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ABSTRACT

During the consolidation phase, reinforcement particles of Metal Matrix

Composites (MMC's) tend to be non uniformly distributed. The result is that the material

properties of the composite materials are not as good as those originally desired. Through

large amounts of straining, homogeneity can be achieved. Finite element models of

MMC's undergoing different thermomechanical processes (TMP's) to true strains of

approximately 1.2 were generated. The models consist of particle clusters within the

particle-depleted matrix. The particle clusters were modeled by either a smeared model in

which the particles refine the grains in the cluster, or a discrete model of the particles

within clusters. The smeared and discrete models qualitatively agreed with each other.

The results suggest that the best TMP to reach a state of reinforcement particle

homogeneity was a hot worked, low strain rate TMP.
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I. INTRODUCTION

Composite materials have been used for centuries. Straw in bricks and bulls hair in

plaster were used to increase the strength and durability of ancient structures. In more

recent years reinforced concrete was one example of a composite material which was a

major breakthrough in building technology (Caddell, R. M, 1980; and Parton , V. Z., and

Kudryautsev, B. A., 1993).

A modern definition of a composite would be "the combination of a reinforcement

material (such as a particle or fiber) in a matrix or binder material" (Strong, A.B., 1989).

A more refined definition of a composite includes: 1) The material must be man made.

2) It must be a combination of at least two chemically distinct materials with a distinct

interface separating the constituents. 3) The constituent materials forming the composite

must be combined three dimensionally. 4) It should be created to obtain properties that

would not otherwise be achieved by any of the individual constituents (Taya, M, and

Arsenault, R. J., 1989). Under this definition the first modern application of a composite

material was a glass reinforced phenolic-nylon fishing pole in 1945. The first production

application of Metal Matrix Composites (MMC's) was boron/aluminum tubes in 1974 as

components of the space shuttle. Over the past few decades the manufacture and use of

composites have exploded as engineers and consumers have kept looking for stronger,

lighter, and more compatible materials. Examples of the application of these improved

composite materials include automobile engines, turbine engine components, and

aerospace structural components in which the material must operate effectively in harsh



environments, and higher strength to weight ratios are critical. The research into new

composite materials as well as manufacturing techniques has been of major interest and

will continue to be so in the future as engineers strive to design better and more durable

systems.

Particle-reinforced metal matrix composites (MMC's) consist of relatively small,

hard particles embedded within a softer metal matrix. The reinforcement particle volume

fraction may range from 5% to 40 %. Particle sizes are typically one micron or greater.

The nature and function of the particles can vary widely, resulting in significantly different

material properties. Particulate composites differ from flake and fiber reinforced types,

and the additive constituent is usually random in distribution. Because of this, particulate

composites are usually assumed to be isotropic (Schwartz, M. M, 1992). Although

particle reinforced MMC's exhibit higher strength, stiffness and wear resistance, their use

has been limited due to relatively low ductility and fracture toughness.

In order to achieve the improved mechanical properties and an acceptable fracture

toughness desired in a particulate MMC, the particles must be dispersed uniformly and

homogeneously throughout the matrix material. The production of a MMC consists of

two major steps: the initial consolidation of the material, followed by the forming of the

material into a useful shape. The fabrication, using either casting methods or powder

metallurgy techniques, generally does not result in a uniform dispersal of the particles in

the matrix (Taya, M., and Arsenault, R. J., 1989). Therefore, regardless of the

consolidation/fabrication technique, the reinforcing particles of MMC's tend to be non-

uniformly distributed. As a result, the material properties of such composite materials are



poor. Because of this the materials may be subjected to large amounts of straining in the

forming process in an effort to achieve a uniform and homogeneous microstructure.

McNelley and Ballou (1995) performed an experimental investigation of the mechanisms

by which this particle redistribution was taking place in a 6061 AL-AL2 3 MMC. Their

study examined the role of temperature during the deformation process and the

experimental results indicated that the particle distribution became more uniform using a

hot thermomechanical process (TMP) as compared to using a cold TMP.

The purpose of this study was to model, using the Finite Element Method (FEM),

the hot and cold TMP's of particle-reinforced MMC's. From the FEM models, a

qualitative analysis was performed to determine the effects of temperature as well as strain

rate in determining the ability of a cluster of particles, or the particles themselves, to move

within the matrix and thus achieve a state of homogeneity while undergoing large strains.

A qualitative evaluation was performed of the stresses and strains achieved within the

matrix while undergoing the TMP's. The objective was to then determine, from a

qualitative viewpoint, what condition of TMP's would result in, as close as possible, the

homogeneous particle redistribution to achieve the desired mechanical properties of a

particle-reinforced MMC.





II. BACKGROUND

A. THEORY OF CONSTITUTIVE EQUATIONS

The theory of plasticity is concerned with the study of stresses and strains in

plastically deformed materials such as metals. The theory is used to develop constitutive

laws relating stresses to strains in plastically deformed solids (Hill, R., 1956). These

constitutive laws may then be used to model large deformations of the solid material while

it is either subjected to cold-working or hot-working. In the present discussion of the

constitutive laws only isotropic material is considered.

I. Strain Hardening Plasticity

Plasticity of a cold material occurs when the applied stress acting on the material

exceeds its yield strength (i.e. a > a o ; where a = applied stress and a o = yield strength).

Once this occurs, plastic flow begins. Below in Figure 1 is a plot of stress vs. strain

depicting the behavior of a material that is plastically deformed. The solid line from A to

C shows the loading of the material to an applied stress above yield strength with

subsequent unloading along the dashed line from C to D. The subsequent behavior of the

material following this process is such that the yield strength will increase to the value of

the maximum applied stress during this process, and the elastic modulus of the material

will remain constant. This phenomena is known as strain hardening.

There are two commonly used general theories which predict initiation of plastic

flow, Tresca's flow criterion and von Mises' flow criterion.



Stress vs. Strain

D 6

Figure 1

:

Stress vs. Strain behavior for a material which is plastically deformed.

g app = applied stress and a o - yield stress.

Tresca's flow criterion is based on the maximum shear stress being greater than the

shear yield or flow strength of the material. Specifically,

* max " ? (2.1)

where r o = shear yield stress, and the maximum shear stress is expressed as

r ma .x

= (cr
1
- cr 3)/2 (2.2)

Therefore, Eq. (2. 1) can be rewritten as

<Ji - a 3 = <7o (2.3)

where a \
> a 2 > o 3 , and c 1, cr 2, and cr 3 are the principal stresses and

ro=cr /2 (2.4)

Plastic flow occurs when r max > r . For a biaxial state of stress (i.e. one of the principal

stresses are zero, a 3 in this case) the following plot in Figure 2 is generated. This is a two

dimensional plot of the yield locus. The area inside the yield locus represents the principal



stress combinations in which no yielding occurs, while stress combinations outside the

yield locus cause yielding and plastic flow begins. In three dimensions this plot look like a

hexagonal prism with its central axis aligned 45° from each of the principal axes.

Tresca's Yield Locus

(7

Figure 2: Tresca's Yield Locus.

The von Mises' flow criterion is based on distortion energy. Yielding begins when

the elastic energy of distortion reaches a critical value. Hydrostatic pressure is assumed

not to contribute to yielding because it only produces a dilatational strain energy (Hill, R.,

1956). As a result, yielding begins where cr eir^ o o where

a eff =(l/V2)[(a,-c7 2 )

2 + (<7 2
- a 3 )

2+ (<r 3 - er i)
2

]

m
. (2.5)

Again, for a biaxial stress state it can be shown that

Cr eff =(l/V2)[0-,
2

- C7, (72- G2]m (2.6)



and the yield locus for the von Mises' criterion is shown below in Figure 3. For three-

dimensional principal stresses, the shape takes the form of a right circular cylinder with its

central axis aligned 45° from all of the principal axes.

