
BLM LIBRARY 

11 1 1 pc. T 
88C 70881 Report No. 93 

UNITED STATES 

DEPARTMENT OF THE INTERIOR 
BUREAU OF MINES 

HELIUM ACTIVITY 

HELIUM RESEARCH CENTER 

INTERNAL REPORT 

CORRECTION FOR NON-UNIFORMITY OF THE BORE 

OF A CAPILLARY TUBE VISCOSIMETER 

J. E. Miller 

R. A. Guereca 

H. P. Richardson 

J. L. Gordon 

BRANCH BRANCH OF FUNDAMENTAL RESEARCH 

PROJECT NO. 5574 

HD 

9660 DATE October 1966 

. H43 
M56 

L no. 93 

AMARILLO, TEXAS 





\X>SdO^C)3S\ 
tfU’CsO 

Li/j'X 
Report No. 93 * ' ^ 

mi> 
fto AZ 

HELIUM RESEARCH CENTER 

INTERNAL REPORT 

CORRECTION FOR NON-UNIFORMITY OF THE BORE 
OF A CAPILLARY TUBE VISCOSIMETER 

By 

J. E. Miller, R. A. Guereca, 
H. P. Richardson, and J. L. Gordon 

BRANCH OF FUNDAMENTAL RESEARCH 

Project 5574 

October 1966 BLM Library 
Denver Federal Center 
Bldg. 50, OC-521 
P.O. Box 25047 
Denver, CO 80225 



•• si vwnoO 
- o :) . d*-!£ 

*.a .01 
■ ,0; < >0 vi; -0 



2 

CONTENTS 

Abstract ............... 

Introduction ............. 

Exact solutions of equation (4) . . . 

Ellipse ............. 

Cone .............. 

Sine wave ............ 

Sawtooth wave .......... 

Square wave ........... 

General case .......... 

Sample calculations ......... 

Calculation of 6 for a 19-foot section 
of stainless steel capillary tubing 

Application to electric resistance 
measurements ............ 

Summary ............... 
i 

References .............. 

ILLUSTRATIONS 

Fig. 

1. Graphs of the bore profiles ............. 

2. Values for K versus ot . . .............. 

4 

5 

8 

8 

9 

11 

13 

14 

15 

23 

26 

28 

29 

31 



. 

■ 

' 

>' 



3 

ILLUSTRATIONS--Continued 

Fig♦ Page 

3. Cross-sectional area of bore at 

regular positions along the capillaries . 24 

4. Profile of a glass capillary bore. 26 

5. Profile of a stainless steel capillary bore . 27 

TABLES 

1. Summary of analytic solutions for 

6-1 = a = f(K) ....................... 16 

2. Values for 6-1 =0' = f(K) .................. 17 

3. Variations in cross-sectional area along 

capillary 2.5, arbitrary units ............... 25 





4 

CORRECTION FOR NON-UNIFORMITY OF THE BORE 

OF A CAPILLARY TUBE VISCOSIMETER 

by 

1/ 2/ 
J. E. Miller,— R. A. Guereca,— 

H. P. Richardson,—^ and J. L. Gordon—/ 

ABSTRACT 

Analytic solutions for correction of non-uniformity in viscosim¬ 

eter capillary bores are presented for the following cases: ellipse, 

cone, sine wave, sawtooth wave, square wave, and the general case. 

Rapid, accurate estimates of the correction factor (1-Kv) may be 

obtained from a graph of percent relative deviation in the bore ver¬ 

sus a. Comparison of the analytic solutions to previously published 

data on glass capillary tubes illustrates the convenience of the 

analytic solutions. The general case is used to estimate (1+aO for 

a section of stainless steel capillary tubing. The radius of a glass 

capillary may be determined by filling the bore with mercury and 

measuring the electrical resistance. The correction factor for non- 

uniformity of the bore is shown to be a/3 using the resistance method, 

1/ Research chemist, Helium Research Center, Bureau of Mines, 

Amarillo, Tex. 
2/ Supervisory research chemist, project leader, physical properties 

studies, Helium Research Center, Bureau of Mines, Amarillo, Tex. 

