straight line, the distance-ratio of the
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third with respect to the other two is equal to A. multiplied by

a factor, — depending upon the absolute values of the tri-

linear co-ordinates.

Since, from the nature of trilinear co-ordinates, this factor

remains indeterminate, the distance-ratio also remains inde-

terminate. But if we also take the distance-ratio of a fourth

point, (x -f- h'y), and then form the anharmonic ratio, this

factor will divide out, and we shall have

Anh. ratio = jy.

Hence the anharmonic ratio of the four points
(
x ), (g),

(x + Ay), (

x

+ A’y) is
^7 ,

which solves the problem.

Cor. Harmonic Points. Since four harmonic points are

such whose anharmonic ratio is — 1, we must then have

A' = — A. We therefore conclude that if we have any four

points capable of being expressed in the form

(x), {y), (x + Ay), (x - Ay),

the last pair will divide harmonically the segment contained

by the first pair.



COURSE OF READING IN GEOMETRY,

The following classified list of books is prepared for the

use of students who wish to continue the study of the subject:

I. MODERN SYNTHETIC GEOMETRY.

Ciiasles, Traite de Geometrie Superieure (546 pages 8vo), is noted for

its elegance of treatment. It is principally confined to the geometry

of lines and circles. The subject is continued in

Ciiasles, Traite des Sections Coniques, Premiere Partie (no second part

published).

Townsend, Modern Geometry of the Point, Line and Circle (2 vols.

;

Dublin, 1863), covers ground similar to the first work of Chasles,

but is more elementary.

Steiner, Vorlesungen uber Synthelische Geometrie, is a very extended!

treatise, but lacks the clear presentation of Chasles.

II. PLANE ANALYTIC GEOMETRY.

Salmon’s Conic Sections and his Higher Plane Curves treat the subject

with the clearness and simplicity which characterize the works of

that author.

Clebsch, Vorlesungen uber Geometrie, of which there is a French

translation, is the most complete single treatise on the higher

branches of modern geometry now at the command of the student.

III. ANALYTIC GEOMETRY OF THREE DIMENSIONS.

Salmon, Analytic Geometry of Three Dimensions, is the most extended

treatise in English. It presupposes a knowledge of the elements

of modern algebra, such as can readily be derived from his treatise

on that subject.

Frost, Solid Geometry, is less extended than Salmon’s treatise, but

written more in the style of a text-book.

Alois, Solid Geometry (223 pages 12mo), is an excellent little elementary

text-book, with numerous exercises.

Hesse, Vorlesungen uber Analytische Geometrie des Raumes, is a Ger-

man work of 450 pages, noted for its elegance of treatment.
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