It should be noted here that for isotropic materials and isotropic strain hardening,

the right circular cylinder will expand equally in three dimensions as a o increases.

von Mises Yield Locus

Figure 3: The von Mises Yield Locus.

In terms of the stress tensor, a y , the following may be shown. First

cry = cr'ij + 8\
s
a m (2.7)

where o' y is the deviatoric stress, 8\] is the Kroneker delta and o m is the hydrostatic

stress component. Plastic flow is only dependent of the deviatoric stress component. For

a state of uniaxial stress, equations 2.8 and 2.9 may be derived:

o-' 1
= -2o-' 2 = -2cr' 3 (2.8)



<&i = -2<fe 2 = -2<5£- 3 (2.9)

Equation (2.9) assumes that no volume change occurs during the plastic deformation.

Therefore the following equations hold true:

8sxl5e 2 = -2 (2.10)

Ssilde 2 = g'xIg'i (2.11)

8ei/a'i= Ss 2Ig' 2 =5£~Jg' y (2.12)

Based on the preceding equations, it can be assumed that

<&ij/a' ij
= 8X (2.13)

where SX is the scale factor of proportionality. This results in the Levy-Mises equation

which is rewritten as

&ij=a',,^. (2.14)

The extension of the Levy-Mises equation to account for the elastic component of strain

was performed by Prandtl and Reuss and takes the form,

8s v
xi

= a',
j
(3^5:

)/(2 5
: H') (2.15)

where a is the effective von Mises stress and H' is the slope of the equivalent

stress/plastic strain curve (Hill, R., 1956). However,

(8a/U') = Ss p
(2.16)

where 8 e ,,
is the equivalent plastic strain increment which in turn is defined as

8s p
= ((2/3)8£

]\8£ l

\
] )

v2
. (2.17)

Thus the Reuss-Prandtl equation becomes

8s\= G'^8-£,)l{2a). (2.18)



It is the Reuss-Prandtl equation which relates the incremental plastic strain to the

deviatoric stress component, the instantaneous hardening rate and the effective von Mises

stress. Equation (2.18) is the constitutive equation relating stress and strain which is used

for the cold worked models in this work.

2. Creep

The behavior of the solid at elevated temperatures is governed by thermally

activated processes. The strength of solids at high temperatures is strongly dependent on

strain rate, e , and temperature. Strain hardening is reduced because recovery processes

predominate and the strength of the material can be characterized according to its creep

resistance. The two environmental factors influencing creep are temperature and stress

(Sherby, 0. D„ and Burke, P. M., 1968).

Figure 4 shows the three stages of creep for a polycrystalline metallic solid. The

first stage is known as primary creep; in this interval of strain the metal is hardening, and

this is apparent in the decreasing creep rate. The second stage of creep, also known as

secondary creep, is the stage in which the creep rate is constant. In this stage the

substructure developed has a strong dependency on stress and temperature. The third

stage, known as tertiary creep, is often associated with localized necking and void

formation under tension. This stage leads to material failure, and is characterized by an

increasing strain rate (Sherby, 0. D., and Burke, P. M, 1968). As either temperature or

stress increases, the slope and the strain rate of all three regions increases. The secondary

stage of creep where the creep rate in constant is the area of interest for hot working.
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Time

Figure 4: The three stages of creep shown as strain, s , vs. time.

Creep is a thermally activated process. Above temperatures of 0.5Tm , where Tm is

the melting temperature of the material, the creep rate is dependent on dislocation climb.

This is often referred to as dislocation creep. Because climb is a diffusion-controlled

process the steady state creep rate tends to be proportional to the diffusion coefficient:

s = kDf[<r) (2.19)

where

D = D exp(-Q/RT) (2.20)

is the diffusion coefficient, T = absolute temperature, R = universal gas constant,

Q = activation energy for creep, and D and k are constants. This indicates a direct

relationship between s and D. Because of this direct relationship it can be shown

s = K,f(<7) (2.21)

where K;=kDo

or

s = K; a". (2.22)

11



At low stresses creep is believed not to be due to dislocation climb but due to stress

directed atom migration. Here, the stress will bias the direction of vacancy diffusion

within grains and they will elongate in the direction of the applied tensile stress; this is

often referred to as diffusional creep or as the Nabarro-Herring creep mechanism as

illustrated below in Figure 5.

Figure 5: Schematic of the Nabarro-Herring diffusional creep model.

"The vacancy concentration in region 1 is higher than the

vacancy concentration in region 2 for the central grain illustrated.

Vacancies will therefore flow in the direction shown by the arrows, or,

which is the same, atoms will flow in the opposite direction leading to

elongation of the grain in the tensile direction of the applied stress"

(Sherby, O. D., and Burke, P. M., 1968).

The type of creep relation given by Nabarro-Herring can be written as

8 = KiCT (2.23)

and is thus known as the linear law. At higher stresses the intermediate stress law is where

dislocation climb or the non-conservative motion or jogs of screw dislocations is the

mechanism of creep and expressed as

12



£ =K 2 a (2.24)

for pure metals (Sherby, O. D., and Burke, P. M, 1968).

^se-

lf creep is dependent on two thermally activated processes, i.e., dislocation creep

and diffusional creep, each contributing independently to plastic flow, the fastest process is

always rate controlling. This is shown below in Figure 6.

log £

Actual Creep Rate

Figure 6:

Process 2

G - Constant Process 1

l/T( K)-'

Schematic of two different processes of creep. "When two independent

processes control creep, the fastest is rate controlling. If each process has a

different activation energy the observed activation energy for creep will

change with temperature, increasing with increasing temperature" (Sherby,

O. D., Burke, and P. M„ 1968).

Grain Boundary Sliding (GBS) is also a form of diffusional creep where the grains slide

along the boundaries after diffusion of vacancies within the grains has occurred.

Normally in the intermediate stress range it is not a dominant mechanism due to the

relatively large grain sizes found in pure metal. GBS typically becomes the dominant

mechanism of creep for grain sizes less than ten microns. For GBS the strain rate-stress

13



relationship has been experimentally shown to be (Sherby, O. D., and Wadsworth, J.,

1982)

ir=K3a 2
. (2.25)

Because of the high density of particles within the cluster regions of MMC's it is

thought that Particle Stimulated Nucleation (PSN) of recrystallization within clusters of

reinforcement particles will result in different elevated-temperature flow characteristics

within these regions. These regions exhibit recrystallization in the early stages (0.1-0.25

true strain) of processing and thus behave as fine grained structures. Fine-grain metals

may deform by grain boundary sliding (GBS) at elevated temperatures and are weaker

than coarse grained metals. If GBS is the dominant deformation mechanism within

clusters than they may deform at different rates when compared to the matrix. Such

differences in flow behavior are analyzed here.

The constitutive laws thus developed for hot worked models are shown in

equation (2.24), s = K2 cr
5

, for the matrix material; and in equation (2.25), s = K3 cr
2

,

for the material within clusters if recrystallization has occurred.