Work, on manuscript completed October 1966. 
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INTRODUCTION 

At a given temperature (T) and pressure (P), for a steady-state 

laminar volumetric flowrate, Q, through a capillary of length, L , and 

resulting pressure drop, AP, the Poiseuille equation (1) for viscosity, 

Tj, is derived, 

T) 

rrAPr 
4 

L 8QLr 
(T,P) 

(1) 

by assuming that the tube bore is a perfect right circular cylinder 

with radius r. Because real capillary bores are non-uniform, a 

correction is applied to equation (1). This correction is computed 

by assuming that if deviations in the bore are small, then the pressure 

4 
drop, dP^, over length, dx^, will still be proportional to 1/r^ because 

3 / 
the radial component of velocity may be considered negligible (1_)„ — 

3/ Underlined numbers in parentheses refer to items in the list of 

references at the end of this report. 

If this is true, (L /r^") ^ in (1) can be replaced by 

1 

x. =L 
l T 



' 

(. ) J ■■».[ r io ai ) ■ 3 s'nm 
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or r in (1) can be replaced by 

-1 

x, =L_ 
l T 

x. =0 
l 

(2) 

When the radial component of velocity is not negligible, the actual 

velocity distribution must be determined and equation (1) rederived 

because dP^/dx_^ along the cylinder axis will be perturbed. In this 

report, all calculations of the correction for non-uniformity of the 

bore are based on the assumption that the expression in (2) is valid. 

In most of the previous work with absolute capillary flow vis¬ 

cosimeters, a root-mean-square radius, r^, is determined by measuring 

the internal volume and length of the capillary; then r of a right 

circular cylinder with the same length and volume is computed. The 

dimensionless correction for non-uniformity of the bore (6) is defined 

so that 

x. =L, 
l 

^ s 
> v =n 

(3) 



, 

. 
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or 

6 
r 

L 

ms 

4 
dx 

4 

l 
(4) 

T x.=0 r 
l i 

As a consequence of equation (3), the viscosity equation (1) assumes 

the form 

(la) 

For a right circular cylinder, 6=1; when r^ f a constant, 6 > 1. 

As is well known, the pressure drop through an actual, capillary bore 

is greater than would be observed in the corresponding perfect 

cylinder. 

There are a few cases where equation (4) may be solved exactly. 

Barr (1_) gives the solutions for an ellipse, cone, and cone with 

elliptical cross sections. In this report, solutions for a sine wave, 

sawtooth wave, square wave, and the general case are presented, 

together with those for the cone and ellipse. All solutions are 

reduced to the same form: 

6 -1 01 f (K) , (5) 
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where K is roughly the relative deviation from symmetry. Figure 1 is a 

Figure 1.-Graphs of the bore profiles. 

graphic representation of the bore profiles. 

EXACT SOLUTIONS OF EQUATION (4) 

In this case, the semi-axes r and r . are at right angles and 
max mm 

there is no rotation of axes down the length of the bore. The area of 

a cross section is 

having the same area: 

tt r r . 
max mm J 

so r is the radius of a circle 
m 

tt r 
m 

rr r r . ; 
max mm 

(6) 

4 2 2 
r = r r 

m max min 
(7) 

According to Barr (1), evaluation of (2) gives 

o 3 3 2 r r 
max min 

2 j. 2 r + r 
max min 

(8) 

so equation (4) becomes 

6 = 1 + at 
E 

2 2 
r r . 

max mm 

2 , 2 
r + r 
max min 

9 3 3 2 r r . 
max mm 

(9) 



4. 

■ 

■ 
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mm 

Ellipse ( cross section ) 

^ min ^ max 

Cone Sine wave 

Square wave Sawtooth wave 

FIGURE I Graphs of the Bore Profiles. 
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If 

Kt 

r - r . 
max mm 

r . 
min 

then (9) becomes 

6 = 1 + Oi 
E 

K 

1 + KE + 2 

1 -I* K„ 

E 
K, 

= 1 + 
2 (1+Ke) 

so 

a 
E 

K 

2 (1+Ke) 
_L 
2 

K 
E 

3 4 

ke + ke ke + ke 1 

(10) 

(11) 