B. FINITE ELEMENT METHOD (FEM)

The finite element code used to perform this work was LS-DYNA3D, a vectorized

explicit three-dimensional finite element code for analyzing the large deformation dynamic

response of inelastic solids. The code was developed by the Livermore Software

Technology Corporation (LSTC) in Livermore, California (Hallquist, J. O., 1991). The

FEM program is based on the Lagragian description of the body. The central difference

technique is also utilized in the code for time integration. For further technical and

14



theoretical information about the program the reader is referred to the theoretical manual

(Hallquist, J. O., 1991). In the models eight-node hexahedron solid elements were used

under plane strain conditions. The detailed description of the models, including the

meshes and boundary conditions as well as the constitutive equations, is provided in

subsequent chapters.

In the present model each cluster zone remains as a single entity even after large

deformation. In other words, the model does not allow for breaking down of a single

cluster into smaller clusters and for mixing within the surrounding matrix material. This

mixing phenomenon certainly happens in actual deformation processing of composites and

further experimental study is needed to gain better insight into the actual physical

mechanisms occurring within MMC's during TMP. The subsequent study should improve

the modeling technique to more closely describe the actual phenomena. For this purpose a

Eulerian-Lagrangian technique of the FEM will likely be more suitable.

15





III. SMEARED PARTICLE CLUSTER MODELS OF METAL MATRIX
COMPOSITES

A. DEVELOPMENT OF THE MODELS FOR COLD WORKING

A few assumptions were made in the development of the particle reinforced MMC

models. In the initial consolidation of a particle reinforced MMC the reinforcement

particles are assumed to be non-homogeneously distributed within the matrix material,

there being local particle-rich areas interspersed with matrix-rich areas. This circumstance

was simplified in the model; two separate homogeneous entities were assumed: one is the

particle-rich area, modeled as a cluster, and the other is the matrix-rich area modeled as

pure matrix material. The shape of the cluster regions was modeled as a cylindrical

region, or a circular area in two-dimensional space. This can be seen in Figures 7 to 10

that show the different meshes prior to deformation.

An assumption made specifically for the cold deformation model was that the

material behaved as an elastic-plastic material with isotropic strain hardening. The related

theory of plasticity was discussed in Chapter II. Table 1 lists the material properties used

for the cluster material and matrix material used in the cold rolled models. The cluster

region is modeled as a homogeneous material with the effects of the increased fraction of

reinforcement particles within the cluster being increased Young's modulus, E, and the

strain hardening coefficient to 150% of their values compared to the pure matrix material.

Such an increased modulus E, corresponds to a SiC or AL20? particle volume fraction of

0.25 within the clusters residing in an Al matrix. Because no particles are assumed to be

17



present in the matrix, the modulus, E, is that of unreinforced Al. A similar proportional

increase in strain hardening rate was assumed for the purpose of this analysis.

Table 1

:

Material properties of the matrix material and cluster material used in the

cold worked models.

Material Properties of the matrix material and cluster material

Material type Matrix material Cluster Material

Yield Stress 40 ksi 45 ksi

Young's Modulus, E 10.4*10
6
psi 15.6*10

6
psi

Strain Hardening Coeff. 1 00 ksi 150 ksi

B. DEVELOPMENT OF THE FEM MESHES

The overall geometry of the MMC model consists of a three dimensional block

containing zones representing the clusters. There are four basic mesh geometry's shown

below in Figures 7 to 10. The boundary conditions imposed on the models are as follows.

The symmetry boundary condition is imposed on the left hand side of the model where the

left hand nodes are constrained to allow motion in the vertical direction only. The model

is also constrained on the front and the back surfaces to correspond to the plane strain

condition. The bottom of the model is set on a stationary rigid body with no friction

between the material and the rigid body. This allows the material to slide along the rigid

body surface. The top of the model is also against a rigid body with no friction, but the

top rigid body is in motion in the downward direction at a constant velocity. The right

hand side of the model is free to move; however, when in contact with the top or bottom

rigid body there is no friction between the rigid bodies and the model is therefore allowed

to slide. In Figure 7 the model contains two particle clusters located side by side. Figure

18



8 shows two clusters in a vertical orientation with the same spacing as the previous model.

In this and subsequent figures of the mesh, the two rigid bodies at the top and bottom of

the block are not shown. Figure 9 shows six clusters in a square arrangement and Figure

10 shows these same six clusters with identical spacing but in a diamond arrangement.
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Figure 7: Mesh of two cluster regions oriented horizontally.
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Figure 9: Mesh of six cluster regions in a repeating square arrangement.
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Figure 10: Mesh of six cluster regions oriented in a repeating diamond arrangement.
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C. STRESS AND STRAIN RESULTS OF COLD WORKING

All models were subjected to a large deformation (corresponding to a natural

strain of about 1 .2). The fringe plots of effective von Misses stress and the fringe plots of

effective plastic strain for all the cold worked models at a state of 1.20 true strain are

shown in Appendix A; the exception is that the diamond shaped model is at a true strain of

1.13. The models of cold deformation indicate significantly higher stresses within the

cluster regions and relatively lower strains as compared to the surrounding matrix

material. Looking specifically at the diamond cluster arrangement, for example, in Figure

11 it can be seen that the stresses in the cluster region range up to 233 ksi while in the

stresses in the matrix region are as low as 102 ksi.

This is expected behavior of all the models because the clusters have higher yield strength

and stiffer modulus. Looking at the fringes of effective plastic strain, shown in Figure 12,

it is noted that the higher strain regions in the range of up to 1 .40 effective plastic strain

are within the matrix material at the center of the diamond shaped cluster arrangement.

The lowest effective plastic strains are experienced in the cluster regions themselves and

range from 0.65 to 1 .22.

D. DEVELOPMENT OF HOT WORKED MODELS

The models of hot deformation used the same meshes as the cold work models and

were shown previously in Figures 7 to 10. This was done so that a direct qualitative

comparison could be made between the two different TMP approaches. These models

invoke the power law of viscoplasticity in the intermediate stress range of creep (Sherby,

O. D., and Burke, P. M, 1968) and utilize the constitutive equation:
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cj = ks
m
£

n
. (3.1)

In Eq. (3.1) m=0 and n and k vary depending on the location in the MMC.

The following additional assumptions are used in the high temperature modeling

process. First, the temperature during the hot working is assumed to be above 0.5Tm ,

where Tm is the melting temperature of the material. Next, it is assumed the matrix

material behaves such that the mechanism for creep is dislocation climb and therefore n=5

in Eq. (3.1). This assumption was discussed earlier in Chapter II. In the cluster material

grain boundary sliding (GBS) is assumed to be the mechanism of creep. Because of

particle stimulated nucleation (PSN) of recrystallization within clusters after very small

strains, it is assumed that grain boundary sliding (GBS) becomes the predominate

deformation mechanism and therefore n=2 in Eq. (3.1) (Sherby, O. D, Wadsworth, J.,

1982). Because the constitutive law is based on strain rates, the models were deformed

using three different nominal strain rates. These strain rates include a high strain rate of

33.3 s"
1

, an intermediate strain rate of 3.33 s"
1

, and a low strain rate of 0.333 s" . To

determine the k values to be used in the Eq. (3.1), plots of strain rate divided by the

diffusion coefficient, D, vs. creep stress were used (Sherby, O. D., Wadsworth, J., 1982).