Cone 

The cone is assumed to have circular cross sections with 

r. = r . (1 + bx) . 
i min 

(13) 

At 

at 

Also, 

x = 0, r. = r . : 
i mm 

x = L , r. = r 
T i max 

m 
T 

0 

2 Lt 

m dx = ^ (1 + bx)2 

T o 

2 a. , 2 r + r r . + r . 
max max mm mm (14) 



. 
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Evaluating, 

r dx_ 

J r4 
0 i 0 

dx 

(1 + bx) 
4 

_T 

3 

2 2 
r + r r . + r . 

max max mm mm 

3 3 
3 r r . 

max mm 

(15) 

Then substitution into (4) gives 

6 = 1 + cr 
r + r r + r 

max max min min 

2 2 
r + r r . + r . 

max max mm mm 

q 3 3 
3 r r 

max min 

2 2 
r + r r. + r . -,3 

max max mm mm 

3 3 
r r . 

max mm 

(16) 

If 

r - r . 
max mm 

rmin 

(17) 

is substituted into (16): 

6 = 1 + Q^c 

(1 + Kc) - 1 

27 K* 3q (1 + Kc)3 

= 1 + 
1 + K, 

4 

+ 
K 

3 (1 + Kc)‘ 

+ 
k; 

27 (1 + Kc)' 

(18) 



■ 
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and 

a 
C 

3 (1 + Kc)2 27 (1 + Kc)3 

(20) 

Sine Wave 
4/ 

4/ K. R. Van Doren, research, mathematician. Helium Research Center, 

Bureau of Mines, Amarillo, Tex., contributed substantially in 

developing this solution. 

The equation of a sine wave deviation superimposed on a right 

circular cylinder is 

r. 
l 

r^ + sin C^x . (21) 

Then 

r 
m 

2 

0 

(22) 

sin 2 C2 , (23) 
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and for an integral number of cycles 

C2 
2 2 . 1 

r = r + — 
m 0 2 

(24) 

The other integral, 

dx 

q (rQ + C1 sin C2x) 
4 ’ 

(25) 

can be solved by making the following substitutions 

u = C2x ; (26) 

Z = tan 
u 

(27) 

Then 

dx 

0 (rQ + C1 sin C2x) 
4 

Z = tan 

0 

c2lt 

(1 + z2)3 dZ 

(r0 + 2 CjZ + r0Z2)4 

and the numerator can be expanded to give four integrals that can be 

solved by standard methods, although each of the four must be broken up 

into two parts to prevent integration across a discontinuity. The 

answer to (28) is a very long expression, but for an integral number of 

cycles it is, after making the substitution: 

K, 

r - r 
max U 0 mm 

(29) 

0 0 0 

(28) 



. 
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dx 

0 (r0 + C1 Sin C2X^ 

Lt (2 + 3Kg) 

- 

(30) 

Substituting (29), (30), and (24) into (4) gives: 

6 = 1 + ct. 

T7 

(1 + -f)2 (2 + 3Kg) 

^^7r2 

(31) 

Equation (31) can be simplified to give 

6 = 1 + ot. 1 + 6 + 18.375 k! + 29.375 + 
u u O 

(32) 

A sawtooth wave 

the same techniques. 

Sawtooth Wave 

superimposed on a cylinder may be solved using 

If is defined as 

r - rn rn - r . 
max 0 0 mm 

it can be shown that 

r 
0 

kt a + -r) 

(33) 

(34) 

and 



■ . 
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or 

6 = 1 + c*T 

4 
r 

m 

K 

(1 + 2\3 
3 ' 
2 3 

(i - v 
(35) 

6 = 1 + ot. 1+4 Kt + 
3,4 
3 KT + 

— K6 + 
27 T 

244 S 

9 KT + 
(36) 

Square Wave. 

If the square wave deviation is symmetrical to r 
0: 

ri = ro (1 * V (37) 

and 

■ ro (1 + *£> 
(38) 

for an even number of cycles. Also, 

L, 

L, 

4 ,4 
2 rQ (1 + y 

+ 

2 4 (1 V 
4 J 

(39) 



* 

' 
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Then 

6 1 + O' 
W 

2 2 
a + V 

2 

(1 - y4 + (1 + v4 

(1 - V^1 + V* J 

(1 + }V)2<1 + 6 + *£> 

a - k^)4 

■ 1 + 12 Kw + 56 KW + 164 4 + 368 4 + • • • 

Table 1 summarizes analytical solutions for all cases discussed. 