The n=2 power law and the n=5 power law were assumed to intersect at the intermediate

strain rate. This is illustrated below in Figure 13. Note that in Figure 13, the line with the

steepest slope represents the dislocation climb creep mechanism while the other line

represents the GBS mechanism. It was then determined from the graph that, at a nominal

stress of 5000 psi and a nominal strain rate of 3.33 s"
1

, that k = 3937 for the matrix

material and k = 2732 for the cluster material. Note from Figure 13 that, if the strain rate
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is high, the n=2 power law results in significantly higher stresses. In reality this does not

occur because the n=5 power law will dominate (i.e. dislocation climb) the physical

behavior. Therefore the 'k' value for the cluster material equals the 'k' value for the

matrix material in the high strain rate model.

Intermediate stress range creep behavior for

dislocation climb and grain boundary sliding

CM
<

Q
*<
re

C
"c5

o

log creep stress

Figure 13: Log-Log plot of intermediate creep stress vs. (strain rate/D) where D =

Diffusion Coefficient.

It may be argued that the Nabarro and Herring (NH) diffusional creep law, where

n=l in Eq. (3.1), is the mechanism by which creep would occur in the fine-grained

clusters. This is not believed to be the case here; because NH creep is normally associated

only with deformation near the melting temperature (T > 0.9 Tm ) and in the very lowest

creep stress range (Sherby, O.D., and Burke, P.M., 1968). However, one model run using

the square cluster arrangement was generated using the linear law, n=I and k = 1501.5 in

Eq.(3.1). The resulting cluster response was very similar to the results using the n=2
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power law. Because of this, the low and intermediate strain rate models were all

generated using the n=2 power law.

E. STRESS AND STRAIN RESULTS OF HOT WORKING

The fringe plots of effective von Misses stress and the fringe plots of effective

plastic strain for all the hot deformation models at a state of approximately 1.20 true

strain, with the exception of the diamond cluster arrangement which was deformed again

to 1.13 true strain, are shown in Appendix B. It is noted that in the high strain-rate

models no distinction between the cluster regions and the matrix material is evident as

shown in Figures 14 and 15. This result is expected because the mechanism of creep is

dislocation climb within both the clusters and the matrix.

In the intermediate strain rate analysis the higher stresses were observed to be

within the cluster material. The effective plastic strains are also higher within the clusters

(note Figures 16 and 17). In the earlier stages of hot working at the intermediate strain

rate, the models do exhibit lower stresses within the clusters. Not until a value of 1.0 true

strain is reached do the higher stresses in the cluster region become apparent. Near the

end of the deformation process the strain rates are higher, because of the prescribed

constant velocity of the rigid body, and the mechanism of creep within the cluster regions

should change from GBS to dislocation climb. The computer code allows for the

constitutive law to be expressed as a power function, i.e., s \
= Kicr or £2 = K2C7

,

where in fact the form of the constitutive law when one has differing grain sizes should be

£j = £l+£ 2 . (3.2)
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Figure 15: Fringe plot of effective plastic strain for the two cluster vertical arranged

model after hot working at a high strain rate to a true strain of 1.20.

28





N -<

3 3 n
0, -.

X 3
-*> <+

h-

1

u tl a '1

3 n M
ID 4".

i\) CD

X
IB

a

iV VI n
t>Q h-* a u> OJn n ti

+ + m
s cs n o
;_D (JJ -h s

-h is— Ml •S3

3 3
W
m

i

fj 1 <+ s
T

ro rn n
3 3 w
n ni (/>

3 3
<->- <+

<
ru w 1

A CD J
A Ul w
en en

o 0> (T> tn .- « '
' if o> 1 Ul VI VI

%
N _» ** s aU^"i3 " 1 lO ID m
!k a u "^ Hfii i

M I tri Ul

s Jw
a (0 HiLH M I >! (n

n n ri n n n n n

s
+
IS £

*
s s 1 B 1

*
s s B

en 10

Y - 1 u> u) 1 w Ul 11)

Figure 16: Fringe plot of effective von Mises stress for the diamond arranged model

after hot working at an intermediate strain rate to a true strain of 1.13.

29





—}
N ' <

3 3
0, _, *> <+
X 3 -i »—

a ii »M 3
3 fl

(U >-- (fi

Q u

CS i-* 10

CD Q
CD t-* u UJ
m n -h

+ + IT
5) IS m S
is <s> -h s

l s
».« pit a
3 3

"D i

m i i— s— MM » h*

ra ni V)

3 3 <+

(i m **•

3 3 n
(* <+

»
<-» IV rf

U3 Ul T
OU -\J a
LD iH •-•

o
1—1

"H

N
"D
r

10 (0 (0
03 CTi U!
10 ^ a
m m n

§ i
+

3

i

Figure 17: Fringe plot of effective plastic strain for the diamond arranged model after

hot working at an intermediate strain rate to a true strain of 1.13.

30





This additive form of the rate law is not accepted by the current computer codes. It is at

an intermediate strain-rate where this limitation will result in significant inaccuracies and

cannot be ignored. This is one of the limitations of the current models and needs to be

improved in future study.

The low strain rate models result definitively in lower stresses as well as higher

effective plastic strains in the cluster material (note Figures 18 and 19). The one exception

to this is that in the square model the strain in the cluster does not differ from the matrix

material (see Figure 20). The comparison of the linear law and the n=2 power law models

at the low strain rate is illustrated in Figures 20 to 23.

31





N <

X

!

UJ
UJ

3 3 LT)
» _.

X 3
-h <+

LD
II H I "H

3 n Na rv) ua
re

13
UJ lfl CO r~
UJ UJ ~0
(-. UJ Q UJ -k
rn m •h

+ + Ul
IS IS n a
UJ UJ -h s

-h IS)

-• *•• s
3 3 n

B) +
1 t c* S— — 1 5
m m n
3 3 ID

at m 10

3 3
<« t*

C
N> l-» 1

A A 3
H» U3 w
CD IS

Figure 18: Fringe plot of effective von Mises stress for the two cluster horizontal

model after hot working at a low strain rate to a true strain of 1 .20.





—

»

N -<

3 3 tn
gi _. •h <+

U)X 3 1 -•

ii it
h»t =1 M
3 rj M
CO
n>

(0

n

"0

r
S 03 iia cr> o UJ j^m m h
+ + Ul
G3 SI fj CJ
IS cs -h IS

-h IS
M* M« s
3 3 n

TJ +
1 fl)

r— s— — (b IS
fl ft w
3 3 <+

ID fO •-«

3 3 n
i+ <+•

01

CD i-» <*

-v) H* -j

rvj id 111

CD *-'

i
r* 3
Ul LQ

3 i

Uf

Figure 19: Fringe plot of effective plastic strain for the two cluster horizontal model

after hot workina at a low strain rate to a taie strain of 1 .20.

33





i>

f

X

1 i \

3 3 rn

X 3 1
1+ o

ll II =?
]

!

3 11 M
*. N (J3

Tl

S 03 0! 1

oo m TlA UJ u U3 An n •h
+ + Ul
S S3 <t IS
03 U3 +> s

-h 53
M* M» 53
3 3 n

W +
n> n> <+ sM P— T IS
q> rj ft

3 3 H
n> m W
3 3
<*- <+

C
H» H» 1

h^ CD 3
cr> ru w
S 01

5" 5
S "3

g ™
n
+ i—
a rn
Ul ™

v. rj

I

Figure 20: Fringe plot of effective von Mises stress for the square arranged model

after hot working at a low strain rate to a true strain of 1 .20.

34





—>
N -<

X

3 g
m _. +, H-
X 3 1 >-•

H II
»-t 9
3 1)

l\) I-' CO
1 i

-\1 N 01

A N
M -\l (jj

m rn +1

+ + Ul
(3 SJ n CD
IS <s +> IS

-h s— Ml iS
3 3 IH

13 +
(i m i— s
*— •—

•

» s
oi m W
3 3 <+

o> m N-t

3 3 n
<> c+

n
>-» h* <*•

H» h» T
CTl 0) a
S CD •-.

if)

o
-q

N
"D
r
"0

• 3
tiJ U3

i n

a 2.
I (0 I

Figure 21 : Fringe plot of effective plastic strain for the square arranged model after

hot working at a low strain rate to a true strain of 1 .20.

35





3 3 r
\ 0, -.

X 3 5 "' -./>

N < ii ll - 3 2
3 d no

vl" J* M CO p=

X
<S CD
cd a

n «

TI

A LU CU
n n -H •

+ + A
CS S> m cD

cu tu -+> ID
+> vD— M> • CD

3 3 n
CI +

1 nlU H IjMi m n> <+ S
/ if I'll 1

• II'ill
— — 1 s

litrl jRi i'J n» n n
i lfllinJT^!i|TmjXl||l 3 3 H

II 1 Ifll J! Ill 'I
1 n ft ID

'

lllifTI I

1 '

Hill ll 3 3
ft- rl-

c
l-» h-» 1

!-* CD 3
N|t|3 1 i'lJHI CD -si w
I llLiiliJI 1 IS A

x
JlMffl4l44jllIjlr

1

^iilftillK
1

\
ifflLl v WA

' fflU Jifil
f™HpH"ffilSI'
i HmBpm 1

'

' 41 Mi'

W

1

H ir'BKr

r
tn

I>
; ^HuHftHV

C
-*>

s
^

-i> u CO to Snrrrnt^H ^ ru nj w T 3
CD
ai S CD UT uj 1 co H Bt - Ul cu B9 m cc

CD

n 1
-J 1X1 SI 2! H Sfi -

n h HJB IB r

en
CO
n

1/1

n
cu "
n

j» +
^ t s 1 a HI lis as 8> s> 8 1

3
*
E

U

cu (LI U oi lu IlKl 111 J! - cu 01 CJ u
s^v- ft

7n!
I HH

'1'liH' ''PI \

Figure 22: Fringe plot of effective von Mises stress for the square arranged model

using the linear law assumption after hot working at a low strain rate to a

true strain of 1 .20.

36





—

>

N -<

t

X

3 3 r
X 3

(+
i—

i

II tl a ^
3 ii *n

ro ** U3
Tl u

r
N cs u u
03 03 -^
(-» Q U)
m n *> •

+ + a
CS Q n 03
ts IS *> ID

+> in
M* »• CD
3 3 n

"O +
n> n r— B— *- (* TC
T> ft «
3 3 t+

m m *-•

J 3 n
c+ c+-

w
h-* H* t*
I-* H* 1
CH CD
is ru .-.

3
U CO

I »

- WSK

Figure 23: Fringe plot of effective plastic strain for the square arranged model using

the linear law assumption after hot working at a low strain rate to a true

strain of 1.20.

37





F. COMPARISON OF DEFORMATION DURING HOT WORKING AND
COLD WORKING

Prior to discussing the results of the FEM analysis it is worthwhile to review

microstructural analysis (McNelley, T. R. and Ballou, M. A., 1995) illustrating the

different effects of cold working compared to hot working. In Figure 24 a non-uniform

particle distribution is evident. Particle clusters and a region free of particles are seen in

the as-cast 6061 AL-10 vol. pet. AL2O3 MMC. Figure 25 shows the same material after

hot working to a true strain of 1. 10. At this point a relatively homogeneous distribution of

the particles throughout the matrix material has been achieved. Figure 26 shows the same

material after hot working to a true strain of 0.51, followed subsequently by cold

deformation to attain a total true strain of 1.20. Although the particles are better

400m/w <i

Figure 24: An optical micrograph of an as cast 6061 Al - 10 vol. pet. A12 3 illustrating

a non uniform particle distribution (McNelley, T.R. and Ballou, M. A.,

1995).





Figure 25: A montage of the 6061 Al - 10 vol. pet. A12 3 MMC after hot forging to a

true strain of 1.10 (McNelley, T.R. and Ballou, M. A., 1995).
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Figure 26: A montage of the 6061 Al - 10 vol. pet. A1 2 3
MMC after hot forging to a

true strain of 0.51 followed by addition cold deformation to a total strain

of 1.20 (McNelley, T.R. and Ballou, M. A.. 1995).
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dispersed, compared to the as-cast material, they are still not as homogeneously

distributed as the particles in Figure 25; instead, elongated stringers of particles are seen,

representing the residual influence of clustering in the as-cast material.

From such micro structural data McNelley and Ballou (1995) concluded that

particles were more effectively redistributed during hot deformation when compared to

deformation at lower temperatures. It was also suggested that recrystallization, i.e. the

formation of new, strain-free grains, maybe responsible for this effective particle

redistribution. This phenomenon is evident in Figure 25, where refined grains are seen

throughout; within clusters, such grains appear relatively refined in size.

In this attempt to simulate the effect of such microstructural refinement, the

method used for determining the differences in particle to redistribute was to examine the

cluster deformation by evaluating the height-to-width ratio prior to and after deformation,

the amount of vertical compression of the cluster material in relation to the matrix

material, and the horizontal displacement of the cluster centers during the deformation

process. If the cluster is more readily deformed and more easily moved about within the

matrix then it is likely that the particle distribution can also more readily be homogenized

for such conditions.

Prior to deformation, all height-to-width ratios of the cluster regions are 1.0.

Figures 27 to 30 show the height-to-width ratios for the clusters after deformation. Each

figure applies to one mesh geometry, and the simulations of different TMP conditions

differ within each figure. In Figures 27 to 29 the true strain is 1.28, while for Figure 30
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the true strain is 1.13. Following is a description of the abbreviations used in Figures 27

to 36:

CW:

HW-high:

HW-int:

HW-low:

HWL-int:

The cold working process.

The hot working process under a high strain rate.

The hot working process under an intermediate strain rate.

The hot working process under a low strain rate.

The hot working process using the linear law in the cluster material and an

intermediate strain rate.

HWL-low: The hot working process using the linear law in the cluster material and a

low strain rate.

Height to Width Ratio after Deformation for two clusters

arranged horizontally

CW HW-high HW-int HW-low

Figure 27: Height to Width ratios for the two clusters arranged horizontally.
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Height to Width Ratio after Deformation for two clusters

arranged vertically

CW HW-high HW-int HW-low

Figure 28: Height to Width ratios for the two clusters arranged vertically.
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Figure 29: Height to Width ratios for the six clusters in a square array.
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Height to Width Ratio after Deformation for six clusters in a

diamond array
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Figure 30: Height to Width ratios for the six clusters in a diamond array.

From Figures 27 to 30 the observation can be made that the ratios are definitely

smaller for the hot working processes when compared to the cold working process, i.e.,

the clusters deform more readily during hot working. This would suggest that the MMC

would more readily homogenize during hot working. Also, the ratios are also smaller for

the low strain rate vs. the high strain rate analysis. This further suggests that the MMC

would more readily homogenize using a low strain rate hot working process.