Table 2 shows values for O' for various values of K. Figure 2 shows a 

Figure 2.-Values for K versus Ctf. 

graphic representation of K versus a. 

General Case 

In some cases it may not be possible to find an analytic expression 

°f = f(x) for substitution into (4). Then (2) must be evaluated by 

graphical or numerical methods. Swindells, Coe, and Godfrey (5_) replaced 

the integral by a summation. Using our notation, they let 

(41) 

(40) 



*r 
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TABLE 1. -Summary of analytic solutions for 6-1 = Qt = f (K) 

1/ 
Type of bore— K 6-1 = a 

Ellipse 

r - r . 
max min 

r . 
mm 

^ K2 - K3 + K4 - K5 + K6 ± 

Cone 

r - r . 
max min 

r . 
mm 

k2 _k3 + A_k4 ,^.k5 + |1k6 ± 

Sine wave 

r - rn 
max 0 

r 
0 

6 K2 + 18*375 K4 + 29.375 K6 + • • 

Sawtooth wave 
rmax “ rQ 

ro 

, v2 , 28 4 460 6 
4 K + y K + yy K + 

Square wave 
rmax rQ 

ro 
12 K2 + 56 R4 + 164 K6 -1 

General 

r. - r 
l m 

m 

_ . / m avg 
24 K ± • • • , or 24 — 

avg \ 

r - r 

r 
m 

1/ See figure 1. 
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TABLE 2. -Values for 6-1 = a = f (K) 

K, %- 6-1 = ot = f (K), 10 ^ units 

Ellipse, 

O' 
E 

Cone, 
Q' 

c 

Sawtooth wave 

Oi 
T 

, Sine wave, 

Oi 
s 

Square wave 
Oi 

W 

0.01 2/0.005 0.01 0.04 0.06 0.12 

.02 .02 .04 . 16 .24 .48 

.04 .08 .16 . 64 .96 1.92 

.06 .18 .36 1.44 2.16 4.32 

.06 .32 .64 2.56 3.84 7.68 

.10 .50 1.00 4.00 6.00 12.00 

.12 .72 1.44 5.76 8.64 17.28 

.14 .98 1.96 7.84 11.76 23.52 

. 16 1.28 2.56 10.24 15.36 30.72 

.18 1.62 3.23 12.96 19.44 38.94 

.20 2.00 3.99 16.00 24.00 48.00 

.22 2.42 4.83 19.36 29.04 58.21 

.24 2.88 5.75 23.04 34.56 69.31 

.26 3.37 6.74 27.04 40.56 81.38 

.28 3.91 7.82 31.36 47.04 94.42 

.30 4.49 8.97 36.00 54.00 108.45 

.4 8 16 64 96 192 

. 6 18 36 144 216 432 

.8 32 63 256 384 768 

1.0 50 99 400 600 1,200 

1.2 71 142 576 864 1,728 

1.4 96 193 784 1 j 177 2,352 

1.6 126 252 1,024 1,538 3,072 

1.8 159 318 1,297 1,946 3,894 

2.0 196 392 1,601 2,403 4,800 

2.2 237 474 1,938 2,908 5,821 

2.4 281 562 2,307 3,462 6,931 

2.6 330 659 2,708 4,064 8,138 

2.8 382 763 3,142 4,715 9,442 

3.0 437 874 3,608 5,415 10,845 

1/ See table 1 for definition of K, 

2/ Oi = 0.005 x 10-6, 6 = 1.000000005. 
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and 

(42) 

5/ In this case, r is a root-mean-square radius determined, for 
— ’ m 

example, from a large number of small, equally spaced samples, n. 

It is used later in the section "Calculation of 6 for a 19-foot 

Section of Stainless Steel Capillary Tubing." 

then 

4 n 
r 

m 

n 

In this case, it is convenient to let 

6 = 1 + a 
g 

r. = r (1 + K.) . 
l m l 

Substitution of (44) into (42) gives 

n 

m 

n I a + V: 

or 

n n n 

-1 a+ 2 ki + A) - n + 21 Ki+1 Ki 
l i i 

(43) 

(44) 

(45) 

n (46) 
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and 

n n 

2 I! Ki + Z Ki = ° 
(47) 

Substitution of (44) into (43) gives 

4 n n 

6 = 1+0? 
m 

n 

1 

4 ,4 
. r (1 + K. ) 
1 m y i/ 

L 
n 

I (1 + K. ) 
1 • l 

4 

n 

L 
n 

. 1 + 4 K. + 6 K2 + 4 K3 + K4 
1 1111 

n 

— Y (1 - 4 K. + 10 K2 - 20 K: 
n 4j i i ] 

+ 35 K4 - 56 K5 + 84 K6 
ill 

120 K7 ± 
l 

n 

n 
n 4 

n 

K. + 10 Y K2 
i 4j i 

n 

20 K3 
i 

+35 ^ K4 ± 

1 

(48) 



i 
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From (47), 

s o 

6 1 + ot 
g 

n + 12 20 I K3 + 35 
i 

1 

n 

I Ki1 

1 

. (49) 

The average is 

(50) 

so 

= - 2n K 
avg 

(51) 

Substituting (51) into (49) gives 

n n 

6 = 1 + oi 1 - 24 K 
. avg 

20 
n 

3 35 
K. + —- 
l n 

K4 ± 
i 

1 - 24 K 
avg 

(52) 

whi9h is a very good approximation because is usually negligible 

and is both plus and minus so the sum tends to cancel. Then the sum of 



- 

. 
' 
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. 
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IC is negligible also. Equation (52) is essentially the same as equa¬ 

tion (IV-S) in Flynn (2_). 

A more convenient equation to compute 6 can be derived from (50): 

K 
avg 

n 

5>i 
l . (53) 

n r 
m 

But 

r 
avg 

(54) 

so 

K 
avg 

n r 

n r 
«ZS. . i 

m 

r - r 
avg m 

r 
m 

and 

6 1 - 24 K 
avg 

24 (r 
1 + 

m 
- r ) 

avS 

m 
1 

where 

(55) 

Equation (41) is essentially a trapezoidal rule integration 

h 
y0 + yl+ y2 + 



. 
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h = 
b - a 

n 

So 

dx 

4 n Lr 
+ + + 

0 
2r 

4 4 4 
0 

4 
1 

2r 
4 

n-1 n 

and if r. ^ r , or choose r „ = r , 
On’ On’ 

— c 

0 i 

i + -L + 
n \ 4 4 

T1 r2 
4 

n 

n 

_L 
n 4 

i ri 

Also, (44) is derived from 

m 
2 , 

r. dx 
l nLv 

° , 2 2 
T + rl + r2 + 

0 

2 , n r + — 
n-1 2 

n 

2 
m — 

i- y r2 
n L i 

These equations are for n equally spaced samples. One must know the 

exact profile of r. = f(x) to get an "exact" value for either r or 6. 
1 m 

Simpson's rule gives nearly the same result as the trapezoidal rule in 

the evaluation of (42) and (43). 

Due to the way K. is defined, K will always be negative, so 6 

is always greater than one. It is necessary to use r computed from 



■ 

' 

. 
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(42) to get a valid estimate of 6 from (43). Otherwise, the estimate 

for 6 will be in error by the ratio of the two r!s raised to the fourth 

power and it is possible to compute values of 6 that are less than one. 

The use of (42) and (43) with relative r_^ measurements will give a 

valid estimate for 6; this is essentially the procedure used by Swindells, 

Coe, and Godfrey (5_). 

It is interesting to note that one cannot let K be constant in this 

derivation. Because of the way is defined, (47) would, give: 

2 n K + n K2 = 0 (56) 

or 

K (K + 2) = 0 

and 

K = 0, -2 . 

The first case corresponds to r^ = r^, which, is a perfect cylinder. 

The second case gives r. = -r , which is impossible. If K. = ± constant, 
& l m i 

one should use (40) for the square wave. 