Next, a close examination of the vertical compression of the cluster region in

relation to the matrix material was performed at the centerline of the block. This may

provide insight into the relative deformability of the cluster and matrix regions. Two

cluster models were used for this analysis: The vertical and horizontal arrangement of two

clusters. The analysis are presented in terms of a percentage of cluster material in the

44



vertical direction as compared to the height of the model. The results follow in Figure 31

and 32.
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Ratio of cluster to model height for the two cluster horizontal

arrangement at the centerline of the model
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Figure 3 l Ratio of cluster to model height at the cluster centers for the two cluster

horizontal arrangement at a true strain of 1 .28.
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Figure 32: Ratio of cluster to model height at the cluster centers for the two cluster

vertical arrangement at a true strain of 1.28.
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Once again it can be seen from Figure 31 and 32 that the cluster is more readily deformed

in the hot models vs. the cold model. Again this suggests that the MMC would more

readily homogenize during the hot working process.

Now, the displacement of the cluster centers in the horizontal direction is

compared in Figures 33 to 35. In Figures 33 and 34 true strain is 1.28, and for Figure 35

true strain is 1.13. The two cluster vertical arrangement is not shown since no horizontal

displacement of the cluster center is allowed due to the symmetry boundary condition.

E
<u
o
<z

a.
u±

a

Horizontal Displacement of cluster center

for two cluster horizontal model

6.6

6.4

6.2 |

6

5.8 +

5.6

5.4

5.2

5
CW HW-high HW-int HW-low

Figure 33: Horizontal displacement of the cluster center for the two-cluster horizontal

arrangement at a true strain of 1 .28.
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Horizontal displacement of the cluster centers for the square

model
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Figure 34: Horizontal displacement of the cluster centers for the square arrangement

at a true strain of 1.28.

Horizontal displacement of the cluster centers for the diamond

model
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Figure 35: Horizontal displacement of the cluster centers for the diamond model at a

true strain of 1 . 13.

47



In Figure 34 data for only four clusters are shown. This is because the two clusters at the

left of the square model have no displacement in the horizontal direction. Figure 35

displays data for five clusters in the diamond array for the same reason. It can be seen in

Figures 33 to 35 that the horizontal displacement is, once again, greater in the hot worked

models and this again leads to the conclusion that the MMC would more readily

homogenize during the hot working process.

All of the previously displayed results also indicate that the deformation associated

with clusters increases as the strain rate is lowered during the hot worked process. There

are significant difference between the high strain rate and the intermediate strain rate

cases, while the differences between the intermediate and low strain rate models is evident

but smaller. The conclusion is then made, based on the assumptions of this work, that the

best TMP to follow to reach a homogeneous particle distribution in the least strain is a

relatively low strain rate during a hot working process. A summary of all the results is

illustrated in Figure 36 for the two-cluster horizontal array.
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Visual view of cluster deformation for the two cluster horizontal models

CW

HW-high

HW-int

HW-low

Figure 36: Visual view of the cluster deformation after hot and cold working to a true

strain of 1 .28 in the two cluster horizontal models.

One area of concern in this study was how the free boundary of the mesh affects

the horizontal movement of the clusters. To answer this question the six-cluster diamond

array mesh was modified by adding a large amount of matrix material to the right hand

side of the mesh, thereby extending the mesh in the horizontal direction. This isolated the

clusters from the free boundary effects. After deformation the horizontal displacement

was compared to that of the diamond array without the mesh extension. It was found that

the clusters did not displace at all during the first 0.02 of true strain as compared to the

first 0.01 true strain in the non-extended mesh. However, once the clusters began to

move, both meshes show the same horizontal displacement of the cluster centers.

49



Therefore, from a qualitative point of view, the free boundary has no effect on the

horizontal displacement or cluster deformation.
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IV. DISCRETE PARTICLE MODELS OF METAL MATRIX COMPOSITES

A. DEVELOPMENT OF DISCRETE MODELS AND FEM MESHES

The preceding analyses neglected the particles and assumed the only influence of

the particles was on grain size, during elevated temperature deformation. This ignores the

effect of the hard particles on stress states and the modulus of the composite. Therefore,

individual reinforcement particles were modeled discretely in cluster regions of the mesh

as shown in Figures 37 to 41. The particles are still in clusters within the matrix and

furthermore arranged in the two-cluster, horizontal mesh arrangement shown in Figure 7.

Figure 37: Mesh of individual particles in two cluster regions oriented in a horizontal

arrangement. Local particle volume fraction is 25%. The empty space in

the mesh is only for visual purposes so that the location of the particles can

be see. This space in the model is filled with matrix material in the cold

worked models and cluster material in the hot worked models.
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Figure 38: Mesh of discrete model for large particles with a local volume fraction of

4%.
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Figure 39: Mesh of discrete model for small particles with a local volume fraction of

4%.
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Figure 40: Mesh of discrete model for small particles with a local volume fraction of

2%.
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Figure 41: Mesh of discrete model for small particles with a local volume fraction of

2%. Note that this model has circular shaped cluster regions.
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The empty space surrounding the particles in Figure 37 is for visualization purposes only.

The space in the models is filled in with matrix material in the cold worked models and

cluster material properties in the hot worked models. The local volume percentage of

particles in Figure 37 is 25%. The particles were modeled as purely elastic material with

Young's modulus, E, equal to 60* 10
6
psi.

The local volume fraction and size of reinforcement particles were also varied in

the following manner. The reinforcement particle local volume fraction was reduced from

25 % to 4% using the same particle size as shown in Figure 38; the particle size was

reduced to one-quarter the size shown in Figure 37 and modeled with a local volume

fraction of4% and 2% (note Figures 39 to 41).

B. STRESS AND STRAIN RESULTS OF THE DISCRETE MODELS

The fringe plots of effective von Mises stress and effective plastic strain are shown

in Appendix C. The trend of the results for all discrete models is similar. The discrete

particles sustain the highest stresses and the lowest effective strains. Figures 42 and 43,

for the 25% particle volume fraction and large particle size, apply to the low strain-rate,

hot-work model. The stresses in the particles reach 875 ksi while the stresses in the

matrix are as low as 15 ksi. The particles do not deform plastically while the effective

plastic strains in the matrix are as high 3.60. The highest strains are found between the

particle clusters, and above and below the particle clusters. Figures 44 and 45 show the

results of the intermediate strain-rate, hot-work model with a particle size one-quarter that

shown in Figures 42 and 43 and a volume loading of 4%. The results are qualitatively

similar to those of Figures 42 and 43.
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Figure 42: Fringe plot of effective von Mises stress for the discrete model after hot

working at a low strain rate to a true strain of 1.20 with local particle

volume fraction of 25%.
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Figure 43 : Fringe plot of effective plastic strain for the discrete model after hot

working at a low strain rate to a true strain of 1.20 with local particle

volume fraction of 25%.
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Figure 44: Fringe plot of effective von Mises stress for the discrete model after hot

working at an intermediate strain rate to a true strain of 1.20 with local

particle volume fraction of 4%.
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Figure 45: Fringe plot of effective plastic strain for the discrete model after hot

working at an intermediate strain rate to a true strain of 1.20 with local

particle volume fraction of 4%.
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The horizontal displacement of the center of particles was measured for the

different methods of TMP. These are shown in Figure 46 for the large particle size and 25
v

volume pet., and in Figure 47 for the small particle size and 2 volume pet.

Horizontal displacement of the center of particles in the large

particle, 25% volume fraction, discrete model

6 - -

S 5

E 4

I 3
a.

2 -m

1
-

cw HW-high HW-int HW-low

Figure 46: Horizontal displacement of the center of particles for the large particle,

25% volume fraction, discrete model.

Horizontal displacement of the center of particles in the small

particle, 2% volume fraction, discrete model.
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Figure 47: Horizontal displacement of the center of particles for the small particle,

2% volume fraction, discrete model.
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Figure 48 shows the height-to-width ratios, after the different methods of TMP, of

the cluster regions shown in Figure 41.