SAMPLE CALCULATIONS 

Four examples are given to illustrate the use of equations and 

figure 2 in this report. Some relative diameter measurements given in 

(5) are used for the first, three examples. These measurements are shown 



, 

f. 
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in table 3 and are graphed in figure 3; the deviations are roughly 

Figure 3.-Cross-sectional area of bore at regular positions along the 

capillaries. 

sinusoidal with 

K, 
max 0 

0 

562.6 - 561.625 

561.625 
0.00174 (57) 

= 0.174 percent . 

From the sine wave curve of figure 2, at = 18 x 10 and 6 = 1.000018, 

(5) gives 6 = 1.000021. 

The data in table 3 may be substituted into equations (42) and (43) 

giving 6 - 1.00002086; using the approximation of (52) and (53) yields 

K 
avg 

6188.625 

6188.630382 
-0.86966 x 10 (58) 

and 

5 = 1 . 24 K = 1.00002087, (59) 
avg 

so the approximate equation gives very good results in this case. 

The third example is for capillary tube number 2.5a of (5); cross- 

sectional areas are seen to be similar to a sawtooth deviation. The 

radius is proportional to the square root of area, so KT may be taken as 



/ 5S 

0’ 

; ■ 

* 
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TABLE 3.-Variations in cross-sectional area along capillary 2„5, 

arbitrary units 

Position along 

tube 
Mean diameter 

Area of cross 

section 

cm 

1 1,123.75 126 281 
5 1,123.25 126 169 

10 1,124.75 126 506 
15 1,127.25 127 069 
20 1,125.75 126 731 
25 1,125.00 126 563 
30 1,125.00 126 563 
35 1,124.25 126 394 
40 1,127.75 127 182 

45 1,127.00 127 013 
49 1,123.50 126 225 

Source: Swindells, J. G., J. R. Coe, and T. B. Godfrey. 

Absolute Viscosity of Water at 20° C. NBS J. 

Res., v. 48, No. 1, January 1952, p. 16. 
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FIGURE 3.-Cross-Sectional Area of Bore at Regular 

Positions Along the Capillaries. 

Source: Swindells, J. G. , J. R. Coe, and T. B. Godfrey. Absolute 
Viscosity of Water at 20° C. NBS J. Res., v. 48, 

No. I, January 1952, p. 16. 
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0.00197 . (60) 

/ 1271 - J 1266 
\-- 

1266 

Then from figure 2, 6 = 1.000016. Swindells, Coe, and Godfrey (5_) give 

6 = 1.000023. 

The last example, from (3_), is the profile of a glass capillary 

bore, figure 4. This deviation curve is roughly a sine wave with an 

Figure 4.-Profile of a glass capillary bore. 

average amplitude of about 

9.141 x 10 
-3 

8.96S x 10 
-3 

= 8.65 x 10 cm (61) 

Then 

K =. iiilJL-lO— 2J 9.58 x 10"3 or 0.96 % . (62) 

S 9.028 x 10'3 

Then from figure 2, O' = 0.00055 and 6 = 1.00055. The value quoted in 

(3_) is 6 = 1.0006 (determined by graphical integration with a planim- 

eter). 

CALCULATION OF 6 FOR A 19-FOOT SECTION 

OF STAINLESS STEEL CAPILLARY TUBING 

A 19-foot section of 347 stainless steel capillary tubing 

supplied by Superior Tube Company,—^ Norristown, Pa., was cut from one 

6/ Trade names are used for identification only and endorsement by the 
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Source: G i ddmg s, John G. The Viscosity of Light H ydrocarbon Mixtures at High Pressures: 

The Methane-Propane System. Ph. D. thesis, William Marsh Rice University, 

Houston, Texas, May 1963, 94+ pp. Copyright 1963. 
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Bureau of Mines is not implied. 

end of a 220-foot length of cold-drawn (onto a mandrel) tubing. This 

section was sent to the Atomic Energy Commission Pantex Plant, Amarillo, 

Tex,, where the section was cut into 57 4-inch samples. Six internal 

diameter measurements, three at each end, were made on each sample, for 

a total of 114 cross sections or 342 diameter measurements. The indi¬ 

vidual measurements are listed in Helium Research Center Internal Report 

No. 92 (4). 