Height to width ratio after deformation for the two cluster discrete model with

a local volume fraction of two percent

0.2

0.18

0.16

•B 0.14
IB

a.

£ 0.12

§ 0.1

o

£ 0.08

'£ 0.06

0.04

0.02

cw HW-high HW-int HW-low

Figure 48: Height to width ratio after deformation of the small particle, 2% volume

fraction, discrete model.

Again, Figures 46 to 48 support the observation that the particles will move more

readily using a hot vs. cold TMP. Figure 49 depicts a visual view of the cluster region

deformation and particle movement for the small particle, 2% local volume fraction

discrete model under different TMP methods.

C. COMPARISON OF THE SMEARED VS. DISCRETE MODELS

The smeared and discrete models do not respond in the same manner. First, the

cluster zones have slightly different shapes in both models: the smeared model used a

circular shaped cluster zone while the discrete model used a straight line approximation

62



Visual view of cluster deformation in the small particle, 2% local volume fraction discrete

model after different methods ofTMP to a true strain of 1 .20.

Cold worked

Hot worked, high strain rate

Hot worked, intermediate strain rate

Hot worked, low strain rate

Figure 49: Visual view of cluster deformation in the small particle, 2% local volume

fraction, discrete model with circular cluster regions after different methods

ofTMP to a true strain of 1 .20.
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for a circle of the same size, as shown in Figure 37. One exception to this is the mesh

shown in Figure 41. In the cold worked models the material properties of the particles

were smeared into the cluster regions of the smeared model but not in the discrete model.

On the other hand, the stiffness of the particles was neglected in the cluster zone of the hot

work, smeared models. In the discrete models the stiff particles were modeled in both the

hot and cold worked models.

A qualitative comparison was made between the smeared and discrete models.

When the horizontal displacement of the cluster center is compared as seen in Figures 33,

46 and 47, it is noted that both models show the same general trend of greater

displacement for the hot work models vs. the cold work models. The general trend of

more displacement for the low strain rate vs. the high strain rate hot worked model is also

seen. In Figure 47, it is seen that the hot work, low strain-rate model provides the largest

amount of relative movement among the discrete particles. Again, this indicates that the

best TMP to reach homogeneity, in the least strain is the hot work, low strain-rate method

for both the smeared and discrete models. This finding is also supported by Figure 49. In

Figures 27 and 48, which show the height-to-width ratios of the cluster regions after

deformation, it is seen that the results from the discrete model are similar to those of the

cluster models. The exception is that the results of the hot work model at high strain rates

is not consistent. This case requires further investigation. In the smeared models it was

assumed that larger deformation of the cluster region would result in more homogeneity.

This assumption was supported from the discrete models as seen in Figure 49. This figure

shows that for larger deformation of the cluster zone, the particles are more fully
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dispersed. All of these comparisons give credibility to the work in Chapter III where the

particle clusters are being modeled with smeared material properties. The smeared models

are more efficient from a computational point of view and are considered a valid means of

studying particle redistribution in a simplistic manner.

An observation is made that with a higher local particle volume fraction in the

discrete models, particle redistribution does not as readily occur as compared to a lower

local particle volume fraction. This is illustrated visually in Figure 50. This leads to the

observation that, if the particle clusters in the consolidation process are tightly packed,

particle homogeneity is harder to achieve. If the particle clusters are loosely packed, i.e.,

better mixing in the consolidation/fabrication technique, then particle homogeneity will

more easily be reached. If the cluster zone has many particles, the particles will support

the most load in the cluster zone and dominate the behavior of the cluster deformation.

As a result the particle redistribution appears to be less likely. On the contrary, the matrix

dominates the cluster zone behavior with a low local particle volume fraction.
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Visual view of cluster deformation in the discrete models after hot working at an

intermediate strain rate to a true strain of 1 20

Large particle, 25% local volume fraction discrete model

Large particle, 4% local volume fraction discrete model

Small particle, 4% local volume fraction discrete model

Small particle, 2% local volume fraction discrete model

Figure 50: Visual view of cluster deformation in the discrete models after hot working

„ o« in+ot-m^JatA strain rate to a true strain of 1.20.
at an intermediate strain rate to a true strain
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V. SUMMARY

A. CONCLUSIONS

The following conclusions are drawn from this work:

1. The current modeling methods, both smeared and discrete, used to model

MMC deformation is an inexpensive and informative means of evaluating the matrix and

cluster material behavior during the entire deformation process.

2. After cold working all the smeared models exhibited higher stresses and

lower effective plastic strains within the cluster regions.

3. After hot and cold working all the discrete models exhibited higher stresses

and lower effective plastic strains in and around the particles.

4. After hot working at the low strain rates, all the smeared models exhibit

lower stresses and higher effective plastic strains within the cluster region as compared to

the matrix region.

5. After hot working at the intermediate strain rates all the smeared models

exhibit higher stresses and higher effective plastic strains within the cluster region as

compared to the matrix region. These higher stresses in the cluster region only become

apparent near the end of the deformation process and is a result of the fact that the true

strain rate is higher near the end of the hot working process compared to the beginning of

the hot working process.

6. After hot working at the high strain rates all the smeared models exhibit no

distinction between the cluster regions and the matrix regions.
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7. The results, using the linear law compared to the quadratic law, in the

cluster regions of the smeared models after hot working at intermediate and low strain

rates, are as follows. The difference in effective plastic strains between the linear and

quadratic laws is very small for both strain rates. The linear law results in higher stresses

within the cluster regions for the intermediate strain rate model and lower stresses for the

low strain rate model, when compared to the quadratic law.

8. Internal stresses achieved in the cold worked models are an order of

magnitude higher than those achieved during the hot worked models.

9. Internal stresses achieved in the hot worked, high strain rate models are

twice the value as those found in the hot worked, low strain rate models.

10. Particle homogeneity within the matrix material is better achieved using a

hot working process vs. a cold working process. This is supported by the deformability of

the clusters in the smeared models as measured in terms of height to width ratios of the

clusters after straining, the vertical compression of the cluster material compared to the

matrix material after straining and the horizontal displacement of the cluster centers during

the straining process. The relative particle movement in the discrete models also support

this finding.

11. Particulate homogeneity within the matrix material is better achieved using

a lower strain rate hot working process. This is supported by the same measures

described in the previous conclusion.
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B. RECOMMENDATIONS

The following recommendations are made for subsequent studies:

1. The current model does not allow breaking down of a single cluster into

smaller clusters and mixing within the surrounding matrix material. A further experimental

study is needed to gain more insight of the actual physical occurrence within MMC's

during TMP. The subsequent study should improve the modeling technique to more

closely describe the actual phenomena. For this description the Eulerian-Lagrangian

technique of the FEM might be more suitable.

2. The current FEM package used does not allow for combining constitutive

equations of a material region for different mechanisms of creep. During the deformation

process, the mechanisms of creep can change based on current stresses or strain rates. It

is suggested that in the further development of this study, additive constitutive laws need

to be incorporated into the FEM program.

3. The discrete model needs to be further developed. Focus should be on the

effects of initial particle distribution within the cluster regions including size, arrangement

and local volume fraction, and the size or boundary of the cluster zones. Also the

discrepancy between the smeared model and discrete model for the hot worked high strain

rate case needs further investigation.
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APPENDIX A: FRINGE PLOTS OF EFFECTIVE VON MISES STRESS AND
EFFECTIVE PLASTIC STRAIN FOR ALL COLD WORKED SMEARED

MODELS.
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Figure Al : Fringe plot of Effective Von-Mises stress for the two cluster horizontal

arrangement in the cold worked model at a true strain of 1 .20.

72





ie/6/1 916ZC

a

Figure A2: Fringe plot of Effective plastic strain for the two cluster horizontal

arrangement in the cold worked model at a true strain of 1 .20.
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Figure A3: Fringe plot of Effective Von-Mises stress for the two cluster vertical

arrangement in the cold worked model at a true strain of 1 .20.
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Figure A4: Fringe plot of Effective plastic strain for the two cluster vertical

arrangement in the cold worked model at a true strain ol' 1 .20.
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Figure A5: Fringe plot of Effective Von-Mises stress for the square shaped cluster

arrangement in the cold worked model at a true strain of 1 .20.
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Figure A6: Fringe plot of Effective plastic strain for the square shaped cluster

arrangement in the cold worked model at a true strain of 1 .20.
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Figure A7: Fringe plot of Effective Von-Mises stress for the diamond shaped cluster

arrangement in the cold worked model at a true strain of 1 . 1 3.
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APPENDIX B: FRINGE PLOTS OF EFFECTIVE VON MISES STRESS AND
EFFECTIVE PLASTIC STRAIN FOR ALL HOT WORKED SMEARED

MODELS.
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Figure B 1 : Fringe plot of Effective Von-Mises stress for the two cluster horizontal

arrangement in the hot worked high strain rate model at a true strain of

1.20.
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Figure B2: Fringe plot of Effective plastic strain for the two cluster horizontal

arrangement in the hot worked high strain rate model at a true strain ol

1.20.
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Figure B3 : Fringe plot of Effective Von-Mises stress for the two cluster horizontal

arrangement in the hot worked intermediate strain rate model at a true

strain of 1.20.
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Figure B4: Fringe plot of Effective plastic strain for the two cluster horizontal

arrangement in the hot worked intermediate strain rate model at a

true strain of 1.20.
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Figure B5 : Fringe plot of Effective Von-Mises stress for the two cluster horizontal

arrangement in the hot worked low strain rate model at a true strain of

1.20.

86





Mmil'tiR&B

(5

Figure B6: Fringe plot of Effective plastic strain for the two cluster horizontal

arrangement in the hot worked low strain rate model at a true strain til

1.20.
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Figure B7: Fringe plot of Effective Von-Mises stress for the two cluster vertical

arrangement in the hot worked high strain rate model at a iruc strain nl

1.20.
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Figure B8: Fringe plot of Effective plastic strain for the two cluster vertical

arrangement in the hot worked high strain rate model at a true strain ol

1.20.
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Figure B9: Fringe plot of Effective Von-Mises stress for the two cluster vertical

arrangement in the hot worked intermediate strain rate model at a true

strain of 1.20.
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Figure BIO: Fringe plot of Effective plastic strain for the two cluster vertical

arrangement in the hot worked intermediate strain rate model at a true

strain of 1.20.
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Figure Bl 1: Fringe plot of Effective Von-Mises stress for the two cluster vertical
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Figure B23: Fringe plot of Effective Von-Mises stress for the diamond cluster

arrangement in the hot worked high strain rate model at a true strain of

1.13.
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Figure B24: Fringe plot of Effective plastic strain for the diamond cluster arrangement

in the hot worked high strain rate model at a true strain of 1 . 1 3.
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Figure B25 : Fringe plot of Effective Von-Mises stress for the diamond cluster

arrangement in the hot worked intermediate strain rate model at a true

strain of 1.13.
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Figure B26: Fringe plot of Effective plastic strain for the diamond cluster arrangement

in the hot worked intermediate strain rate model at a true strain of 1 . 1 3.

107





96/l/Zt'ez:9!>:<K

(3)

N -<

X

3 3 a
01

X 3
1+ 1—

1

it ii =1
f]

3 ft N
ID
(I

tn

II r
^J ^i ti
ID ro o UJ

-fc»m n -h <

+ + n^
is IS it H
OJ UJ -h

-h
N

M* Ml IS
3 3

ID

I'l

+
n> It rt- IS
M- >— 3 N
ID It ro

3 3 in

(I ID m
3 3
<+ ri-

c
l-» ft) 1

ID -u 3
UJ in w
CO UJ

Figure B27: Fringe plot of Effective Von-Mises stress for the diamond cluster
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APPENDIX C: FRINGE PLOTS OF EFFECTIVE VON MISES STRESS AND
EFFECTIVE PLASTIC STRAIN FOR ALL DISCRETE MODELS
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Figure CI : Fringe plot of Effective Von-Mises stress for the discrete cold worked

model, with a local volume fraction of 25%, at a true strain of 1 .20.
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Figure C2: Fringe plot of Effective plastic strain for the discrete cold worked

model, with a local volume fraction of 25%, at a true strain of 1 .20.
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Figure C3: Fringe plot of Effective Von-Mises stress for the discrete hot worked high

strain rate model, with a local volume fraction of 25%, at a true strain of

1.20.
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Figure C4: Fringe plot of Effective plastic strain for the discrete hot worked high

strain rate model, with a local volume fraction of 25%, at a true strain of
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Figure C5 : Fringe plot of Effective Von-Mises stress for the discrete hot worked

intermediate strain rate model, with a local volume fraction of 25%, at a

true strain of 1.20.
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Figure C6: Fringe plot of Effective plastic strain for the discrete hot worked

intermediate strain rate model, with a local volume fraction of 25%, at a

true strain of 1.20.
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Figure C7: Fringe plot of Effective Von-Mises stress for the discrete hot worked low

strain rate model, with a local volume fraction of 25%. at a true strain o\'

1.20.
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Figure C8: Fringe plot of Effective plastic strain for the discrete hot worked low

strain rate model, with a local volume fraction of 25%, at a true strain of

1.20.
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Figure C9: Fringe plot of Effective Von-Mises stress for the discrete hot worked

intermediate strain rate model, with a local volume fraction of 4%, at a

true strain of 1.20.
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Figure CIO: Fringe plot of Effective plastic strain for the discrete hot worked

intermediate strain rate model, with a local volume fraction of 4%, at a
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Figure CI 1 : Fringe plot of Effective Von-Mises stress for the discrete cold worked

model, with a local volume fraction of 2%, at a true strain of 1 .20.
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Figure CI 2: Fringe plot of Effective plastic strain for the discrete cold worked

model, with a local volume fraction of 2%, at a true strain of 1 .20.
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Figure C 1 3 : Fringe plot of Effective Von-Mises stress for the discrete hot worked high

strain rate model, with a local volume fraction of 2%, at a true strain of

1.20.
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Figure C 1 4: Fringe plot of Effective plastic strain for the discrete hot worked high

strain rate model, with a local volume fraction of 2%, at a true strain of

1.20.
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Figure CI 5: Fringe plot of Effective Von-Mises stress for the discrete hot worked

intermediate strain rate model, with a local volume fraction of 2%, at a

true strain of 1 .20.
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Figure CI 6: Fringe plot of Effective plastic strain for the discrete hot worked

intermediate strain rate model, with a local volume fraction of 2%, at a

true strain of 1.20.
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strain rate model, with a local volume fraction of 2%, at a true strain of

1.20.
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Figure CI 8: Fringe plot of Effective plastic strain for the discrete hot worked low

strain rate model, with a local volume fraction of 2%, at a true strain of

1.20.
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