The deviations of the average radius per foot from the overall 

average radius are shown in figure 5, The only trend noted is a net 

Figure 5.-Profile of a stainless steel capillary bore. 

change in average radius from the 2nd to the 19th foot. Equations (42) 

and (43) were used to estimate 6. The calculation was performed on an 

IBM 1620 computer giving 6 = 1.00004360,using all 342 diameter measure¬ 

ments, and 6 = 1,00003442, using the average radius for each of the 

114 cross sections. Using the approximation in (55)— gives 6 = 

7/ r = 0.01519883040, r (all 342 diameters) = 0.01519885800, 
— avg 5 ms J 5 

r = 0.01519885219 inch for 114 cross sections, 
ms 

1.00004358 for all 342 measurements and 6 = 1.00003441 for the 114 

cross sections. From figure 5, 
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FIGURE 5.- Profile of a Stainless Steel Capillary Bore. 
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KS " 

40 x 10 

152 x 10 

~6 

I4 = 0.263 7o 

that 

and figure 2 gives 6 = 1.000042- 

The net change in radius, about 0.26 percent, in the 19-foot sec¬ 

tion may have been due to the fact that the section came from one end of 

a batch. It is not known which way the mandrel wire was withdrawn, with 

respect to the 19-foot length, but the only two possibilities are 

essentially either all or none of the mandrel passed through it. It 

seems likely that a section from the center of a typical 200-foot batch 

would be more uniform than either of the end sections. Also, the 19- 

foot end section of stainless steel capillary tubing was more uniform 

than some specially selected glass capillaries reported in the litera¬ 

ture. For instance, values of 6 up to 1.0047 for glass precision bore 

capillary tubing are reported in (3^. 

In the near future, the Helium Research Center plans to measure 

r , for use in equation (la), by a gravimetric method using mercury, 
ms 

The r^ thus determined should be very close to the r^ in equation (1). 
ms 

At the same time, measurement errors in r^ will be minimized by using 

equation (43) to compute 6. These measurements will be taken on a 208- 

foot long section of capillary being used to evaluate gas viscosities. 

APPLICATION TO ELECTRIC RESISTANCE MEASUREMENTS 

Sometimes the radius of a glass capillary bore is determined by 

filling the bore with mercury and measuring the electric resistance of 
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the mercury (5_). Then the resistance, R, is related to radius, r, by 

R 

tt r 

(63) 

where p is the resistivity of mercury and is length of the bore. 

Because of non-uniformity of the bore the actual resistance will be 

greater than the resistance of the equivalent right circular cylinder 

by the factor (1 + A), where 

1 + A 

Using the same method as was used to obtain (55) gives: 

(64) 

1 + A 1 - 8 K 
avg 

(65) 

and 

A =* ot . (66) 

Therefore, the values of Qt given in tables 1 and 2 and shown in 

figure 2 may be divided by three to get the corresponding correction 

for electric resistance. 

SUMMARY 

In this report, all of the analytic solutions for 6 are independent 

of length or number of cycles for a regular deviation. The correction 
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factor, 6, usually will be negligible; deviations of 0.2 percent in 

the root-mean-square radius lead to corrections of less than 0.005 per¬ 

cent in computing the viscosity, T). For relatively large deviations, 

the equations in this report may lead to incorrect estimates of 6 

because the radial component of velocity may not be negligible. 

The graph of percent relative deviation, K, versus O' makes it 

possible to obtain rapid, accurate estimates of 6. The most conserva¬ 

tive estimate is given by the square wave function; the most realistic 

estimate probably is given by the sine wave deviation. 

4 
If one can replace r in equation (1) by the quantity in equation 

(2), it is not necessary to compute 6. On the other hand, if one has 

measured a value for r , an estimate for 6 may be computed from equa¬ 

tion (43) or (55) but in both cases it is necessary to use r computed 

from equation (42) to get a valid estimate for 6. The estimated value 

for 6 can then be applied to equation (1) with r^ /6 substituted for r\ 
ms 